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Abstract

The thesis under study focus on pricing and hedging European options. We propose an
a-hypergeometric model with uncertain volatility (UV) by which we derive a worst-case
scenario for option pricing. The approach is based on the connection between a certain
class of nonlinear partial differential equations of Hamilton-Jacobi-Bellman type (G-HJB),
that govern the nonlinear expectation of the UV model [S0] and that provide an alterna-
tive to the difficult model calibration problem of UV models, and second-order backward
stochastic differential equations (2BSDEs). Moreover, we formulate a concrete model that
is solved numerically using the deep learning method by Beck et al. [6] and exploiting the
link between fully nonlinear G-HJB equations and 2BSDE. Finally we highlight several
option Hedging strategies as Delta hedging, Delta-Sigma hedging and the Hedging by per-

turbation analysis.

Key words and phrases: Options, pricing models, @-hypergeometric stochastic volatil-
ity model, uncertain volatility model, 2BSDE, deep learning based discretisation of 2BSDE,
hedging strategies.
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Résumeé

Dans la présente these, nous nous focalisons sur I'évaluation et la couverture des options
européennes. Nous proposons un modéle a-hypergéométrique a volatilité incertaine (UV) par
lequel nous dérivons un pire scénario pour la valorisation des options. L'approche est basée sur
la connexion entre une certaine classe d'équations aux dérivées partielles non linéaires du type
Hamilton-Jacobi-Bellman (G-HJB), qui gouvernent I'espérance non linéaire du modéle UV [50]
et qui fournissent une alternative au probleme difficile du calibrage des modeles UV et
équations différentielles stochastiques rétrogrades du second ordre (2BSDESs). De plus, nous
formulons un modele concret qui est résolu numériqguement en utilisant la méthode « Deep
Learning » de Beck et al. [6] et en exploitant le lien entre les équations G-HJB entiérement non
linéaires et 2BSDE. Enfin, nous mettons en évidence plusieurs stratégies de couverture de
I’option telle que, la couverture Delta, la couverture Sigma et la couverture par I'analyse de

perturbation.

Mots et phrases clés : Options, modéles d’évaluation, modéle de a-hypergéométrique
a volatilité stochastique, modele de volatilité incertaine, 2BSDE, discrétisation de 2BSDE

basée sur « deep learning », stratégies de couverture.



Introdution

A derivative can be defined as a financial instrument whose value depends on the values
of other, more basic, underlying variables. Very often the variables underlying derivatives
are the prices of traded assets. A stock option, for example, is a derivative whose value is
dependent on the price of a stock. The exercise of the option allows its holder to realize
a profit equal to X7 — K, by buying the derivative at the strike price K and reselling it on
the market at the price X7. We see that at maturity 7', the value of the call is given by the
quantity:

(X7 —K)" = max(Xr - K,0)

For the seller of the option, it is a question, in the event of exercise, of being able to provide
a derivative at the price K, and, consequently of being able to produce at maturity a wealth
equal to (X7 — K)*. At the time of the sale of the option, which we will take as the origin

of the times, the price X7 is unknown and two questions arise:

1- How much should the buyer of the option pay, in other words how to evaluate at the

instant 7 = 0 a wealth (X7 — K)* available at the date T? This is the pricing problem.

2- How will the seller, who receives the premium at time 0, manage to produce wealth
(X7 — K)* on date T? It’s the hedging problem.

The classical option pricing problem based on the seminal work by Black and Scholes [[10]
assumes that the volatility of the underlying asset is constant over time. While the Black-
Scholes model is still considered an important paradigm for option pricing, there is plenty
of empirical evidences that the assumption of constant volatility is not adequate. In order
to come up with more realistic models, various strategies have been proposed to treat the
volatility of asset prices as a stochastic process [35]. One of the most famous represen-

tatives of the large class of stochastic volatility models is the Heston model [32] that has
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become the basis of many other models, such as jump diffusion models [39]], and various
forms of uncertain volatility models (UVM) such as [3, 24, 28], all of which can be con-
sidered as extensions of the Black-Scholes model.

In the Heston model, the price hits zero in finite time unless the Filler condition is im-
posed. As a consequence, the underlying Optimization problems are typically endowed
with constraints, which pose Additional problems in model calibration. In view of this, the
a-hypergeometric stochastic volatility model has been introduced by Da Fonseca and Mar-
tini [16] to ensure strict positivity of volatility. On the other hand, the uncertain volatility
model developed by [3] has received intensive attention in mathematical finance for risk
management purposes. Where they are proposed for pricing and hedging derivative secu-
rities and option portfolios in an environment where the volatility is not known precisely,
but is assumed instead to lie between two extreme values 0 pin, and o max [14] [57]. In our
work we consider an a-hypergeometric stochastic volatility model, also, we focus on the
uncertain volatility model.

One of the common features of all stochastic volatility models is that the volatility process
can only be indirectly observed through the asset price, which poses specific challenges for
the parameter estimation (or: calibration) of these models. Standard approaches are based
on maximum likelihood estimation using (filtered) time series data [1, 36] or fitting of the
implied volatility surface [25,27]. While Jean-Pierre FOUQUE presented in his book [23]]
the multiscale perturbation analysis in the case of European options, where he uses a com-
bination of singular and regular perturbation techniques to derive approximations for the
option prices. Furthermore, in the Markovian framework , option prices are obtained as
solutions of linear (or nonlinear) partial differential equations [11] [19]. The solution of
the partial differential equations have interesting connections to the solution of the back-
ward stochastic differential equations (BSDEs)and to the solution of the forward-backward
stochastic differential equations (FBSDEs) , many scientific articles have dealt with this
link, mention to [2]][33]][34] , whereas Touzi [[13] introduced the second-order backward
stochastic differential equations (2BSDEs) and show how they are related to fully nonlin-
ear parabolic PDEs see also [46][53].

The Greeks are the quantities representing the sensitivity of the price of derivatives such as
options to a change in the underlying parameters on which the value of an instrument or

portfolio of financial instruments is dependent. The most common of the Greeks are the
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first order derivatives: delta, Vega, theta and rho as well as gamma, a second-order deriva-
tive of the value function.

The Greeks of option play a crucial role in trading and managing portfolios of option. the
practitioners use them to quantify the different aspects of the risk inherent in their option
portfolios. They attempt to make the portfolio immune to small changes in the price of the
underlying asset (delta/gamma hedging) and its volatility (sigma hedging). This is one of
the hedging strategies.

This thesis is organized as follows: In chapter[I] we give a brief introduction about op-
tions, we present the multiscale perturbation analysis in the case of European options and
we highlights on some financial pricing models such as Black-Scholes model and Hes-
ton model. in chapter[2] we focus in our chosen model, the a-hypergeometric stochastic
volatility model, we present some basic properties to this model, we study the pricing op-
tion by using the Mellin transformation method also the approximation of the solution of
the partial differential equation corresponding to the model. In chapter[3| we formulate the
worst-case price scenario and the corresponding fully nonlinear partial differential equation
of G-Hamilton-Jacobi-Bellman type (G-HJB equation), and we derive some basic proper-
ties such as moment bounds and the convergence of the worst-case price scenario as 6 — 0
(60 > 0 the rescale time); this chapter also includes some technical results such as conver-
gence of the second derivatives, we consider the formulation of the fully nonlinear PDE
for the nonlinear expectation of the price process and derive a uniform corrector result for
the limit 6 — 0. We moreover formulate a concrete model that is solved numerically using
the deep learning method by Beck et al. [6] and exploiting the link between fully nonlin-
ear G-HJB equations and 2BSDE. In chapter[d] we present some hedging strategies such as
Pure delta hedging, Delta-sigma hedging and hedging by perturbation analysis. In the end

of this thesis, we give the conclusion and the perspective also the bibliography.
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Chapter 1
Background

In this chapter, we give a brief introduction about options, we present the multiscale per-
turbation analysis in the case of European options [23]],[59]] and we highlight on some fi-

nancial pricing models such as Black-Scholes model [10],[17]] and Heston model [32],[35].

1.1 Around Options

Derivatives (contingent claims) are contracts based on the underlying asset price (X;).
They go back a long, long way. One of the earliest mentions of derivatives, by Aristotle
(384-322 BCE) in his Politics, describes the successful trading of the noted Greek philoso-
pher Thales (mid-620s to mid-540s BCE).

"as in the contrivance of Thales the Milesian, when they reviled him for his
poverty, as if the study of philosophy was useless; for they say that he, per-
ceiving by his skill in astrology that there would be great plenty of olives that
year, while it was yet winter, having got a little money he gave earnest for all
the oil works that were in Miletus and Chios, which he hired al a low price,
there being no one to bid against him; but when the season came for making
oil, many persons wanting them, he all at once let them upon what terms he
pleased; and raising a large sum of money by that means, conviced them that

it was easy for philosophers to be rich if they chose it."[3]]

As seen from [3)], Thales gambled asymmetrically on the values of the olives, taking full

advantage if the olives had a higher value than the rental of the contract but only losing the

13



earnest money if not. This asymmetric bet on pricing is the essence of the options.
Options are contracts whose price is derived from the current state of the underlying

asset. The price in the contract is known as the exercise price or strike price K; the date in

the contract is known as the expiration date or maturity 7.

There are two types of option: a call option gives the holder the right to buy the underlying

asset by a certain date for a certain price; a put option gives the holder the right to sell the

underlying asset by a certain date for a certain price.

American options can be exercised at any time up to the expiration date, however European

options can be exercised only on the maturity itself witch we will be interested.

The payoff of European call option is

XT—K lf XT>K7

WX7)=Xr—K)" =
X7)=Xr—-K) { 0 i Xr<K

since in the first case the holder will exercise the option and make a profit X7 — K, by buying
the stock for K and selling it immediately at the market price X7. In the second case the
option is not exercised, where the market price of the asset is less than the strike price.

Similarly, the payoff of European put option is

K—-Xr if Xr<Kk,

hXr)=(K-Xp)t =
X7)=( 7) { 0 i XK.

in the first case buying the stock at the market price and exercising the put option yields a

profit of K — X7, and in the second case the option is simply not exercised.

1.2 important theorems

Feynman-Kac Theorem

The Feynman-Kac formula states that a probabilistic expectation value with respect to some
Ito-diffusion can be obtained as a solution of an associated PDE. It may be formulated as

follows

Theorem 1. Let X(t) be a stochastic process driven by a stochastic differential equation

dX(t) = u(t, X(2))dt + o(t,X(1))dB(t),

14



with an initial value at initial time t , X(f) = x, and let Y(t,x) € L? be a deterministic
function which satisfies

T 2
f E[O'(S,X(s))a—y(s,X(s)) ds < oo,
P ox

with boundary condition Y(T,X(T)) = f(X(T)).

If the function Y (t,x) is a solution to the boundary value problem

Y 1 , &Y Y
—+ = — — —g(t,x)Y(t,x) =0,
51 T2 ) X o= — g(6 )Y (1, x)

then Y has the following representation
T
Y(t,x) = E[exp (—f g(s,X(s))ds)f(X(T)) | X(t) = x|.
t

Girsanov’s Theorem

The Girsanov theorem describes the impact of a probability change on stochastic calculus.
Let (Q,(F1)0,P) be a filtered probability space.We assume that (7;);>0 is the usual com-
pletion of the filtration of a Brownian motion (B;)>0. Let Q be a probability measure on

¥ which is equivalent to P. We denote by D the density of Q with respect to P.

Theorem 2 (Girsanov theorem). There exists a progressively measurable process (0;),s(

73
P(f ®§ds<+oo):1,
0
t 1 !
E(Dm):exp(f ®sdBS—§f®§ds).
0 0

t . . . o1
Moreover, the process B; — fo ®.ds is a Brownian motion on the filtered probability space

such that for every t > 0,

and

(Q,(F)r=0,Q). As a consequence, a continuous and adapted process (X;)r>0 is a P—semimartingale

if and only if it is a Q—semimartingale.

