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Chapter 1

Free vibration of MDOF systems

1. Introduction

Vibration in multi-degree-of-freedom (MDOF) systems is a fundamental concept in structural
dynamics that plays a crucial role in the analysis and design of complex structures. In real-life
situations, structures are inherently complex, containing distributed mass and stiffness throughout
their components. To accurately analyze these structures, it is more appropriate to discretize them
into a series of interconnected masses and stiffnesses. This discretization process typically involves
lumping masses at the center of gravity of the discretized elements, resulting in a model that
requires multiple displacement coordinates to define the structure's deformed position at any given
time.

This approach leads to the concept of multiple degrees of freedom, where each degree represents
an independent way in which the system can move or deform. Unlike single-degree-of-freedom
systems, MDOF systems require multiple coordinates to describe their motion, making them more
representative of real-world structures such as multi-story buildings, bridges, and complex
mechanical systems. These systems are characterized by their ability to vibrate in multiple modes,
each with its own natural frequency and mode shape.

The analysis of MDOF systems is essential for civil engineers, as it provides insights into how
structures respond to various dynamic loads, including earthquakes, wind, and machinery-induced
vibrations. Understanding MDOF vibrations allows engineers to predict and mitigate potential
resonance phenomena, optimize structural designs, and ensure the safety and serviceability of
structures under dynamic conditions. The complexity of MDOF systems necessitates the use of
advanced mathematical techniques, including matrix methods, eigenvalue analysis, and modal
decomposition, to solve the coupled equations of motion that govern their behavior.

As structures become increasingly complex and performance requirements more stringent,
mastering the principles of MDOF vibration becomes indispensable for civil engineering students
pursuing advanced degrees. This knowledge forms the foundation for more advanced topics in
structural dynamics, such as seismic analysis, vibration control, and structural health monitoring.

The study of MDOF systems provides a comprehensive framework for understanding and



analyzing the dynamic behavior of complex structures, enabling engineers to design safer, more

efficient, and more resilient infrastructure.

2. Two Degree of Freedom System

In general, the dynamic response of a structure cannot be described adequately by a SDOF system
model because the response includes time variations of the displacement shape as well as its
amplitude. Such behaviour can be described only in terms of more than one displacement
coordinate; the motion must be represented by more than one degree of freedom. The number of
degrees of freedom, that is, displacement components, to be considered is left to the judgment of
the analyst. However, large numbers provide better approximations of the true dynamic behaviour,
but in many cases excellent results can be obtained with only two or three degrees of freedom.
Therefore a complex structure has to be idealized into a number of masses and springs and assumed
interconnected together. Although a large number of degrees of freedom are usually associated
with a complex structural system, acceptable results may be obtained from the analysis of the
response of only a few degrees of freedom. A number of masses and springs interconnected
together in a system constitute a multi degree of freedom (MDOF) system. In such an arrangement
each mass displaces in its own way independent of the other masses while the entire system
vibrates. A force can be applied externally on any of the masses independently and excite the
system. Different forces can be applied on different masses.

Derivation of equation of motion for MDOF system straight away is cumbersome in terms of
comprehending its dynamic behavior. Therefore for quick and better understanding of the dynamic
behavior we consider here a simple two mass system with two coordinates for the derivation of
the equation of motion. This two mass system is a special case of the MDOF system. In this we
assume that each mass is constrained to move only in the horizontal plane. The associated
displacements, therefore, represent the two independent co-ordinates or degrees of freedom which
will be used to define the configuration of the system.

This chapter deals with the dynamic analysis of Two DOF systems for which the matrix method
is followed. Initially a formal analysis is presented in which it will be demonstrated that the
dynamic analysis of a structural system is a form of the classical eigenvalue problem of matrix

algebra.



2.1.Equation of Motion for a System with TDOF

We assume that the masses are excited by forces Pi(t) and P»(t) as in Fig. 1.1. The equation of
mass is obtained by considering the dynamic equilibrium of each mass in turn shown in Fig. 1.1(a)

and Fig. 1.1(b).

Pz

Fig. 1.1 Two-story shear frame system

In general, four types of forces act on each mass, namely, inertia, damping, elastic and applied
forces, respectively. The elastic force acting on a mass depends not only upon the displacement of
the mass under consideration, but also upon the displacement of the adjacent mass. Similarly, the
damping force depends on the velocity of the mass as well as on the adjacent mass too. The
equation of dynamic equilibrium for each mass may now be written as:

For mass 1

Fig. 1.1(a) Dynamic equilibrium of mass 1
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mx, +cx —c, (%, — % )+ kx, —k, (x,—x, )= p,(1)=0

)=
mx +cx —c, (%% )+kx —k,(x,—x)-p, (£)=0
mx + (¢, +¢,) % — e, %, +(k +k,)x, —k,x, = p, (1)
=m X, + 0%, + (¢, — ¢, ) %, — oy %, + (k, +k, ) x, —kyx

p(1) (1.1)

For mass 2:

P2y

>
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fm=cz(xz'x|)
Fig. 1.1(b) Dynamic equilibrium of mass 2

0

myx, +¢, (%, — % ) +k, (x, —x, )= p, (7)
m,x, + ¢, ()'cz —)'cl)+k2 (x2 —xl)—p2 (t)

myx, +c,X, —c,x, +k,x, —k,x, = p, (t)

0

=0%, +m,X, — ¢, %, + ¢,X, —k,x, + k,x, = p, (1)
=m X, + 0%, + (¢, +¢, ) X, — %, +(k + &, ) x, —k,x, = p, (1) (1.2)

Equations (1.1) and (1.2) are interconnected and hence are called coupled. They can be expressed

in matrix form as

et s = (1.3)
0 m,|X, —¢ (¢ +¢,)]|[X, -K, (K, +K,)|[x, P, (1)

In compact form Eq. (1.3) can be written as

[} + [cfe }+ [K e} = (P} (1.4)

Equation (1.4) can also be rewritten as

[mlise}+ 17, 1+ 1= {PO)} (1.5)

where
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Similar to SDOF system, the equation of motion for Two DOF is expressed generically as:
mX +cx + K X = P(t) (1.8)
In Eq. (1.8), m - mass matrix; ¢ - damping matrix; K - stiffness matrix and P - force matrix and
X, X , and X are, respectively, acceleration, velocity and displacement vectors.
2.2. Free Vibration of Two Degree System without Damping

Free vibration occurs when no external force or support motion acts on the system. It begins when
the system is disturbed from its equilibrium position, either through initial displacements, initial
velocities, or both. As discussed earlier, the vibration of a two-degree-of-freedom system is

generally described by Eq. (1.8).

In the case of free vibration, P(#)=0 because no dynamic force is applied. For a system without

damping, ¢ =0 Therefore an undamped system under free vibration is governed by

mi +Kx =0 (1.9)

For a two-degree-of-freedom system, Equation (1.9) consists of two coupled homogeneous
differential equations. These equations are linked through either the mass matrix, the stiffness
matrix, or both. The term "two" here refers to the number of degrees of freedom (DOFs) in the
system. The goal is to determine a solution, x(t), for Equation (1.9) that fulfills the given initial

conditions.

¥ =%(0) g ¥ =%(0) (1.10)
2.2.1. Normal Modes and Natural Frequencies

Before determining the dynamic response x(z) of the structure, it is essential to first evaluate the

frequencies of the two-degree-of-freedom (DOF) system, similar to what was done for a single-
5



degree-of-freedom (SDOF) system. In the SDOF system, there is only one frequency of vibration,
which depends on the system's mass and stiffness, as it involves a single mass. However, in a two
DOF system, there are two masses, resulting in two distinct frequencies of vibration. While the
SDOF system's response involved a single displacement with an easily identifiable deflected
shape, the two DOF system allows its masses to displace in various ways depending on the
vibration frequency. This leads to characteristic deformed shapes under different frequencies,
known as modes. The natural period of vibration Tum for a two DOF system represents the time
taken for one complete cycle of simple harmonic motion in one of these natural modes. The
corresponding natural circular frequency of vibration is ®am, and the natural cyclic frequency of

vibration is fum where:

Tnm=w—- fnm:T_ (1.11)

Here subscript m refers to modes, (m =1, 2). Figure 5.12 and 5.13 show two natural periods Tnm
and natural frequency ®mm (m = 1, 2) of the two-storey building vibrating in its natural modes ¢im
= (¢1m 2m)’. Here subscript i refers to masses (i = 1, 2). The lower of the two natural vibration
frequencies is referred to as ma1, while the higher frequency is labeled as mq2. Similarly, the longer
natural vibration period is designated as Tni, and the shorter period is identified as Tho.

A system with two degrees of freedom (DOF) is found to have two natural frequencies. The smaller
of these is referred to as the fundamental frequency or the first mode, while the larger one is known
as the second mode. By applying specific initial conditions, it is possible to make the system
vibrate entirely at one of these natural frequencies. In such cases, both masses will simultaneously
pass through their equilibrium or mean position and also reach their maximum displacement at the
same time. This type of vibration pattern is called the principal mode of vibration. During this
principal mode, the amplitude of vibration for any one of the masses is referred to as the normal
mode of vibration, which describes the displacement configuration. This normal mode depends

solely on how the mass and stiffness are distributed within the system.

2.2.2. Mode Shape

A two-story shear frame is illustrated in Fig. 1.2 which depicts the first natural modes of vibration

of this frame at various time points: a, b, ¢, and d. In a two-degree-of-freedom (DOF) or multi-
6



degree-of-freedom (MDOF) system, a natural mode of vibration represents its characteristic
deflected shape when free vibration occurs due to specific distributions of displacements across
different DOFs. If the two-DOF system is displaced into the shapes shown in these figures and
then released, it will undergo simple harmonic motion, consistently maintaining the initial
deflected shape. Notably, during this motion, the displacements of both floors move in the same

direction.

l - 1 1 |
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1107
2k A . . ‘
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(a) ' (b) (d)

Fig. 1.2 Free vibration of an undamped system in its first natural mode of vibration

The two-story frame oscillates naturally in the mode shape illustrated in Fig. 1.2(b), at a frequency

T, =2~
w

nl

denoted as ma1. The natural period of vibration is . The mode shape is described by ¢i1

= (¢11 ¢21)". The mode shape visually illustrates the relative amplitudes of two coordinates and
how their phase angles are related. At a vibrating frequency of w1, the displacement of the topmost
mass in the mode shape is referred to as the modal coordinate or normal coordinate, denoted as q1,
which is a scalar value. Figure 1.2(c) depicts how this modal coordinate changes over time, while

Figure 1.2(d) shows the displacement history of this degree of freedom (DOF).



The second natural mode of vibration of the same two-storey frame is shown in Fig. 1.3(b) . The

2

frequency of vibration of this second mode is o2 and period 2 ~ P
n2
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Fig. 1.3 Free vibration of an undamped system in its second natural mode of vibration

In this mode, the displacements of the two floors move in opposite directions, with a point of
zero displacement known as a node. A node is a stationary point where the amplitude shifts
between positive and negative or vice versa. The fundamental mode of vibration includes the
minimum possible modes, including zero. As the number of modes increases, the number of nodes
rises accordingly. Mode shapes help identify these nodal points within the system. The time
variation of the modal coordinate q» is illustrated in Fig. 1.3(c), while Fig. 1.3(d) shows the
displacement history of both degrees of freedom (DOFs) corresponding to this second mode of
vibration. The second mode shape is denoted by ¢i2 = (¢p12 ¢22)".

If the two masses are initially displaced equally in the same direction, the system will vibrate at its
first natural frequency. Conversely, if the initial displacement is equal but in opposite directions,
the system will vibrate in its second principal mode at the second natural frequency. However, if
the masses are given unequal initial displacements in any direction, their motion will be the

superposition of two harmonic motions associated with the two natural frequencies.



The conclusions from the above analysis may be summarised as follows:

1. The normal or natural modes are the free, undamped periodic oscillations within which linear
combinations represent the position of the system at every moment.

2. For every such normal mode all the masses of the system oscillate in phase, that is, at every
moment the ratio of the displacements of the damped masses remains constant. As a result, all
masses go through rest position and reach maximum amplitude simultaneously.

3. The number n of normal modes is equal to the number of degrees of freedom. Every normal
mode is related to a natural frequency or period of vibration known as the natural period. The

normal mode with the longest natural period is by definition the first or fundamental normal mode.

2.2.3. Eigen Value Problem

This section presents the eigenvalue problem, which provides the natural frequencies and vibration
modes of a system. The free vibration of an undamped system, occurring in one of its natural
modes, is visually depicted in Figures 5.12 and 5.13 for a two-degree-of-freedom (DOF) system

and can be described mathematically as:

X(0=q,(n9, (1.12)

In this context, qm represents the modal coordinates, while ¢m denotes the deflected shape, which
remains constant over time. To describe how the displacements of the masses vary with time, we

use a simple harmonic function, as illustrated in Figures 1.2(d) and 1.3(d).
q,t)=A4,cosm, t+B, smo, t (1.13)

where Am and B are integration constants. The constants are determined by applying the initial
conditions, which play a crucial role in initiating the vibratory motion. We now substitute Eq.

(1.13) into Eq. (1.12) and get

xt)=¢,4, cosmw, t+B smo, t (1.14)

where ®nm and ¢m are unknowns. Now Eq. (1.14) is substituted in Eq. (1.9) to get

o, g, +Kp, by, () =0 (1.15)

9




We know that m = 1 refers to first frequency a1 and the corresponding mode shape ¢1 which is

[,
g ‘{qﬁﬂ}

and m = 2 refers to second frequency mq2 and the corresponding mode shape ¢ which is given by

[,
%= {¢}

In expanded form Eq. (1.15) can be written as
_a)nmz{”ﬁ 0 :||:¢11 ¢12:|+|:K1 +K, _Kz:||:¢11 ¢12:|{Q1}:{0} (1.16)
0 m,| ¢y ¢ -K, K, ¢ 149, 0

Two possibilities are there as solutions to Eq. (1.15). First qm(t) = 0. This means X (¢) = 0 indicating

given by

that the system cannot exhibit any motion. This solution is considered trivial. Alternatively,

another possibility is...

