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Abstract

The thesis under study focus on pricing and hedging European options. We propose an

α-hypergeometric model with uncertain volatility (UV) by which we derive a worst-case

scenario for option pricing. The approach is based on the connection between a certain

class of nonlinear partial differential equations of Hamilton-Jacobi-Bellman type (G-HJB),

that govern the nonlinear expectation of the UV model [50] and that provide an alterna-

tive to the difficult model calibration problem of UV models, and second-order backward

stochastic differential equations (2BSDEs). Moreover, we formulate a concrete model that

is solved numerically using the deep learning method by Beck et al. [6] and exploiting the

link between fully nonlinear G-HJB equations and 2BSDE. Finally we highlight several

option Hedging strategies as Delta hedging, Delta-Sigma hedging and the Hedging by per-

turbation analysis.

Key words and phrases: Options, pricing models, α-hypergeometric stochastic volatil-

ity model, uncertain volatility model, 2BSDE, deep learning based discretisation of 2BSDE,

hedging strategies.
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 ملخص  

 
  «α-hypergeometric». نقترح نموذج تركز الأطروحة قيد الدراسة على التسعير والتحوط في الخيارات الأوروبية      

. يعتمد النهج على الارتباط بين فئة معينة من نشتق من خلاله سيناريو أسوأ حالة لتسعير الخيار( UVمع تقلب غير مؤكد )

والتي تحكم التوقع غير الخطي   (،G-HJB) بيلمان-جاكوبي-هاملتونالمعادلات التفاضلية الجزئية غير الخطية من نوع 

  (،UVمؤكد )[ والتي توفر بديلاً للنموذج الصعب مشكلة معايرة نماذج التقلب الغير 50( ]UVمؤكد )لنموذج التقلب الغير 

(. علاوة على ذلك، نقوم بصياغة نموذج ملموس  BSDEs2والمعادلات التفاضلية العشوائية العكسية من الدرجة الثانية )

 G-HJB غلال الارتباط بين معادلات[ واست6. ]Beck et alبواسطة  «deep learning»يتم حله عدديًا باستخدام طريقة 

- دلتا وتحوط  دلتا،نسلط الضوء على العديد من استراتيجيات التحوط في الخيارات مثل تحوط  أخيرًا،. BSDE2و اللاخطية

 والتحوط عن طريق تحليل الاضطراب.  يجما،س

 

نموذج   ،«α-hypergeometric»نموذج التقلب العشوائي   التسعير،نماذج  الخيارات، :المفتاحية لكلمات والعبارات ا     

 استراتيجيات التحوط.  2BSDE لـ «deep learning»لتقدير القائم على  ،BSDE 2المؤكد،التقلب غير 



Résumé 

 

Dans la présente thèse, nous nous focalisons sur l'évaluation et la couverture des options 

européennes. Nous proposons un modèle α-hypergéométrique à volatilité incertaine (UV) par 

lequel nous dérivons un pire scénario pour la valorisation des options. L'approche est basée sur 

la connexion entre une certaine classe d'équations aux dérivées partielles non linéaires du type 

Hamilton-Jacobi-Bellman (G-HJB), qui gouvernent l'espérance non linéaire du modèle UV [50] 

et qui fournissent une alternative au problème difficile du calibrage des modèles UV et 

équations différentielles stochastiques rétrogrades du second ordre (2BSDEs). De plus, nous 

formulons un modèle concret qui est résolu numériquement en utilisant la méthode « Deep 

Learning » de Beck et al. [6] et en exploitant le lien entre les équations G-HJB entièrement non 

linéaires et 2BSDE. Enfin, nous mettons en évidence plusieurs stratégies de couverture de 

l’option telle que, la couverture Delta, la couverture Sigma et la couverture par l'analyse de 

perturbation. 

 

     Mots et phrases clés : Options, modèles d’évaluation, modèle de α-hypergéométrique                   

à volatilité stochastique, modèle de volatilité incertaine, 2BSDE, discrétisation de 2BSDE 

basée sur « deep learning », stratégies de couverture. 

 



Introdution

A derivative can be defined as a financial instrument whose value depends on the values

of other, more basic, underlying variables. Very often the variables underlying derivatives

are the prices of traded assets. A stock option, for example, is a derivative whose value is

dependent on the price of a stock. The exercise of the option allows its holder to realize

a profit equal to XT −K, by buying the derivative at the strike price K and reselling it on

the market at the price XT . We see that at maturity T , the value of the call is given by the

quantity:

(XT −K)+ = max(XT −K,0)

For the seller of the option, it is a question, in the event of exercise, of being able to provide

a derivative at the price K, and, consequently of being able to produce at maturity a wealth

equal to (XT −K)+. At the time of the sale of the option, which we will take as the origin

of the times, the price XT is unknown and two questions arise:

1- How much should the buyer of the option pay, in other words how to evaluate at the

instant t = 0 a wealth (XT −K)+ available at the date T? This is the pricing problem.

2- How will the seller, who receives the premium at time 0, manage to produce wealth

(XT −K)+ on date T? It’s the hedging problem.

The classical option pricing problem based on the seminal work by Black and Scholes [10]

assumes that the volatility of the underlying asset is constant over time. While the Black-

Scholes model is still considered an important paradigm for option pricing, there is plenty

of empirical evidences that the assumption of constant volatility is not adequate. In order

to come up with more realistic models, various strategies have been proposed to treat the

volatility of asset prices as a stochastic process [35]. One of the most famous represen-

tatives of the large class of stochastic volatility models is the Heston model [32] that has
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become the basis of many other models, such as jump diffusion models [39], and various

forms of uncertain volatility models (UVM) such as [3, 24, 28], all of which can be con-

sidered as extensions of the Black-Scholes model.

In the Heston model, the price hits zero in finite time unless the Filler condition is im-

posed. As a consequence, the underlying Optimization problems are typically endowed

with constraints, which pose Additional problems in model calibration. In view of this, the

α-hypergeometric stochastic volatility model has been introduced by Da Fonseca and Mar-

tini [16] to ensure strict positivity of volatility. On the other hand, the uncertain volatility

model developed by [3] has received intensive attention in mathematical finance for risk

management purposes. Where they are proposed for pricing and hedging derivative secu-

rities and option portfolios in an environment where the volatility is not known precisely,

but is assumed instead to lie between two extreme values σmin, and σmax [14] [57]. In our

work we consider an α-hypergeometric stochastic volatility model, also, we focus on the

uncertain volatility model.

One of the common features of all stochastic volatility models is that the volatility process

can only be indirectly observed through the asset price, which poses specific challenges for

the parameter estimation (or: calibration) of these models. Standard approaches are based

on maximum likelihood estimation using (filtered) time series data [1, 36] or fitting of the

implied volatility surface [25, 27]. While Jean-Pierre FOUQUE presented in his book [23]

the multiscale perturbation analysis in the case of European options, where he uses a com-

bination of singular and regular perturbation techniques to derive approximations for the

option prices. Furthermore, in the Markovian framework , option prices are obtained as

solutions of linear (or nonlinear) partial differential equations [11] [19]. The solution of

the partial differential equations have interesting connections to the solution of the back-

ward stochastic differential equations (BSDEs)and to the solution of the forward-backward

stochastic differential equations (FBSDEs) , many scientific articles have dealt with this

link, mention to [2][33][34] , whereas Touzi [13] introduced the second-order backward

stochastic differential equations (2BSDEs) and show how they are related to fully nonlin-

ear parabolic PDEs see also [46][53].

The Greeks are the quantities representing the sensitivity of the price of derivatives such as

options to a change in the underlying parameters on which the value of an instrument or

portfolio of financial instruments is dependent. The most common of the Greeks are the

11



first order derivatives: delta, Vega, theta and rho as well as gamma, a second-order deriva-

tive of the value function.

The Greeks of option play a crucial role in trading and managing portfolios of option. the

practitioners use them to quantify the different aspects of the risk inherent in their option

portfolios. They attempt to make the portfolio immune to small changes in the price of the

underlying asset (delta/gamma hedging) and its volatility (sigma hedging). This is one of

the hedging strategies.

This thesis is organized as follows: In chapter 1 we give a brief introduction about op-

tions, we present the multiscale perturbation analysis in the case of European options and

we highlights on some financial pricing models such as Black-Scholes model and Hes-

ton model. in chapter 2 we focus in our chosen model, the α-hypergeometric stochastic

volatility model, we present some basic properties to this model, we study the pricing op-

tion by using the Mellin transformation method also the approximation of the solution of

the partial differential equation corresponding to the model. In chapter 3 we formulate the

worst-case price scenario and the corresponding fully nonlinear partial differential equation

of G-Hamilton-Jacobi-Bellman type (G-HJB equation), and we derive some basic proper-

ties such as moment bounds and the convergence of the worst-case price scenario as δ→ 0

(δ > 0 the rescale time); this chapter also includes some technical results such as conver-

gence of the second derivatives, we consider the formulation of the fully nonlinear PDE

for the nonlinear expectation of the price process and derive a uniform corrector result for

the limit δ→ 0. We moreover formulate a concrete model that is solved numerically using

the deep learning method by Beck et al. [6] and exploiting the link between fully nonlin-

ear G-HJB equations and 2BSDE. In chapter 4 we present some hedging strategies such as

Pure delta hedging, Delta-sigma hedging and hedging by perturbation analysis. In the end

of this thesis, we give the conclusion and the perspective also the bibliography.
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Chapter 1

Background

In this chapter, we give a brief introduction about options, we present the multiscale per-

turbation analysis in the case of European options [23],[59] and we highlight on some fi-

nancial pricing models such as Black-Scholes model [10],[17] and Heston model [32],[35].

1.1 Around Options

Derivatives (contingent claims) are contracts based on the underlying asset price (Xt).

They go back a long, long way. One of the earliest mentions of derivatives, by Aristotle

(384-322 BCE) in his Politics, describes the successful trading of the noted Greek philoso-

pher Thales (mid-620s to mid-540s BCE).

"as in the contrivance of Thales the Milesian, when they reviled him for his

poverty, as if the study of philosophy was useless; for they say that he, per-

ceiving by his skill in astrology that there would be great plenty of olives that

year, while it was yet winter, having got a little money he gave earnest for all

the oil works that were in Miletus and Chios, which he hired al a low price,

there being no one to bid against him; but when the season came for making

oil, many persons wanting them, he all at once let them upon what terms he

pleased; and raising a large sum of money by that means, conviced them that

it was easy for philosophers to be rich if they chose it."[5]

As seen from [5], Thales gambled asymmetrically on the values of the olives, taking full

advantage if the olives had a higher value than the rental of the contract but only losing the

13



earnest money if not. This asymmetric bet on pricing is the essence of the options.

Options are contracts whose price is derived from the current state of the underlying

asset. The price in the contract is known as the exercise price or strike price K; the date in

the contract is known as the expiration date or maturity T .

There are two types of option: a call option gives the holder the right to buy the underlying

asset by a certain date for a certain price; a put option gives the holder the right to sell the

underlying asset by a certain date for a certain price.

American options can be exercised at any time up to the expiration date, however European

options can be exercised only on the maturity itself witch we will be interested.

The payoff of European call option is

h(XT ) = (XT −K)+ =

 XT −K i f XT > K,

0 i f XT ≤ K,

since in the first case the holder will exercise the option and make a profit XT −K, by buying

the stock for K and selling it immediately at the market price XT . In the second case the

option is not exercised, where the market price of the asset is less than the strike price.

Similarly, the payoff of European put option is

h(XT ) = (K −XT )+ =

 K −XT i f XT < K,

0 i f XT ≥ K,

in the first case buying the stock at the market price and exercising the put option yields a

profit of K −XT , and in the second case the option is simply not exercised.

1.2 important theorems

Feynman-Kac Theorem

The Feynman-Kac formula states that a probabilistic expectation value with respect to some

Ito-diffusion can be obtained as a solution of an associated PDE. It may be formulated as

follows

Theorem 1. Let X(t) be a stochastic process driven by a stochastic differential equation

dX(t) = µ(t,X(t))dt +σ(t,X(t))dB(t),

14



with an initial value at initial time t , X(t) = x, and let Y(t, x) ∈ L2 be a deterministic

function which satisfies ∫ T

t
E

[
σ(s,X(s))

∂Y
∂x

(s,X(s))
]2

ds <∞,

with boundary condition Y(T,X(T )) = f (X(T )).

If the function Y(t, x) is a solution to the boundary value problem

∂Y
∂t

+
1
2
σ2(t, x)

∂2Y
∂x2 +µ(t, x)

∂Y
∂x
−g(t, x)Y(t, x) = 0,

then Y has the following representation

Y(t, x) = E
[
exp

(
−

∫ T

t
g(s,X(s))ds

)
f (X(T )) | X(t) = x

]
.

Girsanov’s Theorem

The Girsanov theorem describes the impact of a probability change on stochastic calculus.

Let (Ω, (Ft)t≥0,P) be a filtered probability space.We assume that (Ft)t≥0 is the usual com-

pletion of the filtration of a Brownian motion (Bt)t≥0. Let Q be a probability measure on

F∞ which is equivalent to P. We denote by D the density of Q with respect to P.

Theorem 2 (Girsanov theorem). There exists a progressively measurable process (Θt)t≥0

such that for every t ≥ 0,

P

(∫ t

0
Θ2

sds < +∞

)
= 1,

and

E (D | Ft) = exp
(∫ t

0
ΘsdBs−

1
2

∫ t

0
Θ2

sds
)
.

Moreover, the process Bt −
∫ t

0 Θsds is a Brownian motion on the filtered probability space

(Ω, (Ft)t≥0,Q). As a consequence, a continuous and adapted process (Xt)t≥0 is a P−semimartingale

if and only if it is a Q−semimartingale.

1.3 First-Order Perturbation Theory

In this section, we present briefly the multiscale perturbation analysis in the case of

European options [23]. These models have two stochastic volatility factors, one fast and
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one slow, but in our chosen model we focus only on the slow stochastic volatility factor

[59].

Our objective is to price European derivatives and therefore we consider these models under

a risk-neutral pricing probability measure Q, we then write the pricing partial differential

equations; where the solution of this end is considered as option prices, and we derive the

first order approximation.

1.3.1 Option Pricing Under Slow Stochastic Volatility

The Model Under Risk-Neutral Measure Q

Under risk-neutral pricing measure Q, we give the system of stochastic equations

dXt = rXtdt + f (Vt)XtdW1
t , (1.1)

dVt = (δc(Vt)−
√
δg(Vt)Λ(Vt))dt +

√
δg(Vt)dW2

t ,

which present the evolution of the price Xt of the underlying asset where:

1) Q-standard Brownian motions (W1
t ,W

2
t ) are correlated, d < W1

t ,W
2
t >= ρdt |ρ| < 1.

2) The volatility f (Vt) of the underlying asset Xt is driven by the slow volatility factor

Vt, where f is a positive function and smooth in v.

3) r ∈ R is the instantaneous interest rate.

4) The value Xt of the underlying asset remains positive, as can be seen by applying

Itô’s formula to deduce

Xt = X0 exp
{∫ t

0
(r−

1
2

f 2(Vt))ds +

∫ t

0
f (Vs)dW1

s

}
.

