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                                مــــــــلخص
تيموشينكو اللاخطي ذي البعد الواحد مع الصوت الثاني، حيث يكون  -تهدف هذه الأطروحة إلى دراسة نظام بريس     

أثبتنا أن هذا النظام مستقر بشكل كبير باستخدام طريقة الطاقة  التوصيل الحراري المصاغ بقانون كاتانيو في المعادلة الثانية.ولقد
 التي تتطلب بناء دالة ليابونوف مناسبة بواسطة استغلال طريقة المضاعفات.

أي شرط على معاملات النظام وتحققنا من صحة نتائجنا النظرية من خلال إجراء  تعتمد علىعلاوة على ذلك،فإن النتيجة لا 
ددية باستخدام مخطط أويلر الضمني بالنسبة إلى الزمن وطريقة العناصر المنتهية بالنسبة للفضاء.بعض التقديرات الع  

المفتاحية: الكلمات  

تيموشنكو اللاخطي ، الصوت الثاني ، التناقص الأسي ، طريقة الطاقة ، التقريب العددي ، طريقة العناصر  -نظام بريس 
 المنتهية .



Abstract

This thesis aims to study the one dimensional nonlinear Bresse-Timoshenko system with second

sound where the heat conduction given by Cattaneo’s law is effective in the second equation.

We prove that the system is exponentially stable by using the energy method that requires

constructing a suitable Lyapunov functional through exploiting the multipliers method. Fur-

thermore, the result does not depend of any condition on the coefficients of the system. Fi-

nally, we validate our theoretical result by performing numerical approximations based on the

standard finite element method, using the retrograde Euler scheme for temporal and spatial

discretization.

Keywords: Nonlinear Bresse-Timoshenko system, second sound, exponential decay , energy

method, numerical approximation, finite elements method.



Résumé

Cette thése a pour but d’étudier le systéme de Bresse-Timoshenko non linéaire unidimensionnel

avec second son oé la conduction thermique donnée par la loi de Cattaneo est effective dans la

seconde équation. Nous prouvons que le systéme est exponentiellement stable en utilisant la

méthode de l’énergie qui nécessite la construction d’une fonctionnelle de Lyapunov appropriée

en exploitant la méthode des multiplicateurs. De plus, le résultat ne dépend d’aucune condition

des coefficients du systéme. Enfin, nous validons notre résultat théorique en effectuant des

approximations numériques basées sur la méthode standard des éléments finis, en utilisant le

schéma d’Euler rétrograde pour la discrétisation temporelle et spatiale.

Mots clés: Systéme non linéaire de Bresse-Timoshenko, second son, décroissance exponen-

tielle, méthode de l’énergie, approximation numérique, méthode des éléments finis.
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Notations

In what follows, we will use the following notations:

RN N-dimensional real Euclidean space.

Ω bounded open of RN .

∂Ω border of Ω.

pi a real number greater than or equal to 1 for all i = 1, . . . , N.

p− = min{pi, i = 1, 2, . . . , N}.

p+ = max{pi, i = 1, 2, . . . , N}.

p′i conjugate of pi, that is to say
1

pi
+

1

p′i
= 1.

↪→↪→ injection compact.

p the harmonic mean of pi, that is to say
1

p
=

1

N

N∑
i=1

1

Pi
.

q∗ =
Nq

N − q
.

a.e. almost everywhere.

|E| measure of the set E, when its Lebesgue measure is finite.

supp(f) function support f.

KComp K compact.

M(Ω) set of Radon measurements bounded on Ω.

Diu = ∂u
∂xi
.

Du = (D1u,D2u, . . . , DNu) .

∇u =
(
∂u
∂x1
, ∂u
∂x2

. . . ∂u
∂xN

)
= grad u.

div(v) =
N∑
i=1

Divi, v = (v1, . . . , vN).

χE characteristic function of the set E.

Sν(σ) =

 sign(σ), if |σ| > ν
σ

ν
, if |σ| ≤ ν.
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∀σ ∈ R, sign(σ) =


1, if σ > 0

0, if σ = 0

−1, if σ < 0.

Tk the truncation at height k defined by Tk(t) =


t, if |t| ≤ k
kt

|t|
, if |t| > k.

Y ′ topological dual of the topological vector space Y.

D(Ω) the space of test functions (the space of functions C∞(Ω) with compact support

included in an open Ω of RN).

Lp(Ω) =

{
u : Ω −→ R mesurable;

∫
Ω

|u|p <∞
}

endowed with the norm ‖ u ‖p=
(∫

Ω

|u|p
) 1

p

.

L∞(Ω) =

{
u : Ω −→ R,measurable; sup ess

Ω
|u| <∞

}
provided with the standard ‖ u ‖∞= sup ess

Ω
|u|.

W 1,p(Ω) =

{
u ∈ Lp(Ω); ∇u ∈ Lp(Ω)

}
provided with the standard ‖u‖

W1,p(Ω)
= ‖u‖

Lp(Ω)
+ ‖∇u‖

Lp(Ω)
.

W 1,p
0 (Ω) =

{
u ∈ Lp(Ω);∇u ∈ (Lp(Ω))N and u = 0 on ∂Ω

}
.

L~p(Ω) = Lp1(Ω)× Lp2(Ω)× . . .× LpN (Ω) =
N∏
i=1

Lpi(Ω), with pi > 1.

‖v‖X1,~p(Ω) =
N∑
i=1

(‖v‖Lpi + ‖Div‖Lpi ).

D(Ω) = X1,~p
0 (Ω) =

{
v ∈ X1,~p(Ω) such as v = 0 on ∂Ω

}
⊆ W 1,~p

0 (Ω).

W 1,pi
xi,0

(Ω) = D(Ω)
‖.‖i

with ‖u‖i = ‖u‖Lpi (Ω) + ‖Diu‖Lpi (Ω).

W 1,~p
0 (Ω) =

{
u ∈ Lpi(Ω) and ∂u

∂xi
∈ Lpi(Ω) with u = 0 on ∂Ω ∀i = 1, . . . , N

}
.
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Introduction

In the present thesis, we will interpret the numerical results that obtain using the finite el-

ement method and establish an error estimate the finite element method has become one of

the most important useful engineering tools for engineers and scientists. This work presents

introductory andsome advanced topics of the Finite Element Method (FEM). Finite element

theories,formulations and various example programs written in MATLAB are presented. The

work is written as a text work for upper level undergraduate and lower level graduatecourses,

as well as a reference work for engineers and scientists who want to writequick finite element

analysis programs.

We consider the following one dimensional nonlinear Bresse-Timoshenko system with second

sound



ρ1ϕtt − k (ϕx + ψ)x + µ1ϕt = 0 in (0, 1)× (0,∞),

−ρ2ϕttx − bψxx + k (ϕx + ψ) + γθx + f (ψ) = 0 in (0, 1)× (0,∞),

ρ3θt + kqx + γψtx + λθ = 0 in (0, 1)× (0,∞),

τ0qt + δq + kθx = 0 in (0, 1)× (0,∞).

(1)

With the initial and boundary conditions

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x) in (0, 1),

ψt(x, 0) = ψ1(x), θ(x, 0) = θ0(x), q(x, 0) = q0(x) in (0, 1),

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = q(0, t)

= q(1, t) = θ(0, t) = θ (1, t) = 0 in (0,∞),

(2)

where t ∈ (0,+∞) denotes the time variable and x ∈ (0, 1) is the space variable along with

the beam of length L, in its equilibrium configuration. Here ϕ, ψ, θ, q and f(ψ) are specific func-

tions represent, respectively, the transverse displacement of the beam, the rotation angle, the

1



different temperature, the heat flux and forcing term. The coefficients ρ1, ρ2, ρ3, µ1, τ0, δ, γ, b,

k and λ are positive constants represent the constitutive parameters defining the coupling

among the defferent conponents of the materials.

From physical point of view, it is well known that the model using the classic Fourier’s

law leads to the physical paradox of infinite speed of heat propagation. Many theories have

subsequently emerged, to overcome this physical paradox but still keeping the essentials of

a heat conduction process. One of which is the advent of the second sound effects observed

experimentally in materials at a very low temperature. Second sound effects arise when heat is

transported by a wave propagation process instead of the usual diffusion. This theory suggests

replacing the classic Fourier’s law γθx + q, where γ is the coefficient of thermal conductivity

and q is the heat flux by a modified law of heat conduction called Cattaneo’s law γθx + q+ τqt.

Here, the parameter τ > 0 represents the relaxation time describing the time lag in the response

of the heat flux to a gradient in the temperature. The obtained heat system is of hyperbolic

type and hence, automatically, eliminating the paradox of infinite speeds. Among the works

that have been realised in this fiéeld, we refer the reader to [34, 35]. In the following Figure

we introduce the displacements and the rotation angle in the (x1, x3) plane as well as the

temperature distribution with its contribution to the deformation of the beam as showing in

many works for instance [10] where

• u = u(x1, t): the longitudinal displacement of points lying on the x1-axis,

• ψ = ψ(x1, t): the angle of rotation for the normal to the x1-axis,

Θ is the Taylor’s expansion for the temperature distribution in the

(x1, x3)-plane (with x2 = 0):

Θ(x1, x3, t) = Θ(x1, 0, x3, t) = θ1(x, t) + x3θ3(x, t)

where θ1 and θ3 are temperature components (functions) that may represent the temperature

deviations from the reference temperature Θ0 along the longitudinal and vertical directions.

Elishakoff et al. [27, 28], gave a brief description on the beam model in one-dimensional for

beam vibrations. The classical Bernoulli-Euler differential equation ignores rotational inertia

and shear deformation. It is given by

EIϕxxxx + ρAϕtt = 0, (3)

where E is the modulus of elasticity, I is the moment of inertia, ϕ(x, t) is the transverse

2



displacement, x is the axial coordinate, t is the time, ρ is the material density, and A is the

cross-sectional area.

Later, Bresse [19] and Rayleigh extended and corrected the Bernoulli-Euler equation (3), by

taking into account the rotary movement of the beam elements. The angle of rotation equals

the slope of the deflection curve ϕx, the associated angular acceleration is ϕxtt. As a result, the

moment of inertia of the element about an axis through its center of mass equals ρIϕxttdx and

according to D’Alembert’s principle, we obtain

−V +Mx − ρIϕxtt = 0, (4)

where V (x, t) is the shearing force and M(x, t) the bending moment.

Replacing this equation in the case of dynamic equilibrium with the forces of transverse vibra-

tion, we have

Vx = −ρAϕtt = (Mx − ρIϕxtt)x. (5)

3



Physically from elastic theory, we have M = EIϕxx, then it results in a Rayleigh model for the

uniform beam oscillations given by

EIϕxxxx + ρAϕtt − ρIϕxxtt = 0, (6)

we call equation (6) the rotatory inertial.

Afterwards, Timoshenko [48] extended the equation (6) by adding the impact of the shear

deformation, expressing the slope of the deflection curve in two parts

ϕx = −ψ + ζ, (7)

ψ as the rotation of the cross-sections with the neglection of the shear deformation and ζ as

the angle associated with the shear deformation at the neutral axis in the same cross-section.

On the other hand, according to the mechanics of solid we can write

M = EIψx, (8)

V = k1ζAG = k1AG(ϕx + ψ), (9)

where k1 is the shear coefficient and G is the shear modulus.

The state of dynamic equilibrium of forces in the vertical direction is given by

ρAϕtt − Vx = 0. (10)

Deriving with respect to the in equation (7) and by substituting in the dynamic equilibrium

equation of motion (4), we get

−V +Mx + ρIψtt = 0. (11)

The Timoshenko system, was obtained by substituting respectively (9) and (8) into (10) and

(11), thus

−k1AG(ϕx + ψ)x + ρAϕtt = 0. (12)

−k1AG(ϕx + ψ) + EIψxx + ρIψtt = 0, (13)

where,

ρ1 = ρA is the mass density,

4



ρ2 = ρI is the moment mass inertia,

b = EI is the rigidity coefficient (of the cross-section),

k = k1AG is the shear modulus of elasticity.

Then, the Timoshenko system takes the following formρ1ϕtt − k (ϕx + ψ)x = 0,

ρ2ψtt − bψxx + k (ϕx + ψ) = 0.

(14)

It should be noticed that mentioned problem plays a crucial role in engineering applications.

And for more details on the valuable resources that have been realised regarding Timoshenko

system, we refer the readers to [5, 11, 12, 13, 14, 15, 16, 30, 33, 38, 39, 48, 52].

Elishakoff [26], by differentiating the Timoshenko hypotheses (7) with respect to t, we get

ψtt = −ϕttx. (15)

Inserting (15) in (14)2, we obtain the well-known Bresse-Timoshenko system by combining

d’Alembert’s concept for dynamic equilibrium, with Timoshenko hypothesis to get the following

system ρ1ϕtt − k (ϕx + ψ)x = 0,

−ρ2ϕttx − bψxx + k (ϕx + ψ) = 0.

(16)

For more details, we refer [8, 9, 22, 26, 29].

Many investigations have been realised concerning the asymptotic behavior of the solution

of Bresse-Timoshenko system. Among them, we cite the work of Almeida and Ramos [6], who

they considered the following systemρ1ϕtt − β (ϕx + ψ)x = 0,

−ρ2ϕttx − bψxx + β (ϕx + ψ) + µ1ψt = 0,

(17)

where they showed that the viscous damping acting on angle rotation of the above system is

strong enough to provoke an exponential decay of the solution. Junior et al. [7] considered the

following system ρ1ϕtt − β (ϕx + ψ)x + µ1ψt = 0,

−ρ2ϕttx − bψxx + β (ϕx + ψ) = 0,

(18)

and they showed that the mechanism damping given by the viscous damping acting on the

transverse displacement of the beam stabilizes exponantially the system.

5



Kh. Zennir et al. [51] studied the following nonlinear Bresse-Timoshenko system

ρ1∂ttϕ− k (ϕx + ψ)x + σ1∂tϕ = 0,

−ρ2∂ttϕx − αψxx + k (ϕx + ψ)− ξ1θx

−ξ2px + σ2G(∂tψ) = 0,

c∂tθ + d∂tp− kθxx − ξ1∂tψx = 0,

d∂tθ + r∂tp− hpxx − ξ2∂tψx = 0.

(19)

The authors proved the well-posedness of the system by using the classical Faedo-Galerkin

approximations and showed a general decay result of the system.

Motivated by the previous works, in this thesis we give a global existence and regularity

results, which can be proved by using the standard Feado-Galerkin method. Moreover, we

show that the dissipation given by the second sound is strong enough to give an exponential

stability of solution of the system (1) by using the energy method, that requires to constract

an appropriate Lyapunov functional which allows us to estimate the energy of the system (1)

and to show that it decays an exponetial manner without any conditions on the coefficients

of the system. Importance of this complimantary control and his influence on the asymptotic

behavior of the solution appears in many works for the different types of problems such as

[11, 31, 33]. Finally, we will interpret the numerical results that we will obtain using the finite

element method and we will establish an error estimate.
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Chapter 1

Basic notions and numerical method

In this chapter we shall introduce and state some necessary materials needed in the proof of

our results, and shortly the basic results which concerning the Banach spaces, the weak and

weak star topologies, the Lp space, Sobolev spaces and other theorems. The knowledge of all

this notations and results are important for our study.

1.1 Functional spaces

The spaces Lp and Sobolev spaces are a ubiquitous tool in the study of elliptic and parabolic

partial differential equations.

Understanding them is therefore a necessary step before tackling the equations in question.

We take up in this section certain statements of H. Brezis [21] on the subject. For a more

complete presentation of Sobolev spaces, one can consult the work of R. A. Adams [1].

