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Abstract  

 

 

In order to improve the NP-hard problem solvers with new meta-heuristics 

methods, many optimisation approaches based on natural phenomena such as 

animal ecology, biology, and other physical systems have been proposed. 

Recent work suggests that these methods can be further improved in order to 

obtain more precise search patterns by finding the optimal solution. Our work is 

in the field of bio-inspiration and combinatorial optimisation for bioinformatics 

problem. The developments of technologies in digital technologies have led in 

recent years, extremely large volumes of data, which may conceal useful 

information for organizations that produced them. This data can be in different 

form and from heterogeneous sources such as biological data. This constant has 

spawned a field of exploration: the extraction of knowledge from data, also 

known as KDD (Knowledge discovery for Databases). In this thesis, we 

developed a new approaches drawing on natural phenomena to solve hard 

problems based on biological data. We developed a new metaheuristics 

algorithm based on the penguins behaviors named PeSOA penguins search 

optimisation algorithm. We applied these new developed algorithms to a set of 

hard problems of Bioinformatics; biological sequences matching; biological 

data compression and DNA fragments Assembly. 

 

Key words: Bioinformatics, Optimisation, Bio-inspired algorithm, DNA 

fragments assembly, Biological data compression, Biological sequences 

alignment. 
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 ملخص
 

عهً أسبط انظىاهش انطبُعُت ، حى اقخشاذ انعذَذ يٍ انًُبهح انصعبت   يٍ أخم ححسٍُ انحهىل نهًشبكم

.الأعًبل الأخُشة حشُش إنً أٌ هزِ  يثم عهى انبُئت انحُىاَُت، وعهى الأحُبء، وانُظى انًبدَت الأخشي

الأسبنُب ًَكٍ صَبدة ححسُُهب يٍ أخم انحصىل عهً أًَبط بحث أكثش دقت يٍ خلال إَدبد انحم الأيثم . 

انخىافقٍ. وقذ أدث صَبدة انخطىساث فٍ انخقُُبث انشقًُت فٍ عًهُب فٍ هزا انًدبل انحُىٌ انهبو وانخحسٍُ 

انسُىاث الأخُشة، كًُبث كبُشة خذا يٍ انبُبَبث، وانخٍ قذ حخفٍ يعهىيبث يفُذة نهًؤسسبث انخٍ أَخدخهب. 

وقذ أفشصث هزِ انثىابج فٍ يدبل انخُقُب عٍ: اسخخشاج انًعشفت يٍ انبُبَبث، انًعشوف أَضب ببسى 

بث أو اسخخشاج انبُبَبث انًفُذة. وهزا هى انسبب فٍ أَُب َقخشذ فٍ هزِ الأطشوحت إنً اسخخشاج انبُبَ

حطىَش انخقُُبث الاسشبدَت انخً حخشكض عهً انظىاهش انطبُعُت نحم يشبكم يعقذة يخُىعت يثم حهك 

 ). ، انًحبراة، وانخًبثم، انخهً سبُم انًثبل )انخسهسمانبُىنىخُب اندضَئُت، ع

 :كلمات مفتاحية

حصفُف انسلاسم انبُىنىخُت ،ضغظ انبُبَبث انبُىنىخُت ،خًع قطع انذي اٌ اي ،انبُىيعهىيبحُت. انخحسٍُ   
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Résume  

 

Afin d’améliorer les solutions aux problèmes NP-complet avec des nouvelles 

méthodes, beaucoup d’approches d’optimisation basées sur les phénomènes 

naturelles tel que l’écologie animale, la biologie, et d’autre systèmes physiques 

ont été proposés. Des méthodes récentes suggèrent que ces travaux peuvent être 

encore améliorés afin d'obtenir des modèles de recherche encore plus précis en 

recherchant la solution optimale. Les développements accrus des technologies 

numériques ont engendré depuis quelques années, des volumes de données 

extrêmement importants, qui peuvent receler des informations utiles pour les 

organismes qui les ont produites. Ce constant a donné naissance à un nouveau 

champ d’exploration: l’extraction de connaissances à partir des données. Dans 

ce travail nous avons développé un nouvel algorithme inspire à partir de 

phénomène naturel de chasse collaborative de pingouins et d’utiliser un 

algorithme très connu celui de l’algorithme génétique pour résoudre des 

problèmes complexe dans la bioinformatique. Nous avons appliqué ces 

méthodes sur trois problèmes de la bio-informatique, l’alignement de séquences 

biologiques, l’assemblage de fragments d’ADN et la compression des données 

biologiques. Les approches proposées dans cette thèse ont été évaluées et 

validées sur des données biologiques. 

 

Mots clé : Bio-informatique, Optimisation, algorithme bio-inspiré, Assemblage 

de fragments d’DNA, Compression des données biologique, Alignement de 

séquences biologique. 
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Chapter 1

Introduction

1.1 Field of Research

The sizes of biological data banks are augmented with an exponential rate. For example, as

of October 2015, the GenBank repository contains more than 188,372,017 sequences (The

statistics are freely available at the repository website). In general the sizes of biological

data banks are doubled each 15 months, those data are collected from computational anal-

ysis and scientific experiments. Biological data banks contain heterogeneous data such as

DNA sequences and proteins structures (secondary, tertiary and quaternary). Extract useful

knowledge from those data, analysing and searching on this very huge amount of data is

become a hard tasks for the scientists.

In 1980s the scientists start working on DNA annotation process (genome annotation) con-

sist as finding all coding region in a given genome (reference needed). This process aims to

find the genetic materials hidden in the DNA sequences. This problem appears to be related

to the quantity and the form of the data, after that more and more technologies are being

integrated into every level of biological process simulation, understanding, data searching,

and make biological data representation easier. Such domain of using computer science,

mathematics and other technologies in biology is called bioinformatics (Hogeweg 2011).

Bioinformatics has become the helpdesk for big part of biological studies. The definition

of bioinformatics as submitted to the Oxford English Dictionary is:

(Molecular) bio informatics: bioinformatics is conceptualising biology in terms of molecules

16

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
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(in the sense of Physical chemistry) and applying informatics techniques (derived from dis-

ciplines such as applied maths, computer science and statistics) to understand and organise

the information associated with these molecules, on a large scale. In short, bioinformatics

is a management information system for molecular biology and has many practical appli-

cations (Luscombe et al., 2001).

Bioinformatics since its inception has taken big intention by developing new algorithms

in the field. These algorithms aim to handle the challenging problems of bioinformatics

(Pevzner 2001), such as redundancy and multiplicity of data, biological database struc-

tures, biological data integration, gene transcription and regulation. Biological sequence

structural studies and finding homologies between biological sequences. The study of the

difficulty of a given problem is known as computational complexity theory (Rudish 2004).

The aim of the computational complexity is the classification of the existent problems into

classes and each class contain a set of similar problems. Most of problems in bioinformat-

ics are considered as hard problems, means finding an efficient solution in reasonable time

with restricted number of resources is a very difficult task. These kinds of problems are

known as combinatorial problems. Solving combinatorial problems becomes a hot topic in

all fields of big data analytics.

There are three major aims of bioinformatics (Luscombe et al., 2001):

1. In order to save the coherence of existent biological data with the newly founded

one, the first aim of bioinformatics is to find an efficient representation of the huge

amount of biological data in a way that simplifies data access, data searching and the

updating process of data (add new entries to databases), all those problems are hard

tasks looking to the quality and the heterogeneity of different sources of biological

data.

2. Developing new tools and softwares to help scientist to analyse this amount of data.

These tools are more than information retrieval applications (IR) because they require

a preliminary understanding of these biological data. Understanding biological data

aims to find links between those data and which is the first step to understand and
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analyse the whole biological process.

3. The third objective of bioinformatics is the exploitation of the proposed tools with

the well organised data to interpret and visualise the results in a corrected biological

context.

As described earlier, most of bioinformatics problems are combinatorial problems,

there are two kinds of solvers for these problems, exact and approximate algorithms. The

exact algorithms are the first algorithms used to solve combinatorial problems. These kinds

of algorithm are deterministic algorithms aims to find an exact optimal solution or all pos-

sible optimal solutions. The time and space requirement of such algorithms open a new

research field which is the approximation methods.

The approximation methods are non-deterministic algorithms based on the optimisation of

an objective function. The aim of this process is to produce a solution near to the opti-

mal solution produced by exact methods, but in a reasonable time compared to the time

required in exact methods. The complexity of the problem is the main criteria to choose

which method is appropriate to the given problem. In the recent years several exact and

approximate methods are proposed to handle with the bioinformatics problems such as

multiple sequence alignment; structure pre diction and gene finding (reference needed)

(the third chapter describe well the bioinformatics problems).

1.2 Research Question

This thesis aims at answering the following research questions:

1. What metaheuristics are currently well used to solve combinatorial optimisation

problems in bioinformatics?

2. How can the problem characteristics, solution encoding schema and the used opera-

tors help the metaheuristics to perform well when solving combinatorial optimisation

problem?
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3. What is the popularity and capability of current nature inspired metaheuristics algo-

rithms to solve with the combinatorial optimisation problems in bioinformatics?

The following objectives are formed to address our research question:

1. Discussing the existing nature inspired metaheuristic algorithms for combinatorial

problems in bioinformatics by identifying the two main properties diversification

and intensification.

2. Analysing biological data based problems, whether problem linked to organising

biological data or combinatorial problems in bioinformatics.

3. Proposing new nature inspired based approaches to solve combinatorial problems or

to properly represent the biological data. In this thesis, two kinds of problems have

been attacked; an efficient representation of biological data and new metaheuris-

tics approaches for solving combinatorial problems in bioinformatics.

1.3 Thesis Motivations

The main motivations for the research presented in this thesis were:

• To improve the existing metaheuristics algorithms by incorporating new mechanisms

and searching strategies when solving combinatorial problems in bioinformatics.

• To show and demonstrating the powerful and the robustness of the new nature in-

spired metaheuristic approaches for solving hard problems.

• The effectiveness of the proposed approaches by applied it several bioinformatics

problems such as DNA fragment assembly problems, Biological data compression

and biological sequences alignments.

1.4 Thesis Structure

The thesis is divided in three major parts. First a general introduction of the thesis, after

that the state-of-the-art of metaheuristics algorithms for optimisation in bioinformaticsis



Chapter 1. Introduction 20

discussed and the third part deals with the proposed approaches.

• Chapter 01: In this chapter we described the research filed of the thesis to introduce

the problems of biological data. After that the motivation, the research question, and

an overview of the thesis have been carried out.

• Chapter 02: In this chapter we described the general optimisation problems, nature,

categories and general classification. We investigate a general overview about formal

Modelling of an optimisation problem.

• Chapter 03: In this chapter we described the use of metaheuristics in bioinformat-

ics and computational biology problems. The general combinatorial optimisation

problem in bioinformatics is presented and the studied problems in this thesis are

described in detail with the well-known approaches in the literature.

• Chapter 04: In this chapter we investigate the first studied problem for this thesis

which is the similarity searching by handling the problem of finding multiple spaced

seed. An experiment and comparison study with the well-known approaches is made

to evaluate the efficiency of the proposed approach.

• Chapter 05: In this chapter we discuss the second contribution of the thesis which is

a methodology for the biological data compression based on genetic algorithm. An

efficient representation of biological data helps any algorithm to well manipulate the

data in order to find the optimal solution in reasonable time.

• Chapter 06: This chapter describes the last contribution of the thesis which is the use

of the penguin search optimisation algorithm for DNA fragments assembly. To study

the DNA sequences we need to cut it in small fragments after that reconstructing the

original DNA fragments is considered as combinatorial problem. We compared our

results with the well-known methods in the literature.
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Chapter 2

Optimisation and Metaheuristics

2.1 Introduction

The optimisation problem is a kind of problems where an exact solution can't be found in

reasonable time (Kann 1992). Optimisation is everywhere, such as aeronautics, biology,

and economy. Optimisation has been widely used in Bioinformatics to solve combinatorial

problems with biological data. The nature of manipulated data has been used to classify the

optimisation problems in two categories (discrete and continuous optimisation problems).

The nature of the objective and the feasibility of the solution can also classify optimisation

problems in different categories. In the current chapter, we present the general model of

an optimisation problem, by describing the categories of different optimisation problems.

After that we describe the optimality searching characteristics and the well-known meta-

heuristics for the optimality searching. We described an algorithm from each metaheuristic

category. Ant Colony Optimisation algorithm, Particle Swarm Optimisation for population

based algorithms, neighbourhood searching and discontinuous algorithms. Genetic algo-

rithm from evolutionary algorithms, and Tabu search for trajectory based algorithms and

memory usage algorithms.

24
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2.2 Combinatorial Optimisation

Computational complexity theory is a subfield of theory of computation that classifies the

practical difficulty of solving problems (Hazewinkel 2001). The time consuming of the

solving methods is the main criteria to classify those methods. Combinatorial optimisation

consists of finding the optimal object from a set of finite objects. Combinatorial optimisa-

tion methods can be divided mainly into two categories: Exact and approximate methods.

Exact methods are the methods that provide the exact solution or all possible exact solu-

tions for the problem. There is a large number of exact solvers for combinatorial problem

such as, Dynamic programming (Bellman 1958) and Branch and Bound (Land et a., 1960).

These methods are time consuming and hard to be used in a complex problems. The sec-

ond category of the combinatorial problem solvers is the approximate methods (Vazirani

2003), aims to find approximate solutions, near the best solution or the best solution means

that it doesn't guarantee to find the best solution. Approximate algorithm is often used for

problems that don't have an algorithm in polynomial time, this class of algorithm called

NP-hard (non-deterministic polynomial-time hard) (Daniel et al., 1994). The approxima-

tion ratio is the ratio between the result obtained by the algorithm and the optimal profit.

Further detailed information about this specific class will be synthesised extensively in the

next section.

2.3 Optimisation

ISO 26262 defines the functional safety standard for the passenger vehicle industry, one of

the main problems for vehicle designer is to find the optimal allocation and decomposi-

tion of the Automotive Safety Integrity Levels (ASILs) to the different components of the

system (Papadopoulos et al., 2010). This allocation must satisfy some requirements called

Custsets (CS) and ensure the minimum cost of the total allocation. The airline industry

faces one of the largest scheduling problems of the industrial transport related services.

The objective is to find the efficient planning and scheduling for the different aircrafts

and staffs (Farah et al., 2011). Optimisation is everywhere, peoples always try to find the
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optimal, the efficient, the best, the ideal, the perfect, the decisive, the powerful, or the

productive solution to their problems. The optimisation is one of the most used tools in

decision aid science and in the analysis of real systems (Belegundu et al., 2011).

What we need (martials) in order to use the optimisation methods to solve a given

problem?

The main thread is to define the objective(s) of the problem, means to set a quantitative

measure to compute the robustness of a given solution of the problem. This objective is

based on all influenceable parameters and their allowed values of the systems which will

be considered as unknowns in the optimisation process. The optimisation problem which

can be seen as the maximisation or minimisation of a function subject to a set of constraints

on its variables (Nocedal et al., 2006). The mathematical modelling of an optimisation

problem is as follows:

Let x be a set of parameters (vector of variables), f is a function of x, and C is a vector of

constraints on the variables x. The optimisation problem can then be stated as follows:

Objective: To find 𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑥1

𝑥2

...

𝑥𝑛

⎞⎟⎟⎟⎟⎟⎟⎠
Which Minimise/Maximise f(x)

Subject to: 𝐶𝑖(𝑥)

The optimisation problems can be classified in numerous ways. First, discrete optimi-

sation problems which refer to the class of optimisation problems which the solution we

investigate is one of a number of objects in a finite set (Lee 2004). The discrete variables

can take only a finite number of values such as the qualitative and categorical variables,

like when we want to find the best instructions that improve the performance of machines.

For some problems, the variables are restricted to be integers, this kind of problems are

known as integer programming problems (𝑥 ∈ Z). An example of integer programming

problem is the ASIL allocation problem, it defines a set of safety levels to ensure the re-

quired total safety of the system. It would not make sense to advise the company to allocate
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the third and half safety level to such components. On the other hand there is continuous

optimisation problems when the solution we investigate is from an unaccountably infinite

set, usually real numbers (𝑥 ∈ R). If the variable x can contain any value within some

range is called continuous (Boyd et al., 2004).

