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 ملخص 
 

 هذه .  مكلفة  غير  بطريقة  الرئة  أمراض  تشخيص  في  الأطباء  تساعد  أن  يمكن  مفيدة   معلومات  على  التنفس  أصوات  تحتوي

 هذه  على  بناء  . التنفس  أصوات  باستخدام  الرئة  مراضأ  تصنيف  قائم على  نظام  تطوير  إلى  تهدف  بحثية  دراسة  هي  الأطروحة

  تحتوي  .الرئة  أمراض  لتصنيف  استخدامه  يمكن  آلي  تصنيف  نظام  لتطوير  الخوارزميات  من  العديد  إنشاء  يمكننا   ،  الأصوات

.  الفئات   وتصنيف  الميزات  استخراج   -  رئيسيتين  خطوتينالألية    الأنظمة  هذه  تنفيذ  عند  الباحثون  يستخدمها   التي  التقليدية  الطرق

 والتي   ،كبيرا  العميقة  العصبية  الشبكات  استخدام  خلالمن    الرئة   أصوات  تصنيف  مجالب  الإهتمامظل    الأخير،  السنوات  في

 التجريبي  يعتمد على   الجزء  :  رئيسيين  جزأين  بتنفيذ  قمنا  ، العمل  هذا  في.  الكبيرة  البيانات  ةمجموع  تدريب   في  فعاليتها  أثبتت 

 . العميق التعلم تقنيات لاستخدام مخصص والآخر التقليدية الآلي التعلم خوارزميات

 ،  والطبيعية  الغير طبيعية  الرئة  أصوات  تصنيف  في   (K-nn)    ةوخوارزمي (ELM) خوارزمية  قدرة  بمقارنة  قمنا  ،  أولا   

 ا استخراجه  تموالتي    Permutation Entropy (PE)  و   Hjorth descriptors (Activity) و   EMD    تقنيات  باستخدام

 Permutation Entropy   و      Hjorth descriptors (Activity) السمات  بين  الجمع  أن  الدراسة  وجدت.  كميزات

(PE)   باستخدام٪  95  ،٪  90.71  دقة  تأنتج ELM و K-nn 86.42  ، ٪  83.57  و  ،   الثنائي  التصنيف  في   التوالي   على  ٪

 . الطبقات متعدد التصنيف في

  Batchs  واستخدام  العميقة  العصبية  للشبكة  كمدخل Gammatonegrams استخدام  تتضمن  جديدة  طريقة  قمنا بإقتراح  ،  ثاني ا  

  لأربع  تجارب  أجرينا.  الرئة  أصوات  لتصنيف  والاختبار  التدريب  خطوات  أثناء (Multi ep-Batch) متعددة  كقيم  Epochsو

  بيانات   قاعدة  من  فرعية  بيانات   قواعد  ثلاث   باستخدام  وأيضا  Multi ep- Batch   بأسلوب  معززة  شهيرة  CNN شبكات 

  يتم  التي gammatonegram صور  على  للحصول  الرئة  صواتلأ  الرقمية  التسجيلات  معالجة  تم ICBHI. كبيرة إسمها

 أداء  استراتيجية  أفضل  هي  المقترحة  الطريقة  أن  إلى  التصنيف  نتائج  أشارت .  الأربعة CNN شبكات ل  كمدخلات   إرسالها

 أن  يمكن  المقترحة Multi ep-Batch التعلم  طريقة  أن  على  أولي ا  دليلا    تقدم  النتائج  فإن  ،  بالتالي.  والاختبار  التدريب  لعملية

 .الأجهزة  موارد  من  العديد  إلى   الحاجة   دون  مختلفة  عميقة  عصبية  شبكات  باستخدام   والدقة  التدريب  وقت  من  كبير  بشكل  تحسن
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ABSTRACT 
 

Breathing sounds contain prominent information that can aid doctors to diagnose pulmonary 

pathologies in a non-invasive way. This thesis aimed at developing a classification system of 

pulmonary pathologies using breathing sound signals. Based on these sounds, we can establish 

many algorithms to develop an automatic classification system that could be used to categorize 

lung diseases. The traditional methods used by researchers when implementing these systems 

involve two main steps – feature extraction and pattern classification. In recent years, the topic 

of interest in the field of breathing sound classification focuses on the use of deep neural net-

works, which have been proven to be effective for training large datasets. In this work, we 

implemented two main parts of experimental one based on traditional machine learning algo-

rithms and the other one is focused on using deep learning techniques.  

Firstly, we compared the ability of the extreme learning machine (ELM) and k-nearest neigh-

bour (K-nn) machine learning algorithms in the classification of adventitious and normal breath 

sounds, using EMD decomposition techniques and the Hjorth descriptors (Activity) and Per-

mutation Entropy (PE) were extracted as features. The study has found that the combination of 

features (activity and PE) yielded an accuracy of 90.71%, 95% using ELM and K-nn respec-

tively in binary classification, and 83.57%, 86.42% in multiclass classification.  

Secondly, we proposed a novel method that involves the use of Gammatonegrams as input to 

the deep neural network and the use of multi epochs and batch sizes (Multi ep-Batch) during 

the training and testing steps of the lung sounds classification. We have performed experiments 

with four popular CNNs architectures enhanced with the Multi ep-Batch method using three 

sub-data from the ICBHI database. Digital recordings of lung sound are processed to obtain 

gammatonegram images that are fed as an input to the four CNNs architectures. The classifica-

tion results, indicated that the proposed method it’s the best performing strategy for the training 

and testing process. Hence, the results provide initial evidence that the proposed Multi ep-Batch 

learning method can significantly improve the training time and accuracy using different deep 

neural networks without the need for many hardware resources. 

 

Keywords 

 

Machine Learning; Deep learning;  Empirical Mode Decomposition; Hjorth descriptors; 

Permutation Entropy; Lung sounds classification; Multi ep-batch; Gammatonegrams . 
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RÉSUMÉ 
 

Les sons respiratoires contiennent des informations importantes qui peuvent aider les médecins 

à diagnostiquer les pathologies pulmonaires de manière non-invasive. Cette thèse vise à 

développer un système de classification des pathologies pulmonaires à l'aide de signaux 

respiratoires. Sur la base de ces signaux, nous pouvons établir de nombreux algorithmes pour 

développer un système de classification automatique qui pourrait être utilisé pour catégoriser 

les maladies pulmonaires. Les méthodes traditionnelles utilisées par les chercheurs lors de la 

mise en œuvre de ces systèmes impliquent deux étapes principales: l'extraction des 

caractéristiques et la classification des motifs. Ces dernières années, le sujet d'intérêt dans le 

domaine de la classification des sons respiratoires se concentre sur l'utilisation de réseaux de 

neurones profonds, qui se sont avérés efficaces pour entraîner de grands ensembles de données. 

Dans ce travail, nous avons mis en œuvre deux parties principals. Une partie expérimentale 

basée sur des algorithmes d'apprentissage automatique traditionnels et l'autre est axée sur 

l'utilisation de techniques d'apprentissage en profondeur.  

Tout d'abord, nous avons comparé la capacité des algorithmes d'apprentissage automatique de 

la machine d'apprentissage extrême (ELM) et du k-plus proche voisin (K-nn) dans la 

classification des bruits respiratoires fortuits et normaux, en utilisant des techniques de 

décomposition EMD et les descripteurs de Hjorth (activité) et permutation de l’entropie (PE) a 

été extraite en tant que caractéristiques. L'étude a révélé que la combinaison des caractéristiques 

(activité et PE) donnait une précision de 90,71%, 95% en utilisant respectivement ELM et K-

nn en classification binaire, et 83,57%, 86,42% en classification multiclasse.  

Puis, nous avons proposé une nouvelle méthode qui implique l'utilisation de Gammatonegrams 

comme entrée du réseau neuronal profond et l'utilisation de plusieurs epochs et batch sizes 

(Multi ep-Batch) pendant les étapes de l’entraînement et de test de la classification des sons 

pulmonaires. Nous avons effectué des expériences avec quatre architectures CNN populaires 

améliorées avec la méthode Multi ep-Batch en utilisant trois sous-données de la base de données 

ICBHI. Les enregistrements numériques du son pulmonaire sont traités pour obtenir des images 

gammatonegram qui sont alimentées en entrée des quatre architectures CNN. Les résultats de 

la classification indiquent que la méthode proposée est la stratégie la plus performante pour le 

processus de l’entraînement et de test. Par conséquent, les résultats fournissent une première 

preuve que la méthode d'apprentissage Multi ep-Batch proposée peut considérablement 

améliorer le temps et la précision de l’entraînement en utilisant différents réseaux de neurones 

profonds sans avoir besoin de nombreuses ressources matérielles. 

 

Mots clés 

Apprentissage automatique; l'apprentissage en profondeur; Décomposition en mode empirique; 

Descripteurs de Hjorth; Entropie de permutation; Classification des sons pulmonaires; multi 

ep-batch; gammatonégrammes. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Research Background 
 

    listening to the lung sounds using a traditional stethoscope is a clinical procedure which 

called auscultation and was developed firstly in 1816 [1]. In order to diagnosing the lung 

diseases in pulmonary medicine field, the physicians listen carefully to the lung sounds in a 

human body by using a stethoscope. These respiratory sounds contain a prominent and powerful 

information regarding pulmonary conditions [1]. Based on [2], lung sounds are closely related 

to pulmonary diseases. Using a stethoscope is non-invasive and economical way to diagnosis 

the patients, however, to classify the pulmonary pathologies the doctors need to detect some 

symptoms which related to a specific disease, and due to breathing manoeuvre it’s difficult to 

monitoring the patients continuously, also cannot be saved their lung sounds to maintain their 

history.  

    Furthermore, the doctor’s auscultation methods depend on the experience of professional to 

detect abnormal in underline disease. The relation between the patient and doctor auscultation 

plays a circular role to make a decision concerning the pulmonary conditions of the patients. 

Besides, cannot be done at home the personal management of lung sounds. A computerized 

respiratory sound analysis started from 1980 to address these drawbacks. 

1.2. Motivation for the work 

 

Pulmonary diseases are the third largest cause of death in the world [3], and five major 

pulmonary diseases were mentioned by the World Health Organization (WHO) [4], namely 

acute lower respiratory tract infection, asthma, lung cancer, tuberculosis, and chronic 

obstructive pulmonary disease. During the past decade, major attempts have been made towards 

the development of a system for the automated classification of abnormal lung sounds. The 

self-management and self-monitoring of the pulmonary pathologies important and are 
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becoming more necessary. To do so, an electronic stethoscope as possible solution would be 

capable to record and computerized the respiratory sound data, and using these data with a 

machine learning-based classification algorithm to detect different pulmonary diseases classes. 

A rapid diagnosis and non-expensive are the advantages when using the computerised 

respiratory sound analysis. Also, it can offer an alternative tool for medical professionals. The 

distinguishing between a specific pulmonary pathology suffered by a patient is a diagnosis 

process which could eliminate the other worsening of the patient's condition. This research 

study for goal is to develop a computerized respiratory sound to classify the pulmonary 

pathology using the lung sounds. 

 

1.3. Problem Statement 
 

A several problems related to the pulmonary pathology’s classification from lung sounds.  

The non-stationary nature of the respiratory sound signals due the variation of the lung volume 

making the identification and the classification difficulties, which required to use an advanced 

signal processing techniques which has the same nature such as EMD method.  

Recently, the researchers have focused on using machine and deep learning algorithms as a 

classifier without modifying and developing it to improve the learning time and accuracy. Also, 

there is no other work in the literature that used the deep learning techniques and breathing 

sounds, using the original files (raw data) without any sliced cycles (segmentation), pre-

processing (resampling, remove artefacts and other nose such heart sounds) and feature 

extraction techniques when they using the. By doing so, we inherited the following two 

challenges – 1) the identification process which automatically includes noise and other artefacts 

in the input data, and – 2) the difficulty of choosing appropriate features. 

 

1.4. Objectives 
 

This research aims to develop an automatic classification system for pulmonary pathology          

using breathing sounds, advanced signal processing techniques and machine learning tech-

niques. Although the current research studies in the literature, this work focuses on different 

features of lung sound signals in an effort to extract prominent parameters to detect and identify 

the important information from the lung sounds, for the classification of pulmonary sounds, as 

well as, using the recent algorithms in deep learning to computerized the whole classification 
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system with high accuracy and shorter computational time. The objectives of our implementa-

tion are formulated as follows. 

 

i. To extract and test a suitable feature for lung sounds classification 

 

The performance of the machine learning algorithms as classifiers were required to 

using the prominent and informative features to distinguishing between lung sounds 

signals. A statistical analysis of these features should be performed after the features 

extracted to visualize and observe the difference between the features for each class 

(Normal bronchial, Wheeze, Crackle, Pleural rub, Stridor), and to select the promi-

nent features. The classification accuracy also must test and validate it by using the 

classification system on two main classification problem: in multiclass classification 

case and in binary classification case. These show the ability of machine learning 

algorithms in any test conditions such as (database, methods of analyses the breath 

signals, and features used). 

 

ii. To propose a new learning method for training and testing phases in deep 

neural network  

 

In the classification of lung sounds; limitations in the time duration required for 

training and the accuracy results from testing a deep neural network could be ad-

dressed through the changing the hyperparameters such as (batch sizes, learning 

rate, optimized algorithms and epochs) during the learning phases. The batch size 

and epoch parameters have diverse values varying from a minimum to a maximum 

and can, therefore, be adjusted toward optimized learning time and accuracy results. 

This provides an avenue for performance improvement in the classification pro-

cesses when the data are inputted without augmentation and when the network is 

trained from scratch by using deep neural network models. As well, it could be used 
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in any deep learning application as long as the method is incorporated into the learn-

ing stages. 

 

iii. To evaluate the proposed learning method in classification of pulmonary pa-

thologies symptoms 

 

In order to diagnose the pulmonary pathologies, it requires an automatic system ca-

pable of learning and making decisions. In this sub-work, we evaluate the proposed 

learning method, based on breathing cycles, for the classification of three types of 

breathing sounds – normal, crackles and wheeze. These sounds were obtained from 

the ICBHI scientific dataset consisting of noisy breathing sounds. They were trans-

formed, from the 1D time domain into the 2D time-frequency domain, as an image 

using the gammatonegram algorithm. This proposed method needs to validated us-

ing non-pre-processed breathing sound signals, which contain other sounds such as 

heart sounds and other artefacts. 

 

iv. To evaluate the proposed learning method in in classification of pulmonary 

conditions 

 

The application of a new accelerated learning method for deep neural networks 

should be validated through the classification of other three kinds of pulmonary 

conditions – healthy, chronic and non-chronic, using breathing cycles based 

gammatonegrams as input data. The ICBHI dataset of noisy lung sounds served as 

the benchmark in this sub-work. The VGG16, ResNet-50 and AlexNet architectures 

will be used in this sub-work to obtaine a classification accuracy with the proposed 

learning approach.  
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v. To evaluate the proposed learning method in in classification of pulmonary 

diseases 

 

The development of automatic diagnosis of pulmonary diseases is an important task 

in this research study. In this work, an application of the new accelerated learning 

method for deep neural networks will be investigated, for classification of six class 

of pulmonary diseases – healthy, Bronchiolitis, Bronchiectasis, COPD, Pneumonia 

and URTI, by using entire recordings of lung sounds based gammatonegrams as 

input images data, these recordings from the benchmarking ICBHI dataset. Both the 

VGG16 and AlexNet architectures will investigated in this sub-study using the Multi 

ep-Batch proposed approach. The robustness in our methodology is exemplified 

through the results that will obtained without applying any segmentation, 

preprocessing and without performing feature extraction to the raw data. Moreover, 

with the results, we can conclude that using any complex CNN architecture with our 

proposed method appears to gain from more improvements in terms of accuracy and 

training time.  

 

1.5. Thesis Scope 

 

1) Based on the detail of the literature review and in order to overcome the shortcomings 

of previous research studies, our protocol was designed to develop a system which can 

be used for classification of the pulmonary symptoms, diseases and conditions. Data has 

been used from R.A.L.E and ICBHI respiratory database.  

2) Various features (Hjorth descriptor and permutation entropy) and advanced signal pro-

cessing methods to characterize the breathing sounds are combined and explored in this 

thesis.  
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3) A new learning method called Multi ep-Batch aimed to automatically incorporate vari-

ous values of batch sizes and number of epochs during the training and testing phases 

was designed and implemented. 

4) A time-frequency based input called gammatonegram has been used for different pul-

monary state classification using deep learning architectures. For classification four 

popular CNNs architectures enhanced with the Multi ep-Batch method VGG16, Res-

Net-50, AlexNet, and GoogLeNet have been used to classify three categories symp-

tomes, conditions and diseases pulmonary state of patients. 

5) All experimental of signal processing have been done by MATLAB® (version 2019a), 

and experimental of deep learning algorithms have been done by python as language 

and Google Collaboratory as cloud computing system GPU-based.  

 

1.6. Thesis Organization  
 

This dissertation explores the subject of different pulmonary state detection using computerized 

breathing sounds. Two different machine learning techniques were explored and a novel learn-

ing method was proposed. The first machine learning techniques is based on traditional algo-

rithms, when the input sounds signal decomposed by EMD (Empirical Mode Decomposition) 

into IMF (Intrinsic Mode Function) and the features vector is composed of the two parameters 

(Activity and Permutation entropy) were extracted from each IMF, after that the extracted fea-

tures vectors fed into two classifiers namely ELM (Extrem Learning Machine) and K-nn for 

classifying the lung sounds. The second machine learning focused on recent deep learning al-

gorithms, when the input respiratory sounds are transformed into 2D images (time-frequency 

representation) namely gammatonegram by using gammatone filter bank, and these images fed 

into four deep learning models for classifying the different scenarios, with and without the 
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proposed learning method. The research study carried out are presented in four chapters in this 

dissertation. 

 

 

Chapter 1 consist of an introduction to the pulmonary pathology and a background on the sub-

ject of interest. The motivation of this research study, problem statement, objectives, and finally 

the scope of this dissertation are presented. 

 

Chapter 2 presents the literature overview on pulmonary pathology and the causes of breathing 

illness. A review of the traditional and recent machine learning methods and the scope of the 

study are also explained in this chapter. 