In what follows, we denote by Ω a regular bounded open set of RN and D(Ω) the space of

class functions C∞ with compact support in Ω. We note by Lp(Ω), the Lebesgue space with

1 ≤ p <∞ defined by:

Lp(Ω) =

{
u : Ω −→ R mesurable;

∫
Ω

|u|p <∞
}
, (1.1)

with the norm:

‖ u ‖p=
(∫

Ω

|u|p
) 1

p

, (1.2)

7



chapter 1 Basic notions and numerical methode

and for p =∞, we notice:

L∞(Ω) =

{
u : Ω −→ R mesurable; sup ess

Ω
|u| <∞

}
, (1.3)

that we is the norm:

‖ u ‖∞= sup ess
Ω
|u|. (1.4)

Fundamental lemmas and theorems

Lemma 1.1.1 (Fatou’s lemma). H.Brézis [21]

That is (fn)n a sequence of functions L1(Ω) such as:

(1) for each n, fn(x) ≥ 0 a.e. sur Ω

(2) sup
n

∫
Ω

fn <∞,

for each x ∈ Ω we pose f(x) = lim inf
n→∞

fn(x).

So f ∈ L1(Ω) and ∫
Ω

f ≤ lim inf
n→∞

∫
Ω

fn.

Theorem 1.1.2 (Beppo Levi’s monotone convergence theorem [21] ).

That is (fn)n a growing suite of functions of L1(Ω) such as sup
n

∫
fn <∞.

So fn(x) converges a.e. on Ω to a finite limit noted f(x), what’s more

f ∈ L1(Ω) and ||fn − f ||L1(Ω) −→ 0.

Theorem 1.1.3 (Minkowski inequality [21]).

Let (Ω, τ, µ)a measured space and p a satisfying real number, 1 ≤ p < +∞, f : Ω −→ R

such as f ∈ Lp(Ω), if f1, f2, . . . , fn ∈ Lp(Ω,R) then:

N∑
k=1

fk ∈ Lp(Ω,R) et

(∫
Ω

∣∣∣∣∣
N∑
k=1

fk(x)

∣∣∣∣∣
p

dµ(x)

) 1
p

≤
N∑
k=1

(∫
Ω

|fk(x)|p dµ(x)

) 1
p

,

gold: ∥∥∥∥∥
N∑
k=1

fk(x)

∥∥∥∥∥
p

≤
N∑
k=1

‖ fk(x) ‖p .

8



chapter 1 Basic notions and numerical methode

Theorem 1.1.4 (Lebesgue dominated convergence theorem [21]).

That is (fn) a sequence of measurable functions which converges to f a.e. dans Ω.

We assume that there is g ∈ L1(Ω) such as∀n ≥ 1, |fn(x)| ≤ g(x), a.e. x ∈ Ω. So f ∈ L1(Ω)

and

lim
n→+∞

∫
Ω

|fn − f |dx = 0, lim
n→+∞

∫
Ω

fndx =

∫
Ω

fdx.

Theorem 1.1.5 (Partial reciprocal of the dominated convergence theorem[21]).

That is 1 ≤ p < +∞, f ∈ Lp(Ω) et (fn) ⊂ Lp(Ω) such as lim
n→+∞

‖ fn − f ‖p= 0 il existe a

function g ∈ Lp(Ω) and a sub-sequence (fnk
)k such as:

|fnk
| ≤ g a.e. , et fnk

−→ f a.e.

Lemma 1.1.6. [36]

That is (Ω, τ, µ) is a measured space and (fn)it is a sequence of measurable functions of Ω in

R we say that (fn) is a Cauchy sequence in measure if and only if:

∀ε > 0,∀η > 0,∃n0 ∈ N such as p, q > n0 ⇒ mes

{
x ∈ Ω : |fp(x)− fq(x)| > ε

}
≤ η. (1.5)

1.2 Reminder on Sobolev spaces

In this part we will present some definitions and properties of Sobolev spaces,

see [1] and [43].

Sobolev’s space W 1,p(Ω)

Let Ω ⊂ RN be an open domain and 1 ≤ p ≤ ∞. Space :

W 1,p(Ω) =

{
u ∈ Lp(Ω); ∇u ∈ Lp(Ω)

}
,

Also, we denote by

‖u‖
W1,p(Ω)

= ‖u‖
Lp(Ω)

+ ‖∇u‖
Lp(Ω)

, (1.6)

is a Banach space, separable and reflexive for 1 < p <∞.

We denote by C∞0 (Ω) all functions C∞ with compact support in Ω is noted D(Ω).

We can also define W 1,p
0 (Ω) like the adhesion of D(Ω) in W 1,p(Ω), by the following definition:

W 1,p
0 (Ω) =

{
u ∈ Lp(Ω);∇u ∈ (Lp(Ω))N , and u = 0 on ∂Ω

}
. (1.7)

9
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Proposition 1.2.1.

1. Space W 1,p(Ω) is a Banach space, for all 1 ≤ p ≤ +∞.

2. Space W 1,p(Ω) is a reflective space, for all 1 < p < +∞.

3. W 1,p(Ω) separable if 1 ≤ p < +∞.

4. Whether p = 2, then W 1,2(Ω) = H1(Ω) is a Hilbert space for the inner product.

(u, v) 7−→ (u|v) =

∫
Ω

uvdx+
N∑
i=1

∫
Ω

∂u

∂xi
.
∂v

∂xi
dx. (1.8)

1.3 The Faedo-Galerkin method

The Faedo-Galerkin method consists of performing the following steps:

(i) Write the problem in variational form,

(ii) Looked for approximate solutions in finite dimensional spaces,

(iii) Establish a priori estimates on these approximate solutions,

(iv) Passing to the limit, thanks to compactness properties,

(v) Verification that this limit is a solution to the problem.

1.4 Injections and inequalities

Theorem 1.4.1 (Rellich-Kondrachov theorem [17] ).

We assume Ω of class C1 and p < N then:

W 1,p(Ω) ↪→↪→ Lp(Ω),∀p ∈ [1, p∗[

Where p∗ = Np
N−p . Especially, W

1,p(Ω) ↪→↪→ Lp(Ω), for everything p ∈ [1,+∞).

Theorem 1.4.2 (Injection of Sobolev-case p < N [21]).

That is Ω ⊂ RN a bounded open set and 1 ≤ p ≤ N , then

W 1,p(Ω) continuously injects itself into L
Np
N−p (Ω).

10
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Inequalities of Sobolev, Hölder, Poincaré and Young (See [1, 21]).

Theorem 1.4.3 (Sobolev inequality).

be Ω = RN Where Ω is an open of RN whose border is regular and 1 ≤ p < N ,then W 1,p(Ω) ↪→

Lp
?
(Ω) où

1

p?
=

1

p
− 1

N
, with continuous injection. Furthermore

||u||Lp∗ (Ω) ≤ C||∇u||Lp(Ω).

Theorem 1.4.4 (Hölder’s inequality).

Let Ω an open of RN , 1 < p <∞, f ∈ Lp(Ω) and g ∈ Lp
′
(Ω) with

1

p
+

1

p′
= 1. So f.g ∈ L1(Ω)

and ∫
Ω

|fg|dx ≤ ||f ||Lp(Ω)||g||Lp
′
(Ω)
.

Theorem 1.4.5 (Poincaré inequality).

We think that Ω is a bounded open set. Then there is a constant C (depends on Ω and

if p) such as:

||u||Lp(Ω) ≤ C||∇u||Lp(Ω),∀u ∈ W 1,p
0 (Ω), (1 ≤ p <∞).

In particular the expression ||∇u||Lp(Ω) is a standard onW 1,p
0 (Ω),which is equivalent to the norm

||u||W 1,p(Ω), on H1
0 (Ω).

The phrase,
∫

Ω

∇u∇v is a scalar product which induces the norm ||∇u||L2(Ω) equivalent to the

standard ||u||H1(Ω).

Remark 1.4.6. Poincaré’s inequality holds if Ω is of finite measure or Ω is bounded in one

direction.

Theorem 1.4.7 (Young’s inequality).

∀ a ∈ R,∀ b ∈ R : |a.b| ≤ |a|
p

p
+
|a|q

q
,

(
1

p
+

1

q
= 1, p > 1, q > 1

)
.

We will also some times use:

∀a ≥ 0,∀b ≥ 0, a.b = (pε)
1
pa.(pε)−

1
p b

a.b ≤ εap +

(
(pε)−

1
p b
)q

q

a.b ≤ εap + (pε)−
1

p−1 bq
(

1− 1

p

)

11
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a.b ≤ εap + (pε)−
1

p−1

(
1− 1

p

)
bq.

Also in the form:

∀a ≥ 0,∀b ≥ 0, a.b = (
a

ε
)(εb) ≤ 1

p
(
a

ε
)p +

1

q
(εb)q,

with ε > 0.

Remark 1.4.8. (
N∑
i=1

ai

)k

≤ max{1, Nk−1}
N∑
i=1

aki .

So:

(
N∑
i=1

a
p+

i

) 1

p+
≤ max{1, N

1
p+
−1}

N∑
i=1

ai

⇒
N∑
i=1

a
p+

i ≤ max{1, N1−p+}

(
N∑
i=1

ai

)p+

or:

N∑
i=1

a
p+

i ≤ c

(
N∑
i=1

ai

)p+

.

Theorem 1.4.9 (Radon measurement [32].).

In what follows, E is a topological space separate assume locally compact. CK(E) is the

vector space of continuous functions at values in R Where C at support included in the compact

K, when it is necessary to specify it, we will write CK (E,R) Where CK (E,C) .

CC(E) is the vector space of continuous functions at compact stand.

We obviously have CC(E) =
⋃
K CK(E), and K(E) is the compact family of E and the following

inclusions:

CK(E) ⊂ CC(E) ⊂ Cb(E) ⊂ C(E).

(Cb (E) is the space of continuous and bounded functions on E, C (E)is the space of continuous

functions on E).

12
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Naturally if E is compact CC ≡ Cb ≡ C. A natural topology is one that is induced by the

topology natural on Cb (E) that is to say given by the norm of uniform convergence:

||ϕ||∞ = sup
x∈E
|ϕ (x) |.

Let’s remember that CC (E) is not complete for this standard, however CK (E) is a Banach.

1.5 Numerical method

In this work, digital simulation is a great tool to help design and understand many physical

phenomena, in engineering for example, it has made it possible to make great progress in solid

mechanics and many technological innovations. In this part we will present some definitions

and properties for the Finite Element Method (See [3, 53]).

1.5.1 Finite Element Method

In order to analyze an engineering system, a mathematical model is developed to describe the

system. While developing the mathematical model, some assumptions aremade for simplifica-

tion. Finally, the governing mathematical expression is developed to describe the behavior of

the system. The mathematical expression usually consists of differential equations and given

conditions. These differential equations are usually very difficult to obtain solutions which ex-

plain the behavior of the given engineering system. With the advent of high perfor-mance com-

puters, it has become possible to solve such differential equations. Various numerical solution

techniques have been developed and applied to solve numerous en-gineering problems in order

to find their approximate solutions. Especially, the finiteelement method has been one of the

major numerical solution techniques. One of themajor advantages of the finite element method

is that a general purpose computer program can be developed easily to analyze various kinds

of problems. In particular, any complex shape of problem domain with prescribed conditions

can be handled withease using the finite element method. The finite element method requires

division of the problem domain into many subdomains and each subdomain is called a finite

element. Therefore, the problemdomain consists of many finite element patches. The finite ele-

ment method has become one of the most important and useful engineering tools for engineers

and scientists. This work presents introductory andsome advanced topics of the Finite Element

13
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Method (FEM). Finite element theories, formulations and various example programs written

in MATLAB are presented. The work is written as a text work for upper level undergraduate

and lower level graduate courses, as well as a reference work for engineers and scientists who

want to writequick finite element analysis programs. Understanding basic program structures

of the Finite Element Analysis (FEA) isan important part for better comprehension of the fi-

nite element method. MATLAB is especially convenient to write and understand finite element

analysis programs because a MATLAB program manipulates matrices and vectors with ease.

These algebraic operations constitute major parts of the FEA program. In addition, MATLAB

has built- in graphics features to help readers visualize the numerical resultsin two- and/or

three- dimensional plots. Graphical presentation of numerical data is important to interpret

the finite element results. Because of these benefits, many examples of finite element analysis

programs are provided in MATLAB. The work contains extensive illustrative examples of finite

element analyses using MATLAB program for most problems discussed in the book. Subrou-

tines (MATLAB functions) are provided in the ppendix and a computer diskette which contains

all the subroutines and example problems is also provided.

1.5.2 Principle of the method

The finite element method of the equivalence variational problems and energetics, several meth-

ods have been developed based on one formulation or another. The choice of the space of test

functions V has greatly contributed to the diversity of methods.

Figure 1.1: Two-dimensional domain
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Figure 1.2: Example of triangulation

The finite element method proposes to determine the solution of the variational problem on a

discretized subspace Vh of V . It consists, from a differential equation, in writing the variational

formulation weak of the problem. Then, to build a finite-dimensional approximation space

Vh ⊂ V , by meshing the domain, that is to say by dividing the domain Q = Q ∪ ∂Q of Rn

into a finite number of subdomains, disjoint two by two, on which we choose a finite number

of points called knots. In addition, one can choose the mode of construction of Vh so that the

subspace Vh is a good approximation of V and that the solution uh in Vh of the variational

formulation is close to the exact solution u in V . The functions of Vh are defined piecewise on

each knots inside the domain, verify the boundary conditions at the edges of the domain and are

expressed as linear combinations of simple elements ( in general polynomials of degree 1, 2 or

3 ) called shape functions. These functions defined locally on each knot interior are continuous

over the entire domain and satisfy the boundary conditions. In the case of approximation by

Lagrangian elements, the first derivatives are discontinuous at the interior knots. By expressing

the variational formula by the elements of Vh thus defined, we show that the equation transforms

into a matrix system in which the unknowns are the values of the solution function at each knots.

By choosing elements of simple and identical geometrical structures, the matrix processing can

be systematized and carried out on a single reference element. One then proceeds to the

determination of the matrixs of mass and elementary rigidity associated with an element, then

one assembles these matrixs by plunging them into a single matrix representing the whole of

15
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the field.The matrix system obtained is type, which facilitates the storage of data. Solving this

system leads to the determination of the values of the solution of the initial equations in of the

mesh.

Figure 1.3: Numbering of elements and nodes

1.5.3 General internal approximation

Given a Hilbert space V , a continuous and coercive bilinear form a(u,w) and a continuous

linear form F (w), we consider the variational formulation: Find u ∈ V such as

a(u,w) = F (w) ∀w ∈ V ,

which we know has a unique solution by the Lax-Milgram theorem. the internal approximation

(1.1) consists in replacing the Hilbert space V by a finite dimensional subspace Vh. Trouver

uh ∈ V , such as :

a(uh, wh) = F (wh) ∀wh ∈ Vh,

The resolution of the internal approximation (1.2) is easy as shown by the following lemma:

Lemma 1.5.1. Is V a real Hilbert space, and Vh a finite dimensional subspace. Is a(u,w) a

continuous and coercive bilinear form on V and F (w) a continuous linear form on V. Then

the internal approximation (1.2) admits a unique solution. Moreover, this solution can be

obtained by solving a linear system with a positive definite matrix (and symmetric if a(u,w) is

symmetric).

16



chapter 1 Basic notions and numerical methode

Proof. The existence and uniqueness of uh ∈ Vh,solution of (1.2) flow of the Lax-Milgram

theorem applied to Vh. To put the problem in a simpler form, we introduce a basis (ψi)1≤i≤m

of Vh.

so :

Uh =
m∑
i=1

uiψi,

we pose Uh = (u1, u2, ..., um) the vector in Rm coordinates of Uh. The problem (1.2) is equivalent

to find Uh ∈ Rm such as :

a(
m∑
i=1

uiψi, ψj) = F (ψj) ∀1 ≤ j ≤ m,

which is written in the form of a linear system:

KhUh = bh,

with, for 1 ≤ i, j ≤ m,

(K)ji = a(ψi, ψj),

(bh)j = F (ψj).

The coercivity of the bilinear form a(u,w) results in the positive definite character of the matrix

(K)h, and therefore its reversibility. Indeed, for any vector Uh ∈ Rm we have

(KhUh, Uh) ≥ ν‖
m∑
i=1

uiψi‖2 ≥ c|Uh|2,

with c > 0, because all the standards are equivalent in finite dimension ( |.| denotes the

Euclidean norm in Rm ). Also, the symmetry of a(u,w) implies from that (K)h exist.

