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Abstract

In this thesis, we consider the theoretical study of some problems of hyperbolic type (equations
and systems of equations) with viscoelastic term under some assumptions on initial and bound-
ary conditions, conditions on dissipation terms, source terms. We have studied the existence and
the asymptotic behavior of the energy of the solutions.

Keywords: Nonlinear wave equations, Delay term, Infinite memory, Multiplier method, poly-
nomial decay, exponential stability.

Mathematics Subject Classification: 2010, 35L05, 35120, 35L70, 35L71, 37B25, 35B35,
93D15, 93D20, 93C20.




Résumé

Dans cette these, on considere I’étude théorique de quelques problemes de type hyperbolique
(équations et systémes d’équations) a terme viscoélastique sous quelques hypotheses sur les con-
ditions initiale et au bord, des conditions sur les termes de dissipation et des termes sources.
Nous avons étudié l'existence et le comportement asymptotique de ’énergie associée a la solu-
tion.

Mots-clés: Equations des ondes non lineaires, Terme de retard, Mémoire infinie, Méthode des
Multiplicateurs, décroissance polynomiale, stabilité exponentielle.
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ke

OWoladly g g ol Pl jand 4 kdl L)L & TETP 2 LIEECR
V) Ly ) oLty Lol jany cf Do 0 By Al sgie me (Yslal] Lokl
o, Dglug 9m ol Dl L,y wd) . jiall by 59 ¢ apadl by & ¢ Lagadl
sl Bl

C AL ESI el Allaas ¢ Ll e & gd) S ¥olae il L
IV LA 3gad| g JSae?l ¢ Multiplier & b

¢ 37B25 ¢ 35L71 ¢ 35L70 « 35L20 « 35L05 ¢ 2010 :lusl 1 6sle caduss
. 93C20 « 93D20 ¢« 93D15 « 35B35




Contents

Introduction 8
1 Preliminary 10
1.1 Continuous function spaces . . . . . . . . . . ... 11

1.2 LP Spaces . . . . . . o 12
1.3 Sobolev spaces . . . . . . . . 13
1.3.1 Weak derivative . . . . . . .. . 13

1.3.2 WIP(Q)spaces . . . . . . 13

1.3.3 W™P () SPACES . o v v v v e 15

1.4 Banach-Alaoglu theorem . . . . . . . . . ... 15
1.5 P-Laplace operator . . . . . . . . . . .. 15

2 New stability estimates of solutions to strong damped wave equation with

logarithmic external forces 22
2.1 Introduction . . . . . . .. 23
2.2 Preliminaries and main results . . . . . . . ... . L oL Lo 25
2.3 Asymptotic behavior for £(0) <d . . . .. ... ..o 28

3 Stabilization for solutions of plate equation with time-varying delay and weak-

viscoelasticity in R" 36
3.1 Introduction, related results and position of problem . . . . ... ... ... ... 37
3.2 Preliminaries . . . . . . ... 39
3.3 Stability result and proofs . . . .. ..o o 45



Contents

4 Local existence and Global nonexistence of solution for Love-equation with

infinite memory 56
4.1 Introduction . . . . . . . . .. a7
4.1.1 Formulation of problem . . . . . . .. ... ... L o7

4.1.2 Bibliographical notes . . . . . . . .. .. L Lo 58

4.2 Existence of weak solution . . . . . . ... ... 61
4.3 Blow up . . . . . e 75
Conclusion 83
Bibliography 84




Introduction

The problem of stabilization and control of PDEs plays an essential role in current fundamental
sciences. Evolution equations, i.e. partial differential equations in which time ¢ is one of the
independent variables, appear not only in many fields of mathematics, but also in other branches
of science such as physics, mechanics and materials. For example, Navier-Stokes and Euler
equations of acid mechanics, nonlinear reaction-diffusion equations of heat transfer and biological
sciences, nonlinear Klein-Gorden equations and nonlinear Schrodinger equations of quantum
mechanics and the Cahn-Hilliard equations of materials science.

In recent years, wave equation control with delay effects has become an active area of research.
It is well known that p-Laplace equations are degenerate equations in divergence form. It has been
the subject of many studies in recent years and their results are now quite developed, especially
with delays. In the classical theory of evolution equations, several main parts of mathematics are
fruitfully connected, it is very remarkable that the p-Laplace wave equation occupies a similar
position with respect to nonlinear problems.

The primary objective of this thesis is to delve into the qualitative aspects of a range of
coupled multi-physics systems governed by hyperbolic partial differential equations. The term
"qualitative study” emphasizes the intention to explore and comprehend the nature, character-
istics, and behaviors of these systems without relying solely on precise numerical measurements
or quantitative analysis. By taking this approach, we aim to gain a deeper understanding of the
intricate dynamics and interactions within these interconnected systems.

The reference to ”coupled multi-physics systems” highlights the interconnected nature of the
physical processes under investigation. These systems involve various physical phenomena, such

as fluid dynamics, heat transfer, electromagnetics, and potentially other fields, which interact or



Contents

couple with one another. By examining these coupled systems, we aim to unravel the intricate
interplay between different physical phenomena, contributing to a comprehensive understanding
of their behavior and functioning.

Central to this study are hyperbolic partial differential equations. These mathematical equa-
tions incorporate partial derivatives and exhibit a hyperbolic character. Hyperbolic equations
typically govern wave-like behavior or propagation phenomena, such as wave equations, advection
equations, or the transport of signals. Therefore, the inclusion of hyperbolic partial differential
equations in the title signifies their fundamental role in characterizing and describing the dy-
namics of the coupled multi-physics systems under investigation.

The thesis has 4 chapters. The first chapter summarizes some concepts, definitions and results
that mainly concern the undergraduate program and are assumed to be fundamentally known or
to have specific bases in rather isolated areas and have a rather auxiliary character with respect
to the purpose of the present study. In the next three chapters, we develop our main results for
nonlinear evolution problems of the hyperbolic type.

In chapter two, we investigate an initial boundary value problem with weak and strong
damping and a logarithmic type source. We analyze the stability of the unique solution under
certain conditions on the dissipations using the Lyapunov method.

In the third chapter, we consider a plate equation with time-varying delay and viscoelasticity
in R”. Under appropriate assumptions on the relaxation function and the source term, we
establish energy stability using an appropriate Lyapunov function.

In chapter four, our main contributions are to demonstrate the existence and lack of stability
for a Love equation with infinite memory. This shows that, for these types of materials, the
dissipation produced by the memories at the end of the time is not strong enough to ensure
solution stability under usual or non-usual conditions regarding the growth of the relaxation
functions.

The results of this thesis have been the subject of the following publication:

Nabil Houma, Khaled Zennir, Abderrahmane Beniani, Abdelhak Djebabela, New Stability
Estimates of Solutions to Strong Damped Wave Equation with Logarithmic Ezxternal Forces, Dis-
continuity, Nonlinearity, and Complexity 10(4) (2021) 625-634.
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Chapter 1. Preliminary

1.1 Continuous function spaces

We start this work by giving some useful notations and conventions.

Let x = (21,29, ..., ;) denote the generic point of an open set © of R”. Let u be a function

0
defined from Q to R, we designate by D;u (z) = Oju (z) = g(x) the partial derivative of u with
€

respect to z; (1 <i < n). Let’s also define the gradient and the p-Laplacian from u, respectively

as following

2

ou Ju 8u>T and ]Vu|2:§:

33@1’ 81'27“.’ Gxn i=1

ou

Vi = ( (9%

Apu (z) = div (|Vu’ Vu) (2).

Note by C(£2) the space of continuous functions from €2 to R, C' (€2, R™) the space of contin-
uous functions from € to R™ and C, (ﬁ) the space of all continuous and bounded functions on

€2, it is equipped with the norm ||.|| _;

[ul| o = sup |u (2)]
z€Q

For k > 1 integer, C* (Q) is the space of functions u which are k times derivable and whose
derivation of order k is continuous on Q. C¥ () is the set of functions of C* (Q) whose support
is compact and contained in €2.

We also define C* (ﬁ) as the set of restrictions to Q of elements from C* (R") or as being the
set of functions of C* (), such that for all 0 < j < k, and for all 2y € 99, the limit xhj;l Dju (z)
exists and depends only on x. O

Cee (2) or © (Q), is the space of the infinitely differentiable functions, with compact supports
called test function space.

The Hélder space C* (€2), where € is an open subset of R" and k& > 0 an integer, 0 < o < 1,

consists of those real or complex-valued k-times continuously differentiable functions f on €2

11



Chapter 1. Preliminary

verifying

[fP (@) = fP ()| < Clla —yl|®

where C' > 0, || < k.

1.2 LP Spaces

Let 2 be an open set of R”, equipped with the Lebesgue measure dz. We denote by L! () the

space of integrable functions on €2 with values in R, it is provided with the norm
lullr = [ fu(2)] da.
Q
Let p € R with 1 < p < +o00, we define the space L? (2) by

LP(Q) = {f : Q — R, f measurable and [ |f (z)" dx < +oo}
Q

equipped with norm

3 =

full = (f (o) )

We also define the space L™ ()

L>*(Q) ={f:Q — R, f measurable, 3¢ > 0, so that |f (z)| <c¢ a.e. on Q},
it will be equipped with the essential-sup norm

|ul| oo = esssup|u(z)| =inf{c; |u(z)| <c a.e. onQ}.
z€QN

We say that a function f: Q — R belongs to L} () if 1xf € L? (Q) for any compact K C Q.

Theorem 1. (Dominated convergence theorem) [1]

Let {fn}n21 be a series of functions of L' (Q) converging almost everywhere to a measurable

12



Chapter 1. Preliminary

function f. It is assumed that there exists g € L' () such that for all m > 1, we get

ful <9  a.eonf
Then f€ L'(Q) and

nl—lgloon" — fll;. =0, and S{f(:c) de = lim [ f,(z)dz.

n—-+00 Q

1.3 Sobolev spaces

1.3.1 Weak derivative

Definition 1. Let Q be an open set of R, and 1 < i < n. A function u € L} () has an i*"

weak derivative in L}, () if there exists f; € L}, () such that for all ¢ € C§° () we have

Ju () Oip (x) do = — [ fi (z) ¢ () dx.

Q Q

This leads to say that the i derivative within the meaning of distributions of u belongs to L}, . (),

we write

=0 =

8i u

fi

1.3.2 W7 (Q) spaces

Let Q be a bounded or unbounded open set of R", and p € R, 1 < p < +o00, the space W17 (Q)
is defined by

Wh? (Q) = {u € L? (Q); such that du € L (Q),1 <i < n}

where d;u is the i weak derivative of u € L} (Q).

13



Chapter 1. Preliminary

For 1 < p < 400 we define the space W, (Q) as being the closure of D (Q) in W* (Q), and

we write

WP (Q) =D Q)"

Theorem 2. (Poincaré’s inequality) [1]
Assume Q is a bounded open subset of R", u € Wy (Q) for some 1 < p < n. Then we have
the estimate

ull Loy < C||Vul| L@

for each q € [1,p*], where p* = and the constant C' depends only on q,p,n and ).

n—p
Remark 1. In view of this Poincaré’s inequality, if Q is bounded, then on Wol’p (Q) the norm

|ullwie) s equivalent to | Vul|r(q).

Young’s inequality

Let a and b be strictly positive realities p and g such as, zla + % =1and 1 < p < oo, we have:

a?  b?
ab < — + —.
p q

A simple case of Young’s inequality is the inequality for p = ¢ = 2:

a? b2
b< L 42
Wws 5t

which also gives Young’s inequality for all § > 0:
ab < da® + ib2
- 46

Theorem 3. (Rellich-Kondrachov compactness theorem) [1]

Assume € is a bounded open subset of R™ with C' boundary, and 1 < p <n. Then
WP (Q) cc L1(Q)

for each 1 < g < p*.

14



Chapter 1. Preliminary

1.3.3 W™P(Q)) Spaces

Let © be an open set of R”, m > 2 integer number and p real number such that 1 < p < 400,

we define the space W™ (Q) as following
wWmP(Q) = {u € LP(Q), such that 0°u € L? (), Va, |a] < m}

where v € N, |a| = a3 + ... + a,, the length of o and 0%u = 97"*...0%" is the weak derivative
of a function u € L} (Q) in the sense of definition (1).

The space W™P (Q) is equiped with the norm

[ellywms = llull o + >0 0%l -

0<|a|<m

For p = 2, the space W™? (Q) is noted H™ (Q).

1.4 Banach-Alaoglu theorem
The next result from functional analysis will be useful later in the following chapters.

Theorem 4. [2/
Let E be a normed space, and E* its dual which is also a normed space (with the operator norm,).

The closed unit ball of E* is compact with respect to the weak-* topology.

