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Résumé

le travail présenté dans cette thèse est consacré à l’examen des processus radiatifs de

l’argonium interstellaire ArH+, à savoir, l’association Ar + H+ → ArH
+
, et le transfert de

charge, Ar+ +H→ Ar + H+. Pour réaliser ces deux tâches, les courbes d’énergie potentielle

et les moments dipolaires correspondants sont déterminés afin de construire l’état fondamen-

tal et les deux premiers états excités de l’ArH+ . Une fois que toutes les courbes requises

sont bien établies et que leurs caractéristiques physiques et les valeurs spectroscopiques sont

contrastées avec les données publiées précédemment, les sections efficaces, pour les deux pro-

cessus radiatifs, la formation de l’ion moléculaire ArH+ par association et transfert de charge

sont calculés par mécanique quantique aux énergies inférieures et supérieures. Enfin, les co-

efficients de taux dépendant de la température sont calculés et analysés dans l’intervale de

température 1− 10000K .

Mots-clé : les courbes d’énergie potentielle de l’argonium, association radiatif, transfert

de charge radiatif, les coefficients de taux de ArH+
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Abstract

The work presented in this thesis is devoted to the examination of the radiative processes

of interstellar argonium ArH
+
, namely, association, Ar + H+ → ArH

+
, and charge transfer,

Ar
+
+ H → Ar + H+. To perform both of these tasks, the corresponding potential-energy

curves and dipole moments are determined in order to construct the ground and the two first

excited ArH+ molecular states.Once all the required curves are well established and their

physical features and spectroscopic values are contrasted with previously published data,

the cross sections, for both radiative processes, the formation of the molecular ion ArH+

by association and charge transfer are computed quantum-mechanically at lower and higher

energies. Finally, the temperature-dependent rate coefficients are calculated and analyzed in

the temperature range 1− 10000K .

Keywords : argonium potential-energy curves, radiative association, radiative charge

transfer, ArH+rate coefficients.
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Introduction

Argonium (ArH+), the first noble gas molecule discovered in the interstellar medium (ISM),

was reported by Barlow [1], who identified two 36ArH+ emission lines at 617.525 GHz (J =

1← 0) and 1234.603 GHz (J = 2← 1) in spectra from the Crab Nebula obtained with the

Herschel Space Observatory, as illustrated in Fig. 0-1. In addition, Müller et al (2013) [2]

detected a strong absorption feature at 617.5 GHz, which was initially difficult to identify.

After that, Schilke et al (2014) [3] pointed out that the unspecified 617.5 GHz line was

actually assigned to 36ArH+. Moreover, features of 38ArH+ were found, which suggested that

argonium is prevalent in the ISM. Furthermore, this hydride cation has also been detected

in a foreground galaxy by Müller et al (2015) [4], they observed the J = 1 ← 0 transition

of two argonium’s isotopologs, 36ArH+ at 617525.23 ± 0.15 MHz (J = 1 − 0) and 38ArH+

at 616648.76 ± 0.08 MHz (J = 1 − 0). These observations yielded an estimation of the

argonium presence by the isotopic ratio 36ArH+/38ArH+ = 3.46 ± 0.16. They concluded

that the evolution of this ratio with redshift may constrain nucleosynthetic scenarios in the

early universe. Argonium is considered as a good molecular tracer of the almost purely

atomic diffuse ISM [4,5]. ArH+ is primarily formed from the chemical reaction (Ar++H2 →

ArH++H) [1,5], which is further annihilated by the reaction (ArH++H2 → Ar+H+3 ) where

the Ar atom is ionized by cosmic rays [3,6].

Rare-gas atoms are stable because of their full-shell configuration. They typically do

not form covalent bonds when they interact with each other or other atoms and molecules.

At short internuclear distances, the repulsive interaction between the electrons of the full-

shell atom is dominant. But at larger internuclear distances, the attractive van der Waals

interaction predominates. This interaction arises from the instantaneous and induced mul-

tiple moments of the two atoms, leading to the formation of weakly bound van der Waals

dimers [7]. The formation of the ArH+ noble gas molecule was unexpected because we don‘t

normally expect a noble gas atom like argon to form molecules, especially in the harsh envi-

ronment of a supernova remnant. However, it was realized that there are locations even in

6



Figure 0-1: The rotational spectrum of ArH+ from the crab nebula obtained with Herschel
space observatory [1].

the Crab Nebula where the circumstances are ideal for a noble gas to react and combine with

other elements. There, argon hydride can form and survive in the transition regions between

ionized and molecular gases. Hydrides are the first molecules to form because hydrogen is

the most common element in the interstellar medium.

It is important to note that the radiative association and radiative charge transfer processes

play a crucial role in the formation of molecules in the interstellar medium. In this thesis,

the focus is on the theoretical investigation of these processes. It consists of the present

introduction, followed by three chapters, and a conclusion. The first Chapter provides a brief

introduction to the theory of atom-ion collisions. The second Chapter focuses on constructing

potential energy curves, as well as permanent and transition dipole moments. The accuracy

of these constructions is evaluated by computing rotational-vibrational levels and radiative

lifetimes. Chapter 3 is devided into two parts. The first part addresses the radiative associa-

tion process of argon atoms and hydrogen ions to form argonium. The quantum mechanical

cross sections and the rate coefficients are calculated. The second part is devoted to investi-

gating the radiative charge transfer process. The quantum mechanical cross sections and the

rate coefficients are calculated for this process as well. The thesis concludes with a summary

of the main results, including comparisions with previously published values where relevant.

Unless otherwise stated, the results are given in atomic units ( a.u.).
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Chapter 1

Atom-ion collision theory

Collisions between atoms (or ions) A and B can be classified into three main categories [8].

The first category is the elastic collision, in which the internal energies of the colliding

particles remain unchanged, but the incident paricles are deflected in a specific direction.

This type of collision can be represented by the equation

A + B→ A+ B. (1.1)

The second category is the inelastic collision, where either A or B, or both, are excited to a

different energy level. The various possibilities for this type of collision can be expressed as

follows

A + B → A∗ + B, (1.2)

→ A + B∗, (1.3)

→ A∗ + B∗. (1.4)

This category includes reactions where one or both species are ionized, resulting in the ejection

of one or more electrons and the formation of positive ions

A+ B → A+ B+ + e−, (1.5)

→ A+ + B+ e−. (1.6)
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The third category is the charge exchange which occurs when one or more electrons are

transferred between A and B

A+ B+ → A+ + B. (1.7)

1.1 Diatomic system

We can express the nonrelativistic Hamiltonian for a diatomic molecule as the sum of five

terms

H = −
�
2

2mA
∇2
RA
−

�
2

2mB
∇2
RB
−
�
2

2me

N�

i=1

∇2
ri
+ Ve(RA,B, r) + VN(RA,B), (1.8)

where � is the well-known reduced Planck’s constant, andme,mA, andmB denote the electron

masse and the nuclei masses of the two species Ar and H, respectively. N refers to the total

number of electrons in the system. Additionally, RA,B represents the position vector of the

nuclei relative to a fixed reference, while r represents the position vector of the electrons

relative to the same fixed reference.

The first three terms in this equation (1.8) represent the kinetic energies of the nuclei

and electrons. Ve(RA,B, r) corresponds to the potential energy of the electrons resulting from

electron-electron and electron-nucleus interactions. It can be defined as

Ve(RA,B, r) = −
e2

4πε0

�
�

i≻j

1

|ri − rj|
−
�

i,I

ZI
|RI − ri|

�

. (1.9)

On the other hand, VN(RA,B) represents the potential energy of the nuclei arising from

nucleus-nucleus interactions and can be expressed as

VN(RA,B) =
e2

4πε0

ZAZB
|RA −RB|

, (1.10)

where Z is the atomic number (ZA = ZAr = 18, ZB = ZH = 1).

Within the framework of nonrelativistic theory, the elastic collision between the atom A

and the ion B+ is governed by the time-independent Schrödinger equation

HΨ(RA,B, r) = EΨ(RA,B, r), (1.11)

here, Ψ(RA,B, r) represents the wave function, and E denotes the total energy of the system.

It is important to note that finding an exact solution to equation (1.11) is not feasible,

9



requiring the use of approximations. In this case, the Born-Oppenheimer approximation is

chosen as the preferred approach.

1.2 Born-Oppenheimer approximation

The Born-Oppenheimer approximation is based on the fact that the nuclei have much larger

masses than the electrons. Consequently, the wave function of the system Ψ(RA,B, r) can

be expressed as the product of an electronic wave function Ψe(RA,B, r) and a nuclear wave

function ΨN(RA,B). It is assumed to have the form

Ψ(RA,B, r) = ΨN(RA,B).Ψe(RA,B, r), (1.12)

here, ΨN (RA,B) and Ψe(RA,B, r) represent the nuclear and electronic wave functions, respec-

tively. When solving Schrödinger’s equation, we focus solely on the electrons and treat the

nuclei as fixed. As a result, our wave functions depend only on the electronic coordinates.

The electronic Schrödinger equation can be expressed as

HeΨe(RA,B, r) =

�

−
�
2

2me

N�

i=1

∇2
ri
+ Ve(RA,B, r)

�

Ψe(RA,B, r) = Ee(RA,B).Ψe(RA,B, r).

(1.13)

This equation represents the behavior of the electronic system.

The Schrödinger equation (1.11), which includes both the electronic and nuclear compo-

nents, can be expressed as

HΨ(RA,B, r) =

�
−
�
2

2mA
∇2
RA
−

�
2

2mB
∇2
RB

+He + VN(RA,B)

�
Ψ(RA,B, r) = ETΨ(RA,B, r).

(1.14)

By using the relationship (1.12) , we get

�
−
�
2

2mA
∇2
RA
−

�
2

2mB
∇2
RB

+ Ee + VN(RA,B)

�
ΨN (RA,B, r) = ETΨN(RA,B). (1.15)

This represents the nuclear Schrödinger equation, which describes the dynamics of the nuclei

in the system. It can be written as

�
−
�
2

2mA
∇2
RA
−

�
2

2mB
∇2
RB

+ V (RA,B)

�
ΨN(RA,B, r) = ETΨN (RA,B), (1.16)
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where V (RA,B) = VN (RA,B)+Ee is known as the full internuclear potential for each electronic

state.

In order to simplify our problem, it is convenient to move from the laboratory coordinates

to the center of mass coordinates. The centre of mass position vector, denoted as ρ is given

by

ρ =
mARA +mBRB

mA +mB

, (1.17)

where the reduced mass of the system is defined as

µ =
mAmB

mA +mB
. (1.18)

The relative vector between the two nuclei is R = RA−RB. Using these coordinates, the

equation (1.16) can be written as

�
−

�
2

2(mA +mB)
∇2
ρ −

�
2

2µ
∇2
R
+ V (R)

�
ΨN(ρ,R) = ETΨN(ρ,R). (1.19)

It is worth noting that the first term represents the kinetic energy of the center of mass.

Since it does not affect the relative movement of the two atoms, it can be neglected in this

context.

By putting R = RA−RB, the collision between the two species can be described by the

equation �
−�2

2µ
∇2
R
+ V (R)

�
ΨN(R) = EΨN(R), (1.20)

here, E = ET −Eρ, where Eρ represents the centre of masse energy. Thus, according to this

equation, the study of the collision between the two species is reduced to investigating the

diffusion of a single particle by a potential. The resolution of this equation will allow us to

determine the wave functions of the initial and final states. In fact, the electronic schrödinger

equation (1.13) is solved using approximations at different values of R to obtain the wave

functions Ψe(RA,B, r) and potential energies Ve(R).

The potential energies can be graphed as illustrated in Fig. 1-1. This graph shows the

potential energy of a diatomic molecule as a function of internuclear separation, representing

the potential energy function for the nuclei. When R is significantly large, the two species

exhibit weak interaction. As R decreases, the interaction becomes stronger, resulting in a

substantial negative energy value, indicating the formation of a bond between the two species.

At very small values of R , the internuclear repulsion becomes subtantial, leading to a large
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positive energy. This energy function governs the motion of the nuclei.

We represent schematically in Fig. 1-2 the Born-Oppenheimer potential energy curves

for a ground and an excited electronic state of a diatomic molecule. To differentiate between

the states, the notation of a single prime (′) is used for the upper states (excited states),

while a double prime (′′) is used for the lower states (ground state). The vibronic energy

level structure of a diatomic molecule can be described by the following ralations [9,10].

