وزارةّ التعليم العالمي والبحث العُم

BADJI MOKHTAR-ANNABA UNIVERSITY
 UNIVERSITE BADJI MOKHTAR-ANNABA

Faculty of Sciences Department of Mathematics

THESIS

Presented to Obtaining the Doctorate Degree
Domain: mathematics and computer science
Branch: Applied Mathematics
Specialty: Applied Mathematics

PERIODIC SOLUTIONS OF SOME CLASSES OF ORDINARY DIFFERENTIAL EQUATIONS

Presented by:
Afef Amina RABIA

Supervisor: Amar MAKHLOUF
Prof.
U.B.M. ANNABA

Defense Jury Members:

CHAIRMAN:	Abdelhamid LAOUAR	Prof.	U.B.M. ANNABA
EXAMINER:	Elbahi HADIDI	Prof.	U.B.M. ANNABA
EXAMINER:	Radouen GHANEM	Prof.	U.B.M. ANNABA
EXAMINER:	Yassine BOUATTIA	M.C.A	U. GUELMA
EXAMINER:	Amor MENACEUR	M.C.A	U. GUELMA

Contents

! iv
Acknowledgements v
Abstract vi
Résumé vii
(الملخص viii
Introduction ix
1 Preliminary Notions 1
1.1 Dynamical systems 3
1.2 Polynomial differential systems 4
1.3 Solution of a differential system 4
1.4 Equilibrium point and linearization 5
1.4.1 Equilibrium point 5
1.4.2 Linearization 5
1.4.3 Classification of equilibrium points 6
1.5 Stability of equilibrium points 10
1.6 Phase portrait 11
1.7 Periodic orbits and limit cycles 11
1.7.1 Periodic orbits 11
1.7.2 limit cycles 12
1.8 Stability of limit cycles 12
1.9 Existence and non-existence of limit cycles 13
1.10 Isochronous set 15
1.11 Descartes Theorem 15
1.12 Bifurcation 16
1.13 Hopf bifurcation 16
1.14 Zero-Hopf bifurcation 18
1.15 Liénard and Duffing equation 19
1.15.1 Liénard equation 19
1.15.2 Duffing equation 19
1.16 Auxiliary results 20
2 Averaging theory 21
2.1 A first order averaging theory 22
2.2 Another first order averaging theory 25
2.3 A second order averaging theory 29
2.4 A sixth order averaging theory 32
3 Periodic solutions for two classes of Duffing differential equa- tions 35
3.1 Periodic solutions for a class of Duffing differential equations 36
3.2 Periodic solutions for another class of Duffing differential equa- tions 39
4 Periodic solutions for a generalized Duffing differential equa- tions 43
4.1 Statement of the main results 44
4.2 Proof of the main results 46
4.3 Examples 52
5 Limit cycles of cubic polynomial differential systems in \mathbb{R}^{2} via averaging theory of order 6 60
5.1 Statement of the main results 61
5.2 Proof of the main results 62
5.3 Examples 67
6 Periodic solutions for differential systems in \mathbb{R}^{5} and \mathbb{R}^{6} 72
6.1 Periodic solutions for differential systems in \mathbb{R}^{5} 73
6.2 Periodic solutions for differential systems in \mathbb{R}^{6} 81
Conclusion and Perspectives 87
Appendix 88
Bibliography 98

!

> بسم السّ الرحمن الرحيم

الكريم، و على آلله وصحبه الميامين، ومن تبعهم بإحسان إلى يوم الدين وبعد: إلى من كانا ولازالا وسيضلان خبرَ سندٍ... أمي وأبي الفاضلين، إلى جدتي الغالية... رحمة الله عليها،

إلى من ظفرت بهم هدية من الأقدار إخوة فعرفوا معنى الأخوة... أخي وأخناي، إلى أصدقائي ومعارفي الذين أُجلُّهم وأحترمهم،

إلى جميع أساتذتي الكرام، ممن لم يتو انو ا في مد يد العون لي، أخيرًا لكل من ساعدني من قريب أو بعيد،
إلى كل هؤ لاء: أهدي هذا العمل المنو اضع، الذي أسال الله تعالى أن يتقبله خالصـًا...

Acknowledgements

"Alhamdulillah"", I praise and thank Allah SWT for His greatness and for giving me the strength and courage to complete this thesis.

I will always be grateful to my supervisor Pr. Amar Makhlouf, for his marvelous supervision, guidance and encouragement. Sincere gratitude is extended to his generous participation in guiding, constructive feedback, kind support, and advice during my PhD. Thank you so much professor.

I would like to thank Pr. Abdelhamid Laouar, from Badji Mokhtar Annaba university, for the honor to chair the jury of this thesis. I also would like to thank the committee members: Pr. Elbahi Hadidi and Pr. Radouen Ghanem, from Badji Mokhtar Annaba university, Dr. Yassine Bouattia and Dr. Amor Menaceur, from 8 mai 1945 Guelma university, for being a part of this work. Thank you for your time and your patience.

No words can ever be strong enough to express my deep gratitude to my beloved parents for their unconditional love. Your prayers for me were what sustained me this far. Thanks a lot for everything. I am also grateful to my family for their continuous support. I also want to a give special thanks to my dearest friends. I'm so thankful to everyone who has helped me along the way including my teachers. I am so grateful having all of you in my life.

Abstract

The objective of this thesis is to provide sufficient conditions for the existence of periodic solutions for various differential systems perturbed by a small parameter using the averaging theory.

We consider the problem of finding the limit cycles for some classes of Duffing differential equation and for two differential systems in \mathbb{R}^{5} and \mathbb{R}^{6}, using averaging theory of the first order. Further, we study the limit cycles, which bifurcate from the origin of the cubic isochronous Liénard center $\dot{x}=-y$, $\dot{y}=x+x^{3}-3 x y$, when we perturb it inside a class of all the cubic polynomial differential systems in \mathbb{R}^{2}, using averaging theory up to the sixth order.

Moreover, we illustrate the results obtained by some examples. We mention that all the computations of this thesis has been done with the help of the algebraic manipulators "Maple" and "Mathematica".

Keywords: averaging theory, differential system, Duffing equation, Liénard equation, limit cycle, periodic solution.

Résumé

L'objectif de cette thèse est de fournir des conditions suffisantes pou l'existence des solutions périodiques pour quelques systèmes différentiels perturbés par un petit paramètre en utilisant la théorie de la moyennisation.

Nous considérons le problème de la recherche des cycles limites pour certaines classes d'équation différentielle de Duffing et pour deux systèmes différentiels dans \mathbb{R}^{5} et \mathbb{R}^{6}, en utilisant la théorie de moyennisation du premier ordre. En outre, nous étudions les cycles limites qui bifurquent à partir de l'origine du centre isochrone pour le système cubique de Liénard $\dot{x}=-y, \dot{y}=x+x^{3}-3 x y$, lorsqu'on introduit une perturbation à l'intérieur d'une classe de tous les systèmes différentiels polynomiaux cubiques de \mathbb{R}^{2}, en appliquant la théorie de moyennisation jusqu'au sixième ordre. Par ailleurs, nous illustrons les résultats obtenus par des exemples. Notons que tous les calculs de cette thèse ont été effectués à l'aide des logiciels de calcul "Maple" et "Mathematica".

Mots clés: cycle limite, équation de Duffing, équation de Liénard, solution périodique, système différentiel, théorie de moyennisation.

(لملخص

الهدف من هذه الاطروحة هو توفير الشروط الكافية لوجود الحلول الدورية لانواع مختلفة من المعادلات التفاضلية مضطر بة بو اسطة معلمة صغيرة باستعمال نظرية المتوسط.

نأخذ في الاعتبار مشكلة إيجاد دورات الحد لبعض فئات المعادلة التفاضلية لدو فنغ ولنظامين تفاضليين في ندرس أيضا الحلول لدورات الحد، والتي تتشعب من أصل مركز المتساوي الزمن ، $\dot{x}=-y, \dot{y}=x+x^{3}-3 x y$ لنظام لينارد المكعب "isochronous center" عندما ندخل اضطراب داخل فئة لجميع الأنظمة التفاضلية بكثبرات حدود من الارجة الثالثة في ${ }^{5}$ ، وذللك بتطبيق نظرية المتوسط حتى الرتبة السادسة. علاوة على ذلك، قمنا بتوضيح النتائج الني تحصلنا عليها بأمثلة. نذكر أن جميع حسابات هذه الأطروحة قد تم الحصول عليها باستخدام برماجي "Maple"، و

> ."Mathematica"

كلمات مفتاحية: حل دوري، نظرية المتوسط، دورة الحد، نظام تفاضلي، معادلة دوفنغ، معادلة لينارد.

Introduction

Dynamical systems is an exciting and very active field in pure and applied mathematics that involves tools and techniques from many areas, such as analysis, geometry, etc. Generally, a system is said to be dynamic when it evolves over time. Thus, the study of dynamical systems has applications to a wide variety of fields, including physical, chemical, biological, or economic systems. This evolution is represented by differential equations or applications.

The term "dynamic system" appeared at the beginning of the 20th century between the works of Poincaré [49], titled "The New Methods of Celestial Mechanics" in 1892, and that, in 1927, of the Birkhoff [7], precisely entitled "Dynamical Systems". One of the main objectives of researchers in the study of dynamical systems is the qualitative study of ordinary differential equations.

Differential equations first came into existence with the invention of calculus in the 17 th century by Newton and Leibniz. These two brilliant minds built the foundations for the theory of ordinary differential equations. An ordinary differential equations is defined by

$$
\begin{equation*}
F\left(t, x, x^{\prime}, x^{\prime \prime}, \cdots, x^{n}\right)=0, \tag{1}
\end{equation*}
$$

where x^{n} denote the n-th derivative of x with respect to t. When F does not depends in t, we say that differential equation (1) is autonomous. If x is
a vector instead of a real function, equation (1) is called a differential system. These equations have a great importance in the development of many areas of science, such as engineering, biology, electronics, economy, etc.

Almost two centuries later, more precisely around 1881, the work of Poinacaré implied a new point of view in the study of ordinary differential equations, which led to the beginning of what is today known as the qualitative theory of differential equations, in his series of works "Mémoire sur les courbes définies par une équation différentielle" (see [48]). Using geometric and topological techniques, this brilliant mathematician was able to investigate the qualitative properties of differential equation solutions without explicitly determining such solutions. Thus, instead of looking for a solution, Poinacaré turned to a qualitative approach.

One of the important problems in the qualitative theory of real planar differential systems is the determination of limit cycles. The notion of limit cycle was also introduced by Poincaré, it is a closed orbit isolated from the other periodic orbits. Years later, in 1901, contemporaneous with Poincaré [48] and using his contributions, Bendixon presented the well-known PoincaréBendixon Theorem which states that under certain conditions, every solution tends to a equilibrium solution which can be either an equilibrium point, or periodic orbit (for more details see [23]). Simulated by this result, in 1907, Lyapunov [44], studied the behavior of the solutions in the neighborhood of an equilibrium position. Due to his work, Lyapunov is will know as the founder of the modern theory of stability of motion.

Mention that, limit cycle describes the periodic phenomena in nature, and there are a lot of applications such as in physics [15, 16, 28], population dynamics [17, 18, 29, 61] , mechanics [14], astronomy [24], economics [50] and so on.

Limit cycles are also an important topic inside the dynamical systems. Thus the second part of the famous Hilbert 16th Problem is about the number and the configurations of the limit cycles of the planar polynomial systems, for more information see [63] and about the possible configurations of the limit cycles of the polynomial differential systems see [41].

The problems related to the periodic behavior of solutions of higher order differential systems or equations have been discussed by many authors. The papers $[6,22,31,45,58,62,64]$ can be given as good examples in this subject. In the same context, many results have been published on the periodic solutions of different classes of Duffing differential equations under variant conditions.

In 1992, Ortega [47], study the existence of periodic solutions of twist type of a time-dependent differential equation of the second order of the form

$$
x^{\prime \prime}+f(t, x)=0,
$$

using the relation between topological degree and stability.
In 2015, Wang and Zhu [60], study he existence, uniqueness and stability of periodic solutions for the Duffing-type equation

$$
x^{\prime \prime}+c x^{\prime}+g(t, x)=h(t),
$$

where $c>0$ is fixed, h is a T-periodic function and $g: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a T-periodic function in t; using the Leray-Schauder method.

In 2019, Benterki and Llibre in [4], study the existence of periodic solutions for the well known class of Duffing differential equation of the form

$$
x^{\prime \prime}+c x^{\prime \prime}+a(t) x+b(t) x^{3}=h(t),
$$

where c is a real parameter, $a(t), b(t)$ and $h(t)$ are continuous T-periodic functions. The results are proved using three different results on the averaging theory of first order.

They also study the existence of new periodic solutions of the two Duffing differential equations of the form:

$$
y^{\prime \prime}+a \sin y=b \sin t, \quad \text { and } \quad y^{\prime \prime}+a y-c y^{3}=b \sin t
$$

where a, b and c are real parameters; using averaging theory of first order (see [3]).

In 2020, Feddaoui, Llibre and Makhlouf [26], study the existence of periodic solutions of the class of Duffing differential equations

$$
x^{\prime \prime}+c(t) x^{\prime}+a(t) x+b(t) x^{3}=h(t, x),
$$

where the functions $a(t), b(t), c(t)$ and $h(t, x)$ are C^{2} and T-periodic in the variable t.

In the same year, Cheng and Yuan [20], study the following damped Duffing equation with a equilibriumity

$$
x^{\prime \prime}+C x^{\prime}+g(x)=p(t),
$$

where the damped coefficient $C(\geqslant 0)$ is a constant, elastic restoring force $g:(0,+\infty) \longrightarrow \mathbb{R}$ is locally Lipschitz continuous and has a strong equilibriumity of repulsive type at the origin, external force $p: \mathbb{R} \rightarrow \mathbb{R}$ is continuous periodic function with a minimal period T, using the twist theorem of nonareapreserving map.

In 2021, Šremr [57], study a bifurcation of positive solutions of the parameter-dependent periodic Duffing problem

$$
u^{\prime \prime}=p(t) u-h(t)|u|^{\lambda} \operatorname{sgn}(u)+\mu f(t) ; \quad u(0)=u(\omega), u^{\prime}(0)=u^{\prime}(\omega),
$$

where $\lambda>1, p, h, f \in L([0, \omega])$, and $\mu \in \mathbb{R}$ is a parameter.
These last years many papers tried to give partial answers to the 16th Hilbert problem for different classes of polynomial differential systems, see for instance [27, 36-38, 42] and the hundred of references quoted therein.

Smale in [56] proposed the class of classical Liénard differential systems of the form

$$
\begin{equation*}
\dot{x}=y, \quad \dot{y}=x-f(x) y, \tag{2}
\end{equation*}
$$

where $f(x)$ is polynomial, or equivalent to the form

$$
\dot{x}=y-F(x), \quad \dot{y}=x, \text { where } F(x)=\int f(x) d x .
$$

In 1977, Lins, De Melo and Pugh [35], stated the conjecture that if $f(x)$ has degree $n \geqslant 1$, then the system (2) has at most $\left[\frac{n}{2}\right]$ limit cycles. They prove this conjecture for $n=1,2$. Moreover, research continued in the same context, see for instance [32].

Other authors studied the limit cycles of generalized Liénard polynomial differential equations which was introduced in [34] of the form

$$
\begin{equation*}
\ddot{x}+f(x) \dot{x}+g(x)=0, \tag{3}
\end{equation*}
$$

where $f(x)$ and $g(x)$ are polynomials in the variables x, see for instance $[1,39]$.
Many results on the limit cycles of polynomial differential systems have been obtained by considering limit cycles which bifurcate from a single degenerate equilibrium point (i.e. from a Hopf bifurcation), that are called small amplitude limit cycles, see for instance Lloyd [43]. There are partial results concerning the number of small amplitude limit cycles for different classes of Liénard polynomial differential equations or systems see [10, 11].

To obtain analytically periodic solutions is in general a difficult work, many times an impossible work. The averaging theory reduces this difficult problem for some ordinary differential equation to find the zeros of nonlinear functions.

Averaging theory was introduced by Bogoliubov and Krylov in 1934 [9], and Bogoliubov and Mitropolsky (1961) [8]. It was then developed by

Verhulst [59], Sanders and Verhulst [54], Malkin (1956) [46], Roseau (1985) [52], Buică and Llibre (2004) [13], etc.

This thesis is presented in the following chapters:

- First chapter: Preliminary Notions.

This chapter gives a reminder of the classic preliminary notions and the mathematical tools that are necessary for the study of this thesis.

- Second chapter: Averaging theory.

We present the different theorems of the averaging theory for finding the periodic solutions of the differential equations.

- Third chapter: Periodic solutions for two classes of Duffing differential equations.

We provide sufficient conditions for the existence of periodic solutions of two classes of Duffing differential equation. The first class is

$$
\ddot{x}+\varepsilon p(t) \dot{x}+(1+\varepsilon q(t)) x=\varepsilon f(t, x)+\varepsilon c(t),
$$

where $p(t), q(t), f(t, x)$ and $c(t)$ are 2π-periodic functions in the variable t, ε is a small parameter and $x \in \mathbb{R}$. The second class is

$$
\ddot{x}+(1+\varepsilon \mu(t)) \dot{x}+\varepsilon \sum_{i=0}^{n} \rho_{2 i+1}(t) x^{2 i+1}=\varepsilon f(t, x)
$$

where $\mu(t), \rho_{2 i+1}(t)$ with $i=0, \ldots, n$ and $f(t, x)$ are C^{2} functions T-periodic in the variable t, ε is a small parameter and $x \in \mathbb{R}$, using the averaging theory of the first order. Mention that this study is submitted for publication.

- Fourth chapter: Periodic solutions for a generalized Duffing differential equations.

We study the existence of periodic solutions for a class of the well known Duffing differential equations of the form

$$
\ddot{x}+c(t) \dot{x}+g(t, x)=p(t),
$$

where $c(t), g(t, x)$ and $p(t)$ are \mathcal{C}^{2} and T-periodic in the variable t, using the averaging theory of the first order.

This chapter is submitted for publication in the international journal "Differential Equations and Dynamical Systems".
\uparrow Fifth chapter: Limit cycles of cubic polynomial differential systems in \mathbb{R}^{2} via averaging theory of order 6 .

Here, we study the limit cycles which bifurcate from the origin of the cubic isochronous Liénard center $\dot{x}=-y, \dot{y}=x+x^{3}-3 x y$, when we perturb it inside the class of all the cubic polynomial differential systems in \mathbb{R}^{2} of the form

$$
\dot{x}=-y+\sum_{i=1}^{6} \varepsilon^{i} P_{i}(x, y), \quad \dot{y}=x+x^{3}-3 x y+\sum_{i=1}^{6} \varepsilon^{i} Q_{i}(x, y),
$$

where P_{i} and Q_{i} with $i=1, \ldots, 6$ are polynomials of degree 3 and ε is a small parameter. The tool for doing this study is the averaging theory up to order six. Moreover, we illustrate with some examples the results obtained. Mention that this study is also submitted for publication.

- Sixth chapter: Periodic solutions for differential systems in \mathbb{R}^{5} and \mathbb{R}^{6}. Based on two different results of the averaging theory of the first order, we provide sufficient conditions for the existence of periodic solutions for two differential systems. The first one in \mathbb{R}^{5} is of the form

$$
\begin{gathered}
\dot{x}=y, \quad \dot{y}=z, \quad \dot{z}=u, \quad \dot{u}=v, \\
\dot{v}=-\alpha \beta \mu x-\beta \mu y-\alpha(\beta+\mu) z-(\beta+\mu) u-\alpha v+\varepsilon f(t, x, y, z, u, v),
\end{gathered}
$$

where α, β and μ are rational numbers different from 0 such that $\alpha \neq \pm \beta, \alpha \neq \pm \mu$, and $\beta \neq \pm \mu$ with $|\varepsilon|$ sufficiently small, and f is non-autonomous periodic function. The second differential system in \mathbb{R}^{6} is given by

$$
\begin{array}{ll}
\dot{x}=y, & \dot{y}=-x-\varepsilon F(t, x, y, z, u, v, w), \\
\dot{z}=u, & \dot{u}=-z-\varepsilon G(t, x, y, z, u, v, w), \\
\dot{v}=w, & \dot{w}=-v-\varepsilon H(t, x, y, z, u, v, w),
\end{array}
$$

where F, G and H are 2π-periodic functions in the variable t, and ε is a small parameter.

This study was published in the international journal "Journal of Dynamical and Control Systems" titled "Periodic solutions for differential systems in \mathbb{R}^{5} and $\mathbb{R}^{6 \prime}$, for more details see [51].

Mention that in what follows, we denote "Chp." which means chapter, and "Sec." means section.

Chapter

1 Preliminary Notions

Contents

1.1 Dynamical systems 3
1.2 Polynomial differential systems 4
1.3 Solution of a differential system 4
1.4 Equilibrium point and linearization 5
1.4.1 Equilibrium point 5
1.4.2 Linearization . 5
1.4.3 Classification of equilibrium points 6
1.5 Stability of equilibrium points 10
1.6 Phase portrait . 11
1.7 Periodic orbits and limit cycles 11
1.7.1 Periodic orbits . 11
1.7.2 limit cycles . 12
1.8 Stability of limit cycles 12
1.9 Existence and non-existence of limit cycles . . . 13
1.10 Isochronous set 15
1.11 Descartes Theorem 15
1.12 Bifurcation 16
1.13 Hopf bifurcation 16
1.14 Zero-Hopf bifurcation 18
1.15 Liénard and Duffing equation 19
1.15.1 Liénard equation 19
1.15.2 Duffing equation 19
1.16 Auxiliary results 20

In this chapter, we introduce some general and main notions for the qualitative study of dynamical systems and polynomial differential systems.

1.1 Dynamical systems

Definition 1.1.1. A dynamical system on \mathbb{R}^{n} is a map $U: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that
(a) $U(., x): \mathbb{R} \rightarrow \mathbb{R}^{n}$ is continuous.
(b) $U(t,):. \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuous.
(c) $U(0, x)=x$.
(d) $U(t+s, x)=U(t, U(s, x)), \forall t, s \in \mathbb{R}, \forall x \in \mathbb{R}^{n}$.

Example 1.1. Consider the linear system

$$
\left\{\begin{array}{l}
\dot{x}=A x \tag{1.1}\\
x(0)=x_{0}
\end{array}\right.
$$

The solution of system (1.1) is of the form $x(t)=e^{t A} x_{0}$ where $t \geqslant 0, x \in \mathbb{R}^{n}$ and A a constant matrix.

The system (1.1) engender a dynamical system $U(t, x)$ such that

$$
\begin{gathered}
U: \mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
U(t, x)=e^{t A} x .
\end{gathered}
$$

Definition 1.1.2. A dynamical system U on \mathbb{R}^{n} is said to be linear if

$$
\begin{equation*}
U(t, \alpha x+\beta y)=\alpha U(t, x)+\beta U(t, y) \tag{1.2}
\end{equation*}
$$

$\forall \alpha, \beta \in \mathbb{R}, \forall x, y \in \mathbb{R}^{n}$ and $\forall t \geqslant 0$.

1.2 Polynomial differential systems

Definition 1.2.1. A polynomial differential system in \mathbb{R}^{n} is a system of the form

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}(t)=P_{1}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right) \tag{1.3}\\
\frac{d x_{2}}{d t}(t)=P_{2}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right) \\
\\
\frac{d x_{n}}{d t}(t)=P_{n}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)
\end{array}\right.
$$

where P_{1}, P_{2}, \ldots and P_{n} are polynomials with real coefficients.

- If $d=\max \left(\operatorname{deg} P_{1}, \operatorname{deg} P_{2}, \ldots, \operatorname{deg} P_{n}\right)$, then system (1.3) is called of degree d.
- If $P_{1}, P_{2}, \ldots, P_{n}$ do not depend on t explicitly, then system (1.3) is said to be autonomous.

1.3 Solution of a differential system

We call solution of the system (1.3) every derivable application

$$
\begin{gathered}
X: I \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
t \mapsto X(t)=\left(X_{1}(t), X_{2}(t), \ldots, X_{n}(t)\right),
\end{gathered}
$$

where I is a non-empty interval such that, for any $t \in I,\left(X_{1}(t), X_{2}(t), \ldots, X_{n}(t)\right)$ satisfies the system.

1.4 Equilibrium point and linearization

The equilibrium points have an important role in studying nonlinear differential systems. Poincaré showed that it is enough to know the behavior of the solution through the study of the equilibrium points instead of solving these differential systems.

The most of systems that model natural phenomena are nonlinear. To study the behavior of the trajectories of these systems, in the neighbourhood of an equilibrium point x_{0}, we study the associated linearized systems.

1.4.1 Equilibrium point

Definition 1.4.1. Consider the differential system

$$
\begin{equation*}
\dot{x}=f(x) . \tag{1.4}
\end{equation*}
$$

A point x_{0} is said to be equilibrium or equilibrium of the system (1.4) if

$$
f\left(x_{0}\right)=0 .
$$

1.4.2 Linearization

Definition 1.4.2. Consider the nonlinear differential system (1.4).
Let x_{0} be an equilibrium point of the system (1.4).
The system

$$
\begin{equation*}
\dot{x}=A x, \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
A=D f\left(x_{0}\right)=\frac{\partial f_{i}}{\partial x_{j}}\left(x_{0}\right), \quad 1 \leqslant i, j \leqslant n, \tag{1.6}
\end{equation*}
$$

is said linearized system of the system (1.4) at the point x_{0}.
A is called jacobian matrix associated to the system (1.4) evaluated at x_{0}.

Example 1.2. Consider the system

$$
\left\{\begin{array}{l}
\dot{x}=x^{4}-2 y, \tag{1.7}\\
\dot{y}=2 x+3 y^{4}
\end{array}\right.
$$

$X_{0}=(0,0)$ is an equilibrium point of system (1.7).
The jacobian matrix associated to the system (1.7) calculated at $(0,0)$ is given by

$$
D f(0,0)=\left(\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right)
$$

Thus, the linearized system of the system (1.7) is

$$
\left\{\begin{array}{l}
\dot{x}=-2 y \tag{1.8}\\
\dot{y}=2 x
\end{array}\right.
$$

Definition 1.4.3. The equilibrium point x_{0} of the system (1.4) is said to be hyperbolic if none of the eigenvalues of the jacobian matrix $A=D f\left(x_{0}\right)$ has zero real part.

1.4.3 Classification of equilibrium points

Definition 1.4.4. Consider the differential system (1.4) with $x \in \mathbb{R}^{2}$. Let A the jacobian matrix calculated at the point $X_{0}=(0,0)$, and let λ_{1} and λ_{2} the eigenvalues of this matrix. We distinguish the different cases according to these eigenvalues:

1. If λ_{1} and λ_{2} are real, nonzero and of different sign, then the equilibrium point X_{0} is a saddle point. It is always unstable (see Fig. 1.1).

Figure $1.1-(0,0)$ is a saddle point.
2. If λ_{1} and λ_{2} are real of the same sign, we have three cases:
\diamond If $\lambda_{1}<\lambda_{2}<0$, then X_{0} is a stable node (see Fig. 1.2).
\diamond If $0<\lambda_{1}<\lambda_{2}$, then X_{0} is an unstable node (see Fig. 1.3).
\diamond If $\lambda_{1}=\lambda_{2}=\lambda$, we have two cases:
Af A is diagonalizable, then X_{0} is a proper node $(P N)$. It is stable if $\lambda<0$ and unstable if $\lambda>0$ (see Fig. 1.4 and Fig. 1.5 respectively).
\star If A If A is not diagonalizable, then X_{0} is an exceptional kind of node. It is exceptional stable node (ESN) if $\lambda<0$ and exceptional unstable node (EUN) if $\lambda>0$ (see Fig. 1.6 and Fig. 1.7 respectively).

Figure $1.2-(0,0)$ is a stable node. Figure $1.3-(0,0)$ is an unstable node.

Figure $1.4-(0,0)$ is a stable PN. Figure $1.5-(0,0)$ is an unstable PN.

Figure $1.6-(0,0)$ is ESN.

Figure $1.7-(0,0)$ is EUN.
3. If λ_{1} and λ_{2} are complex conjugated with a nonzero imaginary part, then X_{0} is a focus. It is stable if $\operatorname{Re}\left(\lambda_{1,2}\right)<0$ and unstable if $\operatorname{Re}\left(\lambda_{1,2}\right)>0$ (see Fig. 1.8 and Fig. 1.9 respectively).

Figure $1.8-(0,0)$ is a stable focus. Figure $1.9-(0,0)$ is an unstable focus.
4. If λ_{1} et λ_{2} are pure imaginary, then X_{0} is a center. It is stable but it is not asymptotically stable (see Fig. 1.10).

Figure $1.10-(0,0)$ is a center.

1.5 Stability of equilibrium points

A nonlinear system can have many equilibrium points. These points can be stable or unstable.

Consider the system

$$
\begin{equation*}
\dot{x}=f(t, x), \quad x \in \mathbb{R}^{n}, t \in \mathbb{R} . \tag{1.9}
\end{equation*}
$$

Let p be an equilibrium point of the system (1.9) and $\phi(t)$ the solution of this system.

Definition 1.5.1. We say that
i) p is stable if and only if

$$
\forall \varepsilon>0, \exists \delta>0,\left\|\phi\left(t_{0}\right)-p\right\|<\delta \Rightarrow\|\phi(t)-p\|<\varepsilon, \forall t \geqslant t_{0}
$$

ii) p is asymptotically stable if and only if p is stable and if there exists a neighborhood of p such that for all x in this neighborhood

$$
\lim _{t \rightarrow \infty} \phi(t)=p
$$

We can study the stability of the system (1.9) according to the eigenvalues of the jacobian matrix $D f(p)$, using the following theorem.

Theorem 1.5.1. Let p be the equilibrium point of the system (1.9).
a) If all the eigenvalues of the jacobian matrix $D f(p)$ have negative real parts, then the equilibrium point p is said to be asymptotically stable.
b) If there exists at least one eigenvalue of $D f(p)$ with a positive real part, then the equilibrium point p is said to be unstable.
c) If $D f(p)$ has eigenvalues with negative real parts and others with zero real parts, then nothing can be said about the stability of the equilibrium point p.

1.6 Phase portrait

Definition 1.6.1. A trajectory is a curve traced by the solution of a differential equation.

