الجممورية الجزائرية الديمقراطية الشعبية

وزارة التعليم العالي والبدش العلمي

Université Badji Mokhtar - Annaba Badji Mokhtar – Annaba University

جامعة راجي مختار – غنارـــة

Faculté : TECHNOLOGIE Département : ELECTROTECHNIQUE Domaine : SCIENCES ET TECHNOLOGIES Filière : ELECTROTECHNIQUE Spécialité : ELECTROTECHNIQUE INDUSTERIELLE

Mémoire

Présenté en vue de l'obtention du Diplôme de Master 2 Electrotechnique

Thème:

DIAGNOSTIQUE DES DEFAUTS DANS LES PANNEAUX PHOTOVOLTAIQUES

Présenté par : Merdas Aymen

Cherfi Houssem Eddine Mourad

Encadrant : Ben Si Ali Nadia Pr UBMA

Jury de Soutenance :

Merabet Leila	MCA	UBMA	Président
Ben Si Ali Nadia	Pr	UBMA	Encadrant
Kelaiaia Samia	МСВ	UBMA	Examinateur

Année Universitaire : 2022/2023

Remerciements

Nous remercions en premier lieu Dieu de nous avoir donnés la force et la patience pour accomplir ce travail. Nous voudrions remercier notre encadrant Mme BEN SI ALI NADIA pour avoir dirigé notre travail, ainsi pour sa disponibilité et sa sympathie. Nous tenons à remercier Mme Merabet Leila pour nous avoir fait l'honneur de présider le jury de notre mémoire, nous sommes aussi très reconnaissants aux membres du jury, Madame KELAIAIA Samia.

Dédicace

Je dédie ce mémoire à mes chers parents pour leurs soutient morale dans tous mes parcours de vie a tous les moments.

Je dédie ce travail

A mes frères

Je dédie ce travail

H mes tous amis

Merdas Hymen

Dédicace

Je dédie ce mémoire à mes chers parents pour leurs soutient morale dans tous mes parcours de vie a tous les moments.

Je dédie ce travail

A mes frères

Je dédie ce travail

A mes tous amis

Cherfi Houssem Eddine Mourad

Sommaire

Remerciement
Dédicace
Nomenclature
Listes des tableaux et des figures
Introduction générale
Chapitre i : les panneaux photovoltaïques
I 1. Introduction 1
I 2. Étude d'une installation photovoltaïque2
I 3. Description des éléments d'un système de captage photovoltaïque3
I 3 1. Les panneaux photovoltaïques
I.3.1 panneau solaire thermique et thermo dynamique
I.3.1.1 domestique (thermique)
I.3.1.1 industriel (thermodynamique)
I 3.2 les cellules photovoltaïques
I.3.2.1. Principe d'une cellule photovoltaïque
I.3.2.2. Différents types des cellules photovoltaïques
I.4 constitution d'un module photovoltaïques7
I.5 défaut d'un système photovoltaïque7
I.5.1 défaut d'encapsulation
I.5.2 perte d'adhérence de back-sheet
I.5.3 fissuration des cellules
I.5.4 interconnexion endommagée
I.5.5 pannes au niveau de la boîte de jonction
I.5.6 défauts de diodes bypass
I.5.7 défaut d'arc
I.5.8 défaut de mise à la terre
I.5.9 l'effet du défaut ligne-ligne
I.5.10 défaut d'incompatibilité (mismatch)9

I.5.11 défaut de l'ombrage10
Chapitre II : modélisation du système photovoltaïque
Ii modélisation
Ii.1 : le générateur photovoltaïque « gpv »12
Ii.2.1 : modélisation du système photovoltaïque
Ii.2.2 caractérisation du module pv14
Ii.2.3 simulation du module pv15
Ii.2.3.1 effet de la variation de l'éclairement16
Ii.2.3.2 effet de la variation de température17
Ii.3. Concluson
Chapitre III : simulation des défauts
III. Introduction
III .1 défaut ligne-terre
III.2. Défaut ligne-ligne
III.3. Défaut mismatch
III.4. Défaut ombrage
III.4.1. Module sans et avec bypass-diode
III.4.2. Module half-cut
Chapitre IV : étude comparative des différentes configurations de panneaux photovoltaïques sous l'effet de l'ombrage partiel
IV.1 introduction
IV.2 comparaison de différentes topologies de générateurs photovoltaïques
IV.3 topologies avancées des générateurs photovoltaïques proposées
IV.4 techniques basées sur l'électronique de puissance pour extraire le maximum de puissance
IV.5 modélisation mathématique des cellules, modules et générateurs pv
IV.1 6 description des différents modèles d'ombrage sous les psc
IV.1 7 modelisation et simulation des topologies de generateurs photovoltaïques ombrages
IV.1 6.1 configuration série (s)

IV.1 6.2 configuration parallèle (p)4	40
IV.1 6.3 configuration série-parallèle (s-p)4	12
IV.1 6.4 configuration total-cross-tied (t-c-t)	14
IV.1 6.5 configuration bridge-linked (b-l)4	46
IV.1 6.6 configuration honey-comb (h-c)	48
IV.1 7 évaluation des performances des topologies de générateurs photovoltaïques sous p	osc 50
IV.1.8.1 condition d'éclairement uniforme (1000 w/m2)	51
Conclusion	59
Conclusion generale	61
Références bibliographiques	62

Table des Figures

Chapitre I : Les panneaux photovoltaïques
I.1.Schéma installation photovoltaïque
I.2. Panneaux solaires photovoltaïques
I.3. Panneau solaire thermique
I.4. Panneau solaire thermodynamique
I.5. Structure et principe de fonctionnement
I.6 Les différents types cellules photovoltaïques
I.7. Module photovoltaïque
I.13 Carte de l'insolation du monde
Chapitre II : Modélisation du système photovoltaïque
II.1. Système photovoltaïque
II.2.Circuit électrique équivalent d'une cellule photovoltaïque
II.3. Schéma Bloc du module solaire dans SIMULINK15
II.4.Caractéristiques (I-V, P-V) du module PV dans les conditions standard15
II.5.Caractéristiques (I-V, P-V) Pour différents éclairements et une température T=25°C 16
II.6.Caractéristiques (I-V, P-V) Pour différentes températures et un éclairement E=1000 W/m217
Chapitre III : Simulation des défauts
III.1 MATLAB/Simulink model of 5x5 avec défaut terre
III.2 Caractéristiques de sortie simulées P-V (défaut terre)21
III.3 MATLAB/Simulink model of 5x5 avec défaut ligne-ligne
III.4 Caractéristiques de sortie simulées P-V (défaut ligne-ligne)
III.5 Caractéristiques I-V, P-V pour un défaut Mismatch
III.6 Caractéristique PV pour défaut ombrage avec et sans bypass-diode25
III.7 Schéma de deux types de module photovoltaïque (a) classique construit de 60 cellules et (b) half-cut construit de 120 cellules
III.8. Schémas de simulation du module PV classique

III.9 schémas de simulation du module PV half-cut27
III.10. Caractéristique (P-V) pour un module PV Classique et Half-cut Model cellule half-cut matlab28
Chapitre IV : Étude comparative des différentes configurations de panneaux photovoltaïques sous l'effet de l'ombrage partiel
IV.1. Représentation des topologies de générateurs photovoltaïques examinées sous divers PSC et paramètres pris en compte pour comparer les topologies de générateurs photovoltaïques d'évaluation des performances
IV.2.a Modèles du circuit équivalent de la cellule PV
IV.2.b Générateur PV composé de modules NS × NP
IV.3. Représentation des différents scenarios d'ombrage : (a) Ombrage URS, (b) Ombrage UCS
(C) Ombrage DS, (D) ombrage SN, (E) Ombrage SW, (F) Ombrage LN, (G) Ombrage LW36
IV.4. MATLAB/Simulink modèle 5x5 topologie Série
IV.5 caractéristiques I-V et P-V du la topologie de générateur photovoltaïque série (S)
IV.6 MATLAB/Simulink model of 5x5 de la topologies Parallèle40
IV.7 caractéristiques I-V et P-V du la topologie de générateur photovoltaïque Parallèle (P)41
IV.8 MATLAB/Simulink model of 5x5 Série-Parallèle topologie
IV.9 caractéristiques I-V et P-V du la topologie de générateur photovoltaïque Serie-Parallèle (S-P)43
IV.10 MATLAB/Simulink model of 5x5 T-C-T topologie
IV.11 caractéristiques I-V et P-V du la topologie de générateur photovoltaïque Total-Cross-Tied (T-C-T)45
IV.12 MATLAB/Simulink model of 5x5 B-L topologie
IV.13 caractéristiques I-V et P-V du la topologie de générateur photovoltaïque Bridge-Linked (B-L)47
IV.14 MATLAB/Simulink model of 5x5 HONEY-COMB (H-C) topologies
IV.15 caractéristiques I-V et P-V du la topologie de générateur photovoltaïque Honey-Comb (H-C)49

