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( Abstract )

The objective of this thesis is to provide sufficient conditions for the existence
of periodic solutions for various differential systems perturbed by a small
parameter using the averaging theory.

We consider the problem of finding the limit cycles for some classes of Duffing
differential equation and for two differential systems in R and R, using
averaging theory of the first order. Further, we study the limit cycles, which
bifurcate from the origin of the cubic isochronous Liénard center & = —y,
v = x+ 2% — 3wy, when we perturb it inside a class of all the cubic polynomial
differential systems in R2, using averaging theory up to the sixth order.
Moreover, we illustrate the results obtained by some examples. We mention
that all the computations of this thesis has been done with the help of the

algebraic manipulators “Maple” and “Mathematica”.

Keywords: averaging theory, differential system, Duffing equation, Liénard

equation, limit cycle, periodic solution.
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( Résumé )

L’objectif de cette these est de fournir des conditions suffisantes pou I'existence
des solutions périodiques pour quelques systemes différentiels perturbés par
un petit parametre en utilisant la théorie de la moyennisation.

Nous considérons le probleme de la recherche des cycles limites pour certaines
classes d’équation différentielle de Duffing et pour deux systemes différentiels
dans R® et RS, en utilisant la théorie de moyennisation du premier ordre. En
outre, nous étudions les cycles limites qui bifurquent a partir de I'origine du
centre isochrone pour le systéme cubique de Liénard & = —y, v = 2+ 23 — 32y,
lorsqu’on introduit une perturbation a l'intérieur d’une classe de tous les
systemes différentiels polynomiaux cubiques de R?, en appliquant la théorie
de moyennisation jusqu’au sixieme ordre. Par ailleurs, nous illustrons les
résultats obtenus par des exemples. Notons que tous les calculs de cette these

ont été effectués a I'aide des logiciels de calcul “Maple” et “Mathematica”.

Mots clés: cycle limite, équation de Duffing, équation de Liénard, solution

périodique, systeme différentiel, théorie de moyennisation.
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( Introduction )

Dynamical systems is an exciting and very active field in pure and applied
mathematics that involves tools and techniques from many areas, such as
analysis, geometry, etc. Generally, a system is said to be dynamic when it
evolves over time. Thus, the study of dynamical systems has applications to
a wide variety of fields, including physical, chemical, biological, or economic

systems. This evolution is represented by differential equations or applications.

The term “dynamic system” appeared at the beginning of the 20th century
between the works of Poincaré [49], titled “The New Methods of Celestial
Mechanics” in 1892, and that, in 1927, of the Birkhoff [7], precisely entitled
“Dynamical Systems”. One of the main objectives of researchers in the study of

dynamical systems is the qualitative study of ordinary differential equations.

Differential equations first came into existence with the invention of
calculus in the 17th century by Newton and Leibniz. These two brilliant
minds built the foundations for the theory of ordinary differential equations.

An ordinary differential equations is defined by
F(t,z, 2’2" -, 2™) =0, (1)

where ™ denote the n—th derivative of x with respect to t. When F' does

not depends in ¢, we say that differential equation (1) is autonomous. If x is

1X



Introduction

a vector instead of a real function, equation (1) is called a differential system.
These equations have a great importance in the development of many areas

of science, such as engineering, biology, electronics, economy, etc.

Almost two centuries later, more precisely around 1881, the work of
Poinacaré implied a new point of view in the study of ordinary differential
equations, which led to the beginning of what is today known as the qualita-
tive theory of differential equations, in his series of works “Mémoire sur les
courbes définies par une équation différentielle” (see [48]). Using geometric
and topological techniques, this brilliant mathematician was able to inves-
tigate the qualitative properties of differential equation solutions without
explicitly determining such solutions. Thus, instead of looking for a solution,

Poinacaré turned to a qualitative approach.

One of the important problems in the qualitative theory of real planar dif-
ferential systems is the determination of limit cycles. The notion of limit cycle
was also introduced by Poincaré, it is a closed orbit isolated from the other
periodic orbits. Years later, in 1901, contemporaneous with Poincaré [48§]
and using his contributions, Bendixon presented the well-known Poincaré-
Bendizon Theorem which states that under certain conditions, every solution
tends to a equilibrium solution which can be either an equilibrium point, or
periodic orbit (for more details see [23]). Simulated by this result, in 1907,
Lyapunov [44], studied the behavior of the solutions in the neighborhood
of an equilibrium position. Due to his work, Lyapunov is will know as the

founder of the modern theory of stability of motion.

Mention that, limit cycle describes the periodic phenomena in nature,
and there are a lot of applications such as in physics [15, 16, 28], population
dynamics [17, 18, 29, 61] , mechanics [14], astronomy [24], economics [50] and

SO Oon.
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Limit cycles are also an important topic inside the dynamical systems.
Thus the second part of the famous Hilbert 16th Problem is about the number
and the configurations of the limit cycles of the planar polynomial systems,
for more information see [63] and about the possible configurations of the
limit cycles of the polynomial differential systems see [41].

The problems related to the periodic behavior of solutions of higher order
differential systems or equations have been discussed by many authors. The
papers [6, 22, 31, 45, 58, 62, 64] can be given as good examples in this subject.
In the same context, many results have been published on the periodic
solutions of different classes of Duffing differential equations under variant
conditions.

In 1992, Ortega [47], study the existence of periodic solutions of twist

type of a time-dependent differential equation of the second order of the form
"+ f(t,z) =0,

using the relation between topological degree and stability.
In 2015, Wang and Zhu [60], study he existence, uniqueness and stability

of periodic solutions for the Duffing-type equation
2"+ cx’ + g(t,x) = h(t),

where ¢ > 0 is fixed, h is a T'—periodic function and ¢ : R xR — R is a
T—periodic function in ¢; using the Leray-Schauder method.
In 2019, Benterki and Llibre in [4], study the existence of periodic

solutions for the well known class of Duffing differential equation of the form
2" + e’ 4 a(t)r + b(t)z® = h(t),

where ¢ is a real parameter, a(t),b(t) and h(t) are continuous T—periodic
functions. The results are proved using three different results on the averaging

theory of first order.

X1
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They also study the existence of new periodic solutions of the two Duffing

differential equations of the form:
y" 4+ asiny = bsint, and y" +ay — cy® = bsint,

where a, b and ¢ are real parameters; using averaging theory of first order (see
31)-
In 2020, Feddaoui, Llibre and Makhlouf [26], study the existence of

periodic solutions of the class of Duffing differential equations
2"+ c(t)x’ + a(t)x + b(t)x® = h(t, v),

where the functions a(t), b(t), c(t) and h(t,z) are C? and T—periodic in the
variable ¢.
In the same year, Cheng and Yuan [20], study the following damped

Duffing equation with a equilibriumity
2"+ Ca' + g(x) = p(1),

where the damped coefficient C'(> 0) is a constant, elastic restoring force
g : (0,+00) — R is locally Lipschitz continuous and has a strong equilibriu-
mity of repulsive type at the origin, external force p : R — R is continuous
periodic function with a minimal period 7', using the twist theorem of nonarea-
preserving map.

In 2021, Sremr [57], study a bifurcation of positive solutions of the

parameter-dependent periodic Duffing problem
u" = p(tyu — h(t)u|*sgn(u) + pf(1); u(0) = u(w),v'(0) = u'(w),

where A > 1, p, h, f € L([0,w]), and p € R is a parameter.
These last years many papers tried to give partial answers to the 16th
Hilbert problem for different classes of polynomial differential systems, see

for instance [27, 36-38, 42| and the hundred of references quoted therein.

xii
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Smale in [56] proposed the class of classical Liénard differential systems

of the form

where f(x) is polynomial, or equivalent to the form
t=y— F(x), y=x, where F(x) = /f(:c) dx.

In 1977, Lins, De Melo and Pugh [35], stated the conjecture that if
f(z) has degree n > 1, then the system (2) has at most [Z] limit cycles.
They prove this conjecture for n = 1,2. Moreover, research continued in the

same context, see for instance [32].

Other authors studied the limit cycles of generalized Liénard polynomial

differential equations which was introduced in [34] of the form
i+ fla)i + g(z) = 0, 3)

where f(z) and g(z) are polynomials in the variables x, see for instance [1, 39].

Many results on the limit cycles of polynomial differential systems have
been obtained by considering limit cycles which bifurcate from a single
degenerate equilibrium point (i.e. from a Hopf bifurcation), that are called
small amplitude limit cycles, see for instance Lloyd [43]. There are partial
results concerning the number of small amplitude limit cycles for different
classes of Liénard polynomial differential equations or systems see [10, 11].

To obtain analytically periodic solutions is in general a difficult work,
many times an impossible work. The averaging theory reduces this difficult
problem for some ordinary differential equation to find the zeros of nonlinear
functions.

Averaging theory was introduced by Bogoliubov and Krylov in 1934
[9], and Bogoliubov and Mitropolsky (1961) [8]. It was then developed by

xiil
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Verhulst [59], Sanders and Verhulst [54], Malkin (1956) [46], Roseau
(1985) [52], Buic# and Llibre (2004) [13], etc.

This thesis is presented in the following chapters:

4 First chapter: Preliminary Notions.

This chapter gives a reminder of the classic preliminary notions and the

mathematical tools that are necessary for the study of this thesis.

4 Second chapter: Averaging theory.

We present the different theorems of the averaging theory for finding

the periodic solutions of the differential equations.

4 Third chapter: Periodic solutions for two classes of Duffing differential

equations.

We provide sufficient conditions for the existence of periodic solutions

of two classes of Duffing differential equation. The first class is
i+ ep(t)i + (1+ eq(t)z = f(t,2) + 2c(t),

where p(t), q(t), f(t,x) and ¢(t) are 2nr—periodic functions in the variable
t, € is a small parameter and x € R. The second class is
4 (1 +ept)t +e) pun ()™ =ef(t,x)
=0
where pu(t), pois1(t) withi = 0, ...,n and f(t, ) are C? functions T—periodic
in the variable t, € is a small parameter and =z € R, using the averag-
ing theory of the first order. Mention that this study is submitted for

publication.

X1iv
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4 Fourth chapter: Periodic solutions for a generalized Duffing differential

equations.

We study the existence of periodic solutions for a class of the well known

Duffing differential equations of the form
i+ (1) + glt, ) = p(t),

where ¢(t), g(t, ) and p(t) are C* and T-periodic in the variable ¢, using
the averaging theory of the first order.
This chapter is submitted for publication in the international journal

“Differential Equations and Dynamical Systems”.

4+ Fifth chapter: Limit cycles of cubic polynomial differential systems in

R? via averaging theory of order 6.

Here, we study the limit cycles which bifurcate from the origin of the
cubic isochronous Liénard center & = —y, ¥ = x + 2° — 3zy, when
we perturb it inside the class of all the cubic polynomial differential
systems in R? of the form
6 6
T=—y+ ZéiPi(x, y), 9=+ 3y + ZszQi(x,y),
i=1 i=1
where P; and (); with ¢ = 1,...,6 are polynomials of degree 3 and ¢ is
a small parameter. The tool for doing this study is the averaging theory
up to order six. Moreover, we illustrate with some examples the results

obtained. Mention that this study is also submitted for publication.

XV



Introduction

4 Sixth chapter: Periodic solutions for differential systems in R®> and R®.

Based on two different results of the averaging theory of the first order,
we provide sufficient conditions for the existence of periodic solutions

for two differential systems. The first one in R is of the form

rT=yY, Y=2, Z=u, UuU=07,

U= —ozﬁ,ux - ﬁ:uy - O‘(ﬁ"‘ﬂ)z - (/8+M)u - av +€f(tam7yazau7v)7

where «, [ and p are rational numbers different from 0 such that
a # +06, a # +u, and f # +u with |e| sufficiently small, and f is
non-autonomous periodic function. The second differential system in

R is given by

:.L‘:ya yz—x—sF(t,x,y,z,u,v,w),
F=u, u=-—z-—eG(t,x,y,z u,v,w),

v=w, w=-v—cH(t z,y, zuvw),

where F, G and H are 2m—periodic functions in the variable ¢, and ¢ is
a small parameter.

This study was published in the international journal “Journal of
Dynamical and Control Systems” titled “Periodic solutions for

differential systems in R% and R, for more details see [51].

Y

Mention that in what follows, we denote “Chp.” which means chapter,

)

and “Sec.” means section.
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Chapter 1. Preliminary Notions

In this chapter, we introduce some general and main notions for the

qualitative study of dynamical systems and polynomial differential systems.

1.1 Dynamical systems

Definition 1.1.1. A dynamical system on R™ is a map U : R x R® — R"
such that

(a) U(.,z) : R — R" is continuous.
(b) U(t,.): R" = R" is continuous.
(c) U0,z) = x.

(d) Ut+s,x) =U(t,U(s,z)), Vt,s € R, Vo € R".

Example 1.1. Consider the linear system

T = Az,

2(0) = o,

(1.1)

The solution of system (1.1) is of the form x(t) = e'*xy where t > 0, v € R"
and A a constant matriz.

The system (1.1) engender a dynamical system U(t,x) such that
U:R" xR" — R"
Ult,z) = e"a.
Definition 1.1.2. A dynamical system U on R" is said to be linear if

U(t,ax + By) = aU(t,x) + BU(t,y), (1.2)

Va, [ € R,Vz,y € R® and Vt > 0.




Chapter 1. Preliminary Notions

1.2 Polynomial differential systems

Definition 1.2.1. A polynomial differential system in R™ is a system of the

form
dl‘l
E(t) = P1<C(]1(t)7l’2(t)7 7xn(t))7
d:l?g
%(t) = P2<$1(t)7172(t), ,In(t))7
— () = Pu(2(t), 22(t), .., 2a(t)),

where Py, Py, ... and P, are polynomials with real coefficients.

(1.3)

o If d = max(degPy,degPs,...,degP,), then system (1.3) is called of

degree d.

o If P, P,, ..., P, do not depend on t explicitly, then system (1.3) is said

to be autonomous.

1.3 Solution of a differential system
We call solution of the system (1.3) every derivable application
X:ICR"—R"

t— X(t) = (Xi(t), Xa(t), ..., Xn(t)),

where [ is a non-empty interval such that, for any ¢ € I, (X;(¢), X2(¢), ...

satisfies the system.




Chapter 1. Preliminary Notions

1.4 Equilibrium point and linearization

The equilibrium points have an important role in studying nonlinear differ-
ential systems. Poincaré showed that it is enough to know the behavior of
the solution through the study of the equilibrium points instead of solving
these differential systems.

The most of systems that model natural phenomena are nonlinear. To
study the behavior of the trajectories of these systems, in the neighbourhood

of an equilibrium point z(, we study the associated linearized systems.

1.4.1 Equilibrium point
Definition 1.4.1. Consider the differential system

T = f(x). (1.4)
A point xg is said to be equilibrium or equilibrium of the system (1.4) if

1.4.2 Linearization

Definition 1.4.2. Consider the nonlinear differential system (1.4).

Let xg be an equilibrium point of the system (1.4).

The system
T = Az, (1.5)
where
dfi o
A= Df(l’o) = (x0)7 1< 1,7 < n, (16)
8:15]-
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is said linearized system of the system (1.4) at the point x.

A is called jacobian matriz associated to the system (1.4) evaluated at xg.

Example 1.2. Consider the system

Pl =2y (1.7)
¥ = 2x + 3y*.
Xo = (0,0) is an equilibrium point of system (1.7).
The jacobian matriz associated to the system (1.7) calculated at (0,0) is given
by
—2
2 0

Df(0,0) =
Thus, the linearized system of the system (1.7) is

=2y,
Y (1.8)
Yy = 2.

Definition 1.4.3. The equilibrium point xy of the system (1.4) is said to be

hyperbolic if none of the eigenvalues of the jacobian matric A = D f(xq) has

zero real part.

1.4.3 Classification of equilibrium points

Definition 1.4.4. Consider the differential system (1.4) with x € R%. Let
A the jacobian matriz calculated at the point Xo = (0,0), and let Ay and Az
the eigenvalues of this matriz. We distinguish the different cases according to

these eigenvalues:
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1. If Ay and Xy are real, nonzero and of different sign, then the equilibrium

point X is a saddle point. It is always unstable (see Fig. 1.1).

/i/?/fvflf!'ibl‘_i‘:zdI!'I#_I‘H?'G\G\!\I\ﬂ\\\i
AR EEE RN
A R T T
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LN NN =11 o B S A P

Figure 1.1 — (0,0) is a saddle point.

2. If M1 and Ay are real of the same sign, we have three cases:

> If A < Xy <0, then Xy is a stable node (see Fig. 1.2).
> If0 < A\ < Ag, then Xy is an unstable node (see Fig. 1.3).
> If A\ = Ay = A, we have two cases:

vo If A is diagonalizable, then X, is a proper node(PN). It is
stable if X < 0 and unstable if A > 0 (see Fig. 1.4 and Fig. 1.5

respectively).

w If A If A is not diagonalizable, then Xq is an exceptional kind
of node. It is exceptional stable node (ESN) if A < 0 and
exceptional unstable node (EUN) if X > 0 (see Fig. 1.6 and
Fig. 1.7 respectively).
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3. If \y and Ay are complex conjugated with a nonzero imaginary part,
then Xo is a focus. It is stable if Re(A\12) < 0 and unstable if
Re(A12) >0 (see Fig. 1.8 and Fig. 1.9 respectively).

20
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Figure 1.8 — (0,0) is a stable focus. Figure 1.9 — (0, 0) is an unstable focus.