ṽv′v′′ = Te +Gv′ −Gv′′ , (1.21)

Te = ṽ00 +Gv′′=0 −Gv′=0. (1.22)

In these equations, T stands for the electronic energy ( the subscript ′e′ for "equilibrium"

indicates that the energy difference is between the minima of the excited and ground electronic

state potential-energy functions), and G represents the vibrational energy of the ground and

excited electronic states. The transition wave number between an initial v′ and a final v′′

vibrational level can be derived by substituting equation (1.22) into equation (1.21), resulting

in

ṽv′v′′ = ṽ00 +Gv′′=0 −Gv′=0 +Gv′ −Gv′′. (1.23)

By approximating the vibrational motion as a Morse oscillator [9], the vibrational energy in

the excited electronic state Gv′ can be approximated as

Gv′ ≃ ω′e

�
v′ +

1

2

	
− ωex

′
e

�
v′ +

1

2

	2
. (1.24)

Considering only transitions to the ground vibronic state, the equation (1.23) can be written

as

ṽv′v′′=0 = ṽ00 + ω′e

�
v′ +

1

2

	
− ωex

′
e

�
v′ +

1

2

	2
−

�
ω′e
2
−
ωex

′
e

4

	
. (1.25)

where, ωe and ωexe represent the harmonic and anharmonic vibrational constants, respec-

tively.

The dissociation energies D0 and De are defined with respect to the ground vibrational

state and the minimum of the potential-energy function of an electronic state. They can be

expressed as follows

D′
0 = D′′

0 + ṽatom − ṽ00, (1.26)

D′′
0 = D′′

0 +Gv′′=0. (1.27)
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Figure 1-1: Schematic potential energy curve of the ground state of a diatomic molecule.

To account for the influence of vibrational motion on the rotational and centrifugal distortion

constants, we express the rotational distortion constants of a vibrational level v as a power

series expansion in (v + 1/2) . For the rotational distortion constants, we have

Bv = Be − αe

�
v +

1

2

	
+ γe

�
v +

1

2

	2
+ ..., (1.28)

Similarly, for the centrifugal distortion constants, we have

Dv = De − βe

�
v +

1

2

	
, (1.29)

In these equations, Be and De represent the values of the rotational and centrifugal constants

at the equilibrium position. On the other hand, Bv and Dv represent the rotational and

centrifugal distortion constants specific to the vibrational level v.

1.3 Wave functions

In order to solve equation (1.20), we suppose that the potential is central V (R) i.e. the

potential energy of the molecule depends only on its distance from the origin R (the module

of the position vector R = |R|). We express the new wave function as a product of two

13



Figure 1-2: Schematic potential energy curves of the ground and excited electronic states of
a diatomic molecule.

functions: a purely radial function ΦJ(R) related to the relative motion of the nuclei, and a

spherical harmonic Y m
J (θ, φ) associated with their rotation

ΨN(R) =
ΦJ(R)

R
Y m
J (θ, φ), (1.30)

where θ and φ denote the polar and azimuthal angles, respectively. The spherical harmonics

are eigenfunctions of the operators J2 and Jz (the projection of the angular momentum J on

the z-axis)

J
2Y m
J (θ, φ) = J(J + 1)�2Y m

l (θ, φ), (1.31)

JzY
m
l (θ, φ) = m�2Y m

l (θ, φ). (1.32)

It is convenient to use spherical coordinates

▽
2
R =

1

R2
∂

∂R
(R2

∂

∂R
)−

J2

�2R
. (1.33)

The equation (1.20) becomes

−
�
2

2µ

d2ΦJ(R)

dR2
+

�
�
2

2µ

J(J + 1)

R2
+ V (R)

�
ΦJ(R) = EΦJ(R), (1.34)
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d2ΦJ(R)

dR2
+
2µ

�2

�
E −

�
�
2

2µ

J(J + 1)

R2
+ V (R)

	�
ΦJ(R) = 0. (1.35)

This equation is similar to the one dimensional Schrödinger equation, except that the po-

tential is replaced by an effective potential

Veff(R) = −
�
2

2µ

J(J + 1)

R2
+ V (R), (1.36)

for J �= 0 , the first term in the effective potential represents a centrifugal barrier that tends

to push the molecule away from the force center. The solutions of the radial wave equation

(1.34) are the radial wave functions. This solution depends on the sign of the energy E.

Thus, For E < 0, the system forms a quasi-molecule, and the energy quantum states are

called bound states. We denote their wave functions as ΦJ(R) = Φv,J,Λ(R). On the other

hand, for E > 0, the system belongs to a continuum of energy E = ǫ, and the energy

quantum states in this case are called free states. Their wave functions can be denoted as

ΦJ(R) = Φǫ,J,Λ(R).

1.4 Molecular states and allowed transitions

The total angular momentum is given by J = L + S, where L represents the azimuthal

quantum number and S represents the spin quantum number. In the case of a diatomic

molecule, the quantum state is denoted as 2S+1Λ±, where (2S + 1) is the multiplicity of

the molecular state. The plus sign (+) indicates that the electronic wave function remains

unchanged under reflection. Conversely, if it changes, we use the minus sign (−). Λ represents

the absolute value of ML, which corresponds to the projection of L, where Ml = 0 ± 1,±2,

......, ±L and

Λ = |Ml| =






0⇐⇒ Σ

1⇐⇒ Π

2⇐⇒ ∆

.

.

.

|L|






.

The electronic states of diatomic molecules are denoted by letters

15



• X denotes the ground state.

• A,B,C,..... represent the excited states with the same multiplicity as the ground state.

• a,b,c,..... represent the excited states with a different multiplicity from the ground

state.

Not all transitions between molecular states are allowed. There are selection rules or

transition rules that constrain the possible transitions between quantum states. These rules

are as follows:

• ∆J = 0,±1, except for transitions where both initial and final states have J = 0.

• ∆S = 0, allowing transitions between states with the same multiplicity.

• ∆Λ = 0,±1.

• The molecular states involved in the transition should have the same sign.

These selection rules determine which transitions are permitted between different mole-

cular states.

16



Chapter 2

Theoretical study of argon hydrid

In this chapter, we present in detail the method of construction of the potential energy curves

V (R) for the ground and excited states of ArH+. Then, we explain the adapted method for

the construction of the permanent and transition dipole moments, which connect the ground

and excited molecular states of the ArH+ cation. Finally, we aim to assess the quality of our

constructed potentials as well as the permanent and transition dipole moments by calculating

rotational-vibrational levels and radiative lifetimes.

2.1 Potential energy curves

The information provided by the ion-atom interaction potential is used in the theoretical

calculations and interpretations of the majority of phenomena involving ions in atomic gases.

However, the potential energy curves for the electronic excited states can exhibit a wide

range of shapes. These curves can be strongly bound, very shallow, or even entirely repulsive.

Additionally, they can display multiple potential wells.

2.1.1 ArH+ systems

At thermodynamic equilibrium, when an argon atom in its ground state Ar(1S) interacts

with a hydrogen ion H+, the two species approach each other through the ground state

X1Σ+, as described by equation (2.1). Whereas, they rather form a quasi molecule in one of

the four C1Σ+, D1Π, c3Σ+ and d3Π excited molecular states when the argon atom is in the

first excited state Ar(1,3P ) and interacts with hydrogen ion H+, as shown in equation (2.2).

However, a quasi molecular system is formed when an argon ion Ar+(2P ) and hydrogen atom

H(2S) interact mutually along one of the four possible molecular symetries, namely, A1Σ+,

17



B1Π, a3Σ+, and b3Π, as depicted in equation (2.3).

Ar(1S) + H+ −→ ArH+(X1Σ+), (2.1)

Ar+(2P ) + H(2S) −→ ArH+






A1Σ+

B1Π

a3Σ+

b3Π






, (2.2)

Ar(1,3P ) + H+ −→ ArH+






C1Σ+

D1Π

c3Σ+

d3Π






. (2.3)

In the present study, our focus is on the singlet molecular states X1Σ+, A1Σ+, B1Π, C1Σ+

and D1Π, as transitions occur between the states of the same parity.

2.1.2 Potential construction

The interaction potentials V (R) used in the required calculations do not have an accurate

analytical form. Instead, they are constructed in three internuclear separation domains:

• short region 0 ≤ R ≤ Rs;

• intermediate region Rs ≤ R ≤ Rl;

• long region Rl ≤ R ≤ ∞.

Here, Rs and Rl denote respectively the internuclear distances of the first and last known

points of the intermediate region. To ensure a smooth and appropriate connection between

these three regions, the cubic spline numerical interpolation method is employed. This

method is known to be highly effective for handling such curve constructions [11].

Short region

In this region, where 0 ≤ R ≤ Rs, the forces are generally repulsive. They are mainly due to

the overlapping of the electron clouds of the two species and occur especially when they are

sufficiently close together. When the distance between their nuclei decreases, the interaction
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Table 2.1: Short-range constant parameters (in a.u.) that appear in the Born-Meyer poten-
tials (2.4).

Molecular Short range
state α β
X 1Σ+ 62.35 3.635
A 1Σ+ 59.77 3.419
B 1Π 60.55 3.456
C 1Σ+ 61.06 3.527
D 1Π 61.48 3.548

potential experiences a substantial increase. To describe this repulsive interaction potential,

a simple and approximate formula known as the Born-Mayer potential [12] is employed

VSR = α exp(−βR), (2.4)

where α and β are the Born-Mayer constant parameters that need to be determined for each

molecular state of ArH+. Assuming that the potential V (R) and its first derivatives are

continuous and well-known at R = Rs, the following relationships allow us to compute these

parameters

α = V (Rs) exp(+βRs), (2.5)

and

β =
−1

V (Rs)

�
dV (R)

dR

	

R=Rs

. (2.6)

The derivative of V (R) at R = Rs is determined numerically using the cubic spline method.

The computed values of α and β are listed in Table 2.1.

Long region

In this region, namely for Rl ≤ R ≤ ∞, the potential is generally attractive due to the

interactions between the electric dipole moments. At long distances, when the electronic

overlap is negligible, there are three contributions to these interaction forces: electrostatic,

inductive, and dispersive. The potential here can be expanded into a series of inverse powers,

also known as the van der Walls potential given by the relationship

VLR(R) ∽ −
�

n

Cn
Rn

, (2.7)
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Table 2.2: Compilation of the static multipolar polarizabilities of ground hydrogen and argon
(in a.u.). The adopted quadrupolar and octupolar polarizabilities are marked with ∗.

System Cd Cq Co Refs.
Ar+ in H 4.50 15.0∗ 131.25∗ [17]

4.475 14.93 130.8 [19]

H+ in Ar 11.062 51.862 536.38 [20]
11.143 51.844 534.85 [21]
11.08 52.80∗ 536.4∗ [18]

∗the adopted quadrupolar and octupolar polarizabilities.

where Cn are the dispersion coefficients. It is important to note that this analytical form

is applicable for distances greater than a specific value, denoted as RLR called the Le Roy

radius. For the purpose of our work, we will consider the first three coefficients, thus the

relationship becomes

VLR(R) = −

�
C4
R4

+
C6
R6

+
C8
R8

	
, (2.8)

with C4 =
1
2
Cd, C6 =

1
2
Cq, C8 =

1
2
Co, are the usual dispersion coefficients which are the

halves of the static electric dipolar Cd, quadrupolar Cq, and octupolar Co polarisabilities of

the involved neutral species, namely, H or Ar. For the dipole polarizability, we have adopted

the values proposed by NIST, i.e., Cd = 4.50 for hydrogen and Cd = 11.23 for argon [13].

Both data can be compared to the recommended values 4.50456±0.00003 and 11.083±0.007

from Schwerdtfeger and Nagle [14] and with the measured values Cd = 4.49974 of Miller and

Bederson [15] and Cd = 11.22923 of Olney et al [16], respectively. The adopted values of

the quadrupole and octupole polarizabilities are taken from references [17,18], some further

published polarizabilities and the adopted values are assembled in Table 2.2.

Intermediate region

The internuclear distance in this case is in the range Rs ≤ R ≤ Rl. The interactions between

atoms and ions are predominantly electrostatic and obey Coulomb’s law. This region plays a

fundamental role in constructing the potential energy curves for the other two regions. The

potential energy curves were constructed using ab-initio points generated by Stolyarov at

internuclear distances ranging from 0.5 to 12a0, where a0 represents the Bohr radius. Some

of the ab-initio values are listed in Table 2.3. The ab-initio points offer valuable insights into

the behavior and characteristics of the system within the intermediate region. They serve

as a crucial basis for constructing precise representations of the interaction potential in this
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Table 2.3: Some values of ab-initio points (in a.u.), for the singulet states of the ArH+ system.

Distance States
R ( a.u.) X 1Σ+ A 1Σ+ B 1Π C 1Σ+ D 1Π
0.5 −516.921551 −516.163823 −516.223564 −516.151357 −516.191782
1.0 −525.210143 −524.506963 −524.609518 −524.453330 −524.542299
1.5 −526.834249 −526.150607 −526.235250 −526.101875 −526.211267
2.0 −527.164648 −526.507328 −526.655238 −526.496111 −526.552823
2.5 −527.203576 −526.650895 −526.817874 −526.579155 −526.605272
3.0 −527.177808 −526.756736 −526.898801 −526.577737 −526.594728
3.5 −527.143584 −526.837830 −526.941923 −526.569025 −526.578546
4.0 −527.114011 −526.895448 −526.963921 −526.566861 −526.568371
4.5 −527.091457 −526.933058 −526.974405 −526.570382 −526.565578
5.0 −527.075603 −526.955967 −526.978971 −526.575882 −526.569747
5.5 −527.065341 −526.968908 −526.980697 −526.581070 −526.579238
6.0 −527.059226 −526.975574 −526.981171 −526.587381 −526.590384
6.5 −527.055793 −526.978668 −526.981157 −526.598783 −526.600063
7.0 −527.053896 −526.979947 −526.980990 −526.607610 −526.607286
7.5 −527.052820 −526.980395 −526.980803 −526.613915 −526.612378
8.0 −527.052173 −526.980500 −526.980640 −526.618387 −526.616173
8.5 −527.051759 −526.980479 −526.980510 −526.621725 −526.619357
9.0 −527.051477 −526.980421 −526.980409 −526.624107 −526.621886
10.0 −527.051120 −526.980300 −526.980266 −526.625408 −526.623505
12.0 −527.050784 −526.980138 −526.980101 −526.621480 −526.619709

region.

