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Abstract

Résumé
Dans le présent travail, nous partons du principe qu’une synergie entre le développement
basé composant et le développement orienté aspect est une issue prometteuse. En fait,
chacun des deux paradigmes peut apporter des avantages pour l’autre et combler ses in-
suffisances. D’un côté, les aspects seront dotés des mêmes propriétés structurantes que
les composants logiciels, permettant ainsi leur réutilisation. D’un autre côté, la puissance
expressive de la programmation orientée aspect présente des avantages indéniables, notam-
ment pour l’évolution des composants logiciels, permettant de ce fait, leurs adaptation aux
changements potentiels dans les besoins de leurs utilisateurs ou dans leurs environnements.
Néanmoins, la synergie de ces deux paradigmes doit être canalisée et vérifiée par l’application
des méthodes formelles, qui, utilisées pragmatiquement, se révèlent d’un grand intérêt dans
le domaine de la vérification des systèmes complexes.
Dans cette thèse, nous proposons une approche formelle permettant au concepteur d’effectuer
des spécifications et des vérifications en amont pour les systèmes logiciels à base de com-
posants logiciels et d’aspects.

Mots-clefs

Développement basé composant, Développement orienté aspect, Méthodes formelles, DSL,
Systèmes de transition étiquetés, UPPAAL.

Formal Approach for Combining aspects and Software
Components

Abstract
In the present work, we assume that a synergy between component-based development
and aspect-oriented development is a promising issue. In fact, each of the two paradigms
can bring advantages for the other and fill its shortcomings. On the one hand, the aspects
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will have the same structuring properties as the software components, thus allowing their
reuse. On the other hand, the expressive power of aspect-oriented programming presents
undeniable advantages, in particular for the evolution of software components, thereby
allowing their adaptation to potential changes in the needs of their users or in their envi-
ronments.
Nevertheless, the synergy of these two paradigms must be channeled and verified by the
application of formal methods, which, used pragmatically, are of great interest in the field
of verification of complex systems.
In this thesis, we propose a formal approach allowing the designer to perform upstream
specifications and verifications for software systems based on software components and
aspects.

Keywords

Component-based development, Aspect-oriented development, Formal methods, DSL, La-
beled transition systems, UPPAAL.
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Chapter 1

Introduction

1.1 Context and motivations
In recent years, software systems have become more and more complex, and changes in
their needs or environments have become more and more frequent. In response to this
situation, new paradigms in software engineering have emerged, among which we find:
component-based development and aspect-oriented development.

Component-based development, by its main virtue - reuse - allows rapid and less ex-
pensive development, since it is based on an assembly of pre-built and certified software
components.

For its part, aspect-oriented development allows an advantageous separation between the
business codes of a system and the transverse functionalities, the latter being encapsulated
in modules called aspects. Further, the aspect-oriented programming, through the weaving
mechanism, offers considerable expressive power allowing very significant changes to be
introduced into a system during its execution.

The search for a synergy of the two paradigms seems a promising issue. On the one
hand, the aspects will have the same structuring properties as the software components,
thus allowing their reuse. On the other hand, the weaving mechanism could present an
efficient solution to reconfigure component based systems, thus allowing them to dynami-
cally evolve in response to changes in their needs or in their environments.

However, this synergy can run into difficult problems, such as evaluating the scope of
a reconfiguration or the preservation of some properties. Faced with this situation, formal
methods present a rigorous way to verify the correctness of complex systems, firstly, a
real system is specified by an abstract formal model describing only the characteristics to
be verified, secondly, adjacent tools are often used to verify properties on the formal model.

1.2 Problematic
The objective of the thesis is to provide a formal support allowing to model and verify the
synergy of component-based development and aspect-oriented development. In fact, we
recall that each of these two development paradigms complements the other and remedies
its shortcomings. Indeed, on the one hand, the aspects will be endowed with the same
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structuring properties as the software components, this offers them a better reuse, on the
other hand, the aspect-oriented mechanisms represent a very effective means allowing to
evolve the component-based systems, however, the use of aspects can have negative effects
on the system, including the violation of some properties, therefore, the main question of
our problematic is how to verify two types of properties on systems combining components
and aspects :

• Behavioral properties : Such as the absence of deadlock, both between the compo-
nents of the system, as between the system and its environment.

• Temporal properties : One can cite as examples: the execution times of the services of
the components, the mutual exclusion between the services, or the order of execution
of the services.

1.3 Content of the thesis
The thesis consists mainly of two parts. The chapters of the first part (from 2 to 4) are
devoted to the state of the art, while those of the second part (from 5 to 11), are dedicated
to the presentation of our contribution.

Chapter 1 Introduction Presents the research context, gives a brief motivation for
the thesis and introduces its main objectives. Further, a description of each chapter of the
thesis is also provided.

First part The state of the art

Chapter 2 Component based development Introduces the reader to component
based development. In fact, this chapter mainly presents the basic notions and concepts
of this paradigm, as well as a classification of formal verification issues in this field.

Chapter 3 Aspect oriented development Introduces the reader to aspect-oriented
development. First, the basic concepts of the paradigm are presented. Secondly, we outline
the formal verification issues in the field, in particular those dealing with the problems of
interaction between the aspects.

Chapter 4 Comparative study of similar works Presents similar works, classified
into three families, namely, formal approaches for component-based development, formal
approaches for the combination of component-based development and aspect-oriented de-
velopment, as well as formal approaches to web services. Further, other works close to our
contribution are also presented.

Second part Our approach

Chapter 5 Presentation of the approach Presents an overview of the full contribu-
tion, allowing the reader to have an overview of the full approach. In fact, this chapter
first introduces the approach, then details its main steps.
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Chapter 6 Case study Outline a motivating example that we used to illustrate our
methodology throughout the thesis; the example shows an airline ticket booking system.
In fact, this chapter gives the different subsystems with their actions, as well as the timing
constraints to which the booking system is subjected.

Chapter 7 Modeling Presents the modeling of the different elements of a system based
on components and aspects. Indeed, we give the model of a component-oriented architec-
ture as well as the model of its aspect-oriented evolution.

Chapter 8 Model transformation We outline the algorithms allowing the transfor-
mation of the models presented in chapter 7 towards a network of timed automata.

Chapter 9 Verification and simulation The network of timed automata obtained
after model transformations represents an input to the UPPAAL model checker, thus
allowing the verification and simulation of the behavior of systems based on components
and aspects. All these details will be presented in this chapter.

Chapter 10 Support tools and evaluation This chapter presents our tool, TiVA
Framework, supporting the methodology of our approach, this framework is mainly com-
posed of two tools: the TiVA DSL, allowing to specify a system based on components and
aspects, and the TiVA Core, allowing to transform the said specification to network of
timed automata, this paves the way to perform verification and simulation using UPPAAL
tool. Further, we also present an evaluation of our approach.

Chapter 11 Comparison with the state of the art This chapter presents a com-
parison of our work with state-of-the-art approaches.

Chapter 12 Conclusion and perspectives This last chapter summarizes all the work
of the thesis, and discusses the possible issues and perspectives for future work.





Part I

The state of the art





Chapter 2

Component-Based Development

This chapter constitutes an introduction to the component-based development paradigm.
Firstly, we present the main notions as well as the basic concepts. Secondly, we will
discuss the usefulness of the application of formal methods for the modeling and the
analysis of component-based systems, this being part of a classification summarizing the
main verification issues.

2.1 Component-Based Development
In component-based development [34, 43], the construction of a software system is reduced
to an assembly of separately developed software components. This offers as advantages to
reduce development costs as well as time to market. Moreover, the quality of the software
systems is better, since the latter are built from tested and certified components. In
addition, the maintenance and evolution stages of the system are simply a replacement of
software components; furthermore, in response to changes in users requirements or in the
environment, component-based systems can also be reconfigured by modifying the links
of their architecture.

Software component In the literature, there are many definitions of the notion of soft-
ware component, according to [34], "A software component is a unit of composition with
contractually specified interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to third-party composition". Indeed, a
software component interacts with its environment only through its interfaces, since it is
designed without any knowledge of its environment, this offers an independence allowing
its use in different contexts.

Interfaces and Assembly A software component can have two types of interfaces:
on the one hand, the provided interfaces, they represent the services that the component
offers, on the other hand, the required interfaces, which are the services that the component
needs to accomplish its functions. The assembly of a component-based system is done
by linking the provided interfaces with the required interfaces of a selection of software
components; however, in order to guarantee a correct assembly of these components, the
compatibility of their interfaces should be verified beforehand.
The semantics of an interface is usually specified by its signature. However, the description
of an interface only by its signature is insufficient for modeling and verifying the notion
of compatibility, indeed, the specification of an interface must also include the definition
of the behavior, such as the sequence of service calls between components of the system,
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or the timing constraints, such as the execution time of a service. As we will see in the
next sections, the application of formal methods is inescapable for the verification of these
issues.

Component models and component frameworks Others aspects, relating in par-
ticular to the definition of the components and their composition are specified by the
component model to which the component is assigned. Indeed, the component models de-
fine a specific representation, composition modes, interaction styles and others standards
dedicated to software components [45]. In addition, component models form the basis for
creating component frameworks.
Component frameworks establish the physical environmental conditions for the execution
and cooperation of components in the system, and they help also to regulate the interac-
tions between components in execution [34].
Component frameworks can only concern physical components, unlike component models,
these can be defined for the different levels of abstraction for a component [79], indeed,
some component models define a software component as an execution entity, this is the case
for Fractal [16] for example, while others component models define a software component
as a design entity, as is the case for SOFA [76].

Instance of a software component Some component models distinguish component
types from their instances, allowing the creation and the destruction of component in-
stances at runtime, as is the case for EJB [28] or CCM [23]. Others component models
like Wright [5] do not take instantiation into account.

Synchronous communication vs asynchronous communication Usually, the
communication between the software components is done in a synchronous manner, as
is the case for Darwin [61] and SOFA. However, in some models such as EJB or CCM,
communication can be done by asynchronously sending and receiving messages.

Flat models vs hierarchical models A set of basic software components can be
assembled to give a composite component. In flat component models, this composite
component represents the final component-based system, as is the case for EJB or CCM.
However, in hierarchical component models, such as SOFA or Fractal, the composite
component may in turn be subject to composition with others components, allowing the
construction of a component-based system with several hierarchical levels of components.
Furthermore, in hierarchical models, we must specify the interfaces to be delegated outside
a composite component to be linked to compatible interfaces in the higher hierarchical
levels of composition.

Single binding vs multiple binding Some component models suppose one-to-one
linking of interfaces, i.e., single bindings, as in SOFA, others component models allow an
interface to be linked to several others interfaces, i.e., multiple bindings, as is the case of
EJB and Fractal.

2.2 Life cycle of a component-based system

Component-based software systems are developed by selecting and assembling off-the-shelf
components, instead of being programmed, this makes the lifecycle of a component-based
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software system different from traditional software system; it mainly comprises the follow-
ing steps:

1. Requirements specification : It concerns collecting, analyzing and specifying the
needs of the future users of the system.

2. Architecture specification: The architecture of the software specifies the system in
terms of abstract components of design and interactions between these components.

3. Selection and customization of components : First, the concrete components taken
on the shelf are selected according to the software architecture, in a second step;
each component must be personalized before being integrated into the new system.

4. Integration of the system : Integration is achieved by establishing mechanisms for
communication and coordination of the various components of the final software
system.

5. Test of the system : Various methods and tools are used to test the component-based
system; in fact, it is a question of checking the properties concerning functional as-
pects as well as those related to the quality of the software.

6. Deployment : This is the installation of the software components of the system on
one or more computers.

7. Maintenance and evolution of the system : After deployment, parts of the component-
based system can be modified, due to changes in users requirements or in the envi-
ronment.

The concept of software construction by reuse is not new, indeed, the idea was already
present in object-oriented programming, it was implemented by the inheritance mecha-
nism; the relatively recent emergence of new technologies has significantly increased the
possibilities of building systems and applications from reusable components.

Furthermore, building systems based on components or building components for systems
in different application areas requires methodologies and processes, including not only de-
velopment and maintenance aspects, but also those relating to organizational, marketing,
legal and other aspects.

2.3 Development for reuse and development through reuse

The component-based software engineering process includes two separate but linked pro-
cesses via a component market. In the following we present each of the two processes:
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• Development for Reuse : This process consists of an analysis of the application do-
mains in order to develop commercial-off-the-shelf (COTS) components related to
these domains. To complete a successful reuse of the software, standards for similar
systems must be identified and represented in a form that can be easily exploited
to build other systems in the domain. Once created, reusable components will be
available in organizations or at the market level as commercial components.

• Development through reuse : this is related to the assembly of software systems from
the components taken on the shelf.

2.4 The objectives of component-based development

The main objectives of component-based development can be summarized as follows:

• Reuse : This is the main objective of component-based development. While some
software components of a large system are necessarily special purpose components,
it is imperative to design and assemble components in order to reuse them in the
development of others systems.

• Independent development of software components: Large software systems should be
able to be assembled from components developed by different people, for this pur-
pose, it is essential to decouple the developers from the components of their users,
this is done mainly through the specifications of the behavior of components.

• Software quality : A software component or a component-based system should have
the desired behavior. Quality assurance technologies for component-based software
systems are currently relatively premature, as the characteristics of component-based
systems differ from those of conventional systems.

• Maintainability : A component-based system should be built in a way that is un-
derstandable and easy to evolve.

2.5 The contributions of component-based development

The contributions of component-based development can be presented as follows:

• More efficient management of complexity: The division of large and complex sys-
tems into sub-systems offers greater control over their complexity.

• Time to market is reduced : Component-based development consists of assembling
existing components, which reduces development time, and therefore accelerates the
time to market.
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• Costs are reduced : While some software components are completely specific to a
given application, other software components can be reused and shared with other
developers, thereby reducing their costs by damping through a large population.

• Quality is improved : Component-based development greatly improves the quality
of the systems, since the latter are built from components that are already tested
and certified.

• Easier maintenance and evolution : The maintenance and evolution of component-
based systems is easier, since most of the time they are reduced to simple additions,
deletions or replacement of software components.