5) δ > 0 corresponds the long time scale 1
δ of the slow volatility factor Vt.

6) The coefficients c(V) and g(V) describe the dynamics of the process Vt.

7) Λ(V) is combined market prices of volatility risk which determine the risk-neutral

pricing measure Q.
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The price of the European option Pδ(t, x,v) is a function of the t < T , The value Xt of the

under asset and the value Vt of the slow volatility factor.

Pδ(t,Xt,Vt) = E
{
e−r(T−t)h(XT )|Xt,Vt

}
, (1.2)

where under the risk-neutral probabilityQ, the process (Xt,Vt) is Markovian , E{} the expec-

tation value depends on the parameter r and the functions ( f ,c,g,Λ), and h(XT ) the payoff

function of the European option. In order to use 1.2, the parameter r and the functions

( f ,c,g,Λ) need to be fully specified and estimated, so we use the perturbation approach

which will simplify these complicated issues by approximating the price Pδ by a quantity

depends only on a few group market parameters. This approximation is of the form

Pδ = P0 + Pδ1, (1.3)

where P0 is Black-Scholes price and Pδ1 is the first-order slow scale correction.

1.3.2 Pricing Partial Differential Equation

The function Pδ(t, x,v) defined in 1.2 is also characterized as the solution of the partial

differential equation

∂Pδ

∂t
+L(X,V)Pδ− rPδ = 0, (1.4)

with the terminal condition Pδ(T, x,v) = h(XT ) and where L(X,V) denotes the infinites-

imal generator of the Markov’s process (Xt,Vt) given by 1.1.

We define the operator Lδ by

Lδ =
∂

∂t
+L(X,V)− r,

so we can be written the equation 1.4 and its terminal condition as

LδPδ = 0, (1.5)

Pδ(T, x,v) = h(XT ). (1.6)

When the parameter δ is small, it’s appropriate to write the operator Lδ as a sum of com-

ponents with a view to derive approximation for Pδ. This decomposition is

Lδ =LBS+
√
δM1 +δM2 + . . . , (1.7)
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where

LBS =
∂

∂t
+

1
2

f 2(v)x2 ∂
2

∂x2 + r(x
∂

∂x
− .), (1.8)

M1 = g(v)(ρ f (v)x
∂2

∂x∂v
−Λ(v)

∂

∂v
), (1.9)

M2 =
1
2

g2(v)
∂2

∂v2 + c(v)
∂

∂v
, (1.10)
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note that

• LBS : contains the time derivative and is the Black-Scholes operator at the volatility

level f (V).

• M1: contains the mixed derivative due to covariation between X and V and the first

derivative with respect to V due to the market price volatility risk Λ.

• M2: in the infinitesimal generator of process V under the physical measure P.

Lemma 3 ([23]). The process Vt with infinitesimal generator M2 given by 1.10 admits

moments of any order uniformly in t ≤ T

sup
t≤T
E
{
|Vt|

k
}
≤C(T,k).

In 1.7 we notice that in the small δ limit, the operator terms associated with this parameter

are small, it gives rise to regular perturbation problem about Black-Scholes operator LBS

[22].

Now we expand Pδ in powers of
√
δ to give a formal derivation of the price approxima-

tion when δ is small.

Pδ = P0 +
√
δP1 +δP2 + . . . , (1.11)

before using 1.7 to collect the terms in the increasing powers of δ , we insert the expansion

1.11 into the partial differential equation 1.5 and also the terminal condition 1.6, so

LBS P0 +
√
δ {LBS P1 + M1P0}+ · · · = 0. (1.12)

Equating to zero first terms independent of δ and then the terms in
√
δ in 1.12, and similarly

in the terminal condition leads us to define P0 and P1 as follows

Definition 1. We define P0 as the unique solution to the problem

LBS P0 = 0 (1.13)

P0(T, x,v) = h(x). (1.14)

Definition 2. The next term P1 is defined as the unique solution to the problem

LBS P1 = −M1P0 (1.15)

P1(T, x,v) = 0. (1.16)
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Thus P0 is the solution of the homogeneous linear parabolic PDE 1.13 with h(x) ter-

minal condition, while P1, the first-order term in
√
δ, solves a similar problem but with a

source term and zero terminal condition [19].

1.4 Financial Pricing Models

In this section, we will highlight on some financial pricing model [38] such as Black-

Scholes model [10] and the Heston model [32].

As we know option pricing is the most famous problem in financial market [12, 27, 28] ,

which is based on Black-Scholes model [10] where the volatility is constant over time. So

we will define this model and deduce the Black-Scholes formula from its partial differential

equation.

The imposition about the volatility constant in this model is unrealistic, so the stochastic

volatility models are created to erase this problem [1, 35, 42]. The most well-known is the

Heston model [32], where we will define it and also calibrate its partial differential equation

to pricing European option.

1.4.1 Black-Scholes Model

The Black Scholes model is one of the most important concepts in modern financial theory.

It was developed in 1973 by Fischer Black, Robert Merton, and Myron Scholes [10]. Un-

der Black-Scholes model, In the risk-neutral measure Q, it is assumed that the asset price

follows the stochastic process:

dXt = rXtdt +σXtdWt,

where r ∈ R is a risk-free rate, σ > 0 the volatility and Wt is the Brownian motion.

The Black-Scholes Partial Differential Equation

Black-Scholes partial differential equation satisfied by C(X, t)

−rC(X, t) + r
∂C
∂x

(X, t)X +
∂C
∂t

(X, t) +
1
2
∂2C
∂x2 (X, t)σ2X2 = 0,

20



such that

C(X, t) =

 0 , t ∈ [0,T ),

max{0,X−K} , t = T,

by applying Feynman-Kac formula [38] we obtain

C(X, t) = e−r(T−t)E (max {0,X(T )−K}/Ft) , (1.17)

so,we have

X(t) = X0e(r−σ
2

2 )t+σW(t),

and

ln
X(t)
X0

= (r−
σ2

2
)t +σW(t),

the expectation in 1.17 is possible to compute it, because we know the distribution of X(T ).

This computation gives the next results

C(X, t) = XN(d1)−Ke−r(T−t)N(d2),

where

d1 =
1

σ
√

(T − t)

[
ln(

X
K

) + (r +
σ2

2
)(T − t)

]
, (1.18)

d2 = d1−σ
√

T − t. (1.19)

The result is known as the Black-Scholes formula.

Remark 1. For the put option, we obtain the following result

P(X, t) = Ke−r(T−t)N(−d2)−XN(−d1),

N: standard Gaussian distribution.

1.4.2 Heston Model

As a realistic models for the motion of asset prices, models ambiguity have been proposed

(we advise [21, 39, 42]) such the Heston model [32], it belongs to class of the stochastic

volatility models. In the Heston model, the stock price and the volatility process which

under the Feller condition 2κθ > σ2 is strictly positive, given by the following SDEs

dXt = Xtrdt + Xt
√

VtdW1
t , (1.20)

dVt = κ(θ−Vt)dt +σ
√

VtdW2
t , (1.21)

21



where W1
t and W2

t are standard Brownian processes with correlation coefficient ρ > 0 given

by dW1
t dW2

t = ρdt and

• θ: the long-run average variance of the price; as t tends to infinity, the expected value

of Vt tends to θ.

• κ: the rate at which Vt reverts to θ.

• σ: the ’vol of vol’, which determines the volatility of Vt.

European Option Pricing Under the Heston Model

The Girsanov’s theorem allow as incorporate the market price of volatility, λ, to switch

from probability measure to the risk neutral measure [38]. By using Fiorentini G, Leon A

and Rubio G [20]; the premium of volatility risk λ(t,Xt,Vt) will be defined as

λ(t,Xt,Vt) = λVt.

Black-Scholes, Merton (1973) [10] demonstrated that under a market free arbitrage, the

value of any asset U := U(t,Xt,Vt) must satisfy the PDE

1
2

v2x2∂
2U
∂x2 +ρσvx

∂2U
∂x∂v

+
1
2
σ2v

∂2U
∂v2 + rx

∂U
∂x

+ {κ[θ− v]−λv}
∂U
∂v
− rU +

∂U
∂t

= 0 (1.22)

European call option with a strike price K and maturing at time T is succumb to the condi-

tions bellow

U(X,V,T ) = max(0,X−K),

U(0,V, t) = 0,
∂U
∂x

(∞,V, t) = 1, (1.23)

rx
∂U
∂x

(X,0, t) + κθ
∂U
∂v

(X,0, t)− rU(X,0, t) +
∂U
∂t

(X,0, t) = 0,

U(X,∞, t) = X.

Due to the similar structure to the Black-Scholes model, Heston (1993) [32] suggest that

the solution should be of a similar form as

C(X,V, t) = XP1−KP(X,T )P2, (1.24)
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where the first term is the present value of the underlying asset, and the second term is the

present value of the strike price. Substituting the proposed solution 1.24 into the original

PDE 1.22, shows that P1 and P2 must satisfy the PDEs

1
2

v
∂2P j

∂x2 +ρσv
∂P j

∂x∂v
+

1
2
σ2v

∂2P j

∂v2 + (r + u jv)
∂P j

∂x
+ (a j−b jv)

∂P j

∂v
+
∂P j

∂t
= 0, (1.25)

where u1 = 1
2 , u2 = −1

2 , a = κθ , b1 = κ+λ−ρσ and b2 = κ+λ for j = 1,2.

The European option price satisfies the boundary condition 1.23 and the PDEs 1.25 are

constrained to the terminal condition

P j(X,V,T, ln[K]) = 1{X>ln[K]}. (1.26)

Then characteristic function solution is

P j(X,V, t,N) = eC(T−t,N)+D(T−t,N)v+iNX, (1.27)

where

C(τ,N) = rNiτ+
a
σ2 (b j−ρσNi + d)τ−2ln

[
1−gedτ

1−g

]
,

D(τ,N) =
b j−ρσNi + d

σ2

[
1− edτ

1−gedτ

]
, (1.28)

g =
b j−ρσNi + d
b j−ρσNi−d

,

d =

√
(ρσNi−b j)2−σ2(2u jNi−N2).

After some conversion of the characteristic function 1.27, we obtain the conditional prob-

ability that the option expires in-the-money

P j(X,V,T, ln[K]) =
1
2

+
1
π

∫ ∞

0
<

e−iN ln[K] f j(X,V,T,N)
iN

dN. (1.29)

The final solution consists of 1.24, 1.27 and 1.29. The conditional probability 1.29 may

be interpreted as "adjusted" or "risk-neutralized" probability. The integrand in equation

1.29 is a "smooth function that decays rapidly" and it is integrable as shown by Kendall

and Stuart (1977) [37]. Its integrand cannot be evaluated analytically, but it can be approx-

imated numerically [1] [36].
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Chapter 2

The α-Hypergeometric Stochastic
Volatility Model

Stochastic volatility models [38][42] have been introduced as realistic models for the

motion of asset prices in financial markets. The most well-known of such models is the

Heston model [32], which however has one major drawback as its stochastic volatility may

reach zero in finite time unless one imposes the Feller condition, and this poses potential

problems in model calibration.

In view of this, the α-hypergeometric stochastic volatility model has been introduced by

Da Fonseca and Martini [16] to ensure strict positivity of volatility.

2.1 Generalities About α-Hypergeometric Model

In the α-hypergeometric model the dynamics of the asset price Xt at time t and the

log-volatility Vt are governed by

dXt = rXtdt + eVt XtdW1
t , (2.1)

dVt = (a−beαVt)dt +σdW2
t , (2.2)

where b,α,σ > 0 , a ∈ R are constants, and W1
t , W2

t are Brownian motions with corre-

lation ρ.
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2.1.1 Basic Properties

Dependency on α

αVV0,α,a,b,σ = VαV0,1,αa,αb,ασ,

Noise Limit

(Vt)t≥0 the solution of the stochastic differential equation 2.5,

Vt −V0 + b
∫ t

0
eαVsds = at +σW2

t ,

I(t) =
∫ t

0 eαVsds, we note that dI(t)
dt = eαVt so that

ln
dI(t)

dt
+αbI(t) = α(V0 + at +σW2

t ),

dI(t)
dt

e(αbI(t)) = eα(V0+at+σW2
t ),

which gives in turn by integrating

eαbI(t) = 1 +αb
∫ t

0
eα(V0+as+σW2

s )ds.

Finally, we get

I(t) =
ln

(
1 +αb

∫ t
0 eα(V0+as+σW2

s )
)
ds

αb
. (2.3)

Noiseless Limit

when σ = 0, the above accounts are standing, and from it the formula 2.3 simplifies to

I(t) =
ln

(
1 + b

aeαV0(eαat −1)
)

αb
,

in particular I(t)
t →

a
b when t→∞.

For Negative b

It follows from this scaling property that the SDE has a well-defined solution when b and α

are negative. Also, from the expression of I(t) the solution is well defined up to the stopping

time, if b < 0 and α > 0 [16].
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2.1.2 Martingality of Xt

In order to show certain martingale properties of Xt, we need the following Lemma.

Lemma 1 ([7]). For a ∈ R , b > 0 and c ≥ 0, a Brownian motion Wt and

Lt :=
∫ t

0
a−becWsdWs,

for t ≥ 0, the stochastic exponencial E(L) is a martingale.

Theorem 4 ([16]). Xt in the α-hypergeometric model is a martingale if only if α ≥ 2 or

α < 2 and one of the following conditions is fulfilled

• ρ ≤ 0.

• α > 1.

• α = 1.

• b ≥ ρσ.

Theorem 5 ([7]). Let Xt be a martingale in the α-hypergeometric model, then Xt ∈ Lθ

E( sup
0≤s≤t

Xθ
s) <∞,

holds for all t > 0 in the cases

• α < 1 , ρ < 0 , and 1 < θ ≤ 1
1−ρ2 .

• α = 1 , b > ρσ , and 1 < θ ≤ σ−2bρ+
√

(σ−2bρ)2+4b2(1−ρ2)
2σ(1−ρ2) .

• α > 1 and θ > 1.

Conversely

E(Xθ
t ) =∞,

holds for all t > 0 in the cases

• α < 1 , ρ = 0 , and θ > 1.

• α < 1 , ρ < 0 , and θ > 1
1−ρ2 .

• α = 1 , b = ρσ , and θ > 1.
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2.2 Pricing Option with Mellin Transformation Method

In this section, we will pricing European option with Mellin transformation method,

before that we need to compute certain transforms of Vt also Xt (see [7]).

