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Abstract

This study aims to generalize the Ascoli- Arzeld theorem from the space of continuous functions
to the space of functions with continuous of high order derivative on one hand. On the other hand,

we use this generalization in studying the existence of the solutions of some integro-differential
equations, non-linear differential equations of the second order with delay argument and some non-

linear differential equations of high order. Additionally, in this thesis we study also the existence

and uniqueness of the solutions of some second order non-linear differential equations by using
Perov’s fixed point theorem in the generalized metric spaces. It is worth mentioning that this

study uses simpler conditions compared to those used in previous studies. Finally, illustrative
numerical examples are provided in the end of each chapter.

Keywords : Non-linear differential equations, Integro-differential equations, Ascoli-Arzela theorem
mn C™, Fixed point theorem.



Résumé

L’objectif de cette thése est généralisation le théoréme d’Ascoli Arzela de 'espace des
fonctions continues a ’espace des fonctions a dérivées continues d’ordre supérieure d’une part.

D’autre part, nous utilisons cette généralisation pour étudier ’existence des solutions de certaines
équations intégro-différentielles, des équations différentielles non linéaires du second ordre avec
un retard et de certaines équations différentielles non linéaires d’ordre supérieure. De plus, dans
cette theése, nous étudions également ’existence et I'unicité des solutions de certaines équations
différentielles non linéaires du second ordre en utilisant le théoréme du point fixe de Perov dans les
espaces métriques généralisés. Il est bien noter que cette étude utilise des conditions plus simples par

rapport a celles utilisées dans les études précédentes. Enfin, nous donnons des exemples numériques

a la fin de chaque chapitre pour illustrer les résultats théoriques.

Mots-clés : Equations différentielles non linéaires, Théoreme d’Ascoli-Arzeld dans C™, Equations
intgro-differentiel, Théoréme de point fixe.
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Introduction 1

Introduction

Ascoli’s theorem, or Ascoli- Arzeld theorem of functional analysis, demonstrated by the
Italian mathematicians Guilio-Ascoli (1843 /1896) and Cesare-Arzela (1847 /1912), gives
necessary and sufficient conditions to decide whether a given set of continuous functions is
relatively compact for certain topologies. In order to establish its proof, we will introduce
some notions and auxiliary definitions of precompact spaces, which will give us a criterion
of compactness, complete spaces, and also the notion of equicontinuity which was intro-
duced at the same time by Ascoli (1883/1884) and Arzela (1882/1883). A weak form of
the theorem was proved by Ascoli, he established the sufficient condition of compactness,
and by Arzeld (1895), who established the necessary condition and gave the first clear
presentation of the result.

Delay differential equations (DDEs) are a type of differential equation in which the deriva-
tive of the unknown function at a certain time is given in terms of the values of the function
at previous times. DDEs are also called time-delay systems, systems with aftereffect or dead-
time, hereditary systems, equations with deviating argument, or differential-difference
equations. The nonlinear delay differential equations arise in the modeling of many phe-
nomena in physics, mechanics and Biology (see [5} 10, 20, 41, 42, 58] and the references
therein).

The existence of such a periodic solution is of quite fundamental importance biologically
since it concerns the long time survival of species.

In the field of differential equations, a boundary value problem is a differential equation
together with a set of additional constraints, called the boundary conditions. A solution to
a boundary value problem is a solution to the differential equation which also satisfies the
boundary conditions. Boundary value problems arise in several branches of physics as any

physical differential equation will have them. Problems involving the wave equation, such
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Introduction 2

as the determination of normal modes, are often stated as boundary value problems. A large
class of important boundary value problems are the Sturm-Liouville problems. The analysis
of these problems involves the eigenfunctions of a differential operator. To be useful in
applications, a boundary value problem should be well posed. This means that given the
input to the problem there exists a unique solution, which depends continuously on the
input. Much theoretical work in the field of partial differential equations is devoted to
proving that boundary value problems arising from scientific and engineering applications
are in fact well-posed.

The aim of this thesis is to generalize the Ascoli-Arzeld theorem from the space of con-
tinuous functions to the space of functions with continuous of high order derivative on
one hand. On the other hand, we use this generalization in studying the existence of the
solutions of some integro-differential equations, non-linear differential equations of the
second order with delay argument and some non-linear differential equations of high order.
Additionally, in this thesis we study also the existence and uniqueness of the solutions of
some second order non-linear differential equations by using Perov’s fixed point theorem
in the generalized metric spaces. It is worth mentioning that this study uses simpler
conditions compared to those used in previous studies.

This thesis is composed of four chapters. In the first chapter we generalize the Ascoli-Arzela
theorem from the space of continuous functions to the space of functions with continuous
of high order C". The aim of the second chapter consists of using the generalization of
Ascoli- Arzela theorem in the space C! in order to prove the compactness criteria and to use
Schauder fixed point theorem in the space C! to prove the existences of a periodic solution
for some nonlinear delay differential equations. Moreover, we use the well know Perov’s
fixed point theorem to prove the existence and uniqueness of a periodic solution. In the
third chapter, we use a generalization of Ascoli-Arzeld theorem in the space C" in order to
prove the compactness criteria and to use Schauder fixed point theorem in the space C" to
prove the existences of a solution for a higher-order boundary value problem. In the last
chapter, We study the existence of a solution of some nonlinear integral equations of the

product type.
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CHAPTER

Generalization of Ascoli- Arzelad theorem in C"

1.1 Introduction

The problem of proving the compactness of various subsets of a given metric space is
encountered quite frequently in analysis[32]. The Ascoli- Arzeld theorem is a fundamental
theorem of analysis that allows us to determine if a subset of a space of continuous functions
is compact. Although there are a number of ways to determine if a subset of a metric
is compact, the Ascoli- Arzela theorem is often easier to apply than general conditions
of completeness and total boundedness when working in spaces of functions[32]. This
theorem simplifies checking of compactness for subsets of spaces of continuous functions
in much the same way the Heine-Borel theorem does for subsets of R" [53]]. It also has
several applications in other branches of mathematics especially in ordinary differential
equations and other branches of science and engineering. An important question: which
subsets F of C([a,b]) are compact ?

We know that in IR” that closed and bounded sets are compact. Unfortunately, this is not
true in C([a, b]).

Example 1.1.1. {f € C([0,1])/]|f]lo < 1} is not compact in C([0,1]). Consider the se-

quence of functionsf, (x) = x".
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Figure 1.1: Cesare Arzeld and Guilio Ascoli

To characterize compactness in C(X), we need a new definition:

Definition 1.1.1. Let X be a compact metric space, and let F be a subset of C(X,R)or
C(X,C). Then F is called equicontinuous if for every € > 0 there is § > 0 such that
| f(x) = f(y)]| < eforall x,y € X satisfying |x —y| < J.

The family F is called equibounded if there is a constant M such that || f(x)|| < M for all
f € Fand forall x € X.

The following result gives the Ascoli- Arzeld theorem in the space of continuous functions:

Theorem 1.1.1. [51]] (Ascoli- Arzeld theorem in C) Let X be a compact metric space, and let F be a
subset of C(X,R)or C(X,C). Then F is relatively compact if and only if F is equicontinuous and

equibounded.
From Ascoli- Arzeld theorem ,we deduce the following result

Proposition 1.1.1. : A subset F of C(X,R) or C(X,C) is compact if and only if it is bounded,

and equicontinuous.

Application of Ascoli-Arzela
Here we examine one application each to functional analysis and ordinary differential

equation.
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1.2 Generalization of Ascoli- Arzela theorem in C" 5

Application to Functional Analysis[16]
X
For f € C([a,b],R) let (Tf)(x) = /f(x)dt. Then Tf € C([a,b],R), so T is a linear map

a
from C([a, b],R) toitself. Let F = {Tf : f € C([a,b],R), ||f|lec < a}. We would like to see

whether F is equicontinuous.
Y
(Tf)(x) = (Tf(y)| = |/f(t)dt| < |x —y|. Hence F is an equicontinuous family. Also
X

|(Tf)(x) < (b— a)a. This implies that F is bounded. Hence F is compact.
Application to Ordinary Differential Equation (Peano’s Theorem)[32] Let f be a contin-
uous function from a neighborhood U of R x R" to R" and (0, xp) € U. Then there exists

an € > 0 such that the initial-value problem

dx
o7 = f(tx(1)),x(0) = xo (1.1.1)
has a solution x on [0, €].

Hint: It is easy to see that the Cauchy problem (1.1.1) is equivalent to following Volterra

integral equation:
x() = xo+ / F(s, x(s))ds, (1.1.2)

and then, we use Schauder and Ascoli- Arzeld to prove the existence of a solution of
Equation (1.1.1) on interval [0, ] [32].

In the following section, we give a generalization of Ascoli-Arzela theorem [I.1.1]

1.2 Generalization of Ascoli- Arzela theorem in C”

Before stating the main result in this chapter, we provide the following notations and
definition.
Let E be a finite dimensional Banach space endowed with the norm ||.||;, and X be a

compact subset of R. We note by C"(X, E) the space of all functions with n continuous

n .
derivatives from X to E, this space is endowed with the norm || f|| = ) _ ||f ()| such that
i=0

U. Badji Mokhtar-Annaba Département de Mathématiques Salah. Benhiouna



1.2 Generalization of Ascoli- Arzela theorem in C" 6

1 flleo = supfllf(x)[[1}-
xeX

For our purpose, we need the following definition in C" (X, E).

Definition 1.2.1. The family F C C"(X, E) is called equicontinuous if for every € > 0 there
is 6 > 0 such that Hf(i)(x) — f@ (]/)H1 < eforalli =0,..,nand forall x,y € X satisfying
lx —y| < 6.

The family F C C"(X, E) is called equibounded if there is a constant M such that H FD(x) H
Mforalli=0,..,n, forall f € Fand forall x € X.

IN

1

The following result gives the Ascoli- Arzela theorem in the space C"(X, E)

Theorem 1.2.1. Let F be a subset of C"(X,E). Then F is relatively compact if and only if F is

equicontinuous and equibounded.