Definition 1.6.2. Consider the planar system

$$
\left\{\begin{align*}
\frac{d x}{d t} & =P_{1}(x(t), y(t)) \tag{1.10}\\
\frac{d y}{d t} & =P_{2}(x(t), y(t))
\end{align*}\right.
$$

A phase portrait is the set of trajectories in phase space. In particular, for autonomous systems of ordinary differential equations of two variables, the solutions $(x(t), y(t))$ of the system (1.10) represent in the plane (x, y) curves called orbits.

The equilibrium points of this system are constant solutions and the complete figure of the orbits of this system together with these equilibrium points represent the phase portrait and the $(x \circ y)$ plane is called the phase plane.

1.7 Periodic orbits and limit cycles

1.7.1 Periodic orbits

Definition 1.7.1. A trajectory $\phi(t, x)$ of the system (1.3) is called periodic orbit if there exists a number $T>0$ such that

$$
\begin{equation*}
\phi(t+T, x)=\phi(t, x), \forall x \in \mathbb{R}^{n} \tag{1.11}
\end{equation*}
$$

The smallest real T satisfying (1.11) is called the period.

1.7.2 limit cycles

Definition 1.7.2. A limit cycle is a closed periodic orbit isolated in a set of periodic orbits.

1.8 Stability of limit cycles

Theorem 1.8.1. Let C being the trajectory corresponding to the limit cycle, and let all the interior and exterior trajectories close to C wind up in spirals around C for $t \rightarrow+\infty$ or $t \rightarrow-\infty$.

1. The limit cycle is said to be stable, if all neighboring trajectories are attracted towards C.
2. The limit cycle is said to be unstable, if all neighboring trajectories are pushed away from C.

Example 1.3. Consider the system

$$
\left\{\begin{align*}
\dot{x} & =\frac{1}{2} x-y-x\left(2 x^{2}+2 y^{2}\right) \tag{1.12}\\
\dot{y} & =x+\frac{1}{2} y-y\left(2 x^{2}+2 y^{2}\right)
\end{align*}\right.
$$

In polar coordinates $x=r \cos (\theta), y=r \sin (\theta)$ with $r>0$, system (1.12) becomes

$$
\left\{\begin{array}{l}
\dot{r}=\frac{1}{2} r\left(1-4 r^{2}\right) \tag{1.13}\\
\dot{\theta}=1
\end{array}\right.
$$

We obtain

$$
f(r)=\frac{d r}{d \theta}=\frac{1}{2} r\left(1-4 r^{2}\right) .
$$

So

$$
\dot{r}=0 \Rightarrow r=0 \quad \text { or } \quad r= \pm \frac{1}{2}
$$

Since $r>0$, we only accept the positive root $r=\frac{1}{2}$. Then the periodic solution is written in the following form

$$
(x(t), y(t))=\left(\frac{1}{2} \cos \left(t+\theta_{0}\right), \frac{1}{2} \sin \left(t+\theta_{0}\right)\right)
$$

with $\theta(0)=\theta_{0}$.
In the phase plane, there is only one equation limit cycle $x^{2}+y^{2}=\frac{1}{2}$ whose amplitude $r=\frac{1}{2}$ (see Fig. 1.11).

Figure 1.11 - Limit cycle of system (1.12).

1.9 Existence and non-existence of limit cycles

The study of the existence of limit cycles plays an important role in the study of the behavior of trajectories of nonlinear differential systems.

Theorem 1.9.1. (Poincaré-Bendixon)

Consider the following planar system

$$
\left\{\begin{array}{l}
\dot{x}=f(x, y) \tag{1.14}\\
\dot{y}=g(x, y)
\end{array}\right.
$$

Suppose that f and g are two functions of class C^{1} on an open subset of \mathbb{R}^{2} denoted by E, the system (1.14) has an orbit γ such that the positive orbit $\gamma_{+}(p)=\Phi(p, t), t \geqslant 0$ passing through the point p is contained in a compact subset F of E. Then we are in one of the following three cases:
$\diamond \gamma_{+}(p)$ tends to an equilibrium point.
$\diamond \gamma_{+}(p)$ tends to a periodic orbit.
$\diamond \gamma_{+}(p)$ is a periodic orbit.

If F does not contain equilibrium points then there is a periodic orbit of the system (1.14).

Theorem 1.9.2. (Bendixon criterion)

Consider the system

$$
\left\{\begin{array}{l}
\dot{x}=f(x, y), \\
\dot{y}=g(x, y),
\end{array}\right.
$$

and let $F=(f, g)^{T} \in C^{1}(E)$ where E is a simply connected region in \mathbb{R}^{2}. If the divergence of the vector field $F($ denoted $\nabla F)$ is not identically zero and does not change sign in E, then this system does not have a closed orbit entirely contained in E.

Example 1.4. Consider the following planar differential system

$$
\left\{\begin{array}{l}
\dot{x}=2 x y-2 y^{4}-x, \\
\dot{y}=x^{2}-y^{2}-x^{2} y^{3} .
\end{array}\right.
$$

Let $F=\left(2 x y-2 y^{4}-x, x^{2}-y^{2}-x^{2} y^{3}\right)^{T}$.
We calculate the divergence of the vector field F, we obtain

$$
\begin{aligned}
\operatorname{div} F & =\nabla F=\frac{\partial}{\partial x}\left(2 x y-2 y^{4}-x\right)+\frac{\partial}{\partial y}\left(x^{2}-y^{2}-x^{2} y^{3}\right) \\
& =2 y-1-2 y-3 x^{2} y^{2}=-1-3 x^{2} y^{2}<0
\end{aligned}
$$

Hence, according to the Bendixon criterion this system has no limit cycle in \mathbb{R}^{2}.

1.10 Isochronous set

The isochronous set is a set formed only by periodic solutions, which have the same period.

1.11 Descartes Theorem

Consider the real polynomial

$$
p(x)=a_{i_{1}} x^{i_{1}}+a_{i_{2}} x^{i_{2}}+\cdots+a_{i_{r}} x^{i_{r}}
$$

with $0 \leqslant i_{1}<i_{2}<\cdots<i_{r}$ and $a_{i_{j}} \neq 0$ real constants for $j \in\{1,2, \cdots, r\}$. When $a_{i_{j}} a_{i_{j+1}}<0$, we say that $a_{i_{j}}$ and $a_{i_{j+1}}$ have a variation of sign. If the number of variations of signs is m, then $p(x)$ has at most m positive real roots. Moreover, it is always possible to choose the coefficients of $p(x)$ in such a way that $p(x)$ has exactly $r-1$ positive real roots.

For more information see [5].

1.12 Bifurcation

Definition 1.12.1. we say that a differential equation system

$$
\begin{equation*}
\dot{x}=f(x(t), \mu), \tag{1.15}
\end{equation*}
$$

has a bifurcation at the value $\mu=\mu_{0}$, if there is a change in trajectory structure as the parameter μ crosses the value μ_{0}. That is, there is a change in the number and/or stability of equilibria of the system at the bifurcation value (see [59], p. 173).

1.13 Hopf bifurcation

Theorem 1.13.1. Consider the planar differential system

$$
\left\{\begin{array}{l}
\dot{x}=f_{\mu}(x, y), \tag{1.16}\\
\dot{y}=g_{\mu}(x, y),
\end{array}\right.
$$

where μ is a parameter. Suppose that $(x, y)=\left(x_{0}, y_{0}\right)$ is an equilibrium point of the system (1.16) which depends on μ.

Let $\lambda(\mu)=\alpha(\mu)+i \beta(\mu)$ and $\overline{\lambda(\mu)}=\alpha(\mu)-i \beta(\mu)$ be the eigenvalues of the linearized system in the neighborhood of $\left(x_{0}, y_{0}\right)$.

Suppose further that for a certain value of $\mu=\mu_{0}$, the following conditions are satisfied:

1. $\alpha\left(\mu_{0}\right)=0, \beta\left(\mu_{0}\right)=w \neq 0$ where $\operatorname{sgn}(w)=\operatorname{sgn}\left(\partial g_{\mu} /\left.\partial x\right|_{\mu=\mu_{0}}\left(\left(x_{0}, y_{0}\right)\right)\right)$,
2. $\left.\frac{d \alpha(\mu)}{d \mu}\right|_{\mu=\mu_{0}}=d \neq 0$,
3. $a \neq 0$ where

$$
\begin{gathered}
a=\frac{1}{16}\left(f_{x x x}+f_{x y y}+g_{x x y}+g_{y y y}\right)+\frac{1}{16 w}\left(f_{x y}\left(f_{x x}+f_{y y}\right)\right. \\
\left.-g_{x y}\left(g_{x x}+g_{y y}\right)-f_{x x} g_{x x}+f_{y y} g_{y y}\right),
\end{gathered}
$$

with $f_{x y}=\partial^{2} f /\left.\partial x \partial y\right|_{\mu=\mu_{0}}\left(x_{0}, y_{0}\right)$, etc.
Then, a periodic orbit bifurcate from the equilibrium point for $\mu>\mu_{0}$ if $a d<0$ or for $\mu<\mu_{0}$ if $a d>0$.

The equilibrium point $\left(x_{0}, y_{0}\right)$ is stable for $\mu>\mu_{0}$ (resp. for $\mu<\mu_{0}$) and an unstable equilibrium point for $\mu<0($ resp. $\mu>0)$ if $d<0$ (resp. $d>0$).

The periodic orbit is stable (resp. unstable) if the equilibrium point is unstable (resp. stable).

The amplitude of the periodic orbits are equal to $\sqrt{\left|\mu-\mu_{0}\right|}$ whilst their periods is $T=2 \pi /|w|$ when $\mu \rightarrow \mu_{0}$.

The bifurcation is said to be supercritical if the periodic orbit is stable and subcritical if the periodic orbit is unstable.

Example 1.5. Consider the oscillator $\ddot{x}-\left(\mu-x^{2}\right) \dot{x}+x=0$ (an example of a so-called Liénard differential system), which, with $\dot{x}=y$, we can write as the first-order system

$$
\left\{\begin{array}{l}
\dot{x}=y \tag{1.17}\\
\dot{y}=-x+\left(\mu-x^{2}\right) y
\end{array}\right.
$$

$(0,0)$ is the only equilibrium point of system (1.17).
The eigenvalues of the jacobian matrix of the linearized system calculated in the neighborhood of $(0,0)$ are $\lambda(\mu)=\frac{1}{2}\left(\mu+i \sqrt{4-\mu^{2}}\right), \overline{\lambda(\mu)}=$ $\frac{1}{2}\left(\mu-i \sqrt{4-\mu^{2}}\right)$.

The system has a Hopf bifurcation at $\mu_{0}=0$. We have $w=1, d=\frac{1}{2}$ and $a=-\frac{1}{8}$.

The equilibrium point $(0,0)$ is unstable for $\mu>0$, so the bifurcation is supercritical and there is a stable isolated periodic orbit (limit cycle) if $\mu>0$ for each sufficiently small μ (see Fig. 1.12 for $\mu=0.3$).

Figure 1.12 - Phase portraits of system (1.17).

1.14 Zero-Hopf bifurcation

Definition 1.14.1. The equilibrium point of a given differential system, with dimension greater than two, is referred to as Zero-Hopf equilibrium point its associated Jacobian matrix has a zero eigenvalue and a pair of purely imaginary eigenvalues. This kind of bifurcation is thoroughly analyzed by many author see for example Guckenheimer and Holmes in [28] and a references quoted therein.

1.15 Liénard and Duffing equation

1.15.1 Liénard equation

Definition 1.15.1. Let f and g be two continuously differentiable functions on \mathbb{R}. Then the second order ordinary differential equation of the form

$$
\begin{equation*}
\ddot{x}+f(x) \dot{x}+g(x)=0, \tag{1.18}
\end{equation*}
$$

is called the Liénard equation.

1.15.2 Duffing equation

Definition 1.15.2. The Duffing equation is a nonlinear second-order differential equation of the form

$$
\begin{equation*}
\ddot{x}+c \dot{x}+g(x)=p(t), \tag{1.19}
\end{equation*}
$$

where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous and locally Lipschitz function, c is a constant and $c \geqslant 0, p: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, and T-periodic function.

Chapter 1. Preliminary Notions

1.16 Auxiliary results

For $m, n \in \mathbb{N}$, we define

$$
\begin{equation*}
I_{m, n}=\int_{0}^{2 \pi} \cos ^{m} \theta \sin ^{n} \theta d \theta \tag{1.20}
\end{equation*}
$$

then

$$
I_{m, n}=\frac{m-1}{m+n} I_{m-2, n},
$$

and

$$
I_{m, n}=\frac{n-1}{m+n} I_{m, n-2} .
$$

\diamond If m and n are evens, then $I_{m, n}=\operatorname{coeff}(m, n) \times I_{0,0}=\operatorname{coeff}(m, n) \times 2 \pi$ (reducing m and n, of 2 in 2 until reaching 0 and 0).
\diamond Otherwise $I_{m, n}=\operatorname{coeff}(m, n) \times I_{1,0}$, or $I_{1,1}$, or else $I_{0,1}=0$ everytime. Thus, $I_{m, n} \neq 0$ if and only if m and n are both even.

Chapter

2 Averaging theory

Contents

2.1 A first order averaging theory 22
2.2 Another first order averaging theory 25
2.3 A second order averaging theory 29
2.4 A sixth order averaging theory 32

The method of averaging is a classical and mature tool that allows us to study the dynamics of nonlinear differential systems under periodic forcing. The method of averaging has a long history that starts with the classical works of Lagrange and Laplace, who provided an intuitive justification of the method. The first formalization of this theory was done in 1928 by Fatou [25]. Important practical and theoretical contributions to the averaging theory were made in 1930 by Bogoliubov and Krylov [9], etc. In 2004, Llibre, Novaes and Teixeira [40] extended the averaging theory for computing periodic solutions to an arbitrary order in ε for continuous differential equations with n variables. We refer to the book of Sanders and Verhulst [54] for a general introduction to this subject.

In this chapter, we introduce the theory of averaging, and we give its essential theorems used to achieve the work of this thesis.

2.1 A first order averaging theory

We consider the differential system

$$
\begin{equation*}
\dot{x}(t)=\varepsilon F(t, x)+\varepsilon^{2} R(t, x, \varepsilon) \tag{2.1}
\end{equation*}
$$

with $x \in D \subset \mathbb{R}^{n}, D$ bounded domain, and $t \geqslant 0$. Moreover, we assume that $F(t, x)$ and $R(t, x, \varepsilon)$ are T-periodic in t.

The averaged system associated to system (2.1) is defined by

$$
\begin{equation*}
\dot{y}(t)=\varepsilon f^{0}(x), \quad y_{0}=x_{0}, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
f^{0}(y)=\frac{1}{T} \int_{0}^{T} F(s, y) d s \tag{2.3}
\end{equation*}
$$

The next theorem says under which conditions the equilibrium points of the averaged system (2.2) provide T-periodic orbits of system (2.1).

Theorem 2.1.1. We consider system (2.1) and assume that
(i) $F, R, D_{x} F, D_{x}^{2} F$ and $D_{x} R$ are continuous and bounded by a constant M (independent of ε) in $[0,+\infty) \times D$, with $-\varepsilon_{0}<\varepsilon<\varepsilon_{0}$.
(ii) F and R are T-periodic in t, with T independent of ε.

Then, we have:
(a) If $p \in D$ is a equilibrium point of the averaged system (2.2) such that

$$
\begin{equation*}
\operatorname{det}\left(D_{x} f^{0}(p)\right) \neq 0 \tag{2.4}
\end{equation*}
$$

Then for $\varepsilon>0$ sufficiently small, there exists a T-periodic solution $x_{\varepsilon}(t)$ of the system (2.1) such that $x_{\varepsilon}(t) \rightarrow p$ as $\varepsilon \rightarrow 0$.
(b) If the equilibrium point $y=p$ of the averaged system (2.2) is hyperbolic, then, for $|\varepsilon|>0$ sufficiently small, the corresponding periodic solution of the system (2.1) is unique and of the same stability as p.

Proof of Theorem 2.1.1. See [54].

Example 2.1. Consider the Van Der Pol differential equation

$$
\ddot{x}+x=\varepsilon\left(1-x^{2}\right) \dot{x},
$$

which can be written as the differential system

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=-x+\varepsilon\left(1-x^{2}\right) y .
\end{array}\right.
$$

In polar coordinates (r, θ) where $x=r \cos \theta, y=r \sin \theta$ with $r>0$, this system becomes

$$
\left\{\begin{array}{l}
\dot{r}=\varepsilon r\left(1-r^{2} \cos ^{2} \theta\right) \sin ^{2} \theta \tag{2.5}\\
\dot{\theta}=-1+\varepsilon\left(1-r^{2} \cos ^{2} \theta\right) \sin \theta \cos \theta
\end{array}\right.
$$

or equivalently

$$
\begin{equation*}
\frac{d r}{d \theta}=-\varepsilon r\left(1-r^{2} \cos ^{2} \theta\right) \sin ^{2} \theta+O\left(\varepsilon^{2}\right) \tag{2.6}
\end{equation*}
$$

Note that the previous differential system is in the normal form (2.1) for applying the averaging theory described in Theorem if we take $x=r, t=\theta$, $T=2 \pi$ and $F(t, x)=F(\theta, r)=-r\left(1-r^{2} \cos ^{2} \theta\right) \sin ^{2} \theta$.
From (2.3) we get that

$$
f^{0}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} F(\theta, r) d \theta=\frac{1}{8} r\left(r^{2}-4\right) .
$$

The unique positive root of $f^{0}(r)$ is $r=2$. Since $\left(\frac{d f^{0}}{d r}\right)(2)=1 \neq 0$, by statement (a) of Theorem 2.1.1, it follows that system (2.5) has for $|\varepsilon| \neq 0$ sufficiently small a limit cycle bifurcating from the periodic orbit of radius 2 of the unperturbed system (2.5) with $\varepsilon=0$. Moreover, since $\left(\frac{d f^{0}}{d r}\right)(2)=1>0$, by statement (b) of Theorem 2.1.1, this limit cycle is unstable, (see Fig. 2.1 bellow for $\epsilon=10^{-2}$).

Figure 2.1 - The unstable limit cycle of equation (2.1).

2.2 Another first order averaging theory

We consider the problem of the bifurcation of T-periodic solutions from differential systems of the form

$$
\begin{equation*}
\mathbf{x}^{\prime}=F_{0}(t, \mathbf{x})+\varepsilon F_{1}(t, \mathbf{x})+\varepsilon^{2} F_{2}(t, \mathbf{x}, \varepsilon), \tag{2.7}
\end{equation*}
$$

with $\varepsilon \in\left(-\varepsilon_{0}, \varepsilon_{0}\right)$, for ε_{0} sufficiently small. Here the functions $F_{0}, F_{1}: \mathbb{R} \times \Omega \mapsto$ \mathbb{R}^{n} and $F_{2}: \mathbb{R} \times \Omega \times\left(-\varepsilon_{0}, \varepsilon_{0}\right) \mapsto \mathbb{R}^{n}$ are \mathcal{C}^{2} functions, T-periodic in the first variable, and Ω is an open subset of \mathbb{R}^{n}. One of the main assumptions is that the unperturbed system

$$
\begin{equation*}
\mathbf{x}^{\prime}=F_{0}(t, \mathbf{x}), \tag{2.8}
\end{equation*}
$$

has a submanifold of periodic solutions.
Let $\mathbf{x}(t, \mathbf{z})$ be the solution of system (2.8) such that $\mathbf{x}(0, \mathbf{z})=\mathbf{z}$. We write the linearization of the unperturbed system along the periodic solution $\mathbf{x}(t, \mathbf{z})$ as

$$
\begin{equation*}
\mathbf{y}^{\prime}=D_{\mathbf{x}} F_{0}(t, \mathbf{x}(t, \mathbf{z}, 0)) \mathbf{y} \tag{2.9}
\end{equation*}
$$

In what follows we denote by $M_{\mathbf{z}}(t)$ some fundamental matrix of the linear differential system (2.9), and by $\xi: \mathbb{R}^{k} \times \mathbb{R}^{n-k} \mapsto \mathbb{R}^{k}$ the projection of \mathbb{R}^{n} onto its first k coordinates; i.e. $\xi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k}\right)$.

Theorem 2.2.1. Let $V \in \mathbb{R}^{k}$ be open bounded with its closure contained in Ω i.e. $\mathrm{Cl}(V) \subset \Omega$, and let $\beta_{0}: \mathrm{Cl}(V) \mapsto \mathbb{R}^{n-k}$ be a \mathcal{C}^{2} function. We assume
(i) $Z=\left\{\mathbf{z}_{\alpha}=\left(\alpha, \beta_{0}(\alpha)\right), \alpha \in \mathrm{Cl}(V)\right\} \subset \Omega$ and that for each $\mathbf{z}_{\alpha} \in Z$ the solution $\mathbf{x}\left(t, \mathbf{z}_{\alpha}\right)$ of (2.8) is T-periodic;
(ii) for each $\mathbf{z}_{\alpha} \in Z$ there is a fundamental matrix $M_{\mathbf{z}_{\alpha}}(t)$ of (2.9) such that the matrix $M_{\mathbf{z}_{\alpha}}^{-1}(0)-M_{\mathbf{z}_{\alpha}}^{-1}(T)$ has in the right up corner the $k \times(n-k)$
zero matrix, and in the right down corner a $(n-k) \times(n-k)$ matrix Δ_{α} with $\operatorname{det}\left(\Delta_{\alpha}\right) \neq 0$.

We consider the function $\mathcal{F}: \mathrm{Cl}(V) \mapsto \mathbb{R}^{k}$ defined by

$$
\begin{equation*}
\mathcal{F}(\alpha)=\xi\left(\int_{0}^{T} M_{\mathbf{z}_{\alpha}}^{-1}(t) F_{1}\left(t, \mathbf{x}\left(t, \mathbf{z}_{\alpha}\right)\right) d t\right) \tag{2.10}
\end{equation*}
$$

If there exists $a \in V$ with $\mathcal{F}(a)=0$ and $\operatorname{det}\left(\left(\frac{d \mathcal{F}}{d \alpha}\right)(a)\right) \neq 0$, then there is a T-periodic solution $\mathbf{x}(t, \varepsilon)$ of system (2.7) such that $\mathbf{x}(0, \varepsilon) \rightarrow \mathbf{z}_{\alpha}$ as $\varepsilon \rightarrow 0$.

Proof of Theorem 2.2.1. The proof goes back to Malkin [46] and Roseau [52], and for shorter proof see [12].

We assume that there exists an open set V with $\mathrm{Cl}(V) \subset \Omega$ such that for each $\mathbf{z} \in \mathrm{Cl}(V), \mathbf{x}(t, \mathbf{z}, 0)$ is T-periodic, where $\mathbf{x}(t, \mathbf{z}, 0)$ denotes the solution of the unperturbed system (2.8) with $\mathbf{x}(t, \mathbf{z}, 0)=\mathbf{z}$. The set $\mathrm{Cl}(V)$ is isochronous for the system (2.7); i.e. it is a set formed only by periodic orbits, all of them having the same period. Then, an answer to the problem of the bifurcation of T-periodic solutions from the periodic solutions $\mathbf{x}(t, \mathbf{z}, 0)$ contained in $\mathrm{Cl}(V)$ is given in the following result.

Theorem 2.2.2. [Perturbations of an isochronous set] We assume that there exists an open and bounded set V with $\mathrm{Cl}(V) \subset \Omega$ such that for each $\mathbf{z} \in \mathrm{Cl}(V)$, the solution $\mathbf{x}(t, \mathbf{z})$ is T-periodic, then we consider the function $\mathcal{F}: \mathrm{Cl}(V) \rightarrow$ \mathbb{R}^{n} as

$$
\begin{equation*}
\mathcal{F}(\mathbf{z})=\frac{1}{T} \int_{0}^{T} M_{\mathbf{z}}^{-1}(t, \mathbf{z}) F_{1}(t, \mathbf{x}(t, \mathbf{z})) d t \tag{2.11}
\end{equation*}
$$

If there exists $a \in V$ with $\mathcal{F}(a)=0$ and

$$
\begin{equation*}
\operatorname{det}((d \mathcal{F} / d \mathbf{z})(a)) \neq 0 \tag{2.12}
\end{equation*}
$$

then there exists a T-periodic solution $\mathbf{x}(t, \varepsilon)$ of system (2.7) such that $\mathbf{x}(0, \varepsilon) \rightarrow a$ as $\varepsilon \rightarrow 0$.

Proof of Theorem 2.2.2. It follows immediately from Theorem 2.2.1, taking $\mathrm{k}=\mathrm{n}$.

Theorem 2.2.3. Under the assumptions of Theorem 2.2.2, for small ε the condition (2.12) ensures the existence and uniqueness of a T-periodic solution $x(t, \varepsilon)$ of system (2.7) such that $\mathbf{x}(0, \varepsilon) \rightarrow \alpha$ as $\varepsilon \rightarrow 0$, and if all eigenvalues of the matrix $(d \mathcal{F} / d \mathbf{z})(\mathbf{a})$ have negative real parts, then the periodic solution $(x(t, \varepsilon)$ is stable. If some of the eigenvalue have a positive real part, then the periodic solution $x(t, \varepsilon)$ is unstable.

Example 2.2. Consider the Michelson system of the form

$$
\begin{equation*}
\dot{x}=y, \quad \dot{y}=z, \quad \dot{z}=c^{2}-y-\frac{x^{2}}{2} \tag{2.13}
\end{equation*}
$$

with $(x, y, z) \in \mathbb{R}^{3}$ and the parameter $c \geqslant 0$. For any $\varepsilon \neq 0$, we take the change of variables $x=\varepsilon \bar{x}, y=\varepsilon \bar{y}, z=\varepsilon \bar{x}$ and $c=\varepsilon d$, then the Michelson system (2.13) becomes

$$
\begin{equation*}
\dot{x}=y, \quad \dot{y}=z, \quad \dot{z}=-y+\varepsilon\left(d^{2}-\frac{1}{2} x^{2}\right), \tag{2.14}
\end{equation*}
$$

where we still use x, y, z instead of $\bar{x}, \bar{y}, \bar{z}$. Now doing the change of variables $x=x, y=r \sin \theta$ and $z=r \cos \theta$, system (2.14) goes over to

$$
\begin{equation*}
\dot{x}=r \sin \theta, \quad \dot{r}=\frac{\varepsilon}{2}\left(2 d^{2}-x^{2}\right) \cos \theta, \quad \dot{\theta}=1-\frac{\varepsilon}{2 r}\left(2 d^{2}-x^{2}\right) \sin \theta . \tag{2.15}
\end{equation*}
$$

This system can be written as

$$
\begin{align*}
\frac{d x}{d \theta} & =r \sin \theta+\frac{\varepsilon}{2}\left(2 d^{2}-x^{2}\right) \sin ^{2} \theta+\varepsilon^{2} f_{1}(\theta, e, \varepsilon), \tag{2.16}\\
\frac{d r}{d \theta} & =\frac{\varepsilon}{2}\left(2 d^{2}-x^{2}\right) \cos \theta+\varepsilon^{2} f_{2}(\theta, e, \varepsilon),
\end{align*}
$$

where f_{1} and f_{2} are analytic functions in their variables.
For arbitrary $\left(x_{0}, r_{0}\right) \neq(0,0)$, system $(2.16)_{\varepsilon=0}$ has the $2 \pi-$ periodic solution

$$
\begin{equation*}
x(\theta)=r_{0}+x_{0}-r_{0} \cos \theta, \quad r(\theta)=r_{0}, \tag{2.17}
\end{equation*}
$$

such that $x(0)=x_{0}$ and $r(0)=r_{0}$. It is easy to see that the first variational equation of (2.16) $)_{\varepsilon=0}$ along the solution (2.17) is

$$
\binom{\frac{d y_{1}}{d \theta}}{\frac{d y_{2}}{d \theta}}=\left(\begin{array}{cc}
0 & \sin \theta \\
0 & 0
\end{array}\right)\binom{y_{1}}{y_{2}}
$$

It has the fundamental solution matrix

$$
M=\left(\begin{array}{cc}
1 & 1-\cos \theta \tag{2.18}\\
0 & 1
\end{array}\right)
$$

which is independent of the initial condition $\left(x_{0}, r_{0}\right)$. Applying Theorem 2.2.2 to the differential system (2.16) we have that

$$
\mathcal{F}\left(x_{0}, r_{0}\right)=\left.\frac{1}{2} \int_{0}^{2 \pi} M^{-1}\binom{\left(2 d^{2}-x^{2}\right) \sin ^{2} \theta}{\left(2 d^{2}-x^{2}\right) \cos \theta}\right|_{(2.17)} d \theta .
$$

Then $\mathcal{F}\left(x_{0}, r_{0}\right)=\left(g_{1}\left(x_{0}, r_{0}\right), g_{2}\left(x_{0}, r_{0}\right)\right)$ with

$$
g_{1}\left(x_{0}, r_{0}\right)=\frac{1}{4}\left(4 d^{2}-5 r_{0}^{2}-6 r_{0} x_{0}-2 x_{0}^{2}\right), \quad g_{2}\left(x_{0}, r_{0}\right)=\frac{1}{2} r_{0}\left(x_{0}+r_{0}\right) .
$$

We can check that $\mathcal{F}=0$ has a unique solution $x_{0}=-2 d$ and $r_{0}=2 d$, and that $\left.\operatorname{det} \operatorname{DF}\left(x_{0}, r_{0}\right)\right|_{x_{0}=-2 d, r_{0}=2 d}=d^{2}$. Hence by Theorem 2.2.2 it follows that for any given $d>0$ and for $|\varepsilon|>0$ sufficiently small system (2.16) has a periodic orbit $(x(\theta, \varepsilon), r(\theta, \varepsilon))$ of period 2π, such that $(x(0, \varepsilon), r(0, \varepsilon)) \rightarrow(-2 d, 2 d)$ as $\varepsilon \rightarrow 0$. We note that the eigenvalues of $\left.\operatorname{det} D \mathcal{F}\left(x_{0}, r_{0}\right)\right|_{x_{0}=-2 d, r_{0}=2 d}$ are $\pm d i$. This shows that the periodic orbit is stable.

Going back to system (2.13) we get that for $c>0$ sufficiently small the
Michelson system has a periodic orbit of period close to 2π given by $x(t)=$ $-2 c \cos t, y(t)=2 c \sin t$ and $z(t)=2 c \cos t$, (see Fig. 2.2 bellow for $\epsilon=10^{-2}$).

Figure 2.2 - The stable limit cycle of system (2.13).