 

 

Chapter 3 describes the different methodologies implemented to classify the breathing sounds 

for pulmonary diseases. 

 

Chapter 4 presents the results and discussion obtained from two different parts -machine learn-

ing and deep learning algorithms- in lung sound classification using the proposed methods 

which were discussed in this chapter. 
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CHAPTER 2 

 LITERATURE REVIEW 
 

The current chapter reviews the research literature and the method, drawbacks and benefits of 

existing methods used for lung sounds classifications by using computerized lung sounds. An 

overview of human respiratory system, breathing system diseases and the causes, analysis of 

computerized breathing sounds, characteristics and types of breathing sounds, breathing sound 

data, pre-processing of breathing sounds, feature extraction methods in breathing sound 

analysis, machine learning algorithms in breathing sound analysis, deep learning algorithms in 

breathing sound analysis and research gap have been presented in this chapter. 

2.1.  Human Respiratory System Physiology 
 

Getting rid of carbon dioxide by supplying oxygen to blood cells for the exchange of gasses is 

the main function of which the breathing system does in the human body. Figure 2.1 shows the 

two main parts for Respiratory system, the first represent the lower respiratory track and the 

second is upper respiratory track. The lower respiratory tract involves organs such as Alveoli, 

Bronchi and Bronchioles [5]. The upper respiratory tract comprises of nasal, nasal cavity, phar-

ynx, glottis, epiglottis, larynx and trachea. The Inhalation and exhalation process of the human 

breathing system doing by getting in the oxygen and get out the carbon dioxide. One inhalation 

and exhalation represent one cycle of breathing sound. In the pulmonary alveoli, the exchange 

of oxygen and carbon dioxide happens. Besides, the second process involves warming, filtering 

and humidifying the inhaled air [6]. 
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Figure 2.1: Human Respiratory System [7] 

 

 

2.2.  Breathing system diseases and the Causes 
 

Breathing system diseases are mainly classified into two principal parts namely restrictive lung 

pathology and obstructive lung pathology. Both restrictive and obstructive pulmonary disease 

also called parenchymal lung disease and airway obstruction disease respectively. A difficulty 

breathing as a symptom comes from Both of these pulmonary diseases. The stiffness of the 

pulmonary tissue is the reason for pulmonary restrictive, which lead to difficulty to expand the 

pulmonary while inhaling air in the lungs. The volume of the pulmonary is reduced in the re-

strictive diseases [8]. The narrow of the pulmonary airways is the reason for pulmonary ob-

structive, which lead to difficulty exhale all the air in the pulmonary while inhaling air in the 

lungs. Idiopathic Pulmonary Fibrosis (IPF), Congestive Heart Failure (CHF), Pulmonary fibro-

sis and Pneumonia are the commonly pulmonary pathologies related to the restrictive lung dis-

ease. Cystic fibrosis, Bronchiectasis, chronic bronchitis, Asthma, emphysema and chronic ob-

structive pulmonary disease (COPD) are the commonly pulmonary pathologies related to the 

obstructive lung disease.  
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2.3. Corona Virus Disease 2019 (COVID-19) 
 

In December 2019, exactly in Wuhan City from China, a severe acute respiratory syndrome 

coronavirus appears and affect the people by pneumonia disease. Officially, the World Health 

Organization (WHO) in Feb. 11, 2020 gave a name to this virus and called it COVID-19. The 

famous clinical manifestations for this virus are as follows: dry cough, fatigue and fever. The 

infected people with covid-19 are now the major sources of pathologies which is transmitted 

via direct contact and cough droplets, from the time of outbreak, the scientific community 

started to detect and identify the cause of this covid-19 and have conducted all the measures.  

However, recent research studies have been performed for an automatic classification and 

diagnosis of COVID-19. Hence, this sub-section aims to summarize the latest research which 

conducted in biomedical filed especially in our thesis context (lung diseases). Various studied 

using machine and deep learning techniques for COVID-19 diagnosis and classification have 

been performed. PENG et all [79], provide an empirical view of machine learning used for 

COVID-19 data and they gave a opportunity for researchers and professionals to understand 

better the trade-offs involved for build the models in this area. The authors in [80] reviews a 

deep learning application in image analysis for medical domain, as well as, they giving insights 

of contributions to COVID- 19 using pulmonary imaging task. In [81] authors classify COVID-

19, normal, and pneumonia patients from chest X-ray images, and for the automatic diagnosis 

of COVID-19 they used Optimized CNN architecture which involved optimized feature 

extraction and classification components. In [82] an intelligence computer-aided model was 

proposed that can detect positive COVID-19 cases automatically would aid the clinical 

applications, the authors used X-ray images data with a deep learning CNN-based. EZZAT et 

all [83] proposed a GSA-DenseNet121-COVID-19 using an optimization algorithm and the 

approach based on a hybrid CNN architecture. A DenseNet121 and gravitational search 

algorithm was used as CNN network and optimization algorithm respectively. The authors in 

[84] reviews the role of artificial intelligence and machine learning algorithms in the arena of 

forecasting, contact tracing, screening, predicting and drug development for SARS-CoV-2.  In 

[85] for the detecting the COVID-19 disease the authors proposed Convolutional CapsNet using 

chest X-ray images data. This novel method was proposed to conduct accurate and fast 

diagnosis for COVID-19 diseases: - binary classification (COVID-19, and No-Findings) - and 

multi-class classification (COVID-19, and No-Findings, and Pneumonia). 
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2.4.  Analysis of Computerized breathing sounds 
 

The listening of breathing sounds and diagnosing the pulmonary condition is the main steps 

included in the breathing sounds analysis. In order to the purpose of patient lung auscultation, 

René Théophile Hyacinth Laennec a physician who comes from french was invented in 1816 a 

stethoscope. As we can say, the most common tool which remains used by medical physicians 

for auscultation purpose the stethoscope. Nowadays, technological development led scientists 

to perform research studies on computerized breathing sound analysis. In the literature and start 

from 1980’s the computerized breathing sound analysis begin to appear. By taking signal pro-

cessing algorithms and machine learning algorithms together could analyse the computerized 

breathing sounds. The general process steps for computerized breathing sound analysis are 

shown in Figure 2.2. 

 
 

 

 

 

 

Figure 2.2: General process steps for computerized breathing sound analysis 

 

As we can see in Figure 2.2 the computerized breathing sound analysis involved four main 

modules namely; breathing sounds data, breathing sound pre-processing, feature extraction and 

finally pulmonary pathologies classification. The next sections will review briefly the previous 

studies reported in the literature for each module. 

 

2.4.1. Characteristics and Types of Breathing Sounds 
 

During the breathing phases, the breathing sounds originate in the wide airways. Where, in the 

airway walls the turbulence and air velocity induced vibrations. Then, through the lung tissue 

these vibrations will be transmitted through the lung tissue to the surface which can be heard 

readily using a stethoscope. These breathing sounds contain various characteristics for normal 
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and abnormal respiratory state. The breathing sounds which heard on the chest wall as well as 

on the trachea are caused by airflow turbulent in the passage of air and lungs during the inhala-

tion and exhalation of the respiratory system. These breathing sounds are non-linear and non-

stationary signals nature [74]. Several pulmonary pathologies conditions have a similar symp-

tom it could be heard over the breathing sounds, for which advanced digital signal processing 

methods should be implemented to distinguish it. Breathing sounds divides into three main 

groups: normal abnormal and adventitious breathing sounds. The bandwidth of normal breath-

ing sounds related to the area of the sound recording: trachea or chest or wall. The normal 

breathing sounds has an interval of frequency between 150 to 1000Hz over the chest wall [75], 

[76]. The normal breathing sounds has an interval of frequency between 150 to 2000Hz over 

the trachea [75]. The breathing sounds has a dominant frequency between the range of 150 to 

2000 Hz, the heart sounds have also a dominant frequency which less than 150 Hz [77]. The 

obstructive pulmonary pathologies have a dominant frequency rang less than 400 Hz, also the 

restrictive pulmonary pathologies have a dominant frequency rang sated between 200 and 2000 

Hz. The rhonchi and wheeze are the sounds categorized as symptoms of obstructive pulmonary 

pathological conditions where its duration is greater than 250 ms, whereas the crackles are the 

sound categorized as a symptom of the restrictive pulmonary pathological conditions its dura-

tion less than 100 ms. Based on aforementioned characteristics of the breathing sound, the re-

searchers have the opportunities to explore the possibility of classifying pulmonary pathology 

using robust advanced digital signal processing techniques and machine learning algorithms. 

The following section will discuss on breathing sound data, pre-processing of breathing sounds, 

feature extraction methods in breathing sound analysis, machine learning algorithms in breath-

ing sound analysis, deep learning algorithms in breathing sound analysis. 
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2.4.2. Breathing Sound Data 
 

Lung sound recording has a crucial role in breathing sound analysis. In computerized breathing 

sound analysis, the most common sensors used for lung sounds acquisition are electret micro-

phones, accelerometers, piezoelectric microphones and contact microphones which could be 

reach a range from 0 and 2000 Hz of frequencies [9]. 

In breathing sound analysis, there are some electret microphones used such as ECM 77B 

(Sony), EMT 25C (Siemens) and ECM 44 (Sony). Also, for breathing sounds recording and 

analysis there are some multichannel devices which is commercially available, such as Welch 

Allyn, WISE, PCP, Thinklabs and Littmann. Using these sophisticated stethoscopes devices, 

the cleaning of the noise and other artifacts such heart sounds from the breathing sounds it will 

be easy after the lung sounds recordings. The computerized respiratory sound analysis 

(CORSA) is the only standard developed by the European respiratory society [10] for the place-

ment of the sensors correctly. Besides, CORSA offer a method and protocol for collect clinical 

data properly which involves the location of the sensor to be placed in order to acquire breathing 

sounds, recording duration and subject’s posture. 

There are also a few standard databases used from researchers such as R.A.L.E repository [11], 

ICBHI Scientific Challenge database [12] and Marburg Respiratory Sounds (MARS) [13]. The 

ICBHI is the only free and available database and the only commercially is the R.A.L.E data-

base. However, R.A.L.E repository has a few numbers of lung sounds recordings. Besides, IC-

BHI the only large and challenging lung sounds database which is currently available. 

2.4.3. Lung Sounds Data Acquisition 
 

Lung sounds data collection consists different stages such as: environmental conditions for 

lung sounds data collection, as well as, the devices and sensors used for lung sounds data 

collection, we will review these stages in this current sub-section. 
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2.4.3.1.   Devices and Sensors for lung sound Data Collection 
 

Recently, the automatic sound analysis is the great interest for biomedical audio-based 

applications. We will discuss the reasons in this subsection. First, it should overcome, at least 

in part, the limits of human hearing. Indeed, studies have been performed to test the ability of 

the human ear to detect crackles in an auscultatory signal. The method used consisted of 

superimposing artificial crackles on a real signal. In general, based on the literature there are 

many microphones could be used for lung sounds data collection. There are two main methods 

when these microphones are used: first, kinematic and the second one is acoustic. Regardless 

of the methods, a condenser or piezoelectric sensor were used for convert the mechanical 

vibrations into electric signals. Microphones Condenser-based are attached to the skin through 

air couplers while microphones piezoelectric-based are attached directly to surface of the skin, 

for lung sounds data collection [86]. Piezoelectric contact-microphones have been used for a 

few studied [87], [88], [89]. Air-coupled microphones have been used in [90]. The MARS and 

RALE respiratory sounds databases used for data collected an air-coupled microphone 

(ECM77) and accelerometer (EMT-25C) respectively. 

 

2.4.3.2.   Lung sounds data collection techniques 
 

Recording of lung sounds in a suitable and proper way is an important step which precedes the 

signal analysis phase. Typically, the collect sound chain includes the following elements [91]: 

• Sound capture: 

Location of the microphone is very important; in fact, the ribcage acts as an attenuator and a 

low pass filter [92]. Besides, there are a different methods and tools for sounds capturing: 

First, the most commonly used method, is using a single microphone. The sensor is generally 

an electret microphone, the sampling frequency is most often that used for codecs which used 

in telephony (8kHz), an analog / digital conversion with a resolution of 16bits. Others use an 

accelerometer, less sensitive to ambient noise, but less efficient than the electret microphone. 

Second method is the use of multiple microphones and 3D representation. This technique allows 

the identification of the areas at the origin of the sounds.  

Finally, the last method is the emission of a sound and analysis of its propagation. This method, 

described in the reference [93], consists in emitting a sound from a loudspeaker introduced into 
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the patient's mouth. It is based on an analysis of the signal characteristics which propagated 

through the airways and chest cavity. 

• Signal amplification 

• Filtering and sampling 

Filtering is concerns of remove the artifacts and other noise. The “cleaning” of lung sounds 

must also take into account for reduction the ambient noise. This processing can be carried 

out in two different ways: remove the noise by adaptive filtering and remove the noise by 

wavelet packets (method of Donoho…). 

• Reduction of heart noise 

Heart sounds can introduce disturbances when analysing lung sounds. The spectrum of heart 

sounds is between 20 and 100 Hz. But a 100 Hz high pass filter may not be a relevant solution 

because the majority of lung components are also located in this region. Different methods have 

therefore been tested: wavelets, adaptive filtering with recursive least squares algorithm, time / 

frequency filtering and reconstruction, AR / MA (autoregressive / moving average) estimation 

in time / frequency with wavelet coefficients, independent component analysis, entropy 

methods. 

• Lung sound recording 

Cheetham et al. [94] underlines the important points concerning the sound recordings 

digitization which are: - the sampling frequency; - the filtering and -the signal to noise ratio 

introduced by the analog-to-digital conversion. 

 

2.4.4. Pre-processing of Breathing Sounds 

  
Remove and reduction of artifacts such as heart sounds and other noise from the lung sound 

signals is the key steps in computerized breathing sound analysis which called Pre-processing 

step. The researchers have been applied the pre-processing step using Butterworth filter to fil-

tering the lung sounds by implementing a low pass filter with the cut off 1600-3000 Hz and a 

high pass filter with the cut off frequency 30-150 Hz. A breathing sound filtering has provided 

as a standard guideline in CORSA. 
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2.4.5. Feature Extraction methods in Breathing Sound Analysis 

 

In the breathing sounds analysis, a different feature extraction method has been used by the 

researchers in this field. An overview of these methods was discussed within this section. The 

feature extraction step plays a crucial role in the differentiate and distinguishing between pul-

monary diseases from breathing sounds which is the process of characterize the distinctive char-

acteristics from signal. However, from the breathing sound signals can be extracted the features 

in three domains (the time domain, the frequency domain and the time-frequency domain). The 

most widely factures extraction techniques used in computed breathing sound analysis are the 

Mel-frequency cepstral coefficient (MFCC), entropy, autoregressive model, wavelet features 

based and spectral features. There are two kinds of representation concerning the features ex-

traction methods which can be classified into parametric representation and non-parametric 

representation.  

 

2.5.  Artificial Intelligence  

 

The goal of artificial intelligence (AI) is to design systems capable to reproducing the behavior 

of humans in their reasoning activities. AI is an import topic that has become omnipresent in 

economic, social and scientific discussions. Nowadays, the development of this technology in 

the health sector is a key project around the world. AI has seen spectacular progress in recent 

years, and his was made possible mainly by two factors: first is the rise of Big Data with the 

increase in the volume and quality of data collected, as well as the increase in the capacities of 

storage of these, the second factor is the increase in the computing power of the processors. 

These developments have allowed “Machine Learning” and “Deep Learning” to emerge from 

the labs. AI is now a technology with concrete health applications which already in existence. 

The development of AI in the healthcare sector will lead to reflection on future developments 

in our healthcare system. This development of AI is generating ambivalent feelings among 

healthcare professionals. It is both a source of fascination and hope, but also a source of fear 

among these professionals. 
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2.6.  Machine Learning Algorithms in Breathing Sound Analysis 
 

Over the past decade, many studies have attempted to develop automated detection systems for 

lung sound classification based on handcrafted feature extraction using machine learning tech-

niques. One of the most popular feature extraction technique used in audio classification in-

volves the integration of Mel-frequency cepstral coefficients (MFCC) into the Gaussian mixture 

model (GMM) for the recognition of respiratory sounds [14] in which the achieved sensitivity 

was 0.88% and specificity was 0.99%. A previous study [15] compared extreme learning ma-

chine (ELM) and k-nearest neighbor (K-NN) algorithms for lung sound classification which 

obtained 90.71%, 95.00% accuracy in the binary classification and 83.57%, 86.42% in the mul-

ticlass classification using ELM and K-NN respectively. In [16], the researchers used artificial 

neural network (ANN)-based MFCC features to classify crackles, wheezes, and normal sounds 

and achieved a sensitivity of 87% and as high as 80% for specificity. Whereas in [17], the 

frequency characteristics of crackles were extracted using time-frequency and time-scale anal-

ysis, and crackle and non-crackle sounds were classified based on the K-NN, support vector 

machine (SVM), and multilayer perceptron algorithms. In this work, the classification achieve-

ment performance with SVM was 81.10%, higher than the 71.55% and 78.50% achieved using 

MLP and K-NN classifiers respectively. Researchers in [18] had normal and continuous adven-

titious sounds classified using SVM, based on sample entropy histogram distortion, recursively 

measured instantaneous kurtosis and auto-regressive averaging features. The obtained mean 

accuracies were 97.7% and 98.8% for inspiratory and expiratory segments respectively. The 

authors in [19], classified abnormal lung sounds using a novel attractor recurrent neural network 

(ARNN) based on fuzzy functions (FFs-ARNN) and subsequently performed recurrent quanti-

fication analysis (RQA) to evaluate the efficacy of their system and classification accuracy of 

91% was achieved using FFs-ARNN with sequences of RQA features. In [78] A statistical 
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analysis and comparative study were conducted of several parameters such as, Pitch, Harmonic 

to Nois Ratio (HNR) and Amplitude Perturbation for various cases in respiratory sound signals. 

