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Chapter 1  

Free vibration of MDOF systems 

1. Introduction 

Vibration in multi-degree-of-freedom (MDOF) systems is a fundamental concept in structural 

dynamics that plays a crucial role in the analysis and design of complex structures. In real-life 

situations, structures are inherently complex, containing distributed mass and stiffness throughout 

their components. To accurately analyze these structures, it is more appropriate to discretize them 

into a series of interconnected masses and stiffnesses. This discretization process typically involves 

lumping masses at the center of gravity of the discretized elements, resulting in a model that 

requires multiple displacement coordinates to define the structure's deformed position at any given 

time. 

This approach leads to the concept of multiple degrees of freedom, where each degree represents 

an independent way in which the system can move or deform. Unlike single-degree-of-freedom 

systems, MDOF systems require multiple coordinates to describe their motion, making them more 

representative of real-world structures such as multi-story buildings, bridges, and complex 

mechanical systems. These systems are characterized by their ability to vibrate in multiple modes, 

each with its own natural frequency and mode shape. 

The analysis of MDOF systems is essential for civil engineers, as it provides insights into how 

structures respond to various dynamic loads, including earthquakes, wind, and machinery-induced 

vibrations. Understanding MDOF vibrations allows engineers to predict and mitigate potential 

resonance phenomena, optimize structural designs, and ensure the safety and serviceability of 

structures under dynamic conditions. The complexity of MDOF systems necessitates the use of 

advanced mathematical techniques, including matrix methods, eigenvalue analysis, and modal 

decomposition, to solve the coupled equations of motion that govern their behavior. 

As structures become increasingly complex and performance requirements more stringent, 

mastering the principles of MDOF vibration becomes indispensable for civil engineering students 

pursuing advanced degrees. This knowledge forms the foundation for more advanced topics in 

structural dynamics, such as seismic analysis, vibration control, and structural health monitoring. 

The study of MDOF systems provides a comprehensive framework for understanding and 
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analyzing the dynamic behavior of complex structures, enabling engineers to design safer, more 

efficient, and more resilient infrastructure. 

2. Two Degree of Freedom System 

In general, the dynamic response of a structure cannot be described adequately by a SDOF system 

model because the response includes time variations of the displacement shape as well as its 

amplitude. Such behaviour can be described only in terms of more than one displacement 

coordinate; the motion must be represented by more than one degree of freedom.  The number of 

degrees of freedom, that is, displacement components, to be considered is left to the judgment of 

the analyst. However, large numbers provide better approximations of the true dynamic behaviour, 

but in many cases excellent results can be obtained with only two or three degrees of freedom.  

Therefore a complex structure has to be idealized into a number of masses and springs and assumed 

interconnected together. Although a large number of degrees of freedom are usually associated 

with a complex structural system, acceptable results may be obtained from the analysis of the 

response of only a few degrees of freedom.  A number of masses and springs interconnected 

together in a system constitute a multi degree of freedom (MDOF) system.  In such an arrangement 

each mass displaces in its own way independent of the other masses while the entire system 

vibrates.  A force can be applied externally on any of the masses independently and excite the 

system.  Different forces can be applied on different masses.   

Derivation of equation of motion for MDOF system straight away is cumbersome in terms of 

comprehending its dynamic behavior. Therefore for quick and better understanding of the dynamic 

behavior we consider here a simple two mass system with two coordinates for the derivation of 

the equation of motion. This two mass system is a special case of the MDOF system.  In this we 

assume that each mass is constrained to move only in the horizontal plane.  The associated 

displacements, therefore, represent the two independent co-ordinates or degrees of freedom which 

will be used to define the configuration of the system.      

This chapter deals with the dynamic analysis of Two DOF systems for which the matrix method 

is followed. Initially a formal analysis is presented in which it will be demonstrated that the 

dynamic analysis of a structural system is a form of the classical eigenvalue problem of matrix 

algebra.   
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2.1.Equation of Motion for a System with TDOF 

We assume that the masses are excited by forces P1(t) and P2(t) as in Fig. 1.1. The equation of 

mass is obtained by considering the dynamic equilibrium of each mass in turn shown in Fig. 1.1(a) 

and Fig. 1.1(b).   

 

Fig. 1.1 Two-story shear frame system 

In general, four types of forces act on each mass, namely, inertia, damping, elastic and applied 

forces, respectively. The elastic force acting on a mass depends not only upon the displacement of 

the mass under consideration, but also upon the displacement of the adjacent mass. Similarly, the 

damping force depends on the velocity of the mass as well as on the adjacent mass too.  The 

equation of dynamic equilibrium for each mass may now be written as: 

For mass 1 

 

Fig. 1.1(a) Dynamic equilibrium of mass 1 
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( ) ( ) ( )1 1 1 1 2 2 1 1 1 2 2 1 1 0m x c x c x x k x k x x p t+ − − + − − − =&& & & &  

( ) ( ) ( )1 1 1 1 2 2 1 1 1 2 2 1 1 0m x c x c x x k x k x x p t+ − − + − − − =&& & & &  

( ) ( ) ( )1 1 1 2 1 2 2 1 2 1 2 2 1m x c c x c x k k x k x p t+ + − + + − =&& & &  

( ) ( ) ( )1 1 2 1 2 1 2 2 1 2 1 2 2 10m x x c c x c x k k x k x p t + + − − + + − =&& && & &      (1.1) 

For mass 2: 

 

Fig. 1.1(b) Dynamic equilibrium of mass 2 

( ) ( ) ( )2 2 2 2 1 2 2 1 2 0m x c x x k x x p t+ − + − − =&& & &  

( ) ( ) ( )2 2 2 2 1 2 2 1 2 0m x c x x k x x p t+ − + − − =&& & &  

( )2 2 2 2 2 1 2 2 2 1 2m x c x c x k x k x p t+ − + − =&& & &  

( )1 2 2 2 1 2 2 2 1 2 2 2Ox m x c x c x k x k x p t + − + − + =&& && & &  

( ) ( ) ( )1 1 2 1 2 1 2 2 1 2 1 2 2 1m x ox c c x c x k k x k x p t + + + − + + − =&& && & &         (1.2) 

Equations (1.1) and (1.2) are interconnected and hence are called coupled. They can be expressed 

in matrix form as 
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In compact form Eq. (1.3) can be written as 

           )(tPxKxcxm =++      (1.4) 

Equation (1.4) can also be rewritten as 

         )(tPffxm sD =++      (1.5) 

where 
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Similar to SDOF system, the equation of motion for Two DOF is expressed generically as: 

 (t)P
~

x~ Kx
~

cx
~

m =++       (1.8) 

In Eq. (1.8), m - mass matrix; c - damping matrix; K - stiffness matrix and P - force matrix and

x
~
 , ,

~
x  and x~ are, respectively, acceleration, velocity and displacement vectors. 

2.2. Free Vibration of Two Degree System without Damping 

Free vibration occurs when no external force or support motion acts on the system. It begins when 

the system is disturbed from its equilibrium position, either through initial displacements, initial 

velocities, or both. As discussed earlier, the vibration of a two-degree-of-freedom system is 

generally described by Eq. (1.8).  

In the case of free vibration, 0)( =tP because no dynamic force is applied.  For a system without 

damping,  0=c .  Therefore an undamped system under free vibration is governed by 

 0~~
=+ xKxm 

      (1.9) 

For a two-degree-of-freedom system, Equation (1.9) consists of two coupled homogeneous 

differential equations. These equations are linked through either the mass matrix, the stiffness 

matrix, or both. The term "two" here refers to the number of degrees of freedom (DOFs) in the 

system. The goal is to determine a solution, x(t), for Equation (1.9) that fulfills the given initial 

conditions. 

 )0(~~ xx =  and )0(
~~
xx  =     (1.10) 

2.2.1. Normal Modes and Natural Frequencies 

Before determining the dynamic response x(t) of the structure, it is essential to first evaluate the 

frequencies of the two-degree-of-freedom (DOF) system, similar to what was done for a single-
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degree-of-freedom (SDOF) system. In the SDOF system, there is only one frequency of vibration, 

which depends on the system's mass and stiffness, as it involves a single mass. However, in a two 

DOF system, there are two masses, resulting in two distinct frequencies of vibration. While the 

SDOF system's response involved a single displacement with an easily identifiable deflected 

shape, the two DOF system allows its masses to displace in various ways depending on the 

vibration frequency. This leads to characteristic deformed shapes under different frequencies, 

known as modes. The natural period of vibration Tnm for a two DOF system represents the time 

taken for one complete cycle of simple harmonic motion in one of these natural modes. The 

corresponding natural circular frequency of vibration is nm, and the natural cyclic frequency of 

vibration is fnm where: 

 
nm

nmT


2
= ;  

nm

nm
T

f
1

=     (1.11) 

Here subscript m refers to modes, (m = 1, 2).  Figure 5.12 and 5.13 show two natural periods Tnm 

and natural frequency nm (m = 1, 2) of the two-storey building vibrating in its natural modes im 

= (1m 2m)T.  Here subscript i refers to masses (i = 1, 2). The lower of the two natural vibration 

frequencies is referred to as n1, while the higher frequency is labeled as n2. Similarly, the longer 

natural vibration period is designated as Tn1, and the shorter period is identified as Tn2. 

A system with two degrees of freedom (DOF) is found to have two natural frequencies. The smaller 

of these is referred to as the fundamental frequency or the first mode, while the larger one is known 

as the second mode. By applying specific initial conditions, it is possible to make the system 

vibrate entirely at one of these natural frequencies. In such cases, both masses will simultaneously 

pass through their equilibrium or mean position and also reach their maximum displacement at the 

same time. This type of vibration pattern is called the principal mode of vibration. During this 

principal mode, the amplitude of vibration for any one of the masses is referred to as the normal 

mode of vibration, which describes the displacement configuration. This normal mode depends 

solely on how the mass and stiffness are distributed within the system. 

2.2.2. Mode Shape 

A two-story shear frame is illustrated in Fig. 1.2 which depicts the first natural modes of vibration 

of this frame at various time points: a, b, c, and d. In a two-degree-of-freedom (DOF) or multi-
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degree-of-freedom (MDOF) system, a natural mode of vibration represents its characteristic 

deflected shape when free vibration occurs due to specific distributions of displacements across 

different DOFs. If the two-DOF system is displaced into the shapes shown in these figures and 

then released, it will undergo simple harmonic motion, consistently maintaining the initial 

deflected shape. Notably, during this motion, the displacements of both floors move in the same 

direction. 

 
Fig. 1.2 Free vibration of an undamped system in its first natural mode of vibration 

The two-story frame oscillates naturally in the mode shape illustrated in Fig. 1.2(b), at a frequency 

denoted as ωn1. The natural period of vibration is 
1

1

2

n

nT



= .  The mode shape is described by i1 

= (11  21)T. The mode shape visually illustrates the relative amplitudes of two coordinates and 

how their phase angles are related. At a vibrating frequency of n1, the displacement of the topmost 

mass in the mode shape is referred to as the modal coordinate or normal coordinate, denoted as q1, 

which is a scalar value. Figure 1.2(c) depicts how this modal coordinate changes over time, while 

Figure 1.2(d) shows the displacement history of this degree of freedom (DOF). 
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The second natural mode of vibration of the same two-storey frame is shown in Fig. 1.3(b) . The 

frequency of vibration of this second mode is n2 and period 
2

2

2

n

nT



= . 

 
Fig. 1.3 Free vibration of an undamped system in its second natural mode of vibration 

  In this mode, the displacements of the two floors move in opposite directions, with a point of 

zero displacement known as a node. A node is a stationary point where the amplitude shifts 

between positive and negative or vice versa. The fundamental mode of vibration includes the 

minimum possible modes, including zero. As the number of modes increases, the number of nodes 

rises accordingly. Mode shapes help identify these nodal points within the system. The time 

variation of the modal coordinate q2 is illustrated in Fig. 1.3(c), while Fig. 1.3(d) shows the 

displacement history of both degrees of freedom (DOFs) corresponding to this second mode of 

vibration. The second mode shape is denoted by i2 = (12  22)T.   

If the two masses are initially displaced equally in the same direction, the system will vibrate at its 

first natural frequency. Conversely, if the initial displacement is equal but in opposite directions, 

the system will vibrate in its second principal mode at the second natural frequency. However, if 

the masses are given unequal initial displacements in any direction, their motion will be the 

superposition of two harmonic motions associated with the two natural frequencies. 
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The conclusions from the above analysis may be summarised as follows: 

1. The normal or natural modes are the free, undamped periodic oscillations within which linear 

combinations represent the position of the system at every moment. 

 2. For every such normal mode all the masses of the system oscillate in phase, that is, at every 

moment the ratio of the displacements of the damped masses remains constant. As a result, all 

masses go through rest position and reach maximum amplitude simultaneously. 

 3. The number n of normal modes is equal to the number of degrees of freedom. Every normal 

mode is related to a natural frequency or period of vibration known as the natural period. The 

normal mode with the longest natural period is by definition the first or fundamental normal mode. 

2.2.3. Eigen Value Problem 

This section presents the eigenvalue problem, which provides the natural frequencies and vibration 

modes of a system. The free vibration of an undamped system, occurring in one of its natural 

modes, is visually depicted in Figures 5.12 and 5.13 for a two-degree-of-freedom (DOF) system 

and can be described mathematically as: 

 mm tqtx )()(~ =
     (1.12) 

In this context, qm represents the modal coordinates, while m denotes the deflected shape, which 

remains constant over time. To describe how the displacements of the masses vary with time, we 

use a simple harmonic function, as illustrated in Figures 1.2(d) and 1.3(d). 

 
tBtAtq nmmnmmm  sincos)( +=
    (1.13) 

where Am and Bm are integration constants.  The constants are determined by applying the initial 

conditions, which play a crucial role in initiating the vibratory motion.  We now substitute Eq. 

(1.13) into Eq. (1.12) and get 

 
tBtAtx nmmnmmm  sincos)(~ +=

    (1.14) 

where nm and m are unknowns. Now Eq. (1.14) is substituted in Eq. (1.9) to get 

   0)(
2

=+− tqKm mmmnm       (1.15) 
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We know that m = 1 refers to first frequency n1 and the corresponding mode shape 1 which is 

given by   



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

=
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and m = 2 refers to second frequency n2 and the corresponding mode shape 2 which is given by  
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In expanded form Eq. (1.15) can be written as 
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Two possibilities are there as solutions to Eq. (1.15).  First qm(t) = 0. This means 0
~

)(~ =tx indicating 

that the system cannot exhibit any motion. This solution is considered trivial. Alternatively, 

another possibility is... 

