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Abstract

This thesis is dedicated to the study of the qualitative behavior of some classes
of non-linear difference equations and system of difference equations. We fo-
cused on the study of the boundedness character, the asymptotic stability of
equilibrium points, oscillation, existence of periodic solutions and the global
attractivity about equilibrium points of second order quadratic autonomous
rational difference equation as well as the non-autonomous higher order ra-
tional difference equation. In addition to that we are interested to solve an
open problem concerning the system of higher order non-autonomous differ-
ence equations. As well as another third order non-autonomous system. As
an application of difference equations and their system, we have giving two
biological models. We conclude our work by giving some numerical examples
which permit to confirm and illustrate our contributions.

Keywords: Difference equations, Periodic solutions, Global asymptotic sta-
bility, Boundedness.
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Résumé

Cette thèse est consacrée à l’étude du comportement qualitative de certaines
classes d’équations aux différences non linéaires et de système d’équations aux
différences non linéaires. Nous nous sommes concentrés sur l’étude du car-
actère de la bornitude, de la stabilité asymptotique des points d’équilibres,
l’oscillation, de l’existence des solutions périodiques et de l’attractivité glob-
ale autour des points d’équilibres de l’équations aux différences rationnelles
autonomes quadratiques du second ordre. Ainsi que l’équation aux différences
rationnelles non autonome d’ordre supérieur. Comme application des équa-
tions aux différences et leur système. Nous concluons notre travail en donnant
quelques exemples numérique qui permettent de confirmer et d’illustrer nos
contributions.

Mots clés: Equations aux différences, Solutions périodiques, Stabilité asymp-
totique globale, bornitude.
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الملخص                                                          

                 

طيةة  ال  غيرالفروق معادلات  هذه الأطروحة كرست لدراسة السلوك النوعي لبعض أأنواع معادلات و جملة

ية  ورل الدلو الح وجودو   التذبذب الاس تقرار المقارب لنقاط التوازن   ركزنا على دراسة خاصةة المحدودية

لرتبة الثانةة و معادلة لنقاط التوازن لمعادلة الفروق الكسرية التربةعةة الذاتةة من ا كلةةبالاإضافة الى الجاذبةة ال 

اتةة الذ غير وقفر   لة مفتوحة تخص جملة معادلتيأأ سذلك اهتممنا بحل م وكاتةة من الرت  العلةا  الذغير الفروق 

عطياء  ذات الرت  العلةا. كتطيبةق لمعادلات الفروق وجمل معادلاتها قدمنا نموذجين بةولوجيين.  نختم عملنا باإ

. بعض الأمثلة العددية التي تسمح بتأأكةد وتوضةح مساهمتنا   

ية .        المحدود  الاس تقرار المقارب الكلي   الحلول الدورية   ت الفروق معادلا الكلمات المفتاحية:        

                                                                                                                 

                                                   

 



Contents

Introduction 7

1 Preliminaries and Applications to Biology 9
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Definition of Stability of Difference Equations . . . . . . . . . . . . 9
1.1.2 Linearized Stability Analysis . . . . . . . . . . . . . . . . . . . . . . 11
1.1.3 Linearized Stability of the Higher Order Systems . . . . . . . . . . 12

1.2 Applications to Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.1 The Beverton-Holt Model With Periodic Environment . . . . . . . 16
1.2.2 The Flour Beetle Model . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Global Stability of Second Order Quadratic Rational Difference Equa-
tion 20
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Existence and Boundedness of Solutions . . . . . . . . . . . . . . . . . . . 21
2.3 Existence and Local Stability of Unique Positive Equilibrium Points . . . . 23
2.4 Global Attractivity of the Positive Equilibrium Point . . . . . . . . . . . . 29
2.5 Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 On the Global Behavior of Higher-Order Non-autonomous Rational Dif-
ference Equation 42
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Oscillation of Positive Solutions . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Boundedness of Positive Solutions . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Global Asymptotic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Dynamics of a System of Higher Order Difference Equations with a
Period-Two Coefficient 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Boundedness Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Local Asymptotic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Global Asymptotic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6



Introduction

Difference equations, in the form of recursions and finite differences have recently been a
subject of big attraction for mathematicians thanks to their ancient appearance, richness
and appreciable flexibility for use. This use dated back to the beginning of the year 2000s
before Jesus Christ (B.C) by ancient civilizations like the Babylonians while studying
numbers.

Around 250.B.C., Archimedes employed the nonlinear difference equations to calculate
the circumference of a circle. In 1202, Leonardo de Pisa known as "Fibonacci" formulated
his problem of rabbits which led to the Fibonacci sequence 1,1,2,3,5,8,13... It is also known
that Isaac Newton made use of their calculus in the late 1600s. Then, around 1634, Gerard
Albert gave the general expression of the sequence of Fibonacci Fn+1 = Fn + Fn−1.

In 1769, Leonhard Euler had used for the first time linear difference equation to
approximate the solutions of differential equations. After that, George Boole wrote a
definitive treatise on the calculus of finite differences in 1872.

In addition to inertia gained by centuries-long research in differential equations, the
continued widespread modeling of scientific phenomena in terms of differential equations
and systems today leads to the growth of this field at a higher rate than difference equa-
tions.

Difference equations have become a valuable tool of a big importance in many fields
and scientific disciplines and this is due to their various applications in many domains
such as economics, ecology, biology, theory of probability,...See [13, 14, 22, 24, 25, 23].

In fact, difference equations are used for the stimulation of ordinary differential equa-
tions or the partial derivation of differential equations in numerical analysis to solve the
equations by using sequences with the research of approximate value of the solution. In
addition, they are also used in modeling real life phenomena.

In 2005, Saber Elaydi in his book [22] Introduction to Difference equations, set the
fundamental principles and notions for the theory of difference equations.

Non-autonomous difference equations constitute a special class of difference equations
so as the coefficients are variable. By comparison with those with constant coefficients
(also called autonomous), their studies looks more difficult and complicated and there
are no many works in this way. Sometimes, in nature, the vital in a changing phe-
nomenon vary, and this explain well the consideration of discrete models represented by
non-autonomous difference equations, in particular the case of periodicity.

The main objective of this research work [Qualitative Study of Certain Second Order
Quadratic Difference Equations, 2022] is the qualitative study of behaviors of the solution

7



CONTENTS

of certain equations and system of autonomous and non-autonomous difference equations.
The present thesis comprises four chapters.

In the first chapter, we start by giving some notions about difference equations and
their systems as well as the tools needed in this research. Next, we give the application of
two biological models. The first is the Beverton Model with periodic environment which
arises in the study of response of population to periodically fluctuating forced environment
such as seasonal fluctuations in carrying-capacity or demographic parameters such as birth
or death rates. The second is concerned with the modeling interaction between species,
describing the intra-species dynamics when the biological life cycle of the species creates
distinct forms of the organism. Such is the case for many insects and one of the preeminent
examples in the literature is the larva-pupa-adult (LPA) or Flour Beetle Model.

In the second chapter, we study the quadratic fractional difference equation

xn+1 = axn + bxn−1 +
αxn + βxn−1 + γ

Axn +Bxn−1 + C
,

we investigate the boundedness of solutions, the global stability of the positive equilibrium
point and the occurrence of periodic solutions with non-negative parameters and initial
values.

In the third chapter, we are interested in the generalization of the works of kerker et
al.[37] where we investigated the global behavior of higher-order non-autonomous rational
difference equation

xn+1 =
αn + xn−r

αn + xn−k

, n = 0, 1, ...,

where {αn}n≥0 is a bounded sequence of positive numbers and r < k are positive integers.
We study the oscillation about the equilibrium point ȳ = 1, then the boundedness of
the positive solutions. After, the analysis of the global attractor and finally the global
asymptotic stability (see [48]).

In the fourth chapter , we study the dynamics of higher-order difference equations
with period two coefficient

xn+1 = αn +
yn−k

yn
, yn+1 = αn +

xn−k

xn
, n = 0, 1, . . . ,

where {αn} is a periodic sequence of non-negative real numbers and the initial conditions
xi, yi are arbitrary positive numbers for i = −k,−k + 1,−k + 2, . . . , 0 and k ∈ Z+. The
purpose of the study here is to transform this non-autonomous system to an equivalent
fourth-order autonomous system and to discuss its behavior starting by the boundedness
character, the local stability, global stability as well as the rate of convergence of the
solutions.(see [49]).
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1
Chapter Preliminaries and

Applications to Biology

1.1 Preliminaries

In this preliminary section, we recall some general notions about difference equations and
the stability with the linearization method. As well as some theorems that proved to be
useful to our thesis. For more details, we refer readers to [11, 22, 43, 54].

1.1.1 Definition of Stability of Difference Equations

Definition 1.1. (Difference Equations): A difference equation of order (k + 1) is an
equation of the form

xn+1 = f(n, xn, xn−1, ..., xn−k), n ≥ 0, (1.1)

where f : N × Ik+1 −→ I be a continuously differentiable function. The set I is usually
an interval of real numbers, or union of intervals. The solution of equation (1.1) obtained
from initial point ( x0, x−1, ..., x−k) is a sequence {xn} ∈ I such that xn satisfies (1.1)
for all n > 0. An initial point ( x0, x−1, ..., x−k) generates a (forward) solution {xn} by
iteration of the function

(n, xn, xn−1, ..., xn−k) −→ f(n, xn, xn−1, ..., xn−k) : N× Ik+1 −→ I,

so long as each iterate xn stays in I. When the function f does not depend on index n,
the difference equation in (1.1) is autonomous, i.e;

xn+1 = f(xn, xn−1, ..., xn−k), n ≥ 0, (1.2)

otherwise, it is non-autonomous. Solutions of (1.1) or (1.2) are also called orbits or
trajectories.
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1.1. PRELIMINARIES

Definition 1.2. (Equilibrium Point): A point x̄ ∈ I such that x̄ = f(n, x̄, x̄, ..., x̄) for
all n ≥ 0, is called an equilibrium point of equation (1.1). In particular, x̄ ∈ I is an
equilibrium point of equation (1.2) if it satisfies the equation

x̄ = f(x̄, x̄, ..., x̄).

Definition 1.3. (Stability): An equilibrium point x̄ of (1.1) is said to be

1. Locally stable if, for every ε > 0, there exists δ > 0 such that for all
x0, x−1, ..., x−k ∈ I with |x−k − x̄|+ |x−k+1− x̄|+ ...+ |x0− x̄| < δ then |xn− x̄| < ε,
for all n ≥ −k. Otherwise, the equilibrium x̄ is called unstable.

2. Attractive if there exists µ > 0 such that for all x0, x−1, ..., x−k ∈ I with
|x−k − x̄|+ |x−k+1 − x̄|+ ...+ |x0 − x̄| < µ, then

lim
n→∞

xn = x̄.

If µ = ∞, x̄ is called globally attractive.

3. Locally asymptotically stable if it is locally stable and attractive.

4. Globally asymptotically stable if it is stable and globally attractive.

Definition 1.4. (Periodicity): A solution {xn}n≥−k of equation (1.1) is called periodic
with period p if there exists an integer p ≥ 1 such that

xn+p = xn, for all n ≥ −k. (1.3)

A solution is called periodic with prime period p if p is the smallest positive integer for
which equation (1.3) holds.

Definition 1.5. (Semi-cycle):

• A string of sequential terms {xl, . . . , xm}, l ≥ −k,m ≤ ∞ is said to be a positive
semi-cycle if xi ≥ x̄, i ∈ {l, . . . ,m}, xl−1 < x̄ and xm+1 < x̄.

• A string of sequential terms {xl, . . . , xm}, l ≥ −k,m ≤ ∞ is said to be a negative
semi-cycle if xi < x̄, i ∈ {l, . . . ,m}, xl−1 ≥ x̄ and xm+1 ≥ x̄.

10



1.1. PRELIMINARIES

Definition 1.6. (Oscillation): A solution {xn}n≥−k of Eq. (1.1) is called non-oscillatory
if there exists p ≥ −k such that either

xn > x̄, ∀n ≥ p or xn < x̄, ∀n ≥ p,

and it is called oscillatory if it is not non-oscillatory.

Now, we give a reminder about the comparison principle for non-autonomous difference
equations (see [43]).

Theorem 1.1. Let z ≥ 0 be a real number, g(n, z) be a non-decreasing function with
respect to z for any fixed natural number n ≥ n0, n0 ∈ N. Suppose that for n ≥ n0, we
have

xn+1 ≤ g(n, xn),

yn+1 ≥ g(n, yn).

Then,
xn0 ≤ yn0

implies that
xn ≤ yn, ∀n ≥ n0.

1.1.2 Linearized Stability Analysis

The linearized equation of equation (1.2) about the equilibrium point x̄ is

yn+1 = p0yn + p1yn−1 + · · ·+ pkyn−k, n ∈ N (1.4)

where

p0 =
∂f

∂xn
(x̄, x̄, . . . , x̄), p1 =

∂f

∂xn−1

(x̄, x̄, . . . , x̄), . . . , pk =
∂f

∂xn−k

(x̄, x̄, . . . , x̄).

The characteristic equation of equation (1.4) is

λk+1 − p0λ
k − · · · − pk−1λ− pk = 0 (1.5)

11



1.1. PRELIMINARIES

Next, we set the theorem about Linearized Stability

Theorem 1.2. Let x̄ be an equilibrium point of equation (1.2). Then, the following
statements are true

(i) If all roots of equation (1.5) lie inside the open unit disk |λ| < 1. then x̄ is locally
asymptotically stable.

(ii) If at least one root of equation (1.5) has absolute value greater than one, then x̄ is
unstable.

Definition 1.7. The equilibrium point x̄ of equation (1.2) is called

1. Hyperbolic if, no root of equation (1.5) has absolute value equal to one. If there
exists a root of equation (1.5) with absolute value equal to one, then the equilibrium
point x̄ is called non-hyperbolic.

2. A saddle point if, it is hyperbolic and if there exists a root of equation (1.5) with
absolute value less than one and another root of equation (1.5) with absolute value
greater than one.

3. Repeller if, all roots of equation (1.5) have absolute value greater than one.

1.1.3 Linearized Stability of the Higher Order Systems

Let f and g be two continuously differentiable functions:

f : Ik+1 × Jk+1 −→ I, g : Ik+1 × Jk+1 −→ J,

where I, J are some interval of real numbers. For n ∈ N, consider the system of difference
equations {

xn+1 = f(xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k)

yn+1 = g(xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k)
(1.6)

where n, k ∈ N, (x−k, x−k+1, . . . , x0) ∈ Ik+1 and (y−k, y−k+1, . . . , y0) ∈ Jk+1.
Define the map F : Ik+1 × Jk+1 −→ Ik+1 × Jk+1 by

F (X) = (f0(X), f1(X), . . . , fk(X), g0(X), g1(X), . . . , gk(X))

where

X = (u0, u1, . . . , uk, v0, v1, . . . , vk)
T ,

f0(X) = f(X), f1(X) = u0, . . . , fk(X) = uk−1,

g0(X) = g(X), g1(X) = v0, . . . , gk(X) = vk−1.

12



1.1. PRELIMINARIES

Let
Xn = (xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k)

T .

Then, we can easily see that system (1.6) is equivalent to the system written in vector
form

Xn+1 = F (Xn), n ∈ N, (1.7)

that is 

xn+1 = f(xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k),

xn = xn,
...

xn−k+1 = xn−k+1,

yn+1 = g(xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k),

yn = yn,
...

yn−k+1 = yn−k+1.

Definition 1.8. (Equilibrium Point): An equilibrium point (x̄, ȳ) ∈ I × J of system
(1.7) is a solution of the systemx = f(x, x, . . . , x, y, y, . . . , y)

y = g(x, x, . . . , x, y, y, . . . , y).

Furthermore, an equilibrium point X̄ ∈ Ik+1 × Jk+1 of system (1.7) is a solution of the
system

X = F (X).

Definition 1.9. (Stability): Let X̄ be an equilibrium point of system (1.7) and ||.|| be
any norm (e.g. the Euclidean norm).

1. The equilibrium point X̄ is called stable (or locally stable) if for every ε > 0 there
exist δ such that ||X0 − X̄|| < δ implies ||Xn − X̄|| < ε for all n ≥ 0.

2. The equilibrium point X̄ is called asymptotically stable (or locally asymptotically
stable) if it is stable and there exist δ > 0 such that ||X0 − X̄|| < δ implies

lim
n→∞

Xn = X̄.

3. The equilibrium point X̄ is said to be global attractor (respectively global attractor
with basin of attraction a set G ⊂ Ik+1 × Jk+1), if for every X0 (respectively for
every X0 ∈ G)

lim
n→∞

Xn = X̄.

13



1.1. PRELIMINARIES

4. The equilibrium point X̄ is called globally asymptotically stable (respectively globally
asymptotically stable relative to G) if it is asymptotically stable, and if for every X0

(respectively for every X0 ∈ G),

lim
n→∞

Xn = X̄.

5. The equilibrium point X̄ is called unstable if it is not stable.

Remark 1.1. Clearly, (x̄, ȳ) ∈ I × J is an equilibrium point of system (1.6) if and only
if X̄ = (x̄, x̄, . . . , x̄, ȳ, ȳ, . . . , ȳ) ∈ Ik+1 × Jk+1 is an equilibrium point of system (1.7).

Remark 1.2. From here on, by the stability of the equilibrium points of system (1.6), we
mean the stability of the corresponding equilibrium points of the equivalent system (1.7).

The linearized system associated to system (1.7) at the equilibrium point
X̄ = (x̄, x̄, . . . , x̄, ȳ, ȳ, . . . , ȳ), is given by

Xn+1 = AXn, n ∈ N,

where A is the Jacobian matrix of the map F at the equilibrium point X̄ given by

A =



∂f0
∂u0

(X̄)
∂f0
∂u1

(X̄) . . .
∂f0
∂uk

(X̄)
∂f0
∂v0

(X̄)
∂f0
∂v1

(X̄) . . .
∂f0
∂vk

(X̄)

∂f1
∂u0

(X̄)
∂f1
∂u1

(X̄) . . .
∂f1
∂uk

(X̄)
∂f1
∂v0

(X̄)
∂f1
∂v1

(X̄) . . .
∂f1
∂vk

(X̄)

...
... . . .