2.3 A second order averaging theory

consider the differential system

$$
\begin{equation*}
\dot{x}=\varepsilon F_{1}(t, x)+\varepsilon^{2} F_{2}(t, x, \varepsilon)+\varepsilon^{3} R(t, x, \varepsilon), \tag{2.19}
\end{equation*}
$$

where the functions $F_{1}, F_{2}: \mathbb{R} \times D \rightarrow \mathbb{R}^{n}$ and $R: \mathbb{R} \times D \times\left(-\varepsilon_{f}, \varepsilon_{f}\right) \rightarrow \mathbb{R}^{n}$ are continuous functions, T-periodic in the first variable, and D is an open subset of \mathbb{R}^{n}. Assume that the following hypotheses (i) and (ii) hold.
(i) $F_{1}(t,.) \in \mathcal{C}^{1}(D)$ for all $t \in \mathbb{R}, F_{1}, F_{2}, R, D_{x} F_{1}$ are locally Lipshitz with respect to x and R is differential with respect to ε. We define

$$
\begin{gather*}
F_{k 0}: D \rightarrow \mathbb{R} \text { for } k=1,2 \text { as } \\
\qquad F_{10}(z)=\frac{1}{T} \int_{0}^{T} F_{1}(s, z) d s \tag{2.20}\\
F_{20}(z)=\frac{1}{T} \int_{0}^{T}\left[D_{z} F_{1}(s, z) \cdot y_{1}(s, z)+F_{2}(s, z)\right] d s
\end{gather*}
$$

where

$$
y_{1}(s, z)=\int_{0}^{s} F_{1}(t, z) d t
$$

(ii) for $V \in D$ an open bounded set and for each $\varepsilon \in\left(-\varepsilon_{f}, \varepsilon_{f}\right) \backslash\{0\}$, there exists $a \in V$ such that $F_{10}(a)+\varepsilon F_{20}(a)=0$ and $d_{B}\left(F_{10}+\varepsilon F_{20}, V, a\right) \neq 0$.

Then, for $|\varepsilon|>0$ sufficiently small there exists a T-periodic solution $\varphi(., \varepsilon)$ of the system (2.20) such that $\varphi(., \varepsilon) \mapsto a$ when $\varepsilon \mapsto 0$.

The expression $d_{B}\left(F_{10}+\varepsilon F_{20}, V, a\right) \neq 0$ means that the Brower degree of the function $F_{10}+\varepsilon F_{20}: V \rightarrow \mathbb{R}^{n}$ at the fixed point a is not zero. A sufficient condition for inequality to be true is that the jacobian of the function $F_{10}+\varepsilon F_{20}$ at a be non-zero.

If F_{10} is not identically zero, then the zero of $F_{10}+\varepsilon F_{20}$ are mainly the zeros of F_{10} for ε sufficiently small. In this case the previous result provides the averaging theory of this first order.

If F_{10} is identically zero and F_{20} is not identically zero, then the zeros of $F_{10}+\varepsilon F_{20}$ are mainly the zeros of F_{20} for ε sufficiently small. In this case the previous result provides the averaging theory of second order.

Example 2.3. Consider the following system

$$
\left\{\begin{array}{l}
\dot{x}=y+\varepsilon x^{2}+\varepsilon^{2} x^{2} \tag{2.21}\\
\dot{y}=-x+\varepsilon^{2}\left(x^{4}+x^{3}+y^{3}-\frac{1}{3} y\right) .
\end{array}\right.
$$

In polar coordinates $x=r \cos \theta$ and $y=r \sin \theta$ with $r>0$, system (2.21) becomes

$$
\left\{\begin{align*}
\dot{r}= & r^{2} \cos (\theta)^{3} \epsilon+\left(r^{2} \cos (\theta)^{3}+\sin (\theta) r^{4} \cos (\theta)^{4}+\sin (\theta) r^{3} \cos (\theta)^{3}\right. \\
& \left.+r^{3} \sin (\theta)^{4}-\frac{r \sin (\theta)^{2}}{3}\right) \epsilon^{2}, \\
\dot{\theta}= & -1-r \sin (\theta) \cos (\theta)^{2} \epsilon+\left(-r \sin (\theta) \cos (\theta)^{2}+r^{3} \cos (\theta)^{5}\right. \tag{2.22}\\
& \left.+r^{2} \cos (\theta)^{4}+r^{2} \cos (\theta) \sin (\theta)^{3}-\frac{\cos (\theta) \sin (\theta)}{3}\right) \epsilon^{2} .
\end{align*}\right.
$$

Now consider θ as an independent variable, we get the following system

$$
\begin{aligned}
\frac{d r}{d \theta}= & -r^{2} \cos (\theta)^{3} \epsilon+\left(-r^{2} \cos (\theta)^{3}-\sin (\theta) r^{4} \cos (\theta)^{4}-\sin (\theta) r^{3} \cos (\theta)^{3}\right. \\
& \left.-r^{3} \sin (\theta)^{4}+\frac{r \sin (\theta)^{2}}{3}+r^{3} \cos (\theta)^{5} \sin (\theta)\right) \epsilon^{2} .
\end{aligned}
$$

It is equivalent to

$$
\frac{d r}{d \theta}=\varepsilon F_{1}(\theta, r)+\varepsilon^{2} F_{2}(\theta, r)+O\left(\varepsilon^{2}\right)
$$

with $F_{1}(\theta, r)=-r^{2} \cos (\theta)^{3}$, and

$$
\begin{gathered}
F_{2}(\theta, r)=-r^{2} \cos (\theta)^{3}-\sin (\theta) r^{4} \cos (\theta)^{4}-\sin (\theta) r^{3} \cos (\theta)^{3}-r^{3} \sin (\theta)^{4} \\
+\frac{1}{3} r \sin (\theta)^{2}+r^{3} \cos (\theta)^{5} \sin (\theta)
\end{gathered}
$$

Now we calculate the first averaged function, we obtain

$$
F_{10}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} F_{1}(\theta, r) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} r^{2} \cos ^{3} \theta d \theta=0
$$

Since $F_{10}(r)=0$, we can move on to the second-order averaging theory. we get

$$
F_{20}(r)=\frac{-1}{24} r\left(9 r^{2}-4\right)
$$

The equation $F_{20}(r)=0$ has only one positive root $r=\frac{2}{3}$. Since $F_{20}^{\prime}\left(\frac{2}{3}\right)=-\frac{1}{3}$, then system (2.21) has a single stable limit cycle of amplitude $\frac{2}{3}$ for $|\varepsilon| \neq 0$ sufficiently small, (see Fig. 2.3 bellow for $\epsilon=10^{-2}$).

Figure 2.3 - The stable limit cycle of system (2.21).

2.4 A sixth order averaging theory

In this section we present the basic results from the averaging theory up to order 6 that we need for proving our results. It can summarized as follows.

We consider the differential systems given by

$$
\begin{equation*}
\dot{x}=\sum_{i=1}^{k} \varepsilon^{i} F_{i}(t, x)+\varepsilon^{k+1} R(t, x, \varepsilon) \tag{2.23}
\end{equation*}
$$

where the functions $F_{i}: \mathbb{R} \times D \rightarrow \mathbb{R}$ for $i=1, \ldots, k$, and $R: \mathbb{R} \times D \times\left(-\varepsilon_{0}, \varepsilon_{0}\right) \rightarrow$ \mathbb{R} are continuous, and T-periodic in the variable t, D is an open interval of \mathbb{R}, and ε a small parameter. We define the functions $y_{j}(t, z)$ for $j=1, \ldots, 6$ associated to system (2.23) by sing the results of [40] as

$$
\begin{aligned}
& y_{1}(t, z)=\int_{0}^{t} F_{1}(s, z) d s \\
& y_{2}(t, z)=\int_{0}^{t}\left(2 \partial F_{1}(s, z) y_{1}(s, z)+2 F_{2}(s, z)\right) d s \\
& y_{3}(t, z)=\int_{0}^{t}\left(6 \partial F_{2}(s, z) y_{1}(s, z)+6 F_{3}(s, z)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad+3 \partial F_{1}(s, z) y_{2}(s, z)+3 \partial^{2} F_{1}(s, z) y_{1}(s, z)^{2}\right) d s, \\
& y_{4}(t, z)=\int_{0}^{t}\left(24 \partial F_{3}(s, z) y_{1}(s, z)+24 F_{4}(s, z)\right. \\
& \quad+12 \partial F_{2}(s, z) y_{2}(s, z)++12 \partial^{2} F_{2}(s, z) y_{1}(s, z)^{2} \\
& \quad+12 \partial^{2} F_{1}(s, z) y_{1}(s, z) y_{2}(s, z) \\
& \left.\quad+4 \partial F_{1}(s, z) y_{3}(s, z)+4 \partial^{3} F_{1}(s, z) y_{1}(s, z)^{3}\right) d s, \\
& y_{5}(t, z)=\int_{0}^{t}\left(120 \partial F_{4}(s, z) y_{1}(s, z)+120 F_{5}(s, z)\right. \\
& \quad+60 \partial F_{3}(s, z) y_{2}(s, z)+60 \partial^{2} F_{3}(s, z) y_{1}(s, z)^{2} \\
& \quad+20 \partial^{3} F_{2}(s, z) y_{1}(s, z)^{3}+60 \partial^{2} F_{2}(s, z) y_{1}(s, z) y_{2}(s, z) \\
& \quad+20 \partial^{2} F_{1}(s, z) y_{1}(s, z) y_{3}(s, z)+20 \partial F_{2}(s, z) y_{3}(s, z) \\
& \quad+30 \partial^{3} F_{1}(s, z) y_{1}(s, z)^{2} y_{2}(s, z)+15 \partial^{2} F_{1}(s, z) y_{2}(s, z)^{2} \\
& \left.\quad+5 \partial F_{1}(s, z) y_{4}(s, z)+5 \partial^{4} F_{1}(s, z) y_{1}(s, z)^{4}\right) d s, \\
& y_{6}(t, z)=\int_{0}^{t}\left(360 \partial F_{4}(s, z) y_{2}(s, z)+720 \partial F_{5}(s, z) y_{1}(s, z)+720 F_{6}(s, z)\right. \\
& \quad+360 \partial^{2} F_{3}(s, z) y_{1}(s, z) y_{2}(s, z)+120 \partial F_{3}(s, z) y_{3}(s, z)+360 \partial^{2} F_{4}(s, z) y_{1}(s, z)^{2} \\
& \quad+120 \partial^{2} F_{2}(s, z) y_{1}(s, z) y_{3}(s, z)+30 \partial F_{2}(s, z) y_{4}(s, z)+120 \partial^{3} F_{3}(s, z) y_{1}(s, z)^{3} \\
& \quad+180 \partial^{3} F_{2}(s, z) y_{1}(s, z)^{2} y_{2}(s, z)+90 \partial^{2} F_{2}(s, z) y_{2}(s, z)^{2}+30 \partial^{4} F_{2}(s, z) y_{1}(s, z)^{4} \\
& +60 \partial^{2} F_{1}(s, z) y_{2}(s, z) y_{3}(s, z)+30 \partial^{2} F_{1}(s, z) y_{1}(s, z) y_{4}(s, z)+6 \partial F_{1}(s, z) y_{5}(s, z) \\
& +60 \partial^{4} F_{1}(s, z) y_{1}(s, z)^{3} y_{2}(s, z)+60 \partial^{3} F_{1}(s, z) y_{1}(s, z)^{2} y_{3}(s, z) \\
& \left.\left.+6 \partial^{5} F_{1} s, z\right) y_{1}(s, z)^{5}+90 \partial^{3} F_{1}(s, z) y_{1}(s, z) y_{2}(s, z)^{2}\right) d s .
\end{aligned}
$$

Note that $\partial^{k} F_{l}(s, z)$ means the k-th partial derivative of the function $F_{l}(s, z)$ with respect to the variable z. From [40] the first six averaged functions are

$$
f_{K}(z)=\frac{1}{k!} y_{k}(T, z), \quad \text { for } k=1, \ldots, 6 \text {. }
$$

The averaging theory for the differential system (2.23) works as follows. Assume that the averaged function $f_{j}(z)=0$ for $j=1, \ldots, k-1$ and $f_{k}(z) \neq 0$ for some $k \geqslant 1$. If \bar{z} is a simple zero of $f_{k}(z)$, then there is a limit cycle $r(\theta, \varepsilon)$ of system (2.23) such that $r(0, \varepsilon) \longrightarrow \bar{z}$ when $\varepsilon \longrightarrow 0$. Moreover if the derivative $f_{k}^{\prime}(z)>0$ (respectively $f_{k}^{\prime}(z)<0$) the limit cycle $r(\theta, \varepsilon)$ is unstable (respectively stable). For more details on the stability of these limit cycles see Theorem 11.6 of [59].

Chapter

3
 Periodic solutions for two classes of Duffing differential equations

Contents

3.1 Periodic solutions for a class of Duffing differen
tial equations 36
3.2 Periodic solutions for another class of Duffing differential equations 39

These last years many results have been published on the periodic solutions of different classes of Duffing differential equations. These results are on the existence of periodic solutions, in their multiplicity, in their kind of stability, in their bifurcations, \ldots see for instance $[3,4,19,21,26,30,33,55]$.

In this chapter, using averaging theory, we provide sufficient conditions for the existence of periodic solutions in two classes of Duffing differential equations.

3.1 Periodic solutions for a class of Duffing differential equations

In this part, we provide sufficient conditions for the existence of periodic solutions for the class of Duffing differential equations in \mathbb{R} of the form

$$
\begin{equation*}
\ddot{x}+\varepsilon p(t) \dot{x}+(1+\varepsilon q(t)) x=\varepsilon f(t, x)+\varepsilon c(t), \tag{3.1}
\end{equation*}
$$

where $p(t), q(t), f(t, x)$ and $c(t)$ are 2π-periodic functions in the variable t, ε is a small parameter, and $x \in \mathbb{R}$. Some extensions of these results can be found in [19, 21, 33, 55].

Our main result on the periodic solutions of the first class of Duffing differential equations (3.1) is the following.

Theorem 3.1.1. We define the functions

$$
\begin{aligned}
& \mathcal{F}_{1}\left(x_{0}, y_{0}\right)=-\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(c(t)+f\left(t, x_{0} \cos t+y_{0} \sin t\right)-\right. \\
& p(t)\left(y_{0} \cos t-x_{0} \sin t\right)-q(t)\left(x_{0} \cos t+y_{0} \sin t\right) \sin t d t \\
& \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(c(t)+f\left(t, x_{0} \cos t+y_{0} \sin t\right)-\right. \\
& p(t)\left(y_{0} \cos t-x_{0} \sin t\right)-q(t)\left(x_{0} \cos t+y_{0} \sin t\right) \cos t d t
\end{aligned}
$$

Chapter 3. Periodic solutions for two classes of Duffing differential equations

Then for $\varepsilon \neq 0$ sufficiently small and for every $\left(x_{0}^{*}, y_{0}^{*}\right)$ solution of the system

$$
\begin{equation*}
\mathcal{F}_{1}\left(x_{0}, y_{0}\right)=0, \quad \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=0 \tag{3.2}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\operatorname{det}\left(\left.\frac{\partial\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)}{\partial\left(x_{0}, y_{0}\right)}\right|_{\left(x_{0}, y_{0}\right)=\left(x_{0}^{*}, y_{0}^{*}\right)}\right) \neq 0 \tag{3.3}
\end{equation*}
$$

the Duffing differential equation (3.1) has a 2π-periodic solution $x(t, \varepsilon)$ which tends to the 2π-periodic solution $x(t)=x_{0}^{*} \cos t+y_{0}^{*} \sin t$ of the differential equation $\ddot{x}+x=0$, when $\varepsilon \rightarrow 0$.

Proof of Theorem 3.1.1. If $\dot{x}=y$, then the first class of Duffing differential equation (3.1) can be written as the following first-order differential system in \mathbb{R}^{2}

$$
\left\{\begin{array}{l}
\dot{x}=y \tag{3.4}\\
\dot{y}=-x+\varepsilon(-p(t) y-q(t) x+f(t, x)+c(t))
\end{array}\right.
$$

The solution $(x(t), y(t))$ of the unperturbed system (3.4) with $\varepsilon=0$ such that $(x(0), y(0))=\left(x_{0}, y_{0}\right)$ is

$$
\begin{equation*}
(x(t), y(t))=\left(x_{0} \cos t+y_{0} \sin t, y_{0} \cos t-x_{0} \sin t\right) \tag{3.5}
\end{equation*}
$$

Of course all these periodic orbits have period 2π.
Using the notation of Section 2.1, we have $\mathbf{x}=(x, y), \mathbf{z}=\left(x_{0}, y_{0}\right)$, $F_{0}(\mathbf{x}, t)=(y,-x), F_{1}(\mathbf{x}, t)=(0,-p(t) y-q(t) x+f(t, x)+c(t))$ and $F_{2}(\mathbf{x}, t, \varepsilon)=(0,0)$. Since fundamental matrix $M_{\mathbf{z}}(t)$ is independent of \mathbf{z}, we denote it simply by $M(t)$. An easy computation provides

$$
M(t)=\left(\begin{array}{cc}
\cos t & \sin t \tag{3.6}\\
-\sin t & \cos t
\end{array}\right)
$$

From Theorem 2.2.2 we must study the zeros $\mathbf{z}=\left(x_{0}, y_{0}\right)$ of the function $\mathcal{F}(\mathbf{z})$ defined in (3.4), i.e. of the function $\mathcal{F}(\mathbf{z})=\left(\mathcal{F}_{1}(\mathbf{z}), \mathcal{F}_{2}(\mathbf{z})\right)$ where \mathcal{F}_{1} and \mathcal{F}_{2} are given in the statement of Theorem 3.1.1. The rest of the proof of Theorem 3.1.1 follows directly from Theorem 2.2.2.

Two applications of Theorem 3.1.1 are given in the next examples.
Example 3.1. The particular Duffing differential equation (3.1) with $p(t)=$ $-\sin ^{2} t, q(t)=1, f(t, x)=(1+x) \sin t$ and $c(t)=\cos t$ becomes

$$
\begin{equation*}
\ddot{x}-\epsilon \sin t^{2} \dot{x}+(1+\epsilon) x=\epsilon(\sin t(x+1)+\cos t) . \tag{3.7}
\end{equation*}
$$

After some computations the functions \mathcal{F}_{1} and \mathcal{F}_{2} of Theorem 3.1.1 are

$$
\mathcal{F}_{1}\left(x_{0}, y_{0}\right)=\frac{1}{8}\left(3 x_{0}+4 y_{0}-4\right), \quad \text { and } \quad \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=\frac{1}{8}\left(-4 x_{0}+y_{0}+4\right) .
$$

The function $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ has a unique zero $\left(x_{0}^{*}, y_{0}^{*}\right)=\left(\frac{20}{19}, \frac{4}{19}\right)$. Since the jacobian (3.3) is $\frac{19}{64} \neq 0$, then for $\varepsilon \neq 0$ sufficiently small the differential equation (3.7) has the periodic solution $x(t, \varepsilon)$, tending to the periodic solution $\frac{20}{19} \cos t+\frac{4}{19} \sin t$ of the differential equation $\ddot{x}+x=0$, when $\varepsilon \rightarrow 0$.

Example 3.2. The Duffing differential equation (3.1) with $p(t)=-\sin ^{2} t$, $q(t)=-\sin t, f(t, x)=\left(5-x^{2}\right) \cos t$ and $c(t)=-\cos t$ becomes

$$
\begin{equation*}
\ddot{x}-\epsilon \sin t^{2} \dot{x}+(1-\epsilon \sin t) x=\epsilon \cos t\left(4-x^{2}\right) . \tag{3.8}
\end{equation*}
$$

After some computations we get that

$$
\mathcal{F}_{1}\left(x_{0}, y_{0}\right)=\frac{1}{8}\left(2 x_{0} y_{0}+3 x_{0}\right), \quad \text { and } \quad \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=\frac{1}{8}\left(-3 x_{0}^{2}-y_{0}^{2}+y_{0}+16\right) .
$$

The function $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ has the following four zeros $\left(x_{0}^{*}, y_{0}^{*}\right)$:

$$
\left(0, \frac{1}{2}+\frac{\sqrt{65}}{2}\right), \quad\left(0, \frac{1}{2}-\frac{\sqrt{65}}{2}\right), \quad\left(\frac{7 \sqrt{3}}{6},-\frac{3}{2}\right), \quad\left(-\frac{7 \sqrt{3}}{6},-\frac{3}{2}\right) .
$$

Chapter 3. Periodic solutions for two classes of Duffing differential equations

Since the jacobians (3.3) at these four zeros are respectively $-\frac{\sqrt{65}}{16}-\frac{65}{64}$, $\frac{\sqrt{65}}{16}-\frac{65}{64}, \frac{49}{64}$ and $\frac{49}{64}$. Then for $\varepsilon \neq 0$ sufficiently small, then the differential equation (3.8) has four periodic solutions which tend to the periodic solutions $\frac{1}{2}-\frac{\sqrt{65}}{2} \sin t, \frac{1}{2}+\frac{\sqrt{65}}{2} \sin t, \frac{7 \sqrt{3}}{6} \cos t-\frac{3}{2} \sin t$ and $-\frac{7 \sqrt{3}}{6} \cos t-\frac{3}{2} \sin t$ of the differential equation $\ddot{x}+x=0$, when $\varepsilon \rightarrow 0$.

3.2 Periodic solutions for another class of Duffing differential equations

I. Khatami, E. Zahedi, and M. Zahedi in [30] studied the approximate solutions of the Duffing differential equations

$$
\begin{equation*}
\ddot{x}+\mu \dot{x}+\sum_{i=0}^{n} \rho_{2 i+1} x^{2 i+1}=f \cos (\Omega t), \tag{3.9}
\end{equation*}
$$

where μ is the damping parameter, ρ_{1} is the linear stiffness coefficient, $\rho_{3}, \rho_{5}, \ldots, \rho_{2 n+1}$ are nonlinear arbitrary constants in the restoring force, f is the amplitude, and Ω is the angular frequency of the periodic driving force. The authors obtained numerically information about the solutions of the differential equations (3.9). The periodic solutions of particular differential equations of type (3.9) with $i=0,1$ have been studied in [3, 4, 26].

Here we shall study analytically the periodic solutions of the following class of Duffing differential equations

$$
\begin{equation*}
\ddot{x}+(1+\varepsilon \mu(t)) \dot{x}+\varepsilon \sum_{i=0}^{n} \rho_{2 i+1}(t) x^{2 i+1}=\varepsilon f(t, x) \tag{3.10}
\end{equation*}
$$

where the functions $\mu(t), \rho_{2 i+1}(t)$ with $i=0, \ldots, n$ and $f(t, x)$ are C^{2}, T-periodic in the variable t, and ε is a small parameter.

Now our result on the periodic solutions of the second class of Duffing differential equation (3.10) is summarized in the next theorem.

Chapter 3. Periodic solutions for two classes of Duffing differential equations

Theorem 3.2.1. We define the functions

$$
\begin{aligned}
\mathcal{F}_{1}\left(x_{0}, y_{0}\right)=- & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\mu(t)\left(x_{0} \sin t-y_{0} \cos t\right)-\sum_{i=0}^{n} \rho_{2 i+1}(t)\right. \\
& \left.\left(y_{0} \sin t+x_{0} \cos t\right)^{2 i+1}+f\left(t, y_{0} \sin t+x_{0} \cos t\right)\right) \sin t d t \\
\mathcal{F}_{2}\left(x_{0}, y_{0}\right)= & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\mu(t)\left(x_{0} \sin t-y_{0} \cos t\right)-\sum_{i=0}^{n} \rho_{2 i+1}(t)\right. \\
& \left.\left(y_{0} \sin t+x_{0} \cos t\right)^{2 i+1}+f\left(t, y_{0} \sin t+x_{0} \cos t\right)\right) \cos t d t .
\end{aligned}
$$

Then for $\varepsilon \neq 0$ sufficiently small and for every $\left(x_{0}^{*}, y_{0}^{*}\right)$ solution of the system

$$
\begin{equation*}
\mathcal{F}_{1}\left(x_{0}, y_{0}\right)=0, \quad \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=0 \tag{3.11}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\operatorname{det}\left(\left.\frac{\partial\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)}{\partial\left(x_{0}, y_{0}\right)}\right|_{\left(x_{0}, y_{0}\right)=\left(x_{0}^{*}, y_{0}^{*}\right)}\right) \neq 0 \tag{3.12}
\end{equation*}
$$

the Duffing differential equation (3.10) has a 2π-periodic solution $x(t, \varepsilon)$ which tends to the 2π-periodic solution $x(t)=x_{0}^{*} \cos t+y_{0}^{*} \sin t$ of the differential equation $\ddot{x}+x=0$, when $\varepsilon \rightarrow 0$.

Proof of Theorem 3.2.1. If $\dot{x}=y$, then the second class of Duffing differential equation (3.10) can be written as the following first-order differential system in \mathbb{R}^{2}

$$
\begin{align*}
& \dot{x}=y \\
& \dot{y}=-x+\varepsilon\left(-\mu(t) y-\sum_{i=0}^{n} \rho_{2 i+1}(t) x^{2 i+1}+f(t, x)\right) . \tag{3.13}
\end{align*}
$$

From the proof of Theorem 3.1.1 the solution $(x(t), y(t))$ of the unperturbed system (3.13) with $\varepsilon=0$ such that $(x(0), y(0))=\left(x_{0}, y_{0}\right)$ is given in (3.5).

Again using the notation of Section 2.1, we have $\mathbf{x}=(x, y), \mathbf{z}=\left(x_{0}, y_{0}\right)$, $F_{0}(\mathbf{x}, t)=(y,-x), F_{1}(\mathbf{x}, t)=\left(0,-\mu(t) y-\sum_{i=0}^{n} \rho_{2 i+1}(t) x^{2 i+1}+f(t, x)\right)$ and

Chapter 3. Periodic solutions for two classes of Duffing differential equations

$F_{2}(\mathbf{x}, t, \varepsilon)=(0,0)$. From the proof of Theorem 3.1.1 the fundamental matrix $M(t)$ is given in (3.6).

From Theorem 2.2.2 we must study the zeros $\mathbf{z}=\left(x_{0}, y_{0}\right)$ of the function $\mathcal{F}(\mathbf{z})=\left(\mathcal{F}_{1}(\mathbf{z}), \mathcal{F}_{2}(\mathbf{z})\right)$ defined in (2.11). For system (3.13) a computation shows that the functions $\mathcal{F}_{1}(\mathbf{z})$ and $\mathcal{F}_{2}(\mathbf{z})$ are the ones given in the statement of Theorem 3.2.1. Again the rest of the proof of Theorem 3.2.1 follows directly from the statement of Theorem 2.2.2.

Applications of Theorem 3.2.1 are the following.
Example 3.3. The Duffing differential equation (3.10) with $n=2$,
$\rho_{1}(t)=1+\cos t, \rho_{3}(t)=-1-\sin t, \rho_{5}(t)=\sin t, \mu(t)=\sin ^{2} t \cos t$ and $f(t, x)=-x \cos t \sin t$ becomes
$\ddot{x}+\epsilon \sin t^{2} \cos t \dot{x}+x+\epsilon\left((1+\cos t) x+(-1-\sin t) x^{3}+\sin t x^{5}\right)=-\epsilon x \cos t \sin t$.

After some computations we obtain that

$$
\begin{aligned}
& \mathcal{F}_{1}\left(x_{0}, y_{0}\right)=-\frac{3}{8} x_{0}^{2} y_{0}+\frac{1}{8} x_{0}+\frac{1}{2} y_{0}-\frac{3}{8} y_{0}^{3}, \\
& \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=-\frac{1}{2} x_{0}+\frac{3}{8} x_{0}^{3}+\frac{3}{8} x_{0} y_{0}^{2}-\frac{1}{8} y_{0} .
\end{aligned}
$$

The function $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ has four zeros $\left(x_{0}^{*}, y_{0}^{*}\right)$ given by

$$
\left(\frac{\sqrt{30}}{6}, \frac{\sqrt{30}}{6}\right), \quad\left(-\frac{\sqrt{30}}{6},-\frac{\sqrt{30}}{6}\right), \quad\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \quad\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right) .
$$

Since the jacobians (3.12) at these four zeros are respectively $\frac{\sqrt{5}}{16}, \frac{\sqrt{5}}{16}$, $-\frac{\sqrt{3}}{16}$ and $-\frac{\sqrt{3}}{16}$, then for $\varepsilon \neq 0$ sufficiently small the differential equation (3.14) has four periodic solutions which tend to the periodic solutions $\frac{\sqrt{30}}{6} \cos t+\frac{\sqrt{30}}{6} \sin t,-\frac{\sqrt{30}}{6} \cos t-\frac{\sqrt{30}}{6} \sin t,-\frac{\sqrt{2}}{2} \cos t+\frac{\sqrt{2}}{2} \sin t$ and $\frac{\sqrt{2}}{2} \cos t-\frac{\sqrt{2}}{2} \sin t$ of the differential equation $\ddot{x}+x=0$, when $\varepsilon \rightarrow 0$.

Example 3.4. The differential equation (3.10) with $n=4$,
$\rho_{1}(t)=-\frac{1}{2}+\frac{3}{2} \sin t, \rho_{3}(t)=\frac{3}{2}-\frac{1}{2} \cos t, \rho_{5}(t)=\frac{\cos ^{3} t}{2}, \rho_{7}(t)=-\frac{3}{2} \sin ^{3} t$, $\rho_{9}(t)=-\frac{\sin t}{2}+\cos t, \mu(t)=\cos ^{2} t \sin t$ and $f(t, x)=-x\left(\frac{1}{2}+\cos t\right) \sin t$ becomes

$$
\begin{align*}
\ddot{x} & +\epsilon \cos t^{2} \sin t \dot{x}+x+\frac{\epsilon}{2}\left((-1+3 \sin t) x+(3-\cos t) x^{3}\right. \\
& \left.+\cos ^{3} t^{5} x^{5}-3 \sin t^{3} x^{7}+(-\sin t+2 \cos t) x^{9}\right)=-\epsilon x\left(\frac{1}{2}+\cos t\right) \sin t . \tag{3.15}
\end{align*}
$$

Doing some computations from Theorem 3.2.1 we obtain

$$
\begin{aligned}
& \mathcal{F}_{1}\left(x_{0}, y_{0}\right)=\frac{9}{16} x_{0}^{2} y_{0}+\frac{1}{8} x_{0}-\frac{1}{4} y_{0}+\frac{9}{16} y_{0}^{3} \\
& \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=\frac{1}{4} x_{0}-\frac{9}{16} x_{0}^{3}-\frac{9}{16} x_{0} y_{0}^{2}-\frac{1}{8} y_{0} .
\end{aligned}
$$

The function $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ has four zeros $\left(x_{0}^{*}, y_{0}^{*}\right)$ given by

$$
\left(\frac{1}{3}, \frac{1}{3}\right), \quad\left(-\frac{1}{3},-\frac{1}{3}\right), \quad\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right), \quad\left(\frac{\sqrt{3}}{3},-\frac{\sqrt{3}}{3}\right) .
$$

Since the jacobians (3.12) at these four zeros are respectively $-\frac{1}{16},-\frac{1}{16}$, $\frac{3}{16}$ and $\frac{3}{16}$, then for $\varepsilon \neq 0$ sufficiently small the differential equation (3.15) has four periodic solutions which tend to the periodic solutions $\frac{\cos t}{3}+\frac{\sin t}{3}$, $-\frac{\cos t}{3}+\frac{\sin t}{3},-\frac{\sqrt{3}}{3} \cos t+\frac{\sqrt{3}}{3} \sin t$ and $\frac{\sqrt{3}}{3} \cos t-\frac{\sqrt{3}}{3} \sin t$ of the differential equation $\ddot{x}+x=0$, when $\varepsilon \rightarrow 0$.

