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 خــــــــــــصـلـم
 

 انًعبدلاث أصنبف نبعض انحهىل استقشاسو وإيجببيت دوسيت نذساست يخصص انعًم هزا

 انثببتت اننقطت نظشيبث هي هنب انًستخذيت انطشيقت. شتأخي جًم انًعبدلاث انذانيت راثو

 يعبدنت إنى انًذسوست انًعبدنت تحىيم عهى انطشيقت هزه فكشة تعتًذ. انًشجىة اننتبئج لإثببث

 انذوسيتانحهىل و انذوسيت انحهىل واستقشاس وتفشد وجىد إظهبس ثى وين يكبفئت تكبيهيت

 .انثببتت اننقطت نظشيبث ببستخذاو انًىجبت

وجًم  ًعـبدلاثان ،يجببيت، الإانذوسيت انىحذانيت، ،انىجىد انثببتت، اننقطت: المفتاحيـة الكلمـات

جًم انًعبدلاث  تأخيش،انفشوق راث  يعـبدلاثجًم  ،راث تأخيشانتفبضهيت  انًعبدلاث

 .انكسشيت انتفبضهيت انًعـبدلاث ،راث تأخيش انذينبييكيت

 



Abstract

This work is devoted to the study of the periodicity, positivity and stability of solutions

for some classes of delay functional equations and systems. The method used here is the

fixed point theorems for proving the desired results. The idea of this method is based on

the converting of the considered equation into an equivalent integral equation and then

show the existence, uniqueness and stability of periodic and positive periodic solutions by

using the fixed point theorems.

Keywords: Fixed point, existence, uniqueness, periodicity, positivity, delay differen-

tial equations and systems, delay difference systems, delay dynamic systems, fractional

differential equations.

Mathematics Subject Classification: 26A33, 34A08, 34B15, 34B18, 34K20, 34K30,

34K40, 39A12, 39A23, 45N05, 47H10.



Résumé

Ce travail est consacré à l’étude de la périodicité, de la positivité et de la stabilité des solu-

tions pour certaines classes d’équations et de systèmes fonctionnels à retard. La méthode

utilisée ici est celle des théorèmes du point fixe pour prouver les résultats souhaités. L’idée

de cette méthode est basée sur la conversion de l’équation considérée en une équation

intégrale équivalente puis de montrer l’existence, l’unicité et la stabilité des solutions

périodiques et solutions périodiques positives en utilisant les théorèmes du point fixe.

Mots-clés: Point fixe, existence, unicité, périodicité, positivité, equations et systèmes

différentielles à retard, systèmes aux différences à retard, systèmes dynamiques à retard,

équations différentielles fractionnaires.

Mathematics Subject Classification: 26A33, 34A08, 34B15, 34B18, 34K20, 34K30,

34K40, 39A12, 39A23, 45N05, 47H10.
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Introduction 3

1 Preliminaries 7

1.1 Fundamental concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Fixed point theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Retarded functional differential equations . . . . . . . . . . . . . . . . . . . 10

2 Existence of periodic or nonnegative periodic solutions for totally non-

linear neutral differential equations with infinite delay 12

2.1 Inversion of the equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Existence of periodic solutions . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Existence of nonnegative periodic solutions . . . . . . . . . . . . . . . . . . 25

3 Periodic solutions for first order totally nonlinear iterative differential

equations 30

3.1 Preliminaries and inversion of the equation . . . . . . . . . . . . . . . . . . 30

3.2 Existence of periodic solutions . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Periodic solutions for second order totally nonlinear iterative differential

equations 42

4.1 Preliminaries and inversion of the equation . . . . . . . . . . . . . . . . . . 43

4.2 Existence of periodic solutions . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Study of the existence of periodic and nonnegative periodic solutions

for third order nonlinear differential equations 54

5.1 Preliminaries and inversion of the equation . . . . . . . . . . . . . . . . . . 54

5.2 Existence of periodic solutions . . . . . . . . . . . . . . . . . . . . . . . . . 58

1



Contents 2

5.3 Existence of nonnegative periodic solutions . . . . . . . . . . . . . . . . . . 62

6 Investigation of the periodicity and stability in the neutral differential

systems by using Krasnoselskii’s fixed point theorem 64

6.1 Existence of periodic solutions . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Asymptotic stability of periodic solutions . . . . . . . . . . . . . . . . . . . 74

7 Existence and uniqueness of mild solutions for nonlinear hybrid Caputo

fractional integro-differential equations via fixed point theorems 80

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 First order Caputo fractional integro-differential equations . . . . . . . . . 83

7.4 Higher order fractional integro-differential equations . . . . . . . . . . . . . 89

8 Periodic solutions of almost linear Volterra integro-dynamic systems 91

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.3 Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9 Existence and uniqueness of periodic solutions in neutral nonlinear

summation-difference systems with infinite delay 101

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.3 Existence and uniqueness of periodic solutions . . . . . . . . . . . . . . . . 108

Conclusion 114

Bibliography 115

Contents



Introduction

Fixed point theory is one of the most powerful and fruitful tools of modern mathematics

and may be considered a core subject of nonlinear analysis. The origins of the theory,

which date to the later part of the nineteenth century, rest in the use of successive approx-

imations establish the existence and uniqueness of solutions, particularly to differential

equations. In recent years a number of excellent books, monographs and surveys by dis-

tinguished authors about fixed point theory have appeared. Fixed point theory concerns

itself with a very simple and basic mathematical setting. A point is often called fixed

point when it remains invariant, irrespective of the type of transformation it undergoes.

Many mathematicians like Banach, Brouwer, Schauder, Krasnoselskii, Burton and Dhage

contributed for this theory, see [48], [56], [58], [111], [117] and the references cited therein.

Delay differential equations are a type of differential equations in which the derivative

of the unknown function at a certain time is given in terms of the values of the function

at previous times. Delay differential equations are also called time-delay systems, systems

with aftereffect or dead-time. Delay differential equations were initially introduced in the

18th century by Laplace and Condorect. However, the rapid development of the theory

and applications of those equations did not come until after the second world war, and

continues till today. Delay differential equations are often more realistic in describing nat-

ural phenomena compared to those without delay. They model many natural phenomena

and appear in many fields such as physics, chemistry, biology, dynamics of populations,

medicine, etc.

Mathematical models employing delay differential equations turn out to be useful espe-

cially in the situation, where the description of investigated systems depends not only on

the position of a system in the current time, but also in the past. In such cases the use of

ordinary differential equations turns out to be insufficient. The presence of delayed time

argument in the investigated system may frequently influence properties of solutions.

For these reasons, this type of equations was given a great importance in the work

of many researchers. There has been recently many activities concerning the existence,

uniqueness, stability, periodicity and positivity of solutions for delay differential equations.
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Introduction 4

But it is often difficult to prove the existence of such solutions because there is no specific

way to solve this kind of problems. Where some researchers used the theory of differential

equations while others used the fixed point theory, etc.

Recently, the study of the existence and qualitative properties of periodic solutions

for various kinds of delay functional equations, especially for differential, difference and

dynamic equations with delays has attracted much attention. For related results, we refer

the reader to [1]–[39], [42]–[62], [64]–[79], [82]–[90], [92]–[110], [112]–[116], [118]–[125] and

the references cited therein. There are many methods for obtaining the existence and

uniqueness of periodic and positive periodic solutions. For example, Lyapunov method,

Fourier analysis method, fixed point theory.

We have interested in the use of the fixed point theory to problems of periodicity,

positivity and stability for delay functional equations. We have studied and contributed

to it and have obtained interesting results. In this thesis we present a collection of results

to some problems of delay functional equations and systems of delay functional equations

by using fixed point theory.

A brief description of the organization of the thesis follows.

Chapter 1 summarizes some concepts, definitions and results which are mostly relevant

to the undergraduate curriculum and are thus assumed as basically known, or have specific

roots in rather distant areas and have rather auxiliary character with respect to the

purpose of this study.

In Chapter 2, we investigate the existence of periodic or nonnegative periodic solutions

for the totally nonlinear neutral differential equation with infinite delay

d

dt
x (t) = −a (t)h (x (t− τ (t))) +

d

dt
Q (t, x (t− g (t))) +

∫ t

−∞
D (t, s) f (x (s)) ds.

In the process we convert the given neutral differential equation into an equivalent in-

tegral equation. Then we employ Krasnoselskii-Burton’s fixed point theorem to prove

the existence of periodic or nonnegative periodic solutions. Two examples are provided

to illustrate the obtained results. The results presented in this chapter are accepted in

Proyecciones (2022), see [72].

Chapter 3 studies the existence of periodic solutions of the first order totally nonlinear

iterative differential equation

d

dt
x (t) = −a (t)h (x (t)) +

d

dt
g
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
+ f

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
.

The equivalent integral equation of the given equation defines a fixed point mapping writ-

ten as a sum of a large contraction and a compact map. The main results assert the

existence of periodic solutions by making use of Krasnoselskii-Burton’s fixed point tech-

nique. The results presented in this chapter are published in Bulletin of the International

Mathematical Virtual Institute (2022), see [73].
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Sufficient conditions in Chapter 4 are presented for the existence of periodic solutions

of the second order totally nonlinear iterative differential equation

d2

dt2
x (t) + p (t)

d

dt
x (t) + q (t)h (x (t))

=
d

dt
g
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
+ f

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
.

The equivalent integral equation of the given equation defines a fixed point mapping

written as a sum of a large contraction and a compact map. The main tool used here

is Krasnoselskii-Burton’s fixed point technique. The results presented in this chapter are

published in The Journal of Analysis (2021), see [74].

In Chapter 5, we prove the existence of periodic and nonnegative periodic solutions for

the third-order nonlinear delay differential equation with periodic coefficients

d3

dt3
x (t) + p (t)

d2

dt2
x (t) + q (t)

d

dt
x (t) + r (t)h (x (t)) = f (t, x (t) , x (t− τ (t))) .

The technique employed to show our results depends on Green’s function and

Krasnoselskii-Burton’s fixed point theorem. The results presented in this chapter are

published in MESA (2021), see [75].

In Chapter 6, we study the periodicity and stability of solutions for the neutral differ-

ential system

d

dt
u (t)− q d

dt
u (t− r)

= P (t) + A (t)u (t) + A (t) qu (t− r)− bf (u (t)) + bqf (u (t− r)) .

In the process we use the fundamental matrix solution to convert the given differential

system into an equivalent integral system. Then we employ Krasnoselskii’s fixed point

theorem to show the existence and stability of periodic solutions of this neutral differen-

tial system. Our results extend and complement some earlier publications. The results

presented in this chapter are published in Proceedings of the Institute of Mathematics

and Mechanics (2020), see [78].

In Chapter 7, we prove the existence and uniqueness of mild solutions for the initial

value problem of the nonlinear hybrid first order Caputo fractional integro-differential

equation  CDα
0+

(
u(t)−f(t,u(t))

p(t)+ 1
Γ(β)

∫ t
0 (t−s)β−1g(s,u(s))ds

)
= h (t, u (t)) , t ∈ [0, T ] ,

u (0) = f (0, u (0)) + p (0) θ.

The main tool employed here is the Krasnoselskii and Banach fixed point theorems. An

example is also given to illustrate the main results. In addition, the case of the Higher

Introduction



Introduction 6

order Caputo fractional integro-differential equations is studied. The results presented in

this chapter are published in Results in Nonlinear Analysis (2021), see [76].

In Chapter 8, we use Krasnoselskii’s fixed point theorem to establish new results on

the existence of periodic solutions for the almost linear Volterra integro-dynamic system

on periodic time scales of the form{
x∆ (t) = a (t) p (x (t)) +

∫ t
−∞C (t, s)h (y (s)) ∆s+ e (t) ,

y∆ (t) = b (t) q (y (t)) +
∫ t
−∞D (t, s) g (x (s)) ∆s+ f (t) .

The results presented in this chapter are published in Malaya Journal of Matematik

(2020), see [79].

In Chapter 9, We use Krasnoselskii’s fixed point theorem to show that the neutral

nonlinear summation-difference system with infinite delay

∆x (n) = P (n) + A (n)x (n− τ (n)) + ∆Q (n, x (n− g (n))) +
n∑

k=−∞

D (n, k) f (x (k)) ,

has a periodic solution. We also use the contraction mapping principle to show that

the periodic solution is unique. An example is given to illustrate our results. The results

presented in this chapter are published in Rocky Mountain Journal of Mathematics (2021),

see [77].

We conclude this thesis with a general conclusion, as well as the perspectives of our

future research.

Introduction



Chapter 1
Preliminaries

In this chapter we shall introduce the basic concepts, notations, and elementary results

that are used throughout the thesis like functional analysis, the basic concepts of fixed

point theorems and delay differential equations which are necessary for the construction

of this thesis. Moreover, the results in this chapter may be found in most standard books

(see for examples [48], [50], [63], [80], [81], [111], [117]). We begin this chapter by recalling

a well-known concept in functional analysis.

1.1 Fundamental concepts

Definition 1.1 A metric space is couple (X, d) where X is a set and d is a metric on X,

that is a function d : X ×X → R+ such that

1) d(x, y) ≥ 0 (non negativity),

2) d(x, y) = 0 if and only if x = y (identity),

3) d(x, y) = d(y, x) (symmetry),

4) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Definition 1.2 A metric space (X, d) in which every Cauchy sequence converges (has a

limit in X) is called complete.

Theorem 1.1 (Ascoli-Arzela) Let (X, dX) be a compact metric space and (Y, dY )

be a complete metric space. We consider a subset M of C(X, Y ) the set of continuous

functions from X to Y endowed with the distance

d(f, g) = sup
x∈X

dY (f(x), g(x)).

Suppose we have

i) the subset M is equicontinuous, i.e.

∀x, x′ ∈ X, ∀ε > 0, ∃η > 0, dX(x, x′) < η ⇒ ∀f ∈M, dY (f(x), f(x′)) < ε,

7



Chapter 1. Preliminaries 8

ii) for every x ∈ X, the set {f(x), f ∈M} is of compact closure.

Then, M is relatively compact, i.e. its closure is a compact set.

Definition 1.3 Let consider a vector space E on R. A mapping N : E → R+ is a

seminorm on E if and only if the two following assertions are satisfied

a) N(x+ y) ≤ N(x) +N(y),

b) for every λ ∈ R, N(λx) = |λ|N(x).

A norm is a seminorm with the additional property N(x) = 0 if and only if x = 0.

Definition 1.4 Let E be a vector space and let N be a norm on E. The pair (E, N) is

called a normed space.

Proposition 1.1 Let (E, ‖.‖) be a normed space. The map E×E→ R+, (x, y) 7→ ‖x−y‖
is a distance on E, called the distance associated to the norm ‖.‖.

Definition 1.5 Let (E, ‖.‖) be a normed space. (E, ‖.‖) is a Banach space if and only if

the metric space (E, d) where d is the distance associated to the norm ‖.‖, i.e. d(x, y) =

‖x− y‖, is a complete space.

Example 1.1 Given a, b ∈ R, with a < b and n ∈ N, we consider the space

C([a, b],Rn) = {u : [a, b]→ Rn, u is continuous at each x ∈ [a, b]}.

endowed with the norm

‖u‖∞ = sup
x∈[a,b]

|u(x)| < +∞,

is a Banach space.

Definition 1.6 Let E and F be Banach spaces. A linear map A : E → F is compact

if, for any bounded sequence {xn} in E, the sequence {Axn} in F contains a convergent

subsequence.

Definition 1.7 Let E and F be two Banach spaces. A linear map A : E→ F is said to

be compact if and only if for every bounded subset M, the set A(M) is relatively compact.

1.2 Fixed point theorems

Let A be a mapping of a set X into itself. An element u ∈ X is said to be a fixed point

of the mapping A if Au = u.

Theorem 1.2 (Banach’s fixed point theorem [111]) Let (S, d) be a com-

plete metric space. If A : S → S is a contraction mapping, i.e., there is a constant

α < 1 such that for each pair φ1, φ2 ∈ S, we have d (Aφ1,Aφ2) ≤ αd (φ1, φ2), then there

is a unique point φ ∈ S, with Aφ = φ.

1.2. Fixed point theorems
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Theorem 1.3 (Schauder’s fixed point theorem [111]) Let M be a

nonempty bounded closed convex subset of a Banach space X. Let A : M → M be

continuous and compact. Then A has a fixed point.

Theorem 1.4 (Krasnoselskii’s fixed point theorem [111]) Let M be a closed con-

vex nonempty subset of a Banach space (S, ‖.‖). Suppose that A and B map M into S
such that

(i) Ax+ By ∈M, ∀x, y ∈M,

(ii) A is continuous and AM is contained in a compact set,

(iii) B is a contraction with constant α < 1.

Then there is a z ∈M with z = Az + Bz.

Remark 1.1 Note that if A = 0, the theorem becomes the theorem of Banach. If B = 0,

then the theorem is not other than the theorem of Schauder.

Definition 1.8 ([48]) Let (M, d) be a metric space and suppose that B : M→ M. B is

said to be a large contraction, if for ϕ, ψ ∈M, with ϕ 6= ψ, we have d (Bϕ,Bψ) ≤ d (ϕ, ψ)

and if ∀ε > 0, ∃δ < 1 such that

[ϕ, ψ ∈M, d (ϕ, ψ) ≥ ε]⇒ d (Bϕ,Bψ) ≤ δd (ϕ, ψ) .

Theorem 1.5 ([2]) Let ‖.‖ be the supremum norm, M = {ϕ ∈ C (R,R) : ‖ϕ‖ ≤ L},
where L is a positive constant. Suppose that h is satisfying the following conditions

(H1) h : R→ R is continuous on [−L,L] and differentiable on (−L,L),

(H2) the function h is strictly increasing on [−L,L],

(H3) supt∈(−L,L) h
′ (t) ≤ 1.

Then the mapping H define by H (ϕ) = ϕ− h (ϕ) is a large contraction on the set M.

Example 1.2 If (Hϕ) (t) = ϕ (t)− ϕ3 (t), then H is a large contraction on the set

M =
{
ϕ ∈ C (R,R) : ‖ϕ‖ ≤

√
3/3
}
.

Theorem 1.6 ([48]) Let (M, d) be a complete metric space and B a large contraction.

Suppose there is an x ∈M and an L > 0, such that d(x,Bnx) ≤ L for all n ≥ 1. Then B
has a unique fixed point in M.

Burton studied the theorem of Krasnoselskii and observed that Krasnoselskii result can

be more interesting in applications with certain changes and formulated the below.

Theorem 1.7 (Krasnoselskii-Burton [48]) Let M be a bounded closed convex

nonempty subset of a Banach space (B, ‖.‖). Suppose that A and B map M into M
such that

(i) A is continuous and compact,

(ii) B is large contraction,

(iii) x, y ∈M, implies Ax+ By ∈M.

Then there exists z ∈M with z = Az + Bz.

1.2. Fixed point theorems
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1.3 Retarded functional differential equations

Suppose r ≥ 0 is a given real number, R = (−∞,+∞), Rn is an n-dimensional linear

vector space over the reals with norm |.|, C([a, b],Rn) is the Banach space of continuous

functions mapping the interval [a, b] into Rn with the topology of uniform convergence.

If [a, b] = [−r, 0] we let C = C([−r, 0],Rn) and designate the norm of an element ψ in

C by ‖ψ‖ = sup−r≤s≤0 |ψ(s)|.
If t0 ∈ R, σ ≥ 0 and x ∈ C([t0 − r, t0 + σ],Rn), then for any t ∈ [t0, t0 + σ], we let

xt ∈ C be defined by xt(s) = x(t+ s), −r ≤ s ≤ 0. If Ω is a subset of R×C, f : Ω→ Rn

is a given function, we say that the relation

x′(t) = f(t, xt), (1.1)

is a retarded functional differential equation on Ω. A function x is said to be a solution of

(1.1) on [t0 − r, t0 + σ) if there are t0 ∈ R and σ > 0 such that x ∈ C([t0 − r, t0 + σ) ,Rn),

(t, xt) ∈ Ω and x satisfies (1.1) for t ∈ [t0, t0 + σ).

For given t0 ∈ R, ψ ∈ C, we say x(t, t0, ψ) is a solution of (1.1) with initial value ψ at

t0 or simply a solution through (t0, ψ) if there is an σ > 0 such that x(t, t0, ψ) is a solution

of (1.1) on [t0 − r, t0 + σ) and xt0(t, t0, ψ) = ψ.

Equation (1.1) is a very general type of equation and includes the ordinary differential

equation (r = 0)

x′(t) = f(t, x(t)).

Definition 1.9 ([50]) Suppose that f(t, 0) = 0 for all t ∈ R. The solution x = 0 of

equation (1.1) is said to be stable if for any t0 ∈ R, ε > 0, there is a δ = δ(t0, ε) > 0 such

that ‖ψ‖ ≤ δ implies |x(t, t0, ψ)| ≤ ε for t ≥ t0. The solution x = 0 of (1.1) is said to be

uniformly stable if the number δ in definition is independent of t0.

Definition 1.10 ([50]) The solution x = 0 of (1.1) is said to be asymptotically stable if

it is stable and there is a δ1 = δ1(t0) > 0 such that ‖ψ‖ ≤ δ1 implies |x(t, t0, ψ)| → 0 as

t → ∞. The solution x = 0 of (1.1) is said to be uniformly asymptotically stable if it is

uniformly stable and there is δ1 > 0 such that for every η > 0 there is a c (η) > 0 such

that ‖ψ‖ ≤ δ1 implies |x(t, t0, ψ)| ≤ η for t ≥ t0 + c (η) for every t0 ∈ R.

Lemma 1.1 ([80]) If t0 ∈ R, ψ ∈ C are given, and f(t, ψ) is continuous, then finding a

solution of (1.1) through (t0, ψ) is equivalent to solving the integral equation

xt0 = ψ,

x (t) = ψ (0) +

∫ t

t0

f(s, xs)ds, t ≥ t0.

Theorem 1.8 (Existence, [80]) Suppose Ω is an open subset in R × C and f ∈
C(Ω,Rn). If (t0, ψ) ∈ Ω, then there is a solution of (1.1) passing through (t0, ψ).

1.3. Retarded functional differential equations
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Definition 1.11 We say f(t, ψ) is Lipschitz in ψ in a compact set Ω of R×C if there is

a constant k > 0 such that, for any (t, ψi) ∈ Ω, i = 1, 2

|f(t, ψ1)− f(t, ψ2)| ≤ k ‖ψ1 − ψ2‖ .

Theorem 1.9 (Existence and uniqueness, [80]) Suppose Ω is an open subset

in R× C, f : Ω→ Rn is continuous and f(t, ψ) is Lipschitz in ψ in each compact set in

Ω . If (t0, ψ) ∈ Ω , then there is a unique solution of (1.1) through (t0, ψ).

Definition 1.12 ([80]) Suppose that Ω ⊆ R× C is open, f : Ω → Rn and G : Ω → Rn

are given continuous functions with G atomic at zero. The relation

d

dt
G(t, xt) = f(t, xt), (1.2)

is called the neutral functional differential equation.

Definition 1.13 ([80]) A function x is said to be a solution of the (1.2) on [t0 − r, t0 + σ)

if there are t0 ∈ R, σ > 0, such that

x ∈ C([t0 − r, t0 + σ) ,Rn), (t, xt) ∈ Ω, t ∈ [t0, t0 + σ) ,

G(t, xt) is continuously differentiable and satisfies (1.2) on [t0, t0 + σ). For a given (t0, ψ) ∈
Ω, we say x(t, t0, ψ) is a solution of (1.2) with initial value ψ at t0 or simply a solution

through (t0, ψ) if there is an σ > 0 such that x(t, t0, ψ) is a solution of (1.2) on [t0, t0 + σ)

and xt0 = ψ on [t0 − r, t0].

Theorem 1.10 (Existence [80]) If Ω is an open set in R×C and (t0, ψ) ∈ Ω, Then

there exists a solution of (1.2) through (t0, ψ).

Theorem 1.11 (Uniqueness [80]) If Ω ⊆ R × C is open and f : Ω → Rn and

G : Ω → Rn are Lipschitz in ψ on compact sets of Ω, for any (t0, ψ) ∈ Ω, there exists a

unique solution of (1.2) through (t0, ψ).

1.3. Retarded functional differential equations



Chapter 2
Existence of periodic or nonnegative periodic

solutions for totally nonlinear neutral

differential equations with infinite delay

Keywords. Krasnoselskii-Burton’s fixed point, Large contraction, Periodic solutions,

Nonnegative periodic solutions, Infinite delay.

This chapter essentially corresponds to the paper [72],

A. Guerfi, A. Ardjouni, Existence of periodic or nonnegative periodic solutions for

totally nonlinear neutral differential equations with infinite delay, Proyecciones, Accepted.

In this chapter, we present sufficient conditions for the existence of periodic or nonneg-

ative periodic solutions of the totally nonlinear neutral differential equation with infinite

delay

d

dt
x (t) = −a (t)h (x (t− τ (t))) +

d

dt
Q (t, x (t− g (t))) +

∫ t

−∞
D (t, s) f (x (s)) ds, (2.1)

where a is a positive continuous function. The functions h, f : R → R are continuous,

Q : R×R→ R satisfying the Caratheodory condition. The main purpose of this chapter

is to use Krasnoselskii-Burton’s fixed point theorem (see [48]) to prove the existence of

periodic or nonnegative periodic solutions for (2.1). During the process we employ the

variation of parameter formula and the integration by parts to transform (2.1) into an

equivalent integral equation written as a sum of two mappings; one is a large contraction

and the other is compact. After that, we use Krasnoselskii-Burton’s fixed point theorem,

to prove the existence of periodic or nonnegative periodic solutions. Two examples are

given to illustrate the obtained results.

12
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2.1 Inversion of the equation

For T > 0 define

PT = {ϕ ∈ C (R,R) , ϕ (t+ T ) = ϕ (t)} ,

where C (R,R) is the space of all real valued continuous functions. Then PT is a Banach

space when it is endowed with the supremum norm

‖x‖ = sup
t∈R
|x(t)| = sup

t∈[0,T ]

|x(t)| .

In this paper we assume that

a(t− T ) = a(t), D(t− T, s− T ) = D(t, s),

τ(t− T ) = τ(t) ≥ τ ∗ > 0, g(t− T ) = g(t) ≥ g∗ > 0. (2.2)

with τ and g are continuously differentiable functions, τ ∗ and g∗are positive constants, a

is a positive function and

1− e−
∫ t
t−T a(k)dk ≡ 1

η
6= 0. (2.3)

The function Q(t, x) is periodic in t of period T , that is

Q(t+ T, x) = Q(t, x). (2.4)

Also, there is a positive constant E such that,∫ t

−∞
|D (t, s)| ds ≤ E <∞. (2.5)

The following lemma is fundamental to our results.

Lemma 2.1 Suppose (2.2)-(2.4) hold. If x ∈ PT , then x is a solution of (2.1) if and only

if

x (t) = η

∫ t

t−T
a (u)H (x (u)) e−

∫ t
u a(k)dkdu+Q (t, x (t− g (t)))

+

∫ t

t−τ(t)

a (u)h (x (u)) du− η
∫ t

t−T

[∫ u

u−τ(u)

a (s)h (x (s)) ds

]
a (u) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T
b (u)h (x (u− τ (u))) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T

[
−a (u)Q (u, x (u− g (u))) +

∫ u

−∞
D (u, s) f (x (s)) ds

]
e−

∫ t
u a(k)dkdu. (2.6)

where

H (x) = x− h (x) , (2.7)

and

b (u) = (1− τ ′ (u)) a (u− τ (u))− a (u) .