...
...

... . . .
...

∂fk
∂u0

(X̄)
∂fk
∂u1

(X̄) . . .
∂fk
∂uk

(X̄)
∂fk
∂v0

(X̄)
∂fk
∂v1

(X̄) . . .
∂fk
∂vk

(X̄)

∂g0
∂u0

(X̄)
∂g0
∂u1

(X̄) . . .
∂g0
∂uk

(X̄)
∂g0
∂v0

(X̄)
∂g0
∂v1

(X̄) . . .
∂g0
∂vk

(X̄)

∂g1
∂u0

(X̄)
∂g1
∂u1

(X̄) . . .
∂g1
∂uk

(X̄)
∂g1
∂v0

(X̄)
∂g1
∂v1

(X̄) . . .
∂g1
∂vk

(X̄)

...
... . . .

...
...

... . . .
...

∂gk
∂u0

(X̄)
∂gk
∂u1

(X̄) . . .
∂gk
∂uk

(X̄)
∂gk
∂v0

(X̄)
∂gk
∂v1

(X̄) . . .
∂gk
∂vk

(X̄)



Theorem 1.3. 1. If all the eigenvalues of the Jacobian matrix A lie in the open unit
disk |λ| < 1, then the equilibrium point X̄ of system (1.7) is asymptotically stable.

2. If at least one eigenvalue of the Jacobian matrix A have absolute value greater than
one, then the equilibrium point X̄ of system (1.7) is unstable.
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1.1. PRELIMINARIES

We give, in the following, two theorems (see [22, 54]) concerning the rate of convergence
of the solutions of the system (1.6).

Xn+1 = (A+Bn)Xn, n ∈ N (1.8)

where Xn is an k-dimensional vector, A ∈ Ck×k is a constant matrix and B : Z+ −→ Ck×k

is a matrix function satisfying

||Bn|| → 0, when n −→ ∞, (1.9)

where ||.|| denotes any matrix norm which is associated with the vector norm.

Theorem 1.4 (Perron’s First Theorem). Consider system (1.8) and suppose condition
(1.9) holds. If Xn is a solution of (1.8), then either Xn = 0 for all large n or

θ = lim
n→∞

n
√
||Xn||

exists and θ is equal to the modulus of one of the eigenvalues of the matrix A.

Theorem 1.5 (Perron’s Second Theorem). Consider system (1.8) and suppose condition
(1.9) holds. If Xn is a solution of (1.8), then either Xn = 0 for all large n or

θ = lim
n→∞

||Xn+1||
||Xn||

exists and θ is equal to the modulus of one of the eigenvalues of the matrix A.
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1.2. APPLICATIONS TO BIOLOGY

1.2 Applications to Biology

The study of natural phenomena and social sciences that develop in space and/or time
by using the dynamical system is done by looking at the dynamic behavior or the geo-
metrical and topological properties of the solution, whether a particular system results
from Economics, Biology, Physics, Chemistry, or even social science such as population
models, disease and infection model, etc. In this section, we will include two examples
as specific cases derived from population modeling in biology. The first application is the
Beverton-Holt Model with periodic environment and the other one is the Flour Beetle
Model.

1.2.1 The Beverton-Holt Model With Periodic Environment

The Beverton-Holt model is a classical population model which has been considered in
the literature for the discrete-time case. Its continuous-time analogue is the well-known
logistic model.

The Beverton-Holt difference equation has wide applications in population growth [6],
and it has been studied extensively in [13, 14, 23]. Firstly, in [13] Cushing and Henson
studied the following difference equation

xn+1 =
µKxn

K + (µ− 1)xn
, x0 ≥ 0, n = 0, 1, . . . , (1.10)

It is known that for µ > 1, K > 0, all non-zero solutions converge to the positive equilib-
rium point x̄ = K, and for µ < 1, K > 0, all solutions converge to the equilibrium point
x̄ = 0. Later, a modification of this equation that emerged in the study of populations
living in a periodically (seasonally) fluctuating environment replaces the constant carrying
capacity K with a periodic sequence {Kn}. Thus, the Beverton-Holt model with periodic
environment is given by the following difference equation :

xn+1 =
µKnxn

Kn + (µ− 1)xn
, x0 ≥ 0, n = 0, 1, . . . , (1.11)

where µ > 1 is a rate of change (growth or decay), Kn > 0 is a periodic sequence of period
p modeling periodicity of environment (periodic supply of food, energy, etc.), and xn is
the size of population at nth generation.

Assuming xn > 0 and rewriting (1.11) as

1

xn+1

=
Kn + (µ− 1)xn

µKnxn
(1.12)
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1.2. APPLICATIONS TO BIOLOGY

the substitution yn =
1

xn
reduces (1.11) to the linear non-autonomous equation

yn+1 =
1

µ
yn + pn, x0 ≥ 0, n = 0, 1, . . . , (1.13)

where pn = (µ−1)
µKn

. The solution of (1.13) is given as

yn =
1

µn
y0 +

n−1∑
k=0

1

µn−k−1
pk (1.14)

and it is well studied and understood and shows the following properties.

Theorem 1.6. [8] Equation (1.13) has the following properties:

1. Equation (1.13) has the unique nonnegative periodic solution ȳn, with period equal
to p.

2. The periodic solution {ȳn} is the global attractor of all solutions of (1.13).

3. The periodic environment is deleterious in the sense that the size of population in
periodic environment is smaller than the average of sizes in p constant environments.
We say that in this case the periodic solution is an attenuant cycle. Mathematically,
this means that

1

p
(ȳ1 + ȳ2 + · · ·+ ȳp) <

1

p
((K1 − 1) + · · ·+ (Kp − 1)) (1.15)
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1.2. APPLICATIONS TO BIOLOGY

1.2.2 The Flour Beetle Model

In mathematical biology, the model of flour beetle (Tribolium) has attracted many re-
searchers during the last few decades. In [19], B.Dennis et al. have proposed and studied
the flour beetle population growth. They conducted both theoretical studies as well as
experimental studies in laboratory. The life cycle of the flour beetles consists of larval and
pupal stages each lasting approximately two weeks, followed by an adult stage, cannibal-
ism occurs among the various groups. Adults feed on eggs, larvae, pupae, callows (young
adults) while larvae eat eggs, pupae, and callows. Neither larvae nor adults eat mature
adults and larvae do not feed on larvae. Cannibalism of larvae by adults and of pupae
and callows by larvae typically occurs at much reduced rates and is assumed negligible in
the model.

Let Ln, Pn and An are the number of feeding larvae, pupae, and non-feeding larvae,
and adults, respectively, at time n, the unit of time is taken to be the feeding larval
maturation period so that after one unit of time, a larva either dies or survives and
pupates. This unit of time is also the time spent as a non-feeding larva, pupa and callow.
Then the larval-pupal-adult (LPA) model, is a system of three difference equations:

Ln+1 = bAn exp(−ceaAn − celLn),

Pn+1 = Ln(1− µl),

An+1 = Pn exp(−cpaAn) + An(1− µa)

(1.16)

Where b is a positive constant describing the number of eggs laid per adult per unit of
time in the absence of cannibalism. The constants µl and µa are the larval and adult
probability of dying form causes other than cannibalism, respectively. Thus 0 ≤ µl ≤ 1
and 0 ≤ µa ≤ 1. The term exp(−ceaAn) represents the probability that an egg is not
eaten in the presence of An adults, exp(−celLn) represents the probability that an egg is
not eaten in the presence of Ln larvae and exp(−cpaAn) is the survival probability of a
pupa in the presence of An adults. The constants cea ≥ 0, cel ≥ 0, cpa ≥ 0 are called the
cannibalism "coefficients". It is assumed here that the only significant source of pupal
mortality is adult cannibalism. Note that, the number N = b(1−µl)

µa
is called the inherent

net reproductive number.

The LPA model of flour beetle with no larval cannibalism on eggs, that is the case
when cel = 0, the system (1.16) is equivalent to the following difference equation

An+1 = (1− µa)An + b(1− µl)An−2 exp(−ceaAn−2 − cpaAn). n ≥ 2, (1.17)

when L0, P0 and A0 are given and non-negative, we have

A1 = P0 exp(−cpaA0) + (1− µa)A0

A2 = (1− µl)L0 exp(−cpaA1) + (1− µa)A1

18



1.2. APPLICATIONS TO BIOLOGY

Set α = 1−µa, β = b(1−µl), c1 = cea, c2 = cpa xn = An+2 for n ≥ −2. Then equation
(1.17) becomes

xn+1 = αxn + βxn−2 exp(−c1xn−2 − c2xn). n ≥ 0, (1.18)

where

x−2 = A0

x−1 = A1 = P0 exp(−cpaA0) + (1− µa)A0

x0 = A2 = (1− µl)L0 exp(−cpaA1) + (1− µa)A1.

In [41], Kuang and Cushing studied the global asymptotic stability of equilibrium points
of the equation (1.18) as demonstrated in following theorem.

Theorem 1.7. Equation (1.18) has the following properties:

1. If α + β ≤ 1, then every solution of the equation (1.18) converges to the zero
equilibrium point.

2. If α + β > 1, β < min{e(1− α), eα c1
c2
} and max{x−2, x−1, x0} > 0, then

lim
n→∞

supxn ≤ β

c1e(1− α)
,

and every solution of the equation (1.18) converges to the positive equilibrium point
x̄ = 1

c1+c2
ln( β

1−α
).

1. Equation (1.18) has a periodic solution of prime two {. . . , τθ, θ, τθ, θ, . . .}, τ ̸= 1, if
and only if

βτ−1 =
τ(τ − α)τ

(1− ατ)
. (1.19)
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2
Chapter Global Stability of Second

Order Quadratic Rational
Difference Equation

2.1 Introduction

Second order rational difference equation with quadratic terms show a wide variety of
dynamic behaviors. It is shown that relying on the parameters and initial values there
can be globally attracting equilibrium points.

In [44] Lazaryan et al. investigated the dynamic of the second order equation

xn+1 = axn +
αxn + βxn−1 + γ

Axn +Bxn−1 + C
(2.1)

where
0 ≤ a < 1, α, β, γ, A,B ≥ 0, α+ β + γ,A+B > 0, C > 0, (2.2)

with non-negative initial values. In their work, they demonstrated that when (2.2) holds
then equation (2.1) typically does not have periodic solutions of period greater than two.
At the end, they concluded with the following conjecture:
Study the following equation

xn+1 = axn + bxn−1 +
αxn + βxn−1 + γ

Axn +Bxn−1 + C
(2.3)

Conjecture : Let (2.2) hold and further assume that b ≥ 0 and a + b < 1. Then,
the equation (2.3) does not have any prime periodic solutions of period greater than
two, investigated the equation (2.3) Dehghan et al. in [16]. They studied the global
attractivity of the positive equilibrium point, the occurrence of periodic solution and they
gave conditions for the occurrence of chaotic behavior.

In this chapter, we investigate the boundedness and local stability of solutions, the
global attractivity of the positive equilibrium point and the existence of periodic solutions
for the quadratic rational difference equation (2.3) where

0 ≤ a < 1, a+b < 1, b ≥ 0, α, β, γ, A,B ≥ 0, α+β+γ,A+B > 0, C > 0 (2.4)
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with non-negative parameters and initial values. We obtain sufficient conditions that
imply the global asymptotic stability of the equilibrium point. We also obtain necessary
and sufficient conditions for the occurrence of solutions of prime period two solution when
γ > 0, and aA+B > bB.

2.2 Existence and Boundedness of Solutions

When (2.4) holds, we can assume that C = 1 in (2.3) without losing the generality by
dividing the numerator and denominator of the fractional part by C and relabeling the
parameters. Thus, we consider

xn+1 = axn + bxn−1 +
αxn + βxn−1 + γ

Axn +Bxn−1 + 1
(2.5)

Note that the underlying function

f(u, v) = au+ bv +
αu+ βv + γ

Au+Bv + 1

is continuous on [0,∞) × [0,∞). The following result gives sufficient conditions for the
positive solutions of (2.5) to be uniformly bounded from above and below by positive
bounds.

Lemma 2.1. Let (2.4) hold and assume further that

α = 0 if A = 0 and β = 0 if B = 0. (2.6)

Then every solution {xn} of (2.5) with non-negative initial values is bounded.

Proof. Let

δ1 =

 α
A

if A > 0

0 if A = 0
(2.7)

δ2 =


β
B

if B > 0

0 if B = 0
(2.8)
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2.2. EXISTENCE AND BOUNDEDNESS OF SOLUTIONS

By (2.4), ρ = δ1 + δ2 + γ > 0 and for all n ≥ 0, we have

xn+1 = axn + bxn−1 +
αxn + βxn−1 + γ

Axn +Bxn−1 + 1

= axn + bxn−1 +
αxn

Axn +Bxn−1 + 1
+

βxn−1

Axn +Bxn−1 + 1
+

γ

Axn +Bxn−1 + 1

≤ axn + bxn−1 +
αxn
Axn

+
βxn−1

Bxn−1

+ γ

≤ axn + bxn−1 + δ1 + δ2 + γ

≤ axn + bxn−1 + ρ.

By using comparison, we can write the right hand side as follows

yn+1 = ayn + byn−1 + ρ

and this equation is locally asymptotically stable if a + b < 1, and converges to the
equilibrium point ȳ = ρ

1−(a+b)
. Therefore,

lim
n→∞

supxn ≤ ρ

1− (a+ b)
=M.

Now, suppose that γ > 0. Then for all n ≥ N

xn ≥ γ

(A+B)M + 1
= L.

Theorem 2.1. Every solution of equation (2.5) is unbounded if a > 1 (or b > 1).

Proof. Let {xn}∞n=−1 be a solution of equation (2.5), we see that

xn+1 = axn + bxn−1 +
αxn + βxn−1 + γ

Axn +Bxn−1 + 1
> axn

also we notice that the right hand side can be written as follows

yn+1 = ayn implies that yn = any0

and this equation is unstable because a > 1, and limn→∞ yn = ∞. Then, by using ratio
test,we find that {xn}∞n=−1 is unbounded from above (when b > 1 is similar).

22
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EQUILIBRIUM POINTS

2.3 Existence and Local Stability of Unique Positive

Equilibrium Points

Lemma 2.2. If the condition (2.4) holds and γ > 0 then, equation (2.5) has a positive
equilibrium point x̄ that is uniquely given by

x̄ =
α + β − (1− (a+ b)) +

√
[α + β − (1− (a+ b))]2 + 4(1− (a+ b))(A+B)γ

2(1− (a+ b))(A+B)
.

Proof. The equilibrium point of equation (2.5) must satisfy the following equation :

x̄ = ax̄+ bx̄+
αx̄+ βx̄+ γ

Ax̄+Bx̄+ 1
. (2.9)

Then,

(1− (a+ b))x̄− αx̄+ βx̄+ γ

Ax̄+Bx̄+ 1
= 0

(1− (a+ b))[(A+B)x̄2 + x̄]− (α + β)x̄− γ = 0

(1− (a+ b))(A+B)x̄2 − [(α + β)− (1− (a+ b)]x̄− γ = 0.

Let
d1x̄

2 − d2x̄− d3 = 0, a+ b < 1, b ≥ 0,

where
d1 = (1− (a+ b))(A+B), d2 = α + β − 1 + (a+ b), d3 = γ.

That is to say, the equilibrium points must be the roots of the quadratic equation:

s(t) = d1t
2 − d2t− d3 (2.10)

If the condition (2.4) holds, then d1 > 0 and d3 ≥ 0. There are two more cases to consider.

Case 1: If d2 = 0, then equation (2.10) has two roots given by:

t± = ±
√
d3
d1
.

Thus, if γ > 0, then the unique positive fixed point of equation (2.5) is

x̄ =

√
γ

(1− (a+ b))(A+B)
.
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Case 2: When d2 ̸= 0, then the roots of (2.10) are given by

t± =
d2 ±

√
d22 + 4d1d3
2d1

.

In particular, if γ > 0, then the unique positive fixed point of (2.5) is

x̄ =
α + β − (1− (a+ b)) +

√
[α + β − (1− (a+ b))]2 + 4(1− (a+ b))(A+B)γ

2(1− (a+ b))(A+B)
.

(2.11)

Next, we consider the local stability of x̄ under the hypotheses of the above Lemma.
The characteristic equation associated with the linearization of equation (2.5) at the point
x̄ is given by

λ2 − fu(x̄, x̄)λ− fv(x̄, x̄) = 0 (2.12)

where
f(u, v) = au+ bv +

αu+ βv + γ

Au+Bv + 1

with

fu(u, v) = a+
(αB − Aβ)v + α− Aγ

(Au+Bv + 1)2

= a+
α

Au+Bv + 1
− A(αu+ βv + γ)

Au+Bv + 1
× 1

Au+Bv + 1

and

fv(u, v) = b+
(Aβ − αB)u+ β −Bγ

(Au+Bv + 1)2

= b+
β

Au+Bv + 1
− B(αu+ βv + γ)

Au+Bv + 1
× 1

Au+Bv + 1

Now, from the equation (2.9), we have

(1− (a+ b))x̄ =
(α + β)x̄+ γ

(A+B)x̄+ 1
.

Yields

fu(x̄, x̄) = a+
α

(A+B)x̄+ 1
− A((α + β)x̄+ γ)

(A+B)x̄+ 1
× 1

(A+B)x̄+ 1

= a+
α

(A+B)x̄+ 1
− A((1− (a+ b))x̄

(A+B)x̄+ 1
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and

fv(x̄, x̄) = b+
β

(A+B)x̄+ 1
− B((α + β)x̄+ γ)

(A+B)x̄+ 1
× 1

(A+B)x̄+ 1

= b+
β

(A+B)x̄+ 1
− B((1− (a+ b))x̄

(A+B)x̄+ 1

We define
fu(x̄, x̄) = a+

α− (1− (a+ b))Ax̄

(A+B)x̄+ 1
= p

and
fv(x̄, x̄) = b+

β − (1− (a+ b))Bx̄

(A+B)x̄+ 1
= q.