~o,, g, +Kp, =0 (1.17)
From Eq. (1.17), we get

K¢ =0 ‘W (1.18)

n

Equation (1.18) offers a valuable condition and represents an algebraic equation, commonly
referred to as the matrix eigenvalue problem. In this context, the stiffness matrix K and the mass
matrix 7 are given. Therefore, the task is reduced to finding the scalar wnm> and the vector ¢m. We

can now rewrite Eq. (1.18) as follows to indicate its formal solution

K -, ), =0 (1.19)

The given expression represents a set of m homogeneous algebraic equations for the m elements
dim (i = 1, 2). The trivial solution to this equation set is ¢, = 0. However, this solution is
unacceptable as it implies that the system cannot undergo any motion. The non-trivial solution of
Eq. (1.19) is given by

10



K ~,, | =0 (1.20)

4

Equation (1.20), referred to as the characteristic or frequency equation, is expressed as a
determinant. When expanded, this determinant produces a polynomial of degree m in terms of
onm’. Since the structural mass matrix 77 and stiffness matrix K are symmetric and represent
physical quantities, they are positive definite. This ensures that the roots of Equation (1.20) for
onm’ are both real and positive. For structures where the support conditions eliminate rigid body
motion, the stiffness matrix K retains its positive definite property. This scenario is particularly
relevant to civil engineering structures, which are typically restrained and meet this condition.
Additionally, in the mass matrix 7 , the diagonal elements represent lumped masses at all degrees
of freedom (DOFs), and these values are always non-zero, further guaranteeing its positive definite
nature.

The 2 roots of Eq. (1.20) result in 2 natural frequencies mn; and on2 of vibration. These 2 roots of
the characteristic equation are called eigenvalues, characteristic values, or normal values.

When the natural frequencies, denoted as w1 and wn2, are determined by solving Eq. (1.20), the
corresponding vectors, ¢ and ¢2, can then be found by solving Eq. (1.19). However, the eigenvalue
problem does not define the exact amplitudes of these vectors. Instead, it provides only the relative
values of the displacements, represented as ¢im, where i =1 or 2 for each mode. For a two-degree-
of-freedom (TDOF) system, two independent vectors, ¢1 and ¢, are obtained, each associated with
one of the natural vibration frequencies, ®a1 or ®n2. These vectors represent the natural modes or
mode shapes of vibration and are also referred to as eigenvectors, characteristic vectors, or normal
modes.

In general, if a vibrating system has m degrees of freedom (DOFs), it will exhibit m natural
frequencies of vibration, denoted as wn,, where p =1, 2, ..., m, representing the mode number. The
first mode (p = 1) 1s referred to as the fundamental mode. These m natural frequencies are typically
listed in ascending order, such that 1 < @2 < @3 < ..... < om. Each frequency has an associated
natural period (Typ) and a corresponding natural mode (¢,). The term "natural" is used to emphasize
that these vibration characteristics are inherent to the structure during free vibration. They arise

naturally from the system's properties and depend solely on the structure's mass and stiffness.

11



Example 1.1

An undamped two DOF system is shown in Figure (I). Determine its frequencies and mode shapes.

SR T E——

E—— ) =Xy
my ANNNN M kxy=x1) -—o
- - .. my
k MrX7 g —
(a) Two-DOF system (b) Free body diagrams

Figure 1 Two-DOF system
Solution 1.1

The free body diagrams of the mass m; and m> are shown in the same Figure. The equations of

motion can be written as:
mx, +k(x,—x,)=0
And m,X, +k(x,—x)=0 (1)

Let X, =X, SInwt, X, =X, SIn @t (i1)

Substituting these values in Equation (i) gives,

e R

(_) l 2 + =

0 m,® X5 -k k Xy 0
EER IR

It can be written in short as follows:

Or,

[K]-[M]w"][X,]= {0} (iv)
where [K] and [M] are stiffness and mass matrices of the system. Its solution is given by setting

the determinant to zero,

det[K —M®*]=0 (v)

12



This is referred to as the characteristic equation. Equations (iv) and (v) are very important for
eigenvalue analysis.
mm,@* —(m, +m,)keo’ =0

) . . m, +m,)k
Its roots are given by: 0’=0 or @’ = (m, +m,)k
m,m,

. : . . ’ m, +m
or, the frequencies are givenby: @, =0 and o, = Mk
m,m,

The mode shapes can be obtained by substituting the value of @ in Equation (iii). Substituting
®® =0 in Equation (iii) gives x,, = x,, =1 . Similarly, substituting the other value,
W = (m, +m,)k
m,m,
(k —ma*)x,, —kx,, =0

Solving for mode shape ratio,
*20

_1-"M
X10 m, m,

Thus if, X =1,x,=——
2

Now the mode shapes can be plotted as shown in Figure below. It can be seen that the spring

remain undeformed in Mode 1, that is, Mode 1 is a rigid body displacement mode.

P’Hl
1 1 my

MODE 1 MODE 2

3. Multi-degree of freedom System (MDOF)

Let’s examine a three-story shear frame, as illustrated in Fig. 1.4. When subjected to external

forces Pi(t), P2(t) and P3(t), the system's state at any given moment is described by its

displacements xi, velocities X, , and accelerations X, .

13



Py

Fig. 1.4 A three-story shear frame system

The relationship between the elastic forces fi; in the stiffness component and the displacements x;

is described by Eq. (1.7). Similarly, the damping forces fp; in the damping component are related

to velocities x; through Eq. (1.6). Likewise, the inertia forces fj; in the mass component are tied to
accelerations X, byjN‘[ = mi . Thus, we can interpret the external forces l?(t) as being distributed
across these three structural components. Thus, f. + f,, + f, must be equal to applied external

forces 13(t) leading to Eq. (1.5).

3.1. Elastic Forces (Stiffness Component)

In this section, we will use the method of superposition and the concept of stiffness influence
coefficients to establish a relationship between the external elastic forces, denoted as fsp, acting on

the stiffness components of a structure, and the resulting displacements, x4. Considering an 8-floor

14



shear frame system, we begin by applying a unit displacement along a specific degree of freedom
(DOF) p, while keeping all other displacements fixed at zero. For instance, a unit displacement x;
=1 is applied, causing all other displacements (x2, X3, X4, X5, X6, X7, and Xg) to remain zero. The
resulting deflected shape of the frame due to this unit displacement. To maintain this deflected
configuration, forces must be applied along all DOFs. These forces are represented as K1, Ko,

...... , Kg1 and are known as stiffness influence coefficients (Kq). These coefficients represent the

andq=1,2, ...... , 8. Similarly, a unit rotation (x¢ = 1) is applied while keeping all other DOFs
(x1, X2, X3, X4, X5, X7, and xg) fixed at zero. The corresponding deflected profile and stiffness
influence coefficients (Ki¢, Ko, ...... , Kge. Here, positive values are assumed for anticlockwise
moments and translations along the x-direction; however, some forces may act in reverse
directions and should be treated as negative to align with the imposed deformations. These
principles can be extended to a system with N degrees of freedom (DOFs), where the forces f;p at
DOF p, associated with displacements x4 for g = 1 to N, can be determined through superposition

as:
fop =KX + K 2, + K Xy + e, +K Xy (1.21)

For each value of p =1 to N, there is one such equation. We can now write in matrix form the set

of N equations as:

£ K, K, K, . . KIN|[x
S K, K, K, . . K, ||x,
fis _ K, K, K, . . K3N' X, (122)
Sov) [ Kwi Ky Kys oo o Ky [Ixy
In compact form Eq. (1.22) can be given as
f. =Kx (1.23)

where K is a stiffness matrix and also symmetric, i.e., Kpq = Kgp.

15



The stiffness matrix K for a discretized system can be constructed using any of the structural
analysis methods that readers may already know. To determine the gth column of K , we calculate
the forces Kpq (Where p=1, 2, 3, ..., N) required to produce a displacement of xq = 1, while keeping
all other displacements (xq = 0) fixed. This process of determining stiffness influence coefficients
is referred to as the system approach. A widely used alternative is the direct stiffness method,
where the stiffness matrices of individual elements are assembled together to form the overall

structural stiffness matrix.

3.2. Damping Forces (Damping Component)

In Chapter 2, we explored how damping serves as a mechanism for energy dissipation in structures.
It can be simplified and represented as equivalent viscous damping since various damping
mechanisms may exist within a structure. Building on this concept, we will now establish a
relationship between the external forces, denoted as fpp, acting on the damping component of the

structure, and the velocity x,. To do this, we apply a unit velocity along a specific degree of

freedom (DOF) q, while ensuring that velocities at all other DOFs remain zero. This action
generates internal damping forces that resist the applied velocity, requiring external forces to
maintain equilibrium. The damping influence coefficient cpq represents the external force at DOF
p caused by a unit velocity at DOF q. Consequently, for a system with N degrees of freedom, the
resulting force fpp is determined by the velocities across all DOFs, from q =1 to N. The forces fpi,
b2, fp3, fp4, fbs, fos, fp7, and fpg act at the six nodes in 8 degrees of freedom are obtained by

superposition. Therefore:

Sop =€ X +C X245 X5 + s +C,nXy (1.24)

S ¢, €y €53 . . cIN ||x
S 2 Cyt € Cr3 oo o Gy || X2
f c c Cy3 .. .. C X
D3 31 32 33 3N 3
= . (1.25)
Son 1Cv1 Cn2 Cnz -+ - Oy [(Xw
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In compact form we can write Eq. (1.25) as:
f, =cx (1.26)

where ¢ is the damping matrix of the structure.

It is typically neither practical nor feasible to directly determine the coefficients cpq of the damping
matrix based solely on the structure's geometry. Instead, a common approach is to assign damping
ratios to a multi-degree-of-freedom (MDOF) system, similar to how it is done for single-degree-
of-freedom (SDOF) systems. These damping ratios are usually derived from experimental data

collected from structures with similar characteristics.

3.3. Inertia Forces (Mass component)

In this section, we aim to establish a connection between the external forces fi, acting on the mass

components of a structure and the resulting accelerationx,. To achieve this, we apply a unit

acceleration along a specific degree of freedom (DOF) q, while ensuring that all other DOFs
maintain zero acceleration. Based on D’Alembert’s principle, the imaginary inertia forces
generated by this acceleration act in opposition to it at the nodes. To maintain equilibrium in the
structure, external forces must be applied at these nodes. The inertia force at any node is
determined by multiplying the mass influence coefficient with the unit acceleration along the
corresponding DOF. The mass influence coefficient, myq, represents the external force in DOF p
caused by a unit acceleration along DOF q. For instance, we illustrate the external forces fi1, fi,
fi3, fi4, fis, fi6, f17, and fig acting on various nodes. Correspondingly, the mass influence coefficients
mjij, mp1, M31, M41, Ms1, Me1, M71, and mg; at these nodes are due to unit acceleration applied along
DOF 1. In general, for a system with N degrees of freedom, the external force fi, resulting from

unit acceleration X, across all DOFs (q = 1 to N) can be determined using superposition principles.

Sp =my X +m X, +m s+ +m Xy (1.27)

We can vary p = 1to N in Eq. (1.27). For each value of p we have one equation. We can arrange

the set of N equations in matrix form as
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S my My, My . My X

S My My, My .o o My |1 X,

f m m m v .om X

3 31 32 33 3N 3
= (1.28)

S | My Myy Myz oo oo My [ Xy

We can write Eq. (1.28) in compact form as

f, =mXx (1.29)

where m is the mass matrix. The mass matrix is symmetric similar to the stiffness matrix. That is

ml.j =mﬁ.

In most cases, the mass of a structure is spread out across its entirety. However, for the purpose of
dynamic analysis, we can simplify this by treating the mass as if it is concentrated or "lumped" at
specific points, known as the nodes, within the discretized structure. This approach is generally
considered to provide accurate results. Each structural element connects two nodes, and its mass
is evenly divided between them—half is assigned to one node and the other half to the second
node. When multiple elements converge at a single node, the contributions from all these elements

are added together at that point.

3.4. Equations of Motion for MDOF System

The governing equation of motion for a multi-degree-of-freedom (MDOF) system subjected to an
external dynamic force, Py(t), where p = 1 to N, can be constructed by combining the three key
components previously discussed. The structure's dynamic response to this external force is
characterized by its displacements, x,(t); velocities, X, (¢) ; and accelerations, ¥, (¢) , for each degree
of freedom (p = 1 to N). The applied dynamic force, Py(t), can be understood as being distributed
among three structural components: the stiffness component, represented by the force fi(t); the

damping component, represented by the force fp(t); and the mass component, represented by the

force fi(t). Thus

fo+fo+ 1 =P@) (1.30)



We can now substitute Eqs (1.23), (1.26) and (1.29) in Eq. (1.30) and rewrite it as

mx +cx + Kx = P(t) (1.31)
Equation (1.31) represents a system of N ordinary differential equations that describe the
displacements x(t) caused by the applied forces ﬁ(t). This equation serves as the equation of
motion for a multi-degree-of-freedom (MDOF) system, analogous to Equation (1.3) for a single-
degree-of-freedom (SDOF) system. However, in the MDOF case, the scalar quantities in the SDOF
system are replaced by vectors or matrices of size N, corresponding to the number of degrees of
freedom in the MDOF system. The off-diagonal elements in the coefficient matrices i, ¢, and
K are grouped together and referred to as coupling terms. Typically, these equations exhibit

coupling in mass, damping, and stiffness, which depend on how the degrees of freedom are

selected to describe the motion of the system.

4. Free Vibration of MDOF Systems without Damping

In Section 5.3, we thoroughly examined the methodology for determining normal modes and
natural frequencies through free vibration analysis of a two-degree system. This approach can be
generalized to multi-degree-of-freedom (MDOF) systems with N degrees of freedom. The free

vibration behavior of linear MDOF systems is described by Equation (1.31), which serves as the

governing equation for such systems with P(f) = 0 which for undamped systems becomes

mx+Kx=0 (1.32)

The system of N homogeneous differential equations, represented by Equations (1.32), exhibits
coupling through either the mass matrix, the stiffness matrix, or both. These equations correspond

to the number of degrees of freedom (DOFs) in the system.

4.1. Normal Modes and Natural Frequencies for MDOF Systems

In this section, we extend the eigenvalue problem previously examined for a two degrees of
freedom (DOF) system to a multi-degree of freedom (MDOF) system. The solution of the eigen
equation, which yielded natural frequencies and modes for the two DOF system, can be

generalized to MDOF systems. The free vibration of an undamped system in one of its natural
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vibration modes, as depicted graphically for a two DOF system, can be mathematically expressed

for the pth mode shape in an MDOF system as

x()=q,(09, (1.33)

where the deflected shape ¢, remains invariant with time. Therefore, we can describe the variation

of displacements with time by the simple harmonic function as
q,(t)=4,cosw,, + B, sino, ! (1.34)

The constants of integration, denoted as A, and By, can be determined using the initial conditions.