In discrete and continuous optimisation problems the x variable vector can take value in

specific domain. In some optimisation problems some values of the x variable’s domain

are not allowed. Optimisation problems can be divided in two classes. First, unconstrained

optimisation problems with unrestricted domain for the x variable's, means you have to

optimize the objective function without having to care about the variables values. Second,

constrained optimisation problems with restricted domain for the variables x, such as peo-

ples maximizing benefits subject to a budget constraint. The solution within the allowed

rang, are called feasible solutions (Verfaillie et al., 1996).

The aim of optimisation is to find the optimal solution in a given set of feasible solutions.

This optimal can be local optimum or global optimum, if the optimum is the best solution

among all the feasible solutions, this solution is called global optimum solution. The global

optimum is better according to the objective function than for all x in some open interval

containing this solution. In some applications, it's difficult to identify the global best solu-

tion, an optimal solution, called local optimum is found in reasonable time, this solution is

better than its entire neighbourhood. This local optimal is better according to the objective

function than all x in the allowed domain. In a given problem there can be many local

optimum that are not global optimum (Horst et al., 2000).

The function f is used to decide that this solution is better than other solutions, f is called

objective function and it serves as the criteria to determine the quality of the solution. Opti-

misation problems can contain only one objective function with a set of constraints, called

single objective optimisation problems. A single objective function with several constraints

may not adequately represent an optimisation problem, in this case we might need to rep-

resent the problem with several objective functions called multi-objectives optimisation

problem, called also multi-criteria optimisation, or multi-attribute optimisation (Hwang et

al., 1979). Optimisation problem can be without any objective function, (for example, de-

sign of integrated circuit layouts), the objective is to find a set of variables that satisfies
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the model constraints. Designer doesn't need to optimise anything, this kind of problems

known as feasibility problems.

2.4 Optimality Searching Algorithms

Searching for the optimal solution among all possible solutions of an optimisation problem

is like finding solution to the maze game. The only guarantee is that at least one solution

exists, but the time required to achieve this solution is up to the used strategy to find it.

Suppose that we search for the path without any guidance, the search process can be in

infinite time hence of the purely random search. A huge number of methods have been

proposed to improve the optimal solution finding by developing new searching strategies.

The optimisation method can be classified into two categories based on the relation between

the problem and the method to solve this problem. The heuristics are a problem dependent

methods they take in consideration the advantage of the problem to converge quickly to op-

timal solution, the heuristics are specific methods adapted to a given problem (Jon 1983).

The second category sets is the metaheuristics which are a problem-independent methods,

they are general methods to solve all optimisation problem and they do not take advantage

of any specificity of the problem (Blum et al., 2003). Large numbers of metaheuristics

have been proposed to solve combinatorial problems. These methods can be classified in

numerous ways, the classification are not absolute, means the same propriety can be used

by several algorithms in different ways. Many studies have been carried out on the meta-

heuristics classification. Author in (Blum et al., 2003) proposes a large classification based

on number of solutions per iteration, the use of the search history, the kind the objective

function and the source of inspiration, these characteristics are organised as follows:

• Trajectory methods Vs. Discontinuous methods: The trajectory methods aim to

find the optimal solution of an optimisation problem by exploring the possible solu-

tion from the neighbourhood of this feasible solution only. The discontinuous meth-

ods explore the solutions in a trajectory form and also can jump to solution in other

region of the solution space (Betts 1998).
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• Population-based Vs. Single-point search: the population based optimisation meth-

ods use a set of feasible solution at each iteration, and the single-point based optimi-

sation methods used one feasible solution and start exploring the solution space from

this solution (Parpinelli et al., 2011).

• Memory usage Vs. Memoryless methods: the difference between the methods that

uses memory and the methods that don’t use memory is the use of the historical in-

formation (previous visited solutions) to control further amelioration of the objective

function but exploring new non visited solutions (Rego et al., 2006).

• Nature-inspired Vs. Non-nature inspiration: Some optimisation algorithms are

based on natural and biological phenomena. This kind of algorithm imitates the

behavior of biological process or swarm intelligence based methods (Yang et al.,

2010).

These characteristics identify the search strategy and the structure of metaheuristic al-

gorithms. We can summarise these characteristics in two main categories: the number of

solution manipulated by the algorithm and the use of the search history. In the following we

describe some important meta-heuristic techniques that have been widely used for solving

optimisation problems.

2.4.1 Genetic Algorithm

Genetic Algorithm (GA) is a bio-inspired metaheuristic algorithm developed by (Goldberg

et al., 1988). GA is a stochastic optimisation algorithm imitates the natural evolution pro-

cess of genomes. The GA is based on three operations, selection, crossover and mutation.

These operations are applied iteratively to improve the quality of the solutions (see Figure

2.1). GA starts by generating a population of random feasible solutions (individuals), the

initialisation can be made in different ways, the basic GA uses random initialisation of the

start population, each solution is considered as an individual on the population.

GA optimisation process is based on a set of operators, allow the algorithm to improve the

intilai population in ordre o achieve the optimal solution.The optimisation process of GA is
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as follow: two solutions are selected among the individuals of the initial population, by one

of the well-known selection techniques. This two selected solutions will be considered as

two fathers, this two, later will be crossed to generate two other new solutions considered

as (Children), this new solutions (Children) can be mutate according to a given mutation

probability. The quality of each solution is computed with the fitness function, this function

controls the evolution of the GA population by the deletion of bad and insertion of good

solutions in the population. These processes are repeated until the termination criteria is

achieved which can be the number of generation or if the population is stabilised. A simple

description is presented in the next sections.

Figure 2-1: Genetic algorithm flowchart

2.4.1.1 Selection

The selection is the first operator of the genetic algorithm. At each iteration, part of the

population will be selected to be the candidate for the other genetic algorithm operators

to generate the new population, usually the new population better than the previous one.

The basic selection method is the random selection by generating random number between
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2 and the size of the population where each candidate solution has its own identification.

Other selection methods have been proposed to improve the convergence of the genetic

algorithm by guiding the selection to the high quality solutions (Blickle et al., 1995).

2.4.1.2 Crossover

The previous selected solutions will be the operands of the crossover operation in order

to generate new solutions. The main objective of the crossover is to benefit from the two

solutions to generate better solutions. The crossover operation is made in two steps, first a

cut point is selected and secondly the cut parts are merged in order to create new solutions

(see Figure 2.2). Several crossover methods have been proposed in the literature (Osaba et

al., 2014).

The crossover operations may provoke a conflict in the new solutions by missing some

solution part. However, in each of the solutions, some symbols are repeated and some are

missed, but numbers of repeated and missed symbols are equal. Some problems need after

each crossover operation a regulation step to check the feasibility and the correctness of the

new generated solutions.

Figure 2-2: Crossover Operation

2.4.1.3 Mutation

After the creation of new solutions by the crossover operation, these solutions are mutated.

The aim of the mutation operator is to ensure a good diversification of the new solution
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(see Figure 2.3). The algorithm for this operator goes through the solution and changes the

value of a given position. The selection of the position to be mutated is done following a

fixed mutation rate (Osaba et al., 2014). The mutation operator has been merged in several

other metaheuristics algorithms (Pant et al., 2008), (Zhao et al., 2010).

Figure 2-3: Mutation Operation

Genetic Algorithm has been widely used to solve combinatorial optimisation prob-

lems. The Travelling Salesmen Problem (Grefenstette et al., 1985) with all its variants

such as multiple travelling salesmen problem (Bektas2006) and Vehicle Routing Problem

(Baker2003) is one of the first uses of the genetic algorithm. Bioinformatics is one the

widest areas that uses GA in different bioinformatics and computational biology, from phy-

logenetic tree construction (Lewis 1998), DNA fragment assembly (Nebro et al., 2008) and

multiple sequences alignment (Notredame et al., 2000). The wide use of GA in bioinfor-

matics is because of the similarity between the representation of biological data and the GA

encoding scheme. Economics and scheduling application of GA such as the generalised as-

signment problem (Chu et al., 1997). GA has been applied also to industrial problems such

as solving the machine-component grouping problem required for cellular manufacturing

systems (Onwubolu et al., 2001).

2.4.2 Ant Colony Optimisation

Ant Colony Optimisation (ACO), is a nature inspired metaheuristic algorithm based on the

collaborative strategy of Ants colonies (Dorigo et al., 2010). ACO based approach for-

mulate the problem as a graph and the objective of the algorithm is to find the optimal

path among the possible paths of the graph. The ACO is considered as Swarm intelligence



Chapter 2. Optimisation and Metaheuristics 33

algorithms, the candidate solutions construct an ant population. At first ants straggle ran-

domly to form the initial population of candidate solutions, after that each ant explores

the graph based on two parameters the heuristic costs and the pheromones, the first rep-

resent the quality of the path according to the objective function and the second represent

the quality of the path according to results obtained by the other ants. The pheromones

considered as marker to communicate between ants, the path that contains maximum value

of pheromones is the best compared with paths that have low pheromone. Ants use this

marker with certain probability to choose the next move in the optimisation process; some

ants are still search randomly for closer food sources.

Figure 2.4 shows the construction of pheromones by the ant colony, first the ant colony fol-

low the simple pheromone trail (direct path) (see figure (2.4.1)), when an obstacle appear

in the path, the ants have no idea about the new optimal path (see figure (2.4.2)), so ants

avoid the obstacle usually in some possible paths around the obstacle (see figure (2.4.3)),

each ant will updates the pheromone of the explored path, the best path among the explored

paths will have the maximum value of the pheromone. After a number of iterations ants

will follow the path that contains high value of pheromone and create new pheromone trail

(see figure (2.4.4)).

Figure 2-4: Ant colony pheromones construction

ACO algorithm works as follow (Figure 2.5): first the algorithm parameters are ini-

tialised to be used by ant to explore the search space, after that the population of the initial
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candidate solutions is initialised. These solutions are evaluated by the objective function in

order to check the goodness of the solutions and to use it for the pheromone update (depo-

sition and evaporation). Finally the termination criteria is reached, if not the algorithm will

reconstruct new solution based on the new pheromone values.

Figure 2-5: Ant colony Algorithm

Ant Colony Optimisation Algorithm has been widely used to solve NP-hard problem.

ACO based algorithm always formulate the problem as graph, all problems with graph

formulation have find a good framework with ACO such as Travelling Salesmen Problem

(StÃijtzle et al., 1999) and Vehicle Routing Problem (Bell et al., 2004), Graph Colouring

problem (Comellas et., al 1998). ACO find a lot of interest in image processing, such

as image segmentation (Lee et al., 2009). Data mining main tasks wildly use the ACO

algorithm in classification, clustering and association rule mining (Parpinelli et al., 2002).

2.4.3 Particle Swarm Optimisation

Particle Swarm Optimisation algorithm (PSO) is a swarm intelligence metaheuristic algo-

rithm developed by (Kennedy2010). PSO is based on the research of bird and fish flock
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movement behaviour. The food searching process of birds is a collaborative strategy to

find the source of nurture. PSO is a very simple optimisation algorithm, PSO like GA and

ACO, it manipulates a set of candidate solution at time (population) and unlike GA, PSO

has no natural evolution operator such as crossover and mutation. The particle of the PSO

population communicates using velocity to share to each other the location of food. The

PSO algorithm work as follows (Figure 2.6): the PSO algorithm starts by creating the initial

position of the particle, each particle on the initial population has its velocity. After that all

particles will be evaluated using the objective function to determine the best position which

has the lowest objective function (Minimisation problem). For each individual, a new ve-

locity is computed based on the current position and the best solutions (PBest: Personal

Best and GBest: Global Best)) of the whole population. This velocity is used to generate

the new move of the particle. The new solution is conserved only if the objective function

value is better than the previous one, the algorithm will iteratively repeat these operations

until the termination criteria is reached.

PSO has been successfully applied to many areas such as machine learning, pattern

recognition and data mining have used PSO as optimisation algorithm for several appli-

cation area. Signal processing such as MIMO transceiver design (Chen et al., 2010) and

ECG classification (Melgani et al., 2008). PSO has been also used in bioinformatics such

as protein motifs discovery (Chang et al., 2004).

2.4.4 Tabu Search

Tabu Search (TS) is a metaheuristic algorithm proposed by Fred Glover in 1989, to allow

hill climbing to defeat the local optima (Glover et al., 1989). Tabu search is trajectory

method; it uses one candidate solution and changes this solution iteratively in order to

improve the quality of it. TS is also a memory based algorithm, is uses the history of

visited solution to guide the new moves. The TS can be considered as simple descent

method where the objective is to minimise a variable x, the algorithm allows moves only to

neighbour around the candidate solution. The use of memory by TS can be categorised in

three classes (Short-term, intermediate-term and long-term). Short term memory use means
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Figure 2-6: Particle Swarm Optimisation Algorithm

the recently visited solutions, the intermediate-term improves the intensification strategy to

select active area. The long-term improves the diversification strategy of the algorithm to

impose a good search strategy.

Tabu Search algorithm works as follows (Figure 2.7): First one initial solution is initialised

randomly or by using another heuristic, after that a set of neighbour solutions is created

based on the current solution, these solutions are evaluated with the objective function to

choose among them to update the new position. These instructions are repeated until the

termination criterion is achieved. Many applications of Tabu Search have been carried out

to solve complex problems. Author in (Azevedo et al., 2013) used TS in Safety requirement

in dependable system by finding the optimal allocation of different Safety integrity level

to different components in a given system. Tabu Search has been used in bioinformatics,

multiple sequence alignment (Riaz et al., 2004) and inferring ancestral genetic information

in terms of a set of founders of a given population arises (Roli et al., 2009).
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Figure 2-7: Tabu Search Algorithm

2.4.5 Discussion

Metaheuristic algorithms proved their effectiveness in different application area, after each

application we confirm that there is no perfect method for all existent problems. A large

number of metaheuristics have been proposed in the last years such as Cuckoo search (Yang

et al., 2009), Firefly Algorithm (Yang et al 2010), etc.The table 2.1 shows the well used

metaheuristics algorithms. These methods are inspired from nature, biological and collec-

tive swarm behaviour. Two major strategies can be used to compare between the meta-

heuristics algorithms, first is the intensification strategy aims to exploit previously-found

promising regions in order to avoid local optima. Second is the diversification strategy aims

to explore in an efficient way the search space to identify new trajectories that might contain

the global optima. A good optimisation algorithm must combine these two properties by
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certain randomisation in combination. Nature inspired metaheuristics have demonstrated

success in a large number of problems and applications. However, there is always place to

develop new methods inspired form nature in order to find more powerful methods for the

hard problems.

Metaheuristic Algorithms Trajectory Population Memory
GA (Genetic Algorithm) ∙
ACO (Ant Colony Optimisation) ∙ ∙
DE (Differential Evolution) ∙
PSO (Particular Swarm Optimisation) ∙
ABC (Artificial Bee Colony) ∙
FA (Firefly Algorithm) ∙
CS (Cuckoo Search) ∙
BA (Bat Algorithm) ∙
SA (Simulated Annealing) ∙
TS (Tabu Search) ∙ ∙

Table 2.1: Classification of different well-known nature-inspired metaheuristic algorithms

2.5 Conclusion

By looking at the different classes of problems in complex problems, it is clear that the op-

timisation takes a considerable part. The optimisation problems can be defined in different

ways based on the nature of data, the number of the optimisation objectives, and the feasi-

bilities of the solution (Constraint). The proposed algorithms for solving the optimisation

problems prove their effectiveness in terms of times and space consuming. In this chapter

we introduced some basic concepts related to combinatorial problems and optimisation,

by classifying the optimisation problems and the well-known optimisation algorithms. We

have shown that these algorithms find the optimal solution by manipulating two strategies:

intensification and diversification, the first one is the strategy to improve the convergence

of the algorithm and the second is to explore in an efficient way the space solutions.



Chapter 3

Biological Knowledge Discovery:

Background Study

3.1 Introduction

The use of computer science to understand biological phenomena and analysing biological

data becomes the body of any biological process. The size of biological databases aug-

ments from each day to another with very high amounts of new biological data, such as

new sequenced data and a new prediction of protein structures. In this chapter, we will

discuss the use of metaheuristics in bioinformatics and computational biology as well as

their applications in the different tasks of bioinformatics and computational biology. We

will describe after, the studied problems in this thesis by showing the hardness of the prob-

lem and general overview about the problem formulation. We present at the end of each

problem the literature review for each one of them.