Then, the equation (2.12) is equivalent to the equation

λ2 − pλ− q = 0. (2.13)

To solve the equation (2.13), we calculate p2 + 4q and we have two cases:

Case 1: when p2 + 4q < 0, the two roots of the equation (2.13) are complex if p2 + 4q < 0
or q < −(p

2
)2, namely,

λ1 =
p− i

√
−(p2 + 4q)

2

and

λ2 =
p+ i

√
−(p2 + 4q)

2
.

Note that the fixed point x̄ is locally asymptotically stable if both roots of equation
(2.13) are inside the unit disk of the complex plain. In this case

|λ1| =

√
(
p

2
)2 + (

√
−(p2 + 4q)

2
)2 =

√
−q = |λ2|.

So both roots have modulus less then 1 if and only if q > −1 or equivalently,
q + 1 > 0, i,e.,

b+
β − (1− (a+ b))Bx̄

(A+B)x̄+ 1
+ 1 > 0

((a+ b)B + b(A+B) + A)x̄+ b+ β + 1 > 0.

This is clearly true if the condition (2.4) holds. So if the condition(2.4) holds, and
γ > 0 and if −1 < q < −p2

4
then x̄ is locally asymptotically stable with complex

roots.

Case 2: when p2 + 4q ≥ 0, the two roots of the equation (2.13) are real if p2 + 4q ≥ 0 or
q ≥ −(p

2
)2, namely,

λ1 =
p−

√
p2 + 4q

2
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and

λ2 =
p+

√
p2 + 4q

2
.

Now, x̄ is locally asymptotically stable if and only if |λ1| < 1, and |λ2| < 1. First, observe
that λ2 < 1 if and only if p+ q < 1, or equivalently

a+
α− (1− (a+ b))Ax̄

(A+B)x̄+ 1
+ b+

β − (1− (a+ b))Bx̄

(A+B)x̄+ 1
< 1

and
a+ b+

α− (1− (a+ b))Ax̄+ β − (1− (a+ b))Bx̄

(A+B)x̄+ 1
< 1

(a+ b)(A+B)x̄+ (a+ b) +α− (1− (a+ b))Ax̄+ β− (1− (a+ b))Bx̄− (A+B)x̄− 1 < 0

2(A+B)[(a+ b)− 1]x̄+ (α + β) + (a+ b)− 1 < 0

2(A+B)[1− (a+ b)]x̄ > (α + β)− [1− (a+ b)] (2.14)

which is true if (2.4) holds and γ > 0, see (2.11). Next, note that p < 2. To see this,
p− 2 < 0 if and only if

a+
α− (1− (a+ b))Ax̄

(A+B)x̄+ 1
− 2 < 0

(a− 2)[(A+B)x̄+ 1] + α− (1− (a+ b))Ax̄ < 0

α− (1− (a+ b))Ax̄− (2− a)[(A+B)x̄+ 1] < 0. (2.15)

From (2.14), we have

(2− a)(A+B)x̄ = (2− 2a+ a+ 2b− 2b)[(A+B)x̄]

= 2(1− (a+ b))[(A+B)x̄] + (a+ 2b)[(A+B)x̄]

(2− a)(A+B)x̄ > (α + β)− [1− (a+ b)] + (a+ 2b)(A+B)x̄.

It follows that

α− (1− (a+ b))Ax̄− (2− a)[(A+B)x̄+ 1]

= −(1− (a+ b))Ax̄− (2− a)(A+B)x̄− (2− a) + α

< −α− β + [1− (a+ b)]− (a+ 2b)(A+B)x̄− (1− (a+ b))Ax̄− (2− a) + α

< −(1− (a+ b))Ax̄− 1− b− β − (a+ 2b)(A+B)x̄

< 0.
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This proves that (2.15) is true. Finally, p > −2. Since this is equivalent to

a+
α− (1− (a+ b))Ax̄

(A+B)x̄+ 1
> −2

α− (1− (a+ b))Ax̄ > −(2 + a)[(A+B)x̄+ 1]

−Ax̄+ aAx̄+ bAx̄+ (2 + a)(A+B)x̄ > −α− (2 + a)

(−1 + a+ 2 + a+ b)Ax̄+ (2 + a)Bx̄ > −α− (2 + a)

or
(1 + 2a+ b)Ax̄+ (2 + a)Bx̄ > −α− (2 + a)

which is true if (2.4) holds and γ > 0. Now, a routine calculation shows that λ2 < 1 if

and only if
p+

√
p2 + 4q

2
< 1√

p2 + 4q < 2− p

p2 + 4q < 4 + p2 − 4p

p+ q < 1

q < 1− p

which is indeed the case shown by the above calculations.
Next, λ2 > −1 if and only if

p+
√
p2 + 4q > −2 (2.16)

If p > −2, then (2.16) holds trivially. On the other hand, if p ≤ −2 or p+ 2 ≤ 0, then

(a+ 2)[(A+B)x̄+ 1] + α− (1− (a+ b))Ax̄ ≤ 0

(1 + 2a+ b)Ax̄+ (2 + a)[Bx̄+ 1] + α ≤ 0

which is impossible if (2.4) holds. It follows that |λ2| < 1 if (2.4) holds and γ > 0.
Next, we consider λ1 and note that λ1 < 1 if and only if p−

√
p2 + 4q < 2. This is clearly

true if p < 2 which is in fact the case and we conclude that λ1 < 1 if (2.4) holds and
γ > 0.

Next, λ1 > −1 if and only if

p−
√
p2 + 4q > −2.
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This requires that p > −2, which is true if (2.4) holds and γ > 0. Now the above
inequality reduces to p+ 1 > q or

1 + a+
α− (1− (a+ b))Ax̄

(A+B)x̄+ 1
> b+

β − (1− (a+ b))Bx̄

(A+B)x̄+ 1

β − (1− (a+ b))Bx̄− α + (1− (a+ b))Ax̄ < (a+ 1− b)[(A+B)x̄+ 1]

β − α− (1 + a− b) < 2(B + aA− bB)x̄. (2.17)

We also note that if the reverse of the above inequality holds, i.e.,

2(Aa+B − bB)x̄ < β − α− (1 + a− b). (2.18)

Then the above calculation shows that λ1 < −1 while |λ2| < 1. Therefore, in this case x̄
is a saddle point. If β − α − (1 + a − b) ≤ 0 then (2.18) does not hold and x̄ is locally
asymptotically stable.

The proceeding calculations in particular prove the following

Lemma 2.3. let the condition (2.4) holds and γ > 0. Then the positive equilibrium point
x̄ of (2.5) is locally asymptotically stable if and only if (2.17) holds and a saddle point if
and only if the reverse inequality, i.e., (2.18) holds.

Since x̄ is non-hyperbolic if neither (2.17) nor (2.18) holds, Lemma(2.3) gives a com-
plete picture of the local stability of x̄ under its stated hypotheses.
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2.4 Global Attractivity of the Positive Equilibrium Point

In this section, we give sufficient conditions for the global attractivity of the positive fixed
point. The following general result from [30]

Lemma 2.4. let I be an open interval of real numbers and suppose that f ∈ (Im,R) is
non-decreasing in each coordinate. Let x̄ ∈ I be fixed point of the difference equation

xn+1 = f(xn, xn−1, ....., xn−m+1) (2.19)

and assume that the function h(t) = f(t, ....., t) satisfies the conditions

h(t) > t if t < x̄ and h(t) < t if t > x̄ t ∈ I. (2.20)

Then I is an invariant interval of (2.19) and x̄ > 0 attracts all solutions with initial
values in I.

We now use the preceding result to obtain the sufficient conditions for the global
attractivity of the positive equilibrium point.

Theorem 2.2. (a) Assume that (2.4) holds with γ > 0 and suppose that f(u, v) is
non-decreasing in both arguments. Then (2.5) has unique fixed point x̄ > 0 that is
asymptotically stable and attracts all positive solutions of (2.5).

(b) Assume that (2.4) holds with γ > 0 and

Bα− 2Ab ≤ Aβ ≤ 2aB + αB, Bγ ≤ b+ β, Aγ ≤ a+ γ. (2.21)

Then, equation (2.5) has a unique equilibrium point x̄ > 0 that is asymptotically
stable and attracts all positive solutions of (2.5).

Proof. (a) The existence and uniqueness of x̄ > 0 follows from Lemma (2.2).
Next, the function h in (2.20) takes the form

h(t) = (a+ b)t+
(α + β)t+ γ

(A+B)t+ 1
.
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Note that the equilibrium point x̄ of (2.5) is a solution of the equation h(t) = t.
So, we verify that conditions (2.20) hold for t > 0. The function h may be written
as

h(t) = tϕ(t), where ϕ(t) = a+ b+
α + β + γ

t

(A+B)t+ 1
.

Note that ϕ(x̄) = h(x̄)
x̄

= 1. Further,

ϕ′(t) =
−[(A+B)t+ 1] γ

t2
− (A+B)[α + β + γ

t
]

[(A+B)t+ 1]2

so ϕ is decreasing (strictly) for all t > 0. Therefore,

t < x̄ implies ϕ(t) > ϕ(x̄)

tϕ(t) > tϕ(x̄)

h(t) > t

and
t > x̄ implies ϕ(t) < ϕ(x̄)

tϕ(t) < tϕ(x̄)

h(t) < t.

Now, by Lemma (2.4) x̄ attracts all positive solutions of (2.5). In particular, x̄ is
not a saddle point so by lemma (2.3), it is asymptotically stable.

(b) We show that if the inequalities (2.21) hold, then the function

f(u, v) = au+ bv +
αu+ βv + γ

Au+Bv + 1

is non-decreasing in each of its two coordinates u, v. This is demonstrated by
computing the partial derivatives fu and fv to show that, fu ≥ 0 and fv ≥ 0. By
direct calculation fu ≥ 0 iff

a+
αAu+ αBv + α− Aαu− Aβv − Aγ

(Au+Bv + 1)2
≥ 0

a(Au+Bv)2 + (2aB + αB − Aβ)v + 2aAu+ a+ α− Aγ ≥ 0.
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The above inequality holds for all u, v > 0 if

Aγ ≤ a+ α, Aβ ≤ 2aB + αB. (2.22)

Similarly, fv ≥ 0 iff

fv = b+
β(Au+Bv + 1)−B(αu+ βv + γ)

(Au+Bv + 1)2

b[(Au+Bv)2 + 1 + 2(Au+Bv)] + βAu+ βBv + β −Bαu−Bβv −Bγ ≥ 0

b(Au+Bv)2 + 2bBv + (2Ab+ βA−Bα)u+ b+ β −Bγ ≥ 0

the above inequality holds for all u, v > 0 if

Bγ ≤ b+ β, Aβ ≥ −2Ab+Bα. (2.23)

By the inequality (2.22) and (2.23), conditions (2.21) are sufficient for the function
f to be nondecreasing in each of its coordinates.

2.5 Periodic Solutions

The following theorem gives necessary and sufficient conditions for the existence of positive
period two solutions of equation (2.5) when aA+B > bB.

Theorem 2.3. Assume that (2.4) holds with γ > 0, and aA + B > bB. Then (2.5) has
a positive prime period two solution if and only if the following conditions are satisfied.

1. β − α− (1 + a− b) > 0;

2. (A−B) > 0;

3.
4γ

(A−B)(1 + a− b)

<
β − α− (1 + a− b)

(aA+B − bB)

[
β − α− (1 + a− b)

(aA+B − bB)
− 4

aA(β + b− 1) +B(1− b)(a+ α)

(A−B)(1 + a− b)(aA+B − bB)

]
.

Proof. Suppose that there exists prime period two solution

. . . , ϕ, ψ, ϕ, ψ, . . .

of equation (2.5), with ϕ, ψ > 0 and ϕ ̸= ψ we see from equation (2.5) that

ϕ = aψ + bϕ+
αψ + βϕ+ γ

Aψ +Bϕ+ 1
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ψ = aϕ+ bψ +
αϕ+ βψ + γ

Aϕ+Bψ + 1
.

Then

(1− b)ϕ− aψ =
αψ + βϕ+ γ

Aψ +Bϕ+ 1
and (1− b)ψ − aϕ =

αϕ+ βψ + γ

Aϕ+Bψ + 1
.

Yields

(1− b)Aϕψ + (1− b)Bϕ2 + (1− b)ϕ− aAψ2 − aBϕψ − aψ = αψ + βϕ+ γ (2.24)

(1− b)Aϕψ + (1− b)Bψ2 + (1− b)ψ − aAϕ2 − aBϕψ − aϕ = αϕ+ βψ + γ (2.25)

Subtracting (2.24) from (2.25) gives

(1− b)(ϕ2 − ψ2) + (1− b)(ϕ− ψ) + aA(ϕ2 − ψ2) + a(ϕ− ψ) = α(ψ − ϕ) + β(ϕ− ψ).

Yields
(ϕ− ψ)[((1− b)B + aA)(ϕ+ ψ) + 1− b+ a+ α− β] = 0.

Since ϕ ̸= ψ, it follows that

ϕ+ ψ =
β − α− (1 + a− b)

aA+B − bB
(2.26)

Since aA + B > bB, we infer from (2.26) that β − α − (1 + a − b) > 0 is a necessary
condition for the existence of positive period two solutions.
Again, adding (2.24) and (2.25) yields
2(1− b)Aϕψ + (1− b)B(ϕ2 + ψ2) + (1− b)(ϕ+ ψ)− aA(ϕ2 + ψ2)− 2aBϕψ − a(ϕ+ ψ)

= α(ϕ+ ψ) + β(ϕ+ ψ) + 2γ,

then,

2((1− b)A−aB)ϕψ+((1− b)B−aA)(ϕ2+ψ2)+ (1− b−α−a−β)(ϕ+ψ) = 2γ, (2.27)

it follows by (2.26), (2.27) and the relation

(ϕ2 + ψ2) = (ϕ+ ψ)2 − 2ϕψ for all ϕ, ψ ∈ R,

that

2((1−b)A−aB)ϕψ+((1−b)B−aA)(ϕ+ψ)2−2((1−b)B−aA)ϕψ+(1−b−α−a−β)(ϕ+ψ) = 2γ
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and

2((1−b)A−aB−(1−b)B+aA)ϕψ = (ϕ+ψ)[(aA−(1−b)B)(ϕ+ψ)+(b+β−1+(a+α))]+2γ,

then,

2(A−B)(1 + a− b)ϕψ

=
ϕ+ ψ

aA+B − bB

[(aA+ bB −B)(β − α− (1 + a− b)) + (α + β − (1− a− b))(aA+B − bB)] + 2γ

=
ϕ+ ψ

aA+B − bB

[(aA+ bB −B)(β + b− 1− (a+ α)) + (aA− (bB −B))(β + b− 1 + (a+ α))] + 2γ

=
ϕ+ ψ

aA+B − bB
[2aA(β + b− 1) + 2B(a+ α)(1− b)] + 2γ.

Thus,

(A−B)(1 + a− b)ϕψ =

[
β − α− (1 + a− b)

(aA+B − bB)2

]
[aA(β + b− 1) +B(1− b)(a+ α)] + γ.

(2.28)
Since from (2.26) we have β − α − (1 + a − b) > 0, then β + b − 1 > 0. Thus, the right
hand side of (2.28) is positive and therefore, A − B > 0 is another necessary condition
for the existence of positive period two solutions and

ϕψ =
1

(A−B)(1 + a− b)

[(
β − α− (1 + a− b)

(aA+B − bB)2

)
(aA(β + b− 1) +B(1− b)(a+ α)) + γ

]
.

(2.29)
Let

S =
β − α− (1 + a− b)

(aA+B − bB)

and

P =
1

(A−B)(1 + a− b)

[(
β − α− (1 + a− b)

(aA+B − bB)2

)
(aA(β + b− 1) + (B − bB)(a+ α)) + γ

]
with S, P > 0. Now, it is clear from (2.26) and (2.29) that ϕ and ψ are the two distinct
positive real roots of the quadratic equation

t2 − St+ P = 0
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with

t =
S ±

√
S2 − 4P

2

which will be the case if and only if

S2 − 4P > 0

implies that
4γ

(A−B)(1 + a− b)

<
β − α− (1 + a− b)

(aA+B − bB)

[
β − α− (1 + a− b)

(aA+B − bB)
− 4

aA(β + b− 1) +B(1− b)(a+ α)

(A−B)(1 + a− b)(aA+B − bB)

]
.

We also study the nonexistence of period two solutions.

Theorem 2.4. Let D be a subset of real numbers and assume that f : D × D → D is
non-decreasing in x ∈ D for each y ∈ D and non-increasing in y ∈ D for each x ∈ D.
Then, the difference equation xn+1 = f(xn, xn−1) has no prime period two solution.

Proof. Assume that the above difference equation has prime period two solution. Then
there exist real numbers ϕ and ψ, such that

f(ϕ, ψ) = ψ and f(ψ, ϕ) = ϕ.

When ϕ = ψ, we are done. So assume that ϕ ̸= ψ. If ϕ < ψ, then by the hypothesis

f(ϕ, ψ) ≤ f(ψ, ψ) ≤ f(ψ, ϕ)

which implies that ψ ≤ ϕ, which is contradiction. Similarly, if ϕ > ψ, then by hypothesis

f(ψ, ϕ) ≤ f(ψ, ψ) ≤ f(ϕ, ψ)

which implies that ϕ ≤ ψ, which is also contradiction.

Now, we establish the connection between existence of prime period two solutions and
stability of equilibrium point.

Theorem 2.5. Let (2.4) hold with γ, aA+B− bB > 0. Then (2.5) has a positive prime
period two solution if and only if x̄ is saddle.

Proof. First, when α + β − (1− (a+ b)) = 0, then the equilibrium point

x̄ =

√
γ

(1− (a+ b))(A+B)
.
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This implies that
β − α− (1 + a− b) = −2a− 2α < 0

and x̄ must be stable so (2.5) has no prime period two solution.

Now assume that α + β − (1− (a+ b)) ̸= 0. Then the equilibrium point is given by

x̄ =
α + β − (1− (a+ b)) +

√
[α + β − (1− (a+ b))]2 + 4(1− (a+ b))(A+B)γ

2(1− (a+ b))(A+B)
.

