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Abstract 
 
 
 
A detailed Monte Carlo calculation of the phase diagram of bosonic massdeformedIKKT Yang-
Mills matrix models in three and six dimensions with quartic mass deformations is given. 
Background emergent fuzzy geometries in two and four dimensions are observed with a 
uctuation given by a noncommutative U(1) gauge theory very weakly coupled to normal scalar 
fields. 
The geometry, which is determined dynamically, is given by the fuzzy spheres 𝑆2

𝑁 and 𝑆2 
𝑁 × 𝑆2

𝑁 
respectively. The three and six matrix models are efectively 
in the same universality class. For example, in two dimensions the geometry is completely 
stable, whereas in four dimensions the geometry is stable only in the limit M → ∞, where M is 
the mass of the normal uctuations. The behavior of the eigenvalue distribution in the two 
theories is also different. 
We  also sketch how we can obtain a stable fuzzy four-sphere 𝑆2 

𝑁 × 𝑆2
𝑁   in the large N limit for 

all values of M as well as models of topology change in which the transition between spheres of 
different dimensions is observed. 
The stable fuzzy spheres in two and four dimensions act precisely as regulators which is the 
original goal of fuzzy geometry and fuzzy physics. Fuzzy physics and fuzzy  theory on these 
spaces are briey discussed. 
 
Key words : 

 Emergent geometry, Matrix Models, Fuzzy, Gauge Theory, Mulitrace, Monte Carlo, hybrid 
Monte Carlo. 



 
 
 
 
 
 
 

Résumé 
 
 
Un calcul de Monte Carlo détaillé pour le diagramme de phase des modéles matriciels de type 
Yang-Mills IKKT bosonique déformée en masse dans trois et six dimensions avec des 
déformations de masse quartique est aperues. Les géométries floues  émergentes de fond dans 
deux et quatre dimensions sont observées avec une fluctuation donne par une théorie de gauge 
non commutative U(1) trés faiblement couplée aux champs scalaires normaux.  La géométrie, 
déterminée dynamiquement,  est donnée par les sphéres floues  𝑆2

𝑁 et 𝑆2 
𝑁 × 𝑆2

𝑁 . 
Les trois et six modéles matriciels sont effectivement dans la même classe 
d'universalité.  Par exemple, en deux dimensions, la géométrie est complétement  stable, alors 
que dans quatre dimensions, la géométrie est stable seulement pour  la limite M → ∞ , ou M est 
la masse des fluctuations normales.  Le comportement de la distribution des valeurs propres dans 
les deux théories est également différent.  Nous décrivons  également comment nous  pouvons 
obtenir  une  𝑆2 

𝑁 × 𝑆2
𝑁 floues a  quatre sphéres stable dans la grande limite N pour  toutes les 

valeurs  de M ainsi que des modéles de changement de topologie pour lesquels la transition 
entre les sphéres de différentes  dimensions est observée.  Les sphéres floues stables 
en deux et quatre dimensions  agissent précisément comme  des régulateurs qui  est l'objectif 
initial de la géométrie floue (fuzzy geometry) et de la physique floue (fuzzy physics). 
 
Mots clés : 
La géométrie émergente, Modèles matriciels, la physique floue, Théorie de jauge, Multitrace , 
Monte Carlo, Hybride Monte Carlo. 



 ملخص

 

 

الكتلة لنماذج -في هذا العمل قمنا بحسابات مونتي كارلو مفصلة  لمنحنى الطور للبوزون مشوه

 يانغ ميلز في ثلاثة و ستة أبعاد مع تشوهات كتلية من الدرجة الرابعة. الهندسات IKKTالمصفوفات   

الفضائية الغامضة الناشئة من بعدين و أربعة أبعاد تمت ملاحظتها مع تقلبات معطاة بنظرية 

 مقترنة بصفة ضعيفة بحقول سلمية نظامية. U(1)معياريةغير تبديلية 

𝑆𝑁معطاة بالكرات الغامضة  الهندسة المحددة  ديناميكيا
2 𝑆𝑁و     

2   × 𝑆𝑁
2 

مستقر  نماذج المصفوفات ثلاثية  و سداسية الأبعاد فعليا لها نفس المرتبة. مثال , في بعدين الفضاء 

 لكتلة التقلبات النظامية.  Mتماما بينما في أربعة الفضاء مستقر فقط من أجل القيم الكبيرة ل 

ول على كرات سلوك توزيعات القيم الذاتية في النظريتين مختلف أيضا. كذلك حددنا كيفية الحص

𝑆𝑁 غامضة 
2   × 𝑆𝑁

2 بالاضافة الى ملاحظة  M     . من أجل كل قيم  Mفي النهايات الكبيرة ل     

 نماذج تغير الطوبولوجي التي من أجلها تكون التحولات بين الكرات المختلفة الأبعاد.

الأصلي للهندسة  الكرات الغامضة المستقرة في بعدين و أربعة أبعاد تعمل بدقة كمعدلات وهو الهدف

 الفضاء الغامضة و الفيزياء الغامضة.
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Abstract

A detailed Monte Carlo calculation of the phase diagram of bosonic mass-
deformed IKKT Yang-Mills matrix models in three and six dimensions with
quartic mass deformations is given. Background emergent fuzzy geometries
in two and four dimensions are observed with a fluctuation given by a non-
commutative U(1) gauge theory very weakly coupled to normal scalar fields.
The geometry, which is determined dynamically, is given by the fuzzy spheres
S2
N and S2

N×S2
N respectively. The three and six matrix models are effectively

in the same universality class. For example, in two dimensions the geometry
is completely stable, whereas in four dimensions the geometry is stable only
in the limit M −→∞, where M is the mass of the normal fluctuations. The
behavior of the eigenvalue distribution in the two theories is also different.
We also sketch how we can obtain a stable fuzzy four-sphere S2

N × S2
N in

the large N limit for all values of M as well as models of topology change
in which the transition between spheres of different dimensions is observed.
The stable fuzzy spheres in two and four dimensions act precisely as regula-
tors which is the original goal of fuzzy geometry and fuzzy physics. Fuzzy
physics and fuzzy field theory on these spaces are briefly discussed.
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Chapter 1

Introduction and Summary

Understanding how our universe began is one of the most fundamental
themes in theoretical physics, Gauge theories provide the best known descrip-
tion of the fundamental forces in nature. At very short distances however,
physics is not known, and it seems unlikely that spacetime is a perfect con-
tinuum down to arbitrarily small scales.

Gauge theory is one of the ways to try understand this dilemma, and pre-
cisely Non-commutative gauge theory, Since its emergence in the 80’s [1] [2]
[3] [4] [5], noncommutative geometry has helped to reveal deep mathemat-
ical relationships between ordinary geometry and other structures, among
them differential algebras and normed algebras. In particular, noncommu-
tative geometry has shed new lights on gauge theories. Indeed, a theory
of connections can be defined in great generality using the noncommuta-
tive language of associative algebra, Different approaches have been pro-
posed to study noncommutative spaces. The theory of spectral triples, de-
veloped by Connes, emphasizes the metric structure [3] [6] [7]. On the other
hand, many noncommutative spaces are studied through differential struc-
tures [8] [9] [10] [11] [12]. However, all the noncommutative gauge field
theories studied so far use the same building blocks, even when there are
defined through different approaches.

A gauge interaction is an implementation of the principle that the theory
should be invariant under some local symmetry. In particle physics, these
local symmetries take the form of functions g : M → G on the space-time
M with values in a structure group G. Electromagnetism is associated to the
group G=U(1), the electroweak theory by Glashow, Weinberg and Salam uses
the group G = U(1)×SU(2) and chromodynamics relies on G = SU(3) [13].
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Noncommutative geometry being an extension of differential geometry,
it naturally generalizes this theory of fiber bundles and connections. What
is astonishing is that this generalization is very elegant, very powerful and
very effective, not only from a mathematical point of view, but also in its
applications to physics.

To describe noncommutative spaces, the noncommutative geometry is
now investigated by many authors and using this framework one can even
consider the differential geometry of singular spaces like, for example, a 2-
point space which has been shown to provide a geometrical interpretation of
the Higgs mechanism [6] [14]. In general, such noncommutative spaces can
be obtained by quantizing a given space with its Poisson structure. Further-
more, if the original space is compact one obtains a finite dimensional matrix
algebra as a quantized algebra of functions over this space.

In the matrix model, matter and even spacetime are dynamically emerged
out of matrices [15] [16]. Spacetime coordinates are represented by matri-
ces and therefore noncommutative geometry appears naturally. The idea
of the noncommutative geometry is to modify the microscopic structure of
the spacetime. This modification is implemented by replacing fields on the
spacetime by matrices. It was shown [17] [18] [19] [20] that noncommutative
Yang-Mills theories in a flat background are obtained by expanding the ma-
trix model around a flat noncommutative background. The noncommutative
background is a D-brane-like background which is a solution of the equation
of motion and preserves a part of supersymmetry. Various properties of non-
commutative Yang-Mills have been studied from the matrix model point of
view [21]. In string theory, it is discussed that the world volume theory on
D-branes is described by noncommutative Yang-Mills theory [22]

A different kind of noncommutative backgrounds, a noncommutative sphere,
or a fuzzy sphere is also studied in many contexts. In [23] it is discussed in the
framework of matrix regularization of a membrane. In the light-cone gauge,
they gave a map between functions on spherical membrane and hermitian
matrices. In BFSS matrix model [24] membranes of spherical topology are
considered in [25] [26] [27]. A noncommutative gauge theory on a fuzzy sphere
in string theory context is discussed in [28] [29]. The approach to construct
a gauge theory on the fuzzy sphere were pursued in [30] [31] [32] [33] [34] [35]

The fuzzy sphere [30] can be constructed by introducing a cut off param-
eter N for angular momentum of the spherical harmonics. The number of
independent functions is

∑N
l=0(2l+ 1) = (N + 1) . Therefore, we can replace

the functions by (N + 1)× (N + 1) hermitian matrices on the fuzzy sphere.

8



Thus, the algebra on the fuzzy sphere becomes noncommutative.
One of the principal goals of the study of field theories on fuzzy spaces is

to develop an alternative non-perturbative technique [36]. To date, this new
approach in the case of four dimensional field theories has been limited to
studies of Euclidean field theory on S2 × S2 [37], CP 3 [38] and S4 [39]. S4

is really a squashed CP 3 and includes many unwanted massive Kaluza-Klein
type modes. Even S2×S2 is not ideal since it has curvature effects that drop
off as power corrections rather than exponentially as in the case of toroidal
geometries [40].

The fuzzy approach does, however, have the advantage of preserving con-
tinuous symmetries such as the SU(2) symmetry of a round S2 and does not
suffer from fermion doubling [41]

In fact, this work divided into two main themes, first is Noncommutative
scalar phi-four theory, and the other is Noncommutative gauge theory. In
both subjects we focused on phases diagrams.

• The first theme is phase diagrams of the multitrace quartic matrix
models of noncommutative Φ4, this theory is enjoys three stable phases:
(1) disordered (symmetric, one-cut, disk) phase, (2) uniform ordered
(Ising, broken, asymmetric one-cut) phase and (3) non-uniform ordered
(matrix, stripe, twocut, annulus) phase. This picture is expected to
hold for noncommutative/fuzzy phi-four theory in any dimension, and
the three phases are all stable and are expected to meet at a triple
point. The triple point is identified as a termination point of the one-
cut-totwo-cut transition line and is located at (b̃, c̃) = (1.55, 0.4) which
compares favorably with previous Monte Carlo estimate.

• The seconde theme, we study a six matrix model with global SO(3)×
SO(3) symmetry containing at most quartic powers of the matrices.
This theory exhibits a phase transition from a geometrical phase at
low temperature to a Yang-Mills matrix phase with no background
geometrical structure at high temperature. This is an exotic phase
transition in the same universality class as the three matrix model
but with important differences. The geometrical phase is determined
dynamically, as the system cools, and is given by a fuzzy spherical
background S2

N ×S2
N , with an Abelian gauge field which is very weakly

coupled to two normal scalar fields.
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Chapter 2

Noncommutative Field theory

2.1 The caconical case

Nocncommutative gauge theory in the canonical case,where the commu-
tator of two coordinates is a constant. We will start with the most commonly
used ?-product for the caconical case.

2.1.1 The Moyal-Weyl ?-product

In the canonical case, the noncommutative coordinates fulfill commuta-
tive relations

[x̂i, x̂j] = iθij (2.1)

with the constant noncommutativity parameter θ ∈ R. The noncommutative
algebra generated by the noncommutative coordinates can represented on
the space of functions on Rn by introducing a noncommutative product, the
Moyal-Weyl ?-product [42] [43]

f ? g = m.e
i
2
θij∂i⊗∂jf ⊗ g = fg +

i

2
θij∂if∂jg +O(2) (2.2)

10



2.1. THE CACONICAL CASE

with m.(f ⊗ g) = fg and ∂i = ∂
∂xi

. The product is associative,as

(f ? g) ? h = m.e
i
2
θkl∂k⊗∂l(m.e

i
2
θij∂i⊗∂jf ⊗ g)⊗ h (2.3)

= m.m.e
i
2
θkl(∂k⊗1⊗∂l+1⊗∂k⊗∂l)e

i
2
θij∂i⊗∂j⊗1f ⊗ g ⊗ h

= m.m.e
i
2
θij(∂i⊗1⊗∂j+∂i⊗∂j⊗1)e

i
2
θkl1⊗∂k⊗∂lf ⊗ g ⊗ h

= m.e
i
2
θij∂i⊗∂j(f ⊗ (m.e

i
2
θkl∂k⊗∂lg ⊗ h)

= f ? (h ? h)

and obviously reproduces (1.1). Furthermore, as θ is antisymmetric, usual
complex conjugation is still an involution

f ? g = m.e−
i
2
θij∂i⊗∂j f̄ ⊗ ḡ = ḡ ? f̄ (2.4)

and integration has the trace property∫
dnxf ? g =

∫
dnxg ? f (2.5)

if the function f and g vanish suffciently fast at infinity because f ? g has to
be integrable in the firs place
Differentiation on this space is an inner operation, i.e. we have

iθµν∂ν = [xµ, ·] (2.6)

2.1.2 Commutative gauge theory

A non-abelian gauge theory is based on a Lie groupe with Lie algebra

[T a, T b] = ifabc T
c (2.7)

Matter fields transform under a Lie algebra valued infinitesimal parameter

λ = λaT
a (2.8)

in the fundamental represntation as

δλψ = iλψ (2.9)

It follws that

(δλδξ − δλδξ) = δi[ξ,λ]ψ. (2.10)

11



2.1. THE CACONICAL CASE

The commutator of two consecutive infinitesimal gauge transformation closes
into an infinitesimal gauge transformation.
As differentiation isn’t a covariant operation, a Lie algebra valued gauge
potential ai = aiaT

a is introduced with the transformation property

δλai = ∂iλ+ i[λ, ai]. (2.11)

With this the covariant derivative of a field is

Diψ = ∂iψ − iaiψ. (2.12)

The field strength of the gauge potential is defined to be the commutator of
two covariant derivatives

fij = i[Di,Dj] = ∂iaj − ∂jai − i[ai, aj] (2.13)

For nonabelian gauge theory, fij is not invariant under gauge transformation,
but rather transformation covariantly, i.e.

∂λf = i[λ, f ]. (2.14)

The same is true for the fijf
ij (Lagrangian density).In order to get a gauge

invariant action, we have to use the trace over the representation of the gauge
fields. As the trace is cyclic, the commutator with the gauge parameter
vanishes and the action

S =

∫
dxntrfijf

ij (2.15)

becomes invariant.

2.1.3 Noncommutative gauge theory

To do noncommutative gauge theory in the ?-product approach, we can
simply mimic the commutative consrtuction, replacing the ordinary product
with the ?-product.

Field should now transform as

δλΨ = iλ ?Ψ. (2.16)

The commutator of two such gauge transformations should again be a gauge
transformation, i.e we want

12



2.1. THE CACONICAL CASE

(δΞδΛ − δΞδΛ)Ψ = δi[Ξ ?, Λ]Ψ, (2.17)

which is only possible for gauge groups U(N), as for Λ = ΛaT
a and Ξ = ΞaT

a

the commutator

[Ξ,Λ] =
1

2
[Ξa

?, Λb]{T a, T b}+
1

2
{Ξa

?, Λb}[T a, T b] (2.18)

As coordinates do not transform under gauge transformations, multiplication
from the left with coordinates no longer is a covariant operation, i.e.

δΛ(xi ?Ψ) = xi ? Λ ?Ψ 6= Λ ? xi ?Ψ (2.19)

This is very much like the situation in commutative gauge theory, where
acting with a derivative from the left isn’t a covariant operation. Following
the procedure there, we introduce covariant coordinates X i by adding a gauge
field Ai as

X i = xi + θijAj (2.20)

To make the X i covariant, i.e. δΛX
i = i[λ ?, X i], the gauge field has to

transform as

δΛ(θijAj) = −i[xi ?, Λ] + i[Λ ?, θijAj] (2.21)

and therefore

δΛAi = ∂iΛ + i[Λ ?, Ai] (2.22)

in exact analogy to the commutative case. The commutator with the co-
ordinate produces the derivative on the gauge parameter, as [xi, f ] = iθijf .
More generally we can introduce a covariantizer D that applied to a function
f renders it covariant [44]

δΛ(D(f)) = i[Λ ?, D(f)] (2.23)

We can now go on to formulate noncommutative gauge theory much in the
same way as we formulated commutative gauge theory.

The covariant derivative Di can be introduced as

DΨ = ∂iΨ− iAi ?Ψ, (2.24)

13



2.2. THE GENERAL FORMALISM

the filed strength Fij as

Fij = i[Di ?, Dj] = ∂iAj − ∂jAi − i[Ai ?, Aj]. (2.25)

The relation to the covariant coordinates subsists at this level with

−i([X i ?, Xj]− iθij) = θikθjlFkl (2.26)

In noncommutative gauge theory,the field strength F is not gauge invari-
ant, even for gauge group U(1). It rather transforms covariantly under gauge
transformations, i.e

δΛ(Fµν ? F
µν) = −i[Λ ?, Fµν ? F

µν ]. (2.27)

Just inserting a trace over the representation of the gauge group no longer
guarantees gauge invariance. To get gauge invariant expressions, we have to
use the trace property of the integral. If we set the action for non- commu-
tative gauge theory as

S =

∫
dnxtrFµν ? F

µν , (2.28)

2.2 The general formalism

2.2.1 Seiberg-Witten gauge theory

Noncommutative transformation properties are determined by the trans-
formation properties of the commutative fields they depend on. Therefore
the fields again transform as [45]

δαΨψ[a] = iΛα[a] ?Ψψ[a], (2.29)

leading to the same consistency condition for the gauge parameter

i(δαΛβ − δβΛα) + [Λα
?, Λβ] = iΛ−i[α,β] (2.30)

The transformation law for the covariantizer is now

δα(D[a](f)) = i[Λα[a] ?, D[a](f)]. (2.31)

The Seiberg-Witten-map can be easily extended to the derivations δX of the
?-product.The noncommutative covariant derivation DX [a] can be written
with the help of a noncommutative gauge potential AX [a] now depending
both on the commutative gauge potential ai and the Poisson vector field X

δαAX [a] = δXΛα[a] + i[Λα[a] ?, AX [a]]. (2.32)

14



2.2. THE GENERAL FORMALISM

2.2.2 Commutative actions with the frame formalism

we recall some aspects of classical differential geometry. Suppose we are
working on a n-dimensional manifold M with metric gµν .Then there are lo-
cally n derivatives ∂µ which form a basis of the tangent space of the manifold.
We can always make a local basis transformation to frame

ea = eµa(x)∂µ (2.33)

with eµae
a
ν = δµν , where the metric is constant

ηab = eµae
ν
b (2.34)

Since forms are dual to vector fields, they may be evaluated on the frame.
For the gauge field we get

aa = a(ea), (2.35)

leading to the covariant derivate

Dψ = (Dψ)(ea) = eaψ − iaaψ. (2.36)

The field strength becomes

fab = i[Da, Db]− iD([ea, eb]) = eaab − ebaa − a([ea, eb])− i[aa, ab] (2.37)

Locally this means that

aa = eµaaµ, Daψ = eµaDµ and fab = eµae
ν
bfµν (2.38)

Using these defnitions, the action for gauge theory on a curved manifold can
be written in the two diferent bases as

S = −1

4

∫
dnx
√
gηabηcdfacfbd = −1

4

∫
dnx
√
ggµνgρσfµρfνσ (2.39)

where

√
g =

√
det(gµν) =

√
det(eaµe

b
νηab) = det eaµ (2.40)
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2.2. THE GENERAL FORMALISM

2.2.3 Gauge theory on curved noncommutative space-
time

In order to formulate gauge theory on a curved noncommutative space-
time, we need a frame ea and a Poisson structure {�, �}p = πµν∂µ ∧ ∂ν that
are compatible with each other. Compatibility means that the frame ea
commutes with the Poisson structure {�, �}p , i.e.

ea{f, g}p = {eaf, g}p + {f, eag}p, (2.41)

We can define a covariant derivative of a field by using a derivation δX

DXΨψ = δXΨψ − iAX ?Ψψ. (2.42)

With this, a field strength could be defined as

−iFX,Y = [Dx
?, DY ]−D[X,Y ]? (2.43)

The noncommutative covariant derivative (2.14) and field strength (2.15)
evaluated on the frame e a then read

DaΦ = DeaΦ = δeaΦ− iAea ? Φ (2.44)

−iFab = −iFea,eb = [Dea
?, Dea ]−D[ea,eb]? . (2.45)

The field strength will transform covariantly under gauge transformations,
i.e. we have

δΛ = i[Λ ?, F ]. (2.46)

To make the action gauge invariant, the integral has to have the trace prop-
erty, a noncommuative gauge action

S = −1

4

∫
dnxΩηabηcdFacFbd (2.47)

with Ω =
√
g +O(1)

that goes in the commutative limit

S → −1

4

∫
dnx
√
g gµνgρσfµρfνσ (2.48)
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2.2. THE GENERAL FORMALISM

Scalars

For the noncommutative version of a scalar Lagrangian

ηabDaφ̄Dbφ+m2φ̄φ, (2.49)

we also need an involution of the ?-product, i.e.

(f ? g) = ḡ ? f̄ . (2.50)

To make the NC Lagrangian invariant under NC gauge transformations, the
NC gauge parameter Λ and the NC gauge field AX have to be invariant under
this involution to get

δΛφ̄ = (Λ ? φ) = φ̄ ? Λ̄ = Φ̄ ? Λ (2.51)

and

(AX ? φ) = φ̄ ? Āx = φ̄ ? AX (2.52)

Putting everything together, we therefore end up with an action

S =

∫
dnxΩ(−1

4
ηabηcdFac ? Fbd + ηabDaΦ̄ ? DbΦ−m2Φ̄ ? Φ) (2.53)

that is invariant under noncommutative gauge transformations

δΛS = 0 (2.54)

and reduces in the commutative limit

S →
∫
dnx
√
g(−1

4
gµνgρσfµρfνσ + gνµDµφ̄Dνφ−m2φ̄φ) (2.55)

to scalar electrodynamics on a curved manifold

Spinors

The commutative spinor action can be written as

Sspinor =
1

2

∫
d2x
√
gΨ̄iγaeµa(∂µ − iAµ +m)Ψ (2.56)

Usual gamma-matrices {γa, γb} = 2ηab and γµ = γaeµa , we get {γµ, γnu} =
2gµν . The noncommutative version (2.28) is easily constructed, and we get

Sspinor =
1

2

∫
d2xΩΨ̄iγa(δea − iAea +m) ?Ψ (2.57)

with ea = eµa∂µ, which is invariant under NC gauge transformations
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2.3. NONCOMMUTATIVE SCALAR FIELD THEORY

2.3 Noncommutative scalar field theory

We are able to define a scalar field theory on this geometry. At this point
we make a change of notation and introduce the short-hand notation Weyl
operators W [f ]→ f̂

2.3.1 Noncommutative scalar action

We start with the ation of an Euclidean commutative λφ4 theory

S[φ] =

∫
ddx

(
1

2
∂µφ(x)∂µ(x) +

m2

2
φ2(x) +

λ

4
φ4(x)

)
, (2.58)

where φ is a real valued scalar field and d is the dimension of spacetime.
To transform an ordinary scalar field theory to a noncommutative field

theory we can use the Weyl quantization via Hermitian operators φ̂
The quantum field theory written in terms of Weyl operators φ̂, correspond-
ing to a real scalar field φ(x) on Rd

Z =

∫
dφ̂ exp

(
− S[φ̂]

)
(2.59)

S[φ̂] = Tr

(
1

2
[∂̂µ, φ̂]2 +

m2

2
φ̂2 +

λ

4
φ̂4

)
(2.60)

The measure dφ̂ is here the ordinary path integral measure for scalar fields
Dφ

This theory may be formulated in coordinate space by applying the map

f(x) = Tr(W [f ]∆(x)) (2.61)

W [f ] =

∫
ddxf(x)∆(x) with ∆(x) =

∫
ddk

(2π)d
eikµx̂µe−ikµxµ (2.62)

where ∆(x) is a Hermitian operator that can be understood as a mixed basis
for operators of fields. and using W [f ]W [g] = W [f ? g],

S[φ] =

∫
ddx

[
1

2
(∂µφ(x))2 +

m2

2
φ2(x) +

λ

4
φ(x) ? φ(x) ? φ(x) ? φ(x)

]
.(2.63)
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2.3. NONCOMMUTATIVE SCALAR FIELD THEORY

the kinetic term and the mass term do not contain the star-product, because
of this property

∫
ddf1(x) ? f2(x) =

∫
ddf1(x)f2(x) .

This implies that the free propagator of the quantum field theory also
remains unchanged, and only the interaction part, i.e., the vertex of Feynman
rules, gains extra contributions from the noncommutativity.(fig)

In particular, the commutative vertex function iλ gains an extra phase
factor of the form

V (ki) =
∑
i<j

e−
i
2
ki∧kj (2.64)

and ki are the momenta flowing into the vertex. V (ki) is not invariant under
arbitrary permutations of the momenta but only under cyclic permutations,
so one has to keep track of the order in which propagators are connected
to the vertices of Feynman diagrams. We can be drawn on a plane without
intersecting prooagators,’planar’. Namely, we may replace every line in a
planar Feynman diagram by a double line.which has only non-intersecting
solid lines and loops. [?] (seeFig.(1)). due to the momentum conservation
at the vertices and the planarity, we may label the lines of the double line
notation by momenta li, which correspond to the original momenta via the
relation ki = li1 − li2 . Accordingly,when ki i = 1, .., 4, are the incoming
momenta for a vertex in cyclic order, the phase factor (3.7) becomes

e−
i
2

∑4
i=1 lij∧lij+1 (2.65)

where each of the expressions lij ∧ lij+1 corresponds to one of the incoming
propagators. The over-all phase factor for a diagram is then the product
of the phase factors corresponding to each of the vertices of the diagram.
Therefor, by the expression (3.8), we find that for a planar diagram the
factors corresponding to the internal propagators cancel out, since they con-
tribute opposite ±lij ∧ lij+1 to the exponent of the over-all phase factor.
Consequently, we are left with the over-all phase factor

V (pi) = e−
i
2

∑
i<j pi∧pj (2.66)

pi are the momenta associated to the external lines of the original single-
line diagram in the cyclic order [?]. It immediately follows that the UV-
divergencies of the commutative quantum scalar field theory, which arise
from the integrals over the internal momenta of Feynman diagrams, are also
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2.3. NONCOMMUTATIVE SCALAR FIELD THEORY

present in the planar diagrams of the noncommutative theory, and therefore,
due to this example, the noncommutativity of soacetime does not seem to
help to naturally regularize the divergencies of quantum field theory

2.3.2 UV/IR mixing

We consider the one-particle-irreducible two point function Γ of the non-
commutative λφ4 scalar field theory.

Γ(p) =< φ̃(p)φ̃(−p) >=
∞∑
n=0

λnΓn(p). (2.67)

At lowest order the two-point function is given by Γ0(p) = p2 +m2 .
Where the first term is the planar contribution and the second term the

nonplanar one. In fact, since we have only one external momentum in the
case of two point function, the planar phase factor (3.9) equals unity, and thus
the planar diagrams give exactly the same correction as in the commutaive
case.

The one loop contribution splits topologically into two parts, one planar
and one non-planar diagram [46]

Γ1
p =

λ

3(2π)4

∫
d4k

k2 +m2
(2.68)

Γ1
np =

λ

6(2π)4

∫
d4k

k2 +m2
eik∧p, (2.69)

In Refs [?] [46] it is shown that the contribution of planar diagram to non-
commutattive perturbation theory is propotional to the commutative case
(fig planar and non-planar)

Regularizing the momentum integrals at the energy scale Λ we find [46]

Γ1
p =

λ

48π2

[
Λ2 −m2 ln

(
Λ2

m2

)
+ ...

]
(2.70)

Γ1
np =

λ

96π2

[
Λ2
eff −m2 ln

(
Λ2
eff

m2

)
+ ...

]
(2.71)

Here we introduced the effective cutoff Λeff given by

Λeff =
1

1/Λ2 + p ◦ p
, p ◦ p := −pµθ2

µνp
ν > 0 (2.72)
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k

p

+

k

p

Figure 2.1: Planar and nonplanar loop diagrams, respectively.
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When we take the UV-limit Λ→∞ of the internal momentum, we find

Γ1
np

Λ→∞−→ λ

96π2

[(
1

p ◦ p

)2

−m2 ln

(
1

m2(p ◦ p)2

)
+ ...

]
(2.73)

This expression diverges at the low energy limit p → 0 (IR limit), The UV
limit does not commute with the IR limit.

At small momenta or small non-commutativity parameter the two-point
function reads

Γ(p) ' p2 +m2 + 3λΓ1
np(0) +O(λ2) (2.74)

Taking now the UV limit leads to the standard mass renormalization of the
λφ4 theory. Taking these limits vice versa, the effective cutoff is given by

Γ2
eff =

1

θ2p2
(2.75)

and Λeff diverges and therefore also Γ1
np(p) either in the limit θ → 0 or in

the infrared limit when the incoming momentum p→ 0
The planar one loop contribution of Γ(p) by defining the renormalized mass
through

M2
eff = m2 + 2λΓ1

np(0) (2.76)

Removing the cutoff while keeping M2
eff fixed, then leads to a finite Γ(p)

for finite incoming momenta p. For zero momentum Γ(p) diverges and the
divergence at one loop is given by

Γ(p) = p2+M2
eff + ξ

λ

θ2p2
+ subleading terms, with ξ =

1

96π2
(2.77)

This is not too surprising, since the nonplanar phase factor eik∧p in (3.12),
which dampens the singularity of the momentum integral, approaches unity
as p→ 0
This exotic mixing of the high energy (UV) and low energy (IR) scales in non-
commutative theories, which does not have a counter-part in commutative
theories, is called UV/IR mixing
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2.3.3 Phase structure of non−commutative λφ4

The UV/IR mixing is one of the most intersting properties of non−commutative
field theory and has no counterpat in the commutative case.

Gusber and Sondhi studied the phase diagram of 4d λφ4 theory [47],
based on an action of the Brazovskiia from [48]

We try summarize their resuls. At small non−commutativity parameter
θ they obtained an Ising type (second order) phase to an uniformly ordered
phase with < φ > 6= 0.
At large θ , Leads ao an ordered phase. In this phase < φ > varies in space,
which involve some non-uniform patterns like stripes.
According to Ref [47] the pahase diagram in the m2

Λ
− λ plane is then given

by Figure (2.3) , where Λ is a momentum cut-off and the λ is the coupling.
In another approach renormalization group technique were used to study

the phase diagram of the λφ4 model [49]. Chen and Wu obtained in d = 4−ε
a new IR stable fixed point, and therefore a striped phase exists. In contrast
to the resuls in Ref [47], this implies that in d = 4 there is no stiped phase.
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〈𝚽〉 = 𝟎

〈𝚽〉 ≠ 𝟎

𝒎𝟐

ʌ𝟐

𝒈𝟐

ʌ𝟒 ‒ 𝒅

Figure 2.2: he phase diagram for the Ising scalar field theory, in d ≥ 1.
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2.4 Noncommutative gauge theory

2.4.1 Star-gauge invariant action

To define a YangMills theory on a noncommutative plane we have to
generalize the map (2.62). Let Aµ(x) be a Hermitian gauge field on Rd,
which corresponds to the unitary gauge group U(n). We can introduce the
Weyl operators corresponding to Aµ(x) by taking the trace of the tensor
product of ∆(x) and the gauge field [50]

Âµ =

∫
ddx∆(x)⊗ Aµ(x) (2.78)

the derivative of Weyl operators is equal to the Weyl operator of the usual
derivative of the functions [50]

[∂̂µ,W [f ]] =

∫
ddx∂µf(x)∆(x) = W [∂µf ] (2.79)

Based on this equation a noncommutative version of the Yang-Mills action
can ce defined

S[Â] = − 1

4g2
Tr trN

([
∂̂µ, Âν

]
−
[
∂̂ν , Âµ

]
− i
[
Âµ, Âν

])2

(2.80)

where the term in brackets is the operator analog of the field strength tensor.
Here Tr is the operator is given by an integration over space-time

Tr W [f ] =

∫
ddx f(x) (2.81)

and trN denotes the trace in color space. This action is invariant under
transformations of the form

Âµ → ÛÂµÛ
† − iÛ

[
∂̂µ, Û

]
, (2.82)

where Û as an arbitrary unitary element of the algebra of matrix valued
operators, i. e.

Û Û † = Û †Û = 1̂⊗ 1n (2.83)

The symbol 1̂ is here the identity on the ordinary Weyl algebra and 1n is a
n× n unit matrix.
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To set up the action in coordinate space we can construct an inverse map
of (2.78). The Yang-Mills action in coordinate space the reads

S[A] = − 1

4g2

∫
ddxtrN

(
Fµν(x) ? Fµν(x)

)
, (2.84)

where we introduced the noncommutative field strength tensor Fµν given by

Fµν(x) = ∂µAν(x)− ∂νAµ(x)− i
[
Aµ(x), Aν(x)

]
?
. (2.85)

The index ’?’ indicates that the products in this commutator are star-products.
According the (2.85) the simple gauge group U(1) we have Yang-Mills type
strucure. herefore there exist three and four point gauge interactions and
noncommutative U(1) theory is asymptotically free.