2.6 Classification Of Formal Verification Issues For Component-
Based Systems

Formal approaches are rigorous methods aimed at modeling and analyzing complex sys-
tems. The idea of verifying programs is not new; in fact, it dates back to the 1960s.
Today, formal techniques and tools are widely used in both the academic and the indus-
trial worlds.
In our context, formal methods are essential for component-based development because
they enable addressing important verification issues throughout the lifecycle of a component-
based system. In the remainder of this section, we will detail these verification issues which
we have classified into three levels, namely, at an individual component, during the com-
position of the components, and finally at the evolution level.

2.6.1 Component level

This level of analysis addresses the verification of an individual component before its
composition with the rest of the system; we classified this verification into two types:

• Context-independent verification : it consists of verifying the properties of a compo-
nent in the isolation, thereby independently of its deployment context; indeed, the
issues to be checked can concern the absence of deadlock in its own specification or
the coherence of the specification of its temporal constraints.

• Context-dependent verification : In component-based development, components are
developed independently of their deployment context; therefore, component correct-
ness can be very difficult to define, as a component may behave correctly in a context
but incorrectly in another. Existing approaches remedy this situation in two different
ways; some approaches [65, 66] propose to attribute to each component a description
of its properties, thereby enabling the user of component to decide if the latter can
behave correctly in a given context. Other approaches [90, 22] deliver software com-
ponents with a set of quality properties that are guaranteed in all contexts satisfying
a number of conditions.
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2.6.2 Composition level

Compatibility of components

The software components constituting a component-based system can be delivered by dif-
ferent sellers; therefore, verification of their compatibility is an important issue. Some
approaches define compatibility only in terms of signatures of services linking components
[89, 23, 60]. However, this description is by no means exhaustive, because it does not
include for example, the specification of the services calls sequence of a component, such
an aspect is more a matter of behavior. On the other hand, other approaches offer a
richer description of compatibility, including description of the behavior [26]. This makes
it possible to verify that the composition will not lead to an erroneous interaction between
the components of the system.
Some approaches propose to verify compatibility at design time, while others perform
checks during execution, thereby detect bad interactions between components dynami-
cally, using a test environment in which the concerned components are duplicated [71].
Moreover, even if the components are not completely incompatible, they can sometimes co-
operate correctly by generating appropriate adapters of their interfaces. Some approaches
generate adapters for connecting components belonging to different component models
[35, 25]; this can be done in a fully automatic manner. Other approaches include adapters
for integrating an incompatible functionality of components [38], in which case, additional
input is required from the user or the monitoring phase to provide information concerning
the parts corresponding to the incompatible functionality.

Assembly of components

The process of assembling components is mainly twofold: identifying the correct compo-
nents taken on the shelf, and their connections together, so that the resulting component-
based system corresponds to the desired requirements.
Usually, assembly strategies focus on finding the most cost-effective solution with respect
to time [38]. The cost function can, for example, evaluate the components in terms of
their performance measurements or the minimization of new requirements generated by
the added components. The assembly can be selected based on an exhaustive evaluation of
all possible alternatives [9], or via an iterative construction of a relatively optimal solution
[29].
In this context, formal methods make the problem of assembly of components considerably
simpler by simply providing a design of the component-based system comprising specifica-
tions of a set of components and their connections, the problem being reduced to simply
finding the correct component implementations taken on the shelf and formally verifying
their compliance with the expected specifications.

The global verification

Formal methods are very useful for verifying the global properties of a final component-
based system. In this case, formal analysis generally includes:

• Verification of standard coordination errors.

• The absence of deadlock in the system.



2.6. Classification Of Formal Verification Issues For Component-Based
Systems 23

• Verification of the different timing constraints in the global system.

• The order of execution of a set of services of a components selection in the final
system.

• Verification of the number of components that can simultaneously access to the same
service.

This verification can be carried out on the whole of the final component-based system
or simply on a well-defined part.
Furthermore, in addition to checking properties, formal methods can also help in optimiz-
ing component-based systems, namely:

• Detection of inactive components, which can be removed from the system.

• The search for optimal system deployment by placing components in compute nodes
based on the density of interaction between them [95].

As with compatibility, some approaches check the properties of a global system at design
time, while other approaches allow dynamic verification of the system, in fact, the confor-
mance of the current behavior of the components in execution is verified in parallel with
its specification [72], thereby any errors are reported in case of discrepancy.

2.6.3 Evolution level

After the deployment phase, a component-based system can evolve or adapt, in response
to changes in users needs or changes in its environment [88], namely: interoperability with
others systems, optimization of computational algorithms, or technical changes.
Formal methods and techniques are very useful for modeling and analyzing the evolution
of component-based systems [96]. We have classified this analysis into two types:

• The dynamic reconfiguration of the architecture : this mainly includes the change of
the links between the system components as well as the creation and destruction of
the instances of the components. At this level, formal analysis seeks to verify the
coherence of the global system after a dynamic reconfiguration.

• Substitutability : one or more components can be replaced with new ones. Gener-
ally, approaches addressing this issue define an equivalence relation between the old
and the new component, in order to verify that the substitution does not violate
the correctness of the global system [73]. However, in some cases, the verification
of the equivalence between the two versions of the system is not necessarily strong,
because it is only necessary that the new system satisfies a given explicit property,
this is considered much more by the approaches that do not aim to guarantee that
the behavior remains unchanged, but rather to identify the behavioral differences
between several versions of the system [62].
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Furthermore, the evolution of a component-based system is usually defined with a set
of evolution rules.

2.7 Conclusion
In this chapter, we wanted to present the principles as well as the basic concepts of
component-based development, before proposing a classification of the main formal veri-
fication issues for software components.
Thus, the formal methods and techniques, used pragmatically, are of great interest for
component-based development, both for its analysis in isolation, and when it is combined
with other paradigms, in our case, the aspect-oriented development, which we will present
in the next chapter.



Chapter 3

Aspect-Oriented Development

Aspect-oriented programming is positioned at the limits of object-oriented programming,
in fact, it offers better management of the complexity of software systems and facilitates
their evolution. In this chapter, we will introduce the basic principles and concepts of
aspect-oriented programming, then we will explain the usefulness of aspect-oriented design
in the development cycle of complex systems. Finally, we will describe some problems
related to this programming technique, in particular, those having to do with aspect
interferences.

3.1 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [53] is a programming technique proposed by Gre-
gor Kiczales in 1997, it is one of the implementations of advanced separation of concerns
[15]. In this approach, a software system is considered to be composed of a functional
part and a non-functional part. The functional part relates to the business part of the
system, in other words, it is the functionalities for which the system was designed. The
non-functional part represents concerns that are independent of the main mission of the
system but are necessary for its functioning, as an example of non-functional concerns we
can cite: security, synchronization, persistence management, transactions management,
and optimization. Moreover, these concerns are crosscutting, since each non-functional
concern crosscut several functional classes.
In the aspect-oriented approach, each of these concerns is called an aspect, the objective of
the approach is to factorize these aspects outside the functional part, compose and reuse
them in an efficient way [53].
In general, aspect-oriented programming has the advantage of reducing the complexity of
a system, improves its understanding, reduces its code, and improves its evolution and
maintenance. In addition, modeling is closer to our perception of the real world.
In practical terms, AspectJ [51] represents the first concrete realization applied to the Java
language, it remains today widely quoted in all the works dealing with the aspect-oriented
approach and remains considered the reference, in particular, for its language of pointcuts.

3.2 The need for aspect-oriented programming

Aspect-oriented programming is positioned to the limitations of object-oriented program-
ming. In fact, in the practice of object-oriented programming, it can be seen that each
functionality is not perfectly embodied by a class or by a restricted group of classes, in-
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deed, it is common to see in the functional code of a system several non-functional concerns
independent of this code, this situation poses mainly two problems, which are, the entan-
glement and the scattering of the code [53]:

• Tangled code : Within a given class, we find both the code implementing the func-
tional part of the system as well as the code implementing the non-functional part
(i.e., the concerns); this mixture prevents the reuse of the classes.

• Scattered code : For a given concern, such as security, for example, one finds that
its code is duplicated in several classes in the system; therefore, changing the secu-
rity policy requires a series of changes in several classes. The scattering of the code
makes the maintenance and evolution of the system difficult.

The aspect-oriented programming modularize the code of each non-functional concern in
one aspect, outside the classes; these will contain only the code relating to the functional
part, so the two problems of entanglement and scattering of the code are eliminated.

3.3 Basic principles and concepts
The aspect-oriented programming make very powerful transformations in a basic program
(for example: an object-oriented program) by a behavior injection mechanism called weav-
ing. The behavior is encapsulated in a module called aspect. The aspect contains mainly
two types of elements: an advice, representing the code to be injected, and a pointcut,
specifying the locations of the injection of this code into the base program, these locations
are called join points. A join point can be for example a method call. Depending on its
type, an advice of an aspect can be executed before, after or around a join point in a basic
program.
In the following, we present in more detail the basic principles and concepts underlying
aspect-oriented programming:

• Dependency inversion principle. This notion makes it possible to change the di-
rection of the dependence between two entities, where at the beginning, the least
abstract (i.e., lowest level) depends on the more abstract (i.e., higher level). For
example, for the persistence management concern, without the inversion of depen-
dencies, the program must retrieve the reference to the programming interface and
call it, in other words, the implementation part of a program depends on a higher
level interface (i.e., persistence management). The aspect-oriented approach is often
considered one of the implementations of the dependency inversion principle.

• Advice. The advice implements the behavior of an aspect; moreover, the latter can
be composed of several advices. An advice is a construct that looks like a method
in object-oriented programming; it is used to declare a code that must be executed
once the join points expressed by a pointcut are reached. There are three types of
advices: the before advice, the after advice and the around advice. For example,
if a pointcut is a method call, the concerned aspects must contain a pointcut that
specifies the join point: method call, and an advice that will be executed before,
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after or around this method call. In the following, we present a brief description of
the three types of advices:

– The before advice: It executes its behavior before the execution of the method
call in the base program.

– The after advice: It executes its behavior after the execution of the method call
in the base program.

– The around advice: Its behavior is executed before and after the method call, in
that case, the first part of the behavior of the advice is executed, afterwards, the
processing associated with the method call in the base program is relaunched
by a special instruction called: proceed. Finally, the advice executes the second
part of its behavior. Furthermore, the around advice can override the execution
of the method call, in that case, the use of the proceed instruction is omitted.

The power of the advices lies mainly in the use of wildcards (*) in the expressions of
the pointcuts, instead of a type, a method, a parameter or part of a name. Moreover,
the descriptive power of an advice also comes from the fact that they can access the
dynamic contextual information captured by the join points, this is known as the
context exposure; for example, pointcuts can capture parameters and the target ob-
ject of a call.

• The base. The base corresponds to the program without aspects, for example, in
object-oriented programming, the base represents the functional classes of the sys-
tem, on which non-functional concerns (i.e., aspects) will be woven.

• The aspect. An aspect is a module encapsulating the behavior of a crosscutting
concern, it is a construction that looks like a class in object-oriented programming;
indeed, it contains fields and methods. An aspect mainly contains pointcuts and ad-
vices. Moreover, an aspect may also contain introductions or inter-types declarations,
which allow the declaration of new members that can be inserted into the specified
classes, for example, the addition of a public or private method, the addition of a
field, or the declaration of an interface implementation in a class [91]. Furthermore,
it is also possible to modify what a class extends or implements.

• The weaving. This operation looks like a compilation, the principle of weaving of
an aspect to a set of classes consists in assembling these entities in such a way that
the result is the basic system (i.e., functional classes) extended by the behavior of
the aspect, in other words, it is a question of integrating the classes and the aspects
in order to produce an executable final code of the system. Moreover, the aspects
weavers may be static or dynamic; in the first case, the operation is performed during
the compilation phase; in the second case, it is performed during execution. Fur-
thermore, AspectJ [51] also allows weaving aspects when loading the classes by the
Java Virtual Machine.



28 Chapter 3. Aspect-Oriented Development

• A join point. A join point is a well-defined point in the execution flow of a base pro-
gram; it represents a point of interruption where an aspect can be executed. A join
point can be for example: an invocation of a method, its execution and the return
of values, an exception block, or the access or modification of the field of an object.
Indeed, the execution of the base code is interrupted at a given join point, to allow
the aspect code to execute and realize the purpose of the concern it implements,
afterwards, the base program resumes its normal execution.

• A pointcut.A pointcut is used in the source code of an aspect to describe a set of
join points; it allows specifying where an advice applies. A pointcut is an expression
that uses boolean operators and specific primitives to capture a set of join points,
as well as information about their dynamic context. For example, a pointcut can
specify as a join point: a method execution, as well as the parameters of the call of
this method.

3.4 The aspect oriented approach in design
The simple detention of the best methods and tools of aspect-oriented programming such
as AspectJ, does not automatically give the possibility of applying them with ease, in case
the software system to be developed is designed without the consideration of the aspect
oriented concepts. In fact, the programmer will inevitably have to re-design the few parts
of the system concerned by the introduction of the aspects. Furthermore, the change of
design is often not explicitly the responsibility of the programmer.
Therefore, the aspect-oriented approach should be taken into account at the early stages
of the software lifecycle. In general, like the structured software life cycle or the object-
oriented software lifecycle, an aspect-oriented software life cycle is required.
In the remainder of this section, we first present the disadvantages of using aspect-oriented
programming without an aspect-oriented design. In a second step, we will outline the two
main approaches for considering aspects in design.

3.4.1 The disadvantages of using aspect-oriented programming without
an aspect-oriented design

The aspect-oriented approach offers undeniable benefits in programming a system by sep-
arating concerns, reducing costs and time to market, increasing reuse and facilitating
software evolution. However, without an aspect-oriented design, the designer delivers a
specification for the programmer, and then the latter will often be forced to change the
design of the system in order to introduce the separation of crosscutting concerns at the
programming level. This has the following negative consequences [21]:

1. Since the programmer has changed (part of) the design, the consistency with the
entire original design can no longer be guaranteed, the programmer only has a par-
tial view of the whole system, he does not know if the changes he introduced are
compatible with other parts of the system or not. In addition, the problem could be
even worse if other programmers also introduce changes.