1.3 First-Order Perturbation Theory

In this section, we present briefly the multiscale perturbation analysis in the case of

European options [23]. These models have two stochastic volatility factors, one fast and

15



one slow, but in our chosen model we focus only on the slow stochastic volatility factor
[S9].

Our objective is to price European derivatives and therefore we consider these models under
a risk-neutral pricing probability measure Q, we then write the pricing partial differential
equations; where the solution of this end is considered as option prices, and we derive the

first order approximation.

1.3.1 Option Pricing Under Slow Stochastic Volatility
The Model Under Risk-Neutral Measure Q

Under risk-neutral pricing measure Q, we give the system of stochastic equations

dX, = rXdi+ f(V)X,dW], (1.1)
dv, = (5c¢(V)— Vog(VONV))dt+ Vog(V,)dW?,

which present the evolution of the price X; of the underlying asset where:
1) Q-standard Brownian motions (th, le) are correlated, d < th, Wt2 >=pdt |p|<1.

2) The volatility f(V;) of the underlying asset X; is driven by the slow volatility factor

Vi, where f is a positive function and smooth in v.
3) r € R is the instantaneous interest rate.

4) The value X; of the underlying asset remains positive, as can be seen by applying

Ito’s formula to deduce

t t
Xz=XoeXP{ fo (r—%f2<vt>>ds+ fo f(vs>dW§}-

5) 6 > 0 corresponds the long time scale (ls of the slow volatility factor V;.
6) The coeflicients c(V) and g(V) describe the dynamics of the process V;.

7) A(V) is combined market prices of volatility risk which determine the risk-neutral

pricing measure Q.
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The price of the European option Po(t,x,v) is a function of the ¢ < T, The value X; of the

under asset and the value V; of the slow volatility factor.

PO(t,X,, V) = E{e” T Oh(Xp)|X,, Vi, (1.2)

where under the risk-neutral probability Q, the process (X;, V;) is Markovian , E{} the expec-
tation value depends on the parameter r and the functions (f,c, g,A), and h(X7) the payoft
function of the European option. In order to use [I.2] the parameter r and the functions
(f,c,g,A) need to be fully specified and estimated, so we use the perturbation approach
which will simplify these complicated issues by approximating the price P° by a quantity

depends only on a few group market parameters. This approximation is of the form
P’ = Py+ P, (1.3)

where Py is Black-Scholes price and P? is the first-order slow scale correction.

1.3.2 Pricing Partial Differential Equation

The function P°(z,x,v) defined in is also characterized as the solution of the partial

differential equation

0

aai; + L(X, V)P’ —rP° =0, (1.4)

with the terminal condition P°(T, x,v) = h(X7) and where £(X, V) denotes the infinites-
imal generator of the Markov’s process (X;, V;) given by
We define the operator £° by

0
6—_ —_—
L= at+.£(X, V)—r,

so we can be written the equation[I.4]and its terminal condition as

0P = 0, (1.5)
Po(T,x,v) = h(Xy). (1.6)

When the parameter ¢ is small, it’s appropriate to write the operator £° as a sum of com-

ponents with a view to derive approximation for P. This decomposition is
L0= Lgs+ VoM +6Ma +..., (1.7)

17



where

o 1 o? 0
Lps = 5+5f2<v>x2@+r(xa—.), (1.8)
M, = gW)(pf(v) > —A()ﬁ) (1.9)
L= gv(pfvxaxav vav’ .
1, & 0
M, = 78 (V)ﬁw(ﬂa, (1.10)

18



note that

e [pg: contains the time derivative and is the Black-Scholes operator at the volatility
level f(V).

e M;: contains the mixed derivative due to covariation between X and V and the first

derivative with respect to V due to the market price volatility risk A.

e Mj;: in the infinitesimal generator of process V under the physical measure P.

Lemma 3 ([23])). The process V; with infinitesimal generator My given by admits

moments of any order uniformly int <T

supE(|V,*} < C(T. k).

1<T
In[I.7)we notice that in the small ¢ limit, the operator terms associated with this parameter
are small, it gives rise to regular perturbation problem about Black-Scholes operator Lpg
[22].
Now we expand P? in powers of V3 to give a formal derivation of the price approxima-

tion when ¢ is small.

P% = Py+ V6P, +6Py +..., (1.11)

before using|l.7|to collect the terms in the increasing powers of ¢ , we insert the expansion

[[.TT]into the partial differential equation [[.5]and also the terminal condition[I.6] so

£35P0+ \/5{£35P1+M1P0}+---:0. (1.12)

Equating to zero first terms independent of § and then the terms in V& in , and similarly

in the terminal condition leads us to define Py and P; as follows
Definition 1. We define Py as the unique solution to the problem

Lps Py 0 (1.13)
Po(T,x,v) = h(x). (1.14)

Definition 2. The next term P is defined as the unique solution to the problem

LpsP1 = —-MPg (1.15)
0. (1.16)

Pi(T,x,v)

19



Thus Py is the solution of the homogeneous linear parabolic PDE [I.13| with h(x) ter-
minal condition, while Py, the first-order term in V§, solves a similar problem but with a

source term and zero terminal condition [19]].

1.4 Financial Pricing Models

In this section, we will highlight on some financial pricing model [38]] such as Black-
Scholes model [10] and the Heston model [32].
As we know option pricing is the most famous problem in financial market [12, 27, 28] ,
which is based on Black-Scholes model [10] where the volatility is constant over time. So
we will define this model and deduce the Black-Scholes formula from its partial differential
equation.
The imposition about the volatility constant in this model is unrealistic, so the stochastic
volatility models are created to erase this problem [1, 35 42]]. The most well-known is the
Heston model [32], where we will define it and also calibrate its partial differential equation

to pricing European option.

1.4.1 Black-Scholes Model

The Black Scholes model is one of the most important concepts in modern financial theory.
It was developed in 1973 by Fischer Black, Robert Merton, and Myron Scholes [[10]. Un-
der Black-Scholes model, In the risk-neutral measure Q, it is assumed that the asset price

follows the stochastic process:
dX[ = rXtdt + O-Xtth,

where r € R is a risk-free rate, o > 0 the volatility and W; is the Brownian motion.

The Black-Scholes Partial Differential Equation

Black-Scholes partial differential equation satisfied by C(X,¢)

aC aC 19*C 52
—}"C(X, l) + ra(X, I)X+ E(X, l) + EW(X, I)O' X =0,
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such that

0 , t€[0,7),
CX,n)=
max{0,X - K} , t=T,
by applying Feynman-Kac formula [38]] we obtain
C(X,0) = " TVE (max {0,X(T) - K} /F,), (1.17)
so,we have
X(1) = Xo e(r—%)tﬂrW(l)’
and )
X(1) o
In—= = (- —)t+oW(t
"X (r 2)+U (0,

the expectation in[I.17]is possible to compute it, because we know the distribution of X (7).

This computation gives the next results

C(X,1) = XN(d)) - Ke " TDN(dy),

where
1 X o?
dl = m ln(?)+(r+ 7)(T—t) , (118)
dy = di—o~NT-t. (1.19)

The result is known as the Black-Scholes formula.
Remark 1. For the put option, we obtain the following result
P(X,1) = Ke " T"ON(=dy) - XN(-d)),

N: standard Gaussian distribution.

1.4.2 Heston Model

As a realistic models for the motion of asset prices, models ambiguity have been proposed
(we advise [21} 39, 42]]) such the Heston model [32], it belongs to class of the stochastic
volatility models. In the Heston model, the stock price and the volatility process which

under the Feller condition 2«8 > o™ is strictly positive, given by the following SDEs

dX, = Xdt+X,\VdW], (1.20)
dV, = k(O-V)dt+o \V,dW?, (1.21)
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where W! and W? are standard Brownian processes with correlation coefficient p > 0 given
by dW!dW? = pdt and

e O: the long-run average variance of the price; as ¢ tends to infinity, the expected value
of V; tends to 6.

e «: the rate at which V; reverts to 6.

e o the ’vol of vol’, which determines the volatility of V;.

European Option Pricing Under the Heston Model

The Girsanov’s theorem allow as incorporate the market price of volatility, A4, to switch
from probability measure to the risk neutral measure [38]]. By using Fiorentini G, Leon A
and Rubio G [20]]; the premium of volatility risk A(z, X;, V;) will be defined as

/l(t,Xt, V[) = /th
Black-Scholes, Merton (1973) [10] demonstrated that under a market free arbitrage, the
value of any asset U := U(t, X;, V;) must satisfy the PDE

1 5 ,0°U U 1, 0°U  dU ou ou
Evzxzm +p0'vxaxav + EO-ZVW +rx§ +{k[60—V] —/lv}E -rU+ rrie 0 (1.22)

European call option with a strike price K and maturing at time 7" is succumb to the condi-

tions bellow

UX,V,T) = max(0,X-K),

uo,v,ip = 0,
oU
— (o, V1) = 1, (1.23)
0x

rxa—U(X,O, t)+K98—U(X,O, H—-rUX, 0,1+ a—U(X, 0,r) = 0,
0x ov ot
UX,00,1) = X.

Due to the similar structure to the Black-Scholes model, Heston (1993) [32] suggest that

the solution should be of a similar form as

CX,V,t) =XP1—KP(X,T)P,, (1.24)
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where the first term is the present value of the underlying asset, and the second term is the
present value of the strike price. Substituting the proposed solution [[.24] into the original
PDE [1.22] shows that P; and P> must satisfy the PDEs

1 °P; JOP 1, 6°P; OP; oP; 0P,

— —_——= 1.2
2v8x +po axa + 82 +(a] bv) +8t 0, (1.25)

where u; = % , Up = —% ,a=k0,by=«k+A—po and b, =k+ A for j=1,2.
The European option price satisfies the boundary condition [I.23] and the PDEs [1.25] are

constrained to the terminal condition
Pi(X,V,T,In[K]) = Lix>[k))- (1.26)

Then characteristic function solution is

P](X, ‘/,t, N) — eC(T—l‘,N)+D(T—l‘,N)V+iNX, (127)
where
l—gedT
C(t,N) = rNrr+ (b pO'Ni-I—d)T—ZlIl[ N ],
-8
bj—pO'Nl+d
D(t,N) = s = god | (1.28)
_ bj—poNi+d
& = bj—poNi—d’
d = \(orNi—b?—oQuNi~N2),

After some conversion of the characteristic function we obtain the conditional prob-

ability that the option expires in-the-money

1
PiX,V,T,In[K]) == + = _
i( n[K]) =7 N

T
The final solution consists of [[.24] [I.27]and[I.29] The conditional probability [I.29may

be interpreted as "adjusted" or "risk-neutralized" probability. The integrand in equation

1 ) —iNIn[K] ¢. X,‘/,T,N
f %[e /it Nan. (1.29)
0

[1.29]is a "smooth function that decays rapidly" and it is integrable as shown by Kendall
and Stuart (1977) [37]]. Its integrand cannot be evaluated analytically, but it can be approx-

imated numerically [1] [36].
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Chapter 2

The a-Hypergeometric Stochastic
Volatility Model

Stochastic volatility models [38]][42] have been introduced as realistic models for the
motion of asset prices in financial markets. The most well-known of such models is the
Heston model [32], which however has one major drawback as its stochastic volatility may
reach zero in finite time unless one imposes the Feller condition, and this poses potential
problems in model calibration.

In view of this, the a-hypergeometric stochastic volatility model has been introduced by

Da Fonseca and Martini [[16]] to ensure strict positivity of volatility.