2.1. Inversion of the equation
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Proof. Let x ∈ PT be a solution of (2.1). Rewrite (2.1) as

d

dt
[x (t)−Q (t, x (t− g (t)))] + a (t) [x (t)−Q (t, x (t− g (t)))]

= a (t) [x (t)−Q (t, x (t− g (t)))]− a (t)h (x (t)) + a (t)h (x (t))

− a (t)h (x (t− τ (t))) +

∫ t

−∞
D (t, s) f (x (s)) ds

= a (t) [x (t)− h (x (t))] +
d

dt

∫ t

t−τ(t)

a (s)h (x (s)) ds

+ [(1− τ ′ (t)) a (t− τ (t))− a (t)]h (x (t− τ (t)))

− a (t)Q (t, x (t− g (t))) +

∫ t

−∞
D (t, s) f (x (s)) ds.

Multiply both sides of the above equation by exp
(∫ t

0
a (k) dk

)
and then integrate from

t− T to t, we get∫ t

t−T

[
[x (u)−Q (u, x (u− g (u)))] e

∫ u
0 a(k)dk

]′
du

=

∫ t

t−T
a (u) [x (u)− h (x (u))] e

∫ u
0 a(k)dkdu

+

∫ t

t−T

[
d

du

∫ u

u−τ(u)

a (s)h (x (s)) ds

]
e
∫ u
0 a(k)dkdu

+

∫ t

t−T
b (u)h (x (u− τ (u))) e

∫ u
0 a(k)dkdu

+

∫ t

t−T

[
−a (u)Q (u, x (u− g (u))) +

∫ u

−∞
D (u, s) f (x (s)) ds

]
e
∫ u
0 a(k)dkdu,

with b (u) = (1− τ ′ (u)) a (u− τ (u))− a (u). As a consequence, we have

[x (t)−Q (t, x (t− g (t)))] e
∫ t
0 a(k)dk

− [x (t− T )−Q (t− T, x (t− T − g (t− T )))] e
∫ t−T
0 a(k)dk

=

∫ t

t−T
a (u) [x (u)− h (x (u))] e

∫ u
0 a(k)dkdu

+

∫ t

t−T

[
d

du

∫ u

u−τ(u)

a (s)h (x (s)) ds

]
e
∫ u
0 a(k)dkdu

+

∫ t

t−T
b (u)h (x (u− τ (u))) e

∫ u
0 a(k)dkdu

+

∫ t

t−T

[
−a (u)Q (u, x (u− g (u))) +

∫ u

−∞
D (u, s) f (x (s)) ds

]
e
∫ u
0 a(k)dkdu.

By dividing both sides of the above equation by exp
(∫ t

0
a (u) du

)
and using the fact that

2.1. Inversion of the equation
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x(t) = x(t− T ), we obtain

x (t)−Q (t, x (t− g (t)))

= η

∫ t

t−T
a (u) [x (u)− h (x (u))] e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T

[
d

du

∫ u

u−τ(u)

a (s)h (x (s)) ds

]
e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T
b (u)h (x (u− τ (u))) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T

[
−a (u)Q (u, x (u− g (u))) +

∫ u

−∞
D (u, s) f (x (s)) ds

]
e−

∫ t
u a(k)dkdu. (2.8)

Integration by parts the second integral in the above expression, we get∫ t

t−T

[
d

du

∫ u

u−τ(u)

a (s)h (x (s)) ds

]
e−

∫ t
u a(k)dkdu

=

[∫ u

u−τ(u)

a (s)h (x (s)) dse−
∫ t
u a(k)dk

]t
t−T

−
∫ t

t−T

[∫ u

u−τ(u)

a (s)h (x (s)) ds

]
a (u) e−

∫ t
u a(k)dkdu

=

[∫ t

t−τ(t)

a (s)h (x (s)) ds−
∫ t−T

t−T−τ(t)

a (s)h (x (s)) dse−
∫ t
t−T a(k)dk

]
−
∫ t

t−T

[∫ u

u−τ(u)

a (s)h (x (s)) ds

]
a (u) e−

∫ t
u a(k)dkdu

= −
∫ t

t−T

[∫ u

u−τ(u)

a (s)h (x (s)) ds

]
a (u) e−

∫ t
u a(k)dkdu+

1

η

∫ t

t−τ(t)

a (u)h (x (u)) du. (2.9)

Then substituting the result of (2.9) into (2.8) to obtain (2.6). The converse implication

is easily obtained and the proof is complete.

Definition 2.1 The map P : [0, T ]×Rn → R is said to satisfy Caratheodory conditions

with respect to L1[0, T ] if the following conditions hold.

(i) For each z ∈ Rn, the mapping t 7−→ P (t, z) is Lebesgue measurable.

(ii) For almost all t ∈ [0, T ], the mapping z 7−→ P (t, z) is continuous on Rn.

(iii) For each r > 0, there exists αr ∈ L1 ([0, T ] ,R) such that for almost all t ∈ [0, T ]

and for all z such that |z| < r, we have |P (t, z)| ≤ αr (t).

2.2 Existence of periodic solutions

To apply Theorem 1.7 we need to define a Banach space B, a closed bounded convex

subset M of B and construct two mappings; one is a completely continuous and the other

2.2. Existence of periodic solutions
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is a large contraction. So, we let (B, ‖.‖) = (PT , ‖.‖) and

M = {ϕ ∈ PT , ‖ϕ‖ ≤ L, |ϕ (t2)− ϕ (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]} , (2.10)

with L ∈ (0, 1] and K > 0. M is a closed convex and bounded subset of PT .

Define a mapping S : PT → PT by

(Sϕ) (t) = η

∫ t

t−T
a (u)H (ϕ (u)) e−

∫ t
u a(k)dkdu+Q (t, ϕ (t− g (t)))

+

∫ t

t−τ(t)

a (u)h (ϕ (u)) du− η
∫ t

t−T

[∫ u

u−τ(u)

a (s)h (ϕ (s)) ds

]
a (u) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T
b (u)h (ϕ (u− τ (u))) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T

[
−a (u)Q (u, ϕ (u− g (u))) +

∫ u

−∞
D (u, s) f (ϕ (s)) ds

]
e−

∫ t
u a(k)dkdu.

(2.11)

Therefore, we express the above mapping as

Sϕ = Aϕ+ Bϕ,

where A,B : PT → PT are given by

(Aϕ) (t) = Q (t, ϕ (t− g (t))) +

∫ t

t−τ(t)

a (u)h (ϕ (u)) du

− η
∫ t

t−T

[∫ u

u−τ(u)

a (s)h (ϕ (s)) ds

]
a (u) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T
b (u)h (ϕ (u− τ (u))) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T

[
−a (u)Q (u, ϕ (u− g (u))) +

∫ u

−∞
D (u, s) f (ϕ (s)) ds

]
e−

∫ t
u a(k)dkdu,

(2.12)

and

(Bϕ) (t) = η

∫ t

t−T
a (u)H (ϕ (u)) e−

∫ t
u a(k)dkdu. (2.13)

We will assume that the following conditions hold.

(H4) a ∈ L1 [0, T ] is bounded.

(H5) h, f , Q are locally Lipschitz continuous, then for t ≥ 0 and x, y ∈M there exists

constants E1, E2, E3 > 0, such that

|h (x)− h (y)| ≤ E1 ‖x− y‖ ,
|f (x)− f (y)| ≤ E2 ‖x− y‖ ,

|Q (t, x)−Q (t, y)| ≤ E3 ‖x− y‖ .

2.2. Existence of periodic solutions
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(H6) Q satisfies Caratheodory condition with respect to L1 [0, T ].

(H7) There exist positive periodic functions q1, q2 ∈ L1 [0, T ], with period T , such that

|Q (t, x)| ≤ q1 (t) |x|+ q2 (t) .

(H8) The functionQ (t, x) is also supposed locally Lipschitz in t, i.e, there existsKQ > 0

such that

|Q (t2, x)−Q (t1, x)| ≤ KQ |t2 − t1| .

Now, we need the following assumptions

β1β2 (E1L+ |h (0)|) ≤ γ1

2
L, (2.14)

where β1 = maxt∈[0,T ] |τ (t)|and β2 = maxt∈[0,T ] {a (t)},

q1 (t)L+ q2 (t) ≤ γ2

2
L, (2.15)

|b (u)| (E1L+ |h (0)|) ≤ γ3a (u)L, (2.16)

TEηβ3 (E2L+ |f (0)|) ≤ γ4L, (2.17)

where β3 = maxu∈[t−T,t]

{
e−

∫ t
u a(k)dk

}
,

J [γ1 + γ2 + γ3 + γ4] ≤ 1. (2.18)

where γ1, γ2, γ3, γ4 and J are positive constants with J ≥ 3. Also, suppose that there

are constants k1, k2, k3 > 0 such that for 0 ≤ t1 < t2

|τ (t2)− τ (t1)| ≤ k1 |t2 − t1| , (2.19)

|g (t2)− g (t1)| ≤ k2 |t2 − t1| , (2.20)∫ t2

t1

a (u) du ≤ k3 |t2 − t1| , (2.21)

and

KQ + (1 + k2)E3K + 2γ4β2β3L+ [(2 + k1)E1 + (1 + 4η) γ3

+

(
η +

1

2

)
γ2 + γ4 +

(
η +

1

2

)
γ1

]
k3L ≤

K

J
. (2.22)

Lemma 2.2 For A defined in (2.12), suppose that (2.2)–(2.5), (2.14)–(2.22) and (H4)–

(H8) hold. Then A : M→M.

Proof. Let A be defined by (2.12). First by (2.2) and (2.4), a change of variable in

(2.12) shows that (Aϕ)(t + T ) = (Aϕ)(t). That is, if ϕ ∈ PT then Aϕ is periodic with

2.2. Existence of periodic solutions
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period T . For having Aϕ ∈M we will prove that ‖Aϕ‖ ≤ L and |(Aϕ) (t2)− (Aϕ) (t1)| ≤
K |t2 − t1| , ∀t1, t2 ∈ [0, T ]. By (H5) we have

|h (x)| ≤ E1 |x|+ |h (0)| and |f (x)| ≤ E2 |x|+ |f (0)| .

Then, let ϕ ∈M, by (2.14)–(2.18) and (H4)–(H7) we have

|(Aϕ) (t)| ≤ |Q (t, ϕ (t− g (t)))|+
∫ t

t−τ(t)

a (u) |h (ϕ (u))| du

+ η

∫ t

t−T
a (u)

∫ u

u−τ(u)

a (s) |h (ϕ (s))| dse−
∫ t
u a(k)dkdu

+ η

∫ t

t−T
|b (u)| |h (ϕ (u− τ (u)))| e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T

[
a (u) |Q (u, ϕ (u− g (u)))|+

∫ u

−∞
|D (u, s)| |f (ϕ (s))| ds

]
e−

∫ t
u a(k)dkdu

≤ q1 (t) |ϕ (t− g (t))|+ q2 (t) + β1β2 (E1L+ |h (0)|)

×
(

1 + η

∫ t

t−T
a (u) e−

∫ t
u a(k)dkdu

)
+ η

∫ t

t−T
|b (u)| (E1L+ |h (0)|) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T
a (u) [q1 (u) |ϕ (u− g (u))|+ q2 (u)] e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T
E (E2L+ |f (0)|) e−

∫ t
u a(k)dkdu

≤ γ2

2
L+ γ1L+ γ3L+

γ2

2
L+ γ4L ≤

L

J
≤ L.

Let t1, t2 ∈ R with t1 < t2, we get

|(Aϕ) (t2)− (Aϕ) (t1)|
≤ |Q (t2, ϕ (t2 − g (t2)))−Q (t1, ϕ (t1 − g (t1)))|

+

∣∣∣∣∫ t2

t2−τ(t2)

a (u)h (ϕ (u)) du−
∫ t1

t1−τ(t1)

a (u)h (ϕ (u)) du

∣∣∣∣
+ η

∣∣∣∣∫ t2

t2−T

[∫ u

u−τ(u)

a (s)h (ϕ (s)) ds

]
a (u) e−

∫ t2
u a(k)dkdu

−
∫ t1

t1−T

[∫ u

u−τ(u)

a (s)h (ϕ (s)) ds

]
a (u) e−

∫ t1
u a(k)dkdu

∣∣∣∣
+ η

∣∣∣∣∫ t2

t2−T
b (u)h (ϕ (u− τ (u))) e−

∫ t2
u a(k)dkdu−

∫ t1

t1−T
b (u)h (ϕ (u− τ (u))) e−

∫ t1
u a(k)dkdu

∣∣∣∣
+ η

∣∣∣∣∫ t2

t2−T

[
−a (u)Q (u, ϕ (u− g (u))) +

∫ u

−∞
D (u, s) f (ϕ (s)) ds

]
e−

∫ t2
u a(k)dkdu

−
∫ t1

t1−T

[
−a (u)Q (u, ϕ (u− g (u))) +

∫ u

−∞
D (u, s) f (ϕ (s)) ds

]
e−

∫ t1
u a(k)dkdu

∣∣∣∣ . (2.23)

2.2. Existence of periodic solutions
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By hypotheses (H5) and (2.19)–(2.21), we obtain∣∣∣∣∫ t2

t2−τ(t2)

a (u)h (ϕ (u)) du−
∫ t1

t1−τ(t1)

a (u)h (ϕ (u)) du

∣∣∣∣
≤ E1L

(∫ t2

t1

a (u) du+

∫ t2−τ(t2)

t1−τ(t1)

a (u) du

)
≤ E1Lk3 |t2 − t1|+ E1Lk3 (1 + k1) |t2 − t1|
= (2E1Lk3 + E1Lk3k1) |t2 − t1| , (2.24)

and

|Q (t2, ϕ (t2 − g (t2)))−Q (t1, ϕ (t1 − g (t1)))|
≤ KQ |t2 − t1|+ E3K |(t2 − t1)− (g (t2)− g (t1))|
≤ (KQ + E3K + E3Kk2) |t2 − t1| , (2.25)

where K is the Lipschitz constant of ϕ. By the hypotheses (H5), (2.16) and (2.21), we

get

η

∣∣∣∣∫ t2

t2−T
b (u)h (ϕ (u− τ (u))) e−

∫ t2
u a(k)dkdu

−
∫ t1

t1−T
b (u)h (ϕ (u− τ (u))) e−

∫ t1
u a(k)dkdu

∣∣∣∣
≤ η

∣∣∣∣∫ t2

t1

b (u)h (ϕ (u− τ (u))) e−
∫ t2
u a(k)dkdu

∣∣∣∣
+ η

∣∣∣∣∫ t1

t1−T
b (u)h (ϕ (u− τ (u)))

(
e−

∫ t2
u a(k)dk − e−

∫ t1
u a(k)dk

)
du

∣∣∣∣
+ η

∣∣∣∣∫ t2−T

t1−T
b (u)h (ϕ (u− τ (u))) e−

∫ t2
u a(k)dkdu

∣∣∣∣
≤ 2η

∣∣∣∣∫ t2

t1

b (u)h (ϕ (u− τ (u))) e−
∫ t2
u a(k)dkdu

∣∣∣∣
+ η

∣∣∣∣∫ t1

t1−T
b (u)h (ϕ (u− τ (u))) e−

∫ t1
u a(k)dk

(
e−

∫ t2
t1
a(k)dk − 1

)
du

∣∣∣∣
≤ 2η (E1L+ |h (0)|)

∫ t2

t1

|b (u)| e−
∫ t2
u a(k)dkdu

+ ηγ3L
∣∣∣e− ∫ t2

t1
a(k)dk − 1

∣∣∣ ∫ t1

t1−T
a (u) e−

∫ t1
u a(k)dkdu.
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Consequently,

η

∣∣∣∣∫ t2

t2−T
b (u)h (ϕ (u− τ (u))) e−

∫ t2
u a(k)dkdu−

∫ t1

t1−T
b (u)h (ϕ (u− τ (u))) e−

∫ t1
u a(k)dkdu

∣∣∣∣
≤ γ3L

∫ t2

t1

a (u) du+ 2η (E1L+ |h (0)|)
∫ t2

t1

d

(∫ u

t1

|b (r)| dr
)
e−

∫ t2
u a(k)dkdu

= γ3L

∫ t2

t1

a (u) du+ 2η (E1L+ |h (0)|)
[∫ u

t1

|b (r)| dre−
∫ t2
u a(k)dk

]t2
t1

+ 2η (E1L+ |h (0)|)
∫ t2

t1

(∫ u

t1

|b (r)| dr
)
a (u) e−

∫ t2
u a(k)dkdu

≤ γ3L

∫ t2

t1

a (u) du+ 2η (E1L+ |h (0)|)
∫ t2

t1

|b (u)| du
(

1 +

∫ t2

t1

a (u) e−
∫ t2
u a(k)dkdu

)
≤ γ3L

∫ t2

t1

a (u) du+ 4η

∫ t2

t1

|b (u)| (E1L+ |h (0)|) du

≤ γ3L

∫ t2

t1

a (u) du+ 4ηγ3L

∫ t2

t1

a (u) du ≤ (1 + 4η) γ3Lk3 |t2 − t1| . (2.26)

In the same way, by (2.15)–(2.17) and (2.21), we have

η

∣∣∣∣∫ t2

t2−T

[
−a (u)Q (u, ϕ (u− g (u))) +

∫ u

−∞
D (u, s) f (ϕ (s)) ds

]
e−

∫ t2
u a(k)dkdu

−
∫ t1

t1−T

[
−a (u)Q (u, ϕ (u− g (u))) +

∫ u

−∞
D (u, s) f (ϕ (s)) ds

]
e−

∫ t1
u a(k)dkdu

∣∣∣∣
≤ η

∣∣∣∣∫ t2

t1

[
−a (u)Q (u, ϕ (u− g (u))) +

∫ u

−∞
D (u, s) f (ϕ (s)) ds

]
e−

∫ t2
u a(k)dkdu

∣∣∣∣
+ η

∣∣∣∣∫ t1

t1−T

[
−a (u)Q (u, ϕ (u− g (u))) +

∫ u

−∞
D (u, s) f (ϕ (s)) ds

]
×
(
e−

∫ t2
u a(k)dk − e−

∫ t1
u a(k)dk

)
du
∣∣∣

+ η

∣∣∣∣∫ t2−T

t1−T

[
−a (u)Q (u, ϕ (u− g (u))) +

∫ u

−∞
D (u, s) f (ϕ (s)) ds

]
e−

∫ t2
u a(k)dkdu

∣∣∣∣
≤ 2η

∫ t2

t1

[
a (u)

γ2

2
L+ (E2L+ |f (0)|)

∫ u

−∞
|D (u, s)| ds

]
e−

∫ t2
u a(k)dkdu

+ η
∣∣∣e− ∫ t2

t1
a(k)dk − 1

∣∣∣ ∣∣∣∣∫ t1

t1−T

[
a (u)

γ2

2
L+ (E2L+ |f (0)|)

∫ u

−∞
|D (u, s)| ds

]
e−

∫ t1
u a(k)dkdu

∣∣∣∣
≤ ηγ2L

∫ t2

t1

a (u) du+ 2γ4Lβ2β3 |t2 − t1|+
[γ2

2
L+ γ4L

] ∫ t2

t1

a (u) du

≤
[[(

η +
1

2

)
γ2 + γ4

]
k3 + 2γ4β2β3

]
L |t2 − t1| . (2.27)
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and

η

∣∣∣∣∫ t2

t2−T

[∫ u

u−τ(u)

a (s)h (ϕ (s)) ds

]
a (u) e−

∫ t2
u a(k)dkdu

−
∫ t1

t1−T

[∫ u

u−τ(u)

a (s)h (ϕ (s)) ds

]
a (u) e−

∫ t1
u a(k)dkdu

∣∣∣∣
≤ η

∣∣∣∣∫ t2

t1

[∫ u

u−τ(u)

a (s)h (ϕ (s)) ds

]
a (u) e−

∫ t2
u a(k)dkdu

∣∣∣∣
+ η

∣∣∣∣∫ t1

t1−T

[∫ u

u−τ(u)

a (s)h (ϕ (s)) ds

]
a (u)

(
e−

∫ t2
u a(k)dk − e−

∫ t1
u a(k)dk

)
du

∣∣∣∣
+ η

∣∣∣∣∫ t2−T

t1−T

[∫ u

u−τ(u)

a (s)h (ϕ (s)) ds

]
a (u) e−

∫ t2
u a(k)dkdu

∣∣∣∣
≤ 2η

∣∣∣∣∫ t2

t1

[∫ u

u−τ(u)

a (s)h (ϕ (s)) ds

]
a (u) e−

∫ t2
u a(k)dkdu

∣∣∣∣
+ η

∣∣∣∣∫ t1

t1−T

[∫ u

u−τ(u)

a (s)h (ϕ (s)) ds

]
a (u) e−

∫ t1
u a(k)dk

(
e−

∫ t2
t1
a(k)dk − 1

)
du

∣∣∣∣
≤ 2η

γ1

2
L

∫ t2

t1

a (u) e−
∫ t2
u a(k)dkdu+ η

∣∣∣e− ∫ t2
t1
a(k)dk − 1

∣∣∣ γ1

2
L

∫ t1

t1−T
a (u) e−

∫ t1
u a(k)dkdu

≤ ηγ1L

∫ t2

t1

a (u) du+
γ1

2
L

∫ t2

t1

a (u) du ≤
[
η +

1

2

]
γ1Lk3 |t2 − t1| . (2.28)

Thus, by substituting (2.24)–(2.28) in (2.23), we obtain

|(Aϕ) (t2)− (Aϕ) (t1)|
≤ (2E1Lk3 + E1Lk3k1) |t2 − t1|+ (KQ + E3K + E3Kk2) |t2 − t1|

+ (1 + 4η) γ3Lk3 |t2 − t1|+
[[(

η +
1

2

)
γ2 + γ4

]
k3 + 2γ4β2β3

]
L |t2 − t1|

+

[
η +

1

2

]
γ1Lk3 |t2 − t1|

≤ K

3
|t2 − t1| ≤ K |t2 − t1| .

That is Aϕ ∈M.

Lemma 2.3 For A : M → M defined in (2.12), suppose that (2.2)–(2.5), (2.14)–(2.22)

and (H4)–(H8) hold. Then A is completely continuous.

Proof. Since M is a uniformly bounded and equicontinuous subset of the space of contin-

uous functions on the compact [0, T ] we can apply the Arzela-Ascoli theorem to confirm

that M is a compact subset from this space. Also, since any continuous operator maps

compact sets into compact sets, then to prove that A is a compact operator it’s suffices

to prove that it is continuous.
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We prove that A is continuous in the supremum norm, let ϕn ∈M where n is a positive

integer such that ϕn → ϕ as n→∞. Then

|(Aϕn) (t)− (Aϕ) (t)|
≤ |Q (t, ϕn (t− g (t)))−Q (t, ϕ (t− g (t)))|

+

∫ t

t−τ(t)

a (u) |h (ϕn (u))− h (ϕ (u))| du

+ η

∫ t

t−T

[∫ u

u−τ(u)

a (s) |h (ϕn (s))− h (ϕ (s))| ds
]
a (u) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T
|b (u)| |h (ϕn (u− τ (u)))− h (ϕ (u− τ (u)))| e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T
[a (u) |Q (u, ϕn (u− g (u)))−Q (u, ϕ (u− g (u)))|

+

∫ u

−∞
|D (u, s)| |f (ϕn (s))− f (ϕ (s))| ds

]
e−

∫ t
u a(k)dkdu.

By the dominated convergence theorem, limn→∞ |(Aϕn) (t)− (Aϕ) (t)| = 0. Then A is

continuous. Therefore, A is compact.

The next result shows the relationship between the mappings H and B in the sense of

large contractions. Assume that

max {|H (−L)| , |H (L)|} ≤ (J − 1)L

J
, (2.29)

and

[2η + 1]Lk3 ≤ K. (2.30)

Lemma 2.4 Let B be defined by (2.13), suppose (2.21), (2.29), (2.30) and all conditions

of Theorem 1.5 hold. Then B : M→M is a large contraction.

Proof. Let B be defined by (2.13). Obviously, B is continuous and it is easy to show that

(Bϕ)(t+ T ) = (Bϕ)(t). For having Bϕ ∈M we will show that ‖Bϕ‖ ≤ L and

|(Bϕ) (t2)− (Bϕ) (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ] .

Let ϕ ∈M by (2.29), we get

|(Bϕ) (t)| ≤ η

∫ t

t−T
a (u) max {|H (−L)| , |H (L)|} e−

∫ t
u a(k)dkdu

≤ (J − 1)L

J
≤ L.

2.2. Existence of periodic solutions



Chapter 2. Existence of periodic or nonnegative periodic solutions for totally
nonlinear neutral differential equations with infinite delay 23

Let t1, t2 ∈ [0, T ] with t1 < t2, by (2.21), (2.29), (2.30), we have

|(Bϕ) (t1)− (Bϕ) (t2)|

≤ η

∣∣∣∣∫ t2

t2−T
a (u)H (ϕ (u)) e−

∫ t2
u a(k)dkdu−

∫ t1

t1−T
a (u)H (ϕ (u)) e−

∫ t1
u a(k)dkdu

∣∣∣∣
≤ η

∣∣∣∣∫ t2

t1

a (u)H (ϕ (u)) e−
∫ t2
u a(k)dkdu

∣∣∣∣
+ η

∣∣∣∣∫ t1

t1−T
a (u)H (ϕ (u))

(
e−

∫ t2
u a(k)dk − e−

∫ t1
u a(k)dk

)
du

∣∣∣∣
+ η

∣∣∣∣∫ t2−T

t1−T
a (u)H (ϕ (u)) e−

∫ t2
u a(k)dkdu

∣∣∣∣
≤ 2η

∫ t2

t1

a (u) |H (ϕ (u))| e−
∫ t2
u a(k)dkdu

+ η
∣∣∣e− ∫ t2

t1
a(k)dk − 1

∣∣∣ ∫ t1

t1−T
a (u) |H (ϕ (u))| e−

∫ t1
u a(k)dkdu

≤ 2
(J − 1)

J
Lη

∫ t2

t1

a (u) du+
(J − 1)

J
L

∫ t2

t1

a (u) du

≤ [2η + 1]
(J − 1)

J
Lk3 |t2 − t1|

≤ (J − 1)

J
K |t2 − t1| ≤ K |t2 − t1| .

which implies B : M→M.

By Theorem 1.5, H is large contraction on M, then for any ϕ, ψ ∈ M with ϕ 6= ψ, we

get

‖Bϕ− Bψ‖ ≤ ‖ϕ− ψ‖ .

Now, let ε ∈ (0, 1) be given and let ϕ, ψ ∈ M, with ‖ϕ− ψ‖ ≥ ε from the proof of

Theorem 1.5, we have found a δ ∈ (0, 1), such that

|(Hϕ) (t)− (Hψ) (t)| ≤ δ ‖ϕ− ψ‖ .

Thus,

|(Bϕ) (t)− (Bψ) (t)| ≤
∣∣∣∣η ∫ t

t−T
a (u) [H (ϕ (u))−H (ψ (u))] e−

∫ t
u a(k)dkdu

∣∣∣∣
≤ δ ‖ϕ− ψ‖ η

∫ t

t−T
a (u) e−

∫ t
u a(k)dkdu

≤ δ ‖ϕ− ψ‖ .

The proof is complete.

Theorem 2.1 Suppose the hypotheses of Lemmas 2.2–2.4 hold. Let M defined by (2.10),

Then (2.1) has a T -periodic solution in M.
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Proof. By Lemmas 2.2 and 2.3 A : M → M is continuous and A(M) is con-

tained in a compact set. Also, from Lemma 2.4, the mapping B : M → M is a

large contraction. Next, we show that if ϕ, ψ ∈ M, we have ‖Aϕ+ Bψ‖ ≤ L and

|(Aϕ+ Bψ) (t2)− (Aϕ+ Bψ) (t1)| ≤ K |t2 − t1|, ∀t1, t2 ∈ [0, T ]. Let ϕ, ψ ∈ M with

‖ϕ‖ , ‖ψ‖ ≤ L. By (2.14)–(2.18) and (2.29), we get

‖Aϕ+ Bψ‖ ≤ [γ1 + γ2 + γ3 + γ4]L+
(J − 1)L

J

≤ L

J
+

(J − 1)L

J
= L.