2. Due to the changes introduced by the programmer, the implementation of the system
no longer corresponds to the original design; therefore, there is a lack of consistency
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between the implementation and the design. As a result, the maintenance and evo-
lution of the system become difficult, moreover, we do not know how are reflected in
the design, the changes related to an aspect introduced by the programmer at the
implementation level. Thus, the benefit of an easier software evolution, one of the
main demands of the AOP is reduced.

3. Using AOP without an aspect-oriented design, the task of the programmer will be
more difficult than the use of conventional techniques. In fact, in addition to his
normal task, he is forced to redesign the system implicitly. Thus, the enhanced
programmer’s productivity benefit, one of the claimed characteristics of the AOP is
reduced.

4. Using AOP without an aspect-oriented design, the programmer assumes the respon-
sibilities that clearly belong to the designer; this can lead to conflicts in the case
that errors occur in the system. Indeed, it will not be known who is responsible for
such a problem, the programmer or the designer.

In conclusion, aspect-oriented programming complements current programming techniques
such as object-oriented programming by offering a new concept: the aspect, the latter
captures the crosscutting concerns in a modular way. However, in order to use AOP in real
software projects, and involving multiple programmers, aspect-oriented design techniques
must be provided.

3.4.2 Aspect oriented methods and tools in design

The aspect-oriented design methods and tools allow the software architect to provide the
programmer with an accurate procedure describing the management of the separation of
concerns in the system. This makes it possible to have a correspondence between the
implementation and the design, thus, the problems declared above may be resolved.
To achieve this, two main approaches are proposed, which allow the introduction of the
aspect-oriented approach in the design [21]:

• An « extension to UML » : This approach is relatively mature, it is an informal
technique that extends UML [13] with an aspect profile, in this profile, each aspect is
represented with a new stereotype; moreover, a notation to describe the behavior of
the aspect-based system is also provided. However, with UML, the means of making
formal specifications are relatively limited; in fact, this is a real need for different
parts of several systems.

• An « extension to architectural description languages » : This approach can be
considered as an ongoing field of research, which nevertheless produced significant
results; in fact, it concerns the issues of integration of aspects at the architectural
level. Indeed, architectural description languages (ADLs) [4] allow software archi-
tects to specify the functionalities of a system by means of components and interac-
tions between these components through connectors. Basically, ADLs do not provide
primitives for specifying aspects. In order to specify separately such concerns, new
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elements are required in the ADL.

The capabilities supported by AO-ADL (aspect-oriented architectural description lan-
guages) can be summarized as follows:

1. Specification of components with interfaces and connections between interfaces. This
functionality is already provided by classical ADLs; however, the AO-ADL intro-
duces in addition, new primitives allowing specifying the join points. The join points
specify locations in the architecture in which the behavior of the crosscutting con-
cerns must be woven.

2. The specification of aspects. The aspects are the new elements introduced by the
AO-ADL, they allow modularizing the behavior of the crosscutting concerns sepa-
rately. While an aspect encapsulates the behavior of a functionality of the system,
it has a different structure than a component; indeed, it is described with new prim-
itives. In addition, an aspect specifies a role that matches the different join points
it affects. The ultimate goal is to specify "what", "when" and "how" the behavior of
an aspect should take place at a given location in the architecture.

3. Specifying connectors between join points and aspects. The purpose of these con-
nectors is to link the overall specification representing the whole system; indeed,
the connectors specify "how" and "where" each aspect should be woven. In fact,
this scheme is not new, models and coordination languages already solve similar
problems [27], in particular, exogenous coordination models such as those presented
in [68] and [7], the latter define two types of components: functional components,
specifying system functionalities, and coordination components, specifying how the
functional components should coordinate. In addition, the coordination components
determine "where" and "how" the actions implemented by the functional compo-
nents are to be executed. In our case, the functional components represent all the
components and aspects; on the other hand, the coordination components represent
connectors between the components and the aspects, these connectors determine
two elements: first, how the behavior of the aspect is woven in the join points of
the components, in other words, via a synchronous or asynchronous mode, secondly,
under what conditions the aspects must be woven.

3.5 The contributions of aspect oriented development

The benefits of aspect-oriented programming are summarized in [55] as follows:

• Responsibilities are clear for each module. In AOP, each module encapsulates the
behavior of a well-defined crosscutting concern; therefore, the module is solely re-
sponsible for this concern and not other concerns in the system. For example, a
module that accesses a database is not also responsible for establishing connections.
This clear assignment of responsibilities for each module improves traceability.
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• High modularization. The AOP offers a mechanism for addressing each concern sep-
arately; indeed, the source code is modularized even in the presence of crosscutting
concerns, thus the AOP ensures minimal coupling. This offers the advantages of
lowering the duplicated code and providing an easier implementation to understand
and maintain.

• An easy evolution of the system. The AOP modularizes in an independent manner
the aspects of the system on the one hand, and the code modules on the other hand.
Consequently, the addition of a new concern is reduced to a simple integration of
a new aspect without the core modules being changed. Moreover, adding a new
module to the core does not take into account the existence of the aspects. The
overall effect is a coherent evolution and a faster response to new needs.

• Delayed design decisions. With the AOP, the architect can delay decisions about
future requirements, as they can later be implemented as separate aspects and with-
out large changes in the system. As a result, the architect focuses only on the needs
of the current core of the system. In fact, the implementation of a characteristic
relative to a probable future need can generate additional efforts and costs if this
future need is not met. Delaying design decisions accelerates time to market, reduces
costs, and allows more efficient processing of the needs of the current core.

• Improved code reuse. The AOP implements each aspect as an independent and sepa-
rate module; therefore, the modules are weaker coupled than in the case of equivalent
conventional implementations. Indeed, the core modules are not aware of the mod-
ules encapsulating the aspects, only the modules relating to the specification of the
weaving rules are aware of all the couplings in the system. As a result, the change
in the configuration of the system is reduced to a simple change in the specification
of the weaving, without having to change the modules. For example, a database
module can be used with a different security policy, by making simple changes in the
weaving rules, and without having to change this module. Low coupling provides
better reuse.

• Faster time-to-market. Delaying design decisions involves a faster development cy-
cle. More reuse of the code leads to a reduced development time. An easier evolution
allows a faster response to new needs. All this leads to faster systems to be devel-
oped and deployed.

• Reduced implementation costs. Development by reusing existing modules reduces
the cost of implementation. Furthermore, the integration of crosscutting concerns
does not require modification of several core modules, as is the case in conventional
processes; this makes the implementation even cheaper.

3.6 Problems of aspect interferences
Aspect-oriented programming offers mechanisms for making very powerful changes in a
system. However, this expressive power should be rigorously controlled, as aspects can
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have a negative effect on the system. In fact, the problems that can arise in this context
mainly concern the interferences of aspects [86]; the latter can be classified into two types:

1. Aspects/base interferences. This problem can be caused by the use of wildcards in
the expressions of pointcuts, in case of errors, behaviors of aspects can be woven into
inappropriate locations, this can cause negative effects in the system. For example,
aspects can modify variable values, and can therefore change the flow of control of
the execution of the base system.

2. Aspects/aspects interferences. This type of problem can occur if two conditions are
met:

(a) Several aspects must be woven in the same join point.

(b) One or more possible constraints between these aspects are not respected at
the moment of their weaving.

In this case, conflicts may arise between these aspects. Among the constraints
that may exist between the aspects we can cite:

• Execution order of aspects : Sometimes, not executing a number of as-
pects in a specific order can lead to the violation of certain properties of
the basic system or of other aspects. Moreover, this order of execution
of the aspects can be dynamic; in fact, it can change according to the dy-
namic state of the system or the context in which the aspects will be woven.

• The dependency between aspects : This is the case where the execution of
one aspect requires the execution of another.

• Mutual exclusion : This constraint expresses the situation where several
aspects do not have to be executed simultaneously on the same joint point,
since for example, they have the same effect, or they have contradictory
effects.

The interferences of the aspects are also called the interactions of the aspects. Currently,
formal methods and tools represent a promising issue to address these problems.

3.7 Conclusion
The aspect-oriented approach first emerged in the programming phase, it allows a more
efficient implementation and facilitates the maintenance of the code, however, the devel-
opers are still relatively reluctant to its use, this is mainly due to a lack of methods and
tools to take into account the aspect-oriented approach in the early stages of the system
life cycle. To remedy this, aspect-oriented architecture description languages combined
with the use of formal methods present a very promising solution to meet this need.



Chapter 4

Comparative study of similar
works

In this chapter, we will present a comparative study of approaches in the field of formal-
ization of software components and aspects. Indeed, we have classified these works into
three main families:

• Formal approaches for component based development.

• Formal approaches for the combination of component-based development and aspect-
oriented development.

• Formal approaches to component-based development applied to the domain of web
services, in fact, web services being a typical application domain of software compo-
nents.

Further, we will also present other works having points in common with our field of
research.

4.1 Formal approaches for component-based development
This section is devoted to the study of the modeling and analysis approaches of component-
based systems. First, we will present the most referenced works in this field, secondly, we
will give a comparative study of the approaches.

4.1.1 Wright : A formal basis for architectural connection

Wright’s authors [4] start from the observation that software systems are becoming more
and more complex, which makes software architecture a crucial design problem. The
objective of this work is to arrive at a formal basis allowing to describe and analyze the
design of software, in fact, the approach deals with a particular aspect of the design: the
interactions between the software components.
The main idea of the approach is to define the connectors of the architecture as explicit
semantic entities, they are independent of the interfaces of the components and have their
own semantic definition, consequently, the connectors are considered as types and can be



34 Chapter 4. Comparative study of similar works

instantiated.
The specification of a connector is divided into two types of elements: roles and glues. A
role defines the behavior of a participant (i.e., component). Glues coordinate and manage
constraints between roles, in other words, glues specify the way in which components
interact in the architecture.
In Wright, compatibility checking in software architectures is performed in the same way
as type checking in programming languages.

4.1.2 Formal modeling and analysis of component-based systems

Zimmerova in her thesis [94] proposes to model and verify the interactions between com-
ponents in component-based systems, for this, the work is based on the approach of cor-
rectness by construction.
For each stage of the lifecycle, a model corresponding to the current version of the system
is produced. To build a model, a formalism based on automata is created for each service
of a software component, thereafter, the automata relating to the services are composed
together in order to produce a single automaton representing a software component, these
automata are composed in turn, thus, giving an automaton representing a composite com-
ponent; finally, the automata of the various composite components are composed together
allowing to have a single automaton representing the full system. Further, the composition
of the automata in the different stages is done using one of the four composition operators:
the handshake composition, the star composition, the full composition and the assembly
guided composition. The choice of an operator depends on the context of the composition.
On the model representing the full component-based system, formal verifications can be
performed using the equivalence of the observation, this is a technique based on the bis-
simulation [59]. Verification consists of making comparisons between the different models
of the system relating to the different stages of its life cycle.
This work allows, among other things, the verification of the substitutability of one com-
ponent with another, this results in the verification of the equivalence of the model of the
implementation of the new component with that of the old one.

4.1.3 A formal approach to component adaptation

The objective of this work [14] is to provide a formal method allowing to adapt heteroge-
neous software components in an architecture.
For this, the approach includes the behavior in the interfaces of the components, in-
deed, the authors propose a high level specification allowing to express the specification
of adapters between the software components, thereafter, a complete automatic proce-
dure is provided, which allows the concrete derivation of adapters from their high level
specifications.

4.1.4 A formal approach of dynamic reconfiguration

This work [83] offers a formal support for modeling and verifying dynamic introspection
and reconfiguration in component-based systems.
The approach is specific to the Fractal component model [16], so at the same time it
represents a formal specification that overcomes the shortcomings of the informal Fractal
specification.
The basic Fractal primitives are specified in a language called FracL, further, a scripting
language has been proposed for writing reconfiguration programs using Fracl. In addition,
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Table 4.1: Formal approaches for software components. Part 1.

Approaches General or Specific Flat
to a component model or Hierarchical

TOSEM’97 [4] General Flat
Zimmerova (Thèse) [94] General Hierarchical
JSS’05 [14] General
L’OBJET’08 [83] Fractal
ICSC’06 [8] Kmelia Hierarchical

Table 4.2: Formal approaches for software components. Part 2.

Approches Formalism The verified issue Tools
TOSEM’97 [4] CSP Compatibility FDR
Zimmerova (Thèse) [94] LTS La substitutability DiVinE
JSS’05 [14] Mu-calculus Adaptation of components
L’OBJET’08 [83] LTS Reconfiguration Focal
ICSC’06 [8] LOTOS Composability LOTOS CADP

the model has been translated into a proof tool called Focal.
This work is specific to a particular component model (i.e., Fractal), however, it is tech-
nology independent as Fractal is independent of any programming language.

4.1.5 Checking component composability

In this work [8], the verification of the composability of components is reduced to the
verification of the composability between their services. For this, a component model
called Kmelia has been proposed, an associated formalism is presented, in fact, the authors
seek to enrich the interfaces of the components and model the behavior of the services
of the components by extended labeled transition systems. Thus, the verification of the
correctness of the components is reduced to the verification of the behavioral compatibility
and the composability between the links of the services of the components, in other words,
the approach verifies the static interoperability and the dynamic interoperability at the
level of the interaction of components.
On a practical level, the components as well as their services are translated on the LOTOS
formalism, and experiments were carried out in the LOTOS CADP toolbox.

4.1.6 Comparison of approaches and discussion

The tables 4.1 and 4.2 compare formal approaches to component-based development ac-
cording to five criteria.

In the table 4.1:

• Criterion 1: shows whether the approach is general or specific to a particular com-
ponent model.

• Criterion 2: specifies whether the approach is limited to flat systems or also supports
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hierarchical component-based systems.

In the table 4.2:

• Criterion 1: specifies the formalism used for the modeling of a system.

• Criterion 2: gives the verified issues by the approach.

• Criterion 3: gives the different tools used in the work.

Most formal approaches for component based systems model components as first class
entities, as is the case with the approach [83] for example, but in reality this depends
on the issue that the authors seek to verify. Indeed, in wright [4] for example, it is the
connectors which are considered as first class entities since the main objective is the study
of the compatibility between the components. On the other hand, the authors of Kamelia
[8] offer a detailed study of the composability of services, therefore, it is the services that
are considered as first-class entities, and not the components.