By Lemma (2.3), x̄ is saddle if and only if

x̄ <
β − α− (1 + a− b)

2(aA+B − bB)

which implies that β − α− (1 + a− b) > 0.

Now,

x̄ <
β − α− (1 + a− b)

2(aA+B − bB)
,

implies that

α + β − (1− (a+ b)) +
√

[α + β − (1− (a+ b))]2 + 4(1− (a+ b))(A+B)γ

2(1− (a+ b))(A+B)

<
β − α− (1 + a− b)

2(aA+B − bB)

iff √
(α + β − (1− (a+ b)))2 + 4(1− (a+ b))(A+B)γ

(1− (a+ b))(A+B)

<
β − α− (1 + a− b)

(aA+B − bB)
− α + β − (1− (a+ b))

(1− (a+ b))(A+B)

iff √
(α + β − (1− (a+ b)))2 + 4(1− (a+ b))(A+B)γ

<
(β − α− (1 + a− b))(1− (a+ b))(A+B)

(aA+B − bB)
− [α + β − (1− (a+ b))]
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iff

(α + β − (1− (a+ b)))2 + 4(1− (a+ b))(A+B)γ

<
(β − α− (1 + a− b))2(1− (a+ b))2(A+B)2

(aA+B − bB)2

− 2
(β − α− (1 + a− b))(1− (a+ b))(A+B)(α + β − (1− (a+ b)))]

(aA+B − bB)

+ (α + β − (1− (a+ b)))2

4(1− (a+ b))(A+B)γ

<
(β − α− (1 + a− b))2(1− (a+ b))2(A+B)2

(aA+B − bB)2

− 2
(β − α− (1 + a− b))(1− (a+ b))(A+B)(α + β − (1− (a+ b)))

(aA+B − bB)

iff

4γ <
(β − α− (1 + a− b))2(1− (a+ b))(A+B)

(aA+B − bB)2

− 2
(β − α− (1 + a− b))(α + β − (1− (a+ b)))

(aA+B − bB)

=
(β − α− (1 + a− b))

(aA+B − bB)[
(β − α− (1 + a− b))(1− (a+ b))(A+B)

(aA+B − bB)
− 2(α + β − (1− (a+ b)))

]
=
β − α− (1 + a− b)

(aA+B − bB)

×
[
(β − α− (1 + a− b))(1− (a+ b))(A+B)− 2(aA+B − bB)(α + β − (1− (a+ b)))

(aA+B − bB)

]
.

Adding and subtracting (1 + (a− b))(A−B)[β −α− (1 + a− b)] to the numerator of the
second fraction in previous equation yields
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(β − α− (1 + a− b))(1− (a+ b))(A+B)− 2(aA+B − bB)(α + β − (1− (a+ b)))

= (β − α− (1 + a− b))(1− (a+ b))(A+B)− 2(aA+B − bB)(α + β − (1− (a+ b)))

+ (1 + (a− b))(A−B)[β − α− (1 + a− b)]− (1 + (a− b))(A−B)[β − α− (1 + a− b)]

= (1 + (a− b))(A−B)[β − α− (1 + a− b)] + [β − α− (1 + a− b)][(1− (a+ b))(A+B)

− (1 + (a− b))(A−B)]− 2(aA+B − bB)(α + β − (1− (a+ b)))

= (1 + (a− b))(A−B)[β − α− (1 + a− b)] + (β + b− 1 + (a+ α))(−2aA− 2B + 2bB)

+ (β + b− 1− (a+ α))(−2aA+ 2B − 2bB)

= (1 + (a− b))(A−B)[β − α− (1 + a− b)]− 4aA(β + b− 1)− 4B(a+ α) + 4bB(a+ α)

= (1 + (a− b))(A−B)[β − α− (1 + a− b)]− 4[aA(β + b− 1) +B(1− b)(a+ α)].

Thus, we have

4γ <
β − α− (1 + a− b)

(aA+B − bB)

× (1 + (a− b))(A−B) [β − α− (1 + a− b)]− 4[aA(β + b− 1) +B(1− b)(a+ α)]

(aA+B − bB)
.

Since γ > 0, it must be the case that the right hand side of last expression is positive,
which implies A−B > 0. Dividing both sides of the above expression by (A−B)(1+a−b)
then yields:

4γ

(A−B)(1 + a− b)

<
β − α− (1 + a− b)

(aA+B − bB)

[
β − α− (1 + a− b)

(aA+B − bB)
− 4

aA(β + b− 1) +B(1− b)(a+ α)

(A−B)(1 + a− b)(aA+B − bB)

]
and the proof is complete, since the conditions of Theorem (2.3) are satisfied.

We end our discussion in this section with the following immediate consequence of the
results already established.

Lemma 2.5. Let (2.4) hold with γ, aA + B − bB > 0, and suppose that f(u, v) is non-
decreasing in u and either non-decreasing or non-increasing in v.

1. Equation (2.5) has no periodic solution of period greater than two.

2. If equation (2.5) has no prime period two solution then all solutions of (2.5) converge
to the positive fixed point x̄.
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2.6 Numerical Examples

For confirming the theoretical results, we consider some numerical examples which repre-
sent different types of solutions to equation (2.5) as follows:

Example 2.1. Consider the equation

xn+1 = 0.2xn + 0.3xn−1 +
0.5xn + 4.8xn−1 + 3.3

5.9xn + 7.5xn−1 + 1
(2.30)

with the initial conditions x−1 = 0.3, x0 = 3.5. In this case, the condition (2.4) holds
and the inequality (2.17) holds. Then, from Lemma (2.3) the equilibrium point x̄ = 1.15

which was given by the formula calculated in Lemma (2.2) of the equation (2.30) is locally
asymptotically stable. See Figure 2.1.

Figure 2.1: Plot of the solution {xn}n≥0 of the equation (2.30) with the initial values
x−1 = 0.3, x0 = 3.5.
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Example 2.2. Consider the equation

xn+1 = 0.5xn + 0.3xn−1 +
2.5xn + 1.8xn−1 + 0.3

2.4xn + 1.5xn−1 + 1
(2.31)

with the initial conditions x−1 = 0.03, x0 = 0.5. In this case, the conditions (2.21) are
satisfied. Then, the equilibrium point x̄ of the equation (2.31) is asymptotically stable and
attracts all positive solutions of equation (2.31). See Figure 2.2.

Figure 2.2: Plot of the solution {xn}n≥0 of the equation (2.31) with the initial values
x−1 = 0.03, x0 = 0.5.
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Example 2.3. Consider the equation

xn+1 = 0.5xn + 0.6xn−1 +
0.02xn + 0.03xn−1 + 0.06

3.04xn + 0.4xn−1 + 1
(2.32)

with the initial conditions x−1 = 1.03, x0 = 0.05. In this case, 1−(a+b) < 0 the condition
(2.4) is not satisfied. Then, the equilibrium point x̄ of the equation (2.32) is unstable. See
Figure 2.3.

Figure 2.3: Plot of the solution {xn}n≥0 of the equation (2.32) with the initial values
x−1 = 1.03, x0 = 0.05.
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Example 2.4. Consider the equation

xn+1 = 0.01xn + 0.8xn−1 +
0.5xn + 1.8xn−1 + 0.02

6xn + 3xn−1 + 1
(2.33)

with the initial conditions x−1 = 4.4, x0 = 0.07. In this case, the conditions of Theorem
(2.3) are satisfied. Then, the solutions of the equation (2.33) have a positive prime period
two solution. See Figure 2.4.

Figure 2.4: Plot of the solution {xn}n≥0 of the equation (2.33) with the initial values
x−1 = 4.4, x0 = 0.07.
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3
Chapter

On the Global Behavior
of Higher-Order Non-
autonomous Rational
Difference Equation

3.1 Introduction

In this chapter, we study the global behavior of the more general rational difference
equation

xn+1 =
αn + xn−r

αn + xn−k

, n = 0, 1, ..., (3.1)

where {αn}n≥0 is a bounded sequence of positive numbers and r < k are positive integers.
by taking the sequence {αn}n≥0 to be bounded. The study of this equation is extension
of the works of the mathematicians Dekkar et al. [18] and Kerker et al. [37] which was
the study first proposed by E.Camouzis and G.Ladas in their monograph [11] in which
they treated the global asymptotic behavior of higher order rational difference equations.
Besides, the importance of this equation itself, the study of these rational difference
equations has offered prototypes that played an essential role in the development of the
theory of nonlinear difference equations.

Recently, a huge interest was accorded to the study of difference equations

xn+1 =
α + βxn
A+ Cxn−k

, n ∈ N, (3.2)

with their different particular cases, where the parameters α, β, A, C are non-negative
real numbers, and k is positive integer (see for example [11, 39, 42]).

In [39], Kocic et al. studied the following higher order difference equation

yn+1 =
a+ byn
A+ yn−k

, n ∈ N, (3.3)

with a, b, A are nonnegative real numbers and k is a positive integer. They showed, among
others, that the positive equilibrium point of the Eq. (3.3) is globally asymptotically
stable. These results were extended in [18] and [37] to the non-autonomous rational
difference equation

yn+1 =
αn + yn
αn + yn−k

, n = 0, 1, ... (3.4)

Precisely, Dekkar et al. [18] considered Eq. (3.4) in the case where {αn}n≥0 is a periodic
sequence of positive numbers with period T , while Kerker et al. [37] studied Eq. (3.4)
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when {αn}n≥0 is a bounded sequence. Recently, Kerker and Bouaziz [36] studied the
oscillation and the global attractivity for the more general difference equation (3.1) with
{αn}n≥0 is a convergent sequence of positive numbers and r < k are positive integers. For
more related works see [2, 5, 11, 28, 29, 45, 47, 56, 57].

In our work, we deal with a generalization of Eq. (3.1) by taking the sequence {αn}n≥0

to be bounded. Our discussion starts with the oscillation about the equilibrium point
x̄ = 1 (Theorem 3.1), then the boundedness of the positive solutions (Theorem 3.2), after,
analysis the global attractor (Theorem 3.5) and finally the global asymptotic stability
( Theorem 3.6).

3.2 Oscillation of Positive Solutions

In this section, we study the oscillatory behavior of positive solutions of Eq. (3.1).

Theorem 3.1. Every positive solution of (3.1) oscillates about x̄ = 1.

Proof. Assume that Eq. (3.1) has a nonoscillatory solution. Then, there exists n0 ≥ −k
such that

xn > 1, for all n ≥ n0

or
xn < 1, for all n ≥ n0.

Suppose that xn > 1, ∀ n ≥ n0. So, for n ≥ n0 + k, we have

xn+1 = xn−r
(αn/xn−r + 1)

αn + xn−k

< xn−r
αn + 1

αn + xn−k

< xn−r. (3.5)

Let p be the smallest integer in {n0 + k, ..., n0 + k + r} such that

xp = max {xi, i = n0 + k, ..., n0 + k + r} .

Therefore, there exists a non-negative integer m and j ∈ {0, ..., r}, such that

k − r + p = m (r + 1) + j.

Hence, we get

xn0+2k+p+1 =
αn0+2k+p + xn0+2k−r+p

αn0+2k+p + xn0+k+p

=
αn0+2k+p + xn0+k+m(r+1)+j

αn0+2k+p + xn0+k+p

.
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Consequently, by using (3.5) we have two cases:

Case 1: If m = 0, we obtain

xn0+2k+p+1 =
αn0+2k+p + xn0+k+j

αn0+2k+p + xn0+k+p

≤ αn0+2k+p + xn0+k+p

αn0+2k+p + xn0+k+p

= 1.

Case 2: If m ≥ 1, we obtain

xn0+2k+p+1 <
αn0+2k+p + xn0+k+j

αn0+2k+p + xn0+k+p

≤ αn0+2k+p + xn0+k+p

αn0+2k+p + xn0+k+p

= 1.

Then, in both cases we have a contradiction, and the proof is complete.

To confirm our result on the oscillatory behavior of the positive solutions of Eq. (3.1),
we consider the two following numerical examples.

Example 3.1. We consider the following fifth order difference equation

yn+1 =
[ (−1)n+4

4
]2 + yn−2

[ (−1)n+4
4

]2 + yn−4

(3.6)

with the initial values y−4 = 1.2, y−3 = 0.9, y−2 = 0.7, y−1 = 1.9, y0 = 1.3. The solution
of Eq. (3.6) is oscillatory about ȳ = 1, see Fig. 3.1.
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Figure 3.1: Plot of the solution of equation Eq. (3.6) with the initial values y−4 = 1.2,
y−3 = 0.9, y−2 = 0.7, y−1 = 1.9, y0 = 1.3.
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Example 3.2. We consider the following rational difference equation

yn+1 =
n+12
7n+8

+ yn−2

n+12
7n+8

+ yn−11

(3.7)

with the initial values y−11 = 0.02, y−10 = 3.5, y−9 = 9.1, y−8 = 1.2, y−7 = 3.3, y−6 = 0.5,
y−5 = 2.8, y−4 = 1.5, y−3 = 1.9, y−2 = 2.7, y−1 = 11.5, y0 = 0.3. The solution of Eq.
(3.7) is oscillatory about ȳ = 1, see Fig. 3.2.

Figure 3.2: Plot of the solution of Eq. (3.7) with the initial values y−11 = 0.02, y−10 = 3.5,
y−9 = 9.1, y−8 = 1.2, y−7 = 3.3, y−6 = 0.5, y−5 = 2.8, y−4 = 1.5, y−3 = 1.9, y−2 = 2.7,
y−1 = 11.5, y0 = 0.3
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3.3 Boundedness of Positive Solutions

Hereafter, we shall use the following notations

α = limαn, a = inf {αn} and A = sup {αn} .

We have the following result.

Theorem 3.2. Assume that
a > 1. (3.8)

Then, every positive solution of (3.1) is bounded.

Proof. We have

xn+1 =
αn + xn−r

αn + xn−k

≤ A

a
+

1

a
xn−r, (3.9)

which gives (see [22, p. 77])

xn ≤ A

a− 1
+ a−

n
r+1

r∑
i=0

cin
i. (3.10)

Since a > 1, the right hand side of inequality (3.10) tends to A
a−1

as n → ∞. Then, by
Theorem 1.1, there exists M > 0, such that

xn ≤M, ∀n ≥ k.

Hence, Eq. (3.1) yields
xn+1 ≥

a

A+M
= m > 0.

Theorem 3.3. Assume that a ≤ 1 and that there exists a positive integer m such that

k = r +m(r + 1). (3.11)

Then, every positive solution of (3.1) is bounded.

Proof. Let {xn}n≥−k be a positive solution of (3.1). Assume, for the sake of contradiction,
that the solutions are unbounded. Then, there exists a sub-sequence {xni+1} such that

lim
i→∞

xni+1 = +∞, xni+1 = max{xn : n ≤ ni + 1}.

From (3.9) we have
lim
i→∞

xni−r = +∞. (3.12)
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Furthermore,

0 ≤ xni+1 − xni−r =
αni

(1− xni−r) + (1− xni−k)xni−r

αni
+ xni−k

which implies that
xni−k ≤

αni

xni−r

+ 1− αni
. (3.13)

In view of (3.12) and (3.13), we see that {xni−k} is bounded. Hence, by applying (3.9)
repeatedly we obtain

xni−r ≤


m+ xni−k, if a = 1,

A
1−a

(a−m − 1) + a−mxni−k, if a < 1,

which implies that {xni−r} is also bounded. This is a contradiction.

3.4 Global Asymptotic Stability

In this section, we investigate the global asymptotic stability of the equilibrium point.
First, we have the following local stability result.

Theorem 3.4. Assume that (3.8) holds. Then, x̄ = 1 is stable.

Proof. Choose M > A/(a− 1) such that

x−k, ..., x0 ∈
(

1

A+M
,M

)
.

Since a > 1 and from Theorem (3.2), we have

a

A+M
≤ xn ≤M

then
1

A+M
< xn ≤M

Therefore,

xn ∈
(

1

A+M
,M

)
, ∀n ≥ −k. (3.14)

Next, setting

M(ε) = min

{
1 + ε,

1

1− ε
− A

}
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and
δ(ε) = min

{
M(ε)− 1, 1− 1

A+M(ε)

}
,

for ε ∈ (0, 1), we obtain

(1− δ, 1 + δ) ⊆
(

1

A+M
,M

)
⊆ (1− ε, 1 + ε). (3.15)

Now, if we take x−k, ..., x0 ∈ R+ with |x−k − 1| + |x−k+1 − 1| + ... + |x0 − 1| < δ, then
(3.14), combined with (3.15), yields

|xn − 1| < ε, ∀n ≥ −k,

and so x̄ is stable.

In the next theorem, we establish the global attractivity of the equilibrium point.

Theorem 3.5. Assume that (3.8) holds. Then, x̄ = 1 is the global attractor of all positive
solutions of Eq. (3.1).

Proof. Let {xn}n≥−k be an arbitrary positive solution of (3.1). Set

I = lim inf
n→∞

xn and S = lim sup
n→∞

xn

which by Theorem 3.2 exist. Let {np} and {nq} be an infinite increasing sequences of
positive integers such that

lim
q→∞

xnq+1 = I and lim
p→∞

xnp+1 = S.

By taking sub-sequences, if necessary, we assume that {αnp}p, {αnq}q, {xnp−r}p, {xnq−r}q,
{xnp−k}p and {xnq−k}q converge to A0, a0, Lr, lr, Lk and lk respectively. Clearly

lr, Lr, lk, Lk ∈ [I, S] and a0, A0 ∈ [a,A].

Then, the Eq. (3.1) yields

I =
a0 + lr
a0 + lk

≥ a0 + I

a0 + S

and
S =

A0 + Lr

A0 + Lk

≤ A0 + S

A0 + I
.

Since the function (x+ I)/(x+ S) is non-decreasing, we have

I ≥ a+ I

a+ S
. (3.16)
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Similarly, since (x+ S)/(x+ I) is non-increasing, we obtain

S ≤ a+ S

a+ I
. (3.17)

Combining (3.16) with (3.17) gives

a+ (1− a)I ≤ IS ≤ a+ (1− a)S.

Consequently, since a > 1 we obtain I ≥ S, and so the sequence {xn} is convergent to
the unique limit l = 1.