The action (3.54) under star-gauge transformation given by

Aµ(x)→ U(x) ? Aµ(x) ? U(x)† − iU(x) ? ∂µU(x)†, (2.86)

U(x) is a star-unitary matrix field,

U(x) ? U(x)† = U(x)† ? U(x) = 1n (2.87)

On the classical level we considered non-commutative U(n) theories which
reduce to the ordinary U(n) theories in the limit θ → 0.
In Ref. [51] it was shown that the gauge groups SU(N), SO(N) cannot be
realized on a flat non-commutative manifold, while it is possible for U(N)

The interaction of the SU(N) gauge bosons with the U(1) gauge boson
plays an important role in the consistency check. In particular, the SU(N)
theory by itself is not consistent. and when θ → 0 limit of the U(N) theory
does not converge to the ordinary SU(N)× U(1) commutative theory, even
at the planar limit [52]

The U(n) group is closed under the starproduct; the product of two
starunitary matrix fields is again starunitary. In contrast to U(n) the special
unitary group SU(n) is not closed, since in general [50]

det(U) ? det(H) 6= det(U ? H). (2.88)

2.4.2 Gauge-invariant observables

Let us say a few words about observables in noncommutative Yang-Mills
gauge theories, since it is such a subtle subject, which clearly highlights the
nonlocaliy of these theories, and is also deeply related to UV/IR mixing.
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We consider an arbitrary ariented smooth contour C ⊂ Rd with smooth
parametrization ξ(t) : [0,1]→ Rd, and endpoints ξ(0) = 0, ξ(1) = v in Rd.
Introduce the noncommutative parallel transport operator, construct gauge
invariant observables using open Wilson lines, which are nonlocal operators
defined as [53] [54] [55]:

W(x; ξ) = P exp?

(
i

∫
C

dξiAi(x+ ξ)

)
, (2.89)

P is path ordering. The index ’?’ at the exponential function indicateds
that in the expansion of this function the star-product has to be used. The
operator W(x; ξ) is an n× n star-unitary matrix field and transforms under
the star-gauge transformation (2.86) like (it is important property of an open
Wilson line)

W(x; ξ)→ U(x) ?W(x; ξ) ? U(x+ v)† (2.90)

under finite noncommutative gauge transformations [54]

W̃(k; ξ) :=

∫
d4 tr

[
W(x; ξ)

]
? eik.x (2.91)

The transformation of W̃(k; ξ) under a gauge transformation according to
(2.90) is

W̃(k; ξ)→
∫
d4 tr

[
U(x) ?W(x; ξ) ? U †(x+ v) ? eik.x

]
(2.92)

In the traditional commutative use, gauge invariance would force us to
close the contour C. But in the noncommutativr case, gauge transformation
can affect translations of space-time (the translations can be arranged by
(star-) multiplication with plane waves):

U(x+ v) = eikµxµ ? U(x) ? e−ikρxρ (2.93)

where k = θ−1.v is the total momentum of path C. With the definition of the
noncommutative parallel transporter and equation (5.1) we can associate a
star-gauge invariant observable with any arbitrary contour Cv by [54]

O(Cv) =

∫
dd trN

(
W(x;Cv) ? e

ikµxµ
)
. (2.94)
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We notice here that UV/IR mixing manifests itself in the property that
k →∞ as v →∞

Gauge-invariant operators, generalizing the standard local gauge theory
operators in the commutative limit, are local in momentum space and are
given by a Fourier-type transformation [54]:

Ô(k) =

∫
ddOU(x;Ck) ? e

ikµxµ . (2.95)

where O(x) is any local gauge invariatn operator of ordinary Yang-Mills the-
ory. In the commutative limit θ = 0, v = 0; there are no gauge-invariant
quantities associated with open lines in ordinary Yang-Mills theory. In that
case, the totam momentum of a closed loop is unresricted, and we can rem-
place eikµxµ (the momentum eigenstate) by an arbitrary function f(x) paric-
ular, taking f(x) = δd(x − a) recovers the standard gauge-invariant Wilson
loops of Yang-Mills theory. But for θ 6= 0, closed loops have 0 memntum k,
and only eikµxµ = 1 is permitef in O(C) above there is no local star-gauge
invariant dynamics, because evrything has to be smeared outby the Weyl
operator tarce Tr v

∫
ddx. Hence the gauge dynamics below the noncom-

mutativity scale is quite different from the commutative case. [53]

2.4.3 Application

Noncommutative QED and UV/IR Mixing

Despite the growing understanding in formulating noncommutative gauge
field theories, The problem of UV/IR mixing still shows up, as expected,
when one calculates the higher order diagrams of noncommutative gauge
field theories.

The propagators of noncommutative gauge theories are again equal to
those of their commutative counter-parts, but the vertex functions contain
nontrivial phase factors, as in the case of noncommutative scalar field theo-
ries, which ultimately lead to the UV/IR mixing [56]. For noncommutative
QED one obtains the vertex functions for Feynman diagrams [57].

For the correction Πµν
Ψ given by a massless fermion loop to the photon

propagator one finds [58]

iΠµν
Ψ = −4g2

∫
d4

2π4

tr[γµ(/p− /k)γν/p)]

(p− k)2p2
sin2(

1

2
p ∧ k) (2.96)
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Using

sin2(
1

2
p ∧ k) =

1

2
[1− cos(p ∧ k)] (2.97)

we can isolate the planar and non-planar contributions. The planar part gives
then the usual logarithmically UV-divergent but renormalizable contribution,
whereas the nonplanar part with the dampening phase factor cos(p∧k) gives
the leading order term [56] [58]

iΠµν
Ψnp

(k) v
k̂µk̂ν

k̂4
(2.98)

at the IR-limit of the external momentum, which clearly diverges quadrat-
ically as k̂ → 0. Therefore we again encounter the UV/IR mixing, where
an IR-divergence of the external momentum arises from the UV-limit of the
integral over the internal loop momentum. Similar IR-divergencies arise also
from other higher order corrections to propagators and vertices [56] [58].

The physical interpretation of terms like the (5.2) is very interesting. For
small noncommutative momentum, the one-loop inverse propagator is given
by [58]

Γµν = i

[
(k2

0 − k2
3 −K2)gµν − g2 k̂

µk̂ν

k̂4

]
(2.99)

where K (k2
0 = k2

3+K2) represents the projection of the spatial momentum on
the plane.From this one-loop inverse propagator we can read the dispersion
relation for the two physical. Suppose k is along the 2direction so that K̂ is in
the 1-direction. Then the photon polarized in the direction perpendicular to
K̂ satisfies the same dispersion relation as a photon would in the commutative
theory [58]

UV/IR Mixing in Noncommutative QED via Seiberg-Witten Map

In the paper [59] on the connection between noncommutative geometry
and String Theory, Seiberg and Witten introduced a mapping, which relates
gauge field theories in noncommutative spacetime to ordinary commutative
onesknown as the Seiberg −Witten map. This mapping has virtues, since
some aspects of gauge theories, such as observables and gauge fixing, are
more easily understood and dealt with in the commutative theories.
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for example in [60] , that the UV/IR mixing is absent in the Seiberg-
Witten formalism. However, we will find that this is presumably due to the
expansion in the noncommutativity parameter matrix θ in the θ-expanded
Seiberg − Witten map. In the θ-exact Seiberg-Witten map for noncom-
mutative QED the UV/IR mixing reappears, as we will demonstrate. This
same argument was expressed by Schupp and You in [61], where a noncom-
mutative model with a gauge field coupled with a spinor field in the adjoint
representation was considered.

The adjoint representation of the gauge group, however, corresponds to
a chargeless particle with an electric dipole moment proportional to θ, and
therefore in their model the interaction vanishes at the commutative limit
θ → 0. Accordingly, their model does not correspond to a noncommutative
theory of electrically charged fermions, which should reduce (classically) to
the commu- tative QED in the commutative limit.
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2.4. NONCOMMUTATIVE GAUGE THEORY

Noncommutative QED via Seiberg-Witten Map

We consider exclusively the gauge group U∗(1). We want to express the
action of noncommutative QED,

SNCQED =

∫
d4x

[
ˆ̄Ψ(i/∂ −m)Ψ̂− ˆ̄Ψ ? /̂A ? Ψ̂− 1

4
F̂µν ? F̂

µν

]
(2.100)

in terms of the commutative fields up to the first order in A, so that we
can calculate the photon propagator correction coming from the one-loop
photon self-energy diagram. Denoting the noncommutative fields by hats
and dropping the lower index from θ1. The gauge field

Âµ = Aµ +O(A2), (2.101)

and for the spinor field

Ψ̂ = Ψ− 1

2
θαβ
[
Aα ?1 (∂βΨ) +

1

2
(∂βAα) ?1 Ψ

]
+O(A2), (2.102)

where we use the notation

(f ?1 g)(x) :=

{
e
i
2∂1 ∧ ∂2 − 1
i
2
∂1 ∧ ∂2

f(x1)g(x2)

}
x1=x2≡x

(2.103)

Since (f ? g)† = g† ? f † for any functions (or matrices) f and g, we find that

ˆ̄Ψ =
¯̂
Ψ = Ψ̄− 1

2
θαβ
[
(∂βΨ̄) ?1 Aα +

1

2
Ψ̄ ?1 (∂βAα)

]
+O(A2), (2.104)

Substituting (2.101), (2.102) and (2.104) into the action (2.100), we find the
fermion- photon interaction term to be, up to first order in A,

L(1)
ΨA = − Ψ̄ ? /A ?Ψ (2.105)

− 1

2
θαβ
[
(∂βΨ̄) ?1 Aα +

1

2
Ψ̄ ?1 (∂βAα)

]
(i/∂ −m)Ψ

− 1

2
θαβΨ̄(i/∂ −m)

[
Aα ?1 (∂βΨ) +

1

2
(∂βAα) ?1 Ψ

]
For the corresponding vertex function we get the expression

V µ(k1, k2) = −iγµe
i
2
k1∧k2 − i

2
(k̃1 − k̃2)µ( /k1 + /k2)

e
i
2
k1∧k2 − 1

k1 ∧ k2

(2.106)

where k1 and k2 are the incoming momenta of the outgoing and incoming
fermions, respectively.
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Photon Self-energy and UV/IR Mixing

Now, using the vertex function (2.106), we find the first order fermion
loop correction to the photon propagator given by the one-loop photon self-
energy diagram in Fig. (4.2) to be

Πµν
(1)(k) = −4

∫
d4p

(2π)4
×
{
T µν +

i

2

sim(1
4
p ∧ k)

1
4
p ∧ k

[
(p̃− 1

2
k̃)µkρT

ρνe−
i
4
p∧k

− (p̃− 1

2
k̃)νkρT

ρµe
i
4
p∧k
]

+
i

4

sim2(1
4
p ∧ k)

(1
4
p ∧ k)2

(p̃− 1

2
k̃)µ(p̃− 1

2
k̃)νkρkσT

ρσ

}
(2.107)

where

T µν(k, p) :=
(p− k)µpν + pµ(p− k)ν + [m2 − (p− k).p]ηµν

[(p− k)2 −m2][p2 −m2]
, (2.108)

which is the only term we get in the commutative case. Therefore, the first
term in (2.107) is naturally understood to correspond to the planar part of
the diagram, and in fact follows straightforwardly from the first terms of
the vertex functions (2.106) as the phase factors cancel each other, in the
same way as they do for the planar diagrams of a noncommutative scalar
field theory. The other terms, on the other hand, clearly correspond to the
nonplanar part with nontrivial phase factors that give rise to UV/IR mixing.
Indeed, the second term in (2.106) can be shown to yield the leading order
contribution (The third term leads also to similar IR-divergent terms)

iΠµν
(1)np(k) ≈ 8

π2

k̃µk̃ν

k̃4

4

π2

˜̃kµkν + kµ˜̃kν

k̃4
(2.109)

at the IR-limit of the external momentum. The first term in (2.109) is similar
to (2.98) found in the naive formulation above, whereas the second term is
gauge variant and should cancel, when all the second order contributions in
the coupling constant are taken into account. Therefore we conclude that
also gauge field theories defined via Seiberg −Witten map appear to fail to
be renormalizable because of UV/IR mixing, which further shows that this
is a generic property of noncommutative theories.
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p-k

p

kk

Figure 2.3: One-loop photon self-energy diagram.
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2.4.4 Reduced Models and Emergent Phenomena

In this part we will work out the nonperturbative, construction definition
of noncommutative Yang-Mills theory. this can be completely described in
the language of matrix models (arising here as reduced models). This will also
reveal some beautiful features of the vacuum structure of noncommutative
gauge theories.

Will remove derivative operators ∂i or ∂̂i from the noncommutative gauge
theory action. There is no analog of this manipulation in ordinary Yang-Mills
theory [53].

Let us introduce covariant coordinates:

Ĉi = (θ−1)ij x̂j + Âi (2.110)

Then Ĉi → Û ĈiÛ
† under gauge transformations. We can be represented the

adjoint actions

(θ−1)ij[x̂
j,−] (2.111)

i.e. ∂̂i are inner derivations of the algebra Rd
θ. Then the entire noncommu-

tative gauge theory can be rewritten in terms of the Ĉi, we may rewrite the
covariant derivative as:

∇̂i = ∂̂
′

i − iĈi (2.112)

where ∂̂
′
i = ∂̂i + i(θ−1)ijx̂

j. Then using [∂̂
′
i, x̂

j] = 0, We compute:

[∇̂i, f̂ ] = −i[Ĉi, f̂ ] (2.113)

F̂ij = i[∇̂i, ∇̂j]

= −i[Ĉi, Ĉj] + (θ−1)ij (2.114)

and consequently,

SYM =
1

4g2
Tr
∑
i 6=j

(
[Ĉi, Ĉj] + i(θ−1)ij

)2
(2.115)

Ĉj are element of the Rd
θ, so spacetime derivatives have completely dis-

appeared in this rewriting of noncommutative Yang-Mills theory. [53]
Flat connections F̂ij = 0 give:[

Ĉi, Ĉj] = −i(θ−1)ij (2.116)
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Ĉi are like the momentum operators i∂̂i. In particular, X̂ i = θijĈj formally
represent noncommuting position operators in the ground state, wherein
X̂ i = x̂i ( Âi ≡ 0). Then the noncommutative gauge degrees of freedom
Ĉi are fluctuations around this canonical (Moyal) noncommutative space-
time. More generally noncommutative spacetime [X̂ i, X̂j] = iΘij (X̂) are
obtained as non-vacuum solutions of Yang-Mills equation of motion:[

Ĉi, [Ĉi, Ĉj]] = 0 (2.117)

Thus (noncommutative) spacetime emerges as a dynamical effect in the ma-
trix model. This is the essence of its relation to the so-called IKKT matrix
model for the non-perturbative dynamics of type IIB superstrings, and also
in the more recent models of emergent gravity which clarify the origin of
gravity in noncommutative gauge theory. In this setting, gravity is related
to quantum fluctuations Ci of spacetime at the Planck scale, while noncom-
mutative field theory arises from field dependent fluctuations of spacetime
geometry (determined via θij(x)). In particular, UV/IR mixing arises due to
a non-renormalizable gravitational sector in the IR with G v Λ [53]

This large N matrix model is is called a twisted reduced model. The
twist is (θ−1)ij. The noncommutative spacetime Rd

θ is effectively hidden

in the infinitelymany degrees of freedom of the large N matrices Ĉi and it
reappears from expanding the matrix model around its classical vacuum (this
is a dynamical emergent of spacetime). It is formally gotten by reduction of
ordinary Yangs-Mills theory (with background flux) [53]

The (straight) open Wilson line has a particularly simple form in this
matrix model formulation:

O(Ck) :=

∫
ddxtr(U(xj, Ck)) ? e

ik.x)Treik.θ.Ĉ (2.118)

which is manifestly gauge-invariant under Ĉi → ĝĈiĝ
−1

This follows easily from:

O(Ck) = Tr
(
Û(Ck)D̂(Ck)

†eik.x
)

(2.119)

35



2.5. THE CLASSICAL LAGRANGIAN AND HAMILTONIAN
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2.5 The classical Lagrangian and Hamiltonian

dynamics of matrix models

The fundamental idea is to set up an analog of classical dynamics in which
the phase space variables are non-commutative, and the basic tool that allows
one to accomplish this is cyclic invariance under a trace. Since no assump-
tions about commutativity of the phase space variables (such as canonical
commutators/anticommutators) are made at this stage, the dynamics that
we set up is not the same as standard quantum mechanics.

2.5.1 Bosonic and fermionic matrices

We shall assume finite-dimensional matrices, although ultimately an ex-
tension to the infinite-dimensional case may be needed. The matrix elements
of these matrices will be constructed from ordinary complex numbers, and
from complex anti-commuting Grassmann numbers. Just as a complex num-
ber can be decomposed into real and imaginaty parts

C = CR + iCI (2.120)

a complex Grassmann number can be decomposed into real and imaginary
parts

X = XR + iXI (2.121)

With CR,I and XR,I is real. Real Grassmann numbers are built up as products
of a basis of real Grassmann element X1,X2,.... which obey the anticommu-
tative algebra {Xr,Xs} = 0

Let B1 and B2 be two N × N matrices with matrix elements that are
even grade elements of a Grassmann algebra over the complex numbers, and
let Tr be the ordinary matrix trace, which obeys the cyclic property

TrB1B2 =
∑
m,n

(B1)mn(B2)nm =
∑
m,n

(B2)nm(B1)mn = TrB2B1 (2.122)

Similarly, let X1 and X2 be two N × N matrices with matrix elements that
are odd grade elements of a Grassmann algebra over the complex numbers,
, which anticommute rather than commute, so that the cyclic property for
these takes the form

TrX1X2 =
∑
m,n

(X1)mn(X2)nm = −
∑
m,n

(X2)nm(X1)mn = −TrX2X1 (2.123)
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Final bilinear cyclic identity

TrBX = TrXB. (2.124)

We shall refer to the Grassmann even and Grassmann odd matrices B, X as
being of bosonic and fermionic type, respectively. Clearly, operators that are
of mixed bosonic and fermionic type can always be linearly decomposed into
components that are purely bosonic or purely fermionic in character.

The extra minus sign that appears in the odd grade case of Eq (2.123) has
implications for the adjoint properties of matrices. Letting Og be a matrix
of grade g, we define the adjoint by

(O†)mn = (O∗)mn, (2.125)

Letting now Og1

1 and Og2

2 be two matrices of grade g1 and g2 respectively,
this definition implies that

(Og1

1 O
g2

2 )†mn = (Og1

1 O
g2

2 )∗nm =
∑
k

(Og1

1 )∗nk(O
g2

2 )∗km

= (−1)g1g2

∑
k

(Og2

2 )∗km(Og1

1 )∗nk = (−1)g1g2

∑
k

(Og2

2 )†mk(O
g1

1 )†kn

= (−1)g1g2(Og2

2 )†Og1

1 )†)mn (2.126)

The cyclic/anticyclic properties of Eqs (2.122,2.124) are the basic identities
from which further cyclic properties can be derived. For example, from the
basic bilinear identities one immediately derives the trilinear cyclic identities

TrB1[B2, B3] = TrB2[B3, B1] = TrB3[B1, B2],

TrB1{B2, B3} = TrB2{B3, B1} = TrB3{B1, B2},
TrB{X1,X2} = TrX1[X2, B] = TrX2[X1, B],

TrX1{B,X2} = Tr{X1, B}X2 = Tr[X1,X2]B, (2.127)

Tr,X [B1, B2] = TrB2[,X , B1] = TrB1[B2, ,X ],

Tr,X{B1, B2} = TrB2{,X , B1} = TrB1{B2,X},
TrX1{X2,X3} = TrX2{X3,X1} = TrX3{X1,X2},
TrX1[X2,X3] = TrX2[X3,X1] = TrX3[X1,X2],

2.5.2 Derivative of a trace with respect to an operator

The basic observation of trace dynamics given the trace of a polynomial
P constructed from non-commuting matrix or operator variables, one can
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define a derivative of the complex number TrP with respect to an operator
variable O by varying and then cyclically permuting so that in each term the
factor δO stands on the right. This gives the fundamental definition

δTrP = Tr
δTrP

δO
δO (2.128)

which for arbitrary infinitesimal δO defines the operator δTrP/δO. In general
we will take O to be either of bosonic or fermionic (but not of mixed), and
we will construct δTrP to always be an even grade element of the Grassmann
algebra. (When P is fermionic, we can always make it bosonic by multiplying
it by a c-number auxiliary Grassmann element α). With these restrictions,
for δO of the same type as O, the operator derivative δTrP/δO will be of the
same type as O, that is, either both will be bosonic or both will be fermionic
.

Suppose that P is a bosonic monomial containing only a single factor of
the operator O , so that P has the form

P = AOB, (2.129)

with A and B operators that in general do not commute with each other
or with O. THen when O is varied, the corresponding variation of P is
δP = A(δO)B, and so cyclically permuting B to the left we have

δTrP = εBTrBAδO, (2.130)

δTrP

δO
= εBBA, (2.131){

εB = 1 when the operator B is bosonic

εB = −1 when the operator B is fremionic.

The operator product AO is of the same bosonic or fermionic type as B,
so we have εB = εAO and could equally well write

δTrP

δO
= εAOBA, (2.132)

Suppose that P is a bosonic monomial containing two factors of the operator
O that is being varied, and so has the general structure

P = AOBOC, (2.133)
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with A, B, and C operators that in general do not commute with each other
or with O

The variation of P is

δP = A(δO)BOC + AOB(δO)C (2.134)

Thus we have in this case

δTrP = Tr
(
εAOBOCA(δO) + εCCAOB(δO)

)
,

δTrP

δO
= εAOBOCA+ εCCAOB, (2.135){

εC = 1(−1) According as whether C is bosonic (fermionic)

εAO = 1(−1) According as whether the product AO is bosonic (fermionic).

Let us expand δTrP/δO is the form

δTrP

δO
=
∑
n

CnKn (2.136)

with the Kn distinct Grassmann monomials that are all c-numbers (i.e., mul-
tiples of the N×N unit matrix), and with the Cn complex matrix coefficients
that are unit elements in the Grassmann algebra

Let us choose δO to be an infinitesimal α times C†p , with α a real number
when O is bosonic, and with α a Grassmann element not appearing in Kp

when O is fermionic. There must be at least one such element, or else Kp

would make an identically vanishing contribution to Eq (2.128), and could
not appear in the sum in Eq (2.136) We then have∑

0

TrC†pCnKnα = 0 (2.137)

the coefficients of all distinct Grassmann monomials must vanish separately,
we have

TrC†pCp = 0 (2.138)

We conclude that

δTrP

δO
= 0 (2.139)
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When O is bosonic, a useful extension of the above result states that the
vanishing of δTrP for all self-adjoint variations δO. The Cn split into self-
adjoint and anti-self adjoint parts,

Cn = Csa
n + Casa

n , (2.140)

with Csa
n = Csa†

n and Casa
n = Casa†

n . For self-adjoint δO implies that TrCsa
n δO

is real, and TrCasa
n δO is imaginary. The vanishing δTrP implies that both

of these traces must vanish separately. Taking δO = Csa
p then implies the

vanishing of Csa
p , while taking δO = iCasa

p then implies the vanishing of Casa
p .

In our applications, we shall often consider trace functionals δTrP that are
real, which will be true when the adjointness properties of the operators from
which P is constructed imply that P −P † is either zero or is an operator with
identically vanishing trace. Real trace functionals δTrP have the important
property that when O is a self-adjoint bosonic operator, then δTrP/δO is
also self-adjoint. To prove this, we make a self-adjoint variation O , and use
the reality of δTrP to write

0 ≡ ImTrδTrP ∝ Tr

[
δTrP

δO
δO − (δO)†

(
δTrP

δO

)†]
= TrδO

[
δTrP

δO
−
(
δTrP

δO

)†]
. (2.141)

2.5.3 Lagrangian and Hamiltonian dynamics of matrix
models

Let L
[
{qr}, {q̇r}

]
be a Grassmann even polynomial function of the bosonic

or fermionic operators {qr} and their time derivatives {q̇r}. The discrete
index r labels the matrix degrees of freedom for a general matrix dynamics.

Just as a classical dynamical system can have any number of degrees of
freedom, the numbers nB and nF of bosonic and fermionic operators {qr}
are arbitrary, and are unrelated to the dimension N of the matrices that
represent these operators. From L, we form the trace Lagrangian

L
[
{qr}, {q̇r}

]
= TrL

[
{qr}, {q̇r}

]
(2.142)

The corresponding action

S =

∫
dtL (2.143)
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Using the definition of Eq (2.128) for get variations of the action

0 = S =

∫
dtTr

∑
r

(
δL

δqr
δqr +

δL

δq̇r
δq̇r

)
(2.144)

or after integrating by parts in the second term and discarding surface terms

0 = S =

∫
dtTr

∑
r

(
δL

δqr
− d

dt

δL

δq̇r

)
δqr. (2.145)

For this to hold for general same-type operator variations δqr, the coeffi-
cient of each δqr in Eq (2.145) must vanish for all t, giving the operator
Euler−Lagrange equations

δL

δqr
− d

dt

δL

δq̇r
= 0. (2.146)

by the definition of Eq. (2.128), we have(
δL

δqr

)
ij

=
δL

δ(qr)ij
= 0, (2.147)

for each r the single EulerLagrange equation of Eq. (2.146) is equivalent to
the N2 Euler-Lagrange equations obtained by regarding L as a function of
the N2 matrix element variables (qr)ji .

Let us now define the momentum operator pr conjugate to qr by

Pr ≡
δL

δq̇r
(2.148)

pr is of the same bosonic or fermionic type as qr . We can now introduce a
trace Hamiltonian H by analogy with the usual definition

H = Tr
∑
r

prq̇r − L (2.149)

The variation is

δH = Tr
∑
r

(
(δpr)q̇r + prδq̇r

)
− Tr

∑
r

(
δL

δqr
δqr +

δL

δq̇r
δq̇r

)
= Tr

∑
r

((δpr)q̇r − ṗrδqr)

= Tr
∑
r

(
εrq̇r)δpr − ṗrδqr

)
. (2.150)
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Therefore the trace Hamiltonian H is a trace functional of the operators {qr}
and {pr}

H = H
[
{qr}, {pr}

]
, (2.151)

with the operator derivatives

δH

δqr
= −ṗr,

δH

δpr
= εrq̇r (2.152)

{
εr = 1 According to whether qr,pr are bosonic

εr = −1 According to whether qr,pr are fremionic

2.5.4 Trace dynamics models with global supersymme-
try

The Wess-Zumino model

We begin with the trace dynamics transcription of the Wess-Zumino
model. The trace Lagrangian for the WessZumino

L =

∫
d3xTr

(
− 1

2
(∂µA)2 − 1

2
(∂µB)2 − χ̄γµ∂µχ+

1

2
F 2 +

1

2
G2

− m(AF +BG− χ̄χ)− λ[(A2 −B2)F +G{A,B} − 2χ̄(A− iγ5B)χ]

)
(2.153)

γ1,2,3 are real symmetricand γ0, iγ5 are real skew-symmetric. A,B,F,G self-
adjoint N × N lorentz matrices and χ a Grassmann 4-component column
vector spinor. The notation χ̄ is defined by χ̄ = χTγ0. The numerical
parameters λ and m are respectively the coupling constant and mass.

Taking operator variations of Eq (2.153) by using the recipe of Eq (2.128)
, the Euler-Lagrange equations of Eq. (2.146) take the form

∂2A = mF + λ({A,F}+ {B,G} − 2χ̄χ),

∂2B = mG+ λ(−{B,F}+ {A,G} − 2iχ̄γ5χ),

γµ∂µχ = mχ+ λ({A,χ} − {B, γ5χ}, (2.154)

F = mA+ λ(A2, B2),

G = mB + λ{A,B}.
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Transforming to Hamiltonian form, the canonical momenta of Eq (2.148)

Pχ = −χ̄γ0 = χT ,

PA = ∂0A, (2.155)

PB = ∂0B,

and the trace Hamiltonian is given by

H =

∫
d3xTr

(
1

2
[P 2
A + P 2

B + (~∇A)2 + (~∇B)2] + Pχγ
0~γ. ~∇χ

+
1

2
(F 2 +G2)−mχ̄χ− λPχγ0{A− iγ5B,χ}

)
. (2.156)

The trace three-momentum ~P, wgich together with H forms the trace four-
momentum Pσ, is given by

~P =

∫
d3xTr(PA~∇A+ PB ~∇B + Pχ ~∇χ). (2.157)

Let us now perform a supersymmetry variation of the fields given by

δA = ε̄χ,

δB = iε̄γ5χ,

δχ =
1

2
[F + iγ5G+ γµ∂µ(A+ iγ5B)]ε, (2.158)

δF = ε̄γµ∂µχ,

δG = iε̄γ5γ
µ∂µχ,

(2.159)

with ε a c-number Grassmann spinor (i.e., a four-component spinor, the spin
components of which are 1×1 Grassmann matrices). Substituting Eq (2.158)
into the trace Lagrangian of Eq (2.153). The variation of L is given by

δL =

∫
d3Tr(J̄µ∂µε) (2.160)

J̄µ = −χ̄γµ[(γν∂ν +m)(A+ iγ5B) + λ(A2 −B2 + iγ5{A,B})](2.161)
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which identifies the trace supercharge Qα as

Qα =

∫
d3TrJ̄0α (2.162)

=

∫
d3Tr

1

2
(Pχ + χT )[(γν∂ν +m)(A+ iγ5B) (2.163)

+ λ(A2 −B2 + iγ5{A,B})]α.

2.5.5 The supersymmetric YangMills model

As a second example of a trace dynamics model with global supersym-
metry, we discuss supersymmetric YangMills theory.

We start from the trace Lagrangian

L =

∫
d3xTr

[
1

4g2
F 2
µν − χ̄γµDµχ+

1

2
D2

]
(2.164)

with the field strength Fµν and covariant derivative Dµ constructed from the
gauge potential Aµ according to

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ],

DµO = ∂µO + [Aµ,O] (2.165)

with

DµFνλ +DνFλµ +DλFµν = 0.

The Euler-Lagrange equations of motion are

D = 0,

γµDµχ = 0, (2.166)

DµF
µν = 2g2χ̄γνχ

as usual for a gauge system, the ν = 0 component of Eq. (2.166) is not a
dynamical evolution equation, but rather the constraint

DlF
l0 = 2g2χ̄γ0χ. (2.167)

Going over to the Hamiltonian formalism, the canonical momenta are given
by

PAl = − 1

g2
F0l, Pχ = χT , (2.168)
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and the axial gauge trace Hamiltonian is

H = HA + Hχ, (2.169)

with

HA =

∫
d3xTr

(
−g2

2

2∑
l=1

p2
Al
− 1

2g2
F 2

03 (2.170)

− 1

2g2
(∂1A2 − ∂2A1 + [A1, A2])2 − 1

2g2
[∂3A1 + (∂3A2)2]

)
,

F03 =
1

2
g2

∫ ∞
−∞

dz
′
ε(z − z′)[−(pχχ+ χTpTχ) +D1pA1 +D2pA2 ]|z′ (2.171)

Hχ =

∫
d3xTr(pχγ

0γlDlχ) (2.172)

where we have taken care to write H in a form symmetric in the identical
quantities pχ and χT , and where ε(z) = 1(−1) for z>0 (z<0). The trace
three-momentum is

Pm =

∫
d3xTr

( 3∑
l=1

FmlpAl + pχDlχ

)
(2.173)

and the conserved operator C of Eq. (2.6) is given by

C̃ =

∫
d3x

( 2∑
l=1

[Al, pAl ]− χ, pχ
)

(2.174)

with a contraction of the spinor indices in the final term of Eq. (2.174) un-
derstood. By virtue of the constraint of Eq. (2.167), the conserved operator
C̃ can also be written as

C̃ =

∫
d3x

3∑
l=1

∂lpAl = −
∫

sphere at ∞
d2SlpAl (2.175)

which vanishes when the surface integral in Eq. (2.175) is zero. The corre-
sponding conserved current C̃µ , of which C̃ is the charge, is given by

C̃µ =
1

g2
[Aν , F

µν ] + 2χ̄γµχ. (2.176)
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The conserved trace quantity N and the corresponding conserved current Nµ

have the same form as in the WessZumino model

N = −i
∫
d3xTrχTχ (2.177)

Nν = iTrχ̄γµχ

Making now the supersymmetry variations

δAµ = igε̄γµχ (2.178)

δχ =

(
i

8g
[γµ, γν ]F

µν +
i

2
γ5D

)
ε,

δD = iε̄γ5γ
µDµχ

in the trace Lagrangian, with ε again a c-number Grassmann spinor, we find
using cyclic invariance under the trace and the γ matrix identities D that
whenε is constant, the variation vanishes. When ε is not a constant, the
variation of L is given by

δL = −i
∫
d3xTr(j̄∂µε), (2.179)

j̄µ =
i

4g
χ̄γµFνρ[γ

ν , γrho]
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2.6 Matrix model approach

Field theories and especially gauge theories admit many classical solu-
tions: solitons, instantons and branes, which play important roles in non-
perturbative physics. Using this approach, it was possible to study many
nonperturbative features of noncommutative field theory such as solitons
and instantons (for more details see [62] in references).

We will call this approach matrix model approach, as the gauge theory
can be described as a matrix model having the noncommutative space as its
ground state, the fluctuations creating the gauge theory. Therefore we are
looking for spaces that can be represented as fnite-dimensional matrix alge-
bras, where everything is well defned. The space on which we will base our
constructions will be the fuzzy sphere [63], an N-dimensional matrix algebra
corresponding to a truncation of the spherical harmonics on the sphere at
angular momentum N − 1. In four dimensions, using the product of two
such fuzzy spheres S2

N × S2
N , generated by N2-dimensional matrices. When

the two spheres they have a same limit, this fuzzy space goes over to the
product of two commutative spheres, but in a diferent limit, it also goes to
noncommutative R4 with canonical commutation relations.