Liste des tableaux

Chapitre I : Les panneaux photovoltaïques
Tableau I .1. Différents types des cellules photovoltaïques
Chapitre II : Modélisation du système photovoltaïque
Tableau (II.1) Caractéristiques électriques du module PV 1Soltech 1STH-215-P en condition de test
Standard14
Chapitre III : Simulation des défauts
Tableau IV.1 : expressions pour la tension de courant de sortie et la puissance du réseau PV Array51
Tableau IV.2 Variations des Paramètres électriques du générateurs PV 5X5. Topologie STC
Tableau IV.3 Variations des paramètres des topologies de générateurs PV URS
Tableau IV.4 Variations des paramètres des topologies de générateurs PV UCS
Tableau IV.5 Variations des paramètres des topologies de générateurs PV DS
Tableau IV.6 Variations des paramètres des topologies de générateurs PV SN
Tableau IV.7 Variations des paramètres des topologies de générateurs PV SW 56
Tableau IV.8 Variations des paramètres des topologies de générateurs PV LN 57
Tableau IV.9 Variations des paramètres des topologies de générateurs PV LW

Liste des symboles

- V_{pv} la tension (V) de sortie du panneau
- I_{pv} le courant (A) de sortie du panneau
- Isat Courant dans la diode en ampère
- I_{ph} la photo courant en ampère
- R_s la résistance série en ohm
- R_h la résistance shunt en ohm
- $q = 1.602.10^{\circ} 19$ Charge électronique
- $K = 1.381.10^{\circ} 23 J/K$ constante de Boltzmann
- n le facteur de qualité de la diode normalement compris entre 1 et 2.
- T est la température de fonctionnement de la cellule

INTRODUCTION GENERALE

Introduction générale :

Au cours des dernières années, le monde a connu une croissance importante de la demande en énergie dans tous les domaines de la vie, en particulier l'électricité qui provient malheureusement en grande partie des sources d'énergie fossiles, lesquelles ont un impact très nocif sur l'environnement.

La solution repose sur le recours aux énergies renouvelables. Dans cette optique, plusieurs pays ont engagé des investissements immenses et semblent de ce fait sur la bonne voie pour réussir le challenge d'allier production et consommation d'énergie d'un côté et le maintien de l'équilibre environnemental de la planète de l'autre. Le soleil reste dans ce cas, que ce soit de manière directe ou indirecte, la source d'énergie la plus prometteuse.

Il est bien connu que la puissance électrique générée par un module photovoltaïque peut être fortement diminuée par rapport aux conditions optimales de production (point maximum de puissance) pour des conditions météorologiques données par de nombreux facteurs, tels qu'ombrage, mauvais fonctionnement du MPPT, déséquilibres, etc...

Dans ce mémoire, nous nous sommes focalisés sur les effets de l'ombrage sur la production énergétique et les moyens de limiter son impact sur la production d'énergie PV.

- Dans le premier chapitre, nous donnerons une introduction générale sur la production de l'énergie électrique par les cellules photovoltaïques, ainsi que des défauts d'un système photovoltaïque.

- Le deuxième chapitre est dédié a la modélisation d'une cellule PV, l'impact de l'éclairement et de la température.

- Le troisième chapitre étudie l'effet des défauts sur un module PV

- le quatrième chapitre sur l'etude d'un ombrage avec des scénarios seront traités et discutés et une comparaison des pertes de puissance des différentes configurations est ensuite présentée.

CHAPITRE I Les panneaux photovoltaïques

I 1. Introduction :

Le soleil est une source énergétique quasiment illimitée, il pourrait couvrir plusieurs milliers de fois notre consommation globale d'énergie . C'est pourquoi, l'homme cherche depuis longtemps à mettre à profit cette énergie importante et diffusée sur l'ensemble de la planète, il est arrivé à réaliser ce but par le moyen dit cellule photovoltaïque.

Le nom Photovoltaïque vient du Grec, il est composé de deux parties :

Photos : Lumière.

Volt : Unité de tension électrique, du nom Alessandro Volta.

Ce phénomène fut découvert au 19ème siècle par le physicien Alexandre Edmond Becquerel. La première cellule photovoltaïque fut développée début 1954 pour l'alimentation en énergie des satellites. Depuis 1958, les cellules photovoltaïques alimentent seulement le système énergétique des satellites jusqu'à ses premières applications terrestres au début des années 70. Le photovoltaïque fut utiliser pour l'alimentation en énergie de petites maisons isolées et d'équipements de télécommunications.

Aujourd'hui, grâce à sa fiabilité et à son concept respectueux de l'environnement, le photovoltaïque prend une place prépondérante.

Pour comprendre ce phénomène, nous avons rappelé dans ce chapitre quelques notions de base sur le rayonnement solaire et les propriétés des semi-conducteurs ; matériaux de base des cellules photovoltaïques.

Une fois ces rappels théoriques sont faits, il nous sera facile d'expliquer le principe de fonctionnement de la cellule photovoltaïque en passant au système photovoltaïque complet

1

I 2. Étude d'une installation photovoltaïque :

Pour étude et installation photovoltaïque nous suivons plusieurs étapes importantes et pratiques, qui sont les suivantes :

- Déterminer les besoins de consommation d'énergie dispositifs après la charge de toutes les charges électriques.
- Calcul des batteries nécessaires pour sécuriser l'alimentation des appareils après le coucher du soleil.
- Définissez le nombre de panneaux pour produire suffisamment d'énergie pour les appareils à utiliser.
- Calculer les spécifications du régulateur de charge.
- Calculer les spécifications de l'onduleur

Figure I.1. Schéma installation photovoltaïque.

I 3. Description des éléments d'un système de captage photovoltaïque :

I 3 1. Les panneaux photovoltaïques :

Les panneaux solaires photovoltaïque regroupent des cellules photovoltaïques reliées entre elles en sérient ou en parallèle. Ils peuvent s'installer sur des supports fixes au sol ou sur des systèmes mobiles de poursuite du soleil appelés trackers. Dans ce dernier cas la production électrique augmente d'environ 30% par rapport à une installation fixe. En dehors de centrales solaires, les installations fixes se font actuellement plutôt sur les toits des logements ou des bâtiments, soit en intégration de toiture. Dans certains cas, on pose des panneaux verticaux en façade d'immeuble, cette inclinaison n'est pas optimale pour la production d'électricité, la position fixe optimale étant une inclinaison de 30° par rapport à l'horizontale

Figure I.2. Panneaux solaires photovoltaïques.

3

I.3.1 Panneau solaire thermique et thermo dynamique :

I.3.1.1 Domestique (thermique) :

Le principe de ce système est d'utiliser un fluide caloporteur. Le fluide est chauffé dans des panneaux exposés au soleil.

Ce fluide transmet sa chaleur à l'eau à usage domestique dans des échangeurs.

Figure I.3. Panneau solaire thermique

I.3.1.1 Industriel (thermodynamique) :

On désigne par une centrale thermodynamique l'ensemble des techniques qui visent à transformer l'énergie rayonnée par le soleil en chaleur à température élevée. L'eau chauffée par la température est transformée en vapeur, envoyée dans une turbine. un alternateur, lié à la turbine, produit alors de l'électricité.

I 3.2 Les cellules photovoltaïques :

La cellule photovoltaïque est l'élément de base des panneaux solaire qui production l'électricité, l'utilisation des cellules solaires a débutée dans les années quarante dans le domaine spatial, les recherches d'après-guerre ont permis d'améliorer leurs performances et leur taille

I.3.2.1. Principe d'une cellule photovoltaïque :

Une cellule photovoltaïque est un dispositif semi-conducteur généralement a base silicium. Elle est réalisée à partir de deux couches, une dopée P et l'autre dopée N créant ainsi une jonction PN avec une barrière de potentiel. Lorsque les photons sont absorbés par le semi 15 conducteur, ils transmettent leur énergie aux atomes de la jonction PN de telle sorte que les électrons de ces atomes se libèrent et créent des électrons (charges N) et des trous (charges P). Ceci crée alors une différence de potentiel entre les deux couches. Cette différence de potentiel est mesurable entre les connexions des bornes positives et négatives de la cellule

Figure I.5. Structure et principe de fonctionnement.