Corollary 1. In case where E is a Hilbert space, every bounded and closed set is weakly relatively
compact, i.e. every bounded sequence has a weakly convergent subsequence (since Hilbert spaces

are reflexive).

1.5 P-Laplace operator

The study of eigenvalue problems is an important object of research in functional analysis. It is
known that in the framework of the Ljusternik-Schnirelman theory one can find estimates for the

number of critical points of functionals from which some results on eigensolutions for nonlinear

15
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differential equations are deduced.

A nonlinear operator equation can be formulated of the form

Au = ABu.

In the case of p-Laplace operator, the following nonlinear eigenvalue problem has been extensively

investigated in the past thirty years

—Apu = ANulP~?u, in Q

u=>0 on 0f2.

(1.5.1)

See for exemple [4], [6], [5] and [7], from which we are going to mention the following definition

and some famous results.

Definition 2. We say that u € Wol’p (2),u # 0, is an eigenfunction of the operator —A,u if:

[IVulP 2 Vu.Vedr = X [ |ul’ > u.p de (1.5.2)
Q Q

for all ¢ € C§° (). The corresponding real number X is called eigenvalue.

Let A\ defined by

\ ; g{\VuV’dm
= in > 1.5.3
1 uGW&’p(Q) k0 S{|u\ dx ( )

equivalent to

A1 = inf {f \VulP dz; [|ul’ de =1,u € W,* (Q)} :
0 0

A1 is the first eigenvalue of the p-Laplacian operator with null Dirichlet conditions at the

edge.

Lemma 1. \; is isolated, i.e : there exists 6 > 0 such that in the interval (A, \; + 0), there is

no other eigenvalues of (1.5.2).

Lemma 2. The first eigenvalue A\ is simple, i.e : if u,v are two eigenfunctions associated with

A1, then, there exists k such that v = kv.

16
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Lemma 3. Let u be an eigenfunction associated with the eigenvalue Ay, then u does not change

sign on . Further if u € CY*(Q), then u(x) #0 , Vo € Q.

Definition 3. /3]

Let w be a part of a Banach space X and F' : w — R. If u € w, we say that F is Gateaux
differentiable (or G-differentiable ) at u, if there exists | € X' such that in each direction z € X
where F' (u+ tz) ezists for t > 0 small enough, the directional derivative F. (u) exists and we

have

We write F' (u) = 1.

Theorem 5. /3]
Let Q C R™ an open set, n > 3. For p € (1,400), we define a functional J : Wy™ (Q) — R by

J(u) = / |Vul? da

then J is differentiable in W,” (Q) and

J (u) (v) = p/ \Vul"~? Vu.Vodz, Yo € WyP ().
0

Proof. We consider the function ¢ : R™ — R, defined by ¢ (z) = |z|”, it is a function of class
C', and Vo = plz[P " z.
Then for all x,y € R",

o Pty — o)

P
t—0 t

=plx Y

as a consequence

lim |Vu (z) + tVo (2)]” — [Vu (x)]”

t—0 t

= p|Vu ()" Vu (z) . Vo (z).

17
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By Mean value theorem, for almost every x € €2 and for ¢t > 0, there exists a function 6 that

takes its values in ]0, 1] and we can write

IV (z) + tVo ()] — |Vu ()P = tp |Vu (2)P* Vu (z) . Vo (2)
= tp|Vu(z) + 0 (t,z)tVo (2)|P > (Vu(z) + 0 (t,2) tVv (z)) . Vo (x)

—tp|Vu ()P Vu (z) . Vo (z). (1.5.4)

Dividing by t, we get for almost every x

lim IV (u+ tv) (2)]" — |[Vu (2)]P —tp|Vu (2)]P 7 Vu (z) . Vo (x) _o.
t—0 t

On the other hand, one can see that the second member of the equality (1.5.4) devided by ¢

is bounded by
h(z) = 2|Vo ()] (|Vu (2)] + [V (2))"

Then using the Holder inequality we have
—1 —1
Bl < C ol (IVulp™ + Vol ™).
One can apply the Dominated convergence theorem and conclude

J' (u) (v) = p / |Vul|P~? Vu.Vodz, Yo € WP (Q),
Q

then J is Gateaux differentiable. O
Lemma 4. (Comparison lemma) [8]
Let u,v € Wy (Q) satisfying
U u.Vpdr < v v.Vodz 0.
Vul’? Vu.Vd VolP 2 Vu.Ved 1.5.5
Q Q

for all o € WP (), >0, thenu < v a.e in Q.

18
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Proof. This proof is based on the arguments presented in [9] and [10]. We start by defining the
function J : W, (Q) — R by the formula

J(u) = %/|Vu|pdx. (1.5.6)

It is clear that the functional J is Gateaux differentiable and continuous and its derivative at

u € Wy (Q) is the function .J' (u) € Wy " (Q), given by

T (u) () = / V" Vi Vedz, Y € W7 (). (1.5.7)
Q

J' (u) is continuous and bounded. We will show that J’ (u) is strictly monotonic in W, ? (Q).

Indeed, for all u,v € VVO1 P (Q),u # v without loss of generality, we can suppose that

/|Vu|pdx Z/|Vv|pdx.
Q 0

Using the Cauchy inequality we have
1
Vu. Vo < |[Vul [Vo| < (IVul® + |Vu]?) . (1.5.8)
From formula (1.5.8) we deduce

1
/]Vu|p dr — / \Vul""? Vu.Vods > 3 / IVulP? (Vul? — |Vol?) da (1.5.9)
0 0 0

1
/|Vv|pda:—/|Vv|p_2Vv.Vudx > 5/|wp-2(|w2— Vul?) d. (1.5.10)
Q Q Q

If |[Vu| > |Vul, by using (1.5.6)-(1.5.8) we get
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Li(u) = J"(u) (u) = J" (u) (v) = " (v) (u) + J" (v) (v)

(f \Vul’ do — [ |Vul~ w.wm) - (f IVolP~? Vo.Vude — [ |Vo]? d:c)
Q Q Q Q

Y%

[ vulP? (|Vuf® — |Vo)?) do

Q

L [V (IVul® = |Vo]?) da
Q

> 1 [ (IVulP™ = [VolP?) (|Vul” = [Vo]?) da
Q

> %({ (IVul"™ = Vo) (IVul® = Vo) dz
(1.5.11)
If |[Vv| > |Vu|, by changing the role of v and v in (1.5.6)-(1.5.8) we have

Iy(v) =J"(v)(v) = J (v) (u) = J (u) (v) + J' (u) ()
= (S{’VU‘deZ —S{yvuv’—? Vv.Vuda:)
— (hf \Vul"~? Vu.Voda —S{\Vu\pdm)
> %SJ; Vo™ (IVo]” = [Vul) da

lf Vul~? (IVol* = |Vul?) da

20
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We obtain,
L) =3[ (Vo] = |Vu"?) (|Vv]? = |Vul?) do
Q

(1.5.12)
> %f{ (!VU\p_Z — |Vu|p_2) (|VU|2 — |Vu|2) dx.
From (1.5.9)-(1.5.10), we have
(J' (u) = J () (u—v) =1 = I, > 0,Yu,v € Wy (Q).
In addition, if u # v and (J' (u) — J' (v)) (v — v) = 0, then we have
[ (IVulP™? = |VoP2) (|Vul? = |Vo]?) dz = 0.
Q
If |[Vu| = |Vu| in 2, we deduce that
(J' (u) = J () (u=v) =J"(u) (u—=v)=J(v) (u-20)
(1.5.13)

= [ |Vu[""* |Vu — Vou|* dz = 0,
0

i.e. u— v is a constant. Given u = v = 0 on 0f) we are getting v = v, which is contrary with
u # v. Then (J' (u) — J' (v)) (u—v) > 0 and .J' (u) is strictly monotonic in Wy '” (). Let u,v
two functions such that (1.5.7) is satisfied, let’s take ¢ = (u — v)" the positive part of u — v as

a test function in (1.5.7), we get
(J' (u) = J' (v) (p) = [|Vul" > Vu.Vedr — [ |[Vo[’~? Vo.Veds < 0. (1.5.14)
) 0

Relationships (1.5.11) and (1.5.12) imply that u < v. O

21



Chapter 2

New stability estimates of solutions to
strong damped wave equation with

logarithmic external forces

1- Introduction
2- Preliminaries and main results
3- Asymptotic behavior for £(0) < d

22



Chapter 2. New stability estimates of solutions to strong damped wave equation with
logarithmic external forces

2.1 Introduction

In this chapter, we consider an initial boundary value problem with weak and strong damping

terms and logarithmic source

p(z)vy + ap(x)vy = Av — wAv, + fot w(t —p)Av(p)dp + kp(z)vin|v|, z€R" t>0
v(z,0) = vo(x), x €R"

v (z,0) = vy (2), x € R",
(2.1.1)

where a € R, n > 3, and k is a small positive real number. The density function p(z) > 0, for
all z € R”

w>0, a>—-w, (2.1.2)

A1 being the first eigenvalue of the operator —¢(x)A, where (¢(x))™' = 1/¢(x) = p(z), under
homogeneous Drichlet boundary conditions.

A related initial boundary value problem was considered by Han in [13]

Uy +u — Au+u+ ufPu=uln|u®, zeQ tel0,T)
u(z,0) = ug(x) w(z,0) = ug(x), x € (2.1.3)
u(z,t) =0, r e, tel0,T).

and the global existence of weak solutions was proved, for all (ug,u;) € H} x L? in R®. The weak

and strong damping terms in logarithmic wave equation

gt + pug — Au — wAuy = ulnful|, z€Q, t € (0,00)
w(z,0) = ug(x) w(z,0) =ui(x), z€Q (2.1.4)
u(z,t) =0, r €I, te(0,00).

was introduced by Lian and Xu [16]. The global existence, asymptotic behavior and blowup at
three different initial energy levels was proved, i.e., with subcritical energy E(0) < d, critical

initial energy E(0) = d and the arbitrary high initial energy E(0) > O(w = 0). In [15], Al-
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Chapter 2. New stability estimates of solutions to strong damped wave equation with
logarithmic external forces

Gharabli established an explicit and general energy decay results of the problem

Uy + A%u +u — fotg(t — 5)A%uds = kuln|u|, x€Q, te (0,00)

u(z,0) = ug(x) wu(z,0) = uy(x), reN (2.1.5)
u(z,t) =94 =0, z e d, te(0,00).

When the density ¢(z) # 1, Karachalios and Stavrakakis [23] considered the following semilinear

hyperbolic initial value problem
g + ¢(x)Au+ dus + Af(u) = n(x), (2,t) € R" x RT.

The authors proved local existence of solutions and established the existence of a global attractor
in energy space DM?(R") x L2(R") where (¢(z))™" := g(z). Miyasita and Zennir [17] proved the

global existence of the following viscoelastic wave equation

g + auy — ¢(x) (Au + wAuy — fotg(t — s)Au(s) ds) =ululf™, zeR* t>0
u(z,0) = up(x), r € R" (2.1.6)

ur(z,0) = up (), x € R".

The novelty of our work lies primarily in the use of a new condition between the weights of weak
and strong damping in (2.1.2), which is useful in the calculation, where we outlined the effects
of damping terms. The constant A\; being the first eigenvalue of the operator —¢(z)A. We also
proposed a logarithmic nonlinearities in sources and used a classical arguments to estimate them.
This nonlinearities make the problem very interesting in the application point of view. In order
to compensate the lack of classical Poincaré’s inequality in R”, we used the weighted function
to use the generalized poincaré’s one. The main contribution located in Theorem 9, where we
obtained a decay estimates with positive initial energy under a general assumption on the kernal.
The outline of this chapter is as follows. In Section 2, we give some preliminaries and our main

results. In Section 3, we will prove the general decay of energy to the problem.
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2.2 Preliminaries and main results

We give some assumptions used in this chapter. With respect to the relaxation function w, we

assuime

(H1) @ € CY(RT,R™) satisfying for any ¢ > 0,
00 t
w(0) > 0, / w(p)dp =1y < o0, 1 — / w(p)dp =1 > 0. (2.2.1)
0 0
(H2) There exists a nonincreasing differentiable function £ : RT — R satisfying
() >0, @'(t) < —&(t)w(t) fort>0. (2.2.2)

(H3) The function p : R" — R*,p(z) € C*7(R™) with v € (0,1) and p € L*(R") N L>*(R"),

2n
2n—qn+2q°

where s =

Definition 4. [23] We define the function spaces of our problem and its norm as follows:

H = {ve L2(R") | Vve LARM)}.

and the function spaces H as the closure of C3°(R"™) with respect to the norm ||v||,, = (v, v);{/ 2

for the inner product

(v,w)y, = Vou - Vwdz,

R"

and L2(R") as that to the norm |[v]|,, = (v, v)}:/f for
b b

(v,w)L%:/ pvw dz,

respectively.