2.6.1 The Heisenberg algebra

In two dimensions, the coordinate algebra with canonical deformation

[x, y] = iθ (2.180)

The noncommutativity isn’t between the coordinates and momenta, it is
between the coordinares themselves. We can use the usual Fock space rep-
resentation for this aglbebra.

The Fock space is given by

H =
{
| n >, n ∈ N0

}
(2.181)

And defining

x± := x± iy (2.182)

with [
x+, x−

]
= 2θ. (2.183)

47



2.6. MATRIX MODEL APPROACH

Now define the creator and annihilation (or destruction) operators usually
introduced in the process of second quantization

x− | n >=
√

2θ
√
n+ 1 | n+ 1 >, x+ | n >=

√
2θ
√
n | n− 1 > (2.184)

One can then consider a Fock space with a basis |n > (n > 0) provided by
the eigenfunctions of the number operator N,

N̂ = x̂−x̂+ (2.185)

N̂ |n >= n|n > (2.186)

and the vacuum state |0 > defined so that

x−|0 >= 0 (2.187)

For θ ' 0 one can write

N̂ = x̂−x̂+ ≈ (x2 + y2)/2θ = r2/2θ (2.188)

so that configuration space at infinity can be connected with n→∞ in Fock
space.

This can be generalized to higher dimensions. Any 2n-dimensional alge-
bra with commutation relations. As we will mostly be concerned with the
4-dimensional case in the following.

The most general noncommutativeR4
θ is generated by coordinates subject

to the commutation relations[
xµ, xν

]
= iθµν , µ, ν ∈ {1, ..., 4} (2.189)

θµν can always be cast into the form

θµν =


0 θ12 0 0
−θ12 0 0 0

0 0 0 θ34

0 0 −θ34 0


To simplify the following formulas, we restrict our discussion from now on to
the selfdual case

θµν =
1

2
εµνρσθρσ (2.190)
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and denote

θ := θ12 = θ34 (2.191)

The complex coordinates

x±L := x1 ± ix2 , x±R := x3 ± ix4, (2.192)

the commutation relations (2.189) take the form

[x+a, x−b] = 2θδab, [x+a, x+b] = [x−a, x−b] = 0 (2.193)

and the standard basis

H = {| n1, n2 >, n1, n2 ∈ N0} (2.194)

with

x−L | n1, n2 > =
√

2θ
√
n1 + 1 | n1 + 1, n2 >

x+L | n1, n2 > =
√

2θ
√
n1 | n1 − 1, n2 >

x−R | n1, n2 > =
√

2θ
√
n2 + 1 | n1, n2 + 1 >

x+R | n1, n2 > =
√

2θ
√
n2 | n1, n2 − 1 > (2.195)

2.6.2 Noncommutative gauge theory

Let us start by considering the noncommutative version of a pure U(1)
gauge theory. We can introduce gauge theory by using a matrix action

S = − (2π)2

2g2θ2
tr([Xµ, Xν ]− iθµν)2, (2.196)

where the Xµ are infinite-dimensional matrices, and the trace is over the Fock
space (2.194).

The action is invariant under unitary transformations

Xµ → U †XµU (2.197)

The fluctuation Aµ around the ground state xµ as

Xµ = xµ + Aµ (2.198)
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The fluctuations Aµ are understood as infinite-dimensional matrices acting
on the Fock space (2.194) as well. They have to transform as

Xµ → U †Xµ[xµ, U ] + U †AµU (2.199)

to make the Xµ gauge covariant. The gauge covariant field strength then
reads

iFµν = ([Xµ, Xν ]− iθµν) = [xµ, Aν ]− [xν , Aµ] + [Aµ, Aν ] (2.200)

and the action (2.196) becomes

S =
(2π)2

2g2θ2
tr(FµνFµν) (2.201)

We can also use the complex covariant coordinates

X+L = X1 + iX2 , X+R = X3 + iX4 (2.202)

X−L = X1 − iX2 , X−R = X3 − iX4 (2.203)

and the corresponding field strength

Fαa,βb = [Xαa, Xβb]− 2θεαβδab (2.204)

with a,b ∈ {L,R} and α, β ∈ {+,−}. The action (2.196) can xow be written
in the form

S =
(π)2

g2θ2
tr(
∑
a

F+a,−aF+a,−a −
∑
a,b

F+a,+bF−a,−b) (2.205)

and the equations of motion are given by∑
a,α

[Xαa, (Fαa,βb)
†] = 0 (2.206)

2.6.3 U(1) instantons on R4
θ

We will look for solutions of the equation of motion (2.206) which can be
understood as instantons of the gauge theory

In Ref [64] they schowing it’s a in noncommutative R2
θ that the noncom-

mutative gauge theory contains the classical and quantum dynamics of all
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U(N) gauge theories and that classical solutions are labeled by the rank of the
gauge group and the magnetic charge. Also the BFS solutions describe vari-
ouns D-1 string attached. They can be interpreted as localized flux solutions,
sometimes called fluxons.

The situation on R4
θ is more complicated, and there are diferent types of

non-trivial U (1) instanton solutions on R4
θ

Assuming that θµν is self-dual, there are two types of instantons: [65]

1 -There there exist straightforward generalizations of the two-dimensional
localized fluxon solutions with self-dual field strength. As in the two-dimensional
case, we will refer to these 4-dimensional solutions as fluxons.

2 -There are other types of U (1) instantons on R4
θ, in particular anti-

selfdual instantons which are much less localized than the fluxon solutions.
For the construction of the fluxons, let us consider a finite dimensional

subvectorspace Vn of the Fock-space H of dimension n spanned by finite set
of vectors |n1, n2 >∈ H

Vn =< {|ik, jk >; k = 1, ...., n} > . (2.207)

We introduce a partial isometry S mapping H to H\Vn, which has

S†S = 1, (2.208)

SS† = 1− PVn (2.209)

where Pn: H → Vn is the orthogonal projection. By unitaty gauge transfor-
mation we can assume that Vn is spanned by the vectors |0 >, .....|n − 1 >
with the projection operator onto the subspace Vn

PVn :=
n∑
k=1

|ik, jk >< ik, jk|. (2.210)

According [64] the solutions of the equation of motion given by

Xn
+L := Sx+LS

† +
n∑
k=1

γLk |ik, jk >< ik, jk| (2.211)

Xn
+R := Sx+RS

† +
n∑
k=1

γRk |ik, jk >< ik, jk| (2.212)
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With

[Xn
+L, X

n
+R] = [Xn

+L, X
n
−R] = [Xn

−L, X
n
+R] = [Xn

−L, X
n
−R] = 0 (2.213)

and Xn
−a = (Xn

+a)
†, γL,Rk ∈ C determine the position of the fluxons. The field

strength Fµν fo this solution is

Fµν = PVnθµν (2.214)

The action corresponding to the instanton solution is proportional to the
dimension of the subspace Vn

S[Xn
±a] =

8π2

g2
tr(PVn) =

8π2

g2
n. (2.215)

”pseudoparticle” solutions we mean the long range fields Aµ which minimize
locally the Yang-Mills action S and for which S(A) < ∞. The space is
euclidean and four-dimensional. All fields we are interested in satisfy the
condition:

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (2.216)

This field → 0 when x→∞.
Let us start consider S3 is very large sphere in 4-dimensional space. From

(2.216)

Aµ
∣∣
S3 =

1

g
(x)

∂g(x)

∂xµ

∣∣∣∣
S3

(2.217)

Where g(x) are matrices of the gauge group. Hence every field Aµ(x) produce
a certain mapping of the sphere S3 onto the gauge group G. The phase space
of the Yang-Mills fields are divided into an infinite number of components,
each of which is characterized by some value of q, where q is a certain integer.

We search for the absolute minimum of the given component of the phase
space. In order to do this we need the formula expressing the integer q

Aµ
∣∣
S3 =

1

g
(x)

∂g(x)

∂xµ

∣∣∣∣
S3

(2.218)
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Chapter 3

Yang-Mills Matrix Theory

Modern particle theories, such as the Standard model, are quantum Yang-
Mills theories. In a quantum field theory, space-time fields with relativistic
field equations are quantized and, in many calculations, the quanta of the
fields are interpreted as particles. In a Yang-Mills theory these fields have
an internal symmetry: they are acted on by a space-time dependant non-
Abelian group transformations in a way that leaves physical quantities, such
as the action, invariant. These transformations are known as local gauge
transformations and Yang-Mills theories are also known as non-Abelian gauge
theories.

Yang-Mills theories, and especially quantum Yang-Mills theories, have
many subtle and surprising properties and are still not fully understood,
either in terms of their mathematically foundation or in terms of their phys-
ical predictions. However, the importance of Yang-Mills theory is clear, the
Standard Model has produced calculations of amazing accuracy in particle
physics and, in mathematics, ideas arising from Yang-Mills theory and from
quantum field theory, are increasingly important in geometry, algebra and
analysis.

Consider a complex doublet scalar field φa ; a scalar field is one that has
no Lorentz index, but, as a doublet, φa transforms under a representation of
SU(2), the group represented by special unitary 2× 2 matrices:

φa(x)→ gabφbx (3.1)

where g ∈ SU(2) and the repeated index is summed over. If this is a global
transformation, that is, if g is independent of x, then derivative of φa have
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the same transformation property as a itself:

∂φa
∂xµ
→ ∂gabφb

∂xµ
= gab

∂φb
∂xµ

+
∂gab
∂xµ

φb (3.2)

In order to construct an action which includes derivatives and which is invari-
ant under local transformations, a new derivative is defined which transforms
the same way as φa :

Dµφa =
∂φa
∂xµ

+ (Aµ)abφb (3.3)

where Aµ is a new two-indexed space-time field, called a gauge field or gauge
potential, defined to have the transformation property

(Aµ)µ → gab(Aµ)cdg
−1
db −

∂gac
∂xµ

g−1
cb (3.4)

Now, under a local transformation

Dµφa → gabDµφb (3.5)

and so, Dµφa transforms in the same way as φa . This derivative is called
a covariant derivative. A physical theory which includes the gauge field A
should treat Aµ as a dynamical field and so the action should have a kinetic
term for Aµ . In other words, the action should include derivative terms for
Aµ . These terms are found in the field strength

Fµν =
∂Aν
∂xµ
− ∂Aµ∂xν + [Aµ, Aν ] (3.6)

which has the covariant transformation property

(Fµν)ab → gab(Fµν)cdg
−1
db (3.7)

where [Aµ, Aν ] is the normal matrix commutator. In fact, the simplest Yang-
Mills theory is pure Yang-Mills theory with action

S[A] = −1

2

∫
d4x trace FµνF

µν . (3.8)

and corresponding field equation

∂Fµν
∂xµ

= 0 (3.9)
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Solutions to this equation are known as instantons.
More generally, Yang-Mills theories contain gauge fields and matter fields

like φ and fields with both group and Lorentz or spinor indices. Also, the
group action described here can be generalized to other groups and to other
representations. In the case of the Standard Model of particle physics, the
gauge group is SU(3)×SU(2)× U(1) and the group representation structure
is quite intricate.

Yang-Mills theory was first discovered in the 1950s, at this time, Quan-
tum Electrodynamics was known to describe electromagnetism. Quantum
Electrodynamics is a local gauge theory, but with an abelian gauge group.
It was also known that there is a approximate global non-Abelian symmetry
called isospin symmetry which acts on the proton and neutron fields as a
doublet and on the pion fields as a triplet. This suggested that a local ver-
sion of the isospin symmetry might give a quantum field theory for the strong
force with the pions fields as gauge fields [ORaifeartaigh, 1997]. This did not
work because pion fields are massive whereas gauge fields are massless and
the main thrust of theoretical effort in the 1950s and 1960s was directed at
other models of particle physics.

However, it is now known that the proton, neutron and pion are not
fundamental particles, but are composed of quarks and that there is, in
fact, a quantum Yang-Mills theory of the strong force with quark fields and
gauge particles called gluons. Furthermore, it is now known that it is possi-
ble to introduce a particle, called a Higgs boson, to break the non-Abelian
gauge symmetry in the physics of a symmetric action and give mass terms
for gauge fields. This mechanism is part of the Weinberg-Salam model, a
quantum Yang-Mills theory of the electroweak force which is a component
of the Standard Model and which includes both massive and massless gauge
particles.

These theories were only discovered after several key experimental and
theoretical breakthroughs in the late 1960s and early 1970s. After it became
clear from collider experiments that proton have a substructure, the oretical
study of the distance dependant properties of quantum Yang-Mills theory
lead to the discovery that Yang-Mills fields are asymptotically free [Gross,
1999]. This means that the high-energy behaviour of Yang-Mills fields in-
cludes the particle like properties seen in experiments, but the low-energy
behaviour may be quite different and, in fact, the quantum behaviour might
not be easily deduced from the classical action. Confinement and the mass
gap are examples of this. The strong force is a local gauge theory with quark
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fields. The quark structure of particles is observed in collider experiments,
but free quarks are never detected, instead, at low-energies, they appear to
bind together to form composite particles, such as neutrons, protons and
pions. This is called confinement. It is possible to observe this behaviour in
simulations of the quantum gauge theory of the strong force, but it has not
been possible to prove mathematically that confinement is a consequence of
the theory. The same is true of the mass gap, it is known that particles have
non-zero mass, and this is observed in simulations, but, there is no known
way of deriving the mass gap mathematically from the original theory [Clay,
2002].

The symmetries of Yang-Mills theory can be extended to include a global
symmetry between the bosonic and fermionic fields called supersymmetry.
While there is no direct evidence for supersymmetry in physics, the indirect
case is very persuasive and it is commonly believed that direct evidence will
be found in the future. Often, supersymmetric theories are more tractable,
for example, Seiberg and Witten have found exact formula for many quantum
properties in N = 2 super-Yang-Mills theory [Seiberg , Witten 1994]. It is
also commonly believed by theoretical physicists that the quantum Yang-
Mills theories in particle physics are in fact a limit of a more fundamental
string theory.

3.1 Yang-Mills Theory in Low Dimensional

3.1.1 Bosonic Matrix Integrals

We begin our systematic study of Yang-Mills theories on low-dimensional
with the simplest possible example, namely 0-dimensional Yang-Mills coupled
to p adjoint scalars with a quartic interaction. There are no Yang-Mills fields
in 0-dimensions and the effect of gauging is trivial, introducing only an overall
factor of the gauge group volume. As a result, the partition function that we
wish to study takes the form of a simple matrix integral

Z =

∫
D Φiexp

{
− N

2λ0

tr

(∑
i

m2
iΦ

2
i −

∑
i<j

[Φi,Φj]

)}
(3.10)
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We rescaled the Φ make clear that the effective couplings are λ0/m
2
im

2
j , the

partation function becomes

Z =

∫
D φiexp

{
− N

2
tr

(∑
i

Φ̃2
i

2
−
∑
i<j

λ0

m2
im

2
j

[Φ̃i, Φ̃j]

)}
(3.11)

3.1.2 Bosonic Yang-Mills on S1

We now move up in dimension to consider bosonic Yang-Mills on an S1 .
The particular model that we consider is

S =
N

2λ

∫
tr

( p∑
i=1

D0ΦiD0Φi +

p∑
i

M2Φ2
i −

p∑
i<j

[Φi,Φj]
2]

)
(3.12)

From λ ,M , and the size R of the S1 , which we will think of as an inverse
temperature, we can construct two dimensionless parameters

t̃ = (Rλ1/3)−1 m = Mλ−1/3 (3.13)

Large masses m >> 1

The second regime that one can study corresponds to the limit of large
mass m >> 1 and displays a much more interesting and nontrivial structure.
Here, the theory is effectively weakly coupled and, since all mode except the
zero component of the gauge field, A0 , are massive, they can be integrated
out in perturbation theory.

We consider a function of a unitary matrix U

Z =

∫
DUexp[−N2Seff(U)] U = ei

∮
dtA0 (3.14)

The computation of Seff (U) now proceeds exactly as in the N = 4 theory
with the identification

x = e−MR = e−m/t̃, (3.15)

the letter partition function is rather trivial as there is only one bosonic state
at energy 1 for each scalar field

z(x) = x (3.16)
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This leads to a simple effective action for U

Seff(U) = p
∞∑
n=1

xn

n
tr(Un)tr(U−n) (3.17)

where the factor of p arises because Seff receives contributions from p scalar
fields.

Writing this in terms of moments ρn of the corresponding eigenvalue dis-
tribution, this becomes

Seff(ρn) =
∞∑
1

1

n
m2
n|ρn|2 (3.18)

m2
n = 1− pxn (3.19)

where the 1 in (3.19) arises from the Vandermonde measure as usual.

t̃c = m(ln p)−1 (3.20)

Away from the strict m → ∞ limit, (3.18) will receive corrections that can
potentially alter the order of the transition. In particular, as we have seen
many times it is the sign of the quartic term in the effective potential for ρ1

that is the difference between first and second order. This can be determined
by computing higher-loop perturbative corrections to (3.18) and integrating
out the modes ρi with i > 1 that remain massive at the transition point. The
result is an effective potential for ρ1

S(ρ1) = m2
1(x,m−3|ρ1|2 +

1

m6
b(x,m−3)|ρ1|4 + ... (3.21)

The calculation of m1 and b to the requisite orders is straightforward but
tedious, yielding [66]

m2
1 = (1− px)− 1

4m6
(p2 − p)(x2 + 2x)lnx (3.22)

b = − 1

32

(p− 1)lnp

p3
(ln(p)(9p2 + 2p) + 4p3 + 7p2 − 4p− 4)m−6 + ...

Since b < 0 for all p > 1, we see that the phase transition is indeed of
first order as one moves away from m = ∞. From the correction to m2

1 in
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(3.23), we can also compute the leading order shift in the phase transition
temperature, obtaining [66]

t̃c = m(lnp)−1 +
1

4m2

(p− 1)(2p+ 1)

plnp
+ ... (3.23)

This result will fit in nicely the picture of the m = 0 theory that we now
describe.

3.1.3 Bosonic Yang-Mills on T 2

We now consider the first of our two-dimensional models, namely bosonic
Yang-Mills on a rectangular two-torus with radii R1, R2

The specific model that we consider has action

S =
N

2λ

∫
d2 xtr

(
F 2

12 +

p∑
i=1

[
(DµΦI)2 +M2Φ2

I

]
−
∑
I>J

[ΦI ,ΦJ ]2
)

(3.24)

and can be parametrized by the two dimensionless radii

r1 = R1

√
λ r2 = R2

√
λ (3.25)

and the dimensionless mass

m =
M√
λ

(3.26)

Infinite masses m =∞

We begin our study of (3.24) by considering the strict limit m =∞. The
reason we do this is to recall some elementary facts about the exact solution
of pure Yang-Mills on a two-torus that will be useful when we study large
but noninfinite masses.

The exact result for the two-dimensional Yang-Mills partition function
was first obtained by Migdal [67] using a lattice regularization of the theory.
We consider putting unitary matrices UL on the links of the lattice and
consider the partition function

Z =

∫ ∏
L

DUL
∏
P

ZP (UP ) (3.27)
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where the product is over plaquettes P of the lattice and ZP is a plaquette
action chosen so that the continuum theory coincides with Yang-Mills. One
example of a plaquette action is the usual Wilson one

ZP = exp

{
N

λ
tr(UP + U−1

P )

}
(3.28)

One can imagine integrating out some of the links to generate an effective
action for the larger plaquettes that remain. Under this RG flow, the action
(3.28) is not invariant, instead flowing to the plaquette action [67]

ZP (UP ) =
∑
R

dRχR(UP )exp

{
− λA

2N
C2(R)

}
(3.29)

where the representation R has dimension dR and quadratic Casimir C2(R)
and A is the area of the new plaquettes in units of the fundamental ones. It
is easy to verify that (3.29) satisfies the additivity property∫

DUZP (V1U,A1)ZP ′ (U
†V2, A2) = ZP+P ′ (V1V2, A1 + A2) (3.30)

and consequently is an RG fixed point. To compute the partition function of
2-dimensional Yang-Mills, we are equally justified in using (3.28) or (3.29).
The former is easier to work with as the property (3.30) can be used to
integrate out all of the links except those wrapping nontrivial cycles. Re-
stricting to the torus for simplicity, we arrive at the following expression for
the partition function

Z =

∫
DUDV

∑
R

dR exp(−r1r2

2N
C2R)χR(UV U−1V −1) (3.31)

where we have used the definitions (3.25) of r1, r2 . The links which remain
are precisely the holonomies that we wish to study. The remaining integrals
(3.31) are now sufficiently simple that we can perform them exactly to obtain

Z =
∑
R

e−
r1r2
2N

C2(R) (3.32)

This partition function is very well-behaved and exhibits no nontrivial phase
structure. As an exercise, let us obtain this conclusion in a manner more
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in line with the sort of analysis that we have used to study other theories
above. In particular, let us consider integrating out only one holonomy, say
V , from (3.31). We obtain

Z =

∫
DU

∑
R

e−
r1r2
2N

C2(R)χR(U)χR(U †) (3.33)

Using the generalized Frobenius relations of [68], [69], [70] it is possible to
write the integrand in terms of an effective action for U [67]

Z =

∫
DUexp

{∑
n

1

n
(−e−r1r2n + 2e−r1r2n/2)tr(Un)tr(U−n) (3.34)

Introducing an eigenvalue density ρ as usual, we can obtain an effective action
for the moments of ρ

Seff (ρn) =
∑
n

1

n
(1− e−r1r2n/2)2|ρn|2 (3.35)

We see that for all values of the coupling λA = r1r2 the effective masses of
the ρn are positive. In the limit r1r2 →∞ they become arbitrarily light but
the never become tachyonic. The eigenvalue distributions are thus always
uniform and there is no phase transition.
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3.2 Yang-Mills Theories

3.2.1 Yang-Mills Gauge Theories

The Yang-Mills matrix models are related to gauge theories by dimen-
sional reduction. We recall the structure of Yang-Mills gauge theories

A Yang-Mills gauge theory in D dimensions has Lagrangian

L =
1

4
F 2 − i

2
ψ̄γ.Dψ (3.36)

The fields in this theory are the vector potential Xa
µ , and fermions ψaα . Here

µ is a spacetime index running from 0 up to D1, and for the moment we use
a Minkowski metric. The γµαβ are Dirac matrices, and ψ̄ is defined

ψ̄ = ψ†γ0 (3.37)

The fields are in the Lie algebra of a compact semi-simple gauge group G so
we can write

Xµ = Xa
µt
a ψα = ψaαt

a (3.38)

where the ta(a = 1, .., g) are the generators of the Lie algebra which we choose
such that

Trtatb = 2δab (3.39)

and

[ta, tb] = ifabctc. (3.40)

The gauge field strength F is defined

F a
µν = ∂µX

a
ν − ∂νXa

µ + cfabcXb
µX

c
ν (3.41)

and the gauge covariant derivative is

(Dµψ)a = ∂µψ
a + cfabcXb

µψ
c. (3.42)

The parameter c is a coupling constant. The theory is invariant under gauge
transformation

ψ → UψU−1, Xµ → UXµU
−1 − ig−1(∂U)U−1 (3.43)

where U ∈ G. The fermions are optional in this model. We can define a
purely bosonic gauge theory by simply omitting them.
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3.3 Yang-Mills Matrix Models

To obtain a Yang-Mills matrix model, we take the Lagrangian (3.36) and
assume all the fields are independent of space and time. Effectively, this
means we drop all the derivative terms from (3.36)

At this stage, we also move from Minkowski to Euclidean signature. We
do this by setting

Xa
0 = iXa

D, (a = 1, .., g) (3.44)

and taking the Xa
D real . We also set

γ0 = iγD (3.45)

We have been careful to leave this manipulation until last because we wish
to study the Wick rotation of a Minkowski theory . This leads to a rather
strange effect in the case of D = 10 when the fermions are Majorana. Since
the Dirac matrices can no longer all be imaginary, an SO(D) transformation
would break the Majorana condition. However, after integrating out the
fermions, full SO(D) invariance is restored since we can analytically continue
in XD .

We arrive at the matrix model action

SYM = −Tr

(
1

4
[Xµ, Xν ][Xµ, Xν ] +

1

2
ψ̄γµ[Xµ, ψ]

)
(3.46)

where we have dropped the coupling constant g since it can be scaled out in
a trivial manner. In those cases where the fermions were originally Majorana
(before Wick rotation), we may choose the representation in which the ψaα
eal. In those cases where the fermions are complex, it will sometimes be
convenient to rewrite the (ψaα) for each a as a real vector of double the
length. We can also absorb the γ0 which appears in the definition of ψ̄ into
the γµ . Thus we shall sometimes write the action in the form

SYM = −Tr

(
1

4
[Xµ, Xν ][Xµ, Xν ] +

1

2
ψαΓµαβ[Xµ, ψβ]

)
(3.47)

where the Γµ are some new matrices defined in terms of the γµ , and the ψaα
are now always real. In the case where the original fermions were complex,
the range of the indices α and β has been doubled.
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We define a partition function

ZD,G =

∫ D∏
µ=1

dXµ

N∏
α=1

dψαexp

(
1

4

∑
µν

Tr[Xµ, Xν ]
2 +

1

2
Trψα[ΓµαβXµ, ψβ]

)
(3.48)

which we shall also sometimes refer to as the Yang-Mills integral. In principle
one can integrate out the fermions to obtain

ZD,G =

∫ D∏
µ=1

dXµPD,G(Xµ)exp

(
1

4

∑
µν

Tr[Xµ, Xν ]
2

)
(3.49)

where the Pfaffian PD,G is a homogeneous polynomial of degree 1
2
N g. In this

representation, the gauge symmetry is

Xµ → U †XµU, U ∈ G (3.50)

and SO(D) symmetry

Xµ →
∑
ν

QµνXν , Q ∈ SO(D) (3.51)

In addition, we shall consider simple correlation functions

< ck(Xσ) >=

∫ D∏
µ=1

dXµCk(Xσ)PD,G(Xµ)exp

(
1

4

∑
µν

Tr[Xµ, Xν ]
2

)
(3.52)

with Ck a function of the Xµ which grows like a polynomial of degree k.
The first question one must ask about these models is whether the in-

tegrals (3.48) and (3.52) which define the partition function and correlation
functions are well defined. Certainly, we must require at least that the par-
tition function is finite for the theory to make any sense. The difficulty here
is that the potential Tr[Xµ, Xν ][Xµ, Xν ] has flat directions in which the ma-
trices commute. For example, in the bosonic case, one can move to infinity
along one of these directions whilst keeping the integrand constant, and thus
it was widely believed that these integrals may be infinite. However, in the
case of SU(2) it is possible to perform the integrals for the partition function
exactly. This was done originally in the supersymmetric cases [71–74] and it
was found that the partition function does converge at least for D = 4, 6, 10.
Subsequently, eigenvalue densities and some correlation functions have been
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calculated in [75]. It was believed that the supersymmetric versions should
be more convergent than the bosonic because the contributions from the
fermionic integrals would be close to zero near the flat directions. However,
the SU(2) bosonic partition function was calculated in [76], and was found
to converge when D ≥ 5.

The authors of [76] were able to use Monte Carlo methods to calculate
the supersymmetric integrals numerically for SU(2) and SU(3), and the cal-
culations have been extended to various other gauge groups, and also to the
bosonic theories [77, 78]. A difficulty with numerical simulations for the su-
persymmetric integrals is in performing the fermionic integrations to obtain
the Pfaffian, and for this reason, the exact model has only been studied for
the smaller gauge groups. However, the bosonic models have now been stud-
ied for SU(N) with N up to 768 [78, 79]. Analytic approximation schemes
have also been constructed for the bosonic models in [80] and recently for
the D = 4 supersymmetric model [81].

The conclusions of the numerical methods are that the supersymmetric
partition function converges when D = 4, 6, 10 and that the bosonic partition
functions converge at least when D is large enough [78].
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3.4 Introduction of IKKT Models

Ishibashi, Kawai, Kitazawa, and Tsuchiya (IKKT) have proposed a model
(0+0)-dimensional matrix model should give a Paincaré invariant describing
of type-IIB string theory on a flat background. Beginning with the Schild
gauge-fixed form of the string action, they found that the matrix regulariza-
tion of the action led to a zero dimensional matrix model equivalent to the
complete dimensional reduction of ten dimensional super Yang Mills theory.

What is a matrix theory? Simply put, it is a quantum mechanics with
matrix degrees of freedom. It is in general comprised of some N ×N bosonic
and fermionic matrices. Matrix theories have the attractive quality that they
are not quantum field theories, and thus have none of the peculiarities in-
volved with QFTs, such as renormalization. Indeed, since N is finite (though
taken to be large) there are only a finite number of degrees of freedom.

Witten found that the low-energy Lagrangian which describes a system of
N type-IIA D0-branes is equivalent to the dimensional reduction (the theory
on a point) of ten dimensional super Yang-Mills theory to (0+1) dimensions
[82].

The dimensionally reduced Hamiltonian is

H =
R

2
Tr

{
P iP i − 1

2
[X i, Xj][X i, Xj] + θγi[X

i, θ]

}
. (3.53)

X i and P i are N ×N with bosonic entries, θ is a set of N ×N matrices
with fermionic entries.

Banks, Fischler, Shenker, and Susskind (BFSS) discovery after Witten
that this Hamiltonian precisely describes M-theory in the light-front coor-
dinate system, in N = ∞ limit of supersymmetric matrix quantum me-
chanics describing D0 branes [83]. The IKKT model is one proposed non-
perturbative definition of string theory [84]. It is sometimes referred to as
the IIB matrix model, since it is related to a gauge-fixed form of the Green-
Schwarz action for the IIB string.

There are two ways of defining the model. One is as the complete dimen-
sional reduction to 0-dimensions matrix model arising from the dimensional
reduction in all ten dimebsions of N = 1 super Yang Mills theory.

S = − 1

g2
Tr

{
1

4

9∑
µ,ν=0

[Aµ, Aν ][A
µ, Aν ] +

1

2

9∑
µ=0

ψ̄Γµ[Aµ, ψ]

}
. (3.54)
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The action (3.54) looks very similar to the dimensionally reduced Hamilto-
nian of the BFSS conjecture, Eq (3.53).This action still has SO(9.1) symme-
try, as well as the SU(N) gauge symmetry. The Aµ are N × N hermitian
matrix components of a vector in an SO(9.1) representation. The fermion
ψ is in a Majorana-Weyl representation and N × N hermitian matrices for
components [85].

The partition function for the theory is then defined via euclideanization
of the action (Wick rotation of A0 and Γ0 );

Z =

∫
dAdψe−SE (3.55)

The model may also be defined in terms of a grand canonical partition func-
tion or canonical ensemble:

Z[β] =
∞∑
N=1

∫
dXdΨe−S

2
E [β] (3.56)

Here β is interpreted as a chemical potential dual to the matrix size N , and
the action is

S2
E =

1

2α2β
Tr

{
1

4
[Aµ, Aν ][X

µ, Xν ] +
1

2
Ψ̄Γµ[Aµ, ψ]

}
+ βN. (3.57)

If the large N limit is smooth, we ewpect that the β → βc limit is indentical
to consider the microcanonical ensemble with fixed N and take N large [85].

From the actions (3.54) and (3.57), it is clear that the action is mini-
mized if the bosonic matrices commute. If that is the case, they may all be
simultaneously diagonalized and decomposed into a diagonal part Xµ and an
off-diagonal part Ãµ ;

Aµ = Xµ + Ãµ =


x1
µ

x2
µ

.
.
xNµ

+ Ãµ

The fermion ψ is also decomposed into diagonal and off-diagonal com-
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posents ξ and ψ̃

ψ =


ξ1

ξ2

.
.
ξN

+ ψ̃

where xiµ and ξiα satisfy the constraints
∑N

i=1 x
i
µ = 0 and

∑N
i=1 ξ

i
α = 0,

respectively, since we may fix the U(1) part by translation invariance. Under
this transformation, the off-diagonal terms Ãµ and ψ become massive. They
may then be integrated out, and an effective action for the diagonal bosons
(to be interpreted as space-time points) may be obtained by integrating out
the diagonal fermions ξi [85].

∫
dAdψeS[A,ψ] =

∫
dXdξe−Seff[X,ξ] (3.58)

=

∫
dXe−Seff[X] (3.59)

Ishibashi et al. interpret the diagonal matrix elements as points of spacetime.
By expanding the action as a perturbative series and integrating out all the
other fields, an effective action for the spacetime points is found

We perform integrations over off-diagonal parts Ãµ and ψ̃ by the pertur-
bation coupling constant g2. This scheme is valid if the spacetime points are
widely separated (|xi − xj|) � √g [85]. Residual gauge symmetries may be
handled by introducing Faddeev-Popov ghosts and gauge-fixing terms

Sg.f. + SF.P. = − 1

2g2
Tr([Xµ, A

µ]2)− 1

g2
Tr([Xµ, b][A

µ, c]), (3.60)

where b and c are the Faddeev-Popov ghost field.
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The original action (3.54) can be expanded as follows [86]

S = S2 + Sint (3.61)

S2 =
1

g2
Tr
(
− [Xµ, Ãν ][X

µ, Ãν ] + [Xµ, Ãν ][X
µ, Ãν ]

− ¯̃ψΓµ[Xµ, ψ̃]− [ξ̄, Ãµ]Γµψ̃ − ¯̃ψΓµ[Ãµ, ξ]
)
, (3.62)

Sint =
1

g2
Tr
(
− 2[Xµ, Ãν ][Ã

µ, Ãν ]− 1

2
[Ãµ, Ãν ][Ã

µ, Ãν ]

− ¯̃ψΓµ[Ãµ, ψ̃]
)

(3.63)

Can be written S2 + Sg.f in terms of the components as

S2 + Sg.f. =
1

2g2

∑
i<j

((xiν − xjν)2Ãij∗µ Ãijµ − ¯̃ψjiΓµ(xiµ − xjµ)ψ̃ij)

+ (ξ̄i − ξ̄j)Γµψ̃ijÃij∗µ
¯̃ψjiΓµ(ξi − ξj)Ãijµ ). (3.64)

The first and the second terms are the kinetic terms for Ã and ψ̃ respectively,
while the last two terms are Ãψ̃ξ vertices. The basic building blocks of the
Feynman rules (see [86])
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3.5 The IKKT Model of IIB superstring

The supersymmetric Yang-Mills matrix theory with D = 10 has been
proposed as a constructive definition of IIB superstring theory [24]. We give
a very brief introduction here, but for a review see [87].