5

C

Figure I.6 Les différents types cellules photovoltaïques

Il existe de nombreux types de fabrication des cellules photovoltaïques, Nous le mentionnons dans ce qui suit :

	Les avantages	Les inconvénients
Monocristallin	 Bon rendement, de 12% à 18%. Bon ratio (WC/ M²) (environ 150 (WC/ M²)) ce qui permet un gain de place si nécessaire. Nombre de fabricants élevé. 	 Coût élevé. Rendement faible sous un faible éclairement.
Poly cristallin	 Cellule carrée (à coins arrondis dans le cas du Si monocristallin) permettant un meilleur foisonnement dans un module Moins cher qu'une cellule monocristalline. 	 Moins bon rendement qu'une cellule monocristalline : 11 à 15%. Ratio (WC/ M²) moins bon que pour le monocristallin (environ 100 (WC/ M²)). Rendement faible sous un faible éclairement.
Amorphe	 Fonctionne avec un éclairement faible ou diffus (même par temps couvert). Un peu moins chère que les autres technologies. Intégration sur supports souples ou rigides 	 Rendement faible en plein soleil, de 6% à 8%. Nécessité de couvrir des surfaces plus importantes que lors de l'utilisation de silicium cristallin (ratio (WC/M²) plus faible, environ 60 (WC/ M²)). Performances qui diminuent avec le temps (environ 7%).

Tableau I .1. Différents types des cellules photovoltaïques.

I.4 Constitution d'un module photovoltaïques :

Pour produire plus de puissance, les cellules solaires sont assemblées pour former un module. Les connections en série de plusieurs cellules augmentent la tension pour un même courant, tandis que la mise en parallèle accroît le courant en conservant la tension. Ces cellules sont protégées de l'humidité par en copulation dans un polymère EVA (éthylène-vynil-acétate) et protégé sur la surface avant d'un verre, trempé à haute transmission et de bonne résistance mécanique, et sur la surface arrière d'une ou de polyéthylène

Figure I.7. Module photovoltaïque.

I.5 Défaut d'un système photovoltaïque :

Un défaut est défini comme un état anormal ou une anomalie au niveau du composant D'équipement ou du sous équipement. Il peut conduire à une défaillance du système Au cours de son fonctionnement, une installation PV peut être éventuellement soumise à différents défauts et conditions de fonctionnement anormales. Les défauts et les anomalies apparus varient d'une installation à une autre en fonction de sa conception, installation, opération et maintenance

I.5.1 Défaut d'encapsulation :

Ce défaut est causé notamment par délamination et les taches qui apparaissent fréquemment dans des conditions humides et chaudes. Ce défaut se trouve entre l'encapsulation et les cellules actives. Le défaut d'encapsulation peut se produire à cause de l'accumulation de sel, des contaminations, l'infiltration d'humidité ou d'autres facteurs externes.

7

I.5.2 Perte d'adhérence de back-sheet :

Une back-sheet d'un panneau est une protection des composants électroniques de facteurs externes et une sécurité de hautes tensions continues. Cette anomalie peut être causée par la délamination.

I.5.3 Fissuration des cellules :

La fissure peut survenir à n'importe quel moment. Elle peut être causée au cours de processus de fabrication ou au cours de l'emballage et le transport par une mauvaise manipulation et vibration. Processus d'installation est autre cause de ce défaut

I.5.4 Interconnexion endommagée :

Une mauvaise soudure entre ruban d'interconnexion de la branche avec celui de la cellule est la principale raison de ce débranchement. Les contraintes dues au transport, les points chauds, le cycle thermique ou les contraintes mécaniques répétées affaiblissent le ruban d'interconnexion jusqu'à la rupture. La courte distance entre les cellules développe ce type de défaillance. Il peut en résulter des cellules court-circuitées

I.5.5 Pannes au niveau de la boîte de jonction :

Une boîte de jonction est une protection pour le câblage qui lie le module PV aux bornes extérieures des autres dispositifs de système PV. Ce défaut est causé par une mauvaise fixation de la boîte à la backsheet, la pénétration de l'humidité, la corrosion des raccordements, le mauvais câblage menant à l'arc interne, le mauvais montage ou à cause de dégradation thermique

I.5.6 Défauts de diodes bypass :

Ces défauts peuvent apparaitre suite à la rupture de la connexion de la diode ou le montage inverse de la diode bypass

I.5.7 Défaut d'arc :

Il se produit en raison de la discontinuité et de rupture d'isolation entre conducteurs. Ce type de rupture peut produire des incendies.

I.5.8 Défaut de mise à la terre :

Le défaut de mise à la terre est le défaut le plus courant dans le système PV et peut être causé par les raisons suivantes :

- Défaut d'isolation des câbles
- Court-circuit accidentel entre le conducteur normal et la terre
- Une encapsulation détériorée ou dommages causés

I.5.9 L'effet du défaut ligne-ligne :

Un défaut ligne-ligne est un court-circuit entre deux conducteurs porteurs de courant (deux lignes) dans le générateur photovoltaïque avec des potentiels différents. Les défauts ligne-ligne peuvent être causés par la défaillance de l'isolation dans les conducteurs porteurs de courant, les défauts de court-circuit dans la boîte de jonction PV en raison de dommage mécaniques, d'infiltration d'eau et de corrosion, ou de doubles défauts à la terre en même temps dans le générateur PV

I.5.10 Défaut d'incompatibilité (Mismatch) :

Ce défaut se produit lors du changement des paramètres électriques du module par rapport aux valeurs initiales

I.5.11 Défaut de l'ombrage :

L'ombrage est considéré comme un défaut courant dans les générateurs photovoltaïques qui est causé par l'encrassement de la surface avant des cellules photovoltaïques, la neige, les feuilles, l'ombrage des bâtiments adjacents, etc. La cellule ombragée génère moins de courant que les autres cellules en série dans la même chaîne, le courant imposé par la chaîne provoque une surchauffe de la cellule que l'on appelle communément "HotSpot". Pour éviter les points chauds causés par un ombrage sur un PV panneau, des diodes de dérivation sont ajoutées aux chaînes permettant au courant de les traverser en contournant le module ombragé.

C

10

CHAPITRE II

Modélisation du système photovoltaïque

II Modélisation :

La modélisation est un moyen destiné à représenter par une forme mathématique une fonction ou un processus technologique. Dans ce cadre, nous présenterons, la modélisation du système photovoltaïque-, en proposant l'élaboration des modèles mathématiques pour le système de production, afin de renforcer la maîtrise de leur exploitation, surtout du point de vue puissances de production en fonction des conditions météorologiques données ou estimées. Dans ce chapitre, on va montrer le fonctionnement d'une source PV. Le but de la modélisation et la simulation est d'aider à comprendre les critères de conception et de dimensionnement des systèmes PV. Sous l'environnement MATLAB/Simulink, on va présenter nos résultats

II.1 : Le générateur photovoltaïque « GPV » :

Le système photovoltaïque est contrôlé par la commande MPPT, il est présenté à la Figure (II -1)

Figure II.1. Système photovoltaïque

II.2.1 : Modélisation du système photovoltaïque :

Le module fait intervenir un générateur de courant pour la modélisation d'une diode pour les phénomènes de polarisation de la cellule, une résistance série Rs représentant les diverses résistances de contacts et de connexions et une résistance parallèle RP caractérisant les divers courants de fuites dus à la diode et aux effets de bords de la jonction. Le générateur photovoltaïque est représenté par un modèle standard à une seule diode, établit par shockley pour une seule cellule PV, et généralisé à un module PV en le considérant comme un ensemble de cellules identiques branchées en série-parallèle.

