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 بالفيديو المراقبة لأنظمة الكائنات على المعتمد للفيديو ترميز برنامج وتنفيذ دراسة"

"اللاسلكية   المدمجة 
 :الملخص 

وشبكات استشعار ( IoT)بالفيديو اللاسلكية المدمجة شعبية واسعة بسبب التقدم في أنظمة إنترنت الأشياء  تكتسب أنظمة المراقبة

هذه الأنظمة لها العديد من التطبيقات ، بما في ذلك تتبع الأهداف العسكرية والمراقبة ، والإغاثة في . الوسائط المتعددة اللاسلكية

لا يزال نقل بيانات الوسائط . ، والاستشعار الزلزالي ، ومراقبة البيئة ، والمدن الذكية ومراقبة الصحة الطبية الحيوية حالات الكوارث ،

المتعددة بمعدل بت منخفض مع الحفاظ على البيانات المرسلة عالية الجودة يمثل مشكلة صعبة في الأنظمة التي تعمل بالبطارية 

ناول هذه الرسالة هذا التحدي من خلال تحسين كفاءة الطاقة في شبكات استشعار الوسائط تت. بسبب محدودية توفر الطاقة

جديدة تقلل من استهلاك  ترميز ينصب التركيز على تطوير برامج . المتعددة اللاسلكية لبيئات المراقبة اللاسلكية ذات الموارد المحدودة

 .عالجة البشرية والآليةالطاقة مع الحفاظ على جودة عالية من الخبرة لكل من الم

 

ا منخفضة التعقيد لاكتشاف مناطق الاهتمام 
ً
سيعزز ذلك الدقة والمتانة من خلال . في إطارات الفيديو( ROI)تقدم الأطروحة طرق

مسبقة في سلاسل تشفير مختلفة للمراقبة  رمزاتتم دمج تقنيات الكشف هذه كم. الاستفادة من تقنيات اكتشاف الأجسام المتعددة

وجودة ( QoS)قبولة خدمة م٪ مع الحفاظ على جودة 89لفيديو اللاسلكي ، مما يؤدي إلى توفير كبير في الطاقة ومعدل البت يصل إلى با

تمهد نتائج هذا البحث الطريق . تظهر العديد من الاختبارات والتجارب جدوى وفعالية الأساليب المقترحة في هذه الأطروحة. الخبرة

 .هذا المجالللبحث المستقبلي في 

 

ضغط  ، التعقيد المنخفض ، منطقة الاهتمام ، اكتشاف الأشياء ، شبكات استشعار الوسائط المتعددة اللاسلكية :مفتاحية كلمات

 .الصور ، ضغط الفيديو ، أنظمة المراقبة بالفيديو المدمجة ، جودة التجربة

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



« Etude et mise en œuvre d’un encodeur vidéo basé objet pour les systèmes de 

vidéosurveillance sans fils embarqués» 

Résumé : 

Les systèmes de vidéosurveillance sans fil embarqués gagnent en popularité grâce aux progrès des systèmes 

Internet des objets (IoT) et des réseaux de capteurs multimédias sans fil. Ces systèmes ont de nombreuses 

applications, notamment le suivi et la surveillance de cibles militaires, les secours en cas de catastrophe, la 

surveillance de la santé biomédicale, la détection sismique, la surveillance de l'environnement et les villes 

intelligentes. La transmission de données multimédias à faible débit tout en maintenant des données transmises de 

haute qualité est toujours un challenge dans les systèmes alimentés par batterie en raison de l'énergie limitée. 

Cette thèse relève ce défi en optimisant l'efficacité énergétique dans les réseaux de capteurs multimédias sans fil 

pour les environnements de surveillance sans fil à ressources limitées. L'accent est mis sur le développement de 

nouveaux codeurs qui minimisent la consommation d'énergie tout en maintenant une qualité d'expérience (QoE) 

élevée pour le traitement humain et machine. 

 

La thèse introduit des méthodes de faible complexité pour détecter les régions d'intérêt (ROI) dans les images 

vidéo.  Cela améliorera la précision et la robustesse en tirant parti de plusieurs techniques de détection d'objets. 

Ces techniques de détection sont intégrées en tant que pré-encodeurs dans différentes chaînes d'encodage pour la 

vidéosurveillance sans fil, permettant d'importantes économies d'énergie et de débit jusqu'à 98% tout en 

préservant une qualité de service (QoS) et QoE acceptable. Plusieurs tests et expérimentations démontrent la 

faisabilité et l'efficacité des approches proposées dans cette thèse. Les résultats de cette recherche ouvrent la voie à 

de futures recherches dans ce domaine.  

 

Mots clés : Région d'intérêt, détection d'objets, réseaux de capteurs multimédias sans fil, faible complexité, 

compression d'images, compression vidéo, systèmes de vidéosurveillance embarqués, qualité d'expérience. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



« Study and Implementation of an Object-based Video Pre-encoder for 

Embedded Wireless Video Surveillance Systems » 

Abstract : 

Embedded wireless video surveillance systems are gaining widespread popularity due to advancements in internet 

of things (IoT) systems and wireless multimedia sensor networks. These systems have numerous applications, 

including military target tracking and surveillance, disaster relief, biomedical health monitoring, seismic sensing, 

environment monitoring, and smart cities. Transmitting multimedia data at a low bitrate while maintaining high-

quality transmitted data is still a challenging problem in battery-powered systems due to limited energy 

availability. This thesis addresses this challenge by optimizing energy efficiency in wireless multimedia sensor 

networks for resource-constrained wireless surveillance environments. The focus is on developing novel encoders 

that minimize energy consumption while maintaining high Quality of Experience (QoE) for both human and 

machine processing. 

 

The thesis introduces low-complexity methods for detecting regions-of-interest (ROI) in video frames. This will 

enhance accuracy and robustness by leveraging multiple object detection techniques. These detection techniques 

are integrated as pre-encoders in different encoding chains for wireless video surveillance, resulting in significant 

energy and bitrate savings of up to 98% while preserving acceptable quality of service (QoS) and QoE. Several tests 

and experiments demonstrate the feasibility and effectiveness of the proposed approaches in this thesis. The 

findings of this research pave the way for future research in this field. 

 

Keywords : Region-Of-Interest, Object Detection, Wireless Multimedia Sensor Networks, Low-Complexity,  

Images Compression, Video Compression, Embedded Video Surveillance Systems, QoE. 
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Introduction

Context and problem statement

Video surveillance systems have become a pillar technology in new-generation com-

munication systems [1]. This last fact is due to the high advantage that offers surveil-

lance systems to ensure security, monitoring, and prevention in critical environments.

The basic paradigm of surveillance systems considers a wired surveillance camera in-

stalled in a well-studied zone. However, this approach is constrained by the existence

of a wired energy/connection cable to feed the surveillance system. This circumstance

has been viewed as a drawback for surveillance systems because in most cases, the

areas that need to be covered cannot be wired for cables and require a wireless link [2].

This last problem has endorsed researchers to develop new surveillance systems which

are fully wirelessly connected and battery-equipped, motivated by the advancement of

Internet of Things (IoT) systems and wireless sensor networks (WSN).

The WSNs market is getting more and more attention and growth during the last

years thanks to the solutions it gives to a plurality of communications and monitoring

domains. WSNs have had enormous potential for use in a wide range of contexts, in-

cluding military target tracking and surveillance [3] [4], disaster relief [5] [6] , biomed-

ical health monitoring [7] [6], seismic sensing [8], and many more. Sensor modules

may cover a plurality of data sensing types, either scalar sensors like humidity sen-

sors, motion sensors, pressure sensors, or heart rate sensors. Likewise, multimedia
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sensing is possible using sensor-equipped with multimedia capturing modules, which

aim to process audio, images, or video data [9]. The subsection of the WSN that cover

multimedia sensing (image, video, audio) is shorthand: Wireless Multimedia Sensor

Networks (WMSN). The network is anticipated to include collectively covering a small

area with image, audio, or video sensors [10].

WMSN has been used as a support technology for new video surveillance systems.

Benefiting from its effectiveness to cover remote, essential areas where wire cabling is

impractical. For instance, WMSN-based surveillance systems can be used in agricul-

ture to monitor the fields. It is also an intriguing alternative for particular military ob-

jectives, like monitoring and spying on the battlefield. The Industrial Internet of Things

(IIoT) has also utilized WMSN for specific industrial applications including monitor-

ing components of the production line [11] [12]. WMSN-based monitoring has been

deployed by a variety of scientists to monitor and track migrating birds, forests, and

lakes [13]. WMSN are composed of a plurality of sensors interconnected and equipped

with visual modules to capture images. They have enabled a plurality of applications

and have been involved in the development of the Internet of things (IoT) and smart

edge computing. As part of the applications that use WMSN as a backbone, we find

wireless video surveillance systems (WVS).

Thanks to their easier installation and flexible infrastructures, WVS systems now

act as pillars of the new smart cities paradigm [14]. It assists in traffic monitoring [15],

parking management and public safety protection in campuses, office buildings, or

residential areas [16]. Since each sensor node in the WMSN is generally equipped with

a limited source of energy (batteries), they have to keep a high presence rate to ensure a

good Quality of Experience (QoE). Keeping a long-life feature to the sensor node needs

to elaborate and develop low complexity methods to be embedded in different steps

of the sensing from capture to transmission [17].

Additionally, reducing energy consumption is a challenging task since there is al-

ways a need for optimal design, accurate tasks and good Quality of service (QoS) while
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developing such methods [18]. The effective transmission of multimedia data, partic-

ularly video and images, over constrained bandwidth and energy resources is one of

the major issues faced by WMSNs. Compression techniques and transmission rate con-

trol are currently used as solutions to this problem, although they frequently lead to

trade-offs between energy usage and image quality.

The limitations of surveillance systems that use WMSN must be made very explicit

in order to effectively demonstrate the issue. Each node in the network has a limited

energy source because they are all wirelessly connected to one another and to other

networks. On the other hand, given multimedia data is so massive and demands a

lot of processing power and transmission payload, wireless nodes that capture mul-

timedia data have significant battery drain. In order to assure long-life services, it is

necessary to create new and effective techniques for lowering energy consumption and

data rate while keeping an acceptable level of image/video quality in WMSNs. This

goal must be defined and adapted to the characteristics of the WMSN.

The early-stated problem could be transformed into many research questions in

order to clarify the proposed contributions of this thesis. The thesis tries to respond to

the following questions:

• How can region-of-interest (ROI) detection methods be used to reduce energy

consumption in the compression and transmission steps for video/image coding

in WMSNs?

• What are the most accurate and low-cost ROI detection methods that can be used

in a wireless surveillance environment?

• What are the advantages and limits of such algorithms in the WMSNs Context?

• How does the accuracy of the used ROI detection method affect the effectiveness

of human-based and machine-based monitoring systems at the destination?
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Objectives

We aim in this thesis to focus on advancing state-of-the-art by developing accurate

and efficient techniques to serve as pre-encoders in wireless sensor nodes. Those tech-

niques will help reduce significantly the energy and bitrate needed to transmit multi-

media data while saving high-quality transmitted data. The specific objectives of this

thesis are to:

• Investigate the use of ROI-based video and image coding techniques in wireless

surveillance environments.

• Develop and evaluate new ROI detection methods that can be used to reduce

energy consumption and data rate while maintaining good QoS in terms of im-

age/video quality.

• To evaluate the importance of accurate ROI detection methods in allowing for

both human-based and machine-based monitoring at the destination, in order to

improve the overall effectiveness and efficiency of wireless surveillance systems.

• Compare the performance of the proposed methods to existing state-of-the-art

techniques.

Figure (1.13) illustrates a global view of this thesis’s contributions to a WVS system.

Thesis Outline

The present thesis is organized in the following manner:

• Introduction: This chapter outlines the problem addressed by the thesis, which

is the optimization of wireless surveillance systems. The significance of explor-

ing the challenges of video coding in resource-constrained wireless surveillance

systems, the current research gap in the literature, and the state of the art are
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emphasized. This chapter also highlights the proposed approaches taken in this

thesis to achieve the desired objectives.

• Review of Literature: In this chapter, we present a thorough examination of the

background and research efforts made in video surveillance systems. We also

present a deep examination of the works that aimed at designing accurate and

cost-effective video coding strategies that are optimized for sensor node con-

straints. We provide a comprehensive overview of the contributions made in the

processing step and transmission step of sensor nodes. Furthermore, we delve

deeper into the literature that employs moving object detection and region of in-

terest detection as pre-encoders in WVS. We also focus on low-cost ROI detection

methods that help minimize resource consumption in sensor nodes.

• Second chapter: This one proposes a binary classification approach for frame

blocks, where the blocks are classified as either ROI or non-ROI. The proposed

ROI detection strategy uses edge features and difference enhancement, with con-

tinuous frame updates. We evaluate the efficiency of this method by comparing

it with a standard coding approach and demonstrate significant energy savings

through energy/rate efficiency modeling and analysis. However, we also ac-

knowledge the limitations of the method, particularly with regard to the error

propagation problem during reconstruction.

• Third chapter: In this chapter, we make a proposal for improving wireless video

surveillance by classifying frame blocks into binary classes (ROI/non-ROI) using

a simple difference detection method and a combination of enhancing filters. We

demonstrate the effectiveness of this approach by comparing it to a range of state-

of-the-art methods using a large benchmarking dataset. Our method proves its

efficiency through energy/rate efficiency modeling and analysis as input to the

video encoder.
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• Fourth chapter: We propose a content-aware multi-class frame block classifica-

tion method based on edge feature detection and enhancement. This method

classifies the frame into three regions based on importance, prioritizing the mov-

ing object by allocating the highest bitrate to it. In this chapter, we demonstrate

the efficiency of the automatic thresholding method used and show a 50% reduc-

tion in bitrate through consideration of the important region and its adaptability

to WMSNs.

• Fifth chapter: In this chapter, we propose a novel video coding method opti-

mized for both the machine inference model and the human visual system in

WMSN. Our approach utilizes a low-cost and accurate ROI detection and clas-

sification technique to divide the frame blocks into four classes based on their

importance. The video encoder then follows the ROI recommendations to decide

whether to code or drop a block and adjust the coding quality accordingly. The

results show that our method can achieve a 96% reduction in bitrate, a 98% reduc-

tion in energy consumption, and a 22% improvement in the deep learning-based

inference model at the destination, despite a quality reduction of 1 to 4dB.

• Conclusion: This last chapter concludes the thesis and discusses future perspec-

tives.
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Chapter 1
Background and literature review

The literature has widely discussed the resource optimization techniques used in

WSN from different points of view. Also, the feasibility of WMSN as a backbone of

WVS systems has been discussed and developed, as will be shown in the next section.

From another part, ROI-based video coding has also been promoted as a promising so-

lution for developing accurate and energy-efficient video and image coding embedded

systems to leverage the bandwidth and energy constraints of WMSN. Moreover, since

the ROI is defined by the moving part in the frame, it has been defined and developed

based on MOD algorithms, as to be shown in the literature review.