Chapter

Periodic solutions for a generalized Duffing differential equations

Contents
4.1 Statement of the main results44
4.2 Proof of the main results 46
4.3 Examples 52

Chapter 4. Periodic solutions for a generalized Duffing differential equations

Based on the averaging theory, we provide sufficient conditions for the existence of periodic solutions for a class of the well-known Duffing differential equations of the form

$$
\begin{equation*}
\ddot{x}+c(t) \dot{x}+g(t, x)=p(t), \tag{4.1}
\end{equation*}
$$

where $c(t), g(t, x)$ and $p(t)$ are \mathcal{C}^{2} and T-periodic in the variable t. This kind of equation have been studied by many authors under variant conditions, see for instance $[4,20,26,47,57,60]$.

If $\dot{x}=y$, then the T-periodic Duffing differential equation (4.1) can be written as the T-periodic differential system of the first order of the form

$$
\left\{\begin{array}{l}
\dot{x}=y \tag{4.2}\\
\dot{y}=-c(t) y-g(t, x)+p(t)
\end{array}\right.
$$

4.1 Statement of the main results

To state our main results, we need some preliminaries. We define the functions

$$
\begin{gather*}
r(t)=\int_{0}^{t} c(s) d s, \quad a(t, x)=\int_{0}^{t} g(s, x) e^{r(s)} d s, \quad b(t)=\int_{0}^{t} p(s) e^{r(s)} d s, \\
m(t, x)=\int_{0}^{t} g(s, x) d s, \quad n(t)=\int_{0}^{t} p(s) d s . \tag{4.3}
\end{gather*}
$$

Our main results on the periodic solutions of the class of Duffing differential equation (4.3) are the following.

Chapter 4. Periodic solutions for a generalized Duffing differential equations

Theorem 4.1.1. We consider the differential system (4.2) where the functions $c(t), g(t, x)$ and $p(t)$ are \mathcal{C}^{2} and T-periodic in the variable t. Assume that the functions of (4.3) are T-periodic in the variable t. Then for every simple zero $\left(x_{0}^{*}, y_{0}^{*}\right)$ of each one of the following 7 systems in the variables x_{0} and y_{0} of the form $f_{1}\left(x_{0}, y_{0}\right)=f_{2}\left(x_{0}, y_{0}\right)=0$, given as follows

$$
\begin{align*}
& \left\{\begin{aligned}
-\int_{0}^{T} a\left(t, x_{0}\right) e^{-r(t)} d t+y_{0} \int_{0}^{T} e^{-r(t)} d t+\int_{0}^{T} b(t) e^{-r(t)} d t & =0, \\
-\int_{0}^{T} a_{x}\left(t, x_{0}\right) a\left(t, x_{0}\right) e^{-r(t)} d t+y_{0} \int_{0}^{T} a_{x}\left(t, x_{0}\right) e^{-r(t)} d t & \\
+\int_{0}^{T} a_{x}\left(t, x_{0}\right) b(t) e^{-r(t)} d t & =0 .
\end{aligned}\right. \tag{4.4}\\
& \left\{\begin{aligned}
y_{0} \int_{0}^{T} e^{-r(t)} d t+\int_{0}^{T} b(t) e^{-r(t)} d t & =0, \\
-\int_{0}^{T} g\left(t, x_{0}\right) e^{r(t)} d t & =0,
\end{aligned}\right. \tag{4.5}\\
& \left\{\begin{array}{rl}
-\int_{0}^{T} a\left(t, x_{0}\right) e^{-r(t)} d t & +y_{0} \int_{0}^{T} e^{-r(t)} d t
\end{array}=0, ~ 子 \begin{array}{rl}
-\int_{0}^{T} a_{x}\left(t, x_{0}\right) a\left(t, x_{0}\right) e^{-r(t)} d t+y_{0} \int_{0}^{T} a_{x}\left(t, x_{0}\right) e^{-r(t)} d t & \\
+\int_{0}^{T} p(t) e^{r(t)} d t & =0,
\end{array}\right. \tag{4.6}\\
& \left\{\begin{aligned}
y_{0} \int_{0}^{T} e^{-r(t)} d t & =0 \\
-\int_{0}^{T} g\left(t, x_{0}\right) e^{r(t)} d t+\int_{0}^{T} p(t) e^{r(t)} d t & =0
\end{aligned}\right. \tag{4.7}\\
& \left\{\begin{aligned}
-\int_{0}^{T} m\left(t, x_{0}\right) d t+T y_{0}+\int_{0}^{T} n(t) d t & =0, \\
\int_{0}^{T}\left(m_{x}\left(t, x_{0}\right)-c(t)\right)\left(n(t)-m\left(t, x_{0}\right)+y_{0}\right) d t & =0,
\end{aligned}\right. \tag{4.8}\\
& \left\{\begin{aligned}
T y_{0}+\int_{0}^{T} n(t) d t & =0, \\
-\int_{0}^{T} g\left(t, x_{0}\right) d t-y_{0} \int_{0}^{T} c(t) d t-\int_{0}^{T} c(t) n(t) d t & =0,
\end{aligned}\right. \tag{4.9}\\
& \left\{\begin{aligned}
-\int_{0}^{T} m\left(t, x_{0}\right) d t+T y_{0} & =0, \\
\int_{0}^{T}\left(m_{x}\left(t, x_{0}\right)-c(t)\right)\left(-m_{x}\left(t, x_{0}\right)+y_{0}\right) d t+\int_{0}^{T} p(t) d t & =0,
\end{aligned}\right. \tag{4.10}
\end{align*}
$$

the differential system (4.2) has a T-periodic solution $(x(t), y(t))$ such that $(x(0), y(0))$ is close to the $\left(x_{0}^{*}, y_{0}^{*}\right)$.

Chapter 4. Periodic solutions for a generalized Duffing differential equations

4.2 Proof of the main results

Proof of Theorem 4.1.1. We do the following rescaling of the functions and the variables which appear in the differential system (4.2)

$$
\begin{align*}
x & =X, \\
y & =\varepsilon^{m_{1}} Y, \\
c(t) & =\varepsilon^{n_{1}} C(t), \tag{4.11}\\
g(t, x) & =\varepsilon^{n_{2}} G(t, X), \\
p(t) & =\varepsilon^{n_{3}} P(t),
\end{align*}
$$

where $\varepsilon>0$ is a small parameter and m_{1}, n_{1}, n_{2} and n_{3} are non-negative integers, then the differential system (4.2) becomes

$$
\left\{\begin{array}{l}
\dot{X}=\varepsilon^{m_{1}} Y \tag{4.12}\\
\dot{Y}=-\varepsilon^{n_{1}} C(t) Y-\varepsilon^{n_{2}-m_{1}} G(t, X)+\varepsilon^{n_{3}-m_{1}} P(t)
\end{array}\right.
$$

where the functions C, G and P are C^{2} and T-periodic in the variable t.
We distinguish the following two cases with their corresponding subcases.

$$
\begin{aligned}
& \text { Case } \quad I: m_{1}=1 \text { and } n_{1}=0 . \\
& \text { Case } I I: m_{1}=1 \text { and } n_{1}=1 .
\end{aligned}
$$

Then we have the following subcases.

$$
\begin{array}{ll}
(\alpha .1) & n_{2}-m_{1}=0, \\
(\alpha .2) & n_{3}-m_{1}=0, \\
(\alpha .3) & n_{2}-m_{1}=1, \\
(\alpha .4) & n_{3}-m_{1}=0, \\
n_{2}-m_{1}=1, & n_{3}-m_{1}=1, \\
\left(m_{1}=1,\right.
\end{array}
$$

where $\alpha \in\{I, I I\}$.
The system (4.12) is in normal form (2.7) for applying the averaging theory. Mention that we do not consider the case (II.4), because it has only

Chapter 4. Periodic solutions for a generalized Duffing differential equations

equilibrium points instead of periodic orbits, and consequently the averaging theory described in Theorem 2.2.2 cannot be applied.

We shall prove Theorem 4.1.1 statement by statement.
We assume that the functions given by

$$
\begin{gathered}
R(t)=\int_{0}^{t} C(s) d s, \quad A\left(t, X_{0}\right)=\int_{0}^{t} G\left(s, X_{0}\right) e^{R(s)} d s, \quad B(t)=\int_{0}^{t} P(s) e^{R(s)} d s, \\
M\left(t, X_{0}\right)=\int_{0}^{t} G\left(s, X_{0}\right) d s, \quad N(t)=\int_{0}^{t} P(s) d s
\end{gathered}
$$

are T-periodic in the variable t.

- Case (I.1), i.e; for $n_{1}=0$ and $m_{1}=n_{2}=n_{3}=1$, the system (4.12) reads

$$
\left\{\begin{array}{l}
\dot{X}=\varepsilon Y \tag{4.13}\\
\dot{Y}=-C(t) Y-G(t, X)+P(t)
\end{array}\right.
$$

The system (4.13) for $\varepsilon=0$, has the periodic solutions

$$
(X(t), Y(t))=\left(X_{0},\left(Y_{0}-A\left(t, X_{0}\right)+B(t)\right) e^{-R(t)}\right)
$$

for all $\left(X_{0}, Y_{0}\right) \in \mathbb{R}^{2}$. Now taking $z=\left(X_{0}, Y_{0}\right)$, and solving the variational differential equation (2.9), we obtain the fundamental matrix

$$
M_{\mathbf{z}}(t)=\left(\begin{array}{cc}
1 & 0 \\
-A_{X}\left(t, X_{0}\right) e^{-R(t)} & e^{-R(t)}
\end{array}\right),
$$

where $A_{X}\left(t, X_{0}\right)=\partial A / \partial X\left(t, X_{0}\right)$. Now compute the averaged function $F(\mathbf{z})=\left(\mathcal{F}_{\mathbf{1}}\left(\mathbf{X}_{\mathbf{0}}, \mathbf{Y}_{\mathbf{0}}\right), \mathcal{F}_{\mathbf{2}}\left(\mathbf{X}_{\mathbf{0}}, \mathbf{Y}_{\mathbf{0}}\right)\right)$ given in (2.11), and we get

$$
\begin{aligned}
\mathcal{F}_{1}= & -\int_{0}^{T} A\left(t, X_{0}\right) e^{-R(t)} d t+Y_{0} \int_{0}^{T} e^{-R(t)} d t+\int_{0}^{T} B(t) e^{-R(t)} d t, \\
\mathcal{F}_{2}= & -\int_{0}^{T} A_{X}\left(t, X_{0}\right) A\left(t, X_{0}\right) e^{-R(t)} d t+Y_{0} \int_{0}^{T} A_{X}\left(t, X_{0}\right) e^{-R(t)} d t \\
& +\int_{0}^{T} A_{X}\left(t, X_{0}\right) B(t) e^{-R(t)} d t=\int_{0}^{T} A_{X}\left(t, X_{0}\right) Y(t) d t .
\end{aligned}
$$

The zeros $\left(X_{0}^{*}, Y_{0}^{*}\right)$ of the system $\mathcal{F}_{1}=\mathcal{F}_{2}=0$, whose Jacobian is different from zero,provide periodic orbits of system (4.13) with $\varepsilon \neq 0$ sufficiently small.

Chapter 4. Periodic solutions for a generalized Duffing differential equations

Going back to the differential system (4.2) through the rescaling (4.11) the polynomial system $\mathcal{F}_{1}=\mathcal{F}_{2}=0$ in the variables X_{0} and Y_{0} becomes the system (4.4) in the variable x_{0} and y_{0}. Consequently the theorem is proved for system (4.4).

- Case (I.2), i.e. for $n_{1}=0, m_{1}=n_{3}=1$ and $n_{2}=2$, the system (4.12) becomes

$$
\left\{\begin{array}{l}
\dot{X}=\varepsilon Y \tag{4.14}\\
\dot{Y}=-C(t) Y-\varepsilon G(t, X)+P(t)
\end{array}\right.
$$

Solving the differential system (4.14) for $\varepsilon=0$, we obtain the T-periodic solutions

$$
(X(t), Y(t))=\left(X_{0},\left(Y_{0}+B(t)\right) e^{-R(t)}\right),
$$

for all $\left(X_{0}, Y_{0}\right) \in \mathbb{R}^{2}$. Solving the variational differential equation (2.9) we obtain the fundamental matrix

$$
M_{\mathbf{z}}(t)=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{-R(t)}
\end{array}\right)
$$

We compute the averaged function, we get

$$
\begin{aligned}
& \mathcal{F}_{1}=Y_{0} \int_{0}^{T} e^{-R(t)} d t+\int_{0}^{T} B(t) e^{-R(t)} d t \\
& \mathcal{F}_{2}=\int_{0}^{T}-G\left(t, X_{0}\right) e^{R(t)} d t
\end{aligned}
$$

By Theorem 2.2.2, the differential system (4.14) has a periodic solution $(X(t, \varepsilon), Y(t, \varepsilon))$ such that $(X(0, \varepsilon), Y(0, \varepsilon)) \rightarrow\left(X_{0}^{*}, Y_{0}^{*}\right)$ when $\varepsilon \rightarrow 0$, for each simple zero $\left(X_{0}^{*}, Y_{0}^{*}\right)$ of the system $\mathcal{F}_{1}=\mathcal{F}_{2}=0$, whose Jacobian is different from zero.

Going back to the differential system (4.2) through the rescaling (4.11) the theorem follows for system (4.4).

Chapter 4. Periodic solutions for a generalized Duffing differential equations

- Case (I.3) i.e. for $n_{1}=0, m_{1}=n_{2}=1$ and $n_{3}=2$, the system (4.12) becomes

$$
\left\{\begin{array}{l}
\dot{X}=\varepsilon Y \tag{4.15}\\
\dot{Y}=-C(t) Y-G(t, X)+\varepsilon P(t)
\end{array}\right.
$$

Solving the differential system (4.15) for $\varepsilon=0$, we obtain the T-periodic solutions

$$
(X(t), Y(t))=\left(X_{0},\left(Y_{0}-A\left(t, X_{0}\right)\right) e^{-R(t)}\right),
$$

for all $\left(X_{0}, Y_{0}\right) \in \mathbb{R}^{2}$. Solving the variational differential equation (2.9) we obtain the fundamental matrix

$$
M_{\mathbf{z}}(t)=\left(\begin{array}{cc}
1 & 0 \\
-A_{X}\left(t, X_{0}\right) e^{-R(t)} & e^{-R(t)}
\end{array}\right) .
$$

We compute the averaged function given in (2.11), and we get

$$
\begin{aligned}
\mathcal{F}_{1}= & Y_{0} \int_{0}^{T} e^{-R(t)} d t-\int_{0}^{T} A\left(t, X_{0}\right) e^{-R(t)} d t, \\
\mathcal{F}_{2}=- & \int_{0}^{T} A_{X}\left(t, X_{0}\right) A\left(t, X_{0}\right) e^{-R(t)} d t+Y_{0} \int_{0}^{T} A_{X}\left(t, X_{0}\right) e^{-R(t)} d t \\
& \quad+\int_{0}^{T} P(t) e^{R(t)} d t .
\end{aligned}
$$

As in the proofs of the theorem for the previous systems it follows the proof for the system (4.6).

- Case (I.4) i.e. for $n_{1}=0, m_{1}=1$ and $n_{2}=n_{3}=2$, the system (4.12) becomes

$$
\left\{\begin{array}{l}
\dot{X}=\varepsilon Y \tag{4.16}\\
\dot{Y}=-C(t) Y-\varepsilon G(t, X)+\varepsilon P(t)
\end{array}\right.
$$

Solving the differential system (4.16) for $\varepsilon=0$, we obtain the T-periodic solutions

$$
(X(t), Y(t))=\left(X_{0}, Y_{0} e^{-R(t)}\right),
$$

for all $\left(X_{0}, Y_{0}\right) \in \mathbb{R}^{2} \backslash\{(0,0)\}$. Solving the variational differential equation (2.9) we obtain the fundamental matrix

$$
M_{\mathbf{z}}(t)=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{-R(t)}
\end{array}\right)
$$

We compute the averaged function given in (2.11), and we get

$$
\begin{aligned}
& \mathcal{F}_{1}=\int_{0}^{T} Y_{0} e^{-R(t)} d t \\
& \mathcal{F}_{2}=-\int_{0}^{T} G\left(t, X_{0}\right) e^{R(t)} d t+\int_{0}^{T} P(t) e^{R(t)} d t
\end{aligned}
$$

As in the proofs of the theorem for the previous systems, it follows the proof for the system (4.7).

- Case (II.1), i.e. for $m_{1}=n_{1}=n_{2}=n_{3}=1$, the system (4.12) becomes

$$
\left\{\begin{array}{l}
\dot{X}=\varepsilon Y \tag{4.17}\\
\dot{Y}=-\varepsilon C(t) Y-G(t, X)+P(t)
\end{array}\right.
$$

Solving the differential system (4.17) for $\varepsilon=0$, we obtain the T-periodic solution

$$
(X(t), Y(t))=\left(X_{0}, Y_{0}-M\left(t, X_{0}\right)+N(t)\right)
$$

for all $\left(X_{0}, Y_{0}\right) \in \mathbb{R}^{2}$. Solving the variational differential equation (2.9) we obtain the fundamental matrix

$$
M_{\mathbf{z}}(t)=\left(\begin{array}{cc}
1 & 0 \\
-M_{X}\left(t, X_{0}\right) & 1
\end{array}\right)
$$

We compute the averaged function given in (2.11), and we get

$$
\begin{aligned}
& \mathcal{F}_{1}=-\int_{0}^{T} M\left(t, X_{0}\right) d t+T Y_{0}+\int_{0}^{T} N(t) d t \\
& \mathcal{F}_{2}=\int_{0}^{T}\left(M_{X}\left(t, X_{0}\right)-C(t)\right)\left(N(t)-M\left(t, X_{0}\right)+Y_{0}\right) d t
\end{aligned}
$$

As in the proofs of the theorem for the previous systems, it follows the proof for the system (4.8).

- Case (II.2) i.e. for $m_{1}=n_{1}=n_{3}=1$, and $n_{2}=2$, the system (4.12) becomes

$$
\left\{\begin{array}{l}
\dot{X}=\varepsilon Y \tag{4.18}\\
\dot{Y}=-\varepsilon C(t) Y-\varepsilon G(t, X)+P(t)
\end{array}\right.
$$

Solving the differential system (4.18) for $\varepsilon=0$, we obtain the T-periodic solutions

$$
(X(t), Y(t))=\left(X_{0}, Y_{0}+N(t)\right),
$$

for all $\left(X_{0}, Y_{0}\right) \in \mathbb{R}^{2}$. Solving the variational differential equation (2.9) we obtain the fundamental matrix

$$
M_{\mathbf{z}}(t)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

We compute the averaged function given in (2.11), and we get

$$
\begin{aligned}
& \mathcal{F}_{1}=T Y_{0}+\int_{0}^{T} N(t) d t \\
& \mathcal{F}_{2}=-\int_{0}^{T} G\left(t, X_{0}\right) d t-Y_{0} \int_{0}^{T} C(t) d t-\int_{0}^{T} C(t) N(t) d t
\end{aligned}
$$

As in the proofs of the theorem for the previous systems, it follows the proof for the system (4.9).

- Case (II.3) i.e. for $m_{1}=n_{1}=n_{2}=1$ and $n_{3}=2$, the system (4.12) becomes

$$
\left\{\begin{array}{l}
\dot{X}=\varepsilon Y \tag{4.19}\\
\dot{Y}=-\varepsilon C(t) Y-G(t, X)+\varepsilon P(t)
\end{array}\right.
$$

Chapter 4. Periodic solutions for a generalized Duffing differential equations

Solving the differential system (4.19) for $\varepsilon=0$, we obtain the T-periodic solutions

$$
(X(t), Y(t))=\left(X_{0}, Y_{0}-M\left(t, X_{0}\right)\right),
$$

for all $\left(X_{0}, Y_{0}\right) \in \mathbb{R}^{2}$. Solving the variational differential equation (2.9) we obtain the fundamental matrix

$$
M_{\mathbf{z}}(t)=\left(\begin{array}{cc}
1 & 0 \\
-M_{X}\left(t, X_{0}\right) & 1
\end{array}\right)
$$

We compute the averaged function given in (2.11), and we get

$$
\begin{aligned}
& \mathcal{F}_{1}=-\int_{0}^{T} M\left(t, X_{0}\right) d t+T Y_{0}, \\
& \mathcal{F}_{2}=\int_{0}^{T}\left(M_{X}\left(t, X_{0}\right)-C(t)\right)\left(-M\left(t, X_{0}\right)+Y_{0}\right) d t+\int_{0}^{T} P(t) d t
\end{aligned}
$$

As in the proofs of the theorem for the previous systems, it follows the proof for the system (4.10).

This completes the proof of Theorem 4.1.1.

4.3 Examples

In this section we provide examples of each one of the statements of Theorem 4.1.1.

Example 4.1. Consider the differential system (4.2) with

$$
\begin{aligned}
c(t) & =\frac{-\cos t}{2+\sin t} \\
g(t, x) & =3(x+3)\left(1+\frac{\sin t}{2}\right) \sin t \\
p(t) & =3 \cos t+\frac{3}{2} \sin t \cos t
\end{aligned}
$$

Chapter 4. Periodic solutions for a generalized Duffing differential equations

All these functions are 2π-periodic in the variable t. Then we get the functions

$$
\begin{array}{rllc}
r(t) & =\int_{0}^{t} c(s) d s & =\quad-\ln \left(\frac{2+\sin t}{2}\right), \\
a(t, x) & =\int_{0}^{t} e^{r(s)} g(s, x) d s & =3(x+3)(1-\cos t), \\
b(t) & =\int_{0}^{t} e^{r(s)} p(s) d s & = & 3 \sin t,
\end{array}
$$

which are also 2π-periodic in the variable t. Then applying the system (4.4) of Theorem 4.1.1, we have that the system

$$
\begin{aligned}
& \mathcal{F}_{1}\left(x_{0}, y_{0}\right)=-3 x_{0}-\frac{33}{4}+y_{0}=0 \\
& \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=-\frac{27}{2} x_{0}-\frac{153}{4}+3 y_{0}=0
\end{aligned}
$$

has a unique solution $\left(x_{0}^{*}, y_{0}^{*}\right)=\left(-3,-\frac{3}{4}\right)$. Since the Jacobian (2.12) for this solution is $\frac{9}{2}>0$, the differential system (4.2) for $\varepsilon \neq 0$ sufficiently small has one periodic solution $(x(t, \varepsilon), y(t, \varepsilon))$ such that $(x(0, \varepsilon), y(0, \varepsilon))$ tends to $\left(x_{0}^{*}, y_{0}^{*}\right)$ when $\varepsilon \rightarrow 0$.
The eigenvalues of the corresponding Jacobian matrix of the averaged functions $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ at the zero $\left(x_{0}^{*}, y_{0}^{*}\right)$ are

$$
\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \sqrt{2} \mathrm{i} \\
-\frac{3}{2} \sqrt{2} \mathrm{i}
\end{array}\right]
$$

Since λ_{1} and λ_{2} are complex such that the real part of them are zero, then we can say nothing about the stability of the solution.

Example 4.2. Consider the differential system (4.2) with

$$
\begin{aligned}
c(t) & =-\frac{\cos t}{2+\sin t} \\
g(t, x) & =\frac{2}{3} x(2+\cos t) \sin t \\
p(t) & =\cos t
\end{aligned}
$$

Chapter 4. Periodic solutions for a generalized Duffing differential equations

These functions are 2π-periodic in the variable t. We have that the functions

$$
\begin{aligned}
& r(t)=\int_{0}^{t} c(s) d s=-\ln \left(\frac{2+\sin t}{2}\right) \\
& b(t)=\int_{0}^{t} e^{r(s)} p(s) d s=2 \ln \left(\frac{2+\sin t}{2}\right)
\end{aligned}
$$

are also 2π-periodic in the variable t. Now applying the system (4.5) of Theorem 4.1.1, we have

$$
\begin{aligned}
& \mathcal{F}_{1}\left(x_{0}, y_{0}\right)=0.812267+6.283185 y_{0}=0, \\
& \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=2.592032 x_{0}=0 .
\end{aligned}
$$

This system has a unique solution $\left(x_{0}^{*}, y_{0}^{*}\right)=(0,-0.129276)$, and the Jacobian (2.12) for this solution is $-16.286220<0$. The differential system (4.2) for $\varepsilon \neq 0$ sufficiently small has one periodic solution $(x(t, \varepsilon), y(t, \varepsilon))$ such that $(x(0, \varepsilon), y(0, \varepsilon))$ tends to $\left(x_{0}^{*}, y_{0}^{*}\right)$ when $\varepsilon \rightarrow 0$.
The eigenvalues of the corresponding Jacobian matrix of the averaged functions $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ at the zero $\left(x_{0}^{*}, y_{0}^{*}\right)$ are

$$
\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{c}
4.035619 \\
-4.035619
\end{array}\right]
$$

Since λ_{1} and λ_{2} are real such that λ_{1} is positive, by Theorem 2.2.3 it follows that the periodic solution $(x(t, \varepsilon), y(t, \varepsilon))$ is unstable.

Example 4.3. Consider the differential system (4.2) with

$$
\begin{aligned}
c(t) & =-\frac{\sin t}{2+\cos t}, \\
g(t, x) & =\frac{x}{3}(2+\cos t) \sin t \\
p(t) & =(1+\sin t) \sin t
\end{aligned}
$$

All these functions are 2π-periodic in the variable t. The functions

Chapter 4. Periodic solutions for a generalized Duffing differential equations

$$
\begin{aligned}
r(t) & =\int_{0}^{t} c(s) d s \\
a(t, x) & =\int_{0}^{t} e^{r(s)} g(s, x) d s
\end{aligned}=\frac{x}{27}\left(\frac{2+\cos t}{3}\right), ~\left(19-\cos t\left(\cos ^{2} t+6 \cos t+12\right)\right), ~ l
$$

which are 2π-periodic in the variable t. For this differential system, the system (4.6) of Theorem 4.1.1, becomes

$$
\begin{aligned}
& \mathcal{F}_{1}\left(x_{0}, y_{0}\right)=-7.741204 x_{0}+10.882796 y_{0}=0 \\
& \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=-6.558258 x_{0}+7.741204 y_{0}+2.094395=0
\end{aligned}
$$

It has a unique solution $\left(x_{0}^{*}, y_{0}^{*}\right)=(1.991348,1.416495)$, with the Jacobian (2.12) for this solution is $11.445955>0$. The differential system (4.2) for $\varepsilon \neq 0$ sufficiently small has one periodic solution $(x(t, \varepsilon), y(t, \varepsilon))$ such that $(x(0, \varepsilon), y(0, \varepsilon))$ tends to $\left(x_{0}^{*}, y_{0}^{*}\right)$ when $\varepsilon \rightarrow 0$.

The eigenvalues of the corresponding Jacobian matrix of the averaged functions $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ at the zero $\left(x_{0}^{*}, y_{0}^{*}\right)$ are

$$
\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{c}
4.035619 \\
-4.035619
\end{array}\right]
$$

Since λ_{1} and λ_{2} are real such that λ_{1} is positive, then by Theorem 2.2.3, the periodic solution $(x(t, \varepsilon), y(t, \varepsilon))$ is unstable.

Example 4.4. Consider the differential system (4.2) with

$$
\begin{aligned}
c(t) & =-\frac{\cos t}{2+\sin t} \\
g(t, x) & =x\left(1-\frac{\sin t}{2}\right) \sin t \\
p(t) & =-\left(\frac{1}{2}+\cos t\right) \sin t
\end{aligned}
$$

These functions are 2π-periodic in the variable t. The functions

$$
r(t)=\int_{0}^{t} c(s) d s=-\ln \left(\frac{2+\sin t}{2}\right)
$$

Chapter 4. Periodic solutions for a generalized Duffing differential equations

which are 2π-periodic in the variable t. After computation the system (4.7) of Theorem 4.1.1, we obtain that the system

$$
\begin{aligned}
& \mathcal{F}_{1}\left(x_{0}, y_{0}\right)=6.283185 y_{0}=0 \\
& \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=3.888049 x_{0}+0.972012=0
\end{aligned}
$$

has a unique solution $\left(x_{0}^{*}, y_{0}^{*}\right)=(0.25,0)$, with the Jacobian (2.12) for this solution is $-24.429330<0$. The differential system (4.2) for $\varepsilon \neq 0$ sufficiently small has one periodic solution $(x(t, \varepsilon), y(t, \varepsilon))$ such that $(x(0, \varepsilon), y(0, \varepsilon))$ tends to $\left(x_{0}^{*}, y_{0}^{*}\right)$ when $\varepsilon \rightarrow 0$.
The eigenvalues of the corresponding Jacobian matrix of the averaged functions $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ at the zero $\left(x_{0}^{*}, y_{0}^{*}\right)$ are

$$
\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{c}
4.942604 \\
-4.942604
\end{array}\right]
$$

Since λ_{1} and λ_{2} are real such that λ_{1} is positive, by Theorem 2.2.3 it follows that the periodic solution $(x(t, \varepsilon), y(t, \varepsilon))$ is unstable.