Proof. Assume that F is relatively compact. This is means that F is compact. We claim that
F is equicontinuous and equibounded. Since F is compact,then it is equibounded and since
F C F, we deduce that F is equibounded. To see that F is equicontinuous, let ¢ > 0, then
there exist f1, ..., fu € C"(X, E) such that

FCB_- (fl)U...UB e (fm)

3(n+1) 3(n+1)

Since f].(i) are uniformly continues, then there exists 6 > 0 such that for all x,y € X, if

|x —y| < J,thenforalli =0,..,nand forallj =1, .., m

s

170 = £ W)l < 5

Let f € F, then there exists j € {1,..,m} such that f € B¢(fj).

Hence, foralli =0, ...,n

1£9G) = W)l < 196 £+ 176 = £ @)l
I W) - W) h <.

Which implies that F is equicontinuous.

Conversely, assume that F is equicontinuous and equibounded. To show that F is relatively

U. Badji Mokhtar-Annaba Département de Mathématiques Salah. Benhiouna



1.2 Generalization of Ascoli- Arzela theorem in C" 7

compact it suffices to show that F is totally bounded, indeed if F is totally bounded, then F
is also totally bounded, which implies that F is compact.
Since F is equicontinuous, then for all x € X and € > 0, there exists J, > 0 such that if

y € Xand |x — y| < éy, wehave foralli =0,....n
17D (x) = fO )y < 57— forall f € F.
4(n+1)

The collection {Bs_ (x)}recx is an open cover of the compact subset X, hence there exist
m

X1,%2, ..., Xm € X such that X = | J B5x]--

j=1
Which implies that, for all x € B;_ and foralli =0,...,n
j

1FD (x) = FD(x) | < mforauf e F.

Since F is equibounded, then the set

F=A{(f(x)), f'(x}), ...,f(”)(xj)),j =1,..,m; f € F} is bounded.

Since a bounded set in E" ! is totally bounded (because E is a finite dimensional), then
there exists a subset

{1, y2i o Yn+1i)i=1,.,k} C E"*! such that

k
FC U B ¢ (Y1,ir Y2,ir s Yns1,i)
=1 4(n+1)

For any application ¢ : {1,...,m} — {1, ...,k}, we define the set

Fo=Af € - (f(x), f1(x)), s f1(x)) € Be (1,05 Y257 s Ynitigy)s ] = Loy}

4(n+1)

It is clear that F = U Fo. Now, we show that the diameter of F, is less than e.
Let f,¢ € Fp and x € X, then there exists j € {1,...,m} such that x € B;_ .
]

U. Badji Mokhtar-Annaba Département de Mathématiques Salah. Benhiouna



1.2 Generalization of Ascoli- Arzela theorem in C" 8

Hence, foralli =1, ..., n

179 ) = gDl <N @) = £ Gl + 1FD () = yingilh
+ 187 () = yirrgill + 189 (x) — gV ()| < e
which implies that the diameter of F,, less than e. Therefore, F can be covered by finitely

many sets of diameter less than e.

Thus F is totally bounded and the proof is completed. O
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CHAPTER

On The periodic solution of second order non

linear delay differential equation

2.1 Introduction

Motivated by the papers [35, 36, 56] and the references therein, we consider the nonlinear

second delay differential equations
xX'(t) + p(t)x'(t) +q(t)x(t) = f(t,x(t), x(t — (), X' (t— (1)), t €R, (2.1.1)

The nonlinear delay differential equations arise in the modeling of many phenomena in
physics, mechanics and Biology (see [5][10, 42, and the references therein).

The existence of such a periodic solution is of quite fundamental importance biologically
since it concerns the long time survival of species, we refer to [4} 16,7, 17, 25| 26, 29, 30, 133,
37,143}, 50, 52|, 55| (18] 57] for some recent work on the subject of periodic solution for delay
differential equations.

We begin with summarizing a few relative results done in the literature on the existence of
periodic solutions for first and second delay differential equations.

In [6] Ardjouni and Djoudi have investigated the existence of positive periodic solutions to
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the following first order delay differential equations

%(X(t) =8t x(t=7(1)))) = r(t)x(t) — f(t, x(t = T(1))).

Raffoul ([50]) has considered the nonlinear neutral differential equation of the form
x'(t) = —a(t)x(t) +c(t)x'(t — T(t)) +q(t, x(t — T(t))), (2.1.2)

which arises in a food-limited population models. The author has studied the existence of
a periodic solution by using Krasnoselskii’s fixed point theorem.

The second order nonlinear delay differential equations have been investigated by many
authors. For example:

In [34] The authors have used the monotone iterative technique to prove the existence of a

periodic solution for the following second order delay differential equation,

—x"(t) = f(t,x(t),x(t — 7).

Lia and Cheng in [35] have studied the existence of periodic solutions of the following

second order delay differential equation
ax" (t) + bx(t) + g(x(t — 1)) = p(t).

Liu and Ge [36] have studied the following second order nonlinear differential equation

with delay and variable coefficients:

x"(t) + p(6)x' () + q(t)x(t) = Ah(t) f(t, x(t = T(t))) +r(t).

Wang et al. in [56] have established the existence and the uniqueness for the following

general form of (2.1.2)

() + p(0)x' () + q(t)x(t) = r()x'(t = T(8)) + f (£, x(t), x(t = T(1)))

U. Badji Mokhtar-Annaba Département de Mathématiques Salah. Benhiouna



2.2 Application of generalization of Ascoli- Arzeld in C! to the solution of second order delay
differential equation 11

by using Krasnoselskii’s fixed point theorem and Banach’s fixed point theorem.

In most of the above works, the authors have transformed the delay differential equation
to an integral equation defined on C(R, R) (the space real continuous functions), where
the derivative x’ does not appear under the the integral sign, and then use Ascoli- Arzela
theorem and some fixed point theorems.

In general the second order nonlinear delay differential equations of the forme can
not be transformed to an integral equation defined on C(R,R) and x" appears under the
the integral sign, therefore, we can’t use the well known Ascoli- Arzeld theorem in C(R, R).
For this reason, our main task in this chapter consists of using the generalization of Ascoli-
Arzeld theorem in the space C!(X, E) (the space real from a compact subset of R into
a Banach space E with continuous first derivative) in order to prove the compactness
criteria and to use Schauder fixed point theorem in the space C! to prove the existences of
a periodic solution for (2.1.1)) in section 2. In Section 3, we transform our problem (2.1.1)
into of integral equations and we use the well know Perov’s fixed point theorem to prove

the existence and uniqueness of a periodic solution of (2.1.1).

2.2 Application of generalization of Ascoli- Arzel4 in C' to

the solution of second order delay differential equation
Let T be a positive constant, we consider the spaces

Pr={yp € C(R),p(t+T) = ¢(t),Vt € R}.
P} = {yp € CY(R),p(t + T) = ¥(t), vt € R}.

It is clear that Pr is a Banach space endowed with the norm

x| = sup [x|+ sup [x].
t€[0,T) t€[0,T)
Equation (2.1.1) will be studied under the following assumptions:

(i) f € C(R*R) and there exists T > 0 such that

f(t+T,x,y,2) = f(t,x,y,2),Y(txyz) € R.
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(ii) There exist B,7,6 > 0and ¢ € C(R,R") bounded such that

£(t1,0,w))| < $(t) + Blul + [o] + 3leol, ¥(t, 1,0, w) € RE,

T

(iii) p,q: R — R',7: R — R are all continuous T—periodic functions, / p(s) >0,
0

T
/ g(s) > 0,and T/(t) # 1, forall t € [0, T].
0
Before stating the main result in this section, we need the following lemmas,

Lemme 2.2.1. [36|Suppose that (iii) holds and

(exp (}p(u)du) - 1>
R4 0 >1

T -

where

L exp (i‘pw)du) , z
t
Ry = trEIES)T(} / q(s)ds|, Q1 = (1 + exp (/p(u)du)) R3.

T
t exp (Ofp(u)du) -1

Then there are continuous T—periodic functions a and b such that b(t) > 0,
T

/a(u)du > 0and
0

a(t) +b(t) =p(t),b'(t) +a(t)b(t) =q(t),t € R.

Lemme 2.2.2. [56] Suppose the conditions of Lemma[2.2.1| hold and ¢ € Pr.

Then the equation

x4 p(x)x'(t) + g(x)x(t) = 9(t)
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2.2 Application of generalization of Ascoli- Arzeld in C! to the solution of second order delay

differential equation

has a T—periodic solution. Moreover, the periodic solution can be expressed by

where

jexp (fu b(v)dv +

t+T u s+T
a(v)dv | du+ [ exp| [b(v)dv+ [ a du
G(t,s) _ t t s t u

<exp ( a(u)du> . 1> (exp ( {b<u>du) . 1)

Corollary 2.2.1. [56] The Green’s function G(t, s) satisfies the following properties:

C—|r—e

G(t,t+T)=G(tt),G(t+T,s+T) = G(t5),
dG(t,s)
ot

exp (fa(v)dv)
where F(t,s) = :

- = :
exp <0f b(v)dv) —1

— —b(D)G(ts) + E(t, ).

13

T
Lemme 2.2.3. [56] Let A = /p(u)du,B = T?exp (% /ln(q(u))du>. If A% > 4B, then we

0
have

b(u } %(A— A?—4B) =1

i [ 20
a( du,/Tb } %(A—I—\/r)
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differential equation 14

Corollary 2.2.2. [56] The function G(t,s) satisfies

T
= —— < G(t <
m -T2 = G(t,s) <

0
(e =12

T
T exp (f p(u)du)

= M.

It is easy to check,by using Lemma that x is a solution of (Z.1.1) in P} if and only if x

is the solution of the following integral equation in P}

x(t) = / G(t,s)[f(s,x(s),x(s — (s)),x' (s — T(s)))]ds. (2.2.1)

Before stating our main result, we recall the following Schauder fixed point theorem.

Theorem 2.2.1. [59]] Let C be a nonempty bounded, closed and convex subset of a Banach space E
and A is a continuous operator from C into itself. If A(C) is relatively compact, then A has a fixed

point.