3.2 Metaheuristics in Bioinformatics and Computational

Biology

In recent years, advances in the field of bioinformatics and genomics technology have in-

creased significantly. Understanding biological system, proper representation of biological

39
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data and their transmission efficiency has became a primary interest in the biological com-

munity. This area is an interdisciplinary field involving computer science, biology, physics

and mathematics in order to improve the quality of results and in a faster way (Hogeweg

2011).

Most of bioinformatics and computational problems are formulated as combinatorial prob-

lems. As mentioned in chapter 2 the exact solvers don't give the optimal solution in polyno-

mial complexity. The use of the optimisation methods such as metaheuristics is the optimal

choice to handle bioinformatics hard problems (Clonis 2006). As defined in the chapter

2; metaheuristics are top level methods, aims to guide the heuristics to quickly find the

optimal solution.

3.2.1 Biological Sequences Alignment

The alignment of different biological sequences (DNA and proteins) aims to find the com-

mon region in a given sequences (Polyanovsky 2011), the biological sequence alignment

is divided in two categories: pairwise sequences alignment and multiple sequences align-

ment, these two problems are considered as combinatorial problems. The pairwise align-

ment aims to find the common region between two sequences by maximising the alignment

score. The well-known methods for pairwise biological sequences alignments are SAGA:

Sequence Alignment by Genetic Algorithm (Notredame 1996), and the particle swarm op-

timisation algorithm to biological pairwise sequence alignment problem (Juang 2008). The

second category is the multiple sequences alignment, aims to align three or more sequences,

the multiple sequences alignment is harder the pairwise alignments and take more time,

some methods for solving multiple sequences alignment are based on the pairwise align-

ment by aligning each two together and construct the final model. Other methods use the

optimisation algorithms to optimise the score of the alignment by maximising the scores of

the common region.
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3.2.2 The DNA Fragment Assembly (DFA)

DNA fragments assembly problem is another hot topic of bioinformatics (Pevzner et al.,

2001), the objective of the DNA fragment assembly is to find the best order and orientation

of a set of DNA fragments to reconstruct the original DNA sequence from them. As it

has to consider all possible combinations among the DNA fragments, it is considered as a

combinatorial optimisation problem (Pevzner et al., 2001).The DNA fragments assembly

follows the OLC (Overlap, layout, consensus) model that is used in all currently available

assembly methods (Staden 1980).

3.2.3 Protein Structures Prediction

The function of the protein has a strong relation with the structure of the proteins; two

kinds of structures exist for each protein sequences, secondary and tertiary structures (Gar-

nier1978). The first category aims to find the model of the structure by predicting the

alpha helices, the beta sheets and loops of the structures, but the tertiary structure aims to

predict the position of the amino acids in the space by taking into consideration the neigh-

bourhood of this amino acid. Large numbers of methods have been proposed to solve the

protein structure prediction problems, the most widely used algorithms is the use of multi-

objective evolutionary approach to the protein structure prediction problem (Cutello et al.,

2006). The prediction of 3D structure of proteins from its amino acids sequences become

a hot challenge in bioinformatics in the last years, the most widely used methods for the

3D structure prediction are the parallel ant colony optimisation for 3d protein structure

prediction using the HP lattice model systems (Chu et al., 2006).

3.2.4 Gene Prediction

Gene Finding and Identification aims to identify the regions of genomic DNA that encode

genes (Besemer et al 1999). The process of understanding the genome species after se-

quences is the gene finding task. The metaheuristics algorithms have been applied to solve

the gene prediction problem. The use of particle swarm optimisation algorithm in gene se-
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lection in cancer classification, the PSO has been augmented with the SVM in this method

to improve the accuracy of the prediction (Alba et al., 2007). The author in (Alba et al.,

2007) proposes another hybridisation of PSO with Genetic algorithm for the gene selecting

in cancer classification.

3.2.5 The Phylogenetic Reconstruction

the phylogeny is the searching of useful relationship between evolutionary species (Huelsen-

beck et al., 2001). The evolution of the species is one of the challenging areas in bioinfor-

matics the use of the optimisation algorithm to find the adaptive modification based on

natural and sexual selection. The phylogenetic analysis is the estimation and the search-

ing of these relationships. The phylogenetic inference problem has been considered as

combinatorial optimisation problem, a wide use of metaheuristics to solve this problem,

the simulated annealing algorithm has been used to solve this problem (Stamatakis et al.,

2005), to avoid cycling of the simulated annealing algorithm, the Tabu search algorithm has

been applied to the phylogenetic inferring problem, it avoids cycling records recent moves

in one or more Tabu lists (Lin et al., 2005).

3.3 Similarity Search Methods in Genomic Sequences

3.3.1 Approximate Sequences Matching Problem

Homology search in biological sequences is a very important task for discovering and un-

derstanding similarities among genes and proteins, in order to find similar segments, or

local alignments, between two DNA or protein sequences (Altschul et al., 1990). The sizes

of DNA and protein databases became very large, such as the EMBL Nucleotide Sequence

Database (EMBL-Bank) has increased in size from around 600 entries in 1982 to over

6.2 × 108 by MARCH 2015, so homology search is very time consuming and far to be

done in reasonable time (Altschul et al., 1990).

Biological instances contain large biological information with different types of data such

as sequences and structures. These latter are either proteins (Uniprot) or nucleic sequence
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(EMBL, GenBank...). Thus, realising similarity search among these instances in a reason-

able time is a difficult task. Undoubtedly, developing an efficient algorithm based on seeds

alignment is a big challenge for bioinformatics community. The seed paradigms for bio-

logical sequences alignment start by finding possible seeds matches, after that the seed are

extended to from possible alignments. Figure 3.1 shows the possible alignment between

two biological sequences is constructed based on preliminary founded seeds. The Dot

Plot shows that more than one alignment is possible, the difference between these possible

alignments is the amount of matching between the sequences (Score).

Figure 3-1: The dot plot of seed paradigm

The matching between different sequences can be continuous or spaced matching (see

Figure 3.2). The use of spaced seeds performs specialised optimisation for next generation

sequencing. Several methods for solving this problem have been recently proposed and

can be classified in two categories. The first one employs dynamic programming and can

find an exact solution with quadratic time complexity (Smith et al., 1981). As biological

databases grow larger, this exact approach is usually required a high time consuming. The

Second category is the heuristic algorithms (Lipman et al., 1985) which can achieve good
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solutions in a reasonable time.

The alignment of two biological sequences based on seeds is an efficient technique used

by several algorithms in order to produce other sequencing data generations. Among these

algorithms, the 11 consecutive matches of BLAST (Altschul et al., 1990) is called a con-

tiguous seed, denoted as 11111111111 for eleven consecutive matches. It is required to

find an identical stretch of length 11 which is not always feasible. In order to increase

the probability to find an alignment, PatternHunter II (Li et al., 2004) uses one or several

non-contiguous seeds called spaced seeds. Concretely, each spaced seed S is a vector of n

elements where n is the length of each seed and their position is defined as follows: S[i]

= 1, if the position need required matching and S[i] = 0 if we do not care about position

matching, the number of ones in the seed called the weight of the seed. This sensitivity

is used to evaluate the quality of a spaced seed for matches alignment. The objective of

spaced seed is to increase sensitivity without reducing the computation time performance.

The sensitivity is approximated by matching the spaced seeds and a Bernoulli representa-

tion of the alignment.

The main two factors of any optimisation algorithm applied to sequences matching prob-

lem is computation time (searching speed) and solution quality (sensitivity). The aim of

all previous methods is to design in reasonable time a good set of spaced seeds having

high sensitivity. So there is a trade-off between the computation process and the sensitiv-

ity (Choi et al., 2004). Indeed, we can increase the sensitivity by decreasing the required

weight of the hit, nevertheless, the decreasing of the weight of hits will increase the runtime

and also increase the number of fallacious hits.

Figure 3-2: Contiguous matching Vs approximate matching
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3.3.2 Previous Work in Sequences Matching

In the literature, two main categories of approaches address the sequence matching prob-

lem. The first one is a contiguous based approach which aims to search for contiguous

matches on the similarity searching process (Altschul et al., 1990). Unlike the contiguous

seed, the second one is a spaced seeds approach aiming to find a non-contagious seed on

the similarity searching process (Li et al., 2004). The existing approaches for spaced seeds

generation can be divided into three main classes:

3.3.2.1 Exact Solvers

First, the exact methods, the well-known exact method for the biological sequences match-

ing is to use the dynamic programming to find an exact seed (Needleman 1970). The

dynamic programming approaches are proving their efficiency only for finding one spaced

seed. The problem of finding multiple spaced seed and evaluating these seeds with low

sensitivity in reasonable time is an NP-Hard problem. The disadvantage of such dynamic

based methods for multiple spaced seed is the large memory requirements for multiple dy-

namic programming tables and the difficulty of finding the optimal seed combination. As

mentioned in (Ma et al., 2007) finding the optimal spaced seeds is an NP-Hard problem, and

computing the hit probability is also an NP-hard problem. The problem of such algorithms

is the memory usage and the space consuming, they provide the exact seeds matching but

it takes a long time for the hard problems such as the biological data based problems.

3.3.2.2 Heuristic Solvers

The second category in sequences matching approaches is the heuristic methods, several

methods based on heuristics have been designed for spaced seeds (Brown 2007). Pattern-

Hunter (Li et al., 2002), (Ma et al., 2007) is the single space based method for sequence

matching problem. PatternHunter uses a novel seed model to increase the sensitivity in

reasonable time. PatternHunterII, which is an improvement of PatternHunter, allows to in-

crease the sensitivity by using multiple spaced seeds. The following algorithm present the

dynamic programming algorithm for computing the hit probability (Algorithm 3.1), given
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a set of binary strings (Seeds) compatible with part of ’a’ included A. 0b and 1bis all seeds

start with a, and b(x) is the prefix of the seed x. The Dynamic programming for multiple

spaces seed find the optimal seeds by incorporating a greedy methods for choosing the op-

timal spaced seeds. It applies a new greedy method for finding near optimal multiple seeds

as follows: firstly, it starts by computing the first seed that maximises the hit probability.

Then, it fixes the previous seed and finds the second to maximise the hit probability with

the first seed. This process must be repeated until the desired number of seeds or the given

hit probability is reached.

Algorithm 3.1: Dynamic Programming Algorithm
Input : seed set A, similarity level p and length L
Output: The probability that A hits a p-random region of length L

1 Compute the compatible suffix set B
2 For i from 0 to L do
3 For b in B from longest to shortest do
4 If 𝑖 < |𝑏|
5 𝑓 [𝑖, 𝑏] := 0
6 Else 𝑓0 := 𝑓 [𝑖− |𝑏|+ |𝑏′|, 0𝑏′], where 0𝑏′ = 𝐵(0𝑏)
7 If A hits 1𝑏
8 Then 𝑓1 := 1
9 Else 𝑓1 := 𝑓 [𝑖, 1𝑏]

10 𝑓 [𝑖, 𝑏] := (1− 𝑝)× 𝑓0 + 𝑝× 𝑓1
11 Return 𝑓 [𝐿, 𝜀].

Mandala is a software tool used for searching optimal seeds (Buhler et al., 2003). In-

deed, Mandala proposed a new algorithm for evaluating the sensitivity of a spaced seed

based on the Markov model of ungapped alignments, the problem is how to find the high-

est probability alignments of the set of seeds that match them, the result shows that the new

model improves the sensitivity of sequence matching. Furthermore, this tool maximises

the impact of seed design through the Markov model to find the best seeds representing

similarities. Iedera is a program that computes the seed sensitivity, selects, designs and

vectorises subset seed patterns (Kucherov et al., 2006). It uses a finite automata to repre-

sent the seed and is adapted to any model that can be represented by a non-deterministic

probabilistic automaton (HMM equivalence).

In (Brona et al., 2005), authors proposed a new representation of matches in seed, called
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vector seeds. It is a generalisation of the spaced seeds used in PatternHunter, the mismatch-

ing seeds of BLAT, and the minimum word score seeds used by BLASTP. The difference

between vector seed and simple spaced seed is that the simple spaced seed uses a binary

encoding only, but the vector seed can belong to all decimal values. Authors also proposed

an algorithm based on vector seed to estimate the specificity and sensitivity that might be

obtained from a given seed.

3.3.2.3 Metaheuristic Solvers

The third category for optimal finding of multiple spaced seed is the metaheuristic based

methods; two recent works based on metaheuristic approaches introduced the space seed

problem. Speed is a new method for finding the optimal multiple spaced seed based on

the hill climbing algorithm. The Speed approach solves the problem of finding only one

length seeds by computing minimum and maximum sees lengths. Experimental results

have proved a high correlation between sensitivity and overlap complexity, this later has

been used to evaluate the multiple spaced seed (Ilie et al., 2011). Hill climbing algorithm

has been improved by FastHC (Ilie et al., 2012), in order to increase the sensitivity and

to employ a new way for the overlap complexity estimator. The FastHC provided a much

faster implementation of the standard hill climbing meta-heuristic.

FastHC using a new way to compute the sensitivity of the set of the spaced seed by de-

veloping the FASTOC, this later compute the overlap complexity as we described later

that there is a strong correlation between the sensitivity of a set of seeds and the overlap

complexity (see Figure 3.3). The FASTOC represent the seed as binary string (1*1**1

converted to 101001) each seed is represented in 64 bits integers, FASTOC compute the

overlap between each two seeds by shifting the bits of the seeds and AND-ing the seeds

integers (Algorithm 3.2).

Fast hill Climbing algorithm starts by constructing two matrices OM and OCM (see

Figure 3.4), the first one represents as the similarity between each two seeds and the OCM

matrix represent the overlap complexity for each two matrices. After that the FASTHC

improves iteratively the quality of the set of spaced seed by swapping between 1 and 0, the

objective function of the FASTHC is minimising the overall complexity.
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Algorithm 3.2: The pseudocode of FastOC
Input : a seed s of length l
Output: OC(s)

1 𝑜𝑐←− 0
2 𝑏←− 1
3 for i from 1 to l - 1 do
4 if (s[i] = 0) then 𝑏←− 𝑏≪ 1
5 else 𝑏←− (𝑏≪ 1) | 1
6 𝑏2 ←− 𝑏
7 for i from 1 to l - 1 do
8 𝑏2 ←− 𝑏2 ≫ 1
9 𝑏3 ←− 𝑏2 & 𝑏

10 𝜎 ←− 1

11 for j from 1 to ⌈ 𝑙
8
⌉do

12 𝜎 ←− 𝜎 ≪ 𝑜𝑛𝑒𝑠𝐼𝑛𝐵𝑦𝑡𝑒𝑠[𝑏3 & 255]
13 𝑏3 ←− 𝑏3 ≫ 8
14 𝑜𝑐←− 𝑜𝑐+ 𝜎
15 return(𝑜𝑐)

Consequently, the usefulness of metaheuristics has been used to reduce the computa-

tion time of the existing algorithms. AcoSeed is an ACO-based approach for tackling the

problem of finding spaced seeds for biological sequence searching (Dong et al., 2012).

AcoSeed uses a construction graph which contains a set of rectangles, and each rectangle

represents a seed. Each ant builds k seeds by travelling on each rectangle either up or

right according to quantities of pheromone. The optimal path represents the path with low

overlap complexity that represents the optimal spaced seed.