4. If Ay et Ay are pure imaginary, then Xy is a center. It is stable but it is

not asymptotically stable (see Fig. 1.10).
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1.5 Stability of equilibrium points

A nonlinear system can have many equilibrium points. These points can be
stable or unstable.
Consider the system
&= f(t, ), reR"teR. (1.9)
Let p be an equilibrium point of the system (1.9) and ¢(t) the solution of
this system.
Definition 1.5.1. We say that

i) p is stable if and only if

Ve > 0,30 > 0, (o) — pll < 6 = [|6(t) — pll < &Vt > to.

i) p is asymptotically stable if and only if p is stable and if there exists a
neighborhood of p such that for all x in this neighborhood

lim ¢(t) = p.

t—o0
We can study the stability of the system (1.9) according to the eigenvalues
of the jacobian matrix D f(p), using the following theorem.

Theorem 1.5.1. Let p be the equilibrium point of the system (1.9).

a) If all the eigenvalues of the jacobian matriz D f(p) have negative real

parts, then the equilibrium point p is said to be asymptotically stable.

b) If there exists at least one eigenvalue of D f(p) with a positive real part,

then the equilibrium point p is said to be unstable.

c) If Df(p) has eigenvalues with negative real parts and others with zero
real parts, then nothing can be said about the stability of the equilibrium

point p.

10
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1.6 Phase portrait

Definition 1.6.1. A trajectory is a curve traced by the solution of a differ-

ential equation.

Definition 1.6.2. Consider the planar system

gjf = Pie(t),y(0), .
= = Be(t).y)).

A phase portrait is the set of trajectories in phase space. In particular, for
autonomous systems of ordinary differential equations of two variables, the
solutions (x(t),y(t)) of the system (1.10) represent in the plane (x,y) curves
called orbits.

The equilibrium points of this system are constant solutions and the com-

plete figure of the orbits of this system together with these equilibrium points
represent the phase portrait and the (x oy) plane is called the phase plane.

1.7 Periodic orbits and limit cycles

1.7.1 Periodic orbits

Definition 1.7.1. A trajectory ¢(t,z) of the system (1.3) is called periodic

orbit if there exists a number T > 0 such that
ot +T,z)=o¢(t,x), Ve € R". (1.11)

The smallest real T satisfying (1.11) is called the period.

11
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1.7.2 limit cycles

Definition 1.7.2. A limit cycle is a closed periodic orbit isolated in a set of

periodic orbits.

1.8 Stability of limit cycles

Theorem 1.8.1. Let C being the trajectory corresponding to the limit cycle,
and let all the interior and exterior trajectories close to C' wind up in spirals

around C' fort — +o0 ort — —oo.

1. The limit cycle is said to be stable, if all neighboring trajectories are

attracted towards C.

2. The limit cycle is said to be unstable, if all neighboring trajectories are

pushed away from C.

Example 1.3. Consider the system

1
T = —x—y—z(22?+ 2y?),
2 (1.12)

, 1
yo= wtgy- y(22* + 2y7).

In polar coordinates x = rcos(0), y = rsin(0) with r > 0, system (1.12)

becomes .
ro= —r(l—4r?),
_ 2 (1.13)
0 = 1.
We obtain
dr 1 9
f(r)= i 57‘(1 — 4r°).
So

1
r=0=r=0 or r::I:§.

12
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1
Since r > 0, we only accept the positive root r = ok Then the periodic

solution is written in the following form
1 1.
(x(t),y(t)) = (5 cos(t + 0p), 5 sin(t + 6p)),

with 6(0) = 6.
1

In the phase plane, there is only one equation limit cycle x* + y? = 3

1
whose amplitude r = 5 (see Fig. 1.11).
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Figure 1.11 — Limit cycle of system (1.12).

1.9 Existence and non-existence of limit cy-

cles

The study of the existence of limit cycles plays an important role in the

study of the behavior of trajectories of nonlinear differential systems.

Theorem 1.9.1. (Poincaré-Bendizon)

13
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Consider the following planar system

T = f(xuy)7

(1.14)
y = g(z,y).

Suppose that f and g are two functions of class C' on an open subset of
R? denoted by E, the system (1.14) has an orbit v such that the positive orbit

Y+ (p) = @(p,t),t = 0 passing through the point p is contained in a compact

subset F' of E. Then we are in one of the following three cases:

> v4(p) tends to an equilibrium point.
> v4(p) tends to a periodic orbit.

<> v4(p) is a periodic orbit.

If F' does not contain equilibrium points then there is a periodic orbit of

the system (1.14).

Theorem 1.9.2. (Bendixon criterion)
Consider the system
i = f(z,y),
y o= glz,y),
and let F = (f,g)T € CY(E) where E is a simply connected region in RZ.
If the divergence of the vector field F' (denoted VF ) is not identically zero
and does not change sign in E, then this system does not have a closed orbit

entirely contained in E.

Example 1.4. Consider the following planar differential system

i = 2xy — 2yt — =,

g = a2 —y?— 2.

14
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Let F = (20y — 29" —2,0% -y — a2y,

We calculate the divergence of the vector field F', we obtain

- _ _ 9 4 O 5 2 23
divF = VF = ax(2xy 2y —x) + ay(x y° — xy°)

= 2y—1-2y— 3%y =—-1-32%° < 0.

Hence, according to the Bendixon criterion this system has no limit

cycle in R2.

1.10 Isochronous set

The isochronous set is a set formed only by periodic solutions, which have

the same period.

1.11 Descartes Theorem

Consider the real polynomial
p(z) = a2 + aa™ + - 4 a2’

with 0 <y <y < --- <4, and a;, # 0 real constants for j € {1,2,---,r}.
When a;;a;,,, <0, we say that a;; and a;,,, have a variation of sign.If the
number of variations of signs is m, then p(z) has at most m positive real
roots. Moreover, it is always possible to choose the coefficients of p(z) in such
a way that p(z) has exactly r — 1 positive real roots.

For more information see [5].

15
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1.12 Bifurcation

Definition 1.12.1. we say that a differential equation system

&= f(x), p), (1.15)

has a bifurcation at the value p = g, if there is a change in trajectory
structure as the parameter p crosses the value pg. That is, there is a change
in the number and/or stability of equilibria of the system at the bifurcation

value (see [59], p. 173).

1.13 Hopf bifurcation

Theorem 1.13.1. Consider the planar differential system

j: = fﬂ(x7y)7

(1.16)
v = gulz,y),

where p is a parameter. Suppose that (x,y) = (xo,yo) is an equilibrium point
of the system (1.16) which depends on .

Let M) = ap) +iB(p) and M) = a(u) —iB(u) be the eigenvalues of
the linearized system in the neighborhood of (o, yo).

Suppose further that for a certain value of u = g, the following conditions

are satisfied:

1. afpo) = 0, B(po) = w # 0 where sgn(w) = sgn(9g,/0x |,=u, (€0, 10))),

do(p)

2,
dp

|M:M0: d 7£ 0,

16
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3. a # 0 where

a= 116(fm + foyy + Yooy T Gyyy) + @(fxy(fm + fu)
~Jay(Grz + Gyy) = fraaa + Fyyuy);

With fo, = 0%f/0x0Y |u=u, (%o, w0), etc.

Then, a periodic orbit bifurcate from the equilibrium point for p > pg if
ad < 0 or for p < po if ad > 0.

The equilibrium point (zo,vo) is stable for > ug (resp. for p < ug) and
an unstable equilibrium point for u < 0 (resp. p>0) if d <0 (resp. d > 0).

The periodic orbit is stable (resp. unstable) if the equilibrium point is
unstable (resp. stable).

The amplitude of the periodic orbits are equal to \/m whilst thewr
periods is T = 2m /| w | when p — pg.

The bifurcation is said to be supercritical if the periodic orbit is stable and

subcritical if the periodic orbit is unstable.

Example 1.5. Consider the oscillator & — (i — x*)& +x = 0 (an ezample of
a so-called Liénard differential system), which, with & =y, we can write as

the first-order system

o=y,
. (1.17)
gy = —v+(p—2?)y.

(0,0) s the only equilibrium point of system (1.17).

The eigenvalues of the jacobian matrix of the linearized system calcu-

1 -
lated in the neighborhood of (0,0) are A(u) = 3 <M+i\/4 — ,uQ), AMp) =

1 .
3 (,u — /4 — u2).
1
The system has a Hopf bifurcation at puy = 0. We have w =1, d = 5 and
1
a=——.
8

17
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The equilibrium point (0,0) is unstable for p > 0, so the bifurcation is
supercritical and there is a stable isolated periodic orbit (limit cycle) if p > 0

for each sufficiently small p (see Fig. 1.12 for = 0.3).

Figure 1.12 — Phase portraits of system (1.17).

1.14 Zero-Hopf bifurcation

Definition 1.14.1. The equilibrium point of a given differential system, with
dimension greater than two, is referred to as Zero-Hopf equilibrium point
its associated Jacobian matrix has a zero eigenvalue and a pair of purely
imaginary eigenvalues. This kind of bifurcation is thoroughly analyzed by
many author see for example Guckenheimer and Holmes in [28] and a

references quoted therein.
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1.15 Liénard and Duffing equation

1.15.1 Liénard equation

Definition 1.15.1. Let f and g be two continuously differentiable functions

on R. Then the second order ordinary differential equation of the form
Z+ f(z)d + g(x) =0, (1.18)

1s called the Liénard equation.

1.15.2 Duffing equation

Definition 1.15.2. The Duffing equation is a nonlinear second-order dif-

ferential equation of the form
i+ ct +g(x) = p(t), (1.19)

where g : R — R 1s a continuous and locally Lipschitz function, ¢ is a constant

and ¢ > 0, p: R — R is continuous, and T-periodic function.

19
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1.16 Auxiliary results

For m,n € N, we define

27
Lyn = /cosm sin" 6d0, (1.20)
0
then
—1
Imn = m [m—Q ns
’ m-+n ’
and
-1
Imn - n Imn—2
m +

< If m and n are evens, then I, ,, = coeff(m,n) x Iy = coeff(m,n) x 2x

(reducing m and n, of 2 in 2 until reaching 0 and 0).

<> Otherwise I, , = coef f(m,n) x I o, or I 1, or else Ip; = 0 everytime.

Thus, I, , # 0 if and only if m and n are both even.

20
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Chapter 2. Averaging theory

The method of averaging is a classical and mature tool that allows us to
study the dynamics of nonlinear differential systems under periodic forcing.
The method of averaging has a long history that starts with the classical
works of Lagrange and Laplace, who provided an intuitive justification
of the method. The first formalization of this theory was done in 1928
by Fatou [25]. Important practical and theoretical contributions to the
averaging theory were made in 1930 by Bogoliubov and Krylov [9], etc.
In 2004, Llibre, Novaes and Teixeira [40] extended the averaging theory
for computing periodic solutions to an arbitrary order in ¢ for continuous
differential equations with n variables. We refer to the book of Sanders and
Verhulst [54] for a general introduction to this subject.

In this chapter, we introduce the theory of averaging, and we give its

essential theorems used to achieve the work of this thesis.

2.1 A first order averaging theory

We consider the differential system
@(t) = eF(t,x) + 2R(t, z,¢), (2.1)

with x € D C R”, D bounded domain, and ¢ > 0. Moreover, we assume that
F(t,z) and R(t,z,¢) are T—periodic in t.
The averaged system associated to system (2.1) is defined by

i0 =), o =0 2.2)
where
2w =7 [ Flws (2.3

The next theorem says under which conditions the equilibrium points of

the averaged system (2.2) provide T'—periodic orbits of system (2.1).
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Theorem 2.1.1. We consider system (2.1) and assume that

(i) F, R, D,F, D2F and D,R are continuous and bounded by a constant
M (independent of €) in [0, +00) X D, with —e¢ < € < €.

(ii) F and R are T—periodic in t, with T independent of €.

Then, we have:

(a) If p € D is a equilibrium point of the averaged system (2.2) such that
det (D, f(p)) £0, (2.4

Then for e > 0 sufficiently small, there exists a T —periodic solution

x:(t) of the system (2.1) such that x.(t) — p as e — 0.

(b) If the equilibrium point y = p of the averaged system (2.2) is hyperbolic,
then, for |e| > 0 sufficiently small, the corresponding periodic solution

of the system (2.1) is unique and of the same stability as p.

Proof of Theorem 2.1.1. See [54]. O

Example 2.1. Consider the Van Der Pol differential equation
i+x=e(l—2%,

which can be written as the differential system
=y
y=—x+¢e(l—a?)y.

In polar coordinates (r,0) where x = rcos, y = rsinf with r > 0, this

system becomes

i =er(l —r?cos? ) sin? 0
| (2.5)
0=—1+¢e(1—17r?cos?0)sinfcosb.
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or equivalently

% = —er(1 —r?cos®f) sin* 0 + O(e?). (2.6)

Note that the previous differential system is in the normal form (2.1) for
applying the averaging theory described in Theorem if we take x =1, t = 0,
T =27 and F(t,x) = F(0,r) = —r(1 — r?cos®f) sin? 0.

From (2.3) we get that

2
£ = % / (0,0 = %r(rQ ),

d 0
The unique positive root of fO(r) is r = 2. Since di (2) =1#0, by
r

statement (a) of Theorem 2.1.1, it follows that system (2.5) has for |e| # 0
sufficiently small a limit cycle bifurcating from the periodic orbit of radius 2 of
the unperturbed system (2.5) with € = 0. Moreover, since (%:) (2) =1>0,
by statement (b) of Theorem 2.1.1, this limit cycle is unstable, (see Fig. 2.1

bellow for e = 1072).
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Figure 2.1 — The unstable limit cycle of equation (2.1).
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2.2 Another first order averaging theory

We consider the problem of the bifurcation of T—periodic solutions from

differential systems of the form
X' = Fy(t,x) + eFi(t,x) + 2 Fy(t, x, €), (2.7)

with e € (—ey, €9), for ¢ sufficiently small. Here the functions Fy, F} : RxQ +—
R" and Fy : R x Q X (—¢&¢,&9) — R™ are C? functions, T—periodic in the first
variable, and €2 is an open subset of R”. One of the main assumptions is that
the unperturbed system

x' = Fy(t,x), (2.8)

has a submanifold of periodic solutions.

Let x(t,z) be the solution of system (2.8) such that x(0,z) = z. We write
the linearization of the unperturbed system along the periodic solution x(t, z)
as

y' = Dy Fy(t,x(t,2,0))y. (2.9)

In what follows we denote by M,(t) some fundamental matrix of the linear
differential system (2.9), and by ¢ : R* x R** — R* the projection of R"

onto its first k coordinates; i.e. (x1,...,2,) = (1, ..., Tk).

Theorem 2.2.1. Let V € R* be open bounded with its closure contained in

Qie CI(V) CQ, and let By : CI(V) — R"* be a C* function. We assume

(i) Z = {20 = (o, Bo(®)), o € CI(V)} C Q and that for each z, € Z the
solution x(t,z,) of (2.8) is T—periodic;

(ii) for each z, € Z there is a fundamental matriz My, (t) of (2.9) such that
the matriz M, 1(0) — M, (T) has in the right up corner the k x (n — k)

Zo
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zero matriz, and in the right down corner a (n — k) x (n — k) matriz

A, with det(A,) # 0.
We consider the function F : C1(V) + RF defined by

Fla)=¢ </0T Mz_al(t)Fl(t,x(t,za))dt> : (2.10)

If there exists a € V with F(a) = 0 and det((c(ii}—)(a)) # 0, then there is a
a

T—periodic solution x(t,¢) of system (2.7) such that x(0,e) — z, as € — 0.

Proof of Theorem 2.2.1. The proof goes back to Malkin [46] and Roseau
[52], and for shorter proof see [12]. O

We assume that there exists an open set V' with CL(V) C Q such that for
each z € CI(V), x(t, z,0) is T—periodic, where x(t, z, 0) denotes the solution of
the unperturbed system (2.8) with x(¢,z,0) = z. The set C1(V') is isochronous
for the system (2.7); i.e. it is a set formed only by periodic orbits, all of them
having the same period. Then, an answer to the problem of the bifurcation of
T—periodic solutions from the periodic solutions x(¢,z,0) contained in CI(V)

is given in the following result.

Theorem 2.2.2. [Perturbations of an isochronous set] We assume that there
exists an open and bounded set V' with C1(V') C Q such that for each z € C1(V),
the solution x(t,z) is T—periodic, then we consider the function F : Cl(V) —
R™ as
1 (T
Flz)= / MMt 2) Fy(, x(t, 2))dt. (2.11)
0

If there exists a € V' with F(a) =0 and
det ((dF/dz) (a)) # 0, (2.12)

then there exists a T—periodic solution x(t,€) of system (2.7) such that

x(0,e) — a ase — 0.
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Proof of Theorem 2.2.2. 1t follows immediately from Theorem 2.2.1, taking
k =n. O

Theorem 2.2.3. Under the assumptions of Theorem 2.2.2, for small ¢ the
condition (2.12) ensures the existence and uniqueness of a T—periodic solution
x(t,e) of system (2.7) such that x(0,e) — a as € — 0, and if all eigenvalues
of the matriz (dF /dz) (a) have negative real parts, then the periodic solution
(x(t,¢e) is stable. If some of the eigenvalue have a positive real part, then the

periodic solution x(t,€) is unstable.