 

2.7.  Deep Learning Algorithms in Breathing Sound Analysis 

 

However, in recent years, many related studies have shifted to using deep learning techniques 

for a variety of applications such as analysing quantization of space [20], early diagnosis med-

ical support systems [21], and environmental sound classification [22]. Because deep neural 

network algorithms have addressed many problems in several research applications, they might 

have a similarly important impact in the analysis of digitized lung sounds. Given this possibil-

ity, the authors in [23] proposed a novel method using deep residual networks (ResNets) based 

on an optimized extracted set of S-transform (OST) features for the classification of wheezes, 

crackles, and normal sounds. This study used different fixed values of batch sizes and iterations 

and achieved accuracy, sensitivity and specificity up to 98.79%, 96.27% and 100.00% respec-

tively. Similarly, in [24], a convolutional neural network, based on spectrograms as features, 

was utilized to develop an algorithm for breathing phase detection in lung sound recordings, 

and their algorithm achieved an average sensitivity of 97% and an average specificity of 84% 

by using a fixed epoch and batch size in the learning stages (training and testing process). In 

[25], the authors implemented a system for lung sound classification and compared three ma-

chine learning algorithms – two were based on handcrafted feature extraction and trained using 

SVM, K-NN and GMM, and the other was based on CNN. In this work, the authors managed 

to marginally increase the accuracy from 95.10% to 95.56% and they used different fixed batch 

sizes and iterations numbers. The work in [26], proposed a deep CNN-RNN hybrid model for 

the classification of four-class respiratory sounds based on Mel spectrogram features of breath-

ing cycles. Their model achieved a score of 66.31% and when the model was retrained with 

patient-specific data, it achieved a score of 71.81%, both conducted using a leave-one-out val-

idation approach and the standard method (fixed batch size and epoch) in the training and testing 
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process. Researchers of the work in [27] began experimenting on transfer learning, where the 

VGGish network was combined with the bidirectional gated recurrent unit neural network 

(VGGish-BiGRU) for lung sound recognition, the hyperparameters such as fixed epoch and 

batch size are jointly optimized by a large number of experiments. The authors in [28] employed 

two types of machine learning algorithms for lung sound classification – one was focused on 

the use of SVM based on MFCC features, and the second was based on a CNN with spectrogram 

images as features and fixed batch size and epoch (standard method) in learning process were 

used, the highest and lowest accuracy results of their experiments were 86% and 62% for both 

CNN and SVM respectively. 

To carry out correctly, the novelty and validity of our results a justification of the latest and 

earlier important publications which have been conducted in our subject must be mentioned in 

this manuscript. Demir et al [29] propose a new pretrained (CNN) model based on spectrogram 

for lung sounds classification, and their algorithm achieved an accuracy of 71.15% with a max-

epochs of 12. Jayalakshmy et al [30], propose a pre-trained optimized Alexnet architecture for 

predicting respiratory disorders using EMD method and scalogram as Time Frequency 

Representation (TFR), in this study an improved accuracy of 83.78 % is achieved using 

different IMFs of EMD, the authors used different fixed epochs 2,4,8,16, 20 and fixed batch 

size of 10. Garcia et al [31] used CNN to classify the respiratory sounds into healthy, chronic, 

and non-chronic pulmonary condition by using Mel spectrogram, and their algorithm achieved 

up to 0.993 F-Score, the authors used the standard method (fixed epoch and batch size). Rocha 

et al [32] the authors studied the influence of event duration on automatic adventitious 

respiratory sounds classification, and classifier namely linear discriminant analysis, support 

vector machines, boosted trees, and convolutional neural networks were used and their 

experiments achieved a maximum accuracy of 96.9%, in this study to train all the deep learning 

models, a total of 30 epochs and a batch size of 16 were used. Shuvo et al [33] proposed a CNN 
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architecture to classify respiratory diseases (ternary chronic and six-class) using the same 

ICBHI 2017 lung sound dataset. They used empirical mode decomposition (EMD), and 

continuous wavelet transforms (CWT). This study achieved an accuracy of 99.20% for ternary 

chronic classification and 99.05% for the six-class pathological classification. In both 

classification schemes, a fixed batch size of 6 has been taken for training and validation. Demir 

et al [34] used a pre-trained deep convolutional neural networks model for extract features and 

a support vector machine classifier used in classification. A second approach used, in which a 

pre-trained deep CNN model was fine-tuned with spectrogram images for the classification of 

the lung sounds, and accuracy of 65.5% and 63.09% respectively, was achieved in this study, 

the authors used the standard method (fixed epoch and batch size). A summary of the literature 

is presented in Table 2.1. 

Work Dataset Number 

of classes 

(C) 

Classification 

Method 

Training and 

Testing process 

(Epoch & 

Batch size) 

Outcome 

Demir et 

al [29] 

ICBHI 

[12] 

C = 4 Spectrogram 

+ Linear 

Discriminant 

Analysis 

(LDA) 

Fixed values 

 

(Epoch & Batch 

size) 

The classification 

accuracy using the 

deep feature with 

CNN & LDA 

classifier with RSE 

method was 71.15 

%. 

Jayalaks

hmy et al 

[30] 

R.A.L.

E [11] 

C = 4 Scalogram + 

AlexNet 

(pretrained 

model) 

Fixed values 

 

An accuracy of 

83.78 % is 

achieved by the 

virtue of scalogram 

representation of 

various IMFs of 

EMD. 

Garcia et 

al [31] 

ICBHI C = 6 Melspectrogra

m + 

Convolutional 

Neural 

Network 

(CNN) 

Fixed values 

 

They achieved up 

to 0.993 F-Score in 

the three-label 

classification and 

0.990 F-Score in 

the six-class 

classification. 
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Chen et 

al [23] 

ICBHI C = 3 OPTIMIZED S-

TRANSFORM 

(OST) + DEEP 

RESIDUAL 

NETWORKS 

(RESNET-50) 

Fixed values 

 

The classification 

accuracy obtained 

using Optimized S-

transform with 

ResNet-50 up to 

98.79%. 

Bardou 

et al [25] 

R.A.L.

E 

C = 7 Spectrogram 

+ SVM, k-

NN, GMM 

and CNN 

Fixed values 

(Epoch & Batch 

size) 

The classification 

accuracy was 

successfully 

increased from 

95.10% to 95.56% 

using ensembling 

through summing 

up the output of 

Softmax activation 

of four CNN 

models. 

Acharya 

et al [26] 

ICBHI C = 4 Melspectrogra

m + Hybrid 

CNN-RNN 

model 

Fixed values 

 

A score of 66.31 % 

on the four-class 

classification of 

breathing was 

achieved. Also a 

score of 71.81 % 

for leave-one-out 

validation. 

Shi et al 

[27] 

Self-

collecte

d lung 

sound 

data 

C = 3 Melspectrogra

m + VGG & 

RNN 

Fixed values 

 

 

87.41% total 

accuracy was 

reported. Asthma, 

pneumonia and 

normal were 

83.33%, 86.75% 

and 91.94% 

respectively 

     3) singular 

respiratory sound 

type 80% and 80% 

respectively. 

4) audio type 

classification with 

all sound 62% and 

62% respectively 

Rocha 

et al 

[32] 

ICBHI C = 5 Spectrogram, 

Mel 

spectrogram, 

and 

scalogram + 

Linear 

Fixed values 

 

The best accuracy of 

96.9%3 was 

archived in the 

Class task with 

fixed durations and 

an accuracy of 



 
23 

discriminant 

analysis, 

SVM, 

boosted trees, 

and CNN 

81.8% on the more 

realistic 3 Class task 

with variable 

durations. 

Shuvo 

et al 

[33] 

 

ICBHI C = 6 Scalogram + 

CNN 

Fixed values 

 

Accuracy scores of 

98.92% for three-

class chronic 

classification and 

98.70% for six-class 

pathological 

classification were 

achieved 

Demir 

et al 

[34] 

ICBHI C = 4 Spectrogram 

+ CNN and 

SVM 

Fixed values 

 

The accuracies for 

the first 

and the second 

proposed methods 

were 65.5% and 

63.09%, 

respectively. 

Table 2.1: Time-frequency representation (TFR) in computer-based lung sound classification 

systems. 

 

 

2.8.  Research Gap 

 

Based on the aforementioned studies in the literature review, there are a several questions con-

cerning to the pulmonary pathologies classification which raises our attention. All the research 

studies reported in the literature have been used fixed learning system deep learning based in 

terms of hyperparameters (Batch size, epochs, difference in the learning rate used and differ-

ence in the optimized algorithms for each work). In the feature’s extraction concerning tradi-

tional machine learning classification, the researchers have implemented the popular and com-

mon parameters of respiratory sounds. They don’t try to explore another feature. The non-sta-

tionary signal processing techniques are considered to characterize the breathing signals and 

hence the not all sophisticated signal processing techniques have been implemented by the pre-

vious researcher. 
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In the deep learning approaches, researchers have focused on particular non-configurable deep 

networks and not developed a new learning method which can accelerate the training and test-

ing phases. All research studies on the literature have worked on the challenging dataset such 

as (ICBHI), before classification, using deep learning they did: slice audio recording, resample, 

pre-processing and features extraction. There is no work have used the direct with entire Re-

cordings from the dataset without any steps are mentioned. The previous researcher has been 

reported the accuracy results in lung sounds classification using deep learning, was also found 

to be low, that means the automatic classification of berthing pathology will needed to more 

efforts. The authors in the literature performed three steps of pre-processing to the ICBHI sound 

segments – frame composition, feature extraction, and feature normalization. These works 

when taken together indicate that while pre-processing and feature extraction aids the classifi-

cation process, it nevertheless negates the original purpose of deep learning. Besides, it is im-

portant to subject the findings of past and present studies to critical scrutiny in terms of the 

benchmarked input physiological data. In the pulmonary diseases classification phase, only a 

few researcher studies have used all the pulmonary disease categories.  
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CHAPTER 3 

METHODOLOGY 

 

This chapter describes the different methodologies implemented to classify the breathing 

sounds for pulmonary diseases. An efficient classification system of lung sounds for detect 

various pulmonary pathology requires a reliable input features and classifier. The dataset used 

in this research study are described in this chapter. The methodology implemented for the slic-

ing of breathing sounds are also discussed. A different feature was presented. Machine learning 

and deep learning algorithms used in this work are then presented into two different main part 

of experiments. 

 

3.1.  Methodology 

 

To develop our classification system, two principal parts (methodologies) were implemented to 

exploit the machine learning and deep learning algorithms for pulmonary diseases detection 

using breathing sounds. The first part focused on machine learning and second part on deep 

learning. The lung sounds used in this work are given from ICBHI challenging database and 

R.A.L.E Lung Sounds database. 

 

3.1.1. Part 1: Machine Learning Algorithms in Breathing Sounds Classification 
 

In this part, we compare the effectiveness of the extreme learning machine (ELM) and k-nearest 

neighbour (K-nn) machine learning algorithms in the adventitious and normal breath sounds 

classification. To do so, the breath sounds signal was decomposed by using empirical mode 

decomposition (EMD) technique, which is rarely used in the breath sounds analysis. After get-

ting the Intrinsic Mode Functions (IMFs) using EMD on the signals, the Permutation Entropy 

(PE) and Hjorth descriptors (Activity) features were extracted from each IMFs and combined 

for classification stage. 
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This part was divided into two main stages namely (Multiclass classification stage, Binary 

classification stage). The four steps proposed for both stage study namely (database, pre-

processing, feature extraction and classification) are presented in Figure 3.1. 

 
 

 

 

 

 

 

 

 

 
(a) 

 

 

 

 

 

 

 

 

 

 
(b) 

Figure 3.1: Two principal stage of the breath sounds signal classification (a) multiclass 

classification (b) binary classification. 

 

 

3.1.1.1  Database 
 

In this part the database of breath sounds signals used for analysis are the R.A.L.E (Respiration 

Acoustic Laboratory Environment) Lung Sounds, is the only commercially available database, 

is an educational program to help doctors and researchers in respiratory signals processing area, 

offer more than 50 breath sounds were recorded using a contact accelerometer (Siemens-

EMT25C) covering normal and abnormal respiratory sounds [35] are sampled at 10240Hz. As 

this database (R.A.L.E) has a few data, therefore to ensure the credibility of this comparative 

study we used another data were collected from the internet: 
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• The Auscultation Assistant, 2015 [36] 

• Arnall, 2015 [37] 

• The CD of the book [38]  

 

    In all a 75 breath sounds divided into five classes (Normal bronchial, Wheeze, Crackle, 

Pleural rub, Stridor) were used in our study, each sound is an effect of particular disease such 

as Wheeze indicate that the patient suffering from asthma and COPD (Chronic Obstructive 

Pulmonary diseases), crackle indicate pneumonia or lung cancer. 

3.1.1.2  Breath Sounds Pre-processing 
 

   Breath sounds signals are subject to several artefacts such as heart sounds and noise which 

simulate real-life conditions. The breath sounds signals (R.A.L.E) that have been filtered by a 

high-pass filter with 7.5 Hz by 1st order Butterworth to remove DC offset, and a low-pass filter 

at 2.5 Hz by 8th order Butterworth, and we apply a mean and amplitude normalization to reduce 

the effect of heart sounds. Finally, all samples are down sampled to 8000 Hz sampling 

frequency according to CORSA (computerized respiratory sound analysis) [39], in this study, 

the 16-bit resolution and one respiratory cycle are used. 

3.1.1.3  Empirical mode decomposition 
 

    The Empirical Mode Decomposition (EMD) method is a new adaptive signal time-frequency 

processing method proposed by NE Huang in 1998 by NASA and others [40]. It is especially 

suitable for nonlinearity, analysis and processing of non-stationary signals. The Hilbert 

transform transforms the well-known Hilbert-Huang Transform (HHT). 

 EMD is actually a method of decomposing signals. It is consistent with the core idea of 

Fourier transform and wavelet transform. Everyone wants to decompose the signal into a 

superposition of independent components, only the Fourier transform and the wavelet transform 

it is required to have a basic function, but EMD completely abandons the constraint of the basis 
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function, and only performs signal decomposition based on the time scale feature of the data 

itself, and has adaptability. Since no basis function is required, EMD can be used for almost 

any type of signal decomposition, especially for the decomposition of nonlinear, non-stationary 

signals [41]. The purpose of EMD is to decompose the signal into a superposition of multiple 

intrinsic mode functions (IMFs).  In addition, the IMF must satisfy the following two conditions 

(the function must have the same number of local extreme points and zero crossings within the 

entire time range, and at any point in time, the envelope of the local maximum the envelope of 

the (upper envelope) and the local minimum (lower envelope) must be zero on average).  

    The EMD method is based on:  

The signal has at least two extreme points, one maximum and one minimum. 

The characteristic time scale is defined by the time between the two extreme points. 

If the data lacks extreme points but has deformation points, the extreme points can be obtained 

by data differentiation once or several times, and then the decomposition results are obtained 

by integration.  

   The algorithm flow is as follows: 

1) Identify all extrema of x(t)            

2) Interpolate between minima (resp. maxima), ending up with some envelope emin(t) (resp. 

emax(t))   

3) Compute the mean m(t) = (emin(t)+emax(t))/2             

4) Extract the detail d(t) = x(t) − m(t)           

5) Iterate on the residual m(t)             
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3.1.1.4  Features Extraction 
 

   A helpful feature for express a biomedical signal namely Hjorth descriptors (HD) divided into 

three main parameters as follows: 

Activity: is the most useful parameters in biological signals, simply its variance of the signal 

represents the energy: 

Actv =  σ0
2                                                                                     (1) 

 

Mobility: Mobility is given by: 

Mob =  σ1
2/ σ0

2                                                                           (2) 

 

Complexity:  gives a computational value for the shape of the signal: 

                             𝐶𝑜𝑚𝑝 =  √(
𝜎2

𝑚+1

𝜎2
𝑚

−
𝜎2

𝑚

𝜎2
𝑚−1

)
2

                                                      (3) 

 

Permutation Entropy: Bandt and Pompe are investigated the (PE) Permutation entropy to 

measure the complexity of the non-linearity and non-stationary nature in time series signals 

[42]. the Shannon entropy is calculated in PE for the different symbol in the signal and can be 

calculated as follows: 

PEn = (∑ pi
m
i=1 ∗ log(pi))/ln(m)                                            (4) 

 

3.1.1.5  Statistical analysis  
 

    In this study, a statistical analysis of mean and standard deviation was used to test the 

significance of the activity and PE features. SD and Mean are expressed respectively as follows: 

𝜎 = √
1

𝑀
∑ (𝑥𝑗 − 𝜇)

2𝑀
𝑗=1                                                                (5) 
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x̅ = (∑ xj)/M                                                                               (6) 

 

Where: 

𝒙𝒋 : each value of the dataset. 

M : the total number of data points. 

 

3.1.1.6  Classification 
 

   In this study, two classifiers were used for two classification types (multiclass classification, 

binary classification), one is the extreme learning machine (ELM) and the other is a k-nearest 

neighbour (K-NN). detailed of these classifiers are presented in the next section 

 

3.1.1.7  Extreme Learning Machine  
 

   Huang et al. [43] propose an algorithm for solving a single hidden layer neural network which 

is an extreme learning machine (ELM).  

   The biggest feature of ELM is that traditional neural networks, especially concerning a single 

hidden layer feedforward neural networks (SLFNs), are faster than traditional learning 

algorithms while guaranteeing learning accuracy [44]. 
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Figure 3.2: SLFN: additive hidden nodes. 

 

For a single hidden layer neural network shown in Figure 3.2, assume that there is 𝑁 an arbitrary 

sample (𝑋𝑖, 𝑡𝑖) of which [45]: 

𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]𝑇 ϵ 𝑅𝑛 , 𝑡𝑖 = [𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑛]𝑇  ϵ 𝑅𝑚     (7) 

 

For a 𝐿 single hidden layer neural network with a hidden layer node, it can be expressed as 

∑ 𝛽𝑖𝑔(𝑊𝑖
𝐿
𝑖=1 . 𝑋𝑗 + 𝑏𝑖) = 𝑜𝑗 , 𝑗 = 1, … , 𝑁                                  (8) 

Among them 𝑔(𝑥), the activation function, which:  

 

𝑊𝑖 = [𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,𝑛]𝑇  is the input weight and 𝛽𝑖 the output weight, 𝑏𝑖 is the offset of the 

first hidden layer unit. 𝑊𝑖 . 𝑋𝑗 Representation 𝑊𝑖 and 𝑋𝑗 inner product. 