1.1 Video surveillance Systems

Video surveillance is an essential mechanism for monitoring and observing activities

in various areas, including public spaces and sensitive locations such as private enter-

prises and buildings. The underlying technical processes involve capturing real-time

images using deployed cameras and transmitting the acquired data through a suitable

transmission channel. The received signal is then reconstructed and displayed at a

centralized location for analysis and assessment.

With advancements in video technology, various video surveillance systems have

been developed, each possessing its unique features and capabilities. These systems
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encompass traditional analog CCTV (Closed-Circuit Television) surveillance systems,

digital networked video recorder (DVR) systems, networked IP camera systems, cloud-

based systems, and decentralized mobile systems. Despite the diversity in these sys-

tems, the integration between them can pose challenges due to the use of different

equipment and models. Various methods have been proposed to connect the cameras

to the base station and facilitate data collection to mitigate this issue. These connec-

tions can be classified into three categories: analog, digital, and network connections

between the central station and the cameras [19] [20] [1]. Figure (1.1) summarizes the

applications and categories of video surveillance systems.

Analog surveillance system It is the basic model for image transmission, exchange,

and recording in analog signal processing. The analog system uses coaxial cable and

long-distance transceiver optical fiber [21]. The analog system shows advantages and

drawbacks. Its main drawback is the limited transmission distance, while it represents

advantages in image restoration capabilities.

Digital surveillance system In digital surveillance systems, MJPEG, MPEG-4 and

H264 video coding standards are used at the edge to ensure low bitrate and bandwidth

requirements, making it more efficient than the traditional analog system. In this tech-

nology, the cameras are generally connected through an IP network and transmission

is possible using network protocols. Furthermore, the pillar of the continued advance-

ments for digital surveillance systems is the parallel advancement and innovations in

signal processing technologies and techniques in capturing, coding, transmission and

representation [22].

Network surveillance system Networked cameras are a type of digital video cam-

era that collaborate in a specific network to cover, transmit, and exchange video data.

The network comprises many camera terminals and a piece of master equipment with

8
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Figure 1.1: Video surveillance systems categories and applications
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sufficient resources to connect the camera network to external networks [23].

Wireless Sensor Networks as surveillance system A surveillance system based on

WMSN is a cutting-edge decentralized system that harnesses the power of multiple

camera nodes to gather and analyze visual data. These nodes work together to extract

valuable information about the captured scene and provide real-time insights to the

user. One of the key features of a Wireless Video Sensor Network is its wireless com-

munication capability, which enables the camera nodes to interact and exchange data

with other nodes without the need for physical connections. This last advantage can

simplify the deployment process and makes the system highly flexible and scalable.

Additionally, the nodes in a WMSN typically employ advanced image processing tech-

niques to identify and track objects, recognize patterns, and provide detailed analysis

of the captured scene. This enables the system to deliver sophisticated and accurate

information to the end user, making it an indispensable tool in a plurality of applica-

tions [24] [25]. Despite its promising advantages, surveillance systems that use WMSN

are facing serious challenges, we cite:

• Limited Bandwidth: WMSNs have limited bandwidth, which can limit the amount

of data that can be transmitted and received.

• Power Constraints: WMSNs typically rely on batteries to power the camera

nodes, which can limit their lifespan and require frequent battery replacements.

• Security Concerns: WMSNs are vulnerable to security threats such as hacking,

eavesdropping, and data tampering, which can compromise the confidentiality

and integrity of the transmitted data.

• Complex Deployment: Setting up and maintaining a WMSN can be complex in

specific zones like the wild and the lacks.

10
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• Cost: Implementing a WMSN can be expensive, as it requires deploying numer-

ous camera nodes and installing wireless infrastructure.

• Limited Range: Wireless communication has a limited range, which can limit

the coverage area of the Video Sensor Network and make it difficult to deploy in

large or complex environments.

1.2 Resource optimization in WSN

The literature has extensively discussed and analyzed the design of energy-efficient

Wireless Sensor Networks [26] [27] [28] [29]. The approaches vary depending on whether

the contributions are in the processing, the transmission, or the network part. The rec-

ommended solutions often focus on identifying resource allocation techniques that use

the least amount of energy. The resource under consideration can comprise memory

usage, data compression algorithms, data routing, and transmission power at the ra-

dio part. Multiple contributions have been made in this context. The Medium Access

Protocols (MAC) design has been the subject of optimization to meet the requirements

of both energy efficiency, delay reduction and QoS insurance [30] [31]. The design of

such protocols under these constraints is a complicated task since they require a con-

tinuous data stream. For example, in [32], the Saxena protocol is proposed to meet the

QoS requirements for video streaming in WMSNs. Diff-MAC [33] is a QoS-oriented

MAC protocol for WMSNs with heterogeneous traffic classes. It employs a service dif-

ferentiation mechanism that fragments long video frames into smaller video packets

and transmits them in bursts. The contention window size and duty cycle of the node

are adjusted based on the traffic class. The protocol delivers data fairly and quickly

and adjusts to changing network conditions, but incurs overhead from its differenti-

ation mechanisms and network monitoring. It also lacks sleep-listen synchronization

between neighboring nodes.

11
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infeasible due to the limited resources of a WSN. A gray scale QCIF (176× 144) video compressed at 0.5 bpp requires a useful bit rate
of 316.8 kbps when transmitted at 25 fps. With the same compression ratio, for instance, the micaZ [48] having a bit rate of
(250 kbps), only allows a maximum theoretic frequency of 19 fps and even less since this maximum value is difficult to achieve due
mainly to the concurrent nature of wireless media.

3.2. Video encoder/packetiser module

Based on the user parameters, the video encoder/packetiser module compresses the captured video clip and generates the sender
trace files namely st-frame and st-packet. It converts the captured frames to gray scale where each pixel is encoded using 8 bits with
range [0,255]. A low energy compression algorithm that considers both spatial and temporal redundancy in a video sequence is
implemented. A frame is either intra-coded and qualified as a main frame (M-frame) or inter-coded with respect to the previous M-
frame in which case it is referred to as a secondary frame (S-frame). The first frame is always encoded as an M-frame. A subsequent
frame is M-encoded if it is sufficiently different from the previous M-frame ; otherwise it is S-encoded.

Whether a given frame is encode as a main or a secondary frame is based on a user parameter γ (the GOP coefficient) that allows
to control the GOP of the resulting compressed video. γ takes positive values ranging from 0 to the maximum mean square error
( =V 255peak ) two frames can have. For each frame, the mean square error (MSE) with respect to the previous M-frame is computed. If
MSE> γ2 then the frame is considered to be sufficiently different from the previous M-frame and thus is M-encoded ; otherwise, it is
S-encoded. Note that if =γ 0 then all frames are M-encoded. To rise the number of S-frames, γ has to be increased. Setting γ to 255
results in all frames to be S-encoded except for the first frame.

3.2.1. Main frame encoding
As depicted in Fig. 3, each M-frame is first decomposed into blocks of 8×8 each of which is shifted from range [0,255] to signed

integers range −[ 128, 127]. Then, a DCT is applied on each block. In order to meet the requirements of constrained WSN, two fast
pruned DCTs are implemented, the Loeffler-Ligtenberg-Moschytz DCT (LLM) [29] and the binDCT-C (BIN) proposed in [49]. Both the
square and the triangular patterns of pruned DCT are provided. The square or triangle side length ρ is defined by the user. The default
value is set to 8. For comparison purposes, we also implemented the traditional DCT variant, we refer to as CLA. The resulting DCT
block coefficients are quantised using the JPEG standard quantisation matrix. Trade-off between quality level and compression rate

Fig. 2. SenseVid architecture.

M. Maimour Simulation Modelling Practice and Theory 87 (2018) 120–137

124

Figure 1.2: Sensevid architecture [27]: One of the useful platforms for video coding in WMSN.

Other platforms have been created specifically for low-bitrate video coding in WMSN,

such as SeneVid [34] developed by Maimour. As shown in Figure (1.2), this platform

is designed to meet the needs of WMSN, with different modules for video coding and

a low-cost mechanism. It offers fast transforms for video compression, both exact and

fast-pruned versions. It can provide real-world scenarios using the widely used WSN

test bed, IoT-LAB [35]. Other platforms for WSMN include Cyclops [36] and XYZ-

ALOHA [37].

Another ax of resource optimization is the utilization of low-cost embedded trans-

formations for data compression. Literature has proposed fast and energy-efficient

12



CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

transformations to minimize energy consumption during the transform stage of com-

pression while retaining a minimum level of quality. Efficient techniques include DCT

[38] [39] [40] and its variants. DTT integer version and its variants [41] [42], and nu-

merous other transformation methods tailored for WSN.

1.3 Object Detection methods

There is a wealth of movement detection techniques, as surveyed in numerous studies

such as [43], [44], [45], and [46], which examine the latest approaches for detecting mo-

tion in video sequences. These methodologies encompass basic techniques, statistical

methods, fuzzy logic, neural networks, wavelet-based background modeling, back-

ground clustering, and background estimation-based MOD detection [47]. Other re-

searchers have focused on enhancing specific steps in the MOD process. For instance,

Bouwmans et al. proposed a taxonomy for background initialization in [48], which

classifies the MOD area into various categories based on methodology, recursiveness,

and selectiveness. The authors also emphasized the significance of background sub-

traction (BS) algorithms in numerous applications, such as video compression, video

surveillance, video segmentation, and video inpainting.

Recent studies have explored BS for movement detection. [51], for instance, presents

a BS approach in which the background model is constructed using the Gaussian Mix-

ture Model (GMM) algorithm. For background estimation, the authors utilized a Gaus-

sian mixture to model the pixel intensity values. Another background modeling tech-

Figure 1.3: Results of some well-known pixel-based MOD algorithms (Highway #790)

Frame ground ours bayes. [49] Euclidin [45] Mahalan. [45] Tchebi. [50]
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nique was introduced in [52] and [53], where Zhao et al. modeled the background

using a Type-2 Fuzzy Gaussian Mixture Model, which accounts for the uncertainty re-

lated to information or noise and addresses the limitations of the GMM model, partic-

ularly for infrared videos. Figure 1.3 illustrate results of some well-known pixel-based

MOD algorithms.

Figure 1.4: A conceptual example of background modeling circuit embedded in FPGA board
(redrawn from [61])

Recent advances in Convolutional Neural Networks (CNN) and deep learning (DL)

have also been applied to the MOD problem. [54], [55], [56], and [57] are examples of

such techniques. In [54], the author utilized a CNN network to extract spatial infor-

mation from different neighborhoods of pixels. Another solution was proposed in [55],

where the authors employed DL in an unsupervised manner, using a greedy layer-wise

pre-training strategy and a conjugate gradient-based backpropagation algorithm for

network fine-tuning. The field of background modeling has seen a surge of interest in

advanced AI techniques, as demonstrated by Babaee et al.’s deep learning approach for

background modeling based on Convolutional Neural Networks [56]. Despite the high

detection accuracy achieved by these DL algorithms, they are still far from being suit-

able for real-time, low-power embedded applications due to their high computational

complexity and energy consumption. In [54], the authors attempted to use embed-
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ded deep learning for motion detection, utilizing a Neural Response Mixture (NeRM)

model to extract the features of the background and detect motion. Although the ap-

proach yields good detection results, it still falls short of real-world requirements, with

approximately 2 fps on a 352 × 240 video frame when implemented on Axis Q7436

(ARTPEC-5 chipset) encoder.

Other techniques employ wavelet-based background modeling for moving object

detection, as discussed in [58], [59] and [44]. For example, in [58], the authors used the

wavelet domain to detect moving objects as illustrated in Figure (1.5). Similarly, [59]

proposed a region of interest-based technique that models the background by charac-

terizing regions using a mixture of multiple Gaussian modes and wavelet coefficients.

The suitability of MOD approaches for reducing the storage and energy consumption

of surveillance systems has been demonstrated, as in [60], where Hamed et al. pro-

posed a power-efficient, real-time embedded realization of adaptive vision algorithms.

Hung-Yu et al. [61] also proposed a hardware-oriented algorithm for object detection

based on BS, implemented on an FPGA platform as illustrated in Figure (1.4). The

method achieved 56 fps for the whole system and 348 fps for the BS module. In [62], au-

thors proposed low-cost vehicle detection techniques for video-surveillance systems.

Figure 1.5: Wavelet-based background modeling for MOD proposed in [58].

Those advancements in object detection models for video coding in low-power

systems have produced promising results. The integration of the MOD method, as

demonstrated in works such as [63], [64] [65] and [66] has successfully reduced band-
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width costs and energy consumption. These strategies have proven effective in achiev-

ing optimal results for adaptive video coding, compression, and video transmission in

low-power environments.

Using MOD in WVS has experienced significant growth. A variety of techniques

have emerged, ranging from simple approaches to advanced artificial intelligence meth-

ods like deep learning. Numerous surveys have explored state-of-the-art movement

detection techniques, with a focus on enhancing key steps in the process and minimiz-

ing the storage and energy consumption of surveillance systems. The current research

efforts are geared towards finding the optimal balance between high detection accu-

racy and practical considerations, such as low energy consumption and high frame

rates. There is still a lot of room for improvement in this area and great potential for

these techniques to be applied in the context of video coding in wireless surveillance

environments using WMSN.

1.4 ROI-based video coding

ROI-based video coding strategically optimizes the compression and transmission of

the frame based on moving ROI [67] [68]. ROI-based video coding employs two key

approaches to achieve its objective. Firstly, it selectively compresses and transmits only

the moving ROI blocks, discarding non-ROI blocks to conserve energy and bitrate, as

has been proposed in [64] [63] [69].

Secondly, other approaches classify the frame blocks into multiple priority classes

and allocate resources accordingly. This approach assigns higher Quality Factors (QF)

to high-priority blocks to preserve image quality, lower QF to low-priority blocks and

discards non-active blocks. Figure (1.6) shows the ROI detection and compression

scheme proposed in [64] which is based on activity detection using SAD operation

between a background model and the current frame. Then, the moving blocks are

compressed using an embedded fast integer DTT algorithm. Furthermore, another
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Figure 1.6: ROI detection and coding approach proposed in [64].

ROI-based video coding approach in WMSN is shown in Figure (1.7) which is pro-

posed in [69]. The method considers both a WMSN design and ROI detection and

compression using 2D-DWT by dividing the frame into 4 non-overlapping blocks.

Figure 1.7: WMSN model and Block decision/compression approach based on ROI proposed
in [69].

These techniques demonstrate significant improvement in energy and bandwidth

efficiency over conventional techniques such as Motion JPEG (MJPEG). It has also

demonstrated outstanding results for advanced codecs used in video surveillance [70],

bitrate control [71], storage enhancement, [72], video-based tracking [73] and packet
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Visual Sensor Node

Wirless Multimedia Sensor Network

Transmission  
Network

Display System
wireless Link wire Link

sink

Figure 1.8: Illustrative example of WMSN composed of visual sensors and Sink node to connect
to the external network.

delivery and scheduling in the wireless networks [74]. Figure (1.8) illustrates a WMSN

example, while Figure (1.9) shows how the ROI detection approaches are added to the

processing step on the wireless visual sensor.