On présente le schéma du circuit électrique par la figure (II -2)

Figure II.2.Circuit électrique équivalent d'une cellule photovoltaïque

Dans ce cas, on a choisi un modèle simple ne nécessitant que les paramètres donnés par le fabriquant, la caractéristique I-V de ce modèle est donnée par L'équation (II -1) :

Si l'on suppose que la résistance parallèle (shunte) est infinie ($R = \infty$), l'équation (II -1) devienne :

$$I_{pv} = I_{ph} - I_{sat} \left[\exp\left(\frac{\left(V_{pv} + (I_{pv} * R_s)\right)}{nVT}\right) - 1 \right] \dots \dots \dots \dots (II - 2)$$

II.2.2 Caractérisation du module PV :

Dans ce travail, nous avons simulé le module photovoltaïque **1Soltech 1STH-215-P** qui comporte 60 cellules solaires de silicium monocristallin de 125.125mm connectées en série. Le module PV **1Soltech 1STH-215-P** peut produire une puissance maximale de 213.15 watts à 29 volts. Ceci nous a permis de déterminer la puissance en fonction de la tension et le courant en fonction de la tension du module étudié pour un éclairement de 1000 W/m². Les caractéristiques électriques du module Photovoltaïque en conditions de test standards sont données par le tableau (II.1)

Grandeurs	Valeur
Eclairement standard, E	1000 W/m ²
Température standard, T	25° C
Puissance crête maximale, Pm	213.15 W
Tension optimale, Vmp	29 V
Courant optimale, Iopt	7.35 A
Tension de circuit ouvert, Vco	36.3 V
Courant de court-circuit, Icc	7.84 A

Tableau (II.1) Caractéristiques électriques du module PV 1Soltech 1STH-215-P en condition de test Standard

II.2.3 Simulation du module PV :

Sur la base du modèle mathématique de la cellule solaire développé, on obtient le bloc schématique de SIMULINK est montré sur la Figure (II.3).

Figure II.3. Schéma Bloc du module solaire dans SIMULINK.

La figure II.4 représente les Caractéristique I-V et P-V à température et éclairement constants, et particulièrement aux conditions standards STC ($E = 1000 \text{ w/m}^2$, $T = 25^{\circ}\text{C}$)

Figure II.4. Caractéristiques (I-V, P-V) du module PV dans les conditions standard

II.2.3.1 Effet de la variation de l'éclairement :

Pour visualiser l'influence de l'éclairement, on fixe la température ambiante ($T = 25^{\circ}C$) et on fait varier l'éclairement dans une gamme suffisante.

D'après la figure (II.5), on remarque une forte diminution du courant de court-circuit par rapport à l'éclairement (E) et une faible diminution de la tension du circuit ouvert. Ce qui prouve que le courant de court-circuit de la cellule dépend à l'éclairement, par contre la tension de circuit ouvert subit une légère augmentation quand l'éclairement varie de 200 W/m² a 1000 W/m².

Figure II.5. Caractéristiques (I-V, P-V) Pour différents éclairements et une température T=25°C.

II.2.3.2 Effet de la variation de température :

Pour visualiser l'influence de l'éclairement, on fixe là l'éclairement ($E = 1000 \text{ W/m}^2$) et on fait varier la température dans une gamme suffisante.

Figure II.6. Caractéristiques (I-V, P-V) Pour différentes températures et un éclairement E=1000 W/m2.

On constate d'après la figure (II.6) que l'effet de l'augmentation de la température fait diminuer la tension du circuit ouvert du GPV, contrairement au courant de court-circuit qui reste constant.

L'augmentation de la température fait diminuer la puissance du GPV. Le modèle choisi a donné des résultats concordant avec ceux obtenus la littérature et reflète bien le comportement physique d'une cellule PV vis-à-vis des variations de la température et de l'éclairement, ce qui valide le modèle utilisé.

II.3. CONCLUSON :

Dans ce chapitre nous avons présenté la production de l'énergie électrique à partir d'un générateur photovoltaïque. Nous nous sommes intéressés à l'étude d'un modèle d'une cellule photovoltaïque avec son schéma équivalent.

Ensuite nous avons considérés les différents paramètres du circuit équivalent qui permet de tracer la caractéristique I(V). Nous avons remarqué que les performances d'un GPV sont fortement influencées par des conditions métrologiques tel que l'éclairement et la température.

CHAPITRE III

Simulation des défauts

III. Introduction :

Il y a plusieurs défauts dans une système photovoltaïque. Dans ce chapitre une modélisation et une simulation de certains défauts ont été effectuées sous Matlab/Simulink. Un générateur 5x5 constitué de 25 modules a été utilisé. Les caractéristiques du module sont données par le tableau II.1

III .1 Défaut ligne-terre :

la Figure III.1 représente le schéma de simulation de défaut ligne-terre

Figure III.1 schéma de simulation défaut ligne-terre

Figure III.2 Caractéristiques I-V, P-V pour un défaut ligne-terre

D'après la figure un défaut ligne-terre provoque une diminution de la puissance et la présence de plusieurs points de MPP.

III.2. Défaut ligne-ligne :

La courbe P-V du générateur photovoltaïque défaillant de la figure III.4 est caractérisée par une diminution considérable de la puissance. D'après la figure la tension en circuit ouvert et la puissance de générateur photovoltaïque ont changé en raison du défaut ligne-ligne. Cet effet peut s'expliquer par la modification de la configuration du circuit du générateur photovoltaïque.

Figure III.3 Schémas de simulation défaut ligne-ligne

Figure III.4 Caractéristiques I-V, P-V pour un défaut ligne-ligne
Simulation des défauts

III.3. Défaut Mismatch :

Dans ce cas pour réaliser ce défaut un Changement des paramètres électriques d'un module a été effectué.

Figure III.5 Caractéristiques I-V, P-V pour un défaut Mismatch

D'après la figure III.5 le module incompatible affecte la puissance et le courant de sortie du générateur photovoltaïque.

Simulation des défauts

III.4. Défaut Ombrage :

Les impacts liés à l'ombrage peuvent être réduits en utilisant plusieurs stratégies :

Figure III.6 Caractéristique PV pour défaut ombrage avec et sans bypass-diode

La Figure III.6 montre les caractéristiques du générateurs PV pour un défaut d'ombrage avec et sans bypass-diode

III.4.2. Module Half-Cut :

Il y a une autre solution pour augmenter la puissance en utilisant le module de PV demi-cellules (Half-Cut),

Les modules demi-cellules est une nouvelle technique de fabrication de modules solaires qui a gagné en popularité ces dernières années. Ces modules utilisent des cellules monos ou poly. Cependant, la façon dont ils sont assemblés dans un module a été modifiée pour offrir plus d'efficacité à partir d'un module.

Les cellules font la moitié de la taille des cellules utilisées dans les panneaux solaires ordinaires à 60. La nouvelle conception réduit les pertes internes, ce qui améliore les performances en termes de rendement énergétique, en particulier en période d'irradiance élevée (Figure III.7).

Pour évaluer les performances de deux panneau standard et half-cut une simulation a été effectué en utilisant deux panneau standard avec 60 cellules et un panneau half-cut avec 120 cellules qui délivre la même puissance P=101.9 w (Figure III.10)

Figure III.7 Schéma de deux types de module photovoltaïque (a) classique construit de 60 cellules et (b) half-cut construit de 120 cellules

A)

Simulation des défauts

Figure III.8 schémas de simulation du module PV classique

Figure III.9 schémas de simulation du module PV half-cut

A)

Simulation des défauts

Figure III.10 Caractéristique (P-V) pour un module PV Classique et Half-cut

On remarque d'après la figure III.10 que la puissance dans le module half-cut à augmenter par rapport a la puissance dans le module classique ($P_{pv_Half-cut} = 78.81 \text{ w}, P_{pv_Classique} = 59.3 \text{ w}$)

CHAPITRE IV

Étude comparative des différentes configurations de panneaux photovoltaïques sous l'effet de l'ombrage partiel

IV.1 INTRODUCTION :

Les sources d'énergie non renouvelable qui se détériore et s'épuise rapidement telles que les combustibles pétrochimiques, les combustibles fossiles, le charbon, etc., et de répondre la demande de charge toujours croissante, motive vers le développement de sources d'énergie renouvelables telles que l'énergie solaire, éolienne, marémotrice, etc. Parmi ces sources d'énergie renouvelables, la production d'électricité photovoltaïque (PV) a attiré plus d'attention en raison de la baisse du prix des modules PV, subventions gouvernementales intentionnelles et modèles commerciaux innovants dans systèmes d'alimentation résidentiels, commerciaux et utilitaires [1]. La performance et l'efficacité des systèmes PV dépendent de nombreux facteurs; comme le rayonnement solaire, la température, effet de vieillissement, effets potentiels de dégradation induits, etc [2]. En général, la variation de l'éclairement solaire et de la température seront considérés comme les facteurs les plus influents sur le système PV. Dans des conditions d'éclairement uniforme, les systèmes PV représentent un point puissance maximale (MPP) unique sur les caractéristiques de sortie.