3.4 Biological Data Compression

3.4.1 Optimisation of Biological Data Compression

If we attempt to transfer big files, e.g. DNA sequences, over a serial transmission link then

it would take a significant amount of time. However, we cannot overlook this problem

because at present parallel processing is widely used to increase throughput and in parallel

processing architecture, processing units are usually distributed in different physical loca-

tions and task sharing is a must in such architecture.
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Algorithm 3.3: FastHC(S)
Input : a multiple seed 𝑆 = {𝑠1, 𝑠2...𝑠𝑘}
Output: modified S with very low OC(S)

1 Compute 𝑂𝑀𝑖𝑗 ,𝜎𝑖𝑗 , for all i, j, and OCM
2 bestOC←− curOC←−

∑︀
𝑖,𝑗 𝑂𝐶𝑀 [𝑖][𝑗]

3 repeat until bestOC stops decreasing
4 for q from 1 to k do
5 for ((i, j)∈ [1..𝑘]2, 𝑠𝑞[𝑖] = 1, 𝑠𝑞[𝑗] = *) do
6 𝑜𝑙𝑑𝑂𝐶 ←− 𝑐𝑢𝑟𝑂𝐶
7 for r from 1 to k do
8 𝜎 ←− 𝜎𝑟𝑞

9 UpdateSigma (OM, 𝜎, r, q, i, j)
10 curOC←− curOC + OCSigma(𝜎)- OCM[r][q]
11 if (curOC < bestOC) then
12 (𝑞𝑏𝑒𝑠𝑡, 𝑖𝑏𝑒𝑠𝑡, 𝑗𝑏𝑒𝑠𝑡)←− (q, i, j)
13 bestOC←− curOC
14 curOC←−oldOC
15 for r from 1 to k do
16 UpdateSigma (OM, 𝜎𝑟𝑞, r, 𝑞𝑏𝑒𝑠𝑡,𝑖𝑏𝑒𝑠𝑡, 𝑗𝑏𝑒𝑠𝑡)
17 (𝑠𝑎𝑏𝑒𝑠𝑡[𝑖𝑏𝑒𝑠𝑡], 𝑠𝑞𝑏𝑒𝑠𝑡[𝑗𝑏𝑒𝑠𝑡])←−(*, 1)
18 for r from 1 to k do
19 UpdateOM (OM, r,𝑞𝑏𝑒𝑠𝑡, 𝑖𝑏𝑒𝑠𝑡, 𝑗𝑏𝑒𝑠𝑡)
20 for r from 1 to k do
21 OCM[r][𝑞𝑏𝑒𝑠𝑡]←− OCSigma(𝜎𝑟, 𝑞𝑏𝑒𝑠𝑡 )
22 return(S)

In recent years, application of power efficient system, e.g. biological data sequencers and

sequences matching systems, has increased significantly. Proper representation of digital

data and their transmission efficiency has became a primary concern for the digital com-

munity because it affects the performance, reliability, and the cost of computation in both

portable and non-portable devices. CMOS technologies were developed in order to re-

duce the power consumption both in data processing and transmission. In order to increase

transmission speed and reduce transmission cost, parallel data transmission methods are

widely used. However, parallel transmission is limited to short distance communications,

e.g. locally connected devices, internal buses. Ruling out the possible availability of par-

allel transmission links over long distance, we are left with its serial alternative only. Data

encoding techniques came into being to improve the data transmission efficiency over the

serial communication medium by compressing data before transmitting. Efficiency can be
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measured in terms of incurred cost, required storage space, consumed power, time spent

and so forth. Data must be encoded to meet a variety of purposes, including: unambiguous

retrieval of information, efficient storage, efficient transmission and etc. Let a message

consist of sequences of characters taken from an alphabet
∑︀

where 𝛿1, 𝛿2...𝛿𝑟 are the ele-

ments that represent the characters in the source
∑︀

. The length of 𝛿𝑖 represents its cost or

transmission time, i.e., cost (𝛿𝑖) = length (𝛿𝑖). A codeword 𝑤𝑖 is a string of characters in
∑︀

,

i.e., 𝑤𝑖 ∈
∑︀

+. If a codeword is 𝑤𝑖 = 𝛿𝑖1, 𝛿𝑖2...𝛿𝑖𝑛 then the length or cost of the codeword is

the sum of the lengths of its constituent elements:

𝐶𝑜𝑠𝑡(𝑤𝑖) =
𝑛∑︁

𝑗=1

𝐶𝑜𝑠𝑡(𝑖𝑗) (3.1)

If all the elements of a codeword have unit cost or length then the cost of the codeword

is equivalent to the length of the codeword. However, it is not necessary for the elements

in the codeword to have equal length or cost. For example, in Morse Code all the ASCII

characters are encoded as sequence of dots (∙) and dashes (−) where a dash is three times

longer than a dot in duration (Redmond, 1964). However, the Morse code scheme suffers

from the prefix problem (Grunwald and Vitany, 2000) (see Figure 3.5). Ignoring the prefix

problem, Morse code results in a tremendous savings of bits over ASCII representation.

Using Morse code, we can treat the binary bits differently; 0 as a dot and 1 as a dash. Even

if we consider the voltage level to represent the binary digits then they are still different.

Figure 3-3: Morse code for English alphabet
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As the unequal letter cost problem is not new, it has therefore been addressed by dif-

ferent researchers. The more general case where the costs of the letters as well as the

probabilities of the words are arbitrarily specified was considered by Karp (1961). A num-

ber of other researchers have focused on uniform sources and developed algorithms for

unequal letter costs encoding (Gilbert, 1995; Krause, 1962; Varn, 1971; Altenkamp et al.,

1980; Perl et al., 1975).Let 𝑝1, 𝑝2...𝑝𝑛 be the probabilities with which the source symbols

occur in a message and the codewords representing the source symbols are 𝑤1, 𝑤2...𝑤𝑛 then

the cost of the code w is:

𝐶(𝑤) =
𝑛∑︁

𝑖=1

𝐶𝑜𝑠𝑡(𝑤𝑖).𝑝𝑖 (3.2)

The aim of producing an optimal code with unequal letter cost is to find a codeword W

that consists of n prefix code letters each with minimum cost ci that produces the overall

minimum cost 𝐶(𝑤), given that costs 0 < 𝑐1 ≤ 𝑐2 ≤ ... ≤ 𝑐𝑛, and probabilities 𝑝1 ≥ 𝑝2 ≥

... ≥ 𝑛 > 0.

Huffman code (Huffman, 1952) is an efficient data compression scheme that takes into

account the probabilities at which different quantisation levels are likely to occur and results

in fewer data bits on average. It is widely used to compress biological data, however, all

the techniques use the classical form of the Huffman code where bits are treated equally.

Out of many variations of the Huffman code where cost of bits are treated unequally, the

most recent approach is described by Kabir et al. (2014). This approach treats binary bit 0

as a dot (∙) and 1 as a dash (−) like Morse code and reduces the transmission cost (time)

significantly. Like other variations of the cost considering Huffman code, the compression

performance (in terms of number of bits require to encode a message) of this approach is

not better than the classical Huffman code. This approach only considers cost reduction

but ignores bit reduction, and therefore number of total bits is rather high.

3.4.2 Previous Work in Optimised Biological Data Compression

The size of biological data including DNA sequences increase with an ever expanding rate

and will be bigger and bigger in the future. These biological data are stored in biology
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databases. The exponential growth of these databases is becoming a big problem for all

biological data processing methods (Howe et al., 2008). Different operations are applied to

these data such as searching (Valentin et al., 2010), e-mail attachment (Scott et al., 2009),

alignment (Chenna et al., 2003), and transmission on distributed computing platforms (Tzu-

Hao et al., 2014). Interestingly, biological data compression can play a key role in all sorts

of biological data processing.

A recent deluge of interest in the development of new tools for biological data processing

requires efficient methods for data compression. The main objective of data compression

methods is minimising the number of bits in the data representation. Brandon et al. (2009)

proposed a new general data structure and data encoding approach for the efficient storage

of genomic data. This method encodes only the differences between a genome sequence

and a reference sequence. For encoding, the method uses different fixed-length encoding

schemes such as Golomb (Golomb, 1996), Elias codes (Elias, 1975) and variable length

codes such as Huffman codes.

There are other methods based on the same idea of encoding only the difference between

reference sequence and the target one. One such approach (Scott et al., 2009) uses Huff-

man code for encoding differences between sequences to send as an email attachment. The

main limitation of this method is that it must send the reference sequence at least once for

each species, and usually this sequence is too big to be sent as an email attachment.

(Wang et al., 2011) proposed a new scheme for referential compression of genomes based

on the chromosome level. The algorithm searches for longest common subsequence be-

tween two sequences and then the differences between them are encoded using Huffman

code. All previous studies focus only on the differences and the relation between continu-

ations of the sequence, and use existing encoding approaches to encode biological datasets

without considering possible improvement of the encoding schemes.
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3.5 Optimisation of Original DNA Construction

3.5.1 DNA Fragment Assembly

Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic information in

all organisms including humans. The DNA is represented as a long file made up of four

chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T) (see Figure 3.6).

These bases are 99 percent similar for all humans and usually organisms of the same classes

have high similarity in their DNA (Berk et al., 2000). A genome is a stretch of DNA that

encodes a polypeptide (protein), which is a set of amino acids bound together in a specific

order. The chemical bases are up with each other in the way that base A is always paired

with base T, and base C is always with base G. This sequence consists of nucleotides bound

together, which are interpreted by the cellular machinery in groups of three, called triplets

(Cai et al., 2012).

Figure 3-4: DNA structure

DNA fragment assembly is a NP-hard problem in computational biology (Pevzner et

al., 2001) (see Figure 3.7). The human DNA contains about 3 billion bases and cannot be

read at once. Experimental techniques have been used to solve this problem by cutting the

whole sequence at random positions to a set of fragments. The main objective of DNA

fragment assembly is to construct the original DNA sequence from the small fragments by

finding the best order of these fragments to maximise the overlapping scores between each

two consecutive fragments (Bankevich et al., 2012).

The experimental tools for biological phenomena analysing and prediction is very ex-

pensive and can take long time to find a useful hidden knowledge. Bioinformatics tasks are
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Figure 3-5: DFA problem

very interesting approaches for solving these kinds of problems. The number of possible

arrangement of DNA fragment proves that the problem is an NP-hard problem as demon-

strated in (Pevzner et al., 2001). Exact and approximate solvers can be proposed to solve

the DNA fragment assembly problem.

Several optimisation-based methods have been proposed to deal with the DFA problem

(Pevzner et al, 2001; Caserta et al,. 2014; Chang et al,. 2011; Bocicor et al,. 2011).

The main objective of these methods is to construct the original DNA sequence based on

the small DNA fragments by maximising the overlapping scores between consecutive se-

quences. Greedy methods were firstly applied to deal with the DNA fragments assembly

problem by Staden (1980), these kinds of methods are naive and can be used only for small

problem. Most of biological data based problems use a very high amount of data which is

the nature of such problems. Afterwards, optimisation algorithms and specially metaheuris-

tics were widely used to solve the DNA fragments assembly problem. The formulation of

DNA fragment assembly problem can be the simple way by using the fragment of DNA as

strings and try to arrange these set of strings, we can go to more complicated form but pow-

erful representation by a complete graphs, and the problem of finding the DNA fragments

assembly problem can be seen as path finder by finding a Hamiltonian cycle for the graph.
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3.5.2 Previous Work in DNA Fragment Assembly

Many approaches have been applied in DNA fragments assembly to improve the quality

of the solutions for this problem. Greedy methods were the first work on DNA assembly

problem, these kinds of methods can be easily implemented. The well-known and the most

used greedy method in DNA fragment assembly is proposed by (Staden 1980) (see Figure

3.8). These methods used the overlap-layout-consensus, this technique for the large-scale

sequencing problems is not as good as the small problem.

Figure 3-6: OLC for DNA fragment assembly problem

3.5.2.1 Genetic Algorithm for DNA Fragment Assembly

Genetic algorithm has been widely used to solve the DNA fragment assembly. Kim et al.

(2013) proposed a new parallel hierarchical adaptive variation of evolutionary algorithms.

Their approach incorporates a new measure (objective function) to evaluate the quality

of a given solution. It implements a new variation of the island model of parallel GA,

called ’Parallel Hierarchical Adaptive GA’ (PHAGA). The solution is built with hierarchi-

cal model constructed by identifying subsequences with high confidence.

A grid-based genetic algorithm has been proposed by (Nebro et al. (2008). The approach

uses a grid composed of up to 150 computers to solve large scale problem in a reason-
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able time. It uses the master/slave model, using multiple slaves in parallel with one master

population. An improved GA algorithm has been proposed by using two main operators

Reduction and Refinement of the chromosomes to improve the speed and the quality of the

results (Kikuchi et al., 2006). The reduction step aims at forming an efficient contiguous

array of genes in the chromosome, and the refinement step is added to efficiently support

the genes in the chromosome. This refinement of greed's mutation takes place in every set

of iteration fixed as an initial parameter. The proposed approach follows the OLC model, it

starts by finding the longest similarity between each two fragments, after that the optimal

order is found by computing the score of a given full order, the last step is the consensus,

for DNA fragment assembly problem the consensus construction is similar to that of the

travelling salesman problem.

3.5.2.2 Swarm Intelligence for DNA Fragment Assembly

Swarm intelligence algorithms have been applied to solve the DNA assembly problem. Par-

ticle swarm optimisation algorithm (PSO) has been proven as a powerful nature inspired

metaheuristics algorithm to solve problems in different areas (Kennedy et al., 1998). Huang

et al. (2014) proposed a memetic PSO algorithm based on the tabu search (TS) (Glover et

al., 1999). In this algorithm, simulated annealing (Aarts et al., 1988) is used as the ini-

tialisation method and two variable neighbourhood search (VNS) (Hansen et al,. 2001)

methods are used to improve the intensification strategy. The VNS local search algorithm

uses multiple operators such as swap between fragments, insertion, inversion and randomly

displacement of substructures. The PSO is used to achieve the global best solution based

on these methods. The limitation of this method is that it consumes high runtime by incor-

porating several methods.

Ant Colony System Algorithm (Dorigo et al., 1997) is a powerful nature inspired meta-

heuristics algorithm based on ant behaviour. It has been used also to solve the DNA frag-

ment assembly problem. Meksangsouy et al. (2003) used Ant colony optimisation (ACO)

to solve both single- and multiple-contiguous problems by using an asymmetric ordering

representation. Ants cooperate their efforts to generate the solution path that has the max-

imum overlap score between each pair of DNA fragment. Another application of ACO
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to DNA fragment assembly is by modelling the problem as path-finding problem (Yan et

al., 2011). It considers multiple objective functions, similarity measure, continuity mea-

sure and hairpin with two constraints, which are the melting temperature and the guanine-

cytosine content (uniform chemical characteristics). An integer programming algorithm

has been proposed to solve DNA fragment assembly to find the global optimal solution for

the problem. The approach has been applied to DNA data sets with errors, it incorporates a

new efficient technique to identify alternative reconstruct. The algorithm has been applied

to spectrum data of real human DNA (Chang et al., 2011).

Recently, several nature inspired metaheuristics algorithms have been proposed such as

firefly algorithm (Yang et al., 2010), which has been applied later to DNA fragment assem-

bly problem by formulating the score measure as the sensation distance of each firefly in

the solution space (Ezzeddine et al., 2014). The Firefly for DNA fragment assembly algo-

rithm starts by initialising parameters such as the number of allowed moves, the number

of iterations and the light absorption gamma, after that the initial population is randomly

generated. Each firefly tries to find the most attractive among the rest of the population, in

the worst case it moves randomly, update their parameters and repeat this proves until no

move is available

3.6 Conclusion

In the recent years the bioinformatics and computational biology have received a great

attention due to the amount of biological data sequenced every year. The combinatorics

nature of the most of bioinformatics and computational biology problems gives a good

application field for the optimisation algorithm such as heuristics and metaheuristics. This

chapter provided a general presentation of the use of metaheuristics in bioinformatics and

computational biology problems. We described in this chapter the studied problems in this

thesis, by showing for each algorithm the proposed algorithms in the literatures for each

kind of problem. In the following chapters, we will present the contributions and the work

achieved in this thesis. The mathematical formulation of each problem and the proposed

approach, at the end, we present the experimental phases of each proposed algorithm.
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Chapter 4

PeSOA for Finding Optimal Spaced

Seeds

4.1 Introduction

Our thesis as mentioned in the chapter 1 is about the using the metaheuristics algorithms for

biological data based problems. The size of biological data augments every day, algorithm

for biological data analysis needs to be as a good as finding the optimal solution in reason-

able time. In this chapter we investigate the problem of similarity searching in biological

data by handling the problem of finding multiple spaced seeds. The proposed approach is

based on penguins search optimisation algorithm (PESOA), the penguins search algorithm

is population based algorithm developed in (Gheraibia et al., 2013). It's a nature inspired

metaheuristic algorithm based on the collaborative hunting behaviour of penguins. The

work related to the current chapter is published in an international journal (Gheraibia et

al., 2015a). The rest of the chapter is organised as follow: Section 4.2 we discuss the gen-

eral problem of spaced seeds, section 4.3 the PeSOA algorithm is presented. Then, section

4.3 defines the proposed approach, section 4.4 describes the experiments and comparison

study. We conclude the chapter in section 4.5.
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4.2 Spaced Seed Problem

Any alignment between two DNA or protein sequences can be represented by a Bernoulli

model representation as a binary string with 1 and 0, where 1 stands for a match and 0

stands for a mismatch. Seeds technology is an important filtration method used to speed

up local alignment. The quality of a seed can be measured by its sensitivity, which is a

measure of ability to detect similar segments between two sequences.