For general ¢ € [1, +00), LI(IR") is the weighted L7 space under a weighted norm

1
folig = [ olola)".
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To distinguish the usual L9 space from the weighted one, we denote the standard L? norm by

o, = ( [ 101 ax)
R

We denote an eigenpair {(A;, w;)};oy € R X H of
—¢(x)Aw; = \jw; x € R",
for any j € N. Then according to [23],
O0< A <A <o <\ <o 1 o0,

holds and {w;} is a complete orthonormal system in H.

First, we introduce Sobolev embedding and generalized Poincaré inequalities.

Lemma 5. Let p satisfy (H3). Then there are positive constants Cs > 0 and Cp > 0 which

depends only on n and p such that
ol 2 < Cs vl

and

ol < Cr vl
forveH.

Lemma 6 (Lemma 2.2 in [20]). Let p satisfy (H3). Then we have
1
[vll g < Cyllvlly,  and Gy = Cs|lplls

for v e H, where s =2n/(2n — gn + 2q) for 1 < ¢ <2n/(n—2).
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The energy functional associated to problem (2.1.1) by

&0 = sl + 5 (1- [ =0 Ive?

1 k k
+§(w o Vou)(t) — 5/ p(x)v? In jv|dx + 1 ||v||i% ,

where

t
(@ou) = [ @t =Pl - o)
Direct differentiation of (2.2.3), using (2.1.1), we obtain

d

dt 2

Lemma 7. (Logarithmic Sobolev inequality) [14]

Lets u be any function in H}(2) and a > 0 be any number. Then
I folde < Lol In ol + S Iol2 - (1 +1 2
viinfoldz < vl floll; + o [Vell; = (1 +Ina)|vl.
Q m

Lemma 8. (Logarithmic Gronwall inequality) [11]

Let ¢ >0, v € L'(0,T;R"), and assume that the function w: [0,T] — [1,00) satisfies

then

oty <cenp (e [A0)p). 0<isT

We define the following functionals

10 =3 (1= [ =1ip) 19017 + 50 Vo0 - [

n

2

I(v) = % (1 —/0 w(p)dp) Vu(t)]|* + %(w o Vu)(t) — k /n p(x)v? In |v|dz.

1 1,
260 = (Il +wlull + 52O Il - 3= 0 7)) <o.

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)

k
p(x)v? In |v|dx + 1 ||v||i/23 (2.2.8)

(2.2.9)
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Then, we introduce

W={v:veHH/I(v)>0,J(v) <d}U{0}. (2.2.10)

Lemma 9. Let (vo,v1) € H x L2(R") such that 0 < £(0) < d and I(vo) > 0. Then we have
v(t) €W and ||v||* < 4d for allt € [0,T). (2.2.11)

Theorem 6. [17] Let (vo,v1) € H x L2(R™). Under the assumptions (H1) — (H3) and (2.1.2).

Then problem (2.1.1) has a global weak solution u in the space
v e C([0,+00); H) N C* ([0,400); L2(R™)) .
Then the main result in this chapter is the general decay of energy to problem (2.1.1) which

is given in the following theorem.

Theorem 7. Assume the assumptions (H1) — (H3) hold and 0 < £(0) < d. Let (v,v;) be the
weak solutions of problem (2.1.1) with the initial data (vo,v1) € H(R™) x L2(R"™). Then there
exist constant > 0 such that the energy E(t) defined by (2.2.3) satisfies for all t > 0,

—1

Et) < (1 + /t faOH(p)dp) ° (2.2.12)

to

2.3 Asymptotic behavior for £(0) < d

In this section, we shall establish the general decay of energy to problem (2.1.1). We need the

following technical lemmas.

Lemma 10. Under the assumptions in Theorem 7, then the functional ®(t) defined by

B(t) = / pla)o(t)on(t)dz + / |Vu(t) P, (2.3.1)
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satisfies the property: there exist positive constants Cy, Cy and Cs such that for any t > 0,

¥(t) < (1) Il — 5 IVoP + 1 (w o Vo)

—w(1 = )| Ve (D)2 + k/ p(2)0? In |v]dz. (2.3.2)
P Rn
Proof. We differentiate ®(t), using (2.1.1), we can get

t
) = luliy— Vo + [ Vo) [ = - p)Volp)dpds
R™ 0

—a/ p(x)vvde —|—/ p(x)v? In |v|dz — wHVvt(t)H%%. (2.3.3)

It follows from Young and Poincaré’s inequality that for any ¢ > 0,

/n Vu(t) - /o w(t —p)Vu(p)dpdx (2.3.4)

= [ v / w(t — p)(Vo(p) — Vo(t))dpde + / w(p)dp|| Vo (t)]2

Rn

IN

(1= DITol? + €l Tell3 + 1 / ( / w(t - p)(Vol(p) — w<t>>dp) dx
1—1

< (1 —l+5)HVv||§+T(onv)(t). (2.3.5)

n

Exploit Young’s inequality and Poincaré’s inequality to estimate

1
/ p(z)vvdr < 8c*||VU||2Lg + 4_5/ p(x)vidr, (2.3.6)
and
1
/ () Vo Tode < cc. Vol + I Vul, (2.3.7)
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Inserting (2.3.4)-(2.3.7) into (2.3.3), we shall see that for any € > 0,

¥(t) < (1) Il — 0~ ¢ — ceala— ) VoI + L (@0 Vo)1)

(1 — )| Ve ()% +k/ p(2)0? In v]dz. (2.3.8)
P R
Taking € > 0 small enough in (2.3.8) such that

l—e—ec(la—w) >

DN | =~

The proof is hence complete.

Lemma 11. Under the assumptions in Theorem 7, then the functional ¥ (t) defined by

bit) = - / plepol) / w(t — p)(0(t) — v(p))dpde, (2.3.9)

satisfies the property: there exist a positive constant Cy such that for any 6 > 0,

00 < afa-oreree]iveol - [( [ =) - 2] o

vl Vul; + € ([ w61y (oo

w(0)c,

(7 0 A0)(t) + ey (0 Vo) . (2.3.10)
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Proof. Taking the derivative of ¥ (¢) and using (2.1.1), we conclude that

P(t) = /Ran /wt— p)(Vou(t) — Vu(p))dpdx

[ ([ =t -newan) ([ -0 - o ) as
va [ gt [t~ 00) o)t

k[ ptayomip] [ =)o) = olp)dpe

+w - Vu(t) /wt— p)(Vou(t) — Vu(p))dpdx

~ [ @itttz — [ oo [ o= piot) - oo,

Then we use Young’s inequality and Poincaré’s inequality in the first term of (*), to get for any

0 >0,

/Rn Vou(t / w(t — v(t) — Vu(p))dpdx
< S| Vol)? + 5 (/0 w(p)dp) (ww o V)(t). (2.3.11)

From the second term, we obtain

/Rn (/Otw(t - p)Vv<p)dp) (/Otw(t —p)(Vo(t) — VU(p))dp) di

< 01 =102 Vol]® + ( + 415> (/tw(p)dp> (o Vu)(t). (2.3.12)

For the third term

/Rn P(x)vt/o w(t —p)(v(t) — v(p))dpdx

< dlulty + 5 ([ =) o w0 2313)
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For the fourth term

/Rn VUt(t)/O w(t — p)(Vo(t) — Vo(p))dpdz

< 0| Vull3 + 4—15 (/0 w(p)dp) (w o Vo)(t). (2.3.14)

For the last term of (*)

Combining (2.3.11)-(2.3.14) with (2.3.9), gives us (2.3.10) with

w12

C 46

Let g9 € (0,1) and g(s) = s° (|Ins| — s). Notice that g is continous on (0, 00), its limit at 0 is
0 and its limit at oo is —oco.Then ¢ has a maximum m,, on [0, 00), so the following inequality
holds

s|lns| < s +mg,s'"°, for alls> 0. (2.3.15)

Using the Cauchy-Schwartz inequality and applying (2.3.15), we get, for any 6 > 0

e[ ool [t = p)o(®) - v(p)dpds
k/ o) (02 + 1y 0] 0)

C/]Rn p(x)v?

+ ol + |
RTL
1

be.|[Vol3 + 4(@ 0 Vo) (1) + ., (o V)T . (2.3.16)

IA

/0 w(t - p)(u(t) — v(p) )dpdz

IA

/0 w(t - p)(u(t) — v(p) )dpdz

_2
1+eqg

/0 w(t — p)(u(t) — v(p))dpdz

IN
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Therefore the proof is complete. 0
Now we define a Lyapunov functional £(t) by

L(t) = ME(t) + £10(t) + ea0(t), (2.3.17)

where M, €; and ¢, are positive constants will be taken later.
It is easy to see that L(t) and £(t) are equivalent in the sense that there exist two positive

constants $; and 35 such that
BE) < L(t) < BL(1). (2.3.18)

Remark 2. [15] Since & is nonincreasing, we have

1

£(t) (w o Vo)) Ta < O (—&/(t)) T . (2.3.19)
Proof of Theorem 7. First for any fixed ¢y, > 0, we have for any ¢ > tg,
t to
[ == [ o)==
0 0

It follows from (2.3.10), (2.3.2) and (2.2.4) that for any ¢ > ¢,

L) = ME[)+ad(t)+¢'(t)
< —(mo+Mw—(+a)s—e (1- 1)) Il

4
_ Eal _ 5((1 Ny CT c)] IVo(t)|2 + [Cher + Calo] (w0 V) (t)
—(Ma+ew(l — ) —w) [[Vu(t)|I7; - %W(t)!\v(t)HQ

—l—elk/ p(x)v?In jv|dz + e1c., (w o Vv))ﬁ + C3(w’ o Vo)(t).
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Using the Logarithmic Sobolev inequality, we have

L < - (wo + Mw—(1+a)d—e (1 - i)) ()25 + Ca(w’ 0 Vo) (1)

4e
— |:%€1 — 5((1 — l)2 + 1-— €1k§—7r>:| ||VU(t)||% + [0161 + C4l0] (w e} Vv)(t)
— (Ma+aw(l —e) —w) | Vo (t)]7; — %W(t)llv(lﬁ)!\2

1 _1
eak ol In fol}3 — k(L + Ina) o]} + rcs, (= 0 Vo)) 5

Recalling (2.2.3) and £(t) < £(0) < d, we get

In ||v]|2 < In (%5(15)) <In (%5(0)) <In (%d) . (2.3.20)

Now, we take £; > 0 small enough so that

(wo—(1+a)5—51 (1—4%)) > 0.

For any fixed €; > 0, we pick 0 > 0 so small that
: 5((1 z>2+1) >te
251 1 1-

At last we choose M > 0 large enough so that (2.3.18) hold, and further

M w=(0)

We can conclude that there exist two positive constant m and C’ such that for any ¢ > tg,

1

L'(t) < —m&(t) + C'(w o Vu)(t) + e1¢4, (w o Vv)) =0 . (2.3.21)

Multiplying (2.3.21) by £(t), (H2) and use (w o Vo)(t) < c(wo Vv)ﬁ (), and (2.3.19), we
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get

1

EOL(E) < —mEMER) +c(—E'(t) T . (2.3.22)

Multiply (2.3.22) by £%0(¢)€°°(t) and recall that &'(t) < 0 to obtain

ETDE WL (1) < —mE(DE (1) + ¢ (€6) (1) (~E' (1)

Using Young’s inequality, for any o > 0,

G BEBL(t) < —mEOT)EXT(E) + ¢ (5T ()T (E) — csE' (1))

(2.3.23)
< = (m = 0c) OB ETH(E) — (1),
which implies
(oML 4+ €)' (1) < —(m— dc) 0 (H)EXH(1). (2.3.24)
It is clear that to get
Li(t) = (£TENL+cE) ~ E(1). (2.3.25)
By using (2.3.24) and £'(t) < 0,we arrive at
Li(t) = (€L + €)' < —meo(t) e (). (2.3.26)
Integration over (g, t) leads to, for some constant m’ > 0 such that
. -1
€0
cat <o (14 [ @ap) "
to
The equivalence of £;(t) and £ completes the proof of Theorem 7. 0
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3.1 Introduction, related results and position of problem