2.2.1 Moment Transform and Laplace Moment Transform of Vt

Proposition 6. In the 1-hypergeometric model with θ > 0 and λ > θ2

2σ2 + aθ the Laplace

transform in time of the moment transform of Vt is given by∫ ∞

0
e−λtE(eθVt)dt =

1
σ2 e

(
− a
σ2 V0+ b

σ2 eV0
)
(J1 + J2),

with

J1 = 2
Γ(a1−1)

Γ(b1)
e−

z0
2 zη0U(a1−1,b1;z0)(2ν2)−θ−

a
σ2 I1,

J2 = 2
Γ(a1−1)

Γ(b1)
e−

z0
2 zη0M(a1−1,b1;z0)(2ν2)−θ−

a
σ2 I2,

I1 =
zb1−a1+θ

0

b1−a1 + θ2 F2([b1−a1 + 1,b1−a1 + θ][b1−a1 + θ+ 1,b1],−z0),

I2 =
Γ(b1−a1 + θ)Γ(θ−a1 + 1)

Γ(θ)

− zθ−a1+1
0

Γ(b1−1)2F2([2−a1,1 + θ−a1][2−b1,2 + θ−a1],−z0)
Γ(a1−1)(1 + θ−a1)

− zθ−a1+b1
0

Γ(1−b1)2F2([1−a1 + b1, θ−a1 + b1][b1,1 + θ−a1 + b1],−z0)
Γ(a1−b1)(θ−a1 + b1)

,

where a1−1 = η− a
σ2 , b1 = 1 + 2η , ν2 = b

σ2 , z0 = 2ν2eV0 , η2 = a2

σ4 + 2λ
σ2 ,

U the confluent hypergeometric function and M Whittaker function.

Theorem 7. In the α-hypergeometric model the Laplace moment transform of V1 is given

by ∫ ∞

0
e−λtE(eθVt)dt =

∫ ∞

0
e−λtE(e

θ
α Ṽt)dt,

where the process Ṽt with starting value Ṽ0 = αV0 follows the SDE

dṼt = (αa−αbeṼt)dt +ασdWt,

which can be calculated using Proposition 6.
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2.2.2 Transforms of Xt

As we have seen for the process Vt, we are able to compute the Laplace moment transform

for α> 0, but unfortunately, we cannot use the same strategy for Xt. So, in the next Theorem

which compute the Laplace transform in time of the Mellin transform of Xt, we focus on

the 1-hypergeometric model, because it lies in the class of solvable stochastic volatility

model [7].

Theorem 8. Assume Xt and Vt be given by the 1-hpergeometric model with ρσ < b. Fur-

thermore let θ ∈ (θ∗, θ+) where

θ∗ =
9σ−16bρ+ 3

√
32b2 + 9σ2−32bρσ

2σ(9−8ρ2)
,

θ+ =
σ−2bρ+

√
(σ−2bρ)2 + 4b2(1−ρ2)
2σ(1−ρ2)

, (2.4)

and λ > 0 such that (
a2

σ4 +
2λ
σ2

) 1
2

−
(b− θρσ)( a

σ2 + 1
2 )√

(b− θρσ)2 +σ2θ(1− θ)
+

1
2
> 0.

Then the Laplace transform in time of Mellin transform of Xt is given by∫ ∞

0
e−λtE(Xθ

t )dt =
1
σ2 e−

a
σ2 V0+( b

σ2−
θρ
σ )eV0

(J1 + J2),

with

J1 = 2
Γ(a2)
Γ(b2)

e−
z0
2 zη0U(a2,b2;z0)(2ν2)−θ−

a
σ2 I1,

J2 = 2
Γ(a2)
Γ(b2)

e−
z0
2 zη0M(a2,b2;z0)(2ν2)−θ−

a
σ2 I2,

where

I1 =

∞∑
n=0

(a2)n

(b2)nn!
in,

with in is given by

in = (−δ(θ))−η−
a
σ2−n

γ
(
η+

a
σ2 + n,−δ(θ)z0

)
,

where γ denote the lower incomplete gamma function. Alternatively, in satisfies the follow-

ing recurrence relation

δ(θ)in+1 = z
η+ a

σ2 +n

0 eδ(θ)z0 −

(
η+

a
σ2 + n

)
in.
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Furthermore

I2 =

∞∑
n=0

(−1)n

n!

(
Γ(b2−1−n)

Γ(a2−n)
j(−n) +

Γ(1−b2−n)
Γ(a2 + 1−b2−n)

j(1−b2−n)
)
.

The function j is given by

j : t 7→ ζ
η− a

σ2 +t
Γ

(
−η+

a
σ2 − t,z0ζ

)
,

where Γ(., .) denote the upper incomplete gamma function and ζ = −1
2 −

θρσ−b
2ν2σ2

with

a2 = η−
ν1

ν2
+

1
2
,

b2 = 1 + 2η,

ν1 =
(b− θρσ)

σ2 (
a
σ2 +

1
2

),

ν2 =
1
σ2

√
(θρσ−b)2 +σ2θ(1− θ),

z0 = 2ν2eV0 ,

η2 =
a2

σ4 +
2λ
σ2 .

Note: For more details and for the proof of Proposition 6, Theorem 7 and Theorem 8

see [7]

2.2.3 Pricing Vanilla Option

To perform option pricing we will use the method of Mellin transform [8], where for a call

option in the strike, it can be expressed in terms of moments, so for θ > 1∫ ∞

0
E(Xt −K)+Kθ−2dK =

1
θ(θ−1)

E(Xθ
t ).

Applying this to the 1-hypergeometric model and choosing λ and θ as in Theorem 8 and

Laplace transforming in time leads to (see [7])∫ ∞

0
e−λt

∫ ∞

0
E(Xt −K)+Kθ−2dKdt =

1
θ(θ−1)

∫ ∞

0
e−λtE(Xθ

t )dt︸               ︷︷               ︸
=:g(θ,λ)

,
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which can already be calculated. Let L(K,λ) denote the Laplace transforming in time of a

call option with strike K, i.e.

L(K,λ) =

∫ ∞

0
e−λtE(Xt −K)+dt.

By Fubini’s theorem there holds∫ ∞

0
L(K,λ)Kθ−2dK =

g(θ,λ)
θ(θ−1)

.

We need the next Lemma to invert the Mellin transform.

Lemma 9. For θ ∈ (θ∗, θ+) and λ as in Theorem 8 the function

c 7→
g(θ+ ic,λ)

(θ+ ic)(θ+ ic−1)
,

is L1(R).

Proof. The result follows immediately from∣∣∣∣∣ g(θ+ ic,λ)
(θ+ ic)(θ+ ic−1)

∣∣∣∣∣ ≤
∫ ∞

0 e−λtE(|Xθ+ic
t |)dt

|(θ+ ic)(θ+ ic−1)|
≤

∫ ∞
0 e−λtE(Xθ

t )dt

(θ−1)2 + c2 ,

and the fact that θ∗ > 1. �

Therefore we can obtain L by using Mellin’s inversion formula

L(K,λ) =

∫
θ+iR

g(τ,λ)
τ(τ−1)

K−τ+1dτ.

2.3 Vanilla Option Pricing Under α-Hypergeometric Model

In the current section, we will approximate option pricing using partial differential equa-

tion of α-hypergeometric model, in the case of deterministic volatility and the case of

stochastic volatility concentrating on the first order expansion, where we going to focus on

the 2-hypergeometric model in the both cases [54].

We rescale time in the volatility as ξ > 0, recall the α-hypergeometric model

dXt = eVt XtdW1
t ,

dVt = ξ(a−beαVt)dt +
√
ξσdW2

t ,
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where b,α,σ > 0 , a ∈ R are constants, and W1
t , W2

t are Brownian motions with correlation

ρ.

The price P(t,Xt,Vt) of a vanilla option with payoff h(XT ) and under the absence of

arbitrage takes the form

P(t,Xt,Vt) = E[h(XT )/Ft],

where (Ft)t∈[0,T ] is the filtration generated by (Wt1,W2
t )t∈[0,T ] and the function P(t, x,v)

solves the PDE
∂P
∂t

+ ξ(a−beαvt)
∂P
∂v

+
1
2

x2e2vt
∂2P
∂x2 +

√
ξρσxevt

∂2P
∂x∂v

+ ξ
1
2
σ2∂

2P
∂v2 = 0, (2.5)

with terminal condition P(T, x,v) = h(x). We start by expanding P(t, x,v) as

P(t, x,v) = P0(t, x,v) + ξP1(t, x,v) +O(ξ), (2.6)

by plugging the expansion 2.6 into the pricing PDE 2.5 we get system of equations

∂Pn

∂t
+L0Pn +L1Pn−1 +L2Pn−2 = 0, n ∈ N, (2.7)

with 
Pn = 0 n ≤ −1,

P0(T, x,v) = h(x),

Pn(T, x,v) = 0 n ≥ 1.

In particular, operators L0 , L1 and L2 are given by

L0 = ξ(a−beαvt)
∂

∂v
+

1
2

x2e2vt
∂2

∂x2 ,

L1 =
√
ξρσxevt

∂2

∂x∂v
,

L2 =
1
2
ξσ2 ∂

2

∂v2 .

2.3.1 Deterministic Volatility

When n = 0 , we have ∂P0
∂t +L0P0 = 0 and

dX0
t = X0

t eVtdW1
t ,

dV0
t = (a−beαVt)dt .
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also the vanilla option price P0(t,X0
t ,V

0
t ) = E[h(X0

T )/Ft] can be computed by the Black-

Scholes formula as

P0(t,X0
t ,V

0
t ) = E

[
(X0

T −K)+/Ft
]

= E
[(

X0
t e

(
Nγ(t,V0

t )− 1
2γ

2(t,V0
t )

)
−K

)+

/Ft

]
,

where N ' N(0,1) is independent of Ft and γ2(t,V0
t ) =

∫ T
t e2V0

s ds , t ∈ [0,T ].

We note that in the α-hypergeometric model with σ = 0 the integral
∫ T

t eαV0
s ds can be

computed in closed form as (see [7], [16] )∫ T

t
eαV0

s ds =
1
αb

log
(
1 +αbeαV0

t

∫ T−t

0
eαasds

)
,

=
1
αb

log
(
1 +αbeαV0

t
eαa(T−t)−1

αa

)
,

this leads as to the following Proposition.

Proposition 10 ([54]). In the 2-hypergeometric model with σ = 0 the European call price

P0(t,X0
t ,V

0
t ) = E

[
(X0

T −K)+/Ft
]
,

under the terminal condition P0(T, x,v) = (x−K)+ is given by

P0(t, x,v) = xΦ (d+(t, x,v))−KΦ (d−(t, x,v)) ,

where Φ is the standard Gaussian cumulative distribution function,

d±(t, x,v) =
1

γ(t,v)

(
log(

x
K

)∓
γ2(t,v)

2

)
,

γ2(t, x,v) =
1
2b

log
(
1 + 2be2v e2a(T−t)−1

2a

)
. (2.8)

In the case of a put option the function P0(t, x,v) can be obtained as

P0(t, x,v) = −xΦ (−d+(t,v, x)) + KΦ (−d−(t, x,v)) , t ∈ [0,T ].

2.3.2 First Order Expansion

When n = 1, equation 2.7 becomes

∂P1

∂t
+L0P1 +L1P0 = 0,

with P1(T, x,v) = 0.

Note that the approximation (Xt,Vt)t∈[0,T ] does not lie within the class of 2-hypergeometric

model
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Proposition 11 ([54]). The solution of ∂P1
∂t +L0P1 +L1P0 = 0 under terminal condition

P1(T, x,v) = 0 is given by

P1(t, x,v) = −ρK
σ

2b
d−(t, x,v)Φ (d−(t, x,v))

e−2bγ2(t,v) + 2bγ2(t,v)−1
2bγ2(t,v)

, t ∈ [0,T ].

Proof. from the relation Φ(d+(t, x,v)) = 1√
2π

e
(
− 1

2 (d+(t,x,v))2
)

= K
x Φ(d−(t, x,v)) and using the

Feynman-Kac formula with locally Lipschitz coefficients as in e.g. Theorem 1 of Heath

and Schweizer [31], we have

P1(t,X0
t ,V

0
t ) =

∫ T

t
E
[
L1P0(s,X0

s ,V
0
s |Ft)

]
ds,

= −σ

∫ T

t

ρKe2V0
s ∂γ

γ(s,V0
s )∂v

(s,V0
s )E

[
d−(s,X0

s ,V
0
s )Φ(d−(s,X0

s ,V
0
s ))|Ft

]
ds,

= −σρK
d−(t,X0

t ,V
0
t )

γ2(t,V0
t )

Φ
(
d−(t,X0

t ,V
0
t )

)∫ T

t
e2V0

s γ(s,V0
s )
∂γ

∂v
(s,V0

s )ds,

by a standard computation based on the Gaussian distribution

d−(t,X0
t ,V

0
t ) ∼ N

 1
γ(s,V0

s )

log(
X0

t

K
)−

γ2(t,V0
t )

2

 , γ2(t,V0
t )

γ2(s,V0
s )
−1

 , s ∈ [t,T ].

Finally, we note that from 2.8 we have∫ T

t
e2V0

s γ2(s,V0
s )
∂γ

∂V
(s,V0

s )ds =
1

2b

∫ T

t
e2V0

s

(
1− e−2bγ2(s,V0

s )
)
ds,

=
1

4b2

(
e−2bγ2(t,V0

t ) + 2bγ2(t,V0
t )−1

)
.

�
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Chapter 3

Uncertain Stochastic Volatility

In this chapter, we focus on the uncertain volatility model (UVM) developed by [3]. it

attracted the attention of practitioners as it provides a worst-case pricing scenario for the

seller. We study the UVM where the volatility is stochastic and bounded between two

extremes values σ and σ.

Under the risk-neutral measure Q, the price process of the risky asset Xt is the solution of

the following stochastic differential equation (SDE)

dXt = rXtdt + XtαtdW1
t , (3.1)

where r ∈ R is a risk-free rate, αt the volatility process such that σt ≤ αt ≤ σt and W1
t is

Brownian motion under the risk measure. We assume that the volatility bound itself is

given by σt := σminF(Vt) ≤ αt ≤ σmaxF(Vt) := σt for 0 ≤ t ≤ T and σmin,σmax ∈ R such

that 0 < σmin < 1 < σmax, where F is a positive increasing and differentiable function.

In our choosing model F(Vt) = eVt , we denote αt = qeVt s.t σmin ≤ q ≤ σmax for 0 ≤ t ≤ T

then we obtain the following dynamic

dXt = rXtdt + XtqeVtdW1
t , (3.2)

dVt = (a−beαVt)dt +σdW2
t , (3.3)

where W1
t and W2

t are Brownian motions with correlation ρ; b,α,σ > 0 and a ∈ R are con-

stants [47] .
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3.1 Worst-Case Scenario Price

Our aim in this section is to derive worst-case pricing scenarios for the seller in the spirit

of the work [16], without needing to calibrate the model exactly. To this end, we rescale

time in the volatility equation (3.3) according to t 7→ δt, which yields

dXt = rXtdt + XtqeVtdW1
t , (3.4a)

dVt = δ(a−beαVt)dt +
√
δσdW2

t , (3.4b)

and allows us to smoothly interpolate between an UVM and a fixed volatility model (cf. [24]).

The parameter δ > 0 symbolizes the reciprocal of the time-scale of the process V , and thus

the standard UVM can be formally obtained by sending δ→ 0, in which case Vt = v and

dX0
t = rX0

t dt + qX0
t evdW1

t . (3.5)

Varying δ sheds some light on the importance of the stochastic volatility equation for the

worst-case scenario: when the variation of the volatility is slow, the market price of the

asset is not very volatile, so this price remains stable; in the opposite case, it may become

too volatile and therefore more risky.