Spaced seed is a regular expression of binary strings. Moreover, it includes zeros and ones

with starting and finishing by one. Let 𝛼 be a seed, |𝛼| denotes the length of the seed

(i.e., the number of zeros and ones) and ‖𝛼‖ denotes the weight of the seed (the number

of the ones only) (Altschul et al., 1997). As an example, let R=1001101011 be a Bernoulli

representation of biological sequence, so |𝑅|= 10 and ‖𝑅‖=6. Spaced seed is used in the

filtration stage of sequence comparison process in order to find appropriate matching. Dur-

ing the search process, certain positions are ignored which are represented by 0 in the seed

and by 1 in the position of required matches. Each homology research program uses a

specified seed, for example, the Blastn uses 11111111111, or 11 consecutive matches to

generate a hit. PaternHunter default seed 111010010100110111, it has a weight of 1 and

length 18.

Let R be a random binary sequence of length N, used to represent a sequence alignment

with a matching probability P, let S be a spaced seed, the match represents similar positions

on the two sequences. We say S hits R if we find at least one substring from position i up

to the position j-i+1=|𝑆| denoted by R [i : (j-i+1)] match with S. Additionally, we say a set

of K spaced seeds hit R if at least one of these hits is R. The probability that s (or S) hits R

is called the sensitivity. Actually, this sensitivity depends on the length of the binary region

to be hit and on the distribution of matches. Accordingly, computing the hit probability

(the sensitivity) for a given (k>1) seeds under the uniform distribution is considered as an

NP-hard problem (Li et al., 2004).

The number of the possible sets is exponential, so determining the optimal set of seeds that

maximizes the hit to R is clearly a difficult task. Finding optimal space seeds and comput-

ing hit probability is a NP-hard problem (Li et al., 2002). The objective of such problem
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is to find a set of K seeds of weight w that maximize the hit of matching sequence R, the

matching probabilities p is related to the length of the sequences N (Ma et al., 2007). For

instance with N=10000; K=25 and p=0.80, we obtain 33 × 108 potential solutions, conse-

quently, the bio-inspired approaches are appreciated to handle this kind of problem.

In the next section, a recent bio-inspired approach penguins search optimisation (PeSOA)

will be introduced. PeSOA is a bio-inspired algorithm ensures high diversification; it rep-

resents the individuals within a population. In this context, it is desirable to have a good

diversification in our population in order to explore the search space properly. Also, when

we get a high diversification we intensify the exploration; otherwise we intensify the local

search.

4.3 Penguins Search Optimisation Algorithm (PeSOA)

Bio-inspired approaches have been revealed their efficiency in data analytics especially

in computational biology (Rumble et al., 2009), (Julio et al., 2008), (Handl et al., 2007).

The bio-inspired approaches can be subdivided into two categories. The first category talks

about the evolutionary algorithms; it starts with an initial population, and then applies some

evolutionary operators to produce another population which is more improved than the last

one. The most used evolutionary algorithms are genetic algorithms. The second one is the

swarm intelligence, the emerging field in computational intelligence; the solution space is

intelligently explored based on the cooperation and the synergy of existing swarms. One

of the recent swarm's methods is Penguins search optimisation algorithm.

The optimality theory of foraging behaviour was modeled in the works of (MacArthur et al.,

1966), (Mori et al., 2002). These two studies hypothesized that dietary behaviour may be

explained by economic reasoning: when the gain of energy is greater than the expenditure

required to obtain this gain, so it comes to a profitable food search activity. Penguins, as

biological beings, use this assumption to extract information about the time and cost of

food searches and energy content of prey, on one hand, and the choice to hunt or not in

the selected area, depending on its high resource and the distance between feeding areas,

on the other. The behaviour of air-breathing aquatic predators, including penguins was
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noticed by (Houston et al., 1985). The surface is a place for penguins as they are forced to

return after each foraging trip. A trip implies immersion in apnea. The duration of a trip

is limited by the oxygen reserves of penguins, and the speed at which they use it, that is to

say their metabolism (Green et al., 1998), (Tremblay et al., 1999). The works in the field

of animal behavioural ecology of penguins have given us clear and motivating ideas for the

development of a new optimisation method based on the behaviour of penguins.

4.3.1 Metaphor: Hunting Behavior of Penguins

Penguins are sea birds, unable to fly because of their adaptation to aquatic life (Green et al.,

1998), (Hanuise et al., 2010). The wings are ideal for swimming and can be considered as

fins: penguins fly through water and can dive more than 520m to search for food. Although

this is more efficient and less tiring to swim underwater than at the surface, they must reg-

ularly return to the surface to breath. They are able to keep breathing while swimming

rapidly (7 to 10 km/h) (Green et al., 1998). During the dives, the penguin’s heart rate slows

down. Underwater, the haunting eyes of the penguin are wide open; his cornea is protected

by a nictitating membrane. The retina allows him to distinguish shapes and colors.

Penguins feed on fish and squid. For this, they must hunt in groups and synchronize their

dives to optimise the foraging (Takahashi et al., 2004). Penguins communicate with each

other with vocalisations. These vocalisations are unique to each penguin (like fingerprints

in humans). Therefore, they allow the unique identification of each penguin and the recog-

nition of penguins to each other (Simpson et al., 1976). This factor of identification and

recognition is important since there is a large size of the colonies and a great similarity of

the penguins. The amount of the necessary food for a penguin is variable depending on

species, age, variety and quantity of food available in each region. Studies had shown that

a colony of 5 million of penguins may eat daily 8 million pounds of krill and small fish

(Simpson et al., 1976).
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4.3.2 The PeSOA Algorithm

Penguins search optimisation algorithm (PeSOA) is a bio-inspired meta-heuristics based

on collaborative hunting strategy of penguins. Penguins swarms have several collaborative

characteristics, they collaborate their efforts and synchronise their dives to save the global

expenditure of energy in food searching process. In the hunting process, penguin popula-

tion is divided into groups and each group is composed of a variable number of penguins

depending on food availability in a specific location. In each group, each penguin searches

separately for food according to their oxygen reserve (updated according to the objective

function). After each food-foraging iteration, penguins return back on the surface (ice) to

share with affiliates, the location of food (this rule ensures intra-group communication). If

the number of fishes (calculated according to the objective function) in a specific location

is not enough (or none) for a given group, part of the group (or the whole group) migrates

to another hole (this rule ensures inter-group communication). The pseudo code of the

penguin search optimisation algorithm (PeSOA) is shown in Algorithm 4.1.

Algorithm 4.1: PeSOA Algorithm
1 Generate K regions in the solution space based on distances
2 Generate penguins for each group i
3 while stopping criterion is not reached do
4 Initialise the oxygen reserve for each penguin
5 For each group i do
6 For each penguin j in this group do
7 Improve the penguin position by

𝑥𝑖
𝑗(𝑡+ 1) = 𝑥𝑖

𝑗(𝑡) +𝑂𝑖
𝑗(𝑡)× 𝑟𝑎𝑛𝑑()× (𝑥𝑖

𝐿𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡 − 𝑥𝑖
𝑗(𝑡))

8 End
9 Update the food abundance degree for this group by

𝑂𝑖
𝑗(𝑡+ 1) = 𝑂𝑖

𝑗(𝑡) + (𝑓(𝑥𝑖
𝑗(𝑡+ 1))− 𝑓(𝑥𝑖

𝑗(𝑡)))× ‖𝑥𝑖
𝑗(𝑡+ 1)− 𝑥𝑖

𝑗(𝑡)‖
10 End
11 Update the global best solution
12 Update membership function values for each group
13 Redistribute penguins to groups according to the membership function
14 Abandon the group if it has no members
15 Endwhile
16 End

To summarize the observations from penguins’ foraging behavior, the following rules



Chapter 4. PeSOA for Finding Optimal Spaced Seeds 64

are presented.

Rule 1: A penguin population comprises of several groups. Each group contains a number

of penguins that varies depending on food availability in the corresponding foraging region.

Rule 2: Each group of penguins starts foraging in a specific depth under the water accord-

ing to the information about the energy gain and the cost to obtain it.

Rule 3: They feed as a team and follow their local guide which has fed on most food in the

last dive. Penguins scan the water for food until their oxygen reserves are depleted.

Rule 4: After a number of dives, penguins return on surface to share with its local affiliates,

via intra-group communication, the locations and abundance of food sources.

Rule 5: If the food support is less for the penguins of a given group to live on, part of the

group (or the whole group) migrates to another place via inter-group communication.

4.4 The Proposed Approach

4.4.1 Encoding

A compact and efficient solutions encoding is used in the proposed seeds design. In Pe-

Seed, two values are used for standards spaced seed (0,1) for interpreting the signification

of similarities on the seed, where 1 means match between seed and the Bernoulli model,

and 0 otherwise. For the bio-inspired algorithm we also have used an occurrence table to

guide the search and which reduces significantly the search space.

Sequence 1: T A T T A C T A A C

Sequence 2: T T A T A A T A T C

4.4.2 QUICKLYOC: a Heuristic for Fitness Computing

The sensitivity of a given seed represents the matching probability that seed set hit an

alignment. The dynamic programming algorithm has been used to compute the exact hit

probability of a single seed. Since this problem of computing the sensitivity of K given

seeds under the uniform distribution is considered as an NP-hard problem, the overlap

complexity (OC) is a polynomial time heuristic giving an approximate solution of this
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problem, the OC is independent of the similarity level p.

In (Ilie et al., 2011) an experimental correlation between the sensitivity and the overlap

complexity has been shown (Seeds with low overlap complexity have high sensitivity).

The overlap complexity can be computed in several ways: given two seeds 𝑆1 and 𝑆2, let

𝜎𝑖 be the number of pairs of ones aligned together when a copy of 𝑆2 is shifted by i positions

while aligned against 𝑆1 while 𝑆1.𝑊𝑖𝑔ℎ𝑡 represents the index of ones position in the seed.

The overlap complexity is to capture the overlap between seeds. It is very susceptible for

the 1's position in the given seed. For two given seeds 𝑆1 and 𝑆2, we have |𝑆1| + |𝑆2| − 1

possibility of overlaps between them, we denote the number of 1's in similar position for

each i shift time by 𝜎𝑖, and the overlap complexity OC computed as follows:

𝑂𝐶 = 𝑂𝐶 +

|𝑆1|−1∑︁
𝑖=|𝑆2|

2𝜎𝑖 (4.1)

Each seed has an array called weight which represents the 1'position on the seed, the

weight array is represented as follow:

Figure 4-1: QuicklyOC technique

In this algorithm, the problem is to run through the 0 mismatch positions which have no

effect on the final solution. The QUICKLYOC (Quickly Overlap Complexity) (Algorithm
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Algorithm 4.2: QuicklyOC (𝑆1, 𝑆2)

Input : a two seed 𝑆1, 𝑆2 of weights 𝑤1, 𝑤2

Output: OC (𝑆1, 𝑆2)
1 Compute 𝑆1.𝑤𝑖𝑔ℎ𝑡, 𝑆22𝑤𝑖𝑔ℎ𝑡
2 For i from 1 to 𝑤1 do
3 For j from 1 to 𝑤2 do
4 𝜎[𝑆1.𝑤𝑖𝑔ℎ𝑡[𝑖] + 𝑆22𝑤𝑖𝑔ℎ𝑡[𝑗]] + +
5 EndFor
6 EndFor
7 𝑂𝐶 =

∑︀|𝑆2|−1
𝑖=|𝑆2| 2

𝜎𝑖

8 Retrun (OC)

4.2) is a new way to compute the OC without travel on these positions; two arrays (weight)

are constructed and each one contains the 1's index of the seed, so the length of the array

becomes the weight (number of ones) of each seed.

4.4.3 Pe-Seed: Penguins Search Optimisation Algorithm for Spaced

Seeds

Our goal is to compute highly sensitive multiple spaced seed. Therefore, we apply the

penguins search optimisation algorithm with a new definition of the table of frequently

occurring pattern to improve the runtime and to reduce as much as possible the overlap

complexity (sensitivity) between seeds. The table of frequently occurring pattern is con-

structed from the seeds. For each seed in the initial population, we compute the number of

occurrences for a frequent sub-string (pattern) of length 4. For each set of seeds the table

contains all possibilities of sub-strings of weight w=3 or w=2 and with fixed length L=4.

Assume a set of seeds S = {𝑆1,𝑆2,..., 𝑆𝑘} each seed has a weight w and denote the length of

Si by 𝐿𝑖 , for 𝐿 ≤ 𝑖 ≤ 𝑘. We must construct for S a table of frequently occurring pattern;

the value of an entry in the table is obtained by counting the number of occurrence for this

sub-string in all seeds, and also for each entry of the table we compute for each sub-string

the occurrence of the sub-string of the same model. We include with same model the sub-

strings that have a subset of 1 occurring at exactly the same position from the set of 1 of

the original pattern. Table 1 shows an example of an OCT for the following set of seeds:
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S = {1011010110101; 1110111000101; 1001110101101}

L W Pattern Same model Occurrence on S
4 2 0011 0011,1011,0111 7
4 2 0101 0101,1101,0111 8
4 2 0110 0110,1110,0111 8
4 2 1001 1001,1101,1011 9
4 2 1010 1010,1110,1011 10
4 2 1100 1100,1101,1110 8
4 3 0111 0111 2
4 3 1011 1011 4
4 3 1101 1101 4
4 3 1110 1110 3

Table 4.1: The table of frequently occurring pattern

The Pe-Seed works as follow (Algorithm 4.3): Firstly, the table of frequently occurring

pattern (OCT) as shown previously is computed according to the definition. The OCT is

used with the penguins search optimisation algorithm for the optimisation process. Sec-

ondly, we distribute the penguins population on different seeds. Each penguin (j=1 ... m)

represent a candidate solution with active seed (several penguins may dock on the same

seed so penguins are distributed in groups). In this process, penguins are sorted in order

to their groups and start searching in a specific seed according to the probability of food

availability (food availability computed from the amelioration of the objective function).

The computation of solution update is repeated for each penguin in each group as follows.

Each penguin chooses a deep point on the present seed and chooses a sub-string of length 4,

the function FindPosition that gives the number of occurrence in the table of this substring,

and after several iterations controlled with the oxygen reserve, penguins communicate to

each other the best solution which is determined by the quantities of eaten fish (objective

function), and we calculate the new distribution probability.

The main objective of the Pe-SeeD is to find the optimal composition of k seeds (S =

{𝑆1,𝑆2,..., 𝑆𝑘}), precisely is to minimise the similar region in seeds and thus reducing the

power number (𝜎𝑖) of the overlap complexity. Each penguin does a local search in its active

seed and try to improve the overlap complexity of the seed with the table of frequently oc-

curring pattern. If the selected sub-string is present frequently on other seeds, the penguin
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changes this sub-string with other sub-string of the same weight. The choice of the new

sub-string is also based on the table of frequently occurring pattern (choose the sub-string

that is not frequently present in other seed). Also in the present iteration, penguin search

is guided with the oxygen reserve to continue the search in the present seed, the reserve

of oxygen is changed according to the amelioration of the overlap complexity (objective

function). When all penguins achieve their best solution, we choose the best solution for

each seed (penguin). Penguins communicate to each other the best solution, which is deter-

mined by the number of eaten fish. We compute also the best solution for all seeds and the

probability of penguin as reported by the overlap complexity amelioration, and redistribute

penguins for the next iteration according to these probabilities.