Example 4.5. Consider the differential system (4.2) with

$$
\begin{aligned}
c(t) & =2 \sin ^{2} t+3 \cos ^{4} t \\
g(t, x) & =2 x(\cos t+\sin t) \\
p(t) & =\sin t
\end{aligned}
$$

which are 2π-periodic in the variable t. The functions

$$
\begin{aligned}
m(t, x) & =\int_{0}^{t} g(s, x) d s=2 x(\sin t-\cos t+1) \\
n(t) & =\int_{0}^{t} p(s) d s=1-\cos t
\end{aligned}
$$

which are also 2π-periodic in the variable t. Here, the system (4.8) of Theorem 4.1.1 becomes

$$
\begin{aligned}
& \mathcal{F}_{1}\left(x_{0}, y_{0}\right)=-2 x_{0}+y_{0}+1=0, \\
& \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=-\frac{15}{4} x_{0}+\frac{7}{8}-\frac{1}{8} y_{0}=0 .
\end{aligned}
$$

Chapter 4. Periodic solutions for a generalized Duffing differential equations

This system has a unique solution $\left(x_{0}^{*}, y_{0}^{*}\right)=\left(\frac{1}{4},-\frac{1}{2}\right)$, with the Jacobian (2.12) for this solution is $4>0$. The differential system (4.2) for $\varepsilon \neq 0$ sufficiently small has one periodic solution $(x(t, \varepsilon), y(t, \varepsilon))$ such that $(x(0, \varepsilon), y(0, \varepsilon))$ tends to $\left(x_{0}^{*}, y_{0}^{*}\right)$ when $\varepsilon \rightarrow 0$.
The eigenvalues of the corresponding Jacobian matrix of the averaged functions $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ at the zero $\left(x_{0}^{*}, y_{0}^{*}\right)$ are

$$
\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{17}{16}+\frac{7 \sqrt{15}}{16} \mathrm{i} \\
-\frac{17}{16}-\frac{7 \sqrt{15}}{16} \mathrm{i}
\end{array}\right]
$$

Since λ_{1} and λ_{2} are complex such that the real part of them are negative, again by Theorem 2.2.3 it follows that the periodic solution $(x(t, \varepsilon), y(t, \varepsilon))$ is stable.

Example 4.6. Consider the differential system (4.2) with

$$
\begin{aligned}
c(t) & =(1+\sin t) \cos ^{2} t \\
g(t, x) & =-x(x-1) \sin ^{2} t \\
p(t) & =-\sin t \cos t
\end{aligned}
$$

which are 2π-periodic in the variable t. The function

$$
n(t)=\int_{0}^{t} p(s) d s=-\frac{1}{2} \sin ^{2} t
$$

is also 2π-periodic in the variable t. For this system, the system (4.9) of Theorem 4.1.1, becomes

$$
\begin{aligned}
& \mathcal{F}_{1}\left(x_{0}, y_{0}\right)=-\frac{1}{4}+y_{0}=0 \\
& \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=\frac{1}{16}-\frac{1}{2} y_{0}+\frac{1}{2} x_{0}^{2}-\frac{1}{2} x_{0}=0 .
\end{aligned}
$$

It has two non-zero solutions $\left(x_{0}^{*}, y_{0}^{*}\right)$ given by $\left(\frac{1}{2}-\frac{\sqrt{6}}{4}, \frac{1}{4}\right)$ and $\left(\frac{1}{2}+\frac{\sqrt{6}}{4}, \frac{1}{4}\right)$, with the Jacobian (2.12) for these solutions being $\frac{\sqrt{6}}{4}>0$ and $\frac{-\sqrt{6}}{4}<0$

Chapter 4. Periodic solutions for a generalized Duffing differential equations

respectively. The differential system (4.2) for $\varepsilon \neq 0$ sufficiently small has two periodic solutions $(x(t, \varepsilon), y(t, \varepsilon))$, such that $(x(0, \varepsilon), y(0, \varepsilon))$ tends to $\left(x_{0}^{*}, y_{0}^{*}\right)$ when $\varepsilon \rightarrow 0$.

The eigenvalues of the corresponding Jacobian matrix of the averaged functions $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ at the $\operatorname{zeros}\left(x_{0}^{*}, y_{0}^{*}\right)$ are

$$
\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{4}+\frac{\sqrt{-1+4 \sqrt{6}}}{4} \mathrm{i} \\
-\frac{1}{4}-\frac{\sqrt{-1+4 \sqrt{6}}}{4} \mathrm{i}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
\lambda_{3} \\
\lambda_{4}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{4}+\frac{\sqrt{1+4 \sqrt{6}}}{4} \\
-\frac{1}{4}-\frac{\sqrt{1+4 \sqrt{6}}}{4}
\end{array}\right] .
$$

Since λ_{1} and λ_{2} are complex such that the real part of them are negative, and λ_{3} and λ_{4} are real such that λ_{3} is positive, again by Theorem 2.2.3 it follows that the first periodic solutions $(x(t, \varepsilon), y(t, \varepsilon))$ is stable and the other one is unstable.

Example 4.7. Consider the differential system (4.2) with

$$
\begin{aligned}
c(t) & =\frac{4}{3} \cos ^{2} t+3 \sin t \\
g(t, x) & =\frac{1}{2} x^{2}(x-3) \sin t \\
p(t) & =\cos t
\end{aligned}
$$

are 2π-periodic in the variable t. The function

$$
m(t, x)=\int_{0}^{t} g(s, x) d s=\frac{x^{2}}{2}(x-3)(1-\cos t)
$$

is $2 \pi-$ periodic in the variable t. Here the system (4.10) of Theorem 4.1.1, becomes

$$
\begin{aligned}
& \mathcal{F}_{1}\left(x_{0}, y_{0}\right)=-\frac{1}{2} x_{0}^{3}+\frac{3}{2} x_{0}^{2}+y_{0}=0 \\
& \mathcal{F}_{2}\left(x_{0}, y_{0}\right)=-\frac{9}{8} x_{0}^{5}+\frac{45}{8} x_{0}^{4}-\frac{77}{12} x_{0}^{3}-x_{0}^{2}+\frac{3}{2} x_{0}^{2} y_{0}-3 x_{0} y_{0}-\frac{2}{3} y_{0}=0 .
\end{aligned}
$$

This system has two non-zero solutions $\left(x_{0}^{*}, y_{0}^{*}\right)$ given by $(2,-2),(3,0)$, with the Jacobian (2.12) for each solution is $-3<0$ and $\frac{81}{8}>0$ respectively.

Chapter 4. Periodic solutions for a generalized Duffing differential equations

The differential system (4.2) for $\varepsilon \neq 0$ sufficiently small has two periodic solutions $(x(t, \varepsilon), y(t, \varepsilon))$: the first is stable while the second is unstable, such that $(x(0, \varepsilon), y(0, \varepsilon))$ tends to $\left(x_{0}^{*}, y_{0}^{*}\right)$ when $\varepsilon \rightarrow 0$.
The eigenvalues of the corresponding Jacobian matrix of the averaged functions $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ at the zero $\left(x_{0}^{*}, y_{0}^{*}\right)$ are

$$
\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{l}
-\frac{1}{3}+\frac{2 \sqrt{7}}{3} \\
-\frac{1}{3}-\frac{2 \sqrt{7}}{3}
\end{array}\right] .
$$

Since λ_{1} and λ_{2} are real such that λ_{1} is positive, then by Theorem 2.2.3, the periodic solution $(x(t, \varepsilon), y(t, \varepsilon))$ is unstable.

Chapter

Limit cycles of cubic polynomial
5 differential systems in \mathbb{R}^{2} via averaging theory of order 6

Contents

5.1 Statement of the main results 61
5.2 Proof of the main results 62
5.3 Examples . 67

Chapter 5. Limit cycles of cubic polynomial differential systems in \mathbb{R}^{2} via averaging theory of order 6

The following polynomial differential system of degree 3

$$
\begin{equation*}
\dot{x}=-y, \quad \dot{y}=x+x^{3}-3 x y, \tag{5.1}
\end{equation*}
$$

is a generalized Liénard system having an isochronous center at the origin coordinates, see Theorem 1 of [2] with $B(x)=3 x$.

In this chapter, we study the limit cycles which bifurcate from the center $(0,0)$ of the nonlinear system (5.1) when we perturb it inside the class of all the planar cubic polynomial differential system of the form

$$
\begin{equation*}
\dot{x}=-y+\sum_{i=1}^{6} \varepsilon^{i} P_{i}(x, y), \quad \dot{y}=x+x^{3}-3 x y+\sum_{i=1}^{6} \varepsilon^{i} Q_{i}(x, y), \tag{5.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& P_{j}=a_{j 1} x+a_{j 2} y+a_{j 3} x^{2}+a_{j 4} x y+a_{j 5} y^{2}+a_{j 6} x^{3}+a_{j 7} x^{2} y+a_{j 8} x y^{2}+a_{j 9} y^{3}, \\
& Q_{j}=b_{j 1} x+b_{j 2} y+b_{j 3} x^{2}+b_{j 4} x y+b_{j 5} y^{2}+b_{j 6} x^{3}+b_{j 7} x^{2} y+b_{j 8} x y^{2}+b_{j 9} y^{3}, \\
& \text { for } j=1, \ldots, 6 .
\end{aligned}
$$

We denote by f_{k} the k-th averaged function of the averaging theory of order k for $k=1, \ldots, 6$, for a precise definition see Chp. 2, Sec. 2.4.

5.1 Statement of the main results

Our main result on the limit cycles of the differential system (5.2) is the following.

Theorem 5.1.1. Using the averaging theory up to sixth order, the maximum number of small amplitude limit cycles for the cubic polynomial differential system (5.2) bifurcating from the origin of the center (5.1) for $\varepsilon>0$ sufficiently small is detected by the averaging function as follows:

Chapter 5. Limit cycles of cubic polynomial differential systems in \mathbb{R}^{2} via averaging theory of order 6
(a) f_{1} is 0 ;
(b) f_{2} is 0 when $f_{1}=0$;
(c) f_{3} is 1 when $f_{1}=f_{2}=0$, see Figure 1 ;
(d) f_{4} is 1 when $f_{1}=f_{2}=f_{3}=0$, see Figure 2;
(e) f_{5} is 2 when $f_{1}=f_{2}=f_{3}=f_{4}=0$, see Figure 3;
(f) f_{6} is 4 when $f_{1}=f_{2}=f_{3}=f_{4}=f_{5}=0$, see Figure 4 .

All the computations of this paper has been done with the help of the algebraic manipulators maple and mathematica.

5.2 Proof of the main results

Proof of Theorem 5.1.1. In what follows we shall study the limit cycles which bifurcate from the origin of the differential system (5.2) using the averaging theory up to order 6 described in the Section 2.4.

First, doing the scaling $x=\varepsilon X, y=\varepsilon Y$, we obtain the differential system (\dot{X}, \dot{Y}). After that, we consider the change to $X=r \cos \theta, Y=r \sin \theta$ and we get the differential system (\dot{X}, \dot{Y}) in polar coordinates (r, θ). In order to study the limit cycles which can bifurcate from the origin using the averaging theory, we take θ as the new independent variable, then the last differential system becomes the differential equation $\frac{d r}{d \theta}$. Finally, we do a Taylor expansion in the variable ε truncating at 6 -th order in ε and we get the differential equation

$$
\begin{equation*}
r^{\prime}=\frac{d r}{d \theta}=\sum_{i=1}^{6} \varepsilon^{i} F_{i}(\theta, r)+O\left(\varepsilon^{7}\right) \tag{5.3}
\end{equation*}
$$

Chapter 5. Limit cycles of cubic polynomial differential systems in \mathbb{R}^{2} via averaging theory of order 6

The functions $F_{i}(\theta, r)$ for $i=1, \ldots, 6$ of the differential system (5.3) are analytic, and since the independent variable θ appears through the sinus and cosinus of θ, they are 2π-periodic in the variable θ. Hence the assumptions for applying the averaging theory described in the Chp. 2, Sec. 2.4 are satisfied.

We do not provide the functions $F_{i}(r, \theta)$ for $i=3, \ldots, 6$ because their expressions are long, and they are easy to compute with the help of an algebraic manipulator such as Mathematica or Maple. Therefore we only give the expressions of the functions $F_{1}(r, \theta)$ and $F_{2}(r, \theta)$, i.e.

$$
\begin{aligned}
F_{1}(r, \theta)= & a_{11} \cos ^{2} \theta+a_{12} \cos \theta \sin \theta+b_{11} \cos \theta \sin \theta+b_{12} \sin ^{2} \theta+3 r \cos \theta \sin ^{2} \theta, \\
F_{2}(r, \theta)= & -r\left(-b_{11} \cos ^{2} \theta+\left(a_{11}-b_{12}\right) \cos \theta \sin \theta+3 \cos ^{2} \theta \sin \theta+a_{12} \sin ^{2} \theta\right) \\
& \left(-a_{11} \cos ^{2} \theta-\left(a_{12}+b_{11}\right) \cos \theta \sin \theta-b_{12} \sin ^{2} \theta+3 r \cos \theta \sin ^{2} \theta\right) \\
& +r\left(a_{21} \cos ^{2} \theta+\left(a_{22}+b_{21}\right) \cos \theta \sin \theta+b_{22} \sin ^{2} \theta+a_{13} r \cos ^{3} \theta\right. \\
& +\left(a_{14}+b_{13}\right) r \cos ^{2} \theta \sin \theta+\left(a_{15}+b_{14}\right) r \cos \theta \sin ^{2} \theta+b_{15} r \sin ^{3} \theta \\
& \left.+r^{2} \cos ^{3} \theta \sin \theta\right) .
\end{aligned}
$$

Computing the averaged function of first order $f_{1}(r)$ from Chp. 2, Sec. 2.4 we get

$$
f_{1}(r)=\left(a_{11}+b_{12}\right) \pi r .
$$

Since the unique zero of $f_{1}(r)=0$ is $r=0$, the averaging theory of first order does not provide any information about the limit cycles which bifurcate from the origin of the differential equation (5.3). So statement (a) of Theorem 5.1.1 is proved.

Now we force that the averaged function of first order be identically zero taking $b_{12}=-a_{11}$, and we compute the averaged function of second order and we obtain

$$
f_{2}(r)=\left(a_{21}+b_{22}\right) \pi r .
$$

Again the unique zero of $f_{2}(r)=0$ is $r=0$, and no information about the

Chapter 5. Limit cycles of cubic polynomial differential systems in \mathbb{R}^{2} via averaging theory of order 6
limit cycles of the differential equation (5.3). Hence statement (b) of Theorem 5.1.1 is proved. Consequently we take $b_{22}=-a_{21}$, and $f_{2}(r) \equiv 0$.

Computing the averaged function of third order we get

$$
f_{3}(r)=\left(a_{31}+b_{32}\right) \pi r-\frac{1}{4}\left(9 a_{11}-3 a_{16}-a_{18}-3 b_{13}-3 b_{15}-b_{17}-3 b_{19}\right) \pi r^{3} .
$$

The unique positive real zero of $f_{3}(r)=0$ is

$$
r_{1}=\frac{2 \sqrt{a_{31}+b_{32}}}{\sqrt{9 a_{11}-3 a_{16}-a_{18}-3 b_{13}-3 b_{15}-b_{17}-3 b_{19}}} .
$$

So using the averaging theory of third order described in Chp. 2, Sec. 2.4, we obtain for $\varepsilon>0$ sufficiently small at most one limit cycle $r_{1}(\theta, \varepsilon)$ if $\left(a_{31}+b_{32}\right)\left(9_{11}-316-a_{18}-3 b_{13}-3 b_{15}-b_{17}-3 b_{19}\right)>0$ of the differential equation (5.3) such that $r_{1}(0, \varepsilon) \rightarrow r_{1}$ when $\varepsilon \rightarrow 0$.

Going back to the differential system $(\dot{r}, \dot{\theta})$ the limit cycle $r_{1}(\theta, \varepsilon)$ of the differential equation (5.3) becomes the limit cycle

$$
\begin{equation*}
(r(t, \varepsilon), \theta(t, \varepsilon))=\left(r_{1}+O(\varepsilon), t+O(\varepsilon)\right) \tag{5.4}
\end{equation*}
$$

of the differential system $(\dot{r}, \dot{\theta})$, because $\dot{\theta}=1+O(\varepsilon)$. Now going back to the differential system (\dot{X}, \dot{Y}) the limit cycle (5.4) becomes the limit cycle

$$
\begin{equation*}
(X(t, \varepsilon), Y(t, \varepsilon))=\left(r_{1} \cos t+O(\varepsilon), r_{1} \sin t+O(\varepsilon)\right) \tag{5.5}
\end{equation*}
$$

of the differential system (\dot{X}, \dot{Y}). Finally going back to the differential system (\dot{x}, \dot{y}) the limit cycle (5.5) becomes the limit cycle

$$
\begin{equation*}
(x(t, \varepsilon), y(t, \varepsilon))=\left(\varepsilon r_{1} \cos t+O\left(\varepsilon^{2}\right), \varepsilon r_{1} \sin t+O\left(\varepsilon^{2}\right)\right) \tag{5.6}
\end{equation*}
$$

of the differential system (5.2). So the limit cycle (5.6) tends to the origin of coordinates when $\varepsilon \rightarrow 0$. In summary, for the differential system (5.2) we have proved that when $\varepsilon=0$ at most one small limit cycle bifurcates from

Chapter 5. Limit cycles of cubic polynomial differential systems in \mathbb{R}^{2} via averaging theory of order 6
the origin of coordinates using the averaging theory of order three. Hence statement (c) of Theorem 5.1.1 is proved.

Now taking $b_{32}=-a_{31}$ and $b_{17}=9 a_{11}-3 a_{16}-a_{18}-3 b_{13}-3 b_{15}-3 b_{19}$, we obtain $f_{3}(r) \equiv 0$. So we can apply the averaging theory of order four and we compute the averaged function

$$
f_{4}(r)=C_{1} \pi r-C_{3} \pi r^{3} / 4,
$$

where

$$
\begin{aligned}
C_{1}= & a_{41}+b_{42}, \\
C_{3}= & 9 a_{11} a_{12}-3 a_{11} a_{13}-a_{13} a_{14}+3 a_{11} a_{15}-a_{14} a_{15}-2 a_{11} a_{17}-a_{12} a_{18} \\
& +9 a_{21}-3 a_{26}-a_{28}-9 a_{11} b_{11}-a_{18} b_{11}+2 a_{13} b_{13}+3 b_{11} b_{13}-6 a_{11} b_{14} \\
& +b_{13} b_{14}-3 a_{12} b_{15}-2 a_{15} b_{15}+b_{14} b_{15}-2 a_{11} b_{18}-3 a_{12} b_{19}-3 b_{11} b_{19} \\
& -3 b_{23}-3 b_{25}-b_{27}-3 b_{29} .
\end{aligned}
$$

Therefore $f_{4}(r)=0$ has at most one positive real root, which is $r_{1}=2 \sqrt{C_{1} / C_{3}}$ if $C_{1} C_{3}>0$. So using the averaging theory of order four we get at most one limit cycle $r_{1}(\theta, \varepsilon)$ of the differential equation (5.3) such that $r_{1}(0, \varepsilon) \rightarrow r_{1}$ when $\varepsilon \rightarrow 0$. Using the previous arguments of the limit cycle found from the averaged function of order three, it follows that for the differential system (5.2) we have proved that when $\varepsilon=0$ at most one small limit cycle bifurcates from the origin of coordinates using the averaging theory of order four. So statement (d) of Theorem 5.1.1 is proved.

For applying the averaging theory of order five we must have $f_{4}(r) \equiv 0$, so we isolate from $C_{1}=0$ and $C_{3}=0$ the coefficients b_{42} and b_{27} respectively, and we substitute them in the rest of the computations. Then the averaged function of order five is

$$
f_{5}(r)=\left(D_{1} r-\frac{D_{3}}{4} r^{3}+\frac{D_{5}}{8} r^{5}\right) \pi,
$$

Chapter 5. Limit cycles of cubic polynomial differential systems in \mathbb{R}^{2} via averaging theory of order 6
where the big expressions of D_{i} for $i=1,3,5$ are given in Appendix. Therefore the polynomial $f_{5}(r)$ can have at most the two positive real roots

$$
r_{1}=\frac{1}{\sqrt{2}} \sqrt{-\frac{D_{3}+\sqrt{D_{3}^{2}-4 D_{1} D_{5}}}{D_{5}}} \text { and } r_{2}=\frac{1}{\sqrt{2}} \sqrt{\frac{-D_{3}+\sqrt{D_{3}^{2}-4 D_{1} D_{5}}}{D_{5}}} .
$$

So using the averaging theory of order five we get at most two limit cycles $r_{k}(\theta, \varepsilon)$ for $k=1,2$ of the differential equation (5.3) such that $r_{k}(0, \varepsilon) \rightarrow r_{k}$ when $\varepsilon \rightarrow 0$. Going back through the changes of variables until to reach the differential system (5.2), the limit cycles $r_{k}(\theta, \varepsilon)$ provides when $\varepsilon=0$ at most two small limit cycles bifurcating from the origin of coordinates for the differential system (5.2) using the averaging theory of order five. Hence statement (e) of Theorem 5.1.1 is proved.

In order to apply the averaging theory of order six we need to have $f_{5}(r) \equiv 0$, so we isolated b_{52} from $D_{1}=0, b_{37}$ from $D_{3}=0$, and b_{19} from $D_{5}=0$, and we substitute them in the rest of the computations. Therefore computing the sixth averaged function we obtain

$$
f_{6}(r)=\left(S_{1} r-\frac{S_{2}}{8192} r^{2}-\frac{S_{3}}{12288} r^{3}-\frac{S_{4}}{98304} r^{4}-\frac{S_{5}}{61440} r^{5}\right) \pi,
$$

where S_{i} for $i=1,2,3,4,5$ are given in Appendix. Since the rank of the Jacobian matrix of the function $S=\left(S_{1}, S_{2}, S_{3}, S_{4}, S_{5}\right)$ with respect to the coefficients $a_{i j}$ and $b_{i j}$ which appear in their expressions is 5 , then the coefficients S_{i} for $i=1,2,3,4,5$ which appear in the polynomial $f_{6}(r)$ are linearly independent. Therefore, by Descartes Theorem described in Chp. 1, Sec. 1.11, and using the averaging theory of order six, the polynomial $f_{6}(r)$ can have at most four positive real roots, and consequently the differential equation (5.3) can have at most four limit cycles using the averaging theory of order six. Using the previous arguments these three limit cycles of the differential equation (5.3) provide at most four small limit cycles bifurcating from the

Chapter 5. Limit cycles of cubic polynomial differential systems in \mathbb{R}^{2} via averaging theory of order 6
origin of coordinates for the differential system (5.2) when $\varepsilon=0$ using the averaging theory of order six. So statement (f) of Theorem 5.1.1 is proved. This completes the proof of Theorem 5.1.1.

5.3 Examples

In this section we provide examples for illustrating our results.

Example 5.1. We use the averaging theory of the third order. Consider the cubic polynomial differential system

$$
\begin{align*}
& \dot{x}=-y+\varepsilon\left(2 x+\frac{1}{2} x^{3}+\frac{1}{3} x y^{2}\right)-2 \varepsilon^{3} x, \\
& \dot{y}=x+x^{3}-3 x y+\varepsilon\left(-2 y+3 x^{2}-\frac{3}{2} y^{2}-\frac{7}{3} x^{2} y-2 y^{3}\right)+6 \varepsilon^{3} y . \tag{5.7}
\end{align*}
$$

After some computations we obtain $f_{1}(r)=f_{2}(r) \equiv 0$, and $f_{3}(r)=(4 r-$ $\left.5 r^{3}\right) \pi$. The polynomial $f_{3}(r)$ has the unique simple positive root $r_{1}=2 \sqrt{5} / 5$ because $f_{3}^{\prime}\left(r_{1}\right)=-8 \pi$. Therefore, by the averaging theory described in Chp. 2, Sec. 2.4 the differential system (5.7) has one stable limit cycle bifurcating from the origin of coordinates when $\varepsilon=0$ using the averaging theory of order three. This confirm the statement (c) of Theorem 5.1.1. See Figure 5.1 for $\epsilon=10^{-5}$.

Chapter 5. Limit cycles of cubic polynomial differential systems in \mathbb{R}^{2} via averaging theory of order 6

Figure 5.1 - The limit cycle of system (5.7).

Example 5.2. We use the averaging theory of the fourth order. Consider the cubic polynomial differential system

$$
\begin{align*}
\dot{x}= & -y+\varepsilon\left(x-y+2 x^{2}+\frac{1}{2} x y-3 y^{2}+7 x^{3}+2 x y^{2}\right) \\
& +\varepsilon^{2}\left(4 x-y-4 x^{2}+2 y^{2}-x^{3}+\frac{5}{2} x^{2} y-\frac{1}{3} x y^{2}+y^{3}\right) \\
& +\varepsilon^{3}\left(2 x+12 y-x^{2}+4 x y+2 x^{2} y-2 x y^{2}+12 y^{3}\right) \\
& +\varepsilon^{4}\left(-7 x+22 y+16 x y-10 x^{3}+2 x y^{2}\right), \\
\dot{y}= & x+x^{3}-3 x y+\varepsilon\left(-2 x-y-\frac{1}{2} x^{2}+\frac{4}{3} x y-3 y^{2}-\frac{1}{2} x^{2} y-y^{3}\right) \tag{5.8}\\
& +\varepsilon^{2}\left(-4 y+\frac{1}{2} x^{2}+x y+9 y^{2}+\frac{3}{2} x^{3}-\frac{3}{2} x^{2} y\right)+ \\
& \varepsilon^{3}\left(-2 y+2 x^{2}-x y+\frac{3}{2} x^{3}+5 x^{2} y+4 x y^{2}-2 y^{3}\right) \\
& +\varepsilon^{4}\left(-2 y+x^{2}+\frac{1}{2} x^{3}-5 x^{2} y-x y^{2}+2 y^{3}\right) .
\end{align*}
$$

After some computations we obtain $f_{1}(r)=f_{2}(r)=f_{3}(r) \equiv 0$, and $f_{4}(r)=\left(-9 r+209 r^{3} / 24\right) \pi$. The polynomial $f_{4}(r)$ has a unique simple positive root $r_{1}=6 \sqrt{6 / 209}$ because $f_{4}^{\prime}\left(r_{1}\right)=18 \pi$. Hence, by the averaging theory described in Chp. 2, Sec. 2.4 the differential system (5.8) has one unstable

Chapter 5. Limit cycles of cubic polynomial differential systems in \mathbb{R}^{2} via averaging theory of order 6
limit cycle bifurcating from the origin of coordinates when $\varepsilon=0$ using the averaging theory of order four. This confirm the statement (d) of Theorem 5.1.1. See Figure 5.2 for $\epsilon=10^{-5}$.

Figure 5.2 - The limit cycle of system (5.8).

Example 5.3. We use the averaging theory of the fifth order. Consider the cubic differential system

$$
\begin{align*}
\dot{x} & =-y+\varepsilon\left(2 x+2 y-6 x y+y^{2}-3 x^{3}+4 x^{2} y+3 x y^{2}+y^{3}\right) \\
& +\varepsilon^{2}\left(4 x+7 x^{2}+x y-5 x^{2} y+12 y^{3}\right)+\varepsilon^{3}\left(3 x+y^{2}+5 x y^{2}+y^{3}\right) \\
& +\varepsilon^{4}\left(-y+2 x^{3}-x^{2} y+3 y^{3}\right)+\varepsilon^{5}\left(7 x+x y+7 y^{2}+3 x^{2} y+y^{3}\right), \\
\dot{y} & =x+x^{3}-3 x y+\varepsilon\left(x-2 y-3 x y+3 y^{2}+2 x^{3}+15 x^{2} y+3 x y^{2}\right) \\
& +\varepsilon^{2}\left(-4 y+2 x^{2}+26 x^{2} y-x y^{2}\right)+\varepsilon^{3}\left(2 x-3 y+2 x^{2}+4 x y-2 y^{2}+x^{2} y+x y^{2}\right) \\
& +\varepsilon^{4}\left(-4 x+5 x^{2}+2 y^{2}-4 x^{3}+y^{3}\right)+\varepsilon^{5}\left(2 x-2 y-x^{2}+3 y^{2}+3 x^{3}-2 x^{2} y\right) . \tag{5.9}
\end{align*}
$$

Using averaging theory of Chp. 2, Sec. 2.4 we obtain $f_{1}(r)=f_{2}(r)=$ $f_{3}(r)=f_{4}(r) \equiv 0$, and $f_{5}(r)=\left(5 r-41 r^{3} / 2+51 r^{5} / 8\right) \pi$. The polynomial $f_{5}(r)$

Chapter 5. Limit cycles of cubic polynomial differential systems in \mathbb{R}^{2} via averaging theory of order 6
has the two simple positive roots

$$
r_{1}=\sqrt{\frac{2}{51}(41-\sqrt{1171})}, \quad r_{2}=\sqrt{\frac{2}{51}(41+\sqrt{1171})} .
$$

Since $f_{5}^{\prime}\left(r_{1}\right)=-28.58417722$ and $f_{5}^{\prime}\left(r_{2}\right)=317.1179024$, then, the differential system (5.9) has one stable limit cycles for r_{1} and one unstable limit cycle for r_{2} bifurcating from the origin.statement (e) of Theorem 5.1.1. See Figure 5.3 for $\epsilon=10^{-5}$.

Figure 5.3 - The two limit cycles of system (5.9).

Example 5.4. We use averaging theory of the sixth order. Consider the differential system

$$
\begin{align*}
\dot{x}= & -y+\varepsilon x-\frac{50013}{1085} \varepsilon^{2} x y+\frac{992512}{9765} \varepsilon^{3} y+12 \varepsilon^{6} x \\
\dot{y}= & x+x^{3}-3 x y+\varepsilon\left(-y-6 x^{2} y+5 y^{3}\right) \\
& +\varepsilon^{2}\left(x^{2}+\frac{501407}{930} x y-\frac{401}{155} x^{2} y-\frac{64}{465} y^{3}\right)-\frac{500012}{155} \varepsilon^{3} x^{2} y+12 \varepsilon^{6} y . \tag{5.10}
\end{align*}
$$

Chapter 5. Limit cycles of cubic polynomial differential systems in \mathbb{R}^{2} via averaging theory of order 6

Using averaging theory defined in the Section 2.4, we get $f_{1}(r)=f_{2}(r)=$ $f_{3}(r)=f_{4}(r)=f_{5}(r) \equiv 0$, and

$$
f_{6}(r)=\left(24 r-50 r^{2}+35 r^{3}-10 r^{4}+r^{5}\right) \pi
$$

The equation $f_{6}(r)=0$ has four solutions $r_{1}=1, r_{2}=2, r_{3}=3$, and $r_{4}=4$. Since, $f_{6}^{\prime}\left(r_{1}\right)=-6 \pi, f_{6}^{\prime}\left(r_{2}\right)=4 \pi, f_{6}^{\prime}\left(r_{3}\right)=-6 \pi$ and $f_{6}^{\prime}\left(r_{4}\right)=24 \pi$, then, by Theorem 5.1.1, system (5.10) has four stable limit cycles for r_{1}, r_{3} and the other are unstable for r_{2} and r_{4}. This confirm the statement (f) of Theorem 5.1.1. See Figure 5.4 for $\epsilon=10^{-5}$.