The phenomena of delay appear naturally in the modeling of many real processes. Physic, biology,
ecology, engineering sciences and telecommunications are areas in which differential equations
are involved, the evolution of which depends not only on the value of their variables at present,
but also part of their "history”, that is, values at a time ¢; < t. These problems are thus said to
be "delayed”. The analysis of stability for constant or variable delays, single or coupled systems
of viscoelastic wave equations in bounded domain has attracted a lot of attention in recent
decades. The stabilization of solutions for evolution systems with different dissipations have
been considered by several authors and different stability/instability results have been obtained
(See [25], [26], [31], [32], [35], [37]-[39], [40]-[42], [45], ...). The first studies on the stability of
delayed systems mainly concerned constant delays. Since the constancy of delay is a hypothesis
rarely tested in real life, the case of variable delays (known or unknown) has also been the subject
of much research. Define the major delays for which there is a known reality 14 > 0, such that

0<v(t)<un

A large part of the existing results assume that the delays vary in an interval [0, ;]. Delays in
real processes are most often due to phenomena of information or material transfer. To allow the
delay and take the value 0, it is to assume that at some point this transfer is instantaneous. In
this thesis and provided of course that this leads to less restrictive criteria, it seems worthwhile to
set a lower bound for the delay and then to provide the means to measure its impact on stability
of the system. We then define the bounded delays v(t) for which there exist two real 1y and vy
such that

0<wvy<v(t)<wv, Vt>0. (3.1.1)
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As we have said, delayed systems are dynamic systems governed by differential equations dealing

with both present and past values. To begin with, we consider the following plate equation

W4 SV — 0(1) [t — 7yu(r)dr] + o+ it (¢ — (1)) + ) =0,
u(0,z) = ug(z) € D*>*(R"), /(0,2) = us(x) € LZ(R™), (3.1.2)
u'(x,t) = ho(x,t), x € R", t € [-v(0),0),

where ug(x), u(z) and ho(z,t — v(0)) are given. The function (¢(z))~" = g(x) is the density.
The constants p; and py are two real numbers. The time-varying delay is given by the function
v(t). The function h(u) is considered as source term.
In any space dimension without delay when ¢(z) # 1, Karachalios and Stavrakakis [36] considered
the system

u" + ¢(x)Ayu+ ou' + Nf(u) =n(z), (z,t) € R" xR".

The authors proved local existence of solutions and established the existence of a global attractor
in energy space D?(R") x L2(R"). To compensate for Poincaré’s lack of inequality in R™ and
for a wider class of relaxation functions, Zennir used in [47] a weighted spaces to establish very

general decay rate of solutions of Kirchhoff type viscoelastic wave equations
, t
p(z) (Ju']7%u) — M(||Vaul3)Azu +/ gt — 1)Agu(r)dr = 0,2 € R",t > 0, (3.1.3)
0

where the density function satisfies

p:R" 5 R, p(x) € C¥T(R") (3.1.4)
3 hy s(n oo (TN _ 2n
with 5 € (0,1) and p € L*(R") N L>(R"), where s = 5=t

The earliest result was established by [27]. In this work, the authors discussed question of an
algebraic decay rate in R™. The main contribution was to show that the system can not be

exponentially stable even the kernel is sub-exponential and the problem still dissipative.
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Concerning the plate equation with delay, Park in [43] considered the following problem
¢
u” + A2u— M(||Vul|®)Apu + o(t) / pu(t — 7)Apu(7)dr + agu’ + a1u’(t — v(t)) =0,
0

and obtained a general decay of solution under an appropriate assumption |a;| < v/1 — day.
Next, in [34], the global existence of solutions with |us| < p; was proved and general decay of

energy was showed under the assumption |us| < pp of the viscoelastic plate equation
t
W+ A2u— M| Vaul?)Agu — / ot = 7)Agu(r)dr + il + ol (£ — v) = 0.
0
On the other hand, Yang [46] considered
t
u” + A2y — / g(t — T)A2u(T)dr + pu + peu (t — v) = 0,
0

and obtained a global existence without any restriction on real numbers pq, 2. But the expo-
nential stability of energy have been obtained under the following assumption 0 < |ua| < p1.

For the non-linear delay, Benaissa et all [28] proved global existence of solutions for
u' = Agu+ o () g (W) + peo(t)ga(u(t — v(t))) =0,

under some conditions on delay. Many authors established further the energy decay of energy.

(For more, please see [33], [37], [38], [42]).

3.2 Preliminaries

We list here some useful mathematical tools and assumption.

Definition 5. A system (3.1.2) is said to be exponentially stable of degree k(t), if there erists
two constants W,w > 0 and function k € C (RT,RT) | such that solution u(x,t), for all initial

conditions, satisfies
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|u(z,t)|| < Wexp (—w /Ot/i(T)dT) , Vt > 0. (3.2.1)
The function h(u) is a nonlinear such that h(0) = 0 and
() = h(y)l < en(L+[z]” + [y[P)lz —yl, ¥V a,y €R, (3:2.2)
where ¢, > 0 and

0<p<

4
4ifn25 and p>0if 1 <n <4 (3.2.3)
n_

We assume further that
0< H(u) <h(uwu, VueR, (3.2.4)
where H(u) = [} h(z)dz. Statement (3.2.2) and (3.2.4) include the following nonlinear type

h(u) = |ulPu + |ul|u, 0<a<p.

With respect to the relaxation function p and the potential function ¢, we assume

(A1) p, 9 € C*(RT,R™) verifying Vt > 0,

u(0) > 0, /OOO u(r)dr =1y < 0o, 9(t) >0, 1 —(t) /OtM(T)dT >0, (3.2.5)

(A2) There exists a function ¢ € C(R™,R™) satisfying

. =Y
t 0 "(t) < —=C(t)pu(t) fort >0, lim ——+ =0. 3.2.6
C(t) >0, (1) = =C(O)u(t) for £ 20, lim =g (3.2.6)
(A3) The density function g : R* — R*, g(z) € C%7(R™) with v € (0,1),
s(Pn o) n _ 2n
and g € L*(R") N L*(R"), where s = 5= ¢ > 2.

(A4) We assume that there exist two constants 1,4 > 0 such that (3.1.1) satisfied.
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(A5) We assume that there is a real d such that
VT,t>0,v(t) € Wa(0,T) and 0 </ (t)<d <1, (3.2.7)
and for some aq, ay > 0, we have
poca(1 — aqd) < praq (1 —d). (3.2.8)

Remark 3. If we look at the function f(t) =t — v(t), the condition (3.2.7) implies that f is a
strictly increasing function. This means that the delayed information arrives in a chronological

order.

As in [40], we introduce a new variable
2(z,0,t) = u'(x,t —v(t)o), €R", o€ (0,1), t>0, (3.2.9)
then
v(t)zi(z, 0,t) + (1 = V' (t)0)z,(x, 0,t) =0, in R™ x (0,1) x (0, 00). (3.2.10)

The original system becomes

u” + ¢(x)A2u — V(t) [ p(t — 7)p(x) A2u(r)dr
+iu + poz(z, 1,t) + h(u) =0, (3.2.11)
v(t)z(z, 0,t) + (1 = V' (t)0)z,(x, 0,t) =0,

here x € R", p € (0,1) and ¢ > 0. The boundary and initial conditions are given as

u(z,0) = ug, v'(x,0) =u;, zeR"
2(2,0,0) = ho(z, —ev(0)), (z,0) € R" x (0,1), (3.2.12)
2(z,0,t) =u/(z,t) x €R" x RY,
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Definition 6. The function spaces of our problem and its norm are defined as
D*A(R™) = {f € L*™ DR : A, f € L*(R")}. (3.2.13)
We use the spaces Lg(R”) defined with the inner product

(f7h>L§(R") =/ gfhdzx.

n

For1 < q < oo, if fis a measurable function on R™, we define

1/q
g = [ alsias) (3214
Rn

1/q
ey = ( [ \ptac) (3:2.15)

Then D**(R™) can be embedded continuously in L*/ ("= (R"), i.e there exists k > 0 such that

and

The generalized Poincaré’s inequality will be used

n

|A ul?dr > 7/ gu’dz, (3.2.17)

]Rn

for all u € C° and g € L"/*(R"), where v =: k‘2|]g|]2i/4(Rn
The separable Hilbert spaces L7 (R") with

)

(f Flrzmny = ||f||%g(R")7

consist of all f for which || f|| s®n) < 0o and 1 < g < +o0.
Let g € L"*(R™) N L>(R"), then the embedding D*?(R") C L2(R") is compact.
For any u € D**(R")

[ull z2@ny < 19l nra@ey [ Acul| L2 @ny, (3.2.18)
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where ||g||zs@n) = ¢ > 0, then

[ull L2y < el Agul| p2grn).- (3.2.19)

The weak solution to our system is introduced in the following
Definition 7. A pair (u,u’) € C(R*, D>*(R") x L2(R")) is said to be weak solution of
problem (3.1.2), for given initial data (ug,u;) € D>*(R") x L2(R™) and hy € L(R™ x (0,1)), if
satisfies
t
/ v wdz +/ o(2)Aulwdr — 19(75)/ plt—71) [ d(x)Aru(t)Aywdrdr
—l—ul/ vw'wdx + ug/ o' (t — v(t))wde + / h(uw)wdz = 0,

for all test function w € D**(R™), for almost all t € [0,T).

We can follow the steps in [30, 34] to prove the following Theorem.

Theorem 8. Let (3.2.2)-(3.2.8) hold. If (ug, us1, ho) € D*>*(R™)x LZ(R™) x LZ(R™ % (0, 1)) and the
compatibility condition ho(-,0) = uy is satisfied, then problem (3.2.11)-(3.2.12) has weak solution
(u,u') € C(0,T,D**(R") x LZ(R™)) such that for any T > 0,

we L=(0,T,D**(R")), o € L>*(0,T,L(R")).

We mean by, A%, the xth-order of the derivatives for the dependent variable (x is degree of

the Laplace operator) and we mention here that
|V ul? = (A*?u)?, for par value of

and

|VRul? = |[V(AED2) 2 for odd &

where

"/ Ou\? " 0%

i=1
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With the notation
t
(wow) = / ut = )[e(t) — w(r) [2aggmdr,

we have the following technical Lemma

Lemma 12. For any v € C*(0,T, H*(R")) ,k > 1 we have

/ o /0 Lt — ) AT (1) drda
= S0 (1o Vi) (1)
3 |90 [ ) [ 1950t0P doar]
=300 0 920 () + 500utt) [ V50 dodr
L) (o VI () + S0 /0 o(r)dr [ vz der

Proof. It’s easy to see that

/ R0 /0 Lt — ) AT (1) drda
E— /0 "t — ) / V(0 0(r)dedr
— ) /0 Lt — 1) / V3 (6) V() — VEe(t)] dudr
—9(t) /0 t wu(t — 1) / ) Vi (£)Viv(t)dxdr.
Consequently,
/ R0 /0 Lt — ) AT (1) drda
_ %ﬁ(t) /0 tu(t—r)% [ V20 = Vi) dear

—9(8) /0 () (%% 3 |vgv(t)|2da;) dr
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which implies,
¢
/ 19(25)/ wu(t — 1) AR(7)v' (t)drdx
n 0

_ %% [ﬁ(t) /Otﬂ(t—T) /R ]V’;v(r)—vgv(t)fdxdr}
_%% [19(1&) /Otu(r) / |V;v(t)|2dxdr}

—%Wt) / (=) [ VElr) = Vo) dads

1 K

2 /|V | dxdr.
—%ﬁ’(t) [ wte =) [ (s0t) - iato)? s
+%19’(t) /0 u(r)dr /R Vi) dad

This completes the proof. O

For £ = 2 in Lemma 12, the modified energy of problem (3.2.11)-(3.2.12) is given by the functional

1

1 /
E(t) = §||u(t)||%§(Rn)+§(1— dT) 1A u(t) |22y (3.2.20)

+%19(t)(qu u)(t) + fl/ / 22(z, 0,1 de:E~|—/ g(x)H (u)dz,

n

0

where ¢ > 0 satisfies

1— —
pa( ) <§<M1 j251e%;

0o o (3.2.21)

3.3 Stability result and proofs

Our main result regarding the general decay is given in the next theorem.