The idea of the IKKT conjecture is to begin with the Green-Schwarz
action for the superstring in the Schild gauge:

SGS =

∫
d2σ

[√
ĝα

(
1

4
{xµ, xν}2 − i

2
ψ̄Γµ{xµ, ψ}

)
+ β

√
ĝ

]
(3.65)

Here σ are 2-dimensional world-sheet coordinates, ĝ = det(ĝab) is the deter-
minant of the world sheet metric, and α, β are parameters (which could be
scaled out). The xµ are target space coordinates, and the Poisson bracket is
defined

{x, y} =
1√
ĝ
εabx∂ax∂by (3.66)

The theory is then regularised essentially following a method of Goldstone
and Hoppe (for a review, see [88]).

1. A function y on the world sheet is replaced by an N × N traceless
hermitian matrix Y , with a correspondence∫

d2σ
√
ĝy ↔ TrY (3.67)

2. and

{x, y} ↔ −i[X, Y ] (3.68)

Performing this regularisation, the action (3.65) becomes

SIKKT = −α
(

1

4
Tr[Xµ, Xν ][Xµ, Xν ] +

1

2
Trψ̄Γµ[Xµ, ψ]

)
+ βN (3.69)

The string partition function is given by∫
D[x]D[ψ]exp(−SGS) (3.70)
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then becomes the matrix integral∫ D∏
µ=1

dXµ

16∏
α=1

dψαexp(−SIKKT ) (3.71)

which after scaling out becomes the Yang-Mills matrix partition function
Z10, SU(N), with an additional factor eβN .

In their original proposal, IKKT interpreted the integral over the world
sheet metric

∫
D[ĝ] as a requirement to sum over N:

ZIKKT ∼
∑
N

Z10,SU(N)e
−βN (3.72)

However, in general, the matrix regularisation procedure outlined above is
valid in the limit N → ∞, and the partition function is often taken as the
large N limit

ZIKKT ∼ Z10,SU(N) (3.73)

which would correspond to a more literal application of the Goldstone Hoppe
regularisation. The large N limit is not yet well understood, and it is not
clear exactly how to interpret the model. Nevertheless, an argument relating
Wilson loops in the matrix model to string field theory in light-cone gauge
provides additional evidence for the importance of the IKKT model [89].
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Chapter 4

Fuzzy spaces

Studies of fuzzy spaces cross over a variety of concepts in mathematics
and physics. The basic idea of fuzzy spaces is to describe compact spaces in
terms of finite dimensional (N ×N)-matrices such that they give a concrete
realization of noncommutative (NC) spaces [90, 91]. Use of fuzzy spaces in
physics was suggested by Madore around 1992 [92]. Since then, fuzzy spaces
have been an active area of research.

Fuzzy spaces are described by finite dimensional matrices, due to the
Cayley-Hamilton theorem, there is a natural cut-off on the number of modes
for matrix functions on fuzzy spaces. So one can use fuzzy spaces to construct
regularized field theories in much the same way that lattice gauge theories are
built. Various interesting features of field theories on fuzzy spaces have been
reported; for example, existence of topological solutions such as monopoles
and instantons, appearance of the so-called UV-IR mixing, and evasion of
the fermion doubling problem which appears in the lattice regularization

4.1 Construction of Fuzzy Spaces

4.1.1 Construction of fuzzy CPk

Hilbert space

A finite dimensional Hilbert space HN for fuzzy CP k = SU(k + 1)/U(k)
(k=1,2,...) is given by holomorphic sections of a complex line bundle over
CP k, the holomorphic sections of the complex line bundle should correspond
to a unitary irreducible representation G = SU(k + 1). Notion of holo-
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morphicity in the representation of G can be realized by totally symmetric
part of the representation, i.e., (n, 0), where n is the rank of the repre-
sentation (n = 1, 2, ...). The other totally symmetric representation (0, n)
corresponds to antiholomorphic part of the SU(k+1) representation and the
(p, p)-representation gives real representation.

For SU(2) (corresponding to k=1), the representation is given by a single
component, say (p), so there is no real representation. The dimension of HN

is then determined by that of the (n, 0)-representation for SU(k+1);

Nk ≡ dim(n, 0) =
(n+ k)!

k! n!
(4.1)

Consequently, matrix algebra of fuzzy CP k is realized by N (k) × N (k) -
matrices. Operators or matrix functions on fuzzy CP k are expressed by
linear combinations of N (k) ×N (k) -matrix representations of the algebra of
SU(k+1) in the (n,0)-representation.

We begin with write down a holomorphic U(1) bundle Ψ
(n)
m as

Ψ(n)
m (g) =

√
NkD(n,0)

mNk(g), (4.2)

D(n,0)

mNk(g) = < (n, 0),m|ĝ|(n, 0), N (k) > (4.3)

where |(n, 0),m > (m = 1, 2, , N (k)) denote the states on the Hilbert space
HN , |(n, 0), N (k) > is the highest or lowest weight state, g is an element
of G = SU(k + 1) and ĝ is a corresponding operator acting on these state.

D(n,0)

mNk(g) is known as WignerD-functions for SU(k+1) in the (n, 0)-representation,
allowing us to interoret the D-functions as matrix elements.

Let RA denote the right-translation operator on g;

RAg = gtA (4.4)

where tA are the generator of G in the fundamental representation (1,0). The
element g is given by g = exp(itAθ

A) with continuous parameters θA. We now
consider the splitting of tA’s to those of U(k) = SU(k)×U(1) subalgebra and
the rest of them, i.e., those relevant to CP k. Let tj (j = 1, 2, , k2) and tk2+2k

denote the generators of U(k) ∈ SU(k + 1), tk2+2k being a U(1) element of
the U(k), and let t±i (i=1,2,,k) denote the rest of tA’s. One can consider t±i
as a combination of rasing-type (t+i) and lowering-type (ti) operators acting
on the states of HN . Choosing |(n, 0), N (k) > to be the lowest weight state,
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we then find

RjD(n,0)

mNk(g) = 0 (j = 1, 2, 3..., k2), (4.5)

Rk2+2kD(n,0)

mNk(g) = − nk√
2k(k + 1)

D(n,0)

mNk(g) (4.6)

R−iD(n,0)

mNk(g) = 0 (4.7)

(5.1) and (5.2) indicate that Ψ
(n)
m ∼ D(n,0)

mNk(g) is a U(1) bundle over CP k.
One can also check that under the U(1) transformations,

g → gh, h = eitk2+2kθ
k2+2k

(4.8)

Ψ
(n)
m (g) transforms as

Ψ
(n)
I (g)→ Ψ(n)

m (gh) = Ψ(n)
m (g)exp

(
− i nk√

2k(k + 1)
θk

2+2k

)
. (4.9)

In terms of geometric quantization, equation (5.3) corresponds to the po-
larization condition on a prequantum U(1) bundle. The Hilbert space is
therefore constructed as sections of the holomorphic U(1) bundle Ψn

m . The
square-integrability of HN is guaranteed by the orthogonality condition of
the Wigner D function [93];∫

dµ(g)D?(R)
m,k (g)D?(R

′)
m′,k′ (g) = δRR

′ δmm′δkk′

dimR
(4.10)

where D?(R)
m,k (g)D(R)

m,k(g
−1), R denotes the representation of G = SU(k + 1),

and dµ(g) is the Haar measure of G normalizsd to unity;
∫
dµ(g) = 1. The

orthogonality condition of our interest is given by∫
dµ(g)D?(n,0)

m,Nk (g)D(n,0)

m′,Nk(g) =
δmm′

Nk
. (4.11)

Symbols and star products

We define the symbol of a matrix operator Ams(m, s = 1, 2, , N (k)) on the
Hilbert space of fuzzy CP k by [94]

〈Â〉 ≡
∑
ms

D(n,0)

m,Nk(g)AmsD?(n,0)

s,Nk (g)

= 〈(n, 0), N (k)|ĝT Âĝ?|(n, 0), N (k)〉 (4.12)
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The star product of fuzzy CP k is defined by

〈ÂB̂〉 ≡ 〈Â〉 ? 〈B̂〉 (4.13)

From (4.12) can be written

〈ÂB̂〉 =
∑
msrr′p

D(n,0)

m,Nk(g)AmrD?(n,0)
r,p (g)D(n,0)

r′,p (g)Br′sD?(n,0)

s,N(k)(g) (4.14)

We use the relation ∑
p

D?(n,0)
r,p (g)D(n,0)

r′,p (g) = δrr′ (4.15)

From (4.11), the trace of a matrix operator A can be expressed as

TrA =
∑
m

Amm = Nk

∫
dµ(g)D(n,0)

m,N(k)Amm′D
?(n,0)

m′,N(k)

= N (k)

∫
dµ(g)〈Â〉. (4.16)

The trace of the product of two matrices A, B, is also given by

Tr AB = N (k)

∫
dµ(g)〈Â〉 ? 〈B̂〉 (4.17)

Algebraic construction

Here we present the construction of fuzzy CP k (k=1,2,...). The coordi-
nates QA of fuzzy CP k can be defined in terms of LA which are N (k)×N (k)-
matrix representation of SU(k+1) generators in the (n, 0)-representation [94]

QA =
LA√
C

(k)
2

, (4.18)

where Ck
2 is the quadratic Casimir. With

QAQA = 1 (4.19)

dABCQAQB = ck,nQC , (4.20)
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where dABC is the totally symmetric symbol, and 1 is the N (k)×N (k) identity
matrix. For determine the coefficient Ck,n in (4.20), we notice

ΛA = a†i (tA)ijaj, (4.21)

ΛA is the SU(k + 1) generators in the (n,0)-representation, tA SU(k + 1)
generators in the fundamental representation, with normalization

tr(tAtB) =
1

2δAB
, (4.22)

and a†i ,ai are the creation and annihilation operators. Using the completeness
relation

(tA)ij(tA)kl =
1

2

(
δilδjk −

1

k + 1
δijδkl

)
(4.23)

and the commutation relation [ai, a
†
j] = δij , we can check ΛAΛA = C

(k)
2 . We

find [94,95]

dABCΛBΛC = (k − 1)

(
n

n+ 1
+

1

2

)
a†i (tA)ijaj

= (k − 1)

(
n

n+ 1
+

1

2

)
ΛA (4.24)

Representing ΛA by LA , we can determine the coefficient ck,n

Ck,n =
(k − 1)√
C

(k)
2

(
n

k + 1
+

1

2

)
. (4.25)

Wher C
(k)
2 is the quadratic Casimir for SU(k+ 1) in the (n,0)-representation

C
(k)
2 =

nk(n+ k + 1)

2(k + 1)
(4.26)

4.1.2 Construction of fuzzy S4

Introduction to fuzzy S4

The idea of fuzzy S2 has been one of the guiding forces for us io investigate
fuzzy spaces [92]. For example, CPk are successfully constructed in the same
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spirit as the fuzzy S2. Those interested in this area, it is of great interest to
obtain a four-dimensional fuzzy space. CP2 is not qualified for this purpose,
since CP2 does not have a spine structure [96]. S4 is well motivated, since
naturally leads to R4 at a certain limit.

There have been several attempts in [97, 98] to construct fuzzy S4 from
a field theoretic. In [99] the construction is through a projection from some
matrix algebra and, owing to this forcible projection, it is advocated that
fuzzy S4 obeys a nonassociative algebra.

In [98], fuzzy S4 is alternatively considered in a way of constructing a
scalar field theory on it, based on the fact that CP3 is a CP1 (or S2 )
bundle over S4. Note that the term fuzzy S4 is also used, mainly in the
context of M(atrix) theory, e.g., in [100] also showing that the existent fuzzy
S2 and S4 models are natural candidates for the quantum geometry on the
corresponding spheres in AdS/CFT correspondence. Also the construction of
fuzzy S4 is considered through fuzzy S2×S2. This allows one to describe fuzzy
S4 with some concrete matrix configurations [101]. However, the algebra is
still non-associative and one has to deal with non-polynomial functions on
fuzzy S4. Since those functions do not naturally become polynomials on S4

in the commutative limits. In the case of fuzzy CPk , the fuzzy functions
are represented by full (N × N)-matrices, so the product of them is given
by matrix multiplication which leads to associativity of the algbra for fuzzy
CPk. The extra constraint is expressed as an algebraic constraint such that it
enables us to describe the algebra of fuzzy S4 in terms of the algebra of SU(4)
in the (n,0)-representation, the algebra of fuzzy S4 is obtained from SU(4)
as well with the extra constraint on top of these fuzzy CP3 constraints. [102]

Construction of fuzzy S4

We begin with construction of fuzzy CP3 . The coordinates QA of fuzzy
CP3

QA =
LA√
C

(3)
2

, (4.27)

where LA are N (3)×N (3)-matrix representation of SU(4), and the coordinates
satisfy the following constraints:

QAQA = 1, (4.28)

dABCQAQB = c3,nQC . (4.29)
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Where 1 is the N (3) ×N (3) identity matrix

N (3) =
1

6
(n+ 1)(n+ 2)(n+ 3), (4.30)

and from (4.25)

C3,n =
2√
C

(3)
2

(
n

4
+

1

2

)
(4.31)

c3
2 is the quadratic Casimir of SU(4). From (4.26)

C
(3)
2 =

3n(n+ 4)

8
(4.32)

for k � n (in this case k = 3), we have

Ck,n −→ ck =

√
2

k(k + 1)
(k − 1) (4.33)

SU(4) is decomposition as, SU(4) −→ SU(2)× SU(2)×U(1), where SU(2)
and U(1) are defined(

SU(2) 0
0 0

)
,

(
0 0
0 SU(2)

)
,

(
1 0
0 −1

)
Each SU(2) is the (2× 2)-matrix representation.

In order to obtain functions on fuzzy S4, we need to require

[F , Lα] = 0 (4.34)

where F denote matrix-functions of QAs and Lα are generators of H repre-
sented by N (3) × N (3)-matrices, H being relevant to the above decomposi-
tionof SU(4) (H ≡ SU(2)× U(1)). Construction of fuzzy S4 can be carried
out by imposing the additional constraint (4.34) onto the functions on fuzzy
CP3. What we claim is that the further condition (4.34) makes the func-
tions F(QA) become functions on fuzzy S4. This does not mean that fuzzy
S4 is a subset of fuzzy CP3. QA(A = 1, ..., 15)’s are defined in R15. While
locally, say around the pole of A = 15, globally they are embedded in R15.
The equation (4.34) is a global constraint in this sence. So the algebra of
fuzzy S4 is given by a subset of SU(4). The emerging algebraic structure
of fuzzy S4 will be clearer when we consider the commutative limit of our
construction [102].
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A formula for the large N-limit of matrices

In this subsection, following [103, 104]. We now consider the symbol for
the product LBA, where LB are the generators of SU(K + 1) (in this case
S4, k=3), A being an arbitrary N (3)×N (3)-matrix. From (4.12), the symbol
of LBA is given by

〈L̂BÂ〉 = 〈(n, 0), N (3)|ĝT L̂BAĝ?|(n, 0), N (3)〉 (4.35)

Commutative limit

In the large n limit we can approximate QA to the commutative coordi-
nates on CP3 ;

QA ≈ φA = −2tr(g†tAgt15) (4.36)

With the constraints for cp3 according (4.28) and (4.29) is

φAφA = 1, dABC φA φB =

√
2

3
φC (4.37)

In (4.36), tA is the generators of SU(4), and g is a group element of SU(4)
given as a (4× 4) matrix

Matrix-function correspondence

We studing our construction of fuzzy S4 by confirming its matrix-function
correspondence. We focus on two things:

(i) Linking between the number of matrix element for fuzzy S4 and the
number of truncated functions on 4-spheres S4.

(ii) The relationship between the product of functions on fuzzy S4 and that
on 4-spheres S4.

In the case of fuzzy S2, S2 = SU(2)/U(1). We consider D(j)
mn(g) is Wigner

D-functions for SU(2), where the spin-j representations of an SU(2) group
element g and (m,n = −j, ...,+j), according (4.3)

D(j)
mn(g) = 〈jm|ĝ|jn〉 (4.38)
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Functions on S2 can be expanding when n = 0 in terms of particular Wigner
D-functions D(j)

m0(g), which are invariant under a U(1) right-translation op-
erator acting on g. For definition (4.4). The state |j0〉 has no U(1) charge,

right action of the U(1) operato, R3D(j)
m0(g) = 0, the D-functions basically

are spherical harmonics

D(l)
m0(g) =

√
4π

2l + 1
(−1)Y l

−m, (4.39)

and truncated expansion can be written as

fS2 =
n∑
l=0

l∑
m=−l

f lmD
(l)
ml. (4.40)

The number of f lm are computing by
∑n

l=0(2l + 1).
This relation implements the condition (i) by defining functions on fuzzy

S2 as (n+ 1)× (n+ 1) matrices. The condition (ii). One can show an exact
correspondence of products. Let fmn(m,n = 1, ..., n + 1) be an element of
matrix function-operator f̂ on fuzzy S2. As (4.3)

〈f̂〉 =
∑
m,n

fmnD∗(j)mj (g)D(j)
nj (g), (4.41)

where D∗(j)mj (g) = D(j)
jm(g−1). The star product of fuzzy S2 is

〈f̂ ĝ〉 = 〈f̂〉 ∗ 〈ĝ〉 (4.42)

from (4.57) we can write

〈f̂ ĝ〉 =
∑

m,n,k,r,l

fmngklD∗(j)mj (g)D(j)
nr (g)D∗(j)kr (g)D(j)

lj (g) (4.43)

with using the orthogonality of D-function
∑

rD
(j)
nr (g)D∗(j)kr (g) = δnk. Let R−

the lowering operator in right action

R−D(j)
mn(g)

√
(j + n)(j − n+ 1)D(j)

mn−1(g) (4.44)

by iteration (4.43) [102]

〈f̂ ĝ〉 =

2j∑
s=0

(−1)s
(2j − s)!
s!(2j)!

Rs
−〈f̂〉Rs

+〈ĝ〉 (4.45)
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where we use the relation R∗ = R+. In the large j limit, the term with s=0
in (4.45) dominates and this leads to an ordinary commutative product of
〈f̂〉 and 〈ĝ〉. By construction, the symbols of functions on fuzzy S2 can be
regarded as commutative functions on S2

The matrix-function correspondence for fuzzy CP3 can be expressed by

N (3) ×N (3) =
n∑
l=0

dim(l, l) (4.46)

dim(l, l) =
1

12
(2l + 3)(l + 1)2(l + 2)2 (4.47)

where dim(l, l) is the dimension of SU(4) in the (l, l)-representation. This
expression indicates that the number of matrix elements coincides with the
number of coefficients in an expansion series of truncated functions on CP3 =
SU(4)/U(3) can be ewpanded by D(l,l)

M0(g), Wigner-D-functions of SU(4) in
the (l, l)-representation (l = 0, 1, 2, ...). The lower indexM(M = 1, ..., dim(l, l)
labels the state in the (l, l)-representation, while the index 0 represents any
suitably fixed state in this representation.

Return to the conditions (i) and (ii), we trying

1. Counting the number of truncated functions on S4

2. A one-to-one matrix-function correspondence for fuzzy 4-sphere S4

3. Proposing a block-diagonal matrix realiazation of fuzzy S4

• For (1), can be made in terms of the pherical harmonics Yl1l2l3m on S4

with a truncation at l1 = n [105]

NS4

(n) =
n∑

l1=0

l1∑
l2=0

l2∑
l3=0

(2l3 + 1) =
1

12
(n+ 1)(n+ 2)2(n+ 3) (4.48)

Can be regarded as an N2 (l)-degeneracy due to an S2 internal symme-
try for the extraction of S4 out of CP3 ∼ S4 × S2 [102]. The number
of truncated functions on CP3 is given by (4.47), the number of those
on S4 may be calculated by

NS4

(n) =
n∑
l=0

dim(l, l)

N2(l)
=

n∑
l=0

1

6
(l + 1)(l + 2)(2l + 1)

=
1

12
(n+ 1)(n+ 2)2(n+ 3) (4.49)
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• For (2). Let (F̂ )IJ(I, J = 1, 2, ..., N (3)) denote a matrix-function on
fuzzy CP3, and can be defined by 〈I|F̂ |J〉 as matrix element of the
function F̂ on fuzzy CP3, also we denote φi1...in = |i1...in〉 ≡ |I〉, where
φi1...in is the staate of fuzzy CP3

We need to find an analogous matrix expression (F̂ S4
)IJ for a function

on fuzzy S4, for this, we splitting each i of the φi1i2...in into a and ȧ as

φi1i2...in = {φȧ1ȧ2...ȧn , φa1ȧ1...ȧn−1 , ..., φa1...an−1ȧ1 , φa1a2...an}. (4.50)

can obtain the states corresponding to fuzzy S4 by imposing an addi-
tional condition on (4.50),i.e., the invariance under the transformations
involving any ȧm(m = 1, , n). On the set of states φȧ1...ȧn , which are
(n+ 1) in number, the transformations must be diagonal [102], but we
can have an independent transformation for each state. The number
of the states is (n+ 1), since the sequence of ȧm = {3, 4} is in a totally
symmetric order. Thus we get (n+1) different functions proportional
to identity. On the set of states φa1ȧ1...ȧn−1 , we can transform the a1

to b1 = {1, 2}, corresponding to a matrix function fa1,b1 which have 22

independent components. But we can also choose the matrix fa1,b1 to
be different for each choice of (ȧ1...ȧn−1) giving 22 × n function in all,

at this level. We can represent these as f
(ȧ1...ȧn−1)
a1,b1

. Where we split im

into am, ȧm and jm into bm, ḃm. We find that the set of all functions
on fuzzy S4 is given by

(F̂ S4

)IJ =
{
f (ȧ1...ȧn)δ̂ȧ1...ȧn,ḃ1...ḃn

, f
(ȧ1...ȧn−1)
a1,b1

δ̂ȧ1...ȧn,ḃ1...ḃn
,

f
(ȧ1...ȧn−2)
a1,a2,b1b2

δ̂ȧ1...ȧn−2,ḃ1...ḃn−2
, ....., fa1...an,b1...bn

}
. (4.51)

The structure in (4.51) shows that F̂ S4
is composed of (l+ 1)× (l+ 1)-

matrices. The number of matrix elements for fuzzy S4 is counted by

NS4

(n) =
n∑
l=0

(l + 1)2(n+ 1− l) (4.52)

with the number of these matrices for fixed l being (n + 1 − l) and
(l = 0, 1, ..., n).
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The symbol of the function F̂ On fuzzy CP3 can be defined as

〈F̂ 〉 =
∑
I,J

〈N |g|I〉(F̂ )IJ〈J |g|N〉 (4.53)

|N〉 ≡ |(n, 0), N3〉 is the highest or lowest weight state of fuzzy CP3,
〈J |g|N〉 denote the previous D-function.

We now consider the product of two functions on fuzzy S4, a function
on fuzzy S4 can be described by (l+ 1)× (l+ 1)-matrices. The symbol
of a function on fuzzy S4 is defined in the same way except that (F̂ )IJ
is replaced with (F̂ S4

)IJ in (4.53). The star product of fuzzy S4 is
written as

〈F̂ S4

ĜS4〉 =
∑
IJK

(F̂ S4

)IJ(ĜS4

)JK〈N |g|I〉〈K|g|N〉 (4.54)

We can describe CP3 in terms of four complex coordinates Zi with the
identification Zi ∼ λZi, (λ ∈ C− {0}). Following [106], write Zi

Zi = (ωa, πȧ) = (xaȧπȧ, πȧ) (4.55)

where ω, π is tow spinors, a = 1, 2, ȧ = 1, 2 and xaȧ can be dedined
with coordinate xµ on S4, xaȧ = (1x4 − iσix

i), (i = 1, 2, 3), σi beign
(2× 2) Pauli matrices.

The homogeneous complex coordinates of CP3 are defined by Z =
(z1, z2, z3)T , T is transposition of the vector or (1 × 3)-matrix. We
introduce the notion Uα = gα,4, gα,4(α = 1, 2, 3, 4) is matrix elements
are defined the coordinates on CP3 with ŪU = 1, Uα’s are related to
Z

Uα =
1√

1 + z̄.z
(4.56)

We can parmatrize Ui by the homogeneous coordinates Zi, i.e, Ui =
zi√
z.z̄

. Function on S4 can be considered as function on CP3 which
satisfy

∂

∂πȧ
fCP3(Z, Z̄) =

∂

∂π̄ȧ
fCP3(Z, Z̄) = 0 (4.57)

.
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• For (3). Let us write down the equation (4.52) in the following form:

NS4

(n) = 1

+ 1 + 22

+ 1 + 22 + 32

+ ............

+ 1 + 22 + 32 + 42 + ...+ (n+ 1)2. (4.58)

Coordinates of fuzzy S4 are then represented by these N (3)×N (3) block-
diagonal matrices, XA , which satisfy

XAXA ∼ 1 (4.59)
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The Algebra for Non-commutative S4

At the beginning we will assume SO(5) invariance of the algebra. the
algebra of the coordinates will be given

[X̂a, X̂b] = εabcdeX̂
cX̂dX̂e (4.60)

X̂ is (N × N) hermitian matrice and εabcde is the Levi-Civita symbol, with
the condition

(X̂a)2 − C21 = 0 (4.61)

The algebra (4.60) can be derived as equations of motion from the following
action [105].

S =

∫
dt Tr

{
1

2
βR(D0X̂

a)2 +
1

4
([X̂a, X̂b]− αεabcdeX̂cX̂dX̂e)2

}
(4.62)

In fact the bosonic part of this action for Matrix theory in the pp-wave
background has this form [107]. This may be regarded as the bosonic part of
the M-atrix theory in some background with cencel other bosonic cordinates,
X̂6, ..., X̂9, here X̂a’s (a = 1, ..., 5). D0 is the covariant derivative ∂t+ i[Â0, ]
and βR is plaing role the raduis of the R circle.

A representation of (4.60) in terms of 4 × 4 matrices is given by tensor
products of Pauli matrices.

X̂1
0 =

1

3
σ3 ⊗ σ1

X̂2
0 =

1

3
σ3 ⊗ σ2

X̂3
0 =

1

3
σ3 ⊗ σ3

X̂4
0 =

1

3
σ1 ⊗ 12

X̂5
0 =

1

3
σ2 ⊗ 12 (4.63)

12 is 2× 2 identity matrix. We can replacing one of the two Pauli matrices
by a spin-j representartin of SO(3), T a(j) (These are four dimensional gamma

matrices. It is then N = 2(2j + 1) dimensional representation). When T a(j)
satisfies

[T a(j), T
a
(j)] = iεabcT

c
(j) (4.64)
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(4.65) becomes

X̂1
0 =

2

3
σ3 ⊗ T 1

(j)

X̂2
0 =

2

3
σ3 ⊗ T 2

(j)

X̂3
0 =

2

3
σ3 ⊗ T 3

(j)

X̂4
0 =

1

3
σ1 ⊗ 12j+1

X̂5
0 =

1

3
σ2 ⊗ 12j+1 (4.65)

All Xa
0 ’s satisfy (4.60) except

[X̂4, X̂5] =
3

4j(j + 1)
ε45cdeX̂

cX̂dX̂e (4.66)

We will construct a non-commutative product on S4 corresponding to the
Matrix configuration in terms of the product on S2 .
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4.1.3 The Fuzzy sphere S2
N

Every manifold comes with a naturally defined associative algebra of func-
tions with point-wise multiplication. This algebra is generated by the coor-
dinates of the manifold and is from the definition commutative. As it turns
out, this algebra contains all the information about the original manifold
and we can describe geometry of the manifold purely in terms of the algebra.
Also, every commutative algebra is an algebra of functions on some manifold.
therefore, what we get is

commutative algebras←→ differentiable manifolds

A natural question to ask is whether there is a similar expression for non-
commutative algebras, or

non-commutative algebras←→ ????

Quite obvious answer is no, there is no space to put on the other side of the
expression. Coordinates on all the manifolds commute and that is the end of
the story. So, as is often the case, we define new objects, called noncommu-
tative manifolds, that are going to fit on the right hand side. Namely we look
how aspects of the regular commutative manifolds are encoded into their cor-
responding algebras and we call the non-commutative manifold object, that
would be encoded in the same way in a non-commutative algebra.

This is going to introduce non-commutativity among the coordinates.
This notion should not be completely new, as the reader probably recalls the
commutation relations of the quantum mechanics

[xi, pj] = i~δij (4.67)

In classical physics, the phase space of the theory was a regular manifold.
However in quantum theory we introduce non-commutativity between (some)
of the coordinate and therefore the phase space of the theory becomes non-
commutative. One of the most fundamental consequences of the commuta-
tion relations is the uncertainty principle. The exact position and momentum
of the particle can not be measured and therefore we can not specify a single
particular point of the phase space. Similarly, if there is non-commutativity
between the coordinates, there is a corresponding uncertainty principle in
measurement of coordinates. The notion of a space-time point stops to make
sense, since we can not exactly say, where we are. This introduces a short
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distance structure to the space, quantities at short distance are not well lo-
calized. Because of this the non-commutative space are sometimes called the
fuzzy spaces.

In practice, we often deform a commutative space into its non-commutative
analogue. In this way we get noncommutative spaces that give a desired com-
mutative limit. An example of such deformation is already mentioned phase
space of quantum mechanics, but to illustrate the idea better, and since we
will need the notions later, let show how this works for a two-sphere.

The fuzzy sphere S2
N is a matrix approximation of the usual sphere S2.

The algebra of functions on S2, spaned by the spherical harmonic, is trun-
cated at a given frequency. The algebra then becomes the finite dimensional
algebra of N×N matrices. More precisely, recall that the algebra of functions
on the ordinary sphere can be generated by the coordinates of R3 modulo the
relation [108]

3∑
i=1

x2
i = R2 (4.68)

This comes with an understood condition on commutativity of the coordi-
nates

xixj − xjxi = 0 (4.69)

Coordinates constrained in this way generate the algebra of all the functions
on the sphere. Note that this is technically not the easiest way to do so.
It is easier to introduce only two coordinates θ, φ on the sphere and define
the algebra of functions not by the generators, but by the basis, e.g. the
spherical harmonics. However the two sphere defined in our way is easier
deformed into the non-commutative analogue. Now we define the fuzzy two
sphere by the coordinates x̂i, which obey the following conditions

3∑
i=1

x̂2
i = ρ2, (4.70)

ρ the radius of the non-commutative sphere. R did describe the regular
sphere

x̂ix̂j − x̂jx̂i = iΛNεijkx̂k, (4.71)
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4.1. CONSTRUCTION OF FUZZY SPACES

The radius of the original sphere was encoded in the sum of the squares of
the coordinates. We see, that such x̂′s are achieved by a spin-j representation
of the SU(2). If we chose

3∑
i=1

L2
i = j(j + 1) ≡ N2 − 1

4
, (4.72)

with

[Li, Lj] = iεijkLk (4.73)

x̂ = ΛNLi, i = 1, 2, 3 (4.74)

ΛN is the noncommutative parameter of dimension length

ΛN =
2ρ√
N2 − 1

, (4.75)

with N the dimension of the representation. Matrices x̂i become coordi-
nates on the non-commutative sphere. The limit N → ∞ removes non-
commutativity, since Λ → 0, nd we recover a regular sphere with radius
R

The algebra of functions S2
N therefore coincides with the simple matrix

algebra Mat(N,C). The normalized integral of a function f ∈ S2
N is given

by the trace ∫
S2
N

f =
4πρ2

N
tr(f). (4.76)

The functions on the fuzzy sphere can be mapped to functions on the com-
mutative sphere S2 using the decomposition into harmonics under the action

Jif = [Li, f ] (4.77)

of the rotation group SU(2) . One obtains analogs of the spherical harmonics
up to a maximal angular momentum N−1 . Therefore S2

N is a regularization
of S2 with a UV cutff, and the commutative sphere S2 is recovered in the
limit N →∞ .
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4.1. CONSTRUCTION OF FUZZY SPACES

4.1.4 The fuzzy 2-sphere S2
NL
× S2

NR

The simplest 4-dimensional generalization of the above is the product
S2
NL
× S2

NR
of 2 such fuzzy spheres, with generally independent parameters

NL,R . It is generated by a double set of representations of su(2) commuting
with each other, i. e. by λLi , λ

R
i satisfying

[λLi , λ
L
j ] = iεijkλ

L
k , (4.78)

[λRi , λ
R
j ] = iεijkλ

R
k ,

[λLi , λ
R
j ] = [λRi , λ

L
j ] = 0

The Casimirs is difines
3∑
i=1

λLi λ
L
i =

N2
L − 1

4
, (4.79)

3∑
i=1

λRi λ
R
i =

N2
R − 1

4
.