Under the hypothesis (i), (ii), (iii) and the previous lemmas and corollaries, we will make

use of Schauder fixed point theorem to prove the following main result.
Theorem 2.2.2. If the hypotheses (i), (ii) and (iii) hold, and if
k=T(M(||b]lec +1) + ||F|lec) Max {5, (B+7)} < 1. (2.2.2)

Then, the second order delay differential equation 2.3.1)) has a periodic solution in C*(R).

Proof. Solving Eq. (2.3.1) is equivalent to finding a fixed point of the operator A defined by

the following expression
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It is clear that the operator A is well defined from P% into itself, moreover

t+T
(A1) = [ 2O (s, x(5), xls — ), s — w(5))) .

t

The proof is split into three steps.

Step I There exists & > 0 such that A transforms C = {x € P}, ||x|| < a} into itself.

It is clear that C nonempty bounded, closed and convex. Moreover, for all x € C and

t € [0, T], we have

t+T

/ G(t,s) [f(s,x(s),x(s —T(s)),x'(s — T(s)))] ds

t

| Ax(t)| =

a (2.2.3)
< / 1G(t,8)| [¢(s) + Blx(s)] + 7|x(s — T(s))] + 8[x"(s — T(s))|] ds

t
< MT [[|¢leo + (B + 1) l|x[leo + 0l|x"|| ]

and
t+T8G(t )
Axy 0 =| [ 228 (15, x(5), x(5 — w5)), /(5 — 7(5)))] ds
ST
< [ 2 [p(5) 4 Blx(s) |+ (s — T(s))] 12 (s — 2(s))]] s
t+T (2.2.4)
< [\ fg)+ (4 )l +1¥'1] s
tt+T
< / (IbOIIG(Es) + [F(t,5)]) [Iglleo + (B + 1)l xlleo + dllx"l|oo] ds
< T ([[leoM + [[Flleo) [I@lleo + (B + ) [Ix[leo + 8]|x[loc] ,
where ||b|| = max}{|b(t)|} and ||F|je = max  {|F(t,s)|}.

telo,T

bbb o>
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Hence, by (4.2.1) and (4.2.2), we obtain

|Ax[} < T (M (|[blleo + 1) + [[Flleo) [I@lleo + (B + 1) l|x[leo + &1 x"||eo]
< T(M([|blleo +1) + [ Flleo) 1¢p]c0 + Kl|x]]
< T(M([|blleo +1) + [[Flloo) llploo + ke,

where k is defined by (2.3.1).
We deduce that, A transforms C into itself if

T (M ([[blleo +1) + [[F[loo) [|f[loo + ke <

which implies, under the condition (2.3.1)), that

T (M ([[blleo +1) + [[Fllo) [| [l

< .
1—k =4

Then, A transforms C into itself for

T (M ([[bllo +1) + [[Flleo) l[Plleo

“= 1—k

Step 2. The operator A is continuous.

Let (x,) € C be a convergence sequence to x € C, which implies that (xSli)) converges to
x) (i =1,2) in the space C([0, T], [—«, a]).

Since f is uniformly continuous on the compact set [0, T] x [—a, a]?,

then the sequence (f(s, x,(s), xn(s — 7(s)), x),(s — T(s)))) converges to

f(s,x(s),x(s — 1(s)),x'(s — t(s))) in C([0, T|, R). It follows that,

| Axy = Ax[| < T (M(|[blleo +1) + [[Flleo) 1 £ (5, % (5), X (5 — T(5)), 23, (s — 7(s)))
—f(5,x(s), x(s = 7(5)), %' (s = 7(s))) [l -
Which implies that (Ax,) converges to Ax and the operator A is continuous.

Step 3. A(C) is relatively compact, it is clear that A(C) is equibounded.

Now, to show that A(C) is equicontinuous, take f; and ; in I.
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differential equation 17

Let H(s) = f(s,x(s),x(s — 7(s)),x'(s — 7(s))), by the assumption (ii), we have

[Hl[eo < l[¢lleo + amax(B +,0)
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It follows that

| Ax(t1)

~ Ax(ty)| =

18
f1+T f2+T
/G(tl,s)H(s)ds— / G(ta,s)H(s)ds
1 )
t+T t+T
< / G(t1,s)H(s)ds — / G(ta, s)H(s)ds
tq ty
t1+T tr+T
+ / G(ts, s)H(s)ds — / G(ts, s)H(s)ds
tl t2
t+T )
< / |G(t1,s)—G(tz,s)||H(s)|ds—|—|/G(t2,s)H(s)ds
t1 f
tr+T t1+T tr+T
n / G(ta,5) ds+/ (t2,5)H(s)ds — / G(ta,s)H(s)ds|
15 tr+T tr
t+T 2
< / G(h, )—G(t2,5)||H(s)|ds+/|G(t2,s)H(s)|ds
51
tr+T
+ / |G(t2,5)H(s)|ds
t1+T
t1+T
< I / (Gh1,5) = Glta,5) ds
t1+T
+|!H||/|Gf2, s+ [HI| [ 1G(t2,5)ds
to+T
f1+T
<IHI [ 1G(t,5) = Glta,s)lds +2M| H]| |11 — ]
t1+T
< (|lle + amax(B+7,) /rc t,s) = Glt2,5)ds
+2M (|[¢[lco + amax(B + 7v,9)) [t1 — L.
(2.2.5)
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Using a similar argument as above, we prove that

t1+T
0G(ty,s 0G(ty, s
A'x(t) — A'x(t2)| < |H] / R L
AG(t a6 t
+HHH/\ 29 gs - [ |20
to+T

A AG(t

< ||H|| <1’ ) _9G(has)| (2.2.6)
ot

2 (M||b||oo + [ Flleo) [ H[|t2 — t2]
t1+T

< (¢l + xmax(p+7,8) [

51

2(M[[blleo + [[Flleo) ([|@lleo + amax(B +,6)) [f1 — ta.

dG(t1,s) 9G(ty,s)

ot ot ds

aG(t,s)
ot
compact set [0, T| x [0,2T], then there exists 6; > 0 such that, if |t; — t1| < 1, we have for

all Vs € [0,2T]

Now, let ¢ > 0, since the functions G(t,s) and

are uniformly continuous on the

s

|G(t2,5) — G(t1,8)| < 2T (||¢]loo + & max(B + v,8))’
tl,S G t2/s € V C
ot ot < 2] (||<P||°° max(ﬁ Y, )), T [ ’ ]

Then from (2.2.5) and {#.2.7), if |tp — t1| < 6 = min(4y, &2, J3), where

€
AM (||¢]|oo + a max(B —J:— v,8))

5y =
53 =

4 (M[blleo + [[Flleo) (I@lleo + amax(p +7,6))’
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We deduce, fori = 0,1, that
|Ax D (ty) — AxD ()| < e

Consequently, the set A(C) is equicontinuous.
Hence, by Theorem (1.2.1), A(C) is relatively compact.
The proof of Theorem then follows from Schauder fixed point theorem. O

Example 2.2.1. Consider the following second-order delay differential equation:

X' (1) + p(t)x' () + q(t)x(t) = cos(6t) + %x(t) + %x(t —T(t) + ' (t—T(1),t € R,
(2.2.7)
where p(t) = ,q( ) = 116 (t) = 1+ sin(6t).

Hence, by using the notations of Theorem 2.2.2, we have T = g, ¢(t) = cos(6t),

r ..
= v = —,0 = r, where r is a positive number. We may see that the conditions of Lemma
Y 5 P y

exp ( (s — t))

22.1/hold, and a(t) = b(t) = =, E(t,s) = ,
4 exp (ﬂ") —1
(s —t)exp (}1(5— t)) +(t+ %5 —s)exp (%(s—k% — t))
G(t,s) = — .
(exp(13))
T 2
By using the notations of Lemma|2.2.3, we have A = —,B = T
s T
Which implies that | = M= Texp (5) 5 and ||Flle = %.
12 (exp (%) — 1) exp (f7) — 1

Therefore, the inequality in Theorem takes the form

n mexp (£) i (1+1) N expﬂ%) r el
e \op () -1\ 4/ " exp () -1
Then by Theorem we conclude that the second-order delay differential equation

24 (exp (f5) —1)°
5 exp () +4mexp (f7) (exp (f3) —1)

(2.2.7) has a periodic solution if r <
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2.3 Existences and uniqueness of period solution by using

Perov’s fixed point theorem

In this section, we recall the following notations and results in generalized metric spaces.

Definition 2.3.1. [49] Let X be a nonempty set and d : X x X — R" be a mapping such
that for all x,y,z € X, one has:

i)d(x,y) > Ornand d(x,y) = Orn <= x =y,

i) d(x,y) = d(y, x),

i) d(x,y) < d(x,z) +d(z,y),

where for x = (x1,x2,..., xp) and vy = (y1,y2, ..., Yn) from R", we have x < y <= x; < y;,
foranyi=1,n.

Then d is called a generalized metric and (X, d) is a generalized metric space.

Definition 2.3.2. [49] If (E, d) is a generalized complete metric space and T : E — E which

satisfies the inequality
d(Tx,Ty) < Ad(x,y) forall x,y € E,

where A is a matrix convergent to zero (the norms of it’s eigenvalues are in the interval

[0,1)). We say that T is a Picard operator or generalized contraction.
We recall the following Perov’s fixed point theorem.

Theorem 2.3.1. [49] Let (E, d) be a complete generalized metric space. If T : E — E is a map for
which there exists a matrix A € My (R) such that

d(Tx, Ty) < Ad(x,y), Vx,y € E

and the norms of the eigenvalues of A are in the interval [0,1), then T has a unique fixed point
x* € E and the sequence of successive approximations x,, = T™ (xg) converges to x* for any xg

€ E. Moreover, the following estimation holds

d(xm, x*) < A™(I, — A)"Yd(xg, x1), Ym € N*.
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We consider the following functional spaces

P(T) = {x € C(R) : x(t+ T) = x(¢), V¢ € R}
PYT) = {x € CY(R) : x(t+T) = x(t), Vt € 1R}
K+(T) = {x € PY(T): x(t) >0, Vt € 1R}

and denote by E the product space E = K™ (T) x P(T) which is a generalized metric space
with the generalized metric d¢ : E x E — R?, defined by

de((x1,y1), (x2,¥2)) = (llx1 — x| + || 21 — 23], [ly1 — v2ll)

where ||u|| = max {|u(t)| : t € [0, T]} for any u € P(T).
Lemme 2.3.1. [11] (E, d¢) is a complete generalized metric space.