ROI

non-R
OI

Wireless Visual Sensor Node

Cap
tured

 Fram
e

Pre-encoder 
(ROI Detector)

ROI-based 
Video Encoder

ROI  
Recommendation ROI: Region-Of-Interest

Buffering  
and Transmission

Compressed 
 Data

Figure 1.9: A sensor node employing ROI detection as a pre-processing step before compres-
sion

1.5 Image/video coding for wireless surveillance

The development of efficient applications for wireless surveillance requires reducing

energy consumption and bitrate while keeping a high quality of transmitted informa-

tion. This tradeoff is still a challenge, and there is further room for improvement in this
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regard [75]. The main problem is the increased computational cost of the current video

coding standards despite their high bitrate reduction and their high quality. Conse-

quently, efforts have been made to implement the recent video coding standards in

WMSN [76].

The computational budget makes the recent standards unsuitable for resource con-

strained sensor nodes (limited energy, limited memory and a low bitrate) [77].

In [78], a survey on energy-efficient compression and communication techniques

for multimedia in resource-constrained systems has been proposed. The authors focus

on the compression and processing part by comparing three main techniques of image

compression in resource-constrained systems, namely: JPEG, SPIHT, and JPEG2000.

By modeling energy consumption as an optimization problem of the sum of the op-

erations made during the processing (named layers) to reduce the distortion, several

optimization solutions to the problem have been presented. The first attempt was us-

ing dynamic programming [79], a faster linear-complexity algorithm to maximize the

expected error-free source rate presented in [80]. Authors in [81] [82] reduced the com-

plexity into linear complexity using a local search algorithm. From another hand, other

optimization algorithms have been presented as shown in [83] using discrete ergodic

search, or theoretical solutions as shown in [84].

It has been shown that recent video coding standards, referred to as predictive

video coding (PVC), are not suitable as video encoders in wireless surveillance cam-

eras [78]. This is due to the architecture of the H264 and HEVC standards that makes

the central encoder leverage huge complexity compared to the decoder, making it well-

suited to downstream applications where the decoder is for instance a mobile terminal.

The Distributed Video Coding (DVC) paradigm presents a new approach to PVC

standards in WVS systems. Based on information theory, DVC assumes the exis-

tence of two statistically correlated, independently and identically distributed (i.i.d)

video sequences, X and Y, encoded by two separate encoders aware of each other.

The decoder holds complete information about the encoders. DVC frames the cod-
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ing process as an optimization problem, seeking to minimize the bitrate of the video

sources while ensuring sufficient accuracy in the joint reconstruction of both video se-

quences at the decoder side [85]. To this end, a plurality of contributions shows the

promising results of DVC as a solution to constrained wireless video surveillance sys-

tems [86] [87] [88] [89] [90].

Against this background, many recent approaches have worked on optimizing the

wireless sensor node resources using ROI-based video coding approaches. These ap-

proaches aim to give high priority (higher memory space, bitrate allocation, quality

and network priority) to an ROI or many ROI in the video frame while decreasing

the importance of non-ROI zones [91] [92] [93] [71]. Figure (1.10) shows a brief taxon-

omy of the existing axes of research in video and image coding in WMSN with some

examples of the proposed approach under each ax.

The first step in any ROI-based video coding technique is to detect the ROI. The

ROI is typically defined by the moving region or objects. Several studies have been

proposed to detect the moving region in the frame based on standard and well-known

moving object detection (MOD) techniques [94]. For example, using background sub-

traction, the moving object can be isolated by modeling the background using well-

known techniques such as GMM, Histogram of Gradient (HoG) [95], codebook [96]

and ViBe [97]. The mentioned techniques perform well in MOD tasks but suffer from

costly computation, making them unsuitable for embedded nodes.

The alternative to these techniques is to use simple yet efficient MOD techniques,

such as frame difference (FD) and background subtraction (BS) [98] [99]. FD has been

used for MOD and has presented advantages in low complexity, low memory and

speed. But it suffers from low accurate results when dealing with noisy backgrounds

[63]. Edge Detection (ED) has also come up with a solution to enhance the efficiency

of the MOD algorithms; but, it could suffer from high computational costs in the used

edge detection operators. Hence, A low-cost ED operator is required [66] [63].

To enhance the classical low-cost methods for MOD in resource-constrained envi-

20



CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

ronments, several studies have been suggested. While the ROI includes the moving

object, it has been the subject of many contributions. For example, the method in [69]

aims to divide the frame into four blocks before performing coding and transmission

of the blocks that contain the ROI. The proposed strategy presented reasonable energy

consumption for WMSN with a low bitrate. Another approach has been proposed

in [64] where the idea is to enhance the BS algorithm using the sum of absolute dif-

ferences (SAD). The method aims to detect, code and transmit only the region of the

frame which contains a high activity. In [63] a mixture of FD, ED and summation-based

ROI detection is suggested for high ROI quality and to save channel bitrate.

The early presented methods provide good results in terms of bitrate reduction and

tight energy consumption. However, some of them may suffer from low precision in

the MOD part leading to a notable reduction of the image quality at the receiver. The

early mentioned methods still need improvements in the detection part to guarantee a

high-quality ROI at the reception.

In a WMSN-based surveillance system, the communicated video or image could

be the subject of advanced tasks [100] [101]. Usually, the receiver of the sensed video

is a human-based system. That presumes a base station with a human operator that

monitors the received video scene. In this case, ROI-based video coding is supposed

to be a useful solution to enable a useful video analysis.

Nonetheless, new approaches propose intelligent automated video monitoring in

a new paradigm named Video Coding for Machine (VCM) [102] [103] [104]. Which,

it is supposed that the received frames are processed by a machine-aided system.

A machine-based smart surveillance system uses advanced artificial intelligence and

deep learning to quickly and efficiently decide about the monitoring process and to

aid in accurate decision-making [101]. VCM has been used in many areas, especially

in surveillance systems. It comes with potential benefits [105]; we cite:

• Low bit-rate: considering only the transmission of pertinent features.
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Figure 1.10: Existing axes of video and image coding in WMSN with some examples of ap-
proaches
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Image acquisition Image Compression Image Transmission

Image Visualization
and Analyze

bitstream
decompression bitstream reception

Compress-Then-Analyze Paradigm (CTA)

Figure 1.11: Standard coding scheme, Compress-Then-Analyse (CTA)

Image acquisition ROI-based
Compression

ROI-based
Transmission

Image Visualization bitstream
deCompression bitstream reception

ROI Detection and
Analyze

Analyze-Then-Compress Paradigm (ATC)

Figure 1.12: Content-aware coding as alternative, Analyse-Then-Compress (ATC) paradigm

• High precision: at the destination, the features are tuned to the need.

• High fidelity: since the data is reduced, it will be transmitted with more error

resiliency.

• Balancing computation: A more balanced computation in the sensor node is

achieved allowing a better lifetime.

• Privacy protection: A higher protection is expected since only some features are

codded and transmitted.

The impact of lossy compression on the performance of surveillance in a VCM con-

text has been studied. For example, in [106], authors have shown that the accuracy of

the object recognition deep learning models could be affected by the low quality of the

image at the reception for autonomous driven cars if the quality is lower than a certain

threshold. For that reason, the guarantee of the ROI quality is justified and supposed to
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enhance the efficiency of the machine-based systems at the reception. Either if the ap-

plication is a machine-targeted surveillance system or a human-targeted surveillance

system, the end-user interest is mostly in the information quality of the ROI. Figure

(1.12) shows the application of CTA paradigm as standard coding approach, compared

to ATC paradigms in Figure (1.11) as a new approach.

Recently, there has been a concerted effort to develop ROI-based video coding

strategies for wireless surveillance systems that account for both human-based and

machine-based monitoring at the destination, as evidenced by the works presented

in [107] and [108]. The initial foray into this field was made by [67], where an ROI-

based video coding surveillance system was proposed, incorporating a thorough eval-

uation of the efficiency of ROI-based coding for machine-based monitoring. The au-

thors of the proposed work showcased the effectiveness of their ROI-based coding

approach in a wireless surveillance system augmented by object recognition at the des-

tination. Table 1.1 and summarize some related work on ROI-based video coding.

ROI

non-R
OI

Wireless Visual Sensor Node (Transmitter)

Cap
tured

 Fram
e

Pre-encoder 
ROI Detector

ROI-based 
Video Encoder

ROI  
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Compressed 
 Data
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(Decision?)
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based on ROI 
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Compressed 
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Destination (Receiver)
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Figure 1.13: Complete chain of the approaches and paradigms involved in this thesis
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Table 1.1: Summary of the related work on ROI-based video coding

Algorithm Methodology Highlights Limitations
Kouadria et al.
(2019) [64] -8× 8 SAD

-thresholding to extract ROI mask.
-DTT transform for compression

- low complexity
- fast image compression algorithm
-dedicated to WMSN context

- less accurate
- few datasets
- few evaluation metrics

Rehman et al.
(2016) [69] - divide the frame into 4 blocks

- select ROI from sub-blocks
- background modeling
-compression using DWT

- moderate accurate detection
- simple and efficient algorithm
- dedicated to WMSN context

-limited datasets
-high bitrate
-high complexity for WMSN node

Aliouat et al.
(2022) [66] - edge detection using Canny filter

- 8× 8 SAD of the edge map
- automatic multi-threshold selection
- multi-Otsu thresholding
- compression priority to the ROI

- automatic thresholding
- accurate detection
- content-aware coding
- allocate more resources to the ROI
- dedicated to WMSN context

- high complexity
- limited dataset
- high bitrate (50% reduction)
- no energy consumption model
- few evaluation metrics

Aliouat et al.
(2022) [65] - edge detection using the Sobel filter

- 4× 4 SAD of the edge map
- 2-D Rank order map filtering
- fixed threshold
- background update each GOP

- good accuracy on the used dataset
- efficient in different weather cond.
- high bitrate and processing reduc-
tion
- dedicated to WMSN context

- high complexity for WMSN context
- limited dataset
- no energy consumption model
- few evaluation metrics

Ko. et al.
(2018) [67] - edge detection using the Sobel filter

- 8× 8 SAD
- bitrate control using PID-controller
- optimal enhancement algorithm
- prototyping on 130nm sensor node.
- FPGA implementation

- accurate detection
- optimal circuit design
- high processing and bitrate reduc-
tion
- dedicated to WMSN context

- limited dataset (2 sequences)
- no comparison to the state of the art
- few evaluation metrics

Ko. et al.
(2015) [63] - edge detection using the Sobel filter

- perform Frame difference
- 8× 8 SAD
- rate control (channel cond. -BER-)
- thresholding using PID controller

- optimal circuit design
- high processing and bitrate reduc-
tion
- content and energy-aware
- dedicated to WMSN context

- limited dataset (4 sequences)
- no comparison to the state-of-the-art
- few evaluation metrics
- detection accuracy not reported

Aliouat et al.
(2023) [109] - a novel (S-SAD) introduced

- multi-classes coding 2 based on ROI.
- assessed for Human and Machine
based monitoring

- accurate detection
- energy model provided
- high bitrate and processing saving
- content-awareness
- resources/quality tradeoff achieved
- dedicated to WMSN context

- no detection accuracy comparison
- medium dataset
- fixed threshold

Sengar et al.
(2020) [110] - MOD detection using Optical flow

- Ostu for thresholding
- particle swarm optimization (PSO)
for redundancy exploring

- deals with moving cameras
- good efficiency compared with the
state of the art
- good rate-distortion performance

- limited dataset (4 sequences)
- no energy consumption model
- not dedicated to WMSN context
- few evaluation metrics

Aliouat et al.
(2023)(BIRD) - 8× 8 SFD

- 1-D ROF on the activity map
- FGS filter on the activity map
- a pre-encoder for video coding.

- low complexity
- a high detection accuracy
- energy modeling (ARM Cortex M3)
- large dataset (51 sequences)
- dedicated to WMSN context

- tested only for fixed camera
- fixed threshold

25



CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

1.6 Evaluation Metrics used in the thesis

Evaluation of ROI detection Multiple metrics are used for the assessment of the

ROI detection methods proposed in the thesis. Seven of them are calculated using

the confusion matrix that contains the classification characteristics in terms of quality

and quantity. We define and express in what next the significance of each metric as

below:

TP: True positives, the number of pixels correctly labeled as belonging to the mov-

ing object.

FP: False positives, the number of pixels incorrectly labeled as belonging to the

moving object.

TN: True negatives, the number of pixels correctly labeled as belonging to the back-

ground.

FN: False negatives, the number of pixels incorrectly set as belonging to the back-

ground.

Seven measures are substituted for the preceding four in order to more accurately

assess the classification results. The metrics are given as equations (1.1 to 1.8).

Recall:

Re =
TP

TP + FN
(1.1)

Specificity:

Sp =
TN

TN + FP
(1.2)

Precision:

Pr =
TP

TP + FP
(1.3)

F-measure:

Fm = 2
Pr

Re + Pr
(1.4)
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False-positive rate (FPR):

FPR =
FP

FP + TN
(1.5)

False-negative rate (FNR):

FNR =
FN

TP + FN
(1.6)

Percentage of wrong classifications (PWC):

PWC = 100
(FN + FP)

(TP + FN + FP + TN)
(1.7)

Balanced-Accuracy (BAC):

BAC =
Re + Sp

2
(1.8)

For PWC, FNR, and FPR metrics, lower values indicate higher accuracy, but for

Recall, Specificity, Precision, BAC and F-Measure, higher values indicate better per-

formance. Recall gives the percentage of necessary positives via the compared total

number of true positive pixels in the ground truth. Precision gives the percentage of

unnecessary positives through the compared total number of positive pixels in the de-

tected binary objects mask.

Mean True Positive Ratio (mTPR) This metric measures the ability of the object de-

tection method to successfully include and classify the real moving object into the de-

tected ROIs. It is calculated using :

mTPR =
mTP

mTP + mFN
(1.9)

Where mTP represents the mean number of the pixels correctly classified as being

in the moving region over the entire sequence. Similarly, mFN is the mean number

of pixels wrongly classified as non-moving object pixels. Failing to classify a moving

block as part of a moving region leads to failure to transmit the corresponding infor-
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mation which will be missing at the destination.

Image Quality Metrics (PSNR, SSIM, MS-SSIM, VIF and BRISQUE) The frames

quality evaluation is performed using the peak signal-to-noise ratio (PSNR), Structural

similarity (SSIM), Visual information fidelity (VIF) and the Blind/Referenceless Image

Spatial Quality Evaluator (BRISQUE). The PSNR is defined in dB as :

PSNR = 10 log10
(2n − 1)2

MSE
(1.10)

Where n is the pixel depth and MSE is the mean square error computed, for N × M

image, using :

MSE =
1

N ×M

N

∑
i=1

M

∑
j=1

(xi,j − yi,j)
2 (1.11)

Where xi,j defines the original pixel value and yi,j the new pixel value after compres-

sion. The SSIM metric is defined by the following equation :

SSIM(x, y) =
(2µxµy + θ1) + (2σxy + θ2)

(µ2
x + µ2

y + θ1)(σ2
x + σ2

y + θ2)
(1.12)

Where µx and µy are the local means, σx and σy are the standard deviations and σxy

is the cross-covariance for images x and y sequentially. θ1 and θ2 are two numerical

stabilizing constants. We adopt for BRISQUE, VIF and MS-SSIM metrics the defini-

tions presented in [111], [112] and [113] respectively. BRISQUE has the particularity of

allowing a no-reference image quality assessment that has been widely used as a video

quality assessment (VQA) metric for video surveillance systems. In [114], authors have

shown the importance and the need to know about the minimum video quality re-

quired to ensure the efficient performance of AI algorithms. A high BRISQUE score

indicates lower video quality.
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Chapter 2
ROI-based video coding strategy for low

bitrate surveillance

2.1 Introduction

This chapter presents the design of an efficient ROI-based video coding strategy for

wireless surveillance systems. The proposed method is a fusion of three key tech-

niques: edge detection, frame differencing, and the sum of absolute differences, which

is further optimized through the application of morphological operations. The frame

blocks are then categorized into moving and stationary components through thresh-

olding, thus enabling the compression and transmission of only the moving elements

in an object-based video coding scheme. The results demonstrate the efficiency of this

proposal in terms of precise detection and data gain.