This can be realized as a tensor product of 2 fuzzy sphere algebras

λLi = λi ⊗ 1NR×NR , (4.80)

.λRi = 1NR×NR ⊗ λi. (4.81)

The normalized coordinate functions are given by

xL,Ri =
2R√

(NL,R)2 − 1
λL,Ri (4.82)

with ∑
(xLi )2 =

∑
(xRi )2 = R2 (4.83)

In rinciple one could also introduce different radii RL,R for the 2 spheres, but
for simplicity we will keep only one scale parameter R (and sometimes we will
set R=1). This space 1 can be viewed as regularization of S2×S2 ⊂ R6, and
admits the symmetry group SU(2)L×SU(2)R ⊂ SO(6). The generators xL,Ri
should be viewed as coordinates in an embedding space R6. The normalized
integral of a function f ∈ S2

NL
× S2

NR
is now given by∫

S2
NL
×S2

NR

f =
16π2R4

NRNL

tr(f), (4.84)

where we difine the 16π2R4 as volume
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4.1.5 The limit to the canonical case R4
θ

We will mainly consider NL = NR. It is well-known [?] that if a fuzzy
sphere is blown up near a given point, it can be used to obtain a (compacti-
fied) noncommutative plane with canonical commutation relations: Consider
the tangential coordinates x1,2 near the north pole x3 = R . Setting

R2 = Nθ/2 (4.85)

they satisfy the commutation relations

[x1, x2] = i
2R

N
x3 = i

2R

N

√
R2 − x2

1 − x2
2 = iθ +O(1/N) (4.86)

Therefore in the double scaling limit with N,R → ∞ keeping θ fixed, we
recover the commutation relation of the canonical case,

[x1, x2] = iθ (4.87)

up to corrections of order 1/N . Similarty, starting with S2
NL
×S2

NR
and setting

R2 =
NL,RθL,R

2
, (4.88)

we obtain in the large NL , NR limit

[xLi , x
L
j ] = iεijθ

L, (4.89)

[xRi , x
R
j ] = iεijθ

R,

[xLi , x
R
j ] = [xRi , x

L
j ] = 0

This is the most general form of R4
θ with coordinates (x1, ..., x4) ≡ (xL1 , x

L
2 , x

R
1 , x

R
2 ).

The integral of a function f(x) then∫
S2
NL
×S2

NR

f(x)→ 4π4θLθRtr((f(x)) =:

∫
R4
θ

f(x). (4.90)
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4.2 Fuzzification

DCP2 acts on a subspace of ACP2⊗Mat16. We can thus conceive of a
fuzzy Dirac operator DCP2 which acts on a subspace of ACP2⊗Mat16, ACP2

being obtained from ACP2 by restricting “orbital” SU(3) IRR’s to (n, n),
n≤N . DCP2 is then obtained from DCP2 by projection to this subspace.
DCP2 commutes only with the total SU(3) Casimir J2

i and not with orbital
SU(3) Casimir L2

i . This causes edge effects distorting the spectrum of DCP2

for those states having (n, n) near (N,N) which DCP2 mixes with (n
′
, n
′
),

n
′≥N . This particular edge phenomenon does not occur for S2 = CP1 where

orbital angular momentum L2
i commutes with the Dirac operator. A way to

eliminate such problems is suggested by the work of [109–112]: We introduce
the cut-off not on the orbital Casimir, but on the total Casimir, retaining
all states upto the cut-off. That seems the best strategy as it will give a
fuzzy Dirac operator DCP2 with a spectrum exactly that of the continuum
operator DCP2 upto the cut-off point, and which has chirality (chirality ΓCP2

of DCP2 commutes with J2
i ) and no fermion doubling. This approach is the

same as the method adopted for S2 in [109–112] . For S2, the edge effect
turned up as the absence of the −E eigenvalue subspace for the maximum
total angular momentum when the cut-off is introduced in orbital angular
momentum, and attendant problems with chirality.

4.2.1 Coherent States and Star Products : The Case
of S2 ' CP1

These have been treated in [111, 113, 114]. Here we summarize the main
points so that we can outline the relation of wave functions and those based
on matrices for fuzzy physics.

Let us first consider S2 = CP1 and its fuzzy versions. The algebra A is
Mat2l+1. SU(2) acts on A on left and right with generators LLi and −LRi ,
and orbital angular momentum is Li = LLi − LRi . The spectrum of L2 is
K(K+ 1), K = 0, 1, .., 2l. We can find a basis of matrices TKM diagonal in L2

and L3(with eigenvalue M) and standard matrix elements for Li. A acts on
a (2l + 1)−dimensional vector space with the familiar basis |l,m〉. TKM are
orthogonal, K(K + 1) and M being eigenvalues of L2 and L3:

(TKM , T
K
′

M ′
) := Tr TK†M TK

′

M ′
= constant× δKK′δMM ′ . (4.91)
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4.2. FUZZIFICATION

The above suggests that there is a way to regard A as “functions” on S2

with angular momenta cut-off at 2l. Such functions are also represented by
the linear span of spherical harmonics YKM , K≤2l. We want to clarify the
relation of YKM ’s to the matrices TKM in A.

Towards this end, let us introduce the coherent states

|g〉 = U (l)(g)|l, l〉 (4.92)

induced from the highest weight vector |l; l〉. g→U (K)(g) is the angular mo-
mentum K IRR of SU(2). Note the identity

|gei
σ3
2
θ〉 = eilθ|g〉. (4.93)

It is a theorem [113] that the diagonal matrix elements 〈g|a|g〉 completely
determine the operator a. Further 〈gei

σ3
2
θ|a|gei

σ3
2
θ〉 = 〈g|a|g〉 so that 〈g|a|g〉

depends only on

gσ3g
−1 = σ · x,

3∑
i=1

x2
i = 1;x∈S2. (4.94)

In this way, we have the map

A→C∞(S2),

a→ã;

where

ã(x) = 〈g|a|g〉. (4.95)

In this map, the image of TKM is YKM after a phase choice:

YKM(x) = 〈g|TKM |g〉. (4.96)

For, under g→hg , x→R(h)x where h→R(h) is the SU(2) vector represen-
tation. Under this transformation, since

YKM(R(h)x) =
K∑

M ′=−K

D(K)(h)MM ′YKM ′ (x) (4.97)

and

TKM−→U (K)(h)−1TKMU
(K)(h) =

K∑
M ′=−K

D(K)(h)MM ′T
K
M ′
, (4.98)
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4.2. FUZZIFICATION

where h−→D(K)(h) is the angular momentum K IRR of SU(2) in a matrix
representation, we have the proportionality of the two sides. (4.96) and phase
conventions fix the constant of proportionality.

The map TKM→YKM is an isomorphism at the level of vector spaces. It can
be extended to the noncommutative algebra A by defining a new product on
YKM ’s, the star product. Thus consider 〈g|TKMTLN |g〉. The functions YKM and
YLN completely determine TKM and TLN , and for that reason also this matrix
element. Hence it is the value of a function YKM ∗YLN , linear in each factor,
at x:

〈g|TKMTLN |g〉 = [YKM ∗ YLN ](x). (4.99)

The product ∗ here , the star product , extends by linearity to all func-
tions with angular momenta ≤2l. The resultant algebra is isomorphic to the
algebra A.

The explicit formula for ∗ has been found by Prešnajder [111] (see also

[114]). The image of Lia is just −i(~x∧~∇)iã. We will use the same symbol Li
to denote −i(~x∧~∇)i derivation. The ∗ product is covariant under the SU(2)
action in the sense that

Li(ã ∗ b̃) = (Liã) ∗ b̃+ ã ∗ (Lib̃). (4.100)

It depends on l and approaches the commutative product of C∞(S2) as
l−→∞. Coherent states thus give an intuitive handle on the matrix rep-
resentation of functions.

But on S2, we also have monopole bundles. Sections of these bundles for
Chern class n are spanned by the rotation matrices D

(j)
mn, j≥|n|. They have

the equivariance property

D(j)
mn(gei

σ3
2
θ) = D(j)

mn(g)einθ. (4.101)

This last equation is essentially a generalization of equation (4.100) , in other

words one can identify D
(j)
mn with < j,m|ψ(j)

n > where |ψ(j)
n >= Dj|j, n > [see

equation (4.101)].
How do we represent them by matrices?
In the first instance, let n≥0 and consider the coherent states (now with

an additional label)

|g; l + n〉 = U (l+n)(g)|l + n, l + n〉
|g; l〉 = U (l)(g)|l, l〉. (4.102)
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They span vector spaces Vl+n and Vl. We can consider the linear operators
Hom(Vl+n, Vl) from Vl+n to Vl. They are [2l + 1]×[2(l + n) + 1] matrices
in a basis of Vl+n and Vl, and have U (l)(g) acting on their left(with gener-
ators LLi ) and U (l+n)(g) acting on their right (with generators −LRi ). We
can decompose Hom(Vl+n, Vl) under the “orbital” angular momentum group
U (l)⊗U (l+n) (with generators Li = LLi − LRi ) into the direct sum ⊕2l+n

K=n(K)
with the IRR K having the basis TKM , with L3T

K
M = MTKM . As before, we

choose TKM so that Li follow standard phase conventions. TKM are orthogonal

Tr(TK
′

M ′
)†TKM = constant× δK′KδM ′M . (4.103)

Now consider

〈g; l|TKM |g; l + n〉. (4.104)

It transforms in precisely the same manner as D
(K)
Mn(g) under g→hg and

g→gei
σ3
2
θ/2 and hence after an overall normalisation,

〈g; l|TKM |g; l + n〉 = D
(K)
Mn(g). (4.105)

Thus Hom(Vl+n, Vl) are fuzzy versions of sections of vector bundles for Chern
class n≥0. For n < 0, they are similarly Hom(Vl, Vl+|n|). This result is due
to [115] (see also [109–112, 116]). An explicit formulae for the fuzzy version
of rotation matrices can be found in [111].

It is interesting that Chern class has a clear meaning even in this matrix
model: It is |V | − |W | for Hom(V,W ), where |V | and |W | are dimensions of
V and W .

There are two (inequivalent) fuzzy algebras acting onHom(V,W ). Mat|V | =
A|V | acts on the right and Mat|W | = A|W | acts on the left, where now a sub-
script has been introduced on A. These left and right actions have their own
∗’s, call them ∗|V | and ∗|W |: if a∈AV , b∈AW and ã and b̃ are the correspond-
ing functions, then

bTKMa−→b̃ ∗|W | YKM ∗|V | ã (4.106)

under the map of Hom(V,W ) to sections of bundles. There is also a fuzzy
analogue for tensor products of bundles. Thus we can compose elements of
Hom(V,W ) and Hom(W,X) to get Hom(V,X)

Hom(V,X) = Hom(V,W )⊗A|W |Hom(W,X). (4.107)
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Its elements are ST , S∈Hom(V,W ), T∈Hom(W,X). Its Chern class is
|V | − |X|. If S̃ and T̃ are the representatives of S and T in terms of sections
of bundles, then ST−→S̃ ∗ T̃ .

Tensor products Γ1⊗Γ2 of two vector spaces Γ1 and Γ2 over an alge-
bra B are defined only if Γ1(Γ2) is a right-(left-) B-module [117]. Hence
Hom(V,W )⊗A|W |Hom(W

′
, X) is defined only if W = W

′
. So S̃ ∗ T̃ is rather

different in its properties from the usual tensor product of bundle sections,
in particular T̃ ∗ S̃ makes no sense if V 6= X.

4.2.2 Fuzzy Dirac Spinors on S2
F

We can now comment on the fuzzy . Elsewhere the Watamuras [118,119]
and following them, us [120, 121], investigated the Dirac operator as acting
on A⊗C2 = A2, A = Mat2l+1. That led to rather an elaborate formalism
because of the cut-off in orbital angular momentum. So as indicated earlier,
it seems more elegant to cut-off total angular momentum at some value j0.

We can now argue such a cut-off leads to the formalism of [109–112,122]
and to supersymmetry. Thus let T jm+∈Hom(Vl+1/2, Vl) with the transfor-

mation property < g; l|T jm+|g; l + 1
2
> −→ei θ2 < g; l|T jm+|g; l + 1

2
> under

g−→gei θ2σ3 . One also has the transformation property

U (l)(g)†T jm+U
(l+ 1

2
)(g) =

∑
m′

D
(j)

mm′
(g)T j

m′+
(4.108)

[So j≤2l + 1/2 and j0 = 2l + 1/2]. Then one can make the identification

Dj
m+(g) = 〈g; l|T jm+|g; l +

1

2
〉, (4.109)

since from equation (4.101) it is easy to see that Dj
m+(g)−→ei θ2Dj

m+(g) under

g−→gei θ2σ3 .
The subscript + in T jm+ indicates helicity − , i.e T jm+ is the fuzzy version

of < j,m|ψ(j)
+ > of (??) so that it will be associated with the negative helicity

part of the wave function.
For helicity +, but for same j0, we have to consider T jm−∈Hom(Vl, Vl+1/2),

with
U (l+ 1

2
)(g)†T jm−U

(l)(g) =
∑
m′

D
(j)

mm′
(g)T j

m′−. (4.110)
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Of course now ,

Dj
m−(g) =< g; l +

1

2
|T jm−|g; l >, (4.111)

where both sides will acquire now a phase exp(−i θ
2
) under the right U(1)

action, namely under g−→gexp(i θ
2
σ3) . T jm− is then clearly the fuzzy version

of < j,m|ψj)− > .
This is the formalism of [109–112, 122] . As we have united V (l) and

V (l+1/2), it is natural to consider OSp(2, 1) or even OSp(2, 2) SUSY as dis-
covered first by Grosse et al in the second paper of [112].

Because of the mixing of l and l + 1/2, we have to reconsider the ac-
tion of the matrix algebra A approximating A = C∞(S2). Mat2l+1 acts
on T jm+(T jm−) on the left(right) while Mat2l+2 acts on T jm+(T jm−) on the
right(left). So it is best to regard fuzzy functions to act on left(say) of
T jm+ and right of T jm− as Mat2l+1. This suggestion is slightly different from
that of [109–112,122] where they regard the fuzzy algebra to be Mat2l+1 on
T jm+ and Mat2l+2 on T jm−, both acting on left. However, our proposal does
not generalize to instanton (monopole) sectors.

We can restore spin parts to fuzzy wave functions. The spin wave func-

tions for helicity ± are T
1
2
ms± , where ms denotes the two components of the

spinor . The positive chirality spinors are defined by

< g; l|T
1
2
ms+|g; l +

1

2
>= D

1
2
ms+ =<

1

2
,ms|ψ

( 1
2

)
+ >, (4.112)

while the negative chirality spinors are defined by

< g; l +
1

2
|T

1
2
ms−|g; l >= D

1
2
ms− =<

1

2
,ms|ψ

( 1
2

)
− > . (4.113)

So the two components of the total fuzzy wave functions for helicity ± are

<
1

2
,ms|ψ±F >=

[∑
j,m

ξj±m T jm∓

]
T

1
2
ms±, ξj±m ∈C,ms = +

1

2
,−1

2
. (4.114)

This is the fuzzy version of equation (??).
The Dirac operator D2g is given by the truncated version of (??) :

ρ
∑
ms

(D2g)m′sms{
∑
j,m

ξj+m T jm−T
1/2
ms+ +

∑
j,m

ξj−m T jm+T
1/2
ms−} =

−{
∑
j,m

ξj+m T jm+(J
(j)
+ )+1/2,−1/2}{T 1/2

m′s−
} − {

∑
j,m

ξj−m T jm−(J
(j)
− )−1/2,+1/2}{T 1/2

m′s+
},

j≤2l + 1/2, (4.115)
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J
(j)
i being the angular momentum j images of σi

2
.

4.2.3 The Case of CP2

Coherent states for CP2 can be defined using highest weight states. For
IRR (3, 0), we can pick the highest weight state with I = I3 = 0, Y = −2/3,
namely the c−quark: |0, 0,−2/3〉 ≡ |0, 0,−2/3; (3, 0)〉. Then if g−→U (3,0)(g)
defines the IRR, |g; (3, 0)〉 = U (3,0)(g)|0, 0,−2/3; (3, 0)〉. For the IRR (N, 0),
we can simply replace |0, 0,−2/3; (3, 0)〉 by its N−fold tensor product

|0, 0,−2

3
; (3, 0)〉⊗|0, 0,−2

3
; (3, 0)〉⊗...⊗|0, 0,−2

3
; (3, 0)〉 = |0, 0,−2N

3
; (N, 0)〉,

(4.116)
and set

|g; (N, 0)〉 = U (N,0)(g)|0, 0,−2N

3
; (N, 0)〉. (4.117)

For (0, N), we can use the c̄−quark state |g; (0, 3)〉= U (0,3)(g)|0, 0,+2/3; (0, 3)〉
and its tensor product states.

The development of ideas now keep following S2 = CP1. Full details can
be found in [114].

General theory confirms that the maps a−→ã from matrices in the (N, 0)
or (0, N) IRR to functions on CP2, defined by

ã(ξ) = 〈(N, 0); g|a|g; (N, 0)〉
or

ã(ξ) = 〈(0, N); g|a|g; (0, N)〉. (4.118)

are one-to-one so that a ∗−product on ã’s exists. In this map, the SU(3)
generators Li acting on ã become the corresponding CP2 SU(3) operators
−ifijkξ̂j ∂

∂ξ̂k
. We shall use the same symbol Li for these operators too. The

orbital SU(3) action is compatible with ∗ in the sense that Li(ã ∗ b̃) =
(Liã) ∗ b̃ + ã ∗ (Lib̃). Irreducible tensor operators of SU(3) are well studied
[123]. With their help, fuzzy analogues of D−matrices can be constructed,
as also sections of U(1) and U(2) bundles.

The fuzzy CP2 Dirac operator is the cut-off . We omit the details: the
necessary group theory is already to be found in [116] while the rest is routine.
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4.3 Gauge theory on fuzzy S2 × S2

Now that we have the fuzzy space S2
NL
×S2

NR
corresponding to (NLNR)2-

dimensional matrices, we want to construct a matrix model having S2
NL
×S2

NR

as its ground state. As in the canonical case, the fluctuations around this
ground state will produce a gauge theory. But as the matrices are now finite-
dimensional, the model will be well defined and finite.

In the fuzzy case, it is natural to construct S2
NL
× S2

NR
as a submanifold

of R6. We therefore consider a multi-matrix model with 6 dynamical fields
(covariant coordinates) BL

i and BR
i , with i run from 1 to 3, which are

(NLNR) × (NLNR) Hermitian matrices. As action we choose the following
generalization of the action in [124],

S =
1

g2

∫
1

2
Fia jbFia jb + ϕ2

L + ϕ2
R (4.119)

with a, b = L,R and i,j=1,2,3; summation over repeated indices is implied.
Here ϕL,R are defined as

ϕL : =
1

R2
(BL

i B
L
i −

N2
L − 1

4
) (4.120)

ϕR : =
1

R2
(BR

i B
R
i −

N2
R − 1

4
)

and R denotes the radius of the two spheres. The field strength is defined by

FiL jL =
1

R2
(i[BL

i , B
L
j ] + εijkB

L
k ), (4.121)

FiR jR =
1

R2
(i[BR

i , B
R
j ] + εijkB

R
k ),

FiL jR =
1

R2
(i[BL

i , B
R
j ])

This model (4.119) is manifestly invariant under SU(2)L × SU(2)R rota-
tions acting in the abvious way, and U(NRNL) gauge transformations acting

BL,R
i −→ U BL,R

i U−1, (4.122)

if the action (4.119) is considered as a matrix model, the radius drops out
using (4.84). The equations of motion for BL

i are

{BL
i , B

L
j B

L
j −

N2
L − 1

4
}+ (BL

i + iεijkB
L
j B

L
k ) (4.123)

+ iεijk[B
L
j , (B

L
k + iεkrsB

L
r B

L
s )] + [BR

j , [B
R
j , B

L
i ]] = 0
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and those for BR
i are obtained by exchanging L ↔ R. By construction,

the minimum or ground state of the action is given by F = ϕ = 0, hence
BL,R
i = λL,Ri as in (4.81,4.81) up to gauge transformations. [125] for a similar

approach on CP 2. We can therefore expand the covariant coordinates BL
i

and BR
i around the ground state

Ba
i = λai +RAai , (4.124)

where a ∈ {L,R} and Aai is very small, Then AL,Ri transforms under gauge
transformations as

AL,Ri → A
′L,R
i = U AL,Ri U−1 + U [λL,Ri , U−1], (4.125)

and the field strength takes a more familiar form (We do not distinguish
between upper and lower indices L,R .)

FiLjL = i([
λLi
R
,ALj ]− [

λLj
R
,ALi + [ALi , A

L
j ]), (4.126)

FiRjR = i([
λRi
R
,ARj ]− [

λRj
R
,ALi + [ARi , A

R
j ]), (4.127)

FiLjR = i([
λLi
R
,ARj ]− [

λRj
R
,ALi + [ALi , A

R
j ]).

So far, the spheres are described in terms of 3 Cartesian covariant coordinates
each. In the commutative limit, we can separate the radial and tangential
degrees of freedom. There are many ways to do R this; perhaps the most
elegant for the present purpose is to note that the terms

∫
ϕL + ϕR in the

action imply that ϕL,R is bounded for configurations with finite action. Using

ϕL =
λLi
R
ALi + ALi

λLi
R

+ ALi A
L
i , (4.128)

and similarly for ϕR it follows that

xiA
a
i + Aai xi = O(

ϕ

N
), (4.129)

for finite Aai . This means that Aai is tangential in the (commutative) large N
limit. Alternatively, one could consider φL = NϕL , which would acquire a
mass of order N and decouple from the other fields. The commutative limit
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of (4.119) therefore gives the standard action for electrodynamics on S2×S2

,

S =
1

2g2

∫
S2×S2

F t
ia jbF

t
ia jb, (4.130)

with a, b = L,R , at the north pole xL,R3 = R, one can replace

i[
λL,Ri
R

, .]→ −εij
∂

∂xL,Rj
(4.131)

In the commutative limit, so that upon identifying the commutative gauge
fields Acli via

A
(cl)L,R
i = −εijAL,Ri (4.132)

the field strength is given by the standard expression

F t
iL jR = ∂Li A

(cl)R
j − ∂Rj A

(cl)L
i (4.133)

4.3.1 U(k) gauge theory

The above action generalizes immediately to the nonabelian case, keeping
precisely the same action (4.119,4.120) , but replacing the matrices BL,R

i by
k(NRNL) × k(NRNL) matrices. The constraint term will then impose as
ground state

λ
L/R
i ⊗ 1k×k. (4.134)

Expanding the covariant coordinates

BL,R
i = λ

L/R
i ⊗ 1k×k + A

L/R
i,a T a, (4.135)

in terms of the Hellman matrices T a, the action (4.119) is the fuzzy version
of nonabelian U(k) Yang-Mills on S2 × S2.
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4.3. GAUGE THEORY ON FUZZY S2 × S2

4.3.2 A formulation based on SO(6)

The above action can be cast into a nicer form by assembling the matrices
BL,R
i into bigger collective matrices, following [126]. Since it is natural from

the fuzzy point of view to embed S2×S2 ⊂ R6 with corresponding embedding
of the symmetry group SO(3)L × SO(3)R ⊂ SO(6), we consider

Bµ = (BL
i , B

R
i ), (4.136)

to be the 6-dimensional irrep of so(6) ∼= su(4). Since (4)⊗ (4) = (6)⊕ (10) ,
it is natural to introduce the intertwiners

γµ = (γLi , γ
R
i ) = (γµ)α,β (4.137)

We could then assemble our dynamical fields into a single 4(NRNL) ×
4(NRNL) matrix

B = Bµγµ + const.1 (4.138)

Of course the most general such 4(NRNL)×4(NRNL) matrix contains far too
many degrees of freedom, and we have to constrain these B further. Since
SU(4) acts on B as

B → UTBU, (4.139)

the γµ can be chosen as totally anti-symmetric matrices, which precisely
singles out the (6) ⊂ (4)⊗ (4). One can moreover impose

(γLi )† = γLi , (4.140)

(γRi )† = −γRi , (4.141)

and

γLi γ
L
j = δij + iεijkγ

L
k (4.142)

γRi γ
R
j = −δij − iεijkγRk (4.143)

γLi , γ
R
j ] = 0 (4.144)

the representation satisfy

σiσj = δij + iεijkσk. (4.145)
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With these we define the 4 -dimensional antisymmetric matrices

γ1
L = σ1 ⊗ σ2, γ2

L = σ2 ⊗ 1, γ3
L = σ3 ⊗ σ2, (4.146)

γ1
R = iσ2 ⊗ σ1, γ2

R = i1⊗ σ2, γ3
R = iσ2 ⊗ σ3

Where σ1, σ2 and σ3 is the the Pauli matrices. We can either separate them
again by introducing two 4(NRNL)× 4(NRNL) matrices,

BL =
1

2
+BL

i γ
L
i , BR =

i

2
+BR

i γ
R
i (4.147)

we can use the γµ with the above properties to construct the 8× 8 Gamma-
matrices

Γµ =

(
0 γµ

γµ† 0

)
which generate the SO(6)-Clifford algebra

{Γµ,Γν} =

(
γµγν† + γνγµ† 0

0 γµ†γν + γν†γµ

)
= 2δµν

This suggests to consider the single Hermitian 4(NRNL)× 4(NRNL) matrix

C = ΓµBµ + C0 =

(
0 BL

BL 0

)
+

(
0 BR

−BR 0

)
=: CL + CR (4.148)

where C0 = CL
0 + CR

0 denote the constant 8× 8 -matrices

CL
0 = − i

2
ΓL1 ΓL2 ΓL3 =

1

2

(
0 1
1 0

)
,

CL
0 = − i

2
ΓR1 ΓR2 ΓR3 =

i

2

(
0 1
−1 0

)
in the above basis. Using the Clifford algebra and the above definitions one
then finds

C2 = BµBµ +
1

2
− i

4
[Γµ,Γν ]Fµν (4.149)

The field strength Fµν coincides with the definition in (4.121) if written in
the L−R notation,

Fia jb = i[Bia, Bjb] + δabεijkBka. (4.150)
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Therefore the action

S = Tr((c2 − N2

2
)2) = 8tr(BµBµ −

N2 − 1

2
)2 + 4trFµνFµν (4.151)

with

(BµBµ −
N2 − 1

2
)2 =: (BiLBiL −

N2
L − 1

4
)2 + (BiRBiR −

N2
L − 1

4
)2,(4.152)

and

N2 =
N2
L +N2

R

2
(4.153)

4.3.3 Stability analysis of the SO(6)

Consider the action (4.151) We will split off the radial degrees of freedom
for large N by setting

BiL = λiL + AiL = λiL +AiL + xiLΦL (4.154)

and similarly for BiR. The stability of our geometry will depend on the
behavior of ΦL and ΦR . We calculate that

BµBµ −
N2 − 1

2
= N(ΦL + ΦR) + ΦLΦL + ΦRΦR (4.155)

+ AµAµ − [λµ,Aµ] +O(1/N),

where we used that λiaAia = 0 and therfore both ,Aiaxia = O(1/N) and
Aia[λia, .] = O(1/N) for a = L,R. Setting

ΦL + ΦR = Φ1, (4.156)

ΦL − ΦR = Φ2

we get

BµBµ −
N2 − 1

2
= NΦ1 + Φ1Φ1 + Φ2Φ2 (4.157)

+ AµAµ − [λµ,Aµ] +O(1/N),
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4.3.4 Breaking SO(6) → SO(3)× SO(3)

To obtain the original action (4.119) for S2 × S2, we have to break the
SO(6)−symmetry down to SO(3)×SO(3). We can do this by using the left
and right gauge fields CL and CR introduced in (4.148) separately. Their
squares are

C2
L = BiLBiL +

1

4
+

(
γiL 0
0 γiL

)
(BiL + iεijkBjLBkL),

C2
R = BiRBiR +

1

4
−
(
γiR 0
0 γiR

)
(BiR + iεijkBjRBk).

As both γiL, γ
i
R are traceless, we have

Sbreak := 2Tr((C2
L −

N2
L

4
)(C2

R −
N2
R

4
)) (4.158)

= 16Tr((BiLBiL −
N2
L − 1

4
)(BiRBiR −

N2
R − 1

4
)).

With these terms we can recover our action as

S = S − Sbreak := 2Tr((C2 − N2

2
)− 2(C2

L −
N2
L

4
)(C2

R −
N2
R

4
)) (4.159)

= 8tr((BiLBiL −
N2
L − 1

4
)2 + (BiRBiR −

N2
R − 1

4
)2 +

1

2
FµνFµν)(4.160)
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4.4 Fuzzy Tori

We consider a toroidal lattice with lattice spacing a and N sites in every
dimensions. The lattice size is then L = Na. We consider the unitary
operators

Zi = exp(i
2π

L
xi) , Z

N
i = 1. (4.161)

The second condition simply restricts the points to xi ∈ aZ. We have imme-
diately the commutation relations

[xi, xj] = iθij ⇔ ZiZj = exp(−2πiΘij)ZjZi , Θ =
2π

L2
θ. (4.162)

We consider the case θij = θQij in two and four dimensions where

Q =

(
0 1
−1 0

)
, Q =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 . (4.163)

The momentum in each direction will be assumed to have the usual period-
icity, viz

ki =
2πmi

aN
. (4.164)

The period of mi is exactly N . The range of mi is [0, N − 1] or equivalently
[−(N − 1)/2,+(N − 1)/2] and hence we obtain in the large lattice limit
L −→∞ the cutoff

Λ =
π

a
. (4.165)

The quantization of the noncommutativity parameters θ and Θ are given by

θ =
Na2

π
, Θ =

2

N
. (4.166)

In other words, we have rational noncommutativity Θ, for N > 2, and hence
a finite dimensional representation of the algebra of the noncommutative
torus exists. In general we require N to be odd for Θ to come out rational
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and thus be guaranteed the existence of the fuzzy torus. The cutoff in this
case becomes

Λ =

√
Nπ

θ
. (4.167)

This is consistent with the result of the fuzzy CPn.
The full Heisenberg algebra of the noncommutative torus includes also

the fuzzy derivative operators

Dj = exp(a∂j) , DjZiD
+
j = exp(

2πiδij
N

)Zi. (4.168)

In two dimensions a finite dimensional N×N representation is given in terms
of the clock and shift operators (with ω = exp(2πiΘ))

Γ1 =



0 1
0 0 1

. .
. .
. .

0 1
1 . . . 0


, Γ2 =



1
ω

ω2

ω3

.
.
.


,(4.169)

by

Z1 = Γ2 , Z2 = Γ1 , D1 = (Γ1)
N+1

2 , D2 = (Γ+
2 )

N+1
2 . (4.170)

The solution in four dimensions is obtained by taking tensor products of
these. Thus a real scalar field Φ on the fuzzy torus is a hermitean N × N
matrix where N = Nd/2, i.e. the space of functions on the fuzzy torus is
Mat(N ,C). Furthermore, the integral is defined by the usual formula∫

fuzzy torus

= (2πθ)d/2Tr. (4.171)

A basis of Mat(N ,C) is given by the plane waves on the fuzzy torus defined
by

φ~m =
1

Nd/4

d∏
i=1

Zmi
i

∏
i<j

exp(
2πi

N
Qijmimj) ≡

1

Nd/4
exp(ikixi). (4.172)
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They satisfy

φ+
~m = φ−~m , T rφ+

~mφ~m′ = δ~m~m′ . (4.173)

A noncommutative Φ4 theory on the fuzzy torus is given by

S = (2πθ)d/2Tr

[
1

2a2

∑
i

(DiΦD
+
i − Φ)2 +

m2

2
Φ2 +

λ

4
Φ4

]
. (4.174)

We expand the scalar field Φ in the plane waves φ~m as

Φ =
∑
~m

Φ~mφ~m. (4.175)

We compute immediately

DiΦD
+
i =

∑
~m

Φ~mDiφ~mD
+
i

=
∑
~m

Φ~mφ~m exp(
2πimi

N
). (4.176)

Hence

Tr(DiΦD
+
i )2 =

∑
~m

Φ~mΦ+
~m

= TrΦ2. (4.177)

Thus the action can be rewritten as

S = (2Na2)d/2Tr

[
1

a2

∑
i

(Φ2 −DiΦD
+
i Φ) +

m2

2
Φ2 +

λ

4
Φ4

]
. (4.178)

We compute the kinetic term and the propagator given respectively by

1

2

∑
~m

Φ~mΦ+
~m

(
2

a2

∑
i

(1− cos aki) +m2

)
. (4.179)

< Φ~mΦ+

~m′
>=

δ~kδ~k′
2
a2

∑
i(1− cos aki) +m2

. (4.180)
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Thus the behavior of the propagator for large momenta is different and as
a consequence the calculation of α2

0 on fuzzy tori will be different from the
result obtained using a sharp cutoff. We get [127]

for d = 2

<

∫
fuzzy torus

d2xΦ2(x) >= V

∫ π

0

d2r

(2π)2

1∑
i(1− cos ri) +m2a2/2

, (4.181)

for d = 4

<

∫
fuzzy torus

d4xΦ2(x) >=
V Λ2

π

∫ π

0

d4r

(2π)4

1∑
i(1− cos ri) +m2a2/2

.(4.182)
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Chapter 5

Emerent Geometry in
Yang-Mills Matrix Models and
Fuzzy Sphere S2 and S2 × S2

5.1 The Model

A commutative/noncommutative space in Connes’ approach to geometry
is given in terms of a spectral triple (A,∆,H) rather than in terms of a set of
points [128]. A is the algebra of functions or bounded operators on the space,
∆ is the Laplace operator or, in the case of spinors, the Dirac operator, and
H is the Hilbert space on which the algebra of bounded operators and the
differential operator ∆ are represented.

In the IKKT model the geometry is in a precise sense emergent. The
algebra A is given, in the large N limit, by Hermitian matrices with smooth
eigenvalue distribution and bounded square trace [129]. The Laplacian/Dirac
operator is given in terms of the background solution while the Hilbert space
H is given by the adjoint representation of the gauge group U(N).

In this article we will study IKKT Yang-Mills matrix models with quartic
mass deformations in three and six dimensions with SO(3) and SO(3) ×
SO(3) symmetries which will lead naturally to the fuzzy two-sphere S2

N and
to the fuzzy four-sphere S2

N × S2
N respectively.

Noncommutative gauge theory on the fuzzy two-sphere [130,131] was in-
troduced in [132]. It was derived as the low energy dynamics of open strings
moving in a background magnetic field with S3 metric in [133]. This theory
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consists of the Yang-Mills term which can be obtained from the reduction to
zero dimensions of ordinary U(N) Yang-Mills theory in 3 dimensions and a
Chern-Simons term due to Myers effect [134]. The model was studied per-
turbatively in [135] and [136] and nonperturbatively in [137]. This model
contains beside the usual two-dimensional gauge field a scalar fluctuation
normal to the sphere. In [138] a generalized model was proposed and studied
in which this normal scalar field was suppressed by giving it a potential with
very large mass. This was studied further in [139, 140] where the instabil-
ity of the sphere was interpreted along the lines of an emergent geometry
phenomena.