From Theorems 3.4 and 3.5 we obtain the following result.

Theorem 3.6. Assume that (3.8) holds. Then, the equilibrium point x̄ = 1 of Eq. (3.1)
is globally asymptotically stable.

Next, when condition (3.8) does not hold, we have

Theorem 3.7. Assume that a > 0 and k = 2r + 1. Then x̄ is the global attractor of all
positive solutions of Eq. (3.1).

Proof. Let {xn}n≥−k be an arbitrary positive solution of (3.1). In view of Theorem 3.1, it
suffices to show that all positive solutions of Eq. (3.1) which are oscillatory about x̄ are
attracted to it. Setting

z(i)n = xn(r+1)+i, for all n ≥ n0 + k and i = 0, ..., r,

it follows from Eq. (3.1) that

z
(i)
n+1 = x(n+1)(r+1)+i = xn(r+1)+i+r+1

=
αn(r+1)+i+r + xn(r+1)+i+r−r

αn(r+1)+i+r + xn(r+1)+i+r−k

,
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we have k = 2r + 1 yields:

z
(i)
n+1 =

αn(r+1)+i+r + xn(r+1)+i

αn(r+1)+i+r + xn(r+1)+i+r−2r−1

=
αn(r+1)+i+r + xn(r+1)+i

αn(r+1)+i+r + x(n−1)(r+1)+i

=
β
(i)
n + z

(i)
n

β
(i)
n + z

(i)
n−1

, for all n ≥ 0 and i = 0, ..., r,

where β(i)
n = αn(r+1)+i+r. Hence, all sub-sequences

{
z
(i)
n

}
n
, i = 0, ..., r, satisfy the same

second order difference equation

zn+1 =
βn + zn
βn + zn−1

. (3.18)

In the sequel, we will show that x̄ = 1 is the global attractor of all positive solutions of
Eq. (3.18). Let {zn}n≥−k be an oscillatory positive solution of (3.18), and let {pi} and
{qi} be sequences of integers such that xp0 < 1 and for i = 0, 1, 2, ...

{zpi+1, ..., zqi} is a positive semicycle, (3.19)

i.e.,
zn ≥ 1, n ∈ (pi + 1, . . . , qi), zpi < 1, and zqi+1 < 1,

and
{zqi+1, ..., zpi+1

} is a negative semicycle, (3.20)

i.e.,
zn < 1, n ∈ (qi + 1, . . . , pi+1), zqi ≥ 1, and zpi+1+1 ≥ 1.

For each i = 0, 1, 2, ..., let Pi and Qi be the smallest integers in {pi + 1, ..., qi} and
{qi + 1, ..., pi+1}, respectively, such that

zPi
= max{zpi+1, ..., zqi} and zQi

= min{zqi+1, ..., zpi+1
}.

From (3.18) it follows that the extreme point in any semicycle occurs in one of the first
two terms of the semicycle. Consequently, we have ∀i ≥ 0

pi + 1 ≤ Pi ≤ pi + 2 and qi + 1 ≤ Qi ≤ qi + 2. (3.21)
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Let
I = lim inf

n→∞
zn = lim inf

i→∞
zQi

and S = lim sup
n→∞

zn = lim sup
i→∞

zPi
. (3.22)

Next, by Theorems 3.2 and 3.3, I and S exist, and they satisfy

0 < I ≤ 1 ≤ S <∞.

By definition of I and S, ∀ε, 0 < ε < I and δ > 0, ∃n0 ∈ N such that

I − ε ≤ zn ≤ S + δ, ∀n ≥ n0.

Now, we consider the positive semicycle (3.19) with pi ≥ n0 + 1. Then, we have

zn−1 ≥ I − ε, for n = pi, ..., Pi − 1,

zn ≥ 1, for n = pi + 1, Pi − 1.

From (3.21) we distinguish two cases:

Case 1: Pi = pi + 1. In this case we have

zPi
= zpi+1 =

βpi + zpi
βpi + zpi−1

≤ βpi + 1

βpi + I − ε
.

Since the function (x+ 1)/(x+ I − ε) is non-increasing, we obtain

zPi
≤ a+ 1

a+ I − ε
, ∀ε > 0,

and so
S ≤ a+ 1

a+ I
. (3.23)

Case 2: Pi = pi + 2. In this case, we have

zPi
= zpi+2 =

zpi+2

zpi+1

× zpi+1

=
βpi+1/zpi+1 + 1

βpi+1 + zpi
× βpi + zpi
βpi + zpi−1

≤ βpi+1 + 1

βpi+1 + zpi
× βpi + zpi
βpi + zpi−1
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and since the function (x+ 1)/(x+ zpi) is non-increasing, we have

zPi
≤ a+ 1

a+ zpi
× βpi + zpi
βpi + zpi−1

.

To estimate the last term in the right hand side of this inequality, we have:

Case 2-a: If zpi−1 ≤ zpi , then the function (x + zpi)/(x + zpi−1) is non-increasing, and
then

zPi
≤ a+ 1

a+ zpi
× a+ zpi
a+ zpi−1

≤ a+ 1

a+ I − ε
, ∀ε > 0.

Case 2-b: If zpi−1 ≥ zpi , then

zPi
≤ a+ 1

a+ zpi
× βpi + zpi
βpi + zpi

≤ a+ 1

a+ I − ε
, ∀ε > 0.

Therefore, in the two sub-cases we obtain the inequality (3.23).

Similarly, we consider the negative semicycle, (3.20) with qi ≥ n0 + 1. Then, we have

zn−1 ≤ S + δ, for n = qi, ..., Qi − 1,

zn < 1, for n = qi + 1, Qi − 1.

From (3.21) we distinguish two cases:

Case 1: Qi = qi + 1. In this case we have

zQi
= zqi+1 =

βqi + zqi
βqi + zqi−1

≥ βqi + 1

βqi + S + δ
.

Since the function (x+ 1)/(x+ S + δ) is non-decreasing, we obtain

zQi
≥ a+ 1

a+ S + δ
, ∀ε > 0,

and so
I ≥ a+ 1

a+ S
. (3.24)
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Case 2: Qi = qi + 2. In this case, we have

zQi
= zqi+2 =

zqi+2

zqi+1

× zqi+1

=
βqi+1/zqi+1 + 1

βqi+1 + zqi
× βqi + zqi
βqi + zqi−1

>
βqi+1 + 1

βqi+1 + zqi
× βqi + zqi
βqi + zqi−1

and since the function (x+ 1)/(x+ zqi) is non-decreasing, we have

zQi
≥ a+ 1

a+ zqi
× βqi + zqi
βqi + zqi−1

.

To estimate the last term in the right hand side of this inequality, we have:

Case 2-a: If zqi−1 ≥ zqi , then the function (x + zqi)/(x + zqi−1) is non-decreasing, and
then

zQi
≥ a+ 1

a+ zqi
× a+ zqi
a+ zqi−1

≥ a+ 1

a+ S + δ
, ∀δ > 0.

Case 2-b: If zqi−1 ≤ zpi , then

zPi
≥ a+ 1

a+ zqi
× βqi + zqi
βqi + zqi

≥ a+ 1

a+ S + δ
, ∀δ > 0.

Therefore, in the two sub-cases we obtain the inequality (3.24).

Combining (3.23) with (3.24) gives

a+ 1− aI ≤ IS ≤ a+ 1− aS.

Consequently, since a > 0 we obtain I ≥ S, and so the sequence {zn} is convergent to the
unique limit l = 1.
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Now, we give four illustrative examples:

Example 3.3. We consider the following fifth order difference equation

yn+1 =
5 + cos(nπ) + 2

n+1
+ yn−2

5 + cos(nπ) + 2
n+1

+ yn−4

, (3.25)

with the initial values y−4 = 0.3, y−3 = 5.5, y−2 = 0.9, y−1 = 4.2 and y0 = 1.2. From
Theorem 3.5, the equilibrium point ȳ = 1 is the global attractor of all positive solution of
Eq. (3.25), see Fig. 3.3.

Figure 3.3: Plot of the solution of Eq. (3.25) with the initial values y−4 = 0.3, y−3 = 5.5,
y−2 = 0.9, y−1 = 4.2 and y0 = 1.2.
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Example 3.4. We consider the following eighth order rational difference equation

yn+1 =
αn + yn−3

αn + yn−7

, (3.26)

where αn = 1− 2−(n+1). Here, we take the initial values as follows: y−7 = 0.3, y−6 = 0.1,
y−5 = 3.4, y−4 = 0.5, y−3 = 1.9, y−2 = 1.7, y−1 = 1.5 and y0 = 2.3. From Theorem 3.7,
the point ȳ = 1 is the global attractor of all positive solution of Eq. (3.26), see Fig. 3.4.

Figure 3.4: Plot of the solution of Eq. (3.26) with the initial values y−7 = 0.3, y−6 = 0.1,
y−5 = 3.4, y−4 = 0.5, y−3 = 1.9, y−2 = 1.7, y−1 = 1.5 and y0 = 2.3.
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Example 3.5. We consider the following sixth order rational difference equation

yn+1 =
αn + yn−2

αn + yn−5

, (3.27)

where

αn =


1/5, if n = 3j,

3/10, if n = 3j + 1,

2/5, if n = 3j + 2.

Here, we take the initial values as follows: y−5 = 0.8, y−4 = 0.3, y−3 = 2.9, y−2 = 1.7,
y−1 = 1.5 and y0 = 1.3. From Theorem 3.7, the point ȳ = 1 is the global attractor of all
positive solution of Eq. (3.27), see Fig. 3.5.

Figure 3.5: Plot of the solution of Eq. (3.27) with the initial values y−5 = 0.8, y−4 = 0.3,
y−3 = 2.9, y−2 = 1.7, y−1 = 1.5 and y0 = 1.3.
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Example 3.6. We consider the following rational difference equation

yn+1 =
2 + (n+ 1)−2 + yn−1

2 + (n+ 1)−2 + yn−10

, (3.28)

with the initial values y−10 = 2.7, y−9 = 1.1, y−8 = 0.3, y−7 = 0.3, y−6 = 0.3, y−5 = 3.4,
y−4 = 2.5, y−3 = 1.1, y−2 = 0.5, y−1 = 0.5, y0 = 1.8. From Theorem 3.7, the point ȳ = 1

is the global attractor of all positive solution of Eq. (3.28), see Fig. 3.6.

Figure 3.6: Plot of the solution of Eq. (3.28) with the initial values y−10 = 2.7, y−9 = 1.1,
y−8 = 0.3, y−7 = 0.3, y−6 = 0.3, y−5 = 3.4, y−4 = 2.5, y−3 = 1.1, y−2 = 0.5, y−1 = 0.5,
y0 = 1.8.
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4
Chapter

Dynamics of a System
of Higher Order Differ-
ence Equations with a
Period-Two Coefficient

4.1 Introduction

In this chapter, we tackle one open problem of the three problems proposed by Gümüs in
his article [27], 2018, in which he treated the semi-cycles of the positive solutions for the
system

xn+1 = A+
yn−k

yn
, yn+1 = A+

xn−k

xn
, n = 0, 1, . . . (4.1)

with parameter A > 0, and the initial conditions xi, yi are arbitrary positive real numbers
for i = −k,−k + 1, . . . , 0 and k ∈ Z+. He also proved that if A > 1 then the unique
positive equilibrium point (x̄, ȳ) = (A + 1, A + 1) is globally asymptotically stable. The
study of Gümüs is an extension of the work of Zhang et al. in [58], who studied the
asymptotic behavior of the positive solutions of the symmetrical system of the rational
difference equation (4.1) in the cases 0 < A < 1, A = 1 and A > 1. When 0 < A < 1,
they found out that when 0 < A < 1 there exist unbounded solutions of the system (4.1) ,
and when A = 1 they proved that the system (4.1) has two periodic solutions. Also, they
found that any positive solution is bounded and persists. In the same study, they have
shown that the unique positive equilibrium point (x̄, ȳ) = (A + 1, A + 1) attracts all the
positive solutions when A > 1. After the study of Gümüs, in [4], Abualrub and Aloqeili
examined the first open problem. They studied the oscillatory behavior, the boundedness,
the persistence of the positive solutions and the global asymptotic stability of the unique
positive equilibrium point of the system of two rational difference equations:

xn+1 = A+
yn−k

yn
, yn+1 = B +

xn−k

xn
, n = 0, 1, . . . (4.2)

with the parameters A > 0, B > 0 and the initial conditions xi, yi are arbitrary positive
real numbers for i = −k,−k + 1, . . . , 0 and k ∈ Z+.

In this work, we investigate the dynamical behavior of the system of difference equa-
tions

xn+1 = αn +
yn−k

yn
, yn+1 = αn +

xn−k

xn
, n = 0, 1, . . . (4.3)

where {αn} is a periodic sequence of non-negative real numbers and the initial conditions
xi, yi are arbitrary positive numbers for i = −k,−k + 1,−k + 2, . . . , 0 and k ∈ Z+.

59



4.2. BOUNDEDNESS CHARACTER

We consider the system (4.3) when the period of {αn} is two; namely, α2n = α and
α2n+1 = β. Then, we obtain

x2n+1 = α +
y2n−k

y2n
, (4.4)

x2n+2 = β +
y2n+1−k

y2n+1

, (4.5)

y2n+1 = α +
x2n−k

x2n
, (4.6)

y2n+2 = β +
x2n+1−k

x2n+1

. (4.7)

If αn = α = β = A, then the system (4.3) turns into the symmetrical system (4.1)

xn+1 = A+
yn−k

yn
, yn+1 = A+

xn−k

xn
, n = 0, 1, . . .

with the parameter A > 0, and the initial conditions xi, yi are arbitrary positive real
numbers for i = −k,−k + 1, ...., 0 and k ∈ Z+, which was studied in ([27],[58]).

Throughout this chapter, we assume that α ̸= β. We study the boundedness character
of the system (4.3) in the cases: 0 < α, β < 1 and α, β > 1. We use the linearization
method to give a necessary and sufficient conditions for the local stability. In addition, we
investigate the global behavior of the system (4.3). Furthermore, we determine the rate
of the convergence of the solutions and we give some numerical examples that support
our theoretical results.

4.2 Boundedness Character

In this section, we investigate the boundedness character of (4.3). We show that if k ∈ Z+,
α, β > 1, then every positive solution of the system (4.3) is bounded. When 0 < α, β < 1
and k is odd, then there exist unbounded solutions of the system (4.3).

Theorem 4.1. Suppose that
α > 1 and β > 1. (4.8)

Then every positive solution of the system (4.3) is bounded.

Proof. It is clear from equations (4.4), (4.5), (4.6) and (4.7) that

x2n > β, y2n > β, x2n−1 > α, y2n−1 > α, for every n ≥ k. (4.9)
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We assume that k is odd. Then, from the equations (4.4), (4.5), (4.6), (4.7) and (4.8),
we obtain

x2n+1 = α +
y2n−k

y2n
< α+

y2n−k

β
, (4.10)

x2n = β +
y2n−k−1

y2n−1

< β +
y2n−k−1

α
, (4.11)

y2n+1 = α +
x2n−k

x2n
< α+

x2n−k

β
, (4.12)

y2n = β +
x2n−k−1

x2n−1

< β +
x2n−k−1

α
. (4.13)

From (4.10), (4.12) and using induction we get

x2n+1 < α

(
1 +

1

β
+

1

β2
+

1

β3
+ . . .

)
+ µ1

=
αβ

β − 1
+ µ1,

y2n+1 < α

(
1 +

1

β
+

1

β2
+

1

β3
+ . . .

)
+ µ1

=
αβ

β − 1
+ µ1,

where µ1 = max {x−k, y−k, x−k+2, y−k+2, x−k+4, y−k+4, . . . , xk, yk}.
Similarly, we get

x2n+2 < β

(
1 +

1

α
+

1

α2
+

1

α3
+ . . .

)
+ µ2

=
αβ

α− 1
+ µ2,

y2n+2 < β

(
1 +

1

α
+

1

α2
+

1

α3
+ . . .

)
+ µ2

=
αβ

α− 1
+ µ2,

where µ2 = max {x−k+1, y−k+1, x−k+3, y−k+3, x−k+5, y−k+5, . . . , xk+1, yk+1}.
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Now, we suppose that k is even and α, β > 1. Then, from the equations (4.10), (4.11),
(4.12), (4.13) and using induction, we obtain

x2n+1 < α+ 1 +
1

αβ

[
1 +

1

αβ
+

1

(αβ)2
+

1

(αβ)3
+ . . .

]
+

1

β

[
1 +

1

αβ
+

1

(αβ)2
+

1

(αβ)3
+ . . .

]
+ µ3

= α + 1 +
1

αβ

(
αβ

αβ − 1

)
+

1

β

(
αβ

αβ − 1

)
+ µ3

=
αβ(α + 1)

αβ − 1
+ µ3,

y2n+1 < α+ 1 +
1

αβ

[
1 +

1

αβ
+

1

(αβ)2
+

1

(αβ)3
+ . . .

]
+

1

β

[
1 +

1

αβ
+

1

(αβ)2
+

1

(αβ)3
+ . . .

]
+ µ4

= α + 1 +
1

αβ

(
αβ

αβ − 1

)
+

1

β

(
αβ

αβ − 1

)
+ µ4

=
αβ(α + 1)

αβ − 1
+ µ4,

x2n+2 < β + 1 +
1

αβ

[
1 +

1

αβ
+

1

(αβ)2
+

1

(αβ)3
+ . . .

]
+

1

α

[
1 +

1

αβ
+

1

(αβ)2
+

1

(αβ)3
+ . . .

]
+ µ4

= β + 1 +
1

αβ

(
αβ

αβ − 1

)
+

1

α

(
αβ

αβ − 1

)
+ µ4

=
αβ(β + 1)

αβ − 1
+ µ4,

y2n+2 < β + 1 +
1

αβ

[
1 +

1

αβ
+

1

(αβ)2
+

1

(αβ)3
+ . . .

]
+

1

α

[
1 +

1

αβ
+

1

(αβ)2
+

1

(αβ)3
+ . . .