2.2 Proposed method

2.2.1 Edge Detection

Edge detection has been widely used in moving object detection [115] [92] because of

its simplicity and efficiency. There are many edge detection techniques in the literature
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like Sobel [116], Canny [117] [118], Prewitt [119] and many others [120]. However, the

edge detection technique suffers from false positives since the edge information does

not contain only the edge of the moving object but also those of stationary objects. This

problem could be solved by using a post-processing step [121].

2.2.2 Sum of Absolute Differences (SAD)

This technique has been introduced with the motion estimation techniques used in the

new video standards [122]. It is based on FD where a pixel-wise difference between

two frames is performed. Characterized by its simplicity, FD has been widely used

in the literature for moving object detection [123] [98] [124]. The sum of the absolute

difference of two consecutive frames, based on non-overlapping blocks of size w× w

pixels, is given by :

SAD(x, y) =
1

w2

w−1

∑
u=0

w−1

∑
v=0

D(wx + u, wy + v) (2.1)

Where x ∈ 0..M/w− 1 and y ∈ 0..N/w− 1 are block indices and D is the difference

between two consecutive frames of size M× N computed using :

D(i, j) = |Fn(i, j)− Fn−1(i, j)|, i ∈ 0..M, j ∈ 0..N

This leads to an activity map of w2 times less than the input frame size.

2.2.3 2-D Rank Order Filter

A rank order filter is a class of filters where the value of the center pixel is replaced by

the appropriate order among its neighbors. The value of the center of each window is

replaced by a chosen order value. A fast algorithm of this filter with O(N) complexity

was presented in [125]. In our experiment, we use the maximum (64th for 8× 8 kernel)

order which is referred to as the maximum rank order filter. An example of the effect
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of the filter on the activity map is presented in Figure (2.1) where the maximum rank

order filter is applied to the scores of a sample map of size 8× 8.

Figure 2.1: Impact of 2-D Rank Order Filter: from Right to left: Before, After

2.2.4 Fast Global Smoother

FGS is a type of Gaussian filter that was proposed by Dongbo et al. [126]. It is a global

smoother that performs a spatially inhomogeneous edge-preserving image smoothing.

FGS is recommended in our work since it is (i) able to eliminate noise while preserving

edges and (ii) computationally effective with few arithmetic operations as it uses five

multiplications and one division for one pixel.

The proposed ROI detection technique aims to apply edge detection of the incom-

ing frame and the previous frame. We adopt the Sobel operator [127] as an edge detec-

tor because of its efficiency and low overhead. After the edge detection is performed,

an absolute difference is made between the two edge maps.

Since the obtained edge map contains few details on the movement made between

the two frames, enhancing the scores of the zone of moving regions is needed. To do so,

we perform the SAD algorithm on the resulting map. This last step is important in two

ways. On the one hand, summing up pixels in non-overlapping blocks allows getting

a map in which regions with high movement will have significant scores while those
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with no to low movement will get low scores values, which will make the extraction of

the ROI easier and more accurate. On the other hand, it reduces the moving map to w2

times its original size, which benefits the complexity part since the only reduced map

will be considered for filtering, thresholding and storing in the sequent steps.

After that, a maximizing rank order filter is applied to the map to enhance the scores

of the regions where there is significant movement and reduce the score where there

is less movement. Next, the FGS filter is applied to the map to smooth it and create a

homogeneity between the neighboring movement regions.

The last step of the proposed strategy is to extract the binary mask by performing a

thresholding operation. The blocks labeled as moving blocks are concerned with com-

pression and transmission to the destination while non-moving blocks are deleted. The

ROI detection algorithm is presented in Figure (2.2). To eliminate the error propaga-

tion, we propose to transmit the whole frame each time a Group Of Pictures (GOP) is

reached. The complete video coding strategy is presented in Figure (2.3).

Figure 2.2: Block diagram of the proposed ROI Detection.

To validate the proposed method, selected videos from different datasets are used.
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Sobel Edge Detector

Input Frame nInput Frame n-1

Edge Difference map Calculator

Sum of 4x4 Elements (SAD)

2-D Rank Odrer Filter of 8x8 window

Fast Global Smoother

Score > Threshold? binary mask(block) = 0 binary mask(block) = 1 

 
NoYes

Compress then Transmit the BlockSkip the Block

GOP acheaved? 
NoYes

Compress  
and Transmit 

the whole Frame

Input Frame n-1 Input Frame n

Figure 2.3: Block diagram of the proposed video coding strategy.
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We have used the highway video from CDnet 2014 dataset (320× 240) [128]. Freeway

(316× 236), peds (232× 152), rain (308× 228) , traffic (378× 282) videos from JPEGS

dataset [129]. Traffic video (160× 120) and Atrium video (640× 360) from MATLAB

and M-30 video from [130]. Further details are shown in Table 2.1.

Table 2.1: Details of the used dataset

Video Name Dataset Size # frames
highway CD net 2014 [131] 320× 240 1700
peds UCSD [132] 332× 152 170
freeway CAVIAR [133] 316× 236 44
Rain CAVIAR 308× 228 229
Traffic MATLAB 160× 120 120
Traffic2 MATLAB 640× 360 190
Traffic3 CAVIAR 378× 282 190
Atrium MATLAB 640× 360 600
M-30 GRAM-RTM [134] 640× 360 531

We analyze the detection efficiency in terms of visual object detection masks. The

binary mask is constructed using ones and zeros by labeling ROI blocks with ones (On)

and non-ROIs with zeros (Off). All the simulations are performed on MATLAB 2020a

software running on a Quad-core i7 2.5Ghz laptop with GeForce GT 750M

Table 2.2: Used parameters and values for the simulation

Step SAD FGS ROF

Parameter W m σ λ
Percentile

(p)
Wind.

(K)
Value 4 5 0.035 30 100 8

2.3 Qualitative Results

We evaluate the qualitative results in terms of the visual binary mask of the selected

blocks from the ROI detection. Table 2.3 represents the extracted regions where a high
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and important movement has occurred.

It is depicted from the tests on the used dataset, in Table 2.3, the ability of the pro-

posed algorithm to extract the ROI and include all the moving objects in the ROI. In-

cluding the extra edges of the moving region in the ROI will contribute to ensuring

no missing visual information at the destination. And also, small and big objects are

entirely detected. Also, we observe that the algorithm has a high sensitivity to detect

near and far objects from the camera. Independently from the Field of View (FoV) of

the used camera. The obtained results in terms of visual masks confirm that the algo-

rithm is a good candidate for many pre-processing applications such as -surveillance

systems where moving object-based video coding is needed or to reduce motion es-

timation cost [135] [136]. Also, it shows good performances for applications where

moving multi-person and multi-object tracking is needed [137].
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Table 2.3: Visual binary mask for the ROI detection.

Sample Original
Frame Mask Moving

Blocks
Reconstr.
Frame

Highway #140

Freeway #18

Peds #44

Rain #85

Traffic #100

Atrium #330

Traffic2 #216

Traffic3 #100

M-30 #100
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Table 2.4: PSNR, SSIM, MS-SSIM and VIF results for the used dataset

(a) freeway (b) atrium (c) highway

(d) peds (e) rain (f) Traffic2

(g) Traffic3 (h) Traffic (i) M30
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2.4 Quantitative results

We evaluate the quantitative results using multiple quality parameters. We calculate

the PSNR, SSIM, MS-SSIM [113] and VIF [112] between the original frame and a re-

constructed frame. A reconstruction of the frame is done by replacing the blocks in the

previous original frame with the blocks detected in the new frame using block indexes.

This method allows a complete evaluation of the quality of the reconstructed images

and evaluates the performances of the detection.

Table 2.4 shows the quality metrics for different data sets used in this experiment.

The SSIM and MS-SSIM values indicate the structural similarity between the original

frame and the reconstructed frame. It is clearly shown that SSIM and MS-SSIM keep

high values for almost all the sequences with values not less than 0.92 from MS-SSIM

and 0.95 and higher for SSIM. The proposed strategy guarantees the reconstruction

of the original frame each time a GOP is reached, by eliminating the temporal error

propagation effect.

2.4.1 Data Reduction

To evaluate the performances of the proposed algorithm in terms of data reduction, we

calculate the ratio of the data to be transmitted in our scenario to the total ratio where

no pre-processing operation is performed (standard techniques). The gain in data is

shown in Table 2.5.

2.4.2 Data Saving over the used Dataset

Considering the scenario where non-active blocks are dropped. And only the blocks of

the ROI are sent to the destination. We evaluate the data reduction in terms of the ratio

of the blocks sent to the destination to the total ratio (the complete frame in classical

scenarios like M-JPEG coding).
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Table 2.5: Ratio of data reduction using the proposed strategy

(a) freeway (b) atrium (c) highway

(d) peds (e) rain (f) Traffic2

(g) Traffic3 (h) Traffic (i) M30
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Figures in Table 2.5 show the ratio of data saving for the used test datasets. The

sequences with small moving objects show high data saving as shown in figure (b) of

the atrium video. We see that the data saving for the atrium video achieves nearly

98% of the saving since moving objects are human bodies with a high FoV of the used

camera. While most of the other sequences achieve also high savings reaching 80% in

mean for all videos.

Results show the high efficiency of the method to reduce data to be transmitted and

thus, reduce the needed bitrate and needed transmission energy which is relatively

very expensive in WMSN-based surveillance systems.

2.4.3 Comparison with Standard methods

In a classical scenario like the MJPEG compression technique, block-based compres-

sion for all the blocks is done for each frame. While, for the proposed strategy, only

some blocks are compressed and transmitted. Table 2.6 shows the difference in terms

of the number of blocks needed to be sent using our ROI-based technique and classical

techniques. The table also shows the high amount of data reduction and radio energy

dissipation saving.

Table 2.6: Mean number of blocks to be transmitted for each strategy

Sequence
name

Sequence
size

ROI-based
(ours)

Classical
approach

Saving(%)
(wr. to classical)

Traffic2 640x360 4695 14400 67.4%
Atrium 640x360 589 14400 96%
Highway 320x240 1345 4800 72%
freeway 316x236 530 4661 88.6%
peds 232x152 719 2204 67.4%
rain 308x228 2132 4389 51.5%
traffic 378x282 1768 6662 73.5%
traffic3 160x120 428 1200 64.3%
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2.5 Limits in terms of visual Quality

Error propagation over the successive frames is due to an error in the detection of

the ROI. This problem affects the visual quality of the reconstructed frame. Figure

(2.4) explains the effect of imprecise ROI detection. To solve this problem we adopt

the following strategy with the proposed algorithm: after reaching a predefined GOP

value, the algorithm sends all the frame blocks. This solution is efficient in breaking the

continuous error propagation over successive frames. And it helps save an acceptable

visual quality as shown in the results in Table 2.4.

Missing Information  
due to wrong moving region detection

Blocks to be transmitted

Corect detection 
(white pixels)

Error Probagation  
due to continues wrong  

object detection
Blocks to be Skipped 

no information change

Figure 2.4: Example of the effect of wrong detection on the visual results degradation and error
propagation. Frame #150 of traffic2 sequence)

2.6 Execution time

Table 2.7 reports the execution time in ms/frame for different frame sizes. The table

shows the low time complexity of the method and its ability to achieve a high frame

rate when implemented in low-cost surveillance platforms.
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Table 2.7: Execution Time in milliseconds for different frame size

sequence size execution time (ms) per frame
640x360 124
320x240 41
316x236 44.1
232x152 36.8
308x228 43.2
378x282 56
160x120 32.8

2.7 Conclusion

In this chapter, we presented an innovative object-based video coding strategy for

low-bitrate surveillance systems. The proposed approach detects ROI blocks by uti-

lizing edge features between consecutive frames and implements error correction by

signaling complete frame updates at fixed GOP intervals. Our results demonstrate

the efficacy of Sobel edge detection in identifying changes between frames and the

effectiveness of SAD in refining edge features to accurately locate ROI. Our strategy

delivered substantial bandwidth savings and transmission energy reduction (ranging

from 51.5% to 96%) compared to traditional coding methods while preserving high-

quality frame reconstruction. However, the method’s reliance on Sobel edge detection,

with its relatively high computational cost, and the absence of analysis regarding the

accuracy of the detection method and its energy consumption under specific wireless

sensor node conditions, were noted as weaknesses. These limitations will be addressed

in the upcoming chapter through the proposal of the BIRD algorithm.
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Chapter 3
An Efficient Low Complexity ROI

Detection for Video Coding in WVS

3.1 Introduction

In this chapter, we present a novel approach to tackle the challenge of balancing ac-

curacy and energy efficiency in video coding for wireless visual surveillance (WVS)

systems. Our proposed ROI detection algorithm serves as a pre-encoder and is de-

signed to strike a balance between detection accuracy and computational complexity.

To accomplish this, we create an activity map by measuring the motion activity of each

block between consecutive frames. The map scores are then processed using a combi-

nation of a fast Gaussian smoother and a rank-order filter for improved accuracy. Our

algorithm only encodes and transmits blocks that contain motion, resulting in signif-

icant energy and bitrate savings of nearly 90% and 98%, respectively. The efficacy of

our approach has been thoroughly evaluated using key performance metrics, such as

TPR attaining a sensitivity of 80.84%. The findings show that the BIRD algorithm out-

performs other state-of-the-art methods in terms of accuracy while maintaining low

computational overhead.
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3.2 Proposed Method

The main purpose of the BIRD method is the exploitation of the successive changes

between two frames Fn and Fm, with m < n, where n and m are respectively the current

and a previous frame in the captured video. The frame difference method is of very

low complexity and simple to implement, which makes it an appropriate choice to suit

the constrained resources in a WSN. Meanwhile, it suffers from low region detection

accuracy [63]. To overcome the low accuracy of pixel-based detection of the frame
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Figure 3.1: Block diagram of the proposed algorithm (BIRD)

difference method, the blocks of the resulting difference are summed up to create an

activity map that represents the level of the activity in each region.