 0
2

=+− mmnm Km       (1.17) 

From Eq. (1.17), we get 

 mnmm mK 
2

=      (1.18) 

Equation (1.18) offers a valuable condition and represents an algebraic equation, commonly 

referred to as the matrix eigenvalue problem. In this context, the stiffness matrix K and the mass 

matrix m are given. Therefore, the task is reduced to finding the scalar nm
2 and the vector m. We 

can now rewrite Eq. (1.18) as follows to indicate its formal solution 

   0
2

=− mnm mK       (1.19) 

The given expression represents a set of m homogeneous algebraic equations for the m elements 

im (i = 1, 2). The trivial solution to this equation set is 0=m . However, this solution is 

unacceptable as it implies that the system cannot undergo any motion. The non-trivial solution of 

Eq. (1.19) is given by 
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 0
2

=− mK nm      (1.20) 

Equation (1.20), referred to as the characteristic or frequency equation, is expressed as a 

determinant. When expanded, this determinant produces a polynomial of degree m in terms of 

nm
2. Since the structural mass matrix m and stiffness matrix K are symmetric and represent 

physical quantities, they are positive definite. This ensures that the roots of Equation (1.20) for 

nm
2 are both real and positive. For structures where the support conditions eliminate rigid body 

motion, the stiffness matrix K retains its positive definite property. This scenario is particularly 

relevant to civil engineering structures, which are typically restrained and meet this condition. 

Additionally, in the mass matrix m , the diagonal elements represent lumped masses at all degrees 

of freedom (DOFs), and these values are always non-zero, further guaranteeing its positive definite 

nature. 

The 2 roots of Eq. (1.20) result in 2 natural frequencies n1 and n2 of vibration.  These 2 roots of 

the characteristic equation are called eigenvalues, characteristic values, or normal values.   

When the natural frequencies, denoted as ωn1 and ωn2, are determined by solving Eq. (1.20), the 

corresponding vectors, ϕ1 and ϕ2, can then be found by solving Eq. (1.19). However, the eigenvalue 

problem does not define the exact amplitudes of these vectors. Instead, it provides only the relative 

values of the displacements, represented as ϕim, where i = 1 or 2 for each mode. For a two-degree-

of-freedom (TDOF) system, two independent vectors, ϕ1 and ϕ2, are obtained, each associated with 

one of the natural vibration frequencies, ωn1 or ωn2. These vectors represent the natural modes or 

mode shapes of vibration and are also referred to as eigenvectors, characteristic vectors, or normal 

modes. 

In general, if a vibrating system has m degrees of freedom (DOFs), it will exhibit m natural 

frequencies of vibration, denoted as ωₙₚ, where p = 1, 2, ..., m, representing the mode number. The 

first mode (p = 1) is referred to as the fundamental mode. These m natural frequencies are typically 

listed in ascending order, such that ω₁ < ω₂ < ω₃ < ….. < ωₘ. Each frequency has an associated 

natural period (Tₙₚ) and a corresponding natural mode (ϕₚ). The term "natural" is used to emphasize 

that these vibration characteristics are inherent to the structure during free vibration. They arise 

naturally from the system's properties and depend solely on the structure's mass and stiffness. 
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Example 1.1 

An undamped two DOF system is shown in Figure (I). Determine its frequencies and mode shapes. 

 

Figure 1 Two-DOF system 

Solution 1.1 

The free body diagrams of the mass m1 and m2 are shown in the same Figure. The equations of 

motion can be written as: 

1 1 1 2( ) 0m x k x x+ − =&&  

And              2 2 2 1( ) 0m x k x x+ − =&&                           (i) 

Let         1 10 2 20sin , sinx x t x x t = =    (ii) 

Substituting these values in Equation (i) gives, 
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x xk km





        −        − + =             −          

 

Or, 

2
101

2
202

0

0

xk m k

xk k m





     − −     =        − −    

    (iii) 

It can be written in short as follows: 

2

0[[ ] [ ] ][ ] {0}K M X− =     (iv) 

where [K] and [M] are stiffness and mass matrices of the system. Its solution is given by setting 

the determinant to zero,  

2det[ ] 0K M− =           (v) 
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This is referred to as the characteristic equation. Equations (iv) and (v) are very important for 

eigenvalue analysis. 

4 2

1 2 1 2( ) 0m m m m k − + =  

Its roots are given by:        
*2 *2 1 2
1 2

1 2

( )
0 or

m m k

m m
 

+
= =  

or, the frequencies are given by:   * * 1 2
1 2

1 2

( )
0 and

m m
k

m m
 

+
= =  

The mode shapes can be obtained by substituting the value of ω in Equation (iii). Substituting 

2 0  = in Equation (iii) gives 10 20 1x x= = . Similarly, substituting the other value, 

2 1 2

1 2

( )m m k

m m


+
=  

2

1 10 20( ) 0k m x kx− − =  

Solving for mode shape ratio, 

20 1 1 2 1

10 2

2

2

11
x m m m m

x m mk
= = −

+
− = −  

Thus if,     1
10 20

2

1, .
m

x x
m

= = −  

Now the mode shapes can be plotted as shown in Figure below. It can be seen that the spring 

remain undeformed in Mode 1, that is, Mode 1 is a rigid body displacement mode. 

 

3. Multi-degree of freedom System (MDOF) 

Let’s examine a three-story shear frame, as illustrated in Fig. 1.4. When subjected to external 

forces P1(t), P2(t) and P3(t), the system's state at any given moment is described by its 

displacements xi, velocities ix , and accelerations ix . 
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Fig. 1.4 A three-story shear frame system 

 The relationship between the elastic forces fsi in the stiffness component and the displacements xi 

is described by Eq. (1.7). Similarly, the damping forces fDi in the damping component are related 

to velocities ix through Eq. (1.6). Likewise, the inertia forces fIi in the mass component are tied to 

accelerations ix  by xmf I

~~
= . Thus, we can interpret the external forces )(

~
tP as being distributed 

across these three structural components. Thus, IDs fff ++  must be equal to applied external 

forces )(
~

tP leading to Eq. (1.5).  

3.1.  Elastic Forces (Stiffness Component) 

In this section, we will use the method of superposition and the concept of stiffness influence 

coefficients to establish a relationship between the external elastic forces, denoted as fsp, acting on 

the stiffness components of a structure, and the resulting displacements, xq. Considering an 8-floor 
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shear frame system, we begin by applying a unit displacement along a specific degree of freedom 

(DOF) p, while keeping all other displacements fixed at zero. For instance, a unit displacement x1 

= 1 is applied, causing all other displacements (x2, x3, x4, x5, x6, x7, and x8) to remain zero. The 

resulting deflected shape of the frame due to this unit displacement. To maintain this deflected 

configuration, forces must be applied along all DOFs. These forces are represented as K11, K21, 

……, K81 and are known as stiffness influence coefficients (Kpq). These coefficients represent the 

forces induced at DOF p when a unit displacement is applied at DOF q, where p = 1, 2, ……, 8 

and q = 1, 2, ……, 8. Similarly, a unit rotation (x6 = 1) is applied while keeping all other DOFs 

(x1, x2, x3, x4, x5, x7, and x8) fixed at zero. The corresponding deflected profile and stiffness 

influence coefficients (K16, K26, ……, K86. Here, positive values are assumed for anticlockwise 

moments and translations along the x-direction; however, some forces may act in reverse 

directions and should be treated as negative to align with the imposed deformations. These 

principles can be extended to a system with N degrees of freedom (DOFs), where the forces fsp at 

DOF p, associated with displacements xq for q = 1 to N, can be determined through superposition 

as: 

 NpNpppsp xKxKxKxKf ++++= ...............332211             (1.21) 

For each value of p = 1 to N, there is one such equation.  We can now write in matrix form the set 

of N equations as: 
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             (1.22) 

In compact form Eq. (1.22) can be given as 

 xKf s
~~

=               (1.23) 

where K is a stiffness matrix and also symmetric, i.e., Kpq = Kqp. 
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The stiffness matrix K for a discretized system can be constructed using any of the structural 

analysis methods that readers may already know. To determine the qth column of K , we calculate 

the forces Kpq (where p = 1, 2, 3, ..., N) required to produce a displacement of xq = 1, while keeping 

all other displacements (xq = 0) fixed. This process of determining stiffness influence coefficients 

is referred to as the system approach. A widely used alternative is the direct stiffness method, 

where the stiffness matrices of individual elements are assembled together to form the overall 

structural stiffness matrix. 

3.2.  Damping Forces (Damping Component) 

In Chapter 2, we explored how damping serves as a mechanism for energy dissipation in structures. 

It can be simplified and represented as equivalent viscous damping since various damping 

mechanisms may exist within a structure. Building on this concept, we will now establish a 

relationship between the external forces, denoted as fDp, acting on the damping component of the 

structure, and the velocity qx . To do this, we apply a unit velocity along a specific degree of 

freedom (DOF) q, while ensuring that velocities at all other DOFs remain zero. This action 

generates internal damping forces that resist the applied velocity, requiring external forces to 

maintain equilibrium. The damping influence coefficient cpq represents the external force at DOF 

p caused by a unit velocity at DOF q. Consequently, for a system with N degrees of freedom, the 

resulting force fDp is determined by the velocities across all DOFs, from q = 1 to N. The forces fD1, 

fD2, fD3, fD4, fD5, fD6, fD7, and fD8 act at the six nodes in 8 degrees of freedom are obtained by 

superposition.  Therefore: 

 NpNpppDp xcxcxcxcf  ++++= .........2 33211              (1.24) 

Using all influence coefficients for p = 1 to N and expressing them in matrix form, we get 

 

























































=































NNNNNN

N

N

DN

D

D

D

x

x

x

x

cccc

cccc

cccc

Ncccc

f

f

f

f









.

.
.

....

............

............

....

....

1..

.

.

3

2

1

321

3333231

2232221

131211

3

2

1

         

(1.25)

 

 

 



17 

 

In compact form we can write Eq. (1.25) as: 

 

xcf D

~
=

             

(1.26) 

where c  is the damping matrix of the structure. 

It is typically neither practical nor feasible to directly determine the coefficients cpq of the damping 

matrix based solely on the structure's geometry. Instead, a common approach is to assign damping 

ratios to a multi-degree-of-freedom (MDOF) system, similar to how it is done for single-degree-

of-freedom (SDOF) systems. These damping ratios are usually derived from experimental data 

collected from structures with similar characteristics. 

3.3.  Inertia Forces (Mass component) 

In this section, we aim to establish a connection between the external forces fIp acting on the mass 

components of a structure and the resulting acceleration qx . To achieve this, we apply a unit 

acceleration along a specific degree of freedom (DOF) q, while ensuring that all other DOFs 

maintain zero acceleration. Based on D’Alembert’s principle, the imaginary inertia forces 

generated by this acceleration act in opposition to it at the nodes. To maintain equilibrium in the 

structure, external forces must be applied at these nodes. The inertia force at any node is 

determined by multiplying the mass influence coefficient with the unit acceleration along the 

corresponding DOF. The mass influence coefficient, mpq, represents the external force in DOF p 

caused by a unit acceleration along DOF q. For instance, we illustrate the external forces fI1, fI2, 

fI3, fI4, fI5, fI6, fI7, and fI8 acting on various nodes. Correspondingly, the mass influence coefficients 

m11, m21, m31, m41, m51, m61, m71, and m81 at these nodes are due to unit acceleration applied along 

DOF 1. In general, for a system with N degrees of freedom, the external force fIp resulting from 

unit acceleration qx across all DOFs (q = 1 to N) can be determined using superposition principles. 

NpNpppIp xmxmxmxmf  ++++= ..........332211            (1.27) 

We can vary p = 1 to N in Eq. (1.27).  For each value of p we have one equation. We can arrange 

the set of N equations in matrix form as 
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         (1.28) 

We can write Eq. (1.28) in compact form as 

 xmf I
=

~
             (1.29) 

where m is the mass matrix.  The mass matrix is symmetric similar to the stiffness matrix. That is 

jiij mm = .   

In most cases, the mass of a structure is spread out across its entirety. However, for the purpose of 

dynamic analysis, we can simplify this by treating the mass as if it is concentrated or "lumped" at 

specific points, known as the nodes, within the discretized structure. This approach is generally 

considered to provide accurate results. Each structural element connects two nodes, and its mass 

is evenly divided between them—half is assigned to one node and the other half to the second 

node. When multiple elements converge at a single node, the contributions from all these elements 

are added together at that point. 

3.4.  Equations of Motion for MDOF System 

The governing equation of motion for a multi-degree-of-freedom (MDOF) system subjected to an 

external dynamic force, Pp(t), where p = 1 to N, can be constructed by combining the three key 

components previously discussed. The structure's dynamic response to this external force is 

characterized by its displacements, xp(t); velocities, )(tx p
 ; and accelerations, )(tx p

 , for each degree 

of freedom (p = 1 to N). The applied dynamic force, Pp(t), can be understood as being distributed 

among three structural components: the stiffness component, represented by the force fs(t); the 

damping component, represented by the force fD(t); and the mass component, represented by the 

force fI(t). Thus  

 )(
~~~

tPfff IDs =++             (1.30) 
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We can now substitute Eqs (1.23), (1.26) and (1.29) in Eq. (1.30) and rewrite it as 

 )(
~~~~

tPxKxcxm =++              (1.31) 

Equation (1.31) represents a system of N ordinary differential equations that describe the 

displacements x(t) caused by the applied forces )(
~

tP . This equation serves as the equation of 

motion for a multi-degree-of-freedom (MDOF) system, analogous to Equation (1.3) for a single-

degree-of-freedom (SDOF) system. However, in the MDOF case, the scalar quantities in the SDOF 

system are replaced by vectors or matrices of size N, corresponding to the number of degrees of 

freedom in the MDOF system. The off-diagonal elements in the coefficient matrices m , c , and 

K are grouped together and referred to as coupling terms. Typically, these equations exhibit 

coupling in mass, damping, and stiffness, which depend on how the degrees of freedom are 

selected to describe the motion of the system. 