It is easy to check, under the above assumptions, that x is a solution of 2.1.1) in K™ (see,

[8]) if and only if x is the solution of the following integral equation

x(t) = / G(t,s)[f(s,x(s),x(s — (s)),x' (s — T(s)))]ds. (2.3.1)

Equation (2.1.1) will be studied under the following assumptions:

(i) f € C(R x (RT)? x R,R) and there exists T > 0 such that
f(t+T,x,y,2) = f(t,x,y,2),Y(t,x,y,z) € R x (RT)? x R.
(ii) There exist a, B,y > 0 such that

’f(tlullvllwl) _f(tluZIUZIwZ)‘ S “|u1 —1/[2| +ﬁ|’01 _’02’ +r)/|w1 — W2\,

Vt € R, V(ul, Un, 01, 02) € (1R+)4, V(wl, ZUZ) S ]RZ.

T
(iii) p,g: R — R",7: R — R are all continuous T—periodic functions, / p(s) >0,
0

T
/ g(s) > 0,and T/(t) # 1, forall t € [0, T].
0
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Under the hypothesis (i), (ii), (iii) and the previous lemmas and corollaries, we will make

use of Perov’s fixed point theorem to prove the following main result.

Theorem 2.3.2. If the hypotheses (i), (ii) and (iii) hold, and if

T(v0+ (a+ B)(M+8)) <1, (2.3.2)

L
such that 6§ = ||b||M + e;(}i( 1) . Then, the second order delay differential equation (2.3.1)) has a

unique positive periodic solution in K™ (T).

Proof. If we differentiate the equation (2.3.1) with respect to t and denoting x'(t) = y(t),
we obtain, by using Corollary forallt € R,

which leads to,

t+TaG(t )
y() = [ S5, x(s), x5 = T(5)), (s — 7(s)lds,

Let A: E — C(R) x C(R) the map defined by the following expression

Ax(x,y) ()
Alx,y)(t) = :
Az(x,y) ()

where,
t+T

Ax(x,y)(8) = / G(t,s)[f(s,x(s),x(s = (s)), y(s — T(s)))]ds,

t
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and,

t+TaG(t )
Ax(x,y)(t) = / T'S[f(s,x(s),x(s —1(s)),y(s —1(s)))]ds. (2.3.3)

t

The rest of the proof is divided into claims.

Claim 1: The operator A transform E into itself.

It is clair, from Conditions (i) and Corollary that A1 (E) C C(R).

Moreover, from Conditions (i), (iii) and Corollary 2.2.1} it follows that Vt € R, V(x,y) €E,
A1(x,y)(t) > 0and

t+2T

A y)(E+T) = / G(t+T,5)[f (s, x(s), x(s = 7(s)), y(s — 7(s)))ds

t+T
t+T

= / G(t+T,s+T)
t

X[f(s+T,x(s+T),x(s+T—1(s+T)),y(s+T—1(s+T)))lds
= A1(x,y) ().

Hence, A1(E) C K*(T). Similarly, we have,

t+2T

Ay (t4 1) = [ 2L (s (5),x(s — x(s)),ys — (5)) s

t+T

T
B 7 9G(t+T,s+T)

ot

X[f(s+T,x(s+T),x(s+T—1t(s+T)),y(s+T—1(s+T)))]ds
= Ax(x,y)(t), Vt € R,V(x,y) €E.

We deduce that, A(E) C E.

Claim 2: The operator A is a generalized contraction.
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From Condition (ii), we have

|A1(x1,y1) () = Ax(x2,y2) ()] + | AL (x1, y1) () — A (x2,2) (1)
T

< / G(t,s) [a|x1(s) — xa(s)| + B lx1(s) — xa(s)| + v [y1(s) — yals)|] ds
AT

exp(L
<TM(a+ B)|x1 — x2]| + TMy|lyr — y2l + (HbHM+ lli(l))

[a[x1(5) — x2(8)[ + B [x1(8) — x2(s)| + 7 [y1(s) — ya(s)[] ds

Tl(a-+ )lln —xal 7 (614 + L) (s = ol

< TG+ ) (Mot [01M -+ SR (I =l + I = 53])

ex
+Ty M+ oM+ 52 ) - el

Similarly, we have

HTBG(t )
|A2(X1,y1)(t) - AZ(x2/y2)(t)| < / at,S

t

25

x [afx1(s) — xa(s)| + B lx1(s) — xa(s)| + v [y1(s) — ya(s)|] ds

<T ||b||M+eXp” [+ B)llx1 — xall +vllvn — vl

I-1

J/

~"

=0
<T(a+ B)0 ([lx1 — x2f| + [lx1 — x3])

+ Ty0|ly1 — y2l|]

We deduce that,

x1 — Xa|| + || x] — x5
de(A(xy), Al ya)) < k | 1772l =xll )
ly1 — v2l|
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where the matrix K is given by,

Ta+B)(M+6) Ty(M+06)

T(a+B)6 Ty6

The eigenvalues of this matrix are:

M=T[y0+ («+ B)(M+0)]
A =0

Since the norms of the eigenvalues are in the interval [0, 1), then, by Perov’s fixed point
theorem, the operator T has a unique solution x* = (x.,y«) € Kt (w) x P(w), which
implies that x, € C}(R), and for all t € R

t—l—TaG(t )
() @) = [ 28U (s (5), x5 — w(5)), s — T(5))))es
Hence, by using (2.3.3), for all t € R

((x)" =) (1) = 0.

We deduce, that (x.)" = y. and x, is the unique solution of (2.3.1). O

The following proposition gives an estimation of the error between the exact solution and
the approximate solution of (2.3.1).

Proposition 2.3.1. Under the assumptions of Theorem the solution of the equation (2.3.1)),
which is obtained by the successive approximations method starting from any x° = (xo, o) € E,

verifies the following estimation:

e e
de(x™x)y < | 1 7P| xde(x, 20,

e3 é4
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where
( (M +7)A! ' T(a + B)
e =
M —1
YA AT (a0 + B)
2= 1—A
A1 (2.3.4)
(v + M))\1 TORT(M + v)(a+ B) — 1]
€3 =
A —1
ATy [T+ M+ ) (a+ B) — 1]
= A —1
\ 1

Proof. From Theorem by the conditions of Theorem one has that
de(x™,x*) < A™(1— A) e (xt, x0), Vm € N*.

We have,
e ( (M+ AT (a+B) (M+7)A"1T0 ) |
YA T (a + B) A1TOy
And we find
Am— an-i ( (M+7)(@+p) (M+7)6 ) |
v(a+B) Oy

And we have

(- A) = 1 —1+4+TOy —TO(M + )
M1\ ~T@+p)y ~1+T@+pM+7) |’
Which implies that,
Amr—ayt=| T2,
€3 €4
wheree;,i = 1, ..., 4 are given by (2.3.4). O

To illustrate this result, we have the following example.

U. Badji Mokhtar-Annaba Département de Mathématiques Salah. Benhiouna



2.3 Existences and uniqueness of period solution by using Perov’s fixed point theorem 28

Example 2.3.1. Consider the following second-order delay differential equation:

x"(t) + p(t)x'(t) + q(t)x(t) = %x(t) + %x(t —1(t)) + 1—)?x’(t —1(t),t e R,A > 10°

(2.3.5)
where p(f) = 2,4(t) = =2, () = 1+ sin(6t).
Hence, by using the notations of Theorem 2.3.2, we have T = g,
n=p= %, Y= where A = 10 is a positive number. We may see that the conditions of
1 exp < (s — t))
Lemma2.2.1hold, and a(t) = b(t) = =, F(t,s) = ,
4 exp (ZT> -1

G(t,s) = (s —t)exp (%(S—t)> +(t+%5 —s)exp (}l(s—i-% —t)).

2
(exp({5))
T 2
By using the notations of Lemma|2.2.3| we have A = o B = Taa
T Tt
Which implies that | = L = M=—"2P () and ||| = Pn(u)

;_\

> (exp () ~1)° i
We find 6 = 19.149, M = 59.25and by using the previous values of T M «, B, v therefore,

the inequality in Theorem takes the form
T(y0+ (x+B)(M+0)) <1

Then by Theorem we conclude that the second-order delay differential equation
(2.3.5) has a periodic solution.
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CHAPTER

The existence of solution for some classes of

Higher order boundary value problem

3.1 Introduction

In this chapter, we consider the following higher-order boundary value problem:

w4 f (il ) = 0,n 2 2,t € 1= [0,1],

. (3.1.1)
uD(0)=0,0<i<n-—3.
with the conditions
(n=2)(0Y _ Ry (n—1) _
ou 0 u 0)=0,
(0)—B (0) (312)
yu" 2 (1) + 6u"" (1) =0
on the one hand and with the conditions
u"=2)(0) =0,
(3.1.3)
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on the other hand, where 7 is a given positive integer, «, v > 0,5, > 0,0 <7 < 1,0 <
n—2

an™~ ! < 1, f is continuous and satisfies | f (s, ug, 1, ..., y_2)| < a(s) + ¥ by|u| such that
k=0

ais continuouson I and by € R,k =0,...,n — 2.

Equation (3.1.1) and its particular forms have been studied by many authors (see for
example [3| 46,47, 2, 24} 23], 19, 22, 40, 39| 44] and the references therein).

Wong and Agarwal in [47] and Patricia et al. in [46] have studied the following boundary

value problem:

(u(”) +AQ(tu, !,y 2y = AP(tu, il ., u )
u(0)=00<i<n-—3,

au"=2)(0) — pu"~1(0)
2 (1) + 6ulV (1)

0,
0

\ 4

under the following condition: there exist continuous functions f : (0, +00) — (0, +00)

and p1,p,q1,9 : (0,1) — R such that

()q(r) < Lt biz) < gy )

(i) q(t) — p1(t) = 0.