Although the [4], [14] and [8] approaches address verification differently, in general,
their authors seek to verify the interactions between software components that have been
developed separately, in order to adapt their collaboration in the case of incorrect inter-
actions.

The approach [83] seeks to verify mainly a rather architectural problem, in fact, prop-
erties of the system are verified after the change of components and/or the links between
the components of the architecture, in response to a change in environment or in user needs.

The approach [94] addresses the verification of the evolution of the system by the
replacement of components, further, other issues of verifications are also addressed, namely,
the verification of the equivalence between the models of the architectural design and the
model of the specification, or the verification of compliance, i.e., the equivalence between
the specification and the implementation.

4.2 Formal approaches for the combination of component-
based development and aspect-oriented development

The combination of the component-oriented paradigm and the aspect-oriented paradigm
represents a promising issue [44], in fact, each of the two paradigms brings advantages for
the other and remedies its shortcomings. In what follows, we will present a reminder of
the benefits of each paradigm for the other:

The benefits of software components for aspects. The application of the prin-
ciples of component-based development on the aspect-oriented approach allows, among
other things, to endow the aspects with the same structuring properties as the software
components and to apply the principle of off-the-shelf components, this mainly offers a
better reuse of the aspects.
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The benefits of aspects for software components. Similar to the object-oriented
approach, the component-based approach also suffers from code entanglement and scatter-
ing problems. Faced with this situation, the use of aspects eliminates these two problems
for the components. Further, from a practical standpoint, component-based systems use
the expressive power of aspects as a solution to adapt to changes in the environments and
changes in the needs of their users.

4.2.1 The need for formalization

Although the search for synergy between aspects and components brings certain advan-
tages, aspects can also have negative effects on some properties of software components.
For example, following their application in inappropriate places. To cope with this sit-
uation, one of the most reliable ways to control and channel this synergy is to resort to
formal methods.
In the rest of this section, we will present the formal approaches to combining components
and aspects, classified into two families: inter-component approaches and intra-component
approaches. Subsequently, we will give a comparative study of these approaches.

4.2.2 Classification of formal approaches for combining component-oriented
development and aspect-oriented development

Although the search for a synergy between component-oriented development and aspect-
oriented development is a promising issue, relatively little works is currently dedicated
to this area of research. In what follows, we will present a classification of formal com-
bination approaches into two families: inter-component approaches and intra-component
approaches.

Inter-component approaches

The approaches of this family consider software components as black boxes, in fact, these
approaches combine components and aspects by weaving aspects at the inter-component
level, in other words, aspects do not have access to internal details of components, on the
other hand, weaving locations (i.e., join points) can only relate to interactions between
components. For example, an aspect is woven before a service is called between two
components.

PRISMA : Designing software architectures with an aspect-oriented architec-
ture description language The PRISMA approach [74] proposes a formal model mak-
ing it possible to integrate aspects into ADLs (i.e., Architecture Description Languages),
indeed, aspects are considered from the first stages of the development cycle (i.e., the
definition of needs and design), this provides consistency between the different models of
the system, and consequently allows to keep a trace between the architectural model and
the code. Further, the fact that all properties are introduced at the architecture level and
not at the implementation level, makes the approach independent of technology.
Unlike other approaches, an aspect in PRISMA is not simulated by another term, such as
component or connector, but rather it is introduced as a new concept and considered as a
first class entity, this allows the reuse of aspects and facilitates their maintainability.
In addition to the classic reuse of components, PRISMA also allows the reuse of aspects,
connectors, interfaces and the full system, this is due to the fact that its language is divided
into two levels of abstraction: the level of definition of data types and the configuration
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level. In the first level, we define the different types of system entities such as components,
connectors, aspects and interfaces. In the second level, for a given system, we create a
configuration by instantiating the types defined in the first level.
Further, PRISMA allows automatic generation of code from the PRISMA AOADL speci-
fication (i.e., Aspect-Oriented Architecture Description Language), which saves develop-
ment time.
Unlike formal verification approaches at design, PRISMA allows dynamic weaving of as-
pects, and allows verification of system evolution at run time.

Property-preserving evolution of components using VPA-based aspects The
objective of this work [70] is to verify two main properties on software components: com-
patibility and substitutability after the adaptation of a component-based system by the
weaving of aspects.
In this approach, the interactions between the components of a system are managed by
the interaction protocols, thus, the aspects are woven on these protocols. In fact, the work
presents an extension of an earlier work on the use of VPA (visibly pushdown automata)
based protocols for software components, the work has been extended to verify properties
after aspect-oriented adaptations of these components.
Visibly pushdown automata are more expressive than finite state machines, but at the
same time, easier to use than pushdown automata. Usually, the approaches use finite
state machines, nevertheless, the advantage of using a stack is the evolution in recursive
contexts where we express the nesting of calls as is the case for example in P2P algorithms.
Further, the formal verification can be performed by the theorem proving or by the model
checking.

Understanding aspects via implicit invocation The authors of this approach [92]
assume that aspect-oriented programming offers significant advantages through its expres-
sive power, however, its application could break the fundamental principles of component-
based system design. As a solution, the authors propose to map the aspect-oriented
programming on the implicit invocation (i.e., II), in order to establish a correspondence
between the two paradigms, this allows to use the models and the tools which were already
realized in the domain of the implicit invocation to check the adaptation of the software
components by the aspects.
Further, by this connection between II and AOP, the authors aim to offer a better the-
oretical understanding and practical use of aspect-oriented techniques, in particular, the
exploitation of the existing model checking of the explicit invocation for aspect-oriented
techniques.

Intra-component approaches

The approaches of this family are not limited to the inter-component level, but allow the
weaving of aspects even inside the components, by the interception of the internal join
points to the components. The risk of such a practice is to break the encapsulation and
certification of components that are already tested and closed.
In other words, this family seeks to offer more flexibility in order to benefit from a greater
expressive power of aspect-oriented programming, provided that the internal correction of
the software components is preserved, by having recourse to the use of formal methods.
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A Formal Model of Modularity in Aspect-Oriented Programming Jonathan
Aldrich in [3] proposes a combination approach allowing to weave the aspects inside the
software components. To increase the reasoning on this weaving, the author extends
a previous work (i.e., the approach of open modules [2]) with a new language called
TinyAspect, the latter represents a formal support allowing to prove the correctness of
the system after its evolution by aspects.
The open modules approach consists in adding to the classic interfaces of the modules, a
set of join points representing the internal calls on which the weaving of aspects can be
done. Further, on the one hand, the developer is not required to know the details of the
aspects that can be woven, and on the other hand, the customer is not required to be
aware of the components to weave its aspects; only the developer of a module as well as
the client must just respect some rules, which constitutes a contract for them.
This approach allows on the one hand, several weavings of aspects without touching the
properties of the components and their certification, on the other hand, it allows to make
changes in the components without affecting the customers (i.e., the aspects). Further,
developers and customers may not follow open module rules, this may provide better
flexibility as well as better reuse, however, no certification is guaranteed on the system.

Validation of context-dependent aspect-oriented adaptations to components
The objective of this work [24] is to verify the aspect-oriented adaptations of software
components, to their deployment, composition and execution contexts.
Similarly to the approach [3], the authors seek to increase the reasoning on intra-component
weaving, in order to preserve the certification of software components, which results in a
certain number of properties, which are: semantic contracts, time constraints and quality
attributes. To do this, the authors propose to associate a profile for the component to be
adapted, as well as a profile for the aspect to be woven, describing their essential prop-
erties, in order to finally be able to derive the expected profile of the woven component,
and compare it with its actual profile resulting when running the real system.

4.2.3 Comparison of approaches and discussion

The tables 4.3 and 4.4 give an overview of the approaches and compare them according
to five criteria.

In the table 4.3:

• Criteria 1 and 2: allow us to see if the approach is limited to the weaving of inter-
component aspects and/or even addresses the weaving of intra-component aspects.

• Criterion 3: indicates the availability of the tool supporting the approach. Note
that, the notation (x) shows that the authors speak of a tool but do not give more
details.

In the table 4.4:

• Criteria 1 and 2: specify the phase of the verification: during the design or during
the execution of the system.
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Table 4.3: Formal approaches for the combination of components and aspects. Part 1.

Approaches Inter-components Intra-components Tool
ICASE’06 [74] x x
MMIC’07 [70] x (x)
ICASE’04 [92] x (x)
ICAOSD’11 [3] x x
WCOP’04 [24] x

Table 4.4: Formal approaches for the combination of components and aspects. Part 2.

Approaches Design Runtime Specific language Symmetry
ICASE’06 [74] x x x
MMIC’07 [70] x
ICASE’04 [92] x
ICAOSD’11 [3] x x
WCOP’04 [24] x

• Criterion 3: indicates whether the approach offers a new language.

• Criterion 4: shows whether the approach considers aspects as first-class entities as
it does for components.

According to the table 4.4, PRISMA [74] represents the only approach which considers
the symmetry between the components and the aspects in a system, this allows to apply
the structuring properties of the software components on the aspects, which offers better
reuse of aspects.
As indicated previously in [21], the authors propose a classification of approaches integrat-
ing aspect-oriented principles from the first stages of development, into two families: an
"extension to UML" and an "extension to architecture description languages". PRISMA
is part of the second family. The integration of aspect-oriented principles from the first
phases of the development cycle, mainly allows to keep a consistency of the view of the sys-
tem throughout its full development cycle, the developer will not have to change the design
during the implementation, and the responsibilities of the designer and the programmer
are clear and separate. However, similar to the approaches [70] and [92], PRISMA does
not address the checking of the weaving of aspects within components.
The authors of [92] propose to reuse the methods and tools of implicit invocation for
aspect-oriented programming, this makes it possible to make profitable the efforts in-
vested in the implicit invocation, however, this situation shifts the complexity on the side
of the user, this one will have to provide an additional effort in learning a new domain
(i.e., the techniques of implicit invocation). Further, the authors of [92] do not present
the algorithms of translation from II to AOP. On the other hand, the proof that the model
in II expresses reality in AOP is not provided in the work, and proof that the properties
checked in II tools reflect the correct properties in AOP, is also not given.
The main advantage of the approach [3] is that it is based on the principle of abstraction,
in other words, clients (i.e., aspects) do not affect modules and at the same time do not
depend on their internal details, this allows separate development of components and as-
pects. However the authors of [3] require the learning of a new language, which supposes
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an additional effort on the side of the user. Further, setting join points at interfaces, on
the one hand, limits the reuse of the module, and on the other hand, creates a certain
dependence between the module and the wearable aspects, this prevents the evolution and
poses the paradox of AOSD evolution [84]. However, the authors suggest a use without
respecting the rules, but in this case correctness of the system is no longer guaranteed.
The approaches [3] and [24] address the challenge of intra-component weaving, however,
the authors of [24] do not provide further details on the language, formalism and the used
tools.

4.3 Formal approaches for Web Services
Web Services is a typical application domain of component-based development, indeed, in
this section we will present a comparative study of formal approaches for the verification
of web services. In fact, in tables 4.5, 4.6, 4.7 and 4.8, we have established our comparison
according to four dimensions: modeling, verification, evolution and time.

4.3.1 The modeling dimension

This dimension specifies the input language as well as the formal model adopted.

4.3.2 The verification dimension

This dimension gives the formal verification tool used by the approach as well as the details
of the tool automating the full approach.

4.3.3 The evolution dimension

This dimension specifies whether the approach addresses the evolution or not, and the
properties verified in the case where the evolution is supported. Further, it is also specified
whether the approach adopts the aspect-oriented approach as a means of implementing
the evolution.

4.3.4 The time dimension

This last dimension indicates whether the approach supports time constraints, this is a
real need for several types of systems. Further, the time dimension also specifies whether
the verification is performed at design time or dynamically at run time.

4.4 Other approaches
In this section, we will give other approaches having common points with our field of
research. Indeed, in tables 4.9, 4.10, 4.11 and 4.12, these approaches are presented and
compared according to the same dimensions used during the study of the formal approaches
for web services.

4.5 Conclusion
In this chapter, we have presented similar works to our research, the works has been
classified mainly into three families: approaches to formalize software components, formal
approaches addressing the combination of components and aspects, and formalization of
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Table 4.5: Formal Approaches for Web Services - Modeling

Approaches Input langage Formalism
JAP’11 [18] WS-CDL TA
WSEAS’06 [19] WS-CDL TA
UBICOMM’07 [17] WS-CDL / WS-BPEL TA
ENTCS’06 [30] WSCI / WSCDL TA
CLEI’07 [31] WSCDL TA
ENTCS’06 [77] µ-BPEL TA
arXiv’11 [47] none TA
INFORSID’10 [41] BPEL/ WSCL TA
ICWS’09 [40] (OWL-S) TA
ARES’06 [50] BPEL TA
ICWS’07 [81] WSBPEL EVENT CALCULUS
ECOWS’08 [57] BPEL TA
SITIS’07 [56] BPEL TA(WS-TEFSM)
ICIS’10 [63] BPEL4WS WS TA
IJACT’12 [20] WSDL Timed Behavior Automata
FMSE’06 [33] Orc language TA
WEBIST’14 [78] UML TA

Table 4.6: Formal Approaches for Web Services - Verification

Approaches Model checker Tool
JAP’11 [18] UPPAAL No
WSEAS’06 [19] UPPAAL No
UBICOMM’07 [17] UPPAAL Yes
ENTCS’06 [30] UPPAAL No
CLEI’07 [31] UPPAAL (Yes)
ENTCS’06 [77] UPPAAL (Yes)
arXiv’11 [47] UPPAAL Yes
INFORSID’10 [41] UPPAAL (Yes)
ICWS’09 [40] UPPAAL (Yes)
ARES’06 [50] UPPAAL (Yes)
ICWS’07 [81] SPIKE Yes
ECOWS’08 [57] No Yes
SITIS’07 [56] No Yes
ICIS’10 [63] UPPAAL No
IJACT’12 [20] UPPAAL No
FMSE’06 [33] UPPAAL (Yes)
WEBIST’14 [78] UPPAAL Yes
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Table 4.7: Formal Approaches for Web Services - Evolution