Let Θ = [σmin,σmax]. For any δ > 0, the worst-case scenario price at time t < T is

defined as

Pδ := Pδ(t; x,v) = exp(−r(T − t)) sup
q∈Θ

E(t;x,v)[h(Xδ
T )]. (3.6)

If δ = 0, we define

P0 := P0(t; x,v) = exp(−r(T − t)) sup
q∈Θ

E(t;x,v)[h(X0
T )]. (3.7)

Where E(t;x,v)[·] is the conditional expectation given Ft with Xδ
t = x and Vt = v.

3.1.1 Moment Bounds

Instead of confining ourselves to perturbations of Black-Scholes prices as in [23], we will

work with general terminal payoff (neither convex, nor concave) as in [21]. In this case

the Hessian of the resulting option prices is indefinite and we have to impose additional
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regularity conditions on the payoff function h to do some asymptotic analysis. Specifically,

we suppose that the terminal payoff h is C4 and gradient Lipschitz, and we impose the

following polynomial growth conditions on the first four derivatives of h
|h′(x)| ≤ K1,

|h′′(x)| ≤ K2(1 + |x|m),

|h′′′(x)| ≤ K3(1 + |x|n), (Ki for i ∈ {1,2,3,4})m,n and l ∈ N,

|h(4)(x)| ≤ K4(1 + |x|l).

(3.8)

Before we come to the convergence of Pδ as δ→ 0, the next two Propositions show that

the processes Xt and Vt have uniformly bounded moments of any order.

Proposition 12. Let 0 ≤ δ ≤ 1, for t ≤ T. The process Vt has uniformly bounded moments

of any order

E(t,x,v)

[∫ T

t
|Vs|

kds
]
≤ E(0,v)

[∫ T

0
|Vs|

kds
]
≤Ck(T,v),

where Ck(T,v) independent of δ.

Proof. See Lemma 4.9 in [23] also Lemma 3 in chapter one. �

Lemma 13. For η ∈ R independent of 0 ≤ δ ≤ δ0, for some sufficiently small δ0 > 0, and

t ≤ T, the moment generating function of the integrated α-hypergeometric process

Mδ
v(η) := E(t,v)[eη

∫ t
0 Vsds], for η ∈ R,

is uniformly bounded, that is |Mδ
v(η)| ≤ N(T,v,η) <∞, where N(T,v,η) is independent of t.

Proof. Following the reasoning of [40, Sec. 5], we have an explicit form of the moment

generating function of the integrated α-hypergeometric process

Mδ
v(η) = Ψ(η, t)e−vΞ(η,t),

where

Ψ(η, t) =

 b̄eδ
t
2

b̄cosh(b̄ t
2 ) +δsinh(b̄ t

2 )


2
σ2

,

Ξ(η, t) =

 2ηsinh(b̄ t
2 )

b̄cosh(b̄ t
2 ) +δsinh(b̄ t

2 )

 2
σ2

,

36



and

b̄ =

√
b̂2−2ησ̂2 =

√
δ2−2ηδσ2.

In the following, we are going to show that |Mδ
v(η)| ≤ N(T,v,η) < ∞ , where N(T,v,η) is

independent of δ and t. To this end, we distinguish two cases

• If δ2−2ηδσ2 ≥ 0, we have b̄ ≥ 0 and

Ψ(η, t) ≤
(

b̄eδ
t
2

b̄cosh(b̄ t
2 )

) 2
σ2
, δsinh(b̄ t

2 ) ≥ 0,

≤
(
eδ

t
2
) 2
σ2 , cosh(b̄ t

2 ) ≥ 1,

≤
(
e

T
2
) 2
σ2
.

Since Ξ(η, t) ≥ 0, we have e−vΞ(η,t) ≤ 1. Therefore

Mδ
v(η) = Ψ(η, t)e−vΞ(η,t) ≤

(
e

T
2

) 2
σ2
.

• If δ2−2ηδσ2 < 0, let ϑ =
√

2ηδσ2−δ2 which is positive. Then

Mδ
v(η) = ψ(η, t)e−vΞ(η,t),

=

 iϑeδ
t
2

iϑcosh(iϑ t
2 ) +δsinh(iϑ t

2 )


2
σ2

e
−v

(
2ηsinh(iϑ t

2 )

iϑcosh(iϑ t
2 )+δsinh(iϑ t

2 )

) 2
σ2

,

=

 iϑeδ
t
2

iϑcos(ϑ t
2 ) + iδsin(ϑ t

2 )


2
σ2

e
−v

(
2iηsin(ϑ t

2 )

iϑcos(ϑ t
2 )+iδsin(ϑ t

2 )

) 2
σ2

,

=

 ϑeδ
t
2

ϑcos(ϑ t
2 ) +δsin(ϑ t

2 )


2
σ2

e
−v

(
2ηsin(ϑ t

2 )

ϑcos(ϑ t
2 )+δsin(ϑ t

2 )

) 2
σ2

.

Thus, for sufficiently small ϑ, since 2ηsin(ϑ t
2 )

ϑcos(ϑ t
2 ) +δsin(ϑ t

2 )

 2
σ2

≥ 0,
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we have

Mδ
v(η) ≤

 ϑeδ
t
2

ϑcos(ϑ t
2 ) +δsin(ϑ t

2 )


2
σ2

,

=

 ϑeδ
t
2

ϑ(1 +O(ϑ2t2)) +δ(ϑt
2 +O(ϑ3t3))


2
σ2

,

=

 eδ
t
2

1 + δt
2 +O(ϑ2t2)


2
σ2

. .

As a consequence, there exists ϑ0 independent of t, such that for ϑ < ϑ0,

Mδ
v(η) ≤

(
e

T
2

1+ T
2

) 2
σ2

.

This concludes the proof. �

Proposition 14. Let δ ≥ 0 be sufficiently small and for t ≤ T. Then the process Xt has

uniformly bounded moments of arbitrary order.

Proof. Let Xt,Vt satisfy (3.4), with qt ∈ [σmin,σmax]. Then, for each finite n ∈ N,

Xn
t = xn exp

(
nrt−

n
2

∫ t

0
(qseVs)2ds + n

∫ t

0
qseVsdW1

s

)
,

= xn exp
(
nrt +

n2−n
2

∫ t

0
(qseVs)2ds

)
exp

(
−n2

2

∫ t

0
(qseVs)2ds + n

∫ t

0
qseVsdW1

s

)
,

≤ xn exp
(
nrt +

n2−n
2

∫ t

0
σ2

maxe2Vsds
)
Λt ,

where in the last step we assume Novikov’s condition which implies that

Λt = exp
(
−n2

2

∫ t

0
(qseVs)2ds + n

∫ t

0
qseVsdW1

s

)
,

is a martingale.

Using Proposition 12, we find

E(0,x,v)

[
exp

(
1
2

∫ t

0
(nqeVs)2ds

)]
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≤ E(0,x,v)

[
exp

(
n2u2

2

∫ t

0
e2Vsds

)]
,

= E(0,x,v)

[
exp

(
n2σ2

max

2

∫ t

0

(
1 + 2Vs +O((2Vs)2)

)
ds

)]
,

= E(0,x,v)

[
exp

(
n2σ2

max

2

[∫ t

0
ds + 2

∫ t

0
Vsds +

∫ t

0
O((2Vs)2)ds

])]
,

= E(0,x,v)

[
exp

(
n2σ2

max

2
(t +C) + 2

n2σ2
max

2

∫ t

0
Vsds

)]
,

= E(0,x,v)

[
exp

(
n2σ2

max

2
(t +C)

)
.exp

(
(n2σ2

max)
∫ t

0
Vsds

)]
,

= exp
(
n2σ2

max

2
(t +C)

)
E(0,x,v)

[
exp

(
(n2σ2

max)
∫ t

0
Vsds

)]
,

= exp
(
n2σ2

max

2
(t +C)

)
Mδ

v(n2σ2
max),

< ∞.

Hence,

E(0,x,v)[Xn
t ] ≤ xn exp(nrt)E(0,x,v)

[
exp

(
(n2−n)σ2

max

2

∫ t

0
e2Vsds

)]
,

= xn exp(nrt)exp
(
(n2−n)σ2

max

2
(t +C)

)
Mδ

v

(
(n2−n)σ2

max

)
,

≤ xn exp(nrT )exp
(
(n2−n)σ2

max

2
(T +C)

)
N

(
T,v, (n2−n)σ2

max

)
:= L,

where the upper bound L is independent of δ and t.

Therefore,

E(t,x,v)

[∫ T

t
|Xs|

kds
]
≤ E(0,x,v)

[∫ T

0
|Xs|

kds
]
≤ Nk(T, x,v),

where Nk(T, x,v) may depend on (k,T, x,v) but not on δ. �

3.1.2 Convergence of the Payoff

As a consequence of the previous results, we have the following convergence result for the

asset process.
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Proposition 15. Assume there exists C0 > 0, independent of δ, such that Xδ, X0 being the

solution of the SDEs (3.4a) and (3.5) satisfy

E(t;x,v)(Xδ
T −X0

T )2 ≤C0δ .

Proof. Since Xδ
t , X0

t solve (3.4a), (3.5), we have

Xδ
T = x +

∫ T

t
rXδ

sds +

∫ T

t
qeVs Xδ

sdW1
s ,

and

X0
T = x +

∫ T

t
rX0

s ds +

∫ T

t
qevX0

s dW1
s ,

which can be combined to give

Xδ
T −X0

T =

∫ T

t
r(Xδ

s −X0
s )ds +

∫ T

t
q(eVs Xδ

s − evX0
s )dW1

s ,

=

∫ T

t
r(Xδ

s −X0
s )ds +

∫ T

t
qev(Xδ

s −X0
s )dW1

s +

∫ T

t
q(eVs − ev)Xδ

sdW1
s .

Now let Ys = Xδ
s −X0

s , then Yt = 0 and

YT =

∫ T

t
rYsds +

∫ T

t
qevYsdW1

s +

∫ T

t
q(eVs − ev)Xδ

sdW1
s .

Thus,

E(t;x,v)[Y2
T ] ≤ 3E(t,x,v)

(∫ T

t
rYsds

)2

+

(∫ T

t
qevYsdW1

s

)2

+

(∫ T

t
q(eVs − ev)Xδ

sdW1
s

)2 ,
≤

∫ T

t
(3Tr2 + 3σ2

maxe2v)E(t,x,v)[Y2
s ]ds + 3σ2

max

∫ T

t
E(t;x,v)

[
(eVs − ev)2(Xδ

s )2
]
ds︸                                            ︷︷                                            ︸

R(δ)

.

We have seen before that Xt and Vt have uniformly bounded moments for δ sufficiently

small. We can therefore show that |R(δ)| ≤Cδ for C independent of δ. Setting q =σmax and

using Gronwall’s inequality, the previous inequality can be recast as

f (T ) ≤
∫ T

t
λ f (s)ds +Cδ ≤ δ

∫ T

t
Cλeλ(T−s)ds +Cδ ,

where f (T ) = E(t;x,v)(Y2
T ) and λ = 3Tr2 + 3σ2

maxe2v > 0. As a consequence,

E(t;x,v)(Xδ
T −X0

T )2 = E(t;x,v)Y2
T = f (T ) ≤C0δ .

�
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Theorem 16. The function Pδ uniformly converges to P0 with rate
√
δ as δ→ 0, where the

convergence is uniform on any compact subset of [0,T ]×R×R+.

Proof. Due to the Lipschitz continuity of h, the Cauchy-Schwartz inequality and Proposi-

tion 15, we get

|Pδ−P0| = exp(−r(T − t))

∣∣∣∣∣∣∣sup
q∈Θ

E(t;x,v)[h(Xδ
T )]−sup

q∈Θ
E(t;x,v)[h(X0

T )]

∣∣∣∣∣∣∣ ,
≤ exp(−r(T − t)) sup

q∈Θ

∣∣∣E(t;x,v)[h(Xδ
T )]−E(t;x,v)[h(X0

T )]
∣∣∣ ,

≤ exp(−r(T − t)) sup
q∈Θ

E(t;x,v)
∣∣∣h(Xδ

T )−h(X0
T )

∣∣∣ ,
≤ K0 exp(−r(T − t)) sup

q∈Θ
E(t;x,v)

∣∣∣Xδ
T −X0

T

∣∣∣ ,
≤ K0 exp(−r(T − t)) sup

q∈Θ

[
E(t;x,v)(Xδ

T −X0
T )2

]1/2
.

This entails

|Pδ−P0| ≤C1
√
δ ,

and concludes the proof. �

3.2 Pricing G-PDE

The worst-case scenario price Pδ is the solution to the following Hamilton-Jacobi-

Bellman (HJB) equation with terminal condition Pδ(T ; x,v) = h(x) (see [43, 44])

−∂tPδ = r
(
x∂xPδ−Pδ

)
+ sup

q∈Θ

{
1
2

x2q2e2v∂2
xxPδ+

√
δqxevσρ∂2

xvPδ
}

(3.9)

+ δ(
1
2
σ2∂2

vvPδ+ (a−beαv)∂vPδ).

Throughout the rest of the section, we set r = 0, i.e. we assume that the return of the asset

is zero, but the return of the option depends on the volatility. In other words, even though

the financial asset has no return, the option can have it.
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Leading Order Term P0

To approximate the value function Pδ, we use the regular perturbation expansion

Pδ = P0 +
√
δP1 +δP2 + . . . , (3.10)

where P0 the leading order term and P1 := P1(t, x,v) the first correction for the approxima-

tion of the worst-case scenario price Pδ. Substituting (3.10) in (3.9), and using Theorem 16,

the leading order term P0 is found to be the solution to

−∂tP0 = sup
q∈Θ

{
1
2

q2e2vx2∂2
xxP0

}
, P0(T ; x,v) = h(x). (3.11)

3.2.1 Convergence of the Second Partial Derivative

The gamma ∂2
xxPδ represents the convexity of the price of an option according to the price

of the underlying asset. It indicates whether the price of the option tends to move faster or

slower than the price of the underlying asset. Using the fact that q ∈ [σmin,σmax] , and the

regularity results for uniformly parabolic equations which are referenced in [15],[28], we

conclude that (3.9) is uniformly parabolic.

Proposition 17. As δ → 0, the second partial derivative ∂2
xxPδ converges uniformly to

∂2
xxP0 on any compact subset of [0,T ]×R×R+ and with rate

√
δ.

Proof. The function h ∈C4 is gradient Lipschitz and satisfies polynomial growth conditions

in its first four derivatives. By [26, Thm. 5.2.5], we conclude

• Pδ(t, ., .) ∈C1,2,2
p for δ fixed .

• ∂xPδ(t, ., .) and ∂2
xxPδ(t, ., .) are uniformly bounded in δ.

The assertion thus follows from Theorem 16. �

3.2.2 Optimal Controls

Following [21], we define S 0
t,v to be the zero level set of ∂2

xxP0 and the set Aδt,v to be the set

on which ∂2
xxPδ and ∂2

xxP0 have different signs, i.e.