4. Free Vibration of MDOF Systems without Damping 

In Section 5.3, we thoroughly examined the methodology for determining normal modes and 

natural frequencies through free vibration analysis of a two-degree system. This approach can be 

generalized to multi-degree-of-freedom (MDOF) systems with N degrees of freedom. The free 

vibration behavior of linear MDOF systems is described by Equation (1.31), which serves as the 

governing equation for such systems with 0
~

)( =tP which for undamped systems becomes 

 0
~~~

=+ xKxm        (1.32) 

The system of N homogeneous differential equations, represented by Equations (1.32), exhibits 

coupling through either the mass matrix, the stiffness matrix, or both. These equations correspond 

to the number of degrees of freedom (DOFs) in the system.  

4.1.  Normal Modes and Natural Frequencies for MDOF Systems  

In this section, we extend the eigenvalue problem previously examined for a two degrees of 

freedom (DOF) system to a multi-degree of freedom (MDOF) system. The solution of the eigen 

equation, which yielded natural frequencies and modes for the two DOF system, can be 

generalized to MDOF systems. The free vibration of an undamped system in one of its natural 
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vibration modes, as depicted graphically for a two DOF system, can be mathematically expressed 

for the pth mode shape in an MDOF system as 

 pp tqtx )()( =       (1.33) 

where the deflected shape p remains invariant with time. Therefore, we can describe the variation 

of displacements with time by the simple harmonic function as 

 tBAtq nppnppp  sincos)( +=     (1.34) 

The constants of integration, denoted as Ap and Bp, can be determined using the initial conditions. 

By combining Equations (1.32) and (1.33), we arrive at the subsequent expression. 

 )sincos()( tBtAtx nppnppp  +=     (1.35) 

in which np and p are not known.  Substituting Eq. (1.35) in Eq. (1.32) and simplifying we get 

   0
~

)(
2

=+− tqKm pppnp       (1.36) 

In Eq. (1.36), either qp(t) = 0 or   0
2

=+− ppnp Km  .  If qp(t)  = 0, then x(t) = 0 which means 

the system does not vibrate.  Hence, this is a trivial solution.  If   0
2

=+− ppnp Km  , then np 

and np satisfy the following algebraic equation, 

 pnpp mK 
2

=
     (1.37) 

The matrix eigenvalue problem, as defined in Equation (1.37), presents a valuable criterion for 

analysis. Within this equation, both the stiffness matrix 
K

 and mass matrix 
m

are given quantities, 

specifically derivable through the influence coefficients method outlined in the preceding chapter. 

Consequently, the unknown elements to be determined are the scalar np
2 and vector p. By 

rearranging Equation (1.37), we can arrive at a formal solution to this problem. Therefore, 

 
02 =−















pmnpK 
      (1.38) 

The expression (1.38) represents a set of N homogeneous algebraic equations corresponding to N 

vectors qp (where q ranges from 1 to N). While p = 0 consistently provides a trivial solution 
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which is not useful because it means the system does not execute any motion. To achieve a 

meaningful outcome, we must seek a non-trivial solution, which is attainable only under specific 

condition: 

 
0

2
=− mK np

     (1.39) 

The characteristic equation (1.39) for an MDOF system yields N natural frequencies np (p = 1, 2, 

..., N), which are the system's eigenvalues or characteristic values. These frequencies, when 

applied to Eq. (1.38), determine p, though only relative displacement values qp (q = 1, 2, ..., N) 

can be obtained, defining the vector's shape. Each natural frequency corresponds to an independent 

vector p, resulting in N eigenvectors known as natural modes or mode shapes of vibration. These 

vectors are also referred to as characteristic vectors or normal modes. The mode number is denoted 

by p, with p = 1 representing the fundamental mode. This equation is crucial in understanding the 

vibrational behavior of multi-degree-of-freedom systems, providing insights into their natural 

frequencies and corresponding mode shapes, which are essential for analyzing and predicting 

system responses to various excitations. 

4.2.  Properties of Modes 

In this phase, it's advantageous to present certain characteristics of the free vibration mode shapes, 

which will prove invaluable in future dynamic examinations. These attributes are known as the 

orthogonality relations. We'll now explore modal properties that facilitate the decoupling of 

motion equations in multi-degree-of-freedom (MDOF) systems. Our primary focus is on 

elucidating the orthogonality features of modes and their implications. Additionally, we'll delve 

into mode normalization, addressing the relevance of spectral and modal matrices during this 

process. By resolving Equations (1.38) and (1.39), we can derive N eigenvalues and N natural 

modes, which can be consolidated into concise matrices. 

4.3.  Spectral and Modal Matrices 

As a solution of Eq. (1.39) we get N eigenvalues np
2. We can assemble these eigenvalues np

2 

into a diagonal matrix 2. This diagonal matrix 2 is called spectral matrix of the eigenvalue 

problem given by Eq. (1.37).  Now we can write the spectral matrix as 
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We denote here pq to represent the components of a vector associated with the p natural mode 

and its corresponding natural frequency np. Here, q ranges from 1 to N, indicating the degrees of 

freedom (DOFs) in the system. We can then neatly organize these N eigenvectors into a single 

square matrix, where each column stands for a distinct natural mode. This arrangement provides a 

compact and insightful representation of the system's vibrational characteristics. 
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The modal matrix, denoted as  , plays a crucial role in the eigenvalue problem outlined in 

Equation (1.37). This matrix is composed of eigenvectors, each paired with its corresponding 

eigenvalue. Together, these eigenvalue-eigenvector pairs fulfill the conditions set forth in Eq. 

(1.37). We can express this relationship in an alternative form, providing a different perspective 

on the problem. 

 
2

nppp mK  =     (1.42) 

Using the modal and spectral matrices, all these relationships (p = 1, 2, 3, …, N) can be combined 

into one unified matrix equation. 

 
2=


mK      (1.43) 

Equation (1.43) provides a compact presentation of the equations relating all eigenvalues and 

eigenvectors. 
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Example 1.2 

For the building depicted in Fig. 1, we are analyzing the response along the numerical reference 

axes. Each story has identical lateral stiffness, denoted as K. The mass of the two lower stories is 

twice that of the roof, with the roof mass represented as M.  

 

Solution 1.2 

The mass matrix of the structure is: 

0 0

[ ] 0 2 0

0 0 2

m

M m

m

 
 
 

=  
 
 
  

 

The stiffness matrix, obtained from equilibrium of each mass is: 

0

[ ] 2

0 2

k k

K k k k

k k

 − 
 

= − − 
 
 −  

 

The dynamic equilibrium equations are then: 

X3 

X2 

X1 

X3 

X2 

X1 
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We now proceed to find the solution of the free vibration response of the system for different 

initial conditions: 
2[[ ] [ ]] 0iK M = − = . After replacing [K] and [M] we obtain the following 

determinant: 

2

2

2

0

2 2 0

0 2 2

k m k

k k m k

k k m







− −

 = − − − =

− −

 

Expanding this determinant, we obtain the following characteristic equation: 

3 6 2 4 2 2 34 12 9 0m km k m k   = − + − =  

After dividing all terms of the characteristic equation by 4m3 we obtain: 

2 3
6 4 2

2 3

9
3 0

4 4

k k k

m m m
  − + − =  

A simple inspection of the equation tell us that ω2 = k/m is a root, and by using synthetic division, 

we transform the characteristic equation into: 

2 4 2 2( )(4 8 ) 0
k

m km k m
m

  − − + =  

Solving the second-degree equation contained in the second term of the previous equation, we 

obtain: 

2 2 2 2
2

1.866
8 64 16 3

1
8 8 2

0.134

k

km k m k m k m

km m m

m


 −  

=  =  = 
 
 

 

Then, the natural frequencies of the building — properly ordered — are: 

2 2 2

1 2 30.134 , , 1.866
k k k

m m m
  = = =  



25 

 

Now, by using Eq. (1.38) we can obtain the vibration modes by going back to the characteristic 

determinant: 

2 ( )[[ ] [ ]]{ } {0}, 1,2,3r

rK M r − = =  

Replacing here the mass and stiffness matrices, we obtain the following set of homogeneous 

simultaneous equations: 

2 ( )

1

2 ( )

2

2 ( )

3

0 0

2 2 0

0 2 2 0

r

r

r

r

r

r

k m k

k k m k

k k m

 

 

 

     − −     
     
   − − − =  
     
     − −         

 

Expanding the product, we see the system in the classical simultaneous equation format: 

3

2 ( ) ( )

2

( ) 2 ( )

1

(

2

3

)

2

( ) ( )

2 1

( ) 0

(2 2 ) 0

(2 2 ) 0

r r

r

r r r

r

r r

r

k m k

k k m k

k k m

  

   

  

− − =

− + − − =

− + − =

 

From the third equation, we can see that, in this case, the ratio between the second unknown and 

the first unknown is: 

( ) 2

2

( )

1

2 2r

r

r

k m

k

 



−
=  

Now replacing the third equation into the second, we obtain the following ratio between the third 

unknown and the first unknown: 

2
( ) 2

3

( )

1

2 2
1

r

r

r

k m

k

 



 − = −  
 

 

These two ratios are fixed for any value of ωi
2 . We now replace the values of ωi

2 obtained 

previously and the values of the unknowns are found for each case: 

2 2 2

1 2 3

2 1

3 1

/ 1.732 0 1.732

/ 2 1 2

  

 

 

−

−
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We may assign any arbitrary value to the φ1 term and thus from the obtained ratios compute the 

other two values of the terms of the mode. We choose, arbitrarily again, a value of one for φ1. By 

doing so, the modes are defined as:   

(1) (2) (3)

2 1 2

{ } 1.732 , { } 0 , { } 1.732

1 1 1

  

     −     
     

= = = −     
     
     
          

 

Corresponding, graphically, to: 

 

4.4.  Orthogonality of Modes 

The free vibration mode shapes (p) possess unique properties that are invaluable in structural 

dynamics analysis. This crucial characteristic of modes is known as the orthogonality property or 

orthogonality relationships. It plays a fundamental role in solving dynamic problems using the 

Modal Superposition Method for MDOF systems. The mode shapes or eigenvectors exhibit mutual 

orthogonality with respect to the mass and stiffness matrices. Orthogonality is a key attribute of 

normal modes or eigenvectors, utilized to decouple the modal mass and stiffness matrices. We can 

demonstrate that the natural modes corresponding to distinct natural frequencies satisfy specific 

orthogonality conditions. 

When np  nr, 

 0
~~
=r

T

p K      (1.44a) 

 0
~~
=r

T

p m      (1.44b) 

The subsequent discourse will demonstrate these crucial characteristics. The pth natural frequency 

and mode satisfy Eq. (1.37).  We now pre-multiply Eq. (1.37) by the transpose of r, i.e., r
T. Thus 

we get 
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p

T

rnpp

T

r mK 
~~~ 2

=     (1.45) 

Likewise, the rth natural frequency and mode too satisfy Eq. (1.37).  Thus we get 

 rnrr mK 
~~ 2

=       (1.46) 

Now pre-multiplying Eq. (1.46) by p
T we get, 

 
r

T

pnrr

T

p mK 
~~ 2

=     (1.47) 

The transpose of the matrix on the LHS of Eq. (1.45) will be equal to the transpose of the matrix 