]
+ µ3

= β + 1 +
1

αβ

(
αβ

αβ − 1

)
+

1

α

(
αβ

αβ − 1

)
+ µ3

=
αβ(β + 1)

αβ − 1
+ µ3,
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where
µ3 = max {x−k+1, y−k, x−k+3, y−k+2, x−k+5, y−k+4, . . . , xk+1, yk}

and
µ4 = max {x−k, y−k+1, x−k+4, y−k+3, x−k+6, y−k+5, . . . , xk, yk+1}.

The proof now is completed.

Next, we study the existence of unbounded positive solutions of system (4.3) when
0 < α < 1 and 0 < β < 1.

Theorem 4.2. Suppose that 0 < α < 1 and 0 < β < 1. Let γ = max {α, β} and
{xn, yn}∞n=−k be a positive solution of (4.3). Then the following statements are true:

(a) If k is odd, 0 < x−k, x−k+2, . . . , x−1, y−k, y−k+2, . . . , y−1 < 1

and x−k+1, x−k+3, . . . , x0, y−k+1, y−k+3, . . . , y0 >
1

1−γ
, then

lim
n→∞

x2n = ∞, lim
n→∞

y2n = ∞, lim
n→∞

x2n+1 = α, lim
n→∞

y2n+1 = α.

(b) If k is odd, 0 < x−k+1, x−k+3, . . . , x0, y−k+1, y−k+3, . . . , y0 < 1

and x−k, x−k+2, . . . , x−1, y−k, y−k+2, . . . , y−1 >
1

1−γ
, then

lim
n→∞

x2n+1 = ∞, lim
n→∞

y2n+1 = ∞, lim
n→∞

x2n = β, lim
n→∞

y2n = β.

Proof. (a) Since γ ≥ α and γ ≥ β then

0 < x1 = α +
y−k

y0
< α+

1

y0
< α+ 1− γ < 1,

0 < y1 = α +
x−k

x0
< α+

1

x0
< α+ 1− γ < 1,

x2 = β +
y−k+1

y1
> β + y−k+1 > y−k+1 >

1

1− γ
,

y2 = β +
x−k+1

x1
> β + x−k+1 > x−k+1 >

1

1− γ
.

By induction, we get

0 < x2n−1, y2n−1 < 1 and x2n, y2n >
1

1− γ
for n = 1, 2, . . .
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So, from x2n+1 = α + y2n−k

y2n
implies that x2n = α +

y2n−(k+1)

y2n−1
and y2n+1 = α + x2n−k

x2n
, for

l > k+3
2

and k is odd we have

x2l = α +
y2l−(k+1)

y2l−1

> α+ y2l−(k+1) = α + α +
x2l−(2k+2)

x2l−(k+2)

> 2α + x2l−(2k+2),

x4l = α +
y4l−(k+1)

y4l−1

> α+ y4l−(k+1) = α + α +
x4l−(2k+2)

x4l−(k+2)

> 2α + x4l−(2k+2) = 2α + α +
y4l−(3k+3)

y4l−2k−3

> 3α + y4l−(3k+3) = 3α + α +
x4l−(4k+4)

x4l−(3k+4)

> 4α + x4l−(4k+4).

Similarly, we obtain x6l > 6α + x6l−(6k+6). So for all r = 1, 2, . . .

x2rl > 2rα + x2rl−2r(k+1)

Hence, if n = rl, then since r → ∞ and so limn→∞ x2n = ∞. In the same, we get
limn→∞ y2n = ∞.
We consider the system (4.3) and we take the limits on both sides of each equation in the
system

x2n+1 = α +
y2n−k

y2n
, y2n+1 = α +

x2n−k

x2n

we obtain limn→∞ x2n+1 = α and limn→∞ y2n+1 = α. This completes the proof of state-
ment (a).
Now, we prove the statement (b). Since γ ≥ α and γ ≥ β then, we have

0 < x2 = β +
y−k+1

y1
< β +

1

y1
< β + 1− γ < 1,

0 < y2 = β +
x−k+1

x1
< β +

1

x1
< β + 1− γ < 1,

x1 = α +
y−k

y0
> α+ y−k > y−k >

1

1− γ
,
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y1 = α +
x−k

x0
> α+ x−k > x−k >

1

1− γ
.

By induction, we get

0 < x2n, y2n < 1 and x2n−1, y2n−1 >
1

1− γ
for n = 1, 2, . . .

From x2n = β + y2n−k−1

y2n−1
implies that x2n+1 = β + y2n−k

y2n
and y2n = β + x2n−k−1

x2n−1
, so for

l > k+3
2

and k is odd yields

x2l+1 = β +
y2l−k

y2l
> β + y2l−k = β + β +

x2l−(2k+1)

x2l−(k+1)

> 2β + x2l−(2k+1),

x4l+1 = β +
y4l−k

y4l
> β + y4l−k = β + β +

x4l−(2k+1)

x4l−(k+1)

> 2β + x4l−(2k+1) = 2β + β +
y4l−(3k+2)

y4l−2k−2

> 3β + y4l−(3k+2) = 3β + β +
x4l−(4k+3)

x4l−(3k+3)

> 4β + x4l−(4k+3).

Similarly, we get x6l+1 > 6β + x6l−(6k+5). So for all r = 1, 2, . . .

x2rl+1 > 2rβ + x2rl−(2r(k+1)−1).

Consequently, if n = rl, then since r → ∞, limn→∞ x2n+1 = ∞. Similarly, we get
limn→∞ y2n+1 = ∞. Now, we consider the system (4.3) and we take the limits on both
sides of each equation in the system,

x2n+2 = β +
y2n+1−k

y2n+1

, y2n+2 = β +
x2n+1−k

x2n+1

,

we obtain

lim
n→∞

x2n+2 = β and lim
n→∞

y2n+2 = β.

This completes the proof of statement (b).
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4.3 Local Asymptotic Stability

The system (4.3) can be converted into a four-dimensional discrete system with constant
coefficients. To this end, let

un = x2n−1, vn = x2n, tn = y2n−1, wn = y2n, n = 0, 1, 2, . . .

We consider the case k = 2m. Hence, for n ≥ 0 we have

un+1 = x2n+1 = α +
y2n−2m

y2n
= α +

wn−m

wn

,

tn+1 = y2n+1 = α +
x2n−2m

x2n
= α +

vn−m

vn
,

vn+1 = x2n+2 = β +
y2n+1−2m

y2n+1

= β +
tn−m+1

tn+1

,

wn+1 = y2n+2 = β +
x2n+1−2m

x2n+1

= β +
un−m+1

un+1

.

So, for n = 0, 1, . . . , the system (4.3) is equivalent to the system
un+1 = α + wn−m

wn

vn+1 = β + tn−m+1vn
αvn+vn−m

tn+1 = α + vn−m

vn

wn+1 = β + un−m+1wn

αwn+wn−m

(4.14)

where the initial conditions are w0 = y0, w−1 = y−2,. . . , w−m = y−2m, v0 = x0,
v−1 = x−2,. . . , v−m = x−2m, t0 = y−1, t−1 = y−3,. . . , t−m+1 = y−2m+1,u0 = x−1,
u−1 = x−3,. . . , u−m+1 = x−2m+1. One can easily see that the system (4.14) has a unique
equilibrium point E = (α+1, β+1, α+1, β+1). In this section, we use the linearization
method to give necessary and sufficient conditions for the local asymptotic stability.

Theorem 4.3. If α > 1, β > 1 and k is even, then the unique positive equilibrium point
E = (α + 1, β + 1, α+ 1, β + 1) of the system (4.14) is locally asymptotically stable.

Proof. The system (4.14) can be formulated as a system of first order recurrence equations
as follows:

u(1)n = un, u
(2)
n = un−1, . . . , u

(m)
n = un−m+1,

v(1)n = vn, v
(2)
n = vn−1, . . . , v

(m+1)
n = vn−m,

t(1)n = tn, t
(2)
n = tn−1, . . . , t

(m)
n = tn−m+1,

w(1)
n = wn, w

(2)
n = wn−1, . . . , w

(m+1)
n = wn−m.
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The linearization of the system (4.14) about the equilibrium point E is given by

Zn+1 = AZn, (4.15)

where

Zn = (u(1)n , u(2)n , . . . , u(m)
n , v(1)n , v(2)n , . . . , v(m+1)

n , t(1)n , t(2)n , . . . , t(m)
n , w(1)

n , w(2)
n , . . . , w(m+1)

n )T

and

Zn+1 =

(u
(1)
n+1, u

(2)
n+1, . . . , u

(m)
n+1, v

(1)
n+1, v

(2)
n+1, . . . , v

(m+1)
n+1 , t

(1)
n+1, t

(2)
n+1, . . . , t

(m)
n+1, w

(1)
n+1, w

(2)
n+1, . . . , w

(m+1)
n+1 )T

= (α +
w

(m+1)
n

w
(1)
n

, u(1)n , u(2)n , . . . , u(m−1)
n , β +

t
(m)
n v

(1)
n

αv
(1)
n + v

(m+1)
n

, v(1)n , v(2)n , . . . , v(m)
n , α+

v
(m+1)
n

v
(1)
n

,

t(1)n , t(2)n , . . . , t(m−1)
n , β +

u
(m)
n w

(1)
n

αw
(1)
n + w

(m+1)
n

, w(1)
n , w(2)

n , . . . , w(m)
n )T .

With

∂u
(1)
n+1

∂u
(1)
n

= 0, . . . ,
∂u

(1)
n+1

∂u
(m)
n

= 0,
∂u

(1)
n+1

∂v
(1)
n

= 0, . . . ,
∂u

(1)
n+1

∂v
(m+1)
n

= 0,
∂u

(1)
n+1

∂t
(1)
n

= 0, . . . ,
∂u

(1)
n+1

∂t
(m)
n

= 0,

∂u
(1)
n+1

∂w
(1)
n

=
−wm+1

n

(w
(1)
n )2

,
∂u

(1)
n+1

∂w
(2)
n

= 0, . . . ,
∂u

(1)
n+1

∂w
(m)
n

= 0,
∂u

(1)
n+1

∂w
(m+1)
n

=
1

w
(1)
n

,

∂u
(2)
n+1

∂u
(1)
n

= 1,
∂u

(2)
n+1

∂u
(2)
n

= 0, . . . ,
∂u

(2)
n+1

∂w
(m+1)
n

= 0,

...

∂u
(m)
n+1

∂u
(1)
n

= 0, . . . ,
∂u

(m)
n+1

∂u
(m−2)
n

= 0,
∂u

(m)
n+1

∂u
(m−1)
n

= 1,
∂u

(m)
n+1

∂u
(m)
n

= 0, . . . ,
∂u

(m)
n+1

∂w
(m+1)
n

= 0,

67



4.3. LOCAL ASYMPTOTIC STABILITY

∂v
(1)
n+1

∂u
(1)
n

= 0, . . . ,
∂v

(1)
n+1

∂u
(m)
n

= 0,
∂v

(1)
n+1

∂v
(1)
n

=
t
(m)
n v

(m+1)
n

(αv
(1)
n + v

(m+1)
n )2

,
∂v

(1)
n+1

∂v
(2)
n

= 0, . . . ,
∂v

(1)
n+1

∂v
(m)
n

= 0,

∂v
(1)
n+1

∂v
(m+1)
n

=
−t(m)

n v
(1)
n

(αv
(1)
n + v

(m+1)
n )2

,
∂v

(1)
n+1

∂t
(1)
n

= 0, . . . ,
∂v

(1)
n+1

∂t
(m−1)
n

= 0,
∂v

(1)
n+1

∂t
(m)
n

=
v
(1)
n

αv
(1)
n + v

(m+1)
n

,

∂v
(1)
n+1

∂w
(1)
n

= 0, . . . ,
∂v

(1)
n+1

∂w
(m+1)
n

= 0,

∂v
(2)
n+1

∂u
(1)
n

= 0, . . . ,
∂v

(2)
n+1

∂v
(1)
n

= 1,
∂v

(2)
n+1

∂v
(2)
n

= 0, . . . ,
∂v

(2)
n+1

∂w
(m+1)
n

= 0,

...

∂v
(m+1)
n+1

∂u
(1)
n

= 0, . . . ,
∂v

(m+1)
n+1

∂v
(m−1)
n

= 0,
∂v

(m+1)
n+1

∂v
(m)
n

= 1,
∂v

(m+1)
n+1

∂v
(m+1)
n

= 0, . . . ,
∂v

(m+1)
n+1

∂w
(m+1)
n

= 0,

∂t
(1)
n+1

∂u
(1)
n

= 0, . . . ,
∂t

(1)
n+1

∂u
(m)
n

= 0,
∂t

(1)
n+1

∂v
(1)
n

=
−vm+1

n

(v
(1)
n )2

,
∂t

(1)
n+1

∂v
(2)
n

= 0, . . . ,
∂t

(1)
n+1

∂v
(m)
n

= 0,

∂t
(1)
n+1

∂v
(m+1)
n

=
1

v
(1)
n

,
∂t

(1)
n+1

∂t
(1)
n

= 0, . . . ,
∂t

(1)
n+1

∂w
(m+1)
n

= 0,

∂t
(2)
n+1

∂u
(1)
n

= 0, . . . ,
∂t

(1)
n+1

∂v
(m+1)
n

= 0,
∂t

(2)
n+1

∂t
(1)
n

= 1,
∂t

(2)
n+1

∂t
(2)
n

= 0 . . . ,
∂t

(2)
n+1

∂w
(m+1)
n

= 0,

...

∂t
(m)
n+1

∂u
(1)
n

= 0, . . . ,
∂t

(m)
n+1

∂t
(m−2)
n

= 0,
∂t

(m)
n+1

∂t
(m−1)
n

= 1,
∂t

(m)
n+1

∂t
(m)
n

= 0 . . . ,
∂t

(m)
n+1

∂w
(m+1)
n

= 0,

∂w
(1)
n+1

∂u
(1)
n

= 0, . . . ,
∂w

(1)
n+1

∂u
(m−1)
n

= 0,
∂w

(1)
n+1

∂u
(m)
n

=
w

(1)
n

αw
(1)
n + w

(m+1)
n

,
∂w

(1)
n+1

∂v
(1)
n

= 0, . . . ,
∂w

(1)
n+1

∂t
(m)
n

= 0,

∂w
(1)
n+1

∂w
(1)
n

=
u
(m)
n w

(m+1)
n

(αw
(1)
n + w

(m+1)
n )2

,
∂w

(1)
n+1

∂w
(2)
n

= 0, . . . ,
∂w

(1)
n+1

∂w
(m)
n

= 0,
∂w

(1)
n+1

∂w
(m+1)
n

=
−u(m)

n w
(1)
n

(αw
(1)
n + w

(m+1)
n )2

,

∂w
(2)
n+1

∂u
(1)
n

= 0, . . . ,
∂w

(2)
n+1

∂t
(m)
n

= 0,
∂w

(2)
n+1

∂w
(1)
n

= 1,
∂w

(2)
n+1

∂w
(2)
n

= 0, . . . ,
∂w

(2)
n+1

∂w
(m+1)
n

= 0

...

∂w
(m+1)
n+1

∂u
(1)
n

= 0, . . . ,
∂w

(m+1)
n+1

∂w
(m−1)
n

= 0,
∂w

(m+1)
n+1

∂w
(m)
n

= 1,
∂w

(m+1)
n+1

∂w
(m+1)
n

= 0,
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and A is the jacobian matrix at the equilibrium point E under the above linearized
system (4.15), it is as follows:

A =

0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 −1
β+1

0 . . . 0 1
β+1

1 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 0 0 . . . 0 0

0 1 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 0 0 . . . 0 0
...

... . . . ...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 1 0 0 0 . . . 0 0 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 1
(β+1)(α+1)

0 . . . 0 −1
(β+1)(α+1)

0 . . . 0 1
α+1

0 0 . . . 0 0

0 0 . . . 0 0 1 0 . . . 0 0 0 . . . 0 0 0 0 . . . 0 0
...

...
...

...
...

... . . . ...
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 0 0 . . . 1 0 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 −1
β+1

0 . . . 0 1
β+1

0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 0 0 . . . 0 0 1 . . . 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...
... . . . ...

...
...

...
...

...
...

0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 1 0 0 0 . . . 0 0

0 0 . . . 0 1
α+1

0 0 . . . 0 0 0 . . . 0 0 1
(β+1)(α+1)

0 . . . 0 −1
(β+1)(α+1)

0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 1 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... . . . ...

...
...

0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 0 0 . . . 1 0


(4m+2)×(4m+2)

Let λ1, λ2, . . . , λ4m+2 be the eigenvalues of the matrix A. Define

D = diag(d1, d2, . . . , d4m+2)

be a diagonal matrix such that d1 = dm+1 = d2m+2 = d3m+2 = 1 and

di = d2m+1+i = 1− iε, for each i ∈ {2, 3, . . . ,m,m+ 2, . . . , 2m+ 1}.

Since α, β > 1, we can take a positive number ε such that

0 < ε < min

{
β − 1

(β + 1)(2m+ 1)
,

(α + 1)(β + 1)− 3

(α + 1)(β + 1)(2m+ 1)

}
. (4.16)

Hence, for all i, 1− iε > 0, and its clear that D is an invertible matrix. Computing matrix
DAD−1 where
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D =

d1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 d2 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 0 d3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
...

...
... . . . ...

...
...

...
...

...
...

...
...

...
...

...
0 . . . 0 0 dm+1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 . . . 0 0 0 dm+2 0 . . . . . . . . . . . . . . . . . . . . . . . . 0
...

...
...

...
... . . . ...

...
...

...
...

...
...

...
...

...
0 . . . 0 0 0 . . . d2m+1 0 0 . . . 0 0 0 . . . 0 0

0 . . . 0 0 0 . . . 0 d2m+2 0 . . . 0 0 0 . . . 0 0

0 . . . 0 0 0 . . . 0 0 d2m+3 . . . 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
... . . . ...

...
...

...
...

...
0 . . . 0 0 0 . . . 0 0 0 . . . d3m+1 0 0 . . . 0 0

0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 d3m+2 0 . . . 0 0

0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 d3m+3 . . . 0 0
...

...
...

...
...

...
...

...
...

...
...

...
... . . . ...