3.2.1 Difference Detection

Let ϕn and ϕm be the intensity map of the frames Fn and Fm of the size M× N. Based

on the SAD technique [138], the summation of the non-overlapping blocks of size 8× 8
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for Fn is provided by Equation 3.1

ϕn(x, y) =
1

w2

w−1

∑
u=0

w−1

∑
v=0

Fn(wx + u, wy + v) (3.1)

While for the frame Fm, ϕm is calculated using Equation 3.2

ϕm(x, y) =
1

w2

w−1

∑
u=0

w−1

∑
v=0

Fm(wx + u, wy + v) (3.2)

Where x ∈ 0 · · ·M/w− 1 and y ∈ 0 · · ·N/w− 1 are block indices. The resulting

intensity maps ϕn and ϕm are w2 times less than the input frame size Fn. To create the

activity map ∆, the SAD operation is completed by computing the absolute difference

between the two intensity maps, as in Equation 3.3

∆(w, y) = |ϕn(x, y)− ϕm(x, y)| (3.3)

In view of this, the scores in ∆ indicate the level of activity created between the two

frames. The blocks that contain high movement are represented by high score values

in ∆, which indicates the moving regions. However, lower scores values indicate the

non-moving regions. The complete scheme of the proposed method is shown in Figure

(3.1).

3.2.2 Difference Enhancement

To avoid the false negative problem and improve the accuracy, an enhancement of the

scores of ∆ is needed. We propose the combination of a smoothing and rank maxi-

mization of ∆. Therefore, we propose to take the advantage of both the efficiency and

rapidity of the Gaussian smoother FGS [126].

As depicted in Figure (3.1), FGS is applied on the ∆ map to smooth the details and

noisy part resulting from the SAD operation. Contrary to the convolution filters, FGS
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Figure 3.2: FGS eliminates unnecessary activities and ROF enhances the non-zeros scores prior
to thresholding

Activity map with low scores  
inside objects and around the ROI

Smoothed Activity map  
more homogenity in the 
 scores inside objects  

and around the ROI

Enhanced Activity map  
higher value of the 

 scores inside objects  
and around the ROI

Difference map FGS applied to the map ROF applied to the smoothed map

Figure 3.3: Impact of the combination of FGS and ROF on the ROI classification

is characterized by a low complexity and rapidity estimated to be over 30 times faster

than other filters. FGS uses a parameter σ to control the variance around the mean

value and another parameter λ to define the amount of regularization during filtering.

Subsequently, the resulting smoothed map (χ) is filtered by the maximum rank

order filter (ROF). The ROF belongs to a class of filters easy to implement [139]. The

maximum rank order filter calculates the envelope of the smoothed map. It is a fast and

cost-effective solution due to its simple arithmetic operations [67]. Let Q = l1, l2, · · · lk

be the set of input samples to the filtering process within the predefined observation

window. The result of ordering the samples l1, l2, · · · lk is obtained by the logical order-

ing l(1), l(2), · · · l(N) where l(i) ∈ Q , for i ∈ 1 · · ·N represents the ith order statistic. The

ROF filter uses l(N) the maximum order statistic. The obtained filtered map is noted

Ω. Figure (3.3) illustrates the impact of the used filters to enhance the ROI classifica-

tion performances while Figure (3.2) summarizes the impact of each filter as used in

this order.

The binary mask is then created by comparing the Ω scores to a threshold. Where

scores higher than the threshold value indicate activity in the associated block, whereas
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scores lower than the threshold value indicate inactivity.

Following the threshold operation, a set of block indices (Sa) composed of the in-

dexes of the activity blocks is constructed. Based on the proposed strategy, only the

ROI blocks will be compressed and sent to the destination. The algorithm 3.1 further

summarizes the above steps.

Algorithm 3.1: The Proposed BIRD algorithm
Input:
m selected previous frame
N SAD blocks size
K ROF window size
p rank order of the ROF
T threshold value
λ regularization of FGS
σ variance around the mean of FGS
Output:
Mask binary mask of ROI
blockind vector of ROI blocks indexes
for Each New frame Fn do

Apply Equations (3.1)(3.2) and (3.3);
∆← SAD(Fn, Fm);
Apply Fast Global Smoother ;
χ← FGS(∆, λ, σ);
Apply 1-D Rank order filter ;
Ω← ROF(χ, K, p) ;
Set T;
for all scores in Ω do

if Score(x, y) ≥ T then
Set mask(block)← 1;
Set blockind ∈ Sa ;

else
Set mask(block)← 0 ;

Report ROI mask to encoder ;
Report blockind vector to receiver;
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3.3 Results and Discussion

To validate the proposed method, we present the Change Detection 2014 Dataset (CD-

net) [128] results. CDnet 2014 is a very challenging dataset composed of 51 video se-

quences from 11 categories (more than 150000 frames + their ground truths). Since

each category is associated with a specific change detection problem, e.g., dynamic

background, shadows, CDnet enables an objective identification and ranking of meth-

ods that are most suitable for a specific problem as well as competent overall.

We consider first a qualitative assessment based on visual observation of the ob-

tained binary mask for the moving regions compared with ground truth masks.

3.3.1 Parameters and experimental conditions

The experimental values for each used parameter are summarized in Table 3.1.

Table 3.1: Used parameters for the conducted simulations

Step SAD FGS ROF
Parameter N σ λ p K
Value 8 0.05 30 100 4

Seven metrics are used for assessment. These are calculated using the confusion

matrix that contains the classification characteristics in terms of quality and quantity.

We use the metrics defined in Section (1.6) in chapter 1. Among those metrics,

we are specifically interested in the recall and balanced-Accuracy metrics (BAC). ROI-

based video coding needs a high TP with a minimum FN.

Advanced analysis is performed by exposing the TPR-FPR curve (ROC curve) for

sample sequences with an analysis of the optimum threshold.
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3.3.2 Performances of BIRD over the CDnet 2014

Table 3.2 shows the performance of BIRD indicating the algorithm’s visual accuracy

in detecting all the ROI candidates for compression and transmission. The presented

sample frames from all categories of the benchmark dataset in Table 3.2 show that the

algorithm successfully detects the blocks in which a high movement occurs. Objects

are entirely detected in most videos, which could be a good enabler for a variety of

applications, especially as a pre-encoder for ROI-based video coding [67].

It should be noted that, for some video scenarios (like the Office video sample), the

algorithm is unable to detect the target object for some time due to the object’s stability.

Even though the object information has already been delivered to the destination, the

reported numerical results are reduced.

Table 3.3 shows the quantitative results on CDnet 2014 dataset. The results indicate

the good performance of the proposed algorithm in the detection of the whole ob-

ject with high TP values for different categories. The algorithm shows high detection

results for some categories and moderate detection performances for others. For ex-

ample, the recall metric is high for almost all the categories but shows exceptional per-

formance for night video and dynamic background, PTZ and camera jitter categories

despite their difficult scenarios. The algorithm presents some weaknesses in detecting

the complete object in some categories like intermittent object motion category.

3.3.3 Comparison with other techniques

Table 3.4 shows the overall results of our method on CDnet 2014 dataset compared with

the state-of-the-art techniques namely, KNN in [140], GMM in [141], KDE in [142], Ma-

halanobis Distance and Euclidean Distance techniques presented in [45] and another

GMM-based technique in [143]. The proposed method exhibits good results in the

recall and FNR metrics with the best results against other techniques and shows com-

petitive results for the specificity metric.
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Table 3.2: Samples of ROI extraction mask results

Sequence Original ground-truth mask ROI

Highway #1475

SnowFall #2784

Pedestrians #476

Blizzard #1406

WinterDriveway #1860

tunnelExit #2329

Sofa #1185

PTZ #1240

Park #250

NightVideo #1300

Busstation #400

Turbulance0 #2045
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Table 3.3: Detection results of the proposed algorithm over CDnet 2014 dataset

Category Recall Specificity FPR FNR PBC Precision F-Measure

PTZ 0.9662 0.6443 0.3556 0.0337 35.3016 0.0401 0.0753

badWeat. 0.9208 0.8948 0.1051 0.0791 10.1795 0.2747 0.3904

baseline 0.7619 0.9437 0.0562 0.2380 6.6360 0.3268 0.4047

cameraJ. 0.8504 0.6446 0.3553 0.1495 34.5590 0.1383 0.2238

dynamic. 0.7593 0.9512 0.0487 0.2406 4.9399 0.1962 0.2801

intermi. 0.4186 0.8603 0.1396 0.5813 16.4228 0.1566 0.2242

lowFram. 0.8161 0.7905 0.2094 0.1838 20.2242 0.1315 0.1919

nightVi. 0.9455 0.8374 0.1625 0.0544 15.9206 0.1193 0.2108

shadow 0.8775 0.8500 0.1499 0.1224 14.8039 0.2416 0.3740

thermal 0.7548 0.8894 0.1105 0.2451 13.4618 0.3575 0.4095

turbule. 0.8216 0.8870 0.1129 0.1783 11.3767 0.1000 0.1607

Overall 0.8084 0.8357 0.1642 0.1915 16.7115 0.1893 0.2678

The weaknesses of the algorithm in the precision and F-measure values (0.1893 and

0.2678) can be explained by the adopted block-based techniques which allow the de-

tection of additional pixels with the moving object, (i.e.: high FPR).

According to Table 3.3, the results of BIRD are considered very high in the context

of the studies that aim to integrate object detection as a pre-processing step for WVS in

very low-complexity platforms.

3.3.4 Metrics of Interest: Recall, specificity and BAC

A balance between the TP and FN is important to measure the performance of BIRD in

detecting the complete object while avoiding the drawback of the non-detection of re-

gions inside the moving objects and with the minimum FP possible. We compare BIRD

to two methods, one method uses Neural Networks for object detection [144]. The sec-

ond method uses block-based object detection [145] same as our proposed method.
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Table 3.4: Comparison of BIRD with classical techniques over CDnet 2014 dataset

Technique Recall Specifi. FPR FNR PWC F-Meas. Precision

KNN [140] 0.6650 0.9802 0.0198 0.3350 3.3200 0.5937 0.6788

GMM1 [141] 0.6846 0.9750 0.0250 0.3154 3.7667 0.5707 0.6025

KDE [142] 0.7375 0.9519 0.0481 0.2625 5.6262 0.5688 0.5811

MahaD [45] 0.1644 0.9931 0.0069 0.8356 3.4750 0.2267 0.7403

GMM2 [143] 0.6604 0.9725 0.0275 0.3396 3.9953 0.5566 0.5973

EucD [45] 0.6803 0.9449 0.0551 0.3197 6.5423 0.5161 0.5480

BIRD 0.8084 0.8357 0.1642 0.1915 16.7115 0.1893 0.2678

As presented in Table 3.5, the BAC and recall metrics of BIRD show higher values

than in [145] for most of the sequences. While [144] shows superior BAC and specificity

values compared with BIRD and [145]. Results of BIRD are still very competitive to that

of [144]. With an overall BAC of 82%, BIRD can ensure high detection accuracy of the

moving object regions for different categories and conditions.

3.3.5 The impact of thresholding on detection

We select three sequences from the used dataset to empirically validate the BIRD accu-

racy and low-overhead assumptions. Highway with a size of (320× 240) contains high

activity with a number of moving vehicles. The pedestrians sequence of size (360× 240)

is of low activity with relatively high stability in the background. The Snowfall se-

quence of size (720× 480) is a long sequence that contains moving objects with very

high activity in the background (Snow and winter).

Figure (3.4) plots the TPR against the FPR when varying the threshold value (0 . . . 10).

The obtained ROC curves show that low thresholds imply a high true positive rate.

However, this adversely affects the specificity of the detection, since a high number

of blocks is wrongly labeled as activity blocks, which means that more data is to be
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Table 3.5: Category-wise comparison of BIRD to state-of-the-art on CDnet 2014 dataset

Category Recall Specificity Blanced Accuracy
BIRD Savas

[145]
Cwizar
[144]

BIRD Savas
[145]

Cwizar
[144]

BIRD Savas
[145]

Cwizar
[144]

Dynamic. 0.7593 0.6436 0.8144 0.9512 0.9962 0.9985 0.8553 0.8199 0.9064

PTZ 0.9662 0.7685 0.3833 0.6443 0.9977 0.9968 0.8053 0.8831 0.6901

BadWeat. 0.9208 0.5647 0.6697 0.8948 0.9985 0.9993 0.9078 0.7816 0.8345

Baseline 0.7619 0.6214 0.8972 0.9437 0.8213 0.9980 0.8528 0.7213 0.9476

CameraJ. 0.8504 0.4567 0.7436 0.6446 0.9788 0.9931 0.7475 0.7177 0.8683

Intermi. 0.4186 0.5547 0.8324 0.8603 0.9979 0.9911 0.6394 0.7763 0.9118

LowFram.0.8161 0.5490 0.6659 0.7905 0.7464 0.9949 0.8033 0.6477 0.8304

nightVi. 0.9455 0.4593 0.4511 0.8374 0.9583 0.9874 0.8915 0.7088 0.7193

Shadow 0.8775 0.8365 0.8786 0.8500 0.9828 0.9910 0.8638 0.9097 0.9348

Thermal 0.7548 0.4650 0.7268 0.8894 0.9647 0.9949 0.8221 0.7148 0.8609

Turbule. 0.8216 0.7421 0.7122 0.8870 0.9883 0.9997 0.8543 0.8652 0.8559

Overall 0.8084 0.6056 0.6608 0.8357 0.9483 0.9948 0.8220 0.7770 0.8509

*bold: the best category-wise, red: the best overall, blue: the second best
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Figure 3.4: ROC curve and the optimum threshold for pedestrians, Highway and Snowfall se-
quences

considered for delivery. The optimum threshold that allows the best tradeoff between

TPR and FPR could be achieved as shown by the orange dots in each ROC curve. It

is defined by calculating the minimum Gaussian distance between the results of TPR

and FPR: min(
√
(1− sensitivity)2 + (speci f icity− 1)2).

Figure (3.5) shows the impact of varying the threshold value on the mean value

of the detected blocks. In the case where high stability characterizes the background

(for example pedestrians sequence), a high threshold is generally preferred since there

is a low risk of wrongly including background blocks in the ROI. Meanwhile, a high

number of background blocks is classified as ROI in the case of noisy and dynamic

background (the Snowing scene in the Snowfall sequence for example). A higher num-

ber of the ROI detected blocks may enhance the quality of the reconstructed frames at

the destination. But, at the cost of higher energy and bitrate.

Table 3.6 shows the impact of the threshold value on the energy gain expressed by

the number of skipped blocks. From the table, it can be seen that the mean number of

ROI blocks is inversely proportional to the threshold value. As a result, the energy gain
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Figure 3.5: Number of blocks belonging to the ROI according to the threshold value

Table 3.6: Statistics of the energy gain under threshold variation

Threshold Highway Pedestrians Snowfall
∆ energy ∆ energy ∆ energy

- mean(ceiled)ratio (theoretically) mean ratio (theoretically) mean ratio (theoretically)

10 149 12.41% +87.59% 49 03.63% +96.37% 68 01.26% +98.74%

9 160 13.33% +86.67% 52 03.85% +96.15% 74 01.37% +98.63%

7 192 16.00% +84.00% 60 04.44% +95.56% 87 01.61% +98.39%

5 249 20.75% +79.25% 76 05.63% +94.37% 110 02.04% +97.96%

3 291 24.25% +75.75% 120 08.89% +91.11% 190 03.52% +96.48%

1 621 51.75% +48.25% 273 20.22% +79.78% 1857 34.39% +65.61%

0 1003 83.58% +16.42% 598 44.30% +55.70% 4360 80.74% +19.26%

Max 1200 100% - 1350 100% - 5400 100% -
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is low when the chosen threshold value is low. A borderline case is when the threshold

value is 0 (i.e.the activity score is absolutely greater than 0), which gives the lowest

energy gain. The row that begins with MAX, indicates that all the frame’s blocks will

be compressed and transmitted (i.e.including the blocks in which the activity score is

equal to 0). In this case, all the frame’s blocks are taken into account for compression

and transmission, rendering the method ineffective.