Approaches Evolution checking Checked properties in evolution Using AOP
JAP’11 [18] No No
WSEAS’06 [19] No No
UBICOMM’07 [17] No No
ENTCS’06 [30] No No
CLEI’07 [31] No No
ENTCE’06 [77] No No
arXiv’11 [47] No No
INFORSID’10 [41] No No
ICWS’09 [40] No No
ARES’06 [50] No No
ICWS’07 [81] No No
ECOWS’08 [57] No No
SITIS’07 [56] No No
ICIS’10 [63] No No
IJACT’12 [20] No No
FMSE’06 [33] No No
WEBIST’14 [78] Yes Deadlock, Liveness, Reachability No

Table 4.8: Formal Approaches for Web Services - Time

Approaches Time D/R
JAP’11 [18] Yes D
WSEAS’06 [19] Yes D
UBICOMM’07 [17] Yes D
ENTCS’06 [30] Yes D
CLEI’07 [31] Yes D
ENTCE’06 [77] Yes D
arXiv’11 [47] Yes D
INFORSID’10 [41] Yes D
ICWS’09 [40] Yes D
ARES’06 [50] Yes D
ICWS’07 [81] Yes D
ECOWS’08 [57] Yes D
SITIS’07 [56] Yes D
ICIS’10 [63] Yes D
IJACT’12 [20] Yes D
FMSE’06 [33] Yes D
WEBIST’14 [78] Yes D
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Table 4.9: Other approaches - Modeling

Approaches Input langage Formalism
SIGSOFT’13 [46] MechatronicUML real-time statecharts
ICSE’09 [67] System at runtime Pre/post conditions
FTSCS’13 [75] EAST ADL/CCSL TA
ECMFA’12 [37] UML MARTE Time Petri Nets
CAI’16 [69] UML MARTE + CCSL FIACRE + CDL
ICFEM’14 [36] UML MARTE TA
SEFM’13 [48] UML MARTE + CCSL TA

Table 4.10: Other approaches - Verification

Approaches Model checker Tool
SIGSOFT’13 [46] UPPAAL No
ICSE’09 [67] Kermeta Yes
FTSCS’13 [75] UPPAAL No
ECMFA’12 [37] TINA Yes
CAI’16 [69] OBP Yes
ICFEM’14 [36] UPPAAL Yes
SEFM’13 [48] UPPAAL (Yes)

Table 4.11: Other approaches - Evolution

Approaches Evolution checking Checked properties in evolution Using AOP
SIGSOFT’13 [46] Yes Atomicity, Consistency, Isolation No
ICSE’09 [67] Yes Deadlock, Comparaison of models Yes
FTSCS’13 [75] No No
ECMFA’12 [37] No No
CAI’16 [69] No No
ICFEM’14 [36] No No
SEFM’13 [48] No No

Table 4.12: Other approaches - Time

Approaches Time D/R
SIGSOFT’13 [46] Yes R
ICSE’09 [67] No R
FTSCS’13 [75] Yes D
ECMFA’12 [37] Yes D
CAI’16 [69] Yes D
ICFEM’14 [36] Yes D
SEFM’13 [48] Yes D
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components in the context of web services. Further, other similar works having common
points with our work were presented.
We can conclude from this chapter, that a methodology of a verification must include the
following main steps: an input language (for example: a language specific to the domain),
a formalism, a formal verification tool, and a tool automating the full methodology.





Part II

Our approach





Chapter 5

Presentation of the approach

Our approach is a formal support to verify the synergy of component-oriented development
and aspect-oriented development. More precisely, we seek to verify some properties during
aspect-oriented evolution for component-based systems. First, we will briefly describe
features and restrictions concerning our approach, secondly, we give an overview of our
approach as well as its main stages, this also includes a reminder on the aspect-oriented
principles so that the reader is more autonomous.

5.1 Features and restrictions

Our formal support verifies aspect-oriented evolutions for component-based systems. In
fact, the systems subject to this verification must have the following characteristics and
restrictions:

• The architecture of the system is composed of classic components and aspects, the
latter are considered as components and are called: aspect components.

• Our approach supports flat component models as well as hierarchical models, how-
ever, the designer must provide the model of the full component-oriented system,
in fact, building the full model automatically from the basic software components
through a product operation is not supported in the current version of our tools.

• The system to be verified can be designed according to any component model; our
approach is general, it is not specific to a given component model.

• The mode of communication between the components of the architecture is syn-
chronous, the asynchronous mode is not supported by our approach.

• In the rest of this part of the thesis, to put it simply, the expressions "software sys-
tem" or "basic software system" are equivalent to "component-based system" without
the aspects i.e., without evolution.



50 Chapter 5. Presentation of the approach

5.2 Overview of our approach
Modern software systems must evolve in response to changes in their environments or
in the needs of their users. One of the effective means to complete this evolution is the
aspect oriented approach [54], it allows one to make very powerful transformations on a
basic program (e.g., object oriented program) via a behavior injection mechanism called
weaving. This behavior is encapsulated in a module called aspect. The aspect mainly
contains two elements: an advice representing the code to be injected, and the point cut
that specifies one or several locations of the injection of this code in the basic program.
These locations are called join points. A join point can be for example a method call.
Depending on the type of the advice i.e., before, after and around, the aspect can be
woven before, after, or around a join point in the base program.

However, this evolution should be channeled through the use of formal methods and
tools, to verify for example, that the additional delays introduced by the evolution do not
violate some timed properties, or the evolution is not applied in an inappropriate place,
this is mostly due to the improper use of wildcards in the point cut expressions.

In our work we focus on the formal design and timed verification of aspect oriented
evolution. We propose first a domain specific language (DSL) for describing a basic soft-
ware system and its possibles evolutions. Second, defining a formal transformation to
timed automata and using the UPPAAL tool [11], we support checking the correctness of
the evolution. Our approach, automated with our TiVA tool, makes it possible to check
different kinds of properties on it, in particular, thoses including time, such as: is some
delay for the execution of a given operation (or between two operations) respected? the
execution of the system is deadlock free? does the system ends in a correct state? is
the order in which some operations execute the correct one? The aspects are applied in
appropriate places in the basic system?

(Figure 5.1) presents the main steps of our approach using our TiVA framework.

Further, our framework supports modeling and verification at two levels:

• At the basic system: this makes it possible to verify that some properties are already
correct before the system evolves.

• At the evolution: this step allows verifications of the same properties (and possibly
others) after the evolution of the system. Further, our framework supports evolutive
models based on simple weaving, as well as models based on multiple weaving.

One of the major goals of software engineering is to ascend into levels of abstraction,
thus allowing the user to conceal some details from lower levels. In this sense, Domain
Specific Languages or even Architecture Description Languages (ADL) offer the means
and tools enabling these possibilities. For example, the wright ADL [4], offers a tex-
tual specification language allowing to specify a system in an abstract way, thereafter,
an automatic translation is carried out to the CSP formalism (Communicating Sequential
Processes), thus allowing to perform checks on the FDR tool.
If we draw a parallel with Wright, the DSL that we propose constitutes an abstract means
allowing to describe evolutive aspect-oriented systems, in fact, the DSL provides concepts
that do not exist on the UPPAAL tool, in particular, the concept of weaving of aspects
(single and multiple), otherwise, if the designer describes his system directly in the form of
timed automata, he will be bogged down in the management of the weaving on UPPAAL,
this is complex and prone to errors. Further, using the our DSL, the designer specifies his
system using high level concepts such as: actions, order of actions, time constraints, as
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Figure 5.1: TiVA framework

well as weaving operations. If now the designer would like to describe his system directly
on the UPPAAL tool, he will be forced to handle lower-level concepts such as: clocks,
the calculation of guards, the calculation of invariants, boolean variables, synchronization
channels, etc. To compare a description with the DSL and a direct description on UP-
PAAL, we can give a simple example of weaving an aspect in 30 locations in the base
system, this is done on the DSL by a simple expression using a one wildcard, on the other
hand, the specification of this weaving directly on the UPPAAL tool requires, among other
things, the creation of at least 30 synchronization channels, with the sending and receiving
operations, etc. This process is painful and prone to errors. For this reason, similarly to
Wright, we created a DSL allowing the designer to make a high level description, then,
TiVA Core of our framework makes automatic transformations to a network of timed au-
tomata, this allows verification using the UPPAAL model checker which is encapsulated
in our TiVA framework.

This part of the thesis is organized as follows. In Chapter 6 we introduce our case
study. Chapter 7 presents the models supporting our approach. In Chapter 8, we give the
algorithms for the transformation of the models to a network of timed automata. Chapter
9 presents the features related to the verification of properties on the network of timed
automata. In Chapter 10, we discuss tool support and evaluation. Chapter 11 compares
our work with the state of the art. Finaly, we conclude in Chapter 12.





Chapter 6

Case study

Let us illustrate the use of our approach on a demonstration of a plane ticket booking
system.

The basic system (Fig. 6.1) is made up of three parts: the (TravelAgency) representing
the travel agency, the (BookingPlateform) representing the booking platform, which is used
by several travel agencies, and the (BankingSystem).
The agency sends a plan ticket request to the platform, this is accomplished by the (re-
searchSeat) operation. The platform searches in its 30 databases, via (researchBdd) op-
eration, and can respond within 20 to 30 minutes. The platform can give three possible
answers by using three possible operations: available, no available, or seat found but not
still confirmed, if the person who made the booking does not pay within 120 minutes, this
seat will be available. If the seat is available, the platform gives the agency a confirmation
period of 120 minutes. If the platform receives the confirmation, a payment request is
sent to the bank via the (askPay) operation, this takes between 10 and 15 minutes. If
the credit in the bank account is insufficient, the booking procedure is canceled. If the
credit is sufficient the payment is made. Afterwards, the platform gives the agency a free
cancellation period of 30 minutes. If the agency cancels within this period, the booking
procedure is canceled. Exceeding this deadline, the booking is definitively confirmed and
the cancellation will be charged.

We want to verify the following properties for this system: P1: (The partial delay)
The delay (min and max) to have an answer on the availability of a seat, this property
allows the travel agency to see if this delay is acceptable. P2: (The full delay) The overall
time (min and max) of the full transaction, from request step until the payment. P3:
(The consistency of the system) The system has no deadlock. P4: (Correct termination)
System execution always ends with cancellation or final confirmation.

First, the designer checks these properties on his basic system i.e., before evolution.
Thereafter, the designer will need to evolve his system by inserting new parts following the
aspect-oriented approach. Indeed, the designer should add two additional parts i.e., two
aspects. After the execution of the (researchBdd) operation, the platform will execute an
(externalResearch) aspect allowing to make an additional research in other platforms, this
takes a delay between 35 and 40 minutes. In the case that the environment is insecure,
an (Encryption) aspect ensuring a more sophisticated encryption system is added, before
any sending operation to the bank.

After the evolution of the system, the designer has to check the properties again, to
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see if the delays are still acceptables or not. Further, after the evolution, the designer
can also checks other properties (in addition to the four mentioned above), for example:
P5: (Ordering) System always performs internal researches before performing external
researches.
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Figure 6.1: Booking system.



Chapter 7

Modeling

In this chapter, we present the models that support, in our framework, the design and
verification of a basic software system and its aspect-oriented evolution. Our models are
defined in terms of signatures and behavioral descriptions. Our models are realized into
a domain specific language that is exemplified all along with the formal definitions (the
global model for our case study in our DSL being given in A). Let’s remember that in the
next chapters, a basic software system (or a software system) means a component-based
system without aspect-oriented evolution.

7.1 Signatures

The signature part of a software system describes the purely functional informations about
this system, i.e., the set of the operations in the software system.

Definition 1 (Signature). Being given a set B of basic systems, a set O of operations,
and an element b in B, a signature for b is Sigb = O

When clear from the context, a signature Sigb can be simply denoted by Sig. An
operation can be: a required operation i.e., a service required by the component, a pro-
vided operation i.e., a service provided by the component, or an internal operation of a
component.

Example 1 (Signature of the Booking basic system). The signature of the Booking system
(presented in our case study chapter 6 ).

1 signature
2 researchSeat , researchBdd , noAvai lab le , waitSeat , noSeat ,
3 ava i l ab le , okSeat , wai tConf i rm , cancel , askPay , noCredi t ,
4 payConfirm , freeCancel , seatConfirm , CancelCharg ;

7.2 Behavioral descriptions

Signatures specify systems in terms of the operations. However, the order in which these
operations take place is not given in signatures. This is the purpose of a another speci-
fication layer, a behavioral one [12]. In the literature, different models can be found to
play this role, e.g., Labelled Transition Systems (LTS) [93], Petri Nets [64, 10], Process
Algebras [4], or Timed Automata (TA) [6]. We chose to rely on Labelled Transition
Systems, due to their simplicity, and their extensibility.
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Given that the verification step is done on TA, we could have considered using TA
directly. However, with LTS we have a high level modeling, while with TA the modeling
is more complex and errors prone, since, by definition, a TA is more complex than an LTS
1. In our model, the labels correspond to the different operations of the software system.

Definition 2 (Behavior). Being given a signature Sigb for a system b, a behavior for b
with reference to Sigb is a tuple Behb = (A,S, s0, F, T ) where:

• A = At ∪Ant is the alphabet, where

– At = {o} × N+ × N+ such that o ∈ O, is the alphabet of timed operations
– Ant = {o} such that o ∈ O , is the alphabet of simple operations

• S is a finite and non empty set of states,

• s0 ∈ S is the initial state,

• F ⊆ S is a non empty set of final states, and

• T ⊆ S ×A× S is the set of transitions2.

When clear from the context, a behavior Behb can be simply denoted by Beh. The
initial state corresponds to the state the system starts its execution. The final states
correspond to correct end-of-service states for the system. This is used, e.g., to make a
difference between a blocked system and one that has terminated. An element (s1, a, s2)
in T can be denoted as s1

a→ s2. Operations can be simples i.e., without time constraints,
or timed operations that last over time between a minimum delay x and a maximum de-
lay y as in Figure 7.1, e.g., (b, 3, 4) denotes an operation that lasts between 3 and 4 units
of time (uot). Note that time is expressed in terms of units of time, which the designer
can then assign for example to seconds or minutes, depending on the system to be modeled.