on the RHS of the equation.  Therefore 

 r

T

pnpr

T

p mK 
~~~~ 2

=     (1.48) 

In deriving Eq. (1.48), we leveraged the symmetric nature of both mass and stiffness matrices. To 

proceed, we subtract Eq. (1.47) from Eq. (1.48), yielding the following result. 

0
~~

)(
22

=− r

T

pnrnp m      (1.49) 

In Eq. (1.49), if 
22

nrnp   , then it implies that 0
~~
=r

T

p m . This establishes that Eq. (1.44b) is 

true because for systems with positive natural frequencies, nrnp   . 

Now we substitute Eq. (1.44b) into Eq. (1.47) we get 0
~~
=rp K

. 
This clearly shows that Eq. 

(1.44a) is true when nrnp   Therefore we have completed the proof of the orthogonality 

conditions prescribed in Eq. (1.44). 

For systems in which no two modes share the same frequency, orthogonality conditions hold true 

for any pair of distinct modes, as shown in Equation (1.44). However, these conditions don't apply 

when two modes have identical frequencies. This concept is crucial for understanding how 

different vibration modes interact within a system. 

The natural modes' orthogonality indicates that the corresponding square matrices are diagonal: 

   
* TK K          (1.50a)  

Which denotes as modal stiffness matrix 

 
* TM m         (1.50b) 
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Which denotes as modal mass matrix in which the diagonal elements are 

 p

T

pp KK =       (1.51a)  

 ppp mM =       (1.51b) 

As m and K are positive definite, the diagonal elements of 
*K and 

*M are positive.  They are 

related by 

 Pnpp MK
2

=       (1.52) 

This can be demonstrated from the definitions of pK and Mp
 as follows.  Substituting Eq. (1.37) 

in Eq. (1.51a) 

 
2 2 2( ) ( )T

p p p p p p p n pK m m M      = = =     (1.53) 

As summury: 

 

4.5.  Interpretation of Orthogonality of Modes 

The physical interpretation of the orthogonality property of natural modes will now be discussed. 

Modal orthogonality implies that the work performed by the inertia force associated with the pth 

mode during the displacement in the rth mode is zero. To clarify this concept, consider a structure 

vibrating in the pth mode with corresponding displacements. 

 )()(~ tqtx ppp =      (1.54) 

The accelerations corresponding to Eq. (1.54) are )()( tqtx ppp
 = .  The inertia forces 

corresponding to these accelerations are 
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 ( ) )()( tqmtxmf ppppI
 −=−=             (1.55) 

We now consider the rth natural mode of displacements of the structure, 

 )(~)(~ tqtx rrr =                 (1.56) 

The work performed by the inertia force, as defined in Eq. (1.55), on the displacement outlined in 

Eq. (1.56) can be represented as: 

 ( ) ( ) )()(~ tqtqmxf rr

T

pr

T

pI
−=            (1.57) 

This quantity stated in Eq. (1.57) equals zero due to the orthogonality condition outlined in Eq. 

(1.44b), thereby confirming the validity of the statement above. 

The orthogonality property can be interpreted physically in a different way: when the 

displacements of the pth mode act upon the displacements of the rth mode, the work performed by 

the equivalent static forces equals zero. To clarify, the equivalent static forces in the pth mode are 

represented as follows: 

 ( ) )()(~ tqKtxKf pppps ==                (1.58) 

The displacements in the rth mode are given by Eq. (1.54).  The work done of the static forces in 

Eq. (1.58) on the displacements given in Eq. (1.54) is given as 

 ( ) ( ) )()(~ tqtqKxf rpr

T

pr

T

ps =           (1.59) 

Due to the orthogonality property described in Eq. (1.44a), Eq. (1.59) equals zero, thereby 

confirming the second physical interpretation as well. 

4.6.  Normalization of Modes

The eigenvalue problem in Eq. (1.37) yields relative, not absolute, natural vibration modes. These

modes are arbitrary in amplitude, as any scalar multiple of the eigenvector p satisfies the equation,

with only the mode shapes being uniquely defined. The normalization of Two DOF system nor-

mal modes involved setting one amplitude to unity and determining the other relative to this ref-

erence. This process, known as mode shape normalization, standardizes elements associated with 

various degrees of freedom (DOFs). Common normalization methods include
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setting the largest element to unity or normalizing a specific DOF element, such as the top floor in 

a multistory building analysis. Notably, in dynamic analysis and computational applications, 

modes are frequently normalized to achieve unit modal mass (Mn). In such a case we have: 

 1== p

T

pn mM     ImT =    (1.60) 

The equation I demonstrates the orthonormality of the natural modes with respect to the mass 

matrix m . Here, I identity matrix, characterized by unit values along its principal diagonal, while 

 represents the complete set of N normalized mode shapes, also referred to as the modal matrix. 

This relationship signifies that the natural modes are not only orthogonal but also normalized with 

respect to the mass matrix m , thus constituting a mass orthonormal set. When the modes are 

normalized in this manner, Eq. (1.51a) becomes 

 
22

nppnpp

T

pp MmK  ===    (1.61a) 

and Eq. (1.50a), 

 
2== KK T

Diag     (1.61b) 

Example 1.3 

Uncouple the dynamic system of Example 1.2 

Solution 1.3 

We change the normalization of the modes in such a way that they comply with Eq. (15) to obtain 

orthonormal modes:   
( ) ( ){ } [ ]{ } 1r T rM  =  

Mode 1 

(1)

2 2 0.5774 /0 0
1

{2| 3|1} 0 2 0 3 12 { } 3 0.5000 /
12

0 0 2 1 1 0.2887 /

mm

m m m
m

m m



                        =  = =                           

 

Mode 2 
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(2)

0.5774 /0 0 1 1
1

{ 1|0|1} 0 2 0 0 3 { } 0 0.0000 /
3

0 0 2 1 1 0.5774 /

mm

m m m
m

m m



       − − −              −   =  = =                                  

 

Mode 3 

(3)

2 2 0.5774 /0 0
1

{2| 3|1} 0 2 0 3 12 { } 3 0.5000 /
12

0 0 2 1 1 0.2887 /

mm

m m m
m

m m



                      −   − =  = − = −                           

 

The modal matrix is then: 

0.5774 0.5774 0.5774
1

[ ] 0.5000 0.0000 0.5000

0.2887 0.5774 0.2887
m

 − 
 

 = − 
 
 
  

 

In order to uncouple the system, the following operations are performed: 

0.5774 0.5000 0.2887 0 0 0.5774 0.5774 0.5774
1

[ ] [ ][ ] 0.5774 0.0000 0.5774 0 2 0 0.5000 0.0000 0.5000

0.5774 0.5000 0.2887 0 0 2 0.2887 0.5774 0.2887

1 0 0

0 1 0

0 0 1

T

m

M m
m

m

     −     
     

  = − −     
     
     −          





= 










 
 

 

And 

0.5774 0.5000 0.2887 0 0.5774 0.5774 0.5774

[ ] [ ][ ] 0.5774 0.0000 0.5774 2 0.5000 0.0000 0.5000

0.5774 0.5000 0.2887 0 2 0.2887 0.5774 0.2887

0.134 0 0

0

T

k k
k

K k k k
m

k k

k

m

     − −     
     

  = − − − −     
     
     − −          



= 1 0

0 0 1.866

 
 
 
 
 
 
  

 

The uncoupled equations are: 

1 1

2 2

3 3

1 0 0 0.134 0 0 0

0 1 0 0 1.000 0 0

0 0 1 0 0 1.866 0

q

q

q q

q
k

q
m

         
         
         

+ =         
         
         
                  &&

&&

&&  
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4.7.  Modal Analysis 

In earlier discussions of MDOF systems in Chapters 6 and 7, the displacement was described using 

the N components of the displacement vector x~ . However, when analyzing the dynamic response 

of linear systems, it is often more practical to represent displacements using free vibration mode 

shapes. These mode shapes are N independent displacement patterns, and their amplitudes can act 

as generalized coordinates to describe any displacement configuration. Similar to how 

trigonometric functions are used in a Fourier series, mode shapes are beneficial due to their 

orthogonality properties and their ability to efficiently represent displacements, allowing accurate 

approximations with only a few terms. 

4.7.1. Model Expansion of Displacements 

Any vector of order N can be represented using a set of N independent vectors. In this context, we 

will use the natural modes as the basis for our discussion. This leads us to express any displacement 

through a modal expansion, utilizing the normal modes as : 

 qqx
N

p

pp
~~

1

==
=

               (1.62) 

where qp are scalar multipliers called generalized coordinates or modal coordinates or normal 

coordinates and  

  



























=

Nq

q

q

q

.

.~
2

1

             (1.63) 

If we know p for a given x~ then we can determine the qp by multiplying both sides of Eq. (1.62) 

by 
Tr as 

 ( ) p

N

p

p

T

r

T

r qmxm 
=

=
1

~                (1.64) 
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Due to the orthogonality relationship described in Eq. (1.44b), all the terms within the summation 

in Eq. (1.64) are eliminated, except for the term where p = r. Consequently, 

 ( ) pr

T

r

T

r qmxm  =~                           (1.65) 

The matrix products of both sides of Eq. (1.65) are scalars.  So, we can rewrite Eq. (1.65) as 

 
p

T

p

p

T

p

T

p

p
M

xm

m

xm
q

~~ 




==              (1.66) 

Each normal coordinate is expressed as shown in Eq. (1.66). The modal expansion of the 

displacement vector x~ , described in Eq. (1.62), is utilized to derive solutions for the free vibration 

response of undamped systems. Additionally, it is crucial for analyzing the response of systems 

subjected to forced vibrations and earthquake excitations in multi-degree-of-freedom (MDOF) 

systems. 

4.7.2. Concept of Mode Superposition 

Let us now examine a cantilever column, as illustrated in Fig. 1.5. The deflected shape of this 

column is described by translational displacement coordinates at three distinct levels.  

 

Fig. 1.5 Modal analysis of cantilever column 

Any displacement vector x~ associated with this column can be constructed by combining 

appropriate amplitudes of the three vibration modes depicted in Fig. 1.5. For a specific modal 

component, denoted as xp, the displacements are expressed as the product of the mode shape vector 
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p and the modal amplitude qp, as outlined in Eq. (1.62). The overall displacement is then 

determined by summing up all the individual modal components. 

 
=

=++++=
N

p

ppNN qqqqqx
1

332211 ......~              (1.67) 

Equation (1.67) can be expressed in matrix form as shown in Equation (1.62), where qx ~~ = . 

This equation highlights that the mode shape matrix, , acts as a transformation tool, converting 

the normal coordinates into geometric coordinates, x~ . These generalized coordinates, which 

represent the amplitudes of the modes, are referred to as the normal coordinates of the structure. 

The mode shape matrix for a system with N degrees of freedom is made up of N independent 

modal vectors. Because of this, the matrix is non-singular, meaning it can be inverted. This allows 

us to directly solve Equation (1.62) to find the normal coordinate amplitudes q~ corresponding to 

any given displacement vector x~ . However, thanks to the orthogonality property of the mode 

shapes, there’s no need to solve simultaneous equations to determine q~ , as explained in Section 

8.1.1. 

4.8.  Response of Undamped Free Vibration 

The equation of motion that governs the free vibration of a multi-degree-of-freedom (MDOF) 

system is represented by Eq. (7.1). To solve this equation, specific initial conditions must be 

applied: 

 )0(~~ xx =  and )0(
~~
xx  =               (1.68) 

In Chapter 1, we explored how solving the differential equation leads to the matrix eigenvalue 

problem described in Eq. (1.37). Once the eigenvalue problem is resolved and the natural 

frequencies and modes are identified, the general solution can be represented as a superposition of 

different modes, similar to what is shown in Eq. (1.67). Mathematically, this is expressed in Eq. 

(1.62), which breaks down the response into contributions from individual modes. As a result, the 

overall response can be written as the sum of these individual mode responses as following: 

  ( )
=

+=
N

p

nppnppp tBtAtx
1

sincos)(~                (1.69) 
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 where Ap and Bp are the constants of integration each containing N constants. By differentiating 

Eq. (1.69) we can get the velocity vector as  

 ( )tBtAtx nppnppnp

N

p

p  cossin)(
~

1

+−=
=

              (1.70) 

Now we set t = 0 in Eqs. (1.69) and (1.70) and get 

 
=

=
N

p

pp Ax
1

)0(~     
=

=
N

p

ppp Bx
1

)0(
~

           (1.71) 

Given the initial displacements, )0(~x , and initial velocity, )0(
~
x , as defined in Equation (1.68), 

each equation in (1.71) forms a set of N algebraic equations involving the unknowns Ap and Bp. 

However, it is not necessary to solve these equations simultaneously. Instead, they can be 

addressed as a modal expansion of the vectors )0(~x  and )0(
~
x , as explained earlier in Section 

8.1.1. By following the approach outlined in Equation (1.62), we can reformulate these equations 

using normal coordinates for simplicity and clarity as: 

 )0()0(~

1


=

=
N

p

ppqx     
=

=
N

p

ppqx
1

)0()0(
~

                  (1.72) 

Following the analogy given in Eq. (1.66) we can express qp(0) and )0(pq as  

 
p

p

p
M

xm
q

)0(~
)0(


=    

p

T

p

p
M

xm
q

)0(
~

)0(





=            (1.73) 

Equations (1.71) and (1.72) are equivalent, indicating that Ap = qp(0) and Bp = 














p

pq



)0(
.  We now 

substitute these in Eq. (1.69) and obtain 

 
= 











+=

N

p

np

np

nppp t
q

tqtx
1
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)0(

cos)0()(~ 





            (1.74) 

We can also express Eq. (1.74) alternatively as  

 
=

=
N

p

pp tqtx
1

)()(~             (1.75) 
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where 

 )(sin
)0(

)(cos)0()( t
q

tqtq np

np

p

nppp 





+=          (1.76) 

The time variation of modal coordinates is described by Equation (1.76), which bears a 

resemblance to Equation (3.1) for an SDOF system. For an undamped free vibration in an MDOF 

system, the solution is expressed through Equation (1.74). This equation determines the 

displacements, )(~ tx , over time based on the initial displacement, )0(~x , and initial velocity, )0(
~
x . 

By assuming that the natural frequencies np and mode shapes p are known, and by defining the 

normal coordinates qN and Nq as per Equation (1.73), the right-hand side of Equation (1.74) can 

be computed. Consequently, the complete response of the MDOF system undergoing undamped 

free vibration can be fully determined. 

Example 1.4 

For the building in Example 1.1, find the free vibration response for different cases of initial 

displacement conditions.   

• Case (a) - Suppose a unit displacement at each story of the building at time = 0, without any 

initial velocity. 

• Case (b) - Suppose an initial displacement condition in the shape of the first mode 

2 | 3 | 1, without initial velocity. 

• Case (c) - Suppose an initial displacement condition in the shape of the second mode 

1 | 0 | 1− , without initial velocity. 

• Case (d) - Suppose an initial displacement condition in the shape of the third mode 

2 | 3 | 1− , without initial velocity. 

Solution 1.4 

Case (a) : The initial displacement vector is: 
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         
         

= = −   =         
         
         −                  

 

Then, the response of the system is described by the following equation: 

3

2 1 2 3

1

0.5774 0.5774 0.5774

0.5000 2.1547cos 0.0000 0cos 0.5000 0.1547cos

0.2887 0.5774 0.2887

U

U t t t

U

  

       −       
       

= + + −       
       
       
              

 

1 2 3

1.2441 0.3333 0.0893

1.0774 cos 0.3333 cos 0.0774 cos

0.6221 0.3333 0.0447

t t t  

     −     
     

= + − + −     
     
     −          

 

It is evident that the response of the system corresponds to the superposition of the individual 

responses from each mode. Fig. 2 shows the response for each mode and the total response of the 

building. Supposing that at some instant in time the three responses are in phase, 62.2% would be 

contributed by the first mode, 33.3% by the second, and 4.5% by the third.   
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Case (b): The initial displacement vector is: 
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The response would be described by: 
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2 1 1
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100% of the response is contributed by the first mode alone. The other modes don’t contribute. 

Case (c): The initial displacement vector is: 
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Constants bi are obtained from: 
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The response of the system is described by the following equation: 
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Only the second mode contributes with a 100% of the response.   

Case (d): The initial displacement vector is: 
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Response is described by the following equation: 

3

2 3 3

1

20.5774

0.5000 2 3 cos 3 cos

0.2887 1

U

U t t

U

 

                = − = −                       

 

Only the third mode contributes with a 100% of the response.   

5. Response of Damped Free Vibration with Classically Damped System 

When damping is considered in the free vibration of a multi-degree-of-freedom (MDOF) system, 

the equation of motion can be derived by modifying Eq. (1.31). This is done by setting 0)(
~

=tP , 

which simplifies the equation to its reduced form: 

 0
~~~~

=++ xKxcxm              (1.77) 

To solve Eq. (1.77) for )(~ tx , we use the initial conditions provided in Eq. (1.68) at t = 0. The main 

challenge lies in modeling the type of damping and determining whether it can be addressed 

theoretically. To overcome this, we focus on presenting the solution for a specific system in a 

graphical format, making it easier to intuitively understand how damping influences the free 

vibration of multi-degree-of-freedom (MDOF) systems. This is achieved by expressing the 

displacement x~ in terms of the system's natural modes without damping, as outlined in Eq. (1.62), 

and substituting this expression into Eq. (1.77). This approach simplifies the process and provides 

clarity on the effects of damping. 

 0
~~~~

=++ qKqcqm              (1.78) 

Premultiplying Eq. (1.78) by T  and using the identity in Eq. (1.50) we can obtain, 

 0
~~~~

=++ qKqCqM Diag
               (1.79) 

While the diagonal matrices M  and DiagK have been defined in Eq. (1.50) and now 

 = cC T
          (1.80) 

The nature of the damping distribution in a system determines whether the square matrix C in Eq. 

(1.80) is diagonal or not. If C is diagonal, it represents N independent differential equations in 

modal coordinates (qp), and such systems are described as having classical damping. In these cases, 
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classical modal analysis can be applied, and the natural modes of the system remain identical to 

those of the undamped system. On the other hand, if C is not diagonal, the system is said to exhibit 

non-classical damping. These systems cannot be analyzed using classical modal analysis because 

their natural modes differ from those of the undamped system. 

This section provides a structured approach to solving free vibration problems in systems with 

classical damping, caused by initial displacements and/or velocities. In classically damped 

systems, damping does not alter the natural modes. Therefore, the natural frequencies and modes 

are initially determined for the undamped system. Afterward, the influence of damping on the 

natural frequencies is analyzed, similar to how it is done for a single-degree-of-freedom (SDOF) 

system. 

In a multi-degree-of-freedom (MDOF) system with classical damping, the motion in modal 

coordinates can be described by a set of N differential equations. Each equation corresponds to 

one mode of vibration: 

 0=++ pppppp qKqCqM              (1.81) 

where Mp and Kp are defined in Eq. (1.51).  Now, 

 n

T

nn cC =             (1.82) 

Equation (1.81) is similar to Eq. (2.17) of a SDOF system with damping.  Therefore the damping 

ratio can be defined for each mode in the same manner for a SDOF system presented in Eq. (3.13)  

 
npp

p

p
M

C




2
=             (1.83) 

We now divide Eq. (1.81) by Mp and combine with Eq. (1.83) to obtain  

  02
2

=++ pnppnppp qqq               (1.84) 

Equation (1.84) closely resembles Equation (3.15), which describes the free vibration of a single-

degree-of-freedom (SDOF) system with damping. As we know, the solution for the free vibration 

of an SDOF system with damping is provided in Equation (3.16). By extending some of the 

principles and results from the SDOF system, we can apply them to a multi-degree-of-freedom 

(MDOF) system. Consequently, the solution to Equation (1.84) can be derived using this approach. 
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where pth natural frequency with damping is 

  )1(
2

pnpDp  −=             (1.86) 

The displacement response of the system is then obtained by substituting Eq. (1.85) for q(t) in Eq. 

(1.62): 
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          (1.87) 

Equation (1.87) represents the solution to the free vibration problem for a multi-degree-of-freedom 

(MDOF) system with classical damping. This equation describes how displacement, x~ , changes 

over time due to initial conditions, specifically the initial displacement )0(~x and initial velocity 

)0(
~
x . Once the system's natural frequencies np and mode shapes p are determined for the 

undamped case, along with the modal damping ratios np , the right-hand side of Equation (1.87) 

becomes fully defined. These terms depend on the initial modal coordinates qp(0) and )0(pq , 

which are described by Equation (1.73). 
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Chapter 2 

Forced Vibration Response of MDOF System 

1. Introduction  

In Chapter 7, we explained how the free motion of a multi-degree-of-freedom (MDOF) system can 

be described using its normal modes of vibration. Here, we extend that concept to show that the 

forced motion of an MDOF system can also be expressed in terms of these normal modes. The 

total response can be determined by superimposing the solutions of independent modal equations. 