Now, let ϕ, ψ ∈M and t1, t2 ∈ [0, T ]. By (2.14)–(2.22), (2.29) and (2.30), we have

|(Aϕ+ Bψ) (t2)− (Aϕ+ Bψ) (t1)|
≤ |(Aϕ) (t2)− (Aϕ) (t1)|+ |(Bψ) (t2)− (Bψ) (t1)|

≤ K

J
|t2 − t1|+

(J − 1)K

J
|t2 − t1|

= K |t2 − t1| .

Clearly, all the hypotheses of Krasnoselskii-Burton’s theorem are satisfied. Thus there

exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 2.1 this fixed point is a

solution of (2.1). Hence (2.1) has a T -periodic solution.

Example 2.1 Consider the following nonlinear neutral differential equation

d

dt
[x (t)−Q (t, x (t− g (t)))] = −a (t)h (x (t− τ (t))) +

∫ t

−∞
D (t, s) f (x (s)) ds, (2.31)

where

T = 2π, a (t) = 2, τ (t) =
10−2

√
3
, g (t) = 2× 10−2e−t, h (x) = x3,

Q (t, x) = 10−4 sin (x) , D (t, s) = es−t, f (x) = x2.

Then (2.31) has a 2π-periodic solution.

Proof. We have h : R → R is continuous on
[
−
√

3/3,
√

3/3
]
, differentiable on(

−
√

3/3,
√

3/3
)
, strictly increasing on

[
−
√

3/3,
√

3/3
]

and supt∈(−
√

3/3,
√

3/3) h
′ (t) ≤ 1.

By Theorem 1.5, the mapping H(x) = x− x3 is a large contraction on the set

M =
{
ϕ ∈ P2π, ‖ϕ‖ ≤

√
3/3, |ϕ (t2)− ϕ (t1)| ≤ 100 |t2 − t1| , ∀t1, t2 ∈ [0, 2π]

}
,

where L =
√

3/3 and K = 100. Doing straightforward computations, we obtain

E = 1, β1 =
10−2

√
3
, β2 = 2, β3 = e−4π, E1 = 1, E2 = 2

√
3/3, E3 = 10−4,

q1 (t) = 10−4, q2 (t) = 0, η =
(
1− e−4π

)−1
, γ1 =

4√
3

10−2, γ2 = 2× 10−4,

γ3 = 0, γ4 = 4π
(
1− e−4π

)−1
e−4π, J ∈ [3, 42] , k1 = 0, k2 = 2× 10−2, k3 = 2.
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All hypotheses of Theorem 2.1 are fulfilled and so (2.31) has a 2π-periodic solution be-

longing to M.

2.3 Existence of nonnegative periodic solutions

In this section we obtain the existence of a nonnegative periodic solution of (2.1). By

applying Theorem 1.7, we need to define a closed, convex, and bounded subsetM of PT .

So, let

M = {ϕ ∈ PT : 0 ≤ ϕ ≤ L, |ϕ (t2)− ϕ (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]} , (2.32)

where L and K are positive constants. To simplify notation, we let

F (t, x (t)) =

∫ t

t−τ(t)

a (u)h (x (u)) du, (2.33)

and

m = min
u∈[t−T,t]

e−
∫ t
u a(k)dk, M = max

u∈[t−T,t]
e−

∫ t
u a(k)dk. (2.34)

It is easy to see that for all (t, u) ∈ [0, 2T ]2,

m ≤ e−
∫ t
u a(k)dk ≤M. (2.35)

Then we obtain the existence of a nonnegative periodic solution of (2.1) by considering

the two cases

(1) F (t, x (t)) ≥ 0, ∀t ∈ [0, T ] , x ∈M.

(2) F (t, x (t)) ≤ 0, ∀t ∈ [0, T ] , x ∈M.

In the case one, we assume for all t ∈ [0, T ], x ∈M, that there exist positive constants

c1 and c2 such that

0 ≤ Q (t, x (t)) ≤ c1L, (2.36)

0 ≤ F (t, x (t)) ≤ c2L, (2.37)

c1 + c2 < 1, (2.38)

0 ≤ −a (u)F (t, x (t)) + b (t)h (x (t))− a (t)Q (t, x (t)) +

∫ t

−∞
D (t, s) f (x (s)) ds, (2.39)

− a (u)F (t, x (t)) + b (t)h (x (t)) + a (t)H (x (t))

− a (t)Q (t, x (t)) +

∫ t

−∞
D (t, s) f (x (s)) ds ≤

L (1− c1 − c2)

MηT
. (2.40)
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Lemma 2.5 Let A, B given by (2.12), (2.13), respectively, assume (2.36)–(2.40) hold.

Then A,B :M→M.

Proof. For having Aϕ,Bϕ ∈ M we show that 0 ≤ Aϕ,Bϕ ≤ L and

|(Aϕ) (t2)− (Aϕ) (t1)| ≤ K |t2 − t1| , |(Bϕ) (t2)− (Bϕ) (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈
[0, T ]. Let A defined by (2.12). So, for any ϕ ∈M, we have

0 ≤ (Aϕ) (t)

≤ Q (t, ϕ (t− g (t))) + F (t, ϕ (t))− η
∫ t

t−T
F (t, ϕ (u)) a (u) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T
b (u)h (ϕ (u− τ (u))) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T

[
−a (u)Q (u, ϕ (u− g (u))) +

∫ u

−∞
D (u, s) f (ϕ (s)) ds

]
e−

∫ t
u a(k)dkdu

≤ η

∫ t

t−T
M
L (1− c1 − c2)

MηT
du+ c1L+ c2L = L.

From Lemma 2.2, we see that

|(Aϕ) (t2)− (Aϕ) (t1)| ≤ K

J
|t2 − t1| ≤ K |t2 − t1| .

That is Aϕ ∈M.

Now, let B defined by (2.13). So, for any ϕ ∈M, we have

0 ≤ (Bϕ) (t)

≤ η

∫ t

t−T
M
L (1− c1 − c2)

MηT
du ≤ ηMT

L

MηT
= L,

and from Lemma 2.4, we see that

|(Bϕ) (t2)− (Bϕ) (t1)| ≤ (J − 1)K

J
|t2 − t1| ≤ K |t2 − t1|

That is Bϕ ∈M.

Theorem 2.2 Suppose the hypotheses of Lemmas 2.3–2.5 hold. Then (2.1) has a non-

negative T -periodic solution x in the subset M.

Proof. By Lemma 2.3, A is completely continuous. Also, from Lemma 2.4, the mapping

B is a large contraction. By Lemma 2.5, A,B :M→M. Next, we show that if ϕ, ψ ∈M,

we have 0 ≤ Aϕ+Bψ ≤ L and |(Aϕ+ Bψ) (t2)− (Aϕ+ Bψ) (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈
[0, T ].
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Let ϕ, ψ ∈M with 0 ≤ ϕ, ψ ≤ L. By (2.36)–(2.40), we get

(Aϕ) (t) + (Bψ) (t)

= η

∫ t

t−T
a (u)H (ψ (u)) e−

∫ t
u a(k)dkdu+Q (t, ϕ (t− g (t)))

+ F (t, ϕ (t))− η
∫ t

t−T
F (t, ϕ (u)) a (u) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T
b (u)h (ϕ (u− τ (u))) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T

[
−a (u)Q (u, ϕ (u− g (u))) +

∫ u

−∞
D (u, s) f (ϕ (s)) ds

]
e−

∫ t
u a(k)dkdu

≤ η

∫ t

t−T
M
L (1− c1 − c2)

MηT
du+ c1L+ c2L = L.

On the other hand, we have

(Aϕ)(t) + (Bψ)(t) ≥ 0.

Now, let ϕ, ψ ∈M and t1, t2 ∈ [0, T ]. By Lemmas 2.2, 2.4, we have

|(Aϕ+ Bψ) (t2)− (Aϕ+ Bψ) (t1)|
≤ |(Aϕ) (t2)− (Aϕ) (t1)|+ |(Bψ) (t2)− (Bψ) (t1)|

≤ K

J
|t2 − t1|+

(J − 1)K

J
|t2 − t1|

≤ K |t2 − t1| .

Clearly, all the hypotheses of Krasnoselskii-Burton’s theorem are satisfied. Thus there

exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 1.7 this fixed point is a

solution of (2.1) and the proof is complete.

Example 2.2 Consider the following equation

d

dt
[x (t)−Q (t, x (t− g (t)))] = −a (t)h (x (t− τ (t))) +

∫ t

−∞
D (t, s) f (x (s)) ds, (2.41)

where

T = 2π, a (t) =
10−2

4
, τ (t) = 2π, h (x) = x3, Q (t, x) = 10−4x,

F (t, x (t)) =
10−2

4

∫ t

t−2π

x3 (u) du, D (t, s) = es−t, f (x) = 10−4

(
x+

π4

4

)
.

Then (2.41) has a nonnegative 2π-periodic solution.

Proof. By Example 2.1, the mapping H (x) = x− x3 is a large contraction on the set

M =
{
ϕ ∈ P2π, 0 ≤ ϕ ≤

√
3/3, |ϕ (t2)− ϕ (t1)| ≤ 100 |t2 − t1| , ∀t1, t2 ∈ [0, T ]

}
.
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A simple calculation yields

F (t, x (t)) =
10−2

4

∫ t

t−2π

x3 (u) du =
1

4

∫ 2π

0

x3 (u) du =
10−2

4

[
x4

4

]2π

0

= 10−2π4 ≥ 0,

m = e−
10−2

2
π, M = 1, η =

(
1− e−

10−2

2
π
)−1

, c1 = 10−4, c2 =
10−2

6
π.

Then for x ∈
[
0,
√

3/3
]

we have

0 ≤ −a (t)F (t, x (t)) + b (t)h (x (t))− a (t)Q (t, x (t)) +

∫ t

−∞
D (t, s) f (x (s)) ds.

On the other hand, we have

− a (t)F (t, x (t)) + b (t)h (x (t)) + a (t)H (x (t))

− a (t)Q (t, x (t)) +

∫ t

−∞
D (t, s) f (x (s)) ds

≤ 1.006× 10−3 < 1.425× 10−3 ' L (1− c1 − c2)

MηT
.

All conditions of Theorem 2.2 hold and so (2.41) has a nonnegative 2π-periodic solution

belonging to M.

In the case two, we substitute conditions (2.37)–(2.40) with the following conditions,

respectively. We assume that there exist a negative constant c3 such that

c3L ≤ F (t, x (t)) ≤ 0, (2.42)

− c3 + c1 < 1, (2.43)

−c3L

mηT
≤ −a (u)F (t, x (t)) + b (t)h (x (t)) + a (t)H (x (t))

− a (t)Q (t, x (t)) +

∫ t

−∞
D (t, s) f (x (s)) ds, (2.44)

and

− a (u)F (t, x (t)) + b (t)h (x (t)) + a (t)H (x (t))

− a (t)Q (t, x (t)) +

∫ t

−∞
D (t, s) f (x (s)) ds ≤

L (1− c1)

MηT
. (2.45)

Theorem 2.3 Suppose (2.36), (2.42)–(2.45) and the hypotheses of Lemmas 2.2–2.4 hold.

Then (2.1) has a nonnegative T -periodic solution x in the subset M.

Proof. By Lemma 2.3, A is completely continuous. Also, from Lemma 2.4, the mapping B
is a large contraction. It is easy to show as in Lemma 2.5, A,B :M→M. Next, we show

that if ϕ, ψ ∈ M, we have 0 ≤ Aϕ + Bψ ≤ L and |(Aϕ+ Bψ) (t2)− (Aϕ+ Bψ) (t1)| ≤

2.3. Existence of nonnegative periodic solutions
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K |t2 − t1| , ∀t1, t2 ∈ [0, T ]. Let ϕ, ψ ∈M with 0 ≤ ϕ, ψ ≤ L. By (2.36) and (2.42)–(2.45)

we get

(Aϕ) (t) + (Bψ) (t)

= η

∫ t

t−T
a (u)H (ψ (u)) e−

∫ t
u a(k)dkdu+Q (t, ϕ (t− g (t)))

+ F (t, ϕ (t))− η
∫ t

t−T
F (t, ϕ (u)) a (u) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T
b (u)h (ϕ (u− τ (u))) e−

∫ t
u a(k)dkdu

+ η

∫ t

t−T

[
−a (u)Q (u, ϕ (u− g (u))) +

∫ u

−∞
D (u, s) f (ϕ (s)) ds

]
e−

∫ t
u a(k)dkdu

≤ η

∫ t

t−T
M
L (1− c1)

MηT
du+ c1L = L.

On the other hand, we have

(Aϕ)(t) + (Bψ)(t) ≥ η

∫ t

t−T
m
−c3L

mηT
du+ c3L = 0.

Now, let ϕ, ψ ∈M and t1, t2 ∈ [0, T ]. By Lemmas 2.2 and 2.4, we have

|(Aϕ+ Bψ) (t2)− (Aϕ+ Bψ) (t1)|
≤ |(Aϕ) (t2)− (Aϕ) (t1)|+ |(Bψ) (t2)− (Bψ) (t1)|

≤ K

J
|t2 − t1|+

(J − 1)K

J
|t2 − t1|

= K |t2 − t1| .

Clearly, all the hypotheses of Krasnoselskii-Burton’s theorem are satisfied. Thus there

exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 1.7 this fixed point is a

solution of (2.1) and the proof is complete.

2.3. Existence of nonnegative periodic solutions



Chapter 3
Periodic solutions for first order totally

nonlinear iterative differential equations

Keywords. Krasnoselskii-Burton’s fixed point, large contraction, iterative differential
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This chapter present a very recent published work [73],

A. Guerfi, A. Ardjouni, Periodic solutions for totally nonlinear iterative differential

equations, Bull. Int. Math. Virtual Inst. 12(1) (2022), 69–82.

In this chapter, we consider the following first order totally nonlinear iterative differ-

ential equation

d

dt
x (t) = −a (t)h (x (t)) +

d

dt
g
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
+ f

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
, (3.1)

where x[1] (t) = x (t), x[2] (t) = x (x (t)), ..., x[n] (t) = x[n−1] (x (t)) and a is a continuous

real-valued function. The functions h : R → R, g, f : R × Rn → R are continuous. Our

purpose here is to use Krasnoselskii-Burton’s fixed point technique to prove the existence

of periodic solutions for (3.1). During the process we use the variation of parameter

formula and the integration by parts to transform (3.1) into an equivalent integral equation

written as a sum of two mappings; one is a large contraction and the other is compact.

After that, we use Krasnoselskii-Burton’s fixed point theorem, to prove the existence of

a periodic solution. The obtained results in this work extend the main results in [42].

3.1 Preliminaries and inversion of the equation

For T > 0, define

PT = {x ∈ C (R,R) : x (t+ T ) = x (t) for all t ∈ R} ,

30
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where C (R,R) denoted the set of all real valued continuous functions map R into R.

Then PT is a Banach space with the norm

‖x‖ = sup
t∈R
|x(t)| = sup

t∈[0,T ]

|x(t)| .

For L,K > 0, define the set

PT (L,K) = {x ∈ PT , ‖x‖ ≤ L, |x (t2)− x (t1)| ≤ K |t2 − t1| for all t1, t2 ∈ R} ,

which is a closed convex and bounded subset of PT .

We assume that

a(t+ T ) = a(t),

∫ T

0

a (t) dt > 0. (3.2)

The functions f(t, x1, x2, ..., xn) and g(t, x1, x2, ..., xn) are supposed periodic in t with

period T and globally Lipschitz in x1, x2, ..., xn, i.e,

f(t+ T, x1, ..., xn) = f(t, x1, ..., xn),

g(t+ T, x1, ..., xn) = g(t, x1, ..., xn), (3.3)

and there exist n positive constants k1, k2, ..., kn and n positive constants c1, c2, ..., cn

such that

|f(t, x1, ..., xn)− f(t, y1, ..., yn)| ≤
n∑
i=1

ki |xi − yi| , (3.4)

and

|g(t, x1, ..., xn)− g(t, y1, ..., yn)| ≤
n∑
i=1

ci |xi − yi| . (3.5)

The function g(t, x1, ..., xn) is also supposed globally Lipschitz in t, i.e, there exists a

positive constant Kg such that

|g(t2, x1, ..., xn)− g(t1, x1, ..., xn)| ≤ Kg |t2 − t1| . (3.6)

The following lemma is essential for our results.

Lemma 3.1 Suppose (3.2) and (3.3) hold. If x ∈ PT (L,K), then x is a solution of (3.1)

if and only if

x (t) =

∫ t+T

t

G (t, s) a (s)H (x (s)) ds

+

∫ t+T

t

{
f
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
−a (s) g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)}
G (t, s) ds

+ g
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
, (3.7)

3.1. Preliminaries and inversion of the equation
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where

G (t, s) =
exp

(∫ s
t
a (u) du

)
exp

(∫ T
0
a (u) du

)
− 1

, (3.8)

and

H (x) = x− h (x) . (3.9)

Proof. Let x ∈ PT (L,K) be a solution of (3.1). Rewrite (3.1) as

d

dt
x (t) + a (t)x (t)− d

dt
g
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
= a (t)H (x (t)) + f

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
,

which is equivalent to

d

dt

{[
x (t)− g

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)]
exp

(∫ t

0

a (u) du

)}
=
{
a (t)H (x (t))− a (t) g

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
+f
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)}
exp

(∫ t

0

a (u) du

)
.

The integration from t to t+ T gives∫ t+T

t

d

ds

{[
x (s)− g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)]
exp

(∫ s

0

a (u) du

)}
ds

=

∫ t+T

t

{
a (s)H (x (s))− a (s) g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
+f
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)}
exp

(∫ s

0

a (u) du

)
ds.

Since ∫ t+T

t

d

ds

{[
x (s)− g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)]
exp

(∫ s

0

a (u) du

)}
ds

=
{
x (t)− g

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)}
× exp

(∫ t

0

a (u) du

)[
exp

(∫ t+T

t

a (u) du

)
− 1

]
,

then

x (t) = g
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
+

∫ t+T

t

{
a (s)H (x (s))− a (s) g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
+f
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)} exp
(∫ s

t
a (u) du

)
exp

(∫ t+T
t

a (u) du
)
− 1

ds.

The proof is completed.
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Lemma 3.2 Green function G satisfies the following properties

G (t+ T, s+ T ) = G (t, s) ,

and

α =
exp

(
−
∫ T

0
a (u) du

)
∣∣∣exp

(∫ T
0
a (u) du

)
− 1
∣∣∣ ≤ |G (t, s)| ≤

exp
(∫ T

0
a (u) du

)
∣∣∣exp

(∫ T
0
a (u) du

)
− 1
∣∣∣ = β.

Lemma 3.3 ([121]) For any ϕ, ψ ∈ PT (L,K), we have∥∥ϕ[m] − ψ[m]
∥∥ ≤ m−1∑

j=0

Kj ‖ϕ− ψ‖ , m = 1, 2, ....

Lemma 3.4 ([120]) It holds

PT (L,K)

= {x ∈ PT , ‖x‖ ≤ L, |x (t2)− x (t1)| ≤ K |t2 − t1| for all t1, t2 ∈ [0, T ]} .

3.2 Existence of periodic solutions

To apply the Theorem 1.7 we need to define a Banach space B, a closed bounded convex

subset M of B and construct two mappings; one is a completely continuous and the other

is a large contraction. So, we let (B, ‖.‖) = (PT , ‖.‖) and

M = PT (L,K)

= {ϕ ∈ PT , ‖ϕ‖ ≤ L, |ϕ (t2)− ϕ (t1)| ≤ K |t2 − t1| for all t1, t2 ∈ [0, T ]} , (3.10)

with L,K > 0. Define a mapping S : M→ PT by

(Sϕ) (t) =

∫ t+T

t

G (t, s) a (s)H (ϕ (s)) ds

+

∫ t+T

t

{
f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
−a (s) g

(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)}
G (t, s) ds

+ g
(
t, ϕ (t) , ϕ[2] (t) , ..., ϕ[n] (t)

)
. (3.11)

Therefore, we express the above mapping as

Sϕ = Aϕ+ Bϕ,

where A,B : M→ PT are given by

(Aϕ) (t) =

∫ t+T

t

{
f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
−a (s) g

(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)}
G (t, s) ds

+ g
(
t, ϕ (t) , ϕ[2] (t) , ..., ϕ[n] (t)

)
, (3.12)
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and

(Bϕ) (t) =

∫ t+T

t

G (t, s) a (s)H (ϕ (s)) ds. (3.13)

To simplify notations, we introduce the following constants

σ = max
t∈[0,T ]

|a (t)| , ρ1 = max
t∈[0,T ]

|f (t, 0, 0, ..., 0)| , ρ2 = max
t∈[0,T ]

|g (t, 0, 0, ..., 0)| . (3.14)

We need the following assumptions

J

[
βT (ρ1 + σρ2) + ρ2 + L

n∑
i=1

[ci + βT (ki + σci)]
i−1∑
j=0

Kj

]
≤ L, (3.15)

and

J ((2β + Tα ‖a‖) (ρ1 + σρ2) +Kg

+
n∑
i=1

[(2β + Tα ‖a‖)L (ki + σci) +Kci]
i−1∑
j=0

Kj

)
≤ K, (3.16)

where J is a positive constant with J ≥ 3.

Lemma 3.5 For A defined in (3.12), suppose that (3.2)–(3.6) and (3.14)–(3.16) hold.

Then A : M→M.

Proof. Let ϕ ∈ M. For having Aϕ ∈ M we will show that Aϕ ∈ PT , ‖Aϕ‖ ≤ L and

|(Aϕ) (t2)− (Aϕ) (t1)| ≤ K |t2 − t1| for all t1, t2 ∈ [0, T ]. First, it is easy to prove that

(Aϕ)(t+ T ) = (Aϕ)(t). That is, if ϕ ∈ PT then Aϕ ∈ PT . By (3.14), we get

|(Aϕ) (t)| ≤ β

∫ t+T

t

∣∣f (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)
)∣∣ ds

+ βσ

∫ t+T

t

∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)
)∣∣ ds

+
∣∣g (t, ϕ (t) , ϕ[2] (t) , ..., ϕ[n] (t)

)∣∣ ,
and in view of conditions (3.5), (3.6) and Lemma 3.3, we obtain∣∣f (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)∣∣
≤
∣∣f (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
− f (s, 0, 0, ..., 0)

∣∣+ |f (s, 0, 0, ..., 0)|

≤ ρ1 +
n∑
i=1

ki

i−1∑
j=0

Kj ‖ϕ‖

≤ ρ1 + L
n∑
i=1

ki

i−1∑
j=0

Kj, (3.17)
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and ∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)
)∣∣

≤
∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
− g (s, 0, 0, ..., 0)

∣∣+ |g (s, 0, 0, ..., 0)|

≤ ρ2 +
n∑
i=1

ci

i−1∑
j=0

Kj ‖ϕ‖

≤ ρ2 + L
n∑
i=1

ci

i−1∑
j=0

Kj. (3.18)

Thus, it follows from (3.17) and (3.18) that

|(Aϕ) (t)| ≤ βT

(
ρ1 + L

n∑
i=1

ki

i−1∑
j=0

Kj

)

+ (βσT + 1)

(
ρ2 + L

n∑
i=1

ci

i−1∑
j=0

Kj

)

= βT (ρ1 + σρ2) + ρ2 + L
n∑
i=1

[ci + βT (ki + σci)]
i−1∑
j=0

Kj.

Therefore, from (3.15), we get

‖Aϕ‖ ≤ L

J
≤ L.

Let t1, t2 ∈ [0, T ] with t1 < t2, we obtain

|(Aϕ) (t2)− (Aϕ) (t1)|

≤
∣∣∣∣∫ t2+T

t2

f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
G (t2, s) ds

−
∫ t1+T

t1

f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
G (t1, s) ds

∣∣∣∣
+

∣∣∣∣∫ t2+T

t2

a (s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
G (t2, s) ds

−
∫ t1+T

t1

a (s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
G (t1, s) ds

∣∣∣∣
+
∣∣g (t2, ϕ (t2) , ϕ[2] (t2) , ..., ϕ[n] (t2)

)
− g

(
t1, ϕ (t1) , ϕ[2] (t1) , ..., ϕ[n] (t1)

)∣∣ .
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But, ∣∣∣∣∫ t2+T

t2

f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
G (t2, s) ds

−
∫ t1+T

t1

f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
G (t1, s) ds

∣∣∣∣
≤
∣∣∣∣∫ t1

t2

G (t2, s) f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

+

∫ t2+T

t1+T

G (t2, s) f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
+

∣∣∣∣∫ t1+T

t1

[G (t2, s)−G (t1, s)] f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
≤
∫ t1

t2

|G (t2, s)|
∣∣f (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)∣∣ ds
+

∫ t2+T

t1+T

|G (t2, s)|
∣∣f (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)∣∣ ds
+

1∣∣∣exp
(∫ T

0
a (u) du

)
− 1
∣∣∣
∫ t1+T

t1

∣∣f (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)
)∣∣

×
∣∣∣∣exp

(∫ s

t2

a (u) du

)
− exp

(∫ s

t1

a (u) du

)∣∣∣∣ ds,
and ∫ t1+T

t1

∣∣∣∣exp

(∫ s

t2

a (u) du

)
− exp

(∫ s

t1

a (u) du

)∣∣∣∣ ds
=

∫ t1+T

t1

exp

(∫ s

t2

a (u) du

) ∣∣∣∣1− exp

(∫ t2

t1

a (u) du

)∣∣∣∣ ds
≤ T ‖a‖ |t2 − t1| exp

(
−
∫ T

0

a (u) du

)
,

so, ∣∣∣∣∫ t2+T

t2

f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
G (t2, s) ds

−
∫ t1+T

t1

f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
G (t1, s) ds

∣∣∣∣
≤ 2β |t2 − t1|

(
ρ1 + L

n∑
i=1

ki

i−1∑
j=0

Kj

)
+ Tα ‖a‖ |t2 − t1|

(
ρ1 + L

n∑
i=1

ki

i−1∑
j=0

Kj

)

≤ |t2 − t1|

(
ρ1 + L

n∑
i=1

ki

i−1∑
j=0

Kj

)
(2β + Tα ‖a‖) . (3.19)
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Similarly, we get∣∣∣∣∫ t2+T

t2

a (s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
G (t2, s) ds

−
∫ t1+T

t1

a (s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
G (t1, s) ds

∣∣∣∣
≤
∣∣∣∣∫ t1

t2

a (s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
G (t2, s) ds

+

∫ t2+T

t1+T

a (s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
G (t2, s) ds

∣∣∣∣
+

∣∣∣∣∫ t1+T

t1

a (s) [G (t2, s)−G (t1, s)] g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
≤
∫ t1

t2

|a (s)| |G (t2, s)|
∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)∣∣ ds
+

∫ t2+T

t1+T

|a (s)| |G (t2, s)|
∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)∣∣ ds
+

1∣∣∣exp
(∫ T

0
a (u) du

)
− 1
∣∣∣
∫ t1+T

t1

|a (s)|
∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)∣∣
×
∣∣∣∣exp

(∫ s

t2

a (u) du

)
− exp

(∫ s

t1

a (u) du

)∣∣∣∣ ds
≤ |t2 − t1|σ

(
ρ2 + L

n∑
i=1

ci

i−1∑
j=0

Kj

)
(2β + Tα ‖a‖) . (3.20)

Also, we have∣∣g (t2, ϕ (t2) , ϕ[2] (t2) , ..., ϕ[n] (t2)
)
− g

(
t1, ϕ (t1) , ϕ[2] (t1) , ..., ϕ[n] (t1)

)∣∣
=
∣∣g (t2, ϕ (t2) , ϕ[2] (t2) , ..., ϕ[n] (t2)

)
− g

(
t1, ϕ (t2) , ϕ[2] (t2) , ..., ϕ[n] (t2)

)
+ g

(
t1, ϕ (t2) , ϕ[2] (t2) , ..., ϕ[n] (t2)

)
− g

(
t1, ϕ (t1) , ϕ[2] (t1) , ..., ϕ[n] (t1)

)∣∣
≤
∣∣g (t2, ϕ (t2) , ϕ[2] (t2) , ..., ϕ[n] (t2)

)
− g

(
t1, ϕ (t2) , ϕ[2] (t2) , ..., ϕ[n] (t2)

)∣∣
+
∣∣g (t1, ϕ (t2) , ϕ[2] (t2) , ..., ϕ[n] (t2)

)
− g

(
t1, ϕ (t1) , ϕ[2] (t1) , ..., ϕ[n] (t1)

)∣∣ .
By (3.4)–(3.6) and Lemma 3.3, we get∣∣g (t2, ϕ (t2) , ϕ[2] (t2) , ..., ϕ[n] (t2)

)
− g

(
t1, ϕ (t1) , ϕ[2] (t1) , ..., ϕ[n] (t1)

)∣∣
≤ Kg |t2 − t1|+

n∑
i=1

ci
∥∥ϕ[i] (t2)− ϕ[i] (t1)

∥∥
≤

(
Kg +

n∑
i=1

ci

i−1∑
j=0

Kj+1

)
|t2 − t1| . (3.21)
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Thus, it follows from (3.19)–(3.21) and (3.16) that

|(Aϕ) (t2)− (Aϕ) (t1)|

≤

(
(2β + Tα ‖a‖)

(
ρ1 + σρ2 + L

n∑
i=1

(ki + σci)
i−1∑
j=0

Kj

)

+

(
Kg +

n∑
i=1

ci

i−1∑
j=0

Kj+1

))
|t2 − t1| .