In [141] an elegant random matrix model with a single matrix was shown
to be equivalent to a gauge theory on the fuzzy sphere with a very partic-
ular form of the potential which in the large N limit leads to a decoupled
normal scalar fluctuation. In [142–145] an alternative model of gauge theory
on the fuzzy sphere was proposed in which field configurations live in the
Grassmannian manifold U(2N)/(U(N + 1) × U(N − 1)). In [142, 143] this
model was shown to possess the same partition function as the commutative
model via the application of the powerful localization techniques.

Noncommutative gauge theory on the fuzzy four-sphere S2
N × S2

N which
is given by a six matrix model with global SO(3) × SO(3) symmetry con-
taining at most quartic powers of the matrices was proposed in [146]. The
value M = 1/2 of the mass deformation parameter corresponds to the model
studied [147] which can also be shown to correspond to a random matrix
model with two matrices. This theory involves two normal scalar fields plus
a four-dimensional gauge field. Again the mass deformation parameter M
is essentially the mass of these normal fluctuations and thus for large M
these scalar fields become weakly coupled. In [148] an interpretation of these
normal scalar fields as dark energy as dark energy is put forward.

Before we give a summary of the main results reported in this article we
will first summarize the main models studied here and their normalization.
The most general mass-deformed IKKT Yang-Mills matrix model in three
dimensions up to quartic power in the gauge field Xa is given by [139]

S[X] = NTr

[
− 1

4
[Xa, Xb]

2 +
2iα

3
εabcXaXbXc +M(X2

a)2 + βX2
a

]
.
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The Steinacker model [141] corresponds to M = 1/2 and

β =
2α2

9
(1− 4c2M).

The model with M = 0 will correspond to a perfect square action (exact
Yang-Mills term ∼ F 2

ab). We will study a one-parameter family (labeled
by M) with β fixed as above. We may also use the parameters m2 and µ
defined by m2 = 2c2M and β = −α2µ especially in one-loop calculations.
The coefficient c2 is nothing else but the SU(2) second Casimir, viz c2 =
L2
a = (N2 − 1)/4.

The above model will lead to an emergent two-sphere S2
N , i.e. Xa ∼ La.

To obtain an emergent S2
N0
×S2

N0
, with N = N2

0 , we consider two copies of the
above model with gauge fieldsXa and Ya respectively, and then coupleXa and
Ya in the usual way, i.e. via commutators squared. The only modification
required in the normalization explained above is to replace the quadratic
Casimir as c2 −→ c0

2 = (N2
0 − 1)/4. Thus, we consider the mass-deformed

IKKT Yang-Mills model in six dimensions given by

S[X, Y ] = S[X] + S[Y ]− N

2
Tr[Xa, Yb]

2.

In the above models α will play the role of the gauge coupling constant.
More precisely, the inverse gauge coupling constant is found to be given by
the combination

α̃2 = α2N ∼ 1

g
.

In order to take the commutative large N limit we will need to study carefully
the plots of various observables as functions of α̃, and determine from their
behavior under N , the scaled quantities which are stable in the strict N −→
∞ limit. These scaled observables will be termed collapsed and it may even
happen that the inverse gauge coupling constant itself α̃2 will be required to
be collapsed, i.e. scaled with N , appropriately.

Indeed, it is found in the case of S2
N that scaled observables are actually

functions of ᾱ and not of α̃, where ᾱ the is the so-called collapsed coupling
constant defined by

ᾱ = α̃
√
N = αN.

This can also be confirmed by one-loop calculation.
The main results of this article are as follows:
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• The dynamically emergent geometry, which is given by a fuzzy two-
sphere S2

N , in the 3−dimensional mass-deformed IKKT matrix models,
is found to be stable for all values of the deformation parameter M .
The critical gauge coupling constant α̃ is found to scale as in equation
(5.24), i.e. as α̃ ∼ 1/

√
N . The sphere-to-matrix transition line is

pushed to 0 and only one phase survives.

• The 6−dimensional mass-deformed IKKT matrix model exhibits a phase
transition from a geometrical phase at low temperature, given by a
fuzzy four-sphere S2

N × S2
N background, to a Yang-Mills matrix phase

with no background geometrical structure at high temperature. The in-
verse temperature β is here identified with the gauge coupling constant
α̃.

• The transition is exotic in the sense that we observe, for small values
of M , a discontinuous jump in the entropy, characteristic of a 1st order
transition, yet with divergent critical fluctuations and a divergent spe-
cific heat with critical exponent α = 1/2. The critical gauge coupling
constant is pushed downwards as the scalar field mass is increased.

• For small M , the system in the Yang-Mills phase is well approximated
by 6 decoupled matrices with a joint eigenvalue distribution which is
uniform inside a ball in R6. This gives what we call the d = 6 law given
by equation (5.47). For large M , the transition from the four-sphere
phase S2

N × S2
N to the Yang-Mills matrix phase turns into a crossover

and the eigenvalue distribution in the Yang-Mills matrix phase changes
from the d = 6 law to a uniform distribution.

• In the Yang-Mills matrix phase the specific heat is equal to 3/2 which
coincides with the specific heat of 6 independent matrix models with
quartic potential in the high temperature limit. Once the geometrical
phase is well established the specific heat takes the value 5/2 with the
gauge field contributing 3/2 and the two scalar fields contributing 1.

This article is organized as follows. In section 2 we review the construction
of noncommutative fuzzy gauge theory on the fuzzy sphere from random
matrix theory, and write down our generalized three matrix model. In section
3 we show by means of Monte Carlo that the emergent fuzzy sphere in this
three matrix model is stable for all values of the mass deformation parameter
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M . In section 4 we write down the analogous six matrix model, and present
its one-loop quantization, and then discuss in great detail the calculation of
the phase diagram by means of Monte Carlo. It is shown here that the fuzzy
four-sphere S2

N × S2
N is only stable for large values of the mass deformation

parameter M . In section 5 we give a detailed discussion of the phases of the
model using the eigenvalue distribution. We also revisit in this section the
effective potential in order to prove the critical behavior of the theory. In
section 6 various related topics are discussed briefly such as: emergent gauge
theory in two dimensions, monopoles and instantons, topology change and
stability of the fuzzy four-sphere S2

N×S2
N , critical behavior, Dirac operators,

random matrix theory formulation, and generalization to fuzzy four sphere
S4 and fuzzy CPn. Section 7 contains our conclusion.

5.2 The 3−dimensional mass deformed Yang-

Mills matrix model

A U(n) gauge action on the fuzzy sphere can be derived from a simple
1−matrix model as follows [141]. We introduce Pauli matrices τa and the
three N ×N matrices La, which are the SU(2) generators in the irreducible
representation of spin s = (N − 1)/2, and define the matrix

C̄ = (
1

2
+ τaLa)⊗1n. (5.1)

It is a trivial exrecise to check that

C̄ = (j(j + 1)− (
N

2
)2)⊗1n, (5.2)

where j is the eigenvalue of the operator ~J = ~L + ~σ/2 which takes the two
values N/2 and (N − 2)/2. The eigenvalues of C̄ are therefore N/2 with
multiplicity n(N + 1) and −N/2 with multiplicity n(N − 1) . Hence

C̄2 = (
N

2
)212nN . (5.3)

As it turns out this matrix C̄ can be obtained as a classical configuration of
the following 2nN−dimensional 1−matrix action

S[C] =
1

4g2

1

N
Trtr2

(
C2 −

(
N

2

)2)2

. (5.4)
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Indeed, the equations of motion derived from this action reads

C(C2 − N2

4
) = 0. (5.5)

It is easy to see that C̄ solves this equation of motion and that the value of
the action in this configuration is identically zero ,i.e. S[C = C̄] = 0.

Expanding around the vacuum C̄ by writing

C =
1

2
+ C0 + σaCa, (5.6)

where C0 and Ca are nN×nN matrices and imposing the condition

C0 = 0, (5.7)

we get

C2|C0=0 =
1

4
+ C2

a +
1

2
εabcσcFab. (5.8)

The curvature Fab is given in terms of Ca by

Fab = i[Ca, Cb] + εabcCc. (5.9)

Hence, we obtain the action

S[C] =
1

g2

1

N

[
1

4
TrF 2

ab +
1

2
Tr(C2

a −
N2 − 1

4
)2

]
. (5.10)

The normal scalar field Φ on the fuzzy sphere is given in terms of Ca by

Φ =
C2
a − L2

a

2
√
c2

, c2 = L2
a =

N2 − 1

4
. (5.11)

The U(n) gauge action becomes

S[C] =
1

g2

1

N

[
1

4
TrF 2

ab + 2m2TrΦ2

]
. (5.12)

The mass m2 is given by the value of the Casimir, viz

m2 = c2. (5.13)

115



5.2. THE 3−DIMENSIONAL MASS DEFORMED YANG-MILLS
MATRIX MODEL

We can bring this action into the form (with Xa = 2αCa/3)

S[X] = NTr

[
− 1

4
[Xa, Xb]

2 +
2iα

3
εabcXaXbXc +M(X2

a)2 + βX2
a

]
M =

m2

2c2

, β = −α2µ =
2α2

9
(1− 2m2). (5.14)

We will also use extensively the parameter α̃ defined by

α̃4 = α4N2 =

(
3

2

)4
1

g2
. (5.15)

The parameter g is the gauge coupling constant. The classical absolute min-
imum of the model is given by the fuzzy sphere configurations Ca = La.
Expanding around this solution by writing Ca = La + Aa yields a U(n) the-

ory with a 3−component gauge field ~A where the extra normal component
is given by Φ. In the commutative limit N−→∞ the field Φ = naAa is in-
finitely heavy and hence it decouples. The curvature in terms of Aa is given
by Fab = i[La, Ab]− i[Lb, Aa] + εabcAc + i[Aa, Ab] −→ iLaAb− iLbAa + εabcAc.
The pure gauge action S[C] becomes

S[C] =
1

4g2N
TrF 2

ab +
2c2

g2N
TrΦ2 −→ 1

4g2

∫
dΩ

4π
F 2
ab +

N2

2g2

∫
dΩ

4π
Φ2.(5.16)

This is the action of a pure U(n) gauge theory on the ordinary sphere. The
action (5.14) defines therefore a pure U(n) gauge theory on the fuzzy sphere
at least in the region of the phase space where the vacuum configuration
Ca = La is stable. In this study we will deal mostly with n = 1 and hence
Tr1 = N .

The action (5.14) should be compared with the action (3.8) of [139]. Here
m2 = c2 whereas m2 is a free parameter in [139]. Furthermore, β is fixed here
as β = 2α2/9 for m2 = 0 whereas β is a free parameter for m2 = 0 in [139].
This action is also slightly different from the action (1) studied in [138]. Here,
the m2 = 0 theory is the perfect square action F 2

ab/2 whereas the m2 = 0
limit of the action (1) studied in [138] is the Alekseev-Recknagel-Schomerus
(ARS) stringy action given by F 2

ab/2+ Chern-Simons or equivalently [133]

S[X] = NTr

[
− 1

4
[Xa, Xb]

2 +
2iα

3
εabcXaXbXc

]
. (5.17)

The perfect square action F 2
ab/2 and the ARS action are connected by the

critical line in the plane α̃− β of the model with M = 0 computed in [149].
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5.3 An emergent stable fuzzy sphere S2

5.3.1 Results

The case of a single sphere contained in the three dimensional mass-
deformed IKKT matrix model which is studied in this section is much sim-
pler and differs from the case of S2 × S2 studied in the next section in two
important aspects.

1. There exists for every finite N only two distinct phases regardless of
the value of the mass parameter M . The fuzzy sphere phase S2

N and
the Yang-Mills matrix phase. This is confirmed by the eigenvalue dis-
tribution.

2. But since the critical value separating the two phases is found in one-
loop and Monte Carlo to scale as 1/

√
N the Yang-Mills phase is van-

ishingly small in the limit N −→∞.

Thus, effectively the three dimensional mass-deformed IKKT model (5.14)
contains really a single phase.

Let us also mention that the critical points are estimated in three different
independent ways in both the three and the six mass-deformed IKKT matrix
models. These are:

1. From the intersection point of the expectation value of the actions for
different values of N .

2. From the peak or minimum of the specfic heat.

3. From the discontinuity or maximum of the radius defined below.
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5.3.2 Discussion

We discuss now these issues in more detail. We want then to study, by
means of the Monte Carlo method , the phase diagram in the plane α̃ −M
of the model (5.14) which we will rewrite again as

S[X] = NTr

[
− 1

4
[Xa, Xb]

2 +
2iα

3
εabcXaXbXc +M(X2

a)2 + βX2
a

]
.(5.18)

The parameter M is taken in the range between M = 0 (perfect square
action) and M = 1/2 (Steinacker’s action) and even beyond whereas β is
given in terms of M by

β = −α2µ =
2α2

9
(1− 4c2M). (5.19)

The parameters β is therefore not independent and the two independent
parameters of the model are α and M .

The background minimal solution of this model is Xa = αφLa. In the
limit m2 −→∞, we have µ −→ m2, and we find a critical line separating the
fuzzy sphere phase solution with φ 6= 0, from the Yang-Mills matrix phase
solution with φ = 0, given by the critical line derived originally from a one-
loop analysis in [135]. Explicitly this is given in terms of the inverse gauge
coupling constant α̃4 ∼ 1/g2 by

α̃4 =
81

2m2
. (5.20)

We use the Metropolis algorithm for the Monte Carlo update.
For each value of the mass parameter M , we have measured the critical

point α̃∗ at the minimum of the specific heat

Cv =< S2 > − < S >2 . (5.21)

with error bars estimated by the value of the step. See figure (5.2). The re-
sults are shown on table (5.1). We observe from table (5.2) that the collapsed
coupling constant is not α̃ but it is given by

ᾱ = α̃
√
N = αN. (5.22)

Another measurement of the critical value ᾱ∗ is given by intersection point
of the actions with different values of N . See figure (5.4). The results are
shown on table (5.3).
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M/α̃ N = 4 N = 6 N = 9 N = 16 N = 25
0.5 1.9 1.5 1.3 1.0 0.8
1 1.7 1.45 1.2 0.9 0.7
2 1.6 1.4 1.0 0.8 0.6
5 1.3 1.1 0.9 0.65 0.55
10 1.2 1 0.8 0.6 0.5
50 0.8 0.7 0.5 0.4 0.3
100 0.7 0.5 0.4 0.3 0.3

Table 5.1: The critical values α̃∗ for different values of M and N .

The two different measurements, which give an upper and lower estimates,
of the critical point ᾱ∗ are included on the phase diagram (5.1). The data are
fitted to straight lines and compared to theory in table (5.4). The theoretical
prediction (5.20) in terms of the collapsed coupling constant ᾱ is given by

ᾱ =
3

M1/4
. (5.23)

This shows explicitly that the fuzzy sphere is absolutely stable in this model
for all values of M , including the Steinacker value M = 1/2, since the inverse
of the critical gauge coupling constant behaves as

α̃ =
3

N1/2M1/4
−→ 0. (5.24)

The sphere-to-matrix transition line is pushed to 0 and only one phase sur-
vives. This is the result advocated originally by Steinacker in [141].

For completeness we also measure the radius of the sphere R as a function
of the mass M and N . This is defined by the formula

1

R
=

1

φ2α̃2c2

TrX2
a , c2 =

N2 − 1

4
, φ =

2

3
. (5.25)

The results are shown on figure (5.5).
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M/ᾱ N = 4 N = 6 N = 9 N = 16 N = 25
0.5 3.8 3.7 3.9 4.0 4.0
1 3.4 3.55 3.6 3.6 3.5
2 3.2 3.4 3 3.2 3
5 2.6 2.7 2.7 2.6 2.75
10 2.4 2.4 2.4 2.4 2.5
50 1.6 1.7 1.5 1.6 1.5
100 1.4 1.22 1.2 1.2 1.5

Table 5.2: The critical values ᾱ∗ for different values of M and N .

M ᾱ
0.5 3.125
1 2.55
2 2.1
5 1.65
10 1.35
50 0.9
100 0.75

Table 5.3: The critical values ᾱ∗ from the intersection point of the actions.

method a b
Minimum Cv −0.22± 0.014 1.29± 0.036

Theory −0.25 0.48
Intersection S −0.268± 0.003 0.936± 0.007

Table 5.4: The slop and the intercept of the straight lines used to fit the data
with the theoretical prediction.
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Figure 5.1: The phase diagram of the three dimensional Yang-Mills matrix
model.
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5.4 The emergent fuzzy S2×S2 is stable only

in the limit M −→∞
The six dimensional mass-deformed IKKT model, which will contain S2×

S2, is obtained by joining together two copies of the three dimensional mass-
deformed IKKT model (5.14) for gauge fields Xa and Ya respectively, then
coupling the matrices Xa and Ya in the usual way, i.e. by adding a term
proportional to the commutator squared.

The case of S2
N0
×S2

N0
, with N = N2

0 , studied in this section is character-
ized by three phases as opposed to the effectively one phase characterizing
S2
N . We have, for every value of the mass parameter M , the fuzzy S2

N0
×S2

N0

phase as expected for large values of α̃, and a Yang-Mills matrix phase for
small values of α̃. In this case, in contrast with S2

N , the Yang-Mills phase is
stable for every value of M as we take N −→∞, and the transition line goes
as α̃∗ ∼ 1/M0.25, and as a consequence the fuzzy S2

N0
× S2

N0
is stable only in

the limit M −→∞.
However, the most distinct difference between the single fuzzy S2

N case
and the case of fuzzy S2

N0
× S2

N0
is the appearance of a third phase between

the above standard phases for large M .
Indeed, there seems to exist another transition inM around the Steinacker’s

value M = 0.5 where the profile of the eigenvalue distribution, for α̃ = 0,
changes from the d = 6 law (small values of M) to a uniform distribution
(large value of M). Thus, the phase diagram develops a distinct third phase
between the fuzzy S2

N0
×S2

N0
phase and the Yang-Mills matrix phase for large

values of M which looks like a cross-over. The transition line between the
S2
N0
× S2

N0
phase and this crossover phase is determined at a saturated line

around α̃∗ ∼ 4.2. Another possible interpretation of this phase is that of
a strongly coupled gauge theory on the emergent background geometry and
this is also supported by the measurement of the radius in this region.
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5.4.1 The 6−dimensional mass deformed Yang-Mills
matrix model

Generalization of the above construction is straightforward to four di-
mensions, i.e. to fuzzy S2×S2, and yields immediately the 6−matrix action

S[X, Y ] = NTr

[
− 1

4
[Xa, Xb]

2 +
2iα

3
εabcXaXbXc +M(X2

a)2 + βX2
a

]
+ NTr

[
− 1

4
[Ya, Yb]

2 +
2iα

3
εabcYaYbYc +M(Y 2

a )2 + βY 2
a

]
+ NTr

[
− 1

2
[Xa, Yb]

2

]
. (5.26)

We choose N to be a perfect square such that

N = N2
0 . (5.27)

The parameters of the model are given by

M =
m2

2c0
2

, β = −α2µ , µ =
2

9
(4c0

2M − 1) , c0
2 =

N2
0 − 1

4
. (5.28)

Before we report the Monte Carlo data we discuss the one-loop effective
potential of this theory and its phase structure.

The background solution (absolute minimum) of this model is by con-
struction given by

Xa = αφLa ⊗ 1 , Ya = αφ1⊗ La. (5.29)

The fuzzy four-sphere is given explicitly by

x2
1 + x2

2 + x2
3 = 1 , [xa, xb] =

i√
c0

2

εabcxc, (5.30)

y2
1 + y2

2 + y2
3 = 1 , [ya, yb] =

i√
c0

2

εabcyc, (5.31)

[xa, yb] = 0, (5.32)
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where xa = La ⊗ 1/
√
c0

2 and ya = 1⊗ La/
√
c0

2.
The La are the SU(2) generators in the irreducible representation of spin

s = (N0− 1)/2, and the background value of φ is 2/3. By expanding around

this solution, as Xa = 2αC
(1)
a /3, Ya = 2αC

(2)
a /3, C

(i)
a = L

(i)
a +A

(i)
a , we obtain

in the limit N −→∞ a U(1) gauge theory on S2 × S2 given by the action

S[C(1), C(2)] =
1

g2

1

N
Tr

[
1

4
F

(1)2
ab +

1

4
F

(2)2
ab +

1

2
F

(12)2
ab + 2m2Φ(1)2 + 2m2Φ(2)2

]
.(5.33)

By comparing with equation (20) of [147] it seems to us that m2 = c2 as
in the case of the single fuzzy sphere. The definition of the components of
curvature tensor and the two scalar fields are obviously given by

F
(i)
ab = i[C(i)

a , C
(i)
b ] + εabcC

(i)
c , F

(12)
ab = i[C(1)

a , C
(2)
b ]. (5.34)

Φ(i) =
C

(i)2
a − c0

2

2
√
c0

2

. (5.35)

5.4.2 Quantization at one-loop

For simplicity let us go back to the case of a single sphere and discuss the
derivation of the effective potential there first [135].

Quantization around this background, using the background field method
gives, after gauge fixing in the Lorentz gauge, the effective action

Γ[Xa] = S[Xa] +
1

2
Tr log Ω− Tr logX 2, (5.36)

where the Laplacian operator Ω is given explicitly by the formula

Ωab = X 2
c δab − 2Fab + 4M(X2

c − c2α
2)δab + 8MXaXb + 2(β + 2c2α

2M)δab.(5.37)

The first term in (5.36) is due to the gauge field while the second term is
due to the ghost field. In above the notation Xa and Fab means that the
covariant derivative Xa and the curvature Fab = i[Xa, Xb] + αεabcXc act
by commutators, i.e Xa(A) = [Xa, A], Fab(A) = [Fab, A] where A∈MatN .
Similarly, X 2(A) = [Xa, [Xa, A]].

The UV-IR mixing behavior on the fuzzy four-sphere in the model with
M = β = 0 was studied in great detail in [146].
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It can be shown that the contributions from all the terms in the Laplacian
Ω except the first are subleading [135, 150]. Thus, the effective potential for
Xa = αφLa is given by

V

2c2

= α̃4

[
φ4

4
− φ3

3
+m2φ

4

4
− µφ

2

2

]
+ log φ2. (5.38)

The calculation on the fuzzy four-sphere S2×S2 proceeds in exactly the same
way [146, 150]. First we fix the Lorentz gauge, then compute the effective
action, and then substitute the background matrices Xa = αφLa ⊗ 1, Ya =
αφ1 ⊗ La. The calculation of the classical part of the effective potential is
trivial. The quantum part goes along the same lines as above. In particular,
the contributions from all the terms in the Laplacian Ω are negligible except
the first one. Thus we get the logarithmic potential

1

2
TrdTr log φ2 − Trφ2 =

d

2
N2 log φ2 −N2 log φ2. (5.39)

On S2 we have d = 3 whereas on S2 × S2 we have d = 6. We get then on
S2 × S2 the effective potential

V

2N2
= 2c0

2α
4

[
φ4

4
− φ3

3
+m2φ

4

4
− µφ

2

2

]
+ log φ2

= α̃4
0

[
φ4

4
− φ3

3
+m2φ

4

4
− µφ

2

2

]
+ log φ2, (5.40)

where we have redefined the coupling constant by

N2
0

2
α4 = α̃4

0. (5.41)

The difference between the result on S2 and this result lies in the replacement
α̃ −→ α̃0 and the replacement c2 −→ c0

2 in the definition of µ. The analysis
of the phase structure is therefore identical (see section 5.2).

The equation of motion reads then

V
′

2N2
= α̃4

0

[
φ3 − φ2 +m2φ3 − µφ

]
+

2

φ
. (5.42)

In the limit m2 −→ ∞, we have µ −→ 4m2/9, and we find a critical line
separating the fuzzy sphere phase solution with φ 6= 0, from the Yang-Mills
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matrix phase solution with φ = 0, given by the formula

(1 +m2)φ∗ =
3

8

(
1 +

√
1 +

32t

9

)
1

α̃4
0∗

=
φ2
∗(φ∗ + 2µ)

8

t = µ(1 +m2). (5.43)

More detail on the derivation of this formula and the analysis of the phase
diagram from the effective potential can be found in section 5.2.

The small mass limit M −→ 0 gives

α̃ ∼ N (5.44)

which diverges with N . This is precisely the divergent asymptotic behavior
of the critical line of the model M = 0 observed in [149].

The large mass limit M −→ ∞ (or equivalently m2 −→ ∞) of these
equations is given in terms of α̃ by

α̃ = 3
( 2

M

)1/4
. (5.45)

Thus as opposed to the case of a single sphere the collapsed coupling constant
is α̃ and not ᾱ which signals the persistence of the instability of the emergent
four-sphere geometry as we will now show with the Monte Carlo results.

5.4.3 Monte Carlo calculation

We perform Monte Carlo simulation of the above six dimensional matrix
model using the Metropolis algorithm. We vary M for different values of N .
We work with N = 4− 25 and M = 0.05− 50.

5.4.4 The action:

• The intersection point of the average actions (entropies) for various
values of N leads in this case to a robust measurement of the transition
point between the fuzzy four-sphere S2 × S2 phase and the matrix
Yang-Mills phase. See (5.6). This measurement in comparison with
the theoretical prediction value (6.34) gives an under estimation of the
critical point. The results are included on table (5.5).
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• For small values of M we also observe a discrete jump in the entropy
at the transition point between the fuzzy four-sphere S2 × S2 phase
and the matrix Yang-Mills phase. See the second graph of(5.6). The
physics of this discontinuity is discussed in more detail in section 5
using the approximation of the effective potential.

• The behavior of the action which couples the two spheres, viz

S12 = YM12 = −N
2
Tr[Xa, Yb]

2, (5.46)

for small and large values of M , is shown on figure (5.7). We choose
M = 0.1, and M = 120, for N = 16. We also plot S1 and S2, which
are obviously defined, for comparison.

We observe that for small values of M the action YM12 is comparable
to Si, whereas for large values of M it becomes quite negligible. This
means in particular, that for large values of M , the approximation of
the effective potential is expected to work well.

5.4.5 The specific heat:

• For small values of M , the geometric phase transition from the fuzzy
four-sphere S2×S2 phase to the matrix Yang-Mills phase is marked by,
and is measured at, the peak of the specific heat. See figure (5.8). The
peak becomes harder to resolve for larger values of M and N . This
is in contrast with the case of the fuzzy two-sphere S2 where a peak
in the specific heat is observed only for very small values of M . The
results are included on table (5.6).

• There seems to exist a new transition in M , around M ∼ 0.5 which
is the Steinacker’s value, beyond which the peak in Cv ceases from
marking the transition from the fuzzy four-sphere phase to the Yang-
Mills matrix phase, and the specific heat develops a minimum where
the transition actually occurs. See figure (5.9) and the results are
included on table (5.7). Thus, for larger values of M above M ∼ 0.5
the geometric phase transition from the fuzzy four-sphere S2×S2 phase
to the matrix Yang-Mills phase is marked by, and is measured at, the
minimum of Cv.
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• We also observe that the value at the peak of the specific heat saturates
at around α̃ ∼ 4.1 for larger values of M . This peak corresponds in
this case to a transition from a fuzzy four-sphere to a crossover phase
as we will describe further shortly.

5.4.6 The radius:

We also measure the radii of the two spheres given in terms of TrX2
a and

TrY 2
a respectively by the formula (5.25) with the substitution N −→ N0.

From the Monte Carlo data we observe no difference, beyond and above
statistical fluctuations, between the two radii. This is obvious from the figure
(5.10).

We observe for small values of M a discontinuity in the radius at the
transition point as seen neatly on figure (5.10). We note that in this case it
becomes harder to thermalize the system in the fuzzy four-sphere phase due
to the zero modes of the matrices Xa and Ya.

For medium and larger values of M the discontinuity is smoothed out
as shown on figure (5.12). The transition point in this case is taken, for
medium values of M , at the maximum reached by the radius R in the fuzzy
four-sphere phase before decreasing to zero in the Yang-mills matrix phase.
For larger values of M , the transition point is taken at the point where the
radius R drops below one. In summary,

R −→

{
1 , α̃ >> α̃∗ fuzzy four-sphere phase

0 , α̃ << α̃∗ Yang-Mills matrix phase.

This consists an independent measurement of the critical point between the
fuzzy four-sphere phase and the Yang-Mills matrix phase. The data for
different values of N is well collapsed and thus one can obtain from the
radius a single estimate for the critical point shown on table (5.8).

5.4.7 The phase diagram

The critical line, and as a consequence the phase diagram, from the mea-
surements of the action (intersection point or jump), the specific heat (peak
and minimum) and the radius (jump, maximum and dropping below 1), to-
gether with the theoretical calculation given by equation (6.34), are shown
on figure (5.13).
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In summary, we observe roughly three phases. The fuzzy four-sphere
phase as expected for large values of α̃, and a Yang-Mills matrix phase for
small values of α̃, and this is the case for every value of the mass parameter
M .

Therefore, in this case the fuzzy four-sphere phase is only stable in the
limit M −→ ∞ since the collapsed gauge coupling constant is α̃ and not ᾱ,
in contrast to what happens in the case of a single sphere.

As we will discuss, in the next section, the Yang-Mills phase in this case is
characterized by different eigenvalue distributions for large and small values
of M . There seems to exist another transition in M around the Steinacker’s
value M = 0.5 where the profile of the eigenvalue distribution, for α̃ = 0,
changes from the d = 6 law (small values of M) to a uniform distribution
(large value of M). See below for a detailed discussion.

Also, we observe that the phase diagram develops a distinct third phase
between the fuzzy four-sphere phase and the Yang-Mills matrix phase for
large values of M . This looks like a crossover phase. The critical line between
the fuzzy four-sphere phase and this new phase, as measured by the peak
of Cv, saturates around α̃ = 4.2. Another possible interpretation of this
phase is that of a strongly coupled gauge theory on the emergent background
geometry and this is supported by the measurement of the radius in this
region.
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M α̃
M = 0.05 8.50
M = 0.1 7.20
M = 0.5 3.75
M = 1.0 2.80
M = 10 1.55
M = 20 1.17
M = 25 1.11
M = 30 1.06
M = 35 1.02
M = 40 0.98
M = 60 0.89
M = 80 0.83
M = 100 0.78

Table 5.5: The critical values α̃∗ from the intersection of the action.

M/α̃ N = 4 N = 9 N = 16 N = 25 Extrapolation
M = 0.05 7.50 7.60 8.20 8.70 8.5614± 0.345
M = 0.1 6.10 6.70 6.80 7.00 7.0262± 0.1505
M = 0.5 4.90 5.00 5.20 5.30 5.3040± 0.0813
M = 1.0 4.60 4.70 4.70 4.80 4.7914± 0.0360
M = 10 4.20 4.30 4.20 4.30 4.2851± 0.0534
M = 20 4.20 4.20 4.30 4.20 4.2482± 0.0492
M = 25 4.30 4.30 4.30 4.20 4.2419± 0.0449
M = 30 4.30 4.20 4.30 4.20 4.2149± 0.0534
M = 35 4.30 4.20 4.20 4.20 4.1666± 0.0168
M = 40 4.10 4.30 4.30 4.20 4.3087± 0.0717
M = 60 4.20 4.30 4.20 4.20 4.2271± 0.0531
M = 80 4.10 4.10 4.20 4.20 4.2063± 0.0374
M = 100 4.20 4.30 4.10 4.20 4.1788± 0.0849

Table 5.6: The critical values α̃∗ from the peak in Cv.
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M/α̃ N = 4 N = 9 N = 16 N = 25 Extrapolation
M = 0.05 7.50 7.60 8.20 8.70 8.5614± 0.345
M = 0.1 6.10 6.70 6.80 7.00 7.0262± 0.1505
M = 0.5 3.70 3.70 3.85 3.90 3.8885± 0.0664
M = 1.0 4.60 4.70 4.70 4.80 4.7914± 0.0360
M = 10 2.50 2.30 2.30 2.35 2.2622± 0.05124
M = 20 2.20 2.00 1.90 2.00 1.8850± 0.0571
M = 25 2.10 1.90 1.90 2.00 1.8912± 0.0717
M = 30 2.10 1.80 1.70 1.80 1.5404± 0.0233
M = 35 2.00 1.80 1.65 1.65 1.4917± 0.0516
M = 40 1.90 1.70 1.60 1.55 1.4979± 0.0155
M = 60 1.70 1.50 1.55 1.50 1.4573± 0.0433
M = 80 1.60 1.50 1.50 1.45 1.4376± 0.0168
M = 100 1.60 1.40 1.45 1.40 1.3573± 0.0823

Table 5.7: The critical values α̃∗ from the minimum in Cv.

M α̃
M = 0.05 8.10
M = 0.1 6.70
M = 0.5 4.60
M = 1.0 4.20
M = 10 3.50
M = 20 2.50
M = 25 2.50
M = 30 2.45
M = 35 2.40
M = 40 2.40

Table 5.8: The critical values α̃∗ from the radius.
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5.5 Eigenvalues distributions and critical be-

havior

5.5.1 Eigenvalues distributions from Monte Carlo

The phase transition between the fuzzy four-sphere phase and the Yang-
Mills phase can be characterized fully by the behavior of the eigenvalue dis-
tribution across the transition line. This is by far the most detailed order
parameter at our disposal.

5.5.2 Small M :

The behavior of the eigenvalue distributions for small values of M , such
as M = 0.05 and M = 0.01, is depicted on figure (5.14). The two limiting
behaviors are as follows:

• For large values of the gauge coupling constant we observe a point
spectrum given by the eigenvalues of the SU(2) generators in the largest
irreducible representation which is of size N .