Example 2.2. Consider the Michelson system of the form

2
2 l’

=y, U=z, ,'z:c—y—?, (2.13)

with (x,y,2) € R® and the parameter ¢ > 0. For any € # 0, we take the
change of variables x = €T, y = ey, 2 = X and ¢ = &d, then the Michelson

system (2.13) becomes
1
T=y, Y=z, 2:—y+5(d2—2x2>, (2.14)

where we still use x, y, z instead of T, y, Z. Now doing the change of variables

x=ux,y=rsind and z = rcosb, system (2.14) goes over to
T =rsinf, 1= % (2d2 — :v2) cosf, 0=1-— 267 (2d2 - :v2) sinf. (2.15)
This system can be written as
dx
8/9
ar
dp

where f1 and fy are analytic functions in their variables.

= rsin9+§(2d2—x2)sin29+52f1 (0,e,¢),
A 2 (2.16)
= 3 (2d* — 2*) cos O + €% f5 (6, ¢e,€),

For arbitrary (xo,70) # (0,0), system (2.16).—¢ has the 2w —periodic solution

x(0) =ro+ a9 —rocost, 1(0)=r, (2.17)
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such that (0) = xo and r(0) = ro. It is easy to see that the first variational
equation of (2.16).—o along the solution (2.17) is

dy, .

Al (O sm@) (yl) '
Yo

< 0 0

40 Y2

It has the fundamental solution matriz

1 1—cosf
M= , (2.18)
0 1
which is independent of the initial condition (xq,ro). Applying Theorem 2.2.2

to the differential system (2.16) we have that

1 pam [ (24 — 2?)sin® 0
Flaoro) =5 [ M o).
2o (2d* — %) cos 6
(2.17)

Then F(xqg,ro) = (91(x0,70), g2(x0,70)) with
Lo 2 2 1
g1(xg, o) = 1 <4d — 91y — 6roxg — 2%) , 92(20,m0) = 50 (o + 7o) -

We can check that F = 0 has a unique solution xo = —2d and ro = 2d, and that
det DF (20, 70)|wo=—2d.r=24 = d*. Hence by Theorem 2.2.2 it follows that for
any given d > 0 and for | e |> 0 sufficiently small system (2.16) has a periodic
orbit (x(0,¢),7(0,¢)) of period 2w, such that (z(0,¢e),7(0,¢)) — (—2d,2d) as
e — 0. We note that the eigenvalues of det DF (xo,70)|zo=—2dr9—24 re £di.
This shows that the periodic orbit is stable.

Going back to system (2.13) we get that for ¢ > 0 sufficiently small the
Michelson system has a periodic orbit of period close to 21 given by x(t) =

—2ccost, y(t) = 2csint and z(t) = 2ccost, (see Fig. 2.2 bellow for e = 1072).
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Figure 2.2 — The stable limit cycle of system (2.13).

2.3 A second order averaging theory
consider the differential system
& =cF\(t,r) + 2 Fy(t,x,¢) + 3 R(t, 1, ¢), (2.19)

where the functions Fi, Fb : R x D — R" and R: R x D x (—¢p,¢5) — R”
are continuous functions, T-periodic in the first variable, and D is an open

subset of R™. Assume that the following hypotheses (i) and (i7) hold.

(i) Fi(t,.) € CYD) for all t € R, Fy, F3, R,D,F; are locally Lipshitz
with respect to x and R is differential with respect to €. We define
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Fio:D—Rfork=1,2as

1
0(2) = = [T Fi(s, 2) ds,
Fule) = 7 A -
Fy(z) = T JTID.Fy(s,2) - y1(s, 2) + Fa(s, 2)] ds,

where

yi(s,2) = 2 Fi(t, 2) dt.

(ii) for V € D an open bounded set and for each ¢ € (—¢f,e5)\{0}, there
exists a € V such that Fig(a)+eFy(a) = 0 and dg(Fio+eFn, V,a) # 0.

Then, for |¢| > 0 sufficiently small there exists a T-periodic solution ¢(., €)

of the system (2.20) such that ¢(.,e) +— a when € — 0.

The expression dg(Fig + €F,V,a) # 0 means that the Brower degree of
the function Fig+ecF5 : V — R™ at the fixed point a is not zero. A sufficient
condition for inequality to be true is that the jacobian of the function Fig+cFy

at a be non-zero.

If Fp is not identically zero, then the zero of Fijy + eF5y are mainly the
zeros of Fiq for e sufficiently small. In this case the previous result provides

the averaging theory of this first order.

If Fyp is identically zero and Fyq is not identically zero, then the zeros of
Fig + eFyy are mainly the zeros of Fyy for e sufficiently small. In this case the

previous result provides the averaging theory of second order.
Example 2.3. Consider the following system

T = y+ex?+ e’
(2.21)

1
gy = —x+e2(at+ 2P+ — gy)

In polar coordinates x = rcos® and y = rsind with r > 0, system (2.21)

becomes
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Chapter 2. Averaging theory

i = r2cos()’ e+ (r2 cos(8)® + sin() rt cos(h)* + sin(6) * cos(6)°
2
+r3sin(h)* — rsin(0) ) €2,

3
0 = —1—rsin(d)cos()”e+ (—7" sin(0) COS(@?Q + 73 cos(6)°
+r2 cos(0)! + 12 cos(0) sin()® — W) €2.

(2.22)

Now consider 6 as an independent variable, we get the following system

Eiig = —r2cos(6)’ e+ (—r2 cos(0) — sin(6) rt cos(A)* — sin(0) 3 cos(6)*
2
—r3sin(0)! + r51r13(0) + 73 cos(6)° sin(@)) €.

It is equivalent to

dr

w7 i eFi(0,r) + 52F2(0, )+ 0(52),

with Fy(0,7) = —r? cos(9)”, and
Fy(0,r) = —r? cos(0)® — sin() r* cos(0)* — sin(0) r* cos(8)* — r° sin(0)*

1
+§r sin(0)” + 73 cos(6)° sin(f) .

Now we calculate the first averaged function, we obtain

1 27 1 2
Fio(r) = ﬂ/o Fi(0,r)dd = 7/0 r? cos® 0dh = 0.

27

Since Fip(r) = 0, we can move on to the second—order averaging theory. we
get
Fanlr) = 5700 = 4)
r) = —r(9r° —4).
20 24

2 ;2 1
The equation Fyy(r) = 0 has only one positive root r = —. Since F20(§) =3

then system (2.21) has a single stable limit cycle of amplitude 3 for|el|#0
sufficiently small, (see Fig. 2.3 bellow for e = 1072).
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Chapter 2. Averaging theory

AAAATT T

Figure 2.3 — The stable limit cycle of system (2.21).

2.4 A sixth order averaging theory

In this section we present the basic results from the averaging theory up to
order 6 that we need for proving our results. It can summarized as follows.

We consider the differential systems given by
k .
i =Y eFtx)+ Rt ,¢e), (2.23)
i=1

where the functions F; : RxD — Rfori=1,....k,and R : RxDx(—¢g,&9) —
R are continuous, and T —periodic in the variable ¢, D is an open interval of
R, and € a small parameter. We define the functions y;(¢,2) for j =1,...,6

associated to system (2.23) by sing the results of [40] as
t

Y (t,2) = /0 Fi(s, z)ds,
Ya(t, z) = /Ot (20F1(s,2)y1(s,2) + 2 Fy(s, 2)) ds,

ys(t, 2) = /Ot (6 0Fy(s, 2)yn (5. 2) + 6 Fy(s, 2)
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Chapter 2. Averaging theory

FBOF (5, 2)ya(s, =) + 302Fi (s, 2)un (s, 2)?) ds,
nit.)= | (24 0Fy(s, )y (s, =) + 24 Fy(s, 2)
F120F(s, 2)ya(s, 2) + +1202Fy(s, 2)yu (s, 2)?
1202 By (5, 2)ys (5, 2\ (s, 2)
FAOF (s, 2)ys(s, 2) + A Fi (s, 2)yn (5, 2)°) ds,
ys(t, 2) = /Ot (120 DF4 (s, 2)ya (s, 2) + 120 (s, 2)
60 DFy (s, 2)ya(s, 2) + 60 B Fy(s, =)y (s, 2)?
120 P Fy(s, 2)y (s, 2)° + 60 92Fy(s, 2)ys (5, 2)ya(s, 2)
120 02Fy (5, 2)n (5, 2)ys (s, 2) + 20 OFs(s, 2)ys(s, )
130 05 Fy (5, 2)n (5, 2) 2y (s, 2) + 15 02 Fy (s, 2)ya(s, 2)?
5 OF (s, 2)ya(s, =) + 5O (s, 2)un (s, 2)1) ds,
wlt.2) = [ " (360 0 (s, 2)ya(s, 2) + T20 OF (s, =)y (s, 2) + 720 Fi(s, 2)
136002 Fy(s, =)y (5, 2)ya(s, 2) + 120 OF3(s, 2)ys(s, 2) + 360 2 Fy(s, )y (s, 2)?
120 92 Fy (s, 2)n (s, 2)us(s, =) + 30 OFs(s, 2)ya(s, 2) + 120 P Fy(s, =)y (s, 2)?
180 0Py (s, 2)un (s, 2)%0a(s, ) + 90 2 Fa(s, ) (s, 2)% + 30 9 Fy(s, =)y (s, 2)*
160 02Fy (5, 2)a (5, 2)ys (5, 2) + 3002 Fy (s, 2)y1 (5, 2)ya(s, 2) + 6 OF (5, 2)ys (s, 2)
60 FL (5, 2)31 (5, )P (s, 2) + 60 P Fi (s, 2)y (5, 2)2s (s, 2)

+6 0°F1s,2)y1(s,2)° + 90 P Fy (s, 2)y1(s, 2)ya(s, 2)?) ds.
Note that 9*Fj(s,z) means the k—th partial derivative of the function
Fi(s, z) with respect to the variable z. From [40] the first six averaged functions
are

1
fx(z) = Eyk(T’ z), fork=1,...,6.
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Chapter 2. Averaging theory

The averaging theory for the differential system (2.23) works as follows.
Assume that the averaged function f;(z) =0for j =1,...,k—1 and fi(2) #0
for some k > 1. If Z is a simple zero of f(z), then there is a limit cycle
(60, ¢) of system (2.23) such that r(0,e) — z when ¢ — 0. Moreover if the
derivative f;(z) > 0 (respectively fi(z) < 0) the limit cycle r(0,€) is unstable
(respectively stable). For more details on the stability of these limit cycles see

Theorem 11.6 of [59].
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Chapter 3. Periodic solutions for two classes of Duffing differential equations

These last years many results have been published on the periodic solutions
of different classes of Duffing differential equations. These results are on the
existence of periodic solutions, in their multiplicity, in their kind of stability,
in their bifurcations,... see for instance [3, 4, 19, 21, 26, 30, 33, 55].

In this chapter, using averaging theory, we provide sufficient conditions
for the existence of periodic solutions in two classes of Duffing differential

equations.

3.1 Periodic solutions for a class of Duffing
differential equations

In this part, we provide sufficient conditions for the existence of periodic

solutions for the class of Duffing differential equations in R of the form
T+ep(t)s+ (1 +eq(t))x =cf(t,x) +ec(t), (3.1)

where p(t), q(t), f(t,z) and c(t) are 2nr—periodic functions in the variable ¢,
¢ is a small parameter, and x € R. Some extensions of these results can be
found in [19, 21, 33, 55].

Our main result on the periodic solutions of the first class of Duffing

differential equations (3.1) is the following.

Theorem 3.1.1. We define the functions

1
-7:1(5130;90) - =

27
— <c(t) + f(t,zocost + yosint)—
2m Jo

p(t)(yo cost — xgsint) — q(t)(xo cost + yo sin t) sint dt,

1 2 )
Fo(wo,y0) = %/o <c(t) + f(t,zgcost + yogsint)—

p(t)(yo cost — xgsint) — q(t)(xo cost + yo sin t) cost dt.
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Chapter 3. Periodic solutions for two classes of Duffing differential equations

Then for e # 0 sufficiently small and for every (xj, ys) solution of the system
fl(‘TOJ 3/0) = 07 fZ(x07y0) = 07 (32)

satisfying
- (fyﬂ ) ‘o, (33)
(0, Yo) (z0,y0)=(z5:y5)

the Duffing differential equation (3.1) has a 2m—periodic solution x(t,e) which

tends to the 2m—periodic solution x(t) = x§cost + yisint of the differential

equation & + x = 0, when € — 0.

Proof of Theorem 3.1.1. If & =y, then the first class of Duffing differential
equation (3.1) can be written as the following first—order differential system
in R?

=Y,

j=—z+e(—p(t)y — )z + f(t,2) + c(t)).
The solution (z(t), y(t)) of the unperturbed system (3.4) with € = 0 such that
(x(0),y(0)) = (20, o) is

(3.4)

(x(t),y(t)) = (xgcost + yosint, yo cost — xgsint). (3.5)

Of course all these periodic orbits have period 2.

Using the notation of Section 2.1, we have x = (x,y), z = (o, %),
Fy(x,8) = (5, —2), Fi (1) = (0, —p(t)y — a(t)e + f(1,) + c(t)) and
F5 (x,t,e) = (0,0). Since fundamental matrix M, (¢) is independent of z, we

denote it simply by M (t). An easy computation provides

M) cost sint (3.6)
_sint cost | '
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Chapter 3. Periodic solutions for two classes of Duffing differential equations

From Theorem 2.2.2 we must study the zeros z = (xg,yo) of the function
F(z) defined in (3.4), i.e. of the function F(z) = (F1(z), F2(z)) where Fy
and F, are given in the statement of Theorem 3.1.1. The rest of the proof of

Theorem 3.1.1 follows directly from Theorem 2.2.2. O
Two applications of Theorem 3.1.1 are given in the next examples.

Example 3.1. The particular Duffing differential equation (3.1) with p(t) =
—sin?t, q(t) =1, f(t,x) = (1 + x)sint and c(t) = cost becomes

i — esint® + (14 €) v = e (sint (x+ 1) + cost) . (3.7)
After some computations the functions Fy and Fo of Theorem 3.1.1 are

1 1
Fi(xo,v0) = §(3$0 +4yo—4), and Fo(zo,y0) = g(—4370 +yo+4).

20 4
The function F = (Fi,Fs) has a unique zero (z§,y5) = < ) Since the

19719
19
jacobian (3.3) is 61 # 0, then for ¢ # 0 sufficiently small the differential

equation (3.7) has the periodic solution x(t, ), tending to the periodic solution

20 4
o cost + o sint of the differential equation & 4+ x = 0, when ¢ — 0.

Example 3.2. The Duffing differential equation (3.1) with p(t) = —sin*t,
q(t) = —sint, f(t,z) = (5 — x?) cost and c(t) = — cost becomes

i — esint’t + (1 — esint) x = e cost (4 - 12) . (3.8)
After some computations we get that

1 1
Fi(zo,y0) = g(%oyo +3w0), and  Fy(zo,10) = g(—3x3 — Y5 + yo + 16).

The function F = (F1, Fz2) has the following four zeros (xj,ys):

P2e) Ca-7) () (F3)

- 0.- - Y=*
2_'_ 2 ’

2 2

6~ 2

6 2
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Chapter 3. Periodic solutions for two classes of Duffing differential equations

V65 65

Since the jacobians (3.3) at these four zeros are respectively ——— —

16 64’

65 65 49 49
\16_ ~ 61 6l and 61 Then for e # 0 sufficiently small, then the differential
equation (3.8) has four periodic solutions which tend to the periodic solutions

1 65 1 V65 . 7V3

int, -+ t t ’ int and ; t . t of
— — ——sint, - in — —sin - — —sin
5 5 sint, o 5 Sint, —g—cos 5 8Nt an 5 o8 5 Sint o

the differential equation ¥+ x = 0, when € — 0.

3.2 Periodic solutions for another class of Dufl-
ing differential equations

I. Khatami, E. Zahedi, and M. Zahedi in [30] studied the approximate
solutions of the Duffing differential equations

i pd+ Y poia® = feos(Q), (3.9)
i=0

where p is the damping parameter, p; is the linear stiffness coefficient,
03, Ps, ---, Pant1 are nonlinear arbitrary constants in the restoring force, f is
the amplitude, and €2 is the angular frequency of the periodic driving force.
The authors obtained numerically information about the solutions of the
differential equations (3.9). The periodic solutions of particular differential
equations of type (3.9) with ¢ = 0,1 have been studied in [3, 4, 26].
Here we shall study analytically the periodic solutions of the following
class of Duffing differential equations
T4+ (1+eut)s +e zn: poip1 ()2 = e f(t, 1), (3.10)
i=0
where the functions pu(t), pa;y1(t) withi = 0,...,n and f(¢, ) are C?, T—periodic
in the variable ¢, and ¢ is a small parameter.
Now our result on the periodic solutions of the second class of Duffing

differential equation (3.10) is summarized in the next theorem.
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Chapter 3. Periodic solutions for two classes of Duffing differential equations

Theorem 3.2.1. We define the functions

1 27 . ®
Fi(xo,yo) = _g/o (1(t)(zosint — yocost) — > paira(t)
i=0
(yosint + xgcost)* T + f(t,yosint + xq cost))sint dt,
1 27 . n
Falao,yo) = 5= [ (w(®)(wosint — yocost) = Y- pasna (1)
i=0

(yosint + xgcost)? T + f(t,yosint + zgcost)) cost dt.