By combining Equations (1.32) and (1.33), we arrive at the subsequent expression.

x(t)=¢,(4,cosw, t+ B, sinw,r) (1.35)

np

in which onp and ¢p are not known. Substituting Eq. (1.35) in Eq. (1.32) and simplifying we get
. _ ~
o, mg, +Kp, i, 0)=0 (1.36)

In Eq. (1.36), either gy(t) =0 or [— a)npzm¢p +]?¢p]: 0. If gp(t) =0, then x(t) = 0 which means
the system does not vibrate. Hence, this is a trivial solution. If [— a)npzn_a ¢, + K 9, J =0, then on

and ¢np satisfy the following algebraic equation,
— o
K¢, =o,, mg, (1.37)

The matrix eigenvalue problem, as defined in Equation (1.37), presents a valuable criterion for

analysis. Within this equation, both the stiffness matrix = and mass matrix " are given quantities,
specifically derivable through the influence coefficients method outlined in the preceding chapter.
Consequently, the unknown elements to be determined are the scalar wn,” and vector ¢p. By

rearranging Equation (1.37), we can arrive at a formal solution to this problem. Therefore,

{E_w”pz"_q}gjp:o (1.38)

The expression (1.38) represents a set of N homogeneous algebraic equations corresponding to N
vectors ¢gp (Where q ranges from 1 to N). While ¢, = 0 consistently provides a trivial solution
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which is not useful because it means the system does not execute any motion. To achieve a
meaningful outcome, we must seek a non-trivial solution, which is attainable only under specific
condition:

L
K-a,’'m|=0 (1.39)

The characteristic equation (1.39) for an MDOF system yields N natural frequencies wnp (p =1, 2,
..., N), which are the system's eigenvalues or characteristic values. These frequencies, when
applied to Eq. (1.38), determine ¢, though only relative displacement values ¢qp (q =1, 2, ..., N)
can be obtained, defining the vector's shape. Each natural frequency corresponds to an independent
vector ¢p, resulting in N eigenvectors known as natural modes or mode shapes of vibration. These
vectors are also referred to as characteristic vectors or normal modes. The mode number is denoted
by p, with p = 1 representing the fundamental mode. This equation is crucial in understanding the
vibrational behavior of multi-degree-of-freedom systems, providing insights into their natural
frequencies and corresponding mode shapes, which are essential for analyzing and predicting

system responses to various excitations.

4.2. Properties of Modes

In this phase, it's advantageous to present certain characteristics of the free vibration mode shapes,
which will prove invaluable in future dynamic examinations. These attributes are known as the
orthogonality relations. We'll now explore modal properties that facilitate the decoupling of
motion equations in multi-degree-of-freedom (MDOF) systems. Our primary focus is on
elucidating the orthogonality features of modes and their implications. Additionally, we'll delve
into mode normalization, addressing the relevance of spectral and modal matrices during this
process. By resolving Equations (1.38) and (1.39), we can derive N eigenvalues and N natural

modes, which can be consolidated into concise matrices.

4.3. Spectral and Modal Matrices

As a solution of Eq. (1.39) we get N eigenvalues wqp>. We can assemble these eigenvalues mnp’
into a diagonal matrix Q7. This diagonal matrix Q?is called spectral matrix of the eigenvalue
problem given by Eq. (1.37). Now we can write the spectral matrix as
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nl

a)nZ
52 — n3 (140)

2
a)nN

We denote here ¢pq to represent the components of a vector associated with the ¢, natural mode
and its corresponding natural frequency mnp. Here, q ranges from 1 to N, indicating the degrees of
freedom (DOFs) in the system. We can then neatly organize these N eigenvectors into a single
square matrix, where each column stands for a distinct natural mode. This arrangement provides a

compact and insightful representation of the system's vibrational characteristics.

¢1 1 ¢1 2 ¢1 3 ct ¢1 N
¢2 1 ¢2 2 ¢2 3 st ¢2 N

azwqp}: ¢31 ¢32 ¢33 ¢3N (1'41)

¢N 1 ¢N 2 ¢N 3 s ¢NN _

The modal matrix, denoted as @, plays a crucial role in the eigenvalue problem outlined in
Equation (1.37). This matrix is composed of eigenvectors, each paired with its corresponding
eigenvalue. Together, these eigenvalue-eigenvector pairs fulfill the conditions set forth in Eq.
(1.37). We can express this relationship in an alternative form, providing a different perspective

on the problem.
K¢, =m¢,0,’ (1.42)

Using the modal and spectral matrices, all these relationships (p =1, 2, 3, ..., N) can be combined

into one unified matrix equation.

KD =m®dQ’ (1.43)
Equation (1.43) provides a compact presentation of the equations relating all eigenvalues and
eigenvectors.
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Example 1.2

For the building depicted in Fig. 1, we are analyzing the response along the numerical reference
axes. Each story has identical lateral stiffness, denoted as K. The mass of the two lower stories is

twice that of the roof, with the roof mass represented as M.

Solution 1.2

The mass matrix of the structure is:

m 0 0
[M]=]| 0 2m O
0 0 2m

The stiffness matrix, obtained from equilibrium of each mass is:

k -k 0
[K]=| -k 2k —k
0 —k 2k

The dynamic equilibrium equations are then:
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0 0 || X k -k 01| x 0
0 2m O || X |+ -k 2k —k|| x,|=|0
0 0 2m|| X 0 -k 2k|| x 0

We now proceed to find the solution of the free vibration response of the system for different

initial conditions: A =[[K]-@[M]]=0. After replacing [K] and [M] we obtain the following

determinant:
k—w*m —k 0
A= —k 2k —w*2m —k =0
0 —k 2k —w*2m

Expanding this determinant, we obtain the following characteristic equation:
A=4m’0’ —12km’®" +9k’mw’ —k> =0

After dividing all terms of the characteristic equation by 4m?® we obtain:

A simple inspection of the equation tell us that ®* = k/m is a root, and by using synthetic division,

we transform the characteristic equation into:
2 k 4 2 2
(0" ——)(dme" —8kmw™ +k m)=0
m

Solving the second-degree equation contained in the second term of the previous equation, we

obtain:

k
1.866—

o Bkm [64km® 16k’ _flliﬁl _ T m
8m &m m 2 0.134£

m

Then, the natural frequencies of the building — properly ordered — are:

a)12=0.134£, a)22=£, a)32=1.866£
m m m
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Now, by using Eq. (1.38) we can obtain the vibration modes by going back to the characteristic

determinant:
[K]-w![M]]{¢"} ={0}, r=1,2,3

Replacing here the mass and stiffness matrices, we obtain the following set of homogeneous

simultaneous equations:

k—a'm —k 0 g 0
~k  2k-a2m —k =] 0
0 —k 2k—w’2m|| 4" 0

Expanding the product, we see the system in the classical simultaneous equation format:

(k—a!m)¢” ~k¢;,” =0
~k” +(2k — 0} 2m)p)” — kg =0
k" + 2k — > 2m)g"” =0

From the third equation, we can see that, in this case, the ratio between the second unknown and
the first unknown is:

Y 2k—w’2m
¢1(r) k

Now replacing the third equation into the second, we obtain the following ratio between the third

[ 2k —?2m 2_1
¢](r) k

These two ratios are fixed for any value of > . We now replace the values of w;*> obtained

unknown and the first unknown:

previously and the values of the unknowns are found for each case:

2 2 2
@, @, 2

é /¢ 1732 0 -1.732
/¢ 2 -1 2
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We may assign any arbitrary value to the ¢ term and thus from the obtained ratios compute the
other two values of the terms of the mode. We choose, arbitrarily again, a value of one for ¢;. By

doing so, the modes are defined as:

2 -1 2
POy =| 1.732], #P3=| 0|, {¢V}=| -1.732
1 1 1
Corresponding, graphically, to:

Mode 1 Mode 2 Mode 3

T F

777
k ,_k k
m

W =0.134— w; = o, =1.866—
m m

4.4. Orthogonality of Modes

The free vibration mode shapes (¢p) possess unique properties that are invaluable in structural
dynamics analysis. This crucial characteristic of modes is known as the orthogonality property or
orthogonality relationships. It plays a fundamental role in solving dynamic problems using the
Modal Superposition Method for MDOF systems. The mode shapes or eigenvectors exhibit mutual
orthogonality with respect to the mass and stiffness matrices. Orthogonality is a key attribute of
normal modes or eigenvectors, utilized to decouple the modal mass and stiffness matrices. We can
demonstrate that the natural modes corresponding to distinct natural frequencies satisfy specific

orthogonality conditions.

When onp # o,

e
X
il
™
I
()

(1.44a)

S
3
3|
A
I

0 (1.44b)

The subsequent discourse will demonstrate these crucial characteristics. The pth natural frequency
and mode satisfy Eq. (1.37). We now pre-multiply Eq. (1.37) by the transpose of ¢r, i.e., ¢:". Thus
we get
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4, Ko =w,’s mg, (1.45)
Likewise, the rth natural frequency and mode too satisfy Eq. (1.37). Thus we get

Ké = ‘m, (1.46)
Now pre-multiplying Eq. (1.46) by ¢, we get,

4, K¢ =,’s, M4, (1.47)

The transpose of the matrix on the LHS of Eq. (1.45) will be equal to the transpose of the matrix
on the RHS of the equation. Therefore

8, Ko =w,’s mg, (1.48)
In deriving Eq. (1.48), we leveraged the symmetric nature of both mass and stiffness matrices. To

proceed, we subtract Eq. (1.47) from Eq. (1.48), yielding the following result.

(0, -, )8, mp, =0 (1.49)

np n

In Eq. (1.49), if @,> # @,,’, then it implies that ¢ " @, = 0. This establishes that Eq. (1.44b) is

true because for systems with positive natural frequencies, ®,, # @,, .

Now we substitute Eq. (1.44b) into Eq. (1.47) we get @1?5, =0 This clearly shows that Eq.

(1.44a) is true when ®,, # @, Therefore we have completed the proof of the orthogonality

conditions prescribed in Eq. (1.44).

For systems in which no two modes share the same frequency, orthogonality conditions hold true
for any pair of distinct modes, as shown in Equation (1.44). However, these conditions don't apply
when two modes have identical frequencies. This concept is crucial for understanding how

different vibration modes interact within a system.

The natural modes' orthogonality indicates that the corresponding square matrices are diagonal:
K =0'KO (1.50a)
Which denotes as modal stiffness matrix

M =3 7D (1.50b)
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Which denotes as modal mass matrix in which the diagonal elements are
e
K,=9¢, K9, (1.51a)
M,=¢,mg, (1.51b)

As and K are positive definite, the diagonal elements of K “and M are positive. They are
related by

K, =0,’M, (1.52)

This can be demonstrated from the definitions of K, and M, as follows. Substituting Eq. (1.37)
in Eq. (1.51a)

T 2 — 2 —_ 2
K,=¢, (0, mp,)=0,(¢p,mp,)=0M, (1.53)
As summury:
o=[¢ ¢ ¢l
Generalized mass Generalized stiffness
m, k;
O'MO=| m OKO=| K
m, K,
Generalized damping Generalized force
c f(t)
O'CD= c, O'F(t) =1 (t)
¢ A

4.5. Interpretation of Orthogonality of Modes

The physical interpretation of the orthogonality property of natural modes will now be discussed.
Modal orthogonality implies that the work performed by the inertia force associated with the pth
mode during the displacement in the rth mode is zero. To clarify this concept, consider a structure

vibrating in the pth mode with corresponding displacements.

x,(0)=9¢,q,() (1.54)

The accelerations corresponding to Eq. (1.54) are X,(/)=¢,G,(1). The inertia forces

corresponding to these accelerations are
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(7,), ==, (0) =74, 0 (1.55)
We now consider the rth natural mode of displacements of the structure,

xX.0)=4.49.@0) (1.56)

The work performed by the inertia force, as defined in Eq. (1.55), on the displacement outlined in

Eq. (1.56) can be represented as:

(7,)," %, =lg,"mg, i), ) (1.57)

This quantity stated in Eq. (1.57) equals zero due to the orthogonality condition outlined in Eq.
(1.44b), thereby confirming the validity of the statement above.

The orthogonality property can be interpreted physically in a different way: when the
displacements of the pth mode act upon the displacements of the th mode, the work performed by
the equivalent static forces equals zero. To clarify, the equivalent static forces in the pth mode are

represented as follows:

(7.), =Kz, () =K¢,q,(0) (1.58)

The displacements in the 7th mode are given by Eq. (1.54). The work done of the static forces in
Eq. (1.58) on the displacements given in Eq. (1.54) is given as

(7.),"% =(8,"K8, ), 0)a, @) (1.59)

Due to the orthogonality property described in Eq. (1.44a), Eq. (1.59) equals zero, thereby

confirming the second physical interpretation as well.

4.6. Normalization of Modes

The eigenvalue problem in Eq. (1.37) yields relative, not absolute, natural vibration modes. These
modes are arbitrary in amplitude, as any scalar multiple of the eigenvector ¢, satisfies the equation,
with only the mode shapes being uniquely defined. The normalization of Two DOF system nor-
mal modes involved setting one amplitude to unity and determining the other relative to this ref-
erence. This process, known as mode shape normalization, standardizes elements associated with

various degrees of freedom (DOFs). Common normalization methods include
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setting the largest element to unity or normalizing a specific DOF element, such as the top floor in
a multistory building analysis. Notably, in dynamic analysis and computational applications,

modes are frequently normalized to achieve unit modal mass (Mn). In such a case we have:
M,=¢,mg,=1 O'md =1 (1.60)

The equation 7 demonstrates the orthonormality of the natural modes with respect to the mass
matrix 7 . Here, 7 identity matrix, characterized by unit values along its principal diagonal, while

@ represents the complete set of N normalized mode shapes, also referred to as the modal matrix.
This relationship signifies that the natural modes are not only orthogonal but also normalized with
respect to the mass matrixm , thus constituting a mass orthonormal set. When the modes are

normalized in this manner, Eq. (1.51a) becomes

K,=¢,mp,=0,’'M,=0,’ (1.61a)
and Eq. (1.50a),
—D'KD =Q? (1.61b)
Example 1.3
Uncouple the dynamic system of Example 1.2

Solution 1.3

We change the normalization of the modes in such a way that they comply with Eq. (15) to obtain
orthonormal modes: {¢"} [M]{¢"} =1

Mode 1
m 0 0 2 2 0.5774/fm
OBl 0 2m 0 |- | Bl=12m = {¢<”}=% 3| =] 0.5000/m
m
0 0 2m 1 1 0.2887 //m
Mode 2
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0 -1 -1
1
10| 0 2m 0 0|=3m = {$P}=—no]| 0 |=
0 0 2m 1 N3m |y
Mode 3
m 0 0 2 | 2
2-BL-1 0 2m 0 ~Bl=12m = {¢<3>}=T -3
0 0 2m 1 R
The modal matrix is then:
0.5774 -0.5774 0.5774
[(D]:T 0.5000 0.0000 —0.5000
"1 02887 05774 0.2887

In order to uncouple the system, the following operations are performed:

0.5774  0.5000 0.2887
[CI)]T[M][CD]:l —-0.5774 0.0000 0.5774
"| 05774 05000 0.2887
1 00
=0 1 0
0 0 1
And
0.5774  0.5000 0.2887
[CD]T[K][CD]:E —0.5774 0.0000 0.5774
" 0.5774 -0.5000 0.2887
-0.134 0 O
=— 0 1 0
0 0 1.866
The uncoupled equations are:
1 0 0}] ¢ 0.134
01 O0f|g|+—| O
oo 1llal " o
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m 0 0 [| 05774
0 2m 0 || 0.5000
0 2m]|| 0.2887
k -k 0 || 0.5774
-k 2k -k || 0.5000
0 -k 2k|| 0.2887
0 0 4
1.000 O q, | =
0 1.866|| g,

~0.5774/Im
0.0000/ \m
0.5774/m

0.5774/m
~0.5000/ \/m
0.2887 /m

-0.5774 0.5774

0.0000 —-0.5000
0.5774  0.2887
—-0.5774 0.5774
0.0000 -0.5000
0.5774  0.2887

0

0

0



4.7. Modal Analysis

In earlier discussions of MDOF systems in Chapters 6 and 7, the displacement was described using
the N components of the displacement vector X . However, when analyzing the dynamic response
of linear systems, it is often more practical to represent displacements using free vibration mode
shapes. These mode shapes are N independent displacement patterns, and their amplitudes can act
as generalized coordinates to describe any displacement configuration. Similar to how
trigonometric functions are used in a Fourier series, mode shapes are beneficial due to their
orthogonality properties and their ability to efficiently represent displacements, allowing accurate

approximations with only a few terms.