Algorithm 4.3: Pe-Seed(S)
Input : a multiple seeds S = 𝑆1, 𝑆2...𝑆𝑘

Output: modified S with very low OC(S)
1 Compute the table of frequently occurring pattern OCT
2 Compute BestOC(S)
3 Initialise the population of P penguins (j = 1...m) with S
4 Initialise: 𝑃𝑆𝑖, 𝑂𝑝𝑗, 𝑄𝑓𝑗

5 Repeat until BestOC stops decreasing
6 For each penguins 𝑃𝑗 do
7 Chose a random position 𝑅𝑝on its seed 𝑆𝑖

8 While oxygen reserves are not depleted (𝑂𝑝𝑗> 0) do
9 Take a Substring 𝑆𝑡 = 𝑆𝑖[𝑅𝑝,𝑅𝑝 + 4]

10 If OCT [FindPosition(𝑆𝑡)] not min
11 𝑆𝑡 = OCT[min]
12 𝑆𝑖[𝑅𝑝,𝑅𝑝 + 4] = 𝑆𝑡

13 Endif
14 𝑅𝑝= 𝑅𝑝 + random step
15 𝑂𝑝𝑗 = 𝑂𝑝𝑗-1
16 EndWhile
17 Compute sensitivity for this penguin: F(𝑃𝑗(𝑆))
18 Update 𝑄𝑓𝑗 ,𝑝𝑗
19 EndFor
20 Update 𝑃𝑆𝑖

21 Redistributes the penguins according to the probabilities
22 BestOC(S) = argmax(F(𝑃𝑗(S)))
23 EndRepeat
24 Return(S)
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4.4.4 Experimental Results

4.4.4.1 Parameter Settings

Penguins Search Optimisation Algorithm has several parameters (initial oxygen reserve,

population size, number of generations, etc.) allowing the diversification and the inten-

sification properties. Determining these parameters values is an NP-hard problem; it is

difficult to find the exact parameter values to reduce execution time for the evolution of the

optimal objective value. In Pe-Seed, we have used the Hill Climbing algorithm to search

the optimal parameter values (Algorithm 4.4), the pseudo code is shown below. The ob-

jective function of this algorithm is to maximise the ratio between the Pe-Seed objective

function (the overlapping value) and the CPU execution time. In each iteration, we try with

a new set of parameter values to maximise the overlap and to reduce the execution time.

Figure 4.2 shows the experimentation for finding the best parameter setting by the ratio

between the overlap complexity of used seeds and the runtime. The optimal parameters

values are 25 penguins on the initial population with 150 iterations and 2 iterations for

oxygen reserve.

Algorithm 4.4: Hill climbing Algorithm for parameters settings (S)
Input : a multiple seeds S = 𝑆1, 𝑆2...𝑆𝑘

Output: a good parameters
1 Generate initial random values: 𝑃𝐵𝑒𝑠𝑡 = (𝑂𝑝𝑗 ,Number of iteration, Number of

penguins)
2 Apply Pe-Seed algorithm with calculating the fitness function F (The ratio between

Overlapping objective function and the execution time)
3 While F (𝑃𝐵𝑒𝑠𝑡) stopsdecreasing do
4 Take a random walk in each parameters 𝑃𝑛𝑒𝑤

5 Apply Pe-Seed algorithm with this new parameters (𝑃𝑛𝑒𝑤)
6 If (F*( 𝑃𝑛𝑒𝑤 ) > F(𝑃𝐵𝑒𝑠𝑡)) then
7 𝑃𝐵𝑒𝑠𝑡 = 𝑃𝑛𝑒𝑤

8 EndIf
9 EndWhile

10 Return(𝑃𝐵𝑒𝑠𝑡)
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Figure 4-2: Parameters settings

4.4.4.2 QUICKLYOC Evaluation

We have compared the runtime of the QuicklyOC algorithms with the VFastOC algorithm

used in the improved SpEED method in Table 2. These comparisons show that the proposed

algorithm is very fast and its runtime is lower than that of the VFastOC. The QuicklyOC

has a complexity of O(𝑤1 × 𝑤2), which is the lowest complexity compared to all the other

existing algorithms. Amelioration is approximately between two times to ten times, accord-

ing to seeds length. Table 4.2 represents a comparison of the new QuicklyOC algorithms

and the VFastOC for the required running time. The runtime of the Pe-Seed has been well

ameliorated with the use of the QuicklyOC, we obtain a good set of spaced seed in a few

minutes for long seeds.

4.4.4.3 Pe-SeeD Evaluation

We experimentally evaluated the Pe-SeeD and compared it with other software programs,

Mandala, and the FastHC heuristic of the improved method of SpEED, based on the param-

eter settings that were practically used in several software of biological sequence alignment

programs such as SHRiMP ,PatternHunter II , and BFAST. In all these data sets we have

multiple seeds of various weight w (11, 20 and 22 respectively), and with different match-

ing probability p from 0.70 to 0.95. We have performed Pe-SeeD search for 5000 solutions

as done in the improved implementation of SpEED. We have also used a penguin's popula-
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w L VFastOC QuicklyOC
7 14 0.0033 0.0015
8 16 0.0037 0.0016
9 17 0.0041 0.0020
10 18 0.0045 0.0022
11 20 0.0048 0.0024
12 20 0.0068 0.0036
13 22 0.1011 0.0092
14 23 0.1750 0.0108
15 25 0.7842 0.0542
16 26 1.4209 0.1214
17 26 1.8648 0.1451
18 27 2.8648 0.2360
19 29 3.1251 0.2981
22 32 4.0022 0.3463
23 34 4.3523 0.3791

Table 4.2: Comparison of OC running time algorithms

tion of size 25, and each of them uses the OCT table and QuicklyOC to improve the sensi-

tivity. Table 4.3 shows the sensitivity comparison of Pe-Seed with Mandala, AcoSeed, and

w N P PHII Mandala FastHC Pe-Seed
11 64 0.70 92.4114 92.3967 93.3406 94.0015
11 64 0.75 98.4289 98.4251 98.7156 98.9362
11 64 0.80 99.8449 99.8401 99.8859 99.9837

Table 4.3: Comparison of computed spaced seeds Sensitivity for PatternHunter (16 seeds,
N=64)

the FastHC of SpEED. We have used the same parameters that are used in Pattern-Hunter

II; it is evident from the table that the Pe-Seed has the best sensitivity in all cases.

Table 4.4 depicts the sensitivity comparison of Pe-Seed with Mandala, AcoSeed, and

the FastHC of SpEED. We have used the same parameters that are used in BFAST. It seems

from the table that the Pe-Seed also has the best sensitivity in all cases.
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w N P BFAST FastHC Pe-Seed
22 50 0.85 58.6907 60.9329 61.8214
22 50 0.90 87.3359 88.7120 89.6523
22 50 0.95 99.2249 99.3959 99.9215

Table 4.4: Comparison of computed spaced seeds Sensitivity for BFAST (16 seeds)

W N P SHRiMP Mandala FastHC Pe-Seed
10 50 0.75 89.6113 90.6608 90.7752 90.9254
10 50 0.80 97.3159 97.7316 97.8125 98.0014
10 50 0.85 99.6613 99.7283 99.8332 99.8925
11 50 0.75 81.6772 83.0512 83.2015 83.3111
11 50 0.80 94.1141 94.7845 94.9952 95.1024
11 50 0.85 99.0145 99.1929 99.3124 99.4685
12 50 0.80 89.3037 90.2615 90.5002 90.7012
12 50 0.85 97.7253 98.0841 98.2362 98.4126
12 50 0.90 99.8330 99.8832 99.9852 99.9921
16 50 0.85 84.0995 84.4142 84.5962 84.7102
16 50 0.90 97.1676 97.1895 97.3712 97.5638
16 50 0.95 99.9260 99.9365 99.9912 99.9989
18 50 0.85 71.1961 72.1954 72.8032 72.9100
18 50 0.90 92.5652 93.0855 93.5624 93.6463
18 50 0.95 99.6299 99.6603 99.7652 99.9490

Table 4.5: Comparison of computed spaced seeds Sensitivity for SHRiMP (4 seeds)

The Pe-Seed have improved also the computational time, we have compared the pro-

posed approach with the FastHC Hill Climbing algorithm for a variety of parameters, the

computational runtime (in seconds) given for a single multiple spaced seed with the given

parameters. The results are summarized in Table 4.5 and 4.6.
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W N P k [l1,lk] FastHC Pe-Seed
11 64 0.70 16 [14,27] 1.12 1.10
22 50 0.85 10 [25,37] 1.18 1.17
28 100 0.90 8 [36,56] 3.21 2.98
28 150 0.90 8 [39,63] 5.01 4.39
28 200 0.90 8 [41,70] 7.85 6.99
28 100 0.90 16 [33,59] 38.36 31.25
28 150 0.90 16 [36,66] 58.64 46.12
28 200 0.90 16 [39,72] 75.98 64.32

Table 4.6: Comparison of computation time for Pe-SeeD and FastHC algorithms

4.5 Conclusion

In this part of the thesis we investigated the problem of finding optimal spaced seeds for

similarity searching biological data. We used in this approach the penguin search optimi-

sation algorithm for finding the optimal spaced seeds. The approach starts by constructing

the OccurrenceTable (OCT), this table presents the occurrence for each model of the same

weight in the Bernoulli model of the similarity. The optimisation process starts by find-

ing the optimal position of each model. The approach has been evaluated with differences

benchmark for the spaced seed problem and compared with the well-known proposed ap-

proach in the literature. The success of the approach is due to the use of the penguins search

space of solutions exploration strategy and the collaboration between penguins to converge

quickly to the optimal spaced seed with the low sensitivity.



Chapter 5

Genetic Algorithm for Biological Data

Compression

5.1 Introduction

The knowledge discovery process contains three main parts, (Pre-processing, Data mining,

and Post-processing). Before the application of any machine learning algorithm to extract

useful data, these data need to be prepared for more than one reason such as the heterogene-

ity of the data, and the representation of the data. In this chapter, we discuss the problem

of data representation for biological data by using genetic algorithm. The work of this part

of the thesis is published in an international journal (Gheraibia et al., 2015b). The aim of

the proposed approach is to find the optimal codes of each part of a given biological se-

quences for finding the optimal size of the sequence. The rest of the chapter is organised as

follows: The section 5.3 presents the cost considering Huffman code for data compression,

in section 5.4 we discuss the use of genetic algorithm for the optimal allocation of this

codewords. In section 5.5 we describe the results founded by the proposed approach when

applied to a real biological data. The last section 5.6 we conclude our work and discussing

the advantage of the proposed approach.

74
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5.2 Cost Considering Approach for Huffman Code

The classical Huffman algorithm aims to reduce the total number of bits and it constructs a

tree in a bottom up fashion. It is shown in (Golin and Rote, 1998) that if the costs of letters

are considered unequal then the straightforward bottom up greedy approach does not work.

Kabiret al. (2014) uses a top down approach to build a binary tree considering unequal

letter cost of bits. They considered cost (length) of 0 and 1 as integer constants 𝛼 and 𝛽,

𝛼 < 𝛽. Using the analogy of Morse code's ’∙’ and ’−’, the value of 𝛼 and 𝛽 is set as 1 and

3 respectively.

The complete algorithm to obtain an optimal prefix-free code for unequal letter cost is

shown below (algorithm 1). The inputs to the algorithm are the distinct triplets contained

in the genome sequence to be encoded and their frequencies. The process of creating the

binary tree starts with a single node (root node) and it is initialised with cost 0. After that,

two child (leaf) nodes are created for the root node, i.e., level of the tree is increased by one.

Cost of the left child is calculated as the summation of the cost of its parent node and the

length of the left arc, and cost of the right child is calculated as the summation of the cost

of its parent node and the length of the right arc. Length of left and right arcs are actually

the cost (length) of 0 (𝛼) and 1 (𝛽) respectively. The next step is to take a child node with

least cost and create two child nodes for it and make it a parent node. In this way, in each

iteration the child node with least cost becomes a parent node with two new child nodes.

Creation of new child nodes is stopped when total number of child nodes becomes equal to

the number of distinct triplets needed to be encoded.
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Algorithm 5.1: Cost Considering Algorithm (CCA)
Input : Distinct symbols contained in the message to be encoded and their

frequencies
Output: Non-uniform / variable letter cost i.e, Cost-considering balanced tree

1 For each distinct symbol i do
2 Enqueue (max-Q, frequency [i])
3 Endfor
4 Create a root node
5 Cost [root]←0
6 Enqueue (min-Q, cost [root])
7 Define costs of the left and right child of the binary tree
8 Repeat
9 Cost-of-parent-node← Dequeue (min-Q)

10 Create left and right child for this node
11 Cost [left-child]← cost-of-parent-node + left-child-cost
12 Enqueue (min-Q, cost [left-child])
13 Cost [right-child]← cost-of-parent-node + right-child-cost
14 Enqueue (min-Q, cost [right-child])
15 Mark parent node as explored
16 Until 2(n -1) nodes are created
17 While min-Q ̸= ∅ do
18 Leaf-node← Dequeue (min-Q)
19 Frequency [leaf-node]← Dequeue (max-Q)
20 End while
21 For each parent node j do
22 Frequency [j]←frequency [left-child] + frequency [right-child]
23 End for
24 Repeat
25 If conflict between nodes then
26 Resolve conflict by swapping conflicted nodes
27 Calculate and reassign cost of all affected nodes
28 Calculate and reassign frequency of all affected nodes
29 End if
30 Until all conflicts are resolved

Now the tree T is constructed and the cost of the tree actually depends on how the

frequencies are assigned to the leaf nodes. The overall cost will be minimised if the

leaves with the highest cost always have smaller or equal weight (frequency). To fulfil

this condition the leaves of the T are enumerated in non-decreasing order of their cost, i.e.,

𝑐𝑜𝑠𝑡(𝑙1) ≤ 𝑐𝑜𝑠𝑡(𝑙2) ≤ ... ≤ 𝑐𝑜𝑠𝑡(𝑙𝑛); and that 𝑓1 ≥ 𝑓2 ≥ ... ≥ 𝑓𝑛, where 𝑙𝑖 and 𝑓𝑖 are leaf

nodes and frequencies of distinct triplets respectively for i = 1,2 ... n . The frequency or
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weight of parent nodes are calculated as the sum of the frequencies of its child nodes, and

it continues upwards until the root node is reached. After that, the algorithm checks for any

possible conflicts between all pair of nodes. Two nodes are considered to be in conflict if

the node with a higher cost has higher frequency violating the above condition, i.e., if cost

(𝑙𝑖) > cost (𝑙𝑗) and 𝑓(𝑙𝑖) > 𝑓(𝑙𝑗), then there remains a conflict. If there remains a conflict

between nodes, then it is resolved by swapping the nodes and recalculating the cost of the

tree downward and frequency of the nodes upward. When all the conflicts are resolved, the

algorithm generates codes for each of the distinct triplets.

5.3 The Proposed Approach

A genome is a stretch of DNA that encodes a polypeptide (protein) which is a set of amino

acids bound together in a specific order. Each genomic sequence consists of nucleotides

bound together, which are interpreted by the cellular machinery in groups of three, called

triplets (Lodish et al., 1999). This is the main reason to divide the whole sequence into a set

of triplets and give a code to each triplet. As each DNA sequence contains a combination

of four nucleobases-guanine (G), adenine (A), thymine (T), and cytosine (C), it is possible

to have 43=64 triplets. The first step in the optimised cost considering algorithm is to cut

the genome sequence into triplets, then compute the frequency of each triplet in the whole

sequence. This table of frequencies is used by the cost considering Huffman code to gener-

ate minimal cost code for each triplet (frequency). Finally, these codes with frequencies are

used by the optimised cost considering algorithm to generate the optimal allocation with a

given penalty on cost. The whole process is shown in Figure 5.1.
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Figure 5-1: The proposed scheme

5.4 Optimal Allocation of the Codes

5.4.1 Problem formulation

The problem of finding the best allocation of codes to each triplet can be modelled as an

assignment problem and is formulated as follows:

Definition: Given a set of codes C = {𝐶1, 𝐶2...𝐶𝑛}, and a set of frequencies F =

{𝐹1, 𝐹2...𝐹𝑛}. For each code we have the length of the code |𝐶𝑖| (number of bits) and

the cost of the code 𝑆(𝐶𝑖).

The objective is to assign to each frequency a code in order to minimise the total number

of bits, while respecting the initially assigned total cost 𝑆𝑡 with a given penalty 𝜆→ [0, 1].