2.1 Generalities About a-Hypergeometric Model

In the a-hypergeometric model the dynamics of the asset price X; at time ¢ and the

log-volatility V; are governed by

rX,dt+ eV X, dW}, (2.1)
(a—be®)dt + cdW?, (2.2)

dX;
dV;

where b,a,0- > 0, a € R are constants, and th , le are Brownian motions with corre-

lation p.
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2.1.1 Basic Properties

Dependency on «

aVVg,a,a,b,O' = VaVO, 1,ca,ab,a0 >

Noise Limit
(V=0 the solution of the stochastic differential equation [2.5]

75
V=V +bf e™Vsds = at+0'W,2,
0

I(t) = fot e¢®Vsds, we note that % = ¢?V1 50 that

dI(t
1n7%luwxn:aa@+m+awﬁ,

dI(1) b)) _ ja(VorarraW?)
dt ’

which gives in turn by integrating
1
eabl(r) — 1+abf ea(V0+as+0'W3)dS
0

Finally, we get
In (1 +ab fot e"(VOJ““”"W?)) ds

ab

1(r) = (2.3)

Noiseless Limit

when o = 0, the above accounts are standing, and from it the formula simplifies to

In(1+2e?V0(e®ar — 1))

ab ’

I(r) =

1)

in particular = — £ when 1 — co.

For Negative b

It follows from this scaling property that the SDE has a well-defined solution when b and «
are negative. Also, from the expression of I(t) the solution is well defined up to the stopping
time, if b < 0 and @ > 0 [16].
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2.1.2 Martingality of X;

In order to show certain martingale properties of X;, we need the following Lemma.

Lemma 1 ([7]). Fora€e R, b> 0 and ¢ > 0, a Brownian motion W; and

1
L; ::fa—beCWJdWs,
0

for t >0, the stochastic exponencial E(L) is a martingale.

Theorem 4 ([16]). X; in the a-hypergeometric model is a martingale if only if a > 2 or
a < 2 and one of the following conditions is fulfilled

e a=1.
e b>po.
Theorem S ([[7]). Let X; be a martingale in the a-hypergeometric model, then X; € LY
E( sup X?) < oo,
0<s<t

holds for all t > 0 in the cases

° a<1,p<0,and1<0§$.

o=2bp+ \(T—2bp)2+4b2(1-p?)

e a=1,b>po,and1 <6< 20(1-p%)

e a>1land > 1.

Conversely
E(X;) = oo,
holds for all t > 0 in the cases
e a<1l,p=0,and6>1.
1

° a<1,p<0,and6>l_—p2.

e a=1,b=po,and > 1.
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2.2 Pricing Option with Mellin Transformation Method
In this section, we will pricing European option with Mellin transformation method,

before that we need to compute certain transforms of V; also X; (see [[7]).

2.2.1 Moment Transform and Laplace Moment Transform of V;

Proposition 6. In the 1-hypergeometric model with 6 > 0 and A > % + af the Laplace

transform in time of the moment transform of V; is given by

o0 1 (~a bV
f By = Ll EE g,
0 o

with
F(Cl]—l) _20 n I
J1 = 2————e 2z,U(a; —1,b1;20)(2 21,
1 Ty ¢ % (a1 15:20)(2v2) 1
Ila-1) _=2 4, o a
Jo = 2= =2 M (ay -1, by 20)(2 21,
2 ron ¢ % (a1 1520)(2v2) 2
by—a|+0
Iy = O—ze([bl—a1+1,bl—al+9][b1—al+9+1,b1],—zo),
bi—a;+6
I, = I'by—a1+0)I'@—a; +1)
' 0
B Ze—a1+1r(b1—1)2F2([2—al,1+9—al][2—b1,2+9—a1],—20)
0 I'ai-1)(1+60-ay)
3 Ze—a1+b1r(1_b1)2F2([1_al+b1»9_al+b1][b1’1+9—al+b1],—20)
0 I'(a1 =b1)(@—a1+D1) ’

2
where aj—1=n-% by =1+2n,va=%, 20=2me", P = 5+ &,

U the confluent hypergeometric function and M Whittaker function.

Theorem 7. In the a-hypergeometric model the Laplace moment transform of V| is given

by
f e_’llE(ve)dt: f e_’”E(eg‘?’)dt,

0 0
where the process V; with starting value Vo = aV follows the SDE

dV, = (ea— ozbe‘;f)dt +aodWs,
which can be calculated using Proposition|[6]
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2.2.2 Transforms of X;

As we have seen for the process V;, we are able to compute the Laplace moment transform

for a> 0, but unfortunately, we cannot use the same strategy for X;. So, in the next Theorem

which compute the Laplace transform in time of the Mellin transform of X;, we focus on

the 1-hypergeometric model, because it lies in the class of solvable stochastic volatility

model [7].

Theorem 8. Assume X; and V; be given by the 1-hpergeometric model with po < b. Fur-

thermore let 0 € (6*,0,) where

90 — 16bp + 3 /3252 + 902 — 32bpo

6* = ,
20(9 — 8p?)
o _ T=2bp+ V(o =2bp)? +4b2(1 - p2)
T 20(1-p?) ’
and A > 0 such that
1
(a2 24)7 (b—0pr)( +3) 1
—+t ]| - +=>0.
ot o Jo=6pr)r+20(1-0) 2

Then the Laplace transform in time of Mellin transform of X; is given by

o0 1 _a b__py V,
f e VE(X])dr = —e 2N (1 1),
0

with
Jio= 211:336_%028“02,bz;Zo)(sz)_e_‘%h,
Jy = 2%6_%0Z8M(az,bz;Zo)(sz)_g_;_zlz,
where
I )

= 1y,
Zi by
with i, is given by
_ p_a_ a
in = (=060 "y 0+ 5+ -5(0)20).

(2.4)

where vy denote the lower incomplete gamma function. Alternatively, i, satisfies the follow-

ing recurrence relation

. n+-%+n a )
0(D)in+1 =z, ot 000 _ (77 +— +n) iy
o
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Furthermore

I['(1-by—n)

I = Py
n=0 ’

The function j is given by

jite gn_o—iz+ll"(—n+ :

where I'(.,.) denote the upper incomplete gamma function and { = —

with

aj
by

Vi

V2

20

2
n

o (—1)" (F(bz—l—n) .
I'(ap —n)

Jm)+ o i = —n)).

—f,Zof),

o2
1 _ Opo—b
2 2mo?

vi 1

vy 27
1+2n,
b—-6pc) a 1
o? (0'2+2)’
1
i —hH)2 2 _
s \/(QpO' by +o0-6(1 -6),

2vzeV0,

a? N 24
ot o2

Note: For more details and for the proof of Proposition[6] Theorem[7| and Theorem|g]

see [[7]]

2.2.3 Pricing Vanilla Option

To perform option pricing we will use the method of Mellin transform [{8]], where for a call

option in the strike, it can be expressed in terms of moments, so for 6 > 1

o0 1
f E(X, - K)"K*2dK = ———E(X?).
0

00— 1)

Applying this to the 1-hypergeometric model and choosing A and 6 as in Theorem [§] and

Laplace transforming in time leads to (see [7])

[oe] (oe] 1
f e f E(X,— K)"K?2dKdr =
0 0

f e~ YE(X)dt,
0

=:2(6,4)

00— 1)
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which can already be calculated. Let L(K, 1) denote the Laplace transforming in time of a

call option with strike K, i.e.
LK, 1) = f e ME(X, - K)*dt.
0

By Fubini’s theorem there holds

8(6,0)
00-1)

f LK, )K’%dK =
0
We need the next Lemma to invert the Mellin transform.

Lemma 9. For 0 € (6%,6,) and A as in Theorem 8| the function

g@+ic,A)
cH ,
@+ic)@+ic—1)

is L'(R).
Proof. The result follows immediately from

gO+ic ) | _ Iy e M EAXTiedt 3 |y e M E(X0)dt
@+ic)O@+ic—1)| ™ |O+ic)@+ic—1) = (@H-1)2+c2

and the fact that 6* > 1. m|

Therefore we can obtain L by using Mellin’s inversion formula

A
L(K.) = f SO gy
g+ T(T—1)

2.3 Vanilla Option Pricing Under a-Hypergeometric Model

In the current section, we will approximate option pricing using partial differential equa-
tion of a-hypergeometric model, in the case of deterministic volatility and the case of
stochastic volatility concentrating on the first order expansion, where we going to focus on
the 2-hypergeometric model in the both cases [54].

We rescale time in the volatility as & > 0, recall the a-hypergeometric model

dX;
dV;

eV X, dw!,
Ea—be®)dt + \/EO'dle,
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where b,,0 > 0, a € R are constants, and th , Wt2 are Brownian motions with correlation

0.

The price P(t,X;,V;) of a vanilla option with payoff 4(X7) and under the absence of

arbitrage takes the form

P(t,X;, Vi) = E[W(XT)/ F1],

where (F;)ief0,7) 1s the filtration generated by (th,sz),e[o,T] and the function P(t,x,v)

solves the PDE
oP 0P 1 5 5 &P 82P 1 2aP
E+§(a—be0”)a +2xevaz+\/—p0'xe pre 2 57

with terminal condition P(T, x,v) = h(x). We start by expanding P(t, x,v) as

=0,

P(t,x,v) = Po(t,x,v) + P (2, x,v) + O(E),

by plugging the expansion[2.6|into the pricing PDE [2.5| we get system of equations

oP,
ot

nt+ L1Pr1+LoP,y 2 =0, neN,
with
P, =0 n<-1,
Po(T,x,v) =h(x),
P,(T,x,v) =0 n>1.

In particular, operators Ly, £; and £, are given by

, 1 5 o, 0
Lo = &a- be‘”) +2xevﬁ ,
2

= V[
L \/_ Epoxe wdy
z 32

L

§

2.3.1 Deterministic Volatility
Whenn=0, we have 2 az 0+ LoPo=0and

dx? = Xx%Viaw!
dv? = (a—be®)dr

31
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also the vanilla option price Py(t, X?, Vto) = E[h(X(T)) /F;] can be computed by the Black-

Scholes formula as
+

where N ~ N(0, 1) is independent of F; and YA(t, Vto) = flT Vi ds ,t€[0,T].
We note that in the a-hypergeometric model with o = O the integral ft T eV ds can be

computed in closed form as (see [[7], [[16] )

T 0 1 0 T—t
f esds = — log (1 +abe®i f e‘msds) ,
t ab 0

1 aa(T-t) _ 1
- log(l +a/be‘W?e—),
ab aa
this leads as to the following Proposition.
Proposition 10 ([54)]). In the 2-hypergeometric model with o = 0 the European call price
Po(t, X}, V) = E[(X) - K)*/F.|,
under the terminal condition Py(T, x,v) = (x— K)* is given by

Po(t,x,v) = x®(d. (t,x,v)) — KD (d_(t,x,v)),

where @ is the standard Gaussian cumulative distribution function,

1 X yz(t,v)
d t, 5 = l —=)+ 5
+(2,x,v) y(t,v)(Og(K)+ >
1 eZa(T—t)_]
2 2v
= —log(l1+2 —_—. 2.
Pl = o og( +2be ) 3)

In the case of a put option the function Py(t, x,v) can be obtained as

Po(t,x,v) = —x®(—=d,(t,v,x)) + KO (—d_(t, x,v)), te[0,T].

2.3.2 First Order Expansion

When n = 1, equation [2.7|becomes
oP
—— + LoP1+ L1 Py =0,
ot
with P{(T,x,v) =0.
Note that the approximation (X;, V;)e[0,7] does not lie within the class of 2-hypergeometric

model
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Proposition 11 ([54]). The solution of % + LoPy + L1 Py = 0 under terminal condition

Pi(T,x,v) =0 is given by

e 267 4 2py2 (1, v) — 1
2by2(t,v)

Pi(t,x,v) = —pKz%;d_(t, X, (d_(t, x,v)) . tel0,T].
Proof. from the relation ®(d.(¢,x,v)) = \/%e(_%(‘h(”x’v))z) = %cl)(d_(;, x,v)) and using the
Feynman-Kac formula with locally Lipschitz coefficients as in e.g. Theorem 1 of Heath

and Schweizer [31], we have

T
Pi(t,X), V) f E| L1 Po(s. X0, VIIF))|ds,
t

fT pKeZV?a,y
_0- —
t (s, V?)@v

d_(t,X?,V?) 0 1,0 r 210 0,0 0
——Pld_(t, X,V s ,VI))=—=(s,V)ds,

(5. VOE[d_(s. X2, VO)YO(d_(s. X2, VO)IF,| ds.

by a standard computation based on the Gaussian distribution

XO ZI,VO 2Z,V0
d_(t,X?,VtO)’VN( ( ’)/( [)) 7( [)

log(=%) - -1 T].
og(—-) 2 600 ) s€ltT]

(s, V)

Finally, we note that from 2.8 we have

T T
0 dy 1 210 ~2by*(5.V0
fteszz(s,V?)—aV(s,V?)dS = ﬁft - (1_6 Y(S’V”)ds,
1 Cop 204 10
- @(e 70Y) 4 2y 21, V0 - 1).
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Chapter 3
Uncertain Stochastic Volatility

In this chapter, we focus on the uncertain volatility model (UVM) developed by [3]]. it
attracted the attention of practitioners as it provides a worst-case pricing scenario for the
seller. We study the UVM where the volatility is stochastic and bounded between two
extremes values o and 0.