Le MPP peut être traqué en utilisant les techniques conventionnelles perturbe and observe (**P&O**) ou incrémental conductance (**INC**) [3]; [4]

Pendant les conditions d'ombrage partiel (PSC), communément appelées conditions de non-concordance, certaines cellules ou modules d'un générateur PV sont ombragé par les nuages, les arbres, les poteaux, les bâtiments, les déjections d'oiseaux et quelques autres objets [5]. Systèmes photovoltaïques sous PSC présentent plusieurs MPP dans les caractéristiques de sortie qui sont expliquées dans ce chapitre validé avec les résultats de simulation. La présence de plusieurs MPP sur les caractéristiques de sortie peuvent induire en erreur les techniques MPPT.

En raison des PSC, les systèmes PV produisent des pertes de puissance inégales, et d'où la capacité de production d'énergie maximale et l'efficacité du PV système diminue. La topologie du générateur photovoltaïque est l'une des clés les plus fines qui peut réduire considérablement les pertes de puissance inadaptées sous les PSC.

Certains chercheurs ont tenté les approches suivantes pour atténuer les pertes de puissance inégales dans les systèmes PV.

IV.2 Comparaison de différentes topologies de générateurs photovoltaïques :

- [6]ont fait une étude comparative entre les deux topologies les plus utilisées qui sont S et S-P sous PSC.
 La modélisation la simulation et l'analyse est effectuée sous le Logiciel MATLAB/Simulink. Les résultats prouvent que le GMPP dépend de la topologie du générateur photovoltaïque et de la nature de l'ombrage.
- [7] ont détaillé une brève comparaison des diverses topologies de panneaux photovoltaïques sous plusieurs ombrages ligne ou colonne réguliers ou irréguliesr. Les résultats montrent que la topologie T-C-T donne de meilleure performance sous un ombrage ligne et un ombrage colonne.
- [8]ont étudié et comparé les performances des cinq topologies (S, S-P, T-C-T, B-L et H-C). L'analyse est realisée par résolution des équations non linéaires en utilisant l'algorithme Newton- Raphson.
- [9] ont examiné et développé un code MATLAB généralisé pour comparer et étudier les effets du PSC sur diverses topologies de générateurs photovoltaïques.

IV.3 Topologies avancées des générateurs photovoltaïques proposées :

- [10] ont passé en revue diverses algorithme de suivi du point (MPPT)
- [11] ont proposé une technique de reconfiguration adaptative aux modules PV sous PSC et conditions de disfonctionnement.
- [12] ont proposé une stratégie de reconfiguration dynamique pouvant être mise en œuvre pour le photovoltaïque intégré au bâtiment et aux larges systèmes PV affectés par le passage des nuages. Pour mettre en œuvre cette technique, coût élevé et plus de complexité sont mis en jeu.
- [13]ont proposé une nouvelle technique pour extraire la puissance maximale sous PSC. Dans cette technique, l'emplacement physique des modules PV est connecté en utilisant Topologie de générateur PV T-C-T, mais tous les modules PV sont disposés basé sur le modèle de puzzle Su Do Ku. L'inconvénient de cette technique est une répartition inefficace de l'ombre et une augmentation significative des exigences de câblage.

IV.4 Techniques basées sur l'électronique de puissance pour extraire le maximum de puissance :

- [14] ont proposé une architecture MPPT à micro-onduleur pour extraire une puissance maximale. Dans cette architecture chaque module PV a son propre onduleur avec un MPPT et toutes les sorties du microonduleur sont connectées au même bus AC. L'inconvénient de cette technique est que le coût du microonduleur est plus élevé.
- [15] ont proposé une topologie d'hacheur boost à entrées multiples les cellules solaires connectés en série avec des diodes placées en dérivation. La topologie proposée peut être adoptée dans les architectures de système MPPT distribuées qui utilisent des micro-onduleurs.
- [16] ont proposé une nouvelle technique MPPT pour le suivi du GMPP à l'aide de D-flip/approche flop et convertisseur analogique/numérique.

Figure IV.1. Représentation des topologies de générateurs photovoltaïques examinées sous divers PSC et paramètres pris en compte pour comparer les topologies de générateurs photovoltaïques d'évaluation des performances.

La Figure IV.1. Montre les différents types de topologies de générateurs photovoltaïques considérées dans ce travail de recherche sous divers scénarios d'ombrage et les paramètres requis pour l'évaluation des performances.

IV.5 Modélisation mathématique des cellules, modules et générateurs PV :

Figure IV.2.b Générateur PV composé de modules NS × NP

La cellule PV est le composant principal du système PV qui convertit l'énergie solaire PV en énergie électrique. La quantité d'énergie générée de la cellule ou du module PV dépend principalement de l'irradiation solaire et la température. Le modèle idéal, pratique et simplifié, mono-diode d'une cellule PV est illustré sur **la Figure IV.2.a**. Les modèles à deux diodes et à trois de diodes sont rapportés dans Gow et al. Pour une meilleure précision et facilité de calcul mathématique le premier modèle est considéré. L'interconnexion des modules en série et en parallèle ou diverses autres connexions forme le générateur photovoltaïque (**Figure IV.2.b**).

La représentation mathématique des caractéristiques I-V du modèle de cellule PV pratique est donné par l'équation (IV. 1)

Le modèle mathématique du générateur PV composé de NS cellules en série et Np cellules en parallèle est donné par l'Equation (IV. 3)

Q

IV.1 6 Description des différents modèles d'ombrage sous les PSC :

Figure IV.3. Représentation des différents scenarios d'ombrage : (a) Ombrage URS, (b) Ombrage UCS

(C) Ombrage DS, (D) Ombrage SN, (E) Ombrage SW, (F) Ombrage LN, (G) Ombrage LW

Dans ce chapitre, nous présentons une modélisation détaillée et une simulation des différentes topologies de panneaux photovoltaïques pour l'évaluation de leurs performances sous l'effet d'un défaut d'ombrage partiel ou total. Les interconnections considérées sont : série (**S**), Parallèle (**P**), Série-Parallèle (**S-P**), Total-Cross-Tied (**T-C-T**), Bridge-Linked (B-L) et Honey-Comb (H-C).

En simulant un réseau PV 5×5 . L'analyse des performances des topologies de générateurs photovoltaïques sont examinées sous différents scénarios d'ombrage tel que ;

- (Uneven Row Shading ((URS))) : Ombrage irrégulier ligne
- (Uneven Column Shading (UCS)) : Ombrage irrégulier colonne
- (Diagonal Shading (DS)) : Ombrage diagonal
- (Short and Narrow (SN)) : Court et étroit
- (Short and Wide (SW)) : Court et large
- (Long and Narrow (LN)) : Long et étroit
- (Long and Wide (LW)) : Long et large

L'analyse des performances des différentes configurations est effectuée par rapport à la tension à vide Vco, courant de court-circuit Isc, Point de puissance maximum global (GMPP), Point de puissance maximum local (LMPP), tensions et courants correspondants aux GMPP et LMPP, pertes de puissance , facteur de forme et rendement.

Pour chaque scenario d'ombrage, les niveaux d'irradiation solaire sont classés en différents groupes.

Le groupe-1 reçoit un éclairement de 200 W/m2, le groupe-2 reçoit un éclairement de 350 W/m2 ; Le groupe-3 reçoit une irradiance de 600 W/m² et Group-4 reçoit une irradiance de 1000 W/m².

Les modèles d'ombrage et les niveaux d'irradiation solaire pour chaque module PV sous PSC sont représentés sur **Figure IV.3.** Les caractéristiques de sortie simulées des topologies de panneaux photovoltaïques sous chaque motif d'ombrage sont présentées.

IV.1 7 MODELISATION ET SIMULATION DES TOPOLOGIES DE GENERATEURS PHOTOVOLTAÏQUES OMBRAGES :

Dans cette partie on s'est intéressé à faire une étude comparative entre les différentes topologies de connexion des Panneaux photovoltaïques. les simulations ont été effectuées sous Matlab/Simulink en utilisant un générateur photovoltaïque 5×5 construit a partir du module **1Soltech 1STH-215-P; 1 module série; 1 parallèle** dont les paramètres sont définis dans le Tableau (paramètre panneau)

- Séries (S)
- Parallèle (P)
- Séries-Parallèle (S-P)
- Total-Cross-Tied (T-C-T)
- Bridge-Linked (B-L)
- Honey-Comb (H-C)

IV.1 6.1 Configuration Série (S) :

Figure IV.4. schéma simulation topologie Série

Le modèle MATLAB/Simulink de la topologie des générateurs photovoltaïques série 5×5 est illustré sur **Figure IV.4.** Dans cette topologie, tous les modules PV sont connectés en série. Dans ce cas le courant du générateur PV est le même que celui du module et de la cellule. La tension du panneau est équivalente à somme des tensions des modules PV individuels

Sous les PSC, le courant du générateur PV série est limité par le plus bas niveau d'éclairement et les caractéristiques non linéaires des cellules PV ou les modules sont soumis à des pertes de puissance inégales. donc les modules ombragés fonctionnent en condition de polarisation inverse, au lieu de fournir de la puissance, ils dissipe la puissance sous forme de chaleur et provoque des points chauds qui conduit à endommager les modules PV. Pour un fonctionnement sûr du PV modules des effets de point chaud, à chaque diode de dérivation de module PV sont connectés en anti-parallèle .Dans le cadre des PSC ; Les modules PV reçoivent un rayonnement distinct et transmettent polariser les diodes de dérivation.