Theorem 9. Let (3.2.2)-(3.2.8) hold. If (u,u’) is weak solution of problem (3.2.11)-(3.2.12) with
the initial data (ug, u;) € D*>*(R™)x LZ(R™), ho € L2(R™x (0, 1)), then the solution is r(t)—stable

in the sense of Definition 5.
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We need the following Lemma

Lemma 13. Under the same statement of Theorem 9, we have

() < ~(u oz paas) [ glo)uds
- [5(1 —d)ag — £z 4 ,u2041} /n g(x)2%(x,1,t)dx

2
=570 [ A0 ey = 5 OUO 1A e
5000 An)(t) + 590 0 Agu)(t). (3:3.1)

Proof. Differentiating (3.2.20) and by (3.2.11), we have

B = [ o= Aur o [ - naur - gl - pg)e 10 - gl ) do
=57 [ 1A ey = GPOROI Ay + 57 (00 )
—i—lﬁ(t)(u o Ayu) + (1 — (1) /t u(7’)d7’> Agu - Agu'dx
2 0 R®
1 /
+ (251/ /IR"/O (x,0,t dgdx)
= —mu /n g(x)udx — pis /n g(z)z(z, 1, t)u'dx — %19’@)/0 u(T)dT||Amu||2Lg(Rn)

1 1, 1 ,
— OO Al Eagany + 57 () (10 Agat) + SO (1 0 Agur)

2 (gw ey T t)d@dx> . (332)

A multiplication of (3.2.11) by £g(x)z(x, 0,t) and integration over R" x (0, 1), yields

et [ o | e, 0,0)(0, 0, )dods

=& [ o) [ 1= V0ae,0.0)2(r, 0. ot

=5 [ o [ 2000 00)dote - ) [ o) [ 2,0 t)deds
~—5 [ o]0 -v2enn —wn]e - ze0 [ o | 2,0, t)dod.

46



Chapter 3. Stabilization for solutions of plate equation with time-varying delay and
weak-viscoelasticity in R”

then

/

(%5”“) / g(@) /0 1 (0, t)dgdg;>

1

= 56/ (1) / g(z) /01 2*(z, 0, t)dodx + Ev(t) / g(z) /01 z(w, 0,t)z(w, 0,t)dodx

= —g /n g(z)(1 = (t)z(x,1,t)dx + g/ g(z)u(t)de. (3.3.3)

n

From (3.3.2), (3.3.3), we have

n

E'l) < —(m —§az)/ g(l’)ulzdw—uz/ 9(@)z(z, 1, t)u'dx

n

_g 5 g()(1 = v/ (1)) (x, 1, t)da — %ﬁ’(t)/o ()| A2 gy
_%’9“)““)"Awu|@2(w> + %ﬁ’(t)(u o Agu) + %ﬁ(t)(uf o Ayu). (3.3.4)

Together with Young’s inequality and using (3.2.7), we have

g(x)udz + [,ug —&(1— d)oq] / g(x)2*(x,1,t)dx

n

E'(t) < —(u—Eas — /~L2)/

n

u 1 '
2 [ @21 - 500 [ ndr| Al
0

2 Rn
1 1 1
SOOI Al + 59 (1)1 o) + S9(0) 1 © Agu). (3:3.5)
Then the proof is completed. O

Lemma 14. Under the same statement in Theorem 9, the functional ®(t) defined by
B(t) = / g(z)ult) ()de, (3.3.6)
satisfies

, l
() < Coll' Olzzmm — F1Au(Olz2@n + Cro(t)(p o Avu)(?)

—1—6’3/ g(x)2*(x,1,t)dz, (3.3.7)
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for C1,Cs,C5 > 0 and for any t > 0.

Proof. Using (3.2.11) to get

¢
o'(t) = ||u'||2Lg(Rn) — HAqu%z(Rn) + 19(t)/ Agu(t) -/0 p(t — 7)Ayu(r)drde — ul/ g(x)u'udz

—tio / glw)z(e, 1 yu— / gle)h(wyudz n

IN

t
[0/ 72 gny — 1 DatillT2@ny + 0(8) [ Agu(t) - [ p(t —7)Apu(r)drds
g Rn 0

J/

-~

=0

— iy /n g(x)u'udr —psy /n g(z)z(x, 1, t)udx . (3.3.8)

/

vV vV
=17 =13

Thanks to generalized Poincaré and Young’s inequalities, Ve > 0, we have

ho= 00 [ Awl) [ =) Aaulr) = Au(o)drds +90) [ p)ir Aol

,192(25> t
< = Oy + el + 2 [ ([t n8autr) - Autiar) ao

1—1
and
ECx 2 M% 9
I, < /\—1||AquLz(Rn) + P . g(x)u“dz, (3.3.10)
and
ECx 2 15 2
I3 < ||Axu||L2(Rn) + —/ g(x)z*(x, 1, t)dz. (3.3.11)
Al 45 Rn

For any ¢ > 0, inserting (3.3.9)-(3.3.11) into (3.3.8), to get

2ec, 1—1
P'(t) < CzHu’(t)H%g(Rn) — (l —e— " ) HAxu(t)H%z(Rn) + 4—6(/” Ay u)(t)
M2
+2 [ g(2)2%(z,1,t)da. (3.3.12)
de Jpn
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Choosing € > 0 small enough such that

oo 2¢ec, - [
A1 2’
then, by (3.3.7) and for
1-1
C, =
1 4e )
2
M1
Cyo=—+1
2= T
2
Ha
C5 =—.
T 4e
The proof is completed. O]

Lemma 15. Under the same statement in Theorem 9, then the functional ¥ (t) defined by

w(t) = — / gt /0 u(t — ) (u(t) — u(r))drdz, (3.3.13)

satisfies

S0 =[50 07+ 3518t~ | ([ trlar) 28] IO
(3.3.14)

Bl L0y + o [ r)dr ) wo Baad(e) = 50 0 )0,

for Cy > 0 and for any 6 > 0,

Proof. Using (3.2.11), we have
v = [ (=00 [ ute-natumar
g’ + pog(r)z(z, 1,t) + Q(I)h(u)) /0 plt = 7)(u(t) — u(r))dr

_ /n g(x)u’ /Ot p (t — 1) (u(t) — u(r))drdz — /Ot p(r)dr|u'||7
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Then,

/ /0 u(t (1)) drda
oo [ ([ wie- )( [t =@t - Au(ryyir) s

i /R o(2)u /O u(t — ))drdz

itz /R o(2)2(x, 1t/0u P (u(t) = u(r))drdz

+ [ s@h J plt = 7)(w ))drda

~ [ st [ st - rde = [ o e

7

ZJ /u( Y [ |2 oy (3.3.15)

Thanks to generalized Poincaré and Young’s inequalities, Vo > 0, we have

1 t
J1 < (5||Axu||%z(Rn) + 5 (/0 ,u(T)dT) (1o Ayu)(t), (3.3.16)
) C/ t
J2 <Ol Apullze ey + o (/0 ,LL(T)dT) (1o Ayu)(t), (3.3.17)

5= o [ ([ wte-nia u(t)—Axum)dT)de
o) [ ([ wte=msatyar ) ([ st =000 eutryar )
< o0 ([ utrar ) Gwoac) + a0 ([ tu(f)de N
v [ ([ =t - Axum)dr)zdx
< 0= P10l + (90 + 35) ([ winar) o s, g
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2 t
/ H1Cx
1 0 gy + 55 ([ utryir ) a0 B0 (33.19)
2 fi3c. '
s < Bt 10y + 2250 ([ e ) (oo B0 (3:3.20)
2 1 !
< 018l + g ([ wtoar) o ao) (3321)

t
12 Cx / /
Jr < 6l IILE(R”) + o (/0 0 (T)dT) (1 o Agu)(t)

2 1(0)cy
< Ol llzz @) — A6, (1 0 Azu)(t). (3.3.22)
By the fact ¥(t) < 9(0) and for
1 C’ e,  pie 1
Cy = — 9(0 e :
=55 T s VO Ba T aen T oy
Replacing (3.3.16)-(3.3.22) into (3.3.15). Which completes the proof. O

Lemma 16. Under the same statement in Theorem 9, we define the functional 1(t) by

/n/ e Wy (x, 0,t)dodx. (3.3.23)
Then we have
'ty < —=2(1—-d)I(t)— 11/;10[6_2”1 /n g(x)2%(z,1,t)dx
+ Vlo 5 g(z)u(t)de. (3.3.24)

Proof. We have Vt > 0,

'ty = —oV( / / ®e2(x, 0.t dgdx—i—/ / vy (x, 0,t)2(x, 0, t)dodx
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Then,
I'ty = —ov/( - %/ / e 2 Wey(x, 0,t)z,(x, 0,1)(1 — V' (t)0)dodx
= —o/( b —2w(t)e,2(
‘ o 0[5 ee)
()2, 0, ) ﬂ (1 = V(t)o)dods
= —ov . z) (e e (x —v 1
— —w/010) - 5| [ o) (O w000 - 00|
+/(¢ )/ e~ 2We2(z o, )dg)dx}
—(1 =2/ /R"/O e~ t)gz (x,0,t)dodx
l—v 2w(t 1 2
= —oV(t)I(t) — W/ g(z)e W22, 1,t)de + —— 0 /n g(z)u*(t)dz
20 L e o
SORCRt / n / 2(x, 0. 1)dod
/ V(1) l—d ,, )22 (x "
< |- 28 - -] -1 /n~"< )2, 1, )
to [ alap*(e)is
< —(1-=a)I(t)— 11/;1d6_2yl /n g(x)2*(z,1,t)dx + Vio . g(z)u(t)de.
This is completes the proof. O
We introduce now a functional £(t) of Lyapunov type, by
L(t) = ME(t) 4+ e19(t)P(t) + e20(¢) I (t) + I(t)(t), (3.3.25)

where M, eq,e5 > 0 will be taken later, then we can get the following lemma.

Lemma 17. Let M be large enough, then there exist 31, B2 > 0 such that

BE() < L(1) < BoE(t). (3.3.26)
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Proof. For any ¢ > 0, we have

[L(t) = ME@®)] = [e1d(t)®(t) + e20(0)1(t) + (1) (1))

E1Cx V(0)
Sl + (2 20)+ ") o

1—1)c,
+e209(0 // *(x,0,t d,de—i-%(,quxu),

IN

this implies

IL(t) — KE(t)| < cE(t), ¢ > 0.

For M large with 51 = K —c and B3 = K +c.
This is completes the proof. O

Proof. (Of Theorem 9.) Let ¢y > 0 fixed, for any ¢t > ¢, we have

o= [ uryir< [ u(rrar.

Thanks to generalized Poincaré and Young’s inequalities, we get

e ()0 (1) + 20 () 1(2) + V(1) (1)

1+5 , , £1Cs e (t ¢
L (1) ey + S OIS0 ey + Z5 2 ([ r)ar) (o )0
20\ 2\ 0
+eot (¢ / / (z,0,t)dodz. (3.3.27)

By (3.3.1), (3.3.7), (3.3.14), (3.3.24), (3.3.27) and for any ¢ > ty, we have

L(t) = KE'(t)+e0(t)®(t) + e20(0)1'(t) + (L)' (t)
+erd (H)0() + 20 (O 1(1) + ()9 (¢)

(uo Sy 1 —;a’fl 19’((;))) || /( )||12E§(R”) + 19(15) (% — %/)\T*) (,u’ o AxU)(t)

l
000 | 213 0% 4 S = (50 = 07+ 39) | A0 e

IN

[015119 + Calo + ig’g% lo] (100 Agu)(t) — ex(1 — )OI (t)
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— [Kc + med”lal —9(0)(e1C5 + 5)1 / g(x)2*(x,1,t)dx

151

n

<Ax-€”” ﬁ(Xeﬁ%—%&)t/ng()d%Ddx

+19t( t)// *(x, 0,t)dodx.

Choosing £; > 0 small enough so that

g1 < —.
19

Picking § > 0 for any fixed ; > 0 such that

z , z
551 — (5(1 — l) + 3(5) > 181,
and

1
T Ho-

M0—5—€1>4

We can now choose K > 0 so that (3.3.26) hold, where

K p(0) €202
Ke —
2 4(5)\1 ~ 07 ¢ 40

> 0,

and

1—
Ke+ we_m’lal —9(0)(£1C5 + 9)

%1

Then from (3.3.28) and by the fact that

o
A o

there exist two positive constant Cy and Cjy such that for any ¢ > t,

L'(t) < =C59(t)E(t) + Ced(t) (1 o Ayu)(t).

Multiplying (3.3.29) by £(¢) and using

(3.3.28)

> 0.