Therefore,

|(Aϕ) (t2)− (Aϕ) (t1)| ≤ K

J
|t2 − t1| ≤ K |t2 − t1| .

Consequently, A : M→M.

Lemma 3.6 Suppose that conditions (3.2)–(3.6) and (3.14)–(3.16) hold. Then the oper-

ator A : M→M given by (3.12), is continuous and compact.

Proof. Since M is a uniformly bounded and equicontinuous subset of the space of contin-

uous functions on the compact [0, T ] we can apply the Ascoli-Arzela theorem to confirm

that M is a compact subset from this space. Also, and since any continuous operator

maps compact sets into compact sets, then to prove that A is a compact operator it’s

suffices to prove that it is continuous. For ϕ, ψ ∈M, we have

|(Aϕ) (t)− (Aψ) (t)|

≤
∫ t+T

t

|G (t, s)|
∣∣f (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
−f
(
s, ψ (s) , ψ[2] (s) , ..., ψ[n] (s)

)∣∣ ds
+

∫ t+T

t

|a (s)| |G (t, s)|
∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
−g
(
s, ψ (s) , ψ[2] (s) , ..., ψ[n] (s)

)∣∣ ds
+
∣∣g (t, ϕ (t) , ϕ[2] (t) , ..., ϕ[n] (t)

)
− g

(
t, ψ (t) , ψ[2] (t) , ..., ψ[n] (t)

)∣∣ .
In view of conditions (3.5) and (3.6) and notations (3.14), we have

|(Aϕ) (t)− (Aψ) (t)|

≤ βT
n∑
i=1

ki
∥∥ϕ[i] − ψ[i]

∥∥+ (βσT + 1)
n∑
i=1

ci
∥∥ϕ[i] − ψ[i]

∥∥ .
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From Lemma 3.3, it follows that

|(Aϕ) (t)− (Aψ) (t)|

≤ βT

n∑
i=1

ki

i−1∑
j=0

Kj ‖ϕ− ψ‖

+ (βσT + 1)
n∑
i=1

ci

i−1∑
j=0

Kj ‖ϕ− ψ‖

=
n∑
i=1

(βTki + (βσT + 1) ci)
i−1∑
j=0

Kj ‖ϕ− ψ‖ .

which proves that the operator A is continuous. Therefore, A is compact and continuous.

The next result proves the relationship between the mappings H and B in the sense of

large contractions. Assume that

βσT ≤ 1, (3.22)

max (|H (−L)| , |H (L)|) ≤ (J − 1)

J
L, (3.23)

and

(2β + Tα ‖a‖)σL ≤ K. (3.24)

Lemma 3.7 Let B be defined by (3.13), suppose (3.2), (3.22), (3.23), (3.24) and all

conditions of Theorem 1.5 hold. Then B : M→M is a large contraction.

Proof. Let B be defined by (3.13). For having Bϕ ∈ M we will show that ‖Bϕ‖ ≤ L

and |(Bϕ) (t2)− (Bϕ) (t1)| ≤ K |t2 − t1| for all t1, t2 ∈ [0, T ]. First, it is easy to show that

(Bϕ)(t + T ) = (Bϕ)(t). That is, if ϕ ∈ PT then Bϕ ∈ PT . Let ϕ ∈ M, by (3.23), we

obtain

|(Bϕ) (t)| ≤
∫ t+T

t

|G (t, s)| |a (s)| |H (ϕ (s))| ds

≤ βσT max {|H (−L)| , |H (L)|}

≤ (J − 1)L

J
≤ L.

Then, for any ϕ ∈M, we have

‖Bϕ‖ ≤ L.
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Let t1, t2 ∈ [0, T ] with t1 < t2, by (3.22)–(3.24), we get

|(Bϕ) (t1)− (Bϕ) (t2)|

≤
∣∣∣∣∫ t2+T

t2

G (t2, s) a (s)H (ϕ (s)) ds−
∫ t1+T

t1

G (t1, s) a (s)H (ϕ (s)) ds

∣∣∣∣
≤
∣∣∣∣∫ t1

t2

G (t2, s) a (s)H (ϕ (s)) ds+

∫ t2+T

t1+T

G (t2, s) a (s)H (ϕ (s)) ds

∣∣∣∣
+

∣∣∣∣∫ t1+T

t1

[G (t2, s)−G (t1, s)] a (s)H (ϕ (s)) ds

∣∣∣∣
≤
∫ t1

t2

|G (t2, s)| |a (s)| |H (ϕ (s))| ds+

∫ t2+T

t1+T

|G (t2, s)| |a (s)| |H (ϕ (s))| ds

+
1∣∣∣exp

(∫ T
0
a (u) du

)
− 1
∣∣∣
∫ t1+T

t1

|a (s)| |H (ϕ (s))|

×
∣∣∣∣exp

(∫ s

t2

a (u) du

)
− exp

(∫ s

t1

a (u) du

)∣∣∣∣ ds
≤ 2βσ

(
(J − 1)L

J

)
|t2 − t1|+

1∣∣∣exp
(∫ T

0
a (u) du

)
− 1
∣∣∣
∫ t1+T

t1

|a (s)| |H (ϕ (s))|

× exp

(∫ s

t2

a (u) du

) ∣∣∣∣1− exp

(∫ t2

t1

a (u) du

)∣∣∣∣ ds
≤ 2βσ

(J − 1)L

J
|t2 − t1|+ Tα ‖a‖σ (J − 1)L

J
|t2 − t1|

= (2β + Tα ‖a‖)σ (J − 1)L

J
|t2 − t1| .

Then

|(Bϕ) (t1)− (Bϕ) (t2)| ≤ (J − 1)K

J
|t2 − t1| ≤ K |t2 − t1| .

Therefore, B : M→M.

It remains to prove that B is a large contraction. By Theorem 1.5, H is a large

contraction on M, then for any ϕ, ψ ∈M, with ϕ 6= ψ we get

|(Bϕ) (t)− (Bψ) (t)|

≤
∣∣∣∣∫ t+T

t

G (t, s) a (s) [H (ϕ (s))−H (ψ (s))] ds

∣∣∣∣
≤ βσT ‖ϕ− ψ‖ ≤ ‖ϕ− ψ‖ .

Then ‖Bϕ− Bψ‖ ≤ ‖ϕ− ψ‖. Now, let ε ∈ (0, 1) be given and let ϕ, ψ ∈ M, with

‖ϕ− ψ‖ ≥ ε from the proof of Theorem 1.5, we have found a δ ∈ (0, 1), such that

|(Hϕ) (t)− (Hψ) (t)| ≤ δ ‖ϕ− ψ‖ .
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Thus,

|(Bϕ) (t)− (Bψ) (t)|

≤
∣∣∣∣∫ t+T

t

G (t, s) a (s) [H (ϕ (s))−H (ψ (s))] ds

∣∣∣∣
≤ βσTδ ‖ϕ− ψ‖ ≤ δ ‖ϕ− ψ‖ .

The proof is complete.

Theorem 3.1 Suppose the hypothesis of Lemmas 3.5–3.7 hold. Let M defined by (3.10),

then (3.1) has a T -periodic solution in M.

Proof. By Lemmas 3.5 and 3.6 A : M → M is continuous and A(M) is con-

tained in a compact set. Also, from Lemma 3.7, the mapping B : M → M is a

large contraction. Next, we prove that if ϕ, ψ ∈ M, we have ‖Aϕ+ Bψ‖ ≤ L and

|(Aϕ+ Bψ) (t2)− (Aϕ+ Bψ) (t1)| ≤ K |t2 − t1| for all t1, t2 ∈ [0, T ]. Let ϕ, ψ ∈ M with

‖ϕ‖ , ‖ψ‖ ≤ L. By (3.15) and (3.23), we have

‖Aϕ+ Bφ‖

≤ βT (ρ1 + σρ2) + ρ2 + L
n∑
i=1

[ci + βT (ki + σci)]
i−1∑
j=0

Kj +
(J − 1)L

J

≤ L

J
+

(J − 1)L

J
= L.

Now, let ϕ, ψ ∈M and t1, t2 ∈ [0, T ]. By (3.16) and (3.24), we get

|(Aϕ+ Bψ) (t2)− (Aϕ+ Bψ) (t1)|
≤ |(Aϕ) (t2)− (Aϕ) (t1)|+ |(Bψ) (t2)− (Bψ) (t1)|

≤ K

J
|t2 − t1|+

(J − 1)K

J
|t2 − t1|

≤ K |t2 − t1| .

Clearly, all the hypotheses of Krasnoselskii-Burton’s theorem are satisfied. Thus there

exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 3.1, this fixed point is a

solution of (3.1). Hence (3.1) has a T -periodic solution.

3.2. Existence of periodic solutions



Chapter 4
Periodic solutions for second order totally

nonlinear iterative differential equations

Keywords. Krasnoselskii-Burton’s fixed point, large contraction, iterative differential

equations, periodic solutions, Green’s function.

This chapter present a very recent published work [74],

A. Guerfi, A. Ardjouni, Periodic solutions for second order totally nonlinear itera-

tive differential equations, The Journal of Analysis, https://doi.org/10.1007/s41478-021-

00347-0.

In this chapter, we consider the following second order totally nonlinear iterative dif-

ferential equation

d2

dt2
x (t) + p (t)

d

dt
x (t) + q (t)h (x (t))

=
d

dt
g
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
+ f

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
, (4.1)

where x[1] (t) = x (t), x[2] (t) = x (x (t)), ..., x[n] (t) = x[n−1] (x (t)), p and q are positive

continuous real-valued functions. The functions h : R → R and f, g : R × Rn → R
are continuous with respect to their arguments. Our purpose here is to use Krasnoselskii-

Burton’s fixed point theorem to prove the existence of periodic solutions for (4.1). Clearly,

the present problem is totally nonlinear so that the variation of parameters cannot be

applied directly. Then, we resort to the idea of adding and subtracting of terms. As

noted by Burton [48], the added term destroys a contraction already present in part of the

equation but it replaces it with the so called a large contraction mapping which is suitable

for fixed point theory. During the process we use the variation of parameter formula and

the integration by parts to transform (4.1) into an equivalent integral equation written

as a sum of two mappings; one is a large contraction and the other is compact. After

that, we use Krasnoselskii-Burton’s fixed point theorem, to prove the existence of periodic

solutions.

42
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4.1 Preliminaries and inversion of the equation

For T > 0, let PT be the set of all continuous scalar functions x, periodic in t of period

T . Then (PT , ‖.‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R
|x(t)| = sup

t∈[0,T ]

|x(t)| .

For L,K > 0, define the set

PT (L,K) = {x ∈ PT , ‖x‖ ≤ L, |x (t2)− x (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ R} ,

which is a closed convex and bounded subset of PT .

We assume that p and q are two continuous real-valued functions such that

p(t+ T ) = p(t), q(t+ T ) = q(t), (4.2)

and ∫ T

0

p (s) ds > 0,

∫ T

0

q (s) ds > 0. (4.3)

The functions f(t, x1, x2, ..., xn) and g(t, x1, x2, ..., xn) are supposed to be periodic in t

with period T and globally Lipschitz in x1, x2, ..., xn, i.e,

f(t+ T, x1, ..., xn) = f(t, x1, ..., xn),

g(t+ T, x1, ..., xn) = g(t, x1, ..., xn), (4.4)

and there exist n positive constants k1, k2, ..., kn and n positive constants c1, c2, ..., cn

such that

|f(t, x1, ..., xn)− f(t, y1, ..., yn)| ≤
n∑
i=1

ki |xi − yi| , (4.5)

and

|g(t, x1, ..., xn)− g(t, y1, ..., yn)| ≤
n∑
i=1

ci |xi − yi| . (4.6)

Lemma 4.1 ([92]) Suppose that (4.2) and (4.3) hold and

R1

[
exp

(∫ T
0
p (u) du

)
− 1
]

Q1T
≥ 1, (4.7)

where

R1 = max
t∈[0,T ]

∣∣∣∣∣∣
∫ t+T

t

exp
(∫ s

t
p (u) du

)
exp

(∫ T
0
p (u) du

)
− 1

q (s) ds

∣∣∣∣∣∣ ,
and

Q1 =

(
1 + exp

(∫ T

0

p (u) du

))2

R2
1.
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Then there are continuous and T -periodic functions a and b such that b(t) > 0,∫ T
0
a(u)du > 0, and

a(t) + b(t) = p(t),
d

dt
b(t) + a(t)b(t) = q(t) for all t ∈ R.

Lemma 4.2 ([114]) Suppose the conditions of Lemma 4.1 hold and φ ∈ PT . Then the

equation
d2

dt2
x (t) + p (t)

d

dt
x (t) + q (t)x (t) = φ (t) ,

has a T -periodic solution. Moreover, the periodic solution can be expressed as

x (t) =

∫ t+T

t

G (t, s)φ (s) ds,

where

G (t, s) =

∫ s
t

exp
[∫ u
t
b (v) dv +

∫ s
u
a (v) dv

]
du[

exp
(∫ T

0
a (u) du

)
− 1
] [

exp
(∫ T

0
b (u) du

)
− 1
]

+

∫ t+T
s

exp
[∫ u

t
b (v) dv +

∫ s+T
u

a (v) dv
]
du[

exp
(∫ T

0
a (u) du

)
− 1
] [

exp
(∫ T

0
b (u) du

)
− 1
] . (4.8)

Corollary 4.1 ([114]) Green’s function G satisfies the following properties

G (t, t+ T ) = G (t, t) , G (t+ T, s+ T ) = G (t, t) ,

∂

∂s
G (t, s) = a (s)G (t, s)−

exp
(∫ s

t
b (v) dv

)
exp

(∫ T
0
b (v) dv

)
− 1

, (4.9)

∂

∂t
G (t, s) = −b (t)G (t, s) +

exp
(∫ s

t
a (v) dv

)
exp

(∫ T
0
a (v) dv

)
− 1

.

Lemma 4.3 Suppose (4.2)–(4.4) and (4.7) hold. If x ∈ PT (L,K), then x is a solution

of (4.1) if and only if

x (t) =

∫ t+T

t

G (t, s) q (s)H (x (s)) ds

+

∫ t+T

t

{
[E (t, s)− a (s)G (t, s)] g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
+G (t, s) f

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)}
ds, (4.10)

where

E (t, s) =
exp

(∫ s
t
b (v) dv

)
exp

(∫ T
0
b (v) dv

)
− 1

, (4.11)

and

H (x) = x− h (x) . (4.12)
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Proof. Let x ∈ PT (L,K) be a solution of (4.1). Rewrite (4.1) as

d2

dt2
x (t) + p (t)

d

dt
x (t) + q (t)x (t)

= q (t)H (x (t)) +
d

dt
g
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
+ f

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
.

From Lemma 4.2, we get

x (t) =

∫ t+T

t

G (t, s) q (s)H (x (s)) ds

+

∫ t+T

t

G (t, s)

{
d

ds
g
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
+f
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)}
ds.

Performing an integration by parts, we obtain∫ t+T

t

G (t, s)
d

ds
g
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
ds

=
[
G (t, s) g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)]t+T
t

−
∫ t+T

t

(
d

ds
G (t, s)

)
g
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
ds.

Since [
G (t, s) g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)]t+T
t

= 0,

from (4.9), we get∫ t+T

t

G (t, s)
d

ds
g
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
ds

=

∫ t+T

t

[E (t, s)− a (s)G (t, s)] g
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
ds.

Consequently,

x (t) =

∫ t+T

t

G (t, s) q (s)H (x (s)) ds

+

∫ t+T

t

{
[E (t, s)− a (s)G (t, s)] g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
+G (t, s) f

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)}
ds.

The proof is completed.

Lemma 4.4 ([114]) Let A =
∫ T

0
p (u) du and B = T 2 exp

(
1
T

∫ T
0

ln (q (u)) du
)

. If

A2 ≥ 4B, (4.13)
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then

min

{∫ T

0

a (u) du,

∫ T

0

b (u) du

}
≥ 1

2

(
A−
√
A2 − 4B

)
:= l

and

max

{∫ T

0

a (u) du,

∫ T

0

b (u) du

}
≤ 1

2

(
A+
√
A2 − 4B

)
:= m.

Corollary 4.2 ([114]) Functions G and E satisfy

T

(em − 1)2 ≤ G (t, s) ≤
T exp

(∫ T
0
p (u) du

)
(el − 1)2 , |E (t, s)| ≤ em

el − 1
.

Lemma 4.5 ([121]) For any ϕ, ψ ∈ PT (L,K), we have

∥∥ϕ[m] − ψ[m]
∥∥ ≤ m−1∑

j=0

Kj ‖ϕ− ψ‖ , m = 1, 2, ....

Lemma 4.6 ([120]) It holds

PT (L,K) = {x ∈ PT , ‖x‖ ≤ L, |x (t2)− x (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]} .

4.2 Existence of periodic solutions

To apply the Theorem 1.7 we need to define a Banach space B, a closed bounded convex

subset M of B and construct two mappings; one is a completely continuous and the other

is a large contraction. So, we let (B, ‖.‖) = (PT , ‖.‖) and

M = PT (L,K) = {ϕ ∈ PT , ‖ϕ‖ ≤ L, |ϕ (t2)− ϕ (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]} ,
(4.14)

with L,K > 0. Define a mapping S : M→ PT by

(Sϕ) (t) =

∫ t+T

t

G (t, s) q (s)H (ϕ (s)) ds

+

∫ t+T

t

{
[E (t, s)− a (s)G (t, s)] g

(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
+G (t, s) f

(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)}
ds. (4.15)

Therefore, we express the above mapping as

Sϕ = Aϕ+ Bϕ,

where A,B : M→ PT are given by

(Aϕ) (t) =

∫ t+T

t

{
[E (t, s)− a (s)G (t, s)] g

(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
+G (t, s) f

(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)}
ds, (4.16)
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and

(Bϕ) (t) =

∫ t+T

t

G (t, s) q (s)H (ϕ (s)) ds. (4.17)

To simplify notations, we introduce the following constants

α =
T exp

(∫ T
0
p (u) du

)
(el − 1)2 , β =

em

el − 1
, γ = exp

(∫ T

0

b (v) dv

)
,

θ =
1[

exp
(∫ T

0
a (u) du

)
− 1
] [

exp
(∫ T

0
b (u) du

)
− 1
] ,

λ1 = max
t∈[0,T ]

|a (t)| , λ2 = max
t∈[0,T ]

|b (t)| , σ = max
t∈[0,T ]

|q (t)|

ρ1 = max
t∈[0,T ]

|f (t, 0, 0, ..., 0)| , ρ2 = max
t∈[0,T ]

|g (t, 0, 0, ..., 0)| ,

ζ1 = ρ1 + L
n∑
i=1

ki

j=i−1∑
j=0

Kj, ζ2 = ρ2 + L
n∑
i=1

ci

j=i−1∑
j=0

Kj. (4.18)

Lemma 4.7 ([43]) For any t1, t2 ∈ [0, T ],∫ t1+T

t1

|G (t2, s)−G (t1, s)| ds ≤ Te2mθ
[
Tλ2γ

(
2e2m + 1

)
+ em + 1

]
|t2 − t1| .

Also, we need the following assumptions

JT [(β + αλ1) ζ1 + αζ2] ≤ L, (4.19)

and

J
((

2α + Te2mθ
[
Tλ2γ

(
2e2m + 1

)
+ em + 1

])
(λ1ζ2 + ζ1)

+ (2β + Tλ2β) ζ2) ≤ K, (4.20)

where J is a positive constant with J ≥ 3.

Lemma 4.8 For A defined in (4.16), suppose that (4.2)–(4.7), (4.19) and (4.20) hold.

Then A : M→M.

Proof. Let ϕ ∈ M. For having Aϕ ∈ M we show that Aϕ ∈ PT , ‖Aϕ‖ ≤ L and

|(Aϕ) (t2)− (Aϕ) (t1)| ≤ K |t2 − t1|, ∀t1, t2 ∈ [0, T ]. First it is easy to show that (Aϕ)(t+

T ) = (Aϕ)(t). That is, if ϕ ∈ PT then Aϕ ∈ PT . By Corollary 4.2 and notations (4.18),

we get

|(Aϕ) (t)| ≤ (β + αλ1)

∫ t+T

t

∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)
)∣∣ ds

+ α

∫ t+T

t

∣∣f (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)
)∣∣ ds.
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From conditions (4.5), (4.6) and Lemma 4.5, we obtain∣∣f (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)
)∣∣

≤
∣∣f (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
− f (s, 0, 0, ..., 0)

∣∣+ |f (s, 0, 0, ..., 0)|

≤ ρ1 +
n∑
i=1

ki

j=i−1∑
j=0

Kj ‖ϕ‖ ≤ ρ1 + L

n∑
i=1

ki

j=i−1∑
j=0

Kj = ζ1,

and ∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)
)∣∣

≤
∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
− g (s, 0, 0, ..., 0)

∣∣+ |g (s, 0, 0, ..., 0)|

≤ ρ2 +
n∑
i=1

ci

j=i−1∑
j=0

Kj ‖ϕ‖ ≤ ρ2 + L

n∑
i=1

ci

j=i−1∑
j=0

Kj = ζ2.

So

|(Aϕ) (t)| ≤ T (β + αλ1) ζ1 + Tαζ2.

Therefore, from (4.19), we have

‖Aϕ‖ ≤ L

J
≤ L.

Let t1, t2 ∈ [0, T ] with t1 < t2, we get

|(Aϕ) (t2)− (Aϕ) (t1)|

≤
∣∣∣∣∫ t2+T

t2

E (t2, s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

−
∫ t1+T

t1

E (t1, s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
+

∣∣∣∣∫ t2+T

t2

a (s)G (t2, s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

−
∫ t1+T

t1

a (s)G (t1, s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
+

∣∣∣∣∫ t2+T

t2

G (t2, s) f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

−
∫ t1+T

t1

G (t1, s) f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣ ,
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and ∣∣∣∣∫ t2+T

t2

E (t2, s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

−
∫ t1+T

t1

E (t1, s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
≤
∫ t1

t2

|E (t2, s)|
∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)∣∣ ds
+

∫ t2+T

t1+T

|E (t2, s)|
∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)∣∣ ds
+

∫ t1+T

t1

|E (t2, s)− E (t1, s)|
∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)∣∣ ds
≤ (2β + Tλ2β) ζ2 |t2 − t1| . (4.21)

Also ∣∣∣∣∫ t2+T

t2

a (s)G (t2, s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

−
∫ t1+T

t1

a (s)G (t1, s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
≤
∣∣∣∣∫ t1

t2

a (s)G (t2, s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
+

∣∣∣∣∫ t2+T

t1+T

a (s)G (t2, s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
+

∣∣∣∣∫ t1+T

t1

a (s) [G (t2, s)−G (t1, s)] g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣ .
From Lemma 4.7, notations (4.18) and conditions (4.5), (4.6), we have∣∣∣∣∫ t2+T

t2

a (s)G (t2, s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

−
∫ t1+T

t1

a (s)G (t1, s) g
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
≤ λ1ζ2

(
2α + Te2mθ

[
Tλ2γ

(
2e2m + 1

)
+ em + 1

])
|t2 − t1| . (4.22)
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We get also ∣∣∣∣∫ t2+T

t2

G (t2, s) f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

−
∫ t1+T

t1

G (t1, s) f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
≤
∣∣∣∣∫ t1

t2

G (t2, s) f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
+

∣∣∣∣∫ t2+T

t1+T

G (t2, s) f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
+

∣∣∣∣∫ t1+T

t1

[G (t2, s)−G (t1, s)] f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣ .
From Lemma 4.7, notations (4.18) and conditions (4.5), (4.6), we have∣∣∣∣∫ t2+T

t2

G (t2, s) f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

−
∫ t1+T

t1

G (t1, s) f
(
s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
ds

∣∣∣∣
≤ ζ1

(
2α + Te2mθ

[
Tλ2γ

(
2e2m + 1

)
+ em + 1

])
|t2 − t1| (4.23)

Thus, it follows from (4.21), (4.22) and (4.23) that

|(Aϕ) (t2)− (Aϕ) (t1)|
≤
((

2α + Te2mθ
[
Tλ2γ

(
2e2m + 1

)
+ em + 1

])
(λ1ζ2 + ζ1)

+ (2β + Tλ2β) ζ2) |t2 − t1|

From (4.20), we obtain

|(Aϕ) (t2)− (Aϕ) (t1)| ≤ K

J
|t2 − t1| ≤ K |t2 − t1| ,

which implies that A : M→M.

Lemma 4.9 Suppose that conditions (4.2)–(4.7), (4.19) and (4.20) hold. Then the op-

erator A : M→M given by (4.16), is continuous and compact.

Proof. Since M is a uniformly bounded and equicontinuous subset of the space of contin-

uous functions on the compact [0, T ] we can apply the Ascoli-Arzela theorem to confirm

that M is a compact subset from this space. Also, and since any continuous operator

maps compact sets into compact sets, then to prove that A is a compact operator it’s
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suffices to show that it is continuous. For ϕ, ψ ∈M, we have

|(Aϕ) (t)− (Aψ) (t)|

≤
∫ t+T

t

|E (t, s)|
∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
− g

(
s, ψ (s) , ψ[2] (s) , ..., ψ[n] (s)

)∣∣ ds
+

∫ t+T

t

|a (s)| |G (t, s)|
∣∣g (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
−g
(
s, ψ (s) , ψ[2] (s) , ..., ψ[n] (s)

)∣∣ ds
+

∫ t+T

t

|G (t, s)|
∣∣f (s, ϕ (s) , ϕ[2] (s) , ..., ϕ[n] (s)

)
− f

(
s, ψ (s) , ψ[2] (s) , ..., ψ[n] (s)

)∣∣ ds.
By (4.5) and (4.6), Corollary 4.2, and notations (4.18), we get

|(Aϕ) (t)− (Aψ) (t)| ≤ (β + αλ1)T
n∑
i=1

ci
∥∥ϕ[i] − ψ[i]

∥∥+ αT

n∑
i=1

ki
∥∥ϕ[i] − ψ[i]

∥∥ .
From Lemma 4.5, it follows that

|(Aϕ) (t)− (Aψ) (t)| ≤ T
n∑
i=1

((β + αλ1) ci + αki)

j=i−1∑
j=0

Kj ‖ϕ− ψ‖ .

which proves that the operator A is continuous. Therefore, A is compact and continuous.