Essentially, this means that normal modes can be used to transform a system of coupled differential 

equations into a set of uncoupled equations, where each equation involves only one dependent 

variable. This approach, known as the modal superposition method, simplifies the process by 

reducing the problem of analyzing the response of a forced MDOF system to evaluating the 

response of multiple forced single-degree-of-freedom (SDOF) systems. 

2. Modal Equations for Forced Undamped Systems 

In Chapter 6, we derived the general equation of motion for a damped MDOF system under 

forced vibration, and it is reiterated here for reference. 

 )(
~~~~

tPxKxcxm =++ 
             (1.31) 

Assuming the system is undamped, then 0=c , the equation simplifies to: 

 )(
~~ tPxKxm =+                (2.1) 

Equation (2.1) is coupled, meaning the equations of motion are interdependent. While we 

previously demonstrated in Section 5.5 how to solve such coupled equations for a two-DOF system 

under harmonic excitation, this approach becomes inefficient for systems with more degrees of 

freedom or when subjected to other types of dynamic forces. To address this, it is beneficial to 

convert these equations into modal coordinates. By doing so, we aim to transform the coupled 

system of differential equations into a set of independent or uncoupled equations, where each 

equation involves only one mode, scaled by factors representing the contributions of each mode. 

This process is explained further in the following section. 
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The displacement x~ of a MDOF system can be represented as a combination of modal 

contributions, as explained in Section 8.1.1. Based on this, the dynamic response of a MDOF 

system can be described as: 

 )(~)()(~

1

tqtqtx
N

p

pp ==
=

                (2.2) 

By applying Eq. (2.2) to the general coupled Eq. (2.1) expressed in xi(t), the system can be 

reformulated into a set of uncoupled equations using modal coordinates qm(t) as the unknowns. 

Substituting Eq. (2.2) into Eq. (2.1) yields this transformation: 

 
==

=+
N

p

ppp

N

p

p tPtqKtqm
11

)(
~

)()(                (2.3) 

Premultiplying each term in Eq. (2.3) by 
T

r gives  

 
==

=+
N

p

rpp

T

rp

N

p

p

T

r tPtqKtqm
11

)(
~

)()(              (2.4) 

According to the orthogonality conditions outlined in Eq. (1.51), all terms in the summations are 

eliminated except for the term where p = r. Under this condition, Eq. (2.4) simplifies to: 

 )(
~

)()()()( tPtqKtqm
T

ppp

T

ppp

T

p  =+              (2.5) 

or 

 )()()( tPtqKtqM ppppp =+               (2.6) 

where  

 p

T

pp mM =   p

T

pp KK =   )(
~

)( tPtP
T

pp =            (2.7) 

Equation (2.6) represents the motion of a single degree of freedom (SDOF) system in terms of its 

response, qp(t). This system is characterized by a mass Mp, stiffness Kp, and dynamic force Pp(t), 

where Mp is referred to as the generalized mass, Kp as the generalized stiffness, and Pp(t) as the 

generalized force for the pth mode. These parameters are determined solely by the pth mode shape, 

ϕp. Consequently, if the pth mode is known, we can formulate and solve the equation for qp without 
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requiring information about other modes. By dividing Eq. (2.6) by Mp and applying Eq. (1.52), the 

resulting expression can be rewritten accordingly. 

 
p

p

pnpp
M

tP
qq

)(2
=+               (2.8) 

Equation (2.6) or Eq. (2.8) represents the governing equation of motion, with the sole unknown 

being qp(t), the normal coordinate of the pth mode. Similarly, there is a corresponding equation for 

each mode, resulting in a total of N equations for a multi-degree-of-freedom (MDOF) system. 

A set of N coupled differential equations (2.1) expressed in terms of displacements xi(t), where i 

ranges from 1 to N, has been converted into a set of N independent equations (2.6) using modal 

coordinates qm(t), with m = 1, 2, ….., N. These uncoupled equations can be represented in matrix 

form as: 

 * * ( )M q K q P t+ =% %&& %               (2.9) 

Here, *M represents a diagonal matrix containing the generalized modal masses Mp, while
*K is a 

diagonal matrix of the generalized modal stiffnesses Kp. Additionally, )(
~

tP is a column vector 

comprising the generalized modal forces Pp(t). The definitions of *M and 
*K were previously 

provided in Equation (1.50). 

3. Modal Equations for Forced Damped Systems 

We know already that the governing equations of motion for a forced damped system is expressed 

as 

 )(
~~~~

tPxKxcxm =++              (1.31) 

By applying Eq. (2.2), which represents the natural modes p of the system without damping, we 

can reformulate Eq. (1.31) to express it in terms of modal coordinates. For undamped systems, as 

explained in Section 9.2, these equations are independent and uncoupled. However, when dealing 

with damped systems, the modal equations may be coupled due to the influence of damping. If we 

substitute Eq. (2.2) in Eq. (1.31) we get : 

 
===

=++
N

p

pp

N

p

ppp

N

p

p tPtqKtqctqm
111

)(
~

)()()(              (2.10) 
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In Eq. (2.10) if each term is premultiplied by 
T

r  then we get 

   
===

=++
N

p

rpp

T

r

N

p

pp

T

rp

N

p

p

T

r tPtqKtqctqm
111

)(
~

)()()(           (2.11) 

Making use of Eq. (2.7), Eq. (2.11) can be written as  

 )()()()( tPtqKtqCtqM ppprppp =++           (2.12) 

We have defined Mp, Kp, and Pp in Eq. (2.7).  Now we define 

 
p

T

prp cC =            (2.13) 

For every value of p ranging from 1 to N, Equation (2.12) holds true. As a result, these N equations 

can collectively be expressed in matrix form as : 