In mechanical applications the matrix (K)h, is called the stiffness matrix. The parameter

h of (V)h, corresponds to the maximum size of the meshes or cells which make up the mesh.

Typically a base of (K)h,will consist of functions whose support is localized on one or some

meshes. This will have two important consequences: on the one hand, within the limit h→ 0,

space (V)h, will be bigger and will approach better the entire space (V), and on the other hand,

the stiffness matrix (K)h, of the system will be sparse, that is to say that most of its coefficients

will be zero (which will limit the cost of the numerical resolution).

Remark 1.5.2. ( condition inf-sup). In the case of formulation (1.1), we have the following

theorem:
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Theorem 1.5.3. That is V , a Hilbert space, has a continuous bilinear form, F a continuous

linear form. Then the problem (1.1) admits one and only one solution if and only if:

∃α > 0 inf
u∈V

sup
w∈V

a(u,w)

‖v‖‖w‖
≥ α.

This condition is called condition inf-sup.Unlike the Lax-Milgram theorem, this theorem provides

a necessary and sufficient condition for the formulation to be well-posed:

∃αh > 0 inf
uh∈Vh

sup
wh∈Vh

a(uh, wh)

‖vh‖‖wh‖
≥ αh.

This relation is called the discrete inf-sup condition.

Nothing guarantees a priori that the discrete inf-sup condition will be verified, even if the

inf-sup condition is verified. We will now compare the error made by replacing the space V by

its subspace Vh. More precisely, we will increase the difference ‖u−uh‖ where u is the solution

in V and uh the one in Vh. Let us first specify some notations: we note ν ≥ 0 the coercivity

constant and Mthe continuity constant of the bilinear form a(u,w) which verify:

|a(u, u)| ≥ ν‖u‖2, ∀u ∈ V ,

|a(u,w)| ≤M‖u‖‖w‖, ∀u,w ∈ V .

The following lemma, due to Jean Céa, shows that the distance between the exact solution u

and the approximate solution uh is increased uniformly with respect to the subspace Vh by the

distance between u and Vh.

Lemma 1.5.4. [44]

We place ourselves under the hypothesis of the lemma. That is u solution of (1.1) and uh we

have :

‖u− uh ≤ ‖
M

ν
inf

wh∈Vh
‖u− wh‖.

Proof. Since Vh ⊂ V , we deduce, by subtraction of the variational formulations (1.1), that:

a(u− uh, vh) = 0, ∀vh ∈ Vh,

we choose vh = uh − wh we obtain :

ν||u− wh||2 = a(u− uh, u− uh)

≤ a(u− uh, u− wh)

= M ||u− uh||||u− wh||.
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Finally, to demonstrate the convergence of this variational approximation, we give a last

general lemma.

Lemma 1.5.5. We place ourselves under the hypothesis of Lemma 1.3.1. We assume that there

is a subspace V̂h ⊂ V dense in V and an app πh of V̂h in V such as :

lim
h→0
‖v − πh‖ = 0, ∀v ∈ Vh.

Then the internal approximation method converges, that is to say:

lim
h→0
‖u− uh‖ = 0.

Proof. That is ε > 0, by density V̂h, it exists v ∈ V̂h such as :

‖u− v‖ ≤ ε.

Furthermore, there exists h0 > 0( depends on ε ) such that, for this element u ∈ V̂h,

we have :

lim
h→0
‖v − πh(v)‖ ≤ ε, ∀h0 ≤ h.

By the lemma, we have:

||u− wh|| ≤ c‖u− πh(v)‖

≤ c(‖u− πh(v)‖+ ‖v − πh(v)‖)

≤ 2cε,

from which we deduce the result.

1.5.4 The 1D finite element method

The space we seek to approximate is:

V = {u continuous and C1 in pieces onQ = [0, 1], u(0) = u(1) = 0},

and we want to construct approximation spaces Vh ⊂ V of finite dimension. We start by

building a mesh of the interval [0, 1]:

0 = x0 < x1 < x2...... < xn < xn+1 = 1,
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that is to say we divide the interval [0, 1] into small subintervals [xi, xi+1], i = 0, ..., n.

Intervals [xi, xi+1], i = 0, ..., n are called the cells or the meshes or the elements of the mesh.

We will notehi = xi+1 − xi mesh size i and we define:

h = max
0≤i≤n

(xi − xi+1)

the pitch of the mesh. In the sequel, and for reasons of simplicity, we will often have to consider

meshes where the points xi are evenly spaced so that:

xi = ihwith h =
1

n+ 1

Such meshes are said to be uniform. We also define Pk the space of polynomials of degree less

than or equal to k :

Vh = {p(x) = Σn
i=1aix

i, ai ∈ R}

It is a vector space of dimension k + 1.

1.5.5 Finite element approximation P1

We introduce the finite dimensional functional space composed of continuous functions on Q,

affines on each stitch [xi, xi+1] of the mesh and null in 0 and in 1

Vh = {w ∈ C0(Q), w[xi,xi+1] ∈ P1, w(0) = w(1) = 0, 0 ≤ i ≤ n}.

The index of Vh refers to the pitch of the mesh. Space Vhis an n-dimensional vector space since

a function of Vh is entirely determined by the values it takes at the interior points of the mesh

w(xi), 1 ≤ i ≤ n. A basis of Vh is given by the functions (ϕ1, ϕ2, ϕ3, ........ϕn) continuous, affine

on each element [xi, xi+1] and such as:

∀i ∈ 0, 1, .....n, ∀i ∈ 0, 1, .....n+ 1, ϕi(xj) = δij

where δ denotes the Kronecker symbol.

Let’s introduce the function ϕ(x) by ϕ(x) =

 1− |x|, if |x| ≤ 1

0, somewhere else.

If the mesh is uniform, then each function ϕi has the expression ϕi(x) = ϕ(x−xi
h

). In the base

(ϕ1, ϕ2, ...., ϕn), a function u belonging to Vh has for expression :

u(x) = Σn
i=1u(xi)ϕi(x)
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The whole point of the finite element method lies in the fact that each basis function ϕi has

a very reduced support, that is to say that the set of x such as ϕi(x) 6= 0 is small compared

to the resolution domain Q = [0, 1]. Figure Mesh of Q = [0, 1] and basis function in finite

element P1. This has the consequence that most of the coefficients of the stiffness matrix

Aij = a(ϕj, ϕi), 1 ≤ i, j ≤ n are zero. Indeed, we illustrate the method on the simple example

of the Poisson problem 1D :

 −∂2
x2u = f, inQ

0, on ∂Q.

Aij = a(ϕj, ϕi) =

∫ 1

0

∂xϕj(x)∂xϕi(x)dx

and if j is not equal to i − 1, i Where i + 1, then the functions ϕi, ϕi−1 et ϕi+1 have disjoint

supports and the integral in (1.15) is zero. The non-zero coefficients are easily calculated

Ai−1,i = a(ϕi−1, ϕi) =

∫ 1

0

∂xϕi−1(x)∂xϕi(x)dx =

∫ xi

xi−1

−1

h

1

h
dx = −1

h
,

Ai,i = a(ϕi, ϕi) =

∫ 1

0

(∂xϕi(x))2dx =

∫ xi

xi−1

1

h2
dx+

∫ xi+1

xi

1

(−h)2
dx =

2

h
,

Ai+1,i = a(ϕi+1, ϕi) =

∫ 1

0

∂xϕi+1(x)∂xϕi(x)dx =

∫ xi

xi+1

1

h

−1

h
dx = −1

h
.

Finally, the stiffness matrix is a tridiagonal matrix:

A =
1

h



2 −1 0 0..............0 0 0

−1 2 −1 0............0 0 0

0 0 0 0..............0 0.. 0

0 0 0 0..............0 0.. 0

0 0 0 0..............0 0.. 0

0 0 0 0.............− 1 2 −1

0 0 0 0.............0 −1 2


The following proposition shows that the matrix A is invertible:

Theorem 1.5.6. The matrix A is positive definite that is to say it satisfies the following

property, ∀U ∈ Rn − {0}, (AU, u) > 0. Before giving the proof of this proposition, let us

explain why it implies the invertibility of the matrix A. Indeed, if A is not invertible, then there
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is a vector U 6= 0 in Rn such as AU = 0. This implies in particular that (AU,U) = 0 with

U 6= 0, which contradicts the fact that A is positive definite.

Proof. That is U = (u1, ...., un) 6= 0 in Rn.The vector AU has for coordinates:

(
m∑
i=1

A1juj, .......Anjuj) = (
m∑
i=1

a(ϕj, ϕ1)uj, .......,
m∑
i=1

a(ϕj, ϕn)uj)

(AU,U) =
n∑
j=1

n∑
i=1

a(ϕj, ϕi)ujui = a(
m∑
i=1

ϕjuj,

m∑
i=1

ϕiui) = a(uh, uh) =

∫ 1

0

|∂xuh(x))|2dx,

where uh(x) is the function of Vh defined by uh(x) =
∑n

j=1 ujϕj(x) . Like the (u1, ..., un) are not

all zero, it is easy to verify that uh(x) is not zero, which implies that
∫ 1

0
|∂xuh(x))|2dx > 0.

To get the second member F = (f, ϕi) i = 1, ..., n, you have to calculate the integrals:∫ 1

0
f(x)ϕi(x) =

∫ xi
xi−1

f(x)ϕi(x) +
∫ xi+1

xi
f(x)ϕi(x) in general, this integral cannot be calculated

exactly because the function f can be complicated. In practice, we use numerical integration

techniques where, on each interval [xi, xi+1], we approximate the integral by a quadrature

formula.

1.5.6 Finite element approximation P2

In certain applications, one can consider that the approximation by straight lines on each

element of the mesh [xi, xi+1], is too coarse, that is to say that it provides an approximate

function too far from the exact function u. We can then try to approximate u on each mesh by

polynomials of higher degree. The finite element approximation P2 consists in approximating

the solution u by a continuous function on Q, and polynomial of degree 2 on each mesh [xi, xi+1].

The approximation space is then defined by:

Hh = {v ∈ C0(Q), v[xi,xi+1] ∈ P2, v(0) = v(1) = 0, 0 ≤ i ≤ n}.

Noting,

xi+ 1
2

=
xi + xi+1

2
, i = 0, 1, 2, .......n,

the centers of the cells, we see that any function of Hh is entirely determined by the data of

the values it takes at the interior points of the mesh xi, i = 1, ...n, as well as at the points

xi+ 1
2
, i = 1, ...n. The vector space Hh is therefore of dimension 2n + 1. A basis of Hh is given

by the functions ψi, i = 1, ...n such that :

ψi ∈ Hh, ψi(xj) = δij, ψi(xj+ 1
2
) = 0,∀j
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and by the functions ψi+ 1
2
(x); i = 0, ...n as :

ψi+ 1
2
∈ Hh, ψi+ 1

2
(xj) = 0, ψi(xj+ 1

2
) = δij,∀j.

We also define two functions which allow to give the expressions of the basic functions:

the function by ϕ(x) =


(1 + x)(1 + 2x), if − 1 ≤ x ≤ 0

(1− x)(1− 2x), if 0 ≤ x ≤ 1

0, elsewhere,

and

the function by ψ(x) =

 1− 4x2, ifx ≤ 1
2

(1− x)(1− 2x), ifx > 1
2

if the mesh is uniform, then ψi = ϕ(x−xi
h

) and ψi+ 1
2

= ϕ(
x−x

i+ 1
2

h
) in two dimensions, we always

illustrate the finite element method on the case of the Poisson problem:

Figure 1.4: Mesh in dimension 1

Figure 1.5: Geometric nodes and calculation of the element K

 −div∇ · u = f, inQ

u = 0, on ∂Q

where this time Q is a bounded open set of R2. We assume that the variational formulation of

this problem admits a solution u in the space V :

V = {u continuous and C1 in pieces onQ = [0, 1], u(0) = u(1) = 0, }

V = {u continuous and C1 in pieces onQ, u = 0, on ∂Q}

23



chapter 1 Basic notions and numerical methode

and we try to approximate it by a function uh solution of the same variational problem but

where the space V is replaced by an approximation space Vh. We Start by defining what is a

mesh of the domain Q in dimension two.

Definition 1.5.7. A triangular mesh of the domain Q is a set τh of unflattened triangle

(Ki)1≤i≤n which subdivide the domain Q. By convention, the parameter h designates the

length of the largest edge of the mesh. We assume that the triangles do not overlap and that

the intersection between two triangles Ki and Kj is either empty, or equal to a vertex common

to the two triangles, or to an edge common to the two triangles. two triangles. In addition,

one calls vertices or nodes of the mesh the vertices of the triangles making up the mesh.

Figure 1.6: ϕ Linear Functions by Element

Remark 1.5.8. We consider here a subdivision of the domain Q into triangles, but we could

also build meshes composed of quadrilaterals or generally by polygons. As in dimension one,

we define Pk the space of polynomials of two variables of degree less than or equal to k:

Pk = {p(x, y) = Σi+j≤kaijx
iyj, aij ∈ R}.
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For example, a polynomial of degree one is written generically p(x, y) = a + bx + cy, while a

polynomial of degree two is written p(x, y) = a+ bx+ cy+ dxy+ tx2 + ly2. The approximation

spaces Vh are defined in the same way as in dimension one, by choosing functions which are

globally continuous on Q and which are polynomial on each triangle Ki of the mesh. For the

approximation P1 for example, we have:

Vh = {u ∈ C0(Q), uk∀ki ∈ τh, et u = 0 on ∂Q}.

This space admits as basic functions, the hat functions ϕi which take the value 1 at a node

(xi, yi) of the mesh and the value 0 at the other nodes (xj, yj) of the mesh.

The stiffness matrix is calculated as for dimension one by the formula :

Aij = a(ϕj, ϕi) =

∫
Q

∇ · ϕj(x, y)∇ · ϕi(x, y)dxdy,

and the second member:

(f, ϕi) =

∫
Q

f(x, y)ϕi(x, y)dxdy,

is calculated in an approximate way by quadrature formulas.

Figure 1.7: Tetrahedral reference element with 4 and 10 nodes

Figure 1.8: 4 Linear, 8 Quadratique, 12 Cubic
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chapter 1 Basic notions and numerical methode

1.5.7 Convergence of the finite element method

We assume here that we are solving a problem on a domain Q ∈ Rn in a way approached

by the finite element method. The purpose of this section is to provide an estimate of the

error ‖u− uh‖m where ‖.‖ denotes the norm Hm. The regularity of u and of uh (and therefore

the possible values for m ) obviously depending on the continuous problem and the type of

finite elements chosen for its resolution, we will expose here the approach in a general way, by

supposing the sufficiently regular functions compared to the value of m. In practice, we will

most often have m = 0, 1 where 2. We will note τh the mesh of Q ∈ Rn considered. We assume

here the domain Q polygonal, which allows to cover exactly by the mesh. If this is not the

case, the calculations which follow must be modified to take account of the difference between

the domain covered by the mesh and the real domain. The different stages of the calculation

will be, quite schematically, as follows:

1- The approximation error is bounded by the interpolation error:

‖u− uh‖m ≤ C‖u− πhu‖m.

2- We are reduced to local increases on each element:

‖u− πhu‖2
m =

∑
k∈τh

‖u− πhu‖2
m,k.

3- We come back to the reference element:

‖u− πhu‖2
m,k ≤ C(k)‖û− π̂hû‖2

m,k̂
.

4- Increases on the reference element:

‖û− π̂hû‖2
m,k̂
≤ C1‖û‖2

k+1,k̂
.

5- Assembly of local increases:

‖u− πhu‖m ≤ Chk+1−m‖u‖k+1.

1.5.8 Mark-up by interpolation error

The equation of the lemma indicates that :

‖u− uh‖m ≤
M

ν
‖u− wh‖m, ∀wh ∈ Vh.
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It can be applied in the special case where wh = πhu,Which give:

‖u− uh‖m ≤
M

ν
‖u− πhu‖m.