IA

Agarwal and Wong [2] have studied the existence of a positive solution for the problem
(3.1.1) under the following condition: there exists L > 0 such that

F(tu,u, ., u" 2+ L >00n0,1] x [0,00)" 7,

1
/ g(s,8)[f(s,u, 1, ..., u"" "2y + Llds < A,
0

and some other conditions, where the function g is defined in (3.2.2).

Chyan and Henderson [19] have studied the existence of a positive solution of the following
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problem,

ul + Aq(#)f (u) =0,
uD(0) =u"21)=0,0<i<n-—2

such that f and g are continuous and nonnegative functions.

The following analogical problem have studied by Eloe and Ahmad in[21],

u™ 4 f(t,u) =0,t € (0,1)
uD(0)=0,0<i<n-—2,

au(n) =u(l),0<n <1,

The following more general form have studied by ]J. R. Graef and T. Moussaoui in [27],

u™ 4 f(t,u) =0,t € (0,1)
u(0)=00<i<n-—2,

m—2

Y () = u(1),0<y <1,

\ =1

where the derivatives x(i), 0 <i < n—2donot appear in the nonlinear terms.

Our main task in this paper consists of using the generalization of Ascoli-Arzeld theorem
in the space C"(X, E) (the space of functions from a compact subset of R into a Banach
space E with continuous nth derivative) in order to prove the compactness criteria and to
use Schauder fixed point theorem in the space C" to prove the existences of a solution for
the higher-order boundary value problem (3.1.1).
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3.2 Application of generalization of Ascoli- Arzela theorem
in C" to the solution of a higher-order boundary value
problem

In this section, we study the existence of a solution for the problem (3.1.I) with the condi-

tions (3.1.2).
It is easy to check, (see [2]), that u is a solution of (3.1.1) in C"(I,R) if and only if u is a

solution of the following integro-differential equation:
1
= / G(t,s)f(s,u, 1, ..., u"=2))ds, (3.2.1)
0

8”_2G(t,s) .

in C""2(I,R), such that g(t,s) = Sz 18 the Green’s function of the second order

boundary value problem

Moreover,

1 (B+as)[0+v(1—1)],0<s
t,s) = —————— (3.2.2)
$ts) wy +ad+py (B+at)[d+9(1—s)],t<s .

IN

IA
—_

Equation (3.2.1) will be studied under the following assumptions:
(i) feC(IxR"LR).

(ii) There exist a functiona € C(I,IR™) and constants by € R™(k = 0,...,n — 2) such that

f (s, 10, U1, s thy—2)| < a(3) + Zbk|uk|
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Under the assumptions (i)and (ii), we will make use of Schauder fixed point theorem to

prove the following main result.

Theorem 3.2.1. If the hypotheses (i), (ii) hold, and if

n—2 1 (1)
ry. ||/0 10,7 G(t,5)|ds||e0 < 1
i=0

such that r = Max{by, ..., by_2}.
Then, the integro-differential equation (3.2.1) has a solution in C"~*(I,R).

Proof. Solving Equation (3.2.1) is equivalent to finding a fixed point of the operator A
defined in the space E = C"~2(I,R) by the following expression

1
Ax(t) = /G(t,s)f(s,x,x’,...,x(”_z))ds.
0

It is clear that the operator A is well defined from E into itself.

Moreover forallx € E,t € Iandi =0,...,.n — 2, we have
1 .
(Ax)D (1) = / 3\ VG(t,5)f (s, %, .., x"=2)) s,
0
The proof is split into three steps.

Step I. There exists « > 0 such that A transforms C = {x € E, ||x|| < a} into itself. It is

clear that C is nonempty, bounded, closed and convex subset of E.
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Moreover, forallx e C,t € [andi =0, ...,n — 2, we have

[(Ax) W (1)] =

f(s,x,x, ...,x(”*z))ds

o o

fe
forec

(H Hoo+2kax Hoo>/\8 (t,5)]|ds.

Hence, for r = Max{by, ..., b,_2}, we obtain

n—2 )

|Ax]| = Y A x]eo
i=0
< (Jlallo + ra) || / 2611, ds |
We deduce that, A transforms C into itself if
(2]l + ra) || / G (t,5)ldsl|oo < a.

which implies, under the condition of Theorem (3.2.1)), that

n2 )
lallo X Il J 1077 G(t,5)|ds]leo
i=0 0
< a.

n2 b ()
1—r .ZO | [101"G(t,s)|ds]co
1= 0

34

(3.2.3)
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Then, A transforms C into itself for

n2 h ()
l|a]|eo ;0 | Of 10,7 G(t,5)|ds]|eo

=
|

2 e |
1—7r ;0 | ‘({ |07 G(t,5)|ds||co

Step 2. The operator A is continuous.
Let (x;;) € C be a convergence sequence to x € C, which implies that (xﬁ,?)
x in the space C(I, [—a, a]) forall i = 0,...,.n — 2.

Since f is uniformly continuous on the compact set I x [—a,a] X ... X [—a, a], then the

converges to

~

n—1times

(n—2

sequence (f(S, Xy, Xy -voy Xy ))) converges to f(s,x,x , ..., "2} in C(I,R).

It follows that,
| Axy — Ax|| < || F(s, X, Xby ooy X1572) — f(s5,2, %, ..., x ||Oo ‘ H/ 8 G(t,9)ds||co-

Which implies that (Ax,,) converges to Ax and the operator A is continuous.
Step 3. A(C) is relatively compact, it is clear that A(C) is equibounded.
Now, to show that A(C) is equicontinuous, take 1 and #; in I.

Then, for all i = 0, ..., n — 3, there exists ; between t; and f, such that
01'G(t2,5) — 31 G(t,5) = (t2 — 1)) TV G(&;,9).

Hence, foralli =0,...,n — 3,
|Ax(i)(t2) — Ax(i)(t1)| =1/ f(sx, x’,...,x(”_z))(agi)G(tz,s) — 8§i)G(t1,s))ds

< |f(s,x,x’,...,x(”_2)) (i+1) G(&;,8)(ta — t1)]|ds (3.2.4)

O\H O\H

1
<tz =t (lallo + 1) || [ G (e,9)lds
0

[e¢]
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0<i<n—-3

1
Now, let ¢ > 0. We note A = max / |B§i+1)G(t,s) |ds
0

[ee]

Then from (3.2.4), if |t, — 1| < 1 = ,wehaveforalli=0,...,n—3,

T+ ([lafleo +ra) A
|AxD (1) — AxD (1)] < ¢

On the other hand, since the function g(#,s) is uniformly continuous on I x I.

Then there exists d; > 0 such that if |t, — 1| < Jp, then foralls € I

£
< :
14 [|alleo + ra

8(t2,5) = g(t1,5)]

Which implies, for i = n — 2, that

1

|(Ax) " Dx(t2) = (Ax) " 2x ()] = |/f(S,x,x',---/x(”_z))(g(fLS) — &(ty,5))ds|
0

< (llalleo +ra) lIg(t2,5) = g(t1,5) [0

E.

IN

Hence, the third step is completed by setting 6 = min(dy,dz). Therefore, the set A(C)
equicontinuous.
The proof of Theorem then follows from Schauder fixed point theorem. O

Example 3.2.1. Consider the following third-order boundary value problem:

/

u® AR +u2+ ()2 =0,t e 1=10,1],

u(0) =0, (3.2.5)
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where A is a positive number. Hence, by using the notations of Theorem [3.2.1}

n=>3f(tuu')=AInQR+u*>+W)),a=y=p=06=1, E)Géi,s) =g(t,9),

where,

(1+s)[1+(1-1t)],0
(1+8)[14+(1-5)],t<s

IN

S

IN

t,
g(t,s) =

Q| =
IA

1.

1 1

Which implies that [ [g(t,s)lds = (1~ t+ ) and | [ |g(t,s)lds]| = 2.
0 0

On the other hand, we have

2

t t
1+s)2t——|,0<s<t,
G(t,s):/g(r,s)dr:% ( )l t22]
0 (2—5)[t+5],t§s§1.

Which implies that /01 IG(t,s)|ds = }L(Zt +2)and || /01 IG(t,s)|ds|| = Z

It is easy to see that | f (s, ug, u1)| < AIn(2) + A|ug| + Aluq].

Hence, the conditions (i) and (ii) are fulfilled with a(s) = A1In(2),by = b; = A.
Therefore, the inequality in Theorem takes the form

5 1 8

Then by Theorem we conclude that the third-order boundary value problem (3.2.5)

has a solution u € C3(I,R) if A < %

3.3 Application to the solution of a higher-order boundary

value problem

In this section, we study the existence of a solution for the problem (3.1.1) with the condi-

tions (3.1.3).
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It is easy to check, (see [21]), that u is a solution of (3.1.T) in C"(I,R) if and only if u is a

solution of the following integro-differential equation:
1
u(t) = — / G(t,s)f(s,u,u,...,ul""2))ds, (3.3.1)
0

in C"72(I,R), such that the Green’s function G(t, s) is defined by

n—1
%/ lfo S t S s S 1/
G(t,S) = _nfi _ \n—1
00 i
where
_ o\n—1
_&, ;7 S S,
a(s) = 1— "™
TG a9
_ T 007”*1 , s<.
Moreover,
n—i—1
AT < <s<,
5 _ ) (n—i—1)
1 G(t,s) = a(s)tn—i—l +(t— S)n—i—l
CETES] , f0<s<t<1.

Equation (3.3.1) will be studied under the following assumptions:
(i) feC(IxR"LR).

(ii) There exist a function ¢ € C(I,IR") and constants by € R™ (k = 0,...,n — 2) such that
n—2
f (s, 10, U1, oo in—2)| < @(s) + Y bielug]
k=0

Under the assumptions (i)and (ii), we will make use of Schauder fixed point theorem to
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prove the following main result.

Theorem 3.3.1. If the hypotheses (i), (ii) hold, and if
1+ an” nlq
(a1 G

such that r = Max{by, ..., by_2}.
Then, the integro-differential equation (3.2.1) has a solution in C"~2(I,R).