2.1.3 PEC’s representation and caracterisation

The constructed ArH+ potential energy curves of the five molecular states X1Σ+, A1Σ+,

B1Π, C1Σ+, and D1Π are shown in Fig. 2-1. These curves can be characterized by some

spectroscopic constants, such as dissociation energy (potential well-depth)De, the equilibrium

distance Re, and the hump h. We determined these parameters for each symmetry using our

constructed curves and all the results are gathered in Table 2.4 and compared with the

previous published data when available.

• Ar(1S) + H+ interaction

The ground state X1Σ+ has a very shallow well. Its depth is found to be De =

33 779.3 cm−1, corresponding to an equilibrium distance of Re = 1.277 Å. These results

are in excellent agreement with the values De = 33 391.36 cm−1 and Re = 1.279 Å of

Stolyarov and Child [22].

• Ar(1,3P ) + H+ interaction
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Table 2.4: Spectroscopic data of the constructed ArH+ potentials.

Molecular Equilibrium Well depth Hump
state distance Re

�
Å
�

−De ( cm
−1) h ( cm−1) Refs.

X 1Σ+ 1.277 33 779.3
1.279 33 391.36 [22]
1.268 34 608.4 [23]
1.286 31 374.97 [24]

1.244± 0.003 33 375.37± 432.77 [25]
1.280 32 460 [26]

A 1Σ+ 4.286 31.0457
B 1Π 3.285 192.049
C 1Σ+ 5.172 761.211 123.708
D 1Π 5.204 722.278 123.706

The first excited states A1Σ+ and B1Π are both found to be repulsive. The well-depth

of the A1Σ+ state is De = 31.0457 cm−1, and for the B1Π state it is De = 192.049 cm−1,

with equilibrium distances of Re = 4.286Å and Re = 3.285Å, respectively.

• Ar+(2P ) + H(2S) interaction

The second excited states C1Σ+ and D1Π are metastable, exhibiting shallow local

minima at R ≈ 2.55− 2.65a0. The well-depth of the C1Σ+ state is De = 761.211 cm−1,

and for the D1Π state it is De = 722.278 cm−1. The equilibrium distances for these

states are Re = 5.172Å and Re = 5.204Å, respectively. Additionally, we note the

presence of humps at h = 123.708 cm−1 and h = 123.706 cm−1 for the C1Σ+ and D1Π

states, respectively, both located at R = 11.95a0.

2.2 Permanent and transition dipole moments

The dipole moment as a function of internuclear distance describes the intramolecular elec-

tronic charge distribution at different bond lengths and provides information on the changes

in the corresponding electronic structure.

2.2.1 Dipole moment’s construction

To be able to perform the required numerical calculations, we also need the permanent dipole

moment (PDM) d(R) and the transition dipole moments (TDMs) D(R) which connect the

lower electronic state to the upper state. They are constructed with a similar numerical
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Figure 2-1: ArH+ potential-energy curves, as constructed from the Stolyarov and Child data
points [22].

procedure to that reported previously for potential energy curves. Therefore, we adopted

over the internuclear interval 0 ≤ R ≤ 12 the calculated ab-initio data points computed by

Stolyarov and Child [22]. Some values of these data are listed in Table 2.5

• For free-bound transitions: (X1Σ+ → X1Σ+)

The permanent dipole moment (PDM) data points are connected to the linear form at

short range,

d(R) = a+ bR, (2.9)

where a and b are two constants (a = 0.1123, b = −0.5785) and to the formula at long

range

d(R) =
R

2
−
2Cd
R2

. (2.10)

• For free-bound transitions (A→ X, B → X, C → X and D→ X).

In this case, for long distances, the transition dipole moments data points are connected

to the formula

D(R) = D∞ +
A

Rn
. (2.11)

This formula has been proposed by Chu and Dalgarno [27], where A is a constant

parameter and D∞ is the asymptotic value of D(R), in order to obtain their values, we
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Table 2.5: Some values of the ab initio points of the transition dipole moments, used for the
constructions of the singulet states of the system ArH+.

Distance States
R( a.u.) A 1Σ+ ← X 1Σ+ B 1Π← X 1Σ+ C 1Σ+ ← X 1Σ+ D1Π← X 1Σ+

1.5 0.000 0.412 −1.024 0.781
2.0 0.000 −0.071 −0.044 0.857
2.5 0.868 −0.088 0.000 0.870
3.0 1.304 −0.100 0.000 0.880
3.5 1.528 −0.105 0.000 0.873
4.0 1.685 −0.103 0.000 0.851
4.5 1.785 −0.099 0.000 0.836
5.0 1.784 −0.085 0.000 0.877
5.5 1.646 −0.071 0.015 0.901
6.0 1.386 −0.057 0.945 0.846
6.5 1.079 −0.044 1.335 0.782
7.0 0.794 −0.033 1.421 0.730
7.5 0.563 −0.023 1.375 0.684
8.0 0.391 −0.017 1.368 0.646
8.5 0.267 −0.011 1.120 0.604
9.0 0.180 −0.008 0.800 0.566
10.0 0.080 −0.004 0.609 0.505
12.0 0.015 −0.001 0.465 0.421

have fitted our computed long-range TDM data points to a form similar to the previous

equation. For the Σ − Σ transitions our fitting yields D∞ = 0.385901, A = 916671,

n = 6.60108 and for the Σ−Π transitions, D∞ = 0.15619, A = 11.5651, n = 1.52006.

In the short-range region, the transition dipole moments D(R) follow the linear form

D(R) = p + qR, (2.12)

where p and q are two parameters determined by the continuity conditions of the D(R)

function. We have found for the A→ X transition (p = 4.8704, q = −6.4772), for the

B → X transition (p = 0.6712, q = −3.9785), for the C → X transition (p = −0.4811,

q = −0.1084), and for the D→ X transition (p = 1.2099, q = 0.5490).

2.3 PECs and TDMs assessments

We assess the quality and accuracy of the constructed PECs and TDMs by calculating the

rotational-virational energy levels and their radiative lifetimes.
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Figure 2-2: (a) The ArH+ PDM relative to X−X transition. (b) ArH+ TDMs in connection
with the X ← A, X ← B, X ← C, and X ← D transitions.
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2.3.1 Ro-vibrational energy levels

Calculating the rotational vibrational states is one of the methods used to assess the precision

of the potentials we have constructed. The ro-vibrational energy E(v, J) = Ev,J of a dimer

is characterized by v and J , which are the vibrational and rotational quantum numbers,

respectively. This energy is easily obtained by solving numerically the radial wave equation

(1.34) which rewritten as

−
�
2

2µ

d2

dR2
Φv,J(R) +

��
�
2

2µ

J(J + 1)

R2
+ V (R)

	�
Φv,J(R) = Ev,JΦv,J(R). (2.13)

In the case when a diatom is rotating and vibrating at the same time, the rovibrational

energy can be presented by the sum of two terms

E(v, J) = G(v, J = 0) + Fv(J), (2.14)

where G(v, J = 0) is the vibrational energy affected by vibration, it is expressed in terms of

J(J + 1) power as follow [28]

Fv(J) = BvJ(J + 1)−Dv. [J(J + 1)]
2 +Hv [J(J + 1)]

3 + .... (2.15)

where Bv is the v-dependent effective rotation constant associated with each vibrational level.

Dv and Hv are the centrifugal distortion constants.

Rotationless levels

In the case of bound states, the potential V (R) exhibits a minimum at the equilibrium

distance Re, which is defined by V (Re) = −De. In this case, the potential can be expanded

in a power series of (R−Re) around (R = Re), yields,

V (R) = −De + (R−Re)

�
dV (R)

dR

	

R=Re

+
1

2
(R −Re)

2

�
d2V (R)

dR2

	

R=Re

+ ... (2.16)

Considering that we truncate the expansion at the second order, we obtain,

V (R) = −De +
1

2
k(R−Re)

2, (2.17)
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where k =
�
d2V (R)
dR2

�

R=Re
. If the rotation of the diatom is negligible, the purely radial equation

(2.13) simplifies to that of a harmonic oscillator, and the vibrational energy can be expressed

as [29]

Gvib = G(v, J = 0) = �ωe

�
v +

1

2

	
, (2.18)

where

ωe =

�
k

µ
(2.19)

is the vibrational pulsation. In the harmonic oscillator approximation, the vibrational levels

are equidistant. However, for real molecules, the energy levels are not equally spaced due to

the anharmonicity of the potential curve. The highest levels are closer to each other, and the

vibrational energy in this case is best described by a series in power of
�
v + 1

2

�

Gvib = �ωe

�
v +

1

2

	
− ωexe

�
v +

1

2

	2
+ ωeye

�
v +

1

2

	3
+ ... (2.20)

with ωexe and ωeye are the first anharmonicity coefficients [30].

Vibrationless levels

If the nuclei are fixed at a distance R, the quantum state of the system is described by an

angular wave function. The equation (1.20) is reduced to the equation of a rigid rotator

�
J
2

2µR2
−Erot

	
Y m
J (θ, φ) = 0. (2.21)

This equation yields the following

J
2Y m
J (θ, φ) = J(J + 1)�2Y m

J (θ, φ) , (2.22)

= 2µR2ErotY
m
J (θ, φ) . (2.23)

The rotational energies are then expressed by

Erot =
�
2

2µR2
J(J + 1) (2.24)

= BJ(J + 1), (2.25)
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Table 2.6: Rotationless-vibrational energy levels of argonium 36ArH+ in units of cm−1.

v X 1Σ+ A 1Σ+ B 1Π C 1Σ+ D 1Π
0 −32 424.701 −61.363 −187.036 −779.221 −739.390
1 −29 809.441 −13.703 −78.705 −462.728 −421.639
2 −27 313.744 −1.574 −23.275 −181.909 −145.584
3 −24 934.848 −3.791
4 −22 669.965
5 −20 516.329
13 −7 014.710
15 −4 647.520
20 −790.945
25 −13.112
26 −2.637

with

B =
�
2

2µR2
. (2.26)

2.3.2 Results

With some adequate computational modifications, we adopted the ��������� �	
	� ���
	�

(ALF) subroutine, implemented in the LeRoy code LEVEL, fully described in [31]. This

subroutine generates, in particular, the wave functions and bound energies of each (v, J)

level needed in the computation of the requested transition matrix elements described by the

equation (2.29).

We have calculated the rotationless-vibrational energy levels of ArH+, which are listed in

Table 2.6. The calculations showed that the X 1Σ+ potential holds up 27 vibrational levels,

whereas the A 1Σ+, B 1Π, C 1Σ+ and D1Π states can only accommodate a very limited

number of vibrational levels: 3, 4, 3, and 3, respectively.

2.3.3 Radiative lifetime

Among the best methods to assess the accuracy of our adopted potentials and dipole moments

is the determination of the radiative lifetimes of the rotational-vibrational states. Radiative

lifetime τ is the characteristic time that a molecule remains in its excited state before re-

turning to the ground state by emitting a photon. It is defined by the inverse of the total

spontaneous emission rate A (v′J ′Λ′) [35]
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Table 2.7: Rotational-vibrational states relative to both argonium isotopes 36ArH+ and
38ArH+ in units of cm−1.

v J 36ArH+ 38ArH+ Refs.
0 0 −32 424.701 −32 425.663 31 101± 242 [32]

32 066.48 [33]
0 5 −32 115.987 −32 117.386
1 0 −29 809.441 −29 812.189 28 536± 242 [32]

29 471.34 [33]
1 7 −29 255.304 −29 258.819
2 8 −26 628.733 −26 634.027
3 10 −23 930.705 −23 937.854
5 20 −17 050.469 −17 062.994

Table 2.8: Computed and measured rotational lines for J = 1− 0 and J = 2− 0 of 36ArH+

and 38ArH+ in MHz.