  )(
~~~~

tPqKqCqM Diag =++           (2.14) 

In Equation (2.14), the matrices M , DiagK , and )(
~

tP were previously defined in Equation (2.9). 

The matrix C , introduced here, is a non-diagonal matrix containing the damping coefficients Cp. 

This equation represents a system of N equations expressed in terms of the modal coordinates qp(t). 

These equations are interconnected due to the damping terms, as Equation (2.12) includes multiple 

modal velocity components, leading to coupling between the modes. 

If the system has classical damping, then the modal equations are uncoupled.  For such type of 

systems Crp = 0 if r  p.  Therefore Eq. (2.12) is reduced to  

 )()()()( tPtqKtqCtqM pppppp =++            (2.15) 

The generalized damping is expressed by Eq. (1.82), which describes the behavior of the single-

degree-of-freedom (SDOF) system. To simplify Eq. (2.15), we can divide it by Mp: 

 
p

p

pnppnppp
M

tP
qqq

)(
2

2
=++            (2.16) 

The damping ratio for the pth mode (p) is typically not calculated using Eq. (1.83); instead, it is 

estimated based on experimental data from structures similar to the one under analysis. Equation 
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(2.15) describes the pth modal coordinate qp(t), with parameters Mp, Kp, Cp, and Pp(t) depending 

solely on the pth mode p and are independent of other modes. Consequently, there are N 

uncoupled equations, each resembling Eq. (2.15), corresponding to each natural mode. In 

summary, the original set of N coupled differential equations (1.31) expressed in terms of nodal 

displacements xi(t) has been transformed into a set of uncoupled equations (2.15) in modal 

coordinates qp(t) through the application of the modal superposition method. 

4. Determination of Total Response 

For a multi-degree-of-freedom (MDOF) system subjected to known excitation forces, the dynamic 

response can be determined by solving either Eq. (2.15) or Eq. (2.16) in terms of the modal 

coordinates qp(t). Each modal equation has the same structure as the equation of motion for a 

single-degree-of-freedom (SDOF) system. Therefore, the solution methods and results used for 

SDOF systems can also be applied to solve for qp(t) in the modal equations. Once the modal 

coordinates qp(t) are obtained, Eq. (2.2) can then be used to calculate the contribution of the pth 

mode to the nodal displacement )(~ tx  as: 

 )()(~ tqtx pp=              (2.17) 

We combine these modal contributions to get the total displacement response: 

  
= =

==
N

p

N

p

ppp tqtxtx
1 1

)()(~)(~              (2.18) 

The process of determining the total response of a multi-degree-of-freedom (MDOF) system by 

combining the contributions of various modes is known as classical modal analysis or the classical 

mode superposition method. This approach involves solving individual uncoupled modal 

equations to find the modal coordinates qp(t) and modal responses )(~ txp . These modal responses 

are then combined to derive the total response )(~ tx . More specifically, this method is referred to 

as the classical mode displacement superposition method because it relies on the superposition of 

modal displacements. Commonly abbreviated as modal analysis, this technique is applicable only 

to linear systems with classical damping. The system's linearity is essential, as it allows the use of 

the principle of superposition, as expressed in Eq. (2.2). Additionally, damping must be in classical 
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form to ensure that the modal equations remain uncoupled, which is a fundamental aspect of modal 

analysis. 

5. Seismic Excitation 

Dynamic analysis of multi-degree-of-freedom (MDOF) systems involves two slightly different 

analytical approaches. The first approach, time-history analysis, calculates how a structure 

responds over time when subjected to a base acceleration. This method uses either normal mode 

superposition or direct numerical integration of motion equations. The total system response is 

determined incrementally at very small time steps, with each step using the previous step's results 

as initial conditions for the next. This stepwise process continues until the full response is obtained. 

The second approach, called modal response spectrum analysis, estimates the maximum response 

parameters (such as displacements or bending moments) by combining the peak responses from 

individual modes. Each mode behaves like an independent single-degree-of-freedom (SDOF) 

system with its own natural period. The maximum response for a specific mode is derived from 

the corresponding SDOF system's spectrum. Since the peak responses of different modes do not 

occur simultaneously, various methods are used to combine these modal contributions. The most 

common method is the square root of the sum of the squares (SRSS), which assumes the modal 

maxima are random quantities. However, when natural periods of modes are very close (closely 

coupled modes), SRSS can underestimate the actual response, necessitating more accurate 

combination techniques, which will be discussed later. Typically, only the first few modes are 

considered, as they contribute most significantly to the overall response. 

Modal response spectrum analysis is widely used in structural design and serves as a reference 

method for analyzing buildings such as RPA2024. It relies on normalized response spectra derived 

from multiple seismic records scaled to standard intensity levels. These spectra offer a 

straightforward way to study how structures respond to varying seismic inputs. In subsequent 

chapters, normalized response spectra will be frequently referenced. 

5.1.  Equation of motion 

As shown in the previous section, the equation of motion of a system subjected to a base excitation 

is: 

0aMx Cx Kx+ + =&& &  
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Where 
ax&&  is vector of the absolute accelerations of the DoFs of the system while x& and x are the 

vectors of the relative velocities and of the relative displacements of the DoFs of the system, 

respectively. The absolute displacement xa of the system can be expressed as: 

a sx x x= +  

where is displacement xs of the DoFs due to the static application (i.e. very slow so that no inertia 

and damping forces are generated) of the ground motion, and x is again the vector of the relative 

displacements of the DoFs of the system. The “static displacements” xs(t) can now be expressed 

in function of the ground displacement as follows: 

( ) . ( )s gx t x t=  

Where   is the so-called influence vector. Equation (12.6) can now be rewritten as: 

( ) 0gM x x Cx Kx + + + =&& && &  

( )gMx Cx Kx M x t+ + = −&& & &&          (2.19) 

An example of the influence vector for some typical cases is presented here 

• Case 1 : Planar system with translational ground motion: In this case all DoFs of the 

system undergo static displacements which are equal to the ground displacement , hence: 

            

Fig. 2.1 The influence vector for case 1 

Where 1 is a vector of order N, i.e. the number of DoFs, with all elements equal to 1. 

• Case 2 : Planar system with translational ground motion: The axial flexibility of the 

elements of the depicted system can be neglected, hence 3 DoFs are defined. In this case 
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DoFs 1 and 2 undergo static displacements which are equal to the ground displacement, 

while the static displacement of DoF 3 is equal to 0, i.e.: 

      

Fig. 2.2 The influence vector for case 2 

• Case 3: Planar system with rotational ground motion: The depicted system is subjected to 

a rotational ground motion g  which generates the following static displacements of the 

DoFs 

 

Fig. 2.3 The influence vector for case 3 

5.2. Time-history of the response of elastic systems 

As discussed in the previous sections, the equation of motion of a MDoF system under base 

excitation is: 

( )gMx Cx Kx M x t+ + = −&& & &&  
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As already stated above, the dynamic response of the MDoF system can be written as: 

1

( ) ( )
N

n n
n

x t q t
=

=           (1.62) 

If the damping of the MDoF system is classical, Equation (2.19) can be written in the form of 

decoupled modal equations, where is the number of modes of the system. The modal equations are 

of the following form: 

* * * T

n n n n n n n gm q c q k q Mx+ + = −&& & &&          (2.20) 

Where 
*

nm and 
*

nk  are the modal mass and the modal stiffness respectively of the nth mode. These 

parameters are defined previously as follows: 

* T

n n nm M =    

* 2 *T

n n n n nk K m  =   =   

n : nth modal circular frequency of the MDOF system  

The equation (2.20) can be rewritten as : 

* 22
T

n
n n n n n n gT

n n

M
q q q x

M


  

 
+ + = −

1
&& & &&          (2.21) 

The modal participation factor is a measure for the contribution of the n-th mode to the total 

response of the system. It is defined as follows: 

T

n
n T

n n

M

M



 
 =

1
      (2.22) 

In addition the so-called effective modal mass of the nth mode is defined as: 

* 2 *

, .n eff n nm m=           (2.23) 

Unlike the modal mass 
*

nm and the modal participation factor n , the effective modal mass *

,n effm is 

independent of the normalization of the eigenvectors. The following equation holds: 

*

,eff tot
1 1

N N

n n
n n

m m m
= =

= =       (2.24) 

where mtot is the total mass of the dynamic system. The effective modal height 
*

nh  of the nth 

mode is:   
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*

,
1

with and
N

Tn
n n j j j n n n

jn

L
h L h m L M

L


   

=

= =   =       (2.25) 

• Significance of the effective modal mass *

,n effm : The effective modal mass is the lumped 

mass of a single-storey substitute system which is subjected to a base shear force Vbn equal 

to the nth modal base shear force of a multi-storey system. If in addition the height of the 

single storey substitute system with the lumped mass *

,n effm equals the modal height
*

nh , the 

single-storey system is subjected to a base moment Mbn which is equal to the nth modal 

base moment of the multi-storey system. The following holds: 

*

,eff pa,
1

N

bn n n jn
j

V m S f
=

=  =       (2.26) 

* *

,eff pa,
1

N

bn n n n jn j
j

M m S h f h
=

=   =         (2.27) 

Where Spa,n is the pseudo-acceleration of the nth mode. 

• Distribution of the internal forces: If the internal forces of the entire system are to be 

determined, the modal equivalent static forces should be computed first: 

pa,n n ns S= f      (2.28) 

Where :   1 2n n n nnf f f=f L  

The excitation vector is defined according to equation (12.66) and specifies the distribution of 

the inertia forces due to excitation of the nth mode: 

n n ns M=            (2.29) 

sn is independent of the normalization of the eigenvector n and we have that: 

1

N

n

s M
=

=           (2.30) 
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Fig. 2.3 MDoF system with eigenmodes and equivalent SDoF systems 

 

5.3.  Response spectrum method  

If the maximum response only and not the response to the entire time history according to Equation 

(1.62) is of interest, the response spectrum method can be applied. The response spectrum can be 

computed for the considered seismic excitation and the maximum value of the modal coordinate 

qn,max can be determined as follows:  

* *

,max pa2

1
( , ) ( , )n n d n n n n n

n

q S S   


=   =           (2.31) 

 

where: 
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n : modal participation factor of the n-th mode 

*( , )d n nS   : Spectral displacement for the circular eigenfrequency n and the modal damping rate 

*

n . 

*( , )npa nS   : Spectral pseudo-acceleration for the circular eigenfrequency and the modal damping 

rate 
*

n . 

The contribution of the nth mode to the total displacement is: 

,max ,maxn n nx q=          (2.32) 

5.3.1. Modal Seismic Response of Building 

For the modal analysis of buildings, the participation factor Γn given by Eq. (2.22) can be rewritten 

with respect to weight as: 

1

2

1

N

i in
i

N

i in
i

n

W

W





=

=

 =



     (2.33) 

For normalized eigenvectors, the participation factor reduces to: 

1

1 N

i in
i

n W
g


=

 =          (2.34) 

because for normalized eigenvectors, 
2

1

1
N

i in
i

W
=

=   where g is the acceleration due to gravity. 

For convenience Eq. (2.61), can be written with omission of the participation factor as 

* 2 ( )2n n n n n n gq q q x t  + + =&& & &&     (2.35) 

With the substitution 

nn nx q= −         (2.36) 

5.3.1.1. Modal Shear Force 

The value of the maximum response for the modal spectral acceleration, San, is found from an 

appropriate response spectral chart. 

From Eqs. (1.62) and (2.36), the maximum acceleration azn of the nth mode at the level z of the 

building is given by 
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zn n znn za S=                      (2.37) 

in which Sam and azn are usually expressed in units of the gravitational acceleration g. As stated, 

the modal values of the spectral acceleration San, the spectral velocity Svn, and the spectral 

displacement Sdn are related by an apparent harmonic relationship: 

2

n n n n nSa Sv Sd = =         (2.38) 

or in terms of the modal period Tn = 2π/ωn by: 

2

2 2
n n n

n n

Sa Sv Sd
T T

  
 

= =   
 

            (2.39) 

On the basis of these relations, the modal spectral acceleration Sam in Eq. (2.37) may be replaced 

by the spectral displacement Sdn times ωm2 or by the spectral velocity Svn times ωn. The modal 

lateral force Fzn at the level z of the building is then given by Newton’s Law as: 

orzn zn zn n zn n zzF a W F Sa W= =          (2.40) 

in which San is the modal spectral acceleration in g units (Note: RPA2024 requires to scale San 

multiplied by the importance factor, I and divided by response modifications coefficient, R and Wz 

is the weight attributed to the level z of the building. 

The modal shear force Vzn at the level z of the building is equal to the sum of the seismic forces 

Fzn above that level, namely, 

N

zn iz
i z

V F
=

=      (2.41) 

The total modal shear force Vn at the base of the building is then calculated as: 

1

N

n iz
i

V F
=

=          (2.42) 

or using Eq. (2.40) 

1

N

n n in n
i

iV W Sa
=

=            (2.43) 

5.3.1.2. Effective Modal Weight 

The effective modal weight Wm is defined by the equation 

 

n n nV W Sa=          (2.41) 

Then, from Eq. (2.43), the modal weight is 
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1

N

in i
i

n nW W
=

=           (2.42) 

Combining Eqs. (2.33) and (2.42) results in the following important expression for the effective 

modal weight: 

2

1

2

1

N

in i
i

Nn

in i
i

W

W

W





=

=

 
 
 
 =



     (2.43) 

It can be proven analytically that the sum of the effective modal weights for all the modes of the 

building is equal to the total design weight of the building, that is: 

1 1

N N

i
n

n
i

W W
= =

=        (2.44) 

Equation (2.44) is most convenient in assessing the number of significant modes of vibration to 

consider in the design. Specifically, the RPA2024 requires that, in applying the dynamic method 

of analysis, a sufficient number of modes are needed to estimate a combined modal mass 

participation of 100% of the structure’s mass. Alternatively, this requirement can be satisfied by 

including a sufficient number of modes such that their total effective modal weight is at least 90% 

of the total design weight of the building. Thus, this requirement can be satisfied by simply adding 

a sufficient number of effective modal weights [Eq. (2.43)] until their total weight is 90% or more 

of the seismic design weight of the building. 

5.3.1.3.  Modal Lateral Forces 

By combining Eq. (2.40) with Eqs. (2.41) and (2.42), we may express the modal lateral force Fzn 

as: 

nzn znF C V=      (2.45) 

Where the modal seismic coefficient Czn at level x is given by: 

1

zn
zn N

in i
i

zW
C

W




=

=


      (2.46) 

5.3.1.4.  Modal Displacements 

The modal displacement δzn at the level x of the building may be expressed as: 

zn n zn nSd =        (2.47) 
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where Γn is the participation factor for the nth mode, ϕzn is the component of the modal shape at 

level x of the building, and Sdn is the spectral displacement for that mode. Alternatively, the modal 

displacement δzn may be calculated from Newton’s Law of Motion in the form 

2

nzn zn
zW

F
g
 =      (2.48) 

because the magnitude of the modal acceleration corresponding to the modal displacement δzn is 

ωn
2 δzn. Hence, from Eq. 

2

n z

zn
zn

Fg

W



=       (2.49) 

or substituting ωn = 2π/Tn 

2

24

z

z

n
zn

nT Fg

W



=       (2.50) 

where Tn is the nth natural period. 

5.3.1.5.  Modal Drift 

The modal drift Δzn for the zth story of the building, defined as the relative displacement of two 

consecutive levels, is given by 

( 1)zn zn z n a  − = − =      (2.51) 

5.3.1.6.  Modal Overturning Moment 

The modal overturning moment Mzn at the level x of the building which is calculated as the sum 

of the moments of the seismic forces Fzn above that level is given by: 

1

( )
N

zn in i
i z

zM F h h
= +

= −      (2.52) 

where hi and hz are, respectively, the height of levels i and z. The modal overturning moment Mm 

at the base of the building then is given by: 

1

N

n in i
i z

M F h
= +

=        (2.53) 

5.3.1.7.  Modal Torsional Moment 

The modal torsional moment Mtnz at level z, which is due to eccentricity ez between the center 

of the above mass and the center of stiffness at that level (measured normal to the direction 

considered), is calculated as: 
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nz z znMt e V=      (2.54) 

where Vzn is the modal shear force at level z. 

The RPA2024 requires that an accidental torsional moment be added to the torsional moment 

existent at each level. The recommended way to add the accidental torsion is to offset the center 

of mass at each level by 5% of the dimension of the building normal to the direction under 

consideration. 