• Motivated by the work [151] it was conjectured in [152] that the joint
eigenvalues distribution of d matrices X1, X2,...Xd with dynamics given
by a reduced Yang-Mills action should be uniform inside a solid ball of
some radius R. See also [?,?,?]. Let ρ(x1, ..., xd) be the joint eigenvalues
distribution of the d matrices X1, X2, ... and Xd. We assume that
ρ(x1, ..., x4) is uniform inside a four dimensional ball of radius r. The
eigenvalues distribution of a single matrix, say Xd, which is induced by
integrating out the other d− 1 matrices is given by

ρ(λ) =
Ωd−1

Vd(d− 1)
(r2 − λ2)(d−1)/2. (5.47)

• For small values of the gauge coupling constant α̃ −→ 0 we observe a
very good agreement with this law with d = 6.We also include in the
second graph of figure (5.14), the d = 4 law and the d = 3 parabolic
law, for comparison. The fit for N = 16, M = 0.01, α̃ = 0 gives a value
of the radius r of the distribution given by

r ' 2. (5.48)

We believe that this is a universal behavior at small α̃ and small M .
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5.5.3 Large M :

Some data is included on figures (5.15) and (5.16).

• For large values of the gauge coupling constant we still observe a point
spectrum given by the eigenvalues of the SU(2) generators.

• For small values of the gauge coupling constant α̃ −→ 0 we observe ap-
proximately a uniform distribution. This is neatly shown for M = 30,
N = 9 and M = 1, N = 25 on figure (5.15). The Yang-Mills matrix
phase is then characterized, for large values of M , by this one-cut uni-
form distribution as opposed to the d = 6 law which characterizes the
Yang-Mills phase for small values of M . The transition from the fuzzy
four-sphere to the uniform distribution goes through a new phase or a
crossover as we will now discuss.

• A new phase or a crossover: There seems to be another phase
appearing for large values of M between the fuzzy four-sphere phase
and the Yang-Mills phase. This is indicated by the transition from the
distinct point spectrum in the fuzzy four-sphere phase to a phase where
a strong gauge field is superimposed on the four-sphere background in
such a way that the middle peaks flatten then disappears slowly in favor
of the uniform distribution. The last peaks to go are the maximum
and the minimum of the SU(2) configuration. See figure (5.16) for
N = 16, 9 and M = 10 where this transition occurs at α̃ = 4.2 at
the peak of Cv. Recall that the peak of the specfic heat saturates for
large values of α̃ at α̃ = 4.2. However, this new phase may only be a
crossover transition. Indeed, on the second graph of (5.17) we plot the
behavior of X2

a as a function of α̃ for N = 9 and M = 30. We observe
that the profile of the eigenvalue distribution changes drastically only
at the transition point to the uniform distribution.

• The coupling between the two spheres: The coupling between
the two spheres can be probed by the eigenvalue distribution of the
commutator i[X1, Y1]. A sample is shown on figure (5.19) for N = 9 and
M = 10. We observe deep inside the fuzzy four-sphere phase that the
commutator i[X1, Y1] is very different from the rotationally identical
commutators i[X1, X2] and i[Y1, Y2], whereas the three commutators
behave indistinguishably from each other deep inside the Yang-Mills
matrix phase. In the middle phase, during the crossover, the eigenvalue
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distribution of i[X1, Y1] approaches quickly the profile of the other two.
The widths, for example, become less and less different, and shrink to
a minimum value in the limit α̃ −→ 0. This is shown explicitly for the
commutator i[X1, X2] for N = 9 and M = 30.

• Steinacker’s value M = 0.5 and transition point in M : See (5.18).
The behavior of the eigenvalue distribution deep inside the Yang-Mills
matrix phase for M = 0.5, and other medium values of M , is neither
given by the d = 6 law, nor it is given by a uniform distribution. This
indicates that this value is near the triple point where the transition
line between the fuzzy four-sphere S2 × S2 and the Yang-Mills matrix
phase becomes a crossover phase.

• Rotational symmetry: The eigenvalue distributions of X3, Y3, and
the commutators i[X1, X2], i[Y1, Y2], and the squares X2

a and Y 2
a , in the

fuzzy four-sphere phase are shown on the first graph of (5.17). This
shows explicitly the rotational symmetry between the two spheres.

The case of a single sphere: The physics in this case is very similar to
the case of the fuzzy four-sphere and a sample of the eigenvalue distributions
is included on figures (5.20) and (5.21).
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5.6 The effective potential revisited

We recall the formula for the effective potential

V

2N2
= α̃4

0

[
φ4

4
− φ3

3
+m2φ

4

4
− µφ

2

2

]
+ log φ2. (5.49)

The classical solutions are given by the condition

V
′

2N2
= 0. (5.50)

Clearly the effective potential is not bounded at φ = 0. However, this should
not pose any problem since this potential is valid for large values of α̃ where
we know that the fuzzy sphere exists. For smaller values of α̃ the fuzzy
sphere configuration ceases to exist and we enter the matrix phase as we have
seen in Monte Carlo data. The classical potential admits as solutions φ =
0 (local minimum) together with the fuzzy four-sphere solution φ+ (global
minimum), and a maximum of the barrier between them denoted by φ−
(local maximum). The solutions φ± exist for t > −1/4. As we decrease
µ towards negative values the global minimum φ+ becomes degenerate with
φ = 0 at t = µ(1+m2) = −2/9 and the height at the maximum of the barrier
becomes α̃4/324(1 + m2)3. There exists therefore a first order transition in
µ, at µ = −2/9(1 +m2) for every fixed m2, which is of the same character as
the one at m2 = 0, from a fuzzy-four sphere phase for µ > −2/9(1 +m2) to
Xa = Ya = 0 for µ < −2/9(1+m2) . For our value µ = 2(2m2−1)/9 the global
minimum is always φ = 2/3 and it is separated from φ = 0 by a barrier. The
effective potential admits four real solutions. The largest positive solution
is φ+ while the other positive solution gives the local maximum and it will
determine the height of the barrier in the effective potential. At the critical
point these two solutions merge and the barrier disappears. This is different
from the classical solution where the barrier never disappears. The solution
φ+ ceases to exist at the critical value determined by the condition

V
′′

2N2
= 0. (5.51)
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We recall also that the critical value is found by solving (5.50) and (5.51)
and is given implicitly by

(1 +m2)φ∗ =
3

8

(
1 +

√
1 +

32t

9

)
1

α̃4
0∗

=
φ2
∗(φ∗ + 2µ)

8

t = µ(1 +m2). (5.52)

The critical value is sent to infinity for φ∗ = −2µ which is equivalent to
t = −1/4. Thus quantum mechanically the fuzzy four-sphere may exist for
t > −1/4 which is to be compared with the classical prediction t > −2/9.
In this region the classical potential is always positive and thus one should
consider all SU(2) representations which are degenerate with Xa = Ya = 0,
i.e. for which

∑
i nic2(ni)/N −→ 0 in the limit N −→ 0 with

∑
i ni = N .

However, for large α̃ the ground state is dominated by the representation with
the smallest Casimir. The fuzzy four-sphere is therefore not stable in this
regime and the critical line between the fuzzy four-sphere phase and the Yang-
Mills matrix phase asymptotes the line t = −2/9 as shown in [149]. What
interests us the most in this section is the expansion of the solution φ around
the critical value φ∗. This is given in [139]. The only difference between the
result on S2 given in [139] and our result her lies in the replacement

α̃ −→ α̃0 (5.53)

and the replacement

c2 −→ c0
2 (5.54)

in the definition of µ. We get the solution

φ = φ∗ +
4

α̃
5
2
0∗

1√
3φ∗ + 4µ

√
α̃0 − α̃0∗ + ... (5.55)

This takes the form

φ = φ∗ + σ , σ =
4(2N)1/2

α̃
5
2
∗

1√
3φ∗ + 4µ

√
α̃− α̃∗ + ... (5.56)
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In the large N limit we have

µ −→ 2NM

9
. (5.57)

φ∗ −→
√

µ

NM
=

√
2

3
. (5.58)

α4
∗ −→

8N2M

µ2
=

162

M
. (5.59)

Thus

φ = φ∗ + σ , σ =
6

α̃
5
2
∗
√
M

√
α̃− α̃∗ + ... (5.60)

5.7 Critical behavior from one-loop effective

potential

Let us start by noting the Schwinger-Dyson identity

4 < YM1 > +4 < YM2 > +4 < YM12 > +3 < CS1 > +3 < CS2 >

+ 4 < Quar1 > +4 < Quar2 > +2 < Quad1 > +2 < Quad2 >= 6N2.(5.61)

We have the obvious definitions for the various observables

YM1 = NTr

[
− 1

4
[Xa, Xb]

2

]
, YM2 = NTr

[
− 1

4
[Ya, Yb]

2

]
, YM12 = NTr

[
− 1

4
[Xa, Yb]

2

]
.

(5.62)

CS1 = NTr

[
2iα

3
εabcXaXbXc

]
, CS2 = NTr

[
2iα

3
εabcYaYbYc

]
. (5.63)

Quar1 = NMTr(X2
a)2 , Quar2 = NMTr(Y 2

a )2. (5.64)

Quad1 = NβTrX2
a , Quad2 = NβTrY 2

a . (5.65)
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We obtain immediately a formula for the average action given by

S

N2
=

3

2
+

1

4N2
< CS1 > +

1

4N2
< CS2 > +

1

2N2
< Quad1 > +

1

2N2
< Quad2 > .(5.66)

We compute

1

4N2
< CS1 >=

1

4N2
< CS2 >= − α̃

4φ3

24N
. (5.67)

1

2N2
< Quad1 >=

1

2N2
< Quad2 >= −µα̃

4φ2

8N
. (5.68)

We also note here the formula for the related radius (with φ0 = 2/3)

1

R
=<

1

φ2
0α̃

2c0
2

TrX2
a >=<

1

φ2
0α̃

2c0
2

TrY 2
a >=

(3

2

)2
φ2. (5.69)

Thus

S

N2
=

3

2
− α̃4

4N
(
1

3
φ3 + µφ2)

=
3

2
− α̃4

4N
(
1

3
φ3
∗ + µφ2

∗)−
α̃4
∗

4N
(φ2
∗ + 2µφ∗)σ

=
S∗
N2
− 4

φ∗
σ. (5.70)

S∗
N2

=

(
3

2
− 4

3

( α̃
α̃∗

)4 − α̃4µ

12N
φ2
∗

)
∗

=
3

2
− 4

3

φ∗ + 3µ

φ∗ + 2µ

−→ −1

2
. (5.71)

This is the value of the average action or entropy in the fuzzy four-sphere
phase at the transition point exactly for M large. For M small we get instead
the (constant) value

S∗
N2

−→ 1

6
. (5.72)
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In the Yang-Mills matrix phase we go back to the first line of equation (5.70)
and set φ = 0 to get the value 3/2 at α̃ = 0. The transition to the Yang-Mills
phase occurs quite suddenly for small M . Thus the entropy for small M has
a discrete jump given by

∆S

N2
−→ 4

3
. (5.73)

The average action can also be derived using the formula

< S >

N2
=

3

2
+ α̃4 d

dα̃4

( F
N2

)
, (5.74)

where (with Xa = αDa, α̃
4Ŝ = S)

Z = exp(−F ) =

∫
dDa exp

(3N2

2
ln α̃4 − α̃4Ŝ

)
. (5.75)

The free energy is given by

F

2N2
=

V

2N2
+

1

2
ln α̃4 + constant. (5.76)

Then we can compute the specific heat by the formula

Cv =
< S2 > − < S >2

N2

=
< S >

N2
− α̃4 d

dα̃4

(< S >

N2

)
. (5.77)

We compute immediately

Cv =
3

2
+

α̃5

16N
φ(φ+ 2µ)

dφ

dα̃
. (5.78)

From this equation we can derive immediately the divergent part of the
specific heat to be given by

Cv = CB
v +

1

4(2N)1/2

φ∗(φ∗ + 2µ)√
3φ∗ + 4µ

α̃
5/2
∗√

α̃− α̃∗

= CB
v +

31/2

27/8M1/8

1√
α̃− α̃∗

. (5.79)
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The critical exponent of the specific heat is 1/2 which is precisely the value
obtained in two dimensions. Similarly, the critical value α̃∗ and the coefficient
of the singularity become vanishingly small when M −→ ∞. The behavior
of the background specific heat CB

v deep inside the fuzzy four-sphere phase
is computed as follows. The solution φ of the equation of motion for large
values of α̃ is found to be given by

φ =
2

3
− 27

2Mα̃4
+ .... (5.80)

By substitution in (5.78) then using φ ∼ 2/3 since we are only interested in
the background value of the specfic heat, and also using (5.57), we get

CB
v =

3

2
+

α̃5

16N
φ(φ+ 2µ)

54

Mα̃5

=
3

2
+ 1

=
5

2
. (5.81)

5.8 Related topics

5.8.1 Emergent gauge theory in two dimensions:

We have established that the fuzzy sphere is completely stable in the three
matrix model (5.18) for any value of M . This includes Steinacker’s value
M = 1/2. We can now speak in a consistent way about constructing U(n)
gauge theory on fuzzy S2. This entails the construction of monopoles sectors
and the direct evaluation of the partition function on the fuzzy sphere, or
alternatively its evaluation by means of localization technique, as a sum over
instantons contributions. This has been done for Steinacker’s value in [141]
and [143] respectively. The result in this case was found to be identical to the
result on the ordinary sphere. This shows that the fuzzy sphere is acting here
as a regularized version of the sphere, and also shows that this matrix method
is potentially a powerful new method for gauge theory. The construction
of fuzzy monopoles and instantons and the corresponding Ginsparg-Wilson
fermions on this stable fuzzy sphere can also be carried out along the lines
of [153–155].

163



5.8. RELATED TOPICS

5.8.2 A stable four-sphere S2×S2 and topology change:

The main conclusion we have reached in this article is the difference be-
tween fuzzy S2

N and fuzzy S2
N × S2

N . The fuzzy four-sphere is only stable in
the large M limit. A simple modification of the six matrix model may lead
to a stable four-dimensional geometry for any M . This consists in adding
the terms

Nβ1(TrX2
a + TrY 2

a ), (5.82)

with a particular coefficient β1. This will modify the critical line (6.34) in
such a way that α̃ is replaced by ᾱ. Topology change can also be easily
obtained in the above six matrix model by setting zero the mass parameters
M and β on one of the spheres. This way we will have the possibility of
a transition between the fuzzy four-sphere S2

N × S2
N phase and the fuzzy

sphere S2
N phase. This is what we call a topology change. This scenario was

previously observed on fuzzy CPn [156].

Critical behavior: The critical behavior of the above stable fuzzy two-
sphere S2

N and also the critical behavior of the fuzzy four-sphere S2
N × S2

N

can also be determined more carefully along the line of [157].

Comparison with [147], the 2−matrix model and instanton calculus:
The six matrix model (5.26) with M = 1/2 is precisely the action considered
in [147]. Since this model is only stable for large M , the corresponding
instanton calculus should only be expected to be valid deep inside the fuzzy
four-sphere phase. A 2−matrix model associated with the 6−dimensional
Yang-Mills matrix model (5.26) can also be constructed starting from an
SO(6) formulation. This should be contrasted with the SO(3) formulation
on the fuzzy sphere which leads to (5.4). In the case of the fuzzy four-sphere
S2
N × S2

N the matrices C and D corresponding to Xa and Ya respectively
are found to be highly constrained [147] as opposed to the single constraint
C0 = 0 found on the fuzzy sphere. The six matrix model considered in this
article is also closely related to the action studied in [158].

Dirac operator: There are two seemingly different formulations of the
Dirac operator on the fuzzy four-sphere S2

N ×S2
N . The one presented in [147]

is again based on SO(6) whereas the one presented in [159] is based on
SO(3)× SO(3).
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5.8.3 Fuzzy four-sphere S4 and fuzzy CP2:

The above analysis is expected to hold without much change on fuzzy
S4 [160–162] and fuzzy CP2 [163–166]. The analogous actions on fuzzy CPn

are given by [156]

S =
1

g2N
Tr

[
− 1

4
[Da, Db]

2 + iεabcDaDbDc

]
+

3n

4g2N
TrΦ +

M2
0

N
TrΦ2 +

M2

N

(2n+ 3)2

36n
TrΦ.

(5.83)

5.9 Conclusion

In this article we have studied IKKT Yang-Mills matrix models with mass
deformations in three and six dimensions. The 3−dimensional IKKT matrix
models considered here are very similar to the ones studied in [135, 138].
However, the dynamically emergent geometry, which is given by a fuzzy two-
sphere S2

N , is found to be stable for all values of the deformation parameter
M . This was anticipated previously for M = 1/2 in [141]. Indeed, the crit-
ical gauge coupling constant α̃ is found to scale as in equation (5.24), i.e.
as α̃ ∼ 1/

√
N . The sphere-to-matrix transition line is pushed to 0 and only

one phase survives. In this case the fuzzy sphere acts then as a regulator
of the commutative sphere, and as a consequence, fuzzy field theory and
fuzzy physics, based on this emergent fuzzy sphere, makes full sense for all
values of the gauge coupling constant. We have also studied in this article
6−dimensional IKKT matrix models, with global SO(3)×SO(3) symmetry,
containing at most quartic powers of the matrices proposed in [146]. The
value M = 1/2 of the deformation corresponds to the model of [147]. This
theory exhibits a phase transition from a geometrical phase at low temper-
ature, given by a fuzzy four-sphere S2

N × S2
N background, to a Yang-Mills

matrix phase with no background geometrical structure at high tempera-
ture. The geometry as well as an Abelian gauge field and two scalar fields
are determined dynamically as the temperature is decreases and the fuzzy
four-sphere condenses. The transition is exotic in the sense that we observe,
for small values of M , a discontinuous jump in the entropy, characteristic of
a 1st order transition, yet with divergent critical fluctuations and a diver-
gent specific heat with critical exponent α = 1/2. The critical temperature
is pushed upwards as the scalar field mass is increased. For small M , the
system in the Yang-Mills phase is well approximated by 6 decoupled matrices
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with a joint eigenvalue distribution which is uniform inside a ball in R6. This
gives what we call the d = 6 law given by equation (5.47). For large M , the
transition from the four-sphere phase to the Yang-Mills matrix phase turns
into a crossover and the eigenvalue distribution in the Yang-Mills matrix
phase changes from the d = 6 law to a uniform distribution.

In the Yang-Mills matrix phase the specific heat is equal to 3/2 which
coincides with the specific heat of 6 independent matrix models with quartic
potential in the high temperature limit and is therefore consistent with this
interpretation. Once the geometrical phase is well established the specific
heat takes the value 5/2 with the gauge field contributing 3/2 and the two
scalar fields contributing 1. This should be contrasted with the case of S2

N

in which the specific heat in the Yang-Mills matrix phase is equal to 3/4,
coinciding with the specific heat of 3 independent matrix models with quartic
potential in the high temperature limit, while in the geometrical phase the
specific heat takes the value 1 divided equally, i.e. with the gauge field
contributing 1/2 and the two scalar fields contributing 1/2. The counting on
S2
N is clear cut. In the sphere phase which coincides with the perturbative

region of the theory the gauge field contributes 1/2 [167] and the scalar field
contribute 1/2 (trivial to check in the quartic matrix model for very large
positive values of the mass parameter [168,169]). The counting on S2

N × S2
N

is more involved. There are here two scalar fields and one gauge field with
4 components. Again, it is very natural to suppose that each scalar field
will contribute 1/2 (since they are free and dimension does not enter in the
quartic matrix model). Therefore, the gauge field will contribute 3/2. This
is the picture we also get, at least formally, by assuming that the gauge field
is free and Abelian (which is true deep in the sphere phase in the large N
limit) and then fixing the gauge in the axial gauge. The 6−dimensional IKKT
Yang-Mills matrix models studied here present thus an appealing picture of a
4−dimensional geometrical phase emerging as the system cools and suggests
a scenario for the emergence of geometry in the early universe. See [148] and
references therein.
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Chapter 6

Emergent Geometry in the
multitrace quartic matrix
models

6.1 Introduction and Motivation

The original motivation for this work is the theory of noncommutative Φ4

which we now briefly describe. A scalar phi-four theory on a non-degenerate
noncommutative Euclidean spacetime is a a three-parameter matrix model
of the generic form

S = TrH
(
aM∆M + bM2 + cM4

)
. (6.1)

The Laplacian ∆ captures precisely the underlying geometry, i.e. the met-
ric, of the noncommutative Euclidean spacetime in the sense of [170, 171].
This theory can be regularized non-perturbatively using N ×N matrices in
an almost obvious way, i.e. the Hilbert space H can be taken to be finite
dimensional of size N . This theory exhibits the following three known phases:

• The usual 2nd order Ising phase transition between disordered< M >=
0 and uniform ordered < M >∼ 1N phases. This appears for small val-
ues of c. This is the only transition observed in commutative phi-four,
and thus it can be accessed in a small noncommutativity parameter
expansion.

• A matrix transition between disordered < M >= 0 and non-uniform
ordered < M >∼ γ phases with γ2 = 1N . This transition coincides, for
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very large values of c, with the 3rd order transition of the real quartic
matrix model, i.e. the model with a = 0, which occurs at b = −2

√
Nc.

In terms of b̃ = bN−3/2 and c̃ = cN−2 this reads

b̃ = −2
√
c̃. (6.2)

This is therefore a transition from a one-cut (disc) phase to a two-cut
(annulus) phase [168,169]. See also [172,173].

• A transition between uniform ordered < M >∼ 1N and non-uniform
ordered < M >∼ γ phases. The non-uniform phase, in which trans-
lational/rotational invariance is spontaneously broken, is absent in the
commutative theory. The non-uniform phase is essentially the stripe
phase observed originally on Moyal-Weyl spaces in [174,175].

Thus, the uniform ordered phase < Φ >∼ 1N is stable in the theory (6.1).
This fact is in contrast with the case of the real quartic matrix model V =
TrH(bM2 + cM4) in which this solution becomes unstable for all values of
the couplings. The source of this stability is obviously the addition of the
kinetic term to the action.

The non-uniform ordered phase [176] is a full blown nonperturbative man-
ifestation of the perturbative UV-IR mixing effect [177] which is due to the
underlying highly non-local matrix degrees of freedom of the noncommuta-
tive scalar field.

The above picture of the phase diagram holds for noncommutative phi-
four in any dimension, and the three phases are all stable, and are expected to
meet at a triple point. The phase structure in four dimensions was discussed
using the Hartree-Fock approximation in [174] and studied by means of the
Monte Carlo method, employing the fuzzy torus [178] as regulator, in [175].

In two dimensions the noncommutative phi-four theory is renormaliz-
able [179]. The regularized theory on the fuzzy sphere [130, 131] is given by
the action (6.1) with a finite dimensional Hilbert space H of size N and a
Laplacian ∆ = [La, [La, ..]] where La are the generators of SU(2) in the IRR
of spin (N − 1)/2.

The above phase structure was confirmed in two dimensions by means
of Monte Carlo simulations on the fuzzy sphere in [180, 181]. Indeed, fuzzy
scalar phi-four theory enjoys three stable phases: i) disordered (symmetric,
one-cut, disk) phase, ii) uniform ordered (Ising, broken, asymmetric one-cut)
phase and iii) non-uniform ordered (matrix, stripe, two-cut, annulus) phase.
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The phase diagram is shown on the two graphs of figure (6.1) which were
generated using the Metropolis algorithm.

The problem of the phase structure of fuzzy phi-four was also studied
by means of the Monte Carlo method in [182–186]. The analytic derivation
of the phase diagram of noncommutative phi-four on the fuzzy sphere was
attempted in [127,187–193].

The related problem of Monte Carlo simulation of noncommutative phi-
four on the fuzzy torus, and the fuzzy disc was considered in [175], [194],
and [195] respectively. For a recent study see [196].

In [186] the phase diagram of fuzzy phi-four theory was computed by
Monte Carlo sampling of the eigenvalues λi of the scalar field M . This was
possible by coupling the scalar field M to a U(1) gauge field Xa on the fuzzy
sphere which then allowed us, by employing the U(N) gauge symmetry, to
reduce scalar phi-four theory to only its eigenvalues. The pure gauge term is
such that the gauge field Xa is fluctuating around Xa = La.

Another powerful method which allows us to reduce noncommutative
scalar phi-four theory to only its eigenvalues, without the additional dynam-
ical gauge field, is the multitrace approach. The multitrace approach was
initiated in [187, 188]. See also [193] for a review and an extension of this
method to the noncommutative Moyal-Weyl plane. For an earlier approach
see [127] and for a similar more non-perturbative approach see [189–192]. The
multitrace expansion is the analogue of the Hopping parameter expansion on
the lattice in the sense that we perform a small kinetic term expansion, i.e.
expanding in the parameter a of (6.1), while treating the potential exactly.
This should be contrasted with the small interaction expansion of the usual
perturbation theory. The effective action obtained in this approach is a
matrix model which can be expressed solely in terms of the eigenvalues λi
and which, on general grounds, can only be a function of the combinations
T2n ∝

∑
i 6=j(λi − λj)2n. To the lowest non-trivial order we get an effective

action of the form [188,189,193]

Seff =
∑
i

(bλ2
i + cλ4

i )−
1

2

∑
i 6=j

ln(λi − λj)2

+

[
aN

4
v2,1

∑
i 6=j

(λi − λj)2 +
a2N2

12
v4,1

∑
i 6=j

(λi − λj)4 − a2

6
v2,2

[∑
i 6=j

(λi − λj)2
]2

+ ...

]
.

(6.3)
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The logarithmic potential arises from the Vandermonde determinant, i.e.
from diagonalization. The coefficients v2,1, v4,1 and v2,2 are given by v2,1 =
+1 , v4,1 = 0 , v2,2 = 1/8. Furthermore, it is not difficult to convince
ourselves that the above action is a multitrace matrix model since it can be
expressed in terms of various moments mn = TrMn of the matrix M .

The original multitrace matrix model written down [187] comes with dif-
ferent values of v’s and therefore, in the commutative limit N −→ ∞, it
corresponds to a phi-four theory on the sphere modulo multi-integral terms.

Since these multitrace matrix models depend only on N independent
eigenvalues their Monte Carlo sampling by means of the Metropolis algorithm
does not suffer from any ergodic problem. The phase diagrams of these
models obtained in Monte Carlo simulations will be reported elsewhere.

The remainder of this article is organized as follows:

1. Section 2: We describe our proposal for how fuzzy geometry can emerge
in generic multitrace matrix models.

2. Section 3: We apply our proposal to an explicit example. We will
show that if the multitrace matrix model under consideration does not
sustain the uniform ordered phase then there is no emergent geometry.
On the other hand, if the uniform ordered phase is sustained then there
is an underlying or emergent geometry. In particular, we will show how

• i) to determine the dimension from the critical exponents of the
uniform-to-disordered (Ising) phase transition, and how

• ii) to determine the metric (Laplacian, propagator) from the Wigner
semicircle law behavior of the eigenvalues distribution of the ma-
trix M .

3. Section 4: We conclude by giving a straightforward generalization to
fuzzy CPn and fuzzy Tn.
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6.2 The Proposal

We start with a general multitrace matrix model rewritten in terms of
the moments TrMn with generic parameters B, C, D, B

′
, C

′
, D

′
, A

′
,...as

V = BTrM2 + CTrM4 +D

[
TrM2

]2

+ B
′
(TrM)2 + C

′
TrMTrM3 +D

′
(TrM)4 + A

′
TrM2(TrM)2 + ....(6.4)

This action includes the noncommutative phi-four model on the fuzzy sphere
(6.3) and the multitrace matrix model of [187] as special cases. It also in-
cludes as special cases the multitrace matrix models obtained by expanding
the kinetic term on i) fuzzy CPn [188, 197], on ii) Moyal-Weyl spaces with
and without the harmonic oscillator term [193], and on iii) fuzzy tori [178].

The phase diagram of the action (6.4) will generically contain the ma-
trix one-cut-to-two-cut transition line separating the two stables phases of
disorder and non-uniform-order. However, the uniform ordered phase will
typically be unstable as in the case of the real quartic matrix model

V = BTrM2 + CTrM4. (6.5)

Our proposal goes as follows. We can check for a possible emergence of
geometry in the multitrace matrix model (6.4) by following the three steps:

1. We compute the phase diagram of the model (6.4). If the uniform
ordered phase remains unstable as in the case of the real quartic matrix
model (6.5) then there is no geometry and the model is just a trivial
deformation of (6.5). In the opposite case we claim that there is an
underlying, i.e. emergent, geometry with a well defined dimension (step
2) and a well defined Laplacian/metric (step 3). This means that we can
rewrite the multitrace matrix model, in the region of the phase diagram
where the uniform ordered phase exists, in terms of a scalar function
and a star product with a noncommutativity parameter θ by finding the
appropriate Weyl map. As a consequence, a small noncommutativity
parameter expansion can be performed and the the limit θ −→ 0 can
be taken. The disordered-to-uniform-ordered phase transition reduces
therefore to the usual 2nd order Ising phase transition on the underlying
geometry.
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2. We compute the dimension of the underlying by computing the critical
exponents of the disordered-to-uniform-ordered phase transition which,
by universality, take specific values in each dimension.

3. We compute the Laplacian by computing the free behavior of the propa-
gator. This is done explicitly by computing the eigenvalues distribution
of the matrix M in the free regime, small values of C, and comparing
with the Wigner semicircle law behavior which must hold with a specific
radius depending crucially on the kinetic term.

6.3 Explicit Example: The Fuzzy Sphere

6.3.1 Phase Diagram

We consider as an example the multitrace matrix model of [187] which
comes with the v values v2,1 = −1 , v4,1 = 3/2 , v2,2 = 0. The action is given
explicitly by

V = BTrM2 + CTrM4 +D
[
TrM2

]2
+B

′
(TrM)2 + C

′
TrMTrM3.(6.6)

The parameters D, B
′

and C
′

are constrained as D = 3N/4, B
′

=
√
N/2

and C
′

= −N . The phase diagram of this model is computed by means of
Monte Carlo elsewhere. The result is shown on figure (6.2). The details of the
corresponding non-trivial lengthy Monte Carlo calculation will be reported
elsewhere. As desired we have three stables phases in this particular model
meeting at a triple point. In other words, we have established that this
multitrace matrix model sustains the uniform ordered phase which is the
first requirement.

6.3.2 Dimension from Critical Exponents

The uniform ordered phase is also called the Ising phase precisely be-
cause we believe that the corresponding transition to the disordered phase
is characterized by the universal critical exponents of the Ising model in two
dimensions derived from the Onsager solution. These critical exponents are
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defined as usual by the following behavior

m/N =< |TrM | > /N ∼ (Bc −B)β ∼ N−β/ν

Cv/N
2 ∼ (B −Bc)

−α ∼ Nα/ν

χ =< |TrM |2 > − < |TrM | >2∼ (B −Bc)
−γ ∼ Nγ/ν ∼ N2−η

ξ ∼ |B −Bc|−ν ∼ N. (6.7)

There are in total six critical exponents, the above five plus the critical
exponent δ which controls the equation of state, but only two are truly inde-
pendent because of the so-called scaling laws. The Onsager solution of the
Ising model in two dimensions gives the following celebrated values [198]

ν = 1 , β = 1/8 , γ = 7/4 , α = 0 , η = 1/4 , δ = 15. (6.8)

This fundamental result is very delicate to check explicitly in the Monte
Carlo data. Since we must necessarily deal with the critical region we must
face the two famous problems of finite size effects and critical slowing down.
In this particular problem, the critical slowing down problem can be shown
to start appearing in Monte Carlo simulations around N > 60 so we will
keep below this value and employ very large statistics of the order of 220

to avoid it. A more systematic solution to this problem is to employ the
Wolf algorithm [199] which we do not attempt here. We simply employ here
the ordinary Metropolis algorithm. The problem of finite size effects is also
very serious for the measurement of the critical exponents since the above
behavior (6.7) is supposed to hold only for large N . This problem can be
avoided by not including values of N less than 20 and thus below we will
quote for completeness N = 10 and N = 15 data but, in most cases, we will
not take them into account in the fitting.

Since the Ising model appears from the Φ4 theory for large values of
the quartic coupling it is preferable to use values of C̃ as large as possi-
ble. However, we are limited from above by the appearance of the different
physics of the transition between the disordered and non-uniform-ordered
phases around C̃ = 1.5. Thus, we choose C̃ = 1.0 which is relatively large
but well established to be within the Ising transition with an extrapolated
critical point around B̃ = −3.07 (see below). The critical behavior of the
magnetization, susceptibility and specific heat around the critical value of
B̃ = −3.10 is shown on figure (6.4). We attach in table (6.1) some data
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relevant for the computation of the critical exponents ν, β, γ and α. The
other critical exponents can be determined via scaling laws.

The measurements of the critical exponents ν, β, γ and α proceeds as
follows:

• Critical Point and The Critical Exponent ν: By plotting the
critical point B̃c obtained for eachN versusN (first and second columns
of table (6.1)) we get immediately both the N = ∞ critical point and
the critical exponent ν. We obtain (see figure (6.7))

B̃c = −1.061(168).N−0.926(83) − 3.074(6)⇒ , ν = 0.926(83).(6.9)

Also we obtain

B̃∗ = −3.074(6). (6.10)

This prediction for ν agrees reasonably well with the Onsager calcula-
tion. In the following we will assume for simplicity that ν = 1. The
above fit is the only instance in which we have included N = 10 and
N = 15 and thus we believe that the obtained value of −B̃∗ is an
underestimation of the true critical point.

• Magnetization and The Critical Exponent β: The magnetization
and the zero power are defined by

m =< |TrM | > , χ =< |TrM |2 > − < |TrM | >2 . (6.11)

P0 =<
( 1

N
TrM)2 > . (6.12)

Measurements of the magnetization m/N were performed near the ex-
trapolated critical point B̃ = −3.07 for C̃ = 1.0 but inside the uniform
ordered phase. These are then used to compute the critical exponent
β by searching for a power law behavior.