The next result proves the relationship between the mappings H and B in the sense of

large contractions. Assume that

ασT ≤ 1, (4.24)

max (|H (−L)| , |H (L)|) ≤ (J − 1)

J
L, (4.25)

and

σL
[
2α + Te2mθ

[
Tλ2γ

(
2e2m + 1

)
+ em + 1

]]
≤ K. (4.26)

Lemma 4.10 Let B be defined by (4.17), suppose (4.2), (4.3), (4.7), (4.24)–(4.26) and

all conditions of Theorem 1.5 hold. Then B : M→M is a large contraction.

Proof. Let B be defined by (4.17). Obviously, Bϕ is continuous and it is easy to prove

that (Bϕ)(t + T ) = (Bϕ)(t). For having Bϕ ∈ M we will prove that ‖Bϕ‖ ≤ L and

|(Bϕ) (t2)− (Bϕ) (t1)| ≤ K |t2 − t1| , ∀t1, t2 ∈ [0, T ]. Let ϕ ∈ M, by (4.24) and (4.25) we

get

|(Bϕ) (t)| ≤
∫ t+T

t

|G (t, s)| |q (s)| |H (ϕ (s))| ds

≤ ασT max {|H (−L)| , |H (L)|} ≤ (J − 1)L

J
≤ L.
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Then, for any ϕ ∈M, we have

‖Bϕ‖ ≤ L.

Let t1, t2 ∈ [0, T ] with t1 < t2, by (4.24), (4.25) and Lemma 4.7 we obtain

|(Bϕ) (t2)− (Bϕ) (t1)|

≤
∣∣∣∣∫ t2+T

t2

G (t2, s) q (s)H (ϕ (s)) ds−
∫ t1+T

t1

G (t1, s) q (s)H (ϕ (s)) ds

∣∣∣∣
≤
∫ t1

t2

|G (t2, s)| |q (s)| |H (ϕ (s))| ds+

∫ t2+T

t1+T

|G (t2, s)| |q (s)| |H (ϕ (s))| ds

+

∫ t1+T

t1

|G (t2, s)−G (t1, s)| |q (s)| |H (ϕ (s))| ds

≤
[
2ασ

(J − 1)L

J
+ σ

(J − 1)L

J
Te2mθ

[
Tλ2γ

(
2e2m + 1

)
+ em + 1

]]
|t2 − t1| .

From (4.26), we get

|(Bϕ) (t2)− (Bϕ) (t1)| ≤ (J − 1)K

J
|t2 − t1| .

Consequently, B : M→M.

It remains to prove that B is large contraction. By Theorem 1.5 H is large contraction

on M, then for any ϕ, ψ ∈M, with ϕ 6= ψ we get

|(Bϕ) (t)− (Bψ) (t)| ≤
∣∣∣∣∫ t+T

t

G (t, s) q (s) [H (ϕ (s))−H (ψ (s))] ds

∣∣∣∣
≤ ασT ‖ϕ− ψ‖ ≤ ‖ϕ− ψ‖ .

Then ‖Bϕ− Bψ‖ ≤ ‖ϕ− ψ‖. Now, let ε ∈ (0, 1) be given and let ϕ, ψ ∈ M, with

‖ϕ− ψ‖ ≥ ε, from the proof of Theorem 1.5, we have found a δ ∈ (0, 1), such that

|(Hϕ) (t)− (Hψ) (t)| ≤ δ ‖ϕ− ψ‖ .

Thus,

|(Bϕ) (t)− (Bψ) (t)| ≤
∣∣∣∣∫ t+T

t

G (t, s) q (s) [H (ϕ (s))−H (ψ (s))] ds

∣∣∣∣
≤ ασTδ ‖ϕ− ψ‖ ≤ δ ‖ϕ− ψ‖ .

The proof is complete.

Theorem 4.1 Suppose the hypotheses of Lemmas 4.8–4.10 hold. Let M defined by (4.14),

Then (4.1) has a T -periodic solution in M.
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Proof. By Lemmas 4.8, 4.9 A : M → M is continuous and A(M) is contained

in a compact set. Also, from Lemma 4.10, the mapping B : M → M is a large

contraction. Next, we prove that if ϕ, ψ ∈ M, we have ‖Aϕ+ Bψ‖ ≤ L and

|(Aϕ+ Bψ) (t2)− (Aϕ+ Bψ) (t1)| ≤ K |t2 − t1|, ∀t1, t2 ∈ [0, T ]. Let ϕ, ψ ∈ M with

‖ϕ‖ , ‖ψ‖ ≤ L. By (4.19), (4.24), (4.25) and notations (4.18), we get

‖Aϕ+ Bφ‖ ≤ T [(β + αλ1) ζ1 + αζ2] +
(J − 1)L

J

≤ L

J
+

(J − 1)L

J
= L.

Now, let ϕ, ψ ∈M and t1, t2 ∈ [0, T ]. By (4.20), (4.26) and Lemma 4.7, we obtain

|(Aϕ+ Bψ) (t2)− (Aϕ+ Bψ) (t1)|
≤ |(Aϕ) (t2)− (Aϕ) (t1)|+ |(Bψ) (t2)− (Bψ) (t1)|

≤ K

J
|t2 − t1|+

(J − 1)K

J
|t2 − t1|

≤ K |t2 − t1| .

Clearly, all the hypotheses of Krasnoselskii–Burton’s theorem are satisfied. Thus there

exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 4.3 this fixed point is a

solution of (4.1). Hence (4.1) has a T -periodic solution.
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Chapter 5
Study of the existence of periodic and

nonnegative periodic solutions for third order

nonlinear differential equations

Keywords. Krasnoselskii-Burton’s fixed point, large contraction, periodic solutions,

nonnegative periodic solutions, Green’s function.

This chapter has been extracted from the research paper [75],

A. Guerfi, A. Ardjouni, Study of the existence of periodic and nonnegative periodic

solutions for third order nonlinear differential equations, MESA 12(3) (2021), 883–893.

In this chapter, we concentrate on the existence of periodic and nonnegative periodic

solutions for the third-order nonlinear delay differential equation

x′′′ (t) + p (t)x′′ (t) + q (t)x′ (t) + r (t)h (x (t)) = f (t, x (t) , x (t− τ (t))) , (5.1)

where p, q, r are continuous functions. The functions h : R→ R and f : R× R× R→ R
are continuous functions in their respective arguments, τ : R→ R+ is a continuous func-

tion. To show the existence of periodic and nonnegative periodic solutions, we transform

(5.1) into an equivalent integral equation and then use Krasnoselskii-Burton’s fixed point

theorem. The obtained integral equation splits in the sum of two mappings, one is a large

contraction and the other is compact.

5.1 Preliminaries and inversion of the equation

In this section, we give the assumptions as follows that will be used in the main results.

(H1) There exist two differentiable positive T -periodic functions a1, a2 and a positive
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real constant ρ such that 
a1(t) + ρ = p(t),

a′1(t) + a2(t) + ρa1(t) = q(t),

a′2(t) + ρa2(t) = r(t).

(H2) p, q, r ∈ C (R,R+) are T -periodic functions with τ(t) ≥ τ ∗ > 0, and∫ T

0

p (s) ds > ρT and

∫ T

0

q (s) ds > 0.

(H3) The function f(t, x, y) is continuous T -periodic in t and globally Lipshitz contin-

uous in x and y. That is

f(t+ T, x, y) = f(t, x, y),

and there are positive constants k1 and k2 such that

|f(t, x, y)− f(t, z, w)| ≤ k1 |x− z|+ k2 |y − w| .

For T > 0 , let PT be the set of all continuous functions x, periodic in t of period T .

Then (PT , ‖.‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R
|x(t)| = sup

t∈[0,T ]

|x(t)| .

Now, we consider the equation

x′′′ (t) + p (t)x′′ (t) + q (t)x′ (t) + r (t)x (t) = e (t) , (5.2)

where e is a continuous T -periodic function. Obviously, by the condition (H1), the above

equation can be transformed into the following system{
y′ (t) + ρy (t) = e (t) ,

x′′ (t) + a1 (t)x′ (t) + a2 (t)x (t) = y (t) .

Lemma 5.1 ([25]) If y, e ∈ PT , then y is a solution of the equation

y′ (t) + ρy (t) = e (t) ,

if and only if

y (t) =

∫ t+T

t

G1 (t, s) e (s) ds, (5.3)

where

G1 (t, s) =
exp (ρ (s− t))
exp (ρT )− 1

. (5.4)
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Corollary 5.1 ([104]) Green’s function G1 satisfies the following properties

G1 (t+ T, s+ T ) = G1 (t, s) , G1 (t, t+ T ) = G1 (t, t) exp (ρT ) ,

G1 (t+ T, s) = G1 (t, s) exp (−ρT ) , G1 (t, s+ T ) = G1 (t, s) exp (ρT ) ,

∂

∂t
G1 (t, s) = −ρG1 (t, s) ,

∂

∂s
G1 (t, s) = ρG1 (t, s) ,

and

m1 ≤ G1 (t, s) ≤M1,

where

m1 =
1

exp (ρT )− 1
, M1 =

exp (ρT )

exp (ρT )− 1
.

Lemma 5.2 ([92]) Suppose that (H1), (H2) hold and

R1

[
exp

(∫ T
0
a1 (v) dv

)
− 1
]

Q1T
≥ 1, (5.5)

where

R1 = max
t∈[0,T ]

∣∣∣∣∣∣
∫ t+T

t

exp
(∫ s

t
a1 (v) dv

)
exp

(∫ T
0
a1 (v) dv

)
− 1

a2 (s) ds

∣∣∣∣∣∣ ,
and

Q1 =

(
1 + exp

(∫ T

0

a1 (v) dv

))2

R2
1.

Then, there are continuous and T -periodic functions a and b such that

b(t) > 0,

∫ T

0

a(v)dv > 0,

and

a(t) + b(t) = a1(t),
d

dt
b(t) + a(t)b(t) = a2(t) for all t ∈ R.

Lemma 5.3 ([114]) Suppose the conditions of Lemma 5.2 hold and y ∈ PT . Then the

equation
d2

dt2
x (t) + a1 (t)

d

dt
x (t) + a2 (t)x (t) = y (t) ,

has a T -periodic solution. Moreover, the periodic solution can be expressed as

x (t) =

∫ t+T

t

G2 (t, s) y (s) ds, (5.6)

where

G2 (t, s) =

∫ s
t

exp
[∫ v
t
b (u) du+

∫ s
v
a (u) du

]
dv[

exp
(∫ T

0
a (v) dv

)
− 1
] [

exp
(∫ T

0
b (v) dv

)
− 1
]

+

∫ t+T
s

exp
[∫ v

t
b (u) du+

∫ s+T
v

a (u) du
]
dv[

exp
(∫ T

0
a (v) dv

)
− 1
] [

exp
(∫ T

0
b (v) dv

)
− 1
] . (5.7)
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Corollary 5.2 ([104]) Green’s function G2 satisfies the following properties

G2 (t+ T, s+ T ) = G2 (t, s) , G2 (t, t+ T ) = G2 (t, t) ,

G2 (t+ T, s) = exp

(
−
∫ T

0

b (v) dv

)[
G2 (t, s) +

∫ t+T

t

E (t, u)F (u, s) du

]
,

∂

∂t
G2 (t, s) = −b (t)G2 (t, s) + F (t, s) ,

∂

∂s
G2 (t, s) = a (t)G2 (t, s)− E (t, s) ,

where

E (t, s) =
exp

(∫ s
t
b (v) dv

)
exp

(∫ T
0
b (v) dv

)
− 1

, F (t, s) =
exp

(∫ s
t
a (v) dv

)
exp

(∫ T
0
a (v) dv

)
− 1

.

Lemma 5.4 ([114]) Let A =
∫ T

0
a1 (v) dv and B = T 2 exp

(
1
T

∫ T
0

ln (a2 (v)) dv
)

. If

A2 ≥ 4B, (5.8)

then

min

{∫ T

0

a (v) dv,

∫ T

0

b (v) dv

}
≥ 1

2

(
A−
√
A2 − 4B

)
:= l,

and

max

{∫ T

0

a (v) dv,

∫ T

0

b (v) dv

}
≤ 1

2

(
A+
√
A2 − 4B

)
:= L.

Corollary 5.3 ([104]) Functions G2, E and F satisfy

m2 ≤ G2 (t, s) ≤M2, E (t, s) ≤ eL

eL − 1
, F (t, s) ≤ eL,

where

m2 =
T

(eL − 1)2 and M2 =
T exp

(∫ T
0
a1 (v) dv

)
(el − 1)2 .

Lemma 5.5 ([52]) Suppose the conditions of Lemma 5.2 hold and e ∈ PT . Then the

equation

x′′′ (t) + p (t)x′′ (t) + q (t)x′ (t) + r (t)x (t) = e (t) ,

has a T -periodic solution. Moreover, the periodic solution can be expressed by

x (t) =

∫ t+T

t

G (t, s) e (s) ds, (5.9)

where

G (t, s) =

∫ t+T

t

G2 (t, σ)G1 (σ, s) dσ. (5.10)
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Corollary 5.4 ([104]) Green’s function G satisfies the following properties

G (t+ T, s+ T ) = G (t, s) , G (t, t+ T ) = G (t, t) exp (ρT ) ,

∂

∂t
G (t, s) = (exp (−ρT )− 1)G1 (t, t)G2 (t, s)− b (t)G (t, s)

+

∫ t+T

t

F (t, σ)G1 (σ, s) dσ,

∂

∂s
G (t, s) = ρG (t, s) ,

and

m ≤ G (t, s) ≤M,

where

m =
T 2

(eL − 1)2 (exp (ρT )− 1)
and M =

T 2
(
ρT + exp

(∫ T
0
a (v) dv

))
(el − 1)2 (exp (ρT )− 1)

.

Lemma 5.6 Suppose (H1)–(H3) and (5.5) hold. The function x ∈ PT is a solution of

(5.1) if and only if

x (t) =

∫ t+T

t

r (s)H (x (s))G (t, s) ds+

∫ t+T

t

f (s, x (s) , x (s− τ (s)))G (t, s) ds, (5.11)

where

H(x) = x− h(x). (5.12)

Proof. Let x ∈ PT be a solution of (5.1). Rewrite (5.1) as

x′′′ (t) + p (t)x′′ (t) + q (t)x′ (t) + r (t)x (t)

= r (t)H (x (t)) + f (t, x (t) , x (t− τ (t))) .

From Lemma 5.5, we have

x (t) =

∫ t+T

t

G (t, s) [r (s)H (x (s)) + f (s, x (s) , x (s− τ (s)))] ds.

The proof is completed.

5.2 Existence of periodic solutions

In this section, we will study the existence of T -periodic solutions of (5.1). To apply

Theorem 1.7 we need to define a Banach space B, a closed bounded convex subset M of

B and construct two mappings; one is a compact and the other is a large contraction. So,

we let (B, ‖.‖) = (PT , ‖.‖) and

M = {ϕ ∈ PT : ‖ϕ‖ ≤ N} , (5.13)

5.2. Existence of periodic solutions
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with N > 0. Define a mapping S : M→ PT by

(Sϕ) (t) =

∫ t+T

t

r (s)H (ϕ (s))G (t, s) ds

+

∫ t+T

t

f (s, ϕ (s) , ϕ (s− τ (s)))G (t, s) ds,

Therefore, we express the above mapping as

Sϕ = Aϕ+ Bϕ,

where A,B : M→ PT are given by

(Aϕ) (t) =

∫ t+T

t

f (s, ϕ (s) , ϕ (s− τ (s)))G (t, s) ds, (5.14)

and

(Bϕ) (t) =

∫ t+T

t

r (s)H (ϕ (s))G (t, s) ds. (5.15)

To simplify notations, we introduce the following constants

β = max
t∈[0,T ]

|b (t)| , θ = max
t∈[0,T ]

|r (t)| , µ = max
t∈[0,T ]

|f (t, 0, 0)| . (5.16)

We need the following assumptions

θMT ≤ 1, (5.17)

JMT [(k1 + k2)N + µ] ≤ N, (5.18)

max (|H (−N)| , |H (N)|) ≤ (J − 1)

J
N, (5.19)

where J is a positive constant with J ≥ 3.

Lemma 5.7 Suppose (H1)–(H3), (5.5), (5.8) and (5.18) hold. Then the operator A :

M→M is compact.

Proof. Let A defined by (5.14). Obviously, Aϕ is continuous and it is easy to show that

(Aϕ)(t+ T ) = (Aϕ)(t). Observe that in view of (H3) we get

|f (t, x, y)| ≤ |f (t, x, y)− f (t, 0, 0) + f (t, 0, 0)|
≤ |f (t, x, y)− f (t, 0, 0)|+ |f (t, 0, 0)|
≤ k1 ‖x‖+ k2 ‖y‖+ µ,

So, for any ϕ ∈M, we have

|(Aϕ) (t)| ≤
∫ t+T

t

|f (s, ϕ (s) , ϕ (s− τ (s)))| |G (t, s)| ds

≤M

∫ t+T

t

[(k1 + k2)N + µ] ds

≤MT [(k1 + k2)N + µ] ≤ N

J
≤ N.
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That is Aϕ ∈M.

To see that A is continuous, we let ϕ, ψ ∈ M, Given ε > 0, take ξ = ε/η with

η = MT (k1 + k2) where k1 and k2 are given by (H3). Now, for ‖ϕ− ψ‖ ≤ ξ, we have

‖Aϕ−Aψ‖ ≤M

∫ t+T

t

(k1 + k2) ‖ϕ− ψ‖ ds

≤ η ‖ϕ− ψ‖ < ε.

This proves that A is continuous.

To prove that the image of A is contained in a compact set. Let ϕn ∈M, where n is a

positive integer. Then, as above, we see that

‖Aϕn‖ ≤ N.

Next we calculate d
dt

(Aϕn) (t) and prove that it is uniformly bounded. By using (H1),

(H2) and (H3) we get by taking the derivative in (5.14) that

d

dt
(Aϕn) (t) = f (t, ϕn (t) , ϕn (t− τ (t)))G (t, t) (exp (ρT )− 1)

+

∫ t+T

t

[
(exp (−ρT )− 1)G1 (t, t)G2 (t, s)− b (t)G (t, s) +

∫ t+T

t

F (t, σ)G1 (σ, s) dσ

]
× f (s, ϕn (s) , ϕn (s− τ (s))) ds.

Consequently, by invoking (H3) and (5.16), we obtain∣∣∣∣ ddt (Aϕn) (t)

∣∣∣∣ ≤ [(k1 + k2)N + µ]M (exp (ρT )− 1)

+
[
(exp (−ρT )− 1)M1M2 + βM +M1Te

L
]

((k1 + k2)N + µ)T

≤ D,

for some positive constant D. Hence the sequence (Aϕn) is uniformly bounded and

equicontinuous. The Ascoli-Arzela theorem implies that a subsequence (Aϕnk) of (Aϕn)

converges uniformly to a continuous T -periodic function. Thus A is continuous and A(M)

is contained in a compact subset of M.

Lemma 5.8 For B be defined in (5.15), suppose (H1), (H2), (5.5), (5.17), (5.19) and

all conditions of Theorem 1.5 hold. Then B : M→M is a large contraction.

Proof. Let B be defined by (5.15). Obviously, Bϕ is continuous and it is easy to prove

that (Bϕ)(t+ T ) = (Bϕ)(t). So, for any ϕ ∈M, we have

|(Bϕ) (t)| ≤
∫ t+T

t

|r (s)| |H (ϕ (s))| |G (t, s)| ds

≤ θMT max {|H (−N)| , |H (N)|} ≤ (J − 1)N

J
≤ N,
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by (5.17) and (5.19). Then, for any ϕ ∈M, we get

‖Bϕ‖ ≤ N.

Thus Bϕ ∈M. Consequently, we have B : M→M.

It remains to prove that B is a large contraction. By Theorem 1.5 H is large contraction

on M, then for any ϕ, ψ ∈M, with ϕ 6= ψ we have

|(Bϕ) (t)− (Bψ) (t)| ≤
∣∣∣∣∫ t+T

t

G (t, s) r (s) [H (ϕ (s))−H (ψ (s))] ds

∣∣∣∣
≤ θMT ‖ϕ− ψ‖ ≤ ‖ϕ− ψ‖ .

Then ‖Bϕ− Bψ‖ ≤ ‖ϕ− ψ‖. Now, let ε ∈ (0, 1) be given and let ϕ, ψ ∈ M, with

‖ϕ− ψ‖ ≥ ε, from the proof of Theorem 1.5, we have found a δ ∈ (0, 1), such that

|(Hϕ) (t)− (Hψ) (t)| ≤ δ ‖ϕ− ψ‖ .

Thus,

|(Bϕ) (t)− (Bψ) (t)| ≤
∣∣∣∣∫ t+T

t

G (t, s) r (s) [H (ϕ (s))−H (ψ (s))] ds

∣∣∣∣
≤ θMTδ ‖ϕ− ψ‖ ≤ δ ‖ϕ− ψ‖ .

So,

‖Bϕ− Bψ‖ ≤ δ ‖ϕ− ψ‖ .

The proof is complete.

Theorem 5.1 Let M defined by (5.13), β, θ, µ be given by (5.16). Suppose (H1)–(H3),

(5.5), (5.8), (5.17)–(5.19) and all conditions of Theorem 1.5 hold. Then (5.1) has a

T -periodic solution in M.

Proof. By Lemmas 5.7, the mapping A : M→M is compact and continuous. Also, from

Lemma 5.8, the mapping B : M → M is a large contraction. Moreover, if ϕ, ψ ∈ M, we

see that

‖Aϕ+ Bψ‖ ≤ ‖Aϕ‖+ ‖Bψ‖ ≤ N

J
+

(J − 1)N

J
= N.

Thus Aϕ+ Bψ ∈M.

Clearly, all the hypotheses of Krasnoselskii-Burton’s theorem are satisfied. Thus there

exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 5.6 this fixed point is a

solution of (5.1). Hence (5.1) has a T -periodic solution.
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5.3 Existence of nonnegative periodic solutions

This section is concerned with the existence of a nonnegative T -periodic solution of (5.1).

Again, we arrive at our results by using Theorem 1.7. Since we are looking for the

existence of nonnegative T -periodic solutions, some of the conditions in previous sections

will have to be modified accordingly. For a positive constant N we define the set

M = {ϕ ∈ PT : 0 ≤ ϕ ≤ N} , (5.20)

which is a closed convex and bounded subset of the Banach space PT .

We assume that for all t ∈ [0, T ], x, y ∈M

0 ≤ r (t)H (x) + f (t, x, y) ≤ N

MT
. (5.21)

Lemma 5.9 Let A and B given by (5.14) and (5.15) respectively. Assume (H1)–(H3),

(5.5), (5.21) hold. Then A,B : M→M.

Proof. Let A defined by (5.14). So, for any ϕ ∈M, by (5.21) we have

0 ≤ (Aϕ) (t) ≤
∫ t+T

t

[r (s)H (ϕ (s)) + f (s, ϕ (s) , ϕ (s− τ (s)))]G (t, s) ds

≤
∫ t+T

t

N

MT
Mds = N.

That is Aϕ ∈M.

Now, let B defined by (5.15). So, for any ϕ ∈M, by (5.21) we have

0 ≤ (Bϕ) (t) ≤
∫ t+T

t

[r (s)H (ϕ (s)) + f (s, ϕ (s) , ϕ (s− τ (s)))]G (t, s) ds

≤
∫ t+T

t

N

MT
Mds = N.

That is Bϕ ∈M.

Theorem 5.2 Suppose the hypotheses of Lemmas 5.7, 5.8 and 5.9 hold. Then (5.1) has

a nonnegative T -periodic solution x in the subset M.

Proof. By Lemma 5.7, A is compact and continuous. Also, from Lemma 5.8, the mapping

B is a large contraction. By Lemma 5.9, A,B : M→M. Next, we show that if ϕ, ψ ∈M,

we get 0 ≤ Aϕ+ Bψ ≤ N . Let ϕ, ψ ∈M with 0 ≤ ϕ, ψ ≤ N . By (5.21), we obtain

(Aϕ) (t) + (Bψ) (t)

=

∫ t+T

t

G (t, s) [r (s)H (ψ (s)) + f (s, ϕ (s) , ϕ (s− τ (s)))] ds

≤
∫ t+T

t

N

MT
Mds = N.
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On the other hand,

(Aϕ) (t) + (Bψ) (t) ≥ 0.

Clearly, all the hypotheses of Krasnoselskii-Burton’s theorem are satisfied. Thus there

exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 5.6, this fixed point is a

nonnegative T -periodic solution of (5.1) and the proof is complete.

5.3. Existence of nonnegative periodic solutions
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Investigation of the periodicity and stability

in the neutral differential systems by using

Krasnoselskii’s fixed point theorem
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differential systems.

This chapter has been extracted from the research paper [78],

A. Guerfi, A. Ardjouni, Investigation of the periodicity and stability in the neutral dif-

ferential systems by using Krasnoselskii’s fixed point theorem, Proceedings of the Institute

of Mathematics and Mechanics 46(2) (2020), 210–225.

In this Chapter, we are interested on the existence and asymptotic stability of periodic

solutions of the following neutral differential system

d

dt
u (t)− q d

dt
u (t− r)

= P (t) + A (t)u (t) + A (t) qu (t− r)− bf (u (t)) + bqf (u (t− r)) , (6.1)

where b > 0, |q| < 1, r > 0 and A is nonsingular n×n matrix with continuous real-valued

functions as its elements. The functions P : R → Rn and f : Rn → Rn are continuously

differentiable.

In the analysis we use the fundamental matrix solution coupled with Floquet theory

to invert the differential system (6.1) into an integral system. Then, we employ Kras-

noselskii’s fixed point theorem to show the existence and asymptotic stability of periodic

solutions of the system (6.1). The obtained integral system is the sum of two mappings,

one is a compact operator and the other is a contraction. The results obtained here extend

some results of the work of Ding and Li [62].
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6.1 Existence of periodic solutions

In this section, C1 (R,Rn) and C (R,Rn) denote the set of all continuously differentiable

functions and all continuous functions φ : R → Rn respectively. For T > 0, CT = {φ ∈
C (R,Rn) , φ (t+ T ) = φ (t)} is a Banach space with the supremum norm

‖φ‖0 = sup
t∈R
|φ(t)| = sup

t∈[0,T ]

|φ(t)| ,

where |.| denotes the infinity norm for x ∈ Rn and C1
T = C1 (R,Rn) ∩ CT is a Banach

space with the norm ‖φ‖1 = ‖φ‖0 + ‖φ′‖0 in a period interval. Also, if A is an n× n real

matrix, then we define the norm of A by |A| = max1≤i≤n
∑n

j=1 |aij|.
For a sufficiently small positive L, (6.1) can be transformed as

d

dt
v (t)− q d

dt
v (t− τ)

= LP1 (t) + LA1 (t) v (t) + LA1 (t) qv (t− τ)− Lbf (v (t)) + Lbqf (v (t− τ)) , (6.2)

where v (t) = u (Lt), τ = r
L

, P1 (t) = P (Lt) and A1 (t) = A (Lt).

First we make the following definition.

Definition 6.1 If the matrix A1 is periodic of period ω = T
L

, then the linear system

y′ (t) = LA1(t)y (t) , (6.3)

is said to be noncritical with respect to ω if it has no periodic solution of period ω except

the trivial solution y = 0.

Throughout this paper it is assumed that system (6.3) is noncritical. Next we state

some known results [54] about system (6.3). Let K represent the fundamental matrix of

(6.3) with K(0) = I, where I is the n× n identity matrix. Then

(a) detK(t) 6= 0.

(b) There exists a constant matrix B such that K(t+ω) = K(t)eBω, by Floquet theory.

(c) System (6.3) is noncritical if and only if det(I −K(ω)) 6= 0.

Lemma 6.1 If the matrix LA1 is periodic of period ω and h ∈ Cω, then the linear system

x′ (t) = LA1(t)x (t) + h (t) , (6.4)

has a unique ω-periodic solution

x(t) = K(t)
(
K−1(ω)− I

)−1
∫ t+ω

t

K−1(s)h (s) ds.