With reference to Definition 2, we require a consistency constraint:

• Correct time intervals: ∀(a, x, y) ∈ At, x 6 y

s0 s1 s2 s3
a b [3, 4] c

Figure 7.1: The first and the last transitions denote two operations without a time con-
straints. The second one denotes an operation that takes between 3 and 4 uot.

Example 2 (Behavior of the Booking basic system). The behavior of the Booking system
(presented in our case study chapter 6 ) is given in Figure 7.2.

1 behavior
2 i n i t s0 ;
3 f i n a l s3 , s5 , s8 , s10 , s13 , s14 , s15 ;
4 trans
5 s0 : researchSeat : s1 ,
6 s1 : researchBdd [20−30]:s2 ,

1The semantics of a TA in [11] is defined on an LTS. Further, a TA can be seen as a more elaborate
LTS, with clocks and other concepts.

2Formally, this set can be empty, even if this is not usually the case in practice.
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7 s2 : noAva i lab le : s3 ,
8 s2 : wai tSeat [120−120]:s4 ,
9 s4 : noSeat : s5 ,

10 s2 : a v a i l a b l e : s6 ,
11 s4 : okSeat : s6 ,
12 s6 : wai tConf i rm [120−120]:s7 ,
13 s7 : cancel : s8 ,
14 s7 : askPay [10−15]:s9 ,
15 s9 : noCredi t : s10 ,
16 s9 : payConfirm : s11 ,
17 s11 : f reeCancel [0−30]: s12 ,
18 s12 : cancel : s13 ,
19 s12 : seatConf i rm [1−1]: s14 ,
20 s14 : CancelCharg : s15 ;
21 end

s0start s1 s2

s3

s4s5

s6 s7

s8

s9s10

s11s12

s13

s14

s15

researchSeat researchBdd

[20,30]

noAvailable

waitSeat [120,120]

noSeat

available

okSeat

waitConfirm

[120,120]

cancel

askPay [10,15]

noCredit

payConfirm

freeCancel

[0,30]

cancel

seatConfirm

[1,1]

CancelCharg

Figure 7.2: Model of the basic system Booking.

7.3 Basic software system
A basic software system is described with two levels: a signature and a behavior.

Definition 3 (Basic Software system). A basic software system is a couple b = (Sigb,Behb)
where:

• Sigb is the signature of the software system, and
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• Behb is the behavior of the software system, defined with reference to Sigb.

Example 3 (Booking basic software system). The definition of the Booking basic software
includes the signature and the behavior given above.

1 system Booking ;
2
3 signature
4 researchSeat , researchBdd , noAvai lab le , waitSeat , noSeat ,
5 ava i l ab le , okSeat , wai tConf i rm , cancel , askPay , noCredi t ,
6 payConfirm , freeCancel , seatConfirm , CancelCharg ;
7
8 behavior
9 i n i t s0 ;

10 f i n a l s3 , s5 , s8 , s10 , s13 , s14 , s15 ;
11 trans
12 s0 : researchSeat : s1 ,
13 s1 : researchBdd [20−30]:s2 ,
14 s2 : noAva i lab le : s3 ,
15 s2 : wai tSeat [120−120]:s4 ,
16 s4 : noSeat : s5 ,
17 s2 : a v a i l a b l e : s6 ,
18 s4 : okSeat : s6 ,
19 s6 : wai tConf i rm [120−120]:s7 ,
20 s7 : cancel : s8 ,
21 s7 : askPay [10−15]:s9 ,
22 s9 : noCredi t : s10 ,
23 s9 : payConfirm : s11 ,
24 s11 : f reeCancel [0−30]: s12 ,
25 s12 : cancel : s13 ,
26 s12 : seatConf i rm [1−1]: s14 ,
27 s14 : CancelCharg : s15 ;
28 end

7.4 Evolution

7.4.1 Aspects, Join Points, and Weaving

In our approach, evolution is achieved using an aspect-oriented mechanism: weaving.
Weaving consists in interrupting the execution of the system at some point, called join
point, executing a specific behavior of interest, called aspect, and then resuming the stan-
dard system execution where it stopped. This can have an effect on the properties of the
system, either behavioral ones (deadlocks could be introduced) or time-related ones (the
execution of the overall system or subparts of it may get out of specified time bounds).
Further, aspects may be applied to inadequate operations, this is due to the use of wild-
cards in the expressions to specify join points. Aspects will correspond to specific kinds
of software system to add, join points are specific operations in the basic system, and
weaving is a composition process of an aspect with one or several operations of the basic
software system.

Definition 4 (Aspect). Being given a set B of basic software systems, an aspect is a tuple
α = (b, T rigger, Stop) where

• b ∈ B, and

• Trigger, Stop ∈ Ant(Behb).

An aspect can be defined over a basic software system. Further, we require that it
has two distinguished operations, Trigger and Stop, respectively specifying where the
aspect starts and terminates its execution. In the aspect-oriented approach, weaving can
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be achieved following three kinds of advices: before, after, and around. In this work we
support the first two. A weaving with a before advice will take place before executing an
operation in the basic software system. A weaving with an after advice will take place after
executing an operation in the basic software system. A weaving is given as the aspect,
the operation in the basic software system, and the advice. We use isTrigger(o) to check
if an operation o is the specific Trigger operation for the aspect. We use isStop(o) to
check if an operation o is the specific Stop operation for the aspect. Note that a formal
definition of a weaving will be given later.

Example 4 (Example of an aspect). The DSL representing the Encryption aspect is given
below.

1
2 aspect Encrypt ion ;
3
4 signature
5 inputData , encryptData , outputRes ;
6
7 behavior
8 i n i t s0 ;
9 f i n a l s3 ;

10 trans
11 s0 : inputData : s1 : t r igger ,
12 s1 : encryptData [13−18]:s2 ,
13 s2 : outputRes : s3 : stop ;
14 end

Definition 5 (Weaving). Being given a set B of software systems, and a set A of aspects,
a weaving is a tuple ω = (b, j, α, ad) where:

• b ∈ B is the basic system without evolution on which the aspects will be woven,

• j ∈ A(Behb) is the operation in the basic system, on which the weaving aspect will
be woven,

• α ∈ A is an aspect, and

• ad ∈ {before, after}, is an advice.

Example 5 (Some aspects and weavings). In our case study, when the environment is
insecure, an aspect Encryption is woven before the execution of the operation of sending
data to the banking system. We can also find the aspect externalResearch allowing to
search for seats in other platforms, this aspect is woven after the researchBdd operation.

1
2 Weaving ( Booking : askPay [10−15]: Encrypt ion : before ) ;

7.4.2 Adapters

Several aspects can operate at a given join point. The role of aspect adapters (or adapters
for short) is to specify possible constraints on the application of aspects in such a case, and
more generally between aspects that are to be applied on a software system. We define
two different kinds of adapters: precedence and mutex. Let us note that the possible
constraints that can exist between the aspects are summarized in [80] and [85].

Definition 6 (Aspect Adapter). An (aspect) adapter is a tuple γ = (ω1, ω2, kind) where
ω1 and ω2 are two weavings and kind is an element in {prec,mutex}. Note that, two
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aspects concerned by the same join point but having two different advices are considered
to be independent and will not be bound by the same adapter since they are woven at two
different locations on this same joint point, an aspect with an advice before is woven on
the call of an operation, while an aspect with an advice after is woven after the execution
of an operation.

An adapter γ = (ω1, ω2, kind) can be denoted by kind {ω1, ω2}.

Precedence adapter

The precedence adapter is used to specify an ordering of aspects, as found in several aspect
oriented languages, e.g., in AspectJ [52]. A prec {n1, n2} adapter specifies that at the
join point of interest the n1 aspect should be applied before the n2 aspect.

Example 6 (Precedence adapter). In our case study, in the previous example, we have
an aspect externalResearch to search in other platforms, some neighboring platforms use
another data format, in this case the aspect externalResearch must be followed by the
execution of the aspect formatConversion, and these two aspects must be woven in this
order after the same operation.

1 Adapter ( Booking : researchBdd [20−30]: externalResearch : formatConversion : a f te r : prec ) ;

Mutual exclusion adapter

The mutual exclusion adapter is used when two aspect instances should not be applied
at the same time, e.g., because they have identical or contradictory purposes. The choice
between one and the other depends on the execution context.

Example 7 (Mutex adapter). In our case study, when two transmission media are used
with the banking system (wireless and intranet), each medium requires a specific encryp-
tion system, in this case, we must use two aspects for encryption: encryptionWifi and
encryptionLan. Naturally, these two aspects are used in mutual exclusion.

1 Adapter ( Booking : askPay [10−15]: encrypt ionLan : e n c r y p t i o n W i f i : before : mutex ) ;

7.4.3 Aspect Oriented System

Definition 7 (Aspect Oriented System). Being given a set B of basic systems, and an
element b in B, an aspect oriented system is a tuple AOS = (b, A,W, Γ) With:

• A is a set of aspects,

• W is a set of weavings ω defined w.r.t. b and A, and

• Γ is a set of aspect adapters γ defined w.r.t. W .

Example 8 (Aspect Oriented system of a booking system). The full DSL of our case
study is in A.

1
2 system Booking ;
3
4 signature
5 researchSeat , researchBdd , noAvai lab le , waitSeat , noSeat ,
6 ava i l ab le , okSeat , wai tConf i rm , cancel , askPay , noCredi t ,
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7 payConfirm , freeCancel , seatConfirm , CancelCharg ;
8
9 behavior

10 i n i t s0 ;
11 f i n a l s3 , s5 , s8 , s10 , s13 , s14 , s15 ;
12 trans
13 s0 : researchSeat : s1 ,
14 s1 : researchBdd [20−30]:s2 ,
15 s2 : noAva i lab le : s3 ,
16 s2 : wai tSeat [120−120]:s4 ,
17 s4 : noSeat : s5 ,
18 s2 : a v a i l a b l e : s6 ,
19 s4 : okSeat : s6 ,
20 s6 : wai tConf i rm [120−120]:s7 ,
21 s7 : cancel : s8 ,
22 s7 : askPay [10−15]:s9 ,
23 s9 : noCredi t : s10 ,
24 s9 : payConfirm : s11 ,
25 s11 : f reeCancel [0−30]: s12 ,
26 s12 : cancel : s13 ,
27 s12 : seatConf i rm [1−1]: s14 ,
28 s14 : CancelCharg : s15 ;
29 end
30
31 aspect externalResearch ;
32
33 signature
34 inputData , searchData , outputRes ;
35
36 behavior
37 i n i t s0 ;
38 f i n a l s3 ;
39 trans
40 s0 : inputData : s1 : t r igger ,
41 s1 : searchData [10−15]:s2 ,
42 s2 : outputRes : s3 : stop ;
43 end
44
45 Weaving ( Booking : researchBdd [20−30]: externalResearch : a f te r ) ;





Chapter 8

Model transformation

In order to support the verification of software systems that can be modeled using our
approach, we give them a formal semantics by transforming them into (networks of) timed
automata. This paves the way, in a second step to perform verification using UPPAAL [58].
We begin by recalling the formal definition of a timed automata, and then we explain
how to take into account basic software system as well as its evolution in the formal
transformation of a model into timed automata.

8.1 Timed Automata
Timed automata are an extension of automata with state invariants, transition conditions,
and transition actions that relate to a set of clocks. They make great use of clock con-
straints that are conjunctions of atoms of the form cl1 ./ n or cl1 − cl2 ./ n, where cl1
and cl2 are clocks, ./ is an operator in {<,6,=,>, >}, and n is a natural number [18].
Given a set of clocks C, the set of clock constraints built over C is denoted by B(C).

Definition 8 (Timed Automaton, from [18]). A timed automaton is a tuple
(L, l0, C,A, E, I, U), where:

• L is a set of locations,

• l0 ∈ L is the initial location,

• C is the set of clocks,

• A is a set of actions, co-actions1, and the internal τ -action,

• E ⊆ L×A×B(C)×2C×L is a set of edges between locations with an action (taken
in A), a guard (a clock constraint in B(C) and a set of clocks to be reset, and

• I : L→ B(C) assigns invariants to locations.

• U ⊆ L is the subset of urgent locations.

Guards represent the conditions that enable a transition when they are satisfied. In-
variants are conditions associated to locations, that specify that the system can stay in
the location if and only if the invariant is satisfiable. An element (l1, a, g, R, l2) in E can
be denoted as l1

[g]a/R−−−−→ l2. When g or R are empty, they can be omitted. In figures a
1Typically, an action is an emission on a communication channel, and the corresponding co-action is

the reception of it.
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s0start s1 s2
a

cl1 := 0
b

[cl1 > 10]

τ

[cl1 6 20]

Figure 8.1: A simple example of a timed automaton.

clock reset for a clock cl is denoted as cl := 0, and both guards and invariants are denoted
as [g]. However, guards are associated to edges and invariants to locations (see Fig. 8.1).
Further, urgent locations freeze time; i.e., time is not allowed to pass when a process is in
an urgent location. Semantically, urgent locations are equivalent to: adding an extra clock
x that is reset on every incoming edge, and adding an invariant x <= 0 to the location.

Example 9 (Timed Automata). Figure 8.1 shows an example of a timed automaton. A
clock cl1 is reset when action a is executed. The invariant on state s1 means that it is
possible to stay in this state for up to 20 units of time. The guard on the edge labelled
with b means that at least 10 units of time must have passed after entering in s1 before
possibly doing b. Altogether, this expresses that b has to occur between 10 and 20 units
of time after a.

8.2 Transformation of Aspect-Oriented Systems
In this section, we give the algorithms for the transformation from our model to a network
of timed automata.

8.2.1 Basic system to timed automaton

Program 1 transforms a basic software system to a timed automaton using the function LT-
StoTA. Figure 8.2 shows the transformation of the LTS for the booking system (presented
in Figure 7.2) to a timed automaton.

8.2.2 Aspects to timed automata

Program 2 transforms an aspect to a timed automaton using the function AStoTA. First,
this function uses the function LTStoTA to build a timed automaton. Thereafter, syn-
chronization channels are inserted.

8.2.3 Weaving

Programs 3 and 4 describe the weaving process using the function Weaving. First, this
function uses the function LTStoTA to build a timed automaton for the basic system.
Second, function AStoTA is called to build the timed automata for the aspects. Finally,
synchronization channels are inserted.