S 0
t,v := {x = x(t,v) ∈ R+|∂2

xxP0(t; x,v) = 0},
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and

Aδt,v := {x = x(t,v)|∂2
xxPδ(t; x,v) > 0,∂2

xxP0(t; x,v) < 0} . (3.12)

Lemma 18. Call

q∗,δ(t; x,v) := argmaxq∈Θ

{
1
2

q2e2vx2∂2
xxPδ+

√
δ(qρσevx∂2

xvPδ)
}
, (3.13)

for x < S 0
t,v and δ > 0 sufficiently small, and

q∗,0(t; x,v) := argmaxq∈Θ

{
1
2

q2e2vx2∂2
xxP0

}
, (3.14)

for δ = 0. Moreover, let (3.13) and (3.14) denote the optimal controls in the G-PDE (3.9)

for Pδ and in the G-PDE (3.11) for P0, respectively. Then the limiting optimal control as

δ→ 0 is given by

q∗,δ(t; x,v) =

σmax , ∂2
xxPδ ≥ 0,

σmin , ∂2
xxPδ < 0,

(3.15)

and

q∗,0(t; x,v) =

σmax , ∂2
xxP0 ≥ 0,

σmin , ∂2
xxP0 < 0.

(3.16)

Proof. Let

f (q) :=
1
2

q2e2vx2∂2
xxPδ+

√
δ(qρσevx∂2

xvPδ),

and suppose that the maximiser q̂∗,δ is in the interior of the interval [σmin,σmax]. Then, for

x < S 0
t,v, we have

q̂∗,δ =
−ρ
√
δσ∂2

xvPδ

xev∂2
xxPδ

,

for the maximiser of f (q). But since f (q̂∗,δ)→ 0 as δ→ 0, the maximiser must be on the

boundary whenever δ is sufficiently small. In this case, since the sign of ∂2
xxPδ determines

the sign of the coefficient of the q2 term in f (q), we have q∗,δ → q∗,0 pointwise on S 0
t,v

where, for any sufficiently small δ ≥ 0, the maximiser can be represented by

q∗,δ = σmax1{∂2
xxPδ≥0}+σmin1{∂2

xxPδ<0}.

�
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Lemma 18 allows us to rewrite the G-HJB equation (3.9) as

−∂tPδ =
1
2

(q∗,δ)2e2vx2∂2
xxPδ+

√
δ(q∗,δρσevx∂2

xvPδ) +δ(
1
2
σ2∂2

vvPδ+ (a−beαv)∂vPδ),

(3.17)

with terminal condition Pδ(T ; x,v) = h(x) and with q∗,δ as given above.

3.2.3 First-Order Corrector for the Limit Payoff

We will now derive a corrector result for the difference Pδ−P0. To this end, recall that P1,

the first order correction term of Pδ, is the solution to the linear equation

−∂tP1 =
1
2

(q∗,0)2e2vx2∂2
xxP1 + q∗,0ρσevx∂2

xvP0 , P1(T, x,v) = 0 , (3.18)

where q∗,0 is given by (3.16). Further recall that vanna ∂2
xvPδ is a second order derivative

of the option, once to the underlying asset price and once to volatility. It is the sensitivity

of the option delta with respect to change in volatility, or, alternatively, it is the sensitivity

of vega ∂2
vPδ with respect to the underlying asset price. For more details see section 4.2.4

in [23].

In the following we will exploit results from [22] and [23] to show that, under the regularity

conditions imposed on the derivatives of h, the pointwise approximation error |Pδ − P0 −
√
δP1| is indeed of order O(δ).

Theorem 19. ∀(t; x,v) ∈ [0,T ]×R+×R+, ∃C > 0, such that

|Eδ(t; x,v)| := |Pδ(t; x,v)−P0(t; x,v)−
√
δP1(t; x,v)| ≤Cδ,

where C may depend on (t; x,v) but not on δ.

Proof. Adopting the arguments of Secs. 1.9.3 and 4.1.2 in [23], we define the following

linear parabolic differential operator

Lδ(q) :=∂t +
1
2

q2e2vx2∂2
xx +
√
δqρevx∂2

xv +δ(
1
2
σ2∂2

vv + (a−beαv)∂v),

=L0(q) +
√
δL1(q) +δL2,

(3.19)

where L0(q) contains the time derivative and the Black-Scholes operator, L1(q) contains

the mixed derivative due to the covariation between Xt and Vt, and δL2 is the infinitesimal
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generator of the volatility process Vt.

We can recast equation (3.17) as

Lδ(q∗,δ)Pδ = 0,

Pδ(t; x,v) = h(x).
(3.20)

Equivalently, equation (3.11) reads

L0(q∗,0)P0 = 0,

P0(T ; x,v) = h(x) ,
(3.21)

and (3.18) can be expressed by

L0(q∗,0)P1 +L1(q∗,0)P0 = 0,

P1(T, x,v) = h(x).
(3.22)

Now, applying the operator Lδ(q∗,δ) to the error term Eδ = Pδ−P0−
√
δP1, we obtain

Lδ(q∗,δ)Eδ = Lδ(q∗,δ)(Pδ−P0−
√
δP1),

= −(L0(q∗,δ) +
√
δL1(q∗,δ) +δL2q∗,δ))(P0 +

√
δP1),

= −
√
δL0(q∗,δ)P1 +

√
δL1(q∗,δ)P0︸                                  ︷︷                                  ︸

=0

−δL2(q∗,δ)P0 +δL1(q∗,δ)P1 +δ3/2L2(q∗,δ)P1,

=
1
2

[(q∗,δ)2− (q∗,0)2]e2vx2∂2
xxP0

−
√
δ

[
ρ((q∗,δ)−q∗,0)evx∂2

xvP0 +
1
2

(
(q∗,δ)2− (q∗,0)2

)
e2vx2∂2

xxP1

]
−δ

[
ρ(q∗,δ)evx∂2

xvP1 +
1
2
σ2∂2

vvP0 + (a−beαv)∂vP0

]
−δ

3
2

[
1
2
σ2∂2

vvP1 + (a−beαv)∂vP1

]
.

Using the terminal condition

Eδ(T ; x,v) = Pδ(T ; x,v)−P0(T ; x,v)−
√
δP1(T ; x,v) = 0 ,

and the continuity of the solution to the parabolic equation (3.18), we conclude that |Eδ(t; x,v)|=

O(δ). �
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3.2.4 Feynman-Kac Representation of the Error Term

Now recall that the asset price in the worst-case scenario is governed by (3.4a) with r = 0

and q = q∗,δ

dX∗,δt = q∗,δt eVt X∗,δt dW1
t , (3.23)

where, by Lemma 18, the optimal control (qt) = (q∗,δ) is explicitly given for sufficiently

small δ. (It is straightforward to establish the existence and the uniqueness of the solution

of (3.23) X∗,δt ).

Existence and Uniqueness of X∗,δt

For the existence and uniqueness of the worst case scenario price process, we consider the

transformation Y∗,δt = log X∗,δt for any t < τξ and ξ > 0, where

τξ := inf{t > 0|X∗,δt = ξ or X∗,δt =
1
ξ
},

= inf{t > 0|Y∗,δt = logξ or Y∗,δt = − logξ}.

By applying Ito’s formula on Y∗,δt we will obtain the following SDE

dY∗,δt = −
1
2

(q∗,δ)2e2Vtdt + q∗,δeVtdW1
t .

In order to show (24) has a unique solution, it suffices to prove that for any T > 0

lim
ξ→0
Q(τξ < T ) = 0.

∀t ∈ [0,T ],

Y∗,δt =

∫ t

0
−

1
2

(q∗,δ)2e2Vsds +

∫ t

0
q∗,δeVsdW1

s ,

then

Q( sup
t∈[0,T ]

|Y∗,δt | > | logξ|) ≤ Q

 sup
t∈[0,T ]

[∫ t

0

1
2
σ2

maxe2Vsds +

∣∣∣∣∣∣
∫ t

0
q∗,δeVsdW1

s

∣∣∣∣∣∣
]
> | logξ|

 ,
≤ Q

1
2
σ2

max

∫ T

0
e2Vsds + sup

t∈[0,T ]

∣∣∣∣∣∣
∫ t

0
q∗,δeVsdW1

s

∣∣∣∣∣∣ > | logξ|
 ,

≤ Q

(
1
2
σ2

max

∫ T

0
e2Vsds >

| logξ|
2

)
+Q

 sup
t∈[0,T ]

∣∣∣∣∣∣
∫ t

0
q∗,δeVsdW1

s

∣∣∣∣∣∣ > | logξ|
2

 ,
=: A+B.
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By the Markov inequality, we have

A≤
σ2

maxE
∫ T

0 e2Vsds

| logξ|
≤
σ2

maxTC(T,v)
| logξ|

,

using Doob’s martingale inequality, we have

B ≤
E(

∫ t
0 q∗,δeVsdW1

s )2( logξ
2

)2 ≤

∫ t
0 E{(q

∗,δ)2e2Vs}ds( logξ
2

)2 ≤
σ2

max

∫ T
0 Ee2Vsds( logξ

2

)2 ≤
σ2

maxTC(T,v)( logξ
2

)2 .

Therefore,

lim
ξ→0
A = lim

ξ→0
B = 0.

Finally, for T > 0

lim
ξ→0
Q(τξ < T ) = lim

ξ→0
Q( sup

t∈[0,T ]
|Y∗,δt | > | logξ|) = 0.

Probabilistic Representation of Eδ(t, x,v)

We can apply the Feynman-Kac formula to get probabilistic representation of Eδ(t, x,v),

namely,

Eδ(t, x,v) = I0 +δ
1
2 I1 +δI2 +δ

3
2 I3,

where

I0 = E(t,x,v)

[∫ T

t

1
2

(
(q∗,δ)2− (q∗,0)2

)
e2Vs(X∗,δs )2∂2

xxP0(s,X∗,δs ,Vs)ds
]
,

I1 = E(t,x,v)

[∫ T

t
(q∗,δ−q∗,0)ρσeVs X∗,δs ∂2

xvP0(s,X∗,δs ,Vs)

+
1
2

(
(q∗,δ)2− (q∗,0)2

)
e2Vs(X∗,δs )2∂2

xxP1(s,X∗,δs ,Vs)ds
]
,

I2 = E(t,x,v)

[∫ T

t
q∗,δρσeVs X∗,δs ∂2

xvP1(s,X∗,δs ,Vs) +
1
2
σ2∂2

vvP0(s,X∗,δs ,Vs)

+(a−beαVs)∂vP0(s,X∗,δs ,Vs)ds
]
,
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I3 = E(t,x,v)

[∫ T

t

1
2
σ2∂2

vvP1(s,X∗,δs ,Vs) + (a−beαVs)∂vP1(s,X∗,δs ,Vs)ds
]
.

Noting that

{q∗,δ,q∗,0} = Aδ
t,v,

q∗,δ−q∗,0 = (σmax−σmin)(1{∂2
xxPδ≥0}−1{∂2

xxP0≥0}),

and (q∗,δ)2− (q∗,0)2 = (σ2
max−σ

2
min)(1{∂2

xxPδ≥0}−1{∂2
xxP0≥0}) .

The next theorem shows that I0 , I1 are indeed of order O(δ) and O(
√
δ).

Theorem 20. There exist constants M0,M1 > 0 depending on (t, x,v), but not on δ, such

that

|I0| ≤ M0δ , and |I1| ≤ M1
√
δ .

Proof. Step 1

Aδ
s,v being compact, there exist a constant C0 such that

|∂2
xxP0(s,X∗,δs ,Vs)| ≤C0

√
δ, for X∗,δs ∈ A

δ
s,v.

Then, since 0 < σmin ≤ q∗,δ,q∗,0 ≤ σmax, we have

|I0| ≤ E(t,x,v)

[∫ T

t

1
2
|
(
(q∗,δ)2− (q∗,0)2

)
e2Vs(X∗,δs )2|∂2

xxP0(s,X∗,δs ,Vs)ds
]
,

≤
σ2

max

2σ2
min

C0
√
δE(t,x,v)

[∫ T

t
1
{X∗,δs ∈A

δ
s,v}

(q∗,δ)2e2Vs(X∗,δs )2ds
]
. (3.24)

In order to show that I0 is of order O(δ), it suffices to show that there exists a constant C1

such that

E(t,x,v)

[∫ T

t
1
{X∗,δs ∈A

δ
s,v}
ζ2

s ds
]
≤C1

√
δ,

where ζs := q∗,δeVs X∗,δs and dX∗,δs = ζsdW1
s by (24). Define the stopping time

τ(υ) := inf{s > t; 〈X∗,δ〉s > υ},

where

〈X∗,δ〉s =

∫ s

t
ζ2(X∗,δu )du.
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We know that X∗,δ
τ(υ) = Bυ is a standard one-dimensional Brownian motion on (Ω,F B

υ ,Q
B
υ ).

From the definition of τ(υ) given above, we have∫ τ(υ)

t
ζ2(X∗,δs )ds = υ,

which tells us that the inverse function of τ(υ) is

τ−1(T ) =

∫ T

t
ζ2(X∗,δs )ds. (3.25)

Next use the substitution s = τ(υ) and for any i ∈ [1,m(υ)], we have∫ T

t
1
{|X∗,δs −xi|<C

√
δ}
ζ2(X∗,δs )ds =

∫ τ−1(T )

t
1
{|X∗,δ

τ(υ)−xi<C
√
δ}
ζ2(X∗,δ

τ(υ))dτ(υ),

=

∫ τ−1(T )

t
1
{|X∗,δ

τ(υ)−xi<C
√
δ}
ζ2(X∗,δ

τ(υ))
1

ζ2(X∗,δ
τ(υ))

dυ,

=

∫ τ−1(T )

t
1
{|X∗,δ

τ(υ)−xi<C
√
δ}

dυ,

=

∫ τ−1(T )

t
1
{|Bυ−xi<C

√
δ}dυ. (3.26)

Note that on the set {|Bυ − xi| < C
√
δ}, we have (X∗,δs )2 ≤ (xi + C

√
δ)2 ≤ D , where D is a

positive constant, and then by (3.25) we have

τ−1(T ) =

∫ T

t
(q∗,δeVs X∗,δs )2ds ≤ Dσ2

maxT sup
t≤s≤T

e2Vs . (3.27)

Then from (3.27) and (3.26), by decomposing in {supt≤s≤T e2Vs ≤ M} and {supt≤s≤T e2Vs >

M} for any M > e2v, we obtain

E(t,x,v)

∫ τ−1(T )

t
1
{|Bυ−xi<C

√
δ}dυ

 ∼ O(
√
δ). (3.28)

Step 2
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With the help of assumption 2.12 in [21] , we have

|I1| = E(t,x,v)

[∫ T

t
|q∗,δ−q∗,0|ρσeVs X∗,δs |∂

2
xvP0(s,X∗,δs ,Vs)|

+
1
2
|(q∗,δ)2− (q∗,0)2|e2Vs(X∗,δs )2|∂2

xxP1(s,X∗,δs ,Vs)|ds
]
,

≤
ρσmax

σ2
min

E(t,x,v)

[∫ T

t
1
{X∗,δs ∈A

δ
s,v}

(q∗,δ)2e2Vs X∗,δs a11(1 + (X∗,δs )b11 + Vc11
s )ds

]
+
ρσmax

σ2
min

E(t,x,v)

[∫ T

t
1
{X∗,δs ∈A

δ
s,v}

(q∗,δ)2e2Vs X∗,δs ā20(1 + (X∗,δs )b̄20 + V c̄20
s )ds

]
.