39

Proof. Solving Equation (3.3.1) is equivalent to finding a fixed point of the operator A

defined in the space E = C"~2(I,R) by the following expression

1
Ax(t) = —/G(t,s)f(s,x,x’,...,x(”_z))ds.
0

It is clear that the operator A is well defined from E into itself.

Moreover forallx e E,t € Iandi =0, ...,.n — 2, we have
1 .
(Axﬂ”@):——/}ﬁoGﬁﬂﬂf@anC",xmaﬁk.
0

The proof is split into three steps.

Step L. There exists > 0 such that A transforms C = {x € E, ||x|| < B} into itself. It is

clear that C is nonempty, bounded, closed and convex subset of E.

Moreover, forallx € C,t € andi =0, ...,n — 2, we have

1 n—2
gﬂﬁqmn¢@+zmwmﬂ%
0 k=0

A\

n—2 1 )
< (pr\loo Y bk|rx<k>uoo) [ 1afG(e,s)las
k=0 0

(3.3.2)
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Hence, for r = Max{by, ..., b,—2}, we obtain

n—2 )
lAx| = Y- 1ADx]|es
i=0

H/\a

n—2 1 1
< (lglle+rB) & ey [ la(s)] + 1)ds
0

i=0 !

< (HfPHoo+rﬁ (£,5)]dsl|oo

i=0

40

n—2 1 1
< (ol +8) T ooy (@)l + [ la(o)las +1)
n

0
n=2 —(1—s)" —a
< ([[ello +7B) Z (n_i_ ! (n(l(_l )f ’(1)+ n(1 (_’7
_|_

i=0 an"1)
1+ an” n—2 1
< 00 _ ;
<ol +7) (51 Zaey 1) & =i
1+ an” n=lq
< (lglle+8) (s +1) T 5
We deduce that, A transforms C into itself if
1+ an” 11
% —_— - < B.
(ol 8) (e +1) 5 <8

which implies, under the condition of Theorem (3.3.1)), that

>n211

1+
lplleo (el +1

_S)” 1
1) 0 H)
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Then, A transforms C into itself for

14+an"
o | e+ 1
5 loll (n(l—uay D) )i—l -
- n—=11

Step 2. The operator A is continuous.
Let (x;;) € C be a convergence sequence to x € C, which implies that (xﬁ,i)) converges to
x in the space C(I,[—B, B]) foralli =0, ..., n — 2.

Since f is uniformly continuous on the compact set I x [—B, B] X ... x [—B, B], then the

N

-

n—1times

sequence (f(s, xm,x;ﬂ, . x,(ﬁ_z))) converges to f (s, x, X, ...,x(”*z)) in C(I,R).

It follows that,

| A = Ax[| < ILF(, % Xy 5572 = £ (5, " ) oo L | /01 3V G(t,5)ds]|o.
Which implies that (Ax,,) converges to Ax and the operator A is continuous.
Step 3. A(C) is relatively compact, it is clear that A(C) is equibounded.

Now, to show that A(C) is equicontinuous, take #; and #; in I.

Then, for all i = 0, ..., n — 3, there exists ; between t; and f, such that

3Gty s) — V) G(t,5) = (t, — )2 VG (&, 5).
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Hence, foralli =0,...,n — 2,

AxD(ty) — AxD (1) = | [ F(s,%,%, .., s (2G(ty,5) — 3V G(ty,5))ds

o—_

< [1f(s,x,x, ., x0TV G (&, 5) (£ — 1) |ds (3.3.3)

o

< |2 = ta[ ([lglleo +7B)

1
/|a§i+1>c(t,s)\ds
0

[ee]

Now, let ¢ > 0. Wenote A = max
0<i<n-—-2

1
/ 0 VG(t, 5)|ds
0

(ee]

Then from (3.2.4), if |t — 11| < =

% we have foralli =0,...,n—2,

3
1+ (¢l +7B)
|Ax(i)(t2) — Ax(i)(t1)| <eg

Hence, the third step is completed. Therefore, the set A(C) equicontinuous.
The proof of Theorem then follows from Schauder fixed point theorem. O

Example 3.3.1. Consider the following third-order boundary value problems:

(

u® AR+ + (W)?) =0,teI=10,1],
u(0) =0,

3.34
u'(0) =0, 634

\u (%) =u(1).

where A is a positive number. Hence, by using the notations of Theorem [3.3.1}

n=>3f(tuu')=AInQ2+u*+W)}),a=1n==,
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where,
AV
Qoo 1oioy,
(s) = - (%)2 2
e (1-5) (3 -5)?
- T , 81
1-(3)?
and
a(s)t?

e, fo<i<s<,
Glt,s) = a(s)t? + (t —s)?
2 7

if0<s<t<L.

It is easy to see that | f (s, ug, u1)| < AIn(2) + A|ug| + Aluq].
Hence, the conditions (i) and (ii) are fulfilled with ¢(s) = AIn(2),bp = by = A and r = A.
Therefore, the inequality in Theorem takes the form

1+ (3)3
A Lzl)Jrl X (1+1) <1<:>/\<L—L.
3(1-(2)%) 2 ?
Then by Theorem we conclude that the third-order boundary value problems (3.3.4)
has a solution u € C3(I,R) if A < g
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CHAPTER

Existence of a solution of integral equations of

the product type

4.1 Introduction

In this chapter, we concern with the nonlinear functional integral equations of the product
type which was presented by many authors in [1,19, 12} 13, 14} 28,38, 48] such as B. Boulfoul
et al. have studied the existence of a continuous solution to the following integral

equation

x(t) = f(t,x(t)) + fr (t, /Ot vl(t,s,x(s))ds> X fo (t, /Ot vz(t,s,x(s))ds>. 4.1.1)

for t > 0. This equation arises in the study of the spread of infectious disease, see ([14} 28, 9]
and the references therein).
Ardjouni and Djoudi in [9] studied the approximating solution of the following nonlinear

Hybrid Caputo fractional intego-differential equation by using Dhage iteration principle:

Ax(t) = (p() + %ﬁ) /0 - $)F1g(s,x(5))ds ) x (0+ ﬁ /0 (= gyt f(s,x(s)();li)z.)
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In this work, we will studied the following more general forme integro-differential equa-
tions of product type by using the generalized Ascoli-Arzela theorem in C! and Schauder’s

tixed point theorem.

t t

x@%:v&%ﬁ/MUﬁm@J@Lf@»%}Xh@f+/b@ﬁﬁ@ﬂ@)f@»%}
0 0
(4.1.3)

4.2 Application of generalization of Ascoli- Arzela theorem

in C! to the solution of integral equations of the product

type
Let a € R be a positive constant, we consider the space
P! = cl([0,4], R).
It is clear that P! is a Banach space endowed with the norm
|

|x|| = sup [x[ 4 sup [x
te[0,4] te[0,4]

Equation (4.1.3) will be studied under the following assumptions:
(H) p,q € C'(R,R).

(Hy) g € C(R? R) there exists ki, k; > 0 and ¢; € C(R, R) bounded such that

lg(t,u,0)| < p1(t) + kq|u| + kalv|, V(tu,v) € R3.

(H3) f € C(R3 R), there exists k3, kg > 0 and ¢ € C(RR,R) bounded such that

F(t,1,0)] < da(t) + kalu| + ko, V(tu,0) € RS,
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(Hg) hi,hp : RT x Rt — R are all continuous bounded functions.

In the proof the main result of this chapter, we will use the following Lebesgue’s dominated

convergence theorem.

Theorem 4.2.1. [15] Let Q) be a measurable set of R and (fi) be a sequence in L'(Q, R) space
such that: fi(x) — f(x) a.e and there exists a functions g in L'(Q), R) such that | fi(s)| < g(s)
Then f € L'(Q,R) and

/Q i — f| ds—0, when  k —s oo

Under the hypothesis (H; — Hy) and the previous theorems, we will make use of Schauder

tixed point theorem to prove the following main result.

Theorem 4.2.2. If the hypotheses (Hy — Hy) hold, and if suppose that conditions:
1
Max {0 + a6?, ksaf,36 + 3a6> + 262, 2ks6 + 3ksaf} < 5

Then, nonlinear perturbed integral equation of product type (4.1.3) has a

solution in P}, where 6 is defined in the proof.

Proof. Solving Eq. (4.1.3) is equivalent to finding a fixed point of the operator
A such that A are defined by the following expression
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It is clear that the operator A is well defined from Pl into itself, moreover

(A0 () =[20 o, 00 x(), ¢ (0) + [ P (s 2(5), 2/ (5) ]

t t

< [a(t) 4+ [ halt,s) (s, x(5), ¥/ (5)ds] + [p(8) + [ (t,5)g(s,x(5), %'(5))ds]

0 0

x [a%(t) +ho(t H)f (1, x(t), ¥ (1) + / ahzétt's)f(s,x(s),x’(s))ds]

0

The proof is split into four steps.
Step L There exists & > 0 such that A transforms C = {x € P!, ||x|| < a} into itself . It is
clear that C is nonempty, bounded, convex and closed.