Transition 36ArH+ 38ArH+ Refs.
J = 1← 0 617 704.99 616 828.47

617 525.226± 0.151 616 648.762± 0.083 [34]
617 525.23± 0.15 616 648.76± 0.08 [4]
617 525.149± 0.020 616 648.707± 0.020 [49]

J = 2← 1 1 234 969.74 1 233 217.96
1 234 602.75± 0.30 1 232 851.00± 0.04 [4]

τ =
1

A (v′J ′Λ′)
. (2.27)

We adopted the notation of simple prime (′) for the upper states and double prime (′′) for

the lower states. Supposing the approximation on the angular momenta , J = J ′ ≃ J ′′, the

total spontaneous emission rate corresponding to the transition from the upper bound levels

(v′JΛ′) of the excited states to all the lower continuum (ǫ′′JΛ′′) and bound levels (v′′JΛ′′) of

the ground state X1Σ+ is calculated quantum-mechanically by the expression

A (v′JΛ′) =
32

3

�π
c

�3 2− δ0,Λ′+Λ′′

2− δ0,Λ′

×

�� ∞

0

ν3v′JΛ′,ǫ′′JΛ′′M
2
v′JΛ′,ǫ′′JΛ′′dǫ

′′ +
�

v′′

ν3v′JΛ′,v′′JΛ′′M
2
v′JΛ′,v′′JΛ′′

�

. (2.28)

where Mv′JΛ′,ǫ′′JΛ′′ represents the transition matrix elements defined as

Mv′JΛ′,ǫ′′JΛ′′ =

� ∞

0

ψ′v′JΛ′ (R)D (R)ψ′′ǫ′′JΛ′′ (R) dR. (2.29)
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Table 2.9: Compilation of the lifetime values, in ns, computed for the rovibrational states.

C 1Σ+ D 1Π
v J = 0 J = 1 J = 2 J = 3 J = 4 J = 0 J = 1 J = 2 J = 3 J = 4
0 9.66 9.69 9.83 10.24 11.06 10.17 10.13 10.11 10.31 10.86
1 3.67 3.60 3.45 3.21 2.85 4.64 4.60 4.47 4.24 3.83
2 2.26 2.26 2.26 2.26 2.28 3.34 3.34 3.35 3.37 3.40

In this equation (2.28), the first term with the integral represents the probability of the spon-

taneous bound-free emission, while the second term with the sum represents the probability

of the spontaneous bound-bound emission. Here, c denotes the velocity of light in vacuum

and δ is the well known Kronecker symbol. Nonethless, the total spontaneous emission rate

is expressed by

−
dN

N
= A (v′JΛ′) dt. (2.30)

This relationship indicates that the number of molecules in the initial state (v′JΛ′) decreases

exponentially over time

N = N0 exp(
−t

τ
). (2.31)

2.3.4 Results

The individual radiative lifetimes of the upper states involved in the transitions X 1Σ+ ←

C 1Σ+ and X 1Σ+ ← D 1Π towards the deeper lower ground state X 1Σ+ have been deter-

mined using the expressions (2.27) and (2.28) . Our results are listed in Table 2.9, such values

might be a useful probe for assessing the accuracy of the ArH+ potential sets. The mean

lifetime τ is computed with

1

τ
=
1

3
AX←C (v

′
max00) +

2

3
AX←D (v

′
max01) . (2.32)

According to the calculations, the highest rotationless vibrational states are both close

to the dissociation limit. From Table 2.9, the present calculations lead to τ ≃ 2.88 ns.

Unfortunately, no published results were found in the literature to contrast with ours.
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Chapter 3

Radiative association and charge

transfer

The interpretation of radiative association (RA) and radiative charge transfer (RCT) processes

may now be done using the potential energy curves and transition dipole moments that have

been accurately constructed in the previous chapter (chapter 2).

3.1 Radiative association

Radiative association (RA) has been considered for the first time as one of the interstellar

molecule formation mechanisms by Swings in 1942 [36, 37]. RA is currently described as a

reactive process in which two smaller species, A and B, collide to form a larger molecule.

The so-called collision complex AB∗ is stabilized by spontaneous emission of radiation hν

A+ B −→ AB∗ −→ AB+ hν. (3.1)

This process is schematically illustrated in Fig. 3-1. RA is believed to play a crucial role in

the synthesis of molecular species observed in diverse interstellar environments. In general,

the formation of molecules through radiative association involves two main mechanisms:

resonant and direct (non-resonant). The direct process occurs when the kinetic energy of the

colliding particles is high enough to overcome any barrier (potential or centrifugal) present

in the initial electronic state, and the spontaneous emission brings the system directly from

the continuum to a bound level. On the other hand, the resonance contribution arises from

quantummechanical tunneling through the barrier, where the colliding particles form a quasi-
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Figure 3-1: Schematic of radiative association process.

bound state. This thesis primarily concentrates on the direct radiative association and the

main interest is to obtain the rate coefficients of RA.

The radiative association of the argon atoms Ar and hydrogen ions H+ to form the ArH+

ion occurs via one of the following processes:

1. ArH+ formation in the ground state X1Σ+ via RA of Ar(1S) atom and H+ ion, in

free-bound transitions within the same electronic state X1Σ+, the process may be rep-

resented by

Ar(1S) + H+ −→ ArH+
�
X1Σ+

�
−→ ArH+

�
X1Σ+

�
+ hν. (3.2)

2. In transitions from quasi-bound levels of an excited electronic state C1Σ+ or D1Π to the

bound levels of the ground electronic state X1Σ+, ArH+ formation via RA of Ar(1,3P )

atom and H+ ion, may be represented by

Ar(1,3P ) + H+ −→ ArH+
�
C1Σ+

�
−→ ArH+

�
X1Σ+

�
+ hν (3.3)

Ar(1,3P ) + H+ −→ ArH+
�
D1Π

�
−→ ArH+

�
X1Σ+

�
+ hν. (3.4)

These transitions occur into bound vibrational levels of the molecular states, and each

of these reactions consists of two steps: the formation of the collision complex in the ro-

tational quasi-bound levels and stabilization of the association by radiative association

to bound rotation-vibration states by emitting a photon. The energy of the emitted

photon for the radiative association into a bound vibrational state with vibrational
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quantum number v′′ and energy ǫ′′ measured from the dissociation limit is given by

hν = ǫ′ − ǫ′′ + Etr. (3.5)

Here, ǫ′ represents the initial energy of relative motion in the center of mass frame,

ǫ′′ represents the final energy, and Etr is the transition energy. The initial collision

complex in the excited state, based on the potentials C1Σ+ and D1Π is stabilized via

radiative electronic transition to bound levels of the ground state X1Σ+. We present

our calculations of the rate coefficients for the reactions (3.2) and (3.3) using a fully

quantum mechanical method. To do so, we require the cross section for radiative

association, which depends on the possibilities to form and stabilize the association

complex via radiative transition to a bound state.

3.1.1 Cross sections and rate coefficients

The calculation of the radiative association cross-section can be performed using different

approaches, including classical or quantum dynamics. In this work, we applied the perturba-

tion theory method to determine the RA cross-section. This approach is based on the dipole

approximation for the interactions between the electric field and the molecular system. Un-

der such approximations, the cross sections effective in radiative association can be obtained

using the following expression

Qa(ǫ
′) =

64π5

3c3k2

Jmax�

J ′=0

vmax�

v′′=0

ν3
�
J ′M2

v′′J ′Λ′′;ǫ′J ′−1Λ′ + (J
′ + 1)M2

v′′J ′Λ′′;ǫ′J ′+1Λ′

�
, (3.6)

where ǫ is the energy of the initial free state, Λ is the axial component of the electronic angular

momentum, and v and J are the vibrational and rotational quantum numbers, respectively.

c is the velocity of light and k =
�
2µǫ′2/� denotes the wave number of the colliding species

of reduced mass

µ =
MArMH

(MAr +MH −me)
. (3.7)

In equation (3.6) , the transition matrix elements M2
v′′J ′Λ′′;ǫ′J′Λ′ are taken between the higher

free states (ǫ′J ′Λ′) and the lower bound states (v′′J ′′Λ′′).

To accurately determine the mean cross sections Qa (ǫ
′) associated with RA, the statistical

weight w of the involved molecular transitions is considered. The values of w are chosen as

follows: w = 1/2 for the X ← X transitions, w = 1/6 for the X ← C transitions, and
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w = 2/6 for the X ← D transitions. Consequently, the mean cross sections can be computed

using the formula

Qa (ǫ
′) =

1

2
Qa (X ← X) +

1

6
Qa (X ← C) +

2

6
Qa (X ← D) . (3.8)

After obtaining the cross-section for radiative association, it can be averaged over aMaxwellian

velocity distribution to derive a temperature-dependent function known as the rate coefficient

α (T ) . The calculation of the rate coefficient α (T ) at temperature T can be performed using

the following expression

αa(T ) =

�
8

πµ

	1/2�
1

kBT

	3/2 � ∞

0

Q
a
(ǫ′)ǫ′ exp

�
−

ǫ′

kBT

	
dǫ′, (3.9)

in this equation (3.9), kB is the Boltzmann constant, µ denotes the reduced mass, and T

represents the absolute temperature of the gas. The integral is performed over the Maxwellian

velocity distribution. The statistically averaged value of the RA rate coefficients is determined

by the relationship

αa(T ) =
1

3
αX←C(T ) +

2

3
αX←D(T ), (3.10)

where here, αX←C(T ) and αX←D(T ) represent the rate coefficients for the transitions X ← C

and X ← D, respectively. The values of 1/3 and 2/3 are the statistical weights corresponding

to the molecular transitions.

3.2 Radiative charge transfer

The radiative charge transfer (RCT) is a phenomenon observed when an ion collides with a

neutral atom. When the ion approaches the atom closely enough, there is a possibility for

the atom’s valence electron to jump to the ion, resulting in the transfer of the ionic charge

to the atom, accompanied by photon emission.

A + B+ −→ A+ + B+ hν. (3.11)

RCT process happens when electromagnetic radiation interacts with atoms, ions, or mole-

cules. It is a crucial process in the fields of atomic and molecular physics, and it finds

applications in plasma physics, astrophysics, and atmospheric science.

This process occurs, in particular, with the ionic ArH+ system during the collisions from
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the A 1Σ+ and B 1Π rotational continuum states to the rotational continuum of the ground

state X 1Σ+. The RCT process can be represented by the following reaction

Ar
�
1S
�
+H+ −→ Ar+

�
2P
�
+H

�
2S
�
+ hν. (3.12)

The energy of the emitted photon hν is determined by the expression

hν = ǫ′ − ǫ′′ + Etr, (3.13)

where ǫ′ is the initial free energy of the relative motion of the colliding system, ǫ′′ is its final

free energy, and Etr = V ′ (∞)−V ′′ (∞) is the transition energy. If k′ and k′′ are the entrance

and exit wave numbers, respectively, defined as






k′ =
�
2µ [ǫ′ − V ′ (∞)]

k′′ =
�
2µ [ǫ′′ − V ′′ (∞)− hν].

(3.14)

3.2.1 Cross sections and rate coefficients

The quantal cross section for the present process (3.12) is given by [38,39]

d

dǫ′′
Qc (ǫ

′, ǫ′′) =
8

3

� π
k′

�2
(ǫ′ − ǫ′′ + Etr)

3
�

J′

�
J ′M2

J ′,J ′−1 + (J
′ + 1)M2

J ′,J ′+1

�
, (3.15)

where MJ ′,J ′′ represents the transition matrix elements defined as

MJ′,J ′′ =

� ∞

0

ψ′J ′ (R)D (R)ψ′′J ′′ (R) dR. (3.16)

Here, ψ′J ′ (R) and ψ
′′
J ′′ (R) are the upper and lower free wave functions, respectively, J

′ is the

initial rotational angular momentum quantum number, and J ′′ = J ′±1 is the final rotational

quantum number.

The total cross section for radiative charge transfer Qc (ǫ
′) at energy ǫ′ is obtained by

integrating equation (3.15) over ǫ′′

Qc (ǫ
′) =

� ∞

0

d

dǫ′′
Qc (ǫ

′, ǫ′′) dǫ′′. (3.17)

One should finally note that the total cross-sections Qc (ǫ
′) effective in RCT are obtained as
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the mean value computed by the statistically weighted sum

Qc (ǫ
′) =

1

3
Qc (X ← A) +

2

3
Qc (X ← B) . (3.18)

The full quantum-mechanical description of the RCTmechanisms implies the computation

of the temperature-dependent rate coefficients [40]

αc (T ) =

�
8

πµ

	1/2� 1

kBT

	3/2 � ∞

0

Qc (ǫ
′) ǫ′ exp

�
−

ǫ′

kBT

	
dǫ′, (3.19)

where kB is the Boltzmann constant and T denotes the absolute temperature of the gas. This

integral (3.19), performed over the Maxwellian velocity distribution, computes the mean of

the energy-dependent RCT cross sections, Qc (ǫ
′) . The statistically averaged value of the

RCT rate coefficients is determined by the following relationship

αc(T ) =
1

3
αX←A(T ) +

2

3
αX←B(T ). (3.20)

3.3 Results and discusions

Using the well-established PECs, PDM, and TDMs, we have performed quantum mechan-

ical calculations to obtain the cross sections and rate coefficients for RA and RCT. The

X 1Σ+ ← X 1Σ+ energy-dependent cross sections Qa (ǫ) , which are effective in ArH+ radia-

tive association, have been calculated for two isotopologues, 36ArH+ and 38ArH+, and are

presented in Fig. 3-2(a). The plots show that the resonance peaks match perfectly in position,

particularly at higher energies, indicating that the isotopic effect is negligible. In addition,

the computed cross sections Qa (ǫ) , in connection with the transitions X1Σ+ ← C1Σ+ and

X1Σ+ ← D1Σ+, are presented in Fig. 3-2(b). The X1Σ+ ← C1Σ+ transitions seem to be

definitely the most probable and stronger than those due to the X1Σ+ ← D1Σ+ transitions.