More precisely, we measure ln(m/N) versus lnN for each value of B̃
very near and around B̃ = −3.10, fit to a straight line in the range
20 ≤ N ≤ 60 and compute the slope β, then search for the flattest line,
i.e. the smallest slope β. This value marks the transition from the Ising
phase to the disordered phase. Deeep inside the Ising phase the slope
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should approach the mean field value −1/4 which can be shown from
the scaling behavior of the dominant configuration. After determining
the critical value we then consider the value of B̃ nearest to it but within
the Ising phase and take the slope there to be the value of the critical
exponent β. In our example here, the flattest line occurs at B̃ = −3.13
with slope −0.088(10) after which the slope becomes −0.109(11) at
B̃ = −3.14. The slope goes fast to the mean field value −0.25 as we
keep decreasing B̃. See figure (6.5). Our measured value of the critical
point B̃∗ from the magnetization and of the critical exponent β are
therefore

B̃∗ = −3.13. (6.13)

ln
m

N
= −0.109(11). lnN − 1.423(43)⇒ β = −0.109(11). (6.14)

• Susceptibility and Zero Power and The Critical Exponent γ:
The measurement of the critical exponent γ is quite delicate and will
be done indirectly as follows. We rewrite the susceptibility in terms of
the zero power and magnetization as

χ = < |TrM |2 > − < |TrM | >2

= N2P0 −m2. (6.15)

The critical exponent γ in terms of the critical exponent γ
′

of P0 is
then given by

γ = 2 + γ
′
. (6.16)

By using the results shown on table (6.1) at B̃ = −3.14, plotted on
figure (6.7), we obtain the following exponents

lnP0 = −0.352(10). lnN − 2.289(36)⇒ γ
′
= −0.352(10). (6.17)

Or equivalently

lnN2P0 = 1.648(10). lnN − 2.289(36)⇒ γ = 1.648(10). (6.18)

For consistency we can check that the second term in the susceptibility
behaves using the result (6.14) as

lnm2 = 1.782(22). lnN − 2.846(86)⇒ γ = 1.782(22). (6.19)
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Our two measurements of the critical exponent γ agree reasonably well
with the Onsager values.

If we try to fit the values of the susceptibility at its maximum shown in
third column of table (6.1), i.e. at the peak which keeps slowly moving
with B̃, then we will obtain a very bad underestimate of the critical
exponent γ given by

lnχmax = 0.515(08). lnN − 0.652(30)⇒ γ = 0.515(08). (6.20)

This in our mind is due in part to the dependence of B̃c on N and
in another part is an indication of the critical slowing down problem
showing up in the measurement of this second moment, i.e. the size of
the fluctuations is observed to grow with N at the critical point but
not at the correct rate indicated by the independent measurements of
the zero moment and the magnetization. See figure (6.7).

• Specific Heat and The Critical Exponent α: The sepcific heat is
defined by

Cv =< S2 > − < S >2 . (6.21)

The critical point B̃∗ as measured from the specific heat is identified
by the intersection point of the various curves with different N shown
on figure (6.4). We get

B̃∗ = −3.08. (6.22)

This measurement is contrasted very favorably with the independent
measurement obtained from the extrapolated value of B̃c shown in
equation (6.10) but should also be contrasted with the measurement
obtained from the magnetization shown in equation (6.13).

By using the results shown on table (6.1) at the critical point B̃ =
−3.08, plotted on figure (6.7), we obtain the following exponent

ln
Cv
N2

= 0.024(9). lnN − 0.623(31)⇒ α = 0.024(9). (6.23)
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N B̃c, B̃∗ = −3.07 χc (Cv)∗, B̃∗ = −3.08 B̃ < B̃∗ = −3.13 m<∗ 103(P0)<∗
10 −3.20 1.704(2) 56.467(94) −3.14 2.1776(12) 6.256(6)
15 −3.16 2.089(2) 129.111(217) −3.14 2.7750(14) 4.315(4)
20 −3.14 2.436(3) 229.861(389) −3.14 3.4423(15) 3.571(2)
25 −3.13 2.716(3) 365.183(621) −3.14 4.1759(16) 3.220(2)
30 −3.12 3.017(4) 524.253(891) −3.14 4.9772(16) 3.042(2)
36 −3.11 3.283(4) 749.099(1267) −3.14 5.8878(15) 2.860(1)
40 −3.11 3.515(4) 941.139(1607) −3.14 6.5134(14) 2.782(1)
50 −3.10 3.864(4) 1461.597(2479) −3.14 7.9250(12) 2.576(1)
60 −3.10 4.301(5) 2144.929(3658) −3.14 9.2021(11) 2.388(1)

Table 6.1: Measurements of the magnetization (m/N)<∗, the susceptibil-
ity χ<∗, via the zero power (P0)<∗, and the specific heat (Cv/N

2)∗ used to
compute the critical exponents β, γ and α respectively. Here C̃ = 1.0, the
extrapolated critical point is B̃ = −3.07, the critical point as intersection
point of curves of specific heat is B̃ = −3.08, and the critical point as the
flattest line of decrease of magnetization is B̃ = −3.13.

6.3.3 Free Propagator from Wigner Semicircle Law

We can also measure the emergent geometry by measuring the free prop-
agator of the theory. This will give us information on both the dimension
and the metric since the free propagator is the inverse of the Laplacian ∆
which fully encodes the underlying geometry in the sense of [170, 171]. This
goes as follows [127].

A noncommutative phi-four on a d−dimensional noncommutative Eu-
clidean spacetime Rd

θ reads in position representation

S =

∫
ddx
(1

2
∂iΦ∂iΦ +

1

2
m2Φ2 +

λ

4
Φ4
∗
)
. (6.24)

The first step is to regularize this theory in terms of a finite N−dimensional
matrix Φ and rewrite the theory in matrix representation. Then we diagonal-
ize the matrix Φ. The measure becomes

∫ ∏
i dΦi∆

2(Φ)
∫
dU where Φi are

the eigenvalues, ∆2(Φ) =
∏

i<j(Φi − Φj)
2 is the Vandermonde determinant

and dU is the Haar measure. The effective probability distribution of the
eigenvalues Φi can be determined uniquely from the behavior of the expec-
tation values <

∫
ddxΦ2n

∗ (x) >. These objects clearly depend only on the
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eigenvalues Φi and are computed using a sharp UV cutoff Λ. If we are only
interested in the eigenvalues of the scalar matrix Φ then the free theory λ = 0
can be replaced by the effective matrix model [127]

S =
2N
α2

0

TrΦ2. (6.25)

This result can be traced to the fact that planar diagrams dominates over
the non-planar ones in the limit Λ −→∞. This means in particular that the
eigenvalues Φi are distributed according to the famous Wigner semi-circle
law with α0 being the largest eigenvalue, viz

ρ(t) =
2

πα2
0

√
α2

0 − t2 , − α0 ≤ t ≤ +α0. (6.26)

In the most important cases of d = 2 and d = 4 dimensions we have explicitly

α2
0(m,Λ) =

1

4π2

(
Λ2 −m2 ln(1 +

Λ2

m2
)
)
, d = 4. (6.27)

α2
0(m,Λ) =

1

π
ln(1 +

Λ2

m2
) , d = 2. (6.28)

Obviously, dimension four is eliminated by the results of the critical ex-
ponents. In two dimensions the regulator Λ originates in only one of two
possible noncommutative spaces [127]:

1. Fuzzy Torus: As it turns the results on the fuzzy torus are different
from those obtained using a sharp momentum cutoff due to the different
behavior of the propagator for large momenta and as a consequence the
resulting formula for α2

0 is different from the above equation (6.28). We
obtain instead

α2
0(m,Λ) = 4

∫ π

0

d2r

(2π)2

1∑
i(1− cos ri) +m2l2/2

, d = 2. (6.29)

l here is the lattice spacing, the noncommutativity is quantized as θ =
Nl2/π and the cutoff is

Λ =
π

l
=

√
Nπ

θ
. (6.30)

The above behavior can be easily excluded in our Monte Carlo data
and by hindsight we know that this should be indeed so because the
original multitrace approximation is relevant to the fuzzy sphere.
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2. Fuzzy Sphere: The fuzzy sphere S2
N = CP1

N is the simplest of fuzzy
projective spaces CPn

N . In this case N = N + 1 and the scalar field Φ
becomes an N ×N matrix φ given by φ =

√
2π/NaΦ. In this case the

cutoff is given in terms of the matrix size N and the radius R of the
sphere by

Λ =
N

R
. (6.31)

Also, in this case the mass parameters B and m2 are related by

m2 =
b

aR2
. (6.32)

By using B̃ = B/N3/2 and choosing a = 2π/N , so that Φ = φ, we
obtain

Λ2

m2
=

2π√
NB̃

. (6.33)

We get then

α2
0(m,Λ) =

1

π
ln(1 +

2π√
NB̃

). (6.34)

In the limit B −→ ∞ we get the one-cut δ2 = 2N/B of the Gaussian
matrix model BTrM2, viz B = 2N /α2

0. This can also be obtained by
taking the limit B −→ ∞ of the one-cut (deformed Wigner semicircle
law) solution

ρ(λ) =
1

Nπ
(2Cλ2 +B + Cδ2)

√
δ2 − λ2 , δ2 =

1

3C
(−B +

√
B2 + 12NC)

(6.35)

of the quadratic matrix model BTrM2 + CTrM4.

This result was also generalized in [191]. The eigenvalues distribution
of a free scalar field theory on the fuzzy sphere with an arbitrary kinetic
term, viz S = Tr(MKM +BM2)/2, where K(0) = 0 and K is diagonal
in the basis of polarization tensors T lm, is always given by a Wigner
semicircle law with a radius

R2 = δ2 = α2
0 =

4f(B)

N
, f(B) =

N−1∑
l=0

2l + 1

K(l) +B
. (6.36)
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Some Monte Carlo results are shown on figures (6.9) and (6.10). These are
obtained in Monte Carlo runs with 220 thermalization steps and 218 ther-
malized configurations where each two configurations are separated by 24

Monte Carlo steps in order to reduce auto-correlation effects. We consider
N = 20− 40, C̃ = 0.05− 0.35 and B̃ = 0− 5.

It is not difficult to convince ourselves that the mass parameter B is
precisely the mass squared in this regime. For each value of (N, C̃, B̃) we
compute the eigenvalues distribution ρ(λ) and fit it to the Wigner semicircle
law (6.26) (see figure (6.9)). We obtain thus a measurement of the radius
of the Wigner semicircle law δ2 = α2

0 = R2. We have checked carefully
that in this regime the Wigner semicircle law is the appropriate behavior
rather than the one-cut solution (6.35) as evidenced by the first graph in
figure (6.9). The measurement of the radii δ2 for various values of B̃ is then
plotted and compared with the expected theoretical behaviors (6.34) as well
as with the B −→∞ behavior δ2 = 2N/B (see figure (6.10)). The agreement
with (6.34) is very reasonable with some deviation for small values of B̃ as
we approach the non-perturbative region where the uniform ordered phase
appears at some B̃ < 0. This discrepancy for small values of B̃ is already
seen on figure (6.9) when we fit the distributions to the Wigner semicircle
law. However, this effect is reduced as we decrease the value of C̃.

In summary we conclude that we are indeed dealing with the geometry
of the fuzzy sphere and, given hindsight, we know that this should be true.

6.4 Generalization and Conclusion

The emergence of geometry in the very early universe is a problem of
fundamental importance to our understanding of quantum gravity and cos-
mology. In this letter, we have proposed a novel scenario for the emergence of
geometry in random multitrace matrix models which depend on a single her-
mitian matrix M with full unitary U(N) invariance and without any kinetic
term. Thus, the model under consideration has no geometry a priori pre-
cisely because of the absence of a kinetic term. On the other hand, previous
proposals of emergent geometry required the input of several matrices with
some rotational symmetry group besides the U(N) gauge symmetry [140].

Our proposal consists in checking whether or not the uniform ordered
phase is sustained by the multitrace matrix model under consideration. If
yes, then the dimension of the underlying geometry, in the region of the phase
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diagram where the uniform ordered phase is stable, can be inferred from
the values of the critical exponents of the Ising phase transition. Whereas,
the metric/Laplacian of this geometry can be inferred from the behavior of
the free propagator encoded in the Wigner semicircle law behavior of the
eigenvalues distribution of the matrix M in the weakly coupled regime. An
explicit example is given in which the geometry of the fuzzy sphere emerges,
with all the correct properties, in the phase diagram of a particular multitrace
matrix model containing multitrace terms depending on the moments m1 =
TrM , m2 = TrM2 and m3 = TrM3 in a particular way [187].

This idea can be generalized in a straightforward way to all higher fuzzy
projective spaces CPn and fuzzy tori Tn by tuning appropriately the coef-
ficients of the multitrace matrix model and/or including higher moments in
the multitrace matrix model .
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Chapter 7

Gauge Theory on The
Noncommutative Torus

The study of massless field theories on a torus is of great interest in the
noncommutative case because the compactness of the spacetime gives a nat-
ural infrared regularization of the theory. One may therefore analyse more
carefully the ultraviolet behaviour and also the new light degrees of freedom
which are responsible for the UV/IR mixing. From a more mathematical
point of view, the noncommutative torus constitutes one of the original ex-
amples in noncommutative geometry [200–203] which captures the essential
topological changes which occur when one deforms a compact space. It is per-
haps the most basic example which still contains a rich geometrical structure.
In this section we shall describe some basic aspects of the noncommutative
torus with particular emphasis on the properties of vector bundles defined
over them. From the study of the global properties of gauge theories defined
on this space.

7.1 The Noncommutative Torus

Most of what we have said about noncommutative quantum field theory
is true when RD is replaced by a D dimensional torus TD , with only subtle
changes that we shall now explain. Let

∑i
a be the D ×D period matrix of

TD which is a vielbein for its metric, i.e.
∑i

a δ
ab
∑j

b = Gij. Here and in the
following the indices i, j, ... will label spacetime directions while a, b, ... will
denote indices in the frame bundle of TD . The matrices

∑i
a parametrize
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7.1. THE NONCOMMUTATIVE TORUS

the moduli of D dimensional tori and they may be regarded as maps from
the frame bundle to the tangent bundle of TD . They define the periods of
the directions of TD ,

xi ∼ xi +
i∑
a

, a = 1, ..., D (7.1)

for each i = 1, ..., D. When
∑a

i is not proportional to δai , the identifica-
tions (7.1) for a 6= i describe how the torus is tilted in its parallelogram
representation.

Smooth functions on the torus must be single-valued, which implies that
the corre- sponding Fourier momenta ~k are quantized as

ki = 2π

( −1∑)a
i

ma, ma ∈ Z (7.2)

Therefore, to describe the deformation of the function algebra, one cannot
use the unbounded operators x̂i obeying (1.1).

[x̂i, x̂j] = iθij (7.3)

Instead, one must restrict to the proper subalgebra of the algebra of
noncommutativeRD that is generated by the Weylbasis of unitary operators

Ẑa = e2πi(
∑−1)ai x̂

i

(7.4)

which generate the algebra

ẐaẐb = e−2πiΘabẐbẐa, (7.5)

where

Θab = 2π

( −1∑)a
i

θij
( −1∑)b

j

(7.6)

are the corresponding dimensionless noncommutativity parameters. The
commutation relations (7.5) define the algebra of functions on the noncom-
mutative torus. Formally, if L ∼= ZD is the lattice of rankD (with bilinear
form Gij ) which generates the torus as the quotient space TD = RD/L,
then the projective regular representations LΘ in (7.5) of the lattice group L
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7.1. THE NONCOMMUTATIVE TORUS

are labelled by an element Θab of the second Hochschild cohomology group
H2(L, U(1)) This latter characterization can be generalized to describe other
sorts of noncommutative compactifications of RD [204].

Any function on TD can be expanded as a Fourier series

f(x) =
∑
~m∈ZD

f~me
2π(

∑−1)aimax
i

(7.7)

The corresponding Weyl algebra is generated by the operators () and Weyl
quantization takes the form of the map

Ŵ [f ] =

∫
dDxf(x)∆̂(x), (7.8)

where the integration is taken over TD and

∆̂(x) =
1

|det
∑
|
∑
~m∈ZD

D∏
a=1

(
Ẑa

)ma∏
a<b

e−πimaΘabmbe−2πi(
∑−1)aimax

i

(7.9)

is a periodic field operator,

∆̂(x+
i∑
a

î) = ∆̂(x), a = 1, ..., D, (7.10)

with î a unit vector in the i-th direction of spacetime. Like on RD , we
may introduce anti-Hermitian, commuting linear derivations ∂̂i which on the
noncommutative torus are defined by their actions on the Weyl basis,

[∂̂i, Ẑ
a] = 2πi

( −1∑)a
i

Ẑa. (7.11)

The basis (7.9) then has the requisite property

[∂̂i, ∆̂(x)] = −∂i∆̂(x) (7.12)
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7.2 Topological Quantum Numbers

A U(N) noncommutative Yang-Mills theory on the torus TD can be con-
structed in much the same way as we did in the previous section. If we restrict
to gauge field configurations which are single-valued functions on TD , then
everything we have said goes through with- out a hitch, with single-valued
star-unitary functions g(x) parametrizing the star-gauge transformations

Ai(x)→ g(x) ? Ai(x) ? g(x)† − ig(x) ? ∂ig(x)† (7.13)

The only difference which arises is that, like in the commutative case, there
are extra observables associated with the non-trivial homotopy of the torus.
The most general star-gauge invariant observable is still given by [67]

O(Cv)

∫
dDx trN(U(X;Cv)) ? e

ik(v)xi , (7.14)

but now there is a larger set of line momenta. Because the momenta are now
quantized as in (7.2), the identification of the translation vector v in

eiki(v)xi ? g(x) ? e−iki(v)xi = g(x+ v), (7.15)

is ambiguous up to an integer translation of the periods of TD , and the
relationship

ki(v) = (θ−1)ijv
j, (7.16)

is now modified to

viθijkj(v, n) +
i∑
a

na (7.17)

for arbitrary integer-valued vectors na . When θ = 0, the relationship (7.17)
reproduces the well-known result that the only open line observables in ordi-
nary Yang-Mills theory are those which are associated with loops that wind
na times around the a-th non-contractible cycle of the torus. Therefore, we
obtain the analog of Polyakov lines in noncommutative Yang-Mills theory
associated with the different homotopy classes of the torus [67].

More interesting things happen, however, when we consider gauge field
configurations of non-vanishing topological charge on the noncommutative
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7.2. TOPOLOGICAL QUANTUM NUMBERS

torus. An elegant way to keep track of the quantum numbers associated
with topologically non-trivial gauge fields is through their Chern numbers.
In the commutative case, these would be represented by the integers

µ(n) =

∮
trNF

n/(2π)n (7.18)

defined in terms of the curvature two-form F of some gauge connection of a
U(N) gauge bundle E over TD , and suitably integrated over cycles of the
torus. For n = 0 they produce the rank N of the vector bundle E, for n = 1
they yield the fluxes Q ab of the gauge fields through the surface formed
by the a-th and b-th cycles of TD , and for n = 2 they give the instanton
number k of the bundle E when D = 4. We can collect these integers into
the inhomogeneous Grassmann form

ch0(E) = N +
d∑

n=1

1

n!
µ(n)(E)a1...a2nρ

a1 ...ρa2n (7.19)

where here and in the following we will assume that the spacetime torus
has even dimension D = 2d. We have introduced a set ρa, a = 1, ..., D, of
anticommuting Grassmann variables,

ρaρb = −ρbρa, (7.20)

which can be thought of as local generators of the cotangent bundle of TD .
The quantity ch0(E) then defines an integer cohomology class of the ordinary
torus TD . Given these integers which characterize the given bundle E, there
is an elegant formula for the noncommutative Chern character

chΘ(E) = Tr⊗ trNexp
Ŵ [F ]

2π
(7.21)

which characterizes the corresponding gauge bundle over the noncommuta-
tive torus. Here F is the noncommutative curvature two-form of the bundle
with local components

Fab =
i∑
a

Fij

j∑
b

(7.22)
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where Fij is defined by

Fij = ∂iAj − ∂jAi − i(Ai ? Aj − Aj ? Ai)
= ∂iAj − ∂jAi − i[Ai, Aj]

+
1

2
θkl(∂kAi∂lAj)− ∂kAj∂lAi) +O(θ2) (7.23)

It can be regarded as an element of the ordinary cohomology ringHeven(TD,R)
of even degree differential forms on the torus. The quantity (7.21) can be
written in terms of (7.19) through the Elliott formula [205]

chΘ(E) = exp

(
− 1

2
Θab ∂

∂ρa
∂

∂ρb

)
ch0(E) (7.24)

with Θ regarded as a two-cycle of the homology group H2(TD,R) [206,207].
The coefficients of ρa1 ...ρa2n in the expansion of (7.24) define the n − th
noncommutative Chern numbers of the given noncommutative gauge the-
ory. They represent the topological invariants of the corresponding deforma-
tion E → EΘ from a commutative to a noncommutative gauge bundle. In
the commutative limit Θ = 0, ch0(E) generates the ordinary integer-valued
Chern numbers. But for Θ 6= 0 they are non-integral in general.

For example, in two dimensions we find

chΘ(E) = (N −QΘ) +Qρ1ρ2, (7.25)

where Q is the magnetic flux through T2

197



Conclusion

In this article we have studied IKKT Yang-Mills matrix models with mass
deformations in three and six dimensions.

The 3−dimensional IKKT matrix models considered here are very sim-
ilar to the ones studied in [135, 138]. However, the dynamically emergent
geometry, which is given by a fuzzy two-sphere S2

N , is found to be stable for
all values of the deformation parameter M . This was anticipated previously
for M = 1/2 in [141]. Indeed, the critical gauge coupling constant α̃ is found
to scale as in equation (5.24), i.e. as α̃ ∼ 1/

√
N . The sphere-to-matrix

transition line is pushed to 0 and only one phase survives.
In this case the fuzzy sphere acts then as a regulator of the commutative

sphere, and as a consequence, fuzzy field theory and fuzzy physics, based
on this emergent fuzzy sphere, makes full sense for all values of the gauge
coupling constant.

We have also studied in this article 6−dimensional IKKT matrix models,
with global SO(3) × SO(3) symmetry, containing at most quartic powers
of the matrices proposed in [146]. The value M = 1/2 of the deformation
corresponds to the model of [147]. This theory exhibits a phase transition
from a geometrical phase at low temperature, given by a fuzzy four-sphere
S2
N × S2

N background, to a Yang-Mills matrix phase with no background
geometrical structure at high temperature.

The geometry as well as an Abelian gauge field and two scalar fields
are determined dynamically as the temperature is decreases and the fuzzy
four-sphere condenses.

The transition is exotic in the sense that we observe, for small values of M ,
a discontinuous jump in the entropy, characteristic of a 1st order transition,
yet with divergent critical fluctuations and a divergent specific heat with
critical exponent α = 1/2. The critical temperature is pushed upwards as
the scalar field mass is increased. For small M , the system in the Yang-Mills
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phase is well approximated by 6 decoupled matrices with a joint eigenvalue
distribution which is uniform inside a ball in R6. This gives what we call
the d = 6 law given by equation (5.47). For large M , the transition from the
four-sphere phase to the Yang-Mills matrix phase turns into a crossover and
the eigenvalue distribution in the Yang-Mills matrix phase changes from the
d = 6 law to a uniform distribution.

In the Yang-Mills matrix phase the specific heat is equal to 3/2 which
coincides with the specific heat of 6 independent matrix models with quartic
potential in the high temperature limit and is therefore consistent with this
interpretation. Once the geometrical phase is well established the specific
heat takes the value 5/2 with the gauge field contributing 3/2 and the two
scalar fields contributing 11.

This should be contrasted with the case of S2
N in which the specific heat in

the Yang-Mills matrix phase is equal to 3/4, coinciding with the specific heat
of 3 independent matrix models with quartic potential in the high tempera-
ture limit, while in the geometrical phase the specific heat takes the value 1
divided equally, i.e. with the gauge field contributing 1/2 and the two scalar
fields contributing 1/2.

The counting on S2
N is clear cut. In the sphere phase which coincides with

the perturbative region of the theory the gauge field contributes 1/2 [167]
and the scalar field contribute 1/2 (trivial to check in the quartic matrix
model for very large positive values of the mass parameter [168,169]).

The counting on S2
N × S2

N is more involved. There are here two scalar
fields and one gauge field with 4 components. Again, it is very natural to
suppose that each scalar field will contribute 1/2 (since they are free and
dimension does not enter in the quartic matrix model). Therefore, the gauge
field will contribute 3/2. This is the picture we also get, at least formally,
by assuming that the gauge field is free and Abelian (which is true deep in
the sphere phase in the large N limit) and then fixing the gauge in the axial
gauge.

The 6−dimensional IKKT Yang-Mills matrix models studied here present
thus an appealing picture of a 4−dimensional geometrical phase emerging as
the system cools and suggests a scenario for the emergence of geometry in
the early universe. See [148] and references therein.

1Recall that in the 3d Yang-Mills matrix model the specific heat takes the value 1 in
the geometrical phase which is attributed in this case to the normal scalar field since there
is no propagating gauge degrees of freedom in 2 dimensions.
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The model presents thus an appealing picture of a geometrical phase
emerging as the system cools and suggests a scenario for the emergence of
geometry in the early universe.

200



Appendix A

A.1 Susceptibility and Specific Heat

A.1.1 Susceptibility

We consider Φ4 on the fuzzy sphere coupled to a constant magnetic field
H given by the action

S = Tr(aΦ[La, [La,Φ]]) + bΦ2 + cΦ4 +HΦ (A.1)

The magnetization and the susceptibility are defined by

magnetization =
1

N
< TrΦ >

= − 1

N

∂

∂H
lnZ (A.2)

susceptibility = < (TrΦ)2 >< TrΦ >2

=
∂2

∂H2
lnZ

= −N ∂

∂H
magnetization (A.3)

On the fuzzy sphere we have

xa =
2R

N
La, [xa, xb] =

iθ

R
εabcxc, θ

2R2

N
, Tr =

N

4πR2

∫
d2x. (A.4)

The regularized noncommutative plane is then defined by

x3 = R, [x1, x2] = iθ, ∂i = − 1

R
εijLj = −1

θ
εijxj,

∫
d2x = 2πθTr. (A.5)
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We have ε12 = 1. The above action becomes, including a rescaling of the field
Φ→ φ =

√
Na/2πΦ given by the equation

S = 2πθTr(
1

2
φ∂i∂iφ+

1

2
m2φ2 +

1

4
λφ4 + hφ). (A.6)

m2 =
b

aR2
, λ =

4πc

Na2R2
, h =

√
N

2πa

H

2r2
(A.7)

The commutative limit is θ → 0. By using a lattice in this limit we have

S = l2
∑
n

(
1

2
(φ∂i∂iφ)lattice +

1

2
m2φ2

n +
1

4
λφ4

n + hφn). (A.8)

We compute in this limit on the lattice

magnetization =
1

N
< Trφ >

→ N 2l2

4πR2
<

1

N 2

∑
n

Φn > (A.9)

A.1.2 Specific Heat

The specific heat is defined by

Cv =
∂2

∂β2
lnz

= < S2 > − < S >2 . (A.10)

The inverse temperature is introduced in the usual way as

Z =

∫
dMexp(−βS[M ]). (A.11)

The calculation of the effective potential proceeds as before with the replace-
ment a→ aβ. The partition function in the quartic multitrace approximation
is

Z =

∫
dΛ∆2(Λ)exp(−βV0) + β

∫
dΛ∆2(Λ)exp(−βV0)(−V2)(A.12)

+ β2

∫
dΛ∆2(Λ)exp(−βV0)(−V4 +

1

2
V 2

2 ) (A.13)
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A straightforward calculation yields

Cv =< (V + V4)2 > − < (V + V4) >2 −2 < (V4 + 2V 2
4 + 2V2V4)2 > .(A.14)

The last term could make this approximation of the specific heat negative.
This actually happens in the approximation of [208].
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A.2. GROSSE-WULKENHAAR MODEL

A.2 Grosse-Wulkenhaar Model

The multitrace approach can also be applied to a regularized noncom-
mutative Φ4

2 on the Moyal-Weyl plane in the matrix basis [193] with action
given by

S = TrN

[
1

2
m2M2 +

u

N
M4 + a

(
EM2 +

√
ωΓ+MΓM

)]
. (A.15)

Two cases are of importance to us here:

1. The noncommutative theory without a harmonic oscillator term. In
this case the effective action takes the form

Seffe = bTrNM
2 + cTrNM

4 + d(TrNM
2)2 + b1(TrNM)2 + c1(TrNM)4

+ d1TrNM
2(TrNM)2 + eTrNMTrNM

3.

(A.16)

The parameters are given by

b =
m2

2
+
aN

2
, c =

u

N
− a2N

24
, d = −a

2

12

b1 = −a
2
, c1 =

a2

24N2
, d1 = − a2

12N
, e =

a2

6
. (A.17)

If we assume the symmetry M −→ −M then all odd moments vanish
identically and we end up with the action

Seffe = bTrNM
2 + cTrNM

4 + d(TrNM
2)2. (A.18)

2. At the self-dual point we have Ω2 = 1, and thus
√
ω = 0, and as a

consequence the effective action reduces to the multitrace model

Seffe = bTrNM
2 + cTrNM

4 + d(TrNM
2)2. (A.19)

The parameters b, c and d are given by

b =
m2

2
+
aN

2
, c =

u

N
− a2N

24
, d =

a2

24
. (A.20)

Both the actions (A.18) and (A.19) do not contain odd moments and thus
the corresponding phase diagrams are expected to not contain the uniform
ordered phase with all matrix-like behavior as consequence.
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Appendix B

B.1 Metropolis Algorithm for Yang-Mills Ma-

trix Models

B.1.1 Metropolis Accept/Reject Step:

The basic Yang-Mills action of interest is

SYM = −N
4
Tr[Xµ, Xν ]

2

= −N
d∑

µ=1

d∑
ν=µ+1

(XµXνXµXν −X2
µXµ2). (B.1)

We perform the variation

Xλ → X
′

λ = Xλ + ∆Xλ (B.2)

where

(Xλ)nm = dδniδmj+ = d∗δnjδmi (B.3)

The corresponding variation of the action is

∆S = S(X
′
)− S(X) (B.4)

The Metropolis accept/reject step is based on the probability distribution

P [X] = min(1, exp(−∆S)) (B.5)
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B.1.2 Auto-Correlation Time:

In any given ergodic process we obtain a sequence (Markov chain) of
field/matrix configurations φ1, φ2, ..., φT . We will assume that φi are ther-
malized configurations. Let f some (primary) observable with values fi ≡
f(φi) in the configurations φi respectively. The average value < f > of f
and the statistical error δf are given by the usual formulas

< f > =
1

T

T∑
i=1

fi (B.6)

δf =
σ√
T

(B.7)

The standard deviation (the variance) is given by

σ2 =< f 2 > − < f >2 (B.8)

The above theoretical estimate of the error is valid provided the thermalized
configurations φ1, φ2, .., φT are statistically uncorrelated, i.e. independent.
In real simulations, this is certainly not the case. In general, two consec-
utive configurations will be dependent, and the average number of config-
urations which separate two really uncorrelated configurations is called the
auto-correlation time. The correct estimation of the error must depend on
the auto-correlation time.

We define the auto-correlation function Γj and the normalized auto-
correlation function ρj for the observable f by

Γj =
1

T − j

T−j∑
i=1

(fi− < f >)()fi+j+ < f >). (B.9)

ρj =
Γj
Γ0

(B.10)

These function vanish if there is no auto-correlation. Obviously Γ0 is the
variance σ2 , viz Γ0 = σ2 . In the generic case, where the auto-correlation
function is not zero, the statistical error in the average < f > will be given
by

δf =
σ√
T

√
2τint (B.11)
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The so-called integrated auto-correlation time τint is given in terms of the
normalized auto-correlation function ρj by

τint =
1

2
+
∞∑
j=1

ρj (B.12)

The auto-correlation function Γj , for large j, can not be precisely determined,
and hence, one must truncate the sum over j in τ int at some cut-off M , in
order to not increase the error δτ int in τ int by simply summing up noise.
The integrated auto-correlation time τ int should then be defined by

τint =
1

2
+

M∑
j=1

ρj (B.13)

The value M is chosen as the first integer between 1 and T such that

M ≥ 4τint + 1 (B.14)

The error δτint in τint is given by

δτint

√
4M + 2

T
τint (B.15)

This formalism can be generalized to secondary observables F which are
functions of n primary observables fα , viz F = F (f 1, f 2, ..., fn).

B.1.3 Errors

We use the Jacknife method to estimate the errors. Given a set of T = 2P

( with P some integer ) data points f(i) we proceed by removing z elements
from the set in such a way that we end up with n = T/z sets ( or bins). The
minimum number of data points we can remove is z = 1 and the maximum
number is z = T − 1. The average of the elements of the ith bin is

< y(j) >i=
1

T − z

( T∑
j=1

f(j)−
z∑
j=1

f((i− 1)z + j)

)
, i = 1, n. (B.16)

For a fixed partition given by z the corresponding error is computed as follows

e(z) =

√√√√n− 1

n

n∑
i=1

(< y(j) >i − < f >)2 , < f >=
1

T

T∑
j=1

f(j). (B.17)
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We start with z = 1 and we compute the error e(1) then we go to z = 2 and
compute the error e(2). The true error is the largest value. Then we go to
z = 3, compute e(3), compare it with the previous error and again retain the
largest value and so on until we reach z = T − 1.

B.2 The Hybrid Monte-Carlo Algorithm

The hybrid monte carlo algorithm is a combination of the molecular dy-
namics method and the metropolis algorithm. First we introduce a fictitious
time τ and 3 bosonic matrices Pa = Pa(τ). These Pa play the role of con-
jugate momenta for the 3 matrices Xa = Xa(τ). We will have a classical
dynamical system described by (Xa(τ), Pa(τ)) with Hamiltonian

H =
1

2
TrP 2

a + Seff [X] =
1

2
TrP 2

a + SB[X]− TR log
D[X]

N
. (B.18)

The partition function is given by

Z =

∫
[dXa][dPa]e

−H[X,P ]. (B.19)

By integrating out Pa we obatin the original partition function, viz

Z =

∫
[dXa]e

−Seff [X]. (B.20)

The Hamiltonian classical equations of motion are

d(Pa)ij
dτ

= − ∂H

∂(Xa)ij
= − ∂Seff

∂(Xa)ij

= −N
(
− [Xb, [Xa, Xb]] + 2iαεabcXbXc

)
ji

+ TRM−1 ∂M
∂(Xa)ij

. (B.21)

d(Xa)ij
dτ

=
∂H

∂(Pa)ij
= (Pa)ji. (B.22)
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