To simplify notations, we introduce the constants

o = max {Ip()L 0L lor 1 Iga(o)} 12252 125 0,9, s )L, I 5) 1,1

ahl (t, S)
ot

Moreover, for all x € C and t € [0, a], we have

ahz(t,S)

ha(ts) = ‘ ot

== max{kl/ kZ/ k3/ k4}

Jhy(t,s) = ’
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t t

Ax()] =[p() + [ 1 (t,)3(5,x(5), ¥ (5)ds|  |q(t) + [ halt,s)fls,x(s), ¥ (5))ds]
0 0

< [Ip®)1+ [ 1m(&)l[91()] + (alx(5)] + Kl (5) s
0

< 191+ [ ot )l 112(5) (kalx() | + Kl (s) as]
0

< [Ip®)1+ [ I (t9)1[Ig1(5)] + ks (x(5) | + ¥ (5)))s]
0

< ()] + [ 1t )] [142(5)] + ks 1x(5) | + 1+ (5) )]

0
t

<0+ [ 010 +Ks(llxllo + 1 o))

0
t

« [0+ /9[9 5 (| oo + 12 o)l

0
t t

<0+ /9[9 +ks||x[|ds] x [0 + /9[9 + ks x| ds]
0 0

< [0+ 0a(6+ kSa)} x [9 +af(o+ k5a)}
< [0+ 6a(6+ k5tx)]2
4.2.1)
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and
(Ax)' (1)) :ua’g—(f’ + (L H)g / ¥/ (s))ds]
0
< [a(t) + [ halt,s)f(s,x(5), ¥/ (5)ds] + [p(t) + [ I (t,9)g(s,(5), ¥'(5))ds]

0 0

D e 0 (e w0, 2 1) + [ P2 g6 0,29

< 1229 i (1, )1(01() + Kalx(0)] + Rl ()])

[12882)) 4 (g1 5) + as) | + Rl 5)
0

x[lq(1)] +/\hz(t15)l(¢z(8)+k3\x(5)! +ky|x'(s)[)ds] +
0

t
p(8)] + / (8, 9)] (1(5) + K [x(5)] + kol (5)]ds] x
R )\+ (b, 1) (at) + ks x(6)| + kel (8) )+
/|ahz U4 (o) +sla()] + ' (5) )]

< [0+ 000 + ks ([|x(8)[leo + |x"(£)[]oo) +aB(O + ks (]| (5) lleo + [[x(5)]]oo)]

X [0+ af (6 + ks([[x(5)[leo + [1x(5) leo)] + [6 + a8 (6 + ks ([ x(5)lleo + [|x"(s) [|co)]
X [0 4 6(6 + ks ([|x(t)[leo + [x"(£) o) +aB(6 + ks ([|x(s) [[eo + 1% (5)[]eo)]

< 2[0 4 6(6 + ks||x]|) + ab(0 + ks||x|[] x [6 + a6(6 + ks([|x]|]

< 2[00+ 6(0 + ksa) + ab(6 + ksa)] x [0 + ab(0 + ksa)]
4.2.2)
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Hence, by (4¢.2.1) , (4.2.2) we obtain

JA(x)|| < [0+ 0a(6 +ksa)]* +2[0 + 0(0 + ksa) +ad(0 + ksa)] x [0 + ab(6 + ksa)]
< [0+ 0a(0 + ksa)] x [0+ 0a(60 + ksa) +2[0 + 6(0 + ksa) + ab(6 + ksa)]
< [0 + ab* + abksa)] x [360 + 3a6% + 20% + 2ks0a + 3ksaba]
< [0 + ab? + abksa)] x [30 + 3ab? 4 26% + (20ks + 3ks0a)a]

If we put
r =Max{6 + ab? ksab, 30 + 3a6* 4 262, 26ks + 3ksa0}
We obtain

|Ax|| < (r+ra) x (r 4 ra).
We deduce that, A transforms C into itself if || Ax|| < (r 4 ra)? < a, which implies
4202 + 2170 < a = —1r2a® + (1-— Zrz)oc —r>0,

wehave A = (1 —2r%)2 —4r* = (1 —2r) x (1+2r).

Since r < > then A > 0, hence we have two solutions:

v 1-2r2— VA

- 212 ’

1+2r2+ VA

Ny = ———.
272

Note that0 < a1 < a < ap

Then, A transforms C into itself for
a € oy, an).

Step 2. The operator A is continuous. Let (x,), € C be a convergence sequence to x € C,

which implies that (x,(f)) converges to x) (i =1,2) in the space C([0,a], [—a, «]). then by
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Lebesgue’s dominated convergence theorem , we have

t

lim (Ax,)(f) = lim [p(t) + / hi(t,5)g (s, xn(s), ¥ (5))ds]

n——+oo n—-+o00

= (p(t) +/h1(t,5)[ lim g (s, xu(s), x;(s))ds])

n—r+00
0

x (q(t) +/h2(t,s)[ lim f(s,x,(s),x),(s))ds)

n— 400

Which implies for ¢t € [0, 4] that (Ax,) converges to Ax and the operator A is continuous.

Step3.
A(C) is relatively compact, it is clear that A(C) is equibounded.
Now, to show that A(C) is equicontinuous, take #; and t, in I = [0, 4].

We put Ax(t) = Hyx(t) x Hpx(t) such that

t

Hyx(t) = p(t) + /hl(t,s)g(s,x(s),x'(s))ds

and
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We conclude that

For I'equicontinuity if t, < t;, we have

AX(tl) — AX(tz) :Hl.X(tl) X HzX(tl) — H1X(t2) X HzX(tz)
= Hlx(tl) X [Hzx(tl) — Hzx(fz)] + Hzx(tz) X [Hlx(tl) — Hlx(tz)]
(4.2.3)

Before study the equicontinuity of A we study the equicontinuity of the operator

t

Hy =p(t) + /hl(t,s)g(s,x(s),x’(s))ds
0
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Let t1,t, € [0,a] we have for t; < t1:
t ty

[Hix(t1) — Hix(ta)] =lp(t) + [ In(ey5)g(s, x(5), %' (5)ds = plta) — [ I (12,5)g(5,x(5), ()
0 0

ty t
< Ip(t) = plt2) + [ In(t1,)3(s,x(5), 5/ (s)ds + [ (11,5305, x(s), ¥ ()4
0

[5)

—fhl(fzS)g(SIX(S),X’(S)dSI
0

< [p(t) = p(t2)| +| ]Z(M(tm) — hu(t2,5))g(s, x(s), x'(s)ds|+
0

|fhl(h,S)g(SIX(S),X'(S)dSI

iz

< [p(tr) — p(t2)| +| f(hl(tw) = ha(t2,8))(|¢1(s)| + ka|x(s)| + ko[’ (5)[)ds+
0

|]1h1(t1,s)(|471(s)| + ki |x(s)[ + ka|x'(s) | )ds

< [p(t) = p(t2)| +/|h1(t115) = h(t2, 8) (|1 ]| + K5 ([|x]loo + [[x]|eo) ) ds+
0

5]

/ [ (b1, 8) [l @] + ks ([l eo + 1% | ) ) s

5]

tr 5]
< Ip(t) = plta) |+ [ Pra(t1,5) — i (t2,9)|(0 + Kl s + [ 00 + ksl s
0

[5)

< |p(t1) — p(tz)l + 11(9 + k50€)||]’l1(t1,5) — hl(tz,S)Hoo + 9(9 + k50€)|t1 — t2|.
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Finally we have

|Hhix(t1) — Hax(f2)| < |p(t1) = p(t2)] + a(6 + ksa) |1 (81, 5) — h1(£2,5) || oo
+9(9 + k50€)|t1 — t2|

(4.2.4)

similarly, we obtain

|Hax(t1) — Hox(t2)| < [q(t1) — q(t2)| + a(6 + ksa)||ha(ty,s) — ha(t2,9)] o
+9(9 + k50()|t1 — t2|.

(4.2.5)

Now, let € > 0, since the functions #4 (t,s), ha(t,s) and p, g are uniformly continuous on the
compact set [0, 4] x [0,2a], then there exists § > 0 such that, if |t, — t1]| < J, we have for all
s € [0,2a]. Consequently, the set H;(C), Hy(C) is equicontinuous.

We have
ELx(®)] =[p(t) + [ In(t,5)g(s,x(6), ¥ (5))ds|
0
< [0+ 6a(0 + ksa)]
and

[Hax(8)] =1q(t) +/hz(f,S)f(S,x(S),x'(S))d5|
0

< [0+ 6a(0 + ksa)]

Hence, by (4.2.3),(4.2.4),(#.2.5), we have

Ax(ty) — Ax(t2) =Hix(t1) x Hax(t1) — Hix(tp) X Hax(t2)
:Hlx(tl) X [Hzx(tl) — Hzx(tz)] -+ Hzx(tz) X [Hlx(tl) — Hlx(tz)]
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which implies that

|Ax(t1) — Ax(t2)| =[0 + 0a(6 + ksa)] x [[Hax(t1) — Hox(t2)] + [Hix(t1) — Hix(t2)]
< [0+ 6a(6 + ksa)] x [|q(t1) — q(t2)[ 4+ a(0 + ksa) || h2(t1,5) — ha(t2,5) [|eo
+0(0 +ksa) [ty — t2|] + |p(t1) — p(t2)| + a(6 + ksa) || 1 (1, 5) — h1(t2,5) |0
+60(0 + ksa) |t — t2]].

On the other hand, we have

(a0 () =12 (1,150,000, ¢ 1)) + [ P (s, x(5), ()]
0

t
><a%—(tt)+h2(t,t)f(t,x(t),X'(t))+/ 7 f(8,x(s),x'(s)) ds]

if we put

pu(6) = B0 (1, 050,02 (0), 1 (6) = OB o, )71, (0, 1)
We conclude that

[p(t)+ [ (t,5)g(s,x(5), ¥/ (5))ds] x [g1 (1)) + [ halt,5)f (s, x(5), %' (5))ds]

0 0
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Let ) t
Hi() = p(t) + [ ha(t,5)g(s, x(s), %' (s)ds,
0
Ho(t) = q(t) + [ halt,s)f (s, x(s), x'(s)ds
0 t (4.2.6)
Hs(t) = pr(t) + [ Ia(t,5)g(s, x(s), ¥'(s)ds
0
Hy(t) = g1(8) + [ ha(t,5)f (s, x(s), %' (s)ds
L 0

So
(Ax)'(t) = Ha(t) x Hp(t) + Hy(t) x Hy(t).