More precisely, the quasibound rovibrational levels of the initial states are primarily responsi-

ble for the observed resonance structures. However, due to the smallness of the ArH+ reduced

mass, only a very limited number of resonance peaks can be predicted, and these resonance

peaks are strongly dependent on the constructed potentials [41].

Moreover, Fig. 3-3 illustrates the RCT cross sections Qc (ǫ) rising from the allowed tran-

sitions X1Σ+ ← A1Π and X1Σ+ ← B1Π. The involved excited potential curves support

extremely weak quasibound vibrational states, as seen in Table 2.6. This may explain the re-
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duced number of resonance structures in the corresponding cross sections and the dominance

of the X1Σ+ ← A1Π transitions compared to those of X1Σ+ ← B1Π [37]. At lower collision

velocities, the ArH+ system does not have enough kinetic energy to approach the potential

barrier of the ground molecular state X 1Σ+. But, above the energy 10−8 a.u., the system

is able to penetrate the potential barrier and the regions where the X 1Σ+ state contains

a deep attractive well. In this region, there is essentially a sharp rise in the cross sections,

and therefore numerous resonance lines appear, which are all caused by the rovibrational

quasibound states of the ArH+ molecule in the X 1Σ+ electronic state.

Having now determined the quantal cross sections Qa (ǫ) and Qc (ǫ) , it is hence possible

to proceed with the computation of the temperature-dependent rate coefficients effective in

radiative association and charge transfer, αa (T ) and αc (T ) , respectively. With equation

(3.19), the RA and RCT rates are computed in the temperature range of 10− 10 000K, and

the numerical results are compiled in Tables 3.1 and 3.2. The former Table lists the generated

X1Σ+ ← X1Σ+ data for both argon isotopes 36ArH+ and 38ArH+, whereas the latter table

presents the RA and RCT results arising from the first and second excited transition sets.

The statistically averaged values of the rate coefficients can be further determined using

the relationships (3.10) and (3.20). These values are presented in Table 3.2 as well. Firstly,

we found a lack of published data regarding argonium’s radiative association and charge

transfer. Nevertheless, for the purpose of comparison, Kraemer et al [37] published their

graphical results of the rate coefficients αa (T ) for the formation of the ionic dimer ArH+ in

the ground state X 1Σ. Our graphical estimation from Fig. 9 of Ref. [37] yields the values

αa (10) ≃ 5.6 × 10−19, αa (100) ≃ 3.8× 10−19, and αa (1000) ≃ 2.3× 10−19 cm3 s−1 for three

particular temperatures. Although the estimated RA rate coefficients are not in this case

exactly the same, the discrepancies are important, but the magnitudes are quite similar.

On the other hand, due to the lack of published RCT data on ArH+, we had to compare

our results with those obtained from collisions among species belonging to families close to

Ar/Ar+ and H+/H. Indeed, the RCT rates at T = 300K in connection with interactions

of Ar with He+ and Ne with He+ yielded the values αc (300) ≃ 9.86 × 10−15 in Babb and

McLaughlin [42] and αc (300) ≃ 5×10−16 cm3 s−1 in Liu et al. [43], respectively. Our generated

weighted value at the same temperature is equal to αc (300) ≃ 5.785× 10−18 cm3 s−1.

The graphical representations of the average RA and RCT rate coefficients are illustrated

in Fig. 3-4. The upper Fig. 3-4 (a) represents the statistically weighted average results of

the ArH+ RA rate coefficients, depending on the considered isotopes. The lower Fig. 3-4
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(b) displays the profiles of the average rate coefficients αa (T ) and αc (T ) obtained in terms

of temperature. The plots demonstrate that, in the same gaseous environment, the RCT

phenomena dominate the RA. The particular investigation on the Ne − He+ collisions con-

ducted by Liu et al [43] concluded that the RA and RCT rate coefficients, in the temperature

range 10− 10 000K, are of the same magnitude. However, the present calculations prove the

predominance of the RCT processes over the RA ones.

Finally, the average RA rate coefficient has been fitted with the polynomial expression

αa (T ) =
9�

j=0

ajT
j. (3.21)

It turns out that the best fits can be obtained with the first ten monomials. Table 3.4

gathers these monomials. Whereas, the average RCT rate coefficient has been fitted with the

expression

αc (T ) = a

�
T

1000

	b
(3.22)

with a and b being two constants (a = 9.620 × 10−18, b = 0.287). For 100 � T � 10 000K,

the present fitting results are plotted in Figs. 3-5 and 3-6. At higher temperatures, the

concordances are specifically better.
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Table 3.1: X − X RA rate coefficients (in cm3 s−1) computed at some temperatures T (in
K). The notation a[−n] stands for a× 10−n.

Temperature X ← X
T (K) 36ArH+ 38ArH+

10 1.173[−19] 1.012[−19]
50 9.899[−20] 1.018[−19]
100 9.825[−20] 9.631[−20]
200 9.949[−20] 9.221[−20]
300 9.712[−20] 9.027[−20]
400 9.397[−20] 8.833[−20]
500 9.087[−20] 8.619[−20]
600 8.802[−20] 8.398[−20]
700 8.543[−20] 8.179[−20]
800 8.309[−20] 7.969[−20]
900 8.099[−20] 7.769[−20]
1000 7.909[−20] 7.582[−20]
2000 6.810[−20] 6.326[−20]
3000 6.581[−20] 5.814[−20]
4000 6.814[−20] 5.715[−20]
5000 7.263[−20] 5.828[−20]
6000 7.757[−20] 6.019[−20]
7000 8.198[−20] 6.205[−20]
8000 8.542[−20] 6.350[−20]
9000 8.781[−20] 6.442[−20]
10000 8.920[−20] 6.480[−20]
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Table 3.2: RA rate coefficients (in cm3 s−1) computed at some temperatures T (in K). The
notation a[−n] stands for a× 10−n.

Temperature RA rate coefficients
T (K) C → X D → X Average
10 4.271[−19] 4.548[−21] 1.454[−19]
50 4.019[−19] 7.883[−21] 1.392[−19]
100 3.823[−19] 9.794[−21] 1.339[−19]
200 3.686[−19] 1.246[−20] 1.312[−19]
300 3.712[−19] 1.481[−20] 1.336[−19]
400 3.805[−19] 1.693[−20] 1.381[−19]
500 3.923[−19] 1.883[−20] 1.433[−19]
600 4.051[−19] 2.053[−20] 1.487[−19]
700 4.180[−19] 2.205[−20] 1.540[−19]
800 4.306[−19] 2.345[−20] 1.592[−19]
900 4.430[−19] 2.473[−20] 1.641[−19]
1000 4.548[−19] 2.591[−20] 1.689[−19]
2000 5.390[−19] 3.332[−20] 2.019[−19]
3000 5.718[−19] 3.547[−20] 2.142[−19]
4000 5.832[−19] 3.558[−20] 2.181[−19]
5000 5.875[−19] 3.511[−20] 2.192[−19]
6000 5.883[−19] 3.449[−20] 2.191[−19]
7000 5.860[−19] 3.380[−20] 2.178[−19]
8000 5.806[−19] 3.304[−20] 2.156[−19]
9000 5.724[−19] 3.223[−20] 2.123[−19]
10000 5.619[−19] 3.137[−20] 2.082[−19]
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Table 3.3: RCT rate coefficients (in cm3 s−1) computed at some temperatures T (in K). The
notation a[−n] stands for a× 10−n.

Temperature RCT rate coefficients
T (K) A→ X B → X Average
10 1.420[−18] 1.142[−20] 4.811[−19]
50 3.466[−18] 1.957[−20] 1.168[−18]
100 7.611[−18] 2.751[−20] 2.555[−18]
200 1.326[−17] 4.569[−20] 4.452[−18]
300 1.723[−17] 6.113[−20] 5.785[−18]
400 2.029[−17] 7.329[−20] 6.812[−18]
500 2.271[−17] 8.297[−20] 7.626[−18]
600 2.468[−17] 9.084[−20] 8.286[−18]
700 2.631[−17] 9.737[−20] 8.836[−18]
800 2.770[−17] 1.029[−19] 9.302[−18]
900 2.890[−17] 1.076[−19] 9.705[−18]
1000 2.995[−17] 1.117[−19] 1.006[−17]
2000 3.636[−17] 1.368[−19] 1.221[−17]
3000 3.996[−17] 1.516[−19] 1.342[−17]
4000 4.271[−17] 1.638[−19] 1.434[−17]
5000 4.511[−17] 1.752[−19] 1.515[−17]
6000 4.736[−17] 1.866[−19] 1.591[−17]
7000 4.954[−17] 1.980[−19] 1.664[−17]
8000 5.170[−17] 2.097[−19] 1.737[−17]
9000 5.386[−17] 2.217[−19] 1.810[−17]
10000 5.604[−17] 2.341[−19] 1.884[−17]

Table 3.4: Fitting’s constants of the average RA rate coefficients.

j aj
0 +5.051[−19]
1 +2.265[−20]
2 −2.261[−23]
3 +1.359[−26]
4 −4.968[−30]
5 +1.134[−33]
6 −1.621[−37]
7 +1.408[−41]
8 −6.787[−46]
9 +1.392[−50]
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the (a) X ← X transitions for both isotopes 36ArH+ and 36ArH+, and with the (b) X ← C
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Chapter 4

Conclusion and outlook

This thesis presents an extensive characterization of the argonium molecular species ArH+,

which was detected in the extragalactic Crab nebula. The formation of this molecule in

such a harsh environment was unexpected. The main purpose of this work is to examine ra-

diative association (RA) and radiative charge transfer (RCT), which are two processes that

might be responsible for the formation of argonium. To accomplish this task, we started by

constructing the potential energy curves (PECs) in the singlet states, as well as their corre-

sponding permanent dipole moments (PDM) and transition dipole moments (TDMs). This

construction is carried out smoothly and appropriately in three regions of separation from

the adopted ab-initio data and the appropriate analytical forms. To evaluate the accuracy

of these PECs, PDMs, and TDMs, we computed several physical parameters, including the

spectroscopic parameters, ro-vibrational levels, and radiative lifetimes. Our results are typi-

cally consistent with other published values, which have given us confidence in the validity of

our present constructions. Then, using our constructed potentials, we have determined the

wave functions of the free and bound states by solving numerically the radial wave equation.

Over a wide range of energy and temperature, we calculated quantum mechanically the cross

sections and rate coefficients for the formation of ArH+ via the radiative association and

radiative charge transfer. Our results have shown predominance of RCT over RA.
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Appendix A

Physical constants and units

In atomic units, � = e = Eh = 1.

Table A.1: Relative atomic masses of argon’s isotopologues and hydrogen atom.

Atom Atomic Masses ( u) Refs
36Ar 35.967545106(29) [13]

38Ar 37.9627324(4) [13]

40Ar 39.9623831225(29) [13]

1H 1.00782503207(10) [13]
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Table A.2: List of fundamental physical constants used in this thesis.

Physical constant Symbol Value Unit
Speed of light in vacuum c 299792458 m s−1

Planck constant h 6.62607015× 10−34 J s

Reduced Planck constant � = h
2π

1.054571817× 10−34 J s

Boltzmann constant kB 1.380649× 10−23 JK−1

Elementary charge e 1.602176634× 10−19 C

Electron rest mass me 9.1093837015(28)× 10−31 kg

Bohr radius a0 5.29177210903(80)× 10−11 m

Table A.3: List of atomic units.

Physical quantity Symbol Value Unit
Length a0 5.29177210903(80)× 10−11 m

Energy Eh 4.3597447222071(85)× 10−18 J

Mass me 9.1093837015(28)× 10−31 kg

Electric potential Eh
e

27.211386245988(53) V

Electric dipole moment ea0 8.4783536255(13)× 10−30 C m

Table A.4: List of energy equivalents.