8.2.4 Correctness of transformation

The idea of the translation is to translate the base element in DSL, which is an LTS, to
the base element in the model in timed automata, which is a timed automaton. This is
done by Program 1. Then, once we have the basic timed automata, Programs 2, 3 and 4,
compose the basic timed automata to obtain a global model in the form of a network
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Program 1 Transformation of a basic system to a timed automaton.

-- retrieves a timed automaton
-- from a basic system

input : b, with Behb = (ALTS ,S , s0 ,F ,T ), a basic software system
output : TA = (L, l0 ,C ,ATA,E , I ,U )
-- 1. base
L = S , C = ∅, l0 = s0 ,
ATA = O ∪ {tau}, E = ∅, I = ∅,
U = S
-- 2. Final States
for each sF

i in F
create a new state s /∈ L
L = L ∪ {s}
E = E ∪ {sF

i
tau−−→ s , s tau−−→ s}

end for

-- 3. Transitions without time constraints
for each s1 ∈ S
for each s1

a−→ s2 ∈ Tsuch that a ∈ Ant

E = E ∪ {s1
tau−−→ s2}

end for

end for

-- 4. Transitions with time constraints
for each s1 ∈ S
for each s1

a x y−−−→ s2 ∈ Tsuch that a ∈ At

create a new state s /∈ L
create a new clock cl
L = L ∪ {s}
C = C ∪ {cl}
I (s) = I (s) ∧ cl 6 y

E = E ∪ {s1
tau/cl:=0−−−−−−→ s, s [cl>x] a−−−−−→ s2}

end for

end for

-- end
return (L, l0 ,C ,ATA,E , I ,U )
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Program 2 Transformation of an aspect to a timed automaton.

-- retrieves a timed automaton
-- from an aspect

input : asp = (b,Trigger ,Stop) with Behb = (ALTS ,S , s0 ,F ,T ) asp is an aspect.
ch is a synchronization chanal.

output : TA = (L, l0 ,C ,ATA,E , I ,U ), a timed automaton
-- 1. base generation

TA = (LTStoTA(b)
-- 2. Chanals generation

for each s1
a−→ s2 ∈ Tsuch that isTrigger(a) or isStop(a)

if isTrigger(a)
For s1

tau−−→ s2 ∈ E
E = E − {s1

tau−−→ s2}
E = E ∪ {s1

ch?−−→ s2}
U = U − {s1}

end for
else

For s1
tau−−→ s2 ∈ E

E = E − {s1
tau−−→ s2}

E = E ∪ {s1
ch!−−→ s2}

end for
end if

end for each
return (L, l0 ,C ,ATA,E , I ,U )
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Program 3 Weaving. Part 1 (before advice).

-- retrieves a network of timed automata
-- from a basic system and aspects

input : weaving = (b, j, aspect, ad), a weaving
output : TAb = (L, l0 ,C ,ATA,E , I ,U ) TAaspect (i) = (L, l0 ,C ,ATA,E , I ,U )

i = 1 ..n, n is the number of aspect timed automata
TAb = LTStoTA(b)
if ad = before

if j ∈ Ant(Behb)
for each s1

j−→ s2 ∈ Tb

ETAb = ETAb − {s1
tau−−→ s2}

create a new chanal ch
create a new state sB /∈ LTAb
LTAb = LTAb ∪ {sB}

ETAb = ETAb ∪ {s1
ch!−−→ sB, sB

ch? /tau−−−−−→ s2}
TAaspecti = AStoTA(aspect, ch)

end for each
end if
if j ∈ At(Behb)

for each s1
j−→ s2 ∈ Tb

for s1
cl:=0−−−→ sA and sA

[cl>=x]−−−−−→ s2 ∈ ETAb

ETAb = ETAb − {s1
cl:=0−−−→ sA}

create a new chanal ch
create a new state sB /∈ LTAb
LTAb = LTAb ∪ {sB}

ETAb = ETAb ∪ {s1
ch!−−→ sB, sB

ch? /cl:=0−−−−−−→ sA}
TAaspecti = AStoTA(aspect, ch)
end for

end for each
end if
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Program 4 Weaving. Part 2 (after advice).

if ad = after
if j ∈ Ant(Behb)

for each s1
j−→ s2 ∈ Tb

ETAb = ETAb − {s1
tau−−→ s2}

create a new chanal ch
create a new state sB /∈ LTAb
LTAb = LTAb ∪ {sB}

ETAb = ETAb ∪ {s1
tau /ch!−−−−−→ sB, sB

ch?−−→ s2}
TAaspecti = AStoTA(aspect, ch)

end for each
end if
if j ∈ At(Behb)

for each s1
j−→ s2 ∈ Tb

for s1
cl:=0−−−→ sA and sA

[cl>=x]−−−−−→ s2 ∈ ETAb

ETAb = ETAb − {sA
[cl>=x]−−−−−→ s2}

create a new chanal ch
create a new state sB /∈ LTAb
LTAb = LTAb ∪ {sB}

ETAb = ETAb ∪ {sA
[cl>=x] ch!−−−−−−−→ sB, sB

ch?−−→ s2}
TAaspecti = AStoTA(aspect, ch)
end for

end for each
end if

end if
return TAb, TAaspect (i)
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Figure 8.2: Timed automaton for Booking system design

of timed automata, representing an aspect oriented system. Therefore, the proof of the
correctness of the translation consists in proving the correctness of the basic transformation
i.e., Program 1.
In Program 1, the elements 1,2 and 3 represent a simple cloning of an LTS to a TA (the
locations of a TA are the states of an LTS, the initial location is the initial state, etc),
indeed, the translation is specified by element 4 of Program 1. Element 4 i.e., transitions
with time constraints, (in Program 1) specifies the translation of a transition decorated
by an action a with a minimum delay x and a maximum delay y (on an LTS). In fact, we
have to provide proof that this same action a is executed between units of time x and y
on the corresponding TA.
In what follows, we will first present the semantics of a timed automaton, thereafter we
will provide the proof of correctness of the translation.

Semantics of timed automaton

In this section, we will present the semantics of a timed automaton, this will be the basis
of the proof of correctness of the transformation.

Definition 9 (Semantics of TA, from [18]). Let (L, l0, C,A, E, I) be a timed automaton.
The semantics is defined as a labelled transition system 〈S, s0,�〉, where S ⊆ L × RC is
the set of states, s0 = (l0, u0) is the initial state, and �⊆ S×(R>0∪A)×S is the transition
relation such that:

• Rule 1 : (l, u) d−→ (l, u+ d) if ∀d′ : 0 6 d′ 6 d⇒ u+ d′ ∈ I(l), and

• Rule 2 : (l, u) a−→ (l′, u′) if there exists e = (l, a, g, r, l′) ∈ E s.t. u ∈ g,
u′ = [r 7→ 0]u, and u′ ∈ I(l′),

where for d ∈ R>0, u+ d maps each clock cl in C to the value u(cl) + d, and [r 7→ 0]u
denotes the clock valuation which maps each clock in r to 0 and agrees with u over C\r.
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Proof of correctness of transformation

Here we will prove that an action a (defined on an LTS) with a minimum execution time
x and a maximum execution time y, will be executed between the time units x and y on
the corresponding TA, after its transformation by Program 1.

Proof. Let aLT S be an action a defined on an LTS s.t. (s1, a, s2) with (a, x, y) (see sec-
tion 7.2)

The translation of the action a is: Program 1(aLT S) = aT A s.t. aT A denotes the
corresponding TA of action a after the translation of a.

aT A = (L = L ∪ {s}, l0, C = C ∪ {cl},A, E = E ∪ {s1
tau/cl:=0−−−−−−→ s, s

[cl>x] a−−−−−→ s2}, I(s) =
I(s) ∧ cl 6 y).

We use exec(a) to check if an action a is executed, a is executed when exec(a) = true.

For cl = 0 (The automaton is in state (s1, cl)):

• w.r.t Rule 1: given that cl + d′ /∈ I(s1) because s1 is an urgent location, then
conditions are not verified for Rule 1.

• w.r.t Rule 2: given that cl ∈ g, then conditions are verified for Rule 2 ⇒ The new
state of the automaton is (s, cl) with cl = 0.

For 0 6 cl < x : (The current state is (s, cl)):

• w.r.t Rule 1: given that cl < x and x 6 y then cl < y that means cl ∈ I(s), then
conditions are verified for Rule 1 ⇒ The new state of the automaton is (s, cl) with
cl < x.

• w.r.t Rule 2: given that cl < x that means cl /∈ g, then conditions are not verified
for Rule 2.

Conclusion: For 0 6 cl < x : the new state is (s, cl) with 0 6 cl < x.

For x 6 cl 6 y : (The current state is (s, cl)):

• w.r.t Rule 1: given that cl 6 y that means cl ∈ I(s), then conditions are verified for
Rule 1 ⇒ The new state of the automaton is (s, cl) with x 6 cl 6 y.

• w.r.t Rule 2: given that cl > x that means cl ∈ g, then conditions are verified for
Rule 2⇒ The new state of the automaton is (s2, cl) with cl = 0 and exec(a) = true.

Conclusion: For x 6 cl 6 y : the two possible states are: (s, cl) with x 6 cl 6 y or (s2, cl)
with cl = 0 and exec(a) = true.

For cl > y : (The current state is (s2, cl)):

• w.r.t Rule 1: given that s2 is an urgent location that means I(s2) = {0}, then
conditions are not verified for Rule 1.

• w.r.t Rule 2: suppose that conditions for Rule 2 are verified, then the new state
s′ /∈ {s1, s2, s} and exec(a) = false given that for (s2, b, g, r, s

′), b 6= a.

General conclusion: exec(a) = true if and only if x 6 cl 6 y.
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Verification and simulation

Once the model of our system is automatically transformed into a network of timed au-
tomata, one can do verifications and simulations using the UPPAAL model checker.

9.1 Verification
We present here some examples of typical use of verification.

9.1.1 Deadlock free

The system is deadlock free. This is done using the following property:

A[] not deadlock

9.1.2 Correct termination

The system always ends its execution in a correct state. Here we verify that for all possible
executions the system can always reach one of the final states. Note that the use of this
property requires knowing, depending on the context, the meaning of a correct state, in
other words, the meaning of each final state used in the property. For instance, the final
states used in this type of properties can be: acceptance states and error states, only
acceptance states, or only error states. For the latter case, for example, the verification
consists in detecting whether the system is still terminating its execution in an error
state.This is done using the following property:

A <> φ or ψ

For example:

A <> booking.final1 or booking.final2 or ... booking.finaln

9.1.3 Ordering

An operation o1 is always executed before an operation o2, this is done using this property:

A[] (φ imply ψ)

For example, in our booking system, we want to check that a (researchBdd) operation is
always executed before the (searchData) operation, to check if the system always starts by
searching locally.
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A[] (externalResearch.searchData == true imply booking.researchBdd == true)

Such that, (researchBdd) and (searchData) are boolean variables initialized to false. This
property verifies that always when (searchData) is true (researchBdd) has already been set
to true.
Let us note that TiVA Core generates a boolean variable for each operation, having the
name of this operation. In fact, this boolean variable can be used to write CTL properties
and verify them.

9.1.4 The delay of execution

This property is used to check an execution time such as, a delay of execution of an
operation, a delay between the execution of two operations, or the overall delay of execution
of a system. More generally, this property verifies the delay between two instants of time
in the system t1 and t2, for this, the global clock X is used i.e., an observer, this clock
must be reset at instant t1, then the property consists in comparing the value of the clock
with a given value at instant t2. The general form of this property is as follows:

A [] φ imply clock 6 n

In our case study, we can give as an example the verification of the overall delay of the
full booking process, this is verified by the following property:

A [] booking.seatConfirm imply X 6 315

Which translates to: for all possible executions, when the system is in the (seatConfirm)
operation, the clock X is lower or equal to 315 minutes.

9.2 Simulation
Our framework allows the designer to check properties without using an external tool,
since the uppaal engine is encapsulated in TiVA framework. However, to have counter
examples for unverified properties or to make some specific verifications, for example
inspecting places in the basic program where the aspects are woven, the designer has to
do simulations with an external tool i.e., UPPAAL tool, using the model of network of
timed automata produced by TiVA framework.



Chapter 10

Tool Support and Evaluation

10.1 Tool support

Our work is part of the TiVA project [1] that enables one to design correct timed software
systems with their aspect-oriented evolution, using an expressive domain specific modeling
language. In order to model and enable the verification of models, we have developed a
TiVA Framework, it includes two tools that we have developed separately: TiVA DSL and
TiVA Core.

10.1.1 TiVA DSL

TiVA DSL (Figure 10.1) is a tool (an Eclipse plugin) that enables to edit, check syntax,
and save the DSL model (tiva file) to be verified (see A for the full DSL of our case study).

Figure 10.1: TiVA DSL

10.1.2 TiVA Core

TiVA Core (java application) transforms the edited (and saved) DSL model with TiVA
DSL into a network of timed automata (xta file) as described in Chapter 8.
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As is shown in the figure (Figure 10.2), once this transformation is done, the designer
is not obliged to use an external tool to make verifications, since the uppaal engine is
encapsulated with our TiVA Core. The designer will get the verification results in the
TiVA Core, nevertheless, one has the possibility to download the xta file (see B for the
full xta format of our case study), and perform graphical simulations using the graphical
interface of UPPAAL tool.

Figure 10.2: TiVA Core

10.2 Evaluation

The scalability of our modeling is evaluated in terms of the number of aspects in the
system, given that for any modeling we have only one basic system. The evaluation of
our case study was made on aspects having 10 states (in the DSL), woven on a basic
system of 15 states (in the DSL). Table 10.1 presents the verification times (in seconds)
for the Deadlock property, and Table 10.2 presents the results relating to the The delay of
execution property. These results were obtained on a laptop with a Core 2 Duo processor
(2.20 G. Hertz), and 4.0 G. bytes of RAM. Note that a time which is equal to zero
represents a negligible time. We note that for the two evaluated properties, for a system
of 2000 woven aspects, the times remain acceptable and the verification is supported.