1.5.9 Decomposition on elements

We have, with obvious notations:

||u− πhu||2m =
∑
k∈τh

‖u− πhu‖2
m,k

=
∑
k∈τh

m∑
i=0

‖u− πhu‖2
i,k,

the calculation is thus reduced to a calculation on each element, for all the semi-norms

|.|i,k, i = 0, ...,m.

Figure 1.9: Errors made for linear and quadratic approximations

1.5.10 Switch to reference element

Theorem 1.5.9. Either K any element of τh, and k̂ the reference element. That is G the affine

transformation of k̂ towards K : G(x̂) = Bx̂+ b, with B invertible.
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Chapter 2

Deformation of beams geometry

Figure 2.1: A simplified schematic diagram of some geometric shapes(1)

Figure 2.2: A simplified schematic diagram of some geometric shapes(2)

Due to impressive effects of thermal loads on the behavior of structures, especially plates and

shells, it is required to analyze these structures in thermal environment. Extensive researches

were presented about thermal analysis of shells. Some books were published in this area [8-10].

However, there are few studies on the nonlinear behavior of these structures under the both

mechanical and thermal loads. So the topic still attracts the researchers view. Furthermore,

geometrically nonlinear behavior of shells in thermal environment is also unknown. Therefore,

using a finite element procedure which can be used to thermomechanical nonlinear analysis of

shells may be applicable to identify the large deffections of general shell structures under both

thermal and mechanical loads. Figure (2).
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chapter 2 Deformation of beams geometry

2.1 Geometrical analysis of the beam

2.1.1 Bresse beam model

The third edition of the work Vibration Problems in Engineering, written by Timoshenko in

1955, in collaboration with D.H. Young, again, mentions Lord Rayleigh’s [42] contribution to

the accounting of rotary inertia. Authors refrain from mentioning Bresse’s [19] work although

the book, by Timoshenko and Young published in 1955, was published after Timoshenko’s 1953

[49] ( p.151) work on the history of strength of materials. This is where Timoshenko specifically

mentioned that Bresse [50] was the first investigator who introduced the rotary inertia.

The Bresse system [19] is known as the circular arch problem and composed of three coupled

wave equations given by 
ρ1ϕtt = Qx + lN + F1,

ρ2ψtt = Mx −Q+ F2,

ρ3ωtt = Nx − lQ+ F3,

(2.1)

where ϕ, ψ and ω denote, respectively, the vertical, shear angle and longitudinal displacements.

By Fi, i = 1, 2, 3 we are denoting external forces. We use N, Q andM to denote the axial force,

the shear force and the bending moment which take the following form

N = k0(ωx − lϕ), Q = k(ϕx + lω + ψ),M = bψx.

The coefficients of the system are given by

ρ1 = ρA, ρ2 = ρl, k0 = EA, k = k′GA, b = El, l = R−1

such that ρ, E, G, k, A, l and R represent, respectively, the density of material, the modulus

of elasticity, the shear modulus, the shear factor, the cross-sectional area, the second moment

of area of the cross-section and the radius of curvature. We assume that all these quantities

are positives, we refer the reader to (see for [24],[34],[52]).

2.1.2 Timoshenko beam

The use of the Google Scholar produces about 78,000 hits on the term Timoshenko beam.

The question of priority is of great importance for this celebrated theory. For the first time

in the world literature, this study is devoted to the question of priority. It is that Stephen
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Prokofievich Timoshenko had a co-author, Paul Ehrenfest. It so happened that the scientific

work of Timoshenko dealing with the effect of rotary inertia and shear deformation does not

carry the name of Ehrenfest as the co-author. In his 2002 book, Grigolyuk concluded that the

theory belonged to both Timoshenko and Ehrenfest. This work confirms Grigolyuk’s discovery,

in his little known biographic work about Timoshenko, and provides details, including the newly

discovered letter of Timoshenko to Ehrenfest, which is published here for the first time over a

century after it was sent. This thesis establishes that the beam theory that incorporates both

the rotary inertia and shear deformation as is known presently, with shear correction factor

included, should be referred to as the Timoshenko- Ehrenfest beam theory.

In 1921, Timoshenko [48] considered the systemρutt = k (ux + ϕ)x ,

Iρϕtt = (EIϕx)x + k (ux − ϕ) .

(2.2)

As a simple model describing the transverse vibration of a beam. Where u is the transverse

displacement of the beam and ϕ is the rotation angle of the filament. The coefficients ρ, Iρ, E, I

and k are respectively the density (the mass per unit length), the polar moment of inertia of

a cross section,Young’s modulus of elasticity, the moment of inertia of a cross section and

the shear modulus. In recent years, the problem of existence and stability of the Timoshenko

system, hyperbolic nonlinear term and second sound has attracted a considerable attention to a

lot of mathematicians. Many results have been established concerning existence and asymptotic

behavior. (see for [5],[11],[12],[29],[30],[33],[38]). It should be noticed that mentioned problem

plays a crucial role in ingineering applications and for more details on the resourches valuable

that has been realised regardiing Timoshenko systems, we refer the readers to (see for [12], [13],

[14], [15], [16], [39]).

2.1.3 Euler-Bernoulli beam

Due to the nature of beams in structural engineering, it is more convenient to investigate a

single spanned, prismatic constant cross sectional homogenous beam in Cartesian righthanded

3D- coordinate axes system, such that, the positive x is left to right direction and positive y

is directed toward the viewer and positive z is in a downward direction. All terminologies and

signed quantities in whole of this thesis will be referenced to this coordinate system which is also
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chapter 2 Deformation of beams geometry

the most used one in analytical and numerical plate theories and in finite element methods.

Moreover, in order to clarify the basic fundamentals of such beam analysis, it is better to

consider as an illustrative entrance, the real deflection curve for a built-in beam subjected to

uniform load as shown in Fig.(2.3), in which two inflection points divided the beam into three

parts. The outer parts concaved- down while the middle part concaved- up. Points 1,2,3 and

4 are general points at which the perpendiculars to the tangents (that is to say, normals) are

shown. These portions are rearranged as shown in Fig.(2.3) for mathematical purposes. This

deflection curve was obtained based on kinematical assumptions due to Euler Bernoulli-Navier

hypothesis, which in turn leads to the well-known Euler-Bemoulli Beam Theory (EBBT). The

relevant basic data and relations concerned with Euler-Bemoulli Beam EBB. The most often

used sign convention in main textbooks for analysis quantities such as shown in Fig. (2.3),

as well as the mathematical definition of positive orientation of surfaces were followed in this

work.

Figure 2.3: Exaggerated deflection curve for a built-in beam.

In case of pure shear, the angle between each of tangents to each of these warped curves and

their corresponding initial normal is equal to the shearing strain γ provided that its maximum

value occurs at neutral axis as natural consequence of shearing stress distribution effect, which

in turn was assigned by Timoshenko for the whole of each section although it must vary in

the same manner as shearing stress. Consequently, this theory relaxes the Bernoulli-Navier
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Figure 2.4: Concaved- up and concaved-down portions.

normality hypothesis, but at the same time neglects the warpage shape of originally plane cross

section, therefore this assumed constant shearing strain through the beam thickness should

correspond to a constant shearing stress max.

2.1.4 Euler-Bernoulli Hypothesis

In this section reference is often made to the beam axis. The meaning of the beam axis is

intuitive for a prismatic beam with a rectangular cross-section. It is the middle axis. Other

terms, such as: neutral axis, bending axis and centroidal axis are also frequently used. They

all express the same property that no axial stresses σxx should develop on the axis under pure

bending.

Hypothesis 1: Plan Remains Plane
This is illustrated in Figure (3.55) showing an arbitrary cross-section of the beam before and

after deformation. Imagine a straight cut made through the undeformed beam. The plane-

remains-plane hypothesis means that all material points on the original cut align also on a

plane in the deformed beam. The cases (b) and (c) obey the hypothesis but the warped section

(d) violates it.

Hypothesis 2: Normal Remains Normal
If the initial cut were made at right angle of the undeformed beam axis as in Figure ((2.6) (a)),

it should remain normal to the deformed axis, see Figure ( (2.6)(b)). In the sketch on Figure

(2.6) (c) the hypothesis is violated when the angle α 6= 90◦. The Euler-Bernoulli hypothesis
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Figure 2.5: Flat (b) and (c) and warped (d) cross-sections after deformations.

Figure 2.6: Testing the normal-remains-normal hypothesis.

gives rise to an elegant theory of infinitesimal strains in beams with arbitrary cross-sections and

loading in two out-of-plane directions. The interested reader is referred to several monographs

with a detailed treatment of the subject, of bi-axial loading of beams. The present set of notes

on beams is developed under the assumption of planar deformation. This means that the beam

axis motion is restricted only to one plane.

Mathematically, the Hypothesis 1 is satisfied when the u-component of the displacement vector

is a linear function of z

u(z) = u◦ − θz at any x. (2.3)

The constant first term, u◦ is the displacement of the beam axis (due to axial force). The

second term is due to bending alone, Figure (2.7). The second Euler-Bernoulli hypothesis is

satisfied if the rotation of the deformed cros section θ is equal to the local slope of the bent

middle axis dw
dx

θ =
dw

dx
. (2.4)
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Figure 2.7: Linear displacement field through the thickness of the beams.

Eliminating the rotation angle é between equations (2.3) and (2.4) yields

u(x, z) = u◦ − dw

dx
z at any x. (2.5)

It can be seen from Figure (2.7) that the displacement at the bottom (tensile) side of the beam

is negative, which explains the minus sign in the second term of Equations(2.4)and (2.5).

Hypothesis 3
The cross-sectional shape and size of the beam remain unchanged. This means that the vertical

component of the displacement vector does not depend on the z-coordinate. All points of the

cross-section move by the same amount

ω = ω(x). (2.6)

In the case of planar deformation, which covers most of the practical cases of the beam response,

the y-component of the displacement vector vanishes

v = 0. (2.7)

We are now in the position to calculate all components of the strain tensor from Equation.

We are now in the position to calculate all components of the strain tensor

from equation

εxx =
dux
dx

=
du

dx
(2.8)

εzz =
duy
dy

=
dv

dy
= 0 (2.9)

εzz =
duzz
dz

=
dω(x)

dz
= 0 (2.10)
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εxy =
1

2

(
dux
dy

+
duy
dx

)
= 0 (2.11)

εyz =
1

2

(
duy
dz

+
duz
dy

)
=

1

2

(
dv

dz
+
dω

dy

)
= 0 (2.12)

εzx =
1

2

(
duz
dx

+
dux
dz

)
=

1

2

(
dω

dx
+
du

dz

)
=

1

2

(
dω

dx
− dω

dx

)
= 0. (2.13)

It is seen that all components of the strain tensor vanish except the one in the direction of

beam axis.

Note that εxx is the only component of the strain tensor in the elementary beam theory. There-

fore the subscript xx can be dropped and, unless specified otherwise εxx = ε Introducing

Equation (2.5) into Equation (2.6) one gets

ε(x, z) =
du◦(x)

dx
− d2ω(x)

dx2
z. (2.14)

The first term represents the strain arising from a uniform extension of the entire cross-section

ε◦(x) =
du◦(x)

dx
. (2.15)

The second term adds a contribution of bending. Introducing the definition of the curvature of

the beam axis

k = −d
2ω(x)

dx2
z (2.16)

the expression for strain can be put in the final form:

ε(x, z) = ε◦(x) + kz. (2.17)

Mathematically, the curvature is defined as a gradient of the slope of a curve. The minus sign

in equation follows from the rigorous description of the curvature of a line in the assumed coor-

dinate system. Physically, it assumes that strains on the tensile side of the beam are positive.

A quite different interpretation of the Euler-Bernoulli hypothesis is offered by considering a

two-term expansion of the exact strain profile in the Taylor series around the point

ε(x, z) = ε(x, 0) +
dε(x, 0)

dx
z +

1

2

d2ε(x, 0)

dx2 z2 + .......
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Taking only the first two terms is a good engineering approximation but leads to some internal

inconsistencies of the elementary beam theory. These inconsistencies will be explained in the

two subsequent chapters.

2.1.5 Difference between Timoshenko and Euler- Bernoulli beam

As shown in Figure (2.8), difference between Timoshenko Beam and Euler Bernoulli beam model

can be visibly explained. In Euler Bernoulli beam, deformation of a section dv
dx

is rotation due

to bending. In Timoshenko beam theorem, deformation is summation of bending and shear

deformation as shown in dv
dx

is bending and dv
dx

is shear deformation. We want to study about

the transverse shear strain effect. It is shown that shear strain is constant for a particular

cross- section throughout the beam and it is not distorted after the deformation. Timoshenko

beam element models are not good in capturing normal stress. For capturing shear deformation,

classical beam theory elements are not correct. An Euler Bernoulli beam element gives excellent

results for normal stress since they are constraining the predominant bending deformation. For

thin beam purpose, classical beam theory is good and for thick beam usage Timoshenko beam

theory is good. Structural analysis and harmonic analysis are used to predict the stability of the

beam. Equivalent stress distribution and Shear, formation along the beam are the main output

parameters for the structural analysis. In addition to above mentioned methods, buckling

analysis can also be used to predict the stability of the beam.

Figure 2.8: Difference between Timoshenko and Euler Bernoulli beam model

2.2 Deformation of the beam

The main objective of this work is to analyze the complex composite beams. The geometrically

non-linear analysis of composite beam exhibits specific difficulties due to the anisotropic ma-

36



chapter 2 Deformation of beams geometry

Figure 2.9: Deformation of cross section described by Reddy.

terial behavior, and to the higher non-linearity induced by a higher stiffness, inducing tensile

mid-plane forces in beam higher, than that observed with conventional homogeneous materi-

als. These structures with complex boundary conditions, loadings and shapes are not easily

amenable to analytical solutions and hence one has to resort to numerical methods such as

finite elements. A considerable amount of effort has gone into the development of simple beam

bending elements based on the Timoshenko Beam Theory for homogeneous isotropic beam.

The advantages of this approach are:

(i) it accounts for transverse shear deformation,

(ii) it requires only c0 continuity of the field variables,

(iii) it requires refined equivalent single-layer theory,

(iv) it is possible to develop finite elements based on 6 engineering degrees of freedom viz, 3

translations and 3 rotations.

However, the low- order elements, that is to say the 3-node triangular,

4-node and 8-node quadrilateral elements, locked and exhibited violent stress oscillations. Un-

fortunately, this element which is having the shear strain becomes very stiff when used to model

thin structures, resulting inexact solutions. This effect is termed as shear-locking which makes

this otherwise successful element unsuitable. Many techniques have been tried to overcome

this, with varying degrees of success. The most prevalent technique to avoid shear locking for

such elements is a reduced or selective integration scheme. In all these studies shear stresses

at nodes are inaccurate and need to be sampled at certain optimal points derived from consid-

erations based on the employed integration order. The use of the same interpolation functions

for transverse displacement and section rotations in these elements results in a mismatch of the
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order of polynomial for the transverse shear strain field. This mismatch in the order of poly-

nomials is responsible for shear. The Euler-Bernoulli beam theory neglects shear deformations

by assuming that plane sections remain plane and perpendicular to the neutral axis during

bending. As a result, shear strains and stresses are removed from the theory. Shear forces

are only recovered later by equilibrium V = dM
dx

. In reality, the beam cross-section deforms

somewhat like what is shown in Figure (2.9). This is particularly the case for deep beam,

that is to say, those with relatively high cross-sections compared with the beam length, when

they are subjected to significant shear forces. Usually the shear stresses are highest around the

neutral axis, which is where, consequently, the largest shear deformation takes place. Hence,

the actual cross-section curves. Instead of modeling this curved shape of the cross-section, the

Timoshenko beam theory retains the assumption that the cross-section remains plane during

bending. However, the assumption that it must remain perpendicular to the neutral axis is

relaxed. In other words, the Timoshenko beam theory is based on the shear deformation mode

in Figure (2.10), (2.11), (2.12), (2.14). Various boundary conditions have been considered. The

effect of variations in some material and/or geometric properties of the beam have also been

studied.