5.3.2. Modal combination 

The maxima of different modes do not occur at the same instant. An exact computation of the total 

maximum response on the basis of the maximum modal responses is hence impossible. Different 

methods have been developed to estimate the total maximum response from the maximum modal 

responses. 

5.3.2.1.  Combination rule: “Absolute Sum (ABSSUM)”  

,max ,max
1

n

i ij j
j

x q
=

  

The assumption that all maxima occur at the same instant and in the same direction yields an upper 

bound value for the response quantity. This assumption is commonly too conservative.  

5.3.2.2.  Combination Rule: “Square-Root-of Sum-of-Squares (SRSS)”  

( )
2

,max ,max
1

n

i ij j
j

x q
=

=   

This rule is often used as the standard combination method and yields very good estimates of the 

total maximum response if the modes of the system are well separated. If the system has several 

modes with similar frequencies the SRSS rule might yield estimates which are significantly lower 

than the actual total maximum response. 

5.3.2.3.  Combination Rule: “Complete Quadratic Combination (CQC)” 
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k
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correlation coefficient between mode j and mode k 
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5.3.3. Number of modes to be considered 

A comprehensive dynamic analysis should consider all contributing modes. However, practical 

applications often focus on modes exceeding a specific contribution threshold. Notably, the 

number of modes required for accurate results may vary depending on the response measure (e.g., 

displacements, shear forces, bending moments), necessitating a tailored approach to modal 

selection for each parameter of interest. 

For a regular building the top displacement can be estimated fairly well based on the fundamental 

mode only. To estimate the internal forces, however, higher modes need to be considered too.  

According to RPA2024, all modes should be considered (starting from the lowest) until the sum 

of the effective modal masses of all considered modes corresponds to at least 90% of the total 

mass.  

Example 2.1 

Figure below shows a building that is part of an industrial facility. We want to study the response 

of the building to the N-S component of the recorded accelerations at El Centro, California, in 

Mayo 18 of 1940. We are interested in the response in the direction shown in the figure. Damping 

for the system was estimated in ξ = 5% of critical. All girders of the structure have width b = 0.40 

m and depth h = 0.50 m. All columns have square section with a cross-section dimension h = 0.50 

m. The material of the structure has a modulus of elasticity E = 25 GPa. The self-weight of structure 

plus additional dead load is 780 kg/m2 and the industrial machinery, which is firmly connected to 

the building slabs, increases the mass per unit area by 1000 kg/m2, for a total mass per unit area of 

1780 kg/m2. 
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Solution 2.1 

The area of each floor slab is 12 m · 12 m = 144 m2. The total translational mass of each story is 

m = 144 m2· 1780 kg/m2 = 256 Mg. The mass matrix of the buildings is: 

3

216.76 306.77 105.49 19.561 4.2822 0.51088

306.77 668.24 475.14 137.94 29.375 5.3857

105.49 475.14 731.37 493.23 159.60 29.327
[ ] 10
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4.2822 29.375 159.60 494.47 738.11 5
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Matrix   is in this case a single column vector having one in all rows, because all the lateral 

degrees of freedom of the structure are parallel to the ground motion acceleration. The dynamic 

equilibrium equations are:   
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After solving the eigenvalues problem for this system, we find: 
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Mode ω2 (rad/s)² ω (rad/s) f (Hertz) T (s) 

1 29.108 5.39 0.859 1.16 

2 301.81 17.4 2.76 0.36 

3 973.78 31.2 4.97 0.2 

4 2494.3 49.9 7.95 0.13 

5 4686.5 68.5 10.9 0.092 

6 7113.8 84.3 13.4 0.075 

 

The corresponding vibration modes are: 

0.036721 0.032775 0.029168 0.020667 0.013049 0.005955

0.033690 0.011592 0.014245 0.032483 0.032188 0.018512

0.028524 0.014524 0.034529 0.005317 0.028533 0.029103
[ ]

0.020961 0.033322 0.005049 0.034504 0.003317 0

− − −

− − −

− −
 =

− − − .033609

0.012243 0.033525 0.031633 0.006893 0.024392 0.031454

0.004460 0.015888 0.025184 0.034025 0.035774 0.023711

 
 
 
 
 
 
 
 
 
 
 − − 
 
  

 

 

The modal participation factors are obtained from:  

34.970

13.540

8.2331
{ } [ ] [ ][ ]

6.0279

4.4695

2.3861

T M 

 
 
 
 
 
 
 

 =  =  
 
 
 
 
 
 
 

 

The total effective mass is computed as αi2 
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Mode Γi Γi
2 %Mtot 

%Mtot 

accumulated 

1 34.97 1222.901 79.62% 79.62% 

2 13.54 183.332 11.93% 91.55% 

3 8.2331 67.784 4.41% 95.96% 

4 6.0279 36.336 2.37% 98.33% 

5 4.4695 19.976 1.30% 99.63% 

6 2.3861 5.693 0.37% 100.00% 

 

Now we modify the dynamic equilibrium equations by pre-multiplying by [Φ]T and using the 

following coordinate transformations: 

{ } [ ]{ } and { } [ ]{ }X q X q=  = && &&  

The uncoupled vibration equations are: 

2

1 1 1 1 1 1 0

2

2 2 2 2 2 2 0

2

3 3 3 3 3 3 0

2

4 4 4 4 4 4 0

2

5 5 5 5 5 5 0

2

6 6 6 6 6 6 0

2 34.970

2 13.540

2 8.2331

2 6.0279

2 4.4695

2 2.3861

q q q

q q q

q q q

q q q

q

x

q q

q q

x

x

q

x

x

x

  

  

  

  

  

  

+ + = −

+ + = −

+ + = −

+ + = −

+ + = −

+ + = −

&& &

&& &

&& &

&& &

&& &

&&

&&

&&

&&

&

&&

&&&

&
 

In all six equations ξi = 0.05. The response for each of the uncoupled equations is obtained using 

the displacement response spectra for the N-S component of the El Centro record. The figure below 

shows the spectrum and period for each mode and the displacement read from the spectrum for 

each period.   
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Mode Ti (s) Sd(Ti,ξi) (m) 

1 1.16 0.116 

2 0.36 0.0218 

3 0.2 0.00674 

4 0.13 0.00285 

5 0.092 0.00113 

6 0.075 0.00072 

 

With this information, it is possible to compute the maximum displacement that the uncoupled 

degrees of freedom can attain: 

Mode Γi Sd(Ti,ξi) (m) (qi)max = Γix Sd(Ti,ξi) (m) 

1 34.97 0.116 4.0495 

2 13.54 0.0218 0.29571 

3 8.233 0.00674 0.055458 

4 6.028 0.00285 0.017155 

5 4.469 0.00113 0.005064 

6 2.386 0.00071 0.001717 

Maximum modal displacements (m) 

The maximum displacements for each mode are obtained from:  

( ) ( )

mod max{ } { }( )i i

iX q=  

These results can be computed for all the modes at the same time by introducing the values of 

(ηi)max in the diagonal of a square matrix [Ηmod] y and performing the operation: 

(1) (2) (6)

mod mod mod mod mod[ ] [ ][ ] { } { } { }X H X X X =  =   
L  

In present case matrix [Ηmod] has the following form: 

1 max

2 max

3 max

mod

4 max

5 max

6 max

( ) 0 0 0 0 0

0 ( ) 0 0 0 0

0 0 ( ) 0 0 0
[ ]

0 0 0 ( ) 0 0

0 0 0 0 ( ) 0

0 0 0 0 0 ( )

q

q

q
H

q

q

q

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 

 

 

And replacing the appropriate values from Table 2: 
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mod

4.0495 0 0 0 0 0

0 0.29571 0 0 0 0

0 0 0.0055458 0 0 0
[ ]

0 0 0 0.015155 0 0

0 0 0 0 0.0050639 0

0 0 0 0 0 0.0017177

H

 
 
 
 
 
 
 =  
 
 
 
 
 
  

 

 

The values for [Umod] are: 

 

mod mod

0.148703 0.009692 0.001618 0.000355 0.000066 0.000010

0.136429 0.003428 0.000790 0.000557 0.000163 0.000032

0.115519 0.004295 0.001915 0.000091 0.000144 0.000050
[ ] [ ][ ]

0.084882 0.009854 0.000280 0.000
X H

− − −

− − −

− −
=  =

− − 592 0.000017 0.000058

0.049588 0.009914 0.001754 0.000118 0.000124 0.000054

0.018061 0.004698 0.001397 0.000584 0.000181 0.000041

 
 
 
 
 
 
 
 
 −
 
 − − − 
 
  

 

 

Maximum story drift as a percentage of story height (%h)  

Using the displacements just computed the story drift for each story and mode could be computed 

as the algebraic difference of the displacement of two consecutive stories. Drift is usually 

expressed as percentage of the inter-story height.   

 



65 

 

Story mode 1 mode 2 mode 3 mode 4 mode 5 mode 6 

6 0.409% -0.209% 0.080% -0.030% 0.008% -0.001% 

5 0.697% -0.257% 0.037% 0.016% -0.010% 0.003% 

4 1.021% -0.185% -0.054% 0.023% 0.005% -0.004% 

3 1.177% -0.002% -0.068% -0.024% 0.004% 0.004% 

2 1.051% 0.174% 0.012% -0.016% -0.010% -0.003% 

1 0.602% 0.157% 0.047% 0.019% 0.006% 0.001% 

 

Next figure shows the story drifts for each mode: 

 

 

Maximum modal lateral forces (kN)  

To obtain the maximum modal lateral forces imposed on the structure by the ground motions the 

stiffness matrix of the structure is multiplied by the modal lateral displacements. Results are 

obtained in kN.   

(1) (2) (6) (1) (2) (6)

mod mod mod mod mod mod mod[ ] [ ]E X X X   = =      
F K F F FL L  
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mod mod

1108.3 748.9 403.3 226.4 79.3 18.6

1016.2 264.8 196.9 355.8 195.6 57.9

860.2 331.8 477.4 58.2 173.4 91.0
[ ] [ ][ ]

632.9 761.5 69.8 378.0 20.2 105.1

369.4 765.9 437.3 75.5 148.2 98.4

135.1 363.0 348.2 372.7 217.3 7

EF K X

− − −

− − −

− −
= =

− − −

− −

4.1

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 

Maximum modal story shear (kN)  

The maximum modal story shear is obtained from ( ) ( )
n

i i

j k
k j

V F
=

=  

Story 
V(1)

mod 

(kN) 

V(2)
mod 

(kN) 

V(3)
mod 

(kN) 

V(4)
mod 

(kN) 

V(5)
mod 

(kN) 

V(6)
mod 

(kN) 

6 1108.3 -748.9 403.3 -226.4 79.3 -18.6 

5 2124.6 -1013.7 206.3 129.4 -116.3 39.3 

4 2984.8 -681.9 -271 187.7 57.1 -51.7 

3 3617.6 79.6 -340.9 -190.3 36.9 53.4 

2 3987 845.5 96.5 -114.8 -111.3 -45 

1 4122.1 1208.5 444.6 257.9 106.1 29.1 

0 4122.1 1208.5 444.6 257.9 106.1 29.1 
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Base shear (kN)   

The base shear in kN for each mode is obtained from 

mod mod

1108.3 748.9 403.3 226.4 79.3 18.6

1016.2 264.8 196.9 355.8 195.6 57.9

860.2 331.8 477.4 58.2 173.4 91.0
{ } {1} [ ] {1|1|1|1|1|1}

632.9 761.5 69.8 378.0 20.2 105.1

369.4 765.9 437.3 75.5 148.2 98.4

135.1 363.0 348

TV F

− − −

− − −

− −
= =

− − −

− −

(1) (1) (1) (1) (1) (1)

mod mod mod mod mod mod

.2 372.7 217.3 74.1

{4122.1|1208.5|444.6|257.9|106.1|29.1}

{ | | | | | }V V V V V V

 
 
 
 
 
 
 
 
 
 
 
 
 
  

=

=

 

Overturning moment (kN · m) 

The overturning moment for each story is obtained from ( )( ) ( )

1

n
i i

j k j j
k j

M h h F
= +

= −   
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Story 
M(1)

mod 

(kN . m) 

M(2)
mod 

(kN . m) 

M(3)
mod 

(kN . m) 

M(4)
mod 

(kN . m) 

M(5)
mod 

(kN . m) 

M(6)
mod 

(kN . m) 

6 0 0 0 0 0 0 

5 3324.9 -2246.7 1209.8 -679.2 237.8 -55.9 

4 9698.6 -5287.8 1828.7 -290.9 -111 61.9 

3 18652.9 -7333.6 1015.6 272.2 60.2 -93.3 

2 29505.8 -7094.7 -6.9 -298.7 170.9 66.8 

1 41466.8 -4558.2 282.4 -643.1 -162.9 -68.2 

0 53833.1 -932.7 1616.3 130.7 155.3 19.2 

 

 

The maximum overturning moment at the base, in kN·m, contributed by each mode can be 

obtained from: 
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mod mod

1108.3 748.9 403.3 226.4 79.3 18.6

1016.2 264.8 196.9 355.8 195.6 57.9

860.2 331.8 477.4 58.2 173.4 91.0
{ } { } [ ] {18|15|12|9|6|3}

632.9 761.5 69.8 378.0 20.2 105.1

369.4 765.9 437.3 75.5 148.2 98.4

135.1 363.0

T

− − −

− − −

− −
= =

− − −

− −

M h F

(1) (2) (3) (4) (5) (6)

mod mod mod mod mod mod

348.2 372.7 217.3 74.1

{53833| 933|1616|131|155|19}

{ | | | | | }M M M M M M

 
 
 
 
 
 
 
 
 
 
 
 
 
  

= −

=

 

Maximum credible lateral displacements (m)  

The maximum modal displacements were obtained from: ( ) ( )

mod max{ } { } ( )i i

iX q=   

mod mod

0.148703 0.009692 0.001618 0.000355 0.000066 0.000010

0.136429 0.003428 0.000790 0.000557 0.000163 0.000032

0.115519 0.004295 0.001915 0.000091 0.000144 0.000050
[ ] [ ][ ]

0.084882 0.009854 0.000280 0.000
X H

− − −

− − −

− −
=  =

− − 592 0.000017 0.000058

0.049588 0.009914 0.001754 0.000118 0.000124 0.000054

0.018061 0.004698 0.001397 0.000584 0.000181 0.000041

 
 
 
 
 
 
 
 
 −
 
 − − − 
 
  

 

We now apply the SRSS procedure to each of the row of previous matrix. For example, for the 

roof (6th story): 

max 2 2 2 2 2 2

6 (0.148703) ( 0.009692) (0.001618) ( 0.000355) (0.000066) ( 0.000010)

0.14903m

X = + − + + − + + −

=
 

Maximum credible story drift 

The modal spectral story drifts are computed from the values shown in [Xmod] Using Eq. (2.51) 

the following result are obtained: 

mod

0.012274 0.006264 0.002408 0.000912 0.000229 0.000042

0.020920 0.007723 0.001125 0.000466 0.000307 0.000082

0.030627 0.005559 0.001635 0.000683 0.000161 0.000108
[ ]

0.035304 0.000060 0.002034 0.000710 0.0001

− − −

− −

− − −
 =

− − − 07 0.000112

0.031517 0.005216 0.000358 0.000465 0.000305 0.000095

0.018061 0.004698 0.001397 0.000584 0.000181 0.000041

 
 
 
 
 
 
 
 
 
 
 − − − 
 
  

 

As an example, we now apply the SRSS procedure to the third story: 
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SRSS 2 2 2 2 2 2

3 (0.035304) ( 0.000060) ( 0.002034) ( 0.000710) (0.000107) (0.000112)

0.03537m

 = + − + − + − + +

=
 

And for all stories: 

SRSS

0.0140 0.47% /

0.0223 0.74% /

0.0312 1.04% /
{ } ,

0.0354 1.18% /

0.0320 1.07% /

0.0188 0.62% /

h

h

h
m

h

h

h

   
   
   
   
   
   
    = =   
   
   
   
   
   
      

 

Maximum credible story forces (kN)  

The maximum modal spectral forces were obtained for each mode multiplying the stiffness matrix 

by the modal spectral displacements of each mode, obtaining there the following forces in  

kN: 
(1) (2) (6) (1) (2) (6)

mod mod mod mod mod mod mod[ ] [ ]E X X X   = =      
F K F F FL L  

mod mod

1108.3 748.9 403.3 226.4 79.3 18.6

1016.2 264.8 196.9 355.8 195.6 57.9

860.2 331.8 477.4 58.2 173.4 91.0
[ ] [ ][ ]

632.9 761.5 69.8 378.0 20.2 105.1

369.4 765.9 437.3 75.5 148.2 98.4

135.1 363.0 348.2 372.7 217.3 7

EF K X

− − −

− − −

− −
= =

− − −

− −

4.1

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Maximum credible story shear (kN)  

The maximum credible modal spectral story shear may be obtained from Eq.(2.41) ( ) ( )
p

i i

j k
k j

V F
=

=  

Story 
V(1)

mod 

(kN) 

V(2)
mod 

(kN) 

V(3)
mod 

(kN) 

V(4)
mod 

(kN) 

V(5)
mod 

(kN) 

V(6)
mod 

(kN) 

6 1108.3 -748.9 403.3 -226.4 79.3 -18.6 

5 2124.6 -1013.7 206.3 129.4 -116.3 39.3 

4 2984.8 -681.9 -271 187.7 57.1 -51.7 

3 3617.6 79.6 -340.9 -190.3 36.9 53.4 

2 3987 845.5 96.5 -114.8 -111.3 -45 

1 4122.1 1208.5 444.6 257.9 106.1 29.1 
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Applying, for example, the SRSS procedure to the second story, we obtain: 

SRSS 2 2 2 2 2 2

2 (3987.0) (845.5) (96.5) ( 114.8) ( 111.3) ( 45.0) 4080.2kNV = + + + − + − + − =  

The result, in kN, for all stories is 

SRSS

1417.6

2369.8

3080.3
{ }

3640.1

4080.2

4327.6

V

 
 
 
 
 
 
 =  
 
 
 
 
 
  

 

Maximum credible base shear 

The base shear, in kN, was obtained in Example 6 for each mode as:   

mod mod

1108.3 748.9 403.3 226.4 79.3 18.6

1016.2 264.8 196.9 355.8 195.6 57.9

860.2 331.8 477.4 58.2 173.4 91.0
{ } {1} [ ] {1|1|1|1|1|1}

632.9 761.5 69.8 378.0 20.2 105.1

369.4 765.9 437.3 75.5 148.2 98.4

135.1 363.0 348

T

− − −

− − −

− −
= =

− − −

− −

V F

.2 372.7 217.3 74.1

{4122.1|1208.5|444.6|257.9|106.1|29.1}

 
 
 
 
 
 
 
 
 
 
 
 
 
  

=

 

Applying the SRSS procedure: 

SRSS 2 2 2 2 2 2(4122.1) (1208.5) (444.6) (257.9) (106.1) (29.1) 4327.6kNV = + + + + + =  

Maximum credible overturning moment 

The overturning moment for each story and mode is obtained using Eq. (2.52): 

Story 
M(1)

mod 

(kN . m) 

M(2)
mod 

(kN . m) 

M(3)
mod 

(kN . m) 

M(4)
mod 

(kN . m) 

M(5)
mod 

(kN . m) 

M(6)
mod 

(kN . m) 

6 0 0 0 0 0 0 

5 3324.9 -2246.7 1209.8 -679.2 237.8 -55.9 

4 9698.6 -5287.8 1828.7 -290.9 -111 61.9 

3 18652.9 -7333.6 1015.6 272.2 60.2 -93.3 

2 29505.8 -7094.7 -6.9 -298.7 170.9 66.8 

1 41466.8 -4558.2 282.4 -643.1 -162.9 -68.2 

0 53833.1 -932.7 1616.3 130.7 155.3 19.2 
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Now using the SRSS procedure for example to the fourth story: 

SRSS 2 2 2 2 2 2

4 (9698.6) ( 5287.7) (1828.7) ( 290.9) ( 111.0) (61.9) 4080.2kNM = + − + + − + − + =  

The result, in kN·m, for all stories is: 

SRSS

0.0

4252.9

11201.3

{ } 20070.6

30348.8

41722.9

53865.8

 
 
 
 
 
 
 
  

=  
 
 
 
 
 
 
 
  

M  

Maximum credible base overturning moment 

Base overturning moment contributed by each mode can be computed from: 

mod mod

1108.3 748.9 403.3 226.4 79.3 18.6

1016.2 264.8 196.9 355.8 195.6 57.9

860.2 331.8 477.4 58.2 173.4 91.0
{ } { } [ ] {18|15|12|9|6|3}

632.9 761.5 69.8 378.0 20.2 105.1

369.4 765.9 437.3 75.5 148.2 98.4

135.1 363.0

T

− − −

− − −

− −
= =

− − −

− −

M h F

348.2 372.7 217.3 74.1

{53833| 933|1616|131|155|19}

 
 
 
 
 
 
 
 
 
 
 
 
 
  

= −

 

And 

SRSS 2 2 2 2 2 2(53833.1) ( 932.7) (1616.3) (130.7) (155.3) (19.2) 53865.8 kN.mM = + − + + + + =  

 

 

 

 

 



73 

 

Chapter 3 

Progressive Pushover Method 

1. Introduction  

Pushover analysis is a nonlinear static analysis method widely used in structural engineering to 

evaluate the seismic performance of buildings and other structures. This method involves applying 

progressively increasing lateral loads to a structural model until it reaches its ultimate capacity or 

a predefined target displacement. The procedure accounts for the redistribution of forces as 

structural elements yield, enabling engineers to simulate the inelastic behavior of a structure under 

seismic loading. By plotting the relationship between base shear and roof displacement, known as 

the capacity curve, pushover analysis provides valuable insights into the structure's strength, 

deformation capacity, and potential failure mechanisms. 

The primary objective of pushover analysis is to identify weak points in the structure and predict 

how it will behave during an earthquake. It helps engineers assess critical parameters such as 

plastic hinge formation, interstory drifts, and force demands on individual members. This method 

is particularly useful for performance-based seismic design and retrofitting of existing buildings, 