Under the risk-neutral measure Q, the price process of the risky asset X; is the solution of

the following stochastic differential equation (SDE)
dX; = rXdt + X,a,dW,, (3.1)

where r € R is a risk-free rate, @, the volatility process such that o, < @; < o and W,1 is
Brownian motion under the risk measure. We assume that the volatility bound itself is
given by 0 1= OpminF (Vi) < @t < OmaxF(Vy) := 0 for 0 <7 <T and o pmin, Omax € R such
that O < o pin < 1 < O ax, Where F is a positive increasing and differentiable function.

Vi

In our choosing model F(V;) = ", we denote a; = ge"' s.t Oppin < g < Tpay for0<t<T

then we obtain the following dynamic

dX, = rX;dt + X,qe"1dW}, (3.2)

dV; = (a—be® ")dt + rdW?, (3.3)

where th and Wt2 are Brownian motions with correlation p; b,a,0 > 0 and a € R are con-

stants [47] .
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3.1 Worst-Case Scenario Price

Our aim in this section is to derive worst-case pricing scenarios for the seller in the spirit
of the work [16], without needing to calibrate the model exactly. To this end, we rescale

time in the volatility equation (3.3)) according to 7 — &t, which yields

dX; = rXdt + X,qe" dW}, (3.4a)
dV, = §(a—be®"")dt + NsordW?, (3.4b)

and allows us to smoothly interpolate between an UVM and a fixed volatility model (cf. [24]).
The parameter 6 > 0 symbolizes the reciprocal of the time-scale of the process V, and thus

the standard UVM can be formally obtained by sending 6 — 0, in which case V; = v and
dX? = rXVdt + gxe"dw, . (3.5)

Varying ¢ sheds some light on the importance of the stochastic volatility equation for the
worst-case scenario: when the variation of the volatility is slow, the market price of the
asset is not very volatile, so this price remains stable; in the opposite case, it may become

too volatile and therefore more risky.

Let ® = [0 min,Omax]- For any ¢ > 0, the worst-case scenario price at time ¢ < T is
defined as

P‘s = P‘S(z‘; X, v) = eXp(—r(T - l‘)) sup E(t;x,v) [h(X(;)] (36)
qe®
If 6 = 0, we define
P%:= P(t; x,v) = exp(—(T — 1)) sup Et:x) [h(Xg)]. (3.7)
qe®

Where E..,)[] is the conditional expectation given #; with Xf =xand V; =v.

3.1.1 Moment Bounds

Instead of confining ourselves to perturbations of Black-Scholes prices as in [23], we will
work with general terminal payoft (neither convex, nor concave) as in [21]. In this case

the Hessian of the resulting option prices is indefinite and we have to impose additional

35



regularity conditions on the payoff function 4 to do some asymptotic analysis. Specifically,
we suppose that the terminal payoff & is C* and gradient Lipschitz, and we impose the

following polynomial growth conditions on the first four derivatives of A

I’ (0] < K1,

[ (0] < Ko (1 + |x™),

B (0l < K3(1+ 1), (K; for i € {1,2,3,4))m,n and [ € N,
BD ()] < Ka(1+|x).

(3.8)

Before we come to the convergence of P° as § — 0, the next two Propositions show that

the processes X; and V; have uniformly bounded moments of any order.

Proposition 12. Let 0 <6 < 1, for t <T. The process V; has uniformly bounded moments

T T
Etxv) [ f |Vs|kds] <Eow [ f |Vs|kds] < Ci(T,v),
' 0

where C(T,v) independent of 6.

of any order

Proof. See Lemma 4.9 in [23] also Lemma[3]in chapter one. O

Lemma 13. For n € R independent of 0 < 6 < 6, for some sufficiently small 69 > 0, and

t < T, the moment generating function of the integrated a-hypergeometric process
!
M) = Ep[e™h 51, forpeR,
is uniformly bounded, that is IM;S (M| < N(T,v,n) < oo, where N(T,v,n) is independent of t.

Proof. Following the reasoning of [40, Sec. 5], we have an explicit form of the moment

generating function of the integrated a-hypergeometric process

Mo(n) = P(y,)e” "=,

where
gy <
be 7 [on
\I”(n, t) = = Tt . Tt ’
bcosh(b5) +6sinh(b3)
_ 2
_ 2n sinh(b%) o2
.:.(77, l) = = Tt . Tt >
bcosh(bz) + dsinh(b3)
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and

b= +b?-2n62 = \/52—21760'2.

In the following, we are going to show that |M§(7])| < N(T,v,n) < oo, where N(T,v,n) is

independent of ¢ and ¢. To this end, we distinguish two cases

o If 52— 277602 >0, we have b > 0 and

W <24} §sinh(b%) > 0
(,7) < beosh(b%)) sinh(b3) 2 0,
2 _
< (e52)<f2 , cosh(b$) > 1,
2
<(e2)”.

Since Z(n,t) > 0, we have e VE(D) < 1. Therefore

2

M () = P(n,0e="" < (e) .

o If 62 —2n602 < 0, let ¢ = /2602 — 62 which is positive. Then

MS(n) = y(n, t)e =0,

2
2 s ot =
Y o 25sinh(id 5) o2
B e’z v v(iﬂcosh(iﬁ% )+5sinh(m§)
- N N . . i
i cosh(i}5) + 6 sinh(i94)
2
o st (%2 2insin(9§) o2
_ e’ v ifcos(@ L) +iosin(d £)
. . : ’
i cos(95) +id sin(95)
st Z 2sin(94) ﬁ
e N O b Gl D
_ ﬁe 2 v 19005(19%)+6sin(19%)
dcos(94) +sin(¥5)

Thus, for sufficiently small 4, since

2
2nsin(¥4) o
>

Pcos(95) +dsin(¥5))
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we have

2
9e%3 o2
M\(f(n) S r . t 2
tcos(d5) +6sin(95)
2
9ed3 o
93+ 0@22) +6(% + 09313))
U+ %vow2r))
As a consequence, there exists 9y independent of ¢, such that for & < ¢y,
T \2
M) < (%) :
This concludes the proof. O

Proposition 14. Let 6 > 0 be sufficiently small and for t < T. Then the process X; has

uniformly bounded moments of arbitrary order.

Proof. Let X;,V; satisfy (3.4)), with ¢; € [0"min, Omax]- Then, for each finite n € N,

1 t
x'exp nrt—gfo‘(qse‘/s 2ds+nf(; qseVSdWSI),

2—n —n2 rt t
xX'exp|nrt + f(qseVS)zds)exp(—f(qseVS)zds+nfqseVSdWé}),
2 o 2 Jo 0

t

n-—n

2
< x'exp|nrt+ 5 fa'rznaxezV‘ds)Az,
0

X;

A

where in the last step we assume Novikov’s condition which implies that

_2 nt t
A,:exp(Tnf(qseVV)2ds+nfqseVSdW;),
0 0

is a martingale.

Using Proposition[I2] we find

1 !
E0,xv) [exp(i I) (nqus)st)]
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IA

[ 2.2 t
n-u
E0,x,v) | €Xp > f ezvsds)] )
| 0

n’o2

!
= EQu |exp|—™* fo (1+2VS+O((2VS)2))ds)],

= B |exp(— ‘Tma"[ ds+2 f Vids + f o(2Vy) )dsm

[ 2.2
= Eq.n|exp z (;ma"(t+C)+2 (Zma" f Vds)]

[ 2 .2
= E(O,x,v) exp %(l—I—C)).CXp((VI max)f Vds)]

Y
= exp(%(t+ C)) E(0.x.v) [exp ((n max)f % ds)]

2.2
_ exp(n Uzma"(HC))MfS(n o2 ),

< 00,

Hence,

Eo,xn[X}']

IA

X" exp(nri)Eo,x.v) [exp ( (- I’l)O’maX 2Vsd s)] ,
0

no,

X" exp(nrt)exp (( Z(r+ C)) M) ((n - n)O'max)

IA

x"exp(nrT)exp (%(T + C)) (T, v,(n* - n)o%lax) =1L,

where the upper bound L is independent of ¢ and ¢.

T T
E(txy) [ f X" ds| < Boxm) [ fo X" ds
t

where Ni(T, x,v) may depend on (k, T, x,v) but not on ¢. O

Therefore,

< Ni(T, x,v),

3.1.2 Convergence of the Payoff

As a consequence of the previous results, we have the following convergence result for the

asset process.
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Proposition 15. Assume there exists Co > 0, independent of 6, such that X°, X° being the

solution of the SDEs and (3.5)) satisfy

E(r0)(X5 = X2)? < Co6.

Proof. Since X0, X? solve , , we have

T T
X5T:x+f rdes+f ge” X0dw!,
t

t

and
T T
Xg:x+f rX(s)ds+f qe’ X2dw!
' t

which can be combined to give

T T
X5 -X) = f r(X3 - X{)ds + f q(e" X3 — ' XNdWy,
t t

T T T
f (X% - X%ds + f qe" (X% = X0aw! + f g€ —e"X2dW!.
t t t

Now let Y = X% — XY, then ¥, = 0 and

T T T
Yr = f rYds+ f qe’ Y dW! + f g(e”s —e")X%aw!.
t t

t
T T 2
3E(t,x,v) [(f rsts) + (f q(eVs —ev)deWSI) }’
t t

Thus,

2 2

E(z;x,v) [sz"]

IA

T
+ (f quYSdWSI)
1

T T
f 3 Tl’z + 3UilaX€2V)E(t,x,v)[Y§]ds + 30—§1ax f E(t;x,v) [(eVs a eV)z(X?)Z] ds.
¢ t

IA

R(6)
We have seen before that X; and V; have uniformly bounded moments for ¢ sufficiently
small. We can therefore show that |R(6)| < C¢ for C independent of ¢. Setting g = o-max and

using Gronwall’s inequality, the previous inequality can be recast as

T T
f(T) < f Af(s)ds+C5< 6 f C1e' 945+ C6,
t

t

where f(T) = E(;.x)(Y7) and A = 3Tr* + 302,,,¢* > 0. As a consequence,

E ) (X5 = X0 = E(uxn) Y2 = f(T) < Co6.
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Theorem 16. The function P° uniformly converges to P° with rate V6 as § — 0, where the

convergence is uniform on any compact subset of [0, T] xR xR™*.

Proof. Due to the Lipschitz continuity of 4, the Cauchy-Schwartz inequality and Proposi-
tion[15] we get

PP =P = exp(—r(T = ) |Sup () [(X3)] —sup E ey [H(XD)]|.
qe® qe®
< exp(—(T = 1) Sup|E e, [H(X3)] = Eqrem [HXD]|
qe®
< exp(=r(T = 1)) sup Eqxa [H(X7) ~ h(X7)
qe®
< Koexp(—r(T = 1) sup Ex) | X5 — X7,
q<€®
s v0y2]11/2
< Koexp(—=r(T —t))sup [E(,;x,v)(XT -X7) ] )
qe®
This entails
P - Pl <C1 Vs,
and concludes the proof. O

3.2 Pricing G-PDE

The worst-case scenario price P° is the solution to the following Hamilton-Jacobi-
Bellman (HJB) equation with terminal condition PO(T; x,v) = h(x) (see [43,44])

1
—9,P° = r(x@xP5 - P6) + sup {Exzqzezv(?)zcxP‘s + \/queVO'pG)ZWP‘S} (3.9
qe®

1
+ 6(50-26%VP‘5 +(a—be™)d, P°).