The deformed beam is also shown in Fig.(2.12) based on the last W (x) and different sections

Figure 2.10: Deformation in Timoshenko Beam

deduced by Timoshenko U(x)- function. The deformation of elements of Timoshenko beam

undergoes a rotation φ of the beam cross- section due to bending, in which as will be seen later

in illustrative examples this rotation is independent of shear effect for all statically determinate

beams and also all indeterminate beams having full symmetric conditions whereas except these

beam-types, this rotation will depend on shear stiffness KGA. The bending moment M will

behave in the same way. Therefore, the rotation φ in general will not be the same as in the

Euler-Bernoulli beam. That is, φ 6= θ = dW (x)
dx

. Moreover, the deformation of such elements

also undergoes an additional angular rotation ϕ caused by shear. Thereby the total rotation of
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Figure 2.11: Deformation in Timoshenko Beam element

Figure 2.12: Deformation in Timoshenko Beam element

the Normal is the slope of the deflection curve W T that is, dW
T (x)
dx

and numerically is equal the

sum of these two rotations as dWT (x)
dx

= (φ+ ϕ), where the superscripts E and T refer to Euler

and Timoshenko theories respectively, is redrawn as shown in Fig(2.9).

A Timoshenko beam takes into account shear deformation and rotational inertia effects,

making it suitable for describing the behavior of short beams, sandwich composite beams or

beams subject to high-frequency excitation when the wavelength approaches the thickness of

the beam. The resulting equation is of 4th order, but unlike ordinary beam theory - that is

to say Bernoulli-Euler theory. In static Timoshenko beam theory without axial effects, the

displacements of the beam are assumed to be given by

ux(x, y, z) = −zϕ(x), uy = 0, uz = w(x).

Where (x, y, z) are the coordinates of a point in the beam, ux, uy, uz are the components of the

displacement vector in the three coordinate directions, ϕ is the angle of rotation of the normal

to the mid- surface of the beam and ω is the displacement of the mid- surface in z- direction.
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Figure 2.13: Deformed cantilever beam (warped cross sections).

The governing equations are the following uncoupled system of ordinary differential equations

is:
dW

dx
= ϕ− 1

kAG

d

dx
(EI

dϕ

dx
).

Finite element formulation

FEM is a numerical method of finding approximate solutions of partial differential equation as

well as integral equation. The method essentially consists of assuming the piecewise continuous

function for the solution and obtaining the parameters of the functions in a manner that reduces

the error in the solution. By this method we divide a beam in to number of small elements

and calculate the response for each small elements and finally added all the response to get

global value. Stiffness matrix and mass matrix is calculate for each of the discretized element

and at last all have to combine to get the global stiffness matrix and mass matrix. The shape

function gives the shape of the beam element at anypoint along longitudinal direction. This

shape function also calculated by finite element method. Both potential and kinetic energy

of beam depends upon the shape function. To obtain stiffness matrix potential energy due to

deflection and to obtain mass matrix kinetic energy due to application of sudden load are use.

So it can be say that potential and kinetic energy of the beam depends upon shape function of

beam obtain by FEM method.

In the present analysis the mathematical formulation and finite element formulation for

loaded complex composite beam have been done. The beam is modeled by Timoshenko beam

theory. This essentially consists of assuming the piecewise continuous function for the solution

and obtaining the parameters of the functions in a manner that reduces the error in the solution.
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By this method we divide a beam in to number of small elements and calculate the response for

each small elements and finally added all the response to get global value. By taking Timoshenko

beam theory we have taken shear deformation into consideration which other theories neglect

to make the beam analysis simplified. Due to this we can be able to formulate a composite

beam that would be much more reliable for fabrication of structures that are under continuous

loading.

Figure 2.14: Deformation in Timoshenko Beam

Curved geometry

In order to describe initially curved geometry, three configurations: the straight configuration,

the stress-free reference configuration, and current configuration, are considered as shown in

Fig.(2.15), (2.16). The straight configuration is described by set of parameters or coordinates

X = [X1X2X3]t , the stress-free curved configuration is defined using the coordinates X =

[X1X2X3]t , and the current or deformed configuration is described by the vector r = [r1r2r3]t .

The position vector of an arbitrary point r can be written as r = X + u, wherer = [r1r2r3]t , is

the displacement vector. The matrix of position vector gradients J can be written as

J = ∂r
∂X

= ∂r
∂x

∂x
∂X

= JeJ
−1
0 , The matrix J0 is used to account for the initial stress-free curved

geometry. The Green-Lagrange strain tensor ε = 1
2

(J tJ − I) , upon usingJ = JeJ
−1
0 , can be

written as ε = 1
2
(J−1

0 )t
(
J teJeJ

−1
0 − I

)
, which leads to zero strain in the initial stress-free curved

configuration.

Geometry representation

The main goal of using the reduced-order model considered in this investigation is to have

an accurate representation of the geometry in the reference configuration. elements are re-

lated to splines and using linear mapping. Therefore, the mechanics-based elements can be
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Figure 2.15: Curved geometry

Figure 2.16: Deformation state associated with the activation of θ1 and θ2

used as the basis for developing the geometry of the solid models. Using the geometric coeffi-

cients, the geometry in the reference configuration is preserved, thereby avoiding any geometry

distortion when the analysis is performed. Using the position gradients and the geometric coef-

ficients, no distinction is made between straight and curved elements. By contrast, conventional

infinitesimal-rotation elements cannot be related by linear mapping and their use can lead to

geometry distortion when the solid models are converted to analysis meshes. This is evident

by the high cost and significant time and efforts spent by the industry on converting solid

models to analysis meshes. For example, when conventional beam elements are used, multiple

straight elements must be used to approximate the curved structures. Other simple examples

that demonstrate the geometric representation difficulties encountered when using conventional

elements are tapered structures. For these structures, the element thickness varies along the

beam axis. The tapering can be easily captured using the element by changing the norms of

the transverse gradient vectors at the element nodes as shown in Fig. (2.13), (2.17),(2.18),
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Figure 2.17: Rotationel geometrically nonlinear beam

Figure 2.18: Deformation of the beam

(2.19),(2.20), (2.21),(2.22), (2.24),(2).

2.2.1 Conclusion

From preceding illustrative examples results and their discussions, the following can be easily

concluded:

• Shows that the effect of shear deformation is to increase the deflection.

• The contribution due to shear deformation to the deflection depends on the modulus ratio E
G

as well as the ratio of thickness to length t
L
.

• The effect of shear deformation is negligible for thin and long beams whereas it is more
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Figure 2.19: Deformation of the beam

Figure 2.20: Deformation of the beam

significant for beams with thickness-to-length rations > 1/10.

• The bending rotation as well as bending moment and axial bending stresses are independent of

shear deformation for all statically determinate and indeterminate beams if they obey symmetric

boundary condition and loading, whereas for general statically indeterminate beams they will

be affected by shear stiffness.

• The described total rotation by Timoshenko is evidentiary apparent and interpreted.

• The superiority of results due mixed formulation is evident in all field variables of the beam

problem.
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Figure 2.21: Deformation of the beam

Figure 2.22: Deformation of the beam

Figure 2.23: Deformation of the beam

Figure 2.24: Deformation of the beam

Figure 2.25: Deformation of the beam
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Chapter 3

Exponential decay and numerical solution

of nonlinear Bresse-Timoshenko system

with second sound.

3.1 Introduction and position of the problem:

In the present chapter, we consider the following one dimensional nonlinear Bresse-Timoshenko

system with second sound

ρ1ϕtt − k (ϕx + ψ)x + µ1ϕt = 0 in (0, 1)× (0,∞),

−ρ2ϕttx − bψxx + k (ϕx + ψ) + γθx + f (ψ) = 0 in (0, 1)× (0,∞),

ρ3θt + kqx + γψtx + λθ = 0 in (0, 1)× (0,∞),

τ0qt + δq + kθx = 0 in (0, 1)× (0,∞).

(3.1)

With the initial and boundary conditions

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x) in (0, 1),

ψt(x, 0) = ψ1(x), θ(x, 0) = θ0(x), q(x, 0) = q0(x) in (0, 1),

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = q(0, t)

= q(1, t) = θ(0, t) = θ (1, t) = 0 in (0,∞),

(3.2)

where t ∈ (0,+∞) denotes the time variable and x ∈ (0, 1) is the space variable along with

the beam of length L, in its equilibrium configuration. Here ϕ, ψ, θ, q and f(ψ) are specific func-
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tions represent, respectively, the transverse displacement of the beam, the rotation angle, the

different temperature, the heat flux and forcing term. The coefficients ρ1, ρ2, ρ3, µ1, τ0, δ, γ, b,

k and λ are positive constants represent the constitutive parameters defining the coupling

among the defferent conponents of the materials.

From physical point of view, it is well known that the model using the classic Fourier’s

law leads to the physical paradox of infinite speed of heat propagation. Many theories have

subsequently emerged, to overcome this physical paradox but still keeping the essentials of

a heat conduction process. One of which is the advent of the second sound effects observed

experimentally in materials at a very low temperature. Second sound effects arise when heat is

transported by a wave propagation process instead of the usual diffusion. This theory suggests

replacing the classic Fourier’s law γθx + q, where γ is the coefficient of thermal conductivity

and q is the heat flux by a modified law of heat conduction called Cattaneo’s law γθx + q+ τqt.

Here, the parameter τ > 0 represents the relaxation time describing the time lag in the response

of the heat flux to a gradient in the temperature. The obtained heat system is of hyperbolic

type and hence, automatically, eliminating the paradox of infinite speeds. Among the works

that have been realised in this fiéeld, we refer the reader to [34, 35]. In the following Figure

we introduce the displacements and the rotation angle in the (x1, x3) plane as well as the

temperature distribution with its contribution to the deformation of the beam as showing in

many works for instance [10] where

• u = u(x1, t): the longitudinal displacement of points lying on the x1-axis,

• ψ = ψ(x1, t): the angle of rotation for the normal to the x1-axis,

Θ is the Taylor’s expansion for the temperature distribution in the

(x1, x3)-plane (with x2 = 0):

Θ(x1, x3, t) = Θ(x1, 0, x3, t) = θ1(x, t) + x3θ3(x, t)
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where θ1 and θ3 are temperature components (functions) that may represent the temperature

deviations from the reference temperature Θ0 along the longitudinal and vertical directions.

Elishakoff et al. [27, 28], gave a brief description on the beam model in one-dimensional for

beam vibrations. The classical Bernoulli-Euler differential equation ignores rotational inertia

and shear deformation. It is given by

EIϕxxxx + ρAϕtt = 0, (3.3)

where E is the modulus of elasticity, I is the moment of inertia, ϕ(x, t) is the transverse

displacement, x is the axial coordinate, t is the time, ρ is the material density, and A is the

cross-sectional area.

Later, Bresse [19] and Rayleigh extended and corrected the Bernoulli-Euler equation (3.3), by

taking into account the rotary movement of the beam elements. The angle of rotation equals

the slope of the deflection curve ϕx, the associated angular acceleration is ϕxtt. As a result, the

moment of inertia of the element about an axis through its center of mass equals ρIϕxttdx and

according to D’Alembert’s principle, we obtain

−V +Mx − ρIϕxtt = 0, (3.4)

where V (x, t) is the shearing force and M(x, t) the bending moment.

Replacing this equation in the case of dynamic equilibrium with the forces of transverse vibra-

tion, we have

Vx = −ρAϕtt = (Mx − ρIϕxtt)x. (3.5)

Physically from elastic theory, we have M = EIϕxx, then it results in a Rayleigh model for the

uniform beam oscillations given by

EIϕxxxx + ρAϕtt − ρIϕxxtt = 0, (3.6)

we call equation (3.6) the rotatory inertial.

Afterwards, Timoshenko [48] extended the equation (3.6) by adding the impact of the shear

deformation, expressing the slope of the deflection curve in two parts

ϕx = −ψ + ζ, (3.7)

ψ as the rotation of the cross-sections with the neglection of the shear deformation and ζ as

the angle associated with the shear deformation at the neutral axis in the same cross-section.
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On the other hand, according to the mechanics of solid we can write

M = EIψx, (3.8)

V = k1ζAG = k1AG(ϕx + ψ), (3.9)

where k1 is the shear coefficient and G is the shear modulus.

The state of dynamic equilibrium of forces in the vertical direction is given by

ρAϕtt − Vx = 0. (3.10)

Deriving with respect to the in equation (3.7) and by substituting in the dynamic equilibrium

equation of motion (3.4), we get

−V +Mx + ρIψtt = 0. (3.11)

The Timoshenko system, was obtained by substituting respectively (3.9) and (3.8) into (3.10)

and (3.11), thus

−k1AG(ϕx + ψ)x + ρAϕtt = 0. (3.12)

−k1AG(ϕx + ψ) + EIψxx + ρIψtt = 0, (3.13)

where,

ρ1 = ρA is the mass density,

ρ2 = ρI is the moment mass inertia,

b = EI is the rigidity coefficient (of the cross-section),

k = k1AG is the shear modulus of elasticity.

Then, the Timoshenko system takes the following formρ1ϕtt − k (ϕx + ψ)x = 0,

ρ2ψtt − bψxx + k (ϕx + ψ) = 0.

(3.14)

It should be noticed that mentioned problem plays a crucial role in engineering applications.

And for more details on the valuable resources that have been realised regarding Timoshenko

system, we refer the readers to [5, 11, 12, 13, 14, 15, 16, 30, 33, 38, 39, 48, 52].
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Elishakoff [26], by differentiating the Timoshenko hypotheses (3.7) with respect to t, we get

ψtt = −ϕttx. (3.15)

Inserting (3.15) in (3.14)2, we obtain the well-known Bresse-Timoshenko system by combining

d’Alembert’s concept for dynamic equilibrium, with Timoshenko hypothesis to get the following

system ρ1ϕtt − k (ϕx + ψ)x = 0,

−ρ2ϕttx − bψxx + k (ϕx + ψ) = 0.

(3.16)

For more details, we refer [8, 9, 22, 26, 29].

Many investigations have been realised concerning the asymptotic behavior of the solution

of Bresse-Timoshenko system. Among them, we cite the work of Almeida and Ramos [6], who

they considered the following systemρ1ϕtt − β (ϕx + ψ)x = 0,

−ρ2ϕttx − bψxx + β (ϕx + ψ) + µ1ψt = 0,

(3.17)

where they showed that the viscous damping acting on angle rotation of the above system is

strong enough to provoke an exponential decay of the solution. Junior et al. [7] considered the

following system ρ1ϕtt − β (ϕx + ψ)x + µ1ψt = 0,

−ρ2ϕttx − bψxx + β (ϕx + ψ) = 0,

(3.18)

and they showed that the mechanism damping given by the viscous damping acting on the

transverse displacement of the beam stabilizes exponantially the system.

Kh. Zennir et al. [51] studied the following nonlinear Bresse-Timoshenko system

ρ1∂ttϕ− k (ϕx + ψ)x + σ1∂tϕ = 0,

−ρ2∂ttϕx − αψxx + k (ϕx + ψ)− ξ1θx

−ξ2px + σ2G(∂tψ) = 0,

c∂tθ + d∂tp− kθxx − ξ1∂tψx = 0,

d∂tθ + r∂tp− hpxx − ξ2∂tψx = 0.

(3.19)

The authors proved the well-posedness of the system by using the classical Faedo-Galerkin

approximations and showed a general decay result of the system.
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Motivated by the previous works, in this thesis we give a global existence and regularity

results, which can be proved by using the standard Feado-Galerkin method. Moreover, we

show that the dissipation given by the second sound is strong enough to give an exponential

stabilityof solution of the system (3.40) by using the energy method, that requires to constract

an appropriate Lyapunov functional which allows us to estimate the energy of the system (3.40)

and to show that it decays an exponetial manner without any conditions on the coefficients

of the system. Importance of this complimantary control and his influence on the asymptotic

behavior of the solution appears in many works for the different types of problems such as

[11, 31, 33]. Finally, some of the numerical simulation results are obtained using MATLAB

software.

The rest of this thesis is organized as follows: In Section 2, we recall some preliminaries, we

state without proof a global existence and regularity result of the problem (3.40). In Section 3,

we estabilish the exponential stability result. In Section 4, we validate our theoretical stability

result by numerical approximation.