This penalty coefficient represents the allowed amount of cost that can be sacrificed to

optimise the total number of bits. The Objective Function is to:
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𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒
∑︁

(|𝐶𝑖| × 𝐹𝑗) (5.1)

while:

(|𝐶𝑖| × 𝐹𝑗) ≤ (𝜆+ 1)𝑆𝑡 (5.2)

5.4.2 Basic Genetic Algorithm

The Genetic Algorithm (GA) is a bio-inspired meta-heuristic algorithm developed by Mitchell

(1998) (See figure 5.2). GA is a stochastic optimisation algorithm that imitates the natural

evolution process of genomes. GA started by generating an initial population of random

feasible solutions. The optimisation process of GA takes the initial population and gener-

ates a new population based on it. The process can be described as follows: First, select

two or more solutions from the current population by using one of the well-known selec-

tion techniques (Blickle and Thiele, 1995). These selected solutions will be considered as

parents. The second operation of the genetic algorithm is the crossover, which takes these

parents as inputs to generate other new solutions considered as children. The third oper-

ation of the genetic algorithm is the mutation which ensures a good diversification in the

search process. The new solutions can be mutated according to a given mutation proba-

bility. The mutation operation changes the value of one or more positions in the solution.

The quality of each solution is verified by the fitness function which controls the evolution

of the GA population by deletion of the worst solutions and insertion of the good solutions

among parents and children. This process is repeated until the stopping criterion is reached

which can be the number of generations or whether or not the population is stabilised.

5.4.3 Optimised Cost Considering Algorithm

The main objective of the optimised cost considering algorithm (OCCA) is to apply GA to

find an optimal allocation of the codewords to each triplets to reduce the total number of

bits. In GA, the encoding of the solution into a chromosome is one of the most important

issues in obtaining good optimisation results. The OCCA uses two fixed length arrays of

size 64 which is the number of combination for all nucleotides. The first array contains the
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Figure 5-2: Genetic Algorithm

frequencies of each triplet and the second array contains the cost of the codewords assigned

to each triplets. Our genetic algorithm utilises the two arrays and uses the index of each

entry in the allocation process. The algorithm 5.2 describes the outline of the OCCA.

Generally the initial population is generated in a random assignment of codes to different

triplets. In the OCCA algorithm, the population firstly contains the assignment given by

the CCA. The rest of the population is randomly generated. All these generated solutions

must satisfy the initial cost constraints, which is the cost (St) of the solution produced by

CCA and previously added to the population with a given penalty (step 1).

The evolution of the population is the key of the genetic optimisation algorithm. Dur-

ing each generation, the process starts with the selection of a part (set of solutions) of the

population to breed a new generation. In the literature many selection methods have been

proposed to guide the population evolution (Blickle and Thiele, 1995). The different meth-

ods for selecting a part (set of solutions) of the population vary from a random selection

method to heuristic based selection methods. We have chosen to randomly select the part

of the population to be processed as the heuristic methods are very time consuming (step
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Algorithm 5.2: Optimised Cost Considering Algorithm (OCCA)
1 Population initialization (P)
2 repeat
3 Select two solutions 𝑆1, 𝑆2 form P
4 Crossover 𝑆1, 𝑆2 to generate 𝑆11, 𝑆21 (Children)
5 Mutate 𝑆11,𝑆21

6 Validate children with cost constraint (equation 2)
7 Add children to population
8 Rank the population by fitness
9 Remove worst candidates until population limit

10 until maximum number of generation not achieved
11 Display the best solution from the population P

3). After that the operations of the genetic algorithm are applied on the initial population

to generate a new generation of the population (see Figure 5.3). Firstly, the crossover oper-

ation is applied to these two selected solutions (considered as parents) to generate two new

solutions (considered as children) (step 4).

Figure 5-3: Operations of genetic algorithm

In the literature many crossover techniques have been used in genetic algorithms (Osaba

et al., 2014), such as one-point crossover which divides the chromosomes into two frag-

ments and recombines the second fragments with the other chromosome's second fragment.

The two-point crossover divides the chromosomes into three fragments and recombines the

middle fragment with the middle fragment of the other chromosome. There are many other

crossover techniques to allow a good convergence of the algorithm. In our case, we have
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used the two point crossover with two parameters. The first parameter pc is a random value

in [0, 63], which represents the first cut point and the second parameter pm is also a random

value in [0, 63], which represents the number of positions to be crossed. These two random

parameters are to ensure a good diversification on the whole search space (step 4).

After the crossover operation, the newly generated children may contain conflicts, for ex-

ample, a single code is allocated to two different frequencies in the solution. To overcome

such a conflict, a regulation operation is performed to refine the solution to ensure the cor-

rectness of the solution (see Figure 5.). Secondly these two new solutions are mutated

according to a predefined probability 𝜆, the best value of the mutation rate is problem spe-

cific (step 5). In our case, the value of 𝜆 is fixed to 0.2 to explore a few positions in the

solution. The mutation operator is used to maintain genetic diversity from one generation

of the population of genetic algorithm to the next. In our case, we have used the mutation

as a random swap mutation operator (see Figure 5.4). Each newly generated solution must

satisfy the cost constraint. The next step is to add these two new solutions (children) to the

current population (step 7) (see Fig. 3). Finally, the new population are ranked by fitness

(step 8), and the worst solutions are deleted until the initial size of the population is ob-

tained (step 9). The whole processes are repeated until the maximum number of operations

is performed (step 10).

Figure 5-4: Population update for genetic algorithm
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Figure 5-5: Convergence of OCCA for Genome 2

5.4.4 Results and Discussion

The effectiveness of the approach has been evaluated with different real genomic biological

data. These genomes were downloaded from a recent version of The National Centre for

Biotechnology Information (NCBI) available on (http://www.ncbi.nlm.nih.gov) (Pruitt et

al., 2009). We focused on the sequences alone, ignoring any header and any other exoge-

nous information. In table 3, the different data sets are described with the size of each of

them in megabytes (MB) and the references on the biological data bank. Table 4 presents

the results obtained by the classical Huffman code, the cost considering algorithm (CCA)

and the optimised cost considering algorithm (OCCA) without penalty on cost. The re-

sults show that the number of bits required by the classical Huffman algorithm to encode

genomic data is the minimum among the other algorithms but the cost is maximum.
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Data sets Name Size (MB) Reference

Genome 1 Mycobacterium smegmatis 6.66 CP009496

Genome 2 Amycolatopsisbenzoatilytica 8.30 KB912942

Genome 3 Mycobacterium rhodesiae NBB3 6.11 CP003169

Genome 4 Streptomyces bottropensis ATCC 25435 8.54 KB911581

Genome 5 Mycobacterium smegmatis str MC2 155 6.66 CP009494

Genome 6 Mycobacterium smegmatis MKD8 6.76 KI421511

Genome 7 Bradyrhizobium WSM471 7.42 CM001442

Genome 8 Amycolatopsisthermoflava N1165 8.27 CM001442

Genome 9 Bacillus thuringiensis Bt407 5.74 CM000747

Genome 10 Bacillus thuringiensisserovarthuringiensis 6.03 CM000748

Genome 11 Pseudomonas aeruginosa 9BR 6.48 AFXI010001

Genome 12 Bacillus thuringiensisserovarberliner 5.97 CM000753

Genome 13 Bacillus thuringiensisserovarpakistani 5.75 CM000750

Genome 14 Pseudomonas aeruginosa LES400 6.28 CP006982

Genome 15 Musmusculus chromosome 1 25.58 GL456087

Genome 16 Daniorerio chromosome 1 56.14 CM002885

Genome 17 Homo sapiens chromosome 18 76.64 CM000680

Genome 18 Homo sapiens chromosome 22 99.94 CM000684

Table 5.1: Datasets description
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Data sets Huffman Algorithm CCA OCCA (𝜆=0)

Genome 1 76787151 67416213 67416213

Genome 2 10042540 88430665 88430665

Genome 3 75940155 66745619 66745619

Genome 4 103552729 90821835 90821835

Genome 5 82234926 71963876 71963876

Genome 6 83454842 73038795 73038795

Genome 7 92539488 81416359 81416359

Genome 8 99613856 87102639 87102639

Genome 9 71876739 62998800 62998800

Genome 10 75324432 66084958 66084958

Genome 11 80766360 70620666 70620666

Genome 12 74560825 65359604 65359604

Genome 13 71562941 62758225 62758225

Genome 14 78261299 68354090 68354090

Genome 15 324439242 286008420 286008420

Genome 16 703734840 618859291 618859291

Genome 17 901032667 791840455 791840455

Genome 18 983434816 867299889 867299889

Table 5.2: Comparison of code words cost (Cost(1)=3,Cost(0)=1) among classical Huffman

code, CCA, and OCCA without penalty
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Data sets Huffman Algorithm CCA OCCA (𝜆=0)

Genome 1 4.44 4.92 4.82

Genome 2 5.81 6.51 6.35

Genome 3 4.39 4.87 4.79

Genome 4 5.96 6.69 6.47

Genome 5 4.74 5.27 5.17

Genome 6 4.81 5.34 5.24

Genome 7 5.36 5.93 5.85

Genome 8 5.74 6.41 6.30

Genome 9 4.15 4.58 4.49

Genome 10 4.36 4.81 4.73

Genome 11 4.66 5.41 5.04

Genome 12 4.31 4.75 4.67

Genome 13 4.14 4.56 4.50

Genome 14 4.51 4.80 4.89

Genome 15 18.77 20.66 19.94

Genome 16 40.77 45.08 43.18

Genome 17 52.08 57.36 55.12

Genome 18 56.98 62.42 60.70

Table 5.3: Comparison of code words size (MB) among classical Huffman code, CCA, and

OCCA without penalty
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Data sets Cost Size (MB) 𝜆 (%) Compression ratio %

Genome 1 70760174 4.50 4% 32.72%

Genome 2 92010490 5.91 5% 28.79%

Genome 3 69421783 4.47 3% 26.84%

Genome 4 96294638 5.99 5% 29.85%

Genome 5 74855668 4.81 5% 27.77%

Genome 6 76738330 4.86 4% 28.10%

Genome 7 84667949 5.47 3% 26.28%

Genome 8 92416243 5.76 5% 30.35%

Genome 9 66145783 4.21 4% 26.65%

Genome 10 68751359 4.44 3% 26.63%

Genome 11 72737300 4.79 2% 26.08%

Genome 12 67981988 4.38 3% 26.63%

Genome 13 65896779 4.18 4% 27.30%

Genome 14 71762305 4.55 4% 27.54%

Genome 15 297188002 19.31 3% 24.51%

Genome 16 643785655 41.68 3% 25.75%

Genome 17 823506882 53.05 3% 30.78%

Genome 18 901515198 58.99 3% 40.97%

Table 5.4: Effects of the penalty on the compression performance of the OCCA

The cost considering algorithm improves the representation of the generated codes in

terms of cost but the number of bits. However, still it compresses the data by 37.54% in the

best case, 16.51% in the worst case, and 22.08% on an average. In terms of cost, in the best

case the CCA improves cost over classical Huffman code by 12.66%, in the worst case by

11.80%, and on an average by 12.24%. The optimised cost considering algorithm tries to

find the best allocation of codes to frequencies by giving a penalty on cost. The outcome

of this process is a fall in the total number of bits and a rise in the total cost. However, the

cost is always lower than the cost incurred by the classical Huffman algorithm. At first,
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the OCCA optimises number of bits without applying any penalty on the cost (see table 4

and 5). Afterwards, it continues giving penalty ranging from 1% to 10% on the cost until a

balance is found between total cost and bits.

Figure 5.5 shows the convergence of the OCCA for minimising the number of bits for

Genome 2 according to the cost constraint. For each genome, a maximum amount of

effective penalty is identified; after this maximum value, increasing the penalty no longer

helps to reduce number of bits, i.e., the number of bits reaches the minimum and cost

reaches the maximum. Table 6 presents the best found number of bits for different datasets

with different effective penalties. As seen in the table, the OCCA improves the compression

ratio from 37.54% to 40.97% in the best case, from 16.51% to 24.51% in the worst case,

and from 22.08% to 28.53% in the average case. It is evident from the table 5 that this

improvement is obtained without increasing the cost significantly.

5.5 Conclusion

In this part of the thesis we discussed the problem of efficient biological data representation.

We showed how the genetic algorithm can be used to find the optimal allocation of Huff-

man codes for genetic representation of the sequences. The approach starts by generating

the Huffman codes for each triplet of the DNA sequence and after that the genetic opera-

tions are used for finding the optimal allocation of these codes to each triplet of the DNA

sequence. The optimisation process tries to find at each iteration a set of codeword that

doesn't have any conflict between each other and allocated perfectly to each DNA triplet.



Chapter 6

PeSOA for DNA fragment Assembly

6.1 Introduction

The DNA fragments assembly problem is one the most challenging problems of bioinfor-

matics. In this chapter we investigate the problem for reconstructing the original DNA from

small fragments of the primary sequence. The penguins search optimisation algorithm is

applied to find the optimal position of each DNA fragment in order to find the optimal final

order of the fragment to reconstruct the original DNA sequence. The optimisation process

starts by generating random allocation of each fragment and tries to optimise the positions

by maximising the overlap between the fragments. The rest of the chapter is organised as

follows: the next section is about the DNA fragment assembly problem description, the

section 6.3 presents the penguins search optimisation algorithm. The section 6.4 describes

the proposed approach by presenting the general algorithm the fitness function and the en-

coding schema. The experiments and the comparison study are described in section 6.5 and

at the end we conclude our work in the section 6.6.

6.2 DNA fragment Assembly Problem

The second generation sequencing (shotgun sequencing) technologies can quickly read a

huge number of DNA fragment at a time while the size of the fragment must be short (each

several hundred base-pairs long) (Metzker et al., 2010). This operation (sequencing) aims

89
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to recognise the genetic information on the ground level by determining its sequence of

bases of each fragment and then by assembling these fragments to construct the original

DNA chain. The objective of DNA fragment assembly is to find the optimal order of the

DNA fragment in order to maximise the overlapping scores between consecutive fragments.

Mathematically speaking, the DNA fragment assembly can be formulated as follows:

Let I = {𝑖1, 𝑖2, 𝑖3...𝑖𝑛} be a set of DNA fragment with different size, and let 𝑤 (𝑖𝑗, 𝑖𝑗+1)

be the similarity measure (amount of overlap) between the two fragment 𝑖𝑗 and 𝑖𝑗+1. The

fragment assembly problem aims to find the best order in which these fragments have to

be assembled back to construct the original full DNA chain. The objective function is to

maximise the overlap between each two consecutive fragment:

𝐹 (𝐼) =
𝑛−1∑︁
𝑗=1

𝑤 (𝑖𝑗, 𝑖𝑗+1) (6.1)

While: 𝑖 ∈ 𝐼

As mentioned in (Meksangsouy et al., 2003), the DNA fragment assembly problem

is similar to Travelling Salesman Problem (TSP) (Kruskal 1956). The fragment order in a

given solution is like the specific position of each town on the TSP solution. DNA fragment

assembly can be modeled as an Asymmetric Travelling Salesman Problem in which the

distance between the town 𝑡1 and the town 𝑡2 is different from the distance between town 𝑡2

and the town 𝑡1. In DNA fragment assembly the similarity measure 𝑤 (𝑖𝑗, 𝑖𝑗+1) is different

from 𝑤 (𝑖𝑗+1, 𝑖𝑗). The only difference between these two problems is that the similarity

between the first and the last fragment is not included and does not affect the quality of the

solution.

6.3 Penguins Search Optimisation Algorithm (PeSOA)

In recent years, many metaheuristics have been proposed to solve the combinatorial prob-

lems (Yang 2010). Penguins search optimisation algorithm is a new form of nature inspired

metaheuristic optimisation algorithm, inspired from the collaborative hunting behaviour of

penguins, proposed by (Gheraibia et al,. (2013)). Penguins synchronise their dives and
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Figure 6-1: Example of the DFA greedy technique

collaborate their efforts to optimise the hunting process. The sea represents the whole so-

lution space. The main objective of penguins is to find the best location rich in foods. The

position under the water of the penguins represents a candidate solution. Each penguin

expends energy by swimming under the water to catch prey, this prey contains energy, and

the penguins search through the solution space to maximise the gain of energy. The health

condition of a penguin is represented by its oxygen reserve, which serves as an acceleration

coefficient in an instance of swimming.

The penguin's algorithm population comprises of several groups, and each group start

searching from a specific location. The size of each group can vary depending on the avail-

ability food in the group's search area. The penguins follow their local leader, and they use

the oxygen reserve to control the size of the search space to be explored at each iteration.