Throughout the rest of the section, we set r = 0, i.e. we assume that the return of the asset
is zero, but the return of the option depends on the volatility. In other words, even though

the financial asset has no return, the option can have it.
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Leading Order Term P

To approximate the value function P°, we use the regular perturbation expansion
P’ = Py+ V6P| +6P2+..., (3.10)

where P the leading order term and P; := Pi(t, x,v) the first correction for the approxima-
tion of the worst-case scenario price P°. Substituting (3.10}) in (3.9), and using Theorem

the leading order term Py is found to be the solution to

1
— 8Py = sup {quezvxzaixpo} ., Po(T;x,v) = h(x). (3.11)
qc®

3.2.1 Convergence of the Second Partial Derivative

The gamma 62 P° represents the convexity of the price of an option according to the price
of the underlying asset. It indicates whether the price of the option tends to move faster or
slower than the price of the underlying asset. Using the fact that ¢ € [0'min, O max] , and the
regularity results for uniformly parabolic equations which are referenced in [15],[28]], we

conclude that (3.9) is uniformly parabolic.

Proposition 17. As § — 0, the second partial derivative 3> .P° converges uniformly to

6)26XP0 on any compact subset of [0, T] xR xR™* and with rate V6.

Proof. The function 4 € C*is gradient Lipschitz and satisfies polynomial growth conditions

in its first four derivatives. By [26, Thm. 5.2.5], we conclude
o PO(t,.,) € Cll,’z’2 for 6 fixed .
e 0,P(,.,.) and (%zcxP‘S(t, .,.) are uniformly bounded in 6.

The assertion thus follows from Theorem[16] O

3.2.2 Optimal Controls

Following [21]], we define S gv to be the zero level set of 92, Py and the set Aiv to be the set

on which 42, P and 2P, have different signs, i.e.
Sty 1= bx=x(t,v) € R¥183,Po(1;x,v) = O},
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and
A2, = {x = x(t, )05, P (t; x,v) > 0,07, Po(t; x,v) < 0}. (3.12)

Lemma 18. Call
q*°(t;x,v) := arg maxqeo {%qzezvxzafmpS + x/S(qpaeraivP(s)}, (3.13)
forx¢S ?,v and 6 > 0 sufficiently small, and
q*’o(t; X,V) 1= arg maxgee {%qzezvxzaﬁxPO} , (3.14)

for 6 =0. Moreover, let (3.13) and (3.14) denote the optimal controls in the G-PDE (3.9)
for P° and in the G-PDE for Py, respectively. Then the limiting optimal control as
0 — 0 is given by

Omax, O02.P%>0,
gOotx vy =4 T T (3.15)
Omin, 02,P°<0,

and

Omax, 0%.Py>0,
Ot xyy =4 Tl (3.16)

O-min, 6§XP0 < O.

Proof. Let
1
f(q) := quezvxzaﬁxPé + \/g(qpaevxaﬁvP‘s),

and suppose that the maximiser 6]*’5 is in the interior of the interval [0"min, Omax]. Then, for

x¢SY  we have

xe’ 02, Po

b

for the maximiser of f(g). But since f(§*°) — 0 as 6 — 0, the maximiser must be on the

2

5 .
<P’ determines

boundary whenever ¢ is sufficiently small. In this case, since the sign of 0
the sign of the coefficient of the ¢ term in f(g), we have ¢*% — ¢*° pointwise on S gv

where, for any sufficiently small 6 > 0, the maximiser can be represented by

*,0 _ .
g = omaxlig2 poso) + Ominliz2 pocoy-
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Lemma(I8]allows us to rewrite the G-HJB equation (3.9) as

1 1
—9,P° = E(q*"s)zezvxzaixPé + Vo(g*™ pO'evxa)zWP‘s) + 6(50'28§VP5 +(a—be®™)d,P?),
(3.17)

with terminal condition P°(T'; x,v) = h(x) and with q*’6 as given above.

3.2.3 First-Order Corrector for the Limit Payoff

We will now derive a corrector result for the difference P° — P°. To this end, recall that Py,

the first order correction term of P?, is the solution to the linear equation
|
-0,P = E(q*’o)zezvxzaixPl + q*’opaevxa)szo , Pi(T,x,v)=0, (3.18)

where ¢** is given by . Further recall that vanna 92, P° is a second order derivative
of the option, once to the underlying asset price and once to volatility. It is the sensitivity
of the option delta with respect to change in volatility, or, alternatively, it is the sensitivity
of vega 32P° with respect to the underlying asset price. For more details see section 4.2.4
in [23].

In the following we will exploit results from [22] and [23]] to show that, under the regularity

conditions imposed on the derivatives of &, the pointwise approximation error |P° — Py —
V6P| is indeed of order O(6).

Theorem 19. Y(¢;x,v) € [0,T]xR* xR*, AC > 0, such that
|E°(1;x,v)| := [P(t; x,v) = Po(t; x,v) — VOP(t; x,v)] < C6,
where C may depend on (t;x,v) but not on 9.

Proof. Adopting the arguments of Secs. 1.9.3 and 4.1.2 in [23], we define the following

linear parabolic differential operator

. 1
L(g) =0, + 547" X0+ Noqpe'xd, + 65070, + (a=be™)dy), (3.19)

=Lo(q)+ VoLi(q)+6 Lo,

where Ly(q) contains the time derivative and the Black-Scholes operator, £;(g) contains

the mixed derivative due to the covariation between X; and V;, and 6L is the infinitesimal
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generator of the volatility process V;.

We can recast equation (3.17) as

L(g°)P° =0,

(3.20)
Po(t;x,v) = h(x).
Equivalently, equation (3.T1) reads
“0)Py =0,
Lo(g™")Po 321)
Po(T;x,v) = h(x),
and (3.18) can be expressed by
“0OP1+ Li(g*")Py =0,
Lo(g™")P1+ L1(g™")Po (3.22)

Pi(T,x,v) = h(x).
Now, applying the operator £%(¢*9) to the error term E® = P9 — Py — V6P, we obtain

LAGE® = Lo5q™)P°— Py~ V5P)),
= —(Lo(g™) + V6L1(q™) +6L2g"))(Po + VoPy),

= — V6Ly(gO)P1 + V6LI(q°)Po—6L2q*)Po+6L1(g )Py +6> La(qg" )Py,
=0

1 ES %
= 5l = @1 P, Po

k k 1 * k
-Vs [p«q 9)=g"e' x93, Po+ 5 (7 = (¢"")) e”xzaixpl]
1
) [p(q*’é)evxé?ivPl + EGZG%VPO +(a— be“v)avPo]

1
_5 [Eazafvpl +(a—be*™)d, Py

Using the terminal condition
E°(T;x,v) = P(T;x,v) = Po(T; x,v) = V6P1(T;x,v) =0,
and the continuity of the solution to the parabolic equation (3.18), we conclude that |E%(z; x, v)| =

0(6). O
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3.2.4 Feynman-Kac Representation of the Error Term

Now recall that the asset price in the worst-case scenario is governed by with r =0

and g = ¢*°
07 =g aw), 623)

where, by Lemma the optimal control (g;) = (¢*°) is explicitly given for sufficiently

small ¢. (It is straightforward to establish the existence and the uniqueness of the solution

of (3.23) X%).

Existence and Uniqueness of X; o

For the existence and uniqueness of the worst case scenario price process, we consider the

transformation Y;*° = log X for any 7 < 7 and £ > 0, where
% = infi>0X0=¢ or XP= é},
= inf{t> 0|V =logé or Yi°=—logé).
By applying Ito’s formula on Y, “ we will obtain the following SDE
dy:° = —%(q’kﬁ 2e2Vidt + g0V 1dw].
In order to show (24) has a unique solution, it suffices to prove that for any 7 > 0

li £ < T)=0.
S":l_rgr(l)Q(T<)0

Yre[0,T],
. "1
Yt"szf—z(q*"s 2ezVSds+f\q*(se%dWsl,
0
then
ll A
Q( sup [¥;’|>[logé)) < Q| sup [ f ST ds+ f q*’5eVSdW}]>|1ogf|),
1€[0,T] ref0,711Jo 2 0
1 T
< Q —a'fmxf e*Vsds+ sup fq*‘sevdesl >|10g§|),
2 0 1€[0,T]
1, T o |logé] ' 8 Vs gyl
< Q-O’maxf e“rds > )+Q sup f el dW,
2 0 1€[0.T]
= A+8B.
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By the Markov inequality, we have

max
[log] -~ |logé]
using Doob’s martingale inequality, we have

T
3 OmaxE Jy €Vds _ T2 TCTY)

. t N T
B < E(fo gV dW!)? B fo E{(g*°)*e*Vs}ds § O'%WXJ(; Ee?Vsds B o2 TC(T,v)

max

N S A

Therefore,
IimA=1limB = 0.
£—-0 £-0
Finally, for T > 0

lim Q(zf < T) = limQ( sup |Y*°| > |logé]) = 0.
£-0 =0 fe[0,7]
Probabilistic Representation of E°(z, x,v)

We can apply the Feynman-Kac formula to get probabilistic representation of E°(t, x,v),
namely,
ES(t,x,v) = Io+ 6211 + 6, + 62 I,

where

T
1 3k %k 3k %
IO = E(Z,X,V) lf 5 ((q ’6)2 — (q ’0)2) 62VS(Xs96)28)26xP0(S’ Xs’é, Vs)ds:| ,

t

T
It = E x) [f (" — g O)poe s X0 P, Po(s, X3, Vy)
t

N | =

+5 (@) = (g0)?) eV (X °)?0%, P1 (s, X, vs>ds} :

T
L =Eq.y [ f g opaeV X002 Pi(s,X5°, V) + 50'233VP0(S,XS’5, V)
t

+(a—be®)d,Py(s, X:"s, Vs)ds] ,

47



T
1 3k k
I3 =E(x) [ f ST TP, XS0, Vs) + (= be™ )0, P (5, X7, Vi)ds .
t
Noting that

#,0_p *,0 _ )
lg°#q7"} = A,

q*,(S - q*,O = (Omax— O'min)(l{a)%xpézo} - 1{3)2“}’020})’
,0)2 0N2 2 2
and (q* ) _ (q* ) = (O-max - O-min)(l{a)%xpazo} - 1{(9,%)513020}) .

The next theorem shows that I , I; are indeed of order O(6) and O( V9).

Theorem 20. There exist constants My, M > 0 depending on (t,x,v), but not on o, such
that
ol < MoS, and |I)| < M V§.