...
0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . d4m+1 0

0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 d4m+2


D−1 =

1
d1

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 1
d2

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 0 1
d3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
...

...
... . . . ...

...
...

...
...

...
...

...
...

...
...

...
0 . . . 0 0 1

dm+1
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 . . . 0 0 0 1
dm+2

0 . . . . . . . . . . . . . . . . . . . . . . . . 0
...

...
...

...
... . . . ...

...
...

...
...

...
...

...
...

...
0 . . . 0 0 0 . . . 1

d2m+1
0 0 . . . 0 0 0 . . . 0 0

0 . . . 0 0 0 . . . 0 1
d2m+2

0 . . . 0 0 0 . . . 0 0

0 . . . 0 0 0 . . . 0 0 1
d2m+3

. . . 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
... . . . ...

...
...

...
...

...
0 . . . 0 0 0 . . . 0 0 0 . . . 1

d3m+1
0 0 . . . 0 0

0 . . . 0 . . . 0 . . . 0 0 0 . . . 0 1
d3m+2

0 . . . 0 0

0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 1
d3m+3

. . . 0 0
...

...
...

...
...

...
...

...
...

...
...

...
... . . . ...

...
0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 1

d4m+1
0

0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 1
d4m+2



70



4.3. LOCAL ASYMPTOTIC STABILITY

DAD−1 =

0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 δ
(3m+2)
1 . . . 0 δ

(4m+2)
1

δ
(1)
2 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
... . . . ...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 . . . δ

(m−1)
m 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0

0 . . . 0 0 δ
(m+1)
m+1 . . . 0 δ

(2m+1)
m+1 0 . . . 0 δ

(3m+1)
m+1 0 . . . 0 0

0 . . . 0 0 δ
(m+1)
m+2 . . . 0 0 0 . . . 0 0 0 . . . 0 0

...
...

...
...

... . . . ...
...

...
...

...
...

...
...

...
...

0 . . . 0 0 0 . . . δ
(2m)
2m+1 0 0 . . . 0 0 0 . . . 0 0

0 . . . 0 0 δ
(m+1)
2m+2 . . . 0 δ

(2m+1)
2m+2 0 . . . 0 0 0 . . . 0 0

0 . . . 0 0 0 . . . 0 0 δ
(2m+2)
2m+3 . . . 0 0 0 . . . 0 0

...
...

...
...

...
...

...
...

... . . . ...
...

...
...

...
...

0 . . . 0 0 0 . . . 0 0 0 . . . δ
(3m)
3m+1 0 0 . . . 0 0

0 . . . 0 δ
(m)
3m+2 0 . . . 0 0 0 . . . 0 0 δ

(3m+2)
3m+2 . . . 0 δ

(4m+2)
3m+2

0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 δ
(3m+2)
3m+3 . . . 0 0

...
...

...
...

...
...

...
...

...
...

...
...

... . . . ...
...

0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . δ
(4m+1)
4m+2 0


where

δ
(3m+2)
1 =

−d1
(β + 1)d3m+2

, δ
(4m+2)
1 = d1

(β+1)d4m+2
, δ

(1)
2 =

d2
d1
,

δ(m−1)
m =

dm
dm−1

, δ
(m+1)
m+1 = dm+1

(β+1)(α+1)dm+1
, δ

(2m+1)
m+1 =

−dm+1

(β + 1)(α + 1)d2m+1

,

δ
(3m+1)
m+1 =

dm+1

(α + 1)d3m+1

, δ
(m+1)
m+2 = dm+2

dm+1
, δ

(2m)
2m+1 =

d2m+1

d2m
,

δ
(m+1)
2m+2 =

−d2m+2

(β + 1)dm+1

, δ
(2m+1)
2m+2 = d2m+2

(β+1)d2m+1
, δ

(2m+2)
2m+3 =

d2m+3

d2m+2

,

δ
(3m)
3m+1 =

d3m+1

d3m
, δ

(m)
3m+2 =

d3m+2

(α+1)dm
, δ

(3m+2)
3m+2 =

d3m+2

(β + 1)(α + 1)d3m+2

δ
(4m+2)
3m+2 =

−d3m+2

(β + 1)(α + 1)d4m+2

, δ
(3m+2)
3m+3 = d3m+3

d3m+2
, δ

(4m+1)
4m+2 =

d4m+2

d4m+1

.

From the following four inequalities

1 = d1 > d2 > · · · > dm > 0,

1 = dm+1 > dm+2 > · · · > d2m > d2m+1 > 0,

1 = d2m+2 > d2m+3 > · · · > d3m > d3m+1 > 0,

1 = d3m+2 > d3m+3 > · · · > d4m+1 > d4m+2 > 0,
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we get

d2
d1

< 1,
d3
d2

< 1, . . . ,
dm
dm−1

< 1,
dm+2

dm+1

< 1, . . . ,
d2m+1

d2m
< 1,

d2m+3

d2m+2

< 1, . . . ,
d3m+1

d3m
< 1,

d3m+3

d3m+2

< 1, . . . ,
d4m+2

d4m+1

< 1.

Furthermore, since α, β > 1 and by using (4.16) we have

1

β + 1
+

1

(β + 1)(1− (2m+ 1)ε)
<

1

(β + 1)(1− (2m+ 1)ε)
+

1

(β + 1)(1− (2m+ 1)ε)

<
2

(1− (2m+ 1)ε)(β + 1)

< 1

and

1

(α + 1)(β + 1)
+

1

(β + 1)(α + 1)(1− (2m+ 1)ε)
+

1

(α + 1)(1−mε)

<
3

(β + 1)(α + 1)(1− (2m+ 1)ε)

< 1.

Since A and DAD−1 have the same eigenvalues, we have

max{|λj|} ≤ ∥DAD−1∥∞

= max

{
1

(β + 1)
+

1

(β + 1)(1− (2m+ 1)ε)
,

d2
d1
,
d3
d2
, . . . ,

dm
dm−1

,

dm+2

dm+1

, . . . ,
d2m+1

d2m
,

d2m+3

d2m+2

, . . . ,
d3m+1

d3m
,

d3m+3

d3m+2

, . . . ,
d4m+2

d4m+1

,

1

(β + 1)(α + 1)
+

1

(β + 1)(α + 1)(1− (2m+ 1)ε)
+

1

(α + 1)(1−mε)

}
< 1.

So, the modulus of every eigenvalue of A is less than one. Hence, the unique equilibrium
point E = (α+1, β+1, α+1, β+1) of the system (4.14) is locally asymptotically stable.
Thus, the proof is completed.
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4.4 Global Asymptotic Stability

In this section, we show that all positive solutions of (4.3) are attracted by a period-two
solution.

Theorem 4.4. If α > 1, β > 1, then every positive solution of the system (4.3) converges
to the period-two solution (α + 1, α+ 1), (β + 1, β + 1),. . . as n→ ∞.

Proof. Let {xn, yn} be an arbitrary positive solution of the system (4.3) and let

u1 = lim sup
n→∞

x2n+1, l1 = lim inf
n→∞

x2n+1 u2 = lim sup
n→∞

x2n, l2 = lim inf
n→∞

x2n

u3 = lim sup
n→∞

y2n+1, l3 = lim inf
n→∞

y2n+1, u4 = lim sup
n→∞

y2n, l4 = lim inf
n→∞

y2n

Using Theorem (4.1), we get

l1 ≤ u1 < +∞, l2 ≤ u2 < +∞, l3 ≤ u3 < +∞, l4 ≤ u4 < +∞.

Now, we assume that k is even. Then the system (4.3) implies that

u1 ≤ α +
u4
l4
, u2 ≤ β +

u3
l3
, u3 ≤ α +

u2
l2
, u4 ≤ β +

u1
l1
,

l1 ≥ α +
l4
u4
, l2 ≥ β +

l3
u3
, l3 ≥ α +

l2
u2
, l4 ≥ β +

l1
u1
.

which implies that

βu1 + l1 ≤ l4u1 ≤ αl4 + u4, αu4 + l4 ≤ l1u4 ≤ βl1 + u1

and

αu2 + l2 ≤ l3u2 ≤ βl3 + u3, βu3 + l3 ≤ l2u3 ≤ αl2 + u2.

Therefore, we obtain

(β − 1)(u1 − l1) + (α− 1)(u4 − l4) ≤ 0

and

(β − 1)(u3 − l3) + (α− 1)(u2 − l2) ≤ 0.
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Since α > 1, β > 1 and u1 − l1, u2 − l2, u3 − l3, u4 − l4 ≥ 0, we get

u1 − l1 = 0, u2 − l2 = 0, u3 − l3 = 0 and u4 − l4 = 0.

Now, we assume that k is odd. Then the system (4.3) implies that

u1 ≤ α +
u3
l4
, u2 ≤ β +

u4
l3
, u3 ≤ α +

u1
l2
, u4 ≤ β +

u2
l1
,

l1 ≥ α +
l3
u4
, l2 ≥ β +

l4
u3
, l3 ≥ α +

l1
u2
, l4 ≥ β +

l2
u1

which implies that

βu1 + l2 ≤ l4u1 ≤ αl4 + u3, αu4 + l3 ≤ l1u4 ≤ βl1 + u2

and

αu2 + l1 ≤ l3u2 ≤ βl3 + u4, βu3 + l4 ≤ l2u3 ≤ αl2 + u1.

Consequently, we obtain

(β − 1)u1 + (1− α)l2 ≤ (α− 1)l4 + (1− β)u3

and

(1− β)l1 + (α− 1)u2 ≤ (β − 1)l3 + (1− α)u4.

By addition, we get

(β − 1)(u1 − l1) + (α− 1)(u2 − l2) + (α− 1)(u4 − l4) + (β − 1)(u3 − l3) ≤ 0.

But α− 1, β − 1 > 0 and u1 − l1, u2 − l2, u3 − l3, u4 − l4 ≥ 0. Thus

u1 − l1 = 0, u2 − l2 = 0, u3 − l3 = 0 and u4 − l4 = 0.

So, we use (4.14) to get

l1 = u1 = α + 1, l2 = u2 = β + 1, l3 = u3 = α + 1, l4 = u4 = β + 1
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Moreover, it is obvious that since α ̸= β, then from equations (4.4), (4.5), (4.6) and (4.7)

lim
n→∞

x2n+1 ̸= lim
n→∞

x2n, lim
n→∞

y2n+1 ̸= lim
n→∞

y2n.

Finally, since l1 = u1, l2 = u2, l3 = u3, l4 = u4, it is clear that {xn, yn} converges to the
period-two solution (α + 1, α+ 1), (β + 1, β + 1),. . . as n→ ∞.

From Theorems (4.3) and (4.4) we obtain the following result.

Theorem 4.5. If α, β > 1 and k is even then the period-two solution {(α+1, α+1), (β+

1, β + 1), ...} of the system (4.3) is globally asymptotically stable.

4.5 Rate of Convergence

Let {(un, vn, tn, wn)} a solution of the system (4.14) converging to the equilibrium point
(ū, v̄, t̄, w̄). We seek here to determinate the speed of convergence of {(un, vn, tn, wn)},
called "Rate of convergence", and to do this we will build a system of errors, we have

un+1 − ū =
k∑

i=0

Ai(un−i − ū) +
k∑

i=0

Bi(wn−i − w̄),

vn+1 − v̄ =
k∑

i=0

Ei(vn−i − v̄) +
k∑

i=0

Fi(tn−i − t̄),

tn+1 − t̄ =
k∑

i=0

Ci(tn−i − t̄) +
k∑

i=0

Di(vn−i − v̄),

wn+1 − w̄ =
k∑

i=0

Gi(wn−i − w̄) +
k∑

i=0

Hi(un−i − ū).

Set

e(1)n = un − ū, e(2)n = vn − v̄, e(3)n = tn − t̄, e(4)n = wn − w̄.

Hence we obtain

e
(1)
n+1 =

k∑
i=0

Aie
(1)
n−i +

k∑
i=0

Bie
(4)
n−i, e

(2)
n+1 =

k∑
i=0

Eie
(2)
n−i +

k∑
i=0

Fie
(3)
n−i,

e
(3)
n+1 =

k∑
i=0

Cie
(3)
n−i +

k∑
i=0

Die
(2)
n−i, e

(4)
n+1 =

k∑
i=0

Gie
(4)
n−i +

k∑
i=0

Hie
(1)
n−i,
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where

Ai = 0, i ∈ {0, 1, . . . ,m− 1}, B0 =
−wn−m

w2
n

, Bi = 0, i ∈ {1, 2, . . . ,m− 1},

Bm =
1

wn

, E0 =
tn−m+1vn−m

(αvn + vn−m)2
, Ei = 0, i ∈ {1, 2, . . . ,m− 1}, Em =

−tn−m+1vn
(αvn + vn−m)2

,

Fi = 0, i ∈ {0, 1, . . . ,m− 2,m}, Fm−1 =
vn

αvn + vn−m

, Ci = 0, i ∈ {0, 1, . . . ,m− 1},

D0 =
−vn−m

v2n
, Di = 0, i ∈ {1, 2, . . . ,m− 1}, Dm =

1

vn
, G0 =

un−m+1wn−m

(αwn + wn−m)2
,

Gi = 0, i ∈ {1, 2, . . . ,m− 1}, Gm =
−un−m+1wn

(αwn + wn−m)2
, Hi = 0, i ∈ {0, 1, . . . ,m− 2,m}

Hm−1 =
wn

αwn + wn−m

.

Taking the limits, we have

lim
n→∞

Ai = 0 for i ∈ {0, 1, . . . ,m− 1}, lim
n→∞

B0 =
−1

w̄
,

lim
n→∞

Bi = 0 for i ∈ {1, . . . ,m− 1}, lim
n→∞

Bm =
1

w̄
, lim

n→∞
E0 =

t̄

(α + 1)2v̄
,

lim
n→∞

Ei = 0 for i ∈ {1, . . . ,m− 1}, lim
n→∞

Em =
−t̄

(α + 1)2v̄
,

lim
n→∞

Fi = 0 for i ∈ {0, 1, . . . ,m− 2,m}, lim
n→∞

Fm−1 =
v̄

(α + 1)v̄
,

lim
n→∞

Ci = 0 for i ∈ {0, 1, . . . ,m− 1}, lim
n→∞

D0 =
−1

v̄
, lim

n→∞
Di = 0 for i ∈ {1, . . . ,m− 1},

lim
n→∞

Dm =
1

v̄
, lim

n→∞
G0 =

ū

(α + 1)2w̄
, lim

n→∞
Gi = 0 for i ∈ {1, . . . ,m− 1},

lim
n→∞

Gm =
−ū

(α + 1)2w̄
, lim

n→∞
Hi = 0 for i ∈ {0, 1, . . . ,m− 2,m}, lim

n→∞
Hm−1 =

w̄

(α + 1)w̄
.

Hence

B0 =
−1

w̄
+ an, Bm =

1

w̄
+ bn, E0 =

t̄

(α + 1)2v̄
+ cn, Em =

−t̄
(α + 1)2v̄

+ dn,

D0 =
−1

v̄
+ fn, Dm =

1

v̄
+ gn, G0 =

ū

(α + 1)2w̄
+ hn, Gm =

−ū
(α + 1)2w̄

+ kn,

Fm−1 =
v̄

(α + 1)v̄
+ pn, Hm−1 =

w̄

(α + 1)w̄
+ qn,

where an, bn, cn, dn, fn, gn, hn, kn, pn, qn −→ 0 for n −→ ∞. Consequently, we obtain a
system of the form

en+1 = (A+B(n))en,
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where

en =
(
e(1)n , ..., e

(1)
n−m+1, e

(2)
n , ..., e

(2)
n−m, e

(3)
n , ..., e

(3)
n−m+1, e

(4)
n , ..., e

(4)
n−m

)T

= (un − ū, ..., un−m+1 − ū, vn − v̄, ..., vn−m − v̄, tn − t̄, ..., tn−m+1 − t̄, wn − w̄, ..., wn−m − w̄)T

and

B(n) =



0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 an 0 . . . 0 bn
1 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 0 0 . . . 0 0
...

... . . . ...
...

...
...
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with ||B(n)|| −→ 0. Therefore, we can write the limiting system of error terms about the
equilibrium point (ū, v̄, t̄, w̄) as follows:
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which is the same as the linearized system of system (4.14) about equilibrium point
(ū, v̄, t̄, w̄). Finally, we apply Perron’s theorems to obtain the following result.

Theorem 4.6. Assume that a solution {(un, vn, tn, wn)} of the system (4.14) converges
to the equilibrium point (ū, v̄, t̄, w̄) which is globally asymptotically stable when α, β > 1

and k is even . Then, the error vector

en =
(
e(1)n , ..., e

(1)
n−m+1, e

(2)
n , ..., e

(2)
n−m, e

(3)
n , ..., e

(3)
n−m+1, e

(4)
n , ..., e

(4)
n−m

)T

= (un − ū, ..., un−m+1 − ū, vn − v̄, ..., vn−m − v̄, tn − t̄, ..., tn−m+1 − t̄, wn − w̄, ..., wn−m − w̄)T

of every solution of the system (4.14) satisfies both of the following asymptotic relations:

lim
n→∞

n
√

||en|| = |λiJF (ū, v̄, t̄, w̄)|, for some i = 1, 2, . . . , k

or
lim
n→∞

||en+1||
||en||

= |λiJF (ū, v̄, t̄, w̄)|, for some i = 1, 2, . . . , k

where |λiJF (ū, v̄, t̄, w̄)| is equal to the modulus of one the eigenvalues of the Jacobian
matrix evaluated at the equilibrium point (ū, v̄, t̄, w̄).
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4.6 Numerical Examples

In this section, in order to confirm our theoretical results, we consider some numerical
examples.

Example 4.1. Consider the system (4.3) with k = 9 and the initial conditions x−9 = 3,
x−8 = 4, x−7 = 0.6, x−6 = 1.3, x−5 = 0.1, x−4 = 2.7 x−3 = 9 , x−2 = 5, x−1 = 2.8,
x0 = 5.7, y−9 = 2, y−8 = 0.4, y−7 = 3, y−6 = 1.01, y−5 = 7, y−4 = 4.2, y−3 = 1.9 ,
y−2 = 7, y−1 = 6.7, y0 = 3. Moreover, we take the parameters α = 5

6
, β = 1

6
, i.e.,

αn =

5
6

if n even ,

1
6

if n odd .