3.2 Preliminaries and main results

In this section, we present and recall some mathematical notions to be used for the proof of

the stability result.

(A) f : R→ R satisfies

|f(ψ2)− f(ψ1)| ≤ k0(|ψ1|% + |ψ2|%)|ψ1 − ψ2| and ψ1 ∈ R, ψ2 ∈ R, (3.20)

where k0 > 0, % > 0. In addition, we assume that

0 ≤ f̂(ψ) ≤ ψf(ψ) implies − ψf(ψ) ≤ −f̂(ψ) ≤ 0, ψ ∈ R, (3.21)

with

f̂(ψ) =

∫ ψ

0

f(s)ds. (3.22)

Here are the functional inequalities that helps us leter in some estimations to achieve our

stability result, we recall in the following Young’s inequality [20] given by

ab ≤ |a|
p

p
+
|b|q

q
, ∀a, b ∈ R,

(
1

p
+

1

q
= 1, p > 1, q > 1

)
.
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According to Young’s inequality, for all ε > 0, and p = q = 2 we obtain

ab ≤ εa2 +
1

4ε
b2. (3.23)

Together with Poincare’s inequality [20] given by∫
I

u2dx ≤ C

∫
I

u2
xdx, ∀u ∈ H1

0 (I), (3.24)

where I is a bounded interval and C is a constant (depending on |I| <∞).

Remark 3.2.1. We have

−2(ϕx + ψ)ψ ≤ (ϕx + ψ)2 + ψ2,

and, on the other hand, we also have

(ϕx + ψ − ψ)2 = (ϕx + ψ)2 + ψ2 − 2(ϕx + ψ)ψ ≤ 2(ϕx + ψ)2 + 2ψ2.

Finally, by integreting and using Poincaré inequality (3.24), we obtain the following inequality∫ 1

0

ϕ2
xdx ≤ 2

∫ 1

0

(ϕx + ψ)2dx+ 2

∫ 1

0

ψ2
xdx, (3.25)

where C = 1
|I| ≥ 0.

3.3 Well- posedness of the problem

For completeness, we state without proof the following global existence and regularity result

which can be proved by using the standard Feado-Galerkin method, for this we refer the reader

to [4, 47, 51].

Theorem 3.3.1. Let (ϕ0, ϕ1) ∈ H1
0 (0, 1)×L2(0, 1), (ψ0, ψ1) ∈ H1

0 (0, 1)×L2(0, 1) and (θ0, q0) ∈

L2(0, 1)× L2(0, 1) be given. Assume that (A) are satisfied, then the problem (3.40)-(3.27) has

a unique global (weak) solution satisfying

ϕ, ψ ∈ C(R+, H
1
0 (0, 1)) ∩ C1(R+, L

2(0, 1)),

θ, q ∈ C(R+, L
2(0, 1)).

.
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Proof. By Using Faedo-Galerkin approximations, we prove the existence of unique global solu-

tion of (1.2)- (1.4). For more detail, we refer the reader to see [4, 12, 14].

Step one: Approximate the problem

Let {uj}, {vj}, {θj}, {Pj} be the Galerkin basis, For n ≥ 1 , let

Wn = span{u1, u2, .............., un}

Kn = span{v1, v2, .............., vn}

Θn = span{θ1, θ2, .............., θn}

Γn = span{P1, P2, .............., Pn},

given initial data (ϕ0, ψ0) ∈ H1
0 (0, 1) × H1

0 (0, 1), ϕ1, ϕ2, ϕ3 ∈ L2(0, 1) and θ0, P0 ∈ L2(0, 1) we

define the approximations

ϕn =
n∑
j=1

gjn(t)uj(x)

ψn =
n∑
j=1

ζjn(t)vj(x)

θn =
n∑
j=1

fjn(t)θj(x)

Pn =
n∑
j=1

kjn(t)Pj(x),

which satisfy the following approximate problem

ρ1 (ϕttn, uj)− k ((ϕxn + ψn) , ujx) + µ1 (ϕtn, uj) = 0 in (0, 1)× (0,∞),

−ρ2 (ϕttxn, ujx)− b (ψxxn, vjx) + k ((ϕxn + ψn) , uj) + γ (θxn, θj) + (f (ψn) , vj) = 0 in (0, 1)× (0,∞),

ρ3 (θtn, θj) + k (qxn, Pj) + γ (ψtxn, vj) + λ (θn, θj) = 0 in (0, 1)× (0,∞),

τ0 (qtn, Pj) + δ (qn, Pj) + k (θxn, θxj) = 0 in (0, 1)× (0,∞),

(3.26)

with initial conditions

ϕn(x, 0) = ϕn0 (x), ϕtn(x, 0) = ϕn1 (x), ψn(x, 0) = ψn0 (x) in (0, 1),

ψtn(x, 0) = ψn1 (x), θn(x, 0) = θn0 (x), qn(x, 0) = qn0 (x) in (0, 1),

ϕn(0, t) = ϕn(1, t) = ψn(0, t) = ψn(1, t) = qn(0, t)

= qn(1, t) = θn(0, t) = θn (1, t) = 0 in (0,∞),

(3.27)
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which satisfies

ϕn0 → ϕ0, strongly in H1
0 (0, 1)

ϕn1 → ϕ1, strongly in L2(0, 1)

ϕn2 → ϕ2, strongly in L2(0, 1)

ϕn3 → ϕ3, strongly in L2(0, 1)

ψn0 → ψ0, strongly in H1
0 (0, 1)

ψn1 → ψ1, strongly in L2(0, 1)

θn0 → θ0, strongly in L2(0, 1)

P n
0 → P0, strongly in L2(0, 1).

By using the Caratheodory Theorem for standard ordinary differential equations theory, the

problem (3.2) and (3.3) has a solutions (gjn(t), ζjn(t), fjn(t), kjn(t))j=1...n ∈ (H3(0, 1))4 and by

using the embeddingHm(0, 1)→ Cm(0, 1), we deduce that the solution (gjn(t), ζjn(t), fjn(t), kjn(t))j=1...n ∈

(C2(0, 1))4. In turn, this gives a unique (ϕn, ψn, θn, Pn) defined by (3.1) and satisfying (3.2).

Second step: The first a priori estimate

Multiplying equations of (3.2) by ∂tgjn, ∂thjn∂tfjn and ∂tkjn respectively and using

k

∫ 1

0

ϕttψtxdx =

∫ 1

0

ψt [−ρ2ϕttx(x, t)− bψxx(x, t)] dx

+

∫ 1

0

ψt [k(ϕx + ψ)(x, t)] dx

+

∫ 1

0

ψt [ϕθx(x, t) + f(ψ)(x, t)] dx = 0,

we get

d

2dt

[
ρ1

∫ 1

0

ϕ2
ntdx+ k

∫ 1

0

(ϕnx + ψn)2dx+
ρ1ρ2

K

∫ 1

0

ϕ2
nttdx

]
+

d

2dt

[
ρ2

∫ 1

0

ϕ2
ntxdx+ b

∫ 1

0

ψ2
nxdx+ ρ3

∫ 1

0

θ2
ndx+ τ0

∫ 1

0

q2
ndx+ 2̂f(ψn)

]
+ µ1

∫ 1

0

ϕ2
ntdx+

µ1ρ2

k

∫ 1

0

ϕ2
nttdx+ δ

∫ 1

0

q2
ndx+ ϕn

∫ 1

0

θ2
ndx = 0. (3.28)

Now integrating (3.5) and by using (2.3)1, we have

En(t)+µ1

∫ t

0

∫ 1

0

ϕ2
ntdx+

µ1ρ2

k

∫ t

0

∫ 1

0

ϕ2
nttdx+ δ

∫ t

0

∫ 1

0

q2
ndx+ ϕn

∫ t

0

∫ 1

0

θ2
ndx = 0, (3.29)
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with

En(t) =
1

2

∫ 1

0

[
ρ1ϕ

2
nt + k(ϕnx + ψn)2 +

ρ1ρ2

k
ϕ2
ntt + ρ2ϕ

2
ntx + bψ2

nx

]
dx

+
1

2

∫ 1

0

[
ρ3θ

2
n + τ0q

2
n + 2̂f(ψn)

]
dx, (3.30)

then

En(t) ≤ En(0).

Thus, there exists a positive constant C independent on n such that

En(t) ≤ C, t ≥ 0.

By (2.1) and (3.9), we have∫ 1

0

[
ϕ2
nt + (ϕnx + ψn)2 + ϕ2

ntt + ϕ2
ntx + bψ2

nx

]
dx

+

∫ 1

0

[
ρ3θ

2
n + τ0q

2
n + 2̂f(ψn)

]
dx ≤ C. (3.31)

Then tn = T , for all T > 0.

Third step: The second a priori estimate Differentiating (3.2)1 and multiplying by ∂ttϕn,

integrating the result over (0, 1), we get

σ1

∫ 1

0

ϕ2
nt + k

∫ 1

0

(ϕnxt + ψnt)ϕnxtt +
ρ1

2

∫ 1

0

ϕ2
nttt = 0, (3.32)

differentiating (3.2)2 and multiplying by ∂ttψn, using the fact that

ψtnx =
ρ1

k
ϕtttn(x, t) +

µ1

k
ϕttn(x, t)− ϕnxxt(x, t). (3.33)

Then integrating the result over (0, 1), using (2.3)2, we get

ρ1ρ2

2k

d

dt

∫ 1

0

ϕ2
ttndx+

ρ2

2

d

dt

∫ 1

0

ϕ2
txndx+

b

2

d

dt

∫ 1

0

ψ2
xndx

+ k

∫ 1

0

(ϕxn + ψn)ψtndx+
µ1ρ2

k

∫ 1

0

ϕ2
ttndx

+ γ

∫ 1

0

θxnψtndx+
d

dt

∫ 1

0

f̂(ψn)dx = 0. (3.34)

Differentiating the equations of (3.2), multiplying by ∂tθn, ∂ttPn and then integrating the result

over (0, 1), we get

ρ3d

2dt

∫ 1

0

θ2
ndx+ k

∫ 1

0

qxnθdx− γ
∫ 1

0

θxnψtndx+ λ

∫ 1

0

θ2
ndx = 0, (3.35)

τ0d

2dt

∫ 1

0

q2
ndx− k

∫ 1

0

qnxθdx+ δ

∫ 1

0

q2
ndx = 0. (3.36)
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Combining (3.11) and (3.12), we get

Rn(t)+
ρ3d

2dt

∫ t

0

∫ 1

0

θ2
ndx+ k

∫ t

0

∫ 1

0

qxnθdx− γ
∫ t

0

∫ 1

0

θxnψtndx+ λ

∫ t

0

∫ 1

0

θ2
ndx (3.37)

+
τ0d

2dt

∫ t

0

∫ 1

0

q2
ndx− k

∫ t

0

∫ 1

0

qnxθdx+ δ

∫ t

0

∫ 1

0

q2
ndx = Rn(0). (3.38)

Where

Rn(t) =
1

2

∫ 1

0

[
ρ1ϕ

2
nt + k(ϕnx + ψn)2 +

ρ1ρ2

k
ϕ2
ntt + ρ2ϕ

2
ntx + bψ2

nx

]
dx

+
1

2

∫ 1

0

[
ρ3θ

2
n + τ0q

2
n + 2̂f(ψn)

]
dx, (3.39)

as in the fist a priori estimate, there exists C > 0 independent on n such that

Rn(t) ≤ C, t ≥ 0.

Fourth step: Passage to limit

From (3.10) and (3.14), we conclude that for any n ∈ N,

ϕn is bounded in L∞(R+, H
1
0 (0, 1))

∂tϕn is bounded in L∞(R+, L
2(0, 1))

∂ttϕn is bounded in L∞(R+, L
2(0, 1))

ψn is bounded in L∞(R+, H
1
0 (0, 1))

∂tψn is bounded in L∞(R+, L
2(0, 1))

θn is bounded in L∞(R+, L
2(0, 1))

∂tθn is bounded in L∞(R+, L
2(0, 1))

Pn is bounded in L∞(R+, L
2(0, 1))

∂tPn is bounded in L∞(R+, L
2(0, 1)).

Thus we get

ϕn weakly star in L2(R+, H
1
0 (0, 1))

∂tϕn weakly star in L2(R+, L
2(0, 1))

∂ttϕn weakly star in L2(R+, L
2(0, 1))
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ψn weakly star in L2(R+, H
1
0 (0, 1))

∂tψn weakly star in L2(R+, L
2(0, 1))

θn weakly star in L2(R+, L
2(0, 1))

∂tθn weakly star in L2(R+, L
2(0, 1))

Pn weakly star in L2(R+, L
2(0, 1))

∂tPn weakly star in L2(R+, L
2(0, 1)).

By (3.17), we deduce that ϕn, ψn is bounded in L2(R+, H
1
0 (0, 1) and ∂tϕn, ∂ttϕn are bounded

in L2(R+, L
2(0, 1), and ∂tθn, ∂tPn are bounded in L2(R+, L

2(0, 1). Then from Aubin-Lions

theorem [18], we infer that for and, T > 0,

ϕn strongly in L∞(R+, H
1
0 (0, 1))

ψn strongly in L∞(R+, H
1
0 (0, 1))

θn strongly in C0(R+, L
2(0, 1))

Pn strongly in L∞(R+, L
2(0, 1)).

We also obtain by Lemma 1.4 in Kim [15] that

ϕn strongly in C(0, T,H1
0 (0, 1))

ψn strongly in C(0, T,H1
0 (0, 1))

θn strongly in C(0, T, L2(0, 1))

Pn strongly in C(0, T, L2(0, 1)).

Then we can pass to limit the approximate problem (3.2) and (3.3) in order to get a weak

solution of problem (1.2)-(1.4).

Step Six: Continuous dependence and uniqueness We prove the continuous dependence

of unique solution of (1.2)-(1.4).

Let (ϕ, ϕt, ϕtt, ψ,Υ,Ψ) and (Γ,Γt,Γtt,Ξ,Π,Ω) be two global solutions of (1.2)?(1.4) with respect

to initial data (ϕ0, ϕ1, ϕ2, ψ0,Θ,Ψ) and (Γ0,Γ1,Γ2,Ξ0,Φ0,Ω0). Let

Λ(t) = ϕ− Γ
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Σ(t) = ψ − Ξ

χ(t) = Π− Φ

M(t) = Ψ− Ω.

Then (Λ,Σ, χ,M) verifies (1.2)-(1.4) and we have

ρ1Λtt − k (Λx + Σ)x + µ1Λt = 0 in (0, 1)× (0,∞),

−ρ2Λttx − bΣxx + k (Λx + Σ) + γχx + f (Σ) = 0 in (0, 1)× (0,∞),

ρ3χt + kMx + γΣtx + λχ = 0 in (0, 1)× (0,∞),

τ0Mt + δM + kχx = 0 in (0, 1)× (0,∞).