Then for € # 0 sufficiently small and for every (z§,yg) solution of the system
fl(l'(), yO) — Oa fQ(l‘OyyO) = 07 (311)

satisfying
. (fyﬂ ) 0 &
(20, 90) | (29 40)=(e5.0)

the Duffing differential equation (3.10) has a 2w —periodic solution x(t,e) which

tends to the 2w—periodic solution x(t) = x§cost + yisint of the differential

equation ¥ + x = 0, when € — 0.

Proof of Theorem 3.2.1. If & =y, then the second class of Duffing differen-
tial equation (3.10) can be written as the following first—order differential

system in R?

T =y,

y=-r+ 5( — )y — iﬂ%ﬂ(t)xmﬂ + f(t, x)) (3.13)

From the proof of Theorem 3.1.1 the solution (z(t),y(t)) of the unperturbed
system (3.13) with ¢ = 0 such that (x(0),y(0)) = (zo,yo) is given in (3.5).
Again using the notation of Section 2.1, we have x = (z,y), 2 = (%o, ¥0o),

FU (X7 t) = (y> —$>, Fl (X> t) = (07 _,U(t)y - Z?:D p2i+1<t)$2i+1 + f(t7 iL’)) and
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Chapter 3. Periodic solutions for two classes of Duffing differential equations

F5 (x,t,e) = (0,0). From the proof of Theorem 3.1.1 the fundamental matrix
M (t) is given in (3.6).

From Theorem 2.2.2 we must study the zeros z = (zg, yy) of the function
F(z) = (Fi(z), F2(z)) defined in (2.11). For system (3.13) a computation
shows that the functions Fi(z) and F,(z) are the ones given in the statement
of Theorem 3.2.1. Again the rest of the proof of Theorem 3.2.1 follows directly
from the statement of Theorem 2.2.2. O

Applications of Theorem 3.2.1 are the following.

Example 3.3. The Duffing differential equation (3.10) with n = 2,
p1(t) = 1+ cost, p3(t) = —1 —sint, ps(t) = sint, u(t) = sin’tcost and

f(t,x) = —x costsint becomes

i+ esint? costi+a+e ((1 + cost) z + (—1 — sint) 2° + sintx5) = —excost sint.
(3.14)

After some computations we obtain that

3 1 1 3
Fi(xo,%0) = —gzv%yo + él’o + §y0 - gyg,

1 3 3 1
Falxo,yo) = 5% + gxg + é%yg — gY

The function (Fi,Fa) has four zeros (z§,y5) given by

(7). (5-F) (9%) ($-%)

5 5
Since the jacobians (3.12) at these four zeros are respectively — V5

167 16~
_\1/6§ and _\1/65’ then for € # 0 sufficiently small the differential equa-

tion (3.14) has four periodic solutions which tend to the periodic solutions

V30 V30 V30 V30 2 2
——cost + ——sint, ———cost — ——sint, —icost + —sint and
6 6 6 6 2 2
2 V2 . _ o
> cost — - sint of the differential equation ¥ + x = 0, when £ — 0.
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Example 3.4. The differential equation (3.10) with n = 4,

1 3 3 1 3t 3
pi(t) = _2.—:2 sint, ps(t) = 5~ §cost, ps(t) = %, ,07(251) =5 sin®t,
po(t) = —% + cost, u(t) = cos*tsint and f(t,r) = —x(§ + cost)sint

becomes
T + € cost®sintz + -+ % (=1 + 3sint) x+ (3 — cost) x3

1
+ cost®z® — 3sint®z” + (—sint + 2 cost) 2°) = —ex <2 - cost) sint.

(3.15)
Doing some computations from Theorem 3.2.1 we obtain
9 1 1 9
Fi(xo,y0) = ﬁﬂfgyo + FRCAREL + EZ/S’;
1 9 9 1
Fa(o, yo) = 150~ T6$8 - 1—69303/3 — Y
The function (Fi,Fa) has four zeros (z§,y5) given by
(Y (- VB VB (VBB
373/ 37 3/ 373 ) 37 3 )
_ . , . 1
Since the jacobians (3.12) at these four zeros are respectively TUETL

1?:3 and 1?23, then for € # 0 sufficiently small the differential equation (3.15)

cost sint

has four periodic solutions which tend to the periodic solutions —— + R
t int
—% + Sl%, —\ég cost+ \f sint and \f cost— 33 sint of the differential

equation &+ x = 0, when € — 0.
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Chapter 4. Periodic solutions for a generalized Duffing differential equations

Based on the averaging theory, we provide sufficient conditions for the ex-
istence of periodic solutions for a class of the well-known Duffing differential

equations of the form
i+ (1) + g(t,2) = p(t), (4.1)

where c(t), g(t, ) and p(t) are C* and T—periodic in the variable ¢. This kind
of equation have been studied by many authors under variant conditions, see

for instance [4, 20, 26, 47, 57, 60].

If & =y, then the T—periodic Duffing differential equation (4.1) can be

written as the T—periodic differential system of the first order of the form

(4.2)

4.1 Statement of the main results

To state our main results, we need some preliminaries. We define the functions

T’(t) = f(f C(S) d57 CL(t, LE‘) = fg g(S, x)er(s) dS, b(t) = fg p(s)er(s) d57

mlta) = figls,a)ds,  n(t) = [ip(s) ds.
(4.3)

Our main results on the periodic solutions of the class of Duffing differential

equation (4.3) are the following.
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Theorem 4.1.1. We consider the differential system (4.2) where the functions
c(t), g(t,x) and p(t) are C* and T-periodic in the variable t. Assume that the
functions of (4.3) are T—periodic in the variable t. Then for every simple zero
(x5, 1) of each one of the following 7 systems in the variables xy and yo of
the form fi(zo,v0) = fa(x0,%0) = 0, given as follows

— & a(t, mo)e "W dt + yo [ e O dt + [ b(t)e "W dt =0,

— fOT a(t, zo)a(t, zo)e ™ dt + yq fOT ag(t, zo)e "M dt (4.4)
+ [ ag(t, zo)b(t)e " dt = 0.

yo fi e dt + [ b(t)e @ dt =0,

(4.5)
—fOTg(t,xo)eT(t) dt =0,
— [Fat,zo)e ™D dt +yo f e "W dt =0,
—fOT az(t, To)a(t, zo)e™™® dt + yo fOT az(t, vo)e ™™ dt (4.6)
—I—foTp(t)eT(t) dt =0,
Yo fOT e ®dt =0,
(4.7)
— [ gt z0)er® dt + [ p(t)er® dt =0,
— [Tm(t,zo) dt + Tyo + Jo n(t)dt =0,
(4.8)
Jo (ma(t, zo) — c(t))(n(t) — m(t, xo) + yo) dt = 0,
Tyo + f{ n(t)dt =0,
(4.9)
— J§ gt wo) dt — yo Jy c(t)dt — fy c(t)n(t)dt =0,
— fOT m(t,xo)dt + Tyy =0,
(4.10)

Jo (ma(t, 20) — (b)) (=ma(t, 20) + yo) dt + g p(t)dt =0,
the differential system (4.2) has a T—periodic solution (z(t),y(t)) such that

((0),y(0)) is close to the (x,yg).
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4.2 Proof of the main results

Proof of Theorem 4.1.1. We do the following rescaling of the functions and
the variables which appear in the differential system (4.2)

r = X,
y = My,
ct) = emC(t), (4.11)
g(t,x) = emG(t,X),

p(t) = emP(t),
where € > 0 is a small parameter and m,n,,no and n3 are non—negative

integers, then the differential system (4.2) becomes

X =egmy,
(4.12)
Y =—-emC@)Y —em ™Gt X) + ™™ P(t),
where the functions C, G and P are C? and T-periodic in the variable t.
We distinguish the following two cases with their corresponding subcases.
Case I:my=1andn, =0.

Case II :m; =1 and n; = 1.
Then we have the following subcases.

ng—mlzo, n3—m1:0,

)

) ng—my=1, ng3g—m; =0,

) ng—my =0, ng—m; =1,

) ngo—mp =1, nzg—my=1,

where a € {I,11}.

The system (4.12) is in normal form (2.7) for applying the averaging

theory. Mention that we do not consider the case (11.4), because it has only
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Chapter 4. Periodic solutions for a generalized Duffing differential equations

equilibrium points instead of periodic orbits, and consequently the averaging
theory described in Theorem 2.2.2 cannot be applied.
We shall prove Theorem 4.1.1 statement by statement.

We assume that the functions given by

R(t) = [y O(s)ds, A(t, Xo) = [y G(s, Xo)ef ) ds, B(t) = [ P(s)ef®) ds,
M(t, Xo) = J3G(s,Xo)ds,  N(t) = J3 P(s)ds,

are T—periodic in the variable .
e Case (I.1), i.e; for ny = 0 and my = ny = n3 = 1, the system (4.12)

reads

X =¢Y,
(4.13)
Y = -C{t)Y — G(t, X) + P(t).

The system (4.13) for € = 0, has the periodic solutions
(X(1),Y(t) = (XO7 (Yo — A(t, Xo) + B(t))e*R(t)) ’

for all (Xy,Yy) € R% Now taking z = (X, Yp), and solving the variational

differential equation (2.9), we obtain the fundamental matrix

1 0
MZ (t) = )
—AX<t, X[))€7R(t) e RO
where Ax(t,Xy) = 0A/0X(t, Xo). Now compute the averaged function

F(z) = (F1(Xo, Yo), F2(Xo, Yo)) given in (2.11), and we get
Fr=— [ At Xo)e PO at + Yy [T e O at + [T B(t)e RO dt,
fQ = — fOT Ax(t, Xo)A(t, XQ)GiR(t) dt + Yb fOT Ax(t, X())GiR(t) dt

+ T Ax(t, Xo)B(t)e W at = [T Ax(t, Xo)Y (t) dt.

The zeros (X, Yy) of the system F; = F» = 0, whose Jacobian is different

from zero,provide periodic orbits of system (4.13) with € # 0 sufficiently small.
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Going back to the differential system (4.2) through the rescaling (4.11) the
polynomial system F; = F5 = 0 in the variables X, and Yj becomes the
system (4.4) in the variable xy and yy. Consequently the theorem is proved

for system (4.4).

e Case (1.2), i.e. for ny =0, m; = ng = 1 and ny = 2, the system (4.12)

becomes

X =¢£Y,
(4.14)
Y =-C(t)Y —eG(t,X) + P(t).
Solving the differential system (4.14) for ¢ = 0, we obtain the T—periodic
solutions

(X (), Y(8) = (Xo, (Yo + B()e ),

for all (Xy,Yy) € R% Solving the variational differential equation (2.9) we

obtain the fundamental matrix

We compute the averaged function, we get

Fi=Yy Jy e BOdt + [ B(t)e FO at,
Fo= [ =G(t, Xo)el'® dt.
By Theorem 2.2.2, the differential system (4.14) has a periodic solution
(X(t,e),Y(t,e)) such that (X (0,¢),Y(0,¢)) — (X§,Ys) when € — 0, for each
simple zero (X§,Y7) of the system F; = F, = 0, whose Jacobian is different

from zero.

Going back to the differential system (4.2) through the rescaling (4.11)
the theorem follows for system (4.4).
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e Case (1.3) i.e. for ny =0, my =ny =1 and n3 = 2, the system (4.12)

becomes

X =¢€Y,
(4.15)

Y = —Ct)Y —G(t,X) +P(t).
Solving the differential system (4.15) for ¢ = 0, we obtain the T-periodic

solutions

(X(0),Y (1)) = (Xo, (Yo — Alt, Xo))e V)

for all (Xp,Y)) € R?. Solving the variational differential equation (2.9) we

obtain the fundamental matrix

M, (1) 1 0
’ a —Ax(t,Xo)e_R(t) G_R(t) .

We compute the averaged function given in (2.11), and we get

Fi=Yy g e O dt — [ A(t, Xo)e O dt,
Fy=— [ Ax(t, Xo)A(t, Xo)e BO dt + Yy [ Ax(t, Xo)e RO at
+ [ P(t)ef'® dt.

As in the proofs of the theorem for the previous systems it follows the proof

for the system (4.6).

e Case (1.4) i.e. for ny =0, m; =1 and ny = ng = 2, the system (4.12)

becomes

X =¢Y,
(4.16)
Y =-C(t)Y —eG(t, X) + eP(t),
Solving the differential system (4.16) for ¢ = 0, we obtain the T-periodic

solutions

(X(5).Y (1) = (X0, Yoe ")

49



Chapter 4. Periodic solutions for a generalized Duffing differential equations

for all (X,,Ys) € R?\{(0,0)}. Solving the variational differential equation

(2.9) we obtain the fundamental matrix

M) — 1 0
W= |

We compute the averaged function given in (2.11), and we get
Fi=Jy Yoe "0 dt,
Fy = — [T G(t, Xo)eB® dt + [T P(t)el® dt.

As in the proofs of the theorem for the previous systems, it follows the proof

for the system (4.7).

e Case (I1.1), i.e. for my = ny = ny = ng = 1, the system (4.12) becomes

X =¢£Y,
(4.17)

Y = —eC(t)Y — G(t, X) + P(t).

Solving the differential system (4.17) for € = 0, we obtain the T—periodic

solution

(X (1), Y(t)) = (Xo, Yo — M(t, Xo) + N(t)) ,

for all (Xp,Y)) € R?. Solving the variational differential equation (2.9) we

obtain the fundamental matrix

[
M,(t) = :
—Mx(t,Xo) 1

We compute the averaged function given in (2.11), and we get

Fi=—J§ M(t, Xo)dt +TYy + [ N(t)dt,
Fo = Jo (Mx(t, Xo) = C(t)) (N(t) = M(t, Xo) + Yo) dt.
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As in the proofs of the theorem for the previous systems, it follows the proof

for the system (4.8).

e Case (11.2) ie. for my = ny = ng = 1, and ny = 2, the system (4.12)

becomes

X =¢£Y,
(4.18)

Y = —eC(t)Y —eG(t,X) + P(t),
Solving the differential system (4.18) for ¢ = 0, we obtain the T-periodic

solutions

(X(2),Y(t) = (Xo, Yo+ N(2)),

for all (Xy,Yy) € R2 Solving the variational differential equation (2.9) we

obtain the fundamental matrix

[o7)
M, (t) = .
01

We compute the averaged function given in (2.11), and we get

Fi=TYy+ [} N(t)dt,
Fy=—fy G(t,Xo)dt — Yo J§ C(t)dt — [ C(t)N(t)dt.

As in the proofs of the theorem for the previous systems, it follows the proof

for the system (4.9).

e Case (11.3) i.e. for m; = ny = ny = 1 and n3 = 2, the system (4.12)

becomes

X =¢£Y,
(4.19)

Y = —eC(t)Y — G(t,X) + eP(t),
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Solving the differential system (4.19) for ¢ = 0, we obtain the T—periodic

solutions

(X(2),Y () = (Xo, Yo — M(t, Xo)),

for all (Xy,Yy) € R% Solving the variational differential equation (2.9) we
obtain the fundamental matrix
1 0
—Mx(t,Xo) 1

M,(t) =

We compute the averaged function given in (2.11), and we get
Fi=—f§ M(t,Xo)dt +TY,
Fo = Jy (Mx(t, Xo) — C(6))(=M(t, Xo) + Yo) dt + Jy P(t) dt.

As in the proofs of the theorem for the previous systems, it follows the proof

for the system (4.10).

This completes the proof of Theorem 4.1.1.

4.3 Examples

In this section we provide examples of each one of the statements of Theorem

4.1.1.

Example 4.1. Consider the differential system (4.2) with

—cost
2 +sint’ L
g(t,z) = 3(x+3)<1+%)smt,

3
p(t) = 3008t+§sintcost.
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All these functions are 2w—periodic in the variable t. Then we get the

functions
() = fiels)ds S ML}
a(t,z) = [ie®g(s,x)ds = 3(x+3)(1 - cost),
bt) = [ie¥p(s)ds = 3sint,

which are also 2w—periodic in the variable t. Then applying the system
(4.4) of Theorem 4.1.1, we have that the system
33

Fi(xo,Y0) = —3w0 — T + 5o =0,
27 153
Fo(zo,y0) = —51'0 e + 3yo = 0,

i) Since the Jacobian (2.12) for this

9
solution s 5 > 0, the differential system (4.2) for e # 0 sufficiently small

has a unique solution (z§,y5) = (=3, —
has one periodic solution (x(t,e),y(t,e)) such that (z(0,¢),y(0,¢)) tends to
(x§,y5) when e — 0.
The eigenvalues of the corresponding Jacobian matriz of the averaged functions
(F1, F2) at the zero (xf,yg) are
3 .
)\1 5\/5 1

Ao _zﬁi

Since A1 and Ny are complex such that the real part of them are zero, then we

can say nothing about the stability of the solution.

Example 4.2. Consider the differential system (4.2) with

) cost
c = ——
2 +sint’
g(t,z) = gx(Q + cost) sint,
p(t) = cost.
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These functions are 2m-periodic in the variable t. We have that the func-

tions

2+ sint

)7
),

are also 2w—periodic in the variable t. Now applying the system (4.5) of

r(t) = fot c(s)ds = —In(
2+ sint

b(t) = JierGp(s)ds = 2In(

Theorem 4.1.1, we have

Fi(zo,y0) = 0.812267 + 6.283185y, = 0,

Falzo, o) = 2.592032z¢ = 0.

This system has a unique solution (xf,yg) = (0,—0.129276), and the Jacobian
(2.12) for this solution is —16.286220 < 0. The differential system (4.2) for
e # 0 sufficiently small has one periodic solution (x(t,e),y(t,€)) such that
(2(0,¢),y(0,¢)) tends to (xf,y5) when e — 0.