Ces diodes partagent une partie du court-circuit courant des modules ombragés et représente plusieurs I-V et P-V caractéristiques en une seule caractéristique I-V et P-V. Le simulé caractéristiques de sortie (caractéristiques I-V et P-V) du générateur photovoltaïque série (S) La topologie sous divers modèles d'ombrage est illustrée à la **Figure IV.5**

Figure IV.5 caractéristiques I-V et P-V du la topologie de générateur photovoltaïque série (S).

IV.1 6.2 Configuration parallèle (P):

Figure IV.6 MATLAB/Simulink model of 5x5 de la topologies Parallèle

Le modèle MATLAB/Simulink de topologie de générateur photovoltaïque parallèle 5×5 est illustré sur **Figure IV.6** Dans cette topologie, tous les modules PV sont connectés en parallèle. Dans ce cas, la tension du générateur est identique à la tension du module et le courant est équivalent à la somme des courants des modules.

Dans cette topologie, la tension au point de puissance maximale (VMPP) est presque la même pour les différents scenarios d'ombrage.

Par conséquent, le système PV interconnecté en parallèle fonctionne plus efficacement sous des niveaux d'irradiance solaire variant rapidement .

Sous les PSC la topologie parallèle produit plus de puissance que topologie celle en série cela est du pratiquement aux courants élevés et aux tensions qui ne subissent pas une variation considérable. Cependant, en raison de courants plus élevés, les pertes sont généralement plus élevées.

la sortie simulée caractéristiques de la topologie de panneaux photovoltaïques parallèles sous divers ombrages modèles sont illustrés à **Figure IV.7** À partir de ces caractéristiques, nous avons examiné que sous les PSC, l'effet des diodes de dérivation est ignoré et la sortie les caractéristiques représentent un seul MPP similaire à un éclairement uniforme condition. Cependant, en raison de sa basse tension et de son courant élevé, ce la topologie n'est pas adaptée à de nombreuses applications de systèmes PV et aussi pour l'évaluation des performances des topologies de générateurs photovoltaïques, cette configuration est pas considérée.

Figure IV.7 caractéristiques I-V et P-V du la topologie de générateur photovoltaïque Parallèle (P).

Figure IV.8 MATLAB/Simulink model of 5x5 Série-Parallèle topologie

Dans la topologie série-parallèle, tous les modules sont connectés en série pour former des chaînes afin de générer une tension de sortie souhaitée puis ces chaînes sont connectées en parallèle pour générer le courant de sortie désiré. Cette topologie est généralement la plus couramment utilisée parce qu'elle est facile à concevoir, économique et qu'il n'y a pas de connexions redondantes (Balato et al., 2015). Le modèle construit sous MATLAB/Simulink est illustré sur la **Figure IV.8**. Le circuit comporte cinq strings (branches) en parallèles, chacun contient cinq modules connectés en série. Le courant est la somme des cinq courants et la tension est égale à la somme des tensions des modules. Daprés la **Figure IV.8**, en plus des diodes bypass, des diodes de blocage sont également connectées en série pour protéger les chaîne PV des conditions de fonctionnement sévères tel que l'ombrage partiel ou total ou les court scircuits. En effet ces diodes bloquent le retour du courant vers les modules. Elle est dans ce cas appelée encore diode anti-retour. Cette diode est indispensable lorsque la charge est une batterie pour qu'elle ne débite pas sur le module PV pendant la nuit.. La **Figure IV.9** illustre les caractéristiques electriques souys les differents scenarios d'ombrage

Figure IV.9 caractéristiques I-V et P-V du la topologie de générateur photovoltaïque Serie-Parallèle (S-P).

IV.1 6.4 Configuration Total-Cross-Tied (T-C-T) :

Figure IV.10 MATLAB/Simulink model of 5x5 T-C-T topologie

Cette topologie peut résoudre les inconvénients de la topologie S-P. Dans ce cas les modules sont connectés en parallèle sous forme de ligne, puis les lignes sont connectées en série (Gautam et al., 2002). Le modèle MATLAB/Simulink de la topologie du générateur PV 5×5 T-C-T est représenté sur la **Figure IV.10**. Dans cette topologie, la tension aux bornes de chaque ligne est égale à la tension du circuit ouvert d'un seul module, la tension de sortie souhaitée est égale à la somme des tensions sur toutes les lignes.

Le courant total est la somme des courants générés par tous les modules. Étant donné que la topologie du générateur PV T-C-T a un nombre plus élevé de connexions électriques par rapport à d'autres topologies ; l'architecture de cette topologie est complexe, les pertes de puissance dues aux connexions de câblage sont élevées et le coût du câblage électrique est aussi considérablement élevé. Les caractéristiques sont illustrées sur la **Figure IV.11**

Figure IV.11 caractéristiques I-V et P-V du la topologie de générateur photovoltaïque Total-Cross-Tied (T-C-T).

	D
45	

Ŵ

IV.1 6.5 Configuration Bridge-Linked (B-L) :

Figure IV.12 MATLAB/Simulink model of 5x5 B-L topologie

La configuration (BL) est représentée sur la figure composée de plusieurs mailles répétitives. Chaque maille est constituée de quatre modules de deux strings adjacents, reliés entre eux par des connexions.

Pour la topologie série, si certaines cellules ou modules sont soumis aux PSC ou aux dysfonctionnements, la tension de sortie totale du système PV chute considérablement. La topologie S-P a plus de connexions en série entre les modules d'une chaîne cela produit plus de pertes de puissance. Afin de réduire ces pertes dans S et S-P, toutes les cellules ou modules sont connectés en pont **Figure IV.12**. La topologie B-L a plus de nombre de connexions en série par rapport à T-C-T et moins de connexions par rapport aux topologies S et S-P. Les caractéristiques de sortie sont illustrée sur la **Figure IV.13**.

Figure IV.13 caractéristiques I-V et P-V du la topologie de générateur photovoltaïque Bridge-Linked (B-L)

IV.1 6.6 Configuration Honey-Comb (H-C) :

Figure IV.14 MATLAB/Simulink model of 5x5 HONEY-COMB (H-C) topologies

Les inconvénients de la topologie des générateurs photovoltaïques S et S-P peuvent également être surmontés en utilisant la topologie de générateur photovoltaïque H-C (Cipriani et al., 2014).

Le modèle MATLAB/Simulink de topologie de générateur PV 5×5 H-C est illustré sur la **Figure IV.14**. Dans cette topologie, les modules sont interconnectés de la même manière qu'une forme hexagonale en nid d'abeille. La topologie du générateur photovoltaïque H-C a un plus grand nombre de connexions en série par rapport aux topologies T-C-T et B-L, et ayant moins de connexions par rapport aux topologies de réseau S et S-P. Donc, les pertes de puissance sont plus importantes. Les caractéristiques de sortie simulées sont illustrés sur la **Figure IV.15**

Figure IV.15 caractéristiques I-V et P-V du la topologie de générateur photovoltaïque Honey-Comb (H-C)

Soient I_J et V_J le courant et les tensions du module dans une chaîne, I_S et V_R sont les courants et les tensions dans une chaîne, et I_0 et V_0 sont les PV courant et tensions du réseau. Les sorties courantes, tension et puissance de toutes les topologies de générateurs photovoltaïques en termes de courants de modules et de chaînes et les tensions sont exprimées dans le tableau 1.

IV.1 7 Évaluation des performances des topologies de générateurs photovoltaïques sous PSC :

Cette section décrit la comparaison de l'évaluation des performances des Topologies de générateurs photovoltaïques S, P, S-P, T-C-T, B-L et H-C sous PSC pour sélectionner la meilleure topologie de générateur photovoltaïque qui offre les meilleures performances.