Using the same techniques in Step 1, the result that X∗,δs and Vs have finite moments

uniformly in δ, and X∗,δs ≤ C(X∗,δs )2 on {X∗,δs ∈ A
δ
s,v}, we can deduce that I1 is of order

O(
√
δ). �

Proof of Uniform Boundedness of I2 and I3 on δ.

Because that Vt , Xt have uniformly bounded moments, by using the Cauchy-Schwarz in-

equality and with the help of Assumption 2.12 in[21] We are going to prove that I2 and I3

are uniformly bounded in δ.

First recall that

I2 = E(t,x,v)

[∫ T

t
ρσ(q∗,δ)eVs X∗,δs ∂2

xvP1(s,X∗,δs ,Vs)

+
1
2
σ2∂2

vvP0(s,X∗,δs ,Vs) + (a−beαVs)∂vP0(s,X∗,δs ,Vs)ds
]
,

= I(1)
2 + I(2)

2 + I(3)
2 .

Then we have

I(1)
2 ≤ E(t,x,v)

[∫ T

t
ρσσmaxeVs X∗,δs |∂

2
xvP1(s,X∗,δs ,Vs)|ds

]
,

≤ ρσσmaxE
1/2
(t,x,v)

[∫ T

t

(
eVs X∗,δs

)2
ds

]
.E1/2

(t,x,v)

[∫ T

t

(
∂2

xvP1(s,X∗,δs ,Vs)
)2

ds
]
,

≤ ρσσmaxE
1/4
(t,x,v)

[∫ T

t
(eVs)4ds

]
.E1/4

(t,x,v)

[∫ T

t
(X∗,δs )4ds

]
.ā2

11E
1/2
(t,x,v)

[∫ T

t

(
1 + |X∗,δs |

b̄11 + |Vs|
c̄11

)2
ds

]
,

≤ ρσσmax(C4(T,v))1/4.(N4(T, x,v))1/4.Ā11[C2b̄11
(T,v) + N2c̄11(T, x,v)]1/2.
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I(2)
2 ≤

1
2
σ2(T − t)1/2.E1/2

(t,x,v)

[∫ T

t

(
∂2

vvP0(s,X∗,δs ,Vs)
)2

ds
]
,

≤
1
2
σ2(T − t)1/2.A02[C2b02(T,v) + N2c02(T, x,v)]1/2,

and

I(3)
2 ≤ E1/2(t, x,v)

[∫ T

t
(a−beαVs)2ds.E1/2

(t,x,v)

∫ T

t

(
∂vP0(s,X∗,δs ,Vs)

)2
ds

]
,

≤ E1/2
(t,x,v)

[∫ T

t
a2 + b2e2αVsds

]
.E1/2

(t,x,v)

[∫ T

t

(
∂vP0(s,X∗,δs ,Vs)

)2
ds

]
,

≤
1
2

(
C2(T,v) + a2(T − t)

)1/2
.A01[C2b01(T,v) + N2c01(T, x,v)]1/2,

where A01, Ā11 and A02 are positive constants.

Next recall that

I3 = E(t,x,v)

[∫ T

t

1
2
σ2∂2

vvP1(s,X∗,δs ,Vs) + (a−beαVs)∂vP1(s,X∗,δs ,Vs)ds
]
,

I3 = I(1)
3 + I(2)

3 .

Then we have

I(1)
3 ≤

1
2
σ2(T − t)1/2.E1/2

(t,x,v)

[∫ T

t

(
∂2

vvP1(s,X∗,δs ,Vs)
)2

ds
]
,

≤
1
2
σ2(T − t)1/2.Ā02[C2b̄02

(T,v) + N2c̄02(T, x,v)]1/2,

and

I(2)
3 ≤ E1/2

(t,x,v)

[∫ T

t
a2 + b2e2αVsds

]
.E1/2

(t,x,v)

[∫ T

t

(
∂vP1(s,X∗,δs ,Vs)

)2
ds

]
,

≤ [a2(T − t) +C2(T,v)]1/2.Ā01[C2b̄01
(T,v) + N2c̄01(T, x,v)]1/2,

where Ā01 , Ā02 are positive constants.

We can see that

Eδ(t, x,v) = I0 +δ
1
2 I1 +δI2 +δ

3
2 I3,

is of order O(δ).
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3.3 Second-Order BSDE Representation of the Worst-Case

Scenario

Backward stochastic differential equations (BSDEs) introduced for the first time in

Bismut [9] in the linear case, and by Pardoux and Peng [48] in the general case where they

become a popular field of research. The theory has found many applications as stochastic

control [52], theoretical economics [49], and mathematical finance [18]. On a filtered

probability space (Ω,F, (Ft)t∈[0,T ],P) a solution to BSDE consists of a pair of adapting

processes (Y,Z) taking values in Rn and Rd×n, such that

dYt = f (t,Yt,Zt)dt + ZtdWt, t ∈ [0,T ]

YT = ξ,

where the generator f from Ω× [0,T ]×Rn ×Rd×n to Rn is a progressively measurable

function, T is a finite time horizon, (Wt)t∈[0,T ] a d-dimensional Brownian motion, and ξ an

FT -measurable random variable is terminal condition that the solution is required to satisfy

(see [51][58]).

The BSDE is referred to as a forward-backward stochastic differential equation (FBDE), if

the randomness in the generator f and the terminal condition ξ is coming from the state of

a forward SDE [2, 45]. If the solution of BSDE enter the dynamics of the FSDE then the

FBSDEs are called coupled, and uncoupled if it does not, then the solution to the BSDE

could be linked to the solution of a semilinear and quasi-linear parabolic PDE by means

of generalized Feyman-kac formula. This link opened the way to probabilistic numerical

methods for solving this PDEs (For more details see [49] [60]).

However, PDEs corresponding to standard FBSDEs cannot be nonlinear in the second-

order derivatives because second-order term arise only linearly through Itô’s formula from

the quadratic variation of the underlying state process.

Tauzi [13] introduce FBSDE with second-order dependence in the generator f , they called

them second-order backward SDE (2BSDE) and they show how they are related to fully

non-linear parabolic PDEs .

We recall the definition of 2BSDE, and we will explain how it is linked to our G-HJB

equation; for details, we refer to [13].

Definition 3. Let (t, x) ∈ [0,T )×Rd, (Xt,x
s )s∈[t,T ] a diffusion process and (Ys,Zs,Γs,As)s∈[t,T ]
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a quadruple of Ft,T -progressively measurable processes taking values in R, Rd, Sd and Rd,

respectively. The quadruple (Y,Z,Γ,A) is called a solution to the second order backward

stochastic differential equation (2BSDE) corresponding to (Xt,x, f ,g) if

dYs = f (s,Xt,x
s ,Ys,Zs,Γs)ds + Z′s ◦dXt,x

s , s ∈ [t,T ) , (3.29)

dZs = As ds +Γs dXt,x
s , s ∈ [t,T ) , (3.30)

YT = g
(
Xt,x

T

)
, (3.31)

where Z′s ◦ dXt,x
s denotes Fisk–Stratonovich integration, which is related to Itô integration

by

Z′s ◦dXt,x
s = Z′s dXt,x

s +
1
2

d
〈
Z,Xt,x

s
〉

= Z′s dXt,x
s +

1
2

Tr[Γsσ(Xt,x
s )σ(Xt,x

s )′]ds .

The last definition furnishes a fundamental relation between 2BSDE like (3.29)-(3.31)

and fully nonlinear parabolic PDEs. To understand this relation, let f : [0,T )×Rd×R×Rd×

Sd → R and g : Rd → R be continuous functions. Further assume that u : [0,T ]×Rd → R

is a continuous function with the properties

ut,Du,D2u,LDu ∈ C0([0,T )×Rd) ,

that solves the PDE

−ut(t, x) + f
(
t, x,u(t, x),Du(t, x),D2u(t, x)

)
= 0 on [0,T )×Rd , (3.32)

with terminal condition

u(T, x) = g(x) , x ∈ Rd . (3.33)

Then, it follows directly from Itô’s formula that for each pair (t, x) ∈ [0,T )×Rd, the pro-

cesses

Ys = u
(
s,Xt,x

s

)
, s ∈ [t,T ] ,

Zs = Du
(
s,Xt,x

s

)
, s ∈ [t,T ] ,

Γs = D2u
(
s,Xt,x

s

)
, s ∈ [t,T ] ,

As = LDu
(
s,Xt,x

s

)
, s ∈ [t,T ] ,

solve the 2BSDE corresponding to (Xt,x, f ,g). Conversely, the first component of the solu-

tion of the 2BSDE (3.29) at the initial time is a solution of the fully nonlinear PDE (3.32)
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satisfies Yt = u(t, x). Note that the representation of (3.32) by a 2BSDE is not unique, even

though its solution is (cf. [29]).

The representation of fully nonlinear parabolic PDEs, such as (3.17), allows to solve

them numerically by solving the corresponding 2BSDE, e.g. by using the techniques de-

scribed in [6].

3.3.1 2BSDE Representation of the Payoff

Here we specifically use the link between our G-HJB equation and 2BSDEs to improve

the convergence rate of the convergence Pδ→ P0. To this end we write the 2BSDE for Pδ

(resp. P0) as follows: for all s ∈ [t,T ) it holds that

dYδ;t,xs = f δ(s, X̃δ;t,x
s ,Yδ;t,xs ,Zδ;t,xs ,Γδ;t,xs )ds + (Zδ;t,x)′s ◦dX̃δ;t,x

s , (3.34)

dZδ;t,xs = Aδs ds +Γδs dX̃δ;t,x
s , (3.35)

Yδ;t,xT = h
(
X̃δ;t,x

T

)
, (3.36)

where X̃ is the solution to the SDE

d(Xδ
t ,Vt) = dX̃t = dW̃t, dW̃t = d(W1

t ,W
2
t ), X̃0 = x̃.

Similarly,

dY0;t,x
s = f 0(s,X0;t,x

s ,Y0;t,x
s ,Z0;t,x

s ,Γ0
s)ds + (Z0;t,x)′s ◦dX0;t,x

s , (3.37)

dZ0;t,x
s = A0

s ds +Γ0
s dX0;t,x

s , (3.38)

Y0;t,x
T = h

(
X0;t,x

T

)
, (3.39)

where X0
t is the solution to

dX0
t = dW1

t , X0 = x.

Here h denotes the payoff function (specified below), and

f 0(s, x,y,z,S ) = −
1
2

x0e2v|σ̄(S 1,1)|2S 1,1

f δ(s, x̃,y,z,S ) =−
1
2

x̃δe2v|σ̄(S 1,1)|2S 1,1−2
√
δx̃δevσρ|σ̄(S 1,2)|S 1,2−δ

(
1
2
σ2S 2,2 + (a−beαv)z2

)
,

where,

σ̄ =

σmax x ≥ 0

σmin x < 0
. (3.40)
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Note that the nonlinear diffusion coefficient has been moved to the drift terms (or: drivers)

f 0 and f δ, which is why the SDE dynamics is trivial. Then from the link between G-PDEs

and 2BSDEs we have Y0;t,x
t = P0(t, x) and Yδ;t,xt = Pδ(t, x).

We will now use this link to revisit the convergence result for Pδ→ P0.

Theorem 21 ([47]). Pδ converges to P0 as δ→ 0, uniformly on compact sets and at rate δ.

Proof. We have

Yδ;t,xt = h(X̃δ;t,x
T ) +

∫ T

t
f δ(r, X̃δ;s,x

r ,Yδ;s,xr ,Zδ;s,xr ,Γδ;s,xr )dr

−

∫ T

t
(Zδ;s,x)′r ◦dX̃δ;s,x

r ,

(Zδ;s,x)′r ◦dX̃δ;s,x
r = (Zδ;s,x)′rdX̃δ;s,x

r +
1
2

Tr[Γδrσ(X̃δ;s,x
r )σ(X̃δ;s,x

r )′]dr,

(Zδ;s,x)′rdX̃δ;s,x
r = (Zδ;t,x1 )′rdW1

r + (Zδ;s,x2 )′rdW2
r ,

and thus

Yδ;t,xt = h(X̃δ;t,x
T ) +

∫ T

t
f δ(r, X̃δ;s,x

r ,Yδ;s,xr ,Zδ;s,xr ,Γδ;s,xr )dr−
∫ T

t
((Zδ;s,x1 )′rdW1

r + (Zδ;s,x2 )′rdW2
r )

−

∫ T

t

1
2

Tr[Γδrσ(X̃δ;s,x
r )σ(X̃δ;s,x

r )′]dr.

Y0;t,x
t = h(X0;t,x) +

∫ T

t
f 0(r,X0;s,x

r ,Y0;s,x
r ,Z0;s,x

r ,Γ0;s,x
r )dr

−

∫ T

t
(Z0;s,x)′r ◦dX0;s,x

r ,

(Z0;s,x)′r ◦dX̃0;s,x
r = (Z0;s,x)′rdX̃0;s,x

r +
1
2

Tr[Γ0
rσ(X̃0;s,x

r )σ(X̃0;s,x
r )′]dr .

Calling Z̃ s,x
r = (Z0;s,x

r ,0)

(Z0;s,x)′rdX̃0;s,x
r = (Z̃s)′dX̃δ;s,x

r = (Z0;s,x)′rdW1
r + 0 ,

we obtain

Y0;t,x
t = h(X0;t,x

T ) +

∫ T

t
f 0(r,X0;s,x

r ,Y0;s,x
r ,Z0;s,x

r ,Γ0;s,x
r )dr−

∫ T

t
(Z0;s,x)′rdW1

r

−

∫ T

t

1
2

Tr[Γ0
rσ(X̃0;s,x

r )σ(X̃0;s,x
r )′]dr.
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Now let yt = Yδ;t,xt −Y0;t,x
t . Then

yt =h(X̃δ;t,x
T )−h(X0;t,x

T ) +

∫ T

t
f δ(r, X̃δ;s,x

r ,Yδ;s,xr ,Zδ;s,xr ,Γδ;s,xr )

− f 0(r,X0;s,x
r ,Y0;s,x

r ,Z0;s,x
r ,Γ0;s,x

r )dr−
∫ T

t
(((Zδ;s,x1 )′rdW1

r + (Zδ;s,x2 )′rdW2
r )

− (Z0;s,x)′rdW1
r )−Tr[Γ0

rσ(X̃0;s,x
r )σ(X̃0;s,x

r )′]))

=h(X̃δ;t,x
T )−h(X0;t,x

T ) +

∫ T

t
f δ(r, X̃δ;s,x

r ,Yδ;s,xr ,Zδ;s,xr ,Γδ;s,xr )

− f 0(r,X0;s,x
r ,Y0;s,x

r ,Z0;s,x
r ,Γ0;s,x

r )dr−
∫ T

t
(((Zδ;s,x1 )′r − (Z0;s,x)′r)dW1

r + (Zδ;s,x2 )′rdW2
r )

−

∫ T

t

1
2

(Tr[Γδrσ(X̃δ;s,x
r )σ(X̃δ;s,x

r )′]−Tr[Γ0
rσ(X̃0;s,x

r )σ(X̃0;s,x
r )′])dr,

where

f δ(r, X̃δ;s,x
r ,Yδ;s,xr ,Zδ;s,xr ,Γδ;s,xr )− f 0(r,X0;s,x

r ,Y0;s,x
r ,Z0;s,x

r ,Γ0;s,x
r )

= −
1
2

(x̃δe2Vt − x0e2v)|σ(Γ11)|2Γ11−2
√
δσρx̃δeVt |σ(Γ12)|Γ12−δ(

1
2
σ2Γ22 + (a + beαVt)zδ2) .