The eigenvalues of the corresponding Jacobian matrixz of the averaged functions

(F1, F2) at the zero (z§,y5) are

A1 4.035619
A2 —4.035619

Since Ay and Ay are real such that A1 is positive, by Theorem 2.2.3 it follows
that the periodic solution (z(t,€),y(t,e)) is unstable.

Example 4.3. Consider the differential system (4.2) with

sint
c(t)y = ———,
2+ cost
T
g(t,x) = §(2+Cost)sint,
p(t) = (l+sint)sint.

All these functions are 2m-periodic in the variable t. The functions
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2 t
() = Rels)ds = W),
alt,r) = [ier®g(s,x)ds = %(19 — cost(cos?t + 6cost + 12)),

which are 2m-periodic in the variable t. For this differential system, the system

(4.6) of Theorem 4.1.1, becomes

Fi(zo,y0) = —7.741204x0 + 10.882796y, = 0,

Fo(o, yo) = —6.558258 + 7.741204y, + 2.094395 = 0.

It has a unique solution (z§,y;) = (1.991348,1.416495), with the Jacobian
(2.12) for this solution is 11.445955 > 0. The differential system (4.2) for
e # 0 sufficiently small has one periodic solution (z(t,<),y(t,€)) such that
(2(0,¢),y(0,¢)) tends to (xf,y5) when e — 0.

The eigenvalues of the corresponding Jacobian matriz of the averaged functions

(F1,Fz) at the zero (z§,y5) are

A1 4.035619
A2 —4.035619

Since \1 and Ay are real such that \y is positive, then by Theorem 2.2.3, the

periodic solution (x(t,),y(t,€)) is unstable.

Example 4.4. Consider the differential system (4.2) with

cost

t = —
e(t) 2 +sint
sint

g(t,z) = m(l—T)sint,

1
p(t) = —(§+cost) sin ¢.

These functions are 2w —periodic in the variable t. The functions

2 +sint
2

r(t) = Jyc(s) ds = —In( );
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which are 2m—periodic in the variable t. After computation the system (4.7)
of Theorem 4.1.1, we obtain that the system
Fi(zo,y0) = 6.283185y9 = 0,
Fo(zo,yo) = 3.888049z + 0.972012 = 0,
has a unique solution (z§,ys) = (0.25,0), with the Jacobian (2.12) for this
solution is —24.429330 < 0. The differential system (4.2) for e # 0 sufficiently
small has one periodic solution (x(t, <), y(t,€)) such that (x(0,¢),y(0,¢)) tends
to (z§,y5) when € — 0.
The eigenvalues of the corresponding Jacobian matrixz of the averaged functions
(F1, Fz2) at the zero (z§,y5) are
A1 4.942604
A2 —4.942604

Since A\ and Ay are real such that A1 is positive, by Theorem 2.2.3 it follows
that the periodic solution (x(t,€),y(t,€)) is unstable.

Example 4.5. Consider the differential system (4.2) with
c(t) = 2sin*t+ 3cos’t,
g(t,x) = 2x(cost+sint),
p(t) = sint,
which are 2w —periodic in the variable t. The functions
m(t,z) = [ig(s,x)ds = 2mx(sint—cost+ 1),
n(t) = [ip(s)ds = 1—cost,
which are also 2m-periodic in the variable t. Here, the system (4.8) of Theorem

4.1.1 becomes
Fi(zo,y0) = —2w0 + 3o +1 =0,
15 7 1

Fa(wo, yo) = —y ot g = 0.
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This system has a unique solution (z§,y) = (Z, —;), with the Jacobian (2.12)
for this solution is 4 > 0. The differential system (4.2) for e # 0 sufficiently
small has one periodic solution (x(t,e),y(t,€)) such that (x(0,¢),y(0,¢)) tends
to (xf,ys) when € — 0.

The eigenvalues of the corresponding Jacobian matriz of the averaged functions

(F1,F2) at the zero (xf,yg) are

17 7Jﬁi

A 161
N 1T TVI5,
16 16

Since A1 and Ay are complex such that the real part of them are megative,
again by Theorem 2.2.3 it follows that the periodic solution (z(t,€),y(t,€)) is
stable.

Example 4.6. Consider the differential system (4.2) with

c(t) = (1+sint)cos?t,
g(t,x) = —x(x—1)sin?t,
p(t) = —sintcost,

which are 2m—periodic in the variable t. The function
t L.y
n(t) = [yp(s)ds = —5 sin t,

is also 2m-periodic in the variable t. For this system, the system (4.9) of

Theorem /4.1.1, becomes

1
Fi(xo, o) = 1 + 1y =0,
1 1 1

= — — — — 2 —_ = et
Fa(xo, Yo) 16~ 2% T 3%~ 3% 0.
1 V61 1 61
Ith - luti 5 u8) given by (= — —, =) and (= + —, -
as two non-zero solutions (xf,ys) given by (2 il/_’ 4) an (2 +\/é , 4),
6 —/6
with the Jacobian (2.12) for these solutions being ik 0 and — < 0
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respectively. The differential system (4.2) for e # 0 sufficiently small has two
periodic solutions (z(t,€),y(t,€)), such that (z(0,¢),y(0,¢)) tends to (x§,yg)
when ¢ — 0.

The eigenvalues of the corresponding Jacobian matrix of the averaged functions

(F1, Fz2) at the zeros (z§,y5) are

1 —1+46. 1 1+ 4v6
AL — T ! A3 S E—
Ao 1 —14+46. A 1 1+4v6
R — —1 e —

4

Since Ay and Ay are complex such that the real part of them are negative, and
A3 and Ay are real such that A3 is positive, again by Theorem 2.2.3 it follows
that the first periodic solutions (x(t,e),y(t,€)) is stable and the other one is

unstable.

Example 4.7. Consider the differential system (4.2) with

4
c(t) = 3 cos’t + 3sint,
1
g(t,x) = 51‘2(33 — 3)sint,
p(t) = cost,

are 2m-periodic in the variable t. The function

2
m(t,x) = Jj g(s,) ds = -(x = 3)(1 - cost),
is 2w —periodic in the variable t. Here the system (4.10) of Theorem 4.1.1,
becomes

1 3
Fi(xo,90) = —5538 + 5373 + 1y =0,

9 45 7 3
Fao(zo,y0) = —gxg + gxé — Ex% -z + §:U(2)y0 — 3woyo — F%0= 0.

This system has two non-zero solutions (x§,y) given by (2,—2),(3,0), with

81
the Jacobian (2.12) for each solution is —3 < 0 and 5 > 0 respectively.
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The differential system (4.2) for € # 0 sufficiently small has two periodic
solutions (x(t,e),y(t,€)): the first is stable while the second is unstable, such
that (x(0,¢),y(0,¢)) tends to (xf,ys) when e — 0.

The eigenvalues of the corresponding Jacobian matrix of the averaged functions

(F1, Fz) at the zero (z§,y5) are

_|_
N} DO
SERE

)\1 -
A2 _

W — W

Since \1 and Ay are real such that A is positive, then by Theorem 2.2.3, the

periodic solution (z(t,e),y(t,e)) is unstable.
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Chapter 5. Limit cycles of cubic polynomial differential systems in R? via
averaging theory of order 6

The following polynomial differential system of degree 3
b=—y, y=a+z>— 32y, (5.1)

is a generalized Liénard system having an isochronous center at the origin
coordinates, see Theorem 1 of [2] with B(x) = 3z.

In this chapter, we study the limit cycles which bifurcate from the center
(0,0) of the nonlinear system (5.1) when we perturb it inside the class of all
the planar cubic polynomial differential system of the form

6 6
i=—y+Y eP(x,y), y=x+2°—3zy+> £Qi(z,vy), (5.2)
i=1 =1

where

Pj = ajx + ajpy + ajza? + ajury + ajsy® + ajer® + apa’y + aisry? + ajoy’,
Qj = bjll‘ + bjgy —+ bj3I2 -+ bj4xy -+ bj5y2 -+ bjﬁl’g -+ bj7x2y —+ bjgxy2 + bjgys,
forj=1,...,6.
We denote by fr the k-th averaged function of the averaging theory of
order k for k =1,...,6, for a precise definition see Chp. 2, Sec. 2.4.

5.1 Statement of the main results

Our main result on the limit cycles of the differential system (5.2) is the

following.

Theorem 5.1.1. Using the averaging theory up to sizth order, the maximum
number of small amplitude limit cycles for the cubic polynomial differential
system (5.2) bifurcating from the origin of the center (5.1) fore > 0 sufficiently

small is detected by the averaging function as follows:
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(a) f1 is0;

(b) fois O when f; =0;

(c) f3is 1 when fi = fo =0, see Figure 1;

(d) fyis 1 when fi = fo = f3 =0, see Figure 2;

(e) fs5is 2 when fi = fo = f3= f1 =0, see Figure 3;

(f) fo is 4 when fi = fo = f3 = fs = f5s =0, see Figure 4.

All the computations of this paper has been done with the help of the

algebraic manipulators maple and mathematica.

5.2 Proof of the main results

Proof of Theorem 5.1.1.  In what follows we shall study the limit cycles
which bifurcate from the origin of the differential system (5.2) using the
averaging theory up to order 6 described in the Section 2.4.

First, doing the scaling x = €X, y = €Y, we obtain the differential system
(X,Y). After that, we consider the change to X = rcosf, Y = rsinf and we
get the differential system (X,Y) in polar coordinates (r, #). In order to study
the limit cycles which can bifurcate from the origin using the averaging theory,
we take 6 as the new independent variable, then the last differential system
becomes the differential equation d—g Finally, we do a Taylor expansion in the

variable € truncating at 6-th order in € and we get the differential equation

, dr

== ;gim(e,m + 0(eN). (5.3)
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The functions F;(0,r) for i = 1,...,6 of the differential system (5.3) are

analytic, and since the independent variable 6 appears through the sinus and
cosinus of #, they are 2r—periodic in the variable #. Hence the assumptions for
applying the averaging theory described in the Chp. 2, Sec. 2.4 are satisfied.

We do not provide the functions Fj(r,8) for i = 3,...,6 because their
expressions are long, and they are easy to compute with the help of an
algebraic manipulator such as Mathematica or Maple. Therefore we only give

the expressions of the functions Fi(r,8) and Fy(r,0), i.e.

Fi(r,0) = ay1 cos? 0 + aig cos Osin @ + byy cos 0 sin § + byo sin? @ + 3r cos 0 sin® 0,

Fy(r,0) = —r (—bll cos? 0 + (a1 — byz)cosBsing + 3 cos? §sin § + ay5 sin’ 9)
(—an cos? 0 — (a1 + by1) cos fsin§ — by sin? @ + 3r cos # sin’ 9)
+r (Ggl cos? 0 + (agy + bay) cos sin 6 + byo sin® § + a137 cos® 0
+(ays + bis)r cos? @sin§ + (ays + byg)r cos O sin® 6 + bysrsin® 6

+r? cos® fsin0).

Computing the averaged function of first order fi(r) from Chp. 2, Sec. 2.4
we get

fl (7') = (a11 + blg)ﬂ"r.

Since the unique zero of fi(r) = 0is r = 0, the averaging theory of first order
does not provide any information about the limit cycles which bifurcate from
the origin of the differential equation (5.3). So statement (a) of Theorem
5.1.1 is proved.

Now we force that the averaged function of first order be identically zero
taking bjs = —aq1, and we compute the averaged function of second order

and we obtain

fg(T’) = (Clzl + 622)7'('7’.

Again the unique zero of fy(r) = 0 is r = 0, and no information about the

63



Chapter 5. Limit cycles of cubic polynomial differential systems in R? via
averaging theory of order 6

limit cycles of the differential equation (5.3). Hence statement (b) of Theorem
5.1.1 is proved. Consequently we take byy = —ag1, and fo(r) = 0.

Computing the averaged function of third order we get
1 3
fg(r) = (G31 + b32)7T7' — 1(9(111 — 3@16 — a8 — 3b13 — 3b15 — b17 — 3b19)7’(’7’ .

The unique positive real zero of f3(r) =0 is

_ 2v/az1 + bsa
V9a11 — 3a16 — ars — 3b1z — 3b15 — bi7 — 3big

1

So using the averaging theory of third order described in Chp. 2, Sec. 2.4,
we obtain for ¢ > 0 sufficiently small at most one limit cycle (6, ¢) if
(a31 4 b32)(911 — 316 — a;s — 3by3 — 3b1s — by — 3b1g) > 0 of the differential
equation (5.3) such that r1(0,e) — r, when € — 0.

Going back to the differential system (7, 6) the limit cycle r1(6,¢) of the

differential equation (5.3) becomes the limit cycle
(r(t,e),0(t,e)) = (r1 + O(e), t + O(¢)), (5.4)

of the differential system (7, ), because § = 14+ O(e). Now going back to the
differential system (X,Y) the limit cycle (5.4) becomes the limit cycle

(X (t,e),Y(t,e)) = (rcost+ O(e),rysint + O(g)), (5.5)

of the differential system (X , Y) Finally going back to the differential system
(Z,y) the limit cycle (5.5) becomes the limit cycle

(z(t,€),y(t,e)) = (eri cost + O(g?), ery sint + O(e?)), (5.6)

of the differential system (5.2). So the limit cycle (5.6) tends to the origin
of coordinates when ¢ — 0. In summary, for the differential system (5.2) we

have proved that when € = 0 at most one small limit cycle bifurcates from
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the origin of coordinates using the averaging theory of order three. Hence
statement (c) of Theorem 5.1.1 is proved.

Now taking b3y = —asz; and by; = 9ay1 — 3a16 — a1 — 3b13 — 3b15 — 3bqg,
we obtain f3(r) = 0. So we can apply the averaging theory of order four and

we compute the averaged function

fa(r) = Cymr — C'37T7“3/4,

where
Ci = asu + ba,
Cs = 9a11a12 — 3a11013 — A13a14 + 3011015 — Q14015 — 2011Q17 — G12018

+9as1 — 3ass — ass — 9a11b11 — a1sbiy + 2a13b13 + 3b11b13 — 6a11b14
+b13b14 — 3a12015 — 2a15b15 + b14bis — 2a11b18 — 3a12b19 — 3b11b1g
—3ba3 — 3bas — bay — 3bay.

Therefore f4(r) = 0 has at most one positive real root, which is r; = 2,/C;/C3
if C1C3 > 0. So using the averaging theory of order four we get at most one
limit cycle r1(0, ) of the differential equation (5.3) such that r(0,e) —
when ¢ — 0. Using the previous arguments of the limit cycle found from the
averaged function of order three, it follows that for the differential system
(5.2) we have proved that when ¢ = 0 at most one small limit cycle bifurcates
from the origin of coordinates using the averaging theory of order four. So
statement (d) of Theorem 5.1.1 is proved.

For applying the averaging theory of order five we must have fy(r) =0,
so we isolate from C; = 0 and C3 = 0 the coefficients bso and b7 respectively,
and we substitute them in the rest of the computations. Then the averaged

function of order five is

D D
f5(r) = (Dlr — f?“g + 85T5> T,
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where the big expressions of D; for ¢ = 1, 3,5 are given in Appendix. Therefore

the polynomial f5(r) can have at most the two positive real roots

IJ D3+ /D3 —4D; D5 1 \I—D3+ D2 — 4D, Ds
= ——A\|— .

= and ry = —
V2 Ds e V2 Ds

So using the averaging theory of order five we get at most two limit cycles

ri(0,¢) for k = 1,2 of the differential equation (5.3) such that 7(0,¢) — 7y
when ¢ — 0. Going back through the changes of variables until to reach
the differential system (5.2), the limit cycles r4(0,¢) provides when e = 0
at most two small limit cycles bifurcating from the origin of coordinates for
the differential system (5.2) using the averaging theory of order five. Hence
statement (e) of Theorem 5.1.1 is proved.

In order to apply the averaging theory of order six we need to have
f5(r) = 0, so we isolated bsy from Dy = 0, bg; from D3 = 0, and b9 from
D5 = 0, and we substitute them in the rest of the computations. Therefore

computing the sixth averaged function we obtain

52 r? — 53 rd — 51 rt — 55 r5>7r
8192 12288 98304 61440 ’

fe(r) = (Slr —
where S; for 1 = 1,2,3,4,5 are given in Appendix. Since the rank of the
Jacobian matrix of the function S = (5, S, S3, Sy, S5) with respect to the
coefficients a;; and b;; which appear in their expressions is 5, then the coeffi-
cients S; for i = 1,2, 3,4,5 which appear in the polynomial fg(r) are linearly
independent. Therefore, by Descartes Theorem described in Chp. 1, Sec. 1.11,
and using the averaging theory of order six, the polynomial fg(r) can have
at most four positive real roots, and consequently the differential equation
(5.3) can have at most four limit cycles using the averaging theory of order

six. Using the previous arguments these three limit cycles of the differential

equation (5.3) provide at most four small limit cycles bifurcating from the
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origin of coordinates for the differential system (5.2) when ¢ = 0 using the
averaging theory of order six. So statement (f) of Theorem 5.1.1 is proved.

This completes the proof of Theorem 5.1.1. O]

5.3 Examples

In this section we provide examples for illustrating our results.