J cm−1 K eV
J 1 5.03411657× 1024 7.242971× 1022 6.241509074× 1018

cm−1 1.98644585× 10−23 1 1.438777 1.23884198× 10−4

K 7.242971× 1022 0.6950348 1 8.617333× 10−5

eV 1.602176634× 10−19 8.06554394× 103 1.604518× 104 1
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Appendix B

Transition rates for absorption and

emission of radiation

The absorption and emission of radiation are described by the Hamiltonian

Ĥ = Ĥ0 + V̂ (t), (B.1)

where Ĥ0 represents the time-independent component, and V̂ represents the time-dependent

component

V̂ (t) = ν̂eiωt + ν̂†e−iωt (B.2)

with ν̂ is a time-independent operator, ω is the transition frequency. The transition proba-

bility corresponding to a transition from an initial state |ψi� of energy Ei to another state

�ψf | of energy Ef is given by [64]

Pif(t) =
2πt

�

����ψf |V̂ |ψi�
���
2

δ(Ef −Ei) (B.3)

The transition rate, which is defined as a transition probability per unit time is given by

Γif =
2π

�

����ψf |V̂ |ψi�
���
2

δ(Ef −Ei) (B.4)

In the case of photon emission, where the photon has energy �ωk, wave number <k, wave

number λ, and polarization ε, the system undergoes a transition from an initial sate |Φi� =

|ψi�|nλ,*k� to the final state |Φf� = |ψf�|nλ,*k + 1�. This can be achieved formally by creating
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a photon, i.e., by applying the creation operator â†
λ,*k

on |nλ,*k�

�Φf |υ̂
†

λ,	k
|Φi� =

e

me

�
2π�

ωkV
�ψf |e

−i*k*r<ε∗λ.
<P |ψi��nλ,*k + 1|â

†

λ,	k
|n

λ,	k
� (B.5)

=
e

me

�
2π�

ωkV

�
n
λ,	k
+ 1�ψf |e

−i*k*r<ε∗λ
<P |ψi�. (B.6)

In the case of photon absorption, the system undergoes a transition from an initial state

|Φi� = |ψi�|nλ,*k� to the final state |Φf� = |ψf�|nλ,*k − 1�. This can be achieved formally by

applying the annihilation operator âλ,*k on |nλ,*k�

�Φf |υ̂
λ,	k
|Φi� =

e

me

�
2π�

ωkV
�ψf |e

i*k*r<ελ. <P |ψi��nλ,*k − 1|âλ,	k |nλ,	k� (B.7)

=
e

me

�
2π�

ωkV

�
n
λ,	k
�ψf |e

−i*k*r<ελ <P |ψi� (B.8)

where υ̂†
λ,	k

and υ̂
λ,	k

are given by

υ̂†
λ,	k

=
e

me

�
2π�

ωkV
â†
λ,	k
e−i

*k*r<ε∗λ. <P (B.9)

υ̂
λ,	k

=
e

me

�
2π�

ωkV
âλ,*ke

i*k*r<ελ. <P (B.10)

The transition rates corresponding to the emission or absorption of a photon can be obtained

as follows

Γemii→f =
4π2e2

m2
eωkV

(nλ,*k + 1)
����ψf |e

−i*k*r<ε∗λ. <P |ψi�
���
2

δ(Ef −Ei + �ωk), (B.11)

Γabsi→f =
4π2e2

m2
eωkV

nλ,*k

����ψf |e
i*k*r<ελ. <P |ψi�

���
2

δ(Ef − Ei + �ωk). (B.12)
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Appendix C

Article and communications

The work presented in this thesis was the subject of an article in Journal of Physics B:

Atomic, Molecular and Optical Physics, as well as six international communications and two

national communications.

C.1 Article

F. Talhi and M. Bouledroua, The phenomena of radiative association and charge transfer

observed in Ar+ + H and Ar + H+ collisions, Journal of Physics B: Atomic, Molecular and

Optical Physics 56, 015201 (2023).

C.2 Communications

• M. Bouledroua, F. Talhi, Radiative association of 36Ar and 38Ar with ionic hy-

drogen, 21st International Mass Spectrometry Conference (IMSC2016), University of

Ottawa, 20-26 August 2016, Toronto, Canada.

• F. Talhi, M. Bouledroua, Radiative association of 36Ar and 38Ar with ionic hy-

drogen, The Fourth Algerian Conference in Astronomy and Astrophysics (ACAA17),

University of Khenchla, 25-29 Mars 2017, Khenchla, Algeria.

• F. Talhi, M. Bouledroua, Radiative association of 36Ar and 38Ar with ionic hy-

drogen, 6th Olympiad of Theoratical Physics (OPT), University of Batna, 17-18 April

2017, Batna, Algeria.
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• M. Bouledroua, F. Talhi, Radiative association of 36Ar+ and 38Ar+ with hydro-

gen,Workshop on Astrophysical Opacities, Western Michigan University, 01-04 August

2017, Kalamazoo, Michigan, USA.

• F. Talhi, M. Bouledroua, Radiative association of 36Ar and 38Ar with ionic hydro-

gen, 1st International Conference on Radiations and Applications (ICRA 17), Houari

Boumediene University of Science and Technology (USTHB), 20-23 November 2017,

Algiers, Algeria.

• M. Bouledroua, F. Talhi, Radiative charge transfer and association in Ar+H+ and

Ar++H collisions, Astrophemistry 2018: Past, Present, & Future, California Institute

of Technology, 10-14 July 2018, Pasadena, California, USA.

• F. Talhi, M. Bouledroua, Radiative association of 36Ar and 38Ar with ionic hydro-

gen, Première conference internationale sur les collisions de particules chargées avec

des cibles atomiques et moléculaires (CPCAM1), University of Setif1, 23-25 Septembre

2018, Setif, Algeria.

• F. Talhi, M. Bouledroua, The first noble gas molecular ion detected in space ArH+,

The Third Arab Winter School for Astrophysics (Ar AS SfA-3), American University

of Beirut, 12-17 November 2018, Beirut, Lebanon,.
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Abstract
The aim of the present theoretical work is the characterization of argonium, namely, the
molecular ions 36ArH+ and 38ArH+, revealed in the last decade in the Crab Nebula and the PKS
1823-211 galaxy. The intent is to scrutinize the radiative processes of association,
Ar+H+→ ArH+, and charge transfer, Ar+ +H→ Ar+H+. To accomplish these two tasks,
the corresponding potential-energy curves and dipole moments are chosen to construct the
ground and the two first excited ArH+ molecular states. Once all the required ArH+ curves are
well established and their physical and spectroscopic values are contrasted with previous
published data, the cross sections, for the formation of the ionic dimer ArH+ by radiative
association and for the radiative charge transfer in the Ar+ +H collisions, are computed
quantum-mechanically at lower and higher energies. Finally, the temperature-dependent rate
coefficients are calculated, and the numerical results are discussed and fitted to a selected
analytical expression.

Keywords: argonium potential-energy curves, radiative association, radiative charge transfer,
ArH+ rate coefficients

1. Introduction

Interstellar clouds are basically an accumulation of dust, gas,
and plasma. In most of the diffuse clouds where, in particular,
ions and neutrals approach each other mutually, the domin-
ant phenomena, namely, the radiative associations (RA), non-
radiative and radiative charge transfers (RCTs), and dissociat-
ive charge exchanges, may occur at different temperatures and
densities. In recent years, astronomers have detected atoms
and ions of noble gases in interstellar mediums (ISMs) [1–5].
Such inert elements must have experienced a hard time react-
ing with other species in space but, until now, only a very few
diatomic hydride cations have been detected in extragalactic
mediums [6, 7].

Using the European Space Agency’s Herschel Space
Observatory, Barlow et al [1] reported the detection of
traces of the protonated argon cation 36ArH+, also known

∗
Author to whom any correspondence should be addressed.

as argonium, in the Crab Nebula. The finding was the
first noble gas molecule detected in the extra space, where
the authors identified two 36ArH+ emission lines: one at
617.5GHz, arising from the rotational line J= 1← 0, and a
second at 1234.6GHz, arising from the rotational line J=
2← 1. Besides, Schilke et al [2] noticed that the unspe-
cified 617.5GHz absorption transition observed in almost
purely atomic diffuse gas was indeed due to argonium
36ArH+. Following this, features of 38ArH+ were determ-
ined as a consequence, and it was proposed that argonium
is prevalent in the interstellar medium [2]. Barlow and his
coworkers suggested that ArH+ is primarily formed from
the chemical reaction of Ar+ with molecular hydrogen
H2

(
Ar+ +H2→ ArH+ +H

)
, which is further annihilated by

the reaction with H2
(
ArH+ +H2→ Ar+H+

3

)
[8].

Moreover, this rare gas hydride cation has also been detec-
ted for the first time in the galaxy PKS 1823-211 by Müller
et al [9]. In particular, they observed the J= 1← 0 transition
of 36ArH+ at the frequency 617525.23± 0.15MHz and of
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38ArH+ at 616648.76± 0.08MHz. Their observations led the
authors to estimate an argonium presence with the isotopic
ratio 36ArH+/38ArH+ = 3.46± 0.16. Müller and his collab-
orators even believe that ArH+ may constitute a very good
tracer of the almost purely atomic diffuse ISM [9]. Finally, it is
worth noting that, unlike its composition on Earth, where 40Ar
dominates, the spectral analysis of the argon ISM showed pre-
ponderance of 36Ar at 84.6% and 38Ar at 15.4%, with minute
traces of 40Ar at 0.025% [2]. Since then, these astronom-
ical discoveries have relaunched a great amount of theoretical
and experimental investigations dealing with the ionic dimer
ArH+ and its isotopologues [10–15].

In this work we therefore propose to theoretically exam-
ine two molecular processes in which argonium is involved.
The first process is the RA of argon atoms, 36Ar or 38Ar,
with ionic hydrogen H+ to form the molecular ion ArH+. The
second process we shall look at is RCT, also known as charge
exchange. In this process, when the proton H+ is colliding
with the atomic argon, the positive charge is transferred from
the ion H+ to the neutral atomic argon to get the exit chan-
nel Ar+ +H. Both ArH+ radiative reactions are accompanied
with emission of photons. We will further compute the cor-
responding rate coefficients and analyze their behavior with
temperature. To do so, we have to primarily construct the most
reliable adiabatic ground and excited molecular potentials, via
which the concerned species interact, and the permanent and
transition dipole moments (TDMs).

Throughout this paper, all the physical formulas and data
values are expressed in atomic units (a.u.), unless otherwise
specified.

2. Theory

In this section, we briefly outline the quantum-mechanical
theories of the RA and RCT phenomena. They are both
responsible for the free-bound transitions that form the
argonium cations ArH+ and the charge exchange between
argon and hydrogen atoms during their ion–atom interactions
and collisions.

Here, we adopt the notation of simple prime ( ′) for the
upper states and double prime ( ′ ′) for the lower states.

2.1. Radiative association

RA is defined as the molecular formation process through
which two smaller atomic or ionic species collide to form a lar-
ger molecule. Such a process should make a substantial con-
tribution to the formation of interstellar neutral and charged
molecules, which may eventually be observed in any astro-
physical environment.

Accordingly, the RA of argon atoms Ar and hydrogen ions
H+ to form the argon hydride ArH+ cation is performed via
one or both of the following reactions, assumed to be respons-
ible for the formation of ArH+ molecules:

(a) X 1Σ+← X 1Σ+ transitions:

Ar
(
1S
)
+H+ −→ ArH+

(
X 1Σ+

)
−→ ArH+

(
X 1Σ+

)
+ hν; (I-1)

(b) X 1Σ+← C 1Σ+ and X 1Σ+← D 1Π transitions:

Ar
(
1,3P

)
+H+ −→

{
ArH+

(
C 1Σ+

)
ArH+

(
D 1Π

) }
−→ ArH+

(
X 1Σ+

)
+ hν. (I-2)

All these possible rotational–vibrational transitions, from
higher free molecular levels towards lower bound rovibra-
tional molecular levels, are spontaneously accompanied with
emission of photons of energy hν and frequency ν.

The quantal energy-dependent RA cross sections Qa (ϵ
′)

that are effective in association are determined using the
expression [16, 17]

Qa (ϵ
′) =

64π5

3c3k2

Jmax∑
J ′=0

vmax∑
v ′ ′=0

ν3[
J ′M2

v ′ ′J ′Λ ′ ′,ϵ ′J ′−1Λ ′ +(J ′+ 1)M2
v ′ ′J ′Λ ′ ′,ϵ ′J ′+1Λ ′

]
,

(1)

where k=
√
2µϵ/ℏ is the wave number of the colliding

particles of reduced mass

µ=
MArMH

MAr +MH−me
, (2)

where ϵ is the energy of the initial free state, and v and J are the
vibrational and rotational quantum numbers, respectively. In
equation (1), the transition matrix elements Mv ′ ′J ′ ′Λ ′ ′,ϵ ′J ′Λ ′

are taken between the higher free states (ϵ ′J ′Λ ′) and the lower
bound states (v ′ ′J ′ ′Λ ′ ′), where Λ is the axial component of
the electronic angular momentum, which takes the values Λ =
0 for the Σ molecular states and Λ = 1 for the Π molecular
states. The remaining parameters have their usual meanings.

One should mention that these matrix elements are determ-
ined by making use, in both processes (I-1) and (I-2), of the
permanent and TDMs d(R) andD(R), respectively. The mean
cross sectionsQa (ϵ

′) in connectionwith RA can thus be accur-
ately determined using the statistical weight w of the involved
molecular transitions, which obtains the values w= 1/2 for
the X← X transitions, w= 1/6 for the X← C transitions, and
w= 2/6 for the X← D transitions, i.e.