In [82], a folder of examples is provided with the TiVA Framework; examples of simple
weaving, multiple weaving, weaving with multiple occurrences of a join point, weaving
with the use of wildcards, etc. Further, an example of a model of a system containing a
loop is also provided, this example models a very important notion, which is the notion
of timeout. Figure 10 shows that the system in state s0 waits until 5 uot, so that the user
identifies himself, if the latter does not enter his password after 5 uot the system returns
to the initial state s0.

Example 10 (Model of a system with a timeout).
1 . . .
2 s0 : enterPass [0−5]: s00 ,
3 s0 : r e I n i t [5−5]: s0 ,
4 . . .
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Table 10.1: Evaluation of Deadlock property

Number of aspects Verification
1 00.00 sec
10 00.00 sec
100 00.219 sec
200 00.717 sec
300 01.498 sec
400 02.574 sec
500 04.041 sec
800 10.218 sec
1000 16.63 sec
2000 88.827 sec

Table 10.2: Evaluation of Delay of execution property

Number of aspects Verification
1 00.00 sec
10 00.00 sec
100 00.125 sec
200 00.422 sec
300 00.905 sec
400 01.544 sec
500 02.434 sec
800 06.116 sec
1000 10.171 sec
2000 67.049 sec





Chapter 11

Comparison with the state of the
art

The tables 11.1 and 11.2 compare our approach according to the criteria presented in the
state of the art chapter.

On the other hand, in the state of the art, many works apply formal models to channel
the use of the Aspect-Oriented Approach. In [32] authors studied aspect categories and
how to reason and ensure properties on aspect-oriented programs, for this, they used a
language independent semantics framework to formally define several aspects categories:
observers, aborters, confiners and weak intruders. Similarly, Katz in [49] gives the cate-
gories of aspects: spectative aspects, regulative aspects and weakly invasive aspects. For
each category, Katz indicates which standard classes of properties are preserved. Gold-
man in [39] presents an automatic and modular way to answer the two questions. The
first question is whether each of the aspects by itself is correct when woven alone into a
suitable base system. The second question is whether the guarantee of some aspect can be
invalidated as a result of weaving it together with additional aspects into the same base
system. In [87] authors present an evaluation study on applying aspect-oriented model-
ing concepts in UPPAAL timed automata. The study is focusing on the modeling and
verification effort that can be reduced when applying explicit aspect-oriented structuring
principles in model construction. In [42] authors present an approach using UPPAAL to
detect interferences problems between aspects, however, the authors do not give a tool
automating the transformation process.
The majority of the cited works study the problems of interferences of aspects. As to the
best of our knowledge, our approach is the first exploiting formal methods for software
systems with time constraints, to investigate both the preservation of delays after the
weaving of aspects, and the detection of aspects weaving into inappropriate places in a
basic system.

Table 11.1: Comparison with the state of the art - Part 1

Approach Our approcach (TiVA)
Input langage TiVA DSL
Formalism Timed automata
Verification tool UPPAAL
Tool automating the approach TiVA Framework
Verified issue Behavior/AOP Evolution



78 Chapter 11. Comparison with the state of the art

Table 11.2: Comparison with the state of the art - Part 2

Approach Our approach (TiVA)
Verified properties All CTL properties
Design/Runtime Design
Component model Independent
Domain General
Hierarchical or flat Hierarchical
Symmetry component/aspect Yes
Inter-component/Intra-component Inter-component & Intra-component



Chapter 12

Conclusion and perspectives

The objective of this thesis is to verify one of the problems that can arise during the
synergy of component-based development and aspect-oriented development. Indeed, we
have presented a formal approach for the formal modeling and checking of timed aspect-
oriented evolution for component-based development. A system is first described in a
Domain Specific Language. It is then translated into a network of timed automata. Fi-
nally, this network of timed automata is the input language of the UPPAAL model checker
to simulate and verify the behavior of the system.We have developed a set of tools, TiVA
Framework, that supports all these phases.

As to the best of our knowledge, our approach is the first exploiting formal methods
for component-based systems with time constraints, to investigate both the preservation
of delays after the weaving of aspects, and the detection of aspects weaving into inappro-
priate places in a basic system.

A new version of TiVA Framework, on which we are currently working, offers the
possibility of starting the specification directly from the basic components of the system,
allowing thereafter, to generate the model of the final system automatically by a prod-
uct operation of automata. Further, this version also allows to support the asynchronous
communication mode between the components of the system.

Moreover, the new version of TiVA DSL includes the notion of Timeout as a predefined
concept in the DSL, this is of great interest for the specification and verification of web
services in particular, which represent a typical application domain for component-based
systems.

One of the future perspectives is to check aspect-oriented evolution at runtime. On
the other hand, we plan to provide the code generation directly from our specification.
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Appendix A

The DSL of our case study

1 system Booking ;
2
3 signature
4 researchSeat , researchBdd , noAvai lab le , waitSeat , noSeat ,
5 ava i l ab le , okSeat , wai tConf i rm , cancel , askPay , noCredi t ,
6 payConfirm , freeCancel , seatConfirm , CancelCharg ;
7
8 behavior
9 i n i t s0 ;

10 f i n a l s3 , s5 , s8 , s10 , s13 , s14 , s15 ;
11 trans
12 s0 : researchSeat : s1 ,
13 s1 : researchBdd [20−30]:s2 ,
14 s2 : noAva i lab le : s3 ,
15 s2 : wai tSeat [120−120]:s4 ,
16 s4 : noSeat : s5 ,
17 s2 : a v a i l a b l e : s6 ,
18 s4 : okSeat : s6 ,
19 s6 : wai tConf i rm [120−120]:s7 ,
20 s7 : cancel : s8 ,
21 s7 : askPay [10−15]:s9 ,
22 s9 : noCredi t : s10 ,
23 s9 : payConfirm : s11 ,
24 s11 : f reeCancel [0−30]: s12 ,
25 s12 : cancel : s13 ,
26 s12 : seatConf i rm [1−1]: s14 ,
27 s14 : CancelCharg : s15 ;
28 end
29
30 aspect Encrypt ion ;
31
32 signature
33 inputData , encryptData , outputRes ;
34
35 behavior
36 i n i t s0 ;
37 f i n a l s3 ;
38 trans
39 s0 : inputData : s1 : t r igger ,
40 s1 : encryptData [13−18]:s2 ,
41 s2 : outputRes : s3 : stop ;
42 end
43
44 aspect encrypt ionLan ;
45
46 signature
47 inputData , encryptDataLan , outputRes ;
48
49 behavior
50 i n i t s0 ;
51 f i n a l s3 ;
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52 trans
53 s0 : inputData : s1 : t r igger ,
54 s1 : encryptDataLan [12−14]:s2 ,
55 s2 : outputRes : s3 : stop ;
56 end
57
58 aspect e n c r y p t i o n W i f i ;
59
60 signature
61 inputData , encryptDataWi f i , outputRes ;
62
63 behavior
64 i n i t s0 ;
65 f i n a l s3 ;
66 trans
67 s0 : inputData : s1 : t r igger ,
68 s1 : encryp tDataWi f i [11−19]:s2 ,
69 s2 : outputRes : s3 : stop ;
70 end
71
72 aspect externalResearch ;
73
74 signature
75 inputData , searchData , outputRes ;
76
77 behavior
78 i n i t s0 ;
79 f i n a l s3 ;
80 trans
81 s0 : inputData : s1 : t r igger ,
82 s1 : searchData [10−15]:s2 ,
83 s2 : outputRes : s3 : stop ;
84 end
85
86 aspect formatConversion ;
87
88 signature
89 inputData , convertData , outputRes ;
90
91 behavior
92 i n i t s0 ;
93 f i n a l s3 ;
94 trans
95 s0 : inputData : s1 : t r igger ,
96 s1 : convertData [5−10]: s2 ,
97 s2 : outputRes : s3 : stop ;
98 end
99

100 aspect cancelReport ;
101
102 signature
103 inputData , makeReport , outputRes ;
104
105 behavior
106 i n i t s0 ;
107 f i n a l s3 ;
108 trans
109 s0 : inputData : s1 : t r igger ,
110 s1 : makeReport [2−7]: s2 ,
111 s2 : outputRes : s3 : stop ;
112 end
113
114 / / Examples o f weavings , but some must be checked separa te ly
115
116 / / Simple weaving o f a s i n g l e aspect on a s i n g l e opera t ion
117 Weaving ( Booking : researchBdd [20−30]: externalResearch : a f te r ) ,
118
119 / / Simple weaving o f a s i n g l e aspect on a s i n g l e opera t ion : case severa l occurrences of

t h i s opera t ion
120 Weaving ( Booking : cancel : cancelReport : a f te r ) ,
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121
122 / / Simple weaving o f a s i n g l e aspect on severa l opera t ions : use of w i ldcards i n the

weaving expression
123 Weaving ( Booking :∗Pay∗ : Encrypt ion : before ) ;
124
125 / / M u l t i p l e weavings o f severa l aspects on the same opera t ion using the Mutex adpater
126 Adapter ( Booking : askPay [10−15]: encrypt ionLan : e n c r y p t i o n W i f i : before : mutex ) ,
127
128 / / M u l t i p l e weavings o f severa l aspects on the same opera t ion using the Prec adpater
129 Adapter ( Booking : researchBdd [20−30]: externalResearch : formatConversion : a f te r : prec ) ;





Appendix B

The XTA code of our case study
(generated by the TiVA Core):
case of a simple weaving

1 chan
2 Ch1 ;
3 clock g ;
4
5 process Booking ( ) {
6
7 clock
8 cl1 ,
9 cl2 ,

10 cl3 ,
11 cl4 ,
12 cl5 ,
13 c l6 ;
14
15 bool
16 researchSeat= false ,
17 researchBdd= false ,
18 noAva i lab le= false ,
19 wai tSeat= false ,
20 noSeat= false ,
21 a v a i l a b l e = false ,
22 okSeat= false ,
23 wai tConf i rm= false ,
24 cancel= false ,
25 askPay= false ,
26 noCredi t= false ,
27 payConfirm= false ,
28 f reeCancel= false ,
29 seatConf i rm= false ,
30 CancelCharg= fa lse ;
31
32 state
33 s0 ,
34 s3 ,
35 A1 ,
36 s5 ,
37 A2 ,
38 s8 ,
39 A3 ,
40 s10 ,
41 A4 ,
42 s13 ,
43 A5 ,
44 s14 ,
45 A6 ,
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46 s15 ,
47 A7 ,
48 s1 ,
49 s2 ,
50 A8 { cl1 <=30} ,
51 s4 ,
52 A9 { cl2 <=120} ,
53 s6 ,
54 s7 ,
55 A10 { cl3 <=120} ,
56 s9 ,
57 A11 { cl4 <=15} ,
58 s11 ,
59 s12 ,
60 A12 { cl5 <=30} ,
61 A13 { cl6 <=1} ,
62 A16 ;
63
64 urgent
65 s0 ,
66 s3 ,
67 s5 ,
68 s8 ,
69 s10 ,
70 s13 ,
71 s14 ,
72 s15 ,
73 s1 ,
74 s2 ,
75 s4 ,
76 s6 ,
77 s7 ,
78 s9 ,
79 s11 ,
80 s12 ;
81
82 i n i t s0 ;
83
84 trans
85 s3−>A1 { } ,
86 A1 −>A1 { } ,
87 s5 −>A2 { } ,
88 A2 −>A2 { } ,
89 s8 −>A3 { } ,
90 A3 −>A3 { } ,
91 s10 −>A4 { } ,
92 A4 −>A4 { } ,
93 s13 −>A5 { } ,
94 A5 −>A5 { } ,
95 s14 −>A6 { } ,
96 A6 −>A6 { } ,
97 s15 −>A7 { } ,
98 A7 −>A7 { } ,
99 s0 −>s1 { assign researchSeat = true ; } ,

100 s1 −>A8 { assign c l1 = 0; } ,
101 s2 −>s3 { assign noAva i lab le = true ; } ,
102 s2 −>A9 { assign c l2 = 0; } ,
103 A9 −>s4 { guard c l2 >= 120; assign wai tSeat = true ; } ,
104 s4 −>s5 { assign noSeat = true ; } ,
105 s2 −>s6 { assign a v a i l a b l e = true ; } ,
106 s4 −>s6 { assign okSeat = true ; } ,
107 s6 −>A10 { assign c l3 = 0; } ,
108 A10 −>s7 { guard c l3 >= 120; assign wai tConf i rm = true ; } ,
109 s7 −>s8 { assign cancel = true ; } ,
110 s7 −>A11 { assign c l4 = 0; } ,
111 A11 −>s9 { guard c l4 >= 10; assign askPay = true ; } ,
112 s9 −>s10 { assign noCredi t = true ; } ,
113 s9 −>s11 { assign payConfirm = true ; } ,
114 s11 −>A12 { assign c l5 = 0; } ,
115 A12 −>s12 { guard c l5 >= 0; assign f reeCancel = true ; } ,
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116 s12 −>s13 { assign cancel = true ; } ,
117 s12 −>A13 { assign c l6 = 0; } ,
118 A13 −>s14 { guard c l6 >= 1; assign seatConf i rm = true ; } ,
119 s14 −>s15 { assign CancelCharg = true ; } ,
120 A8 −>A16 { guard c l1 >= 20;sync Ch1 ! ; } ,
121 A16 −>s2 { sync Ch1?; } ;
122 }
123
124
125 process externalResearch ( ) {
126
127 clock
128 c l7 ;
129
130 bool
131 inputData= false ,
132 searchData= false ,
133 outputRes= fa lse ;
134
135 state
136 s0 ,
137 s3 ,
138 A14 ,
139 s1 ,
140 s2 ,
141 A15 { cl7 <=15};
142
143 urgent
144 s3 ,
145 s1 ,
146 s2 ;
147
148 i n i t s0 ;
149
150 trans
151 s3−>A14 { } ,
152 A14 −>A14 { } ,
153 s0 −>s1 { sync Ch1?; assign inputData = true ; } ,
154 s1 −>A15 { assign c l7 = 0; } ,
155 A15 −>s2 { guard c l7 >= 10; assign searchData = true ; } ,
156 s2 −>s3 { sync Ch1 ! ; assign outputRes = true ; } ;
157 }
158
159
160 system Booking , externalResearch ;

)
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