Example 5.1. We use the averaging theory of the third order. Consider the
cubic polynomial differential system
. [ 3
T=—-y+ex+ -’ + sxy®) — 2z,
2 3
5 7 (5.7)
y=z+2°—3zy+e (—Zy + 3% — §y2 - §x2y — 2y3> + 6&3y.
After some computations we obtain fi(r) = fo(r) =0, and f3(r) = (4r —
5r3)w. The polynomial f3(r) has the unique simple positive root 11 = 2v/5/5
because fi(r1) = —8m. Therefore, by the averaging theory described in Chp.
2, Sec. 2.4 the differential system (5.7) has one stable limit cycle bifurcating
from the origin of coordinates when € = 0 using the averaging theory of order

three. This confirm the statement (c) of Theorem 5.1.1. See Figure 5.1 for
e=107°.
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Figure 5.1 — The limit cycle of system (5.7).

Example 5.2. We use the averaging theory of the fourth order. Consider the

cubic polynomial differential system

1
5 1
e (49” —y —da? 2% — a4 Doty — Say’ 4 y3)

+&3 (22 + 12y — 2% + 4zy + 22%y — 2zy* + 12¢3)

+et (=7x + 22y + 162y — 1023 + 229?)
(5.8)

1 4 1
y = a:-l—:zc3—3:cy—|-e(—2x—y—§x2+§zy—3y2—§x2y—y3)

1 3 3
+e2(—4y + 5162 + xy + 9y* + §£E3 - §x2y)+
3
e3(—2y + 22 — xy + 51‘3 + 522y + day? — 2u3)
1
+et(—2y + 2* + §x3 — 5x%y — xy? + 21°).

After some computations we obtain fi(r) = fo(r) = f3(r) = 0, and
Ja(r) = (=9r+209r3 /24)7. The polynomial f4(r) has a unique simple positive
root r1 = 64/6/209 because fi(r1) = 18mw. Hence, by the averaging theory
described in Chp. 2, Sec. 2.4 the differential system (5.8) has one unstable
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limit cycle bifurcating from the origin of coordinates when ¢ = 0 using the
averaging theory of order four. This confirm the statement (d) of Theorem

5.1.1. See Figure 5.2 for e = 1075,

<
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I R " ¥ A il
1,V 0 U T A bl 5 o i il
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BARRRRS ArXEVFL L
VA AN NN AALAEL D
VAL NN AALLLELT
VAN NN NN AALILLELT
VAN AN N ALLLL L
VUL NN AYLLELL D
LR W F T R WY AL LELL]
R N AR LT
VNN N AR,

Figure 5.2 — The limit cycle of system (5.8).

Example 5.3. We use the averaging theory of the fifth order. Consider the

cubic differential system

i =—y+e2r+ 2y — 6y + y* — 3% + 4oy + 3zy* + y¥)
+e(dx + Ta? + wy — ay + 12¢°) + 2 (3 + v + 5ay? + ¢°)
tet(—y +22° — 2%y + 3y°) + &2 (Tw + 2y + Ty + 3%y + o),

y=x+ 2% — 3xy + e(x — 2y — 3wy + 3y* + 22° + 1522y + 3ay?)
+e2(—4y + 22% + 2622y — xy?) + €3 (22 — 3y + 222 + day — 2y% + 2%y + 29°)

+et(—dx + 5x? + 2y* — 42® + ) + 520 — 2y — 2 + 3y? + 323 — 22%y).
(5.9)

Using averaging theory of Chp. 2, Sec. 2.4 we obtain fi(r) = fo(r) =
f3(r) = fulr) =0, and f5(r) = (5r — 4113 /2 +51r°/8)w. The polynomial fs(r)
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has the two simple positive roots

= \/52_1 (41— VITTL), = \/531 (41 + V1171).

Since fi(ry) = —28.58417722 and fi(re) = 317.1179024, then, the differential
system (5.9) has one stable limit cycles for r1 and one unstable limit cycle

for ro bifurcating from the origin.statement (e) of Theorem 5.1.1. See Figure

5.3 for e = 107°.
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Figure 5.3 — The two limit cycles of system (5.9).

Example 5.4. We use averaging theory of the sixth order. Consider the
differential system

, L, 50018, 992512
T= — r— ———cx
y 1085 - Y 9765

y= x+2°—3zy+e(—y— 6%y + 5y3)

e <m2+501407x 0L, 64 3)_500012
030 Y 1557 Y 4657 155

g3y + 1252,

e3x?y + 12e%.
(5.10)
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Using averaging theory defined in the Section 2.4, we get f1(r) = fo(r) =
f3(r) = fa(r) = f5(r) =0, and

Jolr) = (247“ — 50r% + 35r% — 10r* + 7‘5) .

The equation fe(r) =0 has four solutions r1 =1, 19 =2, r3 =3, and rqy = 4.
Since, fi(r1) = —6m, fi(ra) = 4w, fi(rs) = —6m and fi(ry) = 24w, then, by
Theorem 5.1.1, system (5.10) has four stable limit cycles for ry, r3 and the
other are unstable for ro and ry. This confirm the statement (f) of Theorem

5.1.1. See Figure 5./ for e = 1075,

|
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Figure 5.4 — The four limit cycles of system (5.10).
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Chapter 6. Periodic solutions for differential systems in R® and R®

In this chapter, using two different results of the averaging theory of the
first order, we study the periodic orbits of two kind of differential systems
in R® and R® that appear frequently in many problems coming from physics,
chemistry, economics, engineering, etc.

This chapter was published in the international journal “Journal of
Dynamical and Control Systems” titled “Periodic solutions for dif-

ferential systems in R® and R%”, for more details see [51].

6.1 Periodic solutions for differential systems
in R°

In this section, we shall provide sufficient conditions for the existence of

periodic orbits in the differential systems in R® of the form

x:y7 y:Z7 ZZU’? u:U’

U= —aﬁ,ux - ﬁ,uy - O‘(ﬁ —l—[L)Z - (ﬁ—FM)U —av +€f(t,x,y,z,u,v),
(6.1)

where «, 3 and p are rational numbers different from 0 such that o # +3, a #
+u, and [ # +u with || sufficiently small, and f is non-autonomous periodic
function. These differential systems usually come when we write as a first-order

differential system in R®, the fifth-order differential equation
2® + @& + (B4 p)i + a(B+ p)i + Bus + afux = ef(t, z, 4, i, 1, i), (6.2)

obtained from (6.1) on settingy =%, 2 =2, u=%, v="T.

Fifth-order differential systems do arise in a number of applications, for
example, in some three loop electric circuit problems and in control theory (see
Rosenvasser [53] ). Furthermore, there are various papers of such systems

and equations, see for instance [22, 62, 64].
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Chapter 6. Periodic solutions for differential systems in R® and R®

Our main result on the periodic solutions of differential system (6.1) or

equivalent differential equation (6.2) is the following.

Theorem 6.1.1. Assume that o, 8 and p are rational numbers different
from zero such that o # +3, a # +pu, and B # +p in differential system
(6.1). We define

Fi(Xo, Yo, Zo, Up) = ﬁ ok cos(%t)Fo(t,A(t),B(t),C’(t),D(t),E(t)) dt,
F2(Xo, Yo, Zo, Up) = —ﬁ 0" sin(%t)Fo(t,A( ), B(t),C(t), D(t), E(t)) dt,
FS(X07 )/07 ZO) UO) - ﬁ 027rk COS(gt)F()(t, A<t)7 B<t)7 C<t>7 D(t)7 E(t)) dt,
Fa(Xo, Yo, Zo, Up) = —ﬁ 0" sin(gt)Fo(t,A(t),B(t),C@),D(t),E(t)) dt,

(6.3)
. U /Py .
with B = (—)*, u = (=)*, where m, n, p and q are integers, B # u,
n q
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(m,n) = (p,q) =1, let k be the least common multiple of n and q, and

—V/BXo + aYy) cos(v/Bt) + (aXo + BYs) sin(y/Ft)
VB(a2 + B) (1 —B)
(ViZo — aly) cos(y/mit) — (aZy + /pUs) sin(/1it)
V(0?4 p) (e — B) ’
aXo + /BYo) cos(v/Bt) + (v BXo — aYy) sin(y/Gt)
(* + ) (1 = B)
(aZy + /pUy) cos(y/1it) + (y/11Zo — aly) sin(,/fit)
(2 + p) (e — B) ’
—BXo + ay/BYy) cos(v/Bt) + (ay/BXo + BY,) sin(v/Bt)
(@ +B3) (1w — )
N (=pZo + a/ulo) cos(\/it) + (o /112 + pl) sin(y/fit)
(@® + p)(p = B) ’
(2B8Xo + BVBYo) cos(v/Bt) + (BvBXo — afYp) sin(v/Bt)

Aty =

+

B = ¢

o) =

D(t) = — (@2 + B)(u— B)
| (anZy + p/BUs) cos(/Rit) + (py/fiZo — apls) sin (/i)
(@2 + p)(p — B) )
E(t) _ <_52X0 + Oéﬁ\/BYb) COS(\/Bt) AL (aﬁ\/BXO + ﬂZYE)) Sin(\/ﬁt)

(@2 +B)(n = B)
12 Zo — apn /i) cos(y/iit) + (apn/mZo + p*Us) sin(y/fit)
(@2 +p)(p = P)

+( .
(6.4)
If the function f is 2mk—periodic in the variable t, then for every (X, Yy,

Z;,Uy) solution of the system
E(X(J)}/EhZO;UO) :0, Z: 1,...,4, (65)

satisfying

d a(F17f27f37f4)
et
0(Xo, Yo, Zo, Up)

) 40, (6.6)

(Xo0,Y0,20,U0)=(X3., Yy, 25,U%)
the differential system (6.1) has a periodic solution x(t,e) that tends to the

solution zo(t) given by
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(—v/BXo + aYy) cos(v/Bt) + (aXy + BYo) sin(+/Bt)
VB(a? + B) (= B)
(ViZo — aly) cos(y/mit) — (aZy + /pUy) sin(/fit)
Vi(e? + p) (= ) ’
of 1® + aF + (B + w)i + a(B + u)i + Buz + aBur = 0 when € — 0.

l’o(t) =

+

Note that this solution is periodic of period 2mk.

Remark 6.1.1. In the case when one of the statements of Theorem 6.1.1 does
not satisfy, then we cannot apply the averaging theory for studying periodic

orbits.

Proof of Theorem 6.1.1. For ¢ = 0, the unperturbed system of (6.1) has a
unique equilibrium point, the origin. The eigenvalues of the linearized system
at this equilibrium point are two pairs of imaginary eigenvalues and one real
eigenvalue, more precisely the eigenvalues 4=+//31, +,/pi and —a. We shall
write system (6.1) in such way that the linear part at the origin will be in its

real Jordan normal form. Therefore, by the linear invertible transformation
(XY, Z,U V)" = B(z,y,zu,v)",

where
0 o 1 a 1
ap/B Bu ayvB VB 0
R = 0 af 1G] a 11,
NN/ N
Bu 0 pB+a 0 1
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the differential system (6.1) becomes

X — —\/BY +5G1(t7X7 Y7 Z7 U7 V)a

Y = VBX,
Z - _\/EU+€G1(t7XaYaZa Uv V)7 (67)
U=./uz,

V = —aV +eGi(t, X,Y, Z,U,V),

where G1(t,X,Y,Z,U, V) = Fy(t,A(t), B(t),C(t),D(t), E(t)), with A(t),
B(t), C(t), D(t) and E(t) given in (6.4).

Note that the linear part of the differential system (6.7) at the origin is in its
real normal form of Jordan. We shall apply Theorem 2.2.1 to the differential
system (6.7). Therefore, system (6.7) can be written as system (2.7) taking

X —/BY
Y VBX
x=| zZ |, Fo(t,x) = —/aU |

U JiZ

V —aV
Gi(t,X,Y,Z,U, V) 0
0 0
Fi(t,x)=| Gy(t,X,Y,Z,U V) |and F5(t,x) =] 0
0 0
Gi(t,X,Y,Z,U, V) 0

We shall study the periodic solutions of system (2.8) in our case, i.e. the

periodic solutions of system (6.7) with € = 0. These periodic solutions are
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X0 [ Xocos(/Br) — Yosin(vBt)
Y (t) Yo cos(v/Bt) + Xosin(v/Bt)
Z(t) | = | Zocos(y/ut) — Upsin(/pt)
Ul(t) Uy cos(y/pit) + Zo sin(/pit)
V(t) 0

This set of periodic solutions has dimension four, all having the some period
2k, where k be the least common multiple of n and q.

To look for the periodic solutions of our system (6.1) we must calculate
the zeros z = (Xo, Yo, Zo, Up) of the system F(z) = 0 where F(z) is given
by (6.3). The fundamental matrix M (t) of the differential system (6.7) with

¢ = 0 along any periodic solution is

cos(v/Bt) —sin(v/Bt) 0 0 0
sin(v/Bt)  cos(v/Bt) 0 0 0
M(t) = M,(t) = 0 0 cos(y/fit) —sin(y/mt) 0
0 0 sin(y/ut)  cos(y/ut) 0
0 0 0 0 et

The inverse matrix of M(t) is

cos(v/Bt)  sin(y/ft) 0 0 0
—sin(y/Bt) cos(y/Bt) 0 0 0
M=(t) = 0 0 cos(y/pt)  sin(y/ut) 0
0 0 —sin(y/ut) cos(y/ut) 0
0 0 0 0 et
It verifies
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0000 0
0000 0

MH0)=M~'2rk)=| 0 0 0 0 0
0000 0
000 0 1— eamk

Consequently all the assumptions of Theorem 2.2.1 are satisfied.

Now computing the function F(z) given in (2.10), we got the system F(z) = 0,
which can be written as (6.5), with the function F(Xo, Yo, Zo, Up) given in
(6.3).

The zeros (X¢, Yy, 2§, U;) of system (6.5) with respect to the variables
Xo, Yo, Zy and Uy provide periodic orbits of system (6.7) with ¢ # 0
sufficiently small if they are simple, i.e. condition (6.9) is satisfied. Going
back though the change of variable, for every simple zero (X, Yy, Z5, Ug) of
system (6.5) we obtain a 2mk-periodic solution z(t) of the differential system
(6.1) for e # 0 sufficiently small such that z(¢) tends to the periodic solution,
where x(t) is defined in the statement of Theorem 6.1.1, of

2O £ i + (B + p)i + B+ p)i + But + afuz =0

when £ — 0. Note that this solution is periodic of period 27k.

This completes the proof of Theorem 6.1.1. O]
An example of Theorem 6.1.1 is the following.

Example 6.1. If f(t,z, 1,2, %, %) = (10 — 22 + i°) cost + Tisint + 3, then
the differential equation (6.2) with o =2, =1, p =4, becomes

{7 () + 2% () + 5% (t) + 102 (t) + 4z () + 8x(t) = € (5 + cos(t)) (4 (t) +2) .

79



Chapter 6. Periodic solutions for differential systems in R® and R®

After some computations, the functions F;(Xo, Yo, Zo,Up) fori=1,...,4,
of Theorem 6.1.1 are

) 7 5) 7
Xo, Yo, Zos Up) = (2 Zo + V2o + (o2 Uy —
F1(Xo, Yo, Zo, Us) (384 o+ 12) 0+ <384U0 12)U0 +5,
7
JTQ(Xl)) }/07 ZO7 UO) = E(ZO + U0)7
1
F3(Xo, Yo, Zo, Up) = %(Xo — 2Y0)(—Zo + Uy + 28),
_ Xo Yo
Fi(Xo, Yo, Zo,Ug) = %(—ZO — Uy +56) + EO(Zo + Uy + 14).
System Fy = Fo = F3 = F4 = 0 has two solutions (X§, Yy, Z§, U§) given by
24 24
(0,0, —40,40), (0,0, — =, 7).
o9 539
Since the jacobian (6.6) for these two solutions (X, Yy, Z5, U§) are ~3840"

25333

518400
solutions has two periodic solutions x; = (t,e) for i = 1,2 tending to the

respectively, by Theorem 6.1.1, system (6.1) has the two periodic

periodic solutions x;(t) where

x1(t) = —130 cos(2t), wxo(t) = —i cos(2t),

of x®) + 24 + 5% + 10i + 44 + 8x = 0 when € — 0.
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6.2 Periodic solutions for differential systems
in R
Now our second result on the periodic solutions of the differential system in
RS of the form
=y, y=-xv—cF(t,z,y, 2z u v w),
F=u, uw=—z-—¢eG(t,x,y, 2z uv,w), (6.8)
v=w, w=-—-v—cH(t vy, 2 uvw),
where F, G and H are 2r—periodic functions in the variable ¢, and || is a
small parameter. These systems are a perturbation of the harmonic oscillator
in RS and these kind of systems have been studied by many authors, see for
instance [6, 31, 45, 58].
We summarize our main result on the periodic orbits of the differential

system (6.8) as follows.