Figure 5.4 - The four limit cycles of system (5.10).

Chapter

6

Periodic solutions for differential

 systems in \mathbb{R}^{5} and \mathbb{R}^{6}Contents
6.1 Periodic solutions for differential systems in $\mathbb{R}^{5} \quad 73$
6.2 Periodic solutions for differential systems in \mathbb{R}^{6}. 81

In this chapter, using two different results of the averaging theory of the first order, we study the periodic orbits of two kind of differential systems in \mathbb{R}^{5} and \mathbb{R}^{6} that appear frequently in many problems coming from physics, chemistry, economics, engineering, etc.

This chapter was published in the international journal "Journal of Dynamical and Control Systems" titled "Periodic solutions for differential systems in \mathbb{R}^{5} and $\mathbb{R}^{6 "}$, for more details see [51].

6.1 Periodic solutions for differential systems in \mathbb{R}^{5}

In this section, we shall provide sufficient conditions for the existence of periodic orbits in the differential systems in \mathbb{R}^{5} of the form

$$
\left\{\begin{array}{c}
\dot{x}=y, \quad \dot{y}=z, \quad \dot{z}=u, \quad \dot{u}=v, \tag{6.1}\\
\dot{v}=-\alpha \beta \mu x-\beta \mu y-\alpha(\beta+\mu) z-(\beta+\mu) u-\alpha v+\varepsilon f(t, x, y, z, u, v),
\end{array}\right.
$$

where α, β and μ are rational numbers different from 0 such that $\alpha \neq \pm \beta, \alpha \neq$ $\pm \mu$, and $\beta \neq \pm \mu$ with $|\varepsilon|$ sufficiently small, and f is non-autonomous periodic function. These differential systems usually come when we write as a first-order differential system in \mathbb{R}^{5}, the fifth-order differential equation

$$
\begin{equation*}
x^{(5)}+\alpha \dddot{x}+(\beta+\mu) \dddot{x}+\alpha(\beta+\mu) \ddot{x}+\beta \mu \dot{x}+\alpha \beta \mu x=\varepsilon f(t, x, \dot{x}, \ddot{x}, \dddot{x}, \dddot{x}), \tag{6.2}
\end{equation*}
$$

obtained from (6.1) on setting $y=\dot{x}, z=\ddot{x}, u=\dddot{x}, v=\dddot{x}$.
Fifth-order differential systems do arise in a number of applications, for example, in some three loop electric circuit problems and in control theory (see Rosenvasser [53]). Furthermore, there are various papers of such systems and equations, see for instance $[22,62,64]$.

Chapter 6. Periodic solutions for differential systems in \mathbb{R}^{5} and \mathbb{R}^{6}

Our main result on the periodic solutions of differential system (6.1) or equivalent differential equation (6.2) is the following.

Theorem 6.1.1. Assume that α, β and μ are rational numbers different from zero such that $\alpha \neq \pm \beta, \alpha \neq \pm \mu$, and $\beta \neq \pm \mu$ in differential system (6.1). We define

$$
\begin{align*}
& \mathcal{F}_{1}\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)=\frac{1}{2 \pi k} \int_{0}^{2 \pi k} \cos \left(\frac{m}{n} t\right) F_{0}(t, A(t), B(t), C(t), D(t), E(t)) d t, \\
& \mathcal{F}_{2}\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)=-\frac{1}{2 \pi k} \int_{0}^{2 \pi k} \sin \left(\frac{m}{n} t\right) F_{0}(t, A(t), B(t), C(t), D(t), E(t)) d t, \\
& \mathcal{F}_{3}\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)=\frac{1}{2 \pi k} \int_{0}^{2 \pi k} \cos \left(\frac{p}{q} t\right) F_{0}(t, A(t), B(t), C(t), D(t), E(t)) d t, \\
& \mathcal{F}_{4}\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)=-\frac{1}{2 \pi k} \int_{0}^{2 \pi k} \sin \left(\frac{p}{q} t\right) F_{0}(t, A(t), B(t), C(t), D(t), E(t)) d t, \tag{6.3}
\end{align*}
$$

with $\beta=\left(\frac{m}{n}\right)^{2}, \quad \mu=\left(\frac{p}{q}\right)^{2}$, where m, n, p and q are integers, $\beta \neq \mu$,

Chapter 6. Periodic solutions for differential systems in \mathbb{R}^{5} and \mathbb{R}^{6}
$(m, n)=(p, q)=1$, let k be the least common multiple of n and q, and

$$
\begin{align*}
A(t)= & \frac{\left(-\sqrt{\beta} X_{0}+\alpha Y_{0}\right) \cos (\sqrt{\beta} t)+\left(\alpha X_{0}+\beta Y_{0}\right) \sin (\sqrt{\beta} t)}{\sqrt{\beta}\left(\alpha^{2}+\beta\right)(\mu-\beta)} \\
& +\frac{\left(\sqrt{\mu} Z_{0}-\alpha U_{0}\right) \cos (\sqrt{\mu} t)-\left(\alpha Z_{0}+\sqrt{\mu} U_{0}\right) \sin (\sqrt{\mu} t)}{\sqrt{\mu}\left(\alpha^{2}+\mu\right)(\mu-\beta)}, \\
B(t)= & \frac{\left(\alpha X_{0}+\sqrt{\beta} Y_{0}\right) \cos (\sqrt{\beta} t)+\left(\sqrt{\beta} X_{0}-\alpha Y_{0}\right) \sin (\sqrt{\beta} t)}{\left(\alpha^{2}+\beta\right)(\mu-\beta)} \\
& -\frac{\left(\alpha Z_{0}+\sqrt{\mu} U_{0}\right) \cos (\sqrt{\mu} t)+\left(\sqrt{\mu} Z_{0}-\alpha U_{0}\right) \sin (\sqrt{\mu} t)}{\left(\alpha^{2}+\mu\right)(\mu-\beta)}, \\
C(t)= & \frac{\left(-\beta X_{0}+\alpha \sqrt{\beta} Y_{0}\right) \cos (\sqrt{\beta} t)+\left(\alpha \sqrt{\beta} X_{0}+\beta Y_{0}\right) \sin (\sqrt{\beta} t)}{\left(\alpha^{2}+\beta\right)(\mu-\beta)} \\
& +\frac{\left(-\mu Z_{0}+\alpha \sqrt{\mu} U_{0}\right) \cos (\sqrt{\mu} t)+\left(\alpha \sqrt{\mu} Z_{0}+\mu U_{0}\right) \sin (\sqrt{\mu} t)}{\left(\alpha^{2}+\mu\right)(\mu-\beta)}, \\
D(t)= & -\frac{\left(\alpha \beta X_{0}+\beta \sqrt{\beta} Y_{0}\right) \cos (\sqrt{\beta} t)+\left(\beta \sqrt{\beta} X_{0}-\alpha \beta Y_{0}\right) \sin (\sqrt{\beta} t)}{\left(\alpha^{2}+\beta\right)(\mu-\beta)} \\
E(t)= & \frac{\left(-\beta^{2} X_{0}+\alpha \beta \sqrt{\beta} Y_{0}\right) \cos (\sqrt{\beta} t)+\left(\alpha \beta \sqrt{\beta} X_{0}+\beta^{2} Y_{0}\right) \sin (\sqrt{\beta} t)}{\left(\alpha^{2}+\beta\right)(\mu-\beta)} \\
& +\frac{\left(\mu^{2} Z_{0}-\alpha \mu \sqrt{\mu} U_{0}\right) \cos (\sqrt{\mu} t)+\left(\alpha \mu \sqrt{\mu} Z_{0}+\mu^{2} U_{0}\right) \sin (\sqrt{\mu} t)}{\left(\alpha^{2}+\mu\right)(\mu-\beta)} .
\end{align*}
$$

If the function f is $2 \pi k$-periodic in the variable t, then for every $\left(X_{0}^{*}, Y_{0}^{*}\right.$, $\left.Z_{0}^{*}, U_{0}^{*}\right)$ solution of the system

$$
\begin{equation*}
\mathcal{F}_{i}\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)=0, \quad i=1, \ldots, 4 \tag{6.5}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\operatorname{det}\left(\left.\frac{\partial\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}, \mathcal{F}_{4}\right)}{\partial\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)}\right|_{\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)=\left(X_{0}^{*}, Y_{0}^{*}, Z_{0}^{*}, U_{0}^{*}\right)}\right) \neq 0 \tag{6.6}
\end{equation*}
$$

the differential system (6.1) has a periodic solution $x(t, \varepsilon)$ that tends to the solution $x_{0}(t)$ given by

$$
\begin{aligned}
& x_{0}(t)= \frac{\left(-\sqrt{\beta} X_{0}+\alpha Y_{0}\right) \cos (\sqrt{\beta} t)+\left(\alpha X_{0}+\beta Y_{0}\right) \sin (\sqrt{\beta} t)}{\sqrt{\beta}\left(\alpha^{2}+\beta\right)(\mu-\beta)} \\
&+\frac{\left(\sqrt{\mu} Z_{0}-\alpha U_{0}\right) \cos (\sqrt{\mu} t)-\left(\alpha Z_{0}+\sqrt{\mu} U_{0}\right) \sin (\sqrt{\mu} t)}{\sqrt{\mu}\left(\alpha^{2}+\mu\right)(\mu-\beta)}, \\
& \text { of } x^{(5)}+\alpha \dddot{x}+(\beta+\mu) \dddot{x}+\alpha(\beta+\mu) \ddot{x}+\beta \mu \dot{x}+\alpha \beta \mu x=0 \text { when } \varepsilon \rightarrow 0 .
\end{aligned}
$$

Note that this solution is periodic of period $2 \pi k$.

Remark 6.1.1. In the case when one of the statements of Theorem 6.1.1 does not satisfy, then we cannot apply the averaging theory for studying periodic orbits.

Proof of Theorem 6.1.1. For $\varepsilon=0$, the unperturbed system of (6.1) has a unique equilibrium point, the origin. The eigenvalues of the linearized system at this equilibrium point are two pairs of imaginary eigenvalues and one real eigenvalue, more precisely the eigenvalues $\pm \sqrt{\beta} i, \pm \sqrt{\mu} i$ and $-\alpha$. We shall write system (6.1) in such way that the linear part at the origin will be in its real Jordan normal form. Therefore, by the linear invertible transformation

$$
(X, Y, Z, U, V)^{T}=B(x, y, z, u, v)^{T}
$$

where

$$
R=\left(\begin{array}{ccccc}
0 & \alpha \mu & \mu & \alpha & 1 \\
\alpha \mu \sqrt{\beta} & \sqrt{\beta} \mu & \alpha \sqrt{\beta} & \sqrt{\beta} & 0 \\
0 & \alpha \beta & \beta & \alpha & 1 \\
\alpha \beta \sqrt{\mu} & \beta \sqrt{\mu} & \alpha \sqrt{\mu} & \sqrt{\mu} & 0 \\
\beta \mu & 0 & \beta+\alpha & 0 & 1
\end{array}\right),
$$

the differential system (6.1) becomes

$$
\begin{align*}
\dot{X} & =-\sqrt{\beta} Y+\varepsilon G_{1}(t, X, Y, Z, U, V), \\
\dot{Y} & =\sqrt{\beta} X, \\
\dot{Z} & =-\sqrt{\mu} U+\varepsilon G_{1}(t, X, Y, Z, U, V), \tag{6.7}\\
\dot{U} & =\sqrt{\mu} Z \\
\dot{V} & =-\alpha V+\varepsilon G_{1}(t, X, Y, Z, U, V),
\end{align*}
$$

where $G_{1}(t, X, Y, Z, U, V)=F_{0}(t, A(t), B(t), C(t), D(t), E(t))$, with $A(t)$, $B(t), C(t), D(t)$ and $E(t)$ given in (6.4).
Note that the linear part of the differential system (6.7) at the origin is in its real normal form of Jordan. We shall apply Theorem 2.2.1 to the differential system (6.7). Therefore, system (6.7) can be written as system (2.7) taking

$$
\begin{gathered}
\mathbf{x}=\left(\begin{array}{c}
X \\
Y \\
Z \\
U \\
V
\end{array}\right), F_{0}(t, \mathbf{x})=\left(\begin{array}{c}
-\sqrt{\beta} Y \\
\sqrt{\beta} X \\
-\sqrt{\mu} U \\
\sqrt{\mu} Z \\
-\alpha V
\end{array}\right), \\
F_{1}(t, \mathbf{x})=\left(\begin{array}{c}
G_{1}(t, X, Y, Z, U, V) \\
0 \\
G_{1}(t, X, Y, Z, U, V) \\
0 \\
G_{1}(t, X, Y, Z, U, V)
\end{array}\right) \text { and } F_{2}(t, \mathbf{x})=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) .
\end{gathered}
$$

We shall study the periodic solutions of system (2.8) in our case, i.e. the periodic solutions of system (6.7) with $\varepsilon=0$. These periodic solutions are

$$
\left(\begin{array}{c}
X(t) \\
Y(t) \\
Z(t) \\
U(t) \\
V(t)
\end{array}\right)=\left(\begin{array}{c}
X_{0} \cos (\sqrt{\beta} t)-Y_{0} \sin (\sqrt{\beta} t) \\
Y_{0} \cos (\sqrt{\beta} t)+X_{0} \sin (\sqrt{\beta} t) \\
Z_{0} \cos (\sqrt{\mu} t)-U_{0} \sin (\sqrt{\mu} t) \\
U_{0} \cos (\sqrt{\mu} t)+Z_{0} \sin (\sqrt{\mu} t) \\
0
\end{array}\right)
$$

This set of periodic solutions has dimension four, all having the some period $2 \pi k$, where k be the least common multiple of n and q.

To look for the periodic solutions of our system (6.1) we must calculate the zeros $\mathbf{z}=\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)$ of the system $\mathcal{F}(\mathbf{z})=0$ where $\mathcal{F}(\mathbf{z})$ is given by (6.3). The fundamental matrix $M(t)$ of the differential system (6.7) with $\varepsilon=0$ along any periodic solution is
$M(t)=M_{\mathbf{z}}(t)=\left(\begin{array}{ccccc}\cos (\sqrt{\beta} t) & -\sin (\sqrt{\beta} t) & 0 & 0 & 0 \\ \sin (\sqrt{\beta} t) & \cos (\sqrt{\beta} t) & 0 & 0 & 0 \\ 0 & 0 & \cos (\sqrt{\mu} t) & -\sin (\sqrt{\mu} t) & 0 \\ 0 & 0 & \sin (\sqrt{\mu} t) & \cos (\sqrt{\mu} t) & 0 \\ 0 & 0 & 0 & 0 & e^{-\alpha t}\end{array}\right)$.
The inverse matrix of $M(t)$ is

$$
M^{-1}(t)=\left(\begin{array}{ccccc}
\cos (\sqrt{\beta} t) & \sin (\sqrt{\beta} t) & 0 & 0 & 0 \\
-\sin (\sqrt{\beta} t) & \cos (\sqrt{\beta} t) & 0 & 0 & 0 \\
0 & 0 & \cos (\sqrt{\mu} t) & \sin (\sqrt{\mu} t) & 0 \\
0 & 0 & -\sin (\sqrt{\mu} t) & \cos (\sqrt{\mu} t) & 0 \\
0 & 0 & 0 & 0 & e^{\alpha t}
\end{array}\right) .
$$

It verifies

Chapter 6. Periodic solutions for differential systems in \mathbb{R}^{5} and \mathbb{R}^{6}

$$
M^{-1}(0)-M^{-1}(2 \pi k)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1-e^{2 \alpha \pi k}
\end{array}\right) .
$$

Consequently all the assumptions of Theorem 2.2.1 are satisfied.
Now computing the function $\mathcal{F}(\mathbf{z})$ given in (2.10), we got the system $\mathcal{F}(\mathbf{z})=0$, which can be written as (6.5), with the function $\mathcal{F}_{k}\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)$ given in (6.3).

The zeros $\left(X_{0}^{*}, Y_{0}^{*}, Z_{0}^{*}, U_{0}^{*}\right)$ of system (6.5) with respect to the variables X_{0}, Y_{0}, Z_{0} and U_{0} provide periodic orbits of system (6.7) with $\varepsilon \neq 0$ sufficiently small if they are simple, i.e. condition (6.9) is satisfied. Going back though the change of variable, for every simple zero $\left(X_{0}^{*}, Y_{0}^{*}, Z_{0}^{*}, U_{0}^{*}\right)$ of system (6.5) we obtain a $2 \pi k$-periodic solution $x(t)$ of the differential system (6.1) for $\varepsilon \neq 0$ sufficiently small such that $x(t)$ tends to the periodic solution, where $x(t)$ is defined in the statement of Theorem 6.1.1, of

$$
x^{(5)}+\alpha \dddot{x}+(\beta+\mu) \dddot{x}+\alpha(\beta+\mu) \ddot{x}+\beta \mu \dot{x}+\alpha \beta \mu x=0
$$

when $\varepsilon \rightarrow 0$. Note that this solution is periodic of period $2 \pi k$.
This completes the proof of Theorem 6.1.1.
An example of Theorem 6.1.1 is the following.
Example 6.1. If $f(t, x, \dot{x}, \ddot{x}, \dddot{x}, \dddot{x})=\left(10-x^{2}+\ddot{x}^{2}\right) \cos t+7 \dddot{x} \sin t+3$, then the differential equation (6.2) with $\alpha=2, \beta=1, \mu=4$, becomes

$$
\{\dddot{x}(t)+2 \dddot{x}(t)+5 \dddot{x}(t)+10 \ddot{x}(t)+4 \dot{x}(t)+8 x(t)=\epsilon(5+\cos (t))(4 \dot{x}(t)+2) .
$$

After some computations, the functions $\mathcal{F}_{i}\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)$ for $i=1, \ldots, 4$, of Theorem 6.1.1 are

$$
\begin{aligned}
& \mathcal{F}_{1}\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)=\left(\frac{5}{384} Z_{0}+\frac{7}{12}\right) Z_{0}+\left(\frac{5}{384} U_{0}-\frac{7}{12}\right) U_{0}+5, \\
& \mathcal{F}_{2}\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)=\frac{7}{12}\left(Z_{0}+U_{0}\right), \\
& \mathcal{F}_{3}\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)=\frac{1}{240}\left(X_{0}-2 Y_{0}\right)\left(-Z_{0}+U_{0}+28\right), \\
& \mathcal{F}_{4}\left(X_{0}, Y_{0}, Z_{0}, U_{0}\right)=\frac{X_{0}}{240}\left(-Z_{0}-U_{0}+56\right)+\frac{Y_{0}}{120}\left(Z_{0}+U_{0}+14\right) .
\end{aligned}
$$

System $\mathcal{F}_{1}=\mathcal{F}_{2}=\mathcal{F}_{3}=\mathcal{F}_{4}=0$ has two solutions $\left(X_{0}^{*}, Y_{0}^{*}, Z_{0}^{*}, U_{0}^{*}\right)$ given by $(0,0,-40,40),\left(0,0,-\frac{24}{5}, \frac{24}{5}\right)$.
Since the jacobian (6.6) for these two solutions $\left(X_{0}^{*}, Y_{0}^{*}, Z_{0}^{*}, U_{0}^{*}\right)$ are $-\frac{539}{3840}$, $\frac{25333}{518400}$ respectively, by Theorem 6.1.1, system (6.1) has the two periodic solutions has two periodic solutions $x_{i}=(t, \varepsilon)$ for $i=1,2$ tending to the periodic solutions $x_{i}(t)$ where

$$
x_{1}(t)=-\frac{10}{3} \cos (2 t), \quad x_{2}(t)=-\frac{2}{5} \cos (2 t),
$$

of $x^{(5)}+2 \dddot{x}+5 \dddot{x}+10 \ddot{x}+4 \dot{x}+8 x=0$ when $\varepsilon \rightarrow 0$.

6.2 Periodic solutions for differential systems in \mathbb{R}^{6}

Now our second result on the periodic solutions of the differential system in \mathbb{R}^{6} of the form

$$
\begin{cases}\dot{x}=y, & \dot{y}=-x-\varepsilon F(t, x, y, z, u, v, w) \tag{6.8}\\ \dot{z}=u, & \dot{u}=-z-\varepsilon G(t, x, y, z, u, v, w) \\ \dot{v}=w, & \dot{w}=-v-\varepsilon H(t, x, y, z, u, v, w)\end{cases}
$$

where F, G and H are 2π-periodic functions in the variable t, and $|\varepsilon|$ is a small parameter. These systems are a perturbation of the harmonic oscillator in \mathbb{R}^{6}, and these kind of systems have been studied by many authors, see for instance $[6,31,45,58]$.

We summarize our main result on the periodic orbits of the differential system (6.8) as follows.

Theorem 6.2.1. We define

$$
\begin{align*}
& \mathcal{F}_{1}\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (t) F_{0}(t, a(t), b(t), c(t), d(t), e(t), l(t)) d t, \\
& \mathcal{F}_{2}\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (t) F_{0}(t, a(t), b(t), c(t), d(t), e(t), l(t)) d t, \\
& \mathcal{F}_{3}\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (t) G_{0}(t, a(t), b(t), c(t), d(t), e(t), l(t)) d t, \\
& \mathcal{F}_{4}\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (t) G_{0}(t, a(t), b(t), c(t), d(t), e(t), l(t)) d t, \\
& \mathcal{F}_{5}\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (t) H_{0}(t, a(t), b(t), c(t), d(t), e(t), l(t)) d t, \\
& \mathcal{F}_{6}\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (t) H_{0}(t, a(t), b(t), c(t), d(t), e(t), l(t)) d t, \tag{6.9}
\end{align*}
$$

where

$$
\begin{aligned}
& a(t)=x_{0} \cos t+y_{0} \sin t, b(t)=y_{0} \cos t-x_{0} \sin t, c(t)=z_{0} \cos t+u_{0} \sin t \\
& d(t)=u_{0} \cos t-z_{0} \sin t, e(t)=v_{0} \cos t+w_{0} \sin t, l(t)=w_{0} \cos t-v_{0} \sin t
\end{aligned}
$$

Chapter 6. Periodic solutions for differential systems in \mathbb{R}^{5} and \mathbb{R}^{6}

Then for every $\left(x_{0}^{*}, y_{0}^{*}, z_{0}^{*}, u_{0}^{*}, v_{0}^{*}, w_{0}^{*}\right)$ solution of the system

$$
\begin{equation*}
\mathcal{F}_{k}\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=0, \text { for } k=1, \ldots, 6 \tag{6.10}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\operatorname{det}\left(\left.\frac{\partial\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}, \mathcal{F}_{4}, \mathcal{F}_{5}, \mathcal{F}_{6}\right)}{\partial\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)}\right|_{\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=\left(x_{0}^{*}, y_{0}^{*}, z_{0}^{*}, u_{0}^{*}, v_{0}^{*}, w_{0}^{*}\right)}\right) \neq 0 \tag{6.11}
\end{equation*}
$$

the differential system (6.8) has 2π-periodic solution $(x(t, \varepsilon), y(t, \varepsilon), z(t, \varepsilon)$, $u(t, \varepsilon), v(t, \varepsilon), w(t, \varepsilon))$ which when $\varepsilon \rightarrow 0$ tends to the 2π-periodic solution $\left(x_{0}(t), y_{0}(t), z_{0}(t), u_{0}(t), v_{0}(t), w_{0}(t)\right)$ given by

$$
\begin{aligned}
& x_{0}(t)=x_{0}^{*} \cos t+y_{0}^{*} \sin t, y_{0}(t)=y_{0}^{*} \cos t-x_{0}^{*} \sin t, \\
& z_{0}(t)=z_{0}^{*} \cos t+u_{0}^{*} \sin t, u_{0}(t)=u_{0}^{*} \cos t-z_{0}^{*} \sin t, \\
& v_{0}(t)=v_{0}^{*} \cos t+w_{0}^{*} \sin t, w_{0}(t)=w_{0}^{*} \cos t-v_{0}^{*} \sin t,
\end{aligned}
$$

of system (6.8) with $\varepsilon=0$.

Proof of Theorem 6.2.1. Consider the differential system (6.8) in \mathbb{R}^{6}. Its unperturbed system is the system (6.8) with $\varepsilon=0$, which has the equilibrium point $(0,0,0,0,0,0)=(x, y, z, u, v, w)$. The eigenvalues of the linearized system at this point are $\pm i$, of multiplicity three. The periodic solutions $(x(t), y(t), z(t), u(t), v(t), w(t))$ of the unperturbed system such that $(x(0), y(0), z(0), u(0), v(0), w(0))=\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)$ are

Chapter 6. Periodic solutions for differential systems in \mathbb{R}^{5} and \mathbb{R}^{6}

$$
\left(\begin{array}{l}
x(t) \\
y(t) \\
z(t) \\
u(t) \\
v(t) \\
w(t)
\end{array}\right)=\left(\begin{array}{l}
x_{0} \cos t+y_{0} \sin t \\
y_{0} \cos t-x_{0} \sin t \\
z_{0} \cos t+u_{0} \sin t \\
u_{0} \cos t-z_{0} \sin t \\
v_{0} \cos t+w_{0} \sin t \\
w_{0} \cos t-v_{0} \sin t
\end{array}\right)
$$

Of course, all these periodic orbits have period 2π.
Using the notation of Chap. 2, Sec. 2.2, we have

$$
\begin{aligned}
\mathbf{x}=\left(\begin{array}{c}
x \\
y \\
z \\
u \\
v \\
w
\end{array}\right), \mathbf{z}=\left(\begin{array}{c}
x_{0} \\
y_{0} \\
z_{0} \\
u_{0} \\
v_{0} \\
w_{0}
\end{array}\right), \quad F_{0}(t, \mathbf{x})=\left(\begin{array}{c}
y \\
-x \\
u \\
-z \\
w \\
-v
\end{array}\right), \\
F_{1}(t, \mathbf{x})=\left(\begin{array}{c}
0 \\
F(t, x, y, z, u, v, w) \\
0 \\
G(t, x, y, z, u, v, w) \\
0 \\
H(t, x, y, z, u, v, w)
\end{array}\right) \text { and } F_{2}(t, \mathbf{x})=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) .
\end{aligned}
$$

Since the fundamental matrix $M_{\mathbf{z}}(t)$ is independent of \mathbf{z}, we denote it simply by $M(t)$. An easy computation provides

$$
M(t)=\left(\begin{array}{cccccc}
\cos t & \sin t & 0 & 0 & 0 & 0 \\
-\sin t & \cos t & 0 & 0 & 0 & 0 \\
0 & 0 & \cos t & \sin t & 0 & 0 \\
0 & 0 & -\sin t & \cos t & 0 & 0 \\
0 & 0 & 0 & 0 & \cos t & \sin t \\
0 & 0 & 0 & 0 & -\sin t & \cos t
\end{array}\right)
$$

From Theorem 2.2.2, we must study the zeros \mathbf{z} of the function $\mathcal{F}(\mathbf{z})$ defined in (2.11), i.e. of the function $\mathcal{F}(\mathbf{z})=\left(\mathcal{F}_{1}(\mathbf{z}), \mathcal{F}_{2}(\mathbf{z}), \mathcal{F}_{3}(\mathbf{z}), \mathcal{F}_{4}(\mathbf{z}), \mathcal{F}_{5}(\mathbf{z}), \mathcal{F}_{6}(\mathbf{z})\right)$ where \mathcal{F}_{k} for $k=1, \ldots, 6$ are given in (6.9) of Theorem 6.2.1.

The rest of the proof of Theorem 6.2.1 follows directly from Theorem 2.2.2.

An example of Theorem 6.2.1 is the following.