Applying Itô’s formula to eαt|yt|
2 for some α > 0 then yields

d(eαt|yt|
2) =αeαs|ys|

2ds

−2eαs|ys|{ f δ(s, X̃δ;t,x
s ,Yδ;t,xs ,Zδ;t,xs ,Γδ;t,xs )− f 0(s,X0;t,x

s ,Y0;t,x
s ,Z0;t,x

s ,Γ0;t,x
s )}ds

+ 2eαs|ys|{((Z
δ;t,x
1 )′s− (Z0;t,x)′s)dW1

s + (Zδ;t,x2 )′sdW2
s }

+ eαs(Tr[Γδsσ(X̃δ;t,x
s )σ(X̃δ;t,x

s )′]−Tr[Γ0
sσ(X̃0;t,x

s )σ(X̃0;t,x
s )′])ds

+ eαs{||((Zδ;t,x1 )′s− (Z0;t,x)′t)||
2 + ||(Zδ;t,x2 )′s||

2}ds.

Therefore,

eαt|yt|
2 +

∫ T

t
eαr{||((Zδ;s,x1 )′r − (Z0;s,x)′r)||

2− ||(Zδ;s,x2 )′r||
2}dr

+

∫ T

t
eαr(Tr[Γδrσ(X̃δ;s,x

r )σ(X̃δ;s,x
r )′]−Tr[Γ0

rσ(X̃0;s,x
r )σ(X̃0;s,x

r )′])dr,

=h(X̃δ;t,x
T )−h(X0;t,x

T ) +

∫ T

t
eαr(−α)|ys|

2dr

+

∫ T

t
2|ys|{ f δ(r, X̃

δ;s,x
r ,Yδ;s,xr ,Zδ;s,xr ,Γδ;s,xr )− f 0(r,X0;s,x

r ,Y0;s,x
r ,Z0;s,x

r ,Γ0;s,x
r )})dr

−

∫ T

t
2eαr|ys|{((Z

δ;s,x
1 )′r − (Z0;s,x)′r)dW1

r + (Zδ;s,x2 )′rdW2
r }.
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Since for all ε > 0, we have 2ab ≤ a2/ε+εb2, it follows that

eαt|yt|
2 +

∫ T

t
eαr{||((Zδ;s,x1 )′r − (Z0;s,x)′r)||

2− ||(Zδ;s,x2 )′r||
2}dr

+

∫ T

t
eαr(Tr[Γδrσ(X̃δ;s,x

r )σ(X̃δ;s,x
r )′]−Tr[Γ0

rσ(X̃0;s,x
r )σ(X̃0;s,x

r )′])dr,

≤h(X̃δ;t,x
T )−h(X0;t,x

T ) +

∫ T

t
eαr(−α|ys|

2dr

+

∫ T

t
(|ys|2/ε+ε{ f δ(r, X̃δ;s,x

r ,Yδ;s,xr ,Zδ;s,xr ,Γδ;s,xr )

− f 0(r,X0;s,x
r ,Y0;s,x

r ,Z0;s,x
r ,Γ0;s,x

r )}2)dr

−

∫ T

t
2eαr|ys|{((Z

δ;s,x
1 )′r − (Z0;s,x)′r)dW1

r + (Zδ;s,x2 )′rdW2
r } .

Therefore, setting α = 1
ε , we conclude

eαt|yt|
2 +

∫ T

t
eαr{||((Zδ;s,x1 )′r − (Z0;s,x)′r)||

2 + ||(Zδ;s,x2 )′r||
2}dr

+

∫ T

t
eαr(Tr[Γδrσ(X̃δ;s,x

r )σ(X̃δ;s,x
r )′]−Tr[Γ0

rσ(X̃0;s,x
r )σ(X̃0;s,x

r )′])dr

≤h(X̃δ;t,x
T )−h(X0;t,x

T )

+ε

∫ T

t
{ f δ(r, X̃δ;s,x

r ,Yδ;s,xr ,Zδ;s,xr ,Γδ;s,xr )− f 0(r,X0;s,x
r ,Y0;s,x

r ,Z0;s,x
r ,Γ0;s,x

r )}2)dr

−

∫ T

t
2eαr|ys|{((Z

δ;s,x
1 )′r − (Z0;s,x)′r)dW1

r + (Zδ;s,x2 )′rdW2
r }.

(3.41)

Because Xt and Vt have finite moments of any order, the imposed regularity condition on h,

together with [26, Thm. 5.2.2 , thm. 5.2.5], Theorem 16, Proposition 15, and Proposition 17

in this thesis, imply

E(h(X̃δ;t,x
T )−h(X0;t,x

T )) ≤Cδ,

and

E({ f δ(r, X̃δ;s,x
r ,Yδ;s,xr ,Zδ;s,xr ,Γδ;s,xr )− f 0(r,X0;s,x

r ,Y0;s,x
r ,Z0;s,x

r ,Γ0;s,x
r )}2) ≤C0δ .
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Hence

E

[
sup

t≤s≤T
eαt|yt|

2
]

≤Cδ+C0εδ+C1E


(∫ T

t
e2αr|ys|

2{||((Zδ;s,x1 )′r − (Z0;s,x)′r)||
2 + ||(Zδ;s,x2 )′r||

2}dr
) 1

2
 ,

≤Cδ+C0εδ+C1E

 sup
t≤s≤T

eαt/2|yt|

(∫ T

t
eαr{||((Zδ;s,x1 )′r − (Z0;s,x)′r)||

2 + ||(Zδ;s,x2 )′r||
2}dr

) 1
2
 ,

which together with the inequality ab ≤ a2/2 + b2/2 yields

E

[
sup

t≤s≤T
eαt|yt|

2
]
≤Cδ+C0εδ+

1
2
E

[
sup

t≤s≤T
eαt|yt|

2
]

+
C2

1

2
E

[∫ T

t
eαr{||((Zδ;s,x1 )′r − (Z0;s,x)′r)||

2 + ||(Zδ;s,x2 )′r||
2}dr

]
.

As a consequence of the inequality (3.41), we thus obtain

E

[
sup

t≤s≤T
eαt|yt|

2 +

∫ T

t
eαr{||((Zδ;s,x1 )′r − (Z0;s,x)′r)||

2 + ||(Zδ;s,x2 )′r||
2}dr

+2
∫ T

t
eαr(Tr[Γδrσ(X̃δ;s,x

r )σ(X̃δ;s,x
r )′]−Tr[Γ0

rσ(X̃0;s,x
r )σ(X̃0;s,x

r )′])dr
]

≤Cδ+C0εδ+C2
1 ,

which entails the final result

E

[
sup

t≤s≤T
eαt|yt|

2
]
≤ δC̃ε,

for some C̃ε > 0 independent of δ. �

3.3.2 Numerical Illustration

We conclude with a numerical demonstration of the theoretical results to confirm that

|Pδ −P0| = O(δ). To this end, note that the valuation of financial derivatives based on our

UV model requires solving the G-HJB equation (3.9), which is typically not analytically

solvable.

In low dimension, we can implement a finite difference scheme; here we follow a different

58



route and take advantage of the link between G-PDE and 2BSDE. To be specific the payoff

function is chosen as

h(x) = (x−90)+−2(x−100)+ + (x−110)+.

We consider the following parameters

x̃ = (x̃0,k0) = (100,−1) , σmin = 0.1,σmax = 0.2 , α = 2 ,

T = 0.15 , a = 0.6 , b = 0.5 , ρ = 0.5 .

For these parameters, we compute the difference between Pδ and P0, the solutions of the

G-PDE (3.9) and (3.11), using the deep learning 2BSDE solver introduced by Beck et al.

[6]. More specifically, we numerically solve the 2BSDEs (3.34)-(3.36) and (3.37)-(3.39)

with the Python code provided in [6].

The result is shown in Table 3.1 and Figure 3.1. Neglecting the error invoked by the

numerical approximation of the deep neural network, which is difficult to assess, the numer-

ical calculation confirms that |Pδ−P0| ' O(δ0.7), which is in agreement with the predictions

of Theorem 16 and Theorem 21.
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δ 0.5 0.2 0.001

error(δ) 1.2 0.6 0.02

Table 3.1. The error ε0,x(δ) = Pδ(0, x)−P0(0, x) for x̃ = (100,−1).
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sublinear O(
1/2

)

linear O(
1

)

Figure 3.1. The error ε0,x(δ) = Pδ(0, x)−P0(0, x) in doubly logarithmic scale; the slope is

roughly 0.7.
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Chapter 4

Hedging Strategies

In this chapter, we analyse different implications of the stochastic behavior of asset prices

volatilities for option hedging purposes. We assuming a stochastic volatility environment,

we study the accuracy of Black and Scholes implied volatility-based hedging. More pre-

cisely, we analyse the hedging ratios biases and investigate different hedging schemes in a

dynamic setting. Also, we look at how the perturbation analysis helps with the risk man-

agement problem of hedging a derivative position (see [23]).

4.1 General Thoughts on Hedging

A stochastic volatility option pricing model is a special case of the two-state financial

model, with two sources of risk. dX(t)

dσ(t)

 =

 µX(t)

µ2(t,X(t),σ(t))

dt +

 σ(t)X(t) σ1,2(t,X(t),σ(t))

σ2,1(t,X(t),σ(t)) σ2,2(t,X(t),σ(t))


 dW1(t)

dW2(t)

 ,
with E[W1(t)W2(t)] = ρt.

Option price depends on several parameters, such as the underlying stock price X(t) and

its volatility σ(t) , the risk-free interest rate r(t), and the time to maturity T .The sensitivity

of the price of an option to the variations of its parameters is measured by using partial

derivatives. These quantities, known as Greeks.
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The Greeks of option prices which considered by the practitioners as following

∆ =
∂P
∂x

: Delta is the rate of change of the portfolio value with respect to the asset price.

Γ =
∂2P
∂x2 : Gamma is the rate of change of delta with respect to the asset price.

V =
∂P
∂σ

: Vega is the rate of change of the portfolio value with respect to the asset’s volatility.

R =
∂P
∂r

: Rho is the derivative of the option value with respect to the risk free interest rate.

Θ =
∂P
∂t

: measures the sensitivity of the value of the derivative to the passage of time.

play a crucial role in trading and managing portfolios of options [30].

To hedging the exposure of the portfolio to market risk, practitioners use the delta,

gamma and vega measures to quantify the different aspects of this inherent risk. They try

to immune their option portfolio from the small changes in the price of the underlying as-

set (delta/gamma hedging) and its volatility (sigma hedging), so we need for very accurate

computing of Greeks.

With the close-to-close historic volatility, the hedging ratios calculated by Black-Scholes

model fail to realize a well-hedged position [55] [56]. To improve the hedging properties

of the Black-Scholes model, usually we use the Black-Scholes implied volatility. However,

a various biases in option hedging strategies may be produced by using Black -Scholes im-

plied volatilities in conjunction with the Black-Scholes computed Greeks, in the existence

of stochastic volatility.

4.1.1 Hedging Ratios Biases

According to Renault and Touzi (1996) [55], we define the delta hedging bias as the differ-

ence between the Black-Scholes implied volatility-based delta and the stochastic volatility

model’s one

∆BS
t (x,σi)−∆S V

t (x,σ).

Renault and Touzi proved that, provided we have ρ = 0, we verify ∀x ≥ 0 and σ > 0

∆BS (x,σi(x,σ)) ≤ ∆S V(x,σ),

∆BS (−x,σi(−x,σ)) ≥ ∆S V(−x,σ),

∆BS (0,σi(0,σ)) = ∆S V(0,σ).
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For an in-the-money (out-of-the-money) option, the use of Black-Scholes implied volatility

leads to an underhedged (overhedged) position.

Proposition 22. ∀x and ∀σ > 0 we have

ρ → −1 =⇒ ∆BS (x,σi(x,σ)) ≤ ∆S V(x,σ),

ρ → +1 =⇒ ∆BS (x,σi(x,σ)) ≥ ∆S V(x,σ).

Whatever the moneyness of the option, the Black-Scholes implied volatility-based delta

hedging leads systematically to an underhedged position when ρ strongly negative. On the

other hand, for ρ strongly positive, the use of Black-Scholes implicit volatility leads sys-

tematically too to an overhedged position [55].

In order to keep the portfolio delta neutral, gamma, which measures the rate of change in

the delta with respect to changes in the underlying asset price, reflects the need of relatively

frequent adjustments in this portfolio. Delta changes slowly and rebalancing to maintain

a neutral portfolio can be performed relatively less frequently, if gamma is small. Fur-

ther, if gamma is large, delta is highly sensitive to the price of underlying asset and good

management of options portfolio requires an active delta hedging [30].

ρ = 0 =⇒ ΓBS (x,σi) ≤ ΓS V(x,σ) for x→ 0,

ρ → −1 =⇒ ΓBS (x,σi) ≤ ΓS V(x,σ) for x < 0,

ρ → +1 =⇒ ΓBS (x,σi) ≤ ΓS V(x,σ) for x > 0.

With a view to make a portfolio gamma neutral, we need a new − Γ
Γ0

position in a traded

option, where Γ and Γ0 are respectively the gamma of the portfolio and of the traded option.

As in the pure delta hedging case, the accurate computation of Greeks is crucial [55].

Such in the gamma case, taking a new − V
V0

position in a traded option, allow us to make

a portfolio immune to changes in volatility of the underlying asset price, where V is the

vegas of the portfolio and V0 the vegas of a traded option. Next, in order to keep delta-

neutrality of the portfolio we must readjust our position in the underlying asset. This type

of strategy is called delta-sigma hedging. Bajeux and Rochet(1992) [4] have proved that

the hedging problem can be solved through a delta-sigma hedging strategy, in a stochastic

volatility context with ρ = 0.
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4.1.2 Option Hedging Strategies in Stochastic Volatility Environment

A financial institution that sells an option faces the problem of managing its market risk.

For example, the hedging problem for a financial institution that writes at time t0 a Euro-

pean call option of price C(t0) consists of producing a wealth of max[X(T )−K,0] at the

maturity time T .