Qa (ϵ
′) =

1
2
Qa (X← X)+

1
6
Qa (X← C)+

2
6
Qa (X← D) .

(3)

2.2. Radiative charge transfer

The RCT reaction is observed when an ion collides with a
neutral atom in which the ionic charge is transferred to the

2
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atom. This process occurs in particular with the ionic ArH+

system during the collision from the A 1Σ+ and B 1Π rotational
continuum states to the rotational continuum of the ground
state X 1Σ+

Ar+
(
2P

)
+H

(
2S
)
−→ Ar

(
1S
)
+H+ + hν. (II)

The energy hν of the released photon is given by the
expression

hν = ϵ ′− ϵ ′ ′+ Etr, (4)

where ϵ ′ is the initial free energy of the relative motion of the
colliding system, ϵ ′ ′ is its final free energy, and Etr = V ′ (∞)−
V ′ ′ (∞) is the transition energy. If k

′
and k

′ ′
are, respectively,

the entrance and exit wave numbers defined as{
k ′ =

√
2µ [ϵ ′−V ′ (∞)]

k ′ ′ =
√
2µ [ϵ ′ ′−V ′ ′ (∞)− hν],

(5)

the quantal cross section for the present process (II) is given
by [18, 19]

d
dϵ ′ ′

Qc (ϵ
′, ϵ ′ ′) =

8
3

( π
k ′

)2
(ϵ ′− ϵ ′ ′+ Etr)

3
∑
J ′[

J ′M2
J ′,J ′−1 +(J ′+ 1)M2

J ′,J ′+1

]
. (6)

Here, MJ ′,J ′ ′ are the transition matrix elements

MJ ′,J ′ ′ =

ˆ ∞
0

ψ ′J ′ (R)D(R)ψ ′ ′J ′ ′ (R)dR, (7)

where ψ ′J ′ (R) and ψ ′ ′J ′ ′ (R) are the upper and lower free
wave functions, respectively, J

′
is the initial rotational angu-

lar momentum quantum number, and J ′ ′ = J ′± 1 is the final
rotational quantum number. The total cross section for RCT
Qc (ϵ

′) at energy ϵ ′ is obtained by integrating equation (6)
over ϵ ′ ′

Qc (ϵ
′) =

ˆ ∞
0

d
dϵ ′ ′

Qc (ϵ
′, ϵ ′ ′)dϵ ′ ′. (8)

One should finally note that the total cross sectionsQc (ϵ
′) that

are effective in RCT are in fact the mean value computed by
the statistically weighted sum

Qc (ϵ
′) =

1
3
Qc (X← A)+

2
3
Qc (X← B) . (9)

2.3. Rate coefficients

The full quantum-mechanical description of the RA and RCT
mechanisms implies the computation of the temperature-
dependent rate coefficients [20]

α(T) =

(
8
πµ

)1/2( 1
kBT

)3/2ˆ ∞
0

Q(ϵ ′)ϵ ′ exp

(
− ϵ ′

kBT

)
dϵ ′,

(10)

where kB is the Boltzmann constant and T is the gas abso-
lute temperature. This integral (10), performed over the
Maxwellian velocity distribution, computes the mean of the
energy-dependent RA and RCT cross sections, Qa (ϵ

′) and
Qc (ϵ

′).

3. Potential and moment constructions

The transitionmatrix elementsMJ ′,J ′ ′ = ⟨ψ ′J (R)|ξ (R) |ψ ′ ′J (R)⟩
that appear in equations (1) and (6) are needed in the com-
putation of the RA and RCT cross sections, and thus the rate
coefficients. The radial wave functions ψJ (R) and the per-
manent and TDMs ξ (R)≡ d(R) and ξ (R)≡ D(R) have to be
known. The wave functions ψ ′J (R) and ψ

′ ′
J (R) are obtained

from the numerical resolution of the radial wave equation

d2ψJ (R)
dR2

+ 2µ

[
ϵ−V(R)− J(J+ 1)−Λ2

2µR2

]
ψJ (R) = 0.

(11)

The wave functions are particularly energy normalized with
ϵ> 0 for the continuum free states and space normalized with
ϵ< 0 for the discrete bound states.

Over the last few decades, a great number of theoretical and
experimental investigations have dealt with argonium spec-
troscopy and the computation of the ArH+ potentials and
moments [21–26]. But the most recent and reliable calcula-
tions were performed by Stolyarov and Child [27] in 2005 and
Alekseyev et al [28] in 2007. All the following argonium elec-
tronic potential curves and the involved permanent and TDMs
are borrowed exclusively from the ab initio data points com-
puted in [27].

3.1. Potential-energy curves

All the possible RA andRCT transitions considered here occur
towards the singlet molecular state X 1Σ+. This requires one
to deal only with the first two excited molecular singlet states.
Therefore, the involved five electronic potential curves are the
following: (a) the ground X 1Σ+, which dissociates asymp-
totically into Ar

(
1S
)
+H+; (b) the first ArH+ excited set is

made of the molecular states A 1Σ+ and B 1Π, which dissociate
asymptotically into Ar+

(
2P◦

)
+H

(
2S
)
; and (c) the second

ArH+ excited set is made of the molecular states C 1Σ+ and
D 1Π, which dissociate asymptotically into Ar

(
1,3P

)
+H+.

Both excited molecular sets lie beyond the ground dissociation
limit by about 0.071 and 0.427 a.u., respectively.

Practically, the adopted Stolyarov data points, taken in
the interval Rs ⩽ R⩽ Rl, are shifted in all cases so that they
smoothly connect with the respective following short- and
long-range analytical forms

3
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Table 1. Short-range constant parameters (in a.u.) that appear in the Born–Meyer potentials (12).

Molecular state

Short range

α β

X 1Σ+ 62.35 3.635
A 1Σ+ 59.77 3.419
B 1Π 60.55 3.456
C 1Σ+ 61.06 3.527
D 1Π 61.48 3.548

Table 2. A compilation of the static multipolar polarizabilities of ground hydrogen and argon (in a.u.). The adopted quadrupolar and
octupolar polarizabilities are marked with ∗.

System Cd Cq Co References

Ar+ in H 4.50 15.0∗ 131.25∗ [33]
4.475 14.93 130.8 [34]

H+ in Ar 11.062 51.862 536.38 [35]
11.143 51.844 534.85 [36]
11.08 52.80∗ 536.4∗ [37]

∗
the adopted quadrupolar and octupolar polarizabilities.

V(R)∼


+αexp(−βR) for R⩽ Rs

−1
2

(
Cd

R4
+
Cq

R6
+
Co

R8

)
for R⩾ Rl,

(12)

where α and β are the Born–Meyer constant parameters, to
be determined for each ArH+ molecular state, and Cd, Cq,
and Co are, respectively, the static electric dipole, quadru-
pole, and octupole polarizabilities of the involved neutral spe-
cies, namely, H or Ar. Numerically, the cubic spline method
yields the parameters α and β listed in table 1. Furthermore,
we have adopted, for the dominant R−4 term of the long-range
potential (12), the polarizability values proposed by NIST, i.e.
Cd = 4.50 for hydrogen and Cd = 11.23 for argon [29]. Both
data are comparable with the recommended values, 4.50456±
0.00003 and 11.083± 0.007 from Schwerdtfeger and Nagle
[30], and with the measured values Cd = 4.49974 of Miller
and Bederson [31] and Cd = 11.22923 of Olney et al [32],
respectively. Some additional published higher-order multi-
polar polarizabilities are compiled in table 2, and the adopted
values of the quadrupole and octupole polarizabilities are from
[33, 37].

Figure 1 displays the five ArH+ adiabatic PECs, as con-
structed above. Since all the RA and RCT transitions involve
the final ground state X 1Σ+, it is therefore of primary interest
to suitably construct this curve and ensure its good quality
with the highest accuracy. Tables 3 and 4 provide the spec-
troscopic parameters and the rotationless–vibrational energy
levels of the ArH+ molecular states, and, when possible,
the data are compared with published values. All the higher
potential curves are monotonically decreasing towards the
Ar+

(
2P◦

)
+H

(
2S
)
and Ar

(
1,3P

)
+H+ dissociation limits,

and the curves C 1Σ+ and D 1Π exhibit two humps in the

vicinity of R∼ 3− 5 a.u. Moreover, the ground state poten-
tial X 1Σ+ can hold up to 27 rotationless-vibrational levels,
whereas the first and second excited potential sets are remark-
ably very shallow. The rovibrational data are listed in table 5
for both isotopic dimers 36ArH+ and 38ArH+, and the results
are compared with published values whenever available. The
particular ArH+ rotational 1− 0 and 2− 1 lines are listed in
table 6 and compared with other published values. The dis-
crepancies with the present results, shown in table 6, are not
important. More specifically, Barlow et al [1] measured the
rotational frequencies 617.5 and 1234.6GHz for the line trans-
itions 36ArH+ (J= 1← 0) and 36ArH+ (J= 2← 1), respect-
ively. All the values show there is satisfaction with the present
ArH+ potential constructions.

3.2. Permanent and transition dipole moments

To perform the required RA and RCT calculations, one has to
construct besides the permanent dipole moment (PDM) d(R)
and the TDMsD(R). The formermoment is essentially needed
to deal with the X← X free-bound transitions. More precisely,
we adopted, over the internuclear interval 0⩽ R⩽ 12, the
calculated PDM data points from Stolyarov and Child [27],
which we extended in the long-range region using the formula
[43, 44]

d(R)∼ R
2
− 2Cd

R2
. (13)

In addition, the TDMs are constructed from the data points
generated in [27]. They concern the quantum-mechanically
allowed molecular transitions from the ArH+ excited states
A 1Σ+, B 1Π, C 1Σ+, and D 1Π towards the ArH+ ground state
X 1Σ+. They are extended, in the long-range regions, with the

4
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Figure 1. ArH+ potential-energy curves, as constructed from the Stolyarov and Child data points [27].

Table 3. Spectroscopic data of the constructed ArH+ potentials.

Molecular
state

Equilibrium
distance Re (Å)

Well depth
−De (cm−1)

Hump
h (cm−1) References

X 1Σ+ 1.277 33779.3
1.279 33391.36 [27]
1.268 34608.4 [28]
1.286 31374.97 [38]
1.244± 0.003 33375.37± 432.77 [39]
1.280 32460 [40]

A 1Σ+ 4.286 31.0457
B 1Π 3.285 192.049
C 1Σ+ 5.172 761.211 123.708
D 1Π 5.204 722.278 123.706

Table 4. Rotationless-vibrational energy levels of argonium 36ArH+ in units of cm−1.

v X 1Σ+ A 1Σ+ B 1Π C 1Σ+ D 1Π

0 −32424.701 −61.363 −187.036 −779.221 −739.390
1 −29809.441 −13.703 −78.705 −462.728 −421.639
2 −27313.744 −1.574 −23.275 −181.909 −145.584
3 −24934.848 −3.791
4 −22669.965
5 −20516.329
13 −7014.710
15 −4647.520
20 −790.945
25 −13.112
26 −2.637

5
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Table 5. Rotational–vibrational states relative to both argonium isotopes 36ArH+ and 38ArH+ in units of cm−1.

v J 36ArH+ 38ArH+ References

0 0 −32424.701 −32425.663 31101± 242 [41]
32066.48 [42]

0 5 −32115.987 −32117.386
1 0 −29809.441 −29812.189 28536± 242 [41]

29471.34 [42]
1 7 −29255.304 −29258.819
2 8 −26628.733 −26634.027
3 10 −23930.705 −23937.854
5 20 −17050.469 −17062.994

Table 6. Computed and measured rotational lines for J= 1− 0 and J= 2− 0 of 36ArH+ and 38ArH+ in MHz.

Transition 36ArH+ 38ArH+ References

J= 1← 0 617704.99 16828.47
617525.226± 0.151 616648.762± 0.083 [3]
617525.23± 0.15 616648.76± 0.08 [9]
617525.149± 0.020 616648.707± 0.020 [12]

J= 2← 1 1234969.74 1233217.96
1234602.75± 0.30 1232851.00± 0.04 [9]

analytical formD(R)∼−p/Rn,where p and n are constants to
be determined for each transition, and are supposed to behave
linearly in the short-range regions. Both the PDMs and TDMs
are respectively plotted in figures 2(a) and (b).

Once the potentials and the permanent and TDMs are
well established, we numerically solve the radial wave
equation (11) to get the free and bound wave functions and the
corresponding energies, which should allow us to compute the
matrix elements using equation (7).