    The goal of a single hidden layer neural network learning is to minimize the error of the 

output, which can be expressed as: 
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∑ ‖𝑜𝑗 − 𝑡𝑗‖ = 0𝑁
𝑗=1                                                                      (9) 

 

That exists 𝛽𝑖 , 𝑊𝑖 and 𝑏𝑖 so that   

∑ 𝛽𝑖𝑔(𝑊𝑖
𝐿
𝑖=1 . 𝑋𝑗 + 𝑏𝑖) = 𝑡𝑗 , 𝑗 = 1, … , 𝑁                                  (10) 

 

Can be expressed as a matrix 

𝐻𝛽 = 𝑇                                                                                     (11) 

 

Among them it 𝐻 is the output of the hidden layer node, which 𝛽 is the output weight and 𝑇 is 

the expected output. 

 

𝐻 = (𝑊1, … , 𝑊𝐿 , 𝑏1, … , 𝑏𝑙, 𝑋1, … , 𝑋𝐿)                                       (12) 

 

= [
𝑔(𝑊1. 𝑋1 + 𝑏1) … 𝑔(𝑊𝐿 . 𝑋1 + 𝑏𝐿)

⋮ … ⋮
𝑔(𝑊1. 𝑋𝑁 + 𝑏1) … 𝑔(𝑊𝐿 . 𝑋𝑁 + 𝑏𝐿)

]

𝑁×𝐿

 

 

𝛽 = [
𝛽1

𝑇

⋮
𝛽𝐿

𝑇
]

𝐿×𝑚,

             𝑇 = [
𝑇1

𝑇

⋮
𝑇𝑁

𝑇
]

𝑁×𝑚,

                                        (13) 

 

In order to be able to train a single hidden layer neural network, we hope to get W1 , bi and βi to 

make 

‖𝐻 (�̂�𝑖, �̂�𝑖)�̂�𝑖 − 𝑇‖ = 𝑚𝑖𝑛
𝑤,𝑏,𝛽

‖𝐻 (𝑊𝑖, 𝑏𝑖)𝛽𝑖 − 𝑇‖                      (14) 
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Where 𝑖 = 𝟏, … , 𝐿  this is equivalent to minimizing the loss function 

𝐸 = ∑ (∑ 𝛽𝑖𝑔(𝑊𝑖
𝐿
𝑖=1 . 𝑋𝑗 + 𝑏𝑖) − 𝑡𝑗)𝑁

𝑗=1

2
                                (15) 

 

   Some traditional algorithms based on the gradient descent method can be used to solve such 

problems, but the basic gradient-based learning algorithm needs to adjust all parameters during 

the iterative process. In the ELM algorithm, once the input weight 𝑊𝑖 and the bias of the hidden 

layer 𝑏𝑖 are randomly determined, the output matrix of the hidden layer 𝐻 is uniquely 

determined. The training single hidden layer neural network can be transformed into a linear 

system 𝐻𝛽 = 𝑇 and the output weight 𝛽 can be determined 

�̂� =  𝐻ϯ𝑇                                                                                 (16) 

 

Among them 𝐻ϯis 𝐻 the Moore-Penrose generalized inverse of the matrix. And it can be proved 

that �̂� the norm of the solution obtained is minimal and unique [45]. 

 

3.1.1.8  k-nearest neighbour 
 

The K-Nearest Neighbors (K-NN) algorithm is a classification algorithm and one of the easiest 

to understand machine learning algorithms. In 1968, it was proposed by Cover and Hart [46].  

The simplest and mundane classifier may be the kind of memorable classifier, remember all the 

training data, for the new data, it matches the training data directly, if there is training data of 

the same attribute, use it directly, come as a classification of new data.   

The k-NN algorithm finds the k records closest to the new data from the training set and then 

determines the category of the new data based on their primary classification. 

The algorithm involves three main factors:  

(1) The training set. 

(2) The distance or similar measure. In this study a Euclidian distance has been used: 

 



 
35 

𝑑(𝑥, 𝑦) = ∑ √𝑥𝑖
2 − 𝑦𝑖

2𝑁
𝑖=1                                      (17) 

 

(3) The size of k. 

 
 

   In the validation stage, the dataset X is divided into a training set Y (training set) and a test 

set Z (test set), for the case that the sample size is insufficient such as in our study, and in order 

to full use of all data set to test the algorithms effect, database X is randomly divided into k 

packets, one of which is used as a test set each time, and the remaining k-1 packets are trained 

as a training set, by using k-fold cross-validation method [47]. 

 

3.1.2.  Part 2: Deep Learning Algorithms in Breathing Sounds Classification 

 

Breathing sounds contain prominent information that can aid doctors diagnose pulmonary pa-

thologies in a non-invasive way. Based on these sounds, we can establish many algorithms to 

develop an automatic classification system that could be used to categorize lung diseases. The 

traditional methods used in the first part for this chapter when implementing these systems 

involve two main steps – feature extraction and pattern classification. In recent years, the topic 

of interest in the field of breathing sound classification focuses on the use of deep neural net-

works, which have been proven to be effective for training large datasets. Deep learning has 

been widely used in a variety of applications, such as in biomedical engineering [48]. The im-

portant part that distinguishes deep learning from traditional machine learning algorithms is 

that from the data, there is no handcrafted feature extraction part since the deep learning model 

learns a prominent feature over the data in the training phase. Most patients who suffer from 

the chronic obstructive pulmonary disease (COPD) or asthma can be diagnosed by detecting 

associated symptomatic sounds such as wheezes. Whereas, patients with lung fibrosis, pneu-

monia and obstructive lung diseases, including COPD and chronic bronchitis [49], experience 

other associated symptomatic sounds such as crackles. Given this, a proper database of digitally 
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acquired continuous and discontinuous adventitious breathing sounds, coupled with a comput-

erized decision support system, could help us distinguish several pathologies linked to the pul-

monary organ, and it is expected that the accuracy of their classification into several types of 

sounds should ideally be high. However, the pre-processing step, which aims to clean and pre-

pare the data, and the feature extraction steps require robust algorithms to deal with noise and 

other artefacts. To address these limitations, recent algorithms appear to be established based 

on those developed in the field of machine learning. Large amounts of data require the use of 

powerful techniques, which include deep learning algorithms. In the field of biomedical engi-

neering, with the technological advancement related to machine learning and deep learning al-

gorithms, many neural network architectures have been proposed for the development of auto-

matic systems for lung sound classification. The convolutional neural network (CNN) is a 

promising architecture for addressing this task, the most common deep learning architecture, 

and usually contains three important layers, namely a convolutional layer, a pooling layer, and 

a fully connected layer. Several network architectures have been developed based on CNN lay-

ers, and these include Visual Geometry Group 16 (VGG16) [50], deep residual networks (Res-

Net) [51] and GoogLeNet [52]. Initially, CNN was designed for 2D image classification. Hence 

in the biomedical field, where researchers very often acquire time-varying physiological sig-

nals, to adapt the CNN for 1D signal classification, many researchers have used these 1D signals 

and applied the short-time Fourier transform (STFT) in the time domain to transform these 

signals into spectrograms outputs, which is a 2D representation in the time-frequency domain. 

A CNN with many layers, such as deep neural networks, require a long training time. To speed 

up this process, more computational power (e.g., more CPU/GPU) is needed, also can be a 

complex task because of some challenges, such as (i) a long learning (training and testing 

phases) time, (ii) the deep learning models often have limited accuracy due to the fixed values 

chosen of hyperparameters such as (epoch and batch size), (iii) the high computational burden 
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due to the amount of input data. Over years since starting applications based on deep learning, 

researchers have never developed such kind of method to explore the potential of optimized 

learning method in different domains. 

 

Contribution of this part 

 
We propose a novel Multi ep-Batch method that applies the use of multiple epochs and batch 

sizes during training and testing phases for deep neural networks, to speed up the training pro-

cess and improve the accuracy in terms of both efficiency and effectiveness, for the lung sounds 

classification. We evaluate our proposed method in different scenarios using three different 

sub-data taken from the ICBHI database: 

scenario (i) symptoms-based, scenario (ii) conditions-based and scenario (iii) diseases-based. 

In the first scenario (i) the normal, crackle and wheeze lung sounds were classified using 

VGG16, ResNet-50 and GoogLeNet architectures with and without Multi ep-Batch method, in 

the second scenario (ii) a VGG16, ResNet-50 and AlexNet [53] were used for the classification 

of healthy, chronic (COPD, Bronchiectasis and Asthma) and nonchronic (Pneumonia, URTI, 

Bronchiolitis and LRTI) pulmonary conditions with and without Multi ep-Batch method, in the 

last scenario (iii), a six-class of pulmonary diseases namely (healthy, COPD, Bronchiectasis, 

Pneumonia, URTI, and Bronchiolitis) were classified using VGG16 and AlexNet architectures 

with and without Multi ep-Batch method. By This Multi ep-Batch method provides an avenue 

for performance improvement in the classification processes when the data are inputted without 

augmentation and when the network is trained from scratch by using deep neural network mod-

els. As well, it could be used in any deep learning application as long as the method is incorpo-

rated into the training and testing stages. To the best of our knowledge, a Multi ep-Batch method 

has not been previously reported and examined in the literature for deep neural networks. The 

objectives of our study are to exploiting the training and testing process based on deep learning 

for lung sound classification, were the following: (1) to assess the VGG16, ResNet-50, AlexNet 
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and GoogLeNet models for classification with and without the Multi ep-Batch method, (2) to 

evaluate the performance of our approach in terms of training time and accuracy rate and (3) to 

discuss and elucidate the aspect of learning system which are a necessary stage in deep learning. 

To do so, we systematically carried out a set of experiments using different scenarios mentioned 

using four existing CNNs architectures in three sub-data organized from the ICBHI database. 

This section aims at explaining the three different scenarios. As introduced, a significant 

amount of computational time and data are required when a deep network trained from scratch. 

The behaviour of the training and testing process plays an essential role in many problems of 

deep learning applications, therefore the learning system in any deep neural network is a chal-

lenging task. Hence, it is common to use a fixed learning method which involves the use of 

fixed values of epoch and batch size, although all research study in the literature used fixed 

values for the training and testing process, still, need new exploitation of these values to get an 

effective learning process. We describe our new learning system, in the next three different 

subsections to prove the results concerning the classification with and without our Multi ep-

Batch proposed method. Section 3.1.2.1 describes the scenario (i) symptoms-based classifica-

tion. Section 3.1.2.2 presents the scenario (ii) conditions-based classification. Finally, Section 

3.1.2.3 explains scenario (iii) diseases-based classification. 

 

 

3.1.2.1.  Scenario (i) - symptoms-based 
 

    In this implementation (symptoms-based), we used three CNN-based architectures to study 

our Multi ep-Batch method, for the classification of three lung sounds, namely normal sounds, 

crackles, and wheezes. A block diagram of the proposed Multi ep-Batch method, VGG16-, 

ResNet-50 and GoogLeNet-based classification is illustrated in Figure 3.3. First, we segmented 

all audio recordings used in this scenario into cycles. We then processed these cycles consisting 

of the lung sounds using a Gammatone filter bank transformation and converted the output into 
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a 2D representation to obtain images. We subsequently fed these images rescaled to a size of 

224 × 224 pixels in RGB format into the VGG16, ResNet-50 and GoogLeNet deep neural net-

works. Second, we classified the normal, crackle and wheeze breathing sounds with and without 

multi ep-batch method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2.2.  Scenario (ii) - conditions-based 
 

    In this scenario (conditions-based), we implemented a Visual Geometry Group 16 (VGG16), 

residual networks (ResNets) and AlexNet architectures. We apply these models with and 

without the Multi ep-Batch (multi epochs and batch size) learning mexthod, for classifying 

three types of pulmonary conditions – healthy, chronic (COPD, Bronchiectasis and Asthma) 

and non-chronic (Pneumonia, LRTI, URTI, and Bronchiolitis). We divided all the audio 

recordings into cycles and processed these cycles of each pulmonary condition using a 

gammatone filter bank, and the output was then converted into a two-dimensional 

representation as images. In the first stage, we applied VGG16, ResNet-50 and AlexNet without 

Multi ep-Batch for the classification of pulmonary conditions into healthy, chronic and non-

chronic, and in the second stage, we performed the same analysis with Multi ep-Batch 

Figure 3.3: Block diagram of the proposed Multi ep-Batch, VGG16, ResNet-50 and 

GoogLeNet based symptoms-classification. 
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to see the effect of our proposed method. The flowchart of the proposed Multi ep-Batch, 

VGG16, ResNet-50 and AlexNet based classification is shown in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3.4: Flowchart of the proposed VGG16, ResNet-50 and AlexNet based conditions-

classification. 

 

 

3.1.2.3.  Scenario (iii) – diseases-based 
 

    In this scenario (diseases-based), we used the Visual Geometry Group 16 (VGG16) and 

AlexNet models with and without the Multi ep-Batch method, for the classification of pulmo-

nary diseases into six-class namely (healthy, COPD, Bronchiectasis, Pneumonia, URTI, and 

Bronchiolitis). Using a gammatone filter bank, we processed directly all the entire audio re-

cordings samples of each pulmonary disease from the ICBHI database, then the output was fed 

into VGG16 and AlexNet without Multi ep-Batch method. Secondly, we performed the same 

analysis with the Multi ep-Batch method. The flowchart of the proposed Multi ep-Batch, 

VGG16 and AlexNet based classification are shown in Figure 3.5. 
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Figure 3.5: Flowchart of the proposed VGG16 and AlexNet, (a) without the Multi ep-Batch 

method and (b) with the Multi ep-Batch method. 

 

 

3.1.2.4.  Gammatone Filter Bank 
 

The Gammatone filter bank was initially proposed by Roy Patterson and colleagues [54] and 

was designed to model the human auditory system. A gammatone analysis can be easily used 

to generate a time-frequency representation, which can be used as an image. For respiratory 

sounds, most researchers [25, 28] have used STFT. In this study, a gammatonegram was used 

to represent the input audio cycles as a 2D representation. To the best of our knowledge, breath 

sound signals have a non-stationary nature, which complicates their classification into some 

classes. Hence, the large variations in the non-stationary signal can be captured using a filter 

with a higher time resolution. Therefore, in this study, we exploited the bandpass filters of 

Gammatones and found that increases in the central frequency were associated with increases 

in the filter bandwidth.  

A Gammatone filter has an impulse response produced by gamma (statistical distribution) 

and sinusoidal carrier tones, which can be described as follows: 

 

𝑓𝑖(𝑡) =  {
𝑎𝑡𝑛−1𝑒−2𝜋𝑏𝑖𝑡 𝑐𝑜𝑠(2𝜋𝐶𝑓𝑡 + ∅) , 𝑡 ≥ 0 

0 , 𝑡 < 0 
                   (18) 

 

where, 
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𝐶𝑓 is the central frequency of the Gammatone filter; 

∅ is the phase of the filter; 

𝑎 is a constant for controlling the gain; 

𝑛 is the order of the filter; and 

𝑏𝑖 is used to determine the bandwidth of the bandpass Gammatone filter. 

 

In [55], Glasberg and Moore developed the following equation for the computation of 

equivalent rectangular bandwidth (ERB): 

𝐸𝑅𝐵(𝑓) = 24.7(4.37𝐶𝑓 + 1)                                                     (19) 

where, 

𝐸𝑅𝐵(𝑓) is in units of Hz; and 

𝐶𝑓 is in units of kHz. 

 

    This formula was originally introduced by Greenwood [56] to explain the relationship be-

tween the central frequency and the variation in the critical bandwidth. These equations became 

digitally applicable with the availability of an efficient implementation of the Patterson-

Holdsworth Auditory Filter Bank by Malcolm Slaney [57], which inevitably led to the popu-

larity of this approach. Subsequently, the code available in [58] includes the creation of a gam-

matonegram in the main routine, which takes a waveform and other parameters and returns a 

spectrogram-like time-frequency matrix.  

 

3.1.2.5.  Deep learning models 
 

VGG16 

 
The standard structure of the CNN is usually composed of three layers, namely, a convolutional 

layer, a pooling layer and a fully connected layer. In recent years, many researchers focused on 

the design of these layers to obtain different architectures for classifying breathing sounds into 

several classes based on converting audio signals from the time domain into 2D representations 

(images) in the time-frequency domain, denoted as spectrograms. Similarly, our work is based 

https://www.ee.columbia.edu/~dpwe/resources/matlab/gammatonegram/gammatonegram.m
https://www.ee.columbia.edu/~dpwe/resources/matlab/gammatonegram/gammatonegram.m
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on the CNN model which utilizes the VGG16 network that was first proposed by [50]. Figure 

3.6 shows the detailed architecture of the VGG16 network. Our system, based on the VGG16 

network, is divided into three principal stages. During the first stage, we converted all breathing 

sound segments into gammatonegram feature map images. Subsequently, all the images 

were resized with a fixed size of 224 × 224 × 3, which is the required input image size to the 

VGG16 network. The second stage is described as follows: 

 

Block 1 [Green] : (2 × convolutional layer [Con2D] + Rectified Linear Unit Activation 

Function [ReLU] + 64 × filters with a kernel size of 3 × 3) + max pooling layer with a size of 

2 × 2 and a stride size of 2 × 2. 

 

Block 2 [Blue] : (2 × convolutional layer [Con2D] + Rectified Linear Unit Activation 

Function [ReLU] + 128 × filters with a kernel size of 3 × 3) + max pooling layer with a size of 

2 × 2 and a stride size of 2 × 2. 

 

Block 3 [Gray] : (3 × convolutional layer [Con2D] + Rectified Linear Unit Activation 

Function [ReLU] + 256 × filters with a kernel size of 3 × 3) + max pooling layer with a size of 

2 × 2 and a stride size of 2 × 2. 

 

Block 4 [Pink] : (3 × convolutional layer [Con2D] + Rectified Linear Unit Activation 

Function [ReLU] + 512 × filters with a kernel size of 3 × 3) + max pooling layer with a size of 

2 × 2 and a stride size of 2 × 2. 