6.1. Existence of periodic solutions
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Proof. Since K(t)K−1(t) = I, it follows that

0 =
d

dt

(
K(t)K−1(t)

)
=

d

dt
(K(t))K−1(t) +K(t)

d

dt

(
K−1(t)

)
= (LA1 (t)K(t))K−1(t) +K(t)

d

dt

(
K−1(t)

)
= LA1 (t) +K(t)

d

dt

(
K−1(t)

)
.

This implies
d

dt

(
K−1(t)

)
= −K−1(t)LA1 (t) . (6.5)

If x is a solution of (6.4) with x(0) = x0, then

d

dt

[
K−1(t)x (t)

]
=

d

dt

(
K−1(t)

)
x (t) +K−1(t)

d

dt
x (t)

= −K−1(t)LA1 (t)x (t) +K−1(t) [LA1 (t)x (t) + h (t)]

= K−1(t)h (t) ,

by (6.5). An integration of the above equation from 0 to t yields

x(t) = K(t)x (0) +K(t)

∫ t

0

K−1(s)h (s) ds. (6.6)

Since x(ω) = x0 = x(0), we get

x (0) = (I −K(ω))−1

∫ ω

0

K(ω)K−1(s)h (s) ds. (6.7)

A substitution of (6.7) into (6.6) yields

x(t) = K(t) (I −K(ω))−1

∫ ω

0

K(ω)K−1(s)h (s) ds

+K(t)

∫ t

0

K−1(s)h (s) ds. (6.8)

Since

(I −K(ω))−1 =
(
K(ω)

(
K−1(ω)− I

))−1
=
(
K−1(ω)− I

)−1
K−1(ω),

(6.8) becomes

x(t) = K(t)
(
K−1(ω)− I

)−1
∫ ω

0

K−1(s)h (s) ds+K(t)

∫ t

0

K−1(s)h (s) ds

= K(t)
(
K−1(ω)− I

)−1
{∫ ω

0

K−1(s)h (s) ds

+K−1(ω)

∫ t

0

K−1(s)h (s) ds−
∫ t

0

K−1(s)h (s) ds

}
.

= K(t)
(
K−1(ω)− I

)−1
{∫ ω

t

K−1(s)h (s) ds

+K−1(ω)

∫ t

0

K−1(s)h (s) ds

}
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By letting s = µ− ω, the above expression implies

x(t) = K(t)
(
K−1(ω)− I

)−1
{∫ ω

t

K−1(s)h (s) ds

+K−1(ω)

∫ t+ω

ω

K−1(µ− ω)h (µ− ω) dµ

}
. (6.9)

By (b) we have K(t− ω) = K(t)e−Bωand K(ω) = eBω. Hence,

K−1(ω)K−1(µ− ω) = K−1(µ).

Consequently, (6.9) becomes

x(t) = K(t)
(
K−1(ω)− I

)−1
{∫ ω

t

K−1(s)h (s) ds+

∫ t+ω

ω

K−1(s)h (s) ds

}
.

By applying Lemma 6.1 and Theorem 1.4, we obtain in this section the existence of

periodic solutions of (6.1).

Theorem 6.1 Suppose that f ∈ C1 (Rn) and P1, A1 ∈ C1
ω. If there exists a constant

H > 0 such that
sup
|u|≤H

|f (u)|

H
<

1

(1 + (1 + L ‖A1‖) cω)Lb
, (6.10)

and that

|q| <
1− (1 + (1 + L ‖A1‖) cω)Lb

sup
|u|≤H

|f(u)|

H

1 + 2 ‖A1‖ (1 + (1 + L ‖A1‖) cω)L+ (1 + (1 + L ‖A1‖) cω)Lb
sup
|u|≤H

|f(u)|

H

, (6.11)

and

‖P1‖0 ≤
(1− |q|)H

(1 + (1 + L ‖A1‖) cω)L
− 2 ‖A1‖ |q|H − b (1 + |q|) sup

|u|≤H
|f (u)| , (6.12)

where ‖A1‖ = sup
t∈[0,ω]

|A1 (t)| and

c = sup
t∈[0,ω]

( sup
t≤s≤t+ω

|[K(s)(K−1(ω)− I)K−1(t)]−1|).

Then (6.1) has a T -periodic solution.
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Proof. According to the condition (6.12), we get

(1 + (1 + L ‖A1‖) cω)L ‖P1‖0 + [1 + (1 + (1 + L ‖A1‖) cω) 2L ‖A1‖] |q|H
+ (1 + (1 + L ‖A1‖) cω)Lb (1 + |q|) sup

|u|≤H
|f (u)|

≤ (1 + (1 + L ‖A1‖) cω)L

×

{
(1− |q|)H

(1 + (1 + L ‖A1‖) cω)L
− 2 ‖A1‖ |q|H − b (1 + |q|) sup

|u|≤H
|f (u)|

}
+ [1 + (1 + (1 + L ‖A1‖) cω) 2L ‖A1‖] |q|H
+ (1 + (1 + L ‖A1‖) cω)Lb (1 + |q|) sup

|u|≤H
|f (u)|

= H. (6.13)

We need to prove that (6.2) has a ω-periodic solution. Let

S =
{
φ ∈ C1

ω, ‖φ‖1 = ‖φ‖0 + ‖φ′‖0 < +∞
}
,

and

M = {φ ∈ S, ‖φ‖1 ≤ H} ,

then M is a bounded closed convex set of the Banach space S.

Consider the system

d

dt
v (t) = LA1 (t) v (t) + LP1 (t) + LA1 (t) qv (t− τ)

− Lbf (v (t)) + Lbqf (v (t− τ)) + q
d

dt
v (t− τ) .

According to Lemma 6.1, this equation has a unique ω-periodic solution

v (t) = K(t)
(
K−1(ω)− I

)−1
∫ t+ω

t

K−1(s) [LP1 (s) + LA1 (s) qv (s− τ)

−Lbf (v (s)) + Lbqf (v (s− τ)) + q
∂

∂s
v (s− τ)

]
ds,

Performing an integration by part and the fact that v (t+ ω − τ) = v (t− τ), we obtain

K(t)
(
K−1(ω)− I

)−1
∫ t+ω

t

K−1(s)q
∂

∂s
v (s− τ) ds

= K(t)
(
K−1(ω)− I

)−1 {[
K−1(t+ ω)−K−1(t)

]
qv (t− τ)

−
∫ t+ω

t

∂

∂s

[
K−1(s)

]
qv (s− τ) ds

}
(6.14)

Noting that K−1(t+ ω) = e−BωK−1(t), we have

K−1(t+ ω)−K−1(t) = e−BωK−1(t)−K−1(t)

=
(
K−1(ω)− I

)
K−1(t). (6.15)
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Since
d

dt
K−1(t) = −K−1(t)LA1 (t) , (6.16)

then, a substitution of (6.15) and (6.16) into (6.14) yields

K(t)
(
K−1(ω)− I

)−1
∫ t+ω

t

K−1(s)q
∂

∂s
v (s− τ) ds

= qv (t− τ) +K(t)
(
K−1(ω)− I

)−1
∫ t+ω

t

K−1(s)LA1 (s) qv (s− τ) ds.

Therefore

v (t) = qv (t− τ) +K(t)
(
K−1(ω)− I

)−1
∫ t+ω

t

K−1(s) [LP1 (s)

+2LA1 (s) qv (s− τ)− Lbf (v (s)) + Lbqf (v (s− τ))] ds.

Define the operators A and B by

(Aϕ) (t) = K(t)
(
K−1(ω)− I

)−1
∫ t+ω

t

K−1(s) [LP1 (s)

+2LA1 (s) qϕ (s− τ)− Lbf (ϕ (s)) + Lbqf (ϕ (s− τ))] ds,

and

(Bϕ) (t) = qϕ (t− τ) .

In order to prove (6.2) has a ω-periodic solution, we shall make sure that A and B satisfy

the conditions of Theorem 1.4.

For all x, y ∈M, we have

x (t+ ω) = x (t) , y (t+ ω) = y (t) and ‖x‖1 ≤ H, ‖y‖1 ≤ H.

Now let us discuss Ax+ By. We have

(Ax) (t+ ω) = K(t+ ω)
(
K−1(ω)− I

)−1
∫ t+2ω

t+ω

K−1(s) [LP1 (s)

+2LA1 (s) qx (s− τ)− Lbf (x (s)) + Lbqf (x (s− τ))] ds.

By letting s = µ+ ω, the above expression implies

(Ax) (t+ ω) = K(t+ ω)
(
K−1(ω)− I

)−1
∫ t+ω

t

K−1(µ+ ω) [LP1 (µ+ ω)

+2LA1 (µ+ ω) qx (µ+ ω − τ)

−Lbf (x (µ+ ω)) + Lbqf (x (µ+ ω − τ))] dµ.

By (b) we have

K(t+ ω) = K(t)eBω and K(ω) = eBω.
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Hence

K(t+ ω)
(
K−1(ω)− I

)−1
K−1(µ+ ω)

= K(t)
(
K−1(ω)− I

)−1
K−1(µ).

Consequently, the above expression implies

(Ax) (t+ ω) = K(t)
(
K−1(ω)− I

)−1
∫ t+ω

t

K−1(s) [LP1 (s)

+2LA1 (s) qx (s− τ)− Lbf (x (s)) + Lbqf (x (s− τ))] ds

= (Ax) (t) ,

and

(By) (t+ ω) = qy (t+ ω − τ)

= qy (t− τ) = (By) (t) ,

therefore

(Ax+ By) (t+ ω) = (Ax+ By) (t) .

Meanwhile, we get

(Ax)′ (t) = K ′(t)
(
K−1(ω)− I

)−1
∫ t+ω

t

K−1(s) [LP1 (s)

+2LA1 (s) qx (s− τ)− Lbf (x (s)) + Lbqf (x (s− τ))] ds

+K(t)
(
K−1(ω)− I

)−1 [
K−1(t+ ω)−K−1(t)

]
[LP1 (t)

+2LA1 (t) qx (t− τ)− Lbf (x (t)) + Lbqf (x (t− τ))] . (6.17)

Since

K ′(t) = LA1 (t)K(t), (6.18)

and noting that K−1(t+ ω) = e−BωK−1(t), we have

K−1(t+ ω)−K−1(t) = e−BωK−1(t)−K−1(t)

=
(
K−1(ω)− I

)
K−1(t). (6.19)

A substitution of (6.18) and (6.19) into (6.17) yields

(Ax)′ (t) = LA1 (t) (Ax) (t) + LP1 (t) + 2LA1 (t) qx (t− τ)

− Lbf (x (t)) + Lbqf (x (t− τ)) .
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Thus,

‖Ax‖1 = ‖Ax‖0 +
∥∥(Ax)′

∥∥
0

= sup
t∈[0,ω]

∣∣∣∣K(t)
(
K−1(ω)− I

)−1
∫ t+ω

t

K−1(s) [LP1 (s)

+2LA1 (s) qx (s− τ)− Lbf (x (s)) + Lbqf (x (s− τ))] ds|

+ sup
t∈[0,ω]

∣∣∣∣LA1 (t)K(t)
(
K−1(ω)− I

)−1
∫ t+ω

t

K−1(s) [LP1 (s)

+2LA1 (s) qx (s− τ)− Lbf (x (s)) + Lbqf (x (s− τ))] ds

+LP1 (t) + 2LA1 (t) qx (t− τ)− Lbf (x (t)) + Lbqf (x (t− τ))|

≤ cω

[
2L ‖A1‖ |q|H + Lb (1 + |q|) sup

|u|≤H
|f (u)|+ L ‖P1‖0

]

+ (1 + L ‖A1‖ cω)

[
2L ‖A1‖ |q|H + Lb (1 + |q|) sup

|u|≤H
|f (u)|+ L ‖P1‖0

]

= (1 + (1 + L ‖A1‖) cω)

[
2L ‖A1‖ |q|H + Lb (1 + |q|) sup

|u|≤H
|f (u)|+ L ‖P1‖0

]
,

and

‖By‖1 = ‖By‖0 +
∥∥(By)′

∥∥
0
≤ |q| ‖y‖0 + |q| ‖y′‖0 = |q| ‖y‖1

≤ |q|H.

Therefore

‖Ax+ By‖1

≤ ‖Ax‖1 + ‖By‖1

≤ (1 + (1 + L ‖A1‖) cω) [2L |A1| |q|H

+Lb (1 + |q|) sup
|u|≤H

|f (u)|+ L ‖P1‖0

]
+ |q|H

= [1 + (1 + (1 + L ‖A1‖) cω) 2L ‖A1‖] |q|H + (1 + (1 + L ‖A1‖) cω)L ‖P1‖0

+ (1 + (1 + L ‖A1‖) cω)Lb (1 + |q|) sup
|u|≤H

|f (u)| .

By (6.13), ‖Ax+ By‖1 ≤ H. Accordingly, Ax+ By ∈M.

For all x ∈ M, ‖Ax‖0 ≤ H,
∥∥(Ax)′

∥∥
0
≤ H. According to Ascoli Arzela lemma, the

subset AM of Cω is a precompact set, therefore for all subsequence {xn} of M, there exists

the subsequence {xnk} of {xn} such that Axnk → x0 ∈ Cω as k → +∞.
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Meanwhile, we get

(Ax)′′ (t) = LA′1 (t) (Ax) (t) + L2A2
1 (t) (Ax) (t) + LA1 (t) [LP1 (t)

+2LA1 (t) qx (t− τ)− Lbf (x (t)) + Lbqf (x (t− τ))]

+ [LP ′1 (t) + 2Lq [A′1 (t)x (t− τ) + A1 (t)x′ (t− τ)]

−Lbf ′ (x (t))x′ (t) + Lbqf ′ (x (t− τ))x′ (t− τ)] .

Thus,

sup
t∈[0,ω]

∣∣(Ax)′′ (t)
∣∣ ≤ (L ‖A1‖+

(
L ‖A′1‖+ L2 ‖A1‖2) cω) [2L ‖A1‖ |q|H

+Lb (1 + |q|) sup
|u|≤H

|f (u)|+ L ‖P1‖0

]
+ [2L (‖A1‖+ ‖A′1‖) |q|H

+LbH (1 + |q|) sup
|u|≤H

|f (u)|+ L ‖P ′1‖0

]
.

Therefore there is a constant H1 > 0 such that

sup
t∈[0,ω]

∣∣(Ax)′′ (t)
∣∣ ≤ H1 and

{
(Ax)′ : x ∈M

}
⊂ Cω.

According to Ascoli Arzela lemma, {xnk} has a subsequence, for simplicity, written as

{xnk}, such that (Axnk)
′ → z0 ∈ Cω. Since d

dt
is a closed operator, z0 = (x0)′. Hence,

x0 ∈ C1
ω and {Axn} is contained in a compact set. Then, A is a compact operator.

Suppose that {xn} ∈ M, x ∈ S, xn → x, then ‖xn − x‖0 → 0 and ‖x′n − x′‖0 → 0 as

n→ +∞. And we get

‖Axn −Ax‖0

= sup
t∈[0,ω]

∣∣∣∣K(t)
(
K−1(ω)− I

)−1
∫ t+ω

t

K−1(s)

× [2LA1 (s) q (xn (s− τ)− x (s− τ))− Lb (f (xn (s))− f (x (s)))

+Lbq (f (xn (s− τ))− f (x (s− τ)))] ds|

≤ ωc

[
2L ‖A1‖ |q| ‖xn − x‖+ Lb (1 + |q|) sup

t∈[0,ω]

|f (xn (t))− f (x (t))|

]
,
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and ∥∥(Axn)′ − (Ax)′
∥∥

0

= sup
t∈[0,ω]

|LA1 (t) ((Axn) (t)− (Ax) (t))

+ 2LA1 (t) q (xn (t− τ)− x (t− τ))− Lb (f (xn (t))− f (x (t)))

+Lbq (f (xn (t− τ))− f (x (t− τ)))]|
≤ (1 + L ‖A1‖ωc) [2L ‖A1‖ |q| ‖xn − x‖

+Lb (1 + |q|) sup
t∈[0,ω]

|f (xn (t))− f (x (t))|

]
.

When ‖xn − x‖1 → 0 as n → +∞, |xn (t)− x (t)| → 0 for t ∈ [0, ω] uniformly. And

since f is continuous, ‖Axn −Ax‖0 → 0,
∥∥(Axn)′ − (Ax)′

∥∥
0
→ 0. Consequently, A is

continuous.

For all x, y ∈ M, ‖Bx− By‖1 ≤ |q| ‖x− y‖1 and |q| < 1, therefore B is a contraction

operator.

Thus, the conditions of Theorem 1.4 are satisfied and there is a φ ∈ M such that

φ = Aφ + Bφ. It is a ω-periodic solution for (6.2). Since v (t) = u (Lt), P1 (t) = P (Lt)

and A1 (t) = A (Lt), then (6.1) has a T -periodic solution.

Example 6.1 Consider the following neutral differential system

d

dt
u (t)− q d

dt
u (t− r)

= P (t) + A (t)u (t) + A (t) qu (t− r)− bf (u (t)) + bqf (u (t− r)) , (6.20)

where T = 2π, b = 1, q =
1

80
, r = 2, A (t) =

(
0 1

−1 1

)
, P (t) =

(
0

0.01 cos (t)

)
and

f (u (t)) =

(
0

sin (u (t))

)
. For L = 0.25, (6.20) can be transformed as

d

dt
v (t)− q d

dt
v (t− τ)

= LP1 (t) + LA1 (t) v (t) + LA1 (t) qv (t− τ)− Lbf (v (t)) + Lbqf (v (t− τ)) ,

where v (t) = u (0.25t), ω = 8π, τ = 8, P1 (t) =

(
0

0.01 cos (0.25t)

)
and A1 (t) =(

0 1

−1 1

)
. Since the matrix A1 has eigenvalues with non-zero real parts, the system

d

dt
v (t) = LA1 (t) v (t) is noncritical. Let H = 30, then all conditions of Theorem 6.1 are

satisfied and hence (6.20) has a 2π-periodic solution.
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6.2 Asymptotic stability of periodic solutions

This section concerned with the asymptotic stability of periodic solutions. When the

conditions of Theorem 6.1 are satisfied, there is a T -periodic solution u∗ for (6.1). Let

v (t) = u (t)− u∗ (t), then (6.1) is transformed as

v′ (t)− qv′ (t− r) = A (t) v (t) + A (t) qv (t− r)− b [f (v (t) + u∗ (t))− f (u∗ (t))]

+ bq [f (v (t− r) + u∗ (t− r))− f (u∗ (t− r))] . (6.21)

Obviously, (6.21) has the zero solution. Now we use Krasnoselskii’s fixed point theorem

to prove the zero solution for (6.21) is asymptotically stable. We set S as the Banach

space of bounded continuous function φ : [−r,∞) → Rn with the supremum norm ‖.‖.
Also, Given the initial function ψ, denote the norm of ψ by ‖ψ‖ = supt∈[−r,0] |ψ (t)|, which

should not cause confusion with the same symbol for the norm in S.

Proposition 6.1 ([54], Proposition 2.14) If t → Φ(t) is a fundamental matrix solu-

tion for the system

y′ (t) = A(t)y (t) , (6.22)

defined on an open interval J , then Φ(t, r) := Φ(t)Φ−1(r) is the state transition matrix.

Also, the state transition matrix satisfies the Chapman-Kolmogorov identities

Φ(r, r) = I, Φ(t, s)Φ(s, r) = Φ(t, r),

and the identities

Φ(t, s)−1 = Φ(s, t),
∂Φ(t, s)

∂s
= −Φ(t, s)A (s) .

Theorem 6.2 If all conditions of Theorem 6.1 are satisfied, f satisfies the locally Lips-

chitz condition. Further assume that

Φ(t)→ 0 as t→∞,

and there exists Q > H such that

sup
|u|≤H+Q

|f (u)|+ sup
|u|≤H

|f (u)| < Q

λb
, (6.23)

and that

|q| <
Q− λb

(
sup

|u|≤H+Q

|f (u)|+ sup
|u|≤H

|f (u)|

)

(1 + 2λ ‖A‖)Q+ λb

(
sup

|u|≤H+Q

|f (u)|+ sup
|u|≤H

|f (u)|

) , (6.24)
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and

‖ψ‖ ≤
(1− (1 + 2λ ‖A‖) |q|)Q− λb (1 + |q|)

(
sup

|u|≤H+Q

|f (u)|+ sup
|u|≤H

|f (u)|

)
θ (1 + |q|)

, (6.25)

where θ = supt≥0 |Φ(t, 0)| and λ = sup
t≥0

∣∣∣∫ t0 Φ(t, s)ds
∣∣∣. Then the solution of (6.21) v (t)→ 0

as t→∞.

Proof. According to the conditions (6.23), (6.24) and (6.25), we have

(1 + 2λ ‖A‖) |q|Q+ θ (1 + |q|) ‖ψ‖

+ λb (1 + |q|)

(
sup

|u|≤H+Q

|f (u)|+ sup
|u|≤H

|f (u)|

)
≤ Q. (6.26)

Given the initial function ψ, there exists a unique solution v for (6.21). Let

Mψ = {φ ∈ S, ‖φ‖ ≤ Q, φ (t) = ψ (t) if t ∈ [−r, 0] , |φ (t)| → 0 as t→∞} ,

then Mψ is a bounded convex closed set of S.

Let v be a solution of (6.21). We write (6.21) as

d

dt
{v (t)− qv (t− r)}

= A (t) v (t) + A (t) qv (t− r)− b [f (v (t) + u∗ (t))− f (u∗ (t))]

+ bq [f (v (t− r) + u∗ (t− r))− f (u∗ (t− r))]

Since Φ is a fundamental matrix solution for the system (6.22). We have

d

dt

{
Φ−1(t) (v (t)− qv (t− r))

}
=

{
d

dt
Φ−1(t)

}
(v (t)− qv (t− r)) + Φ−1(t)

d

dt
{(v (t)− qv (t− r))} .

By the Proposition 6.1, it follows that

d

dt
Φ−1(t) = −Φ−1(t)A (t) .

Then

d

dt

{
Φ−1(t) (v (t)− qv (t− r))

}
= −Φ−1(t)A (t) (v (t)− qv (t− r)) + Φ−1(t) {A (t) v (t)

+ A (t) qv (t− r)− b [f (v (t) + u∗ (t))− f (u∗ (t))]

+bq [f (v (t− r) + u∗ (t− r))− f (u∗ (t− r))]}
= Φ−1(t) {2A (t) qv (t− r)− b [f (v (t) + u∗ (t))− f (u∗ (t))]

+bq [f (v (t− r) + u∗ (t− r))− f (u∗ (t− r))]} .
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An integration of the above equation from 0 to t yields

Φ−1(t) (v (t)− qv (t− r))− Φ−1(0) (v (0)− qv (0− r))

=

∫ t

0

Φ−1(s) {2A (s) qv (s− r)− b [f (v (s) + u∗ (s))− f (u∗ (s))]

+bq [f (v (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds. (6.27)

(6.27) can be expressed by

v (t) = Φ(t, 0) (v (0)− qv (0− r)) + qv (t− r)

+

∫ t

0

Φ(t, s) {2A (s) qv (s− r)− b [f (v (s) + u∗ (s))− f (u∗ (s))]

+bq [f (v (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds,

then we have

v (t) = Φ(t, 0) (ψ (0)− qψ (0− r)) + qv (t− r)

+

∫ t

0

Φ(t, s) {2A (s) qv (s− r)− b [f (v (s) + u∗ (s))− f (u∗ (s))]

+bq [f (v (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds.

For all φ ∈Mψ, define the operators A and B by

(Aφ) (t) =


0, t ∈ [−r, 0] ,∫ t

0
Φ(t, s) {2A (s) qφ (s− r)− b [f (φ (s) + u∗ (s))− f (u∗ (s))]

+bq [f (φ (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds, t ≥ 0,

and

(Bφ) (t) =

{
ψ (t) , t ∈ [−r, 0] ,

Φ(t, 0) (ψ (0)− qψ (−r)) + qφ (t− r) , t ≥ 0.

(i) For all x, y ∈Mψ, x (t)→ 0 and y (t)→ 0 as t→∞, then (By) (t)→ 0 and

lim
t→∞

(Ax) (t)

= lim
t→∞

{
Φ (t)

∫ t

0

Φ−1(s) {2A (s) qx (s− r)− b [f (x (s) + u∗ (s))− f (u∗ (s))]

+bq [f (x (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds}
= 0,
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therefore lim
t→∞

(Ax+ By) (t) = 0. And

‖Ax‖ = sup
t≥0

∣∣∣∣∫ t

0

Φ(t, s) {2A (s) qx (s− r)− b [f (x (s) + u∗ (s))− f (u∗ (s))]

+bq [f (x (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds|

≤

{
2 ‖A‖ |q| sup

t≥−r
|x (t)|+ b

[
sup

|u|≤H+Q

|f (u)|+ sup
|u|≤H

|f (u)|

]

+b |q|

[
sup

|u|≤H+Q

|f (u)|+ sup
|u|≤H

|f (u)|

]}
sup
t≥0

∣∣∣∣∫ t

0

Φ(t, s)ds

∣∣∣∣
≤ λ

[
2 ‖A‖ |q|Q+ b (1 + |q|)

(
sup

|u|≤H+Q

|f (u)|+ sup
|u|≤H

|f (u)|

)]
,

and

‖By‖ = sup
t≥−r
|(By) (t)|

= max

{
‖ψ‖ , sup

t≥0
|Φ(t, 0) (ψ (0)− qψ (−r)) + qy (t− r)|

}
≤ θ (1 + |q|) ‖ψ‖+ sup

t≥0
|qy (t− r)|

≤ θ (1 + |q|) ‖ψ‖+ |q|Q.

Thus,

‖Ax+ By‖
≤ ‖Ax‖+ ‖By‖

≤ λ

[
2 ‖A‖ |q|Q+ b (1 + |q|)

(
sup

|u|≤H+Q

|f (u)|+ sup
|u|≤H

|f (u)|

)]
+ θ (1 + |q|) ‖ψ‖+ |q|Q
= (1 + 2λ ‖A‖) |q|Q+ θ (1 + |q|) ‖ψ‖

+ λb (1 + |q|)

(
sup

|u|≤H+Q

|f (u)|+ sup
|u|≤H

|f (u)|

)
.

According to the condition (6.26), ‖Ax+ By‖ ≤ Q. Thus, Ax+ By ∈Mψ.

(ii) For all x ∈Mψ, ‖x‖ ≤ Q. And∣∣(Ax)′ (t)
∣∣ = 0, t ∈ [−r, 0] ,
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and ∣∣(Ax)′ (t)
∣∣

=

∣∣∣∣A (t)

∫ t

0

Φ(t, s) {2A (s) qx (s− r)− b [f (x (s) + u∗ (s))− f (u∗ (s))]

+bq [f (x (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds
+ {2A (t) qx (t− r)− b [f (x (t) + u∗ (t))− f (u∗ (t))]

+bq [f (x (t− r) + u∗ (t− r))− f (u∗ (t− r))]}|

≤ (1 + λ ‖A‖)

[
2 ‖A‖ |q|Q+ b (1 + |q|)

(
sup

|u|≤H+Q

|f (u)|+ sup
|u|≤H

|f (u)|

)]
,

here, the derivative of (Ax)′ (t) at zero means the left hand side derivative when t ≤ 0

and the right hand side derivative when t ≥ 0. One can see
∣∣(Ax)′ (t)

∣∣ is bounded for all

x ∈Mψ and AMψ is a precompact set of S. Therefore A is compact.