(3.3.29)
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S(t)(:u © Axu) < _,u, © A:L‘u) < _2E/(t)v

to get

Iy
e
~
S—
5
—~
~
SN—
A\

—Cs0(1)E(1) E(t) + Cev()E(E) (1 0 Agu)(t)

< —CsO()E)E(t) — 2060(1)E(H) E' (L), (3.3.30)
this implies
EOL/(1) + 20s0(EDE (1) < —CsD(t)E(H)E(t). (3.3.31)
Using again (3.3.26), to get
E(t) = £(1)L(1) + 200 (@)S () E(R), E(t) ~ E, (3.3.32)

By using (3.3.31) and the fact that £'(¢) < 0, we get for any ¢ > to, that

E(t) < E(to) Exp (—05 /t:ﬁ(f)aﬂm) | (3.3.33)

This completes the proof. O

55



Chapter 4

Local existence and Global
nonexistence of solution for

Love-equation with infinite memory

1- Introduction
2- Existence of weak solution

3- Blow up

56



Chapter 4. Local existence and Global nonexistence of solution for Love-equation with infinite
memory

4.1 Introduction

Many interesting physical phenomena in which delay effects occur (e.g., population dynamics)
can be modeled by partial differential equations with finite or infinite visco-elastic memory which
provides a typical damping mechanism in nature. The well-posedness and stability for elasticity
and visco-elasticity systems attracted lots of interests in recent years, where different types of
dissipative mechanisms have been introduced to obtain diverse results. In general, the stability
properties of visco-elastic system are in dependence on the form of the convolution kernel (see in
this direction results in, [27], [25], [47], [49], [64], [65], ...). The blow up is an essential and very
important phenomena to be studied in the evolution PDEs, there is a difference between global
nonexistence which means that the local solution can’t be continued to exist in time i.e. there
exists a finite time blow up which is our case in this thesis and the blowing up V¢ > 0, that is the
solution goes to infinity for all ¢ > 0. An effect of blow up occurs, for example, when a sea wave
tumbles to the shore, when a computer breaks down as a result of electrical breakdown, when a

nuclear bomb explodes and in a number of other interesting physical phenomena (see [48], [50],

155), [62], [63], [64], [66], [68], ...).

4.1.1 Formulation of problem

Denote u = u(z,t), u' = u; = L(z,1), v’ = uy = %(Jc,t), Vu = u, = 24(z,t) and Au = uy, =

%(m, t). In this chapter, we consider the Love-equation in the form

t
u" — (Note + Mui, +uy) + )\/ g(t — 8)ug,(s)ds
oo (4.1.1)

:Fl[u]—<F2[u]> Y f(zt), 1€Q=(0,1),0<t<T,

where

Fuu] = B, <x £, g, 1 u;) e ([o, 1] x R* x R4> (4.1.2)

for K =1,2 and X\, Ay, Ay > 0 are constants. The given functions g, f are specified later. With

Ey = Fu(z,t,y1,. .., ya), we put D1 Fy = %% DyFy, = %k and Dy Fy = %—fy“k with i =1,...,4
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and k = 1,2. Equation (4.1.1) satisfies the homogeneous Dirichlet boundary conditions:
u(0,t) = u(1,t) =0, 0<t<T, (4.1.3)
and the following initial conditions
u(z, —t) = uo(z,t), u'(z,0)=u(x), t > 0. (4.1.4)

To deal with a wave equation with infinite history, we assume that the kernel function g satisfies

the following hypothesis:

(Hypl:) g: Rt — R is a non-increasing C'* function such that
Ao — )\/ g(s)ds=1>0, ¢(0)>0. (4.1.5)
0

We need the following assumptions on source forces:

(Hyp2:) uo(0),w; € H N H?;

(Hyp3:) f e H'((0,1) x (0,T));

(Hyp4:) F), € C! <[O, 1] x [0,7T7] x R4> such that
Fk(o, t) 07 Y2, 0794) - Fk(]-)ta Oa Y2, 07 y4) =0

for all k =1,2,¢t € [0,T] and ys,y4 € R.

4.1.2 Bibliographical notes

Now, we start our literature review concerning visco-elastic problems with the pioneer work of

Dafermos [53], where the author considered a one-dimensional visco-elastic problem

t
pu” = cug, — / g(t — 8)uyy ds,

—0o0
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established various existence results and then proved, for smooth monotone decreasing relaxation
functions, that the solutions go to zero as t goes to infinity. In [57], Hrussa considered a one-

dimensional nonlinear visco-elastic equation

U = Clgy — /o m(t — s)(¢(uz))z ds + f

and proved several global existence results for large data. Here, the author also obtained a decay
rate of solution.
Concerning problems with infinite history, we mention the work [54] in which considered the

following semi-linear hyperbolic equation, in a bounded domain of R3,
u" — K(0)Au — / K'(s)Au(t — s)ds + g(u) = f
0

with K(0), K(oc0) > 0, K’ < 0 and gave the existence of global attractors for the problem. Next
in [64], the authors proved that the solutions of a system of wave equations with visco-elastic
term, degenerate damping and strong nonlinear sources acting in both equations at the same
time are globally non-existing provided that the initial data are sufficiently large in a bounded
domain, the initial energy is positive and the strongly nonlinear functions f; and fs located
in the sources satisfy an appropriate conditions. The authors concentrate their studies on the
role of the nonlinearities of sources. After that, in [59], the authors considered a fourth-order

suspension bridge equation with nonlinear damping term and source term
u” + A%u+ au + [ug] " Puy = JufP

The authors gave necessary and sufficient condition for global existence and energy decay results
without considering the relation between m and p. Moreover, when p > m, they gave sufficient
condition for finite time blow-up of solutions. The lower bound of the blow-up time is also
established.

Recently, in [66], the authors studied a three-dimensional (3D) visco-elastic wave equation with
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nonlinear weak damping, supercritical sources and prescribed past history for ¢ < 0 in
[e.e]
u”" — k(0)Au — / K (s)Au(t — s)ds + |[u/|™" " = |u|P~tu,
0

where the relaxation function & is monotone decreasing with k(+o00) =1, m > 1 and 1 < p < 6.
When the source is stronger than dissipations, i.e. p > max{m, \/W}, they obtained some
finite time blow-up results with positive initial energy. In particular, they obtained the existence
of certain solutions which blow up in finite time for initial data at arbitrary energy level. In [56],

the abstract thermo-elastic system is considered,

u' + Au+ Bu' — [7 g(s)uze(t — s)ds — A*0 = 0,
0 + kAPH + A% =0,
u(—t) = up(t),u'(0) =uy, 6(0) =06

in which w is the displacement vector, 6 is the temperature difference, « € [0,1) and 5 € (0, 1]
are constants. H is a real Hilbert space equipped with the inner product (-,-) and the related
norm || - [|. The operators A : D(A) — H and B : D(B) — H are self-adjoint linear positive
definite operators. Under suitable conditions on the order of the coupling, the memory kernel
function and the initial values, the well-posedness and the general decay rate of solution are given
by semigroup theory and perturbed energy functional technique to allow a wider thermo-elastic
systems.

Without infinite memory term, when A = 0 in (4.1.1), Triet and his collaborators in [67] consid-

ered an IBVP for a nonlinear Kirchhoff-Love equation

Uty — a% [B (@, t,u, [[u()]1%, [lua @)1 w1, luwe(01?) (v + Attar + )]
F Xy = F (1, gy ey s, [[u(@)][, e ()12, e ()12, [[ua(£)]%)
- a% [G (1, s g, ey [ () |12, (| ()17, (e (D117, e (8)]1%)]
+ f(z,t), 2€Q=(0,1),0<t<T,

uw(0,t) =u(l,t) =0, wu(x,0)=1do(x), w(x,0)=1a(x),
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where A > 0, A\; > 0 are constants and g, u; € Hy N H?, f, F' and G are given functions. By
applying the Faedo-Galerkin method, the authors proved existence and uniqueness of a solution
and by constructing Lyapunov functional, they proved a blow-up of the solution with a negative
initial energy and established a sufficient condition for the exponential decay of weak solutions.
This chapter is organized as follows: In the second section, owing to the nonlinearities, we
combine three techniques to prove the local existence of unique weak solution in Theorem 10.
In the third section, the blow up result with negative initial energy is obtained in Theorem 11

under certain conditions on the sources and the function g. It is not surprising that this work is

inspired from [60], [61], [64] and [67].

4.2 Existence of weak solution

The weak formulation

We define in the following, the weak solution of (4.1.1)—(4.1.4).

Definition 8. A function u is said to be weak solution of (4.1.1)~(4.1.4) on [0, T if there exists
u, ', u” € L=(0,T; Hy N H?)
satisfying the variational equation

1 1
/ u"wdr + / (Aouz + Aul, + ul) )w, dx
o
- /\/ / g(8)u(t — s) dsw, dx
L 1 1
= / fwdx +/ Filulwdx +/ Fyu|w, dz
0 0 0

for all test functions w € Hy and for almost all t € (0,T).

The following famous and widely used technical Lemma will play an important role in the

sequel.
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Lemma 18. For any v € C'(0,T; H}), we have

/ / $Yoma(t — )0 (1) ds du
= o ([T [t - = vtoparas— ["atsyas [ o o)
5[ e / 0a(t — ) — va(8)F du ds

Proof. It’s not hard to see

/ / N oaalt — )/ (t) ds i = / /;g@—s)vm( o/(t) ds da

gt—s/ v, (s)vl(t) dx ds

-/
/;g t=s) / V() (Va(s) — va(t)) dads
o |

8

Consequently, we have

/ / Voaal(t — /(1) ds dz =

t_sdt/ lvz(s) )| dxds

N | —
é\

_%/OO t—sds( /|vx Idw>
Ty
e o615 [ a0 da:)
3 [ s [ -t aras
= 28 ([ o) [ et )~ uto ars)
S5 ([ [
5[ e / 0a(t — 5) — va(B) d ds.
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First main Theorem

Various existence and uniqueness, as well as Faedo-Galerkin method, have been obtained in the
last decades for nonlinear IBVPs in Sobolev spaces (see [51], [55], [58], ...). Now, we consider

the existence of a local solution for (4.1.1)—(4.1.4), with A, A\g, A; > 0.

Theorem 10. Let ug(0),u; € Hy N H? be given. Assume that (Hypl)—(Hyp4) hold. Then
Problem (4.1.1)—(4.1.4) has a unique local solution u and

u, v, u" € L=(0,T,; Hy N H?) (4.2.1)

for some T, > 0 small enough.

Proof. In the first step of this proof, we use linearization method for a nonlinear term to
construct a linear recurrent sequence {u,,}. Then, the Faedo-Galerkin method combined with

the weak compactness method shows that {u,,} converges to u which is exactly a unique local

solution of (4.1.1)—(4.1.4).
Step 1. Let T'> 0 and M > 0 be fixed. For k = 1,2 and Q = (0,1), We put

[ F%ll o @x fo,1yx [ v, a8y = sup [Fr(m, 8,91, -, ya)|
(Tt y1,e,ya) €QX[0,T]x [- M, M]*

and

2
Fy = ZHFk”cl(ﬁx[o,T]x[—M,M]4)

k=1
2 6

= ZHFkHCO (@x[0,T)x [~ M,M]4) +ZZ”Dz’FkHCO(ﬁx[o,T]x[_M,M]4)-
k=1 k=1 =1

For some T, € (0,7] and M > 0, we put

W(M,T,) = {v,v/ € L0, T.; HE 0 H?) - " € L0, T; HY),
with [|v]| L 0.1 110H2)s

Il oizsmgemys 10" oz < M},
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Wi(M,T,) ={veW(M,T,) :v" € L®0,T,; Hy N H*)}.
Here we adopt the norm in Hj = H}(Q2) and H? N H} = H*(Q) N HL(Q) as
[0y = IVoll and [l oy = [1Au] 2
respectively, where || - ||,» denotes the standard L? norm in Q. To establish the linear recurrent
sequence {u,,}, we choose ug(t) = 0, suppose that
Um—1 € Wl(M, T*) (422)
and associate with problem (4.1.1)—(4.1.4) the following problem.
Find u,, € W1(M,T,) (m > 1) which satisfies
1 1
/ ! w da + / (onum NV, o+ w;;) YV dx
0 0
oo 1 00 1
- )\/ g(s) ds/ Vu,Vwdr — )\/ g(s)/ (Vi (t — s) — Vuy,) Vo dr ds
0 0 0 0 (4.2.3)
1 1 1
= / fwdz + / Fy pujw dzx +/ By pu)lVwdz, Yw € Hy,
0 0 0
U (—t) = uo(t), ul,(0) =u,t € (0,77,
where we denote Vu = u, and
Fymu] = Filum—1] = Fy, (x,t, Up—1, VU1, Uy, 1, Vu'm_1> (4.2.4)

for k =1,2.

Proposition 1. Let uy(0),u; € H} N H? be given and the first term of sequence uy(t) = 0.
Assume that (Hypl)—(Hyp4) hold. Then there exist positive constants M, T, > 0 such that there
exists a recurrent sequence {u,,} C Wi(M,T,) defined by (4.2.2)—(4.2.4).