Using a similar argument as above, we prove that

A'x(t1) — A'x(t2) = Hax(t1) x Hax(t1) + Hix(t1) x Hax(t1)
— Hsx(tp) x Hpx(tp) — Hyx(t2) x Hyx(t2)
= Hsx(t1) x Hpx(#1) — H3x(t2) X Hyx(t7)
+ Hyx(t1) x Hyx(t1) — Hyx(tp) x Hyx(tp) (4.2.7)
= H3x(t1) x [(Hax(t1) — Hax(t2)]
+ Hpx(tp) x [Hax(t1) — H3x(t2)] + Hyx(t1)
X [(Hax(t1) — (Hax(t2)] + Hax(t2) x [(H1x(t1) — Hyx(t2)].
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Now, we have

[Ha(£)| = |pa(t) +/ha(f,S)g(S,x(S),x’(S)dSI
0

= 122 g2, 2 (1) + [ P2 g5, 2(5), 51

t
< 0+6(60+ks|x|x) +/9(9 +ks||x||x)ds
0

t
<0466 + ksa) + /(9(9 + ksa)ds
0
<0+ 9(9 + k50€) + 619(9 + k50€)

and

[Ha(®)] = lq1(6) + [ ha(t,5)f(s,x(5), %' ()ds|
0

_ ;a‘g_(:)m (t, (¢, x +/ah2 s,x(s), '(s)ds|

t
< 0+ 60+ ks||x||x) + /9(9 + ks ||x||x)ds
0

t
<O+ 0(0+ksa)+ /(9(0 + ks)ds
0

< 6+ 9(0 +k5zx) + El@(@ +k5zx)

57

(4.2.8)

(4.2.9)
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Hence, Hy, Hy, H3, Hy are bounded and we have
(
\Hy(£)] = +/h1 (t,8)g(s, x(s), x'(s)ds| < 6+ ab(6 + ksa)
[Ha(t)] = la(t) + / ha(t,5) (s, (5), x'()ds| < 6+ aB(6 + ks) @2.10)
|H3(t)| <0+ 6(0+ ksa) +af(6 + ksa)
| [Ha(t)] <0+ 0(0 + ksa) +a0(0 + ksa).

In the following, we prove that H3(C) and H4(C) are equicontinuous

p1(h +/h3(t1,s)g(s x(s),x'(s)ds — p1(t2) +/h3 ty,8)g(s,x(s),x'(s)ds

|H3x(t1) — H3X(X2)| =

< P2 4o gt s 00+ f 210200, 00
0

- w — I (ta, t2)g(t2, x(t2), X' (£2)) — / 3hg§f2)g(s,x(5),x’(s)ds|
0
< |8P(t1) aP(fz) | + |h (f1,f1)g(f1,x(t1),x’(tl)) _ hl(tZr fz)g(tz,X(tz),x’(tz))H

0

x'(t1)) = h1(ta, t2)g(t2, x(t2), ¥ (£2)) |+

ap(t) 8P(f2>|+ |h1(t1, t1)g(t, x(t,),

ot
1)
ohy (1) ohy ( t1 / ohy(£) ,
|O/ 5 Q(s,x(s s)ds +/ , X' (s)ds — 0/ o —=g(s,x(s),x'(s))ds|

"(t1)) — hi(t2, t2)g(t2, x(t2),

X (t))|+

orih) o a(t )|+ |h1(t1, t1)g(t1, x(t1), x

< ot

f@e Ity viopas [ P1Og(0200, ¥i00

0

< 1220 U)o 0y 1)t x(00), 2 (1)) — (1 ) 2, x(02), ¥ (12))

oh t ah t
(6 + ksa /\ 1) ! 2)|d +6(60 + ksa) |t — to
(4.2.11)
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and we have

t )

[Hax(t) — Hax(xa)| = [q1(0) + [ ha(ty,9)f(5,3(), ' (5)ds = qa(02) + [ ha(ta,s)f(s, x(5), 2 (s)ds
0 0

< 1Py (o, ) (0, (00 (1) 0/ P2h) (s, x(s), ¥ (s)as

= 200) 1 )1, (1), (2)) — | 22402 s (s, )

0

< |34(f1) _9q(t2)
=175t ot

|+ [ha(t1, 1) f (b1, x(81), %' (1)) — ha(ta, b2) f (£2, X (t2), X' (£2) ) |+
t

|/ahza(ttl)f(S,x(s),x'(s)ds—/ahzai(th)f(srx(S),xl(S)d5|
0

0

< |aq(t1) 9q(t2)

5 5 |+ [ (tr, 1) f (b1, x(8)), %' (#1)) = Ba(to, t2)g (b2, x(t2), X' (£2) ) |4

)

ty
220 o (o) (s - [ P20 g a0, s — [ PN (5, 2(5), w15t

0

< 20) 902 4 ) £t x(t1), X (1)) — Bt ) £ (£, x(02), X' (12)) |

ot ot
1]
oy (¢ oy (t
(9+k5vc)/\ Za(tl)— Za(tZ)|ds+9(9+k5vc)|t1—t2|
0

(4.2.12)

Now, let € > 0, since the functions h3(t,s), hs(t, s) and p1, g1 are uniformly continuous on
the compact set [0, a] x [0, 2a], then there exists , > 0 such that, if |t; — t;| < J, we have
for all s € [0,24]

Consequently, the set H3(C), H4(C) are equicontinuous.

Hence, by(.2.4) , @.2.5), @.2.7),@.2.10) , (¢.2.11),(4.2.12) we obtain
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|A'x(t1) — A'x(t2)| = |Hax(t1) x (Hax(t) + Hix(tr) x (Hyx(t) — Hax(t2) x (Hax(t2) — Hix(t2) x (Hax(t2)]
= |H3x(t1) x (Hpx(t1) — H3x(t2) x (Hax(t2) + Hyx(t1) x (Hyx(t1) — Hix(t2) x (Hyx(t2)|
— |Hax(t1) % [(Hax(t1) — Hax(t2)] + Hax(t2) x [Hax(t1) — Hax(t2)] + Hix(t1)
x [(Hax(t1) — (Hax(t2)] + Hax(t2) x [(Hix(t1) — Hix(f2)]]
< [0+0(0+ksa) +ab(6 + ksa)] x [(Hax(t1) — Hox(t2)] + [0 4 af(0 + ksa)] x
|Hax(t1) — Hax(t2)[ + [0 4 a0(0 + ksa)] | (Hax(t1) — (Hax(t2)|+
[0+ 6(0 + ksa) +ab(0 + ksa)]| (Hix(t1) — Hix(t)|
< [046(0 + ksa) +ab(0 + ksa)] x (|g(t1) — q(t2)| + a(6 + ksa) x
1h2(t1,8) — ha(t2,5)[leo + 0(6 + ksa) [t — t2]) + [0 + af(6 + ksar)] x

(2L OPULD | (o ), x(10), (1)) — (), x(02), ' (12)

(
(

ty

ohy (t ohy (t

(9+k5rx)/\ la(tl)_ g(tz)|ds+9(9+k5oc)|t1—t2|)+[0+a9(9+k5o¢)]
0

X (|3q£1) B aq£§2)’| +|ha(t, 1) f(t, x(h), X (1)) = ha(t2, t2) f (B2, x(t2), X' (82) )|+

(0 + ksa) / attn) _ 9M2l02) 14 4 0 4 ksa) 12 — ta]) + [0+ 06 + ksw) +aB(® + sa)]
0

x (Ip(t1) — p(t2)[ +a(0 + ksa)|[h1(t1,5) — h1(t2,s)[|eo + 0(0 + ksa) |t — t2])

(4.2.13)
by#.2.3),@d.2.4) , ¢.2.5), @.2.13)
We deduce, fori = 0,1, that
14X (1) — 420 (1)) < e
Consequently, the set A(C) is equicontinuous.
Hence, by Theorem (1.2.1), A(C) is relatively compact.
The proof of Theorem then follows from Schauder’s fixed point theorem. O
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Example 4.2.1. Consider the differential equation (4.1.3) :

t t

x(#) = [p(t) +/h1(t,S)g(sfx(S),X’(S))dS] x [q(#) +/hz(t,S)f(sfx(S),X’(S))dS]-

0 0

Hence, by using the notations of Theorem [4.2.2}and for

(

g(t,u,v) =2At+ %cos(u),

1., 1
f(t,u,v) =A+ gszn(u) +3z 4214)
hy(t,s) = 2Atcos(s), ha(t,s) = 3Asin(s)

p(t) = 3At,q(t) = 2At

1 1
if weputa =1wehavek) = k4 = g,kg = 6,](3 =0

so ks = max{ky, ky, k3, ks } = %

and we have

_ ap(t,s), 9q(ts)
9—tren[%{\p(t)\,!q(t)\,lcpl(t)h\%(t)!,\ o =5 L ()] [ha(t,s)1, (st 5)], [ha(t s) |}

SO

6 = max {|3At], |2At|} = 3A
t€[0,1]
for the condition the Theorem
1
Max{0 + ab?, ksaf, 36 + 3a0* + 26,260ks + 3ksad} < 5

and we find

6A
5

1

3 9
Max{3\ +9A%, A 9A+ 4502, — + A <3

1

<= Max{9A +45)?,3\} < 5
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1
3A < o,

— 2 1
%+%M<§

if
3A < ! — A< ! = 0.166
2 6
and if
1
9A+&M2<§:$9m?+BA—1<O
— v 171
, A = DO VIN b s

We calculate A = /171 > 0, we obtain: 90 Then by Theorem

-9 — V171

we conclude that if A €]A;, A1[ the equation of product type (#1.3) has a solution
u e CYI,R).
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Conclusion and Perspective

In this thesis, we have given a new generalization of Ascoli- Arzeld theorem from the
space of continuous functions C to the space of functions with continuous of high order
derivative C". On the other hand, we have used this new generalization to study the
existence and the uniqueness of solutions for some integral, integro-differential equations
and high order boundary values problems under simple and easy conditions on the data
functions. We have also studied the existence and uniqueness of a solution for a second
order boundary value problem by using Perov’s fixed point in in the generalized metric
spaces. Therefore, we have also discussed of existence of a solution of integral equations
of the product type. In the end of each chapter, some numerical examples are given to
illustrate the theoretical results. Since the general forms of the nonlinear parts of most
high order boundary values problems contain the derivatives of the unknown function,
then we cannot transform it to an integral equation defined on the space of continuous
functions C, therefore, we can’t use the well-known Ascoli- Arzela theorem in C to prove
the existence of the solutions. For this reason, our main task in this thesis consists of giving
a generalization of the well-knownAscoli- Arzela.

Further researches on this kind of problems will be conducted by generalizing the Ascoli-
Arzeld theorem from C(IR) to C"(R™) and use this new generalization to study the existence

of solutions for some partial differential equations, partial integro-differential equations.
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