 

Block 5[Red] : (3 × convolutional layer [Con2D] + Rectified Linear Unit Activation 

Function [ReLU] + 512 × filters with a kernel size of 3 × 3) + max pooling layer with a size of 

2 × 2 and a stride size of 2 × 2. 
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    The last stage focuses on classification, which involves using the outputs from Block 5 

which contains the processed features [(7 × 7 × 512) + 2 × fully connected layer (1× 1 × 4096)]. 

After the data is processed through all the layers, the activation function (SoftMax) allows the 

classification of healthy, chronic and non-chronic pulmonary conditions as example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ResNet-50 

 
  The ResNet [51] architecture has two types of layers – conv block and identity block, and 

these serve as shortcuts in the residual blocks and are included in the order, as shown in Figure 

3.7.  

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Visual Geometry Group 16 (VGG16) based CNN architecture. 
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Figure 3.7: Residual network based on CNN architecture. 

 

 

 
 

 

 

 

 

 

 

 

 

 
(a) Identity Block 

 

 

 

 

 

 

 

 

 

 

 
(b) Conv Block 

 

Figure 3.8: Structure of the identity and conv blocks in the ResNet architecture. 
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Figure 3.8 (a) and (b) present the structures of the identity and conv blocks, respectively. A 

stack of three layers was used for each residual block. The 1×1, 3×3, and 1×1 layers are three 

convolutions layers. The 1×1 layers focus on first reducing and then increasing the dimensions, 

and the 3×3 layer has smaller input and output dimensions. 

In our classification process, we focused on three main steps. First, we converted all 

respiratory sound segments (breathing cycles) into gammatonegram feature maps as an image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: The overview of our ResNet architecture used in this work. 

 
 

Second, as both networks require an input shape of size 224 × 224 × 3 pixels, we performed the 

resizing. Third, we fed all of our resized image data into  ResNet-50. Figure 3.9 shows the 

ResNet-50 network. The input image is then passed through the ResNet-50 structure as shown 

in Figure 3.9 and the healthy, chronic and non-chronic labels are used as the output classes as 

exemple. In all the architectures, the term ‘×3’ indicates one conv block and two identity block, 

and the rest of the terms have similar definitions. The network was divided into the following 

three main stages: 

 

STAGE-1: The input feature map of three channel RGB images are pre-processed through 

convolution, batch-normalization, ReLU and maxpooling. 
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STAGE-2: As shown in Figure 3.9, the conv2,3,4, and 5 blocks are orderly. In contrast, the 

conv2 and conv5 blocks are similar, as shown in Figure 3.10. 

 

STAGE-3: The output from stage 2 forms 7 × 7 × 2048 features, and these are then pooled to 

obtain an average of 1 × 1 × 2048 and then flattened to 2048. Subsequently, the healthy, chronic 

and non-chronic conditions as example. can be classified by processing the full connection (FC) 

layer and softmax activation. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3.10: Conv2 and Conv5 blocks of the ResNet-50 architecture. 

 

 

GoogLeNet 

 
      The GoogLeNet model was introduced in the ImageNet Large-Scale Visual Recognition 

Challenge 2014 (ILSVRC14) [52] as a deep learning model. This network has nine modules, 

each one called an inception. Each inception has a different-sized convolution and max-pooling 

layers. GoogLeNet has 22 layers, indicating good performance on image classification. 

Basically, the inception modules work as multiple convolution filters that are applied to similar 

inputs. After that, the results will be concatenated, allowing the network to get the advantage 

of multilevel feature extraction and to cover a wide area, by saving a good resolution for small 
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information on the images. Further details of these three deep learning networks can be found 

in [59]. 

AlexNet 

 
    The AlexNet architecture composed of five convolutional layers followed by maximum 

pooling layers, three fully connected layers followed by drop out layers, and a 6-class Softmax 

classifier in the end [53]. Based on using AlexNet architectures the image data of the 

gammatonegrams were classified into healthy, chronic (COPD, Bronchiectasis and Asthma) 

and non-chronic (Pneumonia, LRTI, URTI, and Bronchiolitis) breathing sounds as exemple. 

Figure 3.11 shows the detailed architecture of the AlexNet network. 

 

 

 

 

 

 

 

 

Figure 3.11: AlexNet based CNN architecture. 

 

3.1.2.6.  Proposed Method 

 
      In recent years, many researchers in the field of computer vision-based on deep learning 

have used various approaches for data computation based on different types of models that have 

been proposed on CNN. However, the analysis of very large data is often associated with time- 

and accuracy-related problems, especially for those working on biomedical studies and those 

of prediction of earlier diagnosis of Sever’s diseases when the accuracy plays an important role 

in their applications. First, to reduce the time required for training using large amounts of data, 

powerful hardware (specifically more GPU accelerators) is needed, which can be sometimes 

costly for researchers. Second, to achieve high accuracy, researchers need to select appropriate 

hyperparameters, such as batch size, the number of epochs, and the learning rate after several 
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evaluations. Taken together, these processes appear to be some form of black art. Hence, to 

address these problems, we have proposed a new learning and testing method that aids and 

accelerates the training process toward increasing accuracy. One of the most important parts in 

a biomedical classification system that is based on a deep neural network is the training and 

testing process. A common strategy used in the biomedical literature to select parameters such 

as batch size and epochs is to set it as a fixed value. Besides, in the previous work, there is no 

useful method for how to select these parameters. Hence, there is a need for studies in deep 

learning that discuss the learning phases (the training and testing process) and offer new 

perspectives in the biomedical field. This part of thesis provides a new method for the training 

and testing process in deep neural networks for classification of breathing sounds; we consider 

it as an effective method for processing the learning stages for improving accuracy and speed 

up the training of the system.  

 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.12: The training and test process using Fixed method (standard). 
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The most common critical factor used in the training and testing stages for the success of a deep 

neural network model-based classification system is hyperparameters such as the batch size and 

epoch. After several experiments conducted by researchers to get the final prominent fixed 

batch size and epoch values for the training and testing process, still needed improvements to 

achieve high performance. Therefore, in this work, multiple values of these parameters 

changing at the same time during the training and testing process are set according to our 

method. In this subsection, we clarify the process that can improve the quality of the 

classification system. Because we used multiple batch sizes and epoch values together in our 

proposed method, we thought it would be appropriate to name it Multi ep-Batch; thus, our 

method will be referred to by this name. 

    The selection of batch and epoch parameters depends on the performance achieved by it. 

There are many available deeply CNN architectures that have a large number of layers. The 

number of learnable parameters was augmented by using a complex deep learning architecture 

significantly. Furthermore, the training and testing time required is higher for more complex 

networks such as ResNet-50, VGG16, and GoogLeNet. The performance of such networks, 

which are based on CNN, extremely depends on the hyperparameters. By varying the batch 

size, the epoch value, the filter size, dropout, and so on, classification accuracy can also be 

varied. Good classification accuracy could be achieved with configuration turned during the 

training and testing process, with varying in hyperparameters such as the batch size and epochs. 

In [60], Samuel L. Smith et al and other members of the Google Brain team increased the batch 

size during training and obtained equivalent testing accuracies based on the same number of 

training epochs but fewer parameter updates, which led to greater parallelism and shorter 

training times. Keskar et al. [61] stated that “the lack of generalization ability is because large-

batch methods tend to converge to sharp minimizers of the training function.” During learning, 

a deep neural network with connected neurons between different layers is trained to identify 
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optimal weights and biases to improve the performance of the system with better classification 

accuracy after many epochs (the weights are updated at the end of each training epoch) and 

adjustments to its hyperparameters. In the literature, based on deep learning, there is no specific 

resource that examines the learning (training and testing) process in biomedical applications 

and offers suggestions. Motivated by this fact, a configurable learning process (training and 

testing) with a varying the number of batch sizes and epochs was designed. The configurable 

process consists of three values of batch size and three values of the epoch. 

     
 

 

 

 

 

 

 
 

 

 

 
 
 

 
 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 
 

 
 

 

  Figure 3.13: The training and test process using our proposed Multi ep-Batch  
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    The configuration of the proposed method can be modified according to the amount of 

training and testing data. By recognizing the possible applications suitable for this method, it 

could be used in all topic that is based on deep learning, especially in training and testing phases. 

More knowledge is required on the topic; therefore, this study can be performed in any learning 

process, because it is an intervention in the learning stages. Our approach and the standard one 

can be distinguished as two methods: The first one is the fixed method (standard), as illustrated 

in Figure 3.12 with an example of VGG16, and the other adopts the Multi ep-batch method, as 

illustrated in Figure 3.13. To clarify further the behaviour and effect of our proposed Multi ep-

batch method before we apply it on our multi-class classification case, we only consider an 

additional interpretation by using a different medical image dataset and different types of 

classification; this is not our concern, but it serves as an additional understanding of the 

significant role of our proposed method. We applied our Multi ep-batch on X-ray scan image 

datasets [62] from pediatric patients who are from 1 to 5 years of age, which consisted of two 

classes, namely normal and pneumonia pulmonary conditions, and a total of 5,856 chest X-ray 

images that were collected and labelled were used. We took data as 3,883 pneumonia images 

and 1,349 normal images to use a binary classification system. Table 3.1 presents the results 

before and after applying our proposed method; the accuracy and time were affected positively. 

This is the case of different data, a deep learning model and a binary classification system; as 

we can see, the first results give a very promising outlook for the other classification system, as 

in this study's multi-class system, we could say that our method positively affected the learning 

stages of the deep learning models. 

Data Method Batch Epochs Learning 

rate 

Accuracy Training 

Time 

X-ray images [62] 

X-ray images [62] 

VGG16   

VGG16 + Multi ep-

Batch 

32 

[32, 64, 128] 

100 

[2, 12, 22] 

0.0001 

0.0001 

85.03 % 

93.75 % 

149 min 

51 min 

 

Table 3.1: The results of binary classification using X-ray images data. 
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   Besides, Yang et al. [63] repeated experiments with different batch sizes and epochs, and 

obtained results as shown in Table 3.2. From these results, we can observe that variations in 

these two parameters play an important role in the performance of deep neural networks.  

Dataset Model Batch Epochs Accuracy 

ImageNet 

MNIST 

CIFAR-

10 

ResNet-50 v1.5 [52] 

LeNet [64] 

ResNet-50 v1 [52] 

256 

256 

128 

90 

30 

200 

75.9% 

99.2% 

93.9% 

 

Table 3.2: Results taken from [63]. 

 

In our experiments, based on previous studies conducted in this area, we investigated the 

training time and accuracy using our method, which is denoted as Multi ep-Batch and found 

that it yielded better results than the current state-of-the-art methods when applied to the 

International Conference on Biomedical and Health Informatics (ICBHI) database [12]. One of 

the supervised learning task problems observed when using CNN is the loss function, which 

can mathematically be described as follows [59]: 

𝐿𝑓 =
1

|𝑋|
∑ 𝑐(𝑥, 𝑤)𝑥∈𝑋                                                                        (20) 

 

where, 

𝐿𝑓 is the loss function; 

𝑤 is the weight; 

𝑋 is the labelled training set; and 

𝑐(𝑥, 𝑤) is the loss computed from samples 𝑥 ∈ 𝑋 and their labels y.  

 

    In recent works, many researchers who used CNN applied stochastic gradient descent (SGD) 

and its variants for training and then optimized the loss function  𝐿𝑓 through iterative steps as 

follows [65]: 

https://link.springer.com/conference/icbhi
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𝑤𝑡+1 = 𝑤𝑡 − 𝜂
1

|𝐵𝑠|
 ∑ 𝛻𝑐(𝑥, 𝑤𝑡)

𝑥∈𝐵𝑠

                                              (21) 

where, 

𝐵𝑠 is the batch sampled from 𝑋; |𝐵𝑠| is the batch size; 

𝜂 is the learning rate;  𝑡 is the iteration index; and 𝜂 is the learning rate for iteration 𝑖. 

 

    A single gradient computation divided by the weight corresponds to a single iteration of the 

SGD-based training. One epoch corresponds to 𝑋/ |𝐵𝑠| iterations in the training loop and it 

represents a single pass of the full data. Figure 3.14 shows the process followed to get the 

optimal weights corresponding during the learning phases to every model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 Figure 3.14: The procedure followed for getting the optimal weight during learning phases to 

every model. 
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We can perform consecutive calls for model fitting. Hence, in this study 3, 5 and 3 calls (model. 

fit) were used for updating and saving the weights during the Multi ep-Batch training approach 

in scenario (i), scenario (ii) and scenario (iii) respectively. The weights are saved only if an 

improvement in the accuracy was obtained with the test data during the training step using the 

Checkpointing function in the Keras framework [66]. 

 

We can calculate the number of iterations for one epoch using the following equations: 

i ← (D/Bs)                                                                                     (22) 

iT ← (DTr/Bs)                                                                               (23) 

iV ← (DTs/Bs)                                                                               (24) 

E = (iT, iV)                                                                                     (25) 

 

where, 

𝑖 is the number of total iterations; 𝐷 is the global database (all image samples); 𝐵𝑠 is the batch 

size; 𝐸 is the epoch; 𝑖𝑇 is the training iteration in one epoch; 𝒊𝑽 is the testing iteration in one 

epoch; and 𝐷𝑇𝑟 and 𝐷𝑇𝑠 are the training and testing data, respectively. To illustrate the 

application of the aforementioned formulas, we will apply them to the ICBHI dataset 

experimented in this study (Conditions-based). For the modified training process using the 

Multi ep-Batch method as shown in Figure 3.13, we obtain: 

  D = 7080 

  Bs =  [32, 64, 128, 256, 512] 

  DTr = 5664 (3 classes: healthy, chronic and non-chronic pulmonary conditions) 

  DTs = 1416 (3 classes: healthy, chronic and non-chronic pulmonary conditions) 

 

     In other words, we started the training process with 𝐵𝑠 = 32 and by using equations (22), 

(23) and (24) we get the following variables – (𝑖 = 382, 𝑖𝑇 = 177, and 𝑖𝑉 = 44). Each epoch 𝐸 

has two sets of iterations (train and test iterations). Therefore, our Multi ep-Batch method 
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involves multiple 𝐸 (from 2 to 42) and multiple 𝐵𝑠 (from 32 to 512) values. Each time the batch 

is augmented, 10 epochs are added, and the number of iteration decreases signifying quicker 

convergence. All weights are updated based on the different numbers of batches and epochs 

during all iterations, as shown in Figure 3.14. Using the standard training process as shown in 

Figure 3.12 we implemented the same process as aforementioned but fixed both hyper-

parameters as 𝐵𝑠 = 32 and 𝐸 = 100. To benchmark and evaluate the efficiency of our proposed 

method, we carried out the experiments in three different scenarios using different sub-data, 

and we organized the investigation into three main experiments A, B and C as shown in Table 

3.3. The last column (Multi ep-Batch Method) indicates that our proposed solution is enabled 

or disabled (/). 

Scenario Sub-data Deep learning 

model 

Experiment  Multi ep-Batch Method  

Scenario (i) Symptoms-

based 

VGG16 

VGG16 

ResNet-50 

ResNet-50 

GoogLeNet 

GoogLeNet 

A (1) 

A (2) 

B (1) 

B (2). 

C (1) 

C (2) 

/ 

Enable 

/ 

Enable 

/ 

Enable 

 

Scenario (ii) Conditions-

based 

VGG16 

VGG16 

ResNet-50 

ResNet-50 

AlexNet 

AlexNet 

A (1) 

A (2) 

B (1) 

B (2) 

C (1) 

C (2) 

/ 

Enable 

/ 

Enable 

/ 

Enable 

 

Scenario (iii) 

 

Diseases-

based 

VGG16 

VGG16 

AlexNet 

AlexNet 

A (1) 

A (2) 

B (1) 

B (2) 

/ 

Enable 

/ 

Enable 

 

(/): disable                              Table 3.3: Three different scenarios using different sub-data. 
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3.1.2.7.  Datasets 
 

    The lung sounds used in this study are sounds included in the ICBHI Scientific Challenge 

database [12], which contains 920 audio recordings of breathing sounds from healthy and 

diseased individuals. Table 3.4 provides the breakdown of the information per recording in the 

database, which includes the patient number, chest location, mode of acquisition, recording 

equipment, type of breath sounds (per cycle), diagnosis and a total number of cycles in the 

recording. The audio recordings ranged in duration from 10 to 90 s with sampling frequencies 

from 4.0 to 44.1 kHz. We resampled all audio used on three sub-data to 8000 Hz to ensure 

consistency among the data. Finally, each sub-data was randomly divided into 80% for training 

and 20% for testing for every type of lung sound. 

Patient 

number 

Chest 

location 

Acquisition 

mode 

Recording 

equipment 

Breathing 

sound 

type 

Diagnosis Cycle 

numbers 

101 Anterio

r left 

Single-

channel 

Welch 

Allyn 

Meditron 

Master Elite 

electronic 

stethoscope 

Normal 

sounds 

Healthy 12 cycles  

122 Trachea Multi-

channel 

3M 

Littmann 

Classic II 

SE 

stethoscope 

Crackles Pneumonia 10 cycles  

107 Anterio

r right 

Multi-

channel 

AKG 

C417L 

microphone 

Crackles COPD 8 cycles  

 

Table 3.4: Example of recording sounds characteristics from the ICBHI database. 

 

 

 

Sub-data (Symptoms-based) 

    All the recordings were divided into a total of 1864, 886, and 3642 cycles, which contained 

the three different types of sounds, namely crackles, wheezes and normal sounds respectively.  
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                                                                                                (a) 

 

 

 

 

 

 

 

                                                                                            

               (b) 

 

 

 

 

 

 

 

                                                                    (c) 

 Figure 3.15: Distribution of the cycles data for normal, crackle, wheeze. 
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Sub-data (Conditions-based) 

    In total, the number of cycles used in this sub-data was set to 1416 cycles, and these included 

374 cycles from chronic (264, 104 and 6 from COPD, Bronchiectasis and Asthma, respectively) 

cases, 720 cycles from non-chronic (285, 243, 160 and 32 from Pneumonia, URTI, 

Bronchiolitis and LRTI, respectively) cases and 322 cycles from healthy cases. The key step to 

increase the cardinality of the audio data for lung sound classification tasks is data 

augmentation, which used in the training of deep learning networks. Typically, to overcome the 

problem of overfitting two ways can be done to perform the data augmentation – one is 

performed on the 1D time-series data (audio data) and the other performed on the 2D 

gammatonegram images (image data). In our work, we opted for the second method. The 

gammatonegram images were augmented with 4 different strategies, based on simple 

transformations [67] – horizontal flipping, vertical flipping, horizontal plus vertical flipping, 

and added noise. A summary of the sliced recorded audio files and the final number of 

augmented gammatonegram images corresponding to each disease class is presented in Table 

3.5. 