L'évaluation des performances des topologies de générateurs photovoltaïques est déterminée en ce qui concerne la perte de puissance par désadaptation, le facteur de remplissage (FF) et efficacité. La perte de puissance inadaptée, $\Delta P_L(\%)$ du système PV est donné dans l'éq. (4) (Mäki et al., 2012).

power loss,
$$\Delta P_L(\%) = \frac{P_{MPP} - P_{PSC}}{P_{MPP}} \times 100 \dots \dots \dots \dots \dots \dots \dots (4)$$

Où P_{MPP} désigne la puissance maximale générée sous un éclairement uniforme condition et P_{PSC} est la puissance maximale générée sous PSC particulier. La puissance maximale ($V_{MPP} \times I_{MPP}$) générée à un PSC particulier est lié à la puissance ($V_{OC} \times I_{SC}$) générée. Le remplissage facteur peut être calculé à l'aide de l'équation. (5). Comme la valeur FF est proche à l'unité, les performances du système PV sont supérieures.

L'efficacité d'un système PV est définie comme le rapport du maximum puissance de sortie à la puissance solaire d'entrée et est calculée par Eq. (6)

Où 'I' est l'intensité solaire par mètre carré et 'A' est la surface sur quel rayonnement solaire tombe sur le système PV.

Avant d'aborder les performances des topologies de générateurs photovoltaïques sous PSC, nous discutons d'abord de la performance dans des conditions d'éclairement uniforme.

IV.1.8.1 Condition d'éclairement uniforme (1000 W/m2) :

Dans des conditions d'irradiance uniforme, Les pertes de puissance de tous ces topologies est presque égal à zéro et la fonction de dérivation diodes est ignoré puisque toutes ces diodes fonctionnent en polarisation inverse condition seulement. Le facteur de forme de toutes ces topologies est presque égal à 74 %.

Topologie	Courant de sortie (A)	Tension de sortie (V)	Puissance de sortie (W)
S	$I_0 = I_J$	$V_0 = \sum_{J=1}^{J=25} V_J = 25 \times V_J$	$P_0 = V_0 \times I_0 = 25 \times V_J \times I_J$
Р	$I_0 = \sum_{J=1}^{J=25} I_J = 25 \times I_J$	$V_0 = V_J$	$P_0 = V_0 \times I_0 = 25 \times V_J \times I_J$
S-P	$I_0 = I_{S1} + I_{S2} + \dots + I_{S5} = 5I_S$	$V_0 = \sum_{J=1}^{J=25} V_J = 25 \times V_J$	$P_0 = V_0 \times I_0 = 25 \times V_J \times I_S$
T-C-T	$I_0 = I_{J1} + I_{J2} + \dots + I_{J5} = 5I_J$	$V_0 = V_{R1} + V_{R2} + \dots + V_{R5} = 5V_F$	$P_0 = V_0 \times I_0 = 25 \times V_R \times I_J$
B-L	$I_0 = I_1 + I_4 + I_9 + I_{14} + I_{19} = 5I_S$	$V_0 = \sum_{J=1}^{J=25} V_J = 25 \times V_J$	$P_0 = V_0 \times I_0 = 25 \times V_J \times I_S$
H-C	$I_0 = I_1 + I_4 + I_9 + I_{14} + I_{19} = 5I_S$	$V_0 = \sum_{J=1}^{J=25} V_J = 25 \times V_J$	$P_0 = V_0 \times I_0 = 25 \times V_J \times I_S$

Tableau IV.1 : expressions pour la tension de courant de sortie et la puissance du réseau PV Array

Topologies	$V_{oc}(v)$	I _{sc} (A)	MMP G	ilobale			MPP Locale		ΔP_L	FF	$\eta\%$
			Р _{ММР}	V _{MMP}	I _{MMP}	P _{MMP}	V _{MMP}	I _{MMP}			
S	915	7.855	5530	728.1	7.3116	/	/	/	0	74.068	74.068
Р	36.3	196.3	5530	29.15	182.84	/	/	/	0	74.796	74.796
S-P	181.5	39.3	5530	145.142	36.72	/	/	/	0	74.718	74.718
тст	181.5	39.3	5530	145.316	36.67	/	/	/	0	74.705	74.705
B-L	181.5	39.3	5530	145.328	36.675	/	/	/	0	74.722	74.722
H-C	181.5	39.3	5530	145.317	36.678	/	/	/	0	74.7227	74.722

Tableau IV.2 Variations des Paramètres électriques du générateurs PV 5X5. Topologie STC

Topologie	s V _{oc} (V) $I_{sc}(\mathbf{A})$	N	APP Globa	ale	I		ΔP_L	FF	η %	
			P _{MMP}	V _{MMP}	I _{MMP}	P _{MMP}	V _{MMP}	I _{MMP}			
S	901.2	7.855	4229	578.5	7.3102	4014 3483 2217	688.9 746 816.9	5.82 4.66 2.71	23.52	59.74	13
Р	36.28	196.5	4845	29.06	166.72	/	/	/	12.38	67.96	15.504
S-P	180.5	37.97	4486	145.4	30.85	4376	133.5	32.77	18.87	65.45	14.35
						4486	146	30.72			
TCT	180.0	39.21	4231	115.3	36.69	3338	160.6	20.78	23.49	59.94	13.53
B-L	180.4	37.68	4247	115.8	36.6753	3297	158.6	20.7881	23.20	62.47	13.59
H-C	180.4	39.25	4229	116	36.4568	3287	158.8	20.69	23.52	59.72	13.5

52

M

Topologies	$V_{oc}(v)$	I _{sc} (A)	MPP	Globale			MPP loca	ale	ΔP_L	FF	η %
			P _{MMP}	V _{MMP}	I _{MMP}	P _{MMP}	V _{MMP}	I _{MMP}			
S	901.2	7.855	4229	578.5	7.3102	4014	688.9	5.82	23.52	59.74	13.51
						3483	746	4.66			
						2217	816.9	2.71			
Р	36.28	196.5	4845	29.06	166.72	/	/	/	12.38	67.96	15.504
S-P	180.5	37.64	4486	145.4	30.85	4376	133.5	32.77	18.87	65.45	14.35
						4486	146	30.72			
тст	180.6	37.71	4732	147.6	32.05	2943	84.12	34.98	14.43	69.48	15.14
B-L	180.6	37.69	4630	148.8	31.115	3054	88.16	34.64	16.27	68.09	14.81
H-C	180.6	37.73	4606	147.7	31.18	2076	56.65	36.64	16.70	67.59	14.73
						3284	94.3	34.22			

A

Topologies	$V_{oc}(v)$	I _{sc} (A)	MPP	Globale			MPP loca	ıle	ΔP_L	FF	η %
			P _{MMP}	V _{MMP}	I _{MMP}	P _{MMP}	V _{MMP}	I _{MMP}			
S	901.2	7.855	4229	578.5	7.3102	4014	688.9	5.82	23.52	59.74	13.51
						3483	746	4.66			
						2217	816.9	2.71			
Р	36	178.5	4845	29.06	166.72	/	/	/	12.38	75.39	15.504
S-P	180.3	39.27	4229	115.8	36.51	3214	155.7	32.77	20.64	59.72	13.53
тст	180.6	37.71	4732	148	31.97	1886	51.66	36.50	14.43	69.481	15.14
						2946	84.38	34.91			
						3844	114.7	33.51			
B-L	180.4	37.73	4703	149.3	31.50	3033	87.77	34.55	14.95	69.09	15.04
						3961	119.3	33.20			
H-C	180.6	39.31	4388	152.9	28.69	2103	56.47	37.24	20.65	61.80	14.04
						3041	87.36	34.80			
						3860	118.1	32.68			

Topologies	$V_{oc}(V)$	I _{sc} (A)	MPP	Globale		Ν	APP locale	5	ΔP_L	FF	$\eta\%$
			P_{MMP}	V _{MMP}	I _{MMP}	P _{MMP}	V _{MMP}	I _{MMP}			
S	899.01	7.845	4448	608.3	7.3121	2102	775.8	2.709	19.56	63.06	14.23
						1330	858.4	1.54			
Р	36.05	173.08	4714	29.06	162.21	/	/	/	14.75	75.55	15.08
S-P	179.8	39.32	3736	133	28.09	3325	91.03	36.52	32.44	52.84	11.95
тст	180.1	39.27	4046	154.3	26.41	3469	122.5	28.31	26.83	57.20	12.94
						3136	85.83	36.53			
B-L	180.3	39.27	3858	151.7	25.43	3613	127.4	28.35	30.23	54.41	12.34
						3192	87.27	36.57			
H-C	179.9	39.32	3760	149.6	25.13	2103	56.47	37.24	32.00	50.03	12.03
						3623	128.5	28.19			
						3221	87.74	36.82			