Proof. Step 1

&Zlg,v being compact, there exist a constant Cy such that

162 Po(s, X, Vi)l < Co V6, for X3 € A,

%,0
b

Then, since 0 < o pin < ¢*°,¢*° < T pax, We have

T
1, . ) - *
ol < E“’”)[ ft (@’ (g ’0)2)ezVA(Xs‘S)ZlaixPo(s,XS"S,vs)ds],
2
O max C \/EE T]_ ‘ ( *’6)2 ZVX(X*,é)Zd (3 24)
S g2 COVORwen| | tugteng ()€ A A8 :

min

In order to show that I is of order O(9), it suffices to show that there exists a constant C;
such that

<(C ‘/5,

T
Eton) [ f Lixpoens v}§s2 ds
. :

where ¢y := ¢*%¢"sX* and dX° = £,dW! by (24). Define the stopping time

7(v) 1= inf{s > £;(X*%), > v},

where

(X*0)s = f S (X30)du.
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We know that X;’}i) = B, is a standard one-dimensional Brownian motion on (Q, .2, Q5).
From the definition of 7(v) given above, we have
T(v)
ZXP)ds = v

t

which tells us that the inverse function of 7(v) is

T
T (T) = f 2(XE0)ds. (3.25)
t

Next use the substitution s = 7(v) and for any i € [1,m(v)], we have

T 1)
2 ryk,0 2 y¥,0
f; Liio_siecvaé (Xs s ft Lixes _cevgé Kip)dT@),

(T 1
= 1 * 6 _ g ( )
ft‘ e x;<C V6) (V) 22X (U))
(T)
i)
- f IR (3.26)

Note that on the set {|B,, — xi| < C V3}, we have (X*°)2 < (xi+C V6> < D, where D is a
positive constant, and then by (3.25]) we have

T
(1) = f (g™ X:°)2ds < Do, T sup e*". (3.27)
t

t<s<T

Then from (3.27) and (3.26), by decomposing in {sup,,.; €' < M} and {sup,,.; €*"> >

M} for any M > ¢%V, we obtain

-N1)
o U 1js,v<c v | ~ O(VO). (3.28)

Step 2
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With the help of assumption 2.12 in [21] , we have

T
L = E(t,x,w[ f lg*° = g*Clpare¥s X162, Po(s, X0, V)
t

1 * * * %
+5lg N2 (g*O)He?s (X50)210% P (5, X2, vs>|ds] ,

IA

T
po « x *
maxE(th) [f I{X;f,aeﬂg‘v}(q eV X Pan (1+ (X0 + V§11)ds]

min

T
0- * %k *
TLAELLLS [ f Liescp (@) X a1+ (X; ‘5)1’20+v02°)ds]

min

Using the same techniques in Step 1, the result that X:"S and V; have finite moments
uniformly in &, and X° < C(X:%)% on {X}° € AS ), we can deduce that ; is of order

O(Vo). O

Proof of Uniform Boundedness of /; and /3 on 6.

Because that V; , X; have uniformly bounded moments, by using the Cauchy-Schwarz in-
equality and with the help of Assumption 2.12 in[21] We are going to prove that /; and I3

are uniformly bounded in 6.

First recall that
T 02 5
12 = E(l,x,v) [f po-(q*ﬁ)evsx;“’ avaI(S’X;“, aVs)
t

1 . x
+§O'233VP()(S,XS’6 Vo) +(a—be®V)d,Po(s, X0, Vyds|,
_ )@ 0
I2 +I2 +I2 .

Then we have

IA

T
1 * *
£V < By [ f PO Taxe”* X312, P1 (s, X, vs)|ds],
1

T T
+5\2 1/2 %6 2
Po'o'maxE(t/ V) [f (eVSXS ) ds] 'E(t/,x,v) []; (aiVPl(S’XS ’V“)) ds]’
Viydgs| B14 T i 2 ml/2 ! ob e
PO T maxB (txv) [f (™) ds] (t,x,v) []; (Xs™) ds} 'allE(t,x,v) [ft‘ (1+|Xs7 ! +|VS|C”) ds]’

POITmax(Ca(T, o) (Ny(T, x, ) * A1 [Cop, (T, V) + Nog, (T, x, )12,

IA

IA

IA
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T
2 1, 12 /2 2 oy 2
Ié) < 50‘ (T -1 / .E(t{x,v) [f; (avao(s,Xs ,Vs)) a’s],
1
< 502@—r)”z.Aoz[Cme(T,w+N2602(T,x,v)]”2,
and
3 T 1/2 T 2
[ < El/z(t,x,v)[ f (a—be®"YdsE/? f (8vPo(s. X5, Vy)) ds],
t 7 t

T T
12 2 12 2aV, 1/2 0 2
< B2, [ ft a®+bre ds] B2, [ j; (avPo(s,Xs ,VS)) ds],
1 ) 1/2 12
< 5 (CaT W)+ @ T =0) 7 Aot Capg, (T-v) + Nacy, (T x ]I 2,

where Agy, A11 and Ao are positive constants.

Next recall that

T
1 N .
I; = E(t,x,v)lf 50235VP1(S,XS’5,Vs)+(a—beaw)avpl(s,xs"s,Vs)ds],
t
o= 1"+

Then we have

IA

T
1 1 5 172 =1/2 5 v ’
1§> i (T -0 ,E(t{x,v) [j; (GWPl(s,Xs 9Vs)) a’s],

1 _
ST =02 Aol Copy, (T, V) + Nagyn (T, 5,011 12,

IA

and

T T
2 1/2 1/2 0 2
1P < B, [ f[ 24 bzezavsds] E/2, [ ft (6,P1(5.X5°.Vy)) dsl,

[@*(T = 1)+ Co(T. )12 A1 [Cop, (T.v) + Nagy, (T, x, )12,

IA

where Ag; , A are positive constants.
We can see that
1 3
E%(t,x,v) = Ip+ 621 + 61, + 62 I3,

is of order O(6).
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3.3 Second-Order BSDE Representation of the Worst-Case

Scenario

Backward stochastic differential equations (BSDEs) introduced for the first time in
Bismut [9] in the linear case, and by Pardoux and Peng [48]] in the general case where they
become a popular field of research. The theory has found many applications as stochastic
control [52]], theoretical economics [49], and mathematical finance [18]. On a filtered
probability space (€2, F,(Fy)w0,r],P) a solution to BSDE consists of a pair of adapting

processes (Y, Z) taking values in R” and R®", such that

dy; f, Y, Zpdt+72,dW;, t€(0,T]
Yr = &,

where the generator f from Q x [0,7]x R" x R" to R”" is a progressively measurable
function, T is a finite time horizon, (W;)sc[0,r] a d-dimensional Brownian motion, and ¢ an
Fr-measurable random variable is terminal condition that the solution is required to satisfy
(see [S1][S8ID).

The BSDE is referred to as a forward-backward stochastic differential equation (FBDE), if
the randomness in the generator f and the terminal condition £ is coming from the state of
a forward SDE [2, 45]. If the solution of BSDE enter the dynamics of the FSDE then the
FBSDEs are called coupled, and uncoupled if it does not, then the solution to the BSDE
could be linked to the solution of a semilinear and quasi-linear parabolic PDE by means
of generalized Feyman-kac formula. This link opened the way to probabilistic numerical
methods for solving this PDEs (For more details see [49]] [60]).

However, PDEs corresponding to standard FBSDEs cannot be nonlinear in the second-
order derivatives because second-order term arise only linearly through Ito’s formula from
the quadratic variation of the underlying state process.

Tauzi [[13] introduce FBSDE with second-order dependence in the generator f, they called
them second-order backward SDE (2BSDE) and they show how they are related to fully
non-linear parabolic PDEs .

We recall the definition of 2BSDE, and we will explain how it is linked to our G-HJB

equation; for details, we refer to [[13].
Definition 3. Let (1, x) € [0,T)xRY, (X?x) se[+,T] a diffusion process and (Y, Zg,1s, Ag)sels,T)
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a quadruple of F'T -progressively measurable processes taking values in R, R?, S? and R?,
respectively. The quadruple (Y,Z,I',A) is called a solution to the second order backward
stochastic differential equation (2BSDE) corresponding to (X"*, f, g) if

dYy, = f(s,X55 Y, Zo T)ds+Z,0dXs", selt,T), (3.29)
dZ, = Agds+TgdXy*, selt,T), (3.30)
vr o= g(Xp). (3.31)

where Z/, 0 dX}"* denotes Fisk-Stratonovich integration, which is related to Ito integration
by
1 1
Z odX" = Z!dX"* + 5d (z.X") = Z,dX ;" + 5 Tr[Cyo (X550 (X5Y 1 ds.

The last definition furnishes a fundamental relation between 2BSDE like ((3.29)-(3.31))
and fully nonlinear parabolic PDEs. To understand this relation, let £ : [0, 7)xR? xR xR9 x
S? 5 R and g: R4 — R be continuous functions. Further assume that « : [0,T]xR¢ —» R

is a continuous function with the properties
us, Du, D*u, £LDu € C°([0,T) xRY),
that solves the PDE
—uy(t,x) + f (t.x,u(t, x), Du(t,x), D*u(t,x)) = 0 on[0,T)xR’, (3.32)

with terminal condition
u(T,x) = g(x), xeR?. (3.33)

Then, it follows directly from Itd’s formula that for each pair (z,x) € [0,T) X R4, the pro-

cesses
Y, = u(s,Xf;x), s€[tT],
Z, = Du(s.X'), se[tT],
I, = Dzu(s,xg”‘), set,T],
Ay = LDu(s,Xf;x), setT],

solve the 2BSDE corresponding to (X", f, g). Conversely, the first component of the solu-
tion of the 2BSDE (3.29) at the initial time is a solution of the fully nonlinear PDE (3.32)
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satisfies Y; = u(, x). Note that the representation of (3.32) by a 2BSDE is not unique, even
though its solution is (cf. [29]]).

The representation of fully nonlinear parabolic PDEs, such as (3.17), allows to solve
them numerically by solving the corresponding 2BSDE, e.g. by using the techniques de-
scribed in [6]].

3.3.1 2BSDE Representation of the Payoff

Here we specifically use the link between our G-HJB equation and 2BSDEs to improve
the convergence rate of the convergence P° — P, To this end we write the 2BSDE for P?

(resp. PY) as follows: for all s € [z, T) it holds that

DY = R Y 2 T s (2 o S, ()
dz8 = AVds+TOdROM, (335
Yg;t,x — h(X;;f,X), (3.36)

where X is the solution to the SDE

d(X°, V) =dX,=dW,, dW,=dW! W3, Xo=x.

Similarly,
Yyt = [0 XP Y 28 T ds + (20 0 dX™ (3.37)
N N N N N N N
dz0 = A%ds+10axd", (3.38)
Oit,x  _ 031,
YT X _ ]’l(XT X)’ (339)

where X? is the solution to
dX? =dw!, Xo=x.

Here h denotes the payoft function (specified below), and

1
Os,x,y,2,8) = —Exoe%(s LOPS 1

1 1
1°(s,%,y,2,8) = —Exéeszs LIPS 11 =2 Vo2 oplo(S12)IS 12 -6 50'252,2 +(a- be””)zZ),

where,

o x>0
=4 " (3.40)

Omin Xx<0
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Note that the nonlinear diffusion coeflicient has been moved to the drift terms (or: drivers)
f%and £, which is why the SDE dynamics is trivial. Then from the link between G-PDEs
and 2BSDEs we have Yl0 X = PO, x) and Yf X = po, x).

We will now use this link to revisit the convergence result for P* — PY.
Theorem 21 ([47]]). P? converges to P as 6 — 0, uniformly on compact sets and at rate 6.

Proof. We have
T
= h &)+ f PR Y 2 T dr
t
T ~ S
f (Zd;s,x);odX(rS,s,x’
t

. s . s 1 - s - s
05, 38, 05, 05, 05,
(Z‘S’s’x); odXOH = (7% NdXyt + ETr[FfO'(X, SN (XY dr,

(ZS5Y AR = (Z0 AW+ (205 dW?
and thus

T
= ng s [ R 2 e [ )
t
1 o 5: 5
- f ETr[F‘rSO'(X,‘.S’S’x)o'(Xf’S’x)']dr.
t

0;t,x
Yt

T
h(XO;t,x) +f fO(r’X’(?;s,x’ Yi);s,x’zg;s,x’r(r);sv,x)dr
t
T .
_ f (ZO;S’X);OdX,(,)’S’x,
t
0;s, S, 0;s, 0;s, 0;,

(ZY5%Y 0 dX S = (295 dR) T + ETr[F(r)O'(Xr Yo (XY Vdr

Calling Z** = (Z%**,0)
(Z050dR) S = (Zy dXPS = (205, dW} +0,

we obtain

T T
Y = b + f PO X Y 2 T dr f (Z%dW,;
t t

T
1 0. 0.
- f 5Tr[F(,)O'(XQ’”)O'(XQ’S’X)’]dr.
t
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Now let y, = Y*** — y*"* Then
v =R = ") + f O R i 7o, sy
t
— FOr, x 05 yOsx ZOwsx pOsxy g, f T(((Zf;s’x);dW,l +(Z5),dW?)
t
—(Z%dW}) - Te Mo (R (XY 1))

T
:h(X’(IS:t,X) _ h(X%t’x) + f f&(r, X}(f,s,x, Yf,s,x’ Zf,s,x,rf,s,x)
t
T
— Lo XY 2 dr f ((Z* = @AW +(Z3"),d W)
t

- ft ' %(Tr[rfao?f”’ﬁa()?f”’ﬁ’] = Tr[Vo (X))o (XY D,
where
PO RPE Y 2 T = O X Y 2 T
= _%(xéezvf = 2eM)o(T1)IPT11 =2 Voopi®eV |o (M)l — 5(%0252 +(a+be""N2).
Applying Itd’s formula to e|y,|> for some @ > 0 then yields

d(e™ly,*) =ae|y,*ds
= 2™ |yl (5, XN, YO, 20 T = f0(s, XJPH Y, 20 T ds
+ 26y, {(Z0), = (20 )dW ) + (25 Y,dW?2)
+ e (Tr[Too (XS ) (XY ] = Te [0 (XY )or (XYY 1 d s
Y~ @I+ NPy

Therefore,
T
e lyfl* + f e {2y, = 2PN = 25 P

t
T ~ . ~ . ~ . ~ .