(3.40)

Multiplying (3.21)1 by Λt, (3.21)2 by Σt integrating over (0, 1) and since

k

∫ 1

0

ΛttΣtxdx =

∫ 1

0

Σt [−ρ2Λttx(x, t)− bΣxx(x, t)] dx

+

∫ 1

0

Σt [k(Λx + Σ)(x, t)] dx

+

∫ 1

0

Σt [γθx(x, t) + f(Σ)(x, t)] dx = 0,

we get

d

2dt

[
ρ1

∫ 1

0

Λ2
tdx+ k

∫ 1

0

(Λx + Σ)2dx+
ρ1ρ2

K

∫ 1

0

Λ2
ttdx

]
+

d

2dt

[
ρ2

∫ 1

0

Λ2
txdx+ b

∫ 1

0

Σ2
xdx+ ρ3

∫ 1

0

χ2dx+ τ0

∫ 1

0

q2dx+ 2̂f(Σ)

]
+ µ1

∫ 1

0

Λ2
tdx+

µ1ρ2

k

∫ 1

0

Λ2
ttdx+ δ

∫ 1

0

M2dx+ λ

∫ 1

0

χ2dx = 0. (3.41)

Then

E ′(t) ≤ 0 (3.42)

E ′(t) ≤C[

∫ 1

0

Λ2
tdx+

∫ 1

0

Λ2
txdx+

∫ 1

0

(Λx + Σ)2dx

+

∫ 1

0

Λ2
ttdx+

∫ 1

0

Σ2
xdx+

∫ 1

0

χ2dx

+

∫ 1

0

M2dx+

∫ 1

0

f̂(Σ)dx],

(3.43)
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where

E(t) =
1

2

∫ 1

0

[
ρ1Λ2

t + k(Λx + Σ)2 +
ρ1ρ2

k
Λ2
tt + ρ2Λ2

tx + bΣ2
x

]
dx

+
1

2

∫ 1

0

[
ρ3χ

2 + τ0M
2 + 2̂f(Σ)

]
dx, (3.44)

by integrating (3.23), we get

E(t) ≤ E(0) + C1

∫ 1

0

[
‖Λ2

t‖+ ‖(Λx + Σ)2‖+ ‖Λ2
tt‖+ ‖Λ2

tx‖+ ‖Σ2
x‖
]
dx

+ C1

∫ 1

0

[
‖χ2‖+ ‖M2‖

]
dx. (3.45)

On the other hand, we have

E(t) ≥ C0

[
‖Λ2

t‖+ ‖(Λx + Σ)2‖+ ‖Λ2
tt‖+ ‖Λ2

tx‖+ ‖Σ2
x‖
]
dx

+ C0

[
‖χ2‖+ ‖M2‖

]
dx, (3.46)

owing to Gronwall’s inequality to (3.27), we have

[
‖Λ2

t‖+ ‖(Λx + Σ)2‖+ ‖Λ2
tt‖+ ‖Λ2

tx‖+ ‖Σ2
x‖
]
dx

+
[
‖χ2‖+ ‖M2‖

]
dx ≤ ec2tE(0), (3.47)

which implies that solution of (1.2)?(1.4) depends continuously on the initial data.

3.4 Exponential stability

In this section, we use the energy method to establish the exponential stability of the system

(3.40)-(3.27). To achieve our goal, we state and prove the following lemmas.

Lemma 3.4.1. Let (ϕ, ψ, θ, q) be a solution of (3.40)-(3.27). Then, the energy functional E(t),

defined by

E(t) =
1

2

∫ 1

0

[
ρ1ϕ

2
t + k(ϕx + ψ)2 +

ρ1ρ2

k
ϕ2
tt + ρ2ϕ

2
tx + bψ2

x

]
dx

+
1

2

∫ 1

0

[
ρ3θ

2 + τ0q
2 + 2̂f(ψ)

]
dx, (3.48)

satisfies

E ′(t) = −µ1

∫ 1

0

ϕ2
tdx−

µ1ρ2

k

∫ 1

0

ϕ2
ttdx− δ

∫ 1

0

q2dx− λ
∫ 1

0

θ2dx ≤ 0 (3.49)
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Proof. Multiplying (3.40)1, (3.40)2, (3.40)3 and (3.40)4, by ϕt, ψt, θ and q respectively, and an

integration by parts over (0, 1), we get

∫ 1

0
ϕt [ρ1ϕtt(x, t)− k(ϕx + ψ)x(x, t)]

+
∫ 1

0
ϕt [µ1ϕt(x, t)] dx = 0 in (0, 1)× (0,∞),∫ 1

0
ψt [−ρ2ϕttx(x, t)− bψxx(x, t)] dx

+
∫ 1

0
ψt [k(ϕx + ψ)(x, t)] dx

+
∫ 1

0
ψt [γθx(x, t) + f(ψ)(x, t)] dx = 0 in (0, 1)× (0,∞),∫ 1

0
θ [ρ3θt(x, t) + kqx(x, t) + γψtx(x, t)] dx

+
∫ 1

0
θ [λθ(x, t)] dx = 0 in (0, 1)× (0,∞),∫ 1

0
q [τ0qt(x, t) + δq (x, t) + kθx(x, t)] dx = 0 in (0, 1)× (0,∞).

(3.50)

Using integration by parts in (3.50) and the boundary conditions (3.27), yield

(3.50)1 ⇔
ρ1d

2dt

∫ 1

0

ϕ2
tdx+ k

∫ 1

0

(ϕx + ψ)ϕtxdx+ µ1

∫ 1

0

ϕ2
tdx = 0, (3.51)

(3.50)2 ⇔
bd

2dt

∫ 1

0

ψ2
xdx+ k

∫ 1

0

(ϕx + ψ)ψtdx+ ρ2

∫ 1

0

ϕttψtxdx

+ γ

∫ 1

0

θxψtdx+
d

dt

∫ 1

0

f̂(ψ)dx = 0, (3.52)

(3.50)3 ⇔
ρ3d

2dt

∫ 1

0

θ2dx+ k

∫ 1

0

qxθdx− γ
∫ 1

0

θxψtdx+ λ

∫ 1

0

θ2dx = 0, (3.53)

(3.50)4 ⇔
τ0d

2dt

∫ 1

0

q2dx− k
∫ 1

0

qxθdx+ δ

∫ 1

0

q2dx = 0. (3.54)

By equation (3.40)1, we get

ψtx =
ρ1

k
ϕttt (x, t) +

µ1

k
ϕtt (x, t)− ϕxxt (x, t) . (3.55)

Now substituting ( (3.55) in (3.52), we obtain

(3.50)2 ⇔
ρ1ρ2

2k

d

dt

∫ 1

0

ϕ2
ttdx+

ρ2

2

d

dt

∫ 1

0

ϕ2
txdx+

b

2

d

dt

∫ 1

0

ψ2
xdx

+ k

∫ 1

0

(ϕx + ψ)ψtdx+
µ1ρ2

k

∫ 1

0

ϕ2
ttdx

+ γ

∫ 1

0

θxψtdx+
d

dt

∫ 1

0

f̂(ψ)dx = 0. (3.56)
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By summing the equations (3.51), (3.53), (3.54) and (3.56), we have

d

2dt

[
ρ1

∫ 1

0

ϕ2
tdx+ k

∫ 1

0

(ϕx + ψ)2dx+
ρ1ρ2

K

∫ 1

0

ϕ2
ttdx

]
+

d

2dt

[
ρ2

∫ 1

0

ϕ2
txdx+ b

∫ 1

0

ψ2
xdx+ ρ3

∫ 1

0

θ2dx+ τ0

∫ 1

0

q2dx+ 2̂f(ψ)

]
+ µ1

∫ 1

0

ϕ2
tdx+

µ1ρ2

K

∫ 1

0

ϕ2
ttdx+ δ

∫ 1

0

q2dx+ λ

∫ 1

0

θ2dx = 0. (3.57)

By (3.58), obtaining (3.49). The proof of Lemma 3.4.1 is completed.

d

2dt

[
ρ1

∫ 1

0

ϕ2
tdx+ k

∫ 1

0

(ϕx + ψ)2dx+
ρ1ρ2

k

∫ 1

0

ϕ2
ttdx

]
+

d

2dt

[
ρ2

∫ 1

0

ϕ2
txdx+ b

∫ 1

0

ψ2
xdx+ ρ3

∫ 1

0

θ2dx+ τ0

∫ 1

0

q2dx+ 2̂f(ψ)

]
= −µ1

∫ 1

0

ϕ2
tdx−

µ1ρ2

k

∫ 1

0

ϕ2
ttdx− δ

∫ 1

0

q2dx− λ
∫ 1

0

θ2dx. (3.58)

Which complete the proof.

We need to introduce the following auxiliary Lemmas.

Lemma 3.4.2. Let (ϕ, ψ, θ, q) be a solution for (3.40)-(3.27). The functional F1(t) defined by

F1(t) = −µ1

2

∫ 1

0

ϕ2
tdx− k

∫ 1

0

ϕtxϕxdx, (3.59)

(3.60)

satisfies, for any ε1 > 0, the following estimate

F ′1(t) ≤ −k
∫ 1

0

ϕ2
txdx+ kε1

∫ 1

0

ψ2
xdx+

(
ρ1 +

k

4ε1

)∫ 1

0

ϕ2
ttdx. (3.61)

Proof. Differentiating F1, we obtain

F ′1(t) = −µ1

∫ 1

0

ϕtϕttdx− k
∫ 1

0

ϕttxϕxdx− k
∫ 1

0

ϕ2
txdx. (3.62)

Using (3.40)1 and integrating by parts, we get

F ′1(t) = ρ1

∫ 1

0

ϕ2
ttdx− k

∫ 1

0

ϕttψxdx− k
∫ 1

0

ϕ2
txdx. (3.63)
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Proof. Direct computation using integration by parts, we get

F ′1(t) = −µ1

∫ 1

0

ϕtϕttdx− k
∫ 1

0

ϕttxϕxdx− k
∫ 1

0

ϕ2
txdx. (3.64)

Using (3.64) and the fact that

ϕt(x, t) = −ρ1

µ1

ϕtt(x, t) +
k

µ1

(ϕx + ψ)x (x, t),

we obtain

F ′1(t) = ρ1

∫ 1

0

ϕ2
ttdx− k

∫ 1

0

(ϕx + ψ)x ϕttdx− k
∫ 1

0

ϕ2
txdx

− k
∫ 1

0

ϕttxϕxdx

= ρ1

∫ 1

0

ϕ2
ttdx+ k

∫ 1

0

ϕttxϕxdx− k
∫ 1

0

ϕ2
txdx

− k
∫ 1

0

ϕttxϕxdx+ k

∫ 1

0

ϕttxψdx

= ρ1

∫ 1

0

ϕ2
ttdx− k

∫ 1

0

ϕttψxdx− k
∫ 1

0

ϕ2
txdx.

Using Young inequalities, we obtain (3.61). By applying Young’s inequality (3.23), we obtain

(3.61).

Lemma 3.4.3. Let (ϕ, ψ, θ, q) be a solution for (3.40)-(3.27). The functional F2(t) defined by

F2(t) = −ρ2

∫ 1

0

ϕtxψdx+
µ1

2

∫ 1

0

ϕ2dx+ ρ1

∫ 1

0

ϕtϕdx

+
ρ2ρ3

γ

∫ 1

0

ϕtθdx. (3.65)

satisfies, ∀t ≥ 0

F ′2(t) ≤ −k
∫ 1

0

(ϕx + ψ)2dx− b

2

∫ 1

0

ψ2
xdx+

(
ρ1 +

λρ2

2γ

)∫ 1

0

ϕ2
tdx

+
ρ2ρ3

2γ

∫ 1

0

ϕ2
ttdx+

kρ2

2γ

∫ 1

0

ϕ2
txdx+

kρ2

2γ

∫ 1

0

q2dx

+

(
γ2

2b
+
ρ2

2γ
(ρ3 + λ)

)∫ 1

0

θ2dx−
∫ 1

0

f̂(ψ)dx. (3.66)

Proof. By differentiating F2, we get

F ′2(t) = ρ1

∫ 1

0

ϕ2
tdx+ ρ1

∫ 1

0

ϕϕttdx+ µ1

∫ 1

0

ϕϕtdx− ρ2

∫ 1

0

ϕttxψdx

− ρ2

∫ 1

0

ϕtxψtdx+
ρ2ρ3

γ

∫ 1

0

ϕttθdx+
ρ2ρ3

γ

∫ 1

0

ϕtθtdx. (3.67)
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Using (3.40)1, (3.40)2, (3.40)3 and integrating by parts, we obtain

F ′2(t) = ρ1

∫ 1

0

ϕ2
tdx+ ρ2

∫ 1

0

ϕtψtxdx− b
∫ 1

0

ψ2
xdx

− k
∫ 1

0

(ϕx + ψ)2dx+ γ

∫ 1

0

θψxdx+
ρ2ρ3

γ

∫ 1

0

ϕttθdx

+
ρ2ρ3

γ

∫ 1

0

ϕtθtdx−
∫ 1

0

ψf (ψ) dx, (3.68)

by exploiting (3.21) in the last term of (3.68), we can write

F ′2(t) ≤ ρ1

∫ 1

0

ϕ2
tdx− k

∫ 1

0

(ϕx + ψ)2dx− b
∫ 1

0

ψ2
xdx−

ρ2k

γ

∫ 1

0

ϕtxqdx

+ γ

∫ 1

0

θψxdx+
ρ2ρ3

γ

∫ 1

0

ϕttθ −
λρ2

γ

∫ 1

0

ϕtθdx−
∫ 1

0

f̂(ψ)dx,

and applying Young’s inequality (3.23), we obtain (3.66). Differentiating F2 and integration

by parts, we have

F ′2(t) = ρ1

∫ 1

0

ϕ2
tdx+ ρ1

∫ 1

0

ϕϕttdx+ µ1

∫ 1

0

ϕϕtdx− ρ2

∫ 1

0

ϕttxψdx

− ρ2

∫ 1

0

ϕtxψtdx+
ρ2ρ3

γ

∫ 1

0

ϕttθdx+
ρ2ρ3

γ

∫ 1

0

ϕtθtdx. (3.69)

On the other hand, we have

ϕt (x, t) = − ρ1

µ1
ϕtt (x, t) + k

µ1
(ϕx + ψ)x (x, t) ,

ϕttx (x, t) = − b
ρ2
ψxx (x, t) + k

ρ2
(ϕx + ψ) (x, t) + γ

ρ2
θx (x, t)

+ 1
ρ2

f (ψ) (x, t) ,

ψtx (x, t) = −ρ3

γ
θt (x, t)− k

γ
qx (x, t)− λ

γ
θ (x, t) .

(3.70)

(3.69)-(3.70) imply that

F ′2(t) = ρ1

∫ 1

0

ϕ2
tdx+ ρ2

∫ 1

0

ϕtψtxdx− b
∫ 1

0

ψ2
xdx

− k
∫ 1

0

(ϕx + ψ)2dx+ γ

∫ 1

0

θψxdx−
∫ 1

0

f (ψ)ψdx

+
ρ2ρ3

γ

∫ 1

0

ϕttθdx+
ρ2ρ3

γ

∫ 1

0

ϕtθtdx,

then

F ′2(t) = ρ1

∫ 1

0

ϕ2
tdx− k

∫ 1

0

(ϕx + ψ)2dx− b
∫ 1

0

ψ2
xdx

+ ρ2

∫ 1

0

ϕt

(
−ρ3

γ
θt −

k

γ
qx −

λ

γ
θ

)
dx+ γ

∫ 1

0

θψxdx−
∫ 1

0

ψf (ψ) dx

+
ρ2ρ3

γ

∫ 1

0

ϕttθdx+
ρ2ρ3

γ

∫ 1

0

ϕtθtdx. (3.71)
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Cauchy-Schwarz and Poincaré inequalities lead to∫ 1

0

|f (ψ)ψ|dx ≤
∫ 1

0

|ψ|%|ψ||ψ|dx

≤ ‖ψ‖%2(%+1)‖ψ‖2(%+1)‖ψ‖dx

≤ c1

∫ 1

0

ψ2
xdx, (3.72)

for some k1 > 0, k2 > 0, c1 > 0, c2 > 0

At this point, we distinguish two cases.

Case 1: If H is linear on[0, ε]. In this case, using the assumption (??), we can write

k2

∫ 1

0

f (ψ)2 dx ≤ k2

∫ 1

0

[
ψ2 + f (ψ)2] dx ≤ k2

∫ 1

0

ψf (ψ) ≤ −k3E ′(t),

this inequality imply that

−
∫ 1

0

f (ψ)2 dx ≥ −
∫ 1

0

ψf (ψ) . (3.73)

By (3.71) and (3.73), we get

F ′2(t) ≤ ρ1

∫ 1

0

ϕ2
tdx− k

∫ 1

0

(ϕx + ψ)2dx− b
∫ 1

0

ψ2
xdx−

ρ2k

γ

∫ 1

0

ϕtxqdx

+ γ

∫ 1

0

θψxdx+
ρ2ρ3

γ

∫ 1

0

ϕttθ −
λρ2

γ

∫ 1

0

ϕtθdx−
∫ 1

0

ψf (ψ) dx,

then

F ′2(t) ≤ −k
∫ 1

0

(ϕx + ψ)2dx− b

2

∫ 1

0

ψ2
xdx+

(
ρ1 +

λρ2

2γ

)∫ 1

0

ϕ2
tdx

+
ρ2ρ3

2γ

∫ 1

0

ϕ2
ttdx+

kρ2

2γ

∫ 1

0

ϕ2
txdx+

kρ2

2γ

∫ 1

0

q2dx

+

(
γ2

2b
+
ρ2

2γ
(ρ3 + λ)

)∫ 1

0

θ2dx−
∫ 1

0

ψf (ψ) dx (3.74)

Choosing we obtaining (3.66). Finally we get the estimate (3.66).