4.7.1. Model Expansion of Displacements

Any vector of order N can be represented using a set of N independent vectors. In this context, we
will use the natural modes as the basis for our discussion. This leads us to express any displacement

through a modal expansion, utilizing the normal modes as :

N
X=Y ¢4q,=07 (1.62)
p=1

where qp are scalar multipliers called generalized coordinates or modal coordinates or normal

coordinates and

9

q,
(1.63)

!
1

qy

If we know ¢, for a given X then we can determine the qp by multiplying both sides of Eq. (1.62)
by ¢ as

N
=1

¢ 7%= (0, m, )i, (1.64)
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Due to the orthogonality relationship described in Eq. (1.44b), all the terms within the summation

in Eq. (1.64) are eliminated, except for the term where p = r. Consequently,

¢ mx=(p. mg g, (1.65)
The matrix products of both sides of Eq. (1.65) are scalars. So, we can rewrite Eq. (1.65) as
¢ mx @ mx
q,=—5——= l}\/l (1.66)
¢p m¢p p

Each normal coordinate is expressed as shown in Eq. (1.66). The modal expansion of the
displacement vector X , described in Eq. (1.62), is utilized to derive solutions for the free vibration
response of undamped systems. Additionally, it is crucial for analyzing the response of systems
subjected to forced vibrations and earthquake excitations in multi-degree-of-freedom (MDOF)

systems.

4.7.2. Concept of Mode Superposition

Let us now examine a cantilever column, as illustrated in Fig. 1.5. The deflected shape of this

column is described by translational displacement coordinates at three distinct levels.

Y{o}a
i=1

Fig. 1.5 Modal analysis of cantilever column
Any displacement vector X associated with this column can be constructed by combining
appropriate amplitudes of the three vibration modes depicted in Fig. 1.5. For a specific modal

component, denoted as x;, the displacements are expressed as the product of the mode shape vector
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¢p and the modal amplitude qp, as outlined in Eq. (1.62). The overall displacement is then

determined by summing up all the individual modal components.

N
X=¢q,+hq, +dq;+..... + gy = z¢pqp (1.67)
p=1

Equation (1.67) can be expressed in matrix form as shown in Equation (1.62), where X = @7 .

This equation highlights that the mode shape matrix, @, acts as a transformation tool, converting
the normal coordinates into geometric coordinates, X . These generalized coordinates, which
represent the amplitudes of the modes, are referred to as the normal coordinates of the structure.

The mode shape matrix @ for a system with N degrees of freedom is made up of N independent
modal vectors. Because of this, the matrix is non-singular, meaning it can be inverted. This allows

us to directly solve Equation (1.62) to find the normal coordinate amplitudes ¢ corresponding to

any given displacement vector X . However, thanks to the orthogonality property of the mode

shapes, there’s no need to solve simultaneous equations to determine ¢ , as explained in Section

8.1.1.

4.8. Response of Undamped Free Vibration

The equation of motion that governs the free vibration of a multi-degree-of-freedom (MDOF)
system is represented by Eq. (7.1). To solve this equation, specific initial conditions must be

applied:

X =%(0) and x = x(0) (1.68)

In Chapter 1, we explored how solving the differential equation leads to the matrix eigenvalue
problem described in Eq. (1.37). Once the eigenvalue problem is resolved and the natural
frequencies and modes are identified, the general solution can be represented as a superposition of
different modes, similar to what is shown in Eq. (1.67). Mathematically, this is expressed in Eq.
(1.62), which breaks down the response into contributions from individual modes. As a result, the
overall response can be written as the sum of these individual mode responses as following:

N
X(@)= Z¢p (Ap cosw, t + B, sin a)npt) (1.69)

p=l
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where A, and B, are the constants of integration each containing N constants. By differentiating

Eq. (1.69) we can get the velocity vector as
N N
$0)=> 4,0, 4, sinw,f+B, cosw,r) (1.70)
p=1

Now we set t =0 in Egs. (1.69) and (1.70) and get
~ N _ N
X(0)=) 4,4, x(0)=>¢,0,B, (1.71)
p=l p=l

Given the initial displacements, x(0), and initial velocity, X (0), as defined in Equation (1.68),

each equation in (1.71) forms a set of N algebraic equations involving the unknowns A, and B,.

However, it is not necessary to solve these equations simultaneously. Instead, they can be
addressed as a modal expansion of the vectors x(0) and X (0), as explained earlier in Section

8.1.1. By following the approach outlined in Equation (1.62), we can reformulate these equations

using normal coordinates for simplicity and clarity as:

X(0)=>4,q,(0) X(0)=>4,4,(0) (1.72)

Following the analogy given in Eq. (1.66) we can express qp(0) and ¢,(0) as

¢,mx(0) _ ¢, mx(0)
qp(o):M— qp(0)=PT (1.73)
P p
. : o B [ 4,(0)
Equations (1.71) and (1.72) are equivalent, indicating that A, = qp(0) and B, = . We now
@
p
substitute these in Eq. (1.69) and obtain
~ u 7(0) .
X()=).4,|q,(0)cos a)npt+%sm a)npt} (1.74)
p=l np
We can also express Eq. (1.74) alternatively as
- N
p=1
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where

q,(0)

np

qp(t):qp(O)cosa)np(t)+ sin a)np(t) (1.76)

The time variation of modal coordinates is described by Equation (1.76), which bears a
resemblance to Equation (3.1) for an SDOF system. For an undamped free vibration in an MDOF

system, the solution is expressed through Equation (1.74). This equation determines the
displacements, X (¢) , over time based on the initial displacement, x(0), and initial velocity, X (0).
By assuming that the natural frequencies wnp and mode shapes ¢, are known, and by defining the
normal coordinates qn and g, as per Equation (1.73), the right-hand side of Equation (1.74) can
be computed. Consequently, the complete response of the MDOF system undergoing undamped
free vibration can be fully determined.

Example 1.4

For the building in Example 1.1, find the free vibration response for different cases of initial

displacement conditions.

e (ase (a) - Suppose a unit displacement at each story of the building at time = 0, without any
initial velocity.

e (ase (b) - Suppose an initial displacement condition in the shape of the first mode
2 | B | 1, without initial velocity.

e (ase (c) - Suppose an initial displacement condition in the shape of the second mode

-1 | 0 | 1, without initial velocity.
e Case (d) - Suppose an initial displacement condition in the shape of the third mode

2 | =3 | 1, without initial velocity.
Solution 1.4

Case (a) : The initial displacement vector is:
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x,(0) 1
{Xo} = X (0) =| 1
x,(0) 1
Constants bi are obtained from:
{B} =[] [M1{X,}
0.5774  0.5000 0.2887 m 0 0

b 1
(Bi=| b, | =—=| —0.5774 0.0000 05774|-| 0 2m 0 |.|1]|=—1] 0.0000
\/m \/m
b, 0.5774 —0.5000 0.2887| | 0 0 2m| |1

Then, the response of the system is described by the following equation:

U, 0.5774 -0.5774 0.5774
U, | =| 0.5000 | 2.1547cosw,t+| 0.0000 |Ocosw,t+| —0.5000 | 0.1547 cos w,t
U, 0.2887 0.5774 0.2887
1.2441 —-0.3333 0.0893
=| 1.0774 | coswt +| —0.3333 | cosw,t +| —0.0774 | cos w,t
0.6221 —-0.3333 0.0447

It is evident that the response of the system corresponds to the superposition of the individual
responses from each mode. Fig. 2 shows the response for each mode and the total response of the
building. Supposing that at some instant in time the three responses are in phase, 62.2% would be

contributed by the first mode, 33.3% by the second, and 4.5% by the third.
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Case (b): The initial displacement vector is:
x,(0) 2
Xot=| (0| = \/g
x,(0) 1
Constants bi are obtained from:
b, . 0.5774 0.5000 0.2887|| m O 0 2/\/§
{B}=| b, ZT -0.5774 0.0000 0.5774(| 0 2m O 1
b, " 0.5774 -0.5000 0.2887|| 0 O 2m 1
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The response would be described by:

u,| | 05774 2/:3
U, | =| 0.5000 | - 2\/§cos wt= \/g cos wt
U, 0.2887 1

100% of the response is contributed by the first mode alone. The other modes don’t contribute.

Case (¢): The initial displacement vector is:

x,(0) -1

{Xo}=| (0| =] 0

x,(0) 1

Constants bi are obtained from:
b, 0.5774  0.5000 0.2887|| m O 0 -1 0
1

(B} =| b, - —0.5774 0.0000 0.5774|[ 0 2m 0 || 0 |=m| B
b, " 0.5774 -0.5000 0.2887(| 0 O 2m 1 0

The response of the system is described by the following equation:

U, —0.5774 -1
U, | = 0 V3 cos w,t=| 0 |cosm,t
U, 0.5774 1

Only the second mode contributes with a 100% of the response.

Case (d): The initial displacement vector is:

x,(0) 2

X,h=| ,00)| =| -3

x,(0) 1

Constants bi are obtained from:
b, 0.5774 0.5000 0.2887 || m O 0 2 0
1

(B} =| b, T —0.5774 0.0000 0.5774|| 0 2m 0 || —B|=Vm| 0
b, " 0.5774 -0.5000 0.2887(| 0 O 2m | 2\5
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Response is described by the following equation:

U, 0.5774 2
U, | =| —0.5000 | 24/3 cos oyt =| =3 | cos oyt
U, 0.2887 1

Only the third mode contributes with a 100% of the response.

5. Response of Damped Free Vibration with Classically Damped System
When damping is considered in the free vibration of a multi-degree-of-freedom (MDOF) system,
the equation of motion can be derived by modifying Eq. (1.31). This is done by setting Ig(t) =0,

which simplifies the equation to its reduced form:

mx+cx +Kx=0 (1.77)
To solve Eq. (1.77) for X(¢), we use the initial conditions provided in Eq. (1.68) at t = 0. The main
challenge lies in modeling the type of damping and determining whether it can be addressed
theoretically. To overcome this, we focus on presenting the solution for a specific system in a
graphical format, making it easier to intuitively understand how damping influences the free
vibration of multi-degree-of-freedom (MDOF) systems. This is achieved by expressing the
displacement X in terms of the system's natural modes without damping, as outlined in Eq. (1.62),
and substituting this expression into Eq. (1.77). This approach simplifies the process and provides

clarity on the effects of damping.
m®dG+cDg+Kg=0 (1.78)
Premultiplying Eq. (1.78) by ®” and using the identity in Eq. (1.50) we can obtain,

MG +Cq +K,,G=0 (1.79)

While the diagonal matrices M and K ,,,, have been defined in Eq. (1.50) and now

Diag
C=0'cd (1.80)

The nature of the damping distribution in a system determines whether the square matrix C in Eq.

(1.80) is diagonal or not. If C is diagonal, it represents N independent differential equations in

modal coordinates (qp), and such systems are described as having classical damping. In these cases,
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classical modal analysis can be applied, and the natural modes of the system remain identical to
those of the undamped system. On the other hand, if C is not diagonal, the system is said to exhibit
non-classical damping. These systems cannot be analyzed using classical modal analysis because
their natural modes differ from those of the undamped system.

This section provides a structured approach to solving free vibration problems in systems with
classical damping, caused by initial displacements and/or velocities. In classically damped
systems, damping does not alter the natural modes. Therefore, the natural frequencies and modes
are initially determined for the undamped system. Afterward, the influence of damping on the
natural frequencies is analyzed, similar to how it is done for a single-degree-of-freedom (SDOF)
system.

In a multi-degree-of-freedom (MDOF) system with classical damping, the motion in modal
coordinates can be described by a set of N differential equations. Each equation corresponds to
one mode of vibration:

M,G,+C,q,+K,q,=0 (1.81)
where M, and K,, are defined in Eq. (1.51). Now,
C,=¢,'c4, (1.82)

Equation (1.81) is similar to Eq. (2.17) of a SDOF system with damping. Therefore the damping

ratio can be defined for each mode in the same manner for a SDOF system presented in Eq. (3.13)

C

= 1.83
S M, (1.83)

We now divide Eq. (1.81) by M, and combine with Eq. (1.83) to obtain
g, +2&,0,4,+0,°q,=0 (1.84)

Equation (1.84) closely resembles Equation (3.15), which describes the free vibration of a single-
degree-of-freedom (SDOF) system with damping. As we know, the solution for the free vibration
of an SDOF system with damping is provided in Equation (3.16). By extending some of the
principles and results from the SDOF system, we can apply them to a multi-degree-of-freedom

(MDOF) system. Consequently, the solution to Equation (1.84) can be derived using this approach.
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1 (0)+& o 0
4,0+ ¢,@,4,( )sin Wp,t (1.85)
a)D

p

— _‘fwnpl
q,(t)=e q,(0)cos ), t +

where p™ natural frequency with damping is

@, =@, \JA-E7) (1.86)

The displacement response of the system is then obtained by substituting Eq. (1.85) for q(t) in Eq.
(1.62):

9,0 +5,2,4,00)

a)Dp

N
xX(t)= Z(;Spe*é”w”pt q,(0)cos @, t + @yt (1.87)
p=1

Equation (1.87) represents the solution to the free vibration problem for a multi-degree-of-freedom
(MDOF) system with classical damping. This equation describes how displacement, X, changes

over time due to initial conditions, specifically the initial displacement X (0) and initial velocity
x(0). Once the system's natural frequencies wnp and mode shapes ¢, are determined for the

undamped case, along with the modal damping ratios ¢, ,,

the right-hand side of Equation (1.87)
becomes fully defined. These terms depend on the initial modal coordinates qp(0) and ¢,(0),

which are described by Equation (1.73).
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Chapter 2

Forced Vibration Response of MDOF System

1. Introduction

In Chapter 7, we explained how the free motion of a multi-degree-of-freedom (MDOF) system can
be described using its normal modes of vibration. Here, we extend that concept to show that the
forced motion of an MDOF system can also be expressed in terms of these normal modes. The
total response can be determined by superimposing the solutions of independent modal equations.
Essentially, this means that normal modes can be used to transform a system of coupled differential
equations into a set of uncoupled equations, where each equation involves only one dependent
variable. This approach, known as the modal superposition method, simplifies the process by
reducing the problem of analyzing the response of a forced MDOF system to evaluating the

response of multiple forced single-degree-of-freedom (SDOF) systems.