Diseases No. of Cycles No. of Cycles selected No. of Augmented Images 

Healthy 

COPD 

Bronchiectasis 

Asthma 

Pneumonia 

LRTI 

URTI 

Bronchiolitis 

322 

5746 

104 

6 

285 

32 

243 

160 

322 

264 

104 

6 

285 

32 

243 

160 

1610 

1320 

520 

30 

1425 

160 

1215 

800 

 

 

Table 3.5: Dataset summary (Conditions-based) 
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Sub-data (Diseases-based) 

    The number of recordings used in this sub-data was 203, and these included (79, 35, 37, 23, 

16, and 13 from COPD, Healthy, Pneumonia, Bronchiectasis, Bronchiolitis and URTI 

respectively) cases. In this sub-work, the gammatonegram images were augmented with 4 

different strategies as mentioned before (condition-based). A summary of the subject, 

recordings audio files and final augmented gammatonegram images with corresponding 

diseases classes are presented in Table 3.6. As we can see, from the table is the number of the 

recording of COPD represents the highest number of all the recording numbers, which means 

the COPD recordings number make an unbalanced distribution. To balance the data, we reduced 

the COPD samples to 79. 

 

Diseases No. of 

Subjects 

No. of 

Recordings 

No. of Recordings 

selected  

No. of Augmented 

Images 

Healthy 

COPD 

Bronchiectasis 

Pneumonia 

URTI 

Bronchiolitis 

26 

64 

7 

6 

14 

6 

35 

793 

16 

37 

23 

13 

35 

79 

16 

37 

23 

13 

175 

79 

80 

185 

115 

65 

 

 

Table 3.6: Dataset summary (Diseases-based) 

 

 

3.1.2.8.  Computing Platform 
 

    Google Colaboratory [68], which is based on the Jupyter notebook, was used in this work for 

all the training experiments. This notebook is an open-source solution for running and sharing 

code written in the Python programming language and provides user-friendly tools for data 

integration, libraries, and visualization [69]. The objective of this platform is to distribute 

machine learning education and research [70]. This platform can be run using highly powerful 
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hardware – parallel tensor processing units (TPUs) and graphic processing units (GPUs), with 

accelerated training of a maximum of 12 hours per user per session. This platform has an 

NVIDIA Tesla T4 with a GPU of 12 GB, and we obtained permission to upload the data from 

Google drive and save our training session. In this experiment, we built our VGG16, ResNet-

50, AlexNet and GoogLeNet model from Keras on top of TensorFlow, which is an API 

designed to support deep neural network architectures [66]. 

3.1.2.9.  Imaging Software 
 

    The software used in this experiment to generate the gammatonegram images of lung sounds 

is MATLAB 2019. The generated gammatonegrams were saved as images in JPG format and 

fed into our deep neural networks.  

 

3.1.2.10. Performance evaluation criteria 

 
    In this study, an optimization algorithm named Adaptive Moment Estimation (Adam) was 

examined to update the network weights during training with VGG16, ResNet-50, AlexNet and 

GoogLeNet CNN models. The experimental settings for modelling the network are listed below 

in Table 3.7. 

Settings. No Hyperparameters Values 

      1 

      2 

      3 

      4 

Learning rate 

Numbers of Epochs 

Batch Size 

Optimizer 

0.00001 

[2, 12, 22, 32, 42] 

[32, 64, 128, 256, 512] 

Adam 

 

Table 3.7: Hyperparameters settings for trained VGG16, ResNet-50, AlexNet and GoogLeNet 

models. 

 
 

    In this study, the experimental results were evaluated using four metrics – overall accuracy, 

precision, recall or sensitivity and F1 score. The overall accuracy measures the number of 
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correctly classified normal and abnormal samples corresponding to all test samples. Precision 

is defined as the positive predicted value (PPV) that provides the results relevant to an accurate 

classification. Recall or sensitivity is defined as true positive classified segments, divided by 

the total number of positive segments. The F1 score is based on the harmonic average of 

specificity and sensitivity, and the definitions are given in (26), (27), (28) and (29) respectively 

as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                (26) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                       (27) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 ( 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                 (28) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
                               (29) 

 

 

Where: 

 

TP: means true positive;  

TN: means true negative;  

FP: means false positive; 

FN: means false negative. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 
This chapter presents the results of the two different parts such as machine learning and deep 

learning algorithms in lung sound classification using the proposed methods which were dis-

cussed in Chapter 3. The performance of machine learning and deep learning for classification 

system in detecting the lung sounds and diseases are presented in Part 1 and Part 2 respectively. 

This chapter also compares the results from various machine learning and deep learning algo-

rithms to find out the optimum system for lung sounds classification.  

 

4.1.  Part 1: Performance of Machine Learning Algorithms in Breathing Sounds 

Classification 
 

             In this part, MATLAB R2013b have been used to performe the all experiments on 

a pc with a configuration of Intel CPU Core i5, 4 GB RAM, and Windows 10 operating system. 

In [71] the authors apply Hjorth descriptors as features and find that the activity feature is the 

best feature compared with mobility and complexity as shown in Equations (1),(2) and (3). 

Therefore, in our work, the activity feature was exploited for enhanced this study with combined 

it with the permutation entropy feature shown in Equation (4), and formed a features vectors to 

fed into two machine learning algorithms namely ELM and K-NN, to compare them in the 

classification of breath sounds signals.  

    The EMD decomposes BS signals into a set of IMFs. The features (Activity and Permutation 

Entropy) were extracted from each IMF and tested using a statistical measure of (mean and 

standard deviation SD  described in Equations (1) and (2)  ) as tabulated in Table 4.1.  

 

 

 

https://www.sciencedirect.com/topics/computer-science/desktop-computer
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Breath sounds Activity 

Mean ± standard deviation 

Permutation entropy 

Mean ± standard deviation 

Normal bronchial 0.001387 ± 0.004387 0.56497 ± 0.202819 

Wheeze 

Crackle 

0.005829 ± 0.000468 

0.000645 ± 0.000765 

       0.56792 ± 0.209888 

  0.586679 ± 0.216714 

Pleural rub 0.002608 ± 0.000513        0.56675 ± 0.223923 

Stridor 0.001594 ± 0.001472 0.563352±0.215641 

 

Table 4.1:  Statistical analysis of features extracted from breath sounds 

 

   From Table 4.1 we inferred that there is significant discrimination in the activity and PE 

features of different classes. Can be observed a mean and SD are different from each class in 

activity features, but in PE features a little different between classes. From this, we can combine 

theme to test and compare the classification accuracy of both K-nn and ELM classifiers. These 

features have been formed as follows: 

 Features = [Activity, PE].  

   In order to verify the reliability of the outcome of the classifiers, the k-fold cross-validation 

was used. After several tests to choose the k value, we found that k=10 is promised value, 

therefore it has been used in this study. 

   In the literature review many researchers based on activity or entropy features extraction, 

nevertheless, this study has combined both activities and PE features for observed the ability of 

both ELM and K-nn to classify different BS signals. 

  In Table 4.2 the classification stage is described, and give the classification performance of 

features (Activity, PE) extracted from IMFs using ELM with RBF Kernel, Polynomial Kernel 

and K-nn with distance euclidian which is described in equation (17) , and 1 to 10 number of 

neighbours.  
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Classifier K-

Fold 

K neighbours  Kernel       Average accuracy 

(%) 

ELM (Activity, PE) 

 ELM (Activity, PE) 

10 

10 

          / 

          / 

RBF 

Polynomial 

83.57 

77.86 

K-nn (Activity, PE) 10 1      / 86.42 

K-nn (Activity, PE) 10 2      / 80.71 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

10 

10 

10 

10 

10 

10 

10 

10 

3 

4 

5 

6 

7 

8 

9 

10 

     / 

    / 

    / 

    / 

    /  

    / 

    / 

    / 

82.14 

80.00 

82.14 

80.00 

81.42 

82.14 

81.00 

77.14 

 

Table 4.2:   Classification performance of (Activity, PE) from IMFs of BS signals in mul-

ticlass classification stage 

 

  As shown in Tables 4.2, The ELM with RBF Kernel and K-nn with 1 neighbour gave the 

higher classification accuracy of 83.57% and 86.42% respectively. The ELM by RBF kernel is 

better than ELM with Polynomial kernel in multiclass classification case, and k-nn by 1 

neighbour is better than rest neighbours. We can say that the ability of the K-nn is higher than 

ELM in the classification of the Breath sounds signals into several classes (Normal bronchial, 

Wheeze, Crackle, Pleural rub, Stridor). 

   We can be seen in Table 4.3, the accuracy found from k-nn is 95% by 6-8-10 neighbours and 

from ELM with Polynomial Kernel is 90.71% better than RBF kernel in binary classification 

case.  
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Classifier K-Fold K neighbours  Kernel Average 

accuracy (%) 

ELM (Activity, PE) 

ELM (Activity, PE) 

10 

10 

          / 

          / 

RBF 

Polynomial 

89.29 

90.71 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

K-nn (Activity, PE) 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

     / 

     / 

    / 

    / 

    / 

    / 

    / 

    / 

   / 

   / 

93.57  

92.14 

94.29 

92.86 

94.28 

95.00 

94.29 

95.00 

93.00 

95.00 

 

Table 4.3:   Classification performance of (Activity, PE) from IMFs of BS signals in binary 

classification stage 

 

   However, according to these results, we can say that, this comparative study shows that the 

capability of the k-nn classifier is higher compared with that of the ELM classifier in the 

classification of breath sounds signals from our test conditions. the ability of the k-nn is higher 

than ELM in the classification of the Breath sounds signals into binary and multiclass 

classification cases.  

    In this part, the performance of the ELM and K-nn classifiers were compared using the Hjorth 

descriptors (Activity) and Permutation Entropy (PE) features in distinguishing between breath 

sounds signals with combination these features (Activity, PE). The features extracted were 

analyzed statistically by calculating a mean and standard deviation to observe the difference 

between them for each class (Normal bronchial, Wheeze, Crackle, Pleural rub, Stridor). The 

classification accuracy in multiclass classification case of the ELM and k-nn classifiers is 

83.57% and 86.42% respectively, and in binary classification case, the accuracy is 90.71% , 
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95% respectively.  These show that the ability of k-nn in our test conditions (database, methods 

of analyses the breath signals, and features used) is higher than the ELM classifier in multiclass 

and binary classification. In future work, the EMD methods will be compared with another 

method for further analysis of breath sounds signals using a large database. 

 

4.2.  Part 2: Performance of Deep Learning Algorithms in Breathing Sounds 

Classification 
 

In this part, we implemented our novel method that involves the use of Gammatonegrams as 

input to the deep neural networks and the use of multi epochs and batch sizes (Multi ep-Batch) 

during the training and testing steps in three different scenario. 

 

4.2.1. Scenario (i) – Symptoms-based  

 

4.2.1.1.  Results 
 

The ability of the proposed Multi ep-Batch method applied on VGG16, ResNet-50 and 

GoogLeNet architectures, to accurately classify breathing sounds such as normal, crackles and 

wheezes sounds were compared to the fixed (standard) method. Figure 4.1 shows the three 

Gammatonegram feature maps of the normal, wheezes and crackles sounds. 
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                               Crackle                                       Normal                                                Wheeze 

 

 

 

                                                                    

 

 

 

                         (a)                                         

 

 

 

 

                              (a)                                                          (b)                                                        (c)     

Figure 4.1: Gammatonegram feature maps of (a) crackle, (b) normal and (c) wheeze sounds. 

 

    We started executing our experiments on Google Colaboratory, which involved feeding the 

gammatonegram cycle images into VGG16 model, the accuracy results and timings of 

experiments are shown in Table 4.4 (experiment set A), for their classification into normal, 

crackle and wheeze breathing sounds without the Multi ep-Batch method. To evaluate the 

results obtained after several experiments, we selected a prominent value of 0.00001 for the 

learning rate in our study and used this value for all other subsequent experiments. As shown 

in Table 4.4, the same fixed batch size and epoch parameter yielded an accuracy of 62.50% 

over a 295 min training time for all three classes (A1). We then implemented the same process 

as in A1, but our proposed Multi ep-Batch method option turned on in experiment (A2) yielded 

an accuracy of 75.00%. We observed improvements in both time and accuracy compared to A1. 

As detailed in the table, there is an improvement in the obtained accuracy, and a reduction in 

training time when compared to the fixed batch-epoch approach (standard). To further explore 

the classification performance of the VGG16 learning method with and without Multi ep-Batch, 

we generated the corresponding confusion matrix as shown in Figure 4.2.  



 
70 

 

Experiment Batch Size Epoch Accuracy 

% 

Training 

Time 

A (1) VGG16 32 100      62.50 %      295 min 

A (2) VGG16+ Our 

Method 
[32, 64, 128] [2, 12, 22]    75.00 %      100 min 

     

 

Table 4.4:   VGG16 performance of Gammatonegrams cycles classification. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

                                               (a)                                                                                                   (b) 

 

Figure 4.2: Confusion matrixes for the VGG16 and Gammatonegrams classification: (a) 

without Multi ep-Batch (b) with Multi ep-Batch. 

 

 

Experiment Pulmonary 

Condition 

Precision Recall F1-score 

A (1) VGG16 

A (1) VGG16 

A (1) VGG16 

A (2) VGG16+ Multi ep-Batch  

A (2) VGG16+ Multi ep-Batch 

A (2) VGG16+ Multi ep-Batch 

Crackles 

Normal 

Wheezes 

Crackles 

Normal 

Wheezes 

0.21 

0.51 

0.23 

0.21 

0.53 

0.26 

0.26 

0.50 

0.19 

0.24 

0.51 

0.25 

0.23 

0.51 

0.21 

0.23 

0.52 

0.26 

 

Table 4.5:   Precision, Recall and F1-Score comparison between two Experiments 
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Table 4.5 summarizes the quality of the network through the performance parameters. From 

the table, it can be seen that the precision, recall and F1 score do not suffer any severe 

degradation when the Multi ep-Batch is used as a learning method. The overall values of 

precision, recall and F1-score in the experiments provide preliminary evidence that the Multi 

ep-Batch learning method can make the VGG16 network discriminate a multiclass problem. 

Therefore, it can be inferred that the classification of breathing sounds is possible using the 

proposed Multi ep-Batch learning method in conjunction with the VGG16 network. This system 

yields a maximum accuracy of 75.00%. We then executed the same set of experiments again, 

but instead of using the VGG16 model, we implemented another deep learning network – 

ResNet-50 (experiment set B). The results are also shown in Table 4.6. In experiment (B1), 

with the same fixed batch size and epoch hyper-parameters, an accuracy of 62.29% was 

obtained with a training time of 254 minutes, which indicates that the use of a more complex 

model from scratch makes the learning process resulting in a long training time in both B and 

A. This observation can be explained by the fact that all the layers in the ResNet-50 model 

obtained from scratch were trained from new images to create new weights. When the Multi 

ep-Batch method turned on (B2), we obtained accuracy results higher to that obtained with 

(B1), and also within a short training time. In this second round of experiments, we obtained 

the best accuracy results of 71.09% with an overall improvement in accuracy of about 14% and 

training time reduction of 44%.   

 

 Experiment Batch Size Epoch Accuracy % Training Time 

B (1) ResNet-50 32 100  62.29 %      254 min 

B (2) ResNet-50 + 

Our Method 
[32, 64, 128] [2, 12, 22]   71.09 %      142 min 

     

 

Table 4.6:   ResNet-50 performance of Gammatonegrams cycles classification. 
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                                               (a)                                                                                            (b) 

 

Figure 4.3: Confusion matrixes for the ResNet-50 and Gammatonegrams classification: (a) 

without Multi ep-Batch (b) with Multi ep-Batch. 

 
 

Experiment Pulmonary 

Condition 

Precision Recall F1-

score 

B (1) ResNet-50 

B (1) ResNet-50 

B (1) ResNet-50 

B (2) ResNet-50 + Multi ep-Batch  

B (2) ResNet-50 + Multi ep-Batch 

B (2) ResNet-50 + Multi ep-Batch 

Crackles 

Normal 

Wheezes 

Crackles 

Normal 

Wheezes 

0.23 

0.52 

0.24 

0.24 

0.52 

0.22 

0.28 

0.37 

0.34 

0.50 

0.34 

0.14 

0.25 

0.43 

0.28 

0.32 

0.41 

0.17 

 

Table 4.7: Precision, Recall and F1-Score comparison between two Experiments (ResNet-50) 

 

To get more insight into the performance of the Multi ep-Batch method, performance 

parameters of the ResNet-50 network are summarized in Table 4.7. The values (>0.5) of 

precision, in both B experiment sets (B1 and B2) for the normal class, provide preliminary 

evidence that when one uses the Multi ep-Batch learning method, there is no severe degradation, 

and vice versa; the value (0.50) of recall was achieved when our proposed method was turned 

on (B2) for the crackles class, but with the fixed method as we can see the value (<0.5) of this 
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class; this means that our proposed method can make the ResNet-50 network discriminate better 

between the normal and abnormal samples. Hence, we can say that the proposed Multi ep-Batch 

learning method in conjunction with ResNet-50 outperformed the fixed method. Using this 

approach, the system yields a maximum accuracy of 71.09% in the network. 

To further clarify the effect of our Multi ep-Batch learning method on the CNN deep learning 

architectures, we evaluated the performance of another well-known and popular network, 

namely GoogLeNet. We obtained an accuracy of 63.69%, as we can see in Table 4.8, by using 

the fixed method (C1) for the classification and a training time of 222 min. After that, we 

performed the same process but by using our Multi ep-Batch method (C2). As detailed in the 

table, there is an improvement in the obtained accuracy, as well as a 3 times reduction in training 

time, when compared to the fixed method (standard). Furthermore, Figure 4.4 illustrates the 

confusion matrix of the proposed method (with and without the Multi ep-Batch learning 

method). 