offering a practical alternative to more complex nonlinear dynamic analyses. However, it is 

important to note that pushover analysis relies on simplified assumptions about load patterns and 

may not fully capture dynamic effects or higher-mode contributions during an earthquake. Despite 

these limitations, it remains a powerful tool for understanding and enhancing the seismic resilience 

of structures. 

 

Fig 3.1 The basic idea of Pushover analysis 
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2. Definition of the structure and behavior laws of plastic nodes 

In the context of pushover analysis, the definition of the structure and behavior laws of plastic 

nodes revolves around the modeling of structural elements and their transition from elastic to 

plastic behavior under increasing lateral loads. Structural elements are typically modeled using 

linear elastic behavior up to a certain threshold, defined by their yield point. Beyond this yield 

point, plastic hinges are introduced at specific locations, such as the ends of beams or columns, to 

simulate the inelastic behavior of the structure. These plastic hinges represent localized zones 

where plastic deformations occur, allowing for redistribution of forces within the structure. 

The behavior of plastic nodes is governed by moment-rotation relationships that describe their 

response under loading. Initially, the structure behaves elastically with high stiffness (zone AB in 

a typical moment-rotation curve). Upon reaching the yield point (point B), the stiffness decreases 

as the structure enters an inelastic phase (zone BC), where deformations increase without 

significant additional resistance. The post-yield behavior can be idealized as elastic-perfectly 

plastic or include strain hardening or softening effects depending on material properties and design 

assumptions. In advanced models, these hinges are characterized by acceptance criteria such as 

Immediate Occupancy, Life Safety, and Collapse Prevention states, which correspond to 

increasing levels of deformation and damage. 

The placement and properties of these plastic nodes are critical for accurately predicting the 

nonlinear response of structures during seismic events or other extreme loading scenarios. By 

tracking the formation and progression of plastic hinges during pushover analysis, engineers can 

evaluate structural performance, identify failure mechanisms, and ensure compliance with safety 

standards. 

3. Lateral force distribution 

The lateral force distribution refers to the manner in which horizontal forces are applied across the 

height of a structure during analysis. This distribution is a critical factor influencing the accuracy 

of the results, as it determines how seismic demands are represented and how structural responses, 

such as inter-story drifts and member deformations, are captured.  

The Nonlinear Static Pushover Procedure outlined in RPA2024 is based on the N2 method 

introduced by Fajfar in 1999. This approach involves applying fixed load patterns to a building 
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model, which simulate the lateral forces caused by ground motion. The intensity of these loads is 

gradually increased in a pseudo-static manner. Depending on the building’s structural 

characteristics, the model can be either planar (2D) or spatial (3D). However, the load pattern is 

always applied in a single direction. For scenarios where ground motion input occurs in multiple 

directions, such as both x and y axes, RPA2024 provides specific combination rules for analysis. 

This nonlinear pushover analysis involves incrementally increasing constant-shape lateral load 

distributions on the structure being studied. The structural model can be either 2D or 3D depending 

on the building's plan regularity. Generally, buildings with regular plans can be analyzed using a 

2D single-plane frame model, while those with irregular plans require a full 3D model. Since 

nonlinear methods are particularly useful for existing buildings—which are often irregular—a 3D 

model is typically necessary in most cases. 

The N2 method was originally developed using a shear building model, meaning it assumes a 

frame structure with floors that are rigid within their planes. Vertical displacements are generally 

ignored in this method, focusing instead on the two horizontal components of ground motion (x 

and y directions). Extending this method to more complex cases involving fully deformable frames 

is relatively straightforward. The N2 method applies two distinct load distributions to the frame 

for analysis. 

Typically, lateral forces in pushover analysis are applied using predefined patterns that 

approximate the effects of seismic loads. Commonly used distributions include: 

- Uniform Distribution: Forces are proportional to the mass at each floor level, assuming a uniform 

response across the structure.  

- Mode Shape-Based Distribution: Forces are distributed according to the fundamental mode shape 

of vibration, which is suitable for regular buildings with fundamental periods up to approximately 

one second. 

The chosen lateral force distribution significantly impacts the resulting pushover curve (base shear 

vs. roof displacement) and structural performance predictions. While simpler patterns may suffice 

for regular structures, more complex patterns are essential for accurately assessing irregular or 

flexible buildings. 

In the N2 method, the mode shape 1 is scaled such that the displacement at the top floor equals 1, 

denoted as 1,n = 1. The two types of load distributions are illustrated schematically in the figure 
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below. These lateral load distributions are gradually increased, and the resulting response is 

represented as a plot of base shear (Vb) against the top floor displacement (D), typically measured 

at the center of mass of the top floor. This plot is commonly referred to as the pushover curve or 

capacity curve. 

 

Fig. 3.2 Lateral force distribution in Pushover analysis 

4. Capacity curve 

4.1. Equivalent SDOF systems 

According to Fajfar (1999), it is assumed that the building behaves as a shear frame, meaning the 

floors are considered rigid within their own plane. When vertical displacements of the building are 

disregarded, the floor movements can be described using three degrees of freedom, as illustrated 

in Window 3-2. These degrees of freedom are generally defined at the center of mass. It is 

important to note that the beams are capable of deforming outside the plane of the floor, allowing 

the nodes to exhibit rotational degrees of freedom beyond the floor plane. 

 

Fig 3.3 Typically shear frame for pushover analysis 
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In modern earthquake engineering, seismic input is typically characterized using design spectra or 

accelerograms. However, in codified design, this input is always defined or at least linked to 

spectra, which provide critical data about the acceleration and/or displacement of single-degree-

of-freedom (SDOF) systems. As a result, it becomes crucial to connect the outcomes of pushover 

analysis—applied to multi-degree-of-freedom (MDOF) systems—with the characteristics of an 

equivalent SDOF system. This process must account for the nonlinear response in terms of both 

forces (such as base shear) and deformations. To address this, an equivalent SDOF oscillator is 

employed. A specific approach to this is outlined in the following two paragraphs: the first focuses 

on the standard translational case, while the second extends to scenarios involving both 

translational and rotational (torsional) behavior. 

Various methods for defining an equivalent Single Degree of Freedom (SDOF) oscillator can be 

found in the literature. However, they all share a common starting point: the assumption that the 

deformation of a Multi-Degree of Freedom (MDOF) system can be represented by a deformation 

vector [Φ], which remains unchanged throughout the duration of the loading time-history, 

regardless of the magnitude of the applied deformation. This section introduces a widely 

recognized approach for defining an SDOF oscillator specifically for the translational behavior of 

spatial (3-D) structures. The equation governing the dynamic elastic response of the system to 

external excitation, as illustrated in Figure 5.29, is presented in vector form. 

0
[ ][ ( )] [ ][ ( )] [ ( )] [ ][ ] ( )1M t C t P t M tx x x+ + = -&& & &&     3.1 

By eliminating the damping terms from Equation 3.1, [C][ (0)]x& , Equation 3.2 results: 

0
[ ][ ( )] [ ( )] [ ][1] ( )M t xP t M tx + = -&& &&      3.2 

It is assumed that the displacement vector [x] and the restoring force vector [P] of the elastic multi-

degree-of-freedom (MDOF) system can be related to the corresponding parameters of an 

equivalent single-degree-of-freedom (SDOF) nonlinear oscillator un(t) and Pn(t), using two 

vectors, [Φ] and [Ψ]: 
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



 
 
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 
 

M
         3.3 

 

1

2
[ ] [ ] ( ) ( )n n

n

P P t P t







 
 
 =  =
 
 
 

M
          3.4 

Therefore, using these transformations, the equation of vibration of the MDOF system becomes, 

in vector form: 

0[ ][ ] ( ) [ ] ( ) [ ][1] ( )n nM x t P t M x t +  = −&& &&         3.5a 

And in algebraic form: 

1 1 1 1 0

2 2 2 2 0

0

( ) ( )

( ) ( )

( (

 

) )

n n

n n

n n n n n n

m Px x

x

t m t

m t P m t

m t P mx

x

x t

 

 

 

+ = − 


+ = − 



+ = − 

&& &&

&& &

M

&

&& &&

         3.5b 

By multiplying Equation (3.5a) times [Φ]T: 

0[ ] [ ][ ] ( ) [ ] [ ] ( ) [ ] [ ][1] ( )T T T

n nM x t P t M x t  +   = − && &&        3.8 

and by transforming the first term: 

0

[ ] [ ][1]
[ ] [ ][ ] ( ) [ ] [ ] ( ) [ ] [ ][1] ( )

[ ] [ ][1]

T
T T T

n nT

M
M t P t M x tx

M

    +   = −    

&&&&       3.8a 

or 

0

[ ] [ ][ ]
[ ] [ ][1] ( ) [ ] [ ] ( ) [ ] [ ][1] ( )

[ ] [ ][1]

T
T T T

n nT

M
M t P t M x tx

M

    +   = −    

&&&&        3.8b 

We define 
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* [ ] [ ][ ]
( )

[ ] [ ][1]

T

nT
x

M
x t

M

 
=


         3.9a 

* [ ] [ ][1]Tm M=             3.9b 

so, Equation 3.5a becomes in vector form: 

* **

0( ) [ ] [ ] ( ) ( )T

nnm x t P xt m t+   = −&& &&          3.10 

While Equations 3.9a and 3.9b are in algebraic form: 

*

1 1 2 2

1

n

n n i i

i

m m m m m   
=

= + + + =L  

2 2 2 2

1 1 2 2
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[ ] [ ][ ]
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M m m m m   
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  = + + + =L  

1
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n

T

i i

i

 
=

  =  
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*

1

n

i i

i

m m
=

=           3.11a 

2

* 1

1

( ) ( )

n

i i

i
n nn

i i

i

m

x t x t

m





=

=

=



       3.11b 

1

[ ] [ ]
n

T

i i

i

 
=

  =         3.11c 

Equation 3.10 by introducing Equations 3.11a through 3.11c is transformed to: 

0

1 1 1

( ) ( ) ( )
n n n

i i n i i n i i

i i i

m t m P t m tx x  
= = =

     
+ = −     

     
  && &&          3.12 
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Taking into account that: 

1

1

( )
( ) ( ) or ( )

n

i i n n n
i

i i

i

V t
m P t V t P t

m



=

=

 
= = 

 



         3.13 

Where V is the base shear of the MDOF excited system, Equation 3.12 may be re-written as: 

* *1
0

1

*( ) ( ) ( )

n

i i
i

n

i i
i

nm x t V t m t

m

x





=

=

+ = −



&& &&          3.14 

This corresponds to an SDOF system, which has defined the following properties: 

*

1

[ ] [ ][1]
n

T

i im M m=  =  

See equation 3.8a 

* 1

1
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V t V t V t
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



=

=

 
= =






       3.15 

Where m∗, u∗(t), V∗ are the mass, displacement, and base shear of the equivalent SDOF oscillator. 

The equation of vibration under excitation for this SDOF system is: 

* ** *

0( ) ( ) ( )nm x t V t xm t+ = −&& &&           3.16 

Having 

*

1( ) ( )nx xt t=           3.17a 

*

2( ) ( )V t V t=           3.17b 
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By introducing ψi=ϕi, one gets: 

2

1
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         3.18a 

And for mi=m=constant: 

2 2

1 1
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So, in the end, one factor Γ is used, with: 

2
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
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
         3.19 

This transformation factor is denoted as Γ in the Annex B of EC8-1/2004, Equation B3: 
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Fig 3.4 Summary of equivalent SDOF system 

 

Fig. 3.5 Conversion of pushover curve to spectral form 

4.2.  Linearization of the capacity curve 

To compare the capacity curve with the demand curve provided by the design spectrum, the 

nonlinear pushover curves of the single-degree-of-freedom (SDOF) system are simplified into 

elastic-perfectly plastic (or bilinear) representations. As outlined in Annex J of RAP2024, this 

transformation relies on the equal energy principle. A target displacement is defined, and it is 

assumed that the energy remains equal between the bilinear and nonlinear pushover curves. This 

straightforward method is demonstrated in the figure below. 
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Fig. 3.6 Linearization of the capacity curve 

The bilinearization of figure gives the yield force and the yield displacement 

*
* *

*
2 m

y m

y

E
d d

F

 
 

= − 
  
 

     3.21 

which allow the initial elastic period to be computed as: 

*
*

*
2

m
T

k
=       3.22 

Secondly, the capacity curve is transformed into capacity spectrum by normalizing the force with 

respect to the SDOF weight. The resulting capacity spectrum is shown in : 

 

Fig 3.7 The bilinear capacity curve 
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5. Seismic demand 

The building's demand is determined using the design spectrum outlined in the design code 

(RPA2024).  

1
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           

   3.23 

To effectively compare the building's capacity with this demand, the initial step involves 

converting the design spectrum from its traditional format, which plots Acceleration (A) against 

Period (T), into the ADRS format, where Acceleration (A) is plotted against Displacement (D). 

This transformation is straightforward since there is a direct relationship between Acceleration and 

Displacement. 

2

2
D A

T
S S



 
 =   
 

     3.24 

The transformation to the ADRS spectrum is shown in figure. Lines from the origin represent 

constant periods. 

 

Fig. 3.8 Transformation to ADRS linear spectrum 
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The capacity spectrum shown in Fig. 3.7 is compared to the ADRS demand spectrum depicted in 

Fig. 3.8. However, this comparison is not straightforward because the capacity spectrum exhibits 

nonlinear behavior, whereas the ADRS spectrum provided by design codes is linear. For a single-

degree-of-freedom (SDOF) system with bilinear plastic behavior, the acceleration spectrum (SA) 

and displacement spectrum (SD) can be calculated as follows: 

,ae
a d de

S
S S S

R R 


= =      3.25 

( , )
( , ) ae
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S T
S T
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
 =       3.26 

2

2
( , ) ( , )

4
de ae

T
S T S T 


=      3.27 

Where 

  : viscous damping ratio fixed at 5% 

( , )aeS T  : acceleration in the elastic spectrum corresponding to periods T et 5% =  

( , )deS T  : displacement in the elastic spectrum corresponding to periods T et 5% =  

2 2

2 2
( , ) ( , ) ( , ) ( , )

4 4
d de ae a

T T
S T S T S T S T

R R 

 
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 
= = =   3.28 

( , )aS T  : inelastic acceleration 

( , )dS T  : inelastic displacement 

µ: ductility factor 

Rµ: reduction factor given by: 
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     3.29 

With  



86 

 

T: vibration period of a linear single-degree-of-freedom system 

T2: upper limit of periods corresponding to the constant spectral acceleration plateau 

 

Fig. 3.9 The reduced seismic demand curve 

6. Determination of the target displacement 

6.1.  For the SDOF equivalent system 

From a theoretical perspective, the target displacement (Dt*) is identified by locating the point 

where the inelastic demand spectrum, defined by a ductility (µ) value, intersects with the bilinear 

capacity spectrum at a corresponding capacity ductility (µ). Essentially, this means that the design 

point is determined where the demand and capacity ductility are equal. The target displacement of 

the structure with period T ∗ and unlimited elastic behavior is given by 

2
*

* *( )
2

et e

T
d S T



 
 =  
  

      3.30 

For the determination of the target displacement dt∗ of structures in the short period domain and 

of structures in the medium and long period domains, different expressions should be used, as 

shown below. The boundary period between the short period and medium period domains is T2 

• Short period domain 
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Where Rµ is the ratio between the acceleration Se(T∗) in a structure with unlimited elastic behavior 

and the acceleration * *

yF m  in a structure with limited resistance, i.e.,  

* *

*

( )e

y

S T m
R

F



=      3.31 

• Medium and long period domain: 

* *

l etd d=      3.32 

 

Fig. 3.10 Determination of the target displacement 

6.2.  For the MDOF system 

The target move corresponds to the control node. 

     3.33 
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Fig. 3.11 The target displacement for MDOF system 

A schematic representation of nonlinear static procedure – pushover analysis is shown in Fig. 3.12. 

 

Fig. 3.12 Schematic representation of nonlinear static procedure – pushover analysis. 
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