Theorem 6.2.1. We deﬁne
Fi 2T sin(t) Fo(t, a(t), b(t), c(t), d(t), e(t), 1(t)) dt,
—i T cos(t) Fo(t, a(t), b(t), c(t), d(t), e(t), 1(t)) dt,
— ¥ sin(t)Go(t, a(t), b(t), c(t), d(t), e(t), I(t)) dt,
—— 27 cos(t)Go(t, a(t), b(t), c(t), d(t), e(t), 1(t)) dt,
o= Jo " sin(t)Ho(t, a(t), b(t), (1), d(t), e(t), 1(¢)) dt,

—i 2 cos(t) Holt, a(t), b{t) e(t), d(0), (1), 1(6)
(6.9)

Lo, Yo, 20, Uo, Vo, Wo

3

Lo, Yo, 20, Uo, Vo, Wo

o

Zo, Yo, 20, Uo, Vo, Wo

N

Lo, Yo, 20, Uo, Vo, Wo

Kﬁ

5(L0, Yo, 20, Uo, Vo, Wo

( ) =
( wo)
( wo)
( wo)
( wo)
( )=

Fe

Zo, Yo, 20, Uo, Vo, Wo

where
a(t) = xgcost + ypsint, b(t) = ygcost — xpsint, c(t) = zycost + ugsint,

d(t) = ugcost — zgsint, e(t) = vy cost + wosint, [(t) = wycost — vy sint.
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Then for every (x8, yg, 25, us, v§, wg) solution of the system
fk($07y07 20, U(),'ZJ(),'LU()) = 07 fOT’k = 17 s 767 (610)

satisfying

a(beQaf&FAbffnfﬁ)

det
5(900, Yo, 20, U, Vo, wo)

£40, (6.11)

(£0,40,20,10,00,w0) = (T 5,y 25 yud 05 W)
the differential system (6.8) has 2m—periodic solution (x(t,¢), y(t,e), z(t,¢€),
u(t,e), v(t,e), w(t,e)) which when ¢ — 0 tends to the 2w —periodic solution

(zo(t), yo(t), 20(t), uo(t), vo(t), wo(t)) given by

l’o(t)
zo(1)

vo(t) = v§ cost + w§sint, wo(t)

x§cost + ygsint, yo(t) = yicost — xfsint,

ok * 2 ok * 2
= zj cost + ufsint, ug(t) = ucost — z§sint,

wg cost — vg sint,

of system (6.8) with ¢ = 0.

Proof of Theorem 6.2.1. Consider the differential system (6.8) in RS. Tts
unperturbed system is the system (6.8) with ¢ = 0, which has the equi-
librium point (0,0,0,0,0,0) = (z,y, z,u,v,w). The eigenvalues of the lin-
earized system at this point are £, of multiplicity three. The periodic so-
lutions (x(t), y(t), z(t), u(t), v(t), w(t)) of the unperturbed system such that
(2(0),y(0), 2(0),u(0),v(0),w(0)) = (x0, Yo, 20, Uo, Vo, W) are

82



Chapter 6. Periodic solutions for differential systems in R® and R®

x(t Tocost + ypsint

t Yyocost — xpsint

<

(t)
(t)

2(t) Zpcost + upsint
(t) ugcost — zpsint
(t)

v Vg cost + wysint

w(t) wo cost — vy sin t
Of course, all these periodic orbits have period 27.

Using the notation of Chap. 2, Sec. 2.2, we have

X Zo Yy
Yy Yo -
z 20 U
X = y 4= ) FO(t> X) = )
U Uo —z
v Vo w
w Wo —v
0 0
F(t,z,y,z,u,v,w) 0
0 0
Fi(t,x) = and Fy(t,x) =
G(t,z,y,z,u,v,w) 0
0 0
H(t7a:7 y? Z7 u? U’ w) O

Since the fundamental matrix M, (t) is independent of z, we denote it simply

by M(t). An easy computation provides
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cost sint 0 0

—sint cost 0 0

o o o O

0
0
0 0 cost sint 0
0

0 —sint cost

0

0 0 0 0 cost sint
0 0 0 0 —sint cost
From Theorem 2.2.2, we must study the zeros z of the function F(z) defined
in (2.11), i.e. of the function F(z) = (F1(z), Fa(z), F3(z), Fa(z), F5(2), Fs(2z))
where Fy for k =1,...,6 are given in (6.9) of Theorem 6.2.1.

The rest of the proof of Theorem 6.2.1 follows directly from Theorem
2.2.2. O

An example of Theorem 6.2.1 is the following.

Example 6.2. Consider the differential system (6.8) with F, G and H
satisfies
F(t,z,y, z,u,v,w) = (=1 — y* + u?) sint,
G(t,z,y, z,u,v,w) = (1 — y* + w?) cost,
H(t,z,y,z,u,v,w) = (1 — y? + w?)sint.

After some computations, we get that

F1(o, Yo, 20, to, Vo, Wo) = _é<3f’5%+y(2)_323_'“3+4)7
Fa(xo, Yo, 20, to, Vo, Wo) = le(—ifoyo + 2oup),

F3(o, Yo, 20, Uo, Vo, Wo) = i(xoyo — Vo),

Fu(o, Yo, 20, Uo, Vo, Wo) = ;(93(2) + 3y — vg — 3wg +4),
Fs(o, Yo, 20, Uo, Vo, Wo) = —;(3958 +y5—4),
Fs(o, Yo, 20, Uo, Vo, Wo) = —iﬂﬁoyo-
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Chapter 6. Periodic solutions for differential systems in R® and R®

System Fi = Fo = F3 = Fy = F5 = Fg = 0 has sizty-four solutions

X ok ok ok ok ok .
(x07 yOa ZO) u07 UO; wo) qrven by

(0,42, 0, £2v/2, £4,0), (12\/_ 0,+ f \/_,0),

3 3 3
2V/3 V3 2V/6

4
(£757,0,0,£2V2,£57,0),  (0,42,+7,0,+4,0),

21/6 443 2\/‘ 2/6 4

+2, +— +—- +-2 0, +—— +

(0, 3 ,0,0, 3 ), ( 3 0, 3 ,0,0, 3)
2 4 4

(if,o,o, i2\/§,0,4_—§), (0, 42,0, i2\/§,0,4_—\3/§).

Since the jacobian (6.11) for these solutions (x§, yg, 25, uf, v, wg) are
1 1 11 11 1
8 24724’8 87247 24’8
sizty-four solutions, but only thirty-two of them are different because all peri-

respectively, we obtain using Theorem 2.2.2

odic solutions appear repeated when we change t — t + 7. Hence we obtain

the thirty-two solutions

(xk:(ta 5)7 yk(ta 5)7 Zk(ta 5)7 uk(t> 5)7 Uk(tv 6)7 wk(t7 5)) fOT k = 17 R 32 tend@ng
when € — 0 the periodic solutions (x(t), yk(t), zx(t), uk(t), vi(t), wi(t)) where

(21234(t),y1.234(t), 21234(t), u1234(t), vV1234(t), w1 234(t)) =

2V6 2V/6

(£2sint, +2cost iT st, F— 5 sint, —4 cost,4sint),

(w5678(t), Ys.6.7.8(t), 25678(t), use67.5(t), v5678(t), ws678(t)) =
24/3 2 2 2 4+/3 44/3
(i\g/— st,F \3/_ nt,+ \3/_(: st, F \3/_ sin t—\?)/_cost,\g/_sint)7

(29,10,11,12(t), ¥9,10,11,12(t), 29.10,11,12(t), Uo,10,11,12(t), Vo,10,11,12(F), Wo 10,11,12(t)) =

4v/3 4
(£2sint, +£2cost, £2/2sint, £2v/2 cost, —\3/_ sint, — \3/_ cost),

(213,14,15,16(), Y13,14,15,16(t), 213141516 (1), 13141516 (1), V13,14,15,16(F), W13 14,15,16(t)) =

2 2v3 4v/3cost 4v3
(i\B/_ cost, $\3/_smt +2v/2sint, £2v/2 cos t, — \/_3003 , \?)/_sint,

($17,18,19,20(t>7 y17,18,19,20(t>7 217,18,19,20 (t) U17,18,19,20(t), U17,18,19,20<t>7 w17,18,19,20(t)) =

2G_4VB_ 4B
3

sint, — Int, ————cost),
3 3 )

24/6
(F2sint, F2 cost,$\3/_ st,t——
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Chapter 6. Periodic solutions for differential systems in R® and R®

($21,22,23,24(t), y21,22,23,24(t), 221,22,23,24(75), U21,22,23,24(t), U21,22,23,24(t), U121,22,23,24(t)) =

2v/3 2v/3 26 2v/6

4 4
(iT cost, :FT sint, j:T cost, :FT sint, ~3 sint, —5 cos t),

(225,26,27,28 (1), Y25,26,27,28 (1), 225,26,27,28 (£), U5 26,2728 (1), V25 26,27,28 (1), Was 26,27,28()) =

(£2sint, £2cost, £21/2sint, £2v/2 cost, —4 cost, 4sint),

(229,30,31,32(), Y20.30,31,32(t), 229,30,31,32(F) , U20.30,31,32(t), V29.30,31,32(t ), Wa9,30,31,32(t)) =

2v/3 243 4 4
(:I:\S/_ cost, :F\S/_ sint, £2v/2sint, £2v/2 cost, ~3 sint, —3 cos t),

oft=y,y=—-x, z=u, u=—2, V=w, w= —v, when e — 0.
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( Conclusion and Perspectives )

Based on different results of the averaging theory, we have provided the
sufficient conditions for the existence for periodic solutions of some classes of
differential equations and systems such as Duffing differential equations and
differential systems of dimension 5 and 6, using averaging theory of the first
order. We have also studied the maximum number of limit cycles of planar
cubic polynomial differential systems, using averaging theory up to order six.

Moreover, we have illustrated our study with examples.

We will continue our research about the existence of periodic solutions
for other types of differential systems that model phenomena in biology,

physics, mechanics, etc.
We will also continue our research about the limit cycles for differential

systems that relate to the second part of sixteen Hilbert problems, using

higher-order averaging theory.
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C Appendix )

In this Appendix, we give the constants that we need in the proof of the

main results of Chapter 5 (Sect. 5.2).

Dy = a5 + bso,

Ds= 9a3 —3a3 biz—9a% bis+9an a®y — 3 a ars a1z + 6 ayy ars ars
—2 a1 a2 a17 — 9 a1 a12 biy — 6 aiy a2 b1y — 2 a1 a2 big — 2 an G%g
—2 a1 ai3 a5 + 3 any arz bin + @i arg big — an @i, + an ais bis
— a1y aig bis — a1 a5 big +9 ayn aze — 3 ary azs + 3 ayr ass — 2 ary asy
+9 ay1 b7y + 6 a1y by big + 2 axy bis bis + a1y b3y + 2 ary b5 — 9 ayy by
—6 a1 bag — 2 ayy bog — a%g ais — 3 a%z bis — 3 a%z big — aiz ai3 aiy
—2 a13 ay4 ars — 4 a1 a15 bis — a1z a1s bin +9 arz agr — a1g azs
—3 a2 b1y big + @12 biy bis — 3 a1 bas — 3 a1 bag — 3 @13 Az — a1z ag
—2 a3 b1 b1z + 2 a13 baz — a1 ars b1n — @14 agz — aig ags + 3 ags ag
— a5 agq — 2 a5 by bis — 2 ays bys — 2 ary az — a1z azx — aig bay
=9 ag1 b1 — 6 a1 biga — 2 a1 big — 3 age bis — 3 agz big + 2 ags bis
—2 ags bis — ags bi1 +9 ag1 — 3 agg — ass — 3 bi; big — biy big buy
+3 b1y baz — 3 b1y bag + 3 D13 boy + D13 bag + b1 Doz + b1y bos + D15 boy
—3 b1g ba1 — 3 bsz — 3 bzs — bar — 3 bao,

Ds= 15a11 —2 a4 —9 aig — 2 ajg — 5 big — 4 bis — 3 by,
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Appendix

S1 = as + be2,

Sy = 23652 ap a3, + 1152 a3 ajy — 1152 a5 a3, — 1536 a9 a3,
—3468 byq ai’l — 1152 byy ai’l — 1536 byg ai’l — 832 az ans a%l
—6912 a9 a6 a%l — 1792 a1 aig a%l + 17520 a9 a%l + 1536 aqg a%l
+2240 ayy byy a2, + 2304 a6 byy a2, + 1280 ayg by a3, — 8128 ayy big a?,
—1536 ay3 byz a?; — 448 byy byz a3y — 10304 ayp bys a2, + 1536 ai5 bis a2,
—4160 byy bis a2, + 1536 bag a2, — 5607 a3y ayy + 34173 b3, ay
—576 ai9 a?5 aj; — 576 ayp aty a;y — 1344 ar9 @35 ary + 17811 a9 b2, ayy
+1440 ay3 b3, a1y — 2592 a5 b3, arg + 2304 ag7 b2 aiy + 3072 arg b2, ayy
+576 ayp b5 ary + 576 by by arp + 576 ayp b3, ary + 576 byy b3, ap
+1344 aqg bl; a1 + 1344 by bl; an + 1440 a3y arz aiq + 6624 aly ars an
—1152 ayp as3 ai5 a1y — 1152 a2y ayr ayg — 2688 a?,y ajg ary
—2048 a14 a1 a1 — 6144 a6 as; a1 — 2048 aqg asy ann
—5592 a9 ag a1 + 2304 a5 ass a1 — 1152 aq7 age aq
—1920 a19 ags a11 + 2304 a19 ass a1 — 1152 a1 agr aq
—1920 a9 asg a1 + 4032 azs ay; — 21969 a%2 b1 a1q
—576 a%3 by a1 — 576 ai b1 a1 — 1344 air) b1 a1
+2880 a1z a3 bir a1 + 4032 a2 a5 by ain — 1152 aq3 a5 biy an
+1152 ayo a17 by a11 + 384 a1a a9 b1y a1 — 22872 ass by aqg
42304 ass by a;p — 1152 aqy byy a1; — 1920 aqg b1 a1
—5120 a9y by a1y — 4896 a2, byg aiy + 8928 b3, by ap
—T68 a1y a5 bia a1r — 3456 age bis a1; + 4032 a9 byy big aqq
—768 ay5 b1y bia arn — 768 ara aiy bis a;y — 4096 ag; b5 an
—T68 a4 b1 bis ayy + 1152 ays b3 bys ayp + 1152 by byg bys a1y
—1152 a2, byg a1 + 2304 b2, big a;y — 1152 ags big ap
+1152 a19 by big ayp — 2688 a?y big aiy + 3072 b2, big aqy
—1920 a9y big ai; + 384 aqz b1 bis a11 — 22872 aqz by a1
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+2304 a5 byy a1r — 1152 a7 bay a1 — 1920 agg bey a1y

—40152 by bay a1 — 3456 byy bay aqqy — 1152 big oy a1y

—1920 byg bay aj; — 3456 aqg bog a1 — 3456 by by aqy

—1152 a9 bag a1 — 1152 byy beg a11 — 1920 aqz bog a1y

—1920 by bog a1y + 4032 bsy ay; — 3344 ayg b3, — 11520 a6 b3,
—2048 ayg b3, — 3888 a1o ay b2, + 192 ay3 ayy b3, — 192 ayy a5 b3, b3
—13824 a12 ag b%l — 2304 a12 ag bfl — 10476 as1 + 576 agy 5%1
+1152 agg b3, + 2800 a3, ary + 192 a2, ay3 ary — 192 a2, ayy ass
+9216 a3, a6 + 1792 a3y ag + 6804 a2y asy + 2304 a1z a5 as
—1152 a19 a7 a1 — 1920 a1 a19 a1 + 3712 aqs a14 aoo

+13824 ayy aig ax + 2560 ai9 aig ass + 4032 a1 ags + 576 aly asy
+1152 a2, ass + 4032 aro as; + 2256 a2y ayq by + 384 ai ar3 ay by
—384 a1 aiy ars byy + 6912 a2y ayg byy + 1536 al, aig b1y

—3672 a9 ag; by + 2304 a5 as bip — 1152 ay7 asy bin — 1920 a9 asy b1y
+3712 a4 ass byy + 13824 a6 ass by + 2560 a1z age by

+1152 ayo asy biy + 2304 a1 asg by + 4032 azy byy + 4912 a3y bys
6992 b3, brs — 9072 aa b2, b — 960 ars b2, bs — 192 ars 02, bus
—960 a2y ai3 b1z — 192 a2y ays b1z + 7552 ai ass bz

+2832 a2, byy b1z — 1920 ayp a3 byy bz — 384 arp ays byy bz

+7552 agg by b1z — 192 ayg b3y biy — 192 a2y ayg biy

—3456 a9 a1 b1y — 384 aq9 a14 by by — 3456 a9 biy biy

192 a2, by bis — 192 b2, bug bus — 384 ars buy bis bia

12576 a3,y brs — 2800 B, bis — 3024 ars b2, bus — 192 ars b2, bus
—1728 ay5 b3, bis — 192 aly aj3 bys — 1728 a2, a5 b