+ f (T o (X))o (XY ] = Tl o (K)o (X Dydr,
t

05 0; d 2
=h(X3") = (X)) + f e (—a)lysPdr
t

T

+ f 2|ys|{f5(r, Xf;s,x, Yf;s,x’Z;S;s,x,l—«g;s,x) _ fo(}’, X?;s,x, Y?;s,x,zg;s,x,r(r);s,x)})dr
t

T
- f 2e™ |y {20, = (205N )dW, +(Z55),d W}
t
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Since for all £ > 0, we have 2ab < a?/& + gb?, it follows that
T . .
e ly* + f e I(Z)), = 2P = 25PN
t
T
+ f (T[T (X))o (R 1= T o (R o (K7 D,
t

T
<h(X9") — h(Xp") + f ™ (—aly,/*dr

t
T
+ f (lyS|2/8 + S{f(s(r, Xf;s,x, Yf;s’xa Zf;s,x, F(rs';s,x)
t
= 00, X0, YO, 700 T2 g
T
) f 26y (Z)); = (275 )dWy +(Zy™)d W)
t

Therefore, setting a = é, we conclude

T
eIl + f 2, = ZO I + 2PV
t
T
+ f e (T o (X259 or (X55) ] = TrT Vo (X2 (XYY Ddr
t
<h(X5") — h(XF")

T
+ 8f {f(S(I‘, X;S;s,x’ Yré;s,x’zf;s,x’rf;s,x) _ fo(r’ X?;s,x, YS;S’X,ZQ;S’X,FQ;S’X)}Z)dr
t

- f ' 26y [{((Z0), = (2P dW) +(Z3),d W2,
’ (3.41)
Because X; and V; have finite moments of any order, the imposed regularity condition on 4,
together with [26, Thm. 5.2.2 , thm. 5.2.5], Theorem@], Proposition@], and Proposition
in this thesis, imply
E(h(X3") - h(X)")) < C6,

and

E({f6(r, Xf;s,x, Yf;s,x,Zf;s,x,r(rS;s,x) _ fo(r, X?;s,x, YQ;S’x,Zg;S’x,F(,);S’x)}z) < CyS.
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Hence

E [ sup em|)’t|2]
t<s<T
1

b

t

[/ ~T
< C6+Coed+CiE ( f s P, = (2 )IP + ||<z;5”’)‘>;||2}dr)

1
2

b

[ T
< C6+Coed +CE| sup e‘"/2|y,|( f IZE Y, = (2P + ||(Z§”’X>;||2}dr)
t

t<s<T

which together with the inequality ab < a®/2 + b*/2 yields

1
]E[ sup em|yt|2} <Co+Coed + EE

an ]

t<s<T t<s<T
C% g 0 ; 2 0; 2
+7E[ f eI, = @ IIP + I, }dr].
t

As a consequence of the inequality (3.41)), we thus obtain
2 g 5 0; 2 5 2
E[ sup e“ly,|” + f e {IZ* ), = Z7 SO + 2y 51 N dr
1<s<T t
T ~ . ~ . ~ . ~ .
+2 f em(Tr[l"‘rsO'(Xf’s’x)O'(Xf’s’x)’]—Tr[F?a(X?’s’x)O'(Xg’s’x)’])dr]
t

<CS+Coes +C3,

which entails the final result

E[ sup eIy, *| < 6C.,

t<s<T

for some C, > 0 independent of §. O

3.3.2 Numerical Ilustration

We conclude with a numerical demonstration of the theoretical results to confirm that
|P9 — P9 = O(6). To this end, note that the valuation of financial derivatives based on our
UV model requires solving the G-HJB equation (3.9)), which is typically not analytically
solvable.

In low dimension, we can implement a finite difference scheme; here we follow a different
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route and take advantage of the link between G-PDE and 2BSDE. To be specific the payoff

function is chosen as
h(x) = (x=90)" —=2(x—100)" + (x—110)".
We consider the following parameters
X = (Xo0,ko) = (100,-1), omin =0.1,0max = 0.2, @ =2,

T=0.15,a=06,b=05,p=05.

For these parameters, we compute the difference between P° and PV, the solutions of the
G-PDE (3.9) and (3.T1)), using the deep learning 2BSDE solver introduced by Beck et al.
[6]. More specifically, we numerically solve the 2BSDEs (3.34)-(3.36) and (3.37)-(3.39)
with the Python code provided in [6].

The result is shown in Table [3.1] and Figure [3.1] Neglecting the error invoked by the
numerical approximation of the deep neural network, which is difficult to assess, the numer-
ical calculation confirms that |[P° — PO| ~ O(6"7), which is in agreement with the predictions
of Theorem [16/and Theorem
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0 0.5] 0.2 | 0.001
error(6) | 1.2 1 0.6 | 0.02

Table 3.1. The error £%%(8) = P%(0, x) — P°(0, x) for % = (100, —1).

100 F :
107" F B
_ i —O— data O( §°7)
e — sublinear O( §"?)
© linear O( &')
102 ¢ A
10-3 L L A | . . A | . . L
1073 1072 10" 100

Figure 3.1. The error £%%(8) = P9(0,x) — PY(0, x) in doubly logarithmic scale; the slope is
roughly 0.7.
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Chapter 4
Hedging Strategies

In this chapter, we analyse different implications of the stochastic behavior of asset prices
volatilities for option hedging purposes. We assuming a stochastic volatility environment,
we study the accuracy of Black and Scholes implied volatility-based hedging. More pre-
cisely, we analyse the hedging ratios biases and investigate different hedging schemes in a
dynamic setting. Also, we look at how the perturbation analysis helps with the risk man-

agement problem of hedging a derivative position (see [23]]).

4.1 General Thoughts on Hedging

A stochastic volatility option pricing model is a special case of the two-state financial

model, with two sources of risk.

dX(t)
do (1)

uX(t) } dH[ o ()X (1) o1 2, X(8),0°(8))
(8, X(8), o (8)) oo (XD, () 020t X(8), (D))

with E[W1(H)Wa(0)] = pt.

Option price depends on several parameters, such as the underlying stock price X(¢) and

AW (1)
dWa(r) |

its volatility o(7) , the risk-free interest rate r(¢), and the time to maturity 7. The sensitivity
of the price of an option to the variations of its parameters is measured by using partial

derivatives. These quantities, known as Greeks.
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The Greeks of option prices which considered by the practitioners as following

oP . . . .
A = x : Delta is the rate of change of the portfolio value with respect to the asset price.
X
6*P , : :
I' = —: Gamma is the rate of change of delta with respect to the asset price.
0x?
oP
vV = s : Vega is the rate of change of the portfolio value with respect to the asset’s volatility.
o
oP . . . . . .
R = P : Rho is the derivative of the option value with respect to the risk free interest rate.
r
opP e o .
0 = o : measures the sensitivity of the value of the derivative to the passage of time.

play a crucial role in trading and managing portfolios of options [30].

To hedging the exposure of the portfolio to market risk, practitioners use the delta,
gamma and vega measures to quantify the different aspects of this inherent risk. They try
to immune their option portfolio from the small changes in the price of the underlying as-
set (delta/gamma hedging) and its volatility (sigma hedging), so we need for very accurate
computing of Greeks.

With the close-to-close historic volatility, the hedging ratios calculated by Black-Scholes
model fail to realize a well-hedged position [S5] [S6]]. To improve the hedging properties
of the Black-Scholes model, usually we use the Black-Scholes implied volatility. However,
a various biases in option hedging strategies may be produced by using Black -Scholes im-
plied volatilities in conjunction with the Black-Scholes computed Greeks, in the existence

of stochastic volatility.

4.1.1 Hedging Ratios Biases

According to Renault and Touzi (1996) [55]], we define the delta hedging bias as the differ-
ence between the Black-Scholes implied volatility-based delta and the stochastic volatility

model’s one

ABS (x,0'y = A5V (x, 00).
Renault and Touzi proved that, provided we have p = 0, we verify Vx>0 and o > 0
AP o'(x,0) < AV(x0),
AP (-x,0'(~x,0)) = AV(-x0),

ABS(0,07(0,0)) AV (0, 0).
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For an in-the-money (out-of-the-money) option, the use of Black-Scholes implied volatility

leads to an underhedged (overhedged) position.
Proposition 22. Vx and Yo > 0 we have

ASV(x,0),
ASV(x,0).

p - -1 = ABS (x,0 (x,07))

IA

p - +1 = ABS (x,0 (x,07))

\%

Whatever the moneyness of the option, the Black-Scholes implied volatility-based delta
hedging leads systematically to an underhedged position when p strongly negative. On the
other hand, for p strongly positive, the use of Black-Scholes implicit volatility leads sys-
tematically too to an overhedged position [S35]].

In order to keep the portfolio delta neutral, gamma, which measures the rate of change in
the delta with respect to changes in the underlying asset price, reflects the need of relatively
frequent adjustments in this portfolio. Delta changes slowly and rebalancing to maintain
a neutral portfolio can be performed relatively less frequently, if gamma is small. Fur-
ther, if gamma is large, delta is highly sensitive to the price of underlying asset and good

management of options portfolio requires an active delta hedging [30].

rs Vix,o) for x—0,
s Vix,o) for x<0,

p = +1 = I'Bxo) < Vx0o) for x>0.

p = 0 = I'Buo)

IA

p - -1 = 55 (x,0%)

IA

With a view to make a portfolio gamma neutral, we need a new _r_ro position in a traded
option, where I and I'y are respectively the gamma of the portfolio and of the traded option.
As in the pure delta hedging case, the accurate computation of Greeks is crucial [55]].
Such in the gamma case, taking a new —% position in a traded option, allow us to make
a portfolio immune to changes in volatility of the underlying asset price, where V is the
vegas of the portfolio and V) the vegas of a traded option. Next, in order to keep delta-
neutrality of the portfolio we must readjust our position in the underlying asset. This type
of strategy is called delta-sigma hedging. Bajeux and Rochet(1992) [4]] have proved that
the hedging problem can be solved through a delta-sigma hedging strategy, in a stochastic
volatility context with p = 0.
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4.1.2 Option Hedging Strategies in Stochastic Volatility Environment

A financial institution that sells an option faces the problem of managing its market risk.
For example, the hedging problem for a financial institution that writes at time fy a Euro-
pean call option of price C(#y) consists of producing a wealth of max[X(T") — K, 0] at the
maturity time 7.

In the Black-Scholes world, where volatilities of asset prices are constant, pure delta hedg-
ing suffices to solve the hedging problem [30]. A short position in an option is hedged with
a time-varying long position in the underlying stock. At any given time, the long positions
are readjusted to equal the delta of the option position. When the hedge is rebalanced con-
tinuously, the actualized cost of this strategy is exactly equal to the price C(#y) of the option

: the net hedge cost is zero [55].