2. Modal Equations for Forced Undamped Systems

In Chapter 6, we derived the general equation of motion for a damped MDOF system under

forced vibration, and it is reiterated here for reference.

Assuming the system is undamped, then ¢= 0, the equation simplifies to:

Equation (2.1) is coupled, meaning the equations of motion are interdependent. While we
previously demonstrated in Section 5.5 how to solve such coupled equations for a two-DOF system
under harmonic excitation, this approach becomes inefficient for systems with more degrees of
freedom or when subjected to other types of dynamic forces. To address this, it is beneficial to
convert these equations into modal coordinates. By doing so, we aim to transform the coupled
system of differential equations into a set of independent or uncoupled equations, where each
equation involves only one mode, scaled by factors representing the contributions of each mode.

This process is explained further in the following section.
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The displacementx of a MDOF system can be represented as a combination of modal
contributions, as explained in Section 8.1.1. Based on this, the dynamic response of a MDOF

system can be described as:

X(0)=.4,4,()=DG() (2.2)

By applying Eq. (2.2) to the general coupled Eq. (2.1) expressed in xi(t), the system can be
reformulated into a set of uncoupled equations using modal coordinates qm(t) as the unknowns.

Substituting Eq. (2.2) into Eq. (2.1) yields this transformation:
N N -
D PG, (1) + D Kb,q,)=P@) (2.3)
p=1 p=1

Premultiplying each term in Eq. (2.3) by ¢rT gives

2.0, My, 0+ 4 Kba,0=4,P@0) (24)

According to the orthogonality conditions outlined in Eq. (1.51), all terms in the summations are

eliminated except for the term where p = r. Under this condition, Eq. (2.4) simplifies to:

(¢, m@,)i, )+ (@, K$,)q,) =8, P(t) 2.5)
or
M i, (0)+K,q,(t) =P,1) (2.6)
where
M, =¢,'mg, K,=¢,'K¢, P(1)=9¢, P(t) 2.7)

Equation (2.6) represents the motion of a single degree of freedom (SDOF) system in terms of its
response, qp(t). This system is characterized by a mass M, stiffness K, and dynamic force Ppy(t),
where M, is referred to as the generalized mass, K, as the generalized stiffness, and Py(t) as the
generalized force for the pth mode. These parameters are determined solely by the pth mode shape,

¢p. Consequently, if the pth mode is known, we can formulate and solve the equation for q, without
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requiring information about other modes. By dividing Eq. (2.6) by M, and applying Eq. (1.52), the
resulting expression can be rewritten accordingly.
iy b,(t)
G, +o,q,=—

p

(2.8)

Equation (2.6) or Eq. (2.8) represents the governing equation of motion, with the sole unknown
being qp(t), the normal coordinate of the pth mode. Similarly, there is a corresponding equation for

each mode, resulting in a total of N equations for a multi-degree-of-freedom (MDOF) system.

A set of N coupled differential equations (2.1) expressed in terms of displacements x;(t), where i
ranges from 1 to N, has been converted into a set of N independent equations (2.6) using modal
coordinates qm(t), withm =1, 2, ....., N. These uncoupled equations can be represented in matrix

form as:
M'G+K'G=P(t) (2.9)
Here, M " represents a diagonal matrix containing the generalized modal masses M, while K is a

diagonal matrix of the generalized modal stiffnesses K,. Additionally, }N)(t)is a column vector
comprising the generalized modal forces Pp(t). The definitions of M and K were previously
provided in Equation (1.50).

3. Modal Equations for Forced Damped Systems

We know already that the governing equations of motion for a forced damped system is expressed
as

mx +cx + Kx P(t) (1.31)
By applying Eq. (2.2), which represents the natural modes ¢, of the system without damping, we

can reformulate Eq. (1.31) to express it in terms of modal coordinates. For undamped systems, as
explained in Section 9.2, these equations are independent and uncoupled. However, when dealing
with damped systems, the modal equations may be coupled due to the influence of damping. If we

substitute Eq. (2.2) in Eq. (1.31) we get :

> qp(t)+zc¢ q,,<r)+zl<¢ 4,()=P() (2.10)
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In Eq. (2.10) if each term is premultiplied by ¢rT then we get

2.8/ M6, () + D 4c4,q,()+) ¢ K,q,(0)=¢P(1) (2.11)

Making use of Eq. (2.7), Eq. (2.11) can be written as
M,q,)+C,q)+K,q,()=F,1) (2.12)
We have defined M,, K, and Pp, in Eq. (2.7). Now we define
T—
C,=¢,c9, (2.13)

For every value of p ranging from 1 to N, Equation (2.12) holds true. As a result, these N equations

can collectively be expressed in matrix form as :

MG +Cq +K,,g =P (2.14)

In Equation (2.14), the matrices M , K and IS(t) were previously defined in Equation (2.9).

Diag»
The matrix C , introduced here, is a non-diagonal matrix containing the damping coefficients C.
This equation represents a system of N equations expressed in terms of the modal coordinates qp(t).
These equations are interconnected due to the damping terms, as Equation (2.12) includes multiple

modal velocity components, leading to coupling between the modes.

If the system has classical damping, then the modal equations are uncoupled. For such type of

systems Crp = 0 if r # p. Therefore Eq. (2.12) is reduced to

M,qG,)+Cq(0)+K,q,(t)="P,() (2.15)

The generalized damping is expressed by Eq. (1.82), which describes the behavior of the single-
degree-of-freedom (SDOF) system. To simplify Eq. (2.15), we can divide it by M:

qp + 2§Pa)npqp + a)npqu = L (216)

The damping ratio for the pth mode (&p) is typically not calculated using Eq. (1.83); instead, it is
estimated based on experimental data from structures similar to the one under analysis. Equation
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(2.15) describes the pth modal coordinate q,(t), with parameters M,, K, Cp, and Pp(t) depending
solely on the pth mode ¢, and are independent of other modes. Consequently, there are N
uncoupled equations, each resembling Eq. (2.15), corresponding to each natural mode. In
summary, the original set of N coupled differential equations (1.31) expressed in terms of nodal
displacements xi(t) has been transformed into a set of uncoupled equations (2.15) in modal

coordinates qp(t) through the application of the modal superposition method.

4. Determination of Total Response

For a multi-degree-of-freedom (MDOF) system subjected to known excitation forces, the dynamic
response can be determined by solving either Eq. (2.15) or Eq. (2.16) in terms of the modal
coordinates qp(t). Each modal equation has the same structure as the equation of motion for a
single-degree-of-freedom (SDOF) system. Therefore, the solution methods and results used for
SDOF systems can also be applied to solve for qp(t) in the modal equations. Once the modal
coordinates qp(t) are obtained, Eq. (2.2) can then be used to calculate the contribution of the pth

mode to the nodal displacement x(¢) as:

x()=¢,q,00) (2.17)

We combine these modal contributions to get the total displacement response:
- N " N
X =2.%,0=2 4,9, (2.18)
p=1 p=1

The process of determining the total response of a multi-degree-of-freedom (MDOF) system by
combining the contributions of various modes is known as classical modal analysis or the classical
mode superposition method. This approach involves solving individual uncoupled modal

equations to find the modal coordinates q,(t) and modal responses X, () . These modal responses

are then combined to derive the total response X (¢) . More specifically, this method is referred to

as the classical mode displacement superposition method because it relies on the superposition of
modal displacements. Commonly abbreviated as modal analysis, this technique is applicable only
to linear systems with classical damping. The system's linearity is essential, as it allows the use of

the principle of superposition, as expressed in Eq. (2.2). Additionally, damping must be in classical

47



form to ensure that the modal equations remain uncoupled, which is a fundamental aspect of modal

analysis.

5. Seismic Excitation

Dynamic analysis of multi-degree-of-freedom (MDOF) systems involves two slightly different
analytical approaches. The first approach, time-history analysis, calculates how a structure
responds over time when subjected to a base acceleration. This method uses either normal mode
superposition or direct numerical integration of motion equations. The total system response is
determined incrementally at very small time steps, with each step using the previous step's results
as initial conditions for the next. This stepwise process continues until the full response is obtained.
The second approach, called modal response spectrum analysis, estimates the maximum response
parameters (such as displacements or bending moments) by combining the peak responses from
individual modes. Each mode behaves like an independent single-degree-of-freedom (SDOF)
system with its own natural period. The maximum response for a specific mode is derived from
the corresponding SDOF system's spectrum. Since the peak responses of different modes do not
occur simultaneously, various methods are used to combine these modal contributions. The most
common method is the square root of the sum of the squares (SRSS), which assumes the modal
maxima are random quantities. However, when natural periods of modes are very close (closely
coupled modes), SRSS can underestimate the actual response, necessitating more accurate
combination techniques, which will be discussed later. Typically, only the first few modes are
considered, as they contribute most significantly to the overall response.
Modal response spectrum analysis is widely used in structural design and serves as a reference
method for analyzing buildings such as RPA2024. It relies on normalized response spectra derived
from multiple seismic records scaled to standard intensity levels. These spectra offer a
straightforward way to study how structures respond to varying seismic inputs. In subsequent
chapters, normalized response spectra will be frequently referenced.

5.1. Equation of motion
As shown in the previous section, the equation of motion of a system subjected to a base excitation
is:

M, +Cx+Kx=0
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Where X, is vector of the absolute accelerations of the DoFs of the system while x and x are the
vectors of the relative velocities and of the relative displacements of the DoFs of the system,
respectively. The absolute displacement x. of the system can be expressed as:
X, =X,+x

where is displacement x; of the DoFs due to the static application (i.e. very slow so that no inertia
and damping forces are generated) of the ground motion, and x is again the vector of the relative
displacements of the DoFs of the system. The “static displacements” xs(t) can now be expressed
in function of the ground displacement as follows:

x, (1) =1.x,(?)
Where ¢ is the so-called influence vector. Equation (12.6) can now be rewritten as:

M@x, +X)+Cx+Kx =0
Mi+Cx+ Kx =-Mix, (1) (2.19)

An example of the influence vector for some typical cases is presented here
e (ase 1 : Planar system with translational ground motion: In this case all DoFs of the

system undergo static displacements which are equal to the ground displacement , hence:

|
|
!
[

|
L1._.=I 1

Fig. 2.1 The influence vector for case 1
Where 1 is a vector of order N, i.e. the number of DoFs, with all elements equal to 1.
e Case 2 : Planar system with translational ground motion: The axial flexibility of the

elements of the depicted system can be neglected, hence 3 DoFs are defined. In this case
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DoFs 1 and 2 undergo static displacements which are equal to the ground displacement,

while the static displacement of DoF 3 is equal to 0, i.e.:

Fig. 2.2 The influence vector for case 2
[ ]

Case 3: Planar system with rotational ground motion: The depicted system is subjected to

a rotational ground motion €, which generates the following static displacements of the
DoFs

h, h,
X (1) = h, Gg(t) hence 1 = h,
L L

Fig. 2.3 The influence vector for case 3
5.2. Time-history of the response of elastic systems

As discussed in the previous sections, the equation of motion of a MDoF system under base
excitation is:

Mz + G+ Kx = —Mii, (f)
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As already stated above, the dynamic response of the MDoF system can be written as:
X(0=3$.4,0) (1.62)

If the damping of the MDoF system is classical, Equation (2.19) can be written in the form of
decoupled modal equations, where is the number of modes of the system. The modal equations are
of the following form:

mg, +¢,q, +k,q, =—¢, Mx, (2.20)
Where m, and k, are the modal mass and the modal stiffness respectively of the nth mode. These
parameters are defined previously as follows:
m,=¢,- M- ¢,
k,=¢, K- ¢, =, m,
o, : nth modal circular frequency of the MDOF system

The equation (2.20) can be rewritten as :

. "M1

i +28 w,q, + @ __aM 3 221
qn é/n Ilqil nqn ¢:M¢n g ( )
The modal participation factor is a measure for the contribution of the n-th mode to the total

response of the system. It is defined as follows:

T
r, = w (2.22)
¢, Mg,
In addition the so-called effective modal mass of the nth mode is defined as:

%

m:’qff =Tm (2.23)

n

Unlike the modal mass m, and the modal participation factor T, , the effective modal mass m, i

independent of the normalization of the eigenvectors. The following equation holds:

Zm:,eff = imn = My, (2.24)

n=l1
where o is the total mass of the dynamic system. The effective modal height 4 of the nth

mode is:
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h* :L—n Wlth LZ :zhl : mj . ¢j,n and Ln = ¢nT : Ml (225)

n

o Significance of the effective modal mass m, , : The effective modal mass is the lumped
mass of a single-storey substitute system which is subjected to a base shear force Vi, equal
to the nth modal base shear force of a multi-storey system. If in addition the height of the
single storey substitute system with the lumped mass m, , equals the modal height h,, the

single-storey system is subjected to a base moment My, which is equal to the nth modal

base moment of the multi-storey system. The following holds:

I/bn = m:,eff : Spa,n :ifjn (226)

Mbn = m;,eff ) Spa,n ) ; = ifjn ’ hj (227)

Where Span 1s the pseudo-acceleration of the nth mode.
¢ Distribution of the internal forces: If the internal forces of the entire system are to be
determined, the modal equivalent static forces should be computed first:

f=s-8 (2.28)

n n pa,n

Where: . =[f, fu, = ful
The excitation vector is defined according to equation (12.66) and specifies the distribution of
the inertia forces due to excitation of the nth mode:

s, =T Mg, (2.29)

sn 1s independent of the normalization of the eigenvector ¢, and we have that:

s =M1 (2.30)

n=l
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Fig. 2.3 MDoF system with eigenmodes and equivalent SDoF systems