Proof. We use the standard Faedo-Galerkin method to prove our result. Consider a special

orthonormal basis {w;}32, on H}, formed by the eigenfunctions of the operator —68—52.
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Let Vi = span{wy,ws, ..., wi} and the projections of the history and initial data on the finite-

dimensional subspace V} are given by
k
k
uge(t) = Y ol (),
j=1

k
k
Uik = Zﬁj( )wj,
j=1

where

1
oz](-k)(t):/ uo(t)w; de,
0
1
ﬁ](-k)(t):/ uw; do.
0

We seek k functions %) (t) € C?[0,T], 1 < j <k, such that the expression in form

mj

k
k
ul) =
j=1
solves the problem
1 " ! 4 "
/ ul B dr + / (onu;? + A V™ 4 VU,&)) Vw; dx
0 0

o0 1
—)\/ g(s) ds/ VulH Vw; dx
0 0

—)\/OOO g(s) /01 (Vuglrf)(t — ) — Vugf)(t)) Vw, dzds

1 1 1

= / fwjda: +/ Fmej dx +/ F27mij dl‘, 1 < j < k’, (425)
0 0 0
ulp (=t) = uor(t),  u,V(0) =

in which
uor(t) — ug(t) strongly in Hy N H?,
’ (4.2.6)
Uy — uy  strongly in HO1 N H?.
(k)

This leads to a system of ODEs for unknown functions ¢,,;. Based on standard existence theory
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for ODE, System (4.2.5) admits a unique solution go( ). 1 < j < k on interval [0,7] by (4.2.2)
and the argument in [52].

A priori estimates. The next estimates prove that there exist positive constants M, T, > 0
such that um € W(M,T,) for all m and k. We partially estimate the terms of the associated

energy. Taking w = u) n (4.2.5), we get

m

1
/ u//(k)u;;(@k) dx—l—/ ()\()Vu k)+)\lvu + Vu k))vu (k) dz
0 0
1 00
—)\/ / g(s)VuP (t — 5) dsVu, ¥ da (4.2.7)
0 0

1
:/ Fl[ug)_l]u;gk) dx—f—/ Fg[ ]Vu (k) dx—f—/ fu®d
0 0
Using results in Lemma 18, we obtain

d 1 ! !

- (k))2 (k)2 (k)2

Gl (R + 1P+ (9 ) do
o) 1

A / o(s) / V) (¢~ ) — Vull) (1) d ds] (4.2.8)
0 0

1 00 1
+2X\; / Vo, B d — )\/ q'(s) / IVul) (t — 5) — V) (1) * da ds
0 0 0

1 1 1
= 2/ F [uﬁ,’?fl]u;&k) dx + 2/ Fy [ui,’fll]Vu;gk) dx + 2/ fu) da
0 0 0

where [ is defined in (4.1.5). Let us denote the integrand on LHS of (4.2.8) as e (u,,), where

1 t 1
() = / (10 ®P + 1V 490 ®PR) dz + 22, / / Vo B2 da ds
0 0
+ )\/ / (VB (t — s) — Vo (2)|? da ds

_ // /|w (7 — 8) — Vo (7) 2 dar ds dr.

We obtain the similar estimates to (4.2.8), whose integrands are given by e*)(Vu,,) and e® (u! ),

respectively. Put

EX () = P (u,,) + ™ (V) +e®(ul). (4.2.9)

m
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Then

E®()

= E®(0 +2//f dxds+2//fm )WVu, P (s) da ds
+2//f TR dxds+2//F1m )(s) dx ds
+2//F2 Vu(’“)()dxderQ//VFlm (5)Vu, W (s) dz ds
+2//VF2m )Au, ) ( dxds+2// u, ™ (s) dz ds
+2/0 /0 F} 0 (8)Vu, ™ (s) dz ds.

We need, now, to estimate

(4.2.10)

/ W |2dx—i—/ VB (0) 2 da.
//(k) .

Let w; = um ~ in (4.2.5) and integrate, taking t — 0, in the first term, to obtain

1
/ "8 (0)|2 dx + / V&) (0)[2 dr + / (ZVu0k+A1w1k)vu;;§k><0)dx
0
—l—)\/ g(s )/ (Vupr(0) — Vugr(—s)) u,, " (k) (O)dasds
1
/f "k (0 dm—i—/ Fi o (0)u, B0 )dx+/ Fy 1 (0)Va, ®(0) dax.
0

Then
1 12
AW < / ( — IVug, — M\ Vg, + Bm(o))vuwfk)(()) dz
0

_ /Oog( )/1 (Vator (0) — Vtgp(—s)) u®(0) da ds
+ / F(0)u, ™ (0) dz + /O Fyn (0)9(0) da
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AR < (l [uorll gy + Avlluwkll gy + [1F1m O) | 2 + [ F2m ()] 2 + L (O)]] 2
00 1/2
£ / () (u0x(0) — woi(—9) ds| ) ()
0 H}
< (tluarllag + M el + 1)l + 1 Ean (O + 17Ol
o0 2
+ A [ o)) — (=) as| )
0 H}
< ¢ for all m, k, (4.2.11)

because ||F},(0)||;. and ||F5,,(0)],. are constant independent of m, where £ is a constant
depending only on f, ug, u1, Fi, F5, A\, Ao, A1 and fo s)ds. Equations (4.2.6), (4.2.9) and
(4.2.11) imply that

1
E,(f)(O) = / (|U1k|2+l’VU0k’2+\VU1k|2> dx+)\/ / |Vuor(—s) — Ve (0)|? dz ds
0
1
+ / (|Vu1k|2+l|Au0k\2+|Au1k|2> dx—l-/\/ g(s )/ | Augr(—s) — Augr(0)|? dx ds
0 0

1
s g [ uwlkﬁdxﬂ/ / [Vuse(—s) — Vure(0) ] da ds
0

< & forallm, keN,

where &, is also a constant depending only on f, ug, ui, Fi, Fy, A, Ag, A1 and fooo g(s)ds. We
then now estimate the other terms of (4.2.10). By (4.2.9), (4.2.10) and the Cauchy-Schwartz

inequality, we obtain

ER@) <&+ ||f||L2(Q><(0T) + ||foL2(Qx oy + I HL2(Q>< 0,T))

+2/ / |, ) ]2dsdm+2/ / |V, * ]2d:vds+2/ / u, ®|? dz ds
+/ / |Vu;£lk)|2dmds+/ / |Au;,(f)|2dxds+/ / |V, B ? dz ds
0 Jo 0 Jo 0 Jo
t ol t 1 t ol
+/ / Py | dxds+/ / | P | d:cds+/ / |V Fy|? daz ds
0 Jo 0 Jo 0 Jo
t 1 t 1 9 t 1 9
+// IV Fy|? da:ds+// |FY dxds+// || dads
o Jo o Jo ’ o Jo ’
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Then,

t 1
Eéff)(t)§£o+\|f||?pmom+2/E’“ Jas+ i+ [ [ VAP deds
0

// |V Ey da:ds+/ ‘F{m‘ d:rds+// |F2'm| dx ds.

Remarking from (4.1.2)

VFk,M<t> = Dle[umfl] + Dng[um,l]Vum,l + D4Fk[um,1]Aum,1
+D5Fk[um_1]Vu;n_1 + DGFk[Um_l]AUIm_l
and
F/

k,m

(t) = DoFglum_1] + D3Fglum_1]ul, | + DyFy[tpm_1]Vu,, 4

+D5Fk[um 1] m 1+D6Fk[um 1]VU 1
for k = 1,2, then we have
- t
ED(t) < & + 1/ 1B axoury + To[L+4(1+ M)* | B + 2/ E®)(s) ds.
0

We choose M > 0 sufficiently large such that

1
o+ 1 f 1 E @xory < §M2
and then choose T, € (0, 7] small enough such that

1 ]
<§M2 YT, [1 Y41+ M) } F@) exp[2T,] < min(1, 1) M?

and

— 4V/2F)\/T, exp|[T.] min(1,1)~L < 1, (4.2.12)
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Then we have
t
EW® () < min(1,1) exp[—2T,| M? + 2/ EW®)(s) ds.
0
Finally by Gronwall’s Lemma, we obtain
E® () < min(1,1)M? for t € (0,T,) (4.2.13)
and hence
ulk) € W(M,T,) for all m and k.
Pass to the limit.
By (4.2.9) and (4.2.13), there exists a subsequence of {u'f'} such that
ul?) = w,, in L°(0,Ty; HE N H?) weakly*,
w® — ! in L®(0,T,; HE N H?) weakly*,
(4.2.14)

u,® = in L0, T,; HY) weakly*,

U € W(M,T.).

Passing to limit in (4.2.5) and (4.2.6), it is clear to see that w,, is satisfying (4.2.3) and (4.2.4)
in L?(0,7,). Furthermore, (4.2.3) and (4.2.14), imply that

Tx

(Ul/n)m = - <)\Oum + M\ul, — A/ g(8)tp, (t — 5) ds)
0

"~ ] — <F2 [um]>x _
W, € L>(0,T,; L?).

We deduce that, if u,, € L>(0,T,; H} N H?), then v/ ,u” € L>(0,T,; Hi N H?). So we obtain
U, € W1(M,T.). This completes the proof of Proposition 1. n

Step 2. Let the Banach space

Wi(T,) = {v e L=0,T,; H}) : v € L*=(0,T,; H})},
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with respect to the norm

||U||W1(T*) = ||U||L°°(O,T*;Hé) + ||U,||Loo(0,T*;Hg)-

We will show the convergence of {u,,} to the solution of our problem in the next Lemma.

Lemma 19. Let (Hypl)—-(Hyp4) hold. Then

(i) Problem (4.1.1)~(4.1.4) has a unique weak solution v € Wi(M,T,), where M > 0 and

T, > 0 are chosen constants as in Proposition 1.

(ii) The linear recurrent sequence {u,,} defined by (4.2.2)—(4.2.4) converges to the solution u
of (4.1.1)—(4.1.4) strongly in the space W1 (T%).

Proof. We use the result obtained in Proposition 1 and the compact embedding Theorems.

Existence. We proved that {u,,} is a Cauchy sequence in Wi(7,). In order to do this, let

Wy = Umt1 — U Then w,, satisfies

1 1
/ w! wdr + / (AVwy, + MV, + Vuw! \Vw dx

—)\/ / $)Vw,(t — s) dsVw dx

:/0 <F1,m+1[ ] — F1,m[U]>wdx+/01 <F27m+1[u] — FQVm[u])Vw dz,
W (0) = w],(0) = 0.

(4.2.15)

Considering (4.2.15) with w = w/,, and then integrating in ¢, we obtain by result in Lemma 18

1
/ (12 + 1w + |V, ) da
0
+/\/ / |Vw,(t —s) — Vwm()|2dacds+2)\1// |Vw!, |? dx ds
—A// / (VW (7 — 8) — Vw,,(7))? dz ds dr
t
:2/ / Fimi1(s) —FLm(s))w;n(s) dxds+2/ / <F27m+1(8) —ngm(s))Vw;n(s) dx ds.
0o Jo 0 Jo
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By the regularity (Hyp4), (4.2.2) and (4.2.14), we have, for k = 1, 2,
L/ s (5) — Fiom(s) P d
< FM/ (Jwm—1| + VW] + [wh, | + |Vw;n_1‘)2 dx
o 1 (4.2.16)
< 8F%, (/ V1| dz +/ V!, | da:)
0 0
< 16 FY [ wm |3, (1)
owing to Poincaré inequality
[0l 2 < o]l g
for v € H}(Q), then
B t 1 t 1
En(t) < 32T Fllwm-lli, 2 +/ / lw!, |? dx ds +/ / V! |* dz ds
0 Jo 0 Jo
t
< 320 Fyllwm-1lly, r,) +/ E,.(s)ds, (4.2.17)
0

where

1
En(®) = [ (jul + 19w+ [V, ) d
0
+)\/ g()/ Vo (t — s) — Vwm()|2d:cds+2)\1// Vo, 2 de ds

—)\// /\Vwm — 8) — Vwn(7)* dz ds dr.

Thanks to Gronwall’s Lemma and (4.2.17), we get

B, (t) < 32F3 e

wm—lu%/[/l(T*)

SO

[wmllw @) < Frllwmlw @) ¥meN
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by (4.2.12). Thus we have
[tty = Umspllw () < AM(L = kr,)7'KY,  Vm,p e N.
It follows that {u,,} is a Cauchy sequence in W;(T), so there exists u € W;(T,) such that
Um, — u strongly in Wy (T5). (4.2.18)
Note that u, € Wi(M,T), so there exists a subsequence {up,, } of {uy,} such that

U, — u in L2(0,T; Hj N H?) weakly*,

Uy, —u' i L0, T,; Hy 0 H?) weakly*,

(4.2.19)
Uy, — " in L2(0, T} H}) weakly™,
ue W(M,T,).
In the same way as (4.2.16), we obtain
1Eren (8) = Felu) (D72 < 16F35 [l — ulliy, ) (4.2.20)
for k =1,2. Then (4.2.18) and (4.2.20) imply
Fpmn — Fp[u] strongly in L>(0,T,; L*), (4.2.21)

Let us passing to limit in (4.2.3) and (4.2.4) as m = m; — oo by (4.2.18), (4.2.19) and (4.2.21),
there exists u € W (M, T,) satisfying

1 1
/ u"w dr + / (Nouz + \ul, + u))w, dz
0 0

1 oo
— A / g(s)u,(t — s) dsw, dx
o Jo

1 1 1
:/ fwd:zc+/ Fl[u]wda:—l—/ Fylu|w, dz,
0 0 0
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for all test functions w € Hy, for almost all ¢ € (0,T,) and satisfying the initial conditions.