4.1.3 Pure Delta Hedging

Take for example, a continuously rebalanced hedge portfolio composed of a short position

in one European call option and a long position in @ underlying stocks
II(r) = =C(#) + aX(2). 4.1

The construction of this portfolio is financed by a loan constant risk-free interest rate r.

The instantaneous change in the value of the hedge portfolio II is given by
R(I1(2)) = —rIl(t)dt + dI1(2), 4.2)
with

dll(t) = DIldt+11(, X(1),0(2)o ()X (1) dWi(t)
+ Mo, X(0),0(0))o22(1, X (1), o () dW2(1), (4.3)

where D is the Dynkin operator.
We have

1 1
DII = I + uX (I + po I, + 502@))(2(011“ + Eag,znm +po ()X (D022

If
o= = 20 x0,000), 44
ox
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the portfolio IT is delta neutral at time .
To estimate a, we use the Black-Scholes model and the Black-Scholes implied volatility.
This leads to

P = AP = ABS (1, x(1), ' (1, x(2). (1)) (4.5)

So we obtain
d11BS (1) = [-DC (1) + ABS uX(0)1dt + [APS — Cxlo()X(1)dW\(£) + CooandWa(t).  (4.6)

In a stochastic volatility world Cx = ASV.
Noting that HB = ABS — A5V gives

dI1%5 (1) = [-DC (1) + ABS uX(0))dt + HBr(£)X(1)dW1 (1) + C o2 2d W (0). (4.7)

The instantaneous change in value of the Black and Scholes implied volatility-based
hedge portfolio has two stochastic components. The first arises from the delta hedging bias.
The second arises from the fact that the volatility is not hedged at all. The instantaneous

variance of dIT5 is
var[dI1? (1)|F/]
dt
Now consider the delta neutral hedge portfolio based on the stochastic volatility option

= HB o> ()X*(1) + C2.05 5 + 20HBor (D X(1)Cy 02 2. (4.8)

pricing model. In this case, we have
@’ =A%V = Cx (1, X(1),0°(0)), 4.9)

and the instantaneous variance of the change in value of the hedge portfolio is

var[d13V (1)|F,]
dt
Hedging positions of financial institutions are exposed to significant risks, if there is a fail

=Co0%,. (4.10)

to hedge against stochastic volatility. Delta-sigma hedging able to substantially reduce this

risk.

4.1.4 Delta-Sigma Hedging

Consider a continuously rebalanced hedge portfolio consisting of a short position in one
European call option, a position in @; units of the underlying asset and a position in a

units of any other exchange-traded option on the same asset

P() = =C () + a1 C*() + a2 X (). 4.11)
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The setting up of this portfolio is financed by a loan at the constant risk-free interest rate r.

The portfolio II is delta and vega neutral if

Cl
)y = -z,
: c; (4.12)
a = C )16 —ay C)z(.
Using the Black-Scholes model and the Black-Scholes implied volatility to estimate | and
) leads to
BS _ v
a - aBS >
! vy (4.13)
1295 _ ABS _BSABS.

In this case we obtain

dii®S (5 = [-DC'+a¥ DC* + oS ux (01t
+[=CL+ a5 CZ+ a8 Jo(t) X (1)dW (1)
+H-CL+aB5 CElop2dWH (). (4.14)

In a stochastic volatility world Ci = Afv and Cf, = ”VI.SV ,i=1,2. Noting that HB| = A?S —
A‘lw and HB; = AzBS - Agv gives

ATBS (1) = [—DC1+(V—IBSDC2+(ABS
- rvBS 1

2

+ [HBl

Vgs ABS ) ,uX(t)] dt

—H Bz] o(®X(@®)dW (1) (4.15)

BS
(VBS

(VS 4 + W(VS V] O'z’deQ(t).

The instantaneous change in the value of the Black and Scholes implied volatility-based
hedge portfolio has two stochastic components which arise from the delta and vega hedging

biases [56]]. The instantaneous variance of dIT55 is

B SV 2 2
rvBS (VBS (V ] 2’2

BS
+2p [HBl - %SHBz] [ —V3V+ W(VS V] o)X (1o,

var[dlIBS 0)|F,] _
—g L = [HB; -

HBZ] 0'2(t)X2(t)+[ (VSV+ @16

Now consider the delta-sigma hedging portfolio based on the stochastic volatility option

pricing model. In this case, we have

SV = v
{ 1 vy 4.17)

SV _ SV _ SVASV
@, A] 10 A2 .
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If the hedge is rebalanced continuously, the instantaneous variance in the value of this port-
folio is zero : the stochastic volatility model based delta-sigma scheme solves the hedging

problem.

4.2 Hedging by Perturbation Analysis

In this section, we look at how the perturbation analysis helps with the risk management

problem of hedging a derivative position (see [23]).

4.2.1 The Strategy and its Cost Under the a-Hypergeometric Model

According to chapter[3] the dynamic process of the a-hypergeometric model given by

dXt = rX,dl‘ + X[evtdwl
(4.18)

dV, = (a—be")dt+ dW?.

Noting that, Pgs (¢, x) = Py(t, x,v) the leading-order term in our price approximation drived
in the chapter[3]
Such a strategy replication the derivative at maturity 7" since Po(T, X7, Vr) = h(X7) but it is

not self-financing. The portfolio has

as 6P 0 (L XLV, (4.19)
stocks,
by =e " | Py(t, X, V;) — X,a t,X:, V)|, (4.20)
bounds at time ¢. So that its value is
a:X; +be" = Po(t,X;, V). (4.21)

The infinitesimal change of Py(t, X;, V;), by using Ito’s formula, is given as

_ (%P0, 1 o, 20%Pg vy 2Py 6 58Py
dPy(t, X, V) = |22+ 5 X =24 NoporeV X,o—b + S0P =2 |dr
OP
+ ath,+a—0th (4.22)
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Where we have dropped the argument (¢, X;, V;) in the derivatives of Py. The infinitesimal

change due to the market (the self-financing part) is given by
adX, +rbe"dt, (4.23)

and thus the infinitesimal P& L (positive or negative)induced by the strategy is given cost

by the difference

dPO(t, X[, V[) - atht - rbtertdt

= 5(6 v (Vt)X a dt+ \/_ pO'e X[a av ) —0 (‘)VZ dt+ 6_dVI,

dt+ Voo —dW2+O(5) (4.24)

_ Loy, 52 28°Po Voooe" 9P
= 5(6 )X a—dt+ opoe Xtaa

where we have used the Black-Scholes equation satisfied by Py, and then identified the
terms of order at most V6. Noting that & = G (v) is the local effective volatility estimated
from historical returns data.

The corresponding cumulative P& L up to time #, and discounted to time 0, is

| 287 Po
Eo(r) = = fo e (e =57 (Vy) X; —7ds

2
t 2
+ \/(_Spfe'”O'erXsa Pods
Ox0v
+ Vs f —dW2 0(5). (4.25)

4.2.2 Approximation of the Cost

Due to the volatility factor V;, the cost Eg(t) is given in the second line of 4.25|by

Ey(r)= Vop f oe' X, :—dS Vo f W(z) 0(6). (4.26)

This cost can be writhen
ES(t) = V3(BY + M?) +O(9). (4.27)

Where we define the bias
B =p fo t e-”aewxs‘;ig;(s,xs,vs)ds, (4.28)
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and the zero-mean martingale
! 0P
MO = f e S —2(s,X,, Vy)dW?2. (4.29)
0 ov '
The cost Ey induced by a Black-Scholes hedging strategy, given in[4.25] can written

Eo = V5(B? + M%)+ 0(6). (4.30)

4.2.3 Mean Self-Financing Hedgin Strategy

To remove the biases in the cumulative cost underlined in the calculation above, we propose
to use the perturbation method. we will correct the Hedging strategy in the following way:
manage the portfolio made of

d(Pgs + 05 (. X1, V)

ar = 8;(: (I,Xt, Vl)7

shares of the risky asset and

d(Pps + 0 )

X, Vo |, 4.31)
0x

b[ = e_rt (PBS + Qg,l)(taxla Vt) _Xl‘

shares of the riskless asset, where Pps(t,X;) = Po(t,X;, V) in computed at & = (v) and

Qg ,(tx,v) solve the following partial differential equation,

0 0P
Lps @G, = =2V (xg-(—2),
with zero terminal conditions Qg (Tx,v) =
Qg,l is given explicitly by
oP
05, = (T =DVi(w)x —( o). (4.32)

Notice that indeed Qg , 1s small of order V6.

The hedging ratio a; is now given by

0 OPps

OPss (T—t)vé(v)—u—(

=)

which is the usual Black-Sholes delta corrected by a combination of Greeks up to fourth-

order derivatives [23]].
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With this new hedging ratio, the infinitesimal cost of the hedging strategy. denoted by
dEIQ(t), is given by

dEC = d(Pps + Q) )(t. X, Vi) — aid X, — rbye"dot.

With the new hedging strategy, we repeat the previous calculation, we find

0*(Pps — Q5 ) o*P
5 vy BS
—ax2 dt+ \/(_5,00'6 t Xy

+ \/Eaagfs AW} +Pps (3))(Q5 )t +O().

The cumulative cost discounted at time zero is given by
1

! d(Pgs +0) )
E%n = - fo e (e — F2 )X ————2 s

1
dEP() = (e =3 (V)X dt

5 e (4.33)

f 0P )
\/gpf e o Xy s + \/gf o2 dw?
0 0x0v 0 ov

—+

! 0 oP
- fe_”Vf(v)Xs—( 55 \as +0(5),
0 ox Jdo

where
Vopo
2

Vo= < f>aW).

So
ﬁ(apBS
ox Oo

we then observe that, with this choice of corrections in the hedging ratio and the definition

EC(H) = Vo(BY + M?) -2 f e V)X, )ds +O(6), (4.34)
0

of Vf, we have

" t
V6B —2 f e VI ()X, 0 OB \15 = o3 f e ole = < f> ()T (vy)}
0 0

dx oo
0 (6PBS
x_
ox Oo
In the end, all the terms in the corrected cumulative cost are of order (0) except the

X

)] (s, X5, Vy)ds.

remaining mean-zero martingale term form {.30]so that
E2(1) = VSM; +0(5).

Doing so we have removed the systematic biases in [4.30] and therefore we have reduced
the variance of this small "nonhedgable" part of the risk due to stochastic volatility. The

strategy is now mean self-financing to order ¢ [23]].
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Conclusions and Perspectives

In this chapter, we summarize the obtained results throughout the thesis. Subsequently,

we propose some potential problems regarding the future research topics.

Conclusions

This thesis has dealt with a-hypergeometric stochastic models with uncertain volatility
(UV). The idea is to connect the UV model with a nonlinear expectation framework to
derive a worst-case price scenario, avoiding the complicated and numerically expensive
model calibration step. We have studied the asymptotic behavior of the worst-case scenario
option prices in the case when the time scale at which the stochastic volatility process varies
tends to infinity (i.e. when the volatility process becomes infinitely slow).

As we have shown, the limit model is an accurate simplified description of the UV
model in the regime of the slow variable of the uncertain volatility bounds. The method
presented here can also be applied for other models such as the Heston model.

We have illustrated our results by a numerical example. The numerical solution of
our problem is based on the known link of fully nonlinear second order partial differential
equations that describe the worst-case price scenario and second-order backward stochastic
differential equations (2BSDEs). We should emphasize that the numerical algorithm we use
for solving 2BSDEs even works when the terminal cost that determines the payoff is non-
differentiable. Although this paper is only giving a proof of concept, we expect that the
ideas can be applied also in the case of UV models when, for example, there is only partial

information from the market.
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Perspectives

As we have noticed throughout the thesis, pricing options are calibrated in many meth-
ods, In the coming studies, we will propose models with fractional or multi-fractional
stochastic process. We suggest multiscale stochastic volatility models (Vol-of-Vol models)
and analysis them with the First-order perturbation theory using a combination of singular

and regular perturbation techniques to derive approximations for the option prices.
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