According to the accuracy results shown in Figure (3.4), for the pedestrians sequence,

the optimum threshold for good detection accuracy is 9. Consequently, this threshold

value saves about 96% of the processing and transmission energy compared to the

CTA approach (see Table 3.6). An optimum threshold enables the optimum ratio of the

activity blocks and could be used as a rate controller, which is a fascinating subject for

future work.

3.3.6 Method Complexity

To evaluate the consumed energy on embedded sensor conditions, we consider what

follows a sensor node equipped with an ARM Cortex M3 micro-controller [146]. Table

3.7 shows the processor characteristics. Using MATLAB 2020a and C++ running on a

Table 3.7: ARM Cortex M3 characteristics

Sensor Processor Cortex M3
Clock rate 72 MHz

Processor power 23 mW
Cycles count Add.[1], Sub.[1], Mult.[1 or 2], Div.[1 to 12].

PC intel Core i7-2670QM 2.2Ghz, with 8GB RAM on Windows 7 OS, 2.6 ms to process

one frame of 320× 240 is recorded allowing processing of 384 frames per second (fps).
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Table 3.8: Computational budget of each step of BIRD algorithm

Step Operations # of Operations Energy consumption (mJ/Frame)
min (Cycdiv = 1) max(Cycdiv = 12)

SAD
Addition (NM)− (NM/w2)

0.2693 0.4Subtraction NM/w2

Absolute NM/w2

Division NM/w2

ROF Comparison 6(N/w2 − 3)M/w2 7.4250e−5 7.4250e−5

FGS Multiplication 6NM/w2
0.0832 0.2851

Division NM/w2

ThresholdingComparison NM/w2 0.004 0.004

Edetection - - 0.3723 0.6891

3.3.7 Energy Budget for change detection

The total energy budget of the proposed BIRD algorithm is directly proportional to its

computational complexity and could be expressed as follow:

EDetection = ESAD + EFGS + EROF + EThreshold (3.4)

The total computational budget of the method is presented in Equation 3.8. The num-

ber of operations for FGS is reported in [126] while the ROF budget is estimated using

the mathematical model presented in Equation 3.5.

R =
(K(K− 1))

2
(3.5)

Where K represents the size of the sliding vector (K is set to 4 for the proposed

method). The filter uses the sliding vector over the columns. After each calculation

step, the vector is shifted by one position down, and the operation is executed till the

end of the line vector. This process is performed along all the columns. For K equal to
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4, the ROF performs 6 comparisons for each score value in the map.

Since the number of operations performed is proportional to the frame size and

the block size (8 × 8, 16 × 16 · · · ), a generalized model of the number of arithmetic

operations should be presented. We present in Table 3.8 the number of operations for

each step in terms of frame size (N, M) and block size (w). Table 3.8 also shows the

energy budget of each step and the total energy budget of the BIRD. Table 3.9 shows

Table 3.9: Per-frame Edetection cost of the method compared to state-of-the-art for size (240x320)

Method Energy Budget (mJ/Frame)
min (Cyclesdiv = 1) max (Cyclesdiv = 12)

MoG [141] 649.95
CS-MoG [147] 116.44

CoSCS-MoG [148] 125.96
EBSCAM [149] 3.4

FD 0.5069
BIRD (proposed) 0.3723 0.6891

a comparison of the energy budget of the proposed object detection method against

state-of-the-art techniques for 240 × 320, namely MoG [141], CS-MoC [147], CoSCS-

MoG [148], EBSCAM [149] and the basic FD technique. The proposed technique shows

the lowest energy consumption records in both its minimal and maximal cases. While

energy consumption recorded an increase of about 38% compared to FD when extreme

cases are considered.

3.3.8 Energy dissipation for complete compression chain

Considering a complete compression chain, the total in-node processing budget could

be expressed as follow:

Etotal = EDetection + Ecompress (3.6)

Where EDetection is the energy cost of the object detection part as presented by Equation

3.4, Ecompress is the energy cost of the compression part. For the calculation of Ecompress,

the model has been studied and provided in [150] under the same conditions.
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Figure 3.6: Per-frame energy dissipation of BIRD for Highway, pedestrians and Snowfall
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The compression cost for each frame includes the DCT compression, the quanti-

zation cost and the Huffman coding cost. Three implementations of the JPEG-based

compression are shown in [150] namely float IJG, slow IJG and fast IJG. In this work,

the slow IJG implementation is adopted with an energy cost of 192.28µJ for each 8x8

block.

Since Nblocks represents the number of activity blocks detected that will be coded

for each frame, the compression cost is proportionally related to Nblocks. For example,

the Highway sequence records an overhead of the object detection step EDetection equal

to 0.6891mJ/ f rame.

Figure (3.6) illustrates the per-frame energy consumption of the proposed method

compared to ROI-based compression methods, namely, [66] referred to as EMP’22, [65]

referred to as SSD’22 and the forward baseline compression (MJPEG). Since the algo-

rithm is applied to each frame, constant energy is spent for each frame, while the total

energy curves oscillate based on the number of blocks to compress. BIRD shows the

best results as the lowest energy budget for all the scenarios.

The energy dissipation of the BIRD method is proportional to the frame size. About

79.29% of blocks are skipped for the Highway sequence compared to the standard cod-

ing (MJPEG for example), while more than 98% of the blocks are skipped for SnowFall

sequence and 86.89% for pedestrians sequence. The level of energy consumption at the

processing step is correlated with the number of skipped blocks.

Despite the good ROI detection of the other techniques, they are weakened by the

high energy cost in the detection step. This is due to the adopted edge detection and

automatic thresholding techniques in [66] [65] respectively. Those techniques are com-

putationally extensive due to the use of arithmetic convolution and histogram calcula-

tion. Meanwhile, the optimized design of edge detectors and otsu’s threshold should

help reduce their energy budget.

From Figure (3.6) we can deduce that the algorithm is efficient in saving a substan-

tial amount of processing and transmission power. The saving achieves more than 90%
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of the energy most of the time. The proposed method provides a good balance between

energy saving and detection accuracy.

3.3.9 Memory requirements

We analyze here the memory requirement of the proposed region detection method.

The method requires storing the previous grayscale frame of 8-bit depth and updating

every frame, corresponding to a memory of N × M bytes. Two score maps are to be

stored which requires a memory of 2× N ×M/w2 bytes. The ROF and the FGS filters

are performed locally on the stored activity map. Thus, the needed memory for these

operations is ignored (window of 4 Bytes for ROF and short vectors for FGS). For w =

8, the total memory consumption is about 1.031 bytes per pixel.

3.4 Conclusion

In this chapter, we proposed an energy-efficient moving region detection approach as a

pre-encoder for WVS. The suggested approach is built upon a low-complexity SAD op-

eration followed by morphological filtering and thresholding. The proposed method’s

overall efficiency was evaluated using a standard dataset as a benchmark. The per-

formance assessment shows a satisfactory balance between the proposed method’s de-

tection accuracy, energy efficiency, and memory. In these respects, our approach effec-

tively relieves the burden of processing and compressing video sequences for resource-

constrained surveillance devices. This study focuses on the detection of the ROI as a

binary classification (ROI/non-ROI). However, exploring the possibility of multi-class

classification of the frame into multiple categories would be a valuable avenue of in-

vestigation. Such an approach has the potential to enable more precise content-aware

coding and ensure higher QoS for specific regions within the frame. This will be the

topic of investigation in the next chapter.
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Chapter 4
Multi-Threshold-based frame

segmentation for content-aware video

coding in WMSN

4.1 Introduction

In this chapter, we aim to push the boundaries of the current state-of-the-art by in-

troducing a content-sensitive technique for video coding in wireless video surveil-

lance with lower bitrates. Our proposed method utilizes ROI detection and coding

within an adaptive compression paradigm. We detect high-activity regions in the video

stream through automatic thresholding and then adjust MJPEG compression parame-

ters based on the relative importance of each zone. We rigorously evaluate the effec-

tiveness of the proposed method and find that it provides substantial benefits in terms

of low bitrate and content awareness for wireless surveillance.
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4.2 Proposed method

The proposed system is based on exploring the difference in edges of successive frames

to detect the different moving regions. Edge Detection is applied using the Canny

Operator [117]. Experiments show that the Canny operator includes weak and strong

edges unlike other methods [151]. Thus, the results of the absolute difference will

contain more edges, increasing the sensitivity of movement detection. For each frame,

the result is a binary image that labels the edge pixels with ones and non-edge pixels

with zeros. The sum of the absolute difference between the edges maps of the current

and the previous frame gives high values to high-moving regions while values are

lower for segments with few movements.

To enhance the obtained activity map, we perform morphological filtering by ap-

plying the 1D-Rank Order Filter (ROF) to the activity map. The ROF replaces each

selected pixel with the max, the min, or the median value. The new value of the pixel

is selected from sorting the neighbors of the pixel. In this work, we use the max ROF

to remove impulse noise in the activity map and perform dilatation since it uses ho-

mogeneous maximization.

Next, the resulting activity map is smoothed using the Fast Global Smoothing fil-

ter(FGS). FGS is a fast Gaussian filter proposed in [126] that performs smoothing of

the image. The FGS is used to distribute the enhanced values of the map (after appli-

cation of the ROF filter) over the region, and remove holes inside region masks. The

choice of sigma and lambda parameters is crucial in this work and directly affects the

segmentation performances.

In the thresholding step, the binary map is divided into three segments based on

the activity level: ROI-1 is the most important region and contains the moving ob-

ject, ROI-2 is the second region and contains the region around the object, and ROI-3

is the last segment that contains the regions with the lowest priority and importance.

The threshold is selected using the Otsu thresholding method [152]. By calculating
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Figure 4.1: Proposed ROI-based video compression scheme
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the histogram of the activity map, the Otsu thresholding method checks the existence

of the proper thresholds (2 values in our case) to classify multi-regions based on the

histogram distribution. We use MATLAB’s built-in function multithresh, which imple-

ments Otsu’s method of multilevel thresholding [152]. Figure (4.1) shows the details

of the proposed method.

On the compression side, the compression is performed using the JPEG chain where

8x8 DCT is applied to each block. To give priority and the best delivery conditions to

the activity region, the quantization factor (QF) is chosen based on the importance of

the block. The blocks of the ROI-1 will be coded with high QF. ROI-2 and ROI-3 are

coded using low QF to save bitrate and transmission energy.

4.3 Results and Discussion

Simulation is performed using MATLAB 2020a software running on a Quad-core i7

2.5Ghz laptop. Details are shown in Table 4.1.

Table 4.1: Parameters and methods used for each Step

Step Edge Detector SAD FGS ROF Thresh. JPEG Classes QF
Param. Operator Wind. size σ λ n p algo. Comp. tech.Entr. Cod. X Y Z
Value Canny 8 0.0530 4100 Otsu 8-DCT Huffman 9050 10

4.3.1 Image segmentation results

Segmentation results are shown as a sample frame in Figure (4.2) where results of three

regions are shown. We see the ability of the algorithm to accurately classify regions

based on their movement and their importance.

Figure (4.3) Shows the impact of the ROI detection on the compression visual qual-

ity. The proposed method considers the moving object as the most important part

that has to get the highest priority and the highest quality, the second segment with
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Figure 4.2: Example shows the results of segmentation for the 3 regions, 1-Frame 85 form Hall
sequence. 2-Mask of the 3rd ROI. 3-Mask of the 2nd ROI. 4-Mask of the 1st ROI (Th1=0.0224,
Th2=0.0301)

Figure 4.3: Results of multi-QF based coding. from left to right: 1- Original Frame 2- Seg-
mentation Results 3- Decompression results (JPEG chain with ROI1: QF=90, ROI2:QF=50,
ROI3:QF=10 - PSNR=33.9308, SSIM=0.7618) 4- ROI visual quality for same bitrate(proposed
left, MJPEG right).

medium importance as a second priority and the regions with the least priority which

are the non-moving regions.

4.3.2 Compression Quality Results

We Evaluate the effect of multi-class QF decision for the compression step on the Hall

sequence (176x144) and Traffic sequence (160x120) using the PSNR and SSIM metrics.

Figure (4.4) and Figure (4.5) show the PSNR results for 300 frames of Hall sequence

and 120 frames of Traffic sequence for the proposed Multi-QF coding method using

three levels QF(90,50,10) in comparison with MJPEG at QF=90. The MJPEG is chosen

for comparison due to its low complexity compared to recent encoders and since it

shows a large implementation in WMSN. It is shown that the PSNR value is lower for

the case of multi-QF in comparison with MJPEG. The reduction is generally about 9dB

for Hall and Traffic sequences. The PSNR is generally about 35dB to 31dB which is still
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Figure 4.4: PSNR value of ROI-based coding compared to MJPEG for Hall seq.
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very acceptable.

For the same bitrate, Figure (4.6) and Figure (4.7) show the quality of the delivery of

the ROI-1 that contains the most important information of the frame. The delivery with

about 37.32db and 39.40dB for Hall and Traffic sequences successively is better than

MJPEG (31.70dB and 34.94dB) with a slight degradation of the whole video quality

using Multi-QF for non-important regions (ROI-2 and ROI-3).
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Figure 4.6: Mean PSNR of the whole frame and the ROI-1 for the proposed method compared
to MJPEG for the same bitrate (hall seq.)

Figure (4.8) shows the SSIM results for the hall video. The reduction in terms of

structural similarity is generally from 0.25 to 0.1 compared to MJPEG at QF of 90 (0.98).

4.3.3 Bitrate Results and Gain

Figures (4.10) and (4.11) highlight the large reduction of transmission bitrate (generally

more than 50%) when the proposed method is employed against MJPEG. This leads to

a reduction in bandwidth usage and, thus, less contention in the channel, a common

problem in WSN.
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Figure 4.7: Mean PSNR of the whole frame and the ROI-1 for the proposed method compared
to MJPEG for the same bitrate (traffic seq.)
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Figure 4.9: SSIM results of ROI-based coding compared to MJPEG for traffic seq.
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Figure 4.10: Required bitrate for proposed strategy against standard MJPEG for traffic seq.
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Figure 4.11: Required bitrate for proposed strategy against standard MJPEG for hall seq.

For scenarios such as multi-hop environments, in which other energy-constrained

nodes would be relaying the frames, the energy saving of using the proposed method

would increase with the number of hops since the bit-reduction will propagate across

the network.

Using automatic multi-zone segmentation with automatic thresholding, the sug-

gested method has led to good results in preserving the high quality of essential parts

of the frames while reducing the bitrate. Another advantage of the proposed tech-

nique is its minimal complexity, which is tailored to the ATC paradigm for WMSN,

as opposed to contemporary encoders, which are too complex for embedded sensor

nodes.