 

Experiment Batch Size Epoch Accuracy 

% 

Training 

Time 

C (1) GoogLeNet 32 100  63.69 %      222 min 

C (2) GoogLeNet + 

Our Method 
[32, 64, 128] [2, 12, 22]  68.06 %      62 min 

     

 

Table 4.8: GoogLeNet performance of Gammatonegrams cycles classification. 
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                                               (a)                                                                                           (b) 

 

Figure 4.4: Confusion matrixes for the GoogLeNet and Gammatonegrams classification: (a) 

without Multi ep-Batch (b) with Multi ep-Batch. 

 

 
 

  Table 4.9 illustrates the performance results of the GoogLeNet network. The parameters listed 

in Table 4.9 also indicate that our approach generalizes well to different deep learning 

architectures. Based on the values (>0.5) of precision, recall and F1 score in experiment sets 

(C2) for the normal class, the tone can say that our proposed method successfully affected the 

training and testing stages of GoogLeNet. This system yields a maximum accuracy of 68.06%. 

The primary importance of this study is that this Multi ep-Batch method can achieve 

considerable accuracy and learning time without any modification to the network. Also, it can 

be concluded that the proposed method can now be utilized in any deep learning classification 

system as long as it is a method that is incorporated into the training and testing stages for any 

deep learning applications. 
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Experiment Pulmonary 

Condition 

Precision Recall F1-score 

C (1) GoogLeNet 

C (1) GoogLeNet 

C (1) GoogLeNet  

C (2) GoogLeNet + Multi ep-Batch  

C (2) GoogLeNet + Multi ep-Batch 

C (2) GoogLeNet + Multi ep-Batch 

Crackles 

Normal 

Wheezes 

Crackles 

Normal 

Wheezes 

0.25 

0.53 

0.27 

0.22 

0.54 

0.25 

0.31 

0.48 

0.26 

0.21 

0.54 

0.26 

0.28 

0.50 

0.26 

0.22 

0.54 

0.25 

    

Table 4.9: Precision, Recall and F1-Score comparison between two Experiments (Goog-

LeNet) 
 

 

 

4.2.1.2.  Discussion 
 

   Computer-aided classification of lung sounds can be used in expedited diagnoses of various 

pulmonary diseases. In this work, we propose changing the batch size and epoch values during 

the training and testing phases to perform the multi-class classification of three lung sounds. As 

imperative to all deep learning frameworks, the learning (training and testing) process stage 

aims at providing a better updating of the network weights and biases. Thus, optimized 

hyperparameters are essential to the implementation of an effective classification system and 

improvement of the model's accuracy. To highlight the advantages and for further comparison 

and understanding of the effect of the proposed method, the accuracy and training time for three 

networks architectures, VGG16, ResNet-50 and GoogLeNet, are compared based on the fixed 

and Multi ep-Batch methods as an additional view. As we can see in Figure 4.5, the performance 

of the proposed Multi ep-Batch method in conjunction with these three networks is found to be 

superior. GoogLeNet gives an accuracy of 63.69% for the fixed method, whereas VGG16 and 

ResNet-50 give 62.50% and 62.29%, respectively. In each case, our proposed Multi ep-Batch 

method was affected positively in both accuracy and training time. A summary of the 

comparison between the results is presented in Table 4.10. 
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Methods VGG16 ResNet-50 GoogLeNet 

 

Fixed 

method 

(standard) 

Multi ep-

Batch 

method 

Accuracy %        

Training Time 

62.50 %                295 min 

    

75.00 %                100 min 

Accuracy %        Training 

Time 

62.29 %                254 min 

       

71.09 %                142 min 

Accuracy %           Training   

Time 

63.69 %                222 min 

       

68.06 %                62 min 

 

Table 4.10: A comparison result between proposed and fixed methods using different CNN 

models (Symptoms-based). 
 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Accuracy and Learning time distribution for both fixed (standard) and multi ep-

batch methods based on VGG16, ResNet-50 and GoogLeNet architectures. 

 

 

    First, our proposed method in conjunction with the three deep network models outperforms 

all other models based on the fixed method and obtains a maximum accuracy of 75.00% as 

shown in Figure 4.5. Second, VGG-16, ResNet-50, and GoogLeNet achieved accuracies of 

62.50%, 62.29%, and 63.69%; this signifies that a fixed method based on CNNs could be 

employed for lung sound classification, but not as effective as an enhancement with the Multi 

ep-Batch method. Finally, varying hyperparameter (batch and epoch) values during learning 

(training and testing) phases hold promise as a classification system for lung sounds data. 
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    To evaluate a deep learning model, previous studies have implemented the training and 

testing phases with fixed batch size and epoch hyperparameters values. Each study has used 

different values of batch size and epochs. These hyperparameters values are then used to find 

and evaluate the performance of the model. However, the main problem with this method is 

that because of the variety of the values of the hyperparameters, fine-tuning it could appear as 

a form of black art. Our approach explores a possible solution to this problem using the Multi 

ep-Batch learning method, where a set of batch size and epochs values can be automatically 

incorporated during the training and testing phases. From the achieved results, we found that 

ResNet-50 and GoogLeNet VGG16 with Multi ep-Batch learning method outperformed these 

three models with a fixed method and has promising results in both time and accuracy. Our 

experiments indicate that the use of Gammatonegram and the Multi ep-Batch method improves 

the classification accuracy of breathing sounds, such as wheezes, crackles and normal sounds, 

and reduces the training time compared with those obtained without this method. While many 

studies have conducted lung sound classification, some studies have focused on the ICBHI 

database, which is used in this study and currently considered the only publicly available 

exhaustive and challenging database covering, albeit somewhat imbalanced, a wide range of 

lung sounds and diseases. In [26], using the aforementioned database, the authors proposed a 

deep CNN-RNN model for respiratory sound classification based on Mel spectrograms and 

achieved an initial overall classification score of 66.31%. They eventually obtained a score of 

71.81% using a model retrained with patient-specific data. The work in [34] for lung sound 

classification, also using the ICBHI database, used two approaches – the use of a pretrained 

CNN model to extract features based on SVM as the classifier achieved an accuracy of 65.5%, 

and the use of a CNN model obtained after transfer learning with fine-tuning spectrogram data 

yielded an accuracy of 63.09%. While these cannot be directly compared with our work, our 

results demonstrate that the use of breathing cycle-based gammatonegrams coupled with the 
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Multi ep-Batch learning method can produce a comparable performance against existing 

methods. The results from our experiments indicate 1) the Multi ep-Batch method to be an 

optimized resolution learning method, regardless of data augmentation and 2) the classification 

accuracy and training time are significantly affected positively by the Multi ep-Batch method.        

 

 

4.2.2. Scenario (ii) – Conditions-based 
 

4.2.2.1.  Results 
 

In this scenario, the generated gammatongrams images fed into VGG16, ResNet-50 and 

AlexNet architectures. Figure 4.6, shows an example of the feature map based on gammatone-

grams obtained for pulmonary conditions. 
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Healthy      Generated    Feature Maps 

Recording    Gammatonegram   (224×224×3) 

 

 

(a) Gammatone-based like image feature map of an audio waveform (Healthy). 
 

                   Asthma                                                     COPD                                                   Bronchiectasis 
 
 

 

 

 
 

 

 

 

 

 

 

 

(b) Gammatone-based spectrogram-like image feature map of an audio waveform (Chronic). 
 
              Pneumonia                              LRTI                                       URTI                                 Bronchiolitis 
 
 

 
 
 

 

 

 

 

 

 

 

 

(c) Gammatone-based spectrogram-like image feature map of an audio waveform (Non-

Chronic). 
 

 

Figure 4.6: Feature maps based-Gammatonegram applied for (a) Healthy, (b) Chronic and (c) 

Non-Chronic pulmonary conditions. 
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  Table 4.11 shows that by using fixed values for the batch size and number of epochs in 

experiment (A1), we obtained an accuracy of 67.97% for the classification and a training time 

of 190 min. We then executed the same process but with the Multi ep-Batch method option 

turned on in experiment (A2). As detailed in the table, there is an improvement in the obtained 

accuracy, and a 3 times reduction in training time when compared to the fixed batch-epoch 

approach (standard). To further scrutinize the classification performance of the VGG16 network 

with and without the Multi ep-Batch learning method, we generated the corresponding 

confusion matrix as shown in Figure 4.7.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a)                                                                                    (b) 

 

Figure 4.7: Confusion matrices for the VGG16 and Gammatonegrams classification: (a) 

without Multi ep-Batch (b) with Multi ep-Batch. 

Expirement Batch Size Epoch Accuracy % Training Time 

A (1) VGG16 32 100  67.97 %  190 min 

A (2) VGG16 + 

Our Method 

[32, 64, 128, 

256, 512] 

[2, 12, 22, 

32, 42] 

 70.31 %  62 min 

     

 

Table 4.11: VGG16 performance of Gammatonegrams cycles classification. 
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   Table 4.12 summarizes the quality of the network through the performance parameters. From 

the table, it can be seen that the precision, recall and F1 score do not suffer any severe 

degradation when the Multi ep-Batch is used as a learning method. The overall values of 

precision, recall and F1-score in the experiments provide preliminary evidence that the Multi 

ep-Batch learning method can make the VGG16 network discriminate a multiclass problem. 

Therefore, it can be inferred that the classification of pulmonary conditions is possible using 

the proposed Multi ep-Batch learning method in conjunction with the VGG16 network. This 

system yields a maximum accuracy of 70.31%. 

 

 

 

 

 

 

 

 

 

 

 

 

To investigate the effect of our approach on a different commonly CNN architecture, we 

implemented the same experiments as previously to another more complex deep learning 

network – ResNet-50. The results are shown in Table 4.13. While we observed a 7% reduction 

in performance in terms of accuracy results in experiment (B1) compared with to the previous 

network in experiment (A1), the training times were almost comparable. It appears that the 

VGG16 network performs better than the ResNet-50 architecture for our intended application. 

This time, when we repeated the experiment with the Multi ep-Batch method turned on in 

experiment (B2), we noticed a 10% increment in the accuracy rates (70.31%) and similar to the 

Experiment Pulmonary 

Condition 

Precision Recall F1-score 

A (1) VGG16 

A (1) VGG16 

A (1) VGG16 

A (2) VGG16 + Multi ep-Batch  

A (2) VGG16 + Multi ep-Batch 

A (2) VGG16 + Multi ep-Batch 

Healthy 

Chronic 

Non-Chronic 

Healthy 

Chronic 

Non-Chronic 

0.26 

0.24 

0.51 

0.26 

0.23 

0.52 

0.29 

0.29 

0.43 

0.28 

0.21 

0.52 

0.28 

0.26 

0.47 

0.27 

0.22 

0.52 

 

Table 4.12: Precision, Recall and F1-Score comparisons. 
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previous network, a 3 times reduction in training time (54 mins). Incidentally, the Multi ep-

Batch method appears just as or increasingly advantageous in more complex CNN 

architectures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 4.8 shows the corresponding confusion matrix for the classification results of the 

ResNet-50 architecture with and without our Multi ep-Batch learning method. For this complex 

architecture, Table 4.14, shows the resulting performance parameters of ResNet-50 with and 

without the Multi ep-Batch learning method. Again, we observe no degradation in the precision, 

recall and F1-score when Multi ep-Batch is used. Similar to VGG16, the ResNet-50 architecture 

also yields a maximum accuracy of 70.31%. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                        (b) 
 

 

Figure 4.8: Confusion matrices for the ResNet-50 and Gammatonegrams classification: (a) 

without Multi ep-Batch (b) with Multi ep-Batch. 

 

Expirement Batch Size Epoch Accuracy % Training Time 

B (1) ResNet-50 32 100  60.80 %  178 min 

B (2) ResNet-50 + 

Our Method 

[32, 64, 128, 256, 

512] 

[2, 12, 22, 32, 

42] 

 70.31 %  54 min 

     

 

Table 4.13: ResNet-50 performance of Gammatonegrams cycles classification. 
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    For further investigate the effect of our Multi ep-Batch learning method on the CNN deep 

learning architectures, we benchmarked the performance to another network – AlexNet. Table 

4.15 shows these results. By using the fixed method, (C1) we obtained an accuracy of 60.16% 

for the classification and a training time of 140 min. When we performed the same process, but 

by using our Multi ep-Batch method (C2), there is an improvement in the obtained accuracy as 

well as a 3 times reduction in training time. Figure 4.9 shows the confusion matrix of the 

proposed method (with and without the Multi ep-Batch learning method). 

 

Experiment Batch Size Epoch Accuracy 

% 

Training 

Time 

C (1) AlexNet 32 100  60.16 %  140 min 

C (2) AlexNet + Our 

Method 

[32, 64, 128, 256, 

512] 

[2, 12, 22, 32, 

42] 

 64.06 %  51 min 

     

 

Table 4.15: AlexNet performance of Gammatonegrams cycles classification. 

 

 

 

 

 

Experiment Pulmonary 

Condition 

Precision Recall F1-score 

B (1) ResNet-50 

B (1) ResNet-50 

B (1) ResNet-50 

B (2) ResNet-50 + Multi ep-Batch  

B (2) ResNet-50 + Multi ep-Batch 

B (2) ResNet-50 + Multi ep-Batch 

Healthy 

Chronic 

Non-Chronic 

Healthy 

Chronic 

Non-Chronic 

0.27 

0.25 

0.52 

0.29 

0.24 

0.50 

0.30 

0.23 

0.51 

0.28 

0.25 

0.51 

0.28 

0.24 

0.51 

0.29 

0.25 

0.51 

 

Table 4.14: Precision, Recall and F1-Score comparisons (ResNet-50). 
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Figure 4.9: Confusion matrices for the AlexNet and Gammatonegrams classification: (a) 

without Multi ep-Batch (b) with Multi ep-Batch. 

 

 

 

 

        

Table 4.16: Precision, Recall and F1-Score comparisons (AlexNet). 

  

   Table 4.16 provides an insight into the quality of the network through the performance 

parameters – precision, recall and F1-score. We can see that the Multi ep-batch method in 

conjunction with AlexNet does not suffer from any severe degradation in performance. Based 

on the overall values of precision, recall and F1-scores, we find that the Multi ep-Batch learning 

method exhibits the best performance in the multiclass problem. Therefore, it can be inferred 

that the classification of pulmonary conditions is possible using the proposed Multi ep-Batch 

Experiment Pulmonary 

Condition 

Precision Recall F1-score 

B (1) AlexNet 

B (1) AlexNet 

B (1) AlexNet 

B (2) AlexNet + Multi ep-Batch  

B (2) AlexNet + Multi ep-Batch 

B (2) AlexNet + Multi ep-Batch 

Healthy 

Chronic 

Non-Chronic 

Healthy 

Chronic 

Non-Chronic 

0.29 

0.24 

0.52 

0.24 

0.22 

0.41 

0.20 

0.23 

0.61 

0.52 

0.32 

0.08 

0.23 

0.23 

0.56 

0.33 

0.26 

0.13 
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learning method in conjunction with the AlexNet network. This system yields a maximum 

accuracy of 64.06%. 

To highlight the overall advantages and understand the effects of the proposed method, we can 

compare the accuracy and training time for three networks architectures – VGG16, AlexNet 

and ResNet-50 based on the fixed and multi ep-batch methods. As we can see from Table 4.17, 

Figure 4.10 and Figure 4.11, superior performance is observed with the proposed multi ep-batch 

approach in conjunction with these networks. The VGG16 CNN gives an accuracy of 67.97 % 

for the fixed method while AlexNet and ResNet-50 give 60.16% and 60.80% respectively. In 

each case, our proposed multi ep-batch method produced positive effects in both accuracy and 

training time. It can be observed that regardless of the used network models, when they were 

accelerated using our proposed approach, the accuracy improved and the training time 

decreased.   

Methods VGG16 AlexNet ResNet-50 

 

Fixed method (standard) 

Multi ep-Batch method 

Accuracy %        Training Time 

     67.97 %                190 min 

     70.31 %                62 min 

Accuracy %        Training Time 

      60.16 %                140 min                        

      64.06 %                51 min 

Accuracy %        Training Time 

      60.80 %                178 min 

      70.31 %                54 min 

 

Table 4.17: Comparison results between the proposed and fixed methods using different CNN 

models. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Accuracy distribution for both fixed (standard) and multi ep-batch methods in 

conjunction with VGG16, ResNet-50 and AlexNet architectures. 
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Figure 4.11: Training time distribution for both fixed (standard) and multi ep-batch methods 

in conjunction with VGG16, ResNet-50 and AlexNet architectures. 

 
 

The advantages and limitations of the proposed method are listed as follows. 

Advantages: 

1) Robustness in terms of its scope with other deep learning models 

3) Tunability as per the amount of data 

4) Use in any deep learning application as long as the method is incorporated into the training 

and testing stages 

 

Limitations: 

1) Use of 2D images for classification 

3) Use with a deep neural network 

 

 

4.2.2.2.  Discussion 

 

    From the observed results, we conclude that the accuracy rates and the training times are 

greatly affected by the Multi ep-Batch method. 3 well know CNN architectures – VGG16, 

ResNet-50 and AlexNet which are widely used for image classification (Gammatonegrams in 
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our case) have been used to evaluate our new Multi ep-Batch learning method. We found that 

the performance of VGG16, ResNet-50 and AlexNet with Multi ep-Batch learning method 

outperformed their standard implementation, and produced promising results in both time and 

accuracy. In the classification of pulmonary conditions, when the Multi ep-Batch method is 

used, the training time to develop a model improved (reduction in time) by an average 66% and 

the accuracy results improved by an average 10% when compared to the standard approach. In 

recent years, all the studies have implemented the training phase with fixed hyperparameters 

values, such as batch size and epoch, to evaluate a deep learning model. While each study has 

used different values of batch size and epochs, the results per fixed hyperparameter values are 

often used to evaluate and optimize the performance of the deep neural network model. 

However, the common problem faced by the researchers is that given the variety of 

hyperparameters and its corresponding range of values, the fine-tuning process more than often 

appears as a form of black art. Our approach explores a possible solution to this problem using 

the Multi ep-Batch learning method, where a set of varying batch size and epochs values can 

be directly incorporated during the training and testing phases.  