Example 6.2. Consider the differential system (6.8) with F, G and H satisfies

$$
\left\{\begin{array}{l}
F(t, x, y, z, u, v, w)=\left(-1-y^{2}+u^{2}\right) \sin t \\
G(t, x, y, z, u, v, w)=\left(1-y^{2}+w^{2}\right) \cos t \\
H(t, x, y, z, u, v, w)=\left(1-y^{2}+w^{2}\right) \sin t
\end{array}\right.
$$

After some computations, we get that

$$
\begin{aligned}
& \mathcal{F}_{1}\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=-\frac{1}{8}\left(3 x_{0}^{2}+y_{0}^{2}-3 z_{0}^{2}-u_{0}^{2}+4\right), \\
& \mathcal{F}_{2}\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=\frac{1}{4}\left(-x_{0} y_{0}+z_{0} u_{0}\right), \\
& \mathcal{F}_{3}\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=\frac{1}{4}\left(x_{0} y_{0}-v_{0} w_{0}\right), \\
& \mathcal{F}_{4}\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=\frac{1}{8}\left(x_{0}^{2}+3 y_{0}^{2}-v_{0}^{2}-3 w_{0}^{2}+4\right), \\
& \mathcal{F}_{5}\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=-\frac{1}{8}\left(3 x_{0}^{2}+y_{0}^{2}-4\right), \\
& \mathcal{F}_{6}\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)=-\frac{1}{4} x_{0} y_{0} .
\end{aligned}
$$

System $\mathcal{F}_{1}=\mathcal{F}_{2}=\mathcal{F}_{3}=\mathcal{F}_{4}=\mathcal{F}_{5}=\mathcal{F}_{6}=0$ has sixty-four solutions $\left(x_{0}^{*}, y_{0}^{*}, z_{0}^{*}, u_{0}^{*}, v_{0}^{*}, w_{0}^{*}\right)$ given by

$$
\begin{array}{ll}
(0, \pm 2,0, \pm 2 \sqrt{2}, \pm 4,0), & \left(\pm \frac{2 \sqrt{3}}{3}, 0, \pm \frac{2 \sqrt{6}}{3}, 0, \pm \frac{4 \sqrt{3}}{3}, 0\right), \\
\left(\pm \frac{2 \sqrt{3}}{3}, 0,0, \pm 2 \sqrt{2}, \pm \frac{4 \sqrt{3}}{3}, 0\right), & \left(0, \pm 2, \pm \frac{2 \sqrt{6}}{3}, 0, \pm 4,0\right), \\
\left(0, \pm 2, \pm \frac{2 \sqrt{6}}{3}, 0,0, \pm \frac{4 \sqrt{3}}{3}\right), & \left(\pm \frac{2 \sqrt{3}}{3}, 0, \pm \frac{2 \sqrt{6}}{3}, 0,0, \pm \frac{4}{3}\right), \\
\left(\pm \frac{2 \sqrt{3}}{3}, 0,0, \pm 2 \sqrt{2}, 0, \pm \frac{4}{3}\right), & \left(0, \pm 2,0, \pm 2 \sqrt{2}, 0, \pm \frac{4 \sqrt{3}}{3}\right)
\end{array}
$$

Since the jacobian (6.11) for these solutions $\left(x_{0}^{*}, y_{0}^{*}, z_{0}^{*}, u_{0}^{*}, v_{0}^{*}, w_{0}^{*}\right)$ are $-\frac{1}{8},-\frac{1}{24}, \frac{1}{24}, \frac{1}{8},-\frac{1}{8}, \frac{1}{24},-\frac{1}{24}, \frac{1}{8}$ respectively, we obtain using Theorem 2.2.2 sixty-four solutions, but only thirty-two of them are different because all periodic solutions appear repeated when we change $t \rightarrow t+\pi$. Hence we obtain the thirty-two solutions
$\left(x_{k}(t, \varepsilon), y_{k}(t, \varepsilon), z_{k}(t, \varepsilon), u_{k}(t, \varepsilon), v_{k}(t, \varepsilon), w_{k}(t, \varepsilon)\right)$ for $k=1, \ldots, 32$ tending when $\varepsilon \rightarrow 0$ the periodic solutions $\left(x_{k}(t), y_{k}(t), z_{k}(t), u_{k}(t), v_{k}(t), w_{k}(t)\right)$ where
$\left(x_{1,2,3,4}(t), y_{1,2,3,4}(t), z_{1,2,3,4}(t), u_{1,2,3,4}(t), v_{1,2,3,4}(t), w_{1,2,3,4}(t)\right)=$ $\left(\pm 2 \sin t, \pm 2 \cos t, \pm \frac{2 \sqrt{6}}{3} \cos t, \mp \frac{2 \sqrt{6}}{3} \sin t,-4 \cos t, 4 \sin t\right)$,
$\left(x_{5,6,7,8}(t), y_{5,6,7,8}(t), z_{5,6,7,8}(t), u_{5,6,7,8}(t), v_{5,6,7,8}(t), w_{5,6,7,8}(t)\right)=$
$\left(\pm \frac{2 \sqrt{3}}{3} \cos t, \mp \frac{2 \sqrt{3}}{3} \sin t, \pm \frac{2 \sqrt{6}}{3} \cos t, \mp \frac{2 \sqrt{6}}{3} \sin t,-\frac{4 \sqrt{3}}{3} \cos t, \frac{4 \sqrt{3}}{3} \sin t\right)$,
$\left(x_{9,10,11,12}(t), y_{9,10,11,12}(t), z_{9,10,11,12}(t), u_{9,10,11,12}(t), v_{9,10,11,12}(t), w_{9,10,11,12}(t)\right)=$ $\left(\pm 2 \sin t, \pm 2 \cos t, \pm 2 \sqrt{2} \sin t, \pm 2 \sqrt{2} \cos t,-\frac{4 \sqrt{3}}{3} \sin t,-\frac{4 \sqrt{3}}{3} \cos t\right)$,
$\left(x_{13,14,15,16}(t), y_{13,14,15,16}(t), z_{13,14,15,16}(t), u_{13,14,15,16}(t), v_{13,14,15,16}(t), w_{13,14,15,16}(t)\right)=$ $\left(\pm \frac{2 \sqrt{3}}{3} \cos t, \mp \frac{2 \sqrt{3}}{3} \sin t, \pm 2 \sqrt{2} \sin t, \pm 2 \sqrt{2} \cos t,-\frac{4 \sqrt{3} \cos t}{3}, \frac{4 \sqrt{3}}{3} \sin t\right.$, $\left(x_{17,18,19,20}(t), y_{17,18,19,20}(t), z_{17,18,19,20}(t), u_{17,18,19,20}(t), v_{17,18,19,20}(t), w_{17,18,19,20}(t)\right)=$ $\left(\mp 2 \sin t, \mp 2 \cos t, \mp \frac{2 \sqrt{6}}{3} \cos t, \pm \frac{2 \sqrt{6}}{3} \sin t,-\frac{4 \sqrt{3}}{3} \sin t,-\frac{4 \sqrt{3}}{3} \cos t\right)$,

Chapter 6. Periodic solutions for differential systems in \mathbb{R}^{5} and \mathbb{R}^{6}
$\left(x_{21,22,23,24}(t), y_{21,22,23,24}(t), z_{21,22,23,24}(t), u_{21,22,23,24}(t), v_{21,22,23,24}(t), w_{21,22,23,24}(t)\right)=$ $\left(\pm \frac{2 \sqrt{3}}{3} \cos t, \mp \frac{2 \sqrt{3}}{3} \sin t, \pm \frac{2 \sqrt{6}}{3} \cos t, \mp \frac{2 \sqrt{6}}{3} \sin t,-\frac{4}{3} \sin t,-\frac{4}{3} \cos t\right)$,
$\left(x_{25,26,27,28}(t), y_{25,26,27,28}(t), z_{25,26,27,28}(t), u_{25,26,27,28}(t), v_{25,26,27,28}(t), w_{25,26,27,28}(t)\right)=$ $(\pm 2 \sin t, \pm 2 \cos t, \pm 2 \sqrt{2} \sin t, \pm 2 \sqrt{2} \cos t,-4 \cos t, 4 \sin t)$,
$\left(x_{29,30,31,32}(t), y_{29,30,31,32}(t), z_{29,30,31,32}(t), u_{29,30,31,32}(t), v_{29,30,31,32}(t), w_{29,30,31,32}(t)\right)=$ $\left(\pm \frac{2 \sqrt{3}}{3} \cos t, \mp \frac{2 \sqrt{3}}{3} \sin t, \pm 2 \sqrt{2} \sin t, \pm 2 \sqrt{2} \cos t,-\frac{4}{3} \sin t,-\frac{4}{3} \cos t\right)$,
of $\dot{x}=y, \dot{y}=-x, \dot{z}=u, \dot{u}=-z, \dot{v}=w, \dot{w}=-v$, when $\varepsilon \rightarrow 0$.

Conclusion and Perspectives

Based on different results of the averaging theory, we have provided the sufficient conditions for the existence for periodic solutions of some classes of differential equations and systems such as Duffing differential equations and differential systems of dimension 5 and 6 , using averaging theory of the first order. We have also studied the maximum number of limit cycles of planar cubic polynomial differential systems, using averaging theory up to order six. Moreover, we have illustrated our study with examples.

We will continue our research about the existence of periodic solutions for other types of differential systems that model phenomena in biology, physics, mechanics, etc.

We will also continue our research about the limit cycles for differential systems that relate to the second part of sixteen Hilbert problems, using higher-order averaging theory.

Appendix

In this Appendix, we give the constants that we need in the proof of the main results of Chapter 5 (Sect. 5.2).

$$
\begin{aligned}
& D_{1}=a_{51}+b_{52}, \\
& D_{3}=9 a_{11}^{3}-3 a_{11}^{2} b_{13}-9 a_{11}^{2} b_{15}+9 a_{11} a_{12}^{2}-3 a_{11} a_{12} a_{13}+6 a_{11} a_{12} a_{15} \\
& \quad-2 a_{11} a_{12} a_{17}-9 a_{11} a_{12} b_{11}-6 a_{11} a_{12} b_{14}-2 a_{11} a_{12} b_{18}-2 a_{11} a_{13}^{2} \\
& -2 a_{11} a_{13} a_{15}+3 a_{11} a_{13} b_{11}+a_{11} a_{13} b_{14}-a_{11} a_{14}^{2}+a_{11} a_{14} b_{13} \\
& -a_{11} a_{14} b_{15}-a_{11} a_{15} b_{14}+9 a_{11} a_{22}-3 a_{11} a_{23}+3 a_{11} a_{25}-2 a_{11} a_{27} \\
& +9 a_{11} b_{11}^{2}+6 a_{11} b_{11} b_{14}+2 a_{11} b_{13} b_{15}+a_{11} b_{14}^{2}+2 a_{11} b_{15}^{2}-9 a_{11} b_{21} \\
& -6 a_{11} b_{24}-2 a_{11} b_{28}-a_{12}^{2} a_{18}-3 a_{12}^{2} b_{15}-3 a_{12}^{2} b_{19}-a_{12} a_{13} a_{14} \\
& -2 a_{12} a_{14} a_{15}-4 a_{12} a_{15} b_{15}-a_{12} a_{18} b_{11}+9 a_{12} a_{21}-a_{12} a_{28} \\
& -3 a_{12} b_{11} b_{19}+a_{12} b_{14} b_{15}-3 a_{12} b_{25}-3 a_{12} b_{29}-3 a_{13} a_{21}-a_{13} a_{24} \\
& -2 a_{13} b_{11} b_{13}+2 a_{13} b_{23}-a_{14} a_{15} b_{11}-a_{14} a_{23}-a_{14} a_{25}+3 a_{15} a_{21} \\
& -a_{15} a_{24}-2 a_{15} b_{11} b_{15}-2 a_{15} b_{25}-2 a_{17} a_{21}-a_{18} a_{22}-a_{18} b_{21} \\
& -9 a_{21} b_{11}-6 a_{21} b_{14}-2 a_{21} b_{18}-3 a_{22} b_{15}-3 a_{22} b_{19}+2 a_{23} b_{13} \\
& -2 a_{25} b_{15}-a_{28} b_{11}+9 a_{31}-3 a_{36}-a_{38}-3 b_{11}^{2} b_{13}-b_{11} b_{13} b_{14} \\
& +3 b_{11} b_{23}-3 b_{11} b_{29}+3 b_{13} b_{21}+b_{13} b_{24}+b_{14} b_{23}+b_{14} b_{25}+b_{15} b_{24} \\
& -3 b_{19} b_{21}-3 b_{33}-3 b_{35}-b_{37}-3 b_{39}, \\
& D_{5}=15 a_{11}-2 a_{14}-9 a_{16}-2 a_{18}-5 b_{13}-4 b_{15}-3 b_{19},
\end{aligned}
$$

$$
\begin{aligned}
& S_{1}=a_{61}+b_{62}, \\
& S_{2}=23652 a_{12} a_{11}^{3}+1152 a_{13} a_{11}^{3}-1152 a_{15} a_{11}^{3}-1536 a_{19} a_{11}^{3} \\
& -3468 b_{11} a_{11}^{3}-1152 b_{14} a_{11}^{3}-1536 b_{16} a_{11}^{3}-832 a_{12} a_{14} a_{11}^{2} \\
& -6912 a_{12} a_{16} a_{11}^{2}-1792 a_{12} a_{18} a_{11}^{2}+17520 a_{21} a_{11}^{2}+1536 a_{26} a_{11}^{2} \\
& +2240 a_{14} b_{11} a_{11}^{2}+2304 a_{16} b_{11} a_{11}^{2}+1280 a_{18} b_{11} a_{11}^{2}-8128 a_{12} b_{13} a_{11}^{2} \\
& -1536 a_{13} b_{13} a_{11}^{2}-448 b_{11} b_{13} a_{11}^{2}-10304 a_{12} b_{15} a_{11}^{2}+1536 a_{15} b_{15} a_{11}^{2} \\
& -4160 b_{11} b_{15} a_{11}^{2}+1536 b_{29} a_{11}^{2}-5607 a_{12}^{3} a_{11}+34173 b_{11}^{3} a_{11} \\
& -576 a_{12} a_{13}^{2} a_{11}-576 a_{12} a_{14}^{2} a_{11}-1344 a_{12} a_{15}^{2} a_{11}+17811 a_{12} b_{11}^{2} a_{11} \\
& +1440 a_{13} b_{11}^{2} a_{11}-2592 a_{15} b_{11}^{2} a_{11}+2304 a_{17} b_{11}^{2} a_{11}+3072 a_{19} b_{11}^{2} a_{11} \\
& +576 a_{12} b_{13}^{2} a_{11}+576 b_{11} b_{13}^{2} a_{11}+576 a_{12} b_{14}^{2} a_{11}+576 b_{11} b_{14}^{2} a_{11} \\
& +1344 a_{12} b_{15}^{2} a_{11}+1344 b_{11} b_{15}^{2} a_{11}+1440 a_{12}^{2} a_{13} a_{11}+6624 a_{12}^{2} a_{15} a_{11} \\
& -1152 a_{12} a_{13} a_{15} a_{11}-1152 a_{12}^{2} a_{17} a_{11}-2688 a_{12}^{2} a_{19} a_{11} \\
& -2048 a_{14} a_{21} a_{11}-6144 a_{16} a_{21} a_{11}-2048 a_{18} a_{21} a_{11} \\
& -5592 a_{12} a_{22} a_{11}+2304 a_{15} a_{22} a_{11}-1152 a_{17} a_{22} a_{11} \\
& -1920 a_{19} a_{22} a_{11}+2304 a_{12} a_{25} a_{11}-1152 a_{12} a_{27} a_{11} \\
& -1920 a_{12} a_{29} a_{11}+4032 a_{32} a_{11}-21969 a_{12}^{2} b_{11} a_{11} \\
& -576 a_{13}^{2} b_{11} a_{11}-576 a_{14}^{2} b_{11} a_{11}-1344 a_{15}^{2} b_{11} a_{11} \\
& +2880 a_{12} a_{13} b_{11} a_{11}+4032 a_{12} a_{15} b_{11} a_{11}-1152 a_{13} a_{15} b_{11} a_{11} \\
& +1152 a_{12} a_{17} b_{11} a_{11}+384 a_{12} a_{19} b_{11} a_{11}-22872 a_{22} b_{11} a_{11} \\
& +2304 a_{25} b_{11} a_{11}-1152 a_{27} b_{11} a_{11}-1920 a_{29} b_{11} a_{11} \\
& -5120 a_{21} b_{13} a_{11}-4896 a_{12}^{2} b_{14} a_{11}+8928 b_{11}^{2} b_{14} a_{11} \\
& -768 a_{12} a_{15} b_{14} a_{11}-3456 a_{22} b_{14} a_{11}+4032 a_{12} b_{11} b_{14} a_{11} \\
& -768 a_{15} b_{11} b_{14} a_{11}-768 a_{12} a_{14} b_{15} a_{11}-4096 a_{21} b_{15} a_{11} \\
& -768 a_{14} b_{11} b_{15} a_{11}+1152 a_{12} b_{13} b_{15} a_{11}+1152 b_{11} b_{13} b_{15} a_{11} \\
& -1152 a_{12}^{2} b_{16} a_{11}+2304 b_{11}^{2} b_{16} a_{11}-1152 a_{22} b_{16} a_{11} \\
& +1152 a_{12} b_{11} b_{16} a_{11}-2688 a_{12}^{2} b_{18} a_{11}+3072 b_{11}^{2} b_{18} a_{11} \\
& -1920 a_{22} b_{18} a_{11}+384 a_{12} b_{11} b_{18} a_{11}-22872 a_{12} b_{21} a_{11}
\end{aligned}
$$

$$
\begin{aligned}
& +2304 a_{15} b_{21} a_{11}-1152 a_{17} b_{21} a_{11}-1920 a_{19} b_{21} a_{11} \\
& -40152 b_{11} b_{21} a_{11}-3456 b_{14} b_{21} a_{11}-1152 b_{16} b_{21} a_{11} \\
& -1920 b_{18} b_{21} a_{11}-3456 a_{12} b_{24} a_{11}-3456 b_{11} b_{24} a_{11} \\
& -1152 a_{12} b_{26} a_{11}-1152 b_{11} b_{26} a_{11}-1920 a_{12} b_{28} a_{11} \\
& -1920 b_{11} b_{28} a_{11}+4032 b_{31} a_{11}-3344 a_{14} b_{11}^{3}-11520 a_{16} b_{11}^{3} \\
& -2048 a_{18} b_{11}^{3}-3888 a_{12} a_{14} b_{11}^{2}+192 a_{13} a_{14} b_{11}^{2}-192 a_{14} a_{15} b_{11}^{2} b_{11}^{2} \\
& -13824 a_{12} a_{16} b_{11}^{2}-2304 a_{12} a_{18} b_{11}^{2}-10476 a_{21}+576 a_{24} b_{11}^{2} \\
& +1152 a_{26} b_{11}^{2}+2800 a_{12}^{3} a_{14}+192 a_{12}^{2} a_{13} a_{14}-192 a_{12}^{2} a_{14} a_{15} \\
& +9216 a_{12}^{3} a_{16}+1792 a_{12}^{3} a_{18}+6804 a_{12}^{2} a_{21}+2304 a_{12} a_{15} a_{21} \\
& -1152 a_{12} a_{17} a_{21}-1920 a_{12} a_{19} a_{21}+3712 a_{12} a_{14} a_{22} \\
& +13824 a_{12} a_{16} a_{22}+2560 a_{12} a_{18} a_{22}+4032 a_{21} a_{22}+576 a_{12}^{2} a_{24} \\
& +1152 a_{12}^{2} a_{26}+4032 a_{12} a_{31}+2256 a_{12}^{2} a_{14} b_{11}+384 a_{12} a_{13} a_{14} b_{11} \\
& -384 a_{12} a_{14} a_{15} b_{11}+6912 a_{12}^{2} a_{16} b_{11}+1536 a_{12}^{2} a_{18} b_{11} \\
& -3672 a_{12} a_{21} b_{11}+2304 a_{15} a_{21} b_{11}-1152 a_{17} a_{21} b_{11}-1920 a_{19} a_{21} b_{11} \\
& +3712 a_{14} a_{22} b_{11}+13824 a_{16} a_{22} b_{11}+2560 a_{18} a_{22} b_{11} \\
& +1152 a_{12} a_{24} b_{11}+2304 a_{12} a_{26} b_{11}+4032 a_{31} b_{11}+4912 a_{12}^{3} b_{13} \\
& -6992 b_{11}^{3} b_{13}-9072 a_{12} b_{11}^{2} b_{13}-960 a_{13} b_{11}^{2} b_{13}-192 a_{15} b_{11}^{2} b_{13} \\
& -960 a_{12}^{2} a_{13} b_{13}-192 a_{12}^{2} a_{15} b_{13}+7552 a_{12} a_{22} b_{13} \\
& +2832 a_{12}^{2} b_{11} b_{13}-1920 a_{12} a_{13} b_{11} b_{13}-384 a_{12} a_{15} b_{11} b_{13} \\
& +7552 a_{22} b_{11} b_{13}-192 a_{14} b_{11}^{2} b_{14}-192 a_{12}^{2} a_{14} b_{14} \\
& -3456 a_{12} a_{21} b_{14}-384 a_{12} a_{14} b_{11} b_{14}-3456 a_{21} b_{11} b_{14} \\
& -192 a_{12}^{2} b_{13} b_{14}-192 b_{11}^{2} b_{13} b_{14}-384 a_{12} b_{11} b_{13} b_{14} \\
& +2576 a_{12}^{3} b_{15}-2800 b_{11}^{3} b_{15}-3024 a_{12} b_{11}^{2} b_{15}-192 a_{13} b_{11}^{2} b_{15} \\
& -1728 a_{15} b_{11}^{2} b_{15}-192 a_{12}^{2} a_{13} b_{15}-1728 a_{12}^{2} a_{15} b_{15} \\
& +3968 a_{12} a_{22} b_{15}+2352 a_{12}^{2} b_{11} b_{15}-384 a_{12} a_{13} b_{11} b_{15} \\
& -3456 a_{12} a_{15} b_{11} b_{15}+3968 a_{22} b_{11} b_{15}+192 a_{12}^{2} b_{14} b_{15} \\
& +192 b_{11}^{2} b_{14} b_{15}+384 a_{12} b_{11} b_{14} b_{15}-1152 a_{12} a_{21} b_{16}
\end{aligned}
$$

$$
\begin{aligned}
& -1152 a_{21} b_{11} b_{16}-1920 a_{12} a_{21} b_{18}-1920 a_{21} b_{11} b_{18} \\
& +3712 a_{12} a_{14} b_{21}+13824 a_{12} a_{16} b_{21}+2560 a_{12} a_{18} b_{21}+4032 a_{21} b_{21} \\
& +3712 a_{14} b_{11} b_{21}+13824 a_{16} b_{11} b_{21}+2560 a_{18} b_{11} b_{21} \\
& +7552 a_{12} b_{13} b_{21}+7552 b_{11} b_{13} b_{21}+3968 a_{12} b_{15} b_{21} \\
& +3968 b_{11} b_{15} b_{21}+576 a_{12}^{2} b_{23}+576 b_{11}^{2} b_{23}+1152 a_{12} b_{11} b_{23} \\
& -576 a_{12}^{2} b_{25}-576 b_{11}^{2} b_{25}-1152 a_{12} b_{11} b_{25}-1920 a_{12}^{2} b_{29} \\
& -1920 b_{11}^{2} b_{29}-3840 a_{12} b_{11} b_{29} \text {, } \\
& S_{3}=864 a_{11}^{2} a_{12}+4932 a_{11}^{3} a_{12}-11979 a_{11} a_{12}^{3}+21504 a_{11}^{2} a_{13} \\
& -22272 a_{11}^{3} a_{13}-32976 a_{11} a_{12}^{2} a_{13}-896 a_{11} a_{12} a_{13}^{2} \\
& -9888 a_{11} a_{12} a_{14}+1824 a_{11}^{2} a_{12} a_{14}+1440 a_{12}^{3} a_{14} \\
& -2304 a_{11} a_{13} a_{14}-7936 a_{11}^{2} a_{13} a_{14}-1600 a_{12}^{2} a_{13} a_{14} \\
& +3200 a_{12} a_{14}^{2}-6464 a_{11} a_{12} a_{14}^{2}-6912 a_{11}^{2} a_{15}+5184 a_{11}^{3} a_{15} \\
& +6240 a_{11} a_{12}^{2} a_{15}-5760 a_{11} a_{12} a_{13} a_{15}+2304 a_{11} a_{14} a_{15} \\
& -1536 a_{11}^{2} a_{14} a_{15}-8576 a_{12}^{2} a_{14} a_{15}+3584 a_{11} a_{12} a_{15}^{2} \\
& -36864 a_{11} a_{12} a_{16}+10368 a_{11}^{2} a_{12} a_{16}+12096 a_{12}^{3} a_{16} \\
& +12288 a_{12} a_{14} a_{16}+9216 a_{11}^{2} a_{17}+288 a_{11}^{3} a_{17}-4200 a_{11} a_{12}^{2} a_{17} \\
& -3072 a_{11} a_{14} a_{17}-6144 a_{11} a_{12} a_{18}+2880 a_{11}^{2} a_{12} a_{18} \\
& +48 a_{12}^{3} a_{18}+2048 a_{12} a_{14} a_{18}+9216 a_{11}^{2} a_{19}+2592 a_{11}^{3} a_{19} \\
& +4536 a_{11} a_{12}^{2} a_{19}-3072 a_{11} a_{14} a_{19}-43776 a_{11} a_{21}+51768 a_{11}^{2} a_{21} \\
& +21690 a_{12}^{2} a_{21}-27072 a_{12} a_{13} a_{21}-3456 a_{13}^{2} a_{21}+7296 a_{14} a_{21} \\
& +4224 a_{11} a_{14} a_{21}-3712 a_{14}^{2} a_{21}+7104 a_{12} a_{15} a_{21}-3328 a_{13} a_{15} a_{21} \\
& +640 a_{15}^{2} a_{21}+9216 a_{11} a_{16} a_{21}-4416 a_{12} a_{17} a_{21}+3072 a_{11} a_{18} a_{21} \\
& +2880 a_{12} a_{19} a_{21}-20412 a_{11} a_{12} a_{22}-27072 a_{11} a_{13} a_{22} \\
& +5856 a_{12} a_{14} a_{22}-2176 a_{13} a_{14} a_{22}+7104 a_{11} a_{15} a_{22} \\
& -6016 a_{14} a_{15} a_{22}+34560 a_{12} a_{16} a_{22}-4416 a_{11} a_{17} a_{22} \\
& +2304 a_{12} a_{18} a_{22}+2880 a_{11} a_{19} a_{22}+31104 a_{21} a_{22}-24576 a_{11} a_{12} a_{23} \\
& -6912 a_{11} a_{13} a_{23}-2176 a_{12} a_{14} a_{23}-3328 a_{11} a_{15} a_{23}-17664 a_{21} a_{23}
\end{aligned}
$$