A penguin uses two kinds of communications: intra-group communication by hunting to-

gether in a single group, and inter-group communication to control the distribution of the

penguins’ population on the whole solution space. The status of each penguin is repre-

sented by its position and oxygen reserve. The algorithm of penguins search optimisation

algorithm is described in chapter 04.
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6.4 PeSOA for DNA Fragment Assembly

6.4.1 Encoding

The DNA fragment problem consists of finding the best order of a set of DNA frag-

ments with different length. To represent the fragment assembly problem more closely,

the PeDFA uses the TSP without a circular solution. In the original PeSOA algorithm,

the penguin swims through the solution space engaged in collaborative hunting strategy

of penguins. In PeDFA encoding scheme, each solution is represented by a vector S of n

elements where n is the number of fragment.

Let I = {𝑖1, 𝑖2, 𝑖3...𝑖𝑛} be a set of DNA fragment with different sizes. Each fragment is a

vector of nucleotides Guanine (G), Thymine (T), Cytosine (C) and Adenine (A). The length

of the final solution founded by the DNA fragments assembly algorithm will be less than

the sum the initial DNA fragments.

6.4.2 Pe-DFA Algorithm

Pe-DFA algorithm (See Figure 6.2) starts with the generation of a random population

P={𝑝1, 𝑝2, 𝑝3...𝑝𝑛}. This population is divided into groups in order to explore the whole

solution space in an efficient way. Firstly, the algorithm divides the total set of fragments

into small sets of fragments randomly. Each group has its active fragments; the penguins of

each group are allowed to change only the positions of the active fragments. The division

of the whole population in groups is made randomly by assigning to a set of fragments to

a given group. After that, these small sets are assigned to different groups of penguins (see

Figure 6.2). Initially, all the groups have the same size.

The penguins of a given group have two kinds of fragments: the active fragments which the

penguins of this group are allowed to modify and the fixed fragments which the penguins

are not allowed to modify. The aim of the group is to find the best combination for the set

of the active fragments. Each penguin has its own active fragments and it must concentrate

on its active fragments in the search process to achieve the goal of the group it belongs to.

Each penguin (𝑃𝑖) generates new solution by using the local search to increase the local



Chapter 6. PeSOA for DNA fragment Assembly 93

searching ability. PeDFA selects randomly a sub-solution and select another random cut

point and then insert the sub-solution before the cut point position. After each generation,

penguins communicate to each affiliates of the same group the best combination of its ac-

tive fragments to ensure a good convergence to the optimum. In this stage, each penguin

(𝑃𝑖) will update its oxygen reserve (𝑂𝑖) which represents the health of the penguin. This

parameter allows the penguin to decide whether to hunt or not in a given area and also to

compute the number of positions to be visited per iteration.

Penguins with depleted oxygen level can either leave the present group to join another ex-

isting group or without leaving the group continue searching in the same position including

infeasible solution with low oxygen reserve. After that, the set of each group's local best

solutions are ranked by fitness from high to low. The global solution is constructed based

on these local best by cutting from each local solution the best combination of the local best

(see Figure 6.3). This constructed solution can contain conflict with duplicated fragments

which results in loosing other fragments on the final solution. This problem is resolved

by deleting the duplicated fragments from the worst set of fragments and replacing them

by the missed ones. The new global solution is compared with the previously ranked best

local solution, and keeps the best as the global optimal solution.

Our main objective is to find the optimal order of DNA fragments in the optimal solution.

Each penguin generates from its position (solution) a set of solutions (neighbours) if its

oxygen reserve is not depleted, and choose the best solution that minimises the objective

function. The oxygen reserve (acceleration coefficient) is updated according to the objec-

tive function. If a penguin ameliorates its solution, then the oxygen reserve for this penguin

is increased to allow this penguin to move to other positions in the next iteration. After each

dive, the oxygen reserve of the penguin is updated as follows.

𝑂𝑖
𝑗(𝑡+ 1) = 𝑂𝑖

𝑗(𝑡) +
(︀
𝑓
(︀
𝑥𝑖
𝑗 (𝑡+ 1)

)︀
− 𝑓

(︀
𝑥𝑖
𝑗 (𝑡)

)︀)︀
× ‖𝑥𝑖

𝑗 (𝑡+ 1)− 𝑥𝑖
𝑗 (𝑡) ‖ (6.2)

The number of neighbours is updated according to the oxygen reserve. After each

iteration, the number of neighbours is increased/decreased with propositional to increas-

ing/decreasing level of the oxygen reserve (the number of neighbours is initialised to 1).
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The distribution of penguins in different group is based on the improvement of the objec-

tive function of each penguin. Penguins that have improved their objective function means

that they are in a good hunting area rich of fishes. The Quantity of Eaten Fish (QEF) by a

group is the sum of the eaten fishes of each penguin of this group which is calculated by

the following expression.

𝑄𝐸𝐹 𝑖(𝑡+ 1) = 𝑄𝐸𝐹 𝑖(𝑡) +

𝑑𝑖∑︁
𝑗=1

(︀
𝑂𝑖

𝑗(𝑡+ 1)−𝑂𝑖
𝑗(𝑡)

)︀
(6.3)

The algorithm allows those penguins which continuously improve their objective func-

tion to move to more positions on the next generation, this means that the penguins are

in rich area. The probability of the penguins of a given group is the ratio of the amount

of eaten fishes of this group and the amount of eaten fishes of the whole population. The

penguin function value of joining the group i is a probability given as follows.

𝑃𝑖(𝑡+ 1) =
𝑄𝐸𝐹 𝑖(𝑡)∑︀𝑘
𝑗=1 𝑄𝐸𝐹 𝑗(𝑡)

(6.4)

Figure 6-2: Pe-DFA algorithm
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Figure 6-3: Global solution construction from each best group

6.5 Experimental Results

6.5.1 Parameter Settings

Penguins Search Optimisation Algorithm has several parameters (initial oxygen reserve,

population size, number of generations, etc.) allowing the diversification and the intensifi-

cation of the search process. Determining these parameter values is a NP-hard problem; it

is difficult to find the exact parameter values to reduce the execution time for the evolution

of the optimal objective value. In Pe-DFA, we have used the Hill Climbing algorithm to

search the optimal parameter values; the pseudo code is shown below.

The objective function of this algorithm is to maximise the ratio between the Pe-DFA objec-

tive function (the overlapping value) and the CPU execution time. We try in each iteration

with a new set of parameters values to maximise the overlap and to reduce the execution

time. Figure 6.4 shows the experimentation for finding the best parameter setting by the

ratio between the overlapping amount of the final DNA sequence construction and the run

time. The optimal parameters values are 25 penguins on the initial population with 150

iterations, five groups and 1 step for oxygen reserve initialisation value.
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Figure 6-4: Parameters settings

6.5.2 Results and Comparison

This section shows the evaluation of the performance of the proposed DNA fragment as-

sembly algorithm, Pe-DFA, using 16 problem instances from GenFrag (Engle et al., 1993)

and DNAgen (Guillermo et al., 2013) tools available from the DNA Assembly Problem

Benchmark Repository (www.mallen.mx/fragbench). The repository contains a variety of

benchmarks from small instances to large scale instances obtained from real world prob-

lems. The first set of problems is obtained from GenFrag where the number of fragment

varied from 39 to 773 fragments. The GenFrag tool takes as an input a DNA sequence and

a set of specific criteria, after that, a set of DNA fragments is produced. The DFA problem

instances used by GenFrag are shown in Table 6.1. The second set of instances is obtained

from DNAgen, these sequences are called the ACIN sequences. These sequences are rela-

tively longer than the GenFrag sequences, the number of fragments start from 307 to 1049

fragments. The DFA problem instances used by DNAgen are shown in Table 6.2.
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Instances Mean fragment length Number of fragments Coverage length

x60189-4 395 39 4 3,835

x60189-5 286 48 5 3,835

x60189-6 343 66 6 3,835

x60189-7 387 68 7 3,835

m15421-5 398 127 5 10,089

m15421-6 350 173 6 10,089

m15421-7 383 177 7 10,089

j02459-7 405 352 7 20,000

bx842596-4 708 442 4 77,292

bx842596-7 703 773 7 77,292

Table 6.1: Data sets description (GenFrag instances)

Instances Mean fragment length Number of fragments Coverage length

acin1 182 307 26 2,170

acin2 1,002 451 3 147,200

acin3 1,001 601 3 200,741

acin5 1,003 751 2 329,958

acin7 1,003 901 2 426,840

acin9 1,003 1049 7 156,305

Table 6.2: Data sets description (DNAgen instances)
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Benchmark QEGA SA PALS LKH PPSO Pe-DFA

x60189-4 11,476 11,478 11,478 11,478 11,478 11,618

x60189-5 14,027 14,027 14,021 14,161 13,642 14,425

x60189-6 18,266 18,301 18,301 18,301 18,301 18,266

x60189-7 21,208 21,271 21,210 21,271 20,921 21,804

m15421-5 38,578 38,583 38,526 38,746 38,686 38,746

m15421-6 47,882 48,048 48,048 48,052 47,669 48,097

m15421-7 55,020 55,048 55,067 55,171 54,891 55,020

j02459-7 116,222 116,257 115,320 116,700 114,381 116,818

bx842596-4 227,252 226,538 225,782 227,920 224,797 228,000

bx842596-7 443,600 436,739 438,215 445,422 429,338 443,600

Table 6.3: Comparison of the performance of the Pe-DFA with the well-known DFA meth-

ods (GenFrag instances)

Benchmark LKH QEGA SA PALS PPSO Pe-DFA

acin1 47,618 47,115 46,955 46,876 47,264 47,666

acin2 151,553 144,133 144,705 144,634 147,429 151,920

acin3 167,877 156,138 156,630 156,776 163,965 167,979

acin5 163,906 144,541 146,607 146,591 161,511 163,906

acin7 180,966 155,322 157,984 158,004 180,052 181,318

acin9 344,107 322,768 324,559 325,930 335,522 344,107

Table 6.4: Comparison of the performance of the Pe-DFA with the well-known DFA meth-

ods (DNAgen instances)
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Benchmark QEGA SA PALS PPSO LKH Pe-DFA

x60189-4 300.54 198.24 221.14 124.32 102.02 100.34

x60189-5 165.24 132.48 199.01 107.94 96.33 90.04

x60189-6 145.24 162.97 148.35 124.65 81.75 81.21

x60189-7 102.57 98.26 85.38 97.51 76.17 71.87

m15421-5 312.05 285.18 245.93 261.11 265.08 257.14

m15421-6 278.27 264.37 219.58 232.76 198.92 189.20

m15421-7 197.86 169.35 178.44 188.62 175.24 164.83

j02459-7 118.75 108.37 100.26 120.82 99.32 91.03

bx842596-4 7.05 7.85 6.76 6.15 4.51 3.87

bx842596-7 4.15 3.89 3.25 3.84 3.14 3.01

Table 6.5: Comparison of the computational times (in Millisecond) of the Pe-DFA with the

well-known DFA methods (GenFrag instances

Benchmark QEGA SA PALS PPSO LKH Pe-DFA

acin1 288.64 274.33 254.51 233.68 205.62 195.27

acin2 300.21 291.84 287.41 274.67 245.98 239.21

acin3 338.98 334.62 301.95 288.21 264.15 261.34

acin5 362.50 350.11 324.87 305.74 297.24 290.34

acin7 395.68 390.08 361.84 337.14 310.64 304.21

acin9 432.51 421.54 405.24 387.94 362.87 359.14

Table 6.6: Comparison of the computational times (in Millisecond) of the Pe-DFA with the

well-known DFA methods (DNAgen instances)

Table 6.3 and 6.4 present the results obtained by the Pe-DFA compared with the well-

known DNA fragment assembly methods for the GenFrag and DNAgen instances respec-

tively. The results show that the order founded by the Pe-DFA improves the total overlap-

ping score of the global solution with compared to other existing methods. For GenFrag
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instances of smaller dimension, the proposed algorithm performs either better or similar to

that of the existing methods. For DNAgen instances, the proposed method improves the

results for the most of the instances. The advantage of the Pe-DFA is by combining the

final solution from the best parts founded by each group of Penguins.

The penguins concentrate the search on its active fragments and fixing the non-active frag-

ments. We evaluated each assembly result in terms of the overlapping scores of the as-

sembled DNA fragments. Since the results of Pe-DFA vary depending on the different

parameters of the algorithm, we performed parameters settings to find the different pa-

rameters values to achieve the optimal solutions. Table 6.5 and 6.6 present the run time

comparison of the Pe-DFA algorithm with the well-known approaches. The experiments

shows that the proposed algorithm improves the computational time a bit with compared

to the other algorithms. This improvement is because of the acceleration coefficient which

allows the penguin to converge quickly to the optimal solution. The approach has been

evaluated with 10 independent runs for each test to gain sufficient accurate results.

6.6 Conclusion

In this chapter we discussed the use of penguins search optimisation algorithm for the

DNA fragments assembly problem, this work has been published in an international jour-

nal (Gheraibia et al., 2015c). The proposed approach uses the penguins search optimisation

algorithm for finding the optimal position of each DNA fragment in the final DNA recon-

structing process. The success of the approach is the use of simple encoding scheme with

the OLP model to describe the behaviour of the solution. The approach has been evalu-

ated by the well-known benchmarks for the DNA fragment problem. The results are very

promising compared with the well-known approach in the literature.



Conclusion and Future Work

his part provides a summary of the proposed contributions of this thesis, the conclusion

of these works and future works. We have proposed several approaches for handling chal-

lenging problems in bioinformatics by using existing and new developed nature inspired

metaheuristics algorithms. For each developed approach an experimental comparison has

been carried out to prove the efficiency of these approaches and the benefits among the

existing work in the literature. In this thesis we set out to study the use of nature inspired

metaheuristics algorithms for solving combinatorial problems in bioinformatics. The aim

of this thesis is to show the importance of using nature inspired metaheuristics algorithm

where solving bioinformatics combinatorial problems. This thesis provides several ap-

plications of bio-inspired metaheuristic algorithms for the bioinformatics combinatorial

problems and biological data representation. The contributions of this thesis are based on

new developed metaheuristic and existing ones. The proposed optimisation approaches

are scalable; they can be the centre of any optimisation applications in other fields. The

contributions of this thesis can be summarised as follows:

• The optimal spaced seed finding for similarity searching: The problem of sequences

alignment and similarity searching for biological data is one of the hard problems of

bioinformatics, the large amount of biological sequence and the size of the biological

sequence evolved a hard problem of similarity searching between these sequences.

The first contribution of this thesis is using the new developed metaheuristics pen-

guins search optimisation algorithm for finding the optimal spaced seed that have

the high sensitivity between them. The results of the proposed approach are very

promising compared with the existing approaches in the literature such as Idera and
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Mandala.

• The biological data compression: as we mentioned earlier that the biological data

banks have a very big amount of data, using these data for different machine learning

algorithms is one of the hard problems in bioinformatics. In this thesis we worked on

finding an efficient representation of the biological sequence. In this contribution we

show how a genetic algorithm can be used to improve the compression performance

of big biological data. The approach has been evaluated with real biological data

such as the human genome.

• The last contribution of this thesis is for the DNA fragment assembly problem. We

developed a new approach based on penguins search optimisation algorithm for DNA

fragment assembly problems. The DNA fragment assembly problem is an NP-hard

optimisation problem aims to find an optimal length of the original DNA sequence.

This approach investigating the use of penguins search algorithm to classify each

fragment in its appropriate position on the whole reconstructed DNA fragments. The

approach has been evaluated with real biological data and proved its efficiency to

finding the Original DNA sequence.

The experiments are based on the well-known benchmarks and the comparison also

with the well-known methods in the literature. The results show the benefits of each pro-

posed methods. The work of this thesis can be enhanced and augmented in order to improve

the proposed contributions. The parameters of the penguins search optimisation algorithm

will get the major interest; because the parameters of each optimisation algorithm affect

directly the performance of the algorithm and the convergence to the optimal solution. A

good neighbourhood search strategy can be incorporated to the main process of penguins

search algorithm to improve the search strategy. The adaptation of the algorithm to other

bioinformatics problems such as phylogenetic inferences and gene prediction and identifi-

cation to be more effective and robust in handling multi-objective problems.
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