+3968 ayy ag by + 2352 a2y byy bis — 384 arp a3 biy bis

—3456 a1y ars biy bis + 3968 age by bis + 192 al, biy s

4192 b2, brg bus + 384 aro buy bua bis — 1152 a1 asi big
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—1152 a9y b1y big — 1920 aq9 asy big — 1920 asy by bis
+3712 a19 a4 boy + 13824 a19 a6 bay + 2560 aqo aig bay + 4032 asy boy
+3712 a1q b1y boy + 13824 a1 by boy + 2560 aqg by boy
47552 aqo biz bay 4+ 7552 b1y by3 bay + 3968 @y bis boy
+3968 by bis bay + 576 afy bag + 576 b3y baz + 1152 a9 byq bas
576 a2, bas — 576 b2, bas — 1152 a1s by bas — 1920 a2y bag
—1920 b2, bag — 3840 aya biy bog,
Sy = 864 a2y ajo + 4932 a3, arp — 11979 a1y a3y + 21504 a?, a3
—22272 a3, ayz — 32976 ayy aly a3 — 896 ayy app aiy
—9888 a1 ap a4 + 1824 a%l ae ayg + 1440 ai{’2 aa
—2304 a11 a3 a4 — 7936 a%l a3 a4 — 1600 a%Q a3 Q14
+3200 ayp a?, — 6464 a1y ayp a3y, — 6912 a3, a5 + 5184 a3, ays
+6240 a1y aly a1 — 5760 ayy arp ayz ars + 2304 ayy ayy ass
—1536 a}; a4 a15 — 8576 a3y ary ars + 3584 ayg ajg als
—36864 a1 ais as + 10368 a2, ais arg + 12096 a3, arg
+12288 ayp ayq aig + 9216 a?; a7 + 288 a3, ayr — 4200 ayy al, ai;
—3072 a11 ayq a17 — 6144 a1 a12 a1z + 2880 a%l a1y a1
+48 a§’2 a1g + 2048 a9 a4 a1z + 9216 a%l aig + 2592 a?l a1g
+4536 a1y a2y arg — 3072 ayy ayg ajg — 43776 ayy as + 51768 a?y as
+21690 a2y as; — 27072 ayo ai3 as — 3456 a25 asy + 7296 a4 as
+4224 ayy ayy agy — 3712 a3, as + 7104 ayp ars as; — 3328 ayz ars as
+640 a2 ag; + 9216 ayy are ag — 4416 ajo a7 az + 3072 ar; arg as
42880 a12 a9 az1 — 20412 a1 a1z ass — 27072 ayq a1z ass
45856 @19 14 A29 — 2176 aq3 a14 o + 7104 aq1 a15 asn
—6016 a4 a5 g + 34560 ays a1 age — 4416 a1y ar7 Ao
+2304 a1 a1g ass + 2880 a1 a9 age + 31104 as1 ase — 24576 a11 a1z ao3

—6912 ai] a13 o3 — 2176 12 A14 Q23 — 3328 a11 A15 23 — 17664 ag1 A23
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+7296 ay1 agy + 576 a2y azy — 1200 a2y agy — 2176 ayn ai3 aoy
—7424 a11 a14 aoqa — 6016 @19 a15 Aos — 384 asy ass — 3072 ags aou
48448 a11 a1z a9 — 3328 aqq a1z ass — 6016 a1o a4 aos

+1280 ay1 a5 ass + H376 asy ags — 3072 aga aoss — 2304 a%l Qo
—1728 a?, ass — 4416 a1y a2 agr — 6144 asy asy — 3072 a2y asg
—3072 a99 asg + 2880 aq1 a1z asg + 29088 aq3 az; — 17664 a3 as;
+5376 a5 as; — 6144 a7 ag; — 16992 a11 ass + 5760 a4 ass
+27648 a16 asz + 3072 a15 azg — 17664 aq1 ass — 3072 a4 ass
—384 a19 azy — 3072 a3 azy — 3072 a5 azq + 5376 aq1 ass — 3072 a4 ass
—6144 a1 asy — 3072 a9 asg + 33408 a4 — 9216 ass — 3072 aug
+119520 a2, by, — 61236 a2, byy — TL7T75 arr a2y by

+28704 ayy ajs arz by + 3328 ayy a2y by — 42144 ayq ayg by
—4512 a?; ayq by + 3120 a2, ag byy + 256 ain ags aiyg biy

+3200 ai by1 + 1600 aqq a%4 b1y + 1152 aq1 a1 a5 byt

—1920 ayy aiz a5 b1y — 5248 ap ayg ags by + 1664 ayq a?s byy
—36864 a1 aig by — 3456 a2, ag byy + 12096 a2y aye by
+12288 a4 aig b1y — 1296 aqy a9 a7 by — 6144 aq1 a1z b1t
—1728 a2, aig b1y — 240 a2, agg by + 2048 a4 ais by

+432 aq1 a1a a9 b1 — 49644 a9 asy by + 16704 a3 a9 b1y
+192 ay5 asy b1y + 1728 a7 az; by + 2880 a9 ag; b1y

—67356 @11 ass byy + 864 a1y ass by + 6912 a6 ass b1y

—T768 a3 ass by + 19200 aqq ass by + 896 a4 ass by

—1248 a19 a9y b1y + 896 a3 agq b1y — 2944 a5 asq by

+1536 ajy ass by — 2944 a4 ass b1y — 3456 a2 age b1y

+1728 aqq as7 biy — 3072 a1 asg byy + 2880 aqy aszg by

—43488 a3y by — 384 aszy byy — 3072 asg by + 31779 ayy ago b3,
—16656 a1 aiz b3, + 5760 ais ay b2, — 1216 a3 ayg b3
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—480 ayy ays b2, + 256 ay ags b3, + 15552 ajo arg b3y

—3240 ayy ay7 b3, + 2448 ars arg b3, — 4104 ayy agg b?,

+46170 ag; bl — 48 agy b3, — 1728 agg b, — 76617 a1y b3,

4080 arq b3, + 15552 arg b3, + 2736 ais b3, — 26400 a1y ais bis
+13632 a?; aia biz + 7320 aly, b1z — 2304 ayy a3 bz

+7168 a?; ai3 bis + 2304 a2, a3 biz + 9472 ayp ayg b1z

+1216 ayy ais arg biz + 2304 ay1 ags bz + 512 a2y a5 bis

+12288 a5 a6 b1z — 3072 a1; ar7 bz + 2048 a9 aig bis

—3072 a11 a9 biz + 7296 a9y bis — 384 a11 asy b1z + 1792 a14 asy bis
419296 a2 age b1z + 896 ai3 ass b1z + 128 a5 ass bis

+896 aq3 a3 biz + 1792 a1y @94 b1z + 128 a19 ass bis

+14976 asy byz + 6144 ags b1z — 58656 a1y by biz + 9600 a2y biy bys
+9432 a?, byy bz + 1920 a19 ay3 byy biz + 9472 ayy byy bis

—1088 ay1 a4 byy biz + 640 a1y a5 b1y bis + 12288 a6 byy bis

+2048 a1g b1y b1z + 5088 ags b1y b1z — 5248 ag3 byq by

+128 ags b1y bz + 9960 ayp b3, biz + 5760 a3 b2, bis

+128 ay5 b2; big + 17064 b3, b1z + 6272 ayp bi; — 1536 a1y aig biy
—640 ag; b2, + 6272 byy b2, + 384 aqy byy b2 + 28032 a2, buy

—16992 a3, byy — 15288 ay; a%Q b1a + 8384 aq1 a1z a13 bia

—6912 ayy aiq by + 512 a2y ayg by — 2368 a1y ars ars by

—19584 a9 a9y bia + 5888 a3 asy bia — 1792 a5 asy big

—19584 a1 asg big + 128 @14 aoo biy + 5888 a1 as3 biy + 128 a9 aoy biy
—1792 ay1 aos by — 22272 asy byg + 27984 a11 aiz by by

—6208 a1 a3 b1y big + 640 a1z aig byy b1y — 64 agy ars byy b1y

+28800 agy byy by + 128 agy byy by — 35064 ayq b?) byy + 128 ayy b2, biy
—6912 ayy bys by + 1536 a2 bz byy + 384 ay bys by + 128 agy byz big
+384 @19 b1y bz big + 3072 b2, byz byy + 3264 a1y are b2, + 3712 agy b2,
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—4800 ayy byy b3, — 9408 a1y ayp bis — 25344 a2, aip bys — 120 a3, bs
—4608 ayy a3 bis + 7680 a2, a3 bys + 9344 s ayg bys

—9536 a1; a1 aiyg bis + 4608 ayy ays bys — 7168 a3y ais bis

—13568 a2, a5 bis + 24576 aio ag bys — 6144 ayy ai7 bys

+4096 a1 a1g bis — 6144 a1 a1g bys + 14592 asq bis — 37248 a1 asy bis
—bH888 a4 a9y bis — 3744 a9 ago bis + 4224 a13 ags bys

—11392 a5 age bis + 4224 a19 as3 bis — D888 aqq agy bis

—11392 a19 a9 bis + 384 aszg bis — 6144 ass bis — 73920 aqq byy bis
+27456 a2y byy bis + 19944 a2, by bys + 2688 ayz a3 byy bis

+9344 a14 byy bis + 5056 a1y a1 biy bis — 5248 ais ars biy bis
+24576 ayg b1y bis + 4096 agg by bis + 10464 ags by bys

+4224 ay3 byy bys — 5248 ags byy bis + 8760 a1 b2, bys

—4992 ay3 b2, bis + 2176 ai5 b2, bys — 2088 b3, bys + 15488 ayo bis bs
—640 a1y a2 big bis + 3328 agy byg bis + 15488 by big bis

—4480 ayy byy b1z bys — 13824 ayy byy bys + 7936 a2, byy bis

+4160 a2, by bis + 3968 age biy bis — 512 a1g by by bys

—1600 b2, b1y b1s + 5888 ayp b?5 + 5248 ayy ayp bis

+3456 a9y bf5 + 5888 by b§5 + 1024 a1 b1y bi-) + 9216 a?; big

+2592 a3 big + 1944 a1; a2y b — 3072 ayy ayy big + 1728 a1 agy big
+1728 a1y ag big — 1296 a1y az by big + 1728 agy by big

—3240 a1y b2, big — 3072 @iy big big — 6144 ayy bis big

+9216 a2, big + 288 a3, big — 1608 ayy aly bis — 3072 ayy ayy big
—3264 a1y as big — 3264 ayy asy big — —4032 a3y byz — 22464 a3y bys
—2304 a%l bag + 432 aq1 a1z by1 big — 61308 aq1 a1z bog

—18240 a1 a2 bag + 1728 a1y aja bag — 3264 a1 aq2 bog

+16704 a1y a3 bay + 5888 aqq a3 bog + 1792 aqq1 aq4 bos

—5888 aiy a4 bas + 192 aqq1 a5 by — 1792 aq1 a5 bay

94



Appendix

+1728 a1y a7 bay + 2880 ayy aig by — 4104 ayy bF big

+126756 aq1 byy bay + 30144 ayq byy boy + 1728 aygq byy bog

+2880 a1y b1y beg — 3072 aqy big big — 1280 aqy big bos

+3328 a11 by bas + 28800 aq1 b1y boy + 7424 aqq b1y boy

—6144 a11 bys big + 3328 a1y bys bog + 6912 aqy bys bos

+1728 a11 big b1 + 2880 a1y big by + 7296 a11 bas + 14592 aqq bos
—89568 ary by — 22272 ayy bss — 6144 ary bys — 816 a2, by

—9456 a?y bas — 6336 a2y bag + 896 a1z a3 bas + 4224 ajo a3 bos
+864 a1y a4 boy + 128 @19 @14 bag + 128 a19 ays bos

—11392 a2 a5 bas + 6912 a2 aig by — 768 a3 aig bog

—480 ays b1 bag + 7584 ais by bas — 3456 a19 byy bag

+5088 a19 b1 bay + 128 a19 b3 bog + 128 ago byg bos

+3968 a12 b14 bos + 10464 a15 bis bay + 3968 a12 bys boy

—384 a9 bzz — 11904 a5 b3s — 9216 aqo bgg + 896 a13 a4 boy
—5248 a13 byy bog + 4224 a13 byq bos — 5248 aq3 by boy

+4224 a13 bys boy + 6144 a13 bzz — 2944 a4 ars boy — 4128 ayg b1y boy
+128 ayq b1y bog + 128 a4 b1g bay + 5760 ayy bz + 128 ay5 b1y bos
—5248 a15 byy bos + 128 ays bz by — 5248 a15 bys boy

—6144 a5 bgs — 20736 a16 b1y boy + 27648 a1 byy — 3840 a1g byy boy
+3072 a1z b3 + 2880 agy biy big — 41472 agy byy — 22272 aoy bay
—6144 a9y bag — 384 agg bag — 11904 agg bos — 9216 asgs bag

+6144 ag3 bog — 384 agy by — 6144 ags bys — 3072 agg boy + 6144 a3y bys
—8880 b, bas + 7824 b2, bos + 2880 b3, bag — 27552 byy bys by
—2944 by b3 bogy — 2944 b1y byy bog + 896 by byg bos

+6240 b1y b1s bay + 896 byy bys bog + 8832 byy byg — 2688 by bss
—9216 b1y bsg — 2944 by3 b1y byy + 24192 by3 b3y + 3072 b3 by
+896 b1y b15 boy + 3072 byy bz + 3072 b1y bss + 9600 by5 bsy

95



Appendix

+3072 by5 bgy + 8832 boy bag — 2688 bay bas — 9216 by bag

+3072 bag bay + 3072 bay bys — 9216 bys — 9216 bys — 3072 byr — 9216 by,
Sy = 154368 a2, a1o — 55296 a2, a3 + 86016 a2, a5 — 73728 a3, air

—T73728 a2, a9 — 656640 a2, by — 193536 a3y by — 73728 a?; big

—T73728 a2, big + 16128 ayy ayp aiq + 294912 ayy aio agg

+49152 a11 ars ars + 148224 ayy aqo bizg — 96768 ayy ais bys

—444015 aq1 a1z — 20480 a1y a1z aja — 20480 ay; a3 bis

—40960 a1 a1z bis + 1052448 a1y a3 — 28672 a1 a4 ais

+24576 a11 a4 a17 + 24576 a11 a4 a19 + 228096 aq1 @14 b1y

+45056 a1 ayq big + 24576 a11 a1q big + 24576 aq1 a1 big

—28672 a1 a5 biz — 57344 ay1 a5 bis + 136992 aqq a5

+294912a11 a1g b11 + 24576a11 a7 b1z + 49152 aqq a7 bis + 82080a11 ary

449152 a1 ais bip + 24576 a1; aig biz + 49152 a1 a9 bis

—10656 a1; a9 + 304128 aqq az; — 58368 ayy agy + 360192 aqq by bis

+327168 a1 b1y b5 + 3026961 a11 byy + 45056 a1y bys by

+24576 a11 byg big + 24576 ayy big big + 90112 ayq by bys

+943680 aq1 b4 + 49152 aqq b1s big + 49152 aqq bys big + 206496 aq1 bis

+279648 ay1 big — 58368 ayy by — 116736 ayy by — 22528 ais a2,

—98304 a9 a14 a1 — 16384 @19 a4 a1z — 69632 @19 a4 b13

—47104 a2 a14 bis — 42624 a12 a4 — 98304 a2 aig b1z

—196608 a3 aig bis — 72576 a1z aig — 16384 a2 aig bis

—32768 ayp arg bys — 143232 ayy ajg — 47104 ajo b5 — 96256 a1 byz bys

—31680 ayz byz — 4096 a1 b?5 + 115776 aio b1 — 135168 a3 aiy

—442368 ay3 a1 — 79872 a3 ayg — 296448 ay3 byz — 247296 a3 bys

—22528 a%4 b1y — 69120 a4 a15 — 98304 a4 a1 b1y — 4608 a4 a7

—16384 a14 aig by — 4608 a4 a9 — 43008 a14 az; — 69632 aq4 b1y by3

—47104 a14 b1y bys — 388224 ayy by; — 82944 ayy by — 4608 a4 byg
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—4608 a4 big — 221184 ay5 a6 — 43008 a5 a1s — 133632 aq5 by
—133632 ay5 bys — 98304 a6 b1y byzs — 196608 a6 b1y bys

—1067904 a6 by — 221184 ay6 b1y — 4608 ay7 byz — 23040 a7 bys
—16384 a1g b1y b1z — 32768 a1g by1 bys — 336768 a1 by; — 43008 ayg by
—4608 a9 byg — 41472 a9 by — 43008 agy byz — 86016 as; bys

—362592 ag; + 36864 agy + 41472 agg — 47104 byy b33 — 96256 byy bz bys
—667584 by byz — 4096 byy b2y — 533952 byy bys — 147456 byg b1y

—4608 b13 big — 4608 b1 big — 161280 b14 b5 — 23040 bys5 big

—A41472 by5 big + 36864 bas + 59904 bas — 96768 by,

Ss = 409389 a1 aip + 151740 ayy aiz + 233772 ay; a5 — 18780 aq1 aq7
—112356 a11 ayg — 823755 aqq by — 420576 aqq by — 331164 aqq big
—174372 aq1 big — 14472 a19 a1a — 93744 a9 a1 + 36816 a1y ais
—92400 aq9 b1 — 70464 a9 bis + 28640 aq3 a4 + 46080 a3 a6
+28160 a3 a;g — 42400 a3 bys — 51680 a3 bis + 7200 a4 a5
+7040 a4 ay7 + 32640 a4 ar9 + 139848 ay4 by + 48800 a4 b1s
+32640 a14 big + 7040 ay4 big — 46080 a15 a6 + 12800 ay5 a1
—35040 a5 b1z — 20640 a5 bis + 7680 a1 ay7 + 69120 a6 a9
+390096 ai¢ bi1 + 138240 a6 bia + 69120 a1 big + 7680 aie big
—2560 ay7 a1z + 14720 a7 b1z + 12160 a7 bys + 7680 a5 ag
+125136 a1s b1 + 23040 ayg brg + 7680 aq5 big — 2560 aqg big
+40320 a19 by + 55680 aq9 b5 — 14220 a9y + 1680 agg + 51840 agg
+15360 ags + 205920 b1y b1z + 175536 byy bis + 98720 by3 by
+78720 by3 big + 22400 by3 big + 85600 b1y b5 + 71040 b5 big
+42880 by5 big + 24720 bas + 24240 bys + 63360 bag.
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