 

Several other works in the literature can be used to compare and justify the purpose of this 

work. Shuvo et al. [33] proposed a CNN architecture to classify respiratory diseases (ternary 

chronic and six-class) using the same ICBHI 2017 lung sound dataset. They used data 

preprocessing, empirical mode decomposition (EMD), and continuous wavelet transforms 

(CWT) as part of their features extraction step. In this study, two of the disease classes in ICBHI 

– Asthma and LRTI were not considered. The accuracy scores achieved was 99.20% for ternary 

chronic classification and 99.05% for the six-class pathological classification. A similar 

investigation was done by García-Ordás et al. [31] who proposed a CNN to classify the 

respiratory diseases of the ICBHI dataset. While the authors also rejected the Asthma and LRTI 
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diseases, they decided to conduct 2 experiments – 3 class classification (healthy, chronic, and 

non-chronic) and a 6 class classification (the remaining 6 diseases in the ICBHI dataset). The 

authors also used several preprocessing steps in their work to facilitate feature extraction. The 

authors got results up to 0.993 as F-Score in the three-class classification and a 0.990 F-Score 

in the six-class classification. In [72], Wu and Li proposed a framework combining the random 

forest classifier and the Empirical Mode Decomposition (EMD) feature extraction technique to 

classify six pulmonary diseases (healthy, bronchiectasis, bronchiolitis, COPD, pneumonia, and 

URTI) using the ICBHI database. The authors also ignored the LRTI and asthma of pulmonary 

diseases. However, their classification system was machine learning-based with preprocessing 

and features extraction. The classifier’s best performance for accuracy was 88%. Finally, a 

recent work by Perna and Tagarelli in [73] made use of deep neural network architectures, 

namely recurrent neural networks (RNNs) for the prediction of chronic diseases (COPD, 

bronchiectasis, asthma) and non-chronic diseases (URTI, LRTI, pneumonia, and bronchiolitis) 

as a multi-class problem, using the ICBHI dataset. The authors performed three steps of 

preprocessing to the ICBHI sound segments – frame composition, feature extraction, 

and feature normalization.  

These works when taken together indicate that while preprocessing and feature extraction 

aids the classification process, it nevertheless negates the original purpose of deep learning. In 

addition, it is important to subject the findings of past and present studies to critical scrutiny in 

terms of the benchmarked input physiological data. Therefore to evaluate the robustness of our 

findings, we tested our proposed method with a challenging medical data such as ICBHI. In our 

work, audio cycles from three classes (pulmonary condition-based) which contain all diseases 

in the ICBHI scientific challenge respiratory sound database were used without any 

preprocessing to observe the robustness of our approach towards varying recording 

environments and specifications. By doing so, we inherited the following two challenges among 
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others – (1) the identification process automatically includes noise and other artefacts in the 

input data, and (2) the difficulty of choosing appropriate hyperparameters such as (batch size 

and epochs). In contrast to the aforementioned works, we have assessed the performance of 3 

different CNN networks with both fixed and multiple batch sizes and epochs values for the 

classification of pulmonary conditions into three classes (healthy, chronic, and non-chronic). In 

the fixed method, we used a single value for both the batch size and epochs. For the Multi ep-

Batch method, we used multiple values of batch size and epochs, which we observed increased 

the fit of the model during the training phase and subsequently improved the accuracy during 

the testing phase. The results from our experiments indicate 1) the Multi ep-Batch method to 

be an optimized learning method, regardless of the deep neural network model, and 2) the 

classification accuracy and training time are significantly improved by the Multi ep-Batch 

method. To the best of our knowledge, there is no other work in the literature that has attempted 

to use all the 8 ICBHI diseases. With the Multi ep-Batch method, we are the first to address the 

classification problem in the challenging ICBHI dataset which contains data with high noise 

levels that simulate real-life data collection conditions by using the original files (raw data) 

without any preprocessing and feature extraction.  

    Our attempt yielded a maximum accuracy of 70.31% for both VGG16 and ResNet-50 using 

the Multi ep-Batch learning method for the classification of pulmonary conditions using 

gammatonegram based input data. It is worthy to note that direct comparison is not applicable 

due to audio data variations in the employed preprocessing, features extraction and 

classification techniques. However, the classification results obtained in this work were 

numerically comparable to the results obtained from the fixed method (standard) used by all 

other researchers.  

 

4.2.3. Scenario (iii) – Diseases-based 

4.2.3.1. Results 
 

Figure 4.12 shows an example of the feature map based-Gammatonegram applied for a healthy 

sample which saved as JPEG images to fed it as input into our VGG16 and AlexNet-50 



 
90 

architectures, the same process was performed for the rest diseases (Bronchiolitis, 

Bronchiectasis, COPD, Pneumonia and URTI). 

 

 

 

 

 

 

                        Healthy                                                      Generated                                        Feature Maps  

                      Recording                                              Gammatonegram                                   (224×224×3)                                                                                                                       
                                                   

 

Figure 4.12: Feature map based-Gammatonegram applied for Healthy recording. 

 

    From Table 4.18, it can be seen that by using the VGG16 CNN model classifier and data 

augmentation in conjunction with the Multi ep-Batch method (A2), shows the best accuracy, 

81.25% as well as with faster learning time compared to the (A1). However, the difference 

between the corresponding accuracy obtained by using fixed values for the batch size and 

number of epochs in experiment (A1) and the multi values for the batch size and number of 

epochs in experiment (A2) is around 15% improvements for the classification and a training 

time also decreased in (A2).  

Expirement Batch Size Epoch Accuracy % Training 

Time 

A (1) VGG16 + DA 32 100  65.63 %  21 min 

A (2) VGG16 + DA + 

Our Method 

[32, 64, 128] [2, 12, 22]  81.25 %  14 min 

     

 

Table 4.18: VGG16 performance of Gammatonegrams recordings classification 

without and with Multi ep-Batch method. 
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Hence, we can say, our proposal method with VGG16 and data augmentation demonstrate that 

by varying the hyperparameters (batch and epoch) values during learning (tarin and test) phases, 

that this approach yields comparable learning performance to fixed method. Also, this proposal 

method could solve the issue of “which appropriate batch and epoch hyperparameters values 

we need to choose for getting good model performance?”. To further scrutinize the 

classification performance the corresponding confusion matrices for both the (A1) and (A2) 

results are illustrated in Figure 4.13. 

 

 

 

 

 

 

 
 

 

 

 

(a)                                                                                         (b) 

 

Figure 4.13: Confusion matrixes for the VGG16 and Gammatonegrams classification: (a) 

without Multi ep-Batch (b) with Multi ep-Batch. 

 

    As we can see in the Table 4.19 which summarizes the quality of the network through the 

performance parameters. It can be seen that the precision, recall and F1 score do not suffer any 

severe degradation when the Multi ep-Batch is used as a learning method. The overall values 

of precision, recall and F1-score in the experiments provide preliminary evidence that the Multi 

ep-Batch method has the capability to make the VGG16 network discriminate a multiclass 

problem. From the same table also, it is observed that in (A1) the precision, recall and F1-score 

of URTI case the model can’t be predicted any samples, but when we use the VGG16 with our 
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proposed Multi ep-Batch method it make the model to predicted this diseases as well as from 

the confusion matrix it can observed clearly between Figure 4.13 (a) and (b) in URTI there are 

11 samples predicted correctly with our method but no sample detected without it. Therefore, 

it can be inferred that the classification of pulmonary conditions is possible using the proposed 

Multi ep-Batch method in conjunction with the VGG16 network. This system yields a 

maximum accuracy of 81.25%. 

Experiment Pulmonary 

Condition 

Precision Recall F1-score 

A (1) VGG16 + DA 

A (1) VGG16 + DA 

A (1) VGG16 + DA 

A (1) VGG16+ DA 

A (1) VGG16 + DA 

A (1) VGG16 + DA 

A (2) VGG16 + DA + Multi ep-Batch  

A (2) VGG16 + DA + Multi ep-Batch 

A (2) VGG16 + DA + Multi ep-Batch 

A (2) VGG16 + DA + Multi ep-Batch 

A (2) VGG16 + DA + Multi ep-Batch 

A (2) VGG16 + DA + Multi ep-Batch 

Bronchiectasis 

Bronchiolitis 

COPD 

Healthy 

Pneumonia 

URTI 

Bronchiectasis 

Bronchiolitis 

COPD 

Healthy 

Pneumonia 

URTI 

0.18 

0.17 

0.11 

0.18 

0.37 

0.00 

0.14 

0.20 

0.11 

0.23 

0.39 

0.23 

0.20 

0.20 

0.12 

0.26 

025 

0.00 

0.15 

0.13 

0.12 

0.17 

0.28 

0.44 

0.19 

0.18 

0.12 

0.21 

0.30 

0.00 

0.15 

0.16 

0.11 

0.20 

0.32 

0.31 

 

Table 4.19: Precision, Recall and F1-Score comparison between two Experiments (VGG16) 

 
 

    As we did in the experiments (A), we implemented the same experiments, in order to check 

out the effect of the multi ep-batch method on a different CNN network architecture, a deep 

learning network – AlexNet has been carried out. The results for the experiments can be shown 

in Table 4.20. As we can see, when comparing the results of the previous network in experiment 

(A1) with (B1) there is a 10% reduction in performance in terms of accuracy. It appears that 

the VGG16 network performs better than the AlexNet architecture for our intended application. 
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This time, when we repeated the experiment with the Multi ep-Batch method turned on in 

experiment (B2), we noticed a 10% increment in the accuracy rates (65.63%) and also to the 

previous network with 15%, as well as times reduction in training time.  

 

Expirement Batch Size Epoch Accuracy % Training 

Time 

B (1) AlexNet + DA 32 100  54.69 %  17 min 

B (2) AlexNet + DA + 

Our Method 

[32, 64, 128] [2, 12, 22]  65.63 %  14 min 

     

 

Table 4.20: AlexNet performance of Gammatonegrams recordings classification 

without and with Multi ep-Batch method. 

 
 

   In Figure 4.14, the confusion matrix obtained for the classification results of the AlexNet 

architecture shown with and without our Multi ep-Batch method. The predicted parameters such 

precision, recall, and F1 score are shown in Table 4.21. Again, From the table it is observed 

that no degradation in the precision, recall and F1-score when Multi ep-Batch is used. The 

AlexNet architecture also yields a maximum accuracy of 65.63%. Hence, it can be inferred that 

the VGG16 and AlexNet using data augmentation in conjunction with the Multi ep-Batch 

proposed method performs better in the classification of pulmonary diseases.  
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(a) (b) 

Figure 4.14: Confusion matrixes for the AlexNet and Gammatonegrams classification: (a) 

without Multi ep-Batch (b) with Multi ep-Batch. 

 

Experiment Pulmonary 

Condition 

Precision Recall F1-score 

B (1) AlexNet + DA 

B (1) AlexNet + DA 

B (1) AlexNet + DA 

B (1) AlexNet + DA 

B (1) AlexNet + DA 

B (1) AlexNet + DA 

B (2) AlexNet + DA + Multi ep-Batch  

B (2) AlexNet + DA + Multi ep-Batch 

B (2) AlexNet + DA + Multi ep-Batch 

B (2) AlexNet + DA + Multi ep-Batch 

B (2) AlexNet + DA + Multi ep-Batch 

B (2) AlexNet + DA + Multi ep-Batch 

Bronchiectasis 

Bronchiolitis 

COPD 

Healthy 

Pneumonia 

URTI 

Bronchiectasis 

Bronchiolitis 

COPD 

Healthy 

Pneumonia 

URTI 

0.17 

0.21 

0.10 

0.18 

0.19 

0.17 

0.14 

0.07 

0.05 

0.22 

0.42 

0.67 

0.25 

0.20 

0.12 

0.17 

015 

0.16 

0.25 

0.07 

0.06 

0.34 

0.25 

0.08 

0.20 

0.21 

0.11 

0.18 

0.17 

0.17 

0.18 

0.07 

0.06 

0.27 

0.31 

0.14 

 

Table 4.21: Precision, Recall and F1-Score comparison between two Experiments 

 

4.2.3.2.  Discussion 
 

    To highlight the advantages and for further comparison and understanding the effect of the 

proposed method, the accuracy and training time for two networks architectures VGG16 and 
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AlexNet is compared based on the fixed and multi ep-batch methods. As we can see from Table 

4.22, Figure 4.15 and Figure 4.16 the performance of the proposed multi ep-batch in 

conjunction with these networks is found to be superior. The VGG16 CNN gives an accuracy 

of 65.63 % for the fixed method while the accuracy of Alexnet gives 54.69 %. In each case, our 

proposed multi ep-batch method was affected positively in both accuracy and training time.  

Methods VGG16 AlexNet 

 

Fixed method (standard) 

Multi ep-Batch method 

Accuracy %        Training 

Time 

               65.63 %                

21 min 

               81.25 %                

14 min 

Accuracy %        Training 

Time 

                 54.69 %                  

17 min                        

                 65.63 %                   

14 min 

 

Table 4.22: A comparison result between proposed and fixed methods using different CNN 

models. 
 

 

 
 

 

 

 

 

 

 

 

 

Figure 4.15: Accuracy distribution for both fixed (standard) and multi ep-batch methods in 

conjunction with VGG16 and AlexNet architectures. 
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Figure 4.16: Training time distribution for both fixed (standard) and multi ep-batch methods 

in conjunction with VGG16 and  AlexNet architectures. 

 

 

 

 

    Figure 14 and Figure 15 illustrate the same information shown in Table 21, but we present it 

as a column chart for both accuracy and training time of fixed and multi ep-batch methods in 

conjunction with VGG16 and AlexNet architectures, as an additional view as we thought this 

could be aid the researchers to read and compare different experiments. It can be observed that 

regardless of the Network models when we used our proposed approach the accuracy improved 

as well as the training time also decreased which refer that the Multi ep-Batch could solve the 

problem of “which hyper-parameters are suitable for a specific deep learning model?”. Based 

on the observed results of this study, we conclude that using the Multi ep-Batch method in 

conjunction with 2 well know CNN architectures – VGG16 and AlexNet, the accuracy rates 

and the training times have greatly affected positively. The results indicate that both the perfor-

mance of VGG16 and AlexNet with Multi ep-Batch learning method outperformed their stand-

ard implementation, and achieved a promising result in both time and accuracy. when used 

Multi ep-Batch method in the classification of pulmonary diseases, the training time to develop 

a model improved (reduction in time) by an average of 34% and the accuracy results improved 

by an average of 15% when compared to the standard approach. Several other works in the 
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literature can be used to compare and justify the purpose of this work such as [36, 34, 52, 53]. 

These works when taken together indicate that, while preprocessing (slicing, resampling, re-

move artefacts and other nose such heart sounds) and feature extraction aids the classification 

process, it nevertheless negates the original purpose of deep learning techniques which is to 

learn from raw data. Furthermore, these processes require a lot of computation time which could 

appear as a bottleneck in the implementation of a real-time classification system. Besides, the 

use of raw data without any manipulation mimics practical conditions where much of the chal-

lenges remain unresolved to researchers. In contrast to the aforementioned works, we have as-

sessed the performance of 2 different CNN networks with both fixed and multiple batch sizes 

and epochs values for the classification of pulmonary diseases into six classes healthy, Bron-

chiolitis, Bronchiectasis, COPD, Pneumonia and URTI. To the best of our knowledge, there is 

no other work in the literature that used 6 ICBHI diseases, using the original files (raw data) 

without any sliced cycles (segmentation), preprocessing (resampling, remove artefacts and 

other nose such heart sounds) and feature extraction techniques. By doing so, we inherited the 

following two challenges – 1) the identification process which automatically includes noise and 

other artefacts in the input data, and – 2) the difficulty of choosing appropriate features. Our 

attempt to work toward these objectives with the raw data yielded a maximum accuracy of 

81.25% for both VGG16 and AlexNet using the Multi ep-Batch learning method for the classi-

fication of the pulmonary disease by using gammatonegram based input data. According to the 

results, it could be postulated that multi ep-batch learning method provides benefits not just to 

the accuracy of a classification system, but also makes the classification system more robust to 

noisy data. In fact, no need to compare our numerical results with the literature as long as we 

have developed a new learning system that can be deployed in any deep learning application 

also in any domain based on deep learning. 
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Conclusion  
 

In this thesis two principal experimental parts were conducted as follows: 

Part 1: The ELM and K-nn classifiers were compared using the Hjorth descriptors (Activity) 

and Permutation Entropy (PE) features in distinguishing between breath sounds signals with 

combination these features (Activity, PE). The features extracted were analyzed statistically by 

calculating a mean and standard deviation to observe the difference between them for each class 

(Normal bronchial, Wheeze, Crackle, Pleural rub, Stridor). The classification accuracy in 

multiclass classification case of the ELM and k-nn classifiers is 83.57% and 86.42% 

respectively, and in binary classification case, the accuracy is 90.71% , 95% respectively. These 

show that the ability of k-nn in our test conditions (database, methods of analyses the breath 

signals, and features used) is higher than the ELM classifier in multiclass and binary 

classification.  

 Part 2: In this part, we proposed a Multi ep-Batch method, based on lung sounds, for the 

classification of three types of data – symptoms-based, conditions-based and diseases-based. 

These sub-data were obtained from the ICBHI scientific dataset consisting of noisy breathing 

sounds. Their sounds were transformed, from the 1D time domain into the 2D time-frequency 

domain, as an image using the gammatonegram algorithm. The experimental was divided into 

three main scenarios, the results obtained point that Multi ep-Batch tends to be the best learning 

process in different situations. This proposed method was successfully validated using non-pre-

processed lung sound signals, which contain other sounds such as heart sounds and other 

artefacts. Our results showed that the method appears robust for the classification of pulmonary 

sounds under difficult conditions.  
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    The presented conclusions open new opportunities towards a better learning system (training 

and testing process), which is still needed for any deep learning applications such as in our case 

lung sounds classification. We also believe that this learning system could also apply to other 

applications outside of biomedical topics.  

    As future work, we would like to perform experiments using the Multi ep-Batch method for 

a system based on severity disease detection such as cancer for further understanding the 

generalization power of our new learning system, also we intend to deploy in the embedded 

system our classification system for real-time application. 
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