Suppose {xn} ⊂ Mψ, x ∈ S, xn → x as n → ∞, then |xn (t)− x (t)| → ∞ uniformly

for t ≥ −r as n→∞. Since

‖Axn −Ax‖

= sup
t≥0

∣∣∣∣∫ t

0

Φ(t, s) {2A (s) q (xn (s− r)− x (s− r))

− b [f (xn (s) + u∗ (s))− f (x (s) + u∗ (s))]

+bq [f (xn (s− r) + u∗ (s− r))− f (x (s− r) + u∗ (s− r))]} ds|
≤ λ [2 ‖A‖ |q| ‖xn − x‖+ b (1 + |q|)

× sup
t≥−r
|f (xn (t) + u∗ (t))− f (x (t) + u∗ (t))|

]
,

and f is continuous, therefore‖Axn −Ax‖ → 0 as n→∞ and A is continuous.

(iii) For all x, y ∈Mψ,

‖Bx− By‖ = sup
t≥0
|qx (t− r)− qy (t− r)| ≤ |q| ‖x− y‖ ,

and |q| < 1, therefore B is a contraction operator.

According to Krasnoselskii’s fixed point theorem, there is a φ ∈ Mψ such that

(A+ B)φ = φ and φ is a solution for (6.21). Because the solution through ψ for the

equation is unique, the solution v (t) = φ (t)→ 0 as t→∞.

When f satisfies the locally Lipschitz condition, H in Theorem 6.1 and Q in Theorem

6.2 exists, there is a constant R > 0 such that

|f (v (t) + u∗ (t))− f (v (t))| < R |v (t)| .
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Since φ satisfies

φ (t) = Φ(t, 0)(ψ (0)− qψ (−r)) + qφ (t− r)

+

∫ t

0

Φ(t, s){2A (s) qφ (s− r)− b[f (φ (s) + u∗ (s))− f (u∗ (s))]

+bq[f (φ (s− r) + u∗ (s− r))− f (u∗ (s− r))]}ds,

then

‖φ‖ ≤ θ (1 + |q|) ‖ψ‖+ |q| ‖φ‖+ λ[2 ‖A‖ |q| ‖φ‖+ b (1 + |q|)R ‖φ‖],

that is

[1− |q| − λ (2 ‖A‖ |q|+ b (1 + |q|)R)] ‖φ‖ ≤ θ (1 + |q|) ‖ψ‖ .

Then there clearly exists a δ > 0 for each ε > 0 such that |φ (t)| < ε for all t ≥ −r if

‖ψ‖ < δ. Thus we have the following theorem.

Theorem 6.3 If R satisfies

1− |q| − λ (2 ‖A‖ |q|+ b (1 + |q|))R > 0.

Then the zero solution for (6.21) is stable.

6.2. Asymptotic stability of periodic solutions



Chapter 7
Existence and uniqueness of mild solutions

for nonlinear hybrid Caputo fractional

integro-differential equations via fixed point

theorems

Keywords. Hybrid fractional integro-differential equations, fixed point theorems, exis-

tence, uniqueness.

This chapter has been extracted from the research paper [76],

A. Guerfi, A. Ardjouni, Existence and uniqueness of mild solutions for nonlinear hy-

brid Caputo fractional integro-differential equations via fixed point theorems, Results in

Nonlinear Analysis 4(4) (2021), 207–216.

7.1 Introduction

Fractional differential equations arise from a variety of applications including in various

fields of science and engineering. In particular, problems concerning qualitative analysis

of fractional differential equations have received the attention of many authors, see [9],

[10], [37], [56], [60], [82], [90], [93], [113], [123], [125] and the references therein.

Hybrid differential equations involve the fractional derivative of an unknown function

hybrid with the nonlinearity depending on it. This class of equations arises from a variety

of different areas of applied mathematics and physics, e.g., in the deflection of a curved

beam having a constant or varying cross section, a three-layer beam, electromagnetic

waves or gravity driven flows and so on [56], [57], [59], [61], [113], [122].

Recently, Dhage [57] discussed the following first order hybrid differential equation with

80
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mixed perturbations of the second type{
d
dt

[
u(t)−k(t,u(t))
f(t,u(t))

]
= g (t, u (t)) , t ∈ [t0, t0 + a] ,

u (t0) = x0 ∈ R,

where [t0, t0 + a] is a bounded interval in R for some t0, a ∈ R with a > 0, f : [t0, t0 + a]×
R → R\ {0} and k, g : [t0, t0 + a] × R → R are continuous functions. He developed the

theory of hybrid differential equations with mixed perturbations of the second type and

provided some original and interesting results.

Zhao et al. [125] discussed the following boundary value problem of nonlinear fractional

differential equations with mixed perturbations of the second type
CDα

0+

[
u(t)−k(t,u(t))
f(t,u(t))

]
= g (t, u (t)) , t ∈ J = [0, T ] ,

a
[
u(t)−k(t,u(t))
f(t,u(t))

]
t=0

+ b
[
u(t)−k(t,u(t))
f(t,u(t))

]
t=T

= c,

where 0 < α ≤ 1, CDα
0+ is the Caputo fractional derivative, f : J × R → R\ {0} and

k, g : J×R→ R are continuous functions, a, b and c are real constants with a+b 6= 0. They

established an existence theorem for the boundary value problem under mixed Lipschitz

and Carathéodory conditions by using the fixed point theorem in Banach algebra due to

Dhage.

In [9], Ardjouni and Djoudi studied the existence and approximation of solutions for the

following initial value problem of nonlinear hybrid Caputo fractional integro-differential

equations  CDα
0+

(
u(t)

p(t)+ 1
Γ(β)

∫ t
0 (t−s)β−1g(s,u(s))ds

)
= f (t, u (t)) , t ∈ J = [0, a] ,

u (0) = p (0) θ,

where 0 < α ≤ 1, 0 < β ≤ 1, θ ∈ R, g, f : J × R → R are continuous functions and

p : J → R is a continuous function. By using the Dhage iteration principle, the authors

obtained the existence and approximation of solutions under weaker partially continuity

and partially compactness type conditions.

In this chapter, we discuss the existence and uniqueness of mild solutions for the

following initial value problem of nonlinear hybrid first order Caputo fractional integro-

differential equations CDα
0+

(
u(t)−f(t,u(t))

p(t)+ 1
Γ(β)

∫ t
0 (t−s)β−1g(s,u(s))ds

)
= h (t, u (t)) , t ∈ [0, T ] ,

u (0) = f (0, u (0)) + p (0) θ,
(7.1)

where CDα
0+ denotes the Caputo fractional derivative of order α ∈ (0, 1), β ∈ (0, 1),

θ ∈ R, p : [0, T ] → R and f, g, h : [0, T ] × R → R are continuous functions with p (t) +

Iβ0+g (t, u (t)) 6= 0. To show the existence and uniqueness of mild solutions, we transform

7.1. Introduction
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(7.1) into an integral equation and then use the Krasnoselskii and Banach fixed point

theorems. Also, we provide an example to illustrate our obtained results. Finally, we

study the Higher order Caputo fractional integro-differential equations.

7.2 Preliminaries

Let C ([0, T ],R) be the Banach space of all real-valued continuous functions defined on

the compact interval [0, T ], endowed with the norm

‖u‖ = sup
t∈[0,T ]

|u (t)| .

L1 ([0, T ],R) denotes the space of Lebesgue integrable functions on [0, T ] equipped with

the norm ‖.‖L1 defined by

‖u‖L1 =

∫ T

0

|u (s)| ds.

We consider the following set of assumptions.

(A1) There exists a constant Kf > 0 such that

|f (t, u)− f (t, v)| ≤ Kf |u− v|

for all t ∈ [0, T ] and u, v ∈ R.

(A2) There exist functions H,G ∈ L1 ([0, T ],R+) such that

|h (t, u)| ≤ H (t) and |g (t, u)| ≤ G (t) , t ∈ [0, T ].

(A3) There exists a constant Kp > 0 such that

|p (t2)− p (t1)| ≤ Kp |t2 − t1| for all t1, t2 ∈ [0, T ].

(A4) There exist constants Kh, Kg > 0 such that

|h (t, u)− h (t, v)| ≤ Kh |u− v| and |g (t, u)− g (t, v)| ≤ Kg |u− v|

for all t ∈ [0, T ] and u, v ∈ R.

We introduce some basic definitions and necessary lemmas related to fractional calculus

and fixed point theorems that will be used throughout this chapter.

Definition 7.1 ([90]) The left sided Riemann-Liouville fractional integral of order α > 0

of a function u : [0, T ]→ R is given by

Iα0+u (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 u (s) ds,

where Γ denotes the gamma function.

7.2. Preliminaries
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Definition 7.2 ([90]) Let n − 1 < α < n. The left sided Riemann-Liouville fractional

derivative of order α of a function u : [0, T ]→ R is defined by

Dα
0+u (t) =

dn

dtn
In−α0+ u (t) =

1

Γ (n− α)

dn

dtn

∫ t

0

(t− s)n−α−1 u (s) ds, t > 0,

provided the right side integral is pointwise defined on [0, T ]. In particular, if 0 < α < 1,

then

Dα
0+u (t) =

d

dt
I1−α

0+ u (t) =
1

Γ (1− α)

d

dt

∫ t

0

u (s)

(t− s)α
ds, t > 0.

Definition 7.3 ([90]) Let n− 1 < α < n. The left sided Caputo fractional derivative of

order α > 0 of a function u ∈ Cn([0, T ],R) is given by

CDα
0+x (t) = In−α0+ x(n) (t) =

1

Γ (n− α)

∫ t

0

(t− s)n−α−1 x(n) (s) ds, t > 0.

In particular, if 0 < α < 1, then

CDα
0+u (t) = I1−α

0+ u′ (t) =
1

Γ (1− α)

∫ t

0

u′ (s)

(t− s)α
ds, t > 0.

Moreover, the Caputo derivative of a constant is equal to zero.

Lemma 7.1 ([90]) Let α > 0 and u ∈ Cn ([0, T ] ,R). Then

1) CDα
0+Iα0+u (t) = u (t) .

2) Iα C
0+ Dα

0+u (t) = u (t)−
n−1∑
k=0

u(k)(0)
k!

tk.

In particular, when α ∈ (0, 1) , Iα C
0+ Dα

0+u (t) = u (t)− u (0).

From the definition of the Caputo derivative, we can obtain the following lemma.

Lemma 7.2 ([90]) Let n− 1 < α < n and u ∈ Cn ([0, T ] ,R). Then

Iα C
0+ Dα

0+u (t) = u(t) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

for some ck ∈ R, k = 0, 1, 2, ..., n− 1.

In particular, when α ∈ (0, 1) , Iα C
0+ Dα

0+u (t) = u(t) + c0.

7.3 First order Caputo fractional integro-differential

equations

In this section, we discuss the existence and uniqueness results for the initial value prob-

lems (7.1).

Let us start by defining what we mean by a mild solution of the problem (7.1).

7.3. First order Caputo fractional integro-differential equations



Chapter 7. Existence and uniqueness of mild solutions for nonlinear hybrid Caputo
fractional integro-differential equations via fixed point theorems 84

Definition 7.4 A function u ∈ C ([0, T ] ,R) is said to be a mild solution of the problem

(7.1) if u satisfies the corresponding integral equation of (7.1).

For the existence and uniqueness of solutions for the problem (7.1), we need the fol-

lowing lemma.

Lemma 7.3 u ∈ C ([0, T ] ,R) is a mild solution of (7.1) if u satisfies

u (t) =

(
p (t) +

1

Γ (β)

∫ t

0

(t− s)β−1 g (s, u (s)) ds

)
×
(

1

Γ (α)

∫ t

0

(t− s)α−1 h (s, u (s)) ds+ θ

)
+ f (t, u (t)) . (7.2)

Proof. Let u be a solution of the problem (7.1). Applying the Riemann-Liouville frac-

tional integral Iα0+ on both sides of (7.1), by Lemma 7.2, then we obtain

u (t)− f (t, u (t))

p (t) + 1
Γ(β)

∫ t
0

(t− s)β−1 g (s, u (s)) ds
= Iα0+h (t, u (t)) + c,

for some c ∈ R. So, we get

u (t) =

(
p (t) +

1

Γ (β)

∫ t

0

(t− s)β−1 g (s, u (s)) ds

)
×
(

1

Γ (α)

∫ t

0

(t− s)α−1 h (s, u (s)) ds+ c

)
+ f (t, u (t)) . (7.3)

Substituting t = 0 in the above equality, we have

u (0) = p (0) c+ f (0, u (0)) .

The condition u (0) = f (0, u (0)) + p (0) θ implies that

c = θ. (7.4)

Substituting (7.4) in (7.3) we get the integral equation (7.2).

Now we will give the following existence and uniqueness theorems for the initial value

problem (7.1).

Theorem 7.1 Assume that hypotheses (A1)-(A3) hold. Furthermore, if

Kf < 1, (7.5)

then the initial value problem (7.1) has a mild solution defined on [0, T ].

Proof. Set B = C ([0, T ],R) and define a subset M of B by

M = {u ∈ B, ‖u‖ ≤ N} ,

7.3. First order Caputo fractional integro-differential equations
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where

N = KfN + F0 +

(
KpT + |p (0)|+ T β ‖G‖L1

Γ (β + 1)

)(
Tα ‖H‖L1

Γ (α + 1)
+ |θ|

)
,

with F0 = supt∈[0,T ] |f (t, 0)|. Clearly, M is a closed, convex and bounded subset of the

Banach space B.

Define two operators A,B : M→ B by

(Au)(t) =

(
p (t) +

1

Γ (β)

∫ t

0

(t− s)β−1 g (s, u (s)) ds

)
×
(

1

Γ (α)

∫ t

0

(t− s)α−1 h (s, u (s)) ds+ θ

)
, t ∈ [0, T ] , (7.6)

and

(Bu)(t) = f (t, u (t)) , t ∈ [0, T ] . (7.7)

Now, (7.2) is equivalent to the operator equation

u (t) = (Au)(t) + (Bu)(t), t ∈ [0, T ] .

We shall use Krasnoselskii’s fixed point theorem to prove there exists at least one fixed

point of the operator A+ B in M. The proof will be given in several steps.

Step 1. We prove that B is a contraction with constant Kf < 1. Let u, v ∈M. Then

by (A1), we get

|(Bu)(t)− (Bv)(t)| = |f (t, u (t))− f (t, v (t))| ≤ Kf |u (t)− v (t)|
≤ Kf ‖u− v‖

for all t ∈ [0, T ]. Taking supremum over t, then we have

‖Bu− Bv‖ ≤ Kf ‖u− v‖

for all u, v ∈M. Thus, by (7.5), B is a contraction operator on M with constant Kf < 1.

Step 2. We prove A is a compact operator on M into B. It is enough to prove that

A(M) is a uniformly bounded and equicontinuous set in B. On the one hand, let u ∈ M
be arbitrary. Then by (A2), we get

|(Au)(t)| ≤
(
|p (t)|+ 1

Γ (β)

∫ t

0

(t− s)β−1 |g (s, u (s))| ds
)

×
(

1

Γ (α)

∫ t

0

(t− s)α−1 |h (s, u (s))| ds+ |θ|
)

≤
(
Kpt+ |p (0)|+ 1

Γ (β)

∫ t

0

(t− s)β−1 |G (s)| ds
)

×
(

1

Γ (α)

∫ t

0

(t− s)α−1 |H (s)| ds+ |θ|
)

≤
(
KpT + |p (0)|+ T β ‖G‖L1

Γ (β + 1)

)(
Tα ‖H‖L1

Γ (α + 1)
+ |θ|

)
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for all t ∈ [0, T ]. Taking supremum over t, we obtain

‖Au‖ ≤
(
KpT + |p (0)|+ T β ‖G‖L1

Γ (β + 1)

)(
Tα ‖H‖L1

Γ (α + 1)
+ |θ|

)
for all u ∈M. This shows that A(M) is uniformly bounded on M.

On the other hand, let t1, t2 ∈ [0, T ] be arbitrary with t1 < t2. Then for any u ∈ M,

we get

|(Au)(t2)− (Au)(t1)|

=

∣∣∣∣(p (t2) +
1

Γ (β)

∫ t2

0

(t2 − s)β−1 g (s, u (s)) ds

)
×
(

1

Γ (α)

∫ t2

0

(t2 − s)α−1 h (s, u (s)) ds+ θ

)
−
(
p (t1) +

1

Γ (β)

∫ t1

0

(t1 − s)β−1 g (s, u (s)) ds

)
×
(

1

Γ (α)

∫ t1

0

(t1 − s)α−1 h (s, u (s)) ds+ θ

)∣∣∣∣
≤
(
|p (t2)|+ 1

Γ (β)

∫ t2

0

(t2 − s)β−1 |g (s, u (s))| ds
)

×
(

1

Γ (α)

∣∣∣∣∫ t2

0

(t2 − s)α−1 h (s, u (s)) ds−
∫ t1

0

(t1 − s)α−1 h (s, u (s)) ds

∣∣∣∣)
+

(
|p (t2)− p (t1)|+ 1

Γ (β)

∣∣∣∣∫ t2

0

(t2 − s)β−1 g (s, u (s)) ds

−
∫ t1

0

(t1 − s)β−1 g (s, u (s)) ds

∣∣∣∣)( 1

Γ (α)

∫ t1

0

(t1 − s)α−1 |h (s, u (s))| ds+ |θ|
)
.

Thus,

|(Au)(t2)− (Au)(t1)|

≤
(
|p (t2)|+ 1

Γ (β)

∫ t2

0

(t2 − s)β−1G (s) ds

)
Tα

Γ (α + 1)

∣∣∣∣∫ t2

t1

H (s) ds

∣∣∣∣
+

(
Kp |t2 − t1|+

T β

Γ (β + 1)

∣∣∣∣∫ t2

t1

G (s) ds

∣∣∣∣)( 1

Γ (α)

∫ t1

0

(t1 − s)α−1H (s) ds+ |θ|
)

≤
(
|p (t2)|+ T β ‖G‖L1

Γ (β + 1)

)
Tα

Γ (α + 1)

∣∣∣∣∫ t2

t1

H (s) ds

∣∣∣∣
+

(
Kp |t2 − t1|+

T β

Γ (β + 1)

∣∣∣∣∫ t2

t1

G (s) ds

∣∣∣∣)(Tα ‖H‖L1

Γ (α + 1)
+ |θ|

)
=

(
|p (t2)|+ T β ‖G‖L1

Γ (β + 1)

)
Tα

Γ (α + 1)
|ρ (t2)− ρ (t1)|

+

(
Tα ‖H‖L1

Γ (α + 1)
+ |θ|

)(
Kp |t2 − t1|+

T β

Γ (β + 1)
|σ (t2)− σ (t1)|

)
,
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where ρ (t) =
∫ t

0
G (s) ds and σ (t) =

∫ t
0
H (s) ds. Since the functions ρ and σ are contin-

uous on compact [0, T ], they are uniformly continuous. Hence, for ε > 0, there exists a

δ > 0 such that

|t2 − t1| < δ =⇒ |(Au)(t2)− (Au)(t1)| < ε

for all t1, t2 ∈ [0, T ] and u ∈ M. This shows that A(M) is an equicontinuous set in B.

Now the set A(M) is uniformly bounded and equicontinuous set in B, so it is a relatively

compact by Arzela-Ascoli theorem. Thus, A is a compact operator on M.

Step 3. We prove A is a continuous operator on M into B. Let {un} be a sequence in

M converging to a point u ∈M. Then by the Lebesgue dominated convergence theorem,

we obtain

lim
n→∞

(Aun)(t) =

(
p (t) +

1

Γ (β)

∫ t

0

(t− s)β−1 lim
n→∞

g (s, un (s)) ds

)
×
(

1

Γ (α)

∫ t

0

(t− s)α−1 lim
n→∞

h (s, un (s)) ds+ θ

)
=

(
p (t) +

1

Γ (β)

∫ t

0

(t− s)β−1 g (s, u (s)) ds

)
×
(

1

Γ (α)

∫ t

0

(t− s)α−1 h (s, u (s)) ds+ θ

)
= (Au)(t)

for all t ∈ [0, T ]. This shows that {Aun} converges to Au pointwise on [0, T ]. Moreover,

the sequence {Aun} is equicontinuous by a similar proof of Step 2. Therefore {Aun}
converges uniformly to Au and hence A is a continuous operator on M.

Step 4. We show Au + Bv ∈ M for all u, v ∈ M. For any u, v ∈ M and t ∈ [0, T ], we

have

|(Au) (t) + (Bv) (t)|

≤
(
|p (t)|+ 1

Γ (β)

∫ t

0

(t− s)β−1 |g (s, u (s))| ds
)

×
(

1

Γ (α)

∫ t

0

(t− s)α−1 |h (s, u (s))| ds+ |θ|
)

+ |f (t, v (t))|

≤
(
Kpt+ |p (0)|+ 1

Γ (β)

∫ t

0

(t− s)β−1G (s) ds

)
×
(

1

Γ (α)

∫ t

0

(t− s)α−1H (s) ds+ |θ|
)

+ |f (t, v (t))− f (t, 0)|+ |f (t, 0)|

≤
(
KpT + |p (0)|+ T β ‖G‖L1

Γ (β + 1)

)(
Tα ‖H‖L1

Γ (α + 1)
+ |θ|

)
+Kf ‖v‖+ F0 ≤ N.

This shows that Au+ Bv ∈M for all u, v ∈M.
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Thus, all the conditions of Theorem 1.4 are satisfied and hence the operator equation

Az + Bz = z has a solution in M. Therefore, the initial value problem (7.1) has a mild

solution defined on [0, T ].

Theorem 7.2 Assume that (A1)-(A4) are satisfied and[(
KpT + |p (0)|+ T β ‖G‖L1

Γ (β + 1)

)
TαKh

Γ (α + 1)

+

(
Tα ‖H‖L1

Γ (α + 1)
+ |θ|

)
T βKg

Γ (β + 1)
+Kf

]
= λ < 1. (7.8)

Then the initial value problem (7.1) has a unique mild solution defined on [0, T ].

Proof. From Theorem 7.1, it follows that the initial value problem (7.1) has a mild

solution in M. Hence, we need only to prove that the operator A+ B is a contraction on

M. In fact, for any u, v ∈M, we have

|((A+ B)u) (t)− ((A+ B) v) (t)|

≤
(
|p (t)|+ 1

Γ (β)

∫ t

0

(t− s)β−1 |g (s, u (s))| ds
)

×
(

1

Γ (α)

∫ t

0

(t− s)α−1 |h (s, u (s))− h (s, v (s))| ds
)

+

(
1

Γ (β)

∫ t

0

(t− s)β−1 |g (s, u (s))− g (s, v (s))| ds
)

×
(

1

Γ (α)

∫ t

0

(t− s)α−1 |h (s, v (s))| ds+ |θ|
)

+ |f (t, u (t))− f (t, v (t))|

≤
[(
KpT + |p (0)|+ T β ‖G‖L1

Γ (β + 1)

)
TαKh

Γ (α + 1)

+

(
Tα ‖H‖L1

Γ (α + 1)
+ |θ|

)
T βKg

Γ (β + 1)
+Kf

]
‖u− v‖ .

Thus,

‖(A+ B)u− (A+ B) v‖ ≤ λ ‖u− v‖ .

Hence, the operator A + B is a contraction mapping by (7.8). Therefore, by Banach’s

fixed point theorem, the initial value problem (7.1) has a unique mild solution in M.

Example 7.1 Let us consider the following initial value problem CD
1
2

0+

(
u(t)− 1

8
sinu(t)

π+sin t+
1/9

Γ(1/3)

∫ t
0 (t−s)−2/3 sinu(s)ds

)
= 1

7
cosu (t) , t ∈ [0, 1] ,

u (0) = 1
8

sinu (0) + π,
(7.9)
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where α = 1
2
, β = 1

3
, T = 1, θ = 1, f (t, u (t)) = 1

8
sinu (t) , p (t) = π + sin t, g (t, u (t)) =

1
9

sinu (t) , h (t, u (t)) = 1
7

cosu (t). Let Kf = 1
8
, Kp = 1, G(t) = 1

9
, H(t) = 1

7
. Then

hypotheses (A1)-(A3) hold. Since

Kf =
1

8
< 1,

hence (7.5) holds. Therefore, by Theorem 7.1, the initial value problem (7.9) has a mild

solution. Also, we have

Kg =
1

9
, Kh =

1

7
and λ ' 0.957 < 1,

then (A4) and (7.8) hold. So, by Theorem 7.2, (7.9) has a unique mild solution.

7.4 Higher order fractional integro-differential equa-

tions

The method in Section 3 can be extended to the following initial value problem of nonlinear

hybrid higher order Caputo fractional integro-differential equations
CDα

0+

(
u(t)−f(t,u(t))

p(t)+ 1
Γ(β)

∫ t
0 (t−s)β−1g(s,u(s))ds

)
= h (t, u (t)) , t ∈ [0, T ] ,(

u(t)−f(t,u(t))

p(t)+ 1
Γ(β)

∫ t
0 (t−s)β−1g(s,u(s))ds

)(k)
∣∣∣∣∣
t=0

= θk, k = 0, ..., n− 1,
(7.10)

where α ∈ (n− 1, n), β ∈ (n− 1, n), θk ∈ R, p : [0, T ] → R and f, g, h : [0, T ] × R → R
are continuous functions with p (t) + Iβ0+g (t, u (t)) 6= 0.

Lemma 7.4 u ∈ C ([0, T ] ,R) is a mild solution of (7.10) if u satisfies

u (t) =

(
p (t) +

1

Γ (β)

∫ t

0

(t− s)β−1 g (s, u (s)) ds

)
×

(
1

Γ (α)

∫ t

0

(t− s)α−1 h (s, u (s)) ds+
n−1∑
k=0

θk
k!
tk

)
+ f (t, u (t)) . (7.11)

The proof is similar to that of Lemma 7.3 and hence, we omit it.

Theorem 7.3 Suppose that hypotheses (A1)-(A3) and (7.5) hold. Then (7.10) has a mild

solution.

The proof is similar to that of Theorem 7.1 and hence, we omit it.

Theorem 7.4 Suppose that (A1)-(A4) are satisfied and[(
KpT + |p (0)|+ T β ‖G‖L1

Γ (β + 1)

)
TαKh

Γ (α + 1)

+

(
Tα ‖H‖L1

Γ (α + 1)
+

n−1∑
k=0

|θk|
k!
T k

)
T βKg

Γ (β + 1)
+Kf

]
= Λ < 1. (7.12)
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Then (7.10) has a unique mild solution.

The proof is similar to that of Theorem 7.2 and hence, we omit it.

7.4. Higher order fractional integro-differential equations



Chapter 8
Periodic solutions of almost linear Volterra

integro-dynamic systems

Keywords. Volterra integro-dynamic systems, time scales, Krasnoselskii’s fixed point

theorem, periodic solutions.

This chapter has been extracted from the research paper [79],

A. Guerfi, A. Ardjouni, Existence, Periodic solutions of almost linear Volterra integro-

dynamic systems, Malaya Journal of Matematik 8(4) (2020), 1427–1433.

8.1 Introduction

Delay dynamic equations arise from a variety of applications including in various fields

of science and engineering such as applied sciences, physics, chemistry, biology, medicine,

etc. In particular, problems concerning qualitative analysis of delay dynamic equations

have received the attention of many authors, see [1], [3], [19], [26], [40], [41], [45], [46],

[47], [71], [91], [106] and the references therein.

Let T be a periodic time scale such that 0 ∈ T. In this chapter, we consider the

following almost linear Volterra integro-dynamic system on time scales{
x∆ (t) = a (t) p (x (t)) +

∫ t
−∞C (t, s)h (y (s)) ∆s+ e (t) ,

y∆ (t) = b (t) q (y (t)) +
∫ t
−∞D (t, s) g (x (s)) ∆s+ f (t) ,

(8.1)

where a, b, e and f are rd-continuous functions, p, q, f and g are continuous functions.

We assume that there exist constants P , Q, H, G and positive constants P ∗, Q∗, H∗, G∗

such that

|p (x)− Px| ≤ P ∗, |q (x)−Qx| ≤ Q∗, (8.2)

and

|h (x)−Hx| ≤ H∗, |g (x)−Gx| ≤ G∗. (8.3)

91
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To show the existence of periodic solutions of (8.1), we transform (8.1) into an integral

system and then use Krasnoselskii’s fixed point theorem. The obtained integral system

is the sum of two mappings, one is a contraction and the other is compact. Our re-

sults generalize previous results due to Raffoul [106], from the one dimension to the two

dimensions.