5.3. Response spectrum method
If the maximum response only and not the response to the entire time history according to Equation

(1.62) is of interest, the response spectrum method can be applied. The response spectrum can be

computed for the considered seismic excitation and the maximum value of the modal coordinate

gn,max can be determined as follows:

*® 1 *®
qn,max :Fn. Sd(a)n’é/n)zrn. E Spa(wn’é/n) (231)

n

where:
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I', : modal participation factor of the n-th mode

S, (w,,¢.): Spectral displacement for the circular eigenfrequency @, and the modal damping rate

*

g,

S,.(®,,¢ "): Spectral pseudo-acceleration for the circular eigenfrequency and the modal damping

rate ¢ .
The contribution of the nth mode to the total displacement is:

Xy max = Bull (2.32)

5.3.1. Modal Seismic Response of Building

For the modal analysis of buildings, the participation factor I'n given by Eq. (2.22) can be rewritten
with respect to weight as:

r,=: (2.33)
W,
i=1
For normalized eigenvectors, the participation factor reduces to:
L, =374, (234)
g i=1

because for normalized eigenvectors, iW,ﬁ =1 where g is the acceleration due to gravity.
i=1

For convenience Eq. (2.61), can be written with omission of the participation factor as
G, +2¢,0,q, +@,q, =%,(t) (2.35)

With the substitution

xl’l = _anll (2.36)

5.3.1.1. Modal Shear Force
The value of the maximum response for the modal spectral acceleration, San, is found from an
appropriate response spectral chart.
From Egs. (1.62) and (2.36), the maximum acceleration a,, of the nth mode at the level z of the

building is given by
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a,=I0,S, (2.37)

in which Sam and az, are usually expressed in units of the gravitational acceleration g. As stated,
the modal values of the spectral acceleration San, the spectral velocity Svn, and the spectral

displacement Sd, are related by an apparent harmonic relationship:

Sa,=w,Sv, =, Sd, (2.38)
or in terms of the modal period Ty = 2/, by:
2
Sa, :2—7TSvn = 2z Sd, (2.39)
T, T,

On the basis of these relations, the modal spectral acceleration Sam in Eq. (2.37) may be replaced
by the spectral displacement Sd, times wm?2 or by the spectral velocity Sv, times ®,. The modal
lateral force F.n at the level z of the building is then given by Newton’s Law as:

E,=a,W. or F,=I¢,SaW. (2.40)
in which San is the modal spectral acceleration in g units (Note: RPA2024 requires to scale Sa,
multiplied by the importance factor, I and divided by response modifications coefficient, R and W,
is the weight attributed to the level z of the building.

The modal shear force V., at the level z of the building is equal to the sum of the seismic forces

F.n above that level, namely,

V=Y. (241)
The total modal shear force Vn at the base of the building is then calculated as:
V.= 2 Fe (2.42)
or using Eq. (2.40)
V=T8S, 2.43)

i=l1
5.3.1.2. Effective Modal Weight
The effective modal weight Wm is defined by the equation

V. =W Sa, (2.41)
Then, from Eq. (2.43), the modal weight is
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w, =T YW (2.42)

i=l1
Combining Eqgs. (2.33) and (2.42) results in the following important expression for the effective

modal weight:

2

S,

W o=

i=1

" 2
S
i=1

It can be proven analytically that the sum of the effective modal weights for all the modes of the

(2.43)

building is equal to the total design weight of the building, that is:

YW, =dW, (2.44)

Equation (2.44) is most convenient in assessing the number of significant modes of vibration to
consider in the design. Specifically, the RPA2024 requires that, in applying the dynamic method
of analysis, a sufficient number of modes are needed to estimate a combined modal mass
participation of 100% of the structure’s mass. Alternatively, this requirement can be satisfied by
including a sufficient number of modes such that their total effective modal weight is at least 90%
of the total design weight of the building. Thus, this requirement can be satisfied by simply adding
a sufficient number of effective modal weights [Eq. (2.43)] until their total weight is 90% or more
of the seismic design weight of the building.
5.3.1.3. Modal Lateral Forces

By combining Eq. (2.40) with Egs. (2.41) and (2.42), we may express the modal lateral force Fn
as:

F,=CV, (2.45)

Where the modal seismic coefficient C., at level x is given by:

c, =L (2.46)

YA

5.3.1.4. Modal Displacements
The modal displacement d,, at the level x of the building may be expressed as:

52}1 = Fn¢andn (2'47)
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where I, is the participation factor for the nth mode, ¢, is the component of the modal shape at
level x of the building, and Sd, is the spectral displacement for that mode. Alternatively, the modal

displacement 5,, may be calculated from Newton’s Law of Motion in the form

= (2.48)

zn n - zn

g

because the magnitude of the modal acceleration corresponding to the modal displacement J.n is

on’ 8.m. Hence, from Eq.

g Iy
= Ty (2.49)
or substituting w, = 27/Th
T’F,
6, = 4i2 : W (2.50)

where T, is the nth natural period.

5.3.1.5. Modal Drift
The modal drift A,, for the zth story of the building, defined as the relative displacement of two
consecutive levels, is given by

A =06 —0

zn zn (z—Dn = Aa (25 1)
5.3.1.6. Modal Overturning Moment
The modal overturning moment M;, at the level x of the building which is calculated as the sum

of the moments of the seismic forces F,, above that level is given by:

M, = i F,(h,—h,) (2.52)

i=z+1
where hi and h;, are, respectively, the height of levels i and z. The modal overturning moment Mm

at the base of the building then is given by:
M = > F h (2.53)
5.3.1.7. Modal Torsional Moment
The modal torsional moment Mt,, at level z, which is due to eccentricity e, between the center

of the above mass and the center of stiffness at that level (measured normal to the direction

considered), is calculated as:
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Mt _=elV, (2.54)
where V, is the modal shear force at level z.
The RPA2024 requires that an accidental torsional moment be added to the torsional moment
existent at each level. The recommended way to add the accidental torsion is to offset the center
of mass at each level by 5% of the dimension of the building normal to the direction under
consideration.
5.3.2. Modal combination
The maxima of different modes do not occur at the same instant. An exact computation of the total
maximum response on the basis of the maximum modal responses is hence impossible. Different
methods have been developed to estimate the total maximum response from the maximum modal

responses.

5.3.2.1. Combination rule: “Absolute Sum (ABSSUM)”
xi,max S ¢;’jqj,max
=

The assumption that all maxima occur at the same instant and in the same direction yields an upper
bound value for the response quantity. This assumption is commonly too conservative.

5.3.2.2. Combination Rule: “Square-Root-of Sum-of-Squares (SRSS)”

Ximax = 4 /Z:(Q’jqj,max )2

This rule is often used as the standard combination method and yields very good estimates of the
total maximum response if the modes of the system are well separated. If the system has several
modes with similar frequencies the SRSS rule might yield estimates which are significantly lower
than the actual total maximum response.

5.3.2.3. Combination Rule: “Complete Quadratic Combination (CQC)”

_ () (k)
xi,max - \/2 xi,maxxi,maxp/k

T k=t

Where x/) andx") are the max modal responce of mode j and mode k, and p '« 1s the modal

I,max I,max

correlation coefficient between mode j and mode k

o, = 8‘\’§j§k(§j+r§k)r With}’:&
/ (1—r2)2+4é’j§'kr(1+r2)+4(é’f+§'k2)r2 o,
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5.3.3. Number of modes to be considered
A comprehensive dynamic analysis should consider all contributing modes. However, practical
applications often focus on modes exceeding a specific contribution threshold. Notably, the
number of modes required for accurate results may vary depending on the response measure (e.g.,
displacements, shear forces, bending moments), necessitating a tailored approach to modal
selection for each parameter of interest.
For a regular building the top displacement can be estimated fairly well based on the fundamental
mode only. To estimate the internal forces, however, higher modes need to be considered too.
According to RPA2024, all modes should be considered (starting from the lowest) until the sum
of the effective modal masses of all considered modes corresponds to at least 90% of the total
mass.
Example 2.1
Figure below shows a building that is part of an industrial facility. We want to study the response
of the building to the N-S component of the recorded accelerations at El Centro, California, in
Mayo 18 of 1940. We are interested in the response in the direction shown in the figure. Damping
for the system was estimated in § = 5% of critical. All girders of the structure have width b = 0.40
m and depth h = 0.50 m. All columns have square section with a cross-section dimension h = 0.50
m. The material of the structure has a modulus of elasticity E =25 GPa. The self-weight of structure
plus additional dead load is 780 kg/m? and the industrial machinery, which is firmly connected to
the building slabs, increases the mass per unit area by 1000 kg/m?, for a total mass per unit area of

1780 kg/m>.




Solution 2.1

The area of each floor slab is 12 m - 12 m = 144 m?. The total translational mass of each story is

m = 144 m*- 1780 kg/m? = 256 Mg. The mass matrix of the buildings is:

216.76
~306.77
105.49
~19.561
42822

| -0.51088

[K,]=10°x

[M]=

-306.77
668.24
-475.14
137.94
—-29.375
5.3857

S O O o O

256 0

105.49
—475.14
731.37
-493.23
159.60
-29.327

-19.561
137.94

-493.23
749.02

-494.47
145.71

4.2822
-29.375
159.60
—494.47
738.11
-515.90

S O O O O

—-0.51088

5.3857
29327
145.71
~515.90
889.94 |

Matrix[z] is in this case a single column vector having one in all rows, because all the lateral

degrees of freedom of the structure are parallel to the ground motion acceleration. The dynamic

equilibrium equations are:

2% 0 0 0 0
0 256 0 0 0
0 0 25 0 0
0 0 0 25 0
0O 0 0 0 25

0 0 0 0 0

21676 —306.77
130677 668.24
Llgts| 10549 47514
~19.561  137.94
42822  -29375
| -0.51088  5.3857

S O O O O
=

256

105.49
-475.14
731.37
—493.23
159.60
-29.327

-19.561

137.94

-493.23

749.02

—494.47

145.71

4.2822

-29.375

159.60

—494.47

738.11

-515.90

After solving the eigenvalues problem for this system, we find:
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Mode o? (rad/s)? o (rad/s) f (Hertz) T (s)
1 29.108 5.39 0.859 1.16
2 301.81 17.4 2.76 0.36
3 973.78 31.2 4.97 0.2
4 2494.3 49.9 7.95 0.13
5 4686.5 68.5 10.9 0.092
6 7113.8 84.3 13.4 0.075
The corresponding vibration modes are:
0.036721 -0.032775 0.029168 —0.020667 0.013049 —-0.005955
0.033690 —0.011592 -0.014245 0.032483 —-0.032188 0.018512
(@] = 0.028524 0.014524 —-0.034529 0.005317  0.028533 —0.029103
1 0.020961  0.033322  —0.005049 —0.034504 —0.003317 0.033609
0.012243 0.033525 0.031633  0.006893 —0.024392 -0.031454
| 0.004460 0.015888  0.025184  0.034025  0.035774  0.023711 |
] 6 6 e 6 6 L 6 -
5 I 5 \\\ 5 ,// 5 \> 5 </ 5
4 / 4 \\ 4 < 4 /,/ 4 Hh‘"‘) 4 (/
3 3 \ 3 L IN 3 < 3 // 3 HH"‘/\
2 / 2 ) 2 \\ 2 \\\ 2 (\ 2 <"’-f
1 / 1 1/ 1 ) 1 \ 1 H"\ 1 H“\
7 J L/ /
[} 0 o 0 o ]
0.04 0.00 004 -0.04 0.00 0.04 -0.04 0.00 0.04 -0.04 0.00 004 -0.04 0.00 0.04 0.04 0.00 0.04
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
(T;=1.16s)  (T,=036s)  (T3=0.20s)  (T4=0.13s) (Ts=0.092s) (Ts=0.0755)
The modal participation factors are obtained from:
34.970
13.540
T} =[@] [M][1] 52331
= | =
6.0279
4.4695
2.3861

The total effective mass is computed as ai2
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Mode Ii I %Mot oM
accumulated
1 34.97 1222.901 79.62% 79.62%
2 13.54 183.332 11.93% 91.55%
3 8.2331 67.784 4.41% 95.96%
4 6.0279 36.336 2.37% 98.33%
5 4.4695 19.976 1.30% 99.63%
6 2.3861 5.693 0.37% 100.00%

Now we modify the dynamic equilibrium equations by pre-multiplying by [®]" and using the
following coordinate transformations:
{X}=[®){g} and {X}=[D]{g}

The uncoupled vibration equations are:

g, +2&w g, + wlq, = —34.970%,

G, +2&,w,4, + w;q, = —13.540%,

Gy +2E,m,, + @i q, = —8.2331%,

G, +2&,0,4, + w;q, =—6.0279%,

Gs + 250, + wlq = —4.4695%,

G, +2&E,0,G, + w2 q, = —-2.3861%,
In all six equations &; = 0.05. The response for each of the uncoupled equations is obtained using
the displacement response spectra for the N-S component of the El Centro record. The figure below
shows the spectrum and period for each mode and the displacement read from the spectrum for

each period.