In the Black-Scholes world, where volatilities of asset prices are constant, pure delta hedg-

ing suffices to solve the hedging problem [30]. A short position in an option is hedged with

a time-varying long position in the underlying stock. At any given time, the long positions

are readjusted to equal the delta of the option position. When the hedge is rebalanced con-

tinuously, the actualized cost of this strategy is exactly equal to the price C(t0) of the option

: the net hedge cost is zero [55].

4.1.3 Pure Delta Hedging

Take for example, a continuously rebalanced hedge portfolio composed of a short position

in one European call option and a long position in α underlying stocks

Π(t) = −C(t) +αX(t). (4.1)

The construction of this portfolio is financed by a loan constant risk-free interest rate r.

The instantaneous change in the value of the hedge portfolio Π is given by

R(Π(t)) = −rΠ(t)dt + dΠ(t), (4.2)

with

dΠ(t) = DΠdt +Πs(t,X(t),σ(t))σ(t)X(t)dW1(t)

+ Πσ(t,X(t),σ(t))σ2,2(t,X(t),σ(t))dW2(t), (4.3)

where D is the Dynkin operator.

We have

DΠ = Π+µX(t)Πs +µ2Πσ+
1
2
σ2(t)X2(t)Πxx +

1
2
σ2

2,2Πσσ+ρσ(t)X(t)σ2,2Πxσ.

If

α = Cs =
∂C
∂x

(t,X(t),σ(t)), (4.4)
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the portfolio Π is delta neutral at time t.

To estimate α, we use the Black-Scholes model and the Black-Scholes implied volatility.

This leads to

αBS = ∆BS = ∆BS
(
t, x(t),σi(t, x(t),σ(t))

)
. (4.5)

So we obtain

dΠBS (t) = [−DC(t) +∆BSµX(t)]dt + [∆BS −CX]σ(t)X(t)dW1(t) +Cσσ2,2dW2(t). (4.6)

In a stochastic volatility world CX = ∆S V .

Noting that HB = ∆BS −∆S V gives

dΠBS (t) = [−DC(t) +∆BSµX(t)]dt + HBσ(t)X(t)dW1(t) +Cσσ2,2dW2(t). (4.7)

The instantaneous change in value of the Black and Scholes implied volatility-based

hedge portfolio has two stochastic components. The first arises from the delta hedging bias.

The second arises from the fact that the volatility is not hedged at all. The instantaneous

variance of dΠBS is
var[dΠBS (t)|Ft]

dt
= HB2σ2(t)X2(t) +C2

σσ
2
2,2 + 2ρHBσ(t)X(t)Cσσ2,2. (4.8)

Now consider the delta neutral hedge portfolio based on the stochastic volatility option

pricing model. In this case, we have

αS V = ∆S V = CX(t,X(t),σ(t)), (4.9)

and the instantaneous variance of the change in value of the hedge portfolio is

var[dΠS V(t)|Ft]
dt

= C2
σσ

2
2,2. (4.10)

Hedging positions of financial institutions are exposed to significant risks, if there is a fail

to hedge against stochastic volatility. Delta-sigma hedging able to substantially reduce this

risk.

4.1.4 Delta-Sigma Hedging

Consider a continuously rebalanced hedge portfolio consisting of a short position in one

European call option, a position in α2 units of the underlying asset and a position in α1

units of any other exchange-traded option on the same asset

P(t) = −C1(t) +α1C2(t) +α2X(t). (4.11)
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The setting up of this portfolio is financed by a loan at the constant risk-free interest rate r.

The portfolio Π is delta and vega neutral if α1 =
C1
σ

C2
σ
,

α2 = C1
x −α1C2

X.
(4.12)

Using the Black-Scholes model and the Black-Scholes implied volatility to estimate α1 and

α2 leads to  αBS
1 =

VBS
1
VBS

2
,

αBS
2 = ∆BS

1 −α
BS
1 ∆BS

2 .
(4.13)

In this case we obtain

dΠBS (t) = [−DC1 +αBS
1 DC2 +αBS

2 µX(t)]dt

+[−C1
x +αBS

1 C2
x +αBS

2 ]σ(t)X(t)dW1(t)

+[−C1
σ+αBS

1 C2
σ]σ2,2dW2(t). (4.14)

In a stochastic volatility world Ci
x = ∆S V

i and Ci
σ =VS V

i , i = 1,2. Noting that HB1 = ∆BS
1 −

∆S V
1 and HB2 = ∆BS

2 −∆S V
2 gives

dΠBS (t) =

[
−DC1 +

VBS
1
VBS

2
DC2 +

(
∆BS

1 −
VBS

1
VBS

2
∆BS

2

)
µX(t)

]
dt

+

[
HB1−

VBS
1
VBS

2
HB2

]
σ(t)X(t)dW1(t)

+

[
−VS V

1 +
VBS

1
VBS

2
VS V

2

]
σ2,2dW2(t).

(4.15)

The instantaneous change in the value of the Black and Scholes implied volatility-based

hedge portfolio has two stochastic components which arise from the delta and vega hedging

biases [56]. The instantaneous variance of dΠBS is

var[dΠBS (t)|Ft]
dt =

[
HB1−

VBS
1
VBS

2
HB2

]2
σ2(t)X2(t) +

[
−VS V

1 +
VBS

1
VBS

2
VS V

2

]2
σ2

2,2

+2ρ
[
HB1−

VBS
1
VBS

2
HB2

] [
−VS V

1 +
VBS

1
VBS

2
VS V

2

]
σ(t)X(t)σ2,2.

(4.16)

Now consider the delta-sigma hedging portfolio based on the stochastic volatility option

pricing model. In this case, we have αS V
1 =

VVS
1
VVS

2
,

αS V
2 = ∆S V

1 −α
S V
1 ∆S V

2 .
(4.17)
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If the hedge is rebalanced continuously, the instantaneous variance in the value of this port-

folio is zero : the stochastic volatility model based delta-sigma scheme solves the hedging

problem.

4.2 Hedging by Perturbation Analysis

In this section, we look at how the perturbation analysis helps with the risk management

problem of hedging a derivative position (see [23]).

4.2.1 The Strategy and its Cost Under the α-Hypergeometric Model

According to chapter 3, the dynamic process of the α-hypergeometric model given by dXt = rXtdt + XteVtdW1
t ,

dVt = (a−beVt)dt +σdW2
t .

(4.18)

Noting that, PBS (t, x) = P0(t, x,v) the leading-order term in our price approximation drived

in the chapter 3

Such a strategy replication the derivative at maturity T since P0(T,XT ,VT ) = h(XT ) but it is

not self-financing. The portfolio has

at =
∂P0

∂x
(t,Xt,Vt), (4.19)

stocks,

bt = e−rt
[
P0(t,Xt,Vt)−Xt

∂P0

∂x
(t,Xt,Vt)

]
, (4.20)

bounds at time t. So that its value is

atXt + btert = P0(t,Xt,Vt). (4.21)

The infinitesimal change of P0(t,Xt,Vt), by using Ito’s formula, is given as

dP0(t,Xt,Vt) =

(
∂P0

∂t
+

1
2

e2Vt X2
t
∂2P0

∂x2 +
√
δρσeVt Xt

∂2P0

∂x∂v
+
δ

2
σ2∂

2P0

∂v2

)
dt

+ atdXt +
∂P0

∂v
dVt. (4.22)
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Where we have dropped the argument (t,Xt,Vt) in the derivatives of P0. The infinitesimal

change due to the market (the self-financing part) is given by

atdXt + rbtertdt, (4.23)

and thus the infinitesimal P& L (positive or negative)induced by the strategy is given cost

by the difference

dP0(t,Xt,Vt)−atdXt − rbtertdt

=
1
2

(
e2vt − σ̄2(Vt)X2

t
∂2P0

∂x2

)
dt +
√
δ

ρσeVt Xt
∂2P0

∂x∂v
+

√
δ

2
σ2∂

2P0

∂v2

dt +
∂P0

∂v
dVt,

=
1
2

(
e2Vt − σ̄2

)
X2

t
∂2P0

∂x2 dt +
√
δρσeVt Xt

∂2P0

∂x∂v
dt +
√
δσ

∂P0

∂v
dW2

t +O(δ), (4.24)

where we have used the Black-Scholes equation satisfied by P0, and then identified the

terms of order at most
√
δ. Noting that σ̄ = σ̄(v) is the local effective volatility estimated

from historical returns data.

The corresponding cumulative P& L up to time t, and discounted to time 0, is

E0(t) =
1
2

∫ t

0
e−rs

(
e2Vs − σ̄2(Vs)

)
X2

t
∂2P0

∂x2 ds

+
√
δρ

∫ t

0
e−rsσeVs Xs

∂2P0

∂x∂v
ds

+
√
δ

∫ t

0
e−rsσ

∂P0

∂v
dW2

s +O(δ). (4.25)

4.2.2 Approximation of the Cost

Due to the volatility factor Vt, the cost Eδ
0(t) is given in the second line of 4.25 by

Eδ
0(t) =

√
δρ

∫ t

0
σevt Xt

∂P0

∂x∂v
dS +

√
δ

∫ t

0
e−rsσ

∂P0

∂v
dW(2)

s +O(δ). (4.26)

This cost can be writhen

Eδ
0(t) =

√
δ(Bδt + Mδ

t ) +O(δ). (4.27)

Where we define the bias

βδt = ρ

∫ t

0
e−rsσevt Xs

∂2P0

∂x∂y
(s,Xs,Vs)ds, (4.28)
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and the zero-mean martingale

Mδ
t =

∫ t

0
e−rsσ

∂P0

∂v
(s,Xs,Vs)dW2

s . (4.29)

The cost E0 induced by a Black-Scholes hedging strategy, given in 4.25, can written

E0 =
√
δ(Bδt + Mδ

t ) +O(δ). (4.30)

4.2.3 Mean Self-Financing Hedgin Strategy

To remove the biases in the cumulative cost underlined in the calculation above, we propose

to use the perturbation method. we will correct the Hedging strategy in the following way:

manage the portfolio made of

at =
∂(PBS + Qδ

0,1)(t,Xt,Vt)

∂x
(t,Xt,Vt),

shares of the risky asset and

bt = e−rt

(PBS + Qδ
0,1)(t,Xt,Vt)−Xt

∂(PBS + Qδ
0,1)

∂x
(t,Xt,Vt)

 , (4.31)

shares of the riskless asset, where PBS (t,Xt) = P0(t,Xt,Vt) in computed at σ̄ = σ̄(v) and

Qδ
0,1(tx,v) solve the following partial differential equation,

LBS (σ̄(v))Qδ
0,1 = −2Vδ

1(v)x
∂

∂x
(
∂PBS

∂σ
),

with zero terminal conditions Qδ
0,1(T, x,v) = 0.

Qδ
0,1 is given explicitly by

Qδ
0,1 = (T − t)Vδ

1(v)x
∂

∂x
(
∂PBS

∂σ
). (4.32)

Notice that indeed Qδ
0,1 is small of order

√
δ.

The hedging ratio at is now given by

∂PBS

∂x
+ (T − t)Vδ

1(v)
∂

∂x
(x
∂

∂x
(
∂PBS

∂σ
)),

which is the usual Black-Sholes delta corrected by a combination of Greeks up to fourth-

order derivatives [23].
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With this new hedging ratio, the infinitesimal cost of the hedging strategy. denoted by

dEQ
1 (t), is given by

dEQ
1 = d(PBS + Qδ

0,1)(t,Xt,Vt)−atdXt − rbtertdt.

With the new hedging strategy, we repeat the previous calculation, we find

dEQ
1 (t) =

1
2

(e2vt − σ̄2(Vt))X2
t

∂2(PBS −Qδ
0,1)

∂x2 dt +
√
δρσevt Xt

∂2PBS

∂x∂v
dt

+
√
δσ

∂PBS

∂v
dW2

t +PBS ((σ̄))(Qδ
0,1)dt +O(δ).

The cumulative cost discounted at time zero is given by

EQ
1 (t) =

1
2

∫ t

0
e−rs(e2vs − σ̄2(vs))X2

s

∂(PBS + Qδ
0,1)

∂x2 ds (4.33)

+
√
δρ

∫ t

0
e−rsσevt Xs

∂2PBS

∂x∂v
ds +

√
δ

∫ t

0
e−rsσ

∂PBS

∂v
dW2

s

−

∫ t

0
e−rsVδ

1(v)Xs
∂

∂x
(
∂PBS

∂σ
)ds +O(δ),

where

Vδ
1 =

√
δρσ

2
< f > σ̄(v).

So

EQ
1 (t) =

√
δ(Bδt + Mδ

t )−2
∫ t

0
e−rsVδ

1(vs)Xs
∂

∂x
(
∂PBS

∂σ
)ds +O(δ), (4.34)

we then observe that, with this choice of corrections in the hedging ratio and the definition

of Vδ
1 , we have

√
δBδt −2

∫ t

0
e−rsVδ

1(vt)Xs
∂

∂x
(
∂PBS

∂σ
)ds = ρ

√
δ

∫ t

0
e−rsσ{evt− < f > (vt)σ̄(vs)}

×

[
x
∂

∂x
(
∂PBS

∂σ
)
]
(s,Xs,Vs)ds.

In the end, all the terms in the corrected cumulative cost 4.33 are of order (δ) except the

remaining mean-zero martingale term form 4.30 so that

EQ
1 (t) =

√
δMδ

1 +O(δ).

Doing so we have removed the systematic biases in 4.30 and therefore we have reduced

the variance of this small "nonhedgable" part of the risk due to stochastic volatility. The

strategy is now mean self-financing to order δ [23].
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Conclusions and Perspectives

In this chapter, we summarize the obtained results throughout the thesis. Subsequently,

we propose some potential problems regarding the future research topics.

Conclusions

This thesis has dealt with α-hypergeometric stochastic models with uncertain volatility

(UV). The idea is to connect the UV model with a nonlinear expectation framework to

derive a worst-case price scenario, avoiding the complicated and numerically expensive

model calibration step. We have studied the asymptotic behavior of the worst-case scenario

option prices in the case when the time scale at which the stochastic volatility process varies

tends to infinity (i.e. when the volatility process becomes infinitely slow).

As we have shown, the limit model is an accurate simplified description of the UV

model in the regime of the slow variable of the uncertain volatility bounds. The method

presented here can also be applied for other models such as the Heston model.

We have illustrated our results by a numerical example. The numerical solution of

our problem is based on the known link of fully nonlinear second order partial differential

equations that describe the worst-case price scenario and second-order backward stochastic

differential equations (2BSDEs). We should emphasize that the numerical algorithm we use

for solving 2BSDEs even works when the terminal cost that determines the payoff is non-

differentiable. Although this paper is only giving a proof of concept, we expect that the

ideas can be applied also in the case of UV models when, for example, there is only partial

information from the market.
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Perspectives

As we have noticed throughout the thesis, pricing options are calibrated in many meth-

ods, In the coming studies, we will propose models with fractional or multi-fractional

stochastic process. We suggest multiscale stochastic volatility models (Vol-of-Vol models)

and analysis them with the First-order perturbation theory using a combination of singular

and regular perturbation techniques to derive approximations for the option prices.
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