8.2 Preliminaries

A time scale is an arbitrary nonempty closed subset of real numbers. The study of dynamic

equations on time scales is a fairly new subject, and research in this area is rapidly growing

(see [1], [3], [19], [26], [40], [41], [45], [46], [47], [71], [91], [106] and papers therein). The

theory of dynamic equations unifies the theories of differential equations and difference

equations. We suppose that the reader is familiar with the basic concepts concerning the

calculus on time scales for dynamic equations. Otherwise one can find in Bohner and

Peterson books [40, 41, 91] most of the material needed to read this paper. We start

by giving some definitions necessary for our work. The notion of periodic time scales is

introduced in Kaufmann and Raffoul [88]. The following two definitions are borrowed

from [88].

Definition 8.1 We say that a time scale T is periodic if there exist a ω > 0 such that if

t ∈ T then t± ω ∈ T. For T 6= R, the smallest positive ω is called the period of the time

scale.

Example 8.1 The following time scales are periodic.

1) T =
⋃∞
i=−∞[2(i− 1)h, 2ih], h > 0 has period ω = 2h.

2) T = hZ has period ω = h.

3) T = R.

4) T = {t = k − qm : k ∈ Z, m ∈ N0} where, 0 < q < 1 has period ω = 1.

Remark 8.1 ([88]) All periodic time scales are unbounded above and below.

Definition 8.2 Let T 6= R be a periodic time scale with period ω. We say that the

function f : T → R is periodic with period T if there exists a natural number n such

that T = nω, f(t ± T ) = f(t) for all t ∈ T and T is the smallest number such that

f(t± T ) = f(t).

If T = R, we say that f is periodic with period T > 0 if T is the smallest positive

number such that f(t± T ) = f(t) for all t ∈ T.

Remark 8.2 ([88]) If T is a periodic time scale with period ω, then σ(t±nω) = σ(t)±nω.

Consequently, the graininess function µ satisfies µ(t ± nω) = σ(t ± nω) − (t ± nω) =

σ(t)− t = µ(t) and so, is a periodic function with period ω.

8.2. Preliminaries
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Definition 8.3 ([40]) A function f : T → R is called rd-continuous provided it is con-

tinuous at every right-dense point t ∈ T and its left-sided limits exist, and is finite at every

left-dense point t ∈ T. The set of rd-continuous functions f : T→ R will be denoted by

Crd = Crd(T) =Crd(T,R).

The set of functions f : T → R that are differentiable and whose derivative is rd-

continuous is denoted by

C1
rd = C1

rd(T) =C1
rd(T,R).

Definition 8.4 ([40]) For f : T → R, we define f∆(t) to be the number (if it exists)

with the property that for any given ε > 0, there exists a neighborhood U of t such that∣∣(f(σ(t))− f(s))− f∆(t) (σ(t)− s)
∣∣ < ε |σ(t)− s| for all s ∈ U.

The function f∆ : Tk → R is called the delta (or Hilger) derivative of f on Tk.

Definition 8.5 ([40]) A function p : T→ R is called regressive provided 1+µ(t)p(t) 6= 0

for all t ∈ T. The set of all regressive and rd-continuous functions p : T → R will be

denoted by R = R(T,R). We define the set R+ of all positively regressive elements of R
by

R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0, ∀t ∈ T}.

Definition 8.6 ([40]) Let p ∈ R, then the generalized exponential function ep is defined

as the unique solution of the initial value problem

x∆(t) = p(t)x(t), x(s) = 1, where s ∈ T.

An explicit formula for ep(t, s) is given by

ep(t, s) = exp

(∫ t

s

ξµ(v)(p(v))∆v

)
, for all s, t ∈ T,

with

ξµ(p) =

{
log(1+µp)

µ
if µ 6= 0,

p if µ = 0,

where log is the principal logarithm function.

Lemma 8.1 ([40]) Let p, q ∈ R. Then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1,

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),

(iii) 1
ep(t,s)

= e	p(t, s) where, 	p(t) = − p(t)
1+µ(t)p(t)

,

8.2. Preliminaries
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(iv) ep(t, s) = 1
ep(s,t)

= e	p(s, t),

(v) ep(t, s)ep(s, r) = ep(t, r),

(vi)
(

1
ep(·,s)

)∆

= − p(t)
eσp (·,s) .

Lemma 8.2 ([1]) If p ∈ R+, then

0 < ep(t, s) ≤ exp

(∫ t

s

p(v)∆v

)
, ∀t ∈ T.

8.3 Periodic Solutions

Let T be a periodic time scale with period ω. Let T > 0 be fixed, and if T 6= R, then

T = nω for some n ∈ N. By the notation [a, b] we mean

[a, b] = {t ∈ T : a ≤ t ≤ b} ,

unless otherwise specified. The intervals [a, b), (a, b] and (a, b) are defined similarly. Let

PT be the set of all continuous scalar functions, periodic of period T . Then (PT , ‖.‖) is a

Banach space with the supremum norm

‖x‖ = sup
t∈T
|x (t)| = sup

t∈[0,T ]

|x (t)| .

In this section we investigate the existence of a periodic solution of (8.1) using Krasnosel-

skii’s fixed point theorem.

The next lemma is essential to our next results. Its proof can be found in [88].

Lemma 8.3 Let x ∈ PT . Then ‖xσ‖ exists and ‖xσ‖ = ‖x‖.

In this section we assume that for all (t, s) ∈ T× T,

sup
t∈T

∫ t

−∞
|C (t, s)|∆s <∞, sup

t∈T

∫ t

−∞
|D (t, s)|∆s <∞. (8.4)

We assume a, b ∈ R+ with e	(Pa)(t, t− T ) 6= 1 and e	(Qb)(t, t− T ) 6= 1. Suppose that

a (t+ T ) = a (t) , b (t+ T ) = b (t) , e (t+ T ) = e (t) , f (t+ T ) = f (t) ,

C (t+ T, s+ T ) = C (t, s) , D (t+ T, s+ T ) = D (t, s) . (8.5)

Let PT = PT ×PT , then PT is a Banach space when endowed with the maximum norm

‖(x, y)‖ = max

{
sup
t∈[0,T ]

|x (t)| , sup
t∈[0,T ]

|y (t)|

}
.

For any positive constant m the set

M = {(x, y) ∈ PT : ‖(x, y)‖ ≤ m} . (8.6)

is a bounded closed convex subset of PT .
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Lemma 8.4 If (x, y) ∈ PT , then (x, y) is a solution of (8.1) if and only if

x(t) = η1

∫ t

t−T
[Pa (u)xσ(u) + a (u) p (x(u)) + k (u)] e	(Pa)(t, u)∆u, (8.7)

and

y(t) = η2

∫ t

t−T
[Qb (u) yσ(u) + b (u) q (y(u)) + l (u)] e	(Qa)(t, u)∆u, (8.8)

where

η1 =
[
1− e	(Pa)(T, 0)

]−1
, η2 =

[
1− e	(Qa)(T, 0)

]−1
,

k (t) = e (t) +

∫ t

−∞
C (t, s) [h (y (s))−Hy (s)] ∆s+

∫ t

−∞
C (t, s)Hy (s) ∆s,

and

l (t) = f (t) +

∫ t

−∞
D (t, s) [g (x (s))−Gx (s)] ∆s+

∫ t

−∞
D (t, s)Gx (s) ∆s.

Proof. For convenience we put the first equation in (8.1) in the form

x∆ (t) + Pa (t)xσ(t)

= Pa (t)xσ(t) + a (t) p (x (t)) + e (t)

+

∫ t

−∞
C (t, s) [h (y (s))−Hy (s)] ∆s+

∫ t

−∞
C (t, s)Hy (s) ∆s. (8.9)

Let

k (t) = e (t) +

∫ t

−∞
C (t, s) [h (y (s))−Hy (s)] ∆s+

∫ t

−∞
C (t, s)Hy (s) ∆s.

Then we may write (8.9) as

x∆ (t) + Pa (t)xσ(t) = Pa (t)xσ(t) + a (t) p (x (t)) + k (t) . (8.10)

Let x ∈ PT and assume (8.5). Multiply both sides of (8.10) by ePa(t, 0) and then integrate

both sides from t− T to t to obtain

ePa(t, 0)x(t)− ePa(t− T, 0)x(t− T )

=

∫ t

t−T
[Pa (u)xσ(u) + a (u) p (x (u)) + k (u)] ePa(u, 0)∆u.

Divide both sides of the above equation by ePa(t, 0) and use the fact that x(t−T ) = x(t)

to obtain

x(t)
[
1− e	(Pa)(t, t− T )

]
=

∫ t

t−T
[Pa (u)xσ(u) + a (u) p (x (u)) + k (u)] e	(Pa)(t, u)∆u,
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where we have used Lemma 8.1 to simplify the exponentials. Since every step is reversible,

the converse holds. The proof of (8.8) is similar and hence we omit it.

Define mappings A and B from M into PT as follows. For (ϕ1, ϕ2) ∈M,

A (ϕ1, ϕ2) (t) = (A1 (ϕ1, ϕ2) (t) ,A2 (ϕ1, ϕ2) (t)) ,

such that

A1 (ϕ1, ϕ2) (t) = η1

{∫ t

t−T
a (u) [p (ϕ1(u)) + Pϕσ1 (u)] e	(Pa)(t, u)∆u

+

∫ t

t−T

∫ u

−∞
C (t, s) [h (ϕ2 (s))−Hϕ2 (s)] ∆se	(Pa)(t, u)∆u

}
,

A2 (ϕ1, ϕ2) (t) = η2

{∫ t

t−T
b (u) [q (ϕ2(u)) +Qϕσ2 (u)] e	(Qb)(t, u)∆u

+

∫ t

t−T

∫ u

−∞
D (t, s) [g (ϕ1 (s))−Gϕ1 (s)] ∆se	(Qb)(t, u)∆u

}
,

and for (ψ1, ψ2) ∈M,

B (ψ1, ψ2) (t) = (B1 (ψ1, ψ2) (t) ,B2 (ψ1, ψ2) (t)) ,

such that

B1 (ψ1, ψ2) (t) = η1

{∫ t

t−T

∫ u

−∞
C (u, s)Hψ2 (s) ∆se	(Pa)(t, u)∆u

+

∫ t

t−T
e (u) e	(Pa)(t, u)∆u

}
.

B2 (ψ1, ψ2) (t) = η2

{∫ t

t−T

∫ u

−∞
D (u, s)Gψ1 (s) ∆se	(Qb)(t, u)∆u

+

∫ t

t−T
f (u) e	(Qb)(t, u)∆u

}
.

It can be easily verified that both A (ϕ1, ϕ2) and B (ψ1, ψ2) are T -periodic and continuous.

Assume

|η1| sup
t∈T

∫ t

t−T

∫ u

−∞
|C (u, s)| |H|∆se	(Pa)(t, u)∆u ≤ α1 < 1, (8.11)

|η2| sup
t∈T

∫ t

t−T

∫ u

−∞
|D (u, s)| |G|∆se	(Qb)(t, u)∆u ≤ α2 < 1, (8.12)

|η1| sup
t∈T

{∫ t

t−T
|a (u)|P ∗e	(Pa)(t, u)∆u

+

∫ t

t−T

∫ u

−∞
|C (t, s)|H∗∆se	(Pa)(t, u)∆u

}
≤ β1 <∞, (8.13)
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and

|η2| sup
t∈T

{∫ t

t−T
|b (u)|Q∗e	(Qb)(t, u)∆u

+

∫ t

t−T

∫ u

−∞
|D (t, s)|G∗∆se	(Qb)(t, u)∆u

}
≤ β2 <∞. (8.14)

Choose the constant m of (8.6) satisfying

|η1| sup
t∈T

∫ t

t−T
|e (u)| e	(Pa)(t, u)∆u+ α1m+ β1 ≤ m, (8.15)

and

|η2| sup
t∈T

∫ t

t−T
|f (u)| e	(Qb)(t, u)∆u+ α2m+ β2 ≤ m. (8.16)

Lemma 8.5 Assume (8.4), (8.5) and (8.11)-(8.16) hold. Then B is a contraction from

M into M.

Proof. For (ψ1, ψ2) ∈M,

|B1 (ψ1, ψ2) (t)| ≤ m |η1|
∫ t

t−T

∫ u

−∞
|C (u, s)| |H|∆se	(Pa)(t, u)∆u

+ |η1|
∫ t

t−T
|e (u)| e	(Pa)(t, u)∆u

≤ |η1| sup
t∈T

∫ t

t−T
|e (u)| e	(Pa)(t, u)∆u+ α1m ≤ m,

and

|B2 (ψ1, ψ2) (t)| = m |η2|
∫ t

t−T

∫ u

−∞
|D (u, s)| |G|∆se	(Qb)(t, u)∆u

+ |η2|
∫ t

t−T
|f (u)| e	(Qb)(t, u)∆u

≤ |η2| sup
t∈T

∫ t

t−T
|f (u)| e	(Qb)(t, u)∆u+ α2m ≤ m,

then

‖B (ψ1, ψ2)‖ ≤ m.

For (φ1, φ2) , (ψ1, ψ2) ∈M, we obtain

|B1 (φ1, φ2) (t)− B1 (ψ1, ψ2) (t)|

≤ |η1|
∫ t

t−T

∫ u

−∞
|C (u, s)| |H| |φ2 (s)− ψ2 (s)|∆se	(Pa)(t, u)∆u

≤ α1 ‖(φ1, φ2)− (ψ1, ψ2)‖ ,
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and in a similar way one can easily show that

|B2 (φ1, φ2) (t)− B2 (ψ1, ψ2) (t)| ≤ α2 ‖(φ1, φ2)− (ψ1, ψ2)‖ .

Therefore

‖B (φ1, φ2) (t)− B (ψ1, ψ2) (t)‖ ≤ α ‖(φ1, φ2)− (ψ1, ψ2)‖ .

where α = max {α1, α2} < 1. This proves that B is a contraction mapping from M into

M.

Lemma 8.6 Assume (8.2), (8.3), (8.4), (8.5) and (8.13)-(8.16). Then A from M into

M is continuous, and AM is contained in a compact subset of PT .

Proof. For any (ϕ1, ϕ2) ∈M, it follows from (8.2) and (8.3) that

|A1 (ϕ1, ϕ2) (t)|

≤ |η1|
{∫ t

t−T
|a (u)| |p (ϕ1(u)) + Pϕσ1 (u)| e	(Pa)(t, u)∆u

+

∫ t

t−T

∫ u

−∞
|C (t, s)| |h (ϕ2 (s))−Hϕ2 (s)|∆se	(Pa)(t, u)∆u

}
≤ |η1|

{∫ t

t−T
|a (u)|P ∗e	(Pa)(t, u)∆u

+

∫ t

t−T

∫ u

−∞
|C (t, s)|H∗∆se	(Pa)(t, u)∆u

}
,

Using (8.13) and (8.15), we get

|A1 (ϕ1, ϕ2) (t)| ≤ β1 ≤ m.

and in a similar way we have

|A2 (ϕ1, ϕ2) (t)| ≤ β2 ≤ m.

Therefore

‖A (ϕ1, ϕ2)‖ ≤ m. (8.17)

So, A maps M into M, and the set {A (φ1, φ2)} for (φ1, φ2) ∈ M is uniformly bounded.

To show that A is a continuous we let {(φn1 , φn2 )} be any sequence of functions in M with

‖(φn1 , φn2 )− (φ1, φ2)‖ → 0 as n → ∞. Since M is closed, we have (φ1, φ2) ∈ M. Then by

the definition of A we have

‖A (φn1 , φ
n
2 )−A (φ1, φ2)‖

= max

{
sup
t∈[0,T ]

|A1 (φn1 , φ
n
2 ) (t)−A1 (φ1, φ2) (t)| ,

sup
t∈[0,T ]

|A2 (φn1 , φ
n
2 ) (t)−A2 (φ1, φ2) (t)|

}
,
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in which

|A1 (φn1 , φ
n
2 ) (t)−A1 (φ1, φ2) (t)|

=

∣∣∣∣η1

{∫ t

t−T
a (u) [p (φn1 (u)) + Pφnσ1 (u)] e	(Pa)(t, u)∆u

−
∫ t

t−T
a (u) [p (φ1(u)) + Pφσ1 (u)] e	(Pa)(t, u)∆u

+

∫ t

t−T

∫ t

−∞
C (t, s) [h (φn2 (s))−Hφn2 (s)] ∆se	(Pa)(t, u)∆u

−
∫ t

t−T

∫ t

−∞
C (t, s) [h (φ2 (s))−Hφ2 (s)] ∆se	(Pa)(t, u)∆u

}∣∣∣∣
≤ |η1|

{∫ t

t−T
|a (u)| [|p (φn1 (u))− p (φ1(u))|

+ |Pφnσ1 (u)− Pφσ1 (u)|] e	(Pa)(t, u)∆u

+

∫ t

t−T

∫ t

−∞
|C (t, s)| [|h (φn2 (s))− h (φ2 (s))|

+ |Hφn2 (s)−Hφ2 (s)|] ∆se	(Pa)(t, u)∆u
}
.

The continuity of p and h along with the Lebesgue dominated convergence theorem implies

that

sup
t∈[0,T ]

|A1 (φn1 , φ
n
2 ) (t)−A1 (φ1, φ2) (t)| → 0 as n→∞.

By a similar argument one can easily argue that

sup
t∈[0,T ]

|A2 (φn1 , φ
n
2 ) (t)−A2 (φ1, φ2) (t)| → 0 as n→∞.

Thus,

‖A (φn1 , φ
n
2 )−A (φ1, φ2)‖ → 0 as n→∞.

This proves that A is a continuous mapping.

It is trivial to show that for all (φ1, φ2) ∈ M, there exist constants L1, L2 > 0 such

that
∣∣∣A1 (φ1, φ2)∆ (t)

∣∣∣ ≤ L1 and
∣∣∣A2 (φ1, φ2)∆ (t)

∣∣∣ ≤ L2. This means
∣∣∣A (φ1, φ2)∆ (t)

∣∣∣ ≤
L where L = max {L1, L2}. Therefore that the set {A (φ1, φ2)} for (φ1, φ2) ∈ M is

equicontinuous. Hence, by the Arzela-Ascoli theorem, AM is contained in a compact

subset of PT .

Theorem 8.1 Suppose the assumptions of Lemmas 8.5 and 8.6 hold. Then (8.1) has a

continuous T -periodic solution.
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Proof. For (ϕ1, ϕ2) , (ψ1, ψ2) ∈M, we get

|A1 (ϕ1, ϕ2) (t) + B1 (ψ1, ψ2) (t)|

=

∣∣∣∣η1

{∫ t

t−T
a (u) [p (ϕ1(u)) + Pϕσ1 (u)] e	(Pa)(t, u)∆u

+

∫ t

t−T

∫ u

−∞
C (t, s) [h (ϕ2 (s))−Hϕ2 (s)] ∆se	(Pa)(t, u)∆u

}
+ η1

{∫ t

t−T

∫ u

−∞
C (u, s)Hψ2 (s) ∆se	(Pa)(t, u)∆u

+

∫ t

t−T
e (u) e	(Pa)(t, u)∆u

}∣∣∣∣
≤ |η1| sup

t∈T

∫ t

t−T
|e (u)| e	(Pa)(t, u)∆u+ α1m+ β1

≤ m.

and

|A2 (ϕ1, ϕ2) (t) + B2 (ψ1, ψ2) (t)|

≤ |η1| sup
t∈T

∫ t

t−T
|f (u)| e	(Qb)(t, u)∆u+ α2m+ β2

≤ m.

This implies that

‖A (ϕ1, ϕ2) + B (ψ1, ψ2)‖ ≤ m,

which proves that A (ϕ1, ϕ2) + B (ψ1, ψ2) ∈M.

Therefore, by Krasnoselskii’s theorem there exists a function (x, y) in M such that

(x, y) = A (x, y) + B (x, y) .

This proves that (8.1) has a continuous T -periodic solution (x, y).
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Chapter 9
Existence and uniqueness of periodic

solutions in neutral nonlinear

summation-difference systems with infinite

delay

Keywords. Krasnoselskii’s theorem, Contraction, Neutral difference equation, Periodic

solution, Fundamental matrix solution.

This chapter has been extracted from the research paper [77],

A. Guerfi, A. Ardjouni, Existence and uniqueness of periodic solutions in neutral non-

linear summation-difference systems with infinite delay, Rocky Mountain Journal of Math-

ematics 51(2) (2021), 527–537.

9.1 Introduction

Due to their importance in numerous applications, for example, physics, population dy-

namics, industrial robotics, and other areas, many authors are studying the existence,

uniqueness, stability and positivity of solutions for delay differential and difference equa-

tions, see the references [11], [99], [109], [112] and references therein. In this chapter,

we study the existence and uniqueness of periodic solutions of the nonlinear neutral

summation-difference system with infinite delay

∆x (n) = P (n) + A (n)x (n− τ (n))

+ ∆Q (n, x (n− g (n))) +
n∑

k=−∞

D (n, k) f (x (k)) , (9.1)

where A and D are N ×N sequence matrices on Z and Z× Z, respectively, P : Z→ RN

is a sequence vector, τ, g : Z → Z+ are scalar sequences and the functions f : RN → RN

101
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and Q : Z × RN → RN are continuous in x. The sets Z and Z+ denote the integers

and the nonnegative integers, respectively. For more details on the calculus of difference

equations, we refer the reader to [66] and [89]. In this analysis we use the fundamental

matrix solution of ∆x (n) = A (n)x (n) to invert the system (9.1). Then we employ

Krasnoselskii’s fixed point theorem to show the existence of periodic solutions of system

(9.1). The obtained mapping is the sum of two mappings, one is a compact operator

and the other is a contraction. Also, transforming system (9.1) to a fixed point problem

enables us to show the uniqueness of the periodic solution by appealing to the contraction

mapping principle.

9.2 Preliminaries

For the definitions of the different notions used throughout this chapter we refer, for

example [66], [89], [99], [112]. For T > 1 define

CT =
{
φ ∈ C

(
Z,RN

)
, φ (n+ T ) = φ (n)

}
,

where C
(
Z,RN

)
is the space of all N -vector sequences. Then CT is a Banach space when

it is endowed with the supremum norm

‖x‖ = max
n∈Z
|x (n)| = max

n∈[0,T−1]∩Z
|x (n)| .

Note that CT is equivalent to the Euclidean space RNT , where |.| denotes the infinity

norm for x ∈ RN . Also, if A is an N ×N real matrix, then we define the norm of A by

|A| = max
1≤i≤N

N∑
j=1

|aij| .

Definition 9.1 If the matrix B is periodic of period T , then the linear system

y (n+ 1) = B (n) y (n) , (9.2)

is said to be noncritical with respect to T , if it has no periodic solution of period T except

the trivial solution y = 0.

In this chapter we assume that

A (n+ T ) = A (n) , D(n+ T, k + T ) = D(n, k),

τ (n+ T ) = τ (n) ≥ τ ∗ > 0, g (n+ T ) = g (n) ≥ g∗ > 0, (9.3)

where τ ∗ and g∗ are constants. For n ∈ Z, x, y ∈ RN , the function Q(n, x) is periodic in

n of period T , that is

Q(n+ T, x) = Q(n, x). (9.4)
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The functions Q and f are globally Lipschitz continuous. That is there are positive

constants k1 and k2 such that

|Q(n, x)−Q(n, y)| ≤ k1 |x− y| , (9.5)

|f(x)− f(y)| ≤ k2 |x− y| , f (0) = 0. (9.6)

Also, there is a positive constant k3 such that

n∑
k=−∞

|D (n, k)| ≤ k3 <∞. (9.7)

Throughout this chapter it is assumed that the matrix B(n) = I +A(n) is nonsingular

and the system (9.2) is noncritical, where I is the N × N identity matrix. Also, if x is

a sequence, then the forward operator E is defined as Ex(n) = x(n + 1). Now, we state

some known results about system (9.2). Let K represent the fundamental matrix of (9.2)

with K(0) = I, then

a) detK(n) 6= 0.

b) K(n+ T ) = B (n)K(n) and K−1(n+ T ) = K−1(n)B−1 (n) .

c) System (9.2) is noncritical if and only if det (I −K(T )) 6= 0.

d) There exists a nonsingular matrix L such that

K(n+ T ) = B (n)K(n)LT , K−1(n+ T ) = L−TK−1(n).

The following lemma is fundamental to our results.

Lemma 9.1 Suppose (9.3) and (9.4) hold. If x ∈ CT , then x is a solution of the equation

(9.1) if and only if

x (n) = Q (n, x (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)x(t)

+
n+T−1∑
s=n

Θ (n, s)

P (s) + A (s)

Q (s, x (s− g (s)))−
s−1∑

t=s−τ(s)

A(t)x(t)


+U(s)x (s− τ (s)) +

s∑
k=−∞

D (s, k) f (x (k))

]
, (9.8)

where

Θ (n, s) = K(n)
(
K(T )−1 − I

)−1
K−1(s)

(
I − A (s)B−1(s)

)
,

and

U(s) = A(s)− (1−∆τ (s))A (s− τ (s)) .
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Proof. Let x ∈ CT be a solution of (9.1) and K is a fundamental matrix of solutions for

(9.2). Rewrite the equation (9.1) as

∆x (n) = P (n) + A(n)x(n)− A(n)x(n) + A (n)x (n− τ (n))

+ ∆Q (n, x (n− g (n))) +
n∑

k=−∞

D (n, k) f (x (k))

= P (n) + A(n)x(n)−∆n

n−1∑
t=n−τ(n)

A(t)x(t)

+ [A(n)− (1−∆τ (n))A (n− τ (n))]x (n− τ (n))

+ ∆Q (n, x (n− g (n))) +
n∑

k=−∞

D (n, k) f (x (k)) .

We put A(n)− (1−∆τ (n))A (n− τ (n)) = U(n), we obtain

∆

x (n)−Q (n, x (n− g (n))) +
n−1∑

t=n−τ(n)

A(t)x(t)


= P (n) + A (n)

x (n)−Q (n, x (n− g (n))) +
n−1∑

t=n−τ(n)

A(t)x(t)


+ A (n)

Q (n, x (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)x(t)


+ U(n)x (n− τ (n)) +

n∑
k=−∞

D (n, k) f (x (k)) .

Since K(n)K−1(n) = I, it follows that

0 = ∆
[
K(n)K−1(n)

]
= ∆K(n)EK−1(n) +K(n)∆K−1(n)

= A (n)K(n)K−1(n)B−1(n) +K(n)∆K−1(n)

= A (n)B−1(n) +K(n)∆K−1(n).

This implies

∆K−1(n) = −K−1(n)A (n)B−1(n). (9.9)
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If x is a solution of (9.1) with x(0) = x0, then

∆

K−1(n)

x (n)−Q (n, x (n− g (n))) +
n−1∑

t=n−τ(n)

A(t)x(t)


= ∆K−1(n)E

x (n)−Q (n, x (n− g (n))) +
n−1∑

t=n−τ(n)

A(t)x(t)


+K−1(n)∆

x (n)−Q (n, x (n− g (n))) +
n−1∑

t=n−τ(n)

A(t)x(t)

 .
Thus

∆

K−1(n)

x (n)−Q (n, x (n− g (n))) +
n−1∑

t=n−τ(n)

A(t)x(t)


= −K−1(n)A (n)B−1(n)

×

P (n) +B(n)

x (n)−Q (n, x (n− g (n))) +
n−1∑

t=n−τ(n)

A(t)x(t)


+ A(n)

Q (n, x (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)x(t)


+U(n)x (n− τ (n)) +

n∑
k=−∞

D (n, k) f (x (k))

]

+K−1(n)A(n)

x (n)−Q (n, x (n− g (n))) +