Damping & =0.05

N
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Mode Ti (s) Sa(Ti,Ei) (m)
1 1.16 0.116
2 0.36 0.0218
3 0.2 0.00674
4 0.13 0.00285
5 0.092 0.00113
6 0.075 0.00072

With this information, it is possible to compute the maximum displacement that the uncoupled

degrees of freedom can attain:

Mode I Sa(Ti,Ei) (m) (qi)max = I'ix Sa(Ti,Ei) (m)
1 34.97 0.116 4.0495
2 13.54 0.0218 0.29571
3 8.233 0.00674 0.055458
4 6.028 0.00285 0.017155
5 4.469 0.00113 0.005064
6 2.386 0.00071 0.001717

Maximum modal displacements (m)

The maximum displacements for each mode are obtained from:

X} =10"3(0)

These results can be computed for all the modes at the same time by introducing the values of

(ni)max in the diagonal of a square matrix [Hmod] y and performing the operation:

(X =[@]H,,, ] =] X0} (XS

In present case matrix [Hmod] has the following form:

[Hmod] =

0
0 (4
0 0
0 0
0 0
0 0

(9)) max

0 0

0 0
(93) max 0

0 (4w

0 0

0 0

And replacing the appropriate values from Table 2:

63

x|

S O O O
S O O O O

(95) max
0 (96)ma |




4.0495 0 0 0 0 0
0 0.29571 0 0 0 0
0 0 0.0055458 0 0 0
[Hmod] =
0 0 0 0.015155 0 0
0 0 0 0 0.0050639 0
0 0 0 0 0 0.0017177]

The values for [Umod] are:

0.148703 —0.009692 0.001618 —0.000355 0.000066 —0.000010
0.136429 -0.003428 —0.000790 0.000557 -0.000163  0.000032
0.115519 0.004295 —0.001915 0.000091 0.000144 —-0.000050
0.084882 0.009854 —0.000280 -0.000592 -0.000017 0.000058
0.049588 0.009914  0.001754 -0.000118 -0.000124 —0.000054
| 0.018061  0.004698  0.001397  0.000584  0.000181  0.000041 |

[Xinoa | = [PI[H g1 =

] ]
f
/ 5 \ 5 /w
74 : » 1
/1 s s —
\""'\\\
2 7 -\)
1 / 1 1 /
o o o
0.00 005 ot [31] 0.02 -£.01 0.00 o.01 002 -0.002 -0.001 0.000 0.001 0.002
Deflection (m) Deflection (m) fection (m)
mode 1 mode 2 mwode 3
& ~—] & 8 -3
-‘-'-.-
5 \\} H C 5 >
_-‘-__
/ —— —
4 4 / 4
g p / J | | ! -,.\\‘
N L~ T
) \\\ R ( S. ) ¢ |-
\\
1 > 1 -_----:"'/‘, 1 —
L] o 0
00010 -0.0005 0.0000 0.0005  0.0070 0002 00001 00000  0.0001 0.0002 00010 000005 0.00000 0.00005 0.00010
Deflection (m) Deflection {m) Deflection (m)
mode 4 mode 5 mode 6

Maximum story drift as a percentage of story height (%h)

Using the displacements just computed the story drift for each story and mode could be computed
as the algebraic difference of the displacement of two consecutive stories. Drift is usually

expressed as percentage of the inter-story height.
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Story mode 1 mode 2 mode 3 mode 4 mode 5 mode 6
6 0.409% | -0.209% | 0.080% | -0.030% | 0.008% | -0.001%
5 0.697% | -0.257% | 0.037% 0.016% | -0.010% | 0.003%
4 1.021% | -0.185% | -0.054% | 0.023% 0.005% | -0.004%
3 1.177% | -0.002% | -0.068% | -0.024% | 0.004% 0.004%
2 1.051% 0.174% 0.012% | -0.016% | -0.010% | -0.003%
1 0.602% 0.157% 0.047% 0.019% 0.006% 0.001%
Next figure shows the story drifts for each mode:
0.00 O-gﬁﬂi%;}t\ﬁ .50 030 020 gi-fi?& ; .)r.lgg 00 020 010 005 rig.gﬁ " 005 o1
mode 1 wore 2 mode 3
3 3 2
a o o
0.04 002 0.00 002 004 0045 0010 0005 0000 0005 0.MO 0004 0002 0000 0002 0004
Drift (%sh) Dirift (%o h) Dirift (k)
mode 4 wode 5 mode 6

Maximum modal lateral forces (kN)

To obtain the maximum modal lateral forces imposed on the structure by the ground motions the

stiffness matrix of the structure is multiplied by the modal lateral displacements. Results are

J :L Eggd

obtained in kN.

[F

me

W=1K,

X

mod

X(Z)

mod

X©

mod
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1108.3 —-7489 403.3 -2264 793 -18.6
1016.2 -264.8 -196.9 3558 -195.6 579
860.2 331.8 4774 58.2 1734 -91.0
[Fmod] = [KE][Xmod] =
6329 761.5 -69.8 -378.0 -20.2 105.1
3694 7659 4373 75.5 -—-148.2 -98.4
i 135.1 363.0 348.2 3727 217.3 74.1 ]
& & \ [:]
T O <
2 J 2 ] 2
/
\ 5 { ]
mode 4 mode 5 mode 6
Maximum modal story shear (kN)
The maximum modal story shear is obtained from V(" = XF,{(")
=
S t V(l)mod V(z) mod V(3)m0d V(4)m0d V(S)mod V(6)m0d
or
Y (kN) (kN) (kN) (kN) (kN) (kN)
6 1108.3 -748.9 403.3 -226.4 79.3 -18.6
5 2124.6 -1013.7 206.3 1294 -116.3 39.3
4 2984.8 -681.9 271 187.7 57.1 -51.7
3 3617.6 79.6 -340.9 -190.3 36.9 53.4
2 3987 845.5 96.5 -114.%8 -111.3 -45
1 4122.1 1208.5 444.6 257.9 106.1 29.1
0 4122.1 1208.5 444 .6 257.9 106.1 29.1
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Base shear (kN)

The base shear in kN for each mode is obtained from

1108.3 —748.9 4033 -2264 793 -18.6
10162 —264.8 —196.9 3558 —195.6 57.9
860.2 331.8 -477.4 582 1734 -91.0
6329 7615 —69.8 -378.0 -202 105.1
369.4 7659 4373 755 —1482 -98.4
1351 363.0 3482 3727 2173 741 |
= {4122.1]1208.5/444.6/257.9]106.1[29.1}

=ior Vaetl Vil Vaos Voo Wisos}

mod mod

o} = {1 [P 1= A1

Overturning moment (kN - m)

The overturning moment for each story is obtained from M| = 2 (hk —h, ) F

k=j+1
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M(l)mod M(z)mod M(s)mod M(4)mod M(S)mod M(6)m0d
Story kN.m) | (\N.m) | (kN.m) | (kN.m) | (kN.m) | (kN.m)

6 0 0 0 0 0 0
5 3324.9 -2246.7 1209.8 -679.2 237.8 -55.9
4 9698.6 -5287.8 1828.7 -290.9 -111 61.9
3 18652.9 -7333.6 1015.6 272.2 60.2 -933
2 29505.8 -7094.7 -6.9 -298.7 170.9 66.8
1 41466.8 -4558.2 282.4 -643.1 -162.9 -68.2
0 53833.1 -932.7 1616.3 130.7 155.3 19.2
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The maximum overturning moment at the base, in kN-m, contributed by each mode can be
obtained from:
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{M,, i} = {h}'[F,,,,] = {18]15]129/6]3}

= {53833/-933[1616[131]155]19}
‘M(S)

mod

— 1)
- {Mmod

|M(2)

mod

’M(3)

mod

‘M(4)

mod

’M(é)

1108.3
1016.2
860.2
632.9
369.4
135.1

mod

Maximum credible lateral displacements (m)

The maximum modal displacements were obtained from: {X\) = {¢""}-

[Xinoa | = [PI[H g1 =

0.148703
0.136429
0.115519
0.084882
0.049588

| 0.018061

—-0.009692
—0.003428
0.004295
0.009854
0.009914
0.004698

—~748.9
—264.8
331.8
761.5
765.9
363.0

0.001618
—0.000790
-0.001915
—-0.000280

0.001754

0.001397

—-196.9
—477.4

403.3

-69.8
437.3
348.2

—0.000355
0.000557
0.000091

—-0.000592

—-0.000118
0.000584

-226.4
355.8
58.2
-378.0
75.5
372.7

79.3
-195.6
173.4
-20.2
—-148.2
217.3

(qi )max

0.000066
—-0.000163

0.000144
—-0.000017
—-0.000124

0.000181

~18.6
57.9
—91.0
105.1
-98.4
74.1 |

~0.000010
0.000032
~0.000050
0.000058
~0.000054
0.000041 |

We now apply the SRSS procedure to each of the row of previous matrix. For example, for the

roof (6 story):

X = /(0.148703)* +(=0.009692)* + (0.001618)* +(~0.000355)* + (0.000066)* + (—0.000010)?

=0.14903m

Maximum credible story drift

The modal spectral story drifts are computed from the values shown in [ Xmod] Using Eq. (2.51)

the following result are obtained:

0.012274 -0.006264 0.002408 -0.000912  0.000229 —0.000042
0.020920 -0.007723 0.001125  0.000466 —0.000307  0.000082
A = 0.030627 —0.005559 -0.001635 0.000683  0.000161 —0.000108
mod 0.035304 -0.000060 —0.002034 -0.000710 0.000107  0.000112
0.031517 0.005216  0.000358 -0.000465 —0.000305 —0.000095

| 0.018061  0.004698  0.001397  0.000584  0.000181  0.000041 |

As an example, we now apply the SRSS procedure to the third story:
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ASSS = [(0.035304)* +(=0.000060)* + (=0.002034)* + (=0.000710)* +(0.000107)* +(0.000112)?
=0.03537m

And for all stories:

0.0140 0.47%/ h

0.0223 0.74%/ h

(A 3e 0.0312 . 1.04%/ h
SRSST 10,0354 |7 1.18%/ h
0.0320 1.07%/ h

| 0.0188 | 0.62%/h

Maximum credible story forces (kN)

The maximum modal spectral forces were obtained for each mode multiplying the stiffness matrix
by the modal spectral displacements of each mode, obtaining there the following forces in

KN: [, ]=[K,]| X0, X2, - X9 |=|FY, F2 - FY|

1108.3 -748.9 4033 -2264 793 -18.6
1016.2 -264.8 -1969 355.8 -195.6 579
860.2 331.8 4774 3582 1734  -91.0
6329 7615 -69.8 -378.0 -20.2 105.1
3694 7659 4373 755 -148.2 -98.4
1351 363.0 3482 3727 2173  T74.1 |

[Fmod] :[KE][Xmod] =

Maximum credible story shear (kN)

The maximum credible modal spectral story shear may be obtained from Eq.(2.41) V" = iFk(”
k

=J

St V(l)mod V(z)mod V(3)m0d V(4)m0d V(S)mod V(6)m0d

o (kN) (kN) (kN) (kN) (kN) (kN)
6 1108.3 -748.9 403.3 -226.4 79.3 -18.6
5 2124.6 -1013.7 206.3 129.4 -116.3 39.3
4 2984.8 -681.9 271 187.7 57.1 -51.7
3 3617.6 79.6 -340.9 -190.3 36.9 534
2 3987 845.5 96.5 -114.8 -111.3 -45

1 4122.1 1208.5 444.6 257.9 106.1 29.1
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Applying, for example, the SRSS procedure to the second story, we obtain:
VRS = \/(3987.0)2 +(845.5)* +(96.5)” +(=114.8)" +(=111.3)> +(—45.0)> = 4080.2kN

The result, in kN, for all stories is

Maximum credible base shear

{VSRSS} ==

1417.6
2369.8
3080.3
3640.1
4080.2

4327.6|

The base shear, in kN, was obtained in Example 6 for each mode as:

{Vinoa} = {1} [Fpo = {11

860.2
632.9
369.4
| 135.1

1108.3
1016.2

-748.9 403.3 -226.4
-264.8 —196.9 355.8
331.8 -477.4 582
761.5 -69.8 -378.0
7659 4373 755
363.0 348.2 3727

= {4122.1]1208.5444.6/257.9]106.1]29.1}

Applying the SRSS procedure:

79.3
—-195.6
173.4
-20.2
—148.2
217.3

-18.6
57.9
-91.0
105.1
~98.4

74.1 |

JORSS = J(4122.1)2 +(1208.5)° +(444.6)* +(257.9)* +(106.1)> +(29.1)* =4327.6kN

Maximum credible overturning moment

The overturning moment for each story and mode is obtained using Eq. (2.52):

M©mod MPmod M mod MDmod M®mod M©mod
Story | (kN.m) | (kN.m) | (kN.m) | (kN.m) | (kN.m) | (kN.m)
6 0 0 0 0 0 0
5 3324.9 -2246.7 1209.8 -679.2 237.8 -55.9
4 9698.6 -5287.8 1828.7 -290.9 -111 61.9
3 18652.9 -7333.6 1015.6 272.2 60.2 -93.3
2 29505.8 -7094.7 -6.9 -298.7 170.9 66.8
1 41466.8 -4558.2 282.4 -643.1 -162.9 -68.2
0 53833.1 -932.7 1616.3 130.7 155.3 19.2
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Now using the SRSS procedure for example to the fourth story:

M = \/(9698.6)2 +(=5287.7)* +(1828.7)" +(=290.9)* + (=111.0)* +(61.9)> = 4080.2kN
The result, in kKN-m, for all stories is:

0.0
4252.9
11201.3
{M3531 =4 20070.6
30348.8
41722.9
53865.8

Maximum credible base overturning moment

Base overturning moment contributed by each mode can be computed from:

1108.3 -7489 4033 -2264 793 -18.6
1016.2 -264.8 -1969 3558 -195.6 57.9
860.2 331.8 4774 582 173.4  -91.0
6329 7615 -69.8 -378.0 -20.2 105.1
3694 7659 4373 755 1482 -984
1351 363.0 3482 3727 2173 741 |

Mo} = {0} K, 1= {18]15[12196/3}

= {53833/-933[1616[131]155[19}

And

M = \/(53833.1)2 +(-932.7)* +(1616.3) +(130.7)* +(155.3)> +(19.2)> =53865.8 kN.m
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Chapter 3

Progressive Pushover Method

1. Introduction

Pushover analysis is a nonlinear static analysis method widely used in structural engineering to
evaluate the seismic performance of buildings and other structures. This method involves applying
progressively increasing lateral loads to a structural model until it reaches its ultimate capacity or
a predefined target displacement. The procedure accounts for the redistribution of forces as
structural elements yield, enabling engineers to simulate the inelastic behavior of a structure under
seismic loading. By plotting the relationship between base shear and roof displacement, known as
the capacity curve, pushover analysis provides valuable insights into the structure's strength,
deformation capacity, and potential failure mechanisms.

The primary objective of pushover analysis is to identify weak points in the structure and predict
how it will behave during an earthquake. It helps engineers assess critical parameters such as
plastic hinge formation, interstory drifts, and force demands on individual members. This method
is particularly useful for performance-based seismic design and retrofitting of existing buildings,
offering a practical alternative to more complex nonlinear dynamic analyses. However, it is
important to note that pushover analysis relies on simplified assumptions about load patterns and
may not fully capture dynamic effects or higher-mode contributions during an earthquake. Despite

these limitations, it remains a powerful tool for understanding and enhancing the seismic resilience

of structures.
Full 3D Nonlinear MDF Model Monotonic Pushover Analysis gﬁzzr Pushover Curve
Ik x" vy
|
@ Control Node
ey = ~ —
a— o— —
Fl xr
—_— | S——————
Displacement
ﬂwm,_______ 4+ Vb of Control Node
Monotonically increasing lateral load Develop the V, vs. x” relationship
A ground motion structure in pattern F; ... ... F, to push the structure in
a particular X or Y direction that particular X or Y direction

~ EP—.

Fig 3.1 The basic idea of Pushover analysis
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2. Definition of the structure and behavior laws of plastic nodes

In the context of pushover analysis, the definition of the structure and behavior laws of plastic
nodes revolves around the modeling of structural elements and their transition from elastic to
plastic behavior under increasing lateral loads. Structural elements are typically modeled using
linear elastic behavior up to a certain threshold, defined by their yield point. Beyond this yield
point, plastic hinges are introduced at specific locations, such as the ends of beams or columns, to
simulate the inelastic behavior of the structure. These plastic hinges represent localized zones
where plastic deformations occur, allowing for redistribution of forces within the structure.