4.4 Conclusion

In this chapter, a low-cost multi-threshold frame segmentation method is proposed

and applied to video compression using a multi-quality factor based on moving re-
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gion importance. The results of the proposed method show high visual quality for

moving objects. A delivery guarantee of the essential blocks allows advanced tasks

at the reception of the visual data. The proposed method also shows a high bitrate

saving of more than 50%. The current limitations of the Canny Edge Detector and

Otsu Thresholding method are their high energy costs. To overcome this challenge, a

lower-cost detection technique employing simple arithmetic operations such as sum-

mation, which incurs minimal processing overhead, must be explored. In the following

chapter, a novel lower-cost multi-class ROI detection technique is proposed. A com-

prehensive evaluation of the technique will be conducted on a larger dataset, with a

deep analysis of computational complexity and energy consumption to address this

weakness.
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Chapter 5
ROI-based video coding strategy for

rate/energy-constrained smart

surveillance systems using WMSNs

5.1 Introduction

Reducing the power consumption of the in-node processing and the required band-

width while maintaining a high QoS is a challenging task. The difficulty increases

when a smart task must be performed on the received video in the destination. In

this context, this chapter proposes an energy-efficient video coding strategy based on a

new and fast ROI detection method. The lightweight ROI detection method segments

the frame into four regions. And the coding strategy aims to extract two different

classes of the ROI for coding and transmission using variable quality levels based on

their relevance. Furthermore, the strategy aims to exclude the regions of lower im-

portance and any non-ROI that has insignificant movement. We assess the strategy’s

ability to perform object recognition tasks at the destination under quality degrada-

tion. The performance results using different datasets demonstrate a better trade-off

between awareness of ROI quality, energy consumption and bandwidth savings for
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the proposed strategy compared to other methods. This results in a 96% reduction of

bandwidth and 93% reduction in energy for some sequences at the expense of a 1-4

dB decrease in PSNR when compared to the MJPEG standard. While the recognition

accuracy of the YOLOv3 model at the destination outperforms the other techniques by

about 4% to 22%.

5.2 Proposed S-SAD method

In an attempt to enable multimedia applications using constrained wireless networks,

we propose an efficient and low-cost multi-level ROI detection scheme prior to the

compression and transmission phases. Depending on the importance of each level, a

decision is made on whether or not to transmit the corresponding region. If so, a com-

pression with an appropriate quality coefficient reflecting the importance of the region

is applied on its blocks prior to transmission. Transmitting only a subset but relevant

information of each captured image saves energy and bandwidth while allowing for a

machine-based recognition with a high level of accuracy at the final destination.

Without loss of generality and for the sake of clarity, we consider, in what follows, a

three-level ROI strategy to decide whether a given block in the frame has to be encoded

with a high or low-quality factor or simply discarded. In this study, we have chosen

the MJPEG encoder to compress the selected blocks for many reasons: First, MJPEG

is more space- and energy-efficient than newer encoders like H.264 and H.265 [68].

These later encoders use motion compensation techniques to reduce temporal redun-

dancy and obtain a better compression ratio, which makes them very computationally

expensive [63] [153] [154]. Second, the MJPEG encoder, on the other hand, is con-

sidered "solid" because there are no links between frames. If a frame is lost during

transmission, the rest of the video will not be compromised, and the error is not propa-

gated to the following frames [155]. This is beneficial in the context of WMSNs, where

a hostile channel is presented. Furthermore, the MJPEG can be more required for low
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Figure 5.1: The scheme of the proposed strategy for a 3-level ROI-based video coding.

and very low image capture frequencies where temporal redundancy becomes less

obvious. This is a typical scenario for a WMSN application where the captured and

transmitted images are not necessarily part of a video sequence.

Figure (5.1) illustrates the different steps of the proposed strategy, including our

novel ROI detection and classification, which are explained in detail hereafter.

5.2.1 ROI Detection

The proposed ROI detection method aims to classify each frame region based on its

activity level. To do so, we introduce the Successive Summation of Absolute Difference

(S-SAD) method to compute and classify the activity in the current frame based on

a successive summation of different size windowing blocks. First, a SAD between

the current frame and a previous frame is calculated on w1 × w1-size non-overlapping

blocks :

SADmap(x, y) =
1

w2
1

w1−1

∑
u=0

w1−1

∑
v=0

D(w1x + u, w1y + v) (5.1)
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where x ∈ 0..M/(w1 − 1) and y ∈ 0..N/(w1 − 1) are block coordinates and D is the

difference between the current and a previous frame of size M × N. The previous

frame is selected based on the activity level and the frame rate of the video. Since

a high frame rate creates a low disparity between consecutive frames, it is necessary

to select an older frame as a previous frame and vice versa. This step leads to an

activity map of w2
1 times less than the input frame size. The blocks of the activity map

that outshine a threshold value are considered to belong to the ROI-1 which presents

the Local Activity Map. They are shown in white in Figure (5.2(b)) where Figure (5.2)

illustrates the different steps based on a frame sample.

Then, a w2 × w2 summation is applied on the obtained SADmap to extract the Re-

gional Activity Map Rmap by substituting w1 by w2 in Equation (5.1), that is :

Rmap(x, y) =
1

w2
2

w2−1

∑
u=0

w2−1

∑
v=0

SADmap(w2x + u, w2y + v) (5.2)

where x ∈ 0..M/(w1w2 − 1) and y ∈ 0..N/(w1w2 − 1). The Rmap blocks that exceed

a threshold value are part of the second region of interest ROI-2 depicted in Figure

(5.2(c)).

Finally and following the same principle, we derive the Global Activity Map (Gmap)

of the frame by considering a summation of the Regional Activity Map using w3 × w3

blocks :

Gmap(x, y) =
1

w2
3

w3−1

∑
u=0

w3−1

∑
v=0

Rmap(w3x + u, w3y + v) (5.3)

where x ∈ 0..M/(w1w2w3 − 1) and y ∈ 0..N/(w1w2w3 − 1). The thresholding applied

on the obtained Gmap determines the blocks of the third region of interest ROI-3 (see

Figure 5.2(d)). We refer to this final ROI as the global moving region (GMR) which

should have the property of including the other regions (ROI-1 ⊂ ROI-2 ⊂ ROI-3)

and thus serves as a mask for the previous ROIs to eliminate all blocks initially classi-

fied as part of these regions of interest. The excluded blocks are surrounded in red in
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Figure 5.3: The proposed scheme illustration with w1 = 8, w2 = 4 and w3 = 2.

Figure (5.2(b)-(c)). The final obtained ROIs are shown in three different colors in Figure

(5.2(e)).

If the frame size is not a multiple of the window size (w1,w2 or w3) for each step,

the summation of the elements of the final block is performed only on the remaining

pixels. The successive block sizes and the threshold values used in each step have to be

appropriately chosen to achieve a good trade-off between computational complexity

(large block sizes) and detection precision (small block sizes). According to our nu-

merous tests, we set the block sizes w1, w2 and w3, respectively, to 8, 4 and 2, while

the threshold values were set empirically following comprehensive testing and exper-

imentation. Figure (5.3) illustrates the proposed scheme based on these latter values.
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Figure 5.4: Affiliation of each pixel to the classified regions.

5.2.2 ROI Compression and Transmission

First, the initial frame is completely compressed and sent. This first frame is consid-

ered a background frame at the destination. For the next frames, only the ROI blocks

are taken into account for compression and transmission based on their relative impor-

tance by considering the following priority classes shown in Figure (5.4) :

• The first priority class C1 = ROI-1 represents the blocks that are in, and only in

the first ROI. Class C1 blocks having the highest interest are coded with a higher

MJPEG quality factor Q1 before being transmitted ;

• The second priority class C2 = ROI-2−ROI-1 includes the labeled moving blocks

that are in ROI-2 but not in ROI-1. Class C2 blocks having a medium interest are

coded, before their transmission, with a lower MJPEG quality factor Q2 < Q1 ;

• The third priority class C3 = GMR − ROI-2 includes the blocks that are in the

GMR but are not in ROI-2. These class blocks are considered to be of low interest

and are simply dropped.
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5.3 Results and Discussion

In order to evaluate the efficiency of our proposed algorithm, we performed extensive

simulations and tests using sequences from three standard datasets (Table 5.1), namely

ViSOR Dataset [156], Change Detection 2014 Dataset [128] and traffic sequence from

MATLAB. The proposed coding scheme is compared to the method in [64] and the

standard MJPEG compression where the quality factor QF is set to 50. In our proposed

strategy, Q1 and Q2 are set to 50 and 20 to encode the blocks of ROI-1 and ROI-2

respectively.

Table 5.1: Used video sequences

Dataset Video Sequences Frame Size fps # Frames
CDnet Highway 320× 240 30 1700
Dataset
2014 [128]

StreetCorner 595× 245 25 400

ViSOR Dataset HighwayI 320× 240 14 406
[156] HighwayII 320× 240 14 462

campus 352× 288 10 1170
IntelRoom 320× 240 10 300
Laboratory 320× 240 10 880

MATLAB Traffic 160× 120 15 120

5.3.1 Detection Accuracy and Visual Results

Generally, ROI-based techniques suffer from the loss of contextual information. If, ad-

ditionally, false negatives (i.e. the ROI is falsely determined as non-ROI) increase, the

ROI quality degrades significantly. This is why the detection accuracy has to be maxi-

mized. Figure (5.5) plots, for the highway sequence, the achieved mTPR in estimating

the three regions when increasing the distance to the previous frame is considered

in the activity map estimation of our scheme. We observe that the older the selected

frame, the higher the achieved mTPR. We can see that the ROI-3, which includes the

two other regions, successfully ranks more than 98% and almost 100% of the move-

ment starting from the second to the last frame for the activity map estimation.
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Figure 5.5: Impact of the previous frame selection on TPR for highway sequence

These observations are confirmed by the visual results in Table 5.2 of the recon-

structed frames at the reception for the proposed coding method compared to the

method in [64] and the standard MJPEG. As can be seen, the whole frame visual quality

for our strategy shows better results for all the sequences compared to [64] and slightly

lower than those of MJPEG. The detection of the moving region is almost complete and

the classification of the regions of interest into high, medium and lower importance is

also satisfactory which confirms the high mTPR achieved for ROI-3 as well as for ROI-

1 and ROI-2 in Figure (5.5).

Furthermore, based on our experiments, our strategy does not suffer from the error

propagation problem encountered by the approach in [64]. This is due to the fact that

our method selects larger regions in which the movement occurred before determining

the ROI to be compressed and transmitted, which significantly lowers the probability

of a region selection error (loss of context). Our strategy ensures effective detection

for different scenarios, both indoor as is the case for laboratory and intellegentroom se-

quences and outdoor as can be seen in the other sequences. The detection accuracy

is not affected by dark background scenarios, like in the case of StreetCornerAtNight

sequence as illustrated in the samples in the ROI column in Table 5.2. It is also worth

noting that the speed of the movement does not affect the detection performance as

observed in the results of the laboratory sequence. This is one key advantage of the
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adopted frame difference-based detection technique.

5.3.2 Quantitative Results: Image Quality

We first evaluate the quality of the images using three metrics, namely PSNR, SSIM and

VIF, to estimate the difference between the original images and the reconstructed im-

ages. This provides an estimate of the information loss resulting from the compression

phase on the different considered video sequences. Table 5.3 shows the mean PSNR,

SSIM and VIF values for each sequence. The bold values represent the best results,

while the underlined ones represent the second-best results. We note that MJPEG per-

forms the best in terms of the PSNR and VIF for all sequences. This was to be expected

since the entire image is transmitted after being encoded with a high-quality factor.

Our proposed method gives the second-best results for all metrics and outperforms

MJPEG in terms of the SSIM measure for specific sequences (Intellegentroom and High-

way). This superiority is directly due to the nature of the scene background, which is

distinguished by significant stability (no change over time). Thus, the high quality of

the background blocks is maintained over time. However, we observe a considerable

decrease in the quality of the reconstructed frames for some sequences (such as High-

wayI and HighwayII). This degradation is due to the low frame rate of the video with

the significant motion that occurs in the scene. Moreover, the large size of the moving

objects may cause inaccurate ROI detection, resulting in a substantial loss of contextual

information. Furthermore, a high movement leads to more ROI-2 zones coded with

low quality (Q2 = 20), which decreases the frame quality.

For a more refined analysis, we plotted the curves representing the three metrics on

a per-frame basis for each considered video sequence in Figures (5.6), (5.7) and (5.8).

It is clearly shown that the proposed strategy guarantees an acceptable high quality of

the received frames under a very low size of the data to be transmitted as will be shown

in Section 5.3.3. The method registers about 30 dB PSNR or higher for all the sequences
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Table 5.2: Visual binary mask for the moving region.

Seq. Original ROI Proposed MJPEG [64]

Traffic #10
SSIM - - 0.9586 0.8992 0.8915

Highway #687
SSIM - - 0.8450 0.9313 0.8364

HighwayI #216
SSIM - - 0.9135 0.9613 0.8755

HighwayII #484
SSIM - - 0.8521 0.9110 0.8397

IntellegentRoom #231
SSIM - - 0.9287 0.9428 0.9129

Campus #114
SSIM - - 0.8783 0.9408 0.8374

Laboratory #806
SSIM - - 0.9195 0.9476 0.9023

StreetCorner #884
SSIM - - 0.9311 0.9891 0.9163
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Table 5.3: Overall mean quality metrics

Sequence
proposed ref. [64] MJPEG

PSNR SSIM VIF PSNR SSIM VIF PSNR SSIM VIF

Highway 31.7414 0.7865 0.6042 30.4667 0.7053 0.5385 32.7808 0.7700 0.7351

HighwayI 28.8923 0.6716 0.5744 31.8053 0.6138 0.4874 37.9583 0.8374 0.7934

HighwayII 28.4600 0.7055 0.4637 29.3400 0.6965 0.4506 33.0100 0.8208 0.7207

campus 31.3614 0.7055 0.4637 29.5200 0.6965 0.4501 35.7400 0.8208 0.7207

intellegentroom 31.7727 0.8036 0.5916 30.4667 0.7053 0.5385 32.7808 0.7700 0.7351

laboratory 32.1748 0.6214 0.5748 30.9583 0.5894 0.5297 34.6275 0.6790 0.7492

Traffic 30.0569 0.6559 0.6230 28.2246 0.5710 0.5030 30.4093 0.6625 0.6493

StreetCornerAtNight 33.3932 0.9181 0.9209 32.1294 0.8815 0.8724 42.7939 0.9690 0.9514

as depicted in Figure (5.6). Our strategy shows at most 4 dB lower PSNR values when

compared to MJPEG and a higher PSNR, for all the sequences, with respect to the

method in [64].

For the SSIM values, the proposed strategy registers values varying from 0.6 to 1

as shown in Figure (5.7). Most of the first received frames exhibit high SSIM values

(above 0.95) which degrade over time. Deterioration is due to the increasing amount

of blocks being classified as ROI-2, compressed with lower quality (Q2 = 20). Never-

theless, we still obtain higher SSIM values with respect to the method proposed in [64].