Now, we define Lyapunov functional L(t) by

L(t) = NE(t) +N1F1(t) +N2F2(t), (3.75)

where N,N1 and N2 are positive constants.
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Lemma 3.4.4. Let (ϕ, ψ, θ, q) be a solution for (3.40)-(3.27). Then, there exist two positive

constants γ1 and γ2, such that the Lyapunov functional (3.75) satisfies

γ1E(t) ≤ L(t) ≤ γ2E(t),∀t ≥ 0, (3.76)

and

L′(t) ≤ −β1E(t),∀t ≥ 0. (3.77)

Proof. From (3.75), we have

|L(t)−NE(t)| ≤N1µ1

2

∫ 1

0

ϕ2
tdx+N1k

∫ 1

0

|ϕtxϕx|dx

+
N2µ1

2

∫ 1

0

ϕ2dx+
N2ρ2ρ3

γ

∫ 1

0

|ϕtθ|dx

+N2ρ1

∫ 1

0

|ϕtϕ|dx+N2ρ2

∫ 1

0

|ϕtxψ|dx.

(3.78)

By applying Young’s (3.23), Poincaré (3.24) inequalities and exploiting (3.25) we arrive at

|L(t)−NE(t)| ≤δ1

∫ 1

0

ϕ2
tdx+ δ2

∫ 1

0

ϕ2
txdx+ δ3

∫ 1

0

(ϕx + ψ)2dx

+δ4

∫ 1

0

ϕ2
ttdx+ δ5

∫ 1

0

ψ2
xdx+ δ6

∫ 1

0

θ2dx

+δ7

∫ 1

0

q2dx+ δ8

∫ 1

0

f̂(ψ)dx

≤CE(t),

(3.79)

in which δi (i = 1, . . . , 8) are positive constants as in, [18, 31, 37, 46].

So it yields (N − C)E(t) ≤ L(t) ≤ (N + C)E(t), by choosing N (depending on N1, N2 )

sufficiently large we obtain (3.76).

Now, by differentiating L(t), exploiting (3.61), (3.66) and setting

ε1 = 1
N1
, we get

Proof. We define an appropriate Lyapunov functional as

L(t) = NE(t) +N1F1(t) +N2F2(t)
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where N,N1, N2 are positive constants to be chosen properly later.

L′(t) ≤ −
[
µ1N −

(
ρ1 +

λρ2

2γ

)
N2

] ∫ 1

0

ϕ2
tdx

−
[
kN1 −

kρ2

2γ
N2

] ∫ 1

0

ϕ2
txdx

− [kN2]

∫ 1

0

(ϕx + ψ)2dx

− [N2]

∫ 1

0

f̂(ψ)dx

−
[
µ1ρ2

k
N −

(
ρ1 +

k

4ε1

)
N1 −

ρ2ρ3

2γ
N2

] ∫ 1

0

ϕ2
ttdx

−
[
b

2
N2 − kε1N1

] ∫ 1

0

ψ2
xdx

−
[
λN −

(
γ2

2b
+
ρ2

2γ
(ρ3 + λ)

)
N2

] ∫ 1

0

θ2dx

−
[
δN − kρ2

2γ
N2

] ∫ 1

0

q2dx

(3.80)

By setting ε1 = 1
N1

, thus, we arrive at following

L′(t) ≤ −
[
µ1N −

(
ρ1 +

λρ2

2γ

)
N2

] ∫ 1

0

ϕ2
tdx

−
[
kN1 −

kρ2

2γ
N2

] ∫ 1

0

ϕ2
txdx

−kN2

∫ 1

0

(ϕx + ψ)2dx−N2

∫ 1

0

f̂(ψ)dx

−
[
µ1ρ2

k
N −

(
ρ1 +

kN1

4

)
N1 −

ρ2ρ3

2γ
N2

] ∫ 1

0

ϕ2
ttdx

−
[
b

2
N2 − k

] ∫ 1

0

ψ2
xdx−

[
δN − kρ2

2γ
N2

] ∫ 1

0

q2dx

−
[
λN −

(
γ2

2b
+
ρ2

2γ
(ρ3 + λ)

)
N2

] ∫ 1

0

θ2dx.

(3.81)

We choose N2 large enough such that

b

2
N2 − k > 0,

then we take N1 large enough so that

kN1 −
kρ2

2γ
N2 > 0.
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Once N2 and N1 are fixed, we pick N large enough (so that (3.76) remains valid) such that

µ1N −
(
ρ1 +

λρ2

2γ

)
N2 > 0,

µ1ρ2

k
N −

(
ρ1 +

kN1

4

)
N1 −

ρ2ρ3

2γ
N2 > 0,

λN −
(
γ2

2b
+
ρ2

2γ
(ρ3 + λ)

)
N2 > 0,

and

δN − kρ2

2γ
N2 > 0.

Finally, we obtain

L′(t) ≤ −β1E(t),∀t ≥ 0, (3.82)

where β1 is a positive constant.

We are now ready to state and prove the following exponential stability result.

Theorem 3.4.5. Let (ϕ, ψ, θ, q) be a solution for (3.40)-(3.27). Then, there exists two positive

constants λ0 and λ1, sauch that the energy function (3.48) satisfies, for all t ≥ 0,

E(t) ≤ λ0e
−λ1t. (3.83)

Proof. By using the estimation (3.77) and having in mind the equivalence of E(t) and L(t), we

conclude that

L′(t) ≤ −λ1L(t),∀t ≥ 0, (3.84)

where λ1 = β1

k2
. A simple integration of (3.84) gives

L(t) ≤ −L(0)e−λ1t, t ≥ 0.

Which yields the serial result (3.83). And by using the other side of the equivalence relation

(3.76) again. The proof is complete.

3.5 Numerical Approximation

In this section, we propose a numerical approximation to the solution of the continuous problem

(3.40), with initial and boundary conditions (3.27). This method is constructed from the
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backward Euler scheme in time and the standard finite element in space, we refer [24, 25]. Let

us introduce the function ϕ̂ = ϕt and the weak form associated with the system (3.40), which

is obtained by multiplying the equations by testing the functions tests χ, ζ, η, ξ in H1
0 (0, 1)

and integrating by parts, we have

ρ1(ϕ̂t, χ) + k (ϕx, χx)− k (ψx, χ) + µ1(ϕ̂, χ) = 0,

−ρ2 (ϕ̂tx, ζ) + b (ψx, ζx) + k (ϕx, ζ) + k (ψ, ζ) + γ (θx, ζ) + (f (ψ) , χ) = 0,

ρ3 (θt, η) + k (qx, η) + γ (ψtx, η) + λ (θ, η) = 0,

τ0 (qt, ξ) + δ (q, ξ) + k (θx, ξ) = 0.

(3.85)

Let N ∈ N∗, we divide (partition) the interval (0, 1) into subintervals Il = (xl−1, xl) of length

h = 1/N with

0 = x0 < x1 < ... < xN = 1.

We denote this partion by Sh ⊂ H1
0 (0, 1) the space of continuous piecewise linear functions

defined on this partition.

Let ∆t = T/M be the time step size, where T > 0 is a given final time and M is a positive

integer. Our finite element method using the backward Euler scheme is to find ϕ̂nh, ψnh , θnh , qnh ∈

Sh, for n = 1, 2, ...,M and all χh,ζh,ηh,ξh ∈ Sh. Thus we have

ρ1

∆t
(ϕ̂n − ϕ̂n−1, χh) + k (ϕnx, χhx)− k (ψnx , χh) + µ1(ϕ̂n, χh) = 0,

− ρ2

∆t
(ϕ̂nx − ϕ̂n−1

x , ζh) + b (ψnx , ζxh) + k (ϕnx, ζh) + k (ψn, ζh) + γ (θnx , ζh)

+(f (ψn) , χh) = 0,
ρ3

∆t
(θn − θn−1, ηh) + k (qnx , ηh) +

γ

∆t
(ψnx − ψn−1

x , ηh) + λ (θn, ηh) = 0,

τ0

∆t
(qn − qn−1, ξh) + δ (qn, ξh) + k (θnx , ξh) = 0,

(3.86)

where ϕn = ϕn−1 + ∆tϕ̂n, ϕ0 = ϕ0, ϕ̂0 = ϕ1, ψ0 = ψ0, θ0 = θ0 and q0 = q0.

In order to find {ϕ̂n, ψn, θn, qn}, we need to solve four coupled systems of algebraic equations

with symmetric positive definite matrices (see remark 3.5.1). Therefore, we have a unique

solution for a system. So, to solve the nonlinear problem (3.86), we use a fixed-point algorithm.
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Then,

((1 +
µ1∆t

ρ1

)ϕ̂n,j, χh) = (ϕ̂n−1, χh)−
k∆t

ρ1

(ϕn,j−1
x , χhx) +

k∆t

ρ1

(ψn,j−1
x , χh) ,

k (ψn,j, ζh) + b (ψn,jx , ζxh) =
ρ2

∆t
(ϕ̂n,jx − ϕ̂n−1

x , ζh)− k (ϕn,jx , ζh)

−γ (θn,j−1
x , ζh)− (f (ψn,j−1) , χh),(

(1 +
λ∆t

ρ3

)θn,j, ηh

)
= (θn−1, ηh)−

k∆t

ρ3

(qn,j−1
x , ηh)−

γ

ρ3

(ψn,jx − ψn−1
x , ηh) ,(

(1 +
δ∆t

τ0

)qn,j, ξh

)
= (qn−1, ξh)−

κ∆t

τ0

(θn,jx , ξh) ,

(3.87)

where ϕn,0 = ϕn−1, ϕ̂n,0 = ϕ̂n−1, ψn,0 = ψn−1, θn,0 = θn−1, qn,0 = qn−1 and ϕn,j = ϕn−1+∆tϕ̂n,j.

In any case, we solve the well-posed problem (3.87) by repeated (iterative) procedure which

is stopped when the difference between two successive iterations became less than a tolerance

ε.

Remark 3.5.1. Let χh = ζh = ηh = ξh ∈ Sh = vect{V1, V2, .., VN}. The method defined in this

thesis requires that the systems of algebraic equations

(1 +
µ1∆t

ρ1

)AΦ̂n,j = AΦ̂n−1 − k∆t

ρ1

BΦn,j−1 +
k∆t

ρ1

CΨn,j−1,

(kA+bB)Ψn,j =
ρ2

∆t
C
(

Φ̂n,j − Φ̂n−1
)
− kCΦn,j − γCΘn,j−1

−A(f (Ψn,j−1)),

(1 +
λ∆t

ρ3

)AΘn,j = AΘn−1 − k∆t

ρ3

CQn,j−1 − γ

ρ3

C(Ψn,j −Ψn−1),

(1 +
δ∆t

τ0

)AQn,j = AQn−1 − k∆t

τ0

CΘn,j,

where Aie= (Vi, Ve), Bie=
(
d
dx
Vi,

d
dx
Ve
)
, Cie=

(
d
dx
Vi, Ve

)
(i, e = 1, 2, ..., N),

and

ϕn,j =
N∑
i=1

Φn,j
i Vi, ϕ̂n,j =

N∑
i=1

Φ̂n,j
i Vi, ψn,j =

N∑
i=1

Ψn,j
i Vi, θn,j =

N∑
i=1

Θn,j
i Vi

qn,j =
N∑
i=1

Qn,j
i Vi.

To compute the integral I =
∫ 1

0
g(x)dx, we use the trapezoidal quadrature formula:

IN =
N∑
i=1

wig(xi) ≈ I,

where the weights {wi}Ni=1 are given by w1 = wN = h/2 for i = 1, N and wi = h, for i =

2, 3, ..., N − 1,
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The formula for calculating for (computation) the approximate energy using trapezoidal

quadrature is given by

ε(tn) ≈ En = 1/2
N∑
i=1

wi[ρ1ϕ
2
t (xi, t

n) + k(ϕx(xi, t
n) + ψ(xi, t

n))2

+
ρ1ρ2

k
ϕ2
tt(xi, t

n) + bψ2
x(xi, t

n) + ρ3θ
2(xi, t

n) + τ0q
2(xi, t

n)

+2f(ψ(xi, t
n))], (3.88)

where

ϕt(xi, t
n) = ϕ̂(xi, t

n), ϕtt(xi, tn) =
1

∆t
(ϕ̂(xi, t

n+1)− ϕ̂(xi, t
n)),

ϕx(xi, t
n) =

1

h
(ϕ(xi+1, t

n)− ϕ(xi, t
n)) and ψx(xi, tn) =

1

h
(ψ(xi+1, t

n)− ψ(xi, t
n)).

Example (1). Let f(z) = z2 + 2z3 and ρ1 = 1.75, ρ2 = 1.5, ρ3 = 1, δ = 0.015, k = 0.000035,

µ1 = 0.35, b = 4, γ = 0.001, τ0 = 0.4, λ = 0.8 and ε = 10−6. The discretization parameters are

fixed equal to N = 100, M = 1000 with he final time T = 100 and the initial data

ϕ0 = 250x(1− x), ϕ1 = θ0 = x(1− x)2 sin(x), ψ0 = x(1− x) exp(x2)

and q0 = x(1− x).

Example (2). Let f(z) = cos(z2) and ρ1 = 2, ρ2 = 1.2, ρ3 = 1.5, δ = 0.035, k = 0.0001,

µ1 = 0.75, b = 2, γ = 0.001, τ0 = 0.25, λ = 0.75 and ε = 10−6. The discretization parameters

are fixed equal to N = 100, M = 1000 with the final time T = 100 and the initial data

ϕ0 = x3(1− x)2, ϕ1 = 10x(1− x), ψ0 = x cos(2πx), θ0 =
1

10
x(1− x)

and q0 = (1− x) sin(2πx).

In each above numerical example, the graphics presented in the Figures (1-4), (6-9) show

the decreasing of the functions ϕ, ψ, θ and q on the interval ]t0, T ] with t0 > 0, for different

choices of the system parameters and of the initial data. Furthermore, the Figures 5 and 10

show that the approximate energy (3.88) decays in exponential manner which confiérms the

main theoretical result obtained in section 3.

3.5.1 Conclusion

In this work, we studied the nonlinear Bresse-Timoshenko system with second sound and we

showed that the dissipation given by this complementary control combining with the temper-
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Figure 3.1: ( Example 1) Approximation of function ϕ .

Figure 3.2: ( Example 1) Approximation of function ψ .

Figure 3.3: ( Example 1) Approximation of function θ .
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Figure 3.4: ( Example 1) Approximation of function q .

Figure 3.5: ( Example 1) Approximation of the energy.

Figure 3.6: ( Example 2) Approximation of function ϕ .
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Figure 3.7: ( Example 2) Approximation of function ψ .

Figure 3.8: ( Example 2) Approximation of function θ .

Figure 3.9: ( Example 2) Approximation of function q .
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Figure 3.10: ( Example 2) Approximation of the energy.

ature effect allow to stabilize exponentially the system. Moreover, the numerical tests that

have been performed conérm the asymptotic behavior of the energy. In the future, we will

consider another mechanism damping such that the microtemperature to study the stability of

Bresse-Timoshenko system. The problem in question is the following system
ρ1ϕtt − k (ϕx + ψ)x = 0 in (0, 1)× (0,∞),

−ρ2ϕttx − bψxx + k (ϕx + ψ) + γωx = 0 in (0, 1)× (0,∞),

ρ3ωt − k1ωxx + λω − γψtx = 0 in (0, 1)× (0,∞),

(3.89)

in this case the situation is different and more complicated than the problem (3.40) because in

this case one we considered a single term of dissipation given by the microtemperature.
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