Uniqueness. Let uj, us be two weak solutions of (4.1.1)—(4.1.4) such that

Uy, U € Wl(M, T*) (4222)

Then v = u; — uy satisfies

1 1
/ v"'wdx + / (Novs + MV, + v w, dx
- )\/ / $)v(t — s) dsw, dx (4.2.23)
1
= / <F1[u1] Fl[UQ])wd[E +/ (FQ[UI] — FQ[UQ])UJJC dZL'
0 0

for all test functions w € Hg, for almost all ¢ € [0, 7.]. Taking w = v’ in (4.2.23) and integrating

with respect to t, for

1 t 1
E(t>z/ (|v’!2+l|vx\2+|v;\2)dx+2A1// 0. |? da: ds
0 0 0
o0 1

A / o(s) / ot — ) — v, (1) 2 i ds

Ot 0 0 1
_A// QI(S)/ [0, (T — 8) — v, (7)|* dw ds dr,

0 0 0

we obtain
= 2/ / Filuq] Fl[u2 v dxds—i—?/ / Fyluq] FQ[UQ])U dx ds
/ | Fufua] — Fifus)|%2 ds +/ | Fofua] — Fofus]|%2 ds +/0 B(s)ds
< 32FJ€[/0 ||lus — u2||3V1(T*) ds + /OtE(s) ds
< (% + 1> /DtE(s) ds.
Thanks again to Gronwall’s Lemma, we have E = 0, i.e., uy = us. O
Theorem 10 is completely proved. O

74



Chapter 4. Local existence and Global nonexistence of solution for Love-equation with infinite
memory

4.3 Blow up

We further prove that if (4.3.8) holds, then the blow up of any weak solution (4.3.1) for a finite
time occurs when the initial energy is negative.

Here, we consider (4.1.1)—(4.1.4) with f =0, F} = fi(u,u,) € C*(R*R) and I, = fo(u,u,) €
C1(R% R) as follows

u” — (Aoug + A, + ug)x + A ffoo g(t — s)ugz.(s)ds

(4.3.1)
= fi(u,u,) — (fg(U,Ux)>m, z e (0,1), 0<t<T,,
with the boundary conditions
u(0,t) = u(l,t) =0, 0<t<T,, (4.3.2)
and the following initial conditions:
u(x, —t) = up(z,t), u'(z,0)=u(z), t > 0. (4.3.3)

We have proved in the previous section, the existence of local weak solution of (4.1.1)—(4.1.4) in
Theorem 10. Furthermore, let us assume that there exist F € C?*(R?* R) and the constants p,

q > 2, di dy > 0 such that

oOF OF

%(U,U>:fl<uvv)7 %(U,U):fg(u,v),

wfy(u,v) + v fo(u,v) > diF(u,v), Y(u,v) € R?

F(u,v) > dy([ul]f + |[v]9), V(u,v) € R%. (4.3.4)
We introduce the energy functional E(t) associated with system (4.3.1)-(4.3.3)

1 [t I 1t
E(t) ——/ |u'|2d1:+—l/ ]um|2dx+—/ | dx
2 Jo 2 Jo 2 Jo

o 1 (4.3.5)
+%)\/0/0 g(s)\ux(t)—uw(t—s)\stdx—/O Flu,ug) dz.
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It is not hard to see this Lemma (Using Lemma 18).

Lemma 20. Suppose that (Hypl) holds. Let u be solution of system (4.3.1)-(4.3.3). Then the

energy functional (4.3.5) is a non-increasing function, i.e., for all t > 0,

/|u ?dr + = )\// 8)|ug(t) — ug(t — 5)|* ds dz.

For a reader, we state this Lemma with its proof.

Lemma 21. Let v,§ > 0 be real positive numbers and let L(t) be a solution of the ordinary

differential inequality

%f) > ELM (), (4.3.6)

defined in [0,00). If L(0) > 0, then the solution does not exist for t > L(0)™& Vvt

Proof. The direct integration of (4.3.6) gives

Thus, we get the following estimate:
-1
L () > [L‘”(O) —§Vt] . (4.3.7)
It is clear that the right-hand side of (4.3.7) is unbounded for

Evt = L77(0).

Lemma 21 is proved. O

Our goal is to prove that when the initial energy is negative, the solution of system (4.3.1)

blows up in finite time under (4.3.4) and (4.3.8).
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Second main Theorem

Our result here reads as follows.

Theorem 11. Assume that (3.4) holds. Assume further that E(0) < 0 for any uo(0),u; €

H} N H? holds. There exists a number r satisfying 2 < r < min (p, q) and r < dy such that

Ao(5 —1)

/0 g(s)ds < /\(g T %> : (4.3.8)

Then, the unique weak solution u of (3.1) — (3.3) blows up in finite time.

Proof. Let

By Lemma 20, we obtain

d 1 1 1 e
—H(t) = )\1/ |ul |* do — —)\/ / g (8)ug(t) — u (t — s)|* ds dx
dt 0 2 Jo Jo
> 0,  Vtelo,T.). (4.3.9)

Consequently, £(0) < 0 and (4.3.9) imply that
0< H(0) <H(t) Vte|0,T,). (4.3.10)

Using (Hypl), we get

1 1 1t 1
—/ Flu,u,)dr = ——/ |u'|2dx——l/ |ux|2dx——/ |ul|? d
0 2 Jo
- —/\// 8)|ug(t) — ug(t — 5)|* ds da

0, Vtel0,Ty).

IN

One implies

7
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memory
0< H(0 / F(u, ug)
Then, we define functionals
1 /1
M(t) = —/ u? de,
2 Jo
1 1 1
N(t) = —)\1/ || d —|—/ ug, dr,
2 0 0
and introduce
L(t)=H"(t) +eM'(t) + eN(2), (4.3.11)
for € small enough and
0<o<1/2,2/(1—20) <min(p,q). (4.3.12)

We now show that L(t) satisfies the differential inequality in Lemma 21. By taking the derivative
of (4.3.11) and using (4.3.1), we obtain

L'(t) = (1—U)H_”(t)H'(t)—|—5/0 |u'|2d:p+5/0 [l |? dx
_ gz/o ]um|2dx+5>\/ooog(s)/0 a(t — 5) — g (8)]u, da ds

1 1
+ 5/ fl(u,ux)uda:—l—a/ fo(u, ug )uzde.
0 0

By the Cauchy-Schwartz and Young inequalities, we find

/Ooog(s) /1[%(75 —8) — ug(t)]uy, dz ds

/ (/ |z (t — s) — ug(t |2dm/ |u$|2dx) ds

< [ g<s>/0 e —s)—um<>|2dxds+f0 /|m|2dx

for any v > 0. Therefore,
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memory
1 1
L'ty > (1—o0)H7(t)H'(t) —|—s/ |u'|2dx—|—5/ |ul | dx
0 0
— ¢ <Z+AM> / |uw|2dx
4y 0
o 1
- 8)\’}// g(s)/ [ug (t — 5) — uy(t)|* do ds
o " 1
+ 5/ fl(u,ux)udx+€/ fo(u, ug)u, dz.
0 0
By (4.3.4), we obtain
1 1 1
/ fl(u,ux)ud:r+/ falu, ug)uy dxzdl/ F(u,uy)de.
0 0 0
Then, it follows from (4.3.12) and the inequality
(1—0o)H°(t)H'(t) > 0,Vt € [0,T),
that
L'(t) > 5/ |u|2dx—|—€/ |l |? da — l+)\f0 / |uy|? d
- 5)\7/ g(s )/ |t (t — 5) — uy(t )|2dl’d8+€d1/ F(u,u,)de.
0 0
Adding erE(t) + erH(t) and using (4.3.4) and the definition of H(t), we get
/ T ' 12 T ' 12
L > g(1+- o] dx+5<1+— [l d e ()
v [ (z+xf0 / \ugE]de
+ 5/\<——7>/ / [ug (t — 8) — uy(t)|* dw ds
e (d —r) daf / ua (8)]1 da +/ u(t)? d) (4.3.13)
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Now choosing

we take

r 1 r *
CL1—)\0<—1+§>—)\<§—1+§>/0 g(s)ds>0,

as = (dl —T)dg >0

and

by (4.1.5) and the assumptions of Theorem 11. Then, estimate (4.3.13) becomes

1 1
/ r 12 r /2
> _ _
L'(t) 5<1+2>/0 || dx—|—5<1+2>/0 |ul,|* dx 4+ erH(t)

1 1 1
+ €a1/ |Um|2dI+€a2</ |Ux\qd$+/ ]u|”da:).
0 0 0

At this point, we can find a positive constant ¥ = min(1 + /2, a;, az) such that

1 1
L't > €V(H(t)+/ \ux|qu+/ |u|P dx
0 0

1 1 1
—l—/ ]ux|2da:+/ \U;de—i—/ ]u’]Zd:U). (4.3.14)
0 0 0

Thus, we can choose € > 0 small enough such that

L(t) > L(0) > 0, Vtel[0,T,).

Further, by (4.3.12), Holder and Young inequalities, we obtain

1/(1-0) 7/p(l1—0) s/2(1—0)
’/ uu' dx <01 / \u]pdx / \u|2da: }

for 1/7 4+ 1/s = 1, where C} = max(1/s,1/7). We take s = 2(1 — o) to get

2(1—o0) 1 1
=29 ad ==
T e M MIT ST a0
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memory
By using the algebraic inequality
1
< (2 41) < <1+—>(z+a), V2>0, 0<v<1la>0,
a
we find
! 2/{p(1-20)} !
(/ Jul? d:p) < cg(/ lulP dz + H(t)), vt e [0,T,),
0 0
where Cy =1+ 1/H(0) > 1 by (4.3.10). Then we obtain
1 1/(1-0) 1 1
‘ / uu’ dx‘ < Og(/ |ul? dx + / [u'|? dx + H(t)), (4.3.15)
0 0 0
where C3 = C1Cs. Similarly, we obtain
1 1/(1-0) 1 1
‘ / gt dm’ e (/ o |9 d +/ 2 dz + H(t)) (4.3.16)
0 0 0
and
1 ) 1/(1-0) 1 1
‘ / | dx’ < 03(/ o |9 da +/ g |2 d + H(t)), (4.3.17)
0 0 0

respectively. Moreover, by (4.3.11), (4.3.15), (4.3.16) and (4.3.17) we note that

Ll/(l—a) (t)

1 1/(1=0) 1 1/(1=0) 1 1/(1=0)
< C4<H(t) + ‘/ uu’ dx‘ + ‘ / |um|2dx) + / u dx’ >
0 0 0

1 1 1 1 1
< C5<H(t)+/ \u|pdx—|—/ |u’\2dx+/ \ux!2d$+/ \ux]qu—i—/ ‘le’2d$>
0 0 0 0 0

owing to

(a+b+c+d)® <2207 (g% £ b + ™+ d*)

for a,b,c,d > 0 and a > 1, where
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L\ Vo)
C, = 2%/ max (1, g, 55)\1) and C5=C4(3C5+1).

This yields
L'(t) > LVY0=) 1), vt >0,

along with (4.3.14), where ¢ = ev/C5. Finally, Lemma 21 completes the proof of Theorem 11
for T, = Cs(1 — o) /(evo) L=/(1=9)(0). O
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Conclusion

In our work, we have obtained new stability results for solutions to a class of wave equations with
weak and strong damping terms, as well as a logarithmic source in R". We have demonstrated
general stability estimates by introducing a suitable Lyapunov function. These results enhance
our understanding of solution stability in this context and offer promising prospects for future
applications.

On the other hand, we have studied a dynamical system with variable delay described by a
partial differential equation of hyperbolic type. We have demonstrated the r(t)-stability of the
weak solution under suitable initial conditions in R", with n > 4, by introducing appropriate
Lyapunov functions.

Finally, we studied a boundary value problem for a nonlinear equation called the ”Love
equation” with infinite memory. By combining the linearization method, the Faedo-Galerkin
method, and the weak compactness method, we demonstrated the local existence and uniqueness
of the weak solution. We also investigated the possibility of finite-time blow-up of the weak

solution.
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