Similar results are obtained based on the VIF metric as shown in Figure (5.8). The regis-

tered values ranging almost from 0.4 to 1 for the different considered sequences. Some

sequences register high degradation in terms of VIF like in the campus clip that under-

goes a degradation as high as 0.4. This is due to the complexity of the corresponding

background. The same degradation is noticed in [64] but with slightly better results

for our strategy.
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Overall, the proposed method outperforms the method in [64]. We can say that the

proposed strategy is able to ensure acceptable quantitative results by the transmission

of only a few data which makes it a good alternative to the MJPEG coding method

where the transmission of the whole frame is needed.

No-reference Image Quality assessment Figure (5.9) depicts the obtained BRISQUE

score. We note that the original frames account for the best performances with the

BRISQUE metric recording the lowest values. MJPEG frames encoded with a Q1 = 50

presents also good performances which are comparable to the original frames. For the

proposed strategy, it is noticed that the performances are slightly related to the type of

the sequence. Results, in almost all sequences, are better than those in [64]. BRISQUE

scores of the proposed strategy are also comparable to the original and MJPEG for

some sequences such as traffic, intellegentroom, and laboratory. The results show that

coding artifacts affects negatively the BRISQUE score. Another assumption is that the

type of the environment and background may affect the perceptual quality as analyzed

in our case (better BRISQUE score for indoor environments). The noisy background is

also a reason for the high BRISQUE score since the proposed strategy and the method

in [64] consider sending only the ROI without an update of the background informa-

tion. Through the analysis done in [114], the oscillatory aspect of the quality measure is

mainly due to the inability of these metrics to quantify the quality level of the videos,

which is considered a disadvantage of the BRISQUE metric as a measure for smart

surveillance systems.

5.3.3 Bitrate Gain

Reducing the bitrate saves a colossal amount of transmission energy and network

bandwidth which consequently avoids or at least limits congestion situations and al-

lows better delivery conditions. These benefits are the main focus of the proposed
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Figure 5.6: PSNR results for different sequences (left to right top-bottom scanning): Traffic,
Highway, HighwayI, HighwayII, Campus, Intellegentroom, Laboratory, StreetCornerAtNight.
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Figure 5.7: SSIM results for different sequences (left to right top-bottom scanning): Traffic,
Highway, HighwayI, HighwayII, Campus, Intellegentroom, Laboratory, StreetCornerAtNight.
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Figure 5.8: VIF results for different sequences (left to right top-bottom scanning): Traffic, High-
way, HighwayI, HighwayII, Campus, Intellegentroom, Laboratory, StreetCornerAtNight.
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Figure 5.9: BRISQUE scores for different sequences (left to right top-bottom scanning): Traffic,
Highway, HighwayI, HighwayII, Campus, Intellegentroom, Laboratory, StreetCornerAtNight
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contribution. In what follows, we reason in terms of the amount of data to be deliv-

ered after the compression of each of the frames composing a given video sequence.

This quantity of data gives an idea of the bitrate needed for the application’s desired

capture rate. Figure (5.10) shows the amount of data to be transmitted on a per-frame

basis when adopting our proposed method, MJPEG and [64]. We can see that the re-

quired bitrate for the suggested strategy is slightly higher than in [64] for most of the

sequences. This was expected since the size of ROI in our case is larger but in turn,

our strategy ensures the delivery of a higher quality ROI at the expense of a slightly

higher bitrate. For instance, with the same quality level, our method requires a mean

bitrate of 3.358 kB/s for the campus sequence ( f ps = 10), which is 27 times less than

the required bitrate when adopting MJPEG (93.06 kB/s) which represents a saving of

96.4%. For the highway sequence ( f ps = 25), we achieve a saving of about 76.3% of the

required bitrate since it drops from 263.25 kB/s to 62.65 kB/s.

5.3.4 The Impact of Quality Degradation on Object Recognition

We use the real-time object detection system YOLOv3 [157] as a machine-based mon-

itoring system on the received frames to extract and recognize moving objects. The

lightweight YOLOv3 network architecture (Figure (5.11)) contains 13 convolution lay-

ers and 6 max-pooling layers. The used tiny-YOLOv3 is trained on the COCO dataset

[158] to classify objects into 80 classes. Due to its competitive accuracy and speed, and

its robustness in detecting different types of objects, YOLOv3 algorithms have been

widely applied in industries, such as manufacturing and the military. We aim to assess

the efficiency of the proposed strategy in ensuring a high recognition accuracy under

a very low bitrate. The YOLOv3 model is used as a “black box” meaning that no study

on the performance of the model on the used dataset is performed. We take it as it

is. We compare the recognition accuracy of the proposed strategy to the original non-

compressed frames, MJPEG compressed frames, and compressed frames using [64].
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Figure 5.10: Amount of data to transmit per frame for different sequences (left to right top-
bottom scanning): Traffic, Highway, HighwayI, HighwayII, Campus, Intellegentroom, Labora-
tory, StreetCornerAtNight
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Table 5.4: Bounding box insertion results for the used dataset.

Sequence Proposed Original MJPEG [64]

Traffic #88

Highway #795

HighwayI #126

HighwayII #268

Campus #71

IntelligentRoom #252

Laboratory #686

StreetCornerAtNight #884
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Figure 5.11: Tiny-YOLOv3 network Architecture (redrawn from [151])

Table 5.4 shows the recognition results for sample frames from the used datasets

and demonstrates the competitiveness of our method to enhance the recognition ac-

curacy at the destination. For all sequences, we achieve higher recognition accuracy

compared to [64]. The results are still comparable to the original and MJPEG frames or

even better in many cases compared to MJPEG. At first impression, results show that

the compression quality degradation hurts the recognition accuracy. This conclusion is

supported by the overall recognition results depicted in Figure (5.12) and Figure (5.13)

which represents the performance of the recognition process, for all the dataset. Figure

(5.12) plots the number of the detected objects and shows that unsurprisingly, original

frames achieve the highest score for all the sequences. Our proposed strategy, overall,

shows the second-best results. Preserving only a high-quality compression of the ROI

while ensuring a good ROI detection is sufficient to enable more accurate smart tasks

at the destination like object recognition. As for the recognition accuracy, Figure (5.13)

shows the superiority of our method which allows smart machine-based tasks at a

significantly low bitrate and energy budgets as will be shown in the following section.
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5.3.5 Computational Complexity and Energy Consumption

The advantage of the proposed detection method is its very low complexity since the

summation is the most used operation in all the steps. Just a very low number of di-

visions is used to normalize the scores in the activity maps. We show through this

section the effectiveness of the proposed strategy in terms of computational complex-

ity. Let Eprocessing be the energy consumption by a visual sensor to detect the ROI and

compress the corresponding data, then we can write :

Eprocessing = Edetection + Ecompression (5.4)

where Ecompression is the JPEG-like compression energy cost and the Edetection is the re-

quired energy to detect the ROI and classify them. This latter can be estimated based

on the number of operations needed by each step of the proposed strategy which we

provide in Table 5.5. That is :

Edetection = ESADmap + ERmap + EGmap + EThresh (5.5)

For a given step s = SADmap, Rmap, Gmap, Thresh, the necessary energy (Es) can be

estimated using the following formula :

Es = ∑
op

Ns,op × εop × Cyclesop (5.6)

Where Ns,op is the required number of operations op (addition, subtraction, division

or thresholding) to perform the step, εop is the energy consumption of operation op

and Cyclesop is the number of required cycles to execute operation op. These two lat-

ter parameters depend on the underlying processor. In embedded micro-controllers,

we know that the energy cost of the addition, subtraction, threshold and absolute op-

erations are the same : εabs = εsub = εthresh = εadd and Cyclesabs = Cyclessub =
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Cyclesthresh = Cyclesadd. Moreover, knowing that w2 = w1/2 and w3 = w1/4, we

get to the following formula :

Edetection = NM (1 +
4

w2
1
+

4
w4

1
+

64
w6

1
) εadd Cyclesadd

+ NM (
1

w2
1
+

4
w4

1
+

64
w6

1
) εdiv Cyclesdiv (5.7)

To estimate Ecompression, we have to count for the MJPEG compression cost for each

block including the DCT, the quantization and the Huffman coding costs. We adopt

the model provided in [150] where three implementations of the float IJG, slow IJG and

fast IJG JPEG-based compression were discussed. It has been shown that the slow IJG

[159] achieves the same quality performances as float IJG while the fast IJG [160] has

a significant quality loss. In this work, we have chosen the slow IJG implementation

which has a compression energy cost of 192.28 µJ per 8× 8 block.

Table 5.5: Computational Cost of each step

Step Operation Window Complexity (# of operations)

SADmap

Add

w1

NM(w2
1 − 1)/w2

1
Sub NM/w2

1
Abs NM/w2

1
Div NM/w2

1

Rmap
Add w2 = w1/2 4NM/w4

1Div

Gmap
Add w3 = w1/4 64NM/w6

1Div

Thresh.
SADmap w1

NM/w2
1Rmap w2 = w1/2

Gmap w3 = w1/4

Energy Consumption Discussion First, the added cost of the proposed ROI detec-

tion step is figured out. Table 5.6 records the mean consumed energy per frame for the

detection phase (Edetection) versus the overall processing energy (Eprocessing) for three

video sequences of different frame sizes (campus, highway and traffic). It shows that the
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extra consumed energy depends on the size of the images and remains moderate as

it does not exceed 7% of the processing energy. Table 5.7 gives a better insight into

the processing energy of our proposal by indicating the variation of this consumption

around the mean value to be compared with that of MJPEG. We can see that our strat-

egy allows a significant energy saving which can be as high as 93% for the campus

sequence for instance and could achieve 90% or more depending on the amount of ac-

tivity during the surveillance task for the two other sequences. We note a lower energy

saving of about 50% for the traffic sequence due mainly to the small size of its frames

making the chosen values for w1, w2, and w3 less adequate. To save even more energy,

these values must be more efficiently adjusted to the frame size. The economy also

depends on the size of the moving objects in the scene. Small objects imply small ROIs

and thus fewer data to compress and vice versa. We observe high deviation values

(close to or exceeding the mean value) which reflect a significant variance in energy

expenditure. This is attributable to a varying activity level in the different parts of the

sequence.

Frames that exhibit a high activity map require much energy consumption, while

low activity periods lead to very limited energy usage. The campus sequence, for in-

stance, records energy values that range from 0.9 mJ for extremely little activity and

more than 211 mJ for a frame (#1164) that even exceeds the MJPEG energy. This is the

consequence of three successive outlier frames that are completely noisy. In the first

outlier frame #1164, all the blocks are considered for coding resulting in high energy

consummation. While for the subsequent frames, only some blocks are considered for

coding due to the low detected difference. This outliers problem is a common problem

that has forced the system to react as in the basic approach where all the frame blocks

were considered as being part of the ROI [161].

Figure (5.14) shows the evolution of the consumed energy per frame, for three se-

quences with different frame sizes, as well as the achieved quality in terms of PSNR.

The energy curves confirm our earlier findings. The oscillation in energy consumption
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Table 5.6: Per frame energy cost (mJ) of our ROI detection

Sequence Edetection Eprocessing % extra cost
campus 0.8827 14.24 6.20%
highway 0.6699 16.02 4.18%
traffic 0.1671 20.22 0.83%

Table 5.7: Per-frame energy consumption (mJ).

Sequence Proposed MJPEG saving (%)
max min std. dev. mean mean w/r MJPEG

campus 211.14 0.90 24.93 14.24 205.92 93.08
highway 53.38 0.90 10.96 16.02 156 89.74
traffic 40.18 0.23 16.11 20.22 39 48.16

is directly related to the size of the ROI. It is illustrated that the method yields lower

energy consumption than the classical (MJPEG) compression method that registers a

sufficiently stable higher value. We note that the limited amount of data to be pro-

cessed and sent, allowing for a significant reduction in energy consumption, does not

impact the quality of the video, which remains rather stable in the range of 30..35 dB.
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Figure 5.14: Total processing energy consumption and the corresponding PSNR for sequences
with different frame sizes. campus 352× 288, highway 320× 240, traffic 160× 120

The method could show further gains when it is studied in a network-based sce-

nario, considering a significant number of wireless sensor nodes to cover a specific

zone for intelligent surveillance tasks. It can further reduce network congestion and

multiply the gains in the network’s resources. It can also operate in a contextual

paradigm where it is not always necessary to send the detected movement into a specif-

ically covered zone [162].
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5.3.6 Conclusion

We proposed an ROI-based video coding strategy for human-based and machine-based

video surveillance monitoring using WMSN. The method exhibits a low bitrate com-

pared to conventional MJPEG through the proposed low-cost ROI detection method.

The strategy also aims to reduce significantly processing energy consumption in the

sensor node. Through the evaluation of different sequences, it has been shown that

the energy savings could reach 90% with a slight sacrifice in the quantitative and per-

ceptual quality of the non-ROI. It has also been shown that the quality sacrificed of

the non-ROI does not influence the intelligent tasks at the destination but enhances

them by virtue of the content-aware strategy used. The proposed video coding strat-

egy could be adopted for large-scale video monitoring in an edge-cloud processing

paradigm using WMSN, where in-network-based scenarios should be elaborated and

assessed. Further study is recommended to illustrate unusual coding conditions and

issues like the occurrence of outlier frames and/or outlier blocks during the processing

and transmission of the frame.
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General conclusion and perspectives

Wireless Surveillance systems are poised to play a crucial role in the future of com-

munication systems, as evidenced by the rapid advancements in the field over the last

decade. Further progress in the development of efficient visual sensor nodes will so-

lidify the substantial progress made in recent years, and pave the way for new and

innovative applications of wireless surveillance technology.

In conclusion, this thesis presents a methodical examination of the role of wire-

less surveillance systems using WMSN in modern communication networks. Through

a comprehensive literature review and the development of novel optimization ap-

proaches, this work highlights the impact of low energy and bitrate on the quality

of service in WVS. The proposed ROI-based video coding algorithms, such as the

BIRD algorithm, offer a promising solution by effectively adapting to the resource con-

straints of WMSN and achieving high accuracy in classifying ROIs, as well as reducing

the bitrate required for data transmission. Our results shed light on the potential of

ROI-based video coding to enable advanced video content analysis tasks, such as fa-

cial recognition and object tracking, as demonstrated by the 22% improvement using

YOLOv3 as an inference model.

These findings open up exciting avenues for further research and development in

this field, such as exploring some of the points:

• Implementing fast transformation algorithms in the image compression step.
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• The development of adapted MAC protocols that meet content-aware require-

ments.

• Further testing and implementation of these techniques in real-case platforms

like SenseVid will pave the way for new concepts of transmitting multimedia

data in WMSN with the lowest possible resources.

• Exploring the ROI-based video coding with the new codecs like H264 and HEVC

may enable their use in WMSN contrary to the actual case of new codecs and

their non-adaptability for WMSN.

• Exploring the VCM approach in a wider way is an excellent choice for more

adaptability between ROI-based video coding and Machine dedicated services

and systems.

This thesis demonstrates the significance of ROI-based video coding in wireless

surveillance systems using WMSN and the potential for continued exploration and

innovation in this field.
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