$$
\begin{aligned}
& +7296 a_{11} a_{24}+576 a_{11}^{2} a_{24}-1200 a_{12}^{2} a_{24}-2176 a_{12} a_{13} a_{24} \\
& -7424 a_{11} a_{14} a_{24}-6016 a_{12} a_{15} a_{24}-384 a_{22} a_{24}-3072 a_{23} a_{24} \\
& +8448 a_{11} a_{12} a_{25}-3328 a_{11} a_{13} a_{25}-6016 a_{12} a_{14} a_{25} \\
& +1280 a_{11} a_{15} a_{25}+5376 a_{21} a_{25}-3072 a_{24} a_{25}-2304 a_{11}^{2} a_{26} \\
& -1728 a_{12}^{2} a_{26}-4416 a_{11} a_{12} a_{27}-6144 a_{21} a_{27}-3072 a_{12}^{2} a_{28} \\
& -3072 a_{22} a_{28}+2880 a_{11} a_{12} a_{29}+29088 a_{12} a_{31}-17664 a_{13} a_{31} \\
& +5376 a_{15} a_{31}-6144 a_{17} a_{31}-16992 a_{11} a_{32}+5760 a_{14} a_{32} \\
& +27648 a_{16} a_{32}+3072 a_{18} a_{32}-17664 a_{11} a_{33}-3072 a_{14} a_{33} \\
& -384 a_{12} a_{34}-3072 a_{13} a_{34}-3072 a_{15} a_{34}+5376 a_{11} a_{35}-3072 a_{14} a_{35} \\
& -6144 a_{11} a_{37}-3072 a_{12} a_{38}+33408 a_{41}-9216 a_{46}-3072 a_{48} \\
& +119520 a_{11}^{2} b_{11}-61236 a_{11}^{3} b_{11}-71775 a_{11} a_{12}^{2} b_{11} \\
& +28704 a_{11} a_{12} a_{13} b_{11}+3328 a_{11} a_{13}^{2} b_{11}-42144 a_{11} a_{14} b_{11} \\
& -4512 a_{11}^{2} a_{14} b_{11}+3120 a_{12}^{2} a_{14} b_{11}+256 a_{12} a_{13} a_{14} b_{11} \\
& +3200 a_{14}^{2} b_{11}+1600 a_{11} a_{14}^{2} b_{11}+1152 a_{11} a_{12} a_{15} b_{11} \\
& -1920 a_{11} a_{13} a_{15} b_{11}-5248 a_{12} a_{14} a_{15} b_{11}+1664 a_{11} a_{15}^{2} b_{11} \\
& -36864 a_{11} a_{16} b_{11}-3456 a_{11}^{2} a_{16} b_{11}+12096 a_{12}^{2} a_{16} b_{11} \\
& +12288 a_{14} a_{16} b_{11}-1296 a_{11} a_{12} a_{17} b_{11}-6144 a_{11} a_{18} b_{11} \\
& -1728 a_{11}^{2} a_{18} b_{11}-240 a_{12}^{2} a_{18} b_{11}+2048 a_{14} a_{18} b_{11} \\
& +432 a_{11} a_{12} a_{19} b_{11}-49644 a_{12} a_{21} b_{11}+16704 a_{13} a_{21} b_{11} \\
& +192 a_{15} a_{21} b_{11}+1728 a_{17} a_{21} b_{11}+2880 a_{19} a_{21} b_{11} \\
& -67356 a_{11} a_{22} b_{11}+864 a_{14} a_{22} b_{11}+6912 a_{16} a_{22} b_{11} \\
& -768 a_{18} a_{22} b_{11}+19200 a_{11} a_{23} b_{11}+896 a_{14} a_{23} b_{11} \\
& -1248 a_{12} a_{24} b_{11}+896 a_{13} a_{24} b_{11}-2944 a_{15} a_{24} b_{11} \\
& +1536 a_{11} a_{25} b_{11}-2944 a_{14} a_{25} b_{11}-3456 a_{12} a_{26} b_{11} \\
& +1728 a_{11} a_{27} b_{11}-3072 a_{12} a_{28} b_{11}+2880 a_{11} a_{29} b_{11} \\
& -43488 a_{31} b_{11}-384 a_{34} b_{11}-3072 a_{38} b_{11}+31779 a_{11} a_{12} b_{11}^{2} \\
& -16656 a_{11} a_{13} b_{11}^{2}+5760 a_{12} a_{14} b_{11}^{2}-1216 a_{13} a_{14} b_{11}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -480 a_{11} a_{15} b_{11}^{2}+256 a_{14} a_{15} b_{11}^{2}+15552 a_{12} a_{16} b_{11}^{2} \\
& -3240 a_{11} a_{17} b_{11}^{2}+2448 a_{12} a_{18} b_{11}^{2}-4104 a_{11} a_{19} b_{11}^{2} \\
& +46170 a_{21} b_{11}^{2}-48 a_{24} b_{11}^{2}-1728 a_{26} b_{11}^{2}-76617 a_{11} b_{11}^{3} \\
& +4080 a_{14} b_{11}^{3}+15552 a_{16} b_{11}^{3}+2736 a_{18} b_{11}^{3}-26400 a_{11} a_{12} b_{13} \\
& +13632 a_{11}^{2} a_{12} b_{13}+7320 a_{12}^{3} b_{13}-2304 a_{11} a_{13} b_{13} \\
& +7168 a_{11}^{2} a_{13} b_{13}+2304 a_{12}^{2} a_{13} b_{13}+9472 a_{12} a_{14} b_{13} \\
& +1216 a_{11} a_{12} a_{14} b_{13}+2304 a_{11} a_{15} b_{13}+512 a_{12}^{2} a_{15} b_{13} \\
& +12288 a_{12} a_{16} b_{13}-3072 a_{11} a_{17} b_{13}+2048 a_{12} a_{18} b_{13} \\
& -3072 a_{11} a_{19} b_{13}+7296 a_{21} b_{13}-384 a_{11} a_{21} b_{13}+1792 a_{14} a_{21} b_{13} \\
& +19296 a_{12} a_{22} b_{13}+896 a_{13} a_{22} b_{13}+128 a_{15} a_{22} b_{13} \\
& +896 a_{12} a_{23} b_{13}+1792 a_{11} a_{24} b_{13}+128 a_{12} a_{25} b_{13} \\
& +14976 a_{32} b_{13}+6144 a_{33} b_{13}-58656 a_{11} b_{11} b_{13}+9600 a_{11}^{2} b_{11} b_{13} \\
& +9432 a_{12}^{2} b_{11} b_{13}+1920 a_{12} a_{13} b_{11} b_{13}+9472 a_{14} b_{11} b_{13} \\
& -1088 a_{11} a_{14} b_{11} b_{13}+640 a_{12} a_{15} b_{11} b_{13}+12288 a_{16} b_{11} b_{13} \\
& +2048 a_{18} b_{11} b_{13}+5088 a_{22} b_{11} b_{13}-5248 a_{23} b_{11} b_{13} \\
& +128 a_{25} b_{11} b_{13}+9960 a_{12} b_{11}^{2} b_{13}+5760 a_{13} b_{11}^{2} b_{13} \\
& +128 a_{15} b_{11}^{2} b_{13}+17064 b_{11}^{3} b_{13}+6272 a_{12} b_{13}^{2}-1536 a_{11} a_{12} b_{13}^{2} \\
& -640 a_{21} b_{13}^{2}+6272 b_{11} b_{13}^{2}+384 a_{11} b_{11} b_{13}^{2}+28032 a_{11}^{2} b_{14} \\
& -16992 a_{11}^{3} b_{14}-15288 a_{11} a_{12}^{2} b_{14}+8384 a_{11} a_{12} a_{13} b_{14} \\
& -6912 a_{11} a_{14} b_{14}+512 a_{12}^{2} a_{14} b_{14}-2368 a_{11} a_{12} a_{15} b_{14} \\
& -19584 a_{12} a_{21} b_{14}+5888 a_{13} a_{21} b_{14}-1792 a_{15} a_{21} b_{14} \\
& -19584 a_{11} a_{22} b_{14}+128 a_{14} a_{22} b_{14}+5888 a_{11} a_{23} b_{14}+128 a_{12} a_{24} b_{14} \\
& -1792 a_{11} a_{25} b_{14}-22272 a_{31} b_{14}+27984 a_{11} a_{12} b_{11} b_{14} \\
& -6208 a_{11} a_{13} b_{11} b_{14}+640 a_{12} a_{14} b_{11} b_{14}-64 a_{11} a_{15} b_{11} b_{14} \\
& +28800 a_{21} b_{11} b_{14}+128 a_{24} b_{11} b_{14}-35064 a_{11} b_{11}^{2} b_{14}+128 a_{14} b_{11}^{2} b_{14} \\
& -6912 a_{11} b_{13} b_{14}+1536 a_{11}^{2} b_{13} b_{14}+384 a_{12}^{2} b_{13} b_{14}+128 a_{22} b_{13} b_{14} \\
& +384 a_{12} b_{11} b_{13} b_{14}+3072 b_{11}^{2} b_{13} b_{14}+3264 a_{11} a_{12} b_{14}^{2}+3712 a_{21} b_{14}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -4800 a_{11} b_{11} b_{14}^{2}-9408 a_{11} a_{12} b_{15}-25344 a_{11}^{2} a_{12} b_{15}-120 a_{12}^{3} b_{15} \\
& -4608 a_{11} a_{13} b_{15}+7680 a_{12}^{2} a_{13} b_{15}+9344 a_{12} a_{14} b_{15} \\
& -9536 a_{11} a_{12} a_{14} b_{15}+4608 a_{11} a_{15} b_{15}-7168 a_{11}^{2} a_{15} b_{15} \\
& -13568 a_{12}^{2} a_{15} b_{15}+24576 a_{12} a_{16} b_{15}-6144 a_{11} a_{17} b_{15} \\
& +4096 a_{12} a_{18} b_{15}-6144 a_{11} a_{19} b_{15}+14592 a_{21} b_{15}-37248 a_{11} a_{21} b_{15} \\
& -5888 a_{14} a_{21} b_{15}-3744 a_{12} a_{22} b_{15}+4224 a_{13} a_{22} b_{15} \\
& -11392 a_{15} a_{22} b_{15}+4224 a_{12} a_{23} b_{15}-5888 a_{11} a_{24} b_{15} \\
& -11392 a_{12} a_{25} b_{15}+384 a_{32} b_{15}-6144 a_{35} b_{15}-73920 a_{11} b_{11} b_{15} \\
& +27456 a_{11}^{2} b_{11} b_{15}+19944 a_{12}^{2} b_{11} b_{15}+2688 a_{12} a_{13} b_{11} b_{15} \\
& +9344 a_{14} b_{11} b_{15}+5056 a_{11} a_{14} b_{11} b_{15}-5248 a_{12} a_{15} b_{11} b_{15} \\
& +24576 a_{16} b_{11} b_{15}+4096 a_{18} b_{11} b_{15}+10464 a_{22} b_{11} b_{15} \\
& +4224 a_{23} b_{11} b_{15}-5248 a_{25} b_{11} b_{15}+8760 a_{12} b_{11}^{2} b_{15} \\
& -4992 a_{13} b_{11}^{2} b_{15}+2176 a_{15} b_{11}^{2} b_{15}-2088 b_{11}^{3} b_{15}+15488 a_{12} b_{13} b_{15} \\
& -640 a_{11} a_{12} b_{13} b_{15}+3328 a_{21} b_{13} b_{15}+15488 b_{11} b_{13} b_{15} \\
& -4480 a_{11} b_{11} b_{13} b_{15}-13824 a_{11} b_{14} b_{15}+7936 a_{11}^{2} b_{14} b_{15} \\
& +4160 a_{12}^{2} b_{14} b_{15}+3968 a_{22} b_{14} b_{15}-512 a_{12} b_{11} b_{14} b_{15} \\
& -1600 b_{11}^{2} b_{14} b_{15}+5888 a_{12} b_{15}^{2}+5248 a_{11} a_{12} b_{15}^{2} \\
& +3456 a_{21} b_{15}^{2}+5888 b_{11} b_{15}^{2}+1024 a_{11} b_{11} b_{15}^{2}+9216 a_{11}^{2} b_{16} \\
& +2592 a_{11}^{3} b_{16}+1944 a_{11} a_{12}^{2} b_{16}-3072 a_{11} a_{14} b_{16}+1728 a_{12} a_{21} b_{16} \\
& +1728 a_{11} a_{22} b_{16}-1296 a_{11} a_{12} b_{11} b_{16}+1728 a_{21} b_{11} b_{16} \\
& -3240 a_{11} b_{11}^{2} b_{16}-3072 a_{11} b_{13} b_{16}-6144 a_{11} b_{15} b_{16} \\
& +9216 a_{11}^{2} b_{18}+288 a_{11}^{3} b_{18}-1608 a_{11} a_{12}^{2} b_{18}-3072 a_{11} a_{14} b_{18} \\
& -3264 a_{12} a_{21} b_{18}-3264 a_{11} a_{22} b_{18}--4032 a_{11}^{2} b_{23}-22464 a_{11}^{2} b_{25} \\
& -2304 a_{11}^{2} b_{29}+432 a_{11} a_{12} b_{11} b_{18}-61308 a_{11} a_{12} b_{21} \\
& -18240 a_{11} a_{12} b_{24}+1728 a_{11} a_{12} b_{26}-3264 a_{11} a_{12} b_{28} \\
& +16704 a_{11} a_{13} b_{21}+5888 a_{11} a_{13} b_{24}+1792 a_{11} a_{14} b_{23} \\
& -5888 a_{11} a_{14} b_{25}+192 a_{11} a_{15} b_{21}-1792 a_{11} a_{15} b_{24}
\end{aligned}
$$

$$
\begin{aligned}
& +1728 a_{11} a_{17} b_{21}+2880 a_{11} a_{19} b_{21}-4104 a_{11} b_{11}^{2} b_{18} \\
& +126756 a_{11} b_{11} b_{21}+30144 a_{11} b_{11} b_{24}+1728 a_{11} b_{11} b_{26} \\
& +2880 a_{11} b_{11} b_{28}-3072 a_{11} b_{13} b_{18}-1280 a_{11} b_{13} b_{23} \\
& +3328 a_{11} b_{13} b_{25}+28800 a_{11} b_{14} b_{21}+7424 a_{11} b_{14} b_{24} \\
& -6144 a_{11} b_{15} b_{18}+3328 a_{11} b_{15} b_{23}+6912 a_{11} b_{15} b_{25} \\
& +1728 a_{11} b_{16} b_{21}+2880 a_{11} b_{18} b_{21}+7296 a_{11} b_{23}+14592 a_{11} b_{25} \\
& -89568 a_{11} b_{31}-22272 a_{11} b_{34}-6144 a_{11} b_{38}-816 a_{12}^{2} b_{23} \\
& -9456 a_{12}^{2} b_{25}-6336 a_{12}^{2} b_{29}+896 a_{12} a_{13} b_{23}+4224 a_{12} a_{13} b_{25} \\
& +864 a_{12} a_{14} b_{21}+128 a_{12} a_{14} b_{24}+128 a_{12} a_{15} b_{23} \\
& -11392 a_{12} a_{15} b_{25}+6912 a_{12} a_{16} b_{21}-768 a_{12} a_{18} b_{21} \\
& -480 a_{12} b_{11} b_{23}+7584 a_{12} b_{11} b_{25}-3456 a_{12} b_{11} b_{29} \\
& +5088 a_{12} b_{13} b_{21}+128 a_{12} b_{13} b_{24}+128 a_{12} b_{14} b_{23} \\
& +3968 a_{12} b_{14} b_{25}+10464 a_{12} b_{15} b_{21}+3968 a_{12} b_{15} b_{24} \\
& -384 a_{12} b_{33}-11904 a_{12} b_{35}-9216 a_{12} b_{39}+896 a_{13} a_{14} b_{21} \\
& -5248 a_{13} b_{11} b_{23}+4224 a_{13} b_{11} b_{25}-5248 a_{13} b_{13} b_{21} \\
& +4224 a_{13} b_{15} b_{21}+6144 a_{13} b_{33}-2944 a_{14} a_{15} b_{21}-4128 a_{14} b_{11} b_{21} \\
& +128 a_{14} b_{11} b_{24}+128 a_{14} b_{14} b_{21}+5760 a_{14} b_{31}+128 a_{15} b_{11} b_{23} \\
& -5248 a_{15} b_{11} b_{25}+128 a_{15} b_{13} b_{21}-5248 a_{15} b_{15} b_{21} \\
& -6144 a_{15} b_{35}-20736 a_{16} b_{11} b_{21}+27648 a_{16} b_{31}-3840 a_{18} b_{11} b_{21} \\
& +3072 a_{18} b_{31}+2880 a_{21} b_{11} b_{18}-41472 a_{21} b_{21}-22272 a_{21} b_{24} \\
& -6144 a_{21} b_{28}-384 a_{22} b_{23}-11904 a_{22} b_{25}-9216 a_{22} b_{29} \\
& +6144 a_{23} b_{23}-384 a_{24} b_{21}-6144 a_{25} b_{25}-3072 a_{28} b_{21}+6144 a_{31} b_{18} \\
& -8880 b_{11}^{2} b_{23}+7824 b_{11}^{2} b_{25}+2880 b_{11}^{2} b_{29}-27552 b_{11} b_{13} b_{21} \\
& -2944 b_{11} b_{13} b_{24}-2944 b_{11} b_{14} b_{23}+896 b_{11} b_{14} b_{25} \\
& +6240 b_{11} b_{15} b_{21}+896 b_{11} b_{15} b_{24}+8832 b_{11} b_{33}-2688 b_{11} b_{35} \\
& -9216 b_{11} b_{39}-2944 b_{13} b_{14} b_{21}+24192 b_{13} b_{31}+3072 b_{13} b_{34} \\
& +896 b_{14} b_{15} b_{21}+3072 b_{14} b_{33}+3072 b_{14} b_{35}+9600 b_{15} b_{31}
\end{aligned}
$$

$$
\begin{aligned}
& +3072 b_{15} b_{34}+8832 b_{21} b_{23}-2688 b_{21} b_{25}-9216 b_{21} b_{29} \\
& +3072 b_{23} b_{24}+3072 b_{24} b_{25}-9216 b_{43}-9216 b_{45}-3072 b_{47}-9216 b_{49}, \\
& S_{4}=154368 a_{11}^{2} a_{12}-55296 a_{11}^{2} a_{13}+86016 a_{11}^{2} a_{15}-73728 a_{11}^{2} a_{17} \\
& -73728 a_{11}^{2} a_{19}-656640 a_{11}^{2} b_{11}-193536 a_{11}^{2} b_{14}-73728 a_{11}^{2} b_{16} \\
& -73728 a_{11}^{2} b_{18}+16128 a_{11} a_{12} a_{14}+294912 a_{11} a_{12} a_{16} \\
& +49152 a_{11} a_{12} a_{18}+148224 a_{11} a_{12} b_{13}-96768 a_{11} a_{12} b_{15} \\
& -444015 a_{11} a_{12}-20480 a_{11} a_{13} a_{14}-20480 a_{11} a_{13} b_{13} \\
& -40960 a_{11} a_{13} b_{15}+1052448 a_{11} a_{13}-28672 a_{11} a_{14} a_{15} \\
& +24576 a_{11} a_{14} a_{17}+24576 a_{11} a_{14} a_{19}+228096 a_{11} a_{14} b_{11} \\
& +45056 a_{11} a_{14} b_{14}+24576 a_{11} a_{14} b_{16}+24576 a_{11} a_{14} b_{18} \\
& -28672 a_{11} a_{15} b_{13}-57344 a_{11} a_{15} b_{15}+136992 a_{11} a_{15} \\
& +294912 a_{11} a_{16} b_{11}+24576 a_{11} a_{17} b_{13}+49152 a_{11} a_{17} b_{15}+82080 a_{11} a_{17} \\
& +49152 a_{11} a_{18} b_{11}+24576 a_{11} a_{19} b_{13}+49152 a_{11} a_{19} b_{15} \\
& -10656 a_{11} a_{19}+304128 a_{11} a_{21}-58368 a_{11} a_{24}+360192 a_{11} b_{11} b_{13} \\
& +327168 a_{11} b_{11} b_{15}+3026961 a_{11} b_{11}+45056 a_{11} b_{13} b_{14} \\
& +24576 a_{11} b_{13} b_{16}+24576 a_{11} b_{13} b_{18}+90112 a_{11} b_{14} b_{15} \\
& +943680 a_{11} b_{14}+49152 a_{11} b_{15} b_{16}+49152 a_{11} b_{15} b_{18}+206496 a_{11} b_{16} \\
& +279648 a_{11} b_{18}-58368 a_{11} b_{23}-116736 a_{11} b_{25}-22528 a_{12} a_{14}^{2} \\
& -98304 a_{12} a_{14} a_{16}-16384 a_{12} a_{14} a_{18}-69632 a_{12} a_{14} b_{13} \\
& -47104 a_{12} a_{14} b_{15}-42624 a_{12} a_{14}-98304 a_{12} a_{16} b_{13} \\
& -196608 a_{12} a_{16} b_{15}-72576 a_{12} a_{16}-16384 a_{12} a_{18} b_{13} \\
& -32768 a_{12} a_{18} b_{15}-143232 a_{12} a_{18}-47104 a_{12} b_{13}^{2}-96256 a_{12} b_{13} b_{15} \\
& -31680 a_{12} b_{13}-4096 a_{12} b_{15}^{2}+115776 a_{12} b_{15}-135168 a_{13} a_{14} \\
& -442368 a_{13} a_{16}-79872 a_{13} a_{18}-296448 a_{13} b_{13}-247296 a_{13} b_{15} \\
& -22528 a_{14}^{2} b_{11}-69120 a_{14} a_{15}-98304 a_{14} a_{16} b_{11}-4608 a_{14} a_{17} \\
& -16384 a_{14} a_{18} b_{11}-4608 a_{14} a_{19}-43008 a_{14} a_{21}-69632 a_{14} b_{11} b_{13} \\
& -47104 a_{14} b_{11} b_{15}-388224 a_{14} b_{11}-82944 a_{14} b_{14}-4608 a_{14} b_{16}
\end{aligned}
$$

$-4608 a_{14} b_{18}-221184 a_{15} a_{16}-43008 a_{15} a_{18}-133632 a_{15} b_{13}$
$-133632 a_{15} b_{15}-98304 a_{16} b_{11} b_{13}-196608 a_{16} b_{11} b_{15}$
$-1067904 a_{16} b_{11}-221184 a_{16} b_{14}-4608 a_{17} b_{13}-23040 a_{17} b_{15}$
$-16384 a_{18} b_{11} b_{13}-32768 a_{18} b_{11} b_{15}-336768 a_{18} b_{11}-43008 a_{18} b_{14}$
$-4608 a_{19} b_{13}-41472 a_{19} b_{15}-43008 a_{21} b_{13}-86016 a_{21} b_{15}$
$-362592 a_{21}+36864 a_{24}+41472 a_{26}-47104 b_{11} b_{13}^{2}-96256 b_{11} b_{13} b_{15}$
$-667584 b_{11} b_{13}-4096 b_{11} b_{15}^{2}-533952 b_{11} b_{15}-147456 b_{13} b_{14}$
$-4608 b_{13} b_{16}-4608 b_{13} b_{18}-161280 b_{14} b_{15}-23040 b_{15} b_{16}$
$-41472 b_{15} b_{18}+36864 b_{23}+59904 b_{25}-96768 b_{29}$,
$S_{5}=409389 a_{11} a_{12}+151740 a_{11} a_{13}+233772 a_{11} a_{15}-18780 a_{11} a_{17}$
$-112356 a_{11} a_{19}-823755 a_{11} b_{11}-420576 a_{11} b_{14}-331164 a_{11} b_{16}$
$-174372 a_{11} b_{18}-14472 a_{12} a_{14}-93744 a_{12} a_{16}+36816 a_{12} a_{18}$
$-92400 a_{12} b_{13}-70464 a_{12} b_{15}+28640 a_{13} a_{14}+46080 a_{13} a_{16}$
$+28160 a_{13} a_{18}-42400 a_{13} b_{13}-51680 a_{13} b_{15}+7200 a_{14} a_{15}$
$+7040 a_{14} a_{17}+32640 a_{14} a_{19}+139848 a_{14} b_{11}+48800 a_{14} b_{14}$
$+32640 a_{14} b_{16}+7040 a_{14} b_{18}-46080 a_{15} a_{16}+12800 a_{15} a_{18}$
$-35040 a_{15} b_{13}-20640 a_{15} b_{15}+7680 a_{16} a_{17}+69120 a_{16} a_{19}$
$+390096 a_{16} b_{11}+138240 a_{16} b_{14}+69120 a_{16} b_{16}+7680 a_{16} b_{18}$
$-2560 a_{17} a_{18}+14720 a_{17} b_{13}+12160 a_{17} b_{15}+7680 a_{18} a_{19}$
$+125136 a_{18} b_{11}+23040 a_{18} b_{14}+7680 a_{18} b_{16}-2560 a_{18} b_{18}$
$+40320 a_{19} b_{13}+55680 a_{19} b_{15}-14220 a_{21}+1680 a_{24}+51840 a_{26}$
$+15360 a_{28}+205920 b_{11} b_{13}+175536 b_{11} b_{15}+98720 b_{13} b_{14}$
$+78720 b_{13} b_{16}+22400 b_{13} b_{18}+85600 b_{14} b_{15}+71040 b_{15} b_{16}$
$+42880 b_{15} b_{18}+24720 b_{23}+24240 b_{25}+63360 b_{29}$.

Bibliography

[1] K. K. D. Adjaï, J. Akande, A. V. R. Yehossou and M. D. Monsia. Periodic solutions and limit cycles of mixed Liénard-type differential equations. Mathematical Problems in Engineering, 2021, 2021.
[2] V. Amel'kin. Positive solution of one conjecture in the theory of polynomial isochronous centers of Liénard systems. Differential Equations, 57(2):133-138, 2021.
[3] R. Benterki and J. Llibre. Periodic solutions of a class of Duffing differential equations. J. Nonlinear Model. Anal, 1:167-177, 2019.
[4] R. Benterki and J. Llibre. Periodic solutions of the Duffing differential equation revisited via the averaging theory. Journal of Nonlinear Modeling and Analysis, 1(1):11-26, 2019.
[5] I. S. Berezin and N. P. Zhidkov. Computing Methods, Volume II. Pergamon Press, Oxford, 1964.
[6] C. E. Berrehail, Z. Bouslah, and A. Makhlouf. On the limit cycles for a class of eighth-order differential equations. Moroccan Journal of Pure and Applied Analysis, 6(1):53-61, 2020.
[7] G. Birkhoff. Dynamical systems. ams colloquium pub. vol. IX, New York, 1927.
[8] N. Bogoliubov. Asymptotic methods in the theory of non-linear oscillations.
[9] N. Bogoliubov and N. Krylov. The application of methods of nonlinear mechanics to the theory of stationary oscillations, pub. 8 ukrainian acad. Sci., Kiev, 1934.
[10] Y. Bouattia, D. Boudjehem, A. Makhlouf, S. A. Zubair, and S. A. Idris. A note on small amplitude limit cycles of Liénard equations theory. Mathematical Problems in Engineering, 2021, 2021.
[11] A. Boulfoul and N. Mellahi. On the maximum number of limit cycles of generalized polynomial Liénard differential systems via averaging theory. Applied Mathematics E-Notes, 20:167-187, 2020.
[12] A. Buică, J. P. Françoise, and J. Llibre. Periodic solutions of nonlinear periodic differential systems with a small parameter. Communications on Pure \mathcal{E} Applied Analysis, 6(1):103, 2007.
[13] A. Buică and J. Llibre. Averaging methods for finding periodic orbits via brouwer degree. Bulletin des sciences mathematiques, 128(1):7-22, 2004.
[14] H. Chen, S. Duan, Y. Tang, and J. Xie. Global dynamics of a mechanical system with dry friction. Journal of Differential Equations, 265(11):54905519, 2018.
[15] H. Chen and J. Xie. The number of limit cycles of the fitzhugh nerve system. Quarterly of Applied Mathematics, 73(2):365-378, 2015.
[16] H. Chen and L. Zou. Global study of rayleigh-Duffing oscillators. Journal of Physics A: Mathematical and Theoretical, 49(16):165202, 2016.
[17] Y. Chen and S. Changming. Stability and hopf bifurcation analysis in a prey-predator system with stage-structure for prey and time delay. Chaos, Solitons \& Fractals, 38(4):1104-1114, 2008.
[18] Y. Chen, J. Yu, and C. Sun. Stability and hopf bifurcation analysis in a three-level food chain system with delay. Chaos, Solitons \& Fractals, 31(3):683-694, 2007.
[19] Z. Cheng and J. Ren. Periodic solution for second order damped differential equations with attractive-repulsive singularities. Rocky Mountain Journal of Mathematics, 48(3):753-768, 2018.
[20] Z. Cheng and Q. Yuan. Damped superlinear Duffing equation with strong singularity of repulsive type. Journal of Fixed Point Theory and Applications, 22(2):1-18, 2020.
[21] J. Chu, P. J. Torres, and M. Zhang. Periodic solutions of second order non-autonomous singular dynamical systems. Journal of Differential Equations, 239(1):196-212, 2007.
[22] C. Chun. Solitons and periodic solutions for the fifth-order kdv equation with the exp-function method. Physics Letters A, 372(16):2760-2766, 2008.
[23] K. Ciesielski. On the Poincaré-Bendixson theorem. IMUJ, 19, 2001.
[24] C. Collins. Static stars: Some mathematical curiosities. Journal of Mathematical Physics, 18(7):1374-1377, 1977.
[25] P. Fatou. Sur le mouvement d'un système soumis à des forces à courte période. Bulletin de la Société Mathématique de France, 56:98-139, 1928.
[26] A. Feddaoui, J. Llibre, and A. Makhlouf. Periodic solutions for a class of Duffing differential equations. Moroccan Journal of Pure and Applied Analysis, 5(1):86-103, 2019.
[27] J. Giné and J. Llibre. Limit cycles of cubic polynomial vector fields via the averaging theory. Nonlinear Analysis: Theory, Methods \& Applications, 66(8):1707-1721, 2007.
[28] J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems and bifurcations of vector fields. J. Appl. Mech, 51(4):947, 1984.
[29] X. Jiang, Z. She, Z. Feng, and X. Zheng. Bifurcation analysis of a predatorprey system with ratio-dependent functional response. International Journal of Bifurcation and Chaos, 27(14):1750222, 2017.
[30] I. Khatami, E. Zahedi, and M. Zahedi. Efficient solution of nonlinear Duffing oscillator. Journal of applied and computational mechanics, 6(2):219-234, 2020.
[31] F. E. Lembarki and J. Llibre. Periodic orbits for the generalized Yang-Mills Hamiltonian system in dimension 6. Nonlinear Dynamics, 76(3):1807-1819, 2014.
[32] C. Li and J. Llibre. Uniqueness of limit cycles for Liénard differential equations of degree four. Journal of Differential Equations, 252(4):31423162, 2012.
[33] S. Li and Y. Wang. Multiplicity of positive periodic solutions to second
order singular dynamical systems. Mediterranean Journal of Mathematics, 14(5):1-13, 2017.
[34] A. Liénard. Etude des oscillations entretenues. Revue Generale de l'Elactricite, 23:901-902, 1928.
[35] A. Lins, W. De Melo, and C. Pugh. On Liénard's equation. In Geometry and topology, pages 335-357. Springer, 1977.
[36] J. Llibre and A. Makhlouf. Limit cycles of polynomial differential systems bifurcating from the periodic orbits of a linear differential system in \mathbb{R}^{d}. Bulletin des sciences mathematiques, 133(6):578-587, 2009.
[37] J. Llibre and A. Makhlouf. On the limit cycles for a class of fourthorder differential equations. Journal of Physics A: Mathematical and Theoretical, 45(5):055214, 2012.
[38] J. Llibre and A. Makhlouf. Bifurcation of limit cycles from some uniform isochronous centers. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 22(5):381-394, 2015.
[39] J. Llibre, A. C. Mereu, and M. A. Teixeira. Limit cycles of the generalized polynomial Liénard differential equations. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 148, pages 363-383. Cambridge University Press, 2010.
[40] J. Llibre, D. D. Novaes, and M. A. Teixeira. Higher order averaging theory for finding periodic solutions via brouwer degree. Nonlinearity, 27(3):563, 2014.
[41] J. Llibre and G. Rodrıguez. Configurations of limit cycles and planar
polynomial vector fields. Journal of Differential Equations, 198(2):374380, 2004.
[42] J. Llibre, N. Sellami, and A. Makhlouf. Limit cycles for a class of fourthorder differential equations. Applicable Analysis, 88(12):1617-1630, 2009.
[43] N. G. Lloyd. Limit cycles of polynomial systems-some recent developments. London Math. Soc. Lecture Note Ser, 127:192-234, 1988.
[44] A. Lyapunov. Problème général de la stabilité du mouvement. Ann. Fac. Sci. Univ. Toulous, 9:203-475, 1907.
[45] A. Makhlouf and C. E. Berhail. Limit cycles of the sixth-order nonautonomous differential equation. Arab Journal of Mathematical Sciences, 18(2):177-187, 2012.
[46] I. Malkin. Some problems of the theory of nonlinear oscillations,(russian) gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956.
[47] R. Ortega. The twist coefficient of periodic solutions of a time-dependent newton's equation. Journal of Dynamics and Differential Equations, 4(4):651-665, 1992.
[48] H. Poincaré. Mémoire sur les courbes définies par une équation différentielle. Journal de mathématiques pures et appliquées, (1)7:375-422, 1881.
[49] H. Poincaré. Les méthodes nouvelles de la mécanique céleste, volume 3. Gauthier-Villars et fils, 1899.
[50] T. Puu. Attractors, bifurcations, \mathcal{E} chaos: Nonlinear phenomena in economics. Springer Science \& Business Media, 2013.
[51] A. A. Rabia and A. Makhlouf. Periodic solutions for differential systems in \mathbb{R}^{5} and \mathbb{R}^{6}. Journal of Dynamical and Control Systems, pages 1-11, 2022.
[52] M. Roseau. Vibrations non linéaires et théorie de la stabilité, volume 8. Springer, 1966.
[53] E. Rosenvasser. On the stability of nonlinear control systems described by fifth and sixth order differential equations. Automat. Remote Control, 19(2):91-93, 1959.
[54] J. A. Sanders and F. Verhulst. Averaging methods in nonlinear dynamical systems, Applied Mathematical Sciences 59, Springer. Springer, 1985.
[55] M. Schechter. Periodic non-autonomous second-order dynamical systems. Journal of Differential Equations, 223(2):290-302, 2006.
[56] S. Smale. Mathematical problems for the next century. The mathematical intelligencer, 20(2):7-15, 1998.
[57] J. Šremr. Bifurcation of positive periodic solutions to non-autonomous undamped Duffing equations. Math. Appl, 10:79-92, 2021.
[58] E. Tunç. Periodic solutions of a certain vector differential equation of sixth order. 2008.
[59] F. Verhulst. Nonlinear differential equations and dynamical systems, Systems, Universitext, Springer, New York. 1996.
[60] F. Wang and H. Zhu. Existence, uniqueness and stability of periodic solutions of a Duffing equation under periodic and anti-periodic eigenvalues conditions. Taiwanese Journal of Mathematics, 19(5):1457-1468, 2015.
[61] S. Wang, X. Wang, and X. Wu. Bifurcation analysis for a food chain model with nonmonotonic nutrition conversion rate of predator to top predator. International Journal of Bifurcation and Chaos, 30(08):2050113, 2020.
[62] A. Wazwaz. Solitons and periodic solutions for the fifth-order kdv equation. Applied mathematics letters, 19(11):1162-1167, 2006.
[63] S. Yakovenko. Quantitative theory of ordinary differential equations and tangential hilbert 16th problem. arXiv preprint math/0104140, 2001.
[64] Q. Yang and H. Zhang. On the exact soliton solutions of fifth-order korteweg-de vries equation for surface gravity waves. Results in Physics, page 104424, 2021.