3.3. Radiative lifetime

Supposing the approximations J= J ′ ≃ J ′ ′, the radiative life-
time of each rovibrational level is τ = 1/A(vJΛ), with the
total spontaneous emission rates being given by

A(v ′JΛ ′) =
32
3

(π
c

)3 2− δ0,Λ ′+Λ ′ ′

2− δ0,Λ ′

×

[ˆ ∞
0

ν3v ′JΛ ′,ϵ ′ ′JΛ ′ ′M2
v ′JΛ ′,ϵ ′ ′JΛ ′ ′dϵ ′ ′

+
∑
v ′ ′

ν3v ′JΛ ′,v ′ ′JΛ ′ ′M2
v ′JΛ ′,v ′ ′JΛ ′ ′

]
. (14)

The upper and lower states, defined by the quantum numbers
(v ′J ′Λ ′) and (v ′ ′J ′ ′Λ ′ ′), are related to the bound-free and
bound–bound transitions, respectively.

First, it is important to note that the excited A 1Σ+ and B 1Π
PECs are almost entirely repulsive over the whole range of
separation distances, and table 4 confirms this ascertainment.
This is not the case for the excited C 1Σ+ and D 1Π poten-
tials. Indeed, although these two molecular states are very

shallow, they are both able to hold a very limited number of
rovibrational levels. It is thus possible to compute the indi-
vidual radiative lifetimes of the upper states involved in the
transitions X 1Σ+← C 1Σ+ and X 1Σ+← D 1Π towards the
deeper lower ground state X 1Σ+. Table 7 lists the individual
lifetimes of the upper molecular C and D states. Such values
may serve as a good probe in the evaluation of the accuracy of
the ArH+ potential sets.

The mean lifetime τ is counted with

1
τ
=

1
3
AX←C (v

′
max00)+

2
3
AX←D (v ′max01) , (15)

in which the calculations imply the highest rotationless–
vibrational states that are both in the vicinity of the disso-
ciation limit. From table 7, the present calculations lead to
τ ≃ 2.88 ns.

4. Results and discussion

Once the needed ArH+ potential curves and permanent
and TDNs are well established and have demonstrated their
reliability and consistency, we proceed into the quantal com-
putation of the RA and charge transfer cross sections, namely,
Qa (ϵ) and Qc (ϵ), both provided in terms of the energy in
equations (1) and (8), respectively. From there, we should
be able to calculate the temperature-dependent rate coeffi-
cients α(T) and determine their respective variation laws
with T.

The calculated X 1Σ+← X 1Σ+ energy-dependent cross
sections Qa (ϵ), effective in the ArH+ RA, are displayed in
figure 3(a) for two isotopologues, 36ArH+ and 38ArH+. From
these plots, one may notice the perfect match in the position

6
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Figure 2. (a) The ArH+ PDM relative to the X−X transition. (b) ArH+ TDMs in connection with the X← A, X← B, X← C, and X← D
transitions.

Table 7. A compilation of the lifetime values, in ns, computed for the rovibrational states.

v

C 1Σ+ D 1Π

J= 0 J= 1 J= 2 J= 3 J= 4 J= 0 J= 1 J= 2 J= 3 J= 4

0 9.66 9.69 9.83 10.24 11.06 10.17 10.13 10.11 10.31 10.86
1 3.67 3.60 3.45 3.21 2.85 4.64 4.60 4.47 4.24 3.83
2 2.26 2.26 2.26 2.26 2.28 3.34 3.34 3.35 3.37 3.40
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Figure 3. ArH+ RA cross sections in terms of energy in connection with the (a) X← X transitions for both isotopes 36ArH+ and 38ArH+,
and with the (b) X← C and X← D 36ArH+ transitions.

of the resonance peaks, mainly at higher energies, which sug-
gests that the isotopic effects do not significantly affect the
general shape of the X← X RA cross sections. Furthermore,
the computed cross sections Qa (ϵ), in connection with the
transitionsX← C andX← D, are presented in figure 3(b). The
X← C transitions definitely seem to be the most probable and
stronger than those due to the X← D transitions. More spe-
cifically, the observed resonance structures are mainly due to

the quasibound rovibrational levels of the initial states. Due to
the smallness of the ArH+ reduced mass, only a very limited
number of resonance peaks can be predicted and have obvi-
ous energy positions, which tightly depend on the constructed
potentials [45].

Moreover, figure 4 illustrates the RCT cross sectionsQc (ϵ)
rising from the allowed transitions X← A and X← B. As
table 4 shows, the involved excited potential curves support

8
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Figure 4. 36ArH+ RCT cross sections in terms of energy in connection with the X← A and X← B transitions.

extremely weak quasibound vibrational states. This may
explain the reduced number of the resonance structures in
the corresponding cross sections and the dominance of the
X← A transitions compared to those of X← B [46]. At lower
collision velocities, the ArH+ system does not have enough
kinetic energy to approach the potential barrier of the ground
molecular state X 1Σ+. But above the energy 10−8 a.u., the
system is able to penetrate the potential barrier and the regions
where the X 1Σ+ state contains a deep attractive well. In this
region, there is essentially a sharp rise in the cross sections,
and therefore numerous resonance lines appear, which are all
caused by the rovibrational quasibound states of the ArH+

molecule in the X 1Σ+ electronic state.
Having now determined the quantal cross sections Qa (ϵ)

andQc (ϵ), it is hence possible to proceedwith the computation
of the temperature-dependent rate coefficients that are effect-
ive in RA and charge transfer, αa (T) and αc (T), respectively.
Using equation (10), the RA and RCT rates are computed in
the temperature range 10–10 000 K, and the numerical results
are compiled in tables 8 and 9. The former table lists the gener-
ated X← X data for both argon isotopes 36ArH+ and 38ArH+,
whereas the latter presents the RA and RCT results arising
from the first and second excited transition sets.

The statistically averaged values of the rate coefficients are
further determined using the relationships

αa (T) =
1
3
αX←C (T)+

2
3
αX←D (T) (16)

αc (T) =
1
3
αX←A (T)+

2
3
αX←B (T) (17)

and are presented in table 9 as well. Before all, we found
a paucity of published data that concern argonium RA and
charge transfer. Nevertheless, for the sake of comparison,
Kraemer et al [46] published their graphical results of the
rate coefficients αa (T) for the formation of the ionic dimer
ArH+ in the ground state X 1Σ. Our graphical estimation
from figure 9 of [46] yields, for three particular temper-
atures, the values αa (10)≃ 5.6× 10−19, αa (100)≃ 3.8×
10−19, and αa (1000)≃ 2.3× 10−19 cm3 s−1. Although the
estimated RA rate coefficients are not exactly the same in this
case, the discrepancies are important, but the magnitudes are
quite similar.

On the other hand, the lack of published data on ArH+

RCT forced us rather to compare the present results with
those coming from collisions among species belonging to
families close to Ar/Ar+ and H+/H. Indeed, the RCT rates
at T = 300 K in connection with interactions of Ar with
He+ and Ne with He+ yielded the values αc (300)≃ 9.86×
10−15 in Babb and McLaughlin [47] and αc (300)≃ 5×
10−16 cm3 s−1 in Liu et al [48], respectively. Our gen-
erated weighted value at the same temperature is equal to
αc (300)≃ 5.785× 10−18 cm3 s−1.

The graphical representations of the average RA and
RCT rate coefficients are illustrated in figure 5. The upper
figure 5(a) represents the statistically weighted average res-
ults of the ArH+ RA rate coefficients, depending on the con-
sidered isotopes. The lower figure 5(b) displays the profiles
of the average rate coefficients αa (T) and αc (T), obtained in
terms of temperature. The plots demonstrate that, in the same
gaseous environment, the RCT phenomena dominate the RA.
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Table 8. The X−X RA rate coefficients (in cm3 s−1) computed at various temperatures T (in K). The notation a[−n] stands for a× 10−n.

Temperature T (K)

X← X
36ArH+ 38ArH+

10 1.173[−19] 1.012[−19]
50 9.899[−20] 1.018[−19]
100 9.825[−20] 9.631[−20]
200 9.949[−20] 9.221[−20]
300 9.712[−20] 9.027[−20]
400 9.397[−20] 8.833[−20]
500 9.087[−20] 8.619[−20]
600 8.802[−20] 8.398[−20]
700 8.543[−20] 8.179[−20]
800 8.309[−20] 7.969[−20]
900 8.099[−20] 7.769[−20]
1000 7.909[−20] 7.582[−20]
2000 6.810[−20] 6.326[−20]
3000 6.581[−20] 5.814[−20]
4000 6.814[−20] 5.715[−20]
5000 7.263[−20] 5.828[−20]
6000 7.757[−20] 6.019[−20]
7000 8.198[−20] 6.205[−20]
8000 8.542[−20] 6.350[−20]
9000 8.781[−20] 6.442[−20]
10000 8.920[−20] 6.480[−20]

Table 9. RA and RCT rate coefficients (in cm3 s−1) computed at various temperatures T (in K). The notation a[−n] stands for a× 10−n.

Temperature T (K)

RA rate coefficients RCT rate coefficients

C→ X D→ X Average A→ X B→ X Average

10 4.271[−19] 4.548[−21] 1.454[−19] 1.420[−18] 1.142[−20] 4.811[−19]
50 4.019[−19] 7.883[−21] 1.392[−19] 3.466[−18] 1.957[−20] 1.168[−18]
100 3.823[−19] 9.794[−21] 1.339[−19] 7.611[−18] 2.751[−20] 2.555[−18]
200 3.686[−19] 1.246[−20] 1.312[−19] 1.326[−17] 4.569[−20] 4.452[−18]
300 3.712[−19] 1.481[−20] 1.336[−19] 1.723[−17] 6.113[−20] 5.785[−18]
400 3.805[−19] 1.693[−20] 1.381[−19] 2.029[−17] 7.329[−20] 6.812[−18]
500 3.923[−19] 1.883[−20] 1.433[−19] 2.271[−17] 8.297[−20] 7.626[−18]
600 4.051[−19] 2.053[−20] 1.487[−19] 2.468[−17] 9.084[−20] 8.286[−18]
700 4.180[−19] 2.205[−20] 1.540[−19] 2.631[−17] 9.737[−20] 8.836[−18]
800 4.306[−19] 2.345[−20] 1.592[−19] 2.770[−17] 1.029[−19] 9.302[−18]
900 4.430[−19] 2.473[−20] 1.641[−19] 2.890[−17] 1.076[−19] 9.705[−18]
1000 4.548[−19] 2.591[−20] 1.689[−19] 2.995[−17] 1.117[−19] 1.006[−17]
2000 5.390[−19] 3.332[−20] 2.019[−19] 3.636[−17] 1.368[−19] 1.221[−17]
3000 5.718[−19] 3.547[−20] 2.142[−19] 3.996[−17] 1.516[−19] 1.342[−17]
4000 5.832[−19] 3.558[−20] 2.181[−19] 4.271[−17] 1.638[−19] 1.434[−17]
5000 5.875[−19] 3.511[−20] 2.192[−19] 4.511[−17] 1.752[−19] 1.515[−17]
6000 5.883[−19] 3.449[−20] 2.191[−19] 4.736[−17] 1.866[−19] 1.591[−17]
7000 5.860[−19] 3.380[−20] 2.178[−19] 4.954[−17] 1.980[−19] 1.664[−17]
8000 5.806[−19] 3.304[−20] 2.156[−19] 5.170[−17] 2.097[−19] 1.737[−17]
9000 5.724[−19] 3.223[−20] 2.123[−19] 5.386[−17] 2.217[−19] 1.810[−17]
10000 5.619[−19] 3.137[−20] 2.082[−19] 5.604[−17] 2.341[−19] 1.884[−17]
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Figure 5. The variation of RA and RCT rate coefficients with temperature. The upper figure (a) displays the isotopic effects on the X−X
rate, whereas the lower figure (b) compares the average RA and RCT rates.

The investigation on the Ne−He+ collisions conducted by
Liu et al [48] concluded that the RA and RCT rate coefficients,
in the temperature range 10–10 000 K, are of the same mag-
nitude, whereas the present calculations prove the predomin-
ance of the RCT processes over the RA processes.

Finally, the average RA andRCT rate coefficients have both
been fitted with the polynomial expression

α(T) =
9∑
j=0

ajT
j. (18)

It becomes apparent that the best fits can be obtained with the
first ten monomials. For 100⩽ T⩽ 10000K, the present res-
ults are plotted in figures 6 and 7. At higher temperatures, the
concordances are specifically better.
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Figure 6. Fitting of the average RA rate coefficients to the polynomial expression given in equation (18).

Figure 7. Fitting of the average RCT rate coefficients to the polynomial expression given in equation (18).

5. Conclusion

This work tries to characterize the recently detected argonium
molecule ArH+ in the extragalactic Crab Nebula and PKS
1823-211 galaxy. More specifically, we calculated, over wide
energy and temperature ranges, the cross sections and the rate
coefficients for the formation of ArH+ via the RA of Ar+ with

H and the charge exchange between neutral Ar and the proton
H+. TheArH+ characterization required us to set up the poten-
tial curves, throughwhich the involved atomic species interact,
and the corresponding permanent and TDMs. The obtained
cross sections allowed the computation of the temperature-
dependent rate coefficients, which showed predominance of
RCT over RA in the temperature interval 10–10 000K.
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