In this case 0 < α < 1, 0 < β < 1 and k is odd. Then, by virtue of Theorem (4.2), the
solution of the system (4.3) is unbounded (see Figure 4.1).

Figure 4.1: Plot of the solution {(xn, yn)}n≥0 of the system (4.3) with k = 9 and the
initial values x−9 = 3, x−8 = 4, x−7 = 0.6, x−6 = 1.3, x−5 = 0.1, x−4 = 2.7 x−3 = 9 ,
x−2 = 5, x−1 = 2.8, x0 = 5.7, y−9 = 2, y−8 = 0.4, y−7 = 3, y−6 = 1.01, y−5 = 7, y−4 = 4.2,
y−3 = 1.9 , y−2 = 7, y−1 = 6.7, y0 = 3.
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Example 4.2. Consider the system (4.3) with k = 4 and the initial conditions x−4 = 4,
x−3 = 3 , x−2 = 1.06, x−1 = 2, x0 = 0.8, y−4 = 2, y−3 = 1.4 , y−2 = 4, y−1 = 1, y0 = 4.
Moreover, we take the parameters α = 7

3
, β = 5

3
. In this case α, β > 1 and k is even.

Then, by virtue of Theorem (4.4) the solution of the system (4.3) converges to the period
two solution {(10

3
, 10

3
), (8

3
, 8
3
), ...} (see Figure 4.2).

Figure 4.2: Plot of the solution {(xn, yn)}n≥0 of the system (4.3) with k = 4 and the
initial values x−4 = 4, x−3 = 3, x−2 = 1.06, x−1 = 2, x0 = 0.8, y−4 = 2, y−3 = 1.4,
y−2 = 4, y−1 = 1, y0 = 4.

Example 4.3. Consider the system (4.3) with k = 3 and the initial conditions x−3 = 1.4

, x−2 = 2.6, x−1 = 1.4, x0 = 1.1, y−3 = 2.1 , y−2 = 1.4, y−1 = 3.1, y0 = 0.8. In addition,
we take the parameters α = 5, β = 3. In this case α, β > 1 and k is odd. Then, by virtue
of Theorem (4.4) the solution of the system (4.3) converges to the period two solution
{(6, 6), (4, 4), ...} (see Figure 4.3).

Example 4.4. Consider the system (4.3) with k = 5 and the initial conditions x−5 = 1.4,
x−4 = 2.6, x−3 = 1.4, x−2 = 1.1, x−1 = 2.4, x0 = 1.8, y−5 = 2.01, y−4 = 1.4, y−3 = 3.1,
y−2 = 0.8, y−1 = 2.3, y0 = 5.9. Moreover, we take the sequence {αn} as follows

αn =

10 if n even

8 if n odd

In this case α, β > 1 and k is odd. Then, by virtue of Theorem (4.4) the solution of the
system (4.3) converges to the period two solution {(11, 11), (9, 9), ...} (see Figure 4.4).
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4.6. NUMERICAL EXAMPLES

Figure 4.3: Plot of the solution {(xn, yn)}n≥0 of the system (4.3) with k = 3 and the
initial values x−3 = 1.4, x−2 = 2.6, x−1 = 1.4, x0 = 1.1, y−3 = 2.1, y−2 = 1.4, y−1 = 3.1,
y0 = 0.8.

Figure 4.4: Plot of the solution {(xn, yn)}n≥0 of the system (4.3) with k = 5 and the
initial values x−5 = 1.4,x−4 = 2.6 , x−3 = 1.4 x−2 = 1.1, x−1 = 2.4, x0 = 1.8, y−5 = 2.01,
y−4 = 1.4,y−3 = 3.1, y−2 = 0.8, y−1 = 2.3, y0 = 5.9.
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Conclusion and Perspective

This thesis combines some basic notions with some studies and their results that we have
achieved about the behavior of some types of difference equations and their systems. More
precisely non-linear, autonomous and non-autonomous difference equations of second and
higher order besides a system of difference equations of higher order.

In the first chapter, we have given two examples by describing two biological phe-
nomena as an application of difference equations and their systems which were studied
by mathematicians. Next, we moved to the study of difference quadratic equation where
we discussed according to some parameters the local and global stability as well as the
existence of periodic solutions. After that, our study was oriented to generalize the re-
sults of non-autonomous difference equation more specifically the equation with bounded
coefficient. The latter is the main goal of our study in the third chapter. The results
obtained in this chapter were published in an international journal see [48].

In the fourth chapter, we are interested in the study of an open problem proposed in
[27]. This open problem is a system of difference equations with periodic coefficient

xn+1 = αn +
yn−k

yn
, yn+1 = αn +

xn−k

xn
, n = 0, 1, . . .

where {αn} is a periodic sequence of non-negative real numbers and the initial conditions
xi, yi are arbitrary positive numbers for i = −k,−k + 1,−k + 2, . . . , 0 and k ∈ Z+. This
system was difficult to study that is why we transformed it to a system of difference
equations with constant coefficient. And we obtained the sufficient results that prove the
behavior stability of solutions. It was published in an international journal see [49].

As a future perspective, we are interested in the study of the following system of
difference equations

xn+1 = αn +
yn−k

yn
, yn+1 = βn +

xn−k

xn
, n = 0, 1, . . .

where {αn}, {βn}, are periodic sequences or convergent sequences or bounded sequences of
non-negative real numbers and the initial conditions xi, yi are arbitrary positive numbers
for i = −k,−k + 1,−k + 2, . . . , 0 and k ∈ Z+.

82



Bibliography

[1] R. Abo-Zeid. Global behavior of a higher order rational difference equation. Filomat,
30(12):3265-3276, 2016.

[2] R. Abo-Zeid. Global behavior and oscillation of a third order difference equation.
Quaest. Math., 1–20, 2020.

[3] A. Abo-Zeid. Global behavior and oscillation of a third order difference equation,
Quaest. Math. 44:9, 1261-1280, 2022.

[4] S. Abulrub, M. Aloqeili. Dynamics of the system of difference equations xn+1 =
A+ yn−k

yn
, yn+1 = B + xn−k

xn
. Qualitative theory of dynamical systems. 19-69, 2020.

[5] A. Alshareef, F. Alzahrani, and A. Q. Khan. Dynamics and Solutions’ Expressions of
a Higher-Order Nonlinear Fractional Recursive Sequence. Math. Probl. Eng., 2021.

[6] R.J.H. Beverton, S.J. Holt. On the dynamics of exploited fish populations. Fishery
investigations (Great Britain, Ministry of Agriculture, Fisheries, and food), vol. 19.
London, 1957.

[7] M. Berkal and J. F. Navarro. Qualitative behavior of a two-dimensional discrete-time
prey–predator model. Comp and Math Methods. 3( 6):e1193, 2021.

[8] A. Bilgin and M.R.S. Kulenovic. Global asymptotic stability for discrete single species
population models. Discrete dynamics in nature and society, volume 2017, 1-15.

[9] E. Camouzis. Global convergence in periodically forced rational difference equations.
J. Difference Equ. Appl., vol(14), Nos. 10-11, 1011-1033, 2008.

[10] E. Camouzis and S. Kotsios. May’s Host–Parasitoid geometric series model with a
variable coefficient. Results Appl. Math. 11(2021), Article ID 100160, 5 p.

[11] E. Camouzis, G. Ladas. Dynamics of Third Order Rational Difference Equations
With Open Problems and Conjecture Advances in Discrete Mathematics and Appli-
cations. Chapman & Hall/CRC, Boca Raton, 2008.

[12] E. Camouzis, G. Papaschinopoulos. Global asymptotic behavior of positive solutions
on the system of rational difference equations xn+1 = 1 + xn

yn−m
, yn+1 = 1 + yn

xn−m
.

Appl. Math. lett. 17(6), 733-737, 2004.

[13] J. Cushing, S. Henson. Global dynamics of some periodically forced, monotone dif-
ference equations. J.Differential Equations Appl. 7(6), 859-872, 2001.

83



BIBLIOGRAPHY

[14] J. Cushing, S. Henson. A periodically forced Beverton-Holt equation. J.Differential
Equations Appl. 8(12), 1119-1120, 2002.

[15] M. Dehgan, C.M. Kent, R. Mazrooei-sebdani, N.L. Ortiz, H. Sedaghat. Dynamics
of rational difference equations containing quadratic terms, J. Difference Equ. Appl.,
14, 2008.

[16] M. Dehgan, C.M. Kent, R. Mazrooei-sebdani, N.L.Ortiz, H. Sedaghat. Monotone
and oscillatory solutions of rational difference equation containing quadratic terms,
J. Difference Equ. Appl., 14, 2008.

[17] I. Dekkar, N. Touafek, and Y. Yazlik. Global stability of a third-order nonlinear
system of difference equations with period-two coefficients. RACSAM 111:325-347,
2017.

[18] I. Dekkar, N. Touafek, and Q. Din. On the global dynamics of a rational difference
equation with periodic coefficients. J. Appl. Math. Comput., 60(1):567–588, 2019.

[19] B. Dennis, R.A. Desharnais, J.M. Cushing, and R.F. Costantino. Nonlinear demo-
graphic dynamics: mathematical models, and biological experiments, Ecol. Mongr.,
65, No. 3 ,261-281, 1995.

[20] M. Dipippo, E.J. Janowski, M.R.S. Kulenovic. Global Asymptotic Stability for
Quadratic Fractional Difference Equations, Adv. Difference Equ., 179, 2015.

[21] M. J. Douraki and J. Mashreghi. On the population model of the non-autonomous
logistic equation of second order with period-two parameters. J. Difference Equ. Appl.,
Vol. 14, No. 3, 231-257, 2008.

[22] S. Elaydi. An Introduction to Difference Equations, Undergraduate Texts in Mathe-
matics. Springer, New York, 2005.

[23] S. Elaydi and R.J. Sacker. Global stability of periodic orbits of non-autonomous
difference equations and population biology J.Differential equations 208, 258-273,
2005.

[24] E.M. Elsayed. Dynamics and behavior of a higher order rational difference equation.
J. Nonlinear Sci. Appl. 9(2016), 1463-1474.

[25] E.M. Elsayed, Faris Alzahrani, and H.S. Alayachi. Global Attractivity and the Peri-
odic Nature of Third Order Rational Difference Equation. J. Computational analysis
and applications. vol. 23, NO.7, 2017.

[26] E.A. Grove, G. Ladas. Periodicities in Nonlinear Difference Equations. Chapman
and hall, CRC, UK 2005.

[27] M. Gümüs. The global asymptotic stability of a system of difference equations. J.
Differ. Equ. Appl. 24(6), 976-991, 2018.

[28] M. Gümüs. The periodic character in a higher order difference equation with delays.
Math. Meth. Appl. Sci., 43(3): 1112-1123, 2020.

84



BIBLIOGRAPHY

[29] M. Gümüs and R. Abo-Zeid. Global behavior of a rational second order difference
equation. J. Appl. Math. Comput., 62(1):119–133, 2020.

[30] M.L.J. Hautus, T.S. Bolis. Solution to problem E2721, Amer. Math. Monthly 86,
865-866, 1979.

[31] L. X. Hu and H. M. Xia. Global asymptotic stability of a second order rational
difference equation. Appl. Math. Comput., 233:377–382, 2014.

[32] T. F. Ibrahim and N. Touafek. On a third order rational difference equation with
variable coeffitients. Dyn. Contin. Discrete Impuls Syst. Ser. B Appl. Algorithms,
20:251–264, 2013.

[33] A. Jafar and M. Saleh. Dynamics of nonlinear diffrence equation xn+1 =
βxn+γxn−k

A+Bxn+Cxn−k
.

J appl. Math.Comput., 57(1-2):493-522, 2018.

[34] M. Kara. D.T. Tollu. Y. Yazlik. Global behavior of two-dimensional difference equa-
tions system with two period coefficients, Tbil. Math. J., 13(4), 49-64, 2020.

[35] C.M. Kent, H. Sedaghat. Global attractivity in rationaldelay difference equation with
quadratic terms, J. Diffrence Eq. Appl. 17, 457-466, 2011.

[36] M.A. Kerker and A. Bouaziz. On the global behavior of a higher-order nonautonomous
rational difference equation. Electron. J. Math. Anal. Appl., 9(1), 302-309, 2021.

[37] M.A. Kerker, E. Hadidi, and A. Salmi. On the dynamics of a nonautonomous rational
difference equation. Int. J. Nonlinear Anal. Appl., 12:15-26, 2021.

[38] A. Q. Khan and K. Sharif. Global dynamics, forbidden set, and transcritical bifur-
cation of a one-dimensional discrete-time laser model.Math. Meth. Appl. Sci., 1-13,
2020.

[39] V. L. Kocic, G. Ladas, and L. W. Rodrigues. On rational recursive sequences. J.
Math. Anal. Appl., 173:127–157, 1993.

[40] V. L. Kocic, G. Ladas. Global behavior of nonlinear difference equations of higher
order with applications. Kluwer academic publishers, 1993.

[41] Y.K. Kuang, J.M. Cushing. Global stability in nonlinear difference-delay equation
model of flour beetle population growth. J.Differ. Equ. Appl. 2(1),31-37, 1996.

[42] M.R.S. Kulenovic and G. Ladas. Dynamics of second order rational difference equa-
tions with open problems and conjectures. CRS Press, Boca Raton, 2002.

[43] V. Lakshmikantham and D. Trigiante. Theory of Difference Equations, Numerical
Methods and Applications. Marcel Dekker, Inc., New York, 2002.

[44] N. Lazaryan, H. Sedaghat, Global Stability and Periodic Solutions for a Second-Order
Quadratic Rational Difference Equation, Int. J. Difference Equ., 11, 2016.

[45] E. Liz. Stability of non-autonomous difference equations: simple ideas leading to
useful results. J. Difference Equ. Appl., Vol. 17, No. 2, 203-220, 2011.

85



BIBLIOGRAPHY

[46] O. Öcalan. Dynamics of difference equation xn+1 = pn + xn−k

xn
with a period-two

coefficient. Appl. Math. Comput. 228:31-37, 2014.

[47] O. Öcalan, H. Ogünmez, M. Gümüs. Global behavior test for a nonlinear difference
equation with a period-two coefficient. Dyn. Contin. Discrete Impuls. Syst. Ser. A
Math. Anal., 21, 307-316, 2014.

[48] S. Oudina, M.A. Keker, A. Salmi. On the global behavior of the rational difference
equation yn+1 = αn+yn−r

αn+yn−k
. Results in Nonlinear Analysis, vol. 5, no. 3, pp. 312-324,

2022.

[49] S. Oudina, M.A. Keker, A. Salmi. Dynamics of a system of higher order difference
equations with a period-two coefficient. Int. J. Nonlinear Anal. Appl. Vol 13. Issue 2,
2043-2058, 2022.

[50] G. Papaschinopoulos. On the system of two difference equations xn+1 = A + xn−1

yn
,

yn+1 = A+ yn−1

xn
. Int. J. Math. Sci. 23, 839-848, 2000.

[51] G. Papaschinopoulos, C.J. Schinas, G. Stefanidou. On the nonautonomous difference
equation xn+1 = An +

xp
n−1

xq
n

, Appl. Math. Comput., 217, 5573-5580, 2011.

[52] G. Papaschinopoulos, C.J. Schinas . On a system of two nonlinear difference equa-
tions. J. Math. Anal. Appl. 219(2), 415-426, 1998.

[53] T. Park, D.B. Mertz, W. Grodzinski, and T. Prus. Cannibalistic predation in popu-
lations of flour beetles, Physiological Zoology 38,289-321, 1965.

[54] M. Pituk. More on Poincare’s and Perron’s theorems for difference equations. J.
Difference Equ. Appl, 8(3), 201-216, 2002.

[55] M. Saleh, N. Alkoumi, and A. Farhat. On the dynamics of a rational difference
equation xn+1 =

α+βxn+γxn−k

Bxn+Cxn−k
, Chaos Solitons Fract., 96:76–84, 2017.

[56] S. Stević. Solving a class of nonautonomous difference equations by generalized in-
variants Math. Methods Appl. Sci. 42, No. 18, 6315–6338 , 2019.

[57] A. Yildirim and D. T. Tollu. Global behavior of a second order difference equation
with two-period coefficient. J. Math. Ext., Vol. 16, No. 4, 1-21, 2022.

[58] D. Zhang, W. Ji, L. Wang, X. Li. On the symmetrical system of rational difference
equations xn+1 = A+ yn−k

yn
, yn+1 = A+ xn−k

xn
. Appl. Math. 4, 834-837, 2013.

[59] Q. Zhang, W. Zhang, Y. Shao, J. Liu. On the system of higher order rational differ-
ence equations. Int. Scholarly Res. Not. 1-5, 2014.

[60] Q. Zhang, L. Yang, J. Liu. On the recursive system xn+1 = A + xn−m

yn
, yn+1 =

A+ yn−m

xn
. Act Math. univ. Comenianae 82(2), 201-208, 2013.

86


	Introduction
	Preliminaries and Applications to Biology
	Preliminaries
	Definition of Stability of Difference Equations
	Linearized Stability Analysis
	Linearized Stability of the Higher Order Systems

	Applications to Biology
	The Beverton-Holt Model With Periodic Environment
	The Flour Beetle Model


	Global Stability of Second Order Quadratic Rational Difference Equation
	Introduction
	Existence and Boundedness of Solutions
	Existence and Local Stability of Unique Positive Equilibrium Points
	Global Attractivity of the Positive Equilibrium Point
	Periodic Solutions
	Numerical Examples

	On the Global Behavior of Higher-Order Non-autonomous Rational Difference Equation
	Introduction
	Oscillation of Positive Solutions
	Boundedness of Positive Solutions
	Global Asymptotic Stability

	Dynamics of a System of Higher Order Difference Equations with a Period-Two Coefficient
	Introduction
	Boundedness Character
	Local Asymptotic Stability
	Global Asymptotic Stability
	Rate of Convergence
	Numerical Examples