The behavior of plastic nodes is governed by moment-rotation relationships that describe their
response under loading. Initially, the structure behaves elastically with high stiffness (zone AB in
a typical moment-rotation curve). Upon reaching the yield point (point B), the stiffness decreases
as the structure enters an inelastic phase (zone BC), where deformations increase without
significant additional resistance. The post-yield behavior can be idealized as elastic-perfectly
plastic or include strain hardening or softening effects depending on material properties and design
assumptions. In advanced models, these hinges are characterized by acceptance criteria such as
Immediate Occupancy, Life Safety, and Collapse Prevention states, which correspond to
increasing levels of deformation and damage.

The placement and properties of these plastic nodes are critical for accurately predicting the
nonlinear response of structures during seismic events or other extreme loading scenarios. By
tracking the formation and progression of plastic hinges during pushover analysis, engineers can
evaluate structural performance, identify failure mechanisms, and ensure compliance with safety

standards.

3. Lateral force distribution

The lateral force distribution refers to the manner in which horizontal forces are applied across the
height of a structure during analysis. This distribution is a critical factor influencing the accuracy
of the results, as it determines how seismic demands are represented and how structural responses,
such as inter-story drifts and member deformations, are captured.

The Nonlinear Static Pushover Procedure outlined in RPA2024 is based on the N2 method

introduced by Fajfar in 1999. This approach involves applying fixed load patterns to a building
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model, which simulate the lateral forces caused by ground motion. The intensity of these loads is
gradually increased in a pseudo-static manner. Depending on the building’s structural
characteristics, the model can be either planar (2D) or spatial (3D). However, the load pattern is
always applied in a single direction. For scenarios where ground motion input occurs in multiple
directions, such as both x and y axes, RPA2024 provides specific combination rules for analysis.
This nonlinear pushover analysis involves incrementally increasing constant-shape lateral load
distributions on the structure being studied. The structural model can be either 2D or 3D depending
on the building's plan regularity. Generally, buildings with regular plans can be analyzed using a
2D single-plane frame model, while those with irregular plans require a full 3D model. Since
nonlinear methods are particularly useful for existing buildings—which are often irregular—a 3D
model is typically necessary in most cases.

The N2 method was originally developed using a shear building model, meaning it assumes a
frame structure with floors that are rigid within their planes. Vertical displacements are generally
ignored in this method, focusing instead on the two horizontal components of ground motion (x
and y directions). Extending this method to more complex cases involving fully deformable frames
is relatively straightforward. The N2 method applies two distinct load distributions to the frame
for analysis.

Typically, lateral forces in pushover analysis are applied using predefined patterns that
approximate the effects of seismic loads. Commonly used distributions include:

- Uniform Distribution: Forces are proportional to the mass at each floor level, assuming a uniform
response across the structure.

- Mode Shape-Based Distribution: Forces are distributed according to the fundamental mode shape
of vibration, which is suitable for regular buildings with fundamental periods up to approximately
one second.

The chosen lateral force distribution significantly impacts the resulting pushover curve (base shear
vs. roof displacement) and structural performance predictions. While simpler patterns may suffice
for regular structures, more complex patterns are essential for accurately assessing irregular or
flexible buildings.

In the N2 method, the mode shape ¢1 is scaled such that the displacement at the top floor equals 1,

denoted as ¢1,n = 1. The two types of load distributions are illustrated schematically in the figure
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below. These lateral load distributions are gradually increased, and the resulting response is
represented as a plot of base shear (Vb) against the top floor displacement (D), typically measured
at the center of mass of the top floor. This plot is commonly referred to as the pushover curve or

capacity curve.

7 4
Pi-gsz(p]’r Pr-j:m_,- D? D! Yy l
> > i
- -...b E 2
> 7
2
i k.
-— < -— >
2 1 Top Displacement D

Base Shear 1,

Fig. 3.2 Lateral force distribution in Pushover analysis
4. Capacity curve
4.1. Equivalent SDOF systems

According to Fajfar (1999), it is assumed that the building behaves as a shear frame, meaning the
floors are considered rigid within their own plane. When vertical displacements of the building are
disregarded, the floor movements can be described using three degrees of freedom, as illustrated
in Window 3-2. These degrees of freedom are generally defined at the center of mass. It is
important to note that the beams are capable of deforming outside the plane of the floor, allowing

the nodes to exhibit rotational degrees of freedom beyond the floor plane.

6 u

n v,n

z

[7)

X, 1

L]

z

1 1

Fig 3.3 Typically shear frame for pushover analysis
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In modern earthquake engineering, seismic input is typically characterized using design spectra or
accelerograms. However, in codified design, this input is always defined or at least linked to
spectra, which provide critical data about the acceleration and/or displacement of single-degree-
of-freedom (SDOF) systems. As a result, it becomes crucial to connect the outcomes of pushover
analysis—applied to multi-degree-of-freedom (MDOF) systems—with the characteristics of an
equivalent SDOF system. This process must account for the nonlinear response in terms of both
forces (such as base shear) and deformations. To address this, an equivalent SDOF oscillator is
employed. A specific approach to this is outlined in the following two paragraphs: the first focuses
on the standard translational case, while the second extends to scenarios involving both
translational and rotational (torsional) behavior.

Various methods for defining an equivalent Single Degree of Freedom (SDOF) oscillator can be
found in the literature. However, they all share a common starting point: the assumption that the
deformation of a Multi-Degree of Freedom (MDOF) system can be represented by a deformation
vector [®@], which remains unchanged throughout the duration of the loading time-history,
regardless of the magnitude of the applied deformation. This section introduces a widely
recognized approach for defining an SDOF oscillator specifically for the translational behavior of
spatial (3-D) structures. The equation governing the dynamic elastic response of the system to

external excitation, as illustrated in Figure 5.29, is presented in vector form.
[M][E(0)] + [CT[a(0)] + [P(1)] = —[M][1]z,(¢) 3.1
By eliminating the damping terms from Equation 3.1, [C][£(0)], Equation 3.2 results:
[M][E(0)] + [P()] = ~[M][1]i,() 3.2

It is assumed that the displacement vector [x] and the restoring force vector [P] of the elastic multi-
degree-of-freedom (MDOF) system can be related to the corresponding parameters of an
equivalent single-degree-of-freedom (SDOF) nonlinear oscillator un(t) and P,(f), using two

vectors, [®@] and [V]:
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¢

_ _| 2
[x(O]=[P]x, () =] " |x,(2)

¢l’l

v,

¥V,

[P1=[¥1B,(0)=|"2 |P1)

W

33

Therefore, using these transformations, the equation of vibration of the MDOF system becomes,

in vector form:
[M][®%, (0)+[Y1F, (1) =M 1[1]%, ()
And in algebraic form:

m@x, () +y P, =—mx, (1)
my@, X, () +w, P, =—m,X,(t)

m, @, X, () +y, B, =—m,5%,(t)
By multiplying Equation (3.5a) times [®]":
[@T [M][@]%, () +[@] [¥]R, (1) = —[®] [M][1]%, (1)

and by transforming the first term:

r [®T[M][1]] ., r —rel .
[@] [M][CD]{—[@]T[M][I]] X,(0)+[O] [Y]F,(2) =] [M][1]%,(?)
or
r [®) [M][®]] .. r e .
[@] [M][l][—[(D]T[M][I]]xn(f)+[f1)] [V]P,(2) =—[D] [M][1]%,(?)
We define
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Lo M[®]

o pom o
m =[] [M][1] 3.9b

so, Equation 3.5a becomes in vector form:
m X, () +[@] [W]P,(t) = —m %,(t) 3.10

While Equations 3.9a and 3.9b are in algebraic form:

m = m@ +m,P, +---+m @, = Zn:ml¢l
[OF [MI®] = mf 4l +0+ m, gl = > mgf

@7 [¥]=Y w4
meaning

m =) mae, 3.11a

x, (1) =-=—x, (1) 3.11b

S

@7 %)= v 311

Equation 3.10 by introducing Equations 3.11a through 3.11c is transformed to:

|:imi¢i:|jén(t)+|:imil/ji:|Pn(t):_|:’Zlm[¢i:|jé0(t) 3.12
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Taking into account that:

{Zn:miwi}f;(t)zV(t) or P(1)=—"0 3.13

i=l1
2 My,
i=l1

Where V' is the base shear of the MDOF excited system, Equation 3.12 may be re-written as:
m'i () +Z—V(t) =—m X,(t) 3.14

This corresponds to an SDOF system, which has defined the following properties:
m' =[] [M[1]=Ymg,

See equation 3.8a

T ancé-w,-
[®] V] _ ‘O
e V(t) =V () 3.15

- n
2 my,
i=1

*

V(t) =

Where m*, u*(t), V'* are the mass, displacement, and base shear of the equivalent SDOF oscillator.

The equation of vibration under excitation for this SDOF system is:

m'i () +V (1) =-m'%,(t) 3.16

Having
X (1) =Tx, () 3.17a
Vi =TV (@) 3.17b
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_ [T [M][®] _ 2.

i=1

IV S,

1=

o ZW,

i=1

e s,

2=

By introducing yi=¢;, one gets:

And for mi=m=constant:

i=1

This transformation factor is denoted as I" in the Annex B of EC8-1/2004, Equation B3:

o Sn
quﬁ S
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Fig 3.4 Summary of equivalent SDOF system
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Fig. 3.5 Conversion of pushover curve to spectral form

4.2. Linearization of the capacity curve

To compare the capacity curve with the demand curve provided by the design spectrum, the
nonlinear pushover curves of the single-degree-of-freedom (SDOF) system are simplified into
elastic-perfectly plastic (or bilinear) representations. As outlined in Annex J of RAP2024, this
transformation relies on the equal energy principle. A target displacement is defined, and it is
assumed that the energy remains equal between the bilinear and nonlinear pushover curves. This

straightforward method is demonstrated in the figure below.
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Fig. 3.6 Linearization of the capacity curve
The bilinearization of figure gives the yield force and the yield displacement

d;z[d;—E'"J 3.21
F,

*
y

which allow the initial elastic period to be computed as:

*

=272 3.2

k*

Secondly, the capacity curve is transformed into capacity spectrum by normalizing the force with

respect to the SDOF weight. The resulting capacity spectrum is shown in :

*

F
mg

A

* * *

D D D

¥V m

Fig 3.7 The bilinear capacity curve
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5. Seismic demand

The building's demand is determined using the design spectrum outlined in the design code

(RPA2024).

AlLS. z+Z 2_5%_2 if0<7T<T
3T R 3
ALS. 2.5%} if7T <T<T,
S.(T) _ . R 3.23
& ars] 252 L if7, <T<T,
. R T
ars| 252 T2—§ if T, <T <4s
. R T

To effectively compare the building's capacity with this demand, the initial step involves
converting the design spectrum from its traditional format, which plots Acceleration (A) against
Period (T), into the ADRS format, where Acceleration (A) is plotted against Displacement (D).
This transformation is straightforward since there is a direct relationship between Acceleration and

Displacement.

2
<[ 2, 324
T

The transformation to the ADRS spectrum is shown in figure. Lines from the origin represent

constant periods.

|

Spectral acceleration

N T, Ty Spectral displacement
Period, T

(a) Traditional spectrum (b) ADRS spectrum

Fig. 3.8 Transformation to ADRS linear spectrum
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The capacity spectrum shown in Fig. 3.7 is compared to the ADRS demand spectrum depicted in

Fig. 3.8. However, this comparison is not straightforward because the capacity spectrum exhibits

nonlinear behavior, whereas the ADRS spectrum provided by design codes is linear. For a single-

degree-of-freedom (SDOF) system with bilinear plastic behavior, the acceleration spectrum (SA)

and displacement spectrum (SD) can be calculated as follows:

Sa ZL’ Sd :ﬁsde
Rﬂ Rﬂ
S (T,
5,1, =18)
Rﬂ
Tz
Sde(Tag) = 2 Sae(Taé:)
4

Where

¢ : viscous damping ratio fixed at 5%

S (T,¢&): acceleration in the elastic spectrum corresponding to periods T et & =5%

S, (T,¢&): displacement in the elastic spectrum corresponding to periods T et & =5%

y7i u T?
S (T,6)=—8,T,5)="—
«(T,¢) 7 Sl $) R an

[ u

S, (T,&): inelastic acceleration

S,(T,¢): inelastic displacement

u: ductility factor

Rup: reduction factor given by:

With
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T: vibration period of a linear single-degree-of-freedom system

T>: upper limit of periods corresponding to the constant spectral acceleration plateau

Accélération spectrale, S, (g)

Déplacement spectral, S,

Fig. 3.9 The reduced seismic demand curve

6. Determination of the target displacement
6.1. For the SDOF equivalent system

From a theoretical perspective, the target displacement (D¢*) is identified by locating the point
where the inelastic demand spectrum, defined by a ductility () value, intersects with the bilinear
capacity spectrum at a corresponding capacity ductility (p). Essentially, this means that the design
point is determined where the demand and capacity ductility are equal. The target displacement of

the structure with period T * and unlimited elastic behavior is given by
|
d,, =Se(T*){—} 3.30
2r

For the determination of the target displacement dt# of structures in the short period domain and
of structures in the medium and long period domains, different expressions should be used, as

shown below. The boundary period between the short period and medium period domains is T»

e Short period domain
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*

F % * *
1- If = 2> S8,(T") the response is elastic, so: d, =d,,
m

F, . . . . d T, .
2- If =< S,(T") the response is nonlinear, and: d, = R‘” : {1+(Rﬂ -1) Ti} >d,
m

7

Where Ry is the ratio between the acceleration Se(7*) in a structure with unlimited elastic behavior

and the acceleration F y* / m" in a structure with limited resistance, i.e.,

STy m
R, = ST m - 3.31
£,
e Medium and long period domain:
d =d, 3.32
Sue (@) Sae ()
A A
Sae (T L i
i .
! \
' Sae (Mf - --F---
| y |
I ! ‘
\ [
F*\. _ | ) F*‘— A :
m” ! : ! m’ l !
[} | | | !
i ! | ! -
d.y d'e‘ d-t S:t‘ d'y d'l = d‘et Sde
Fig. 3.10 Determination of the target displacement
6.2. For the MDOF system
The target move corresponds to the control node.
d =1.d;
‘ ’ 3.33
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Fig. 3.11 The target displacement for MDOF system

A schematic representation of nonlinear static procedure — pushover analysis is shown in Fig. 3.12.

Force
Viotal
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EL Deformation
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- /

Fig. 3.12 Schematic representation of nonlinear static procedure — pushover analysis.
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