Tableau IV.6 Variations des paramètres des topologies de générateurs PV SN

M

G

Topologies	$V_{oc}(V)$	I _{sc} (A)	MPP	Globale			MPP loc	ale	ΔP_L	FF	η %
			P _{MMP}	V _{MMP}	I _{MMP}	P _{MMP}	V _{MMP}	I _{MMP}			
S	878.3	7.857	1802	393	4.585	1475	261.3	5.64	67.41	26.11	5.766
						1609	600.9	2.677			
						1240	815.7	1.520			
Р	3.716	109.3	2978	29.4	101.29	/	/	/	46.14	7.332	9.5296
S-P	176.4	29.87	2314	150.5	15.37	1599	57.57	27.77	56.69	43.91	7.40
тст	176.4	29.84	2395	151.8	15.77	1565	55.99	27.95	26.83	57.20	12.94
B-L	176.6	29.84	2376	151.4	15.69	1585	56.81	27.90	57.03	45.08	7.60
H-C	176.3	29.87	2375	152.5	15.57	2103	56.47	37.24	57.05	45.09	7.6
						1565	56.08	27.90			

Tableau IV.7 Variations des paramètres des topologies de générateurs PV SW

Ŵ

Ð

Topologies	$V_{oc}(V)$	$I_{sc}(A)$	MPP	Globale			MPP loc	ale	ΔP_L	FF	η %
			P _{MMP}	V _{MMP}	I _{MMP}	P _{MMP}	V _{MMP}	I _{MMP}			
S	891.6	7.863	3135	427.4	7.33	2765	597.7	4.62	43.30	44.71	10.032
						1966	727.5	2.70			
						1292	848.9	1.52			
Р	35.73	138.4	3762	29.06	129.45	/	/	/	31.97	76.07	12.03
S-P	176.4	29.87	2413	92.72	26.02	2337	152.1	15.36	56.36	45.88	7.72
						2072	56.64	36.58			
ТСТ	177.6	39.25	2503	156.5	15.99	2364	91.19	25.92	54.73	35.90	8.00
						2042	56.07	36.41			
B-L	178.1	39.26	2479	155.7	15.92	1585	56.81	27.90	55.17	35.45	7.93
						2354	91.61	25.69			
						2059	56	36.76			
H-C	177.5	39.25	2454	155.2	15.81	2348	90.79	25.86	55.62	35.22	7.852
						2042	55.45	36.88			

M

Topologies	$V_{oc}(V)$	I _{sc} (A)	MPP	Globale			MPP loca	ale	ΔP_L	FF	η%
			P _{MMP}	V _{MMP}	I _{MMP}	P _{MMP}	V _{MMP}	I _{MMP}			
S	891.2	7.863	2698	368.1	7.329	2453	531.6	4.614	51.21	34.97	8.63
						1847	682.6	2.705			
						1284	831.8	1.544			
Р	35.73	149.8	4070	29.06	140.05	/	/	/	26.40	76.04	13.02
S-P	178.9	33.03	3649	146.3	24.94	1880	60.75	30.94	30.04	61.75	11.67
						2754	97.67	28.19			
						3490	131.3	26.58			
тст	179.9	32.98	3878	149.4	25.95	1722	55.68	30.92	29.87	65.36	12.40
						2456	86.72	28.32			
						3194	117.9	27.09			
B-L	178.9	33.01	3769	148.4	25.39	1844	59.92	30.77	31.85	63.82	12.06
						2702	95.92	28.16			
						3227	120.9	26.69			
H-C	178.9	32.99	3737	148.3	25.19	1780	57.38	31.02	32.47	63.31	11.95
						2718	96.05	28.29			
						3322	124.6	26.66			

Tableau IV.9 Variations des paramètres des topologies de générateurs PV LW

4

58

9

Conclusion :

Conclusion :

La comparaison des performances des topologies de générateurs photovoltaïques est déterminée Par rapport à la tension en circuit ouvert, courant de court-circuit, point de puissance maximum global (GMPP), points de puissance maximum local (LMPP), tensions et courants correspondants aux GMPP et LMPP, pertes de puissance, facteur de forme et efficacité des topologies de générateurs photovoltaïques.

Les résultats prouvent que la configuration TCT permet d'atteindre une production de performances électriques supérieure à celle des configurations PV disponibles. Les travaux futurs visent à développer une méthode de contrôle intelligente pour le déplacement physique des modules PV sous différentes nuances.
CONCLUSION GENERALE

Conclusion générale :

Le but de ce projet est l'étude, la modélisation et la simulation des différentes configurations des panneaux PV sous l'ombrage partiel. Dans un premier temps, on a donné des notions sur l'énergie photovoltaïque, le rayonnements solaire, l'effet PV, la cellule PV et son principe de fonctionnement.

Le deuxième chapitre était consacré pour la modélisation de la cellule photovoltaïque, les différents facteurs qui influent les caractéristiques I-V et PV. Dans le quatrième chapitre, nous avons présenté les différentes configurations existantes, nous avons utilisé le modèle à une diode pour étudier et modéliser l'effet de l'ombrage partiel sur les configurations des panneaux PV série (S) , Parallèle (P), série-parallèle (SP), Bridge-Linked (BL), Honey-Comb (HC), Total-Cross-Tied et (TCT).

D'après les résultats des simulation obtenues, on peut dire que : La configuration TCT présente les meilleures performances, c'est-à-dire la perte de puissance la plus faible et donc la puissance maximale la plus élevée dans les conditions étudiées. Les travaux futurs visent à :

- Améliorer la configuration TCT.

- Développer de nouvelles configurations des panneaux PV.

- Utiliser les résultats obtenus dans un algorithme intelligent pour le suivi du point maximum global de puissance (GMPP) dans le cas d'ombrage partiel.

Références bibliographiques :

[1] Energie solaire, calculs et optimisation, Jaques BERNARD, page 207.

[2] Energie solaire, calculs et optimisation, Jaques BERNARD, page 19.

[3] Energie solaire, calculs et optimisation, Jaques BERNARD, page 24.

[4] Energie solaire photovoltaïque, 2e édition, A. LABOURET, M. VILLOZ, page 25.

[5] Cellules solaires, les bases de l'énergie photovoltaïque 5e édition, A. LABOURET, P. CUMUNEL, JP. BRAUN, B. FERAGGI, page 19.

[6] Energie solaire, calculs et optimisation, Jaques BERNARD, page 207.

[7] M. Belhadj « Modélisation d'un système de captage photovoltaïque autonome. » Mémoire de magister Centre universitaire de Bechar 2007-2008.

[8] https://www.les-energies- renouvelables.eu/conseils/photovoltaique/ comment-fonctionne-le-panneau- solaire-photovoltaique/fonctionnementcellule-photovoltaique/

[9] Energie solaire, calculs et optimisation, Jacques BERNARD, page 223.

[10] Y.J Wang and P.C Hsu "An investigation on partial shading of PV modules with different connection configurations of PV cells."

[11] L. Ishaque, Z. Salama, H. Taheri and Syafaruddin "Modeling and simulation of PV system during partial shading based on two-diode model." Simul. Model. Pract. Theory, vol.19, no.7, pages 1613, 1626. Aug. 2011.

[12] Cellules solaires, les bases de l'énergie photovoltaïque 5e édition, A. LABOURET, P. CUMUNEL, JP. BRAUN, B. FERAGGI, page 38.

[13] M. Hatti, « Contrôleur Flou pour la Poursuite du Point de Puissance Maximum d'un Système Photovoltaïque », JCGE'08, Lyon, 2008.

[14] Y.J Wang and P.C Hsu "An investigation on partial shading of PV modules with different connection configurations of PV cells."

[15] N. Rakesh and T. V. Madhavaram, 'Performance enhancement of partially shaded solar PV array using novel shade dispersion technique', Front. Energy, vol. 10, no. 2, pages. 227–239, Jun. 2016.

[16] L. F. L. Villa, D. Picault, B. Raison, S. Bacha, and A. Labonne, 'Maximizing the Power Output of Partially Shaded Photovoltaic Plants Through Optimization of the Interconnections Among Its Modules', IEEE J. Photovolt., vol. 2, no. 2, pp. 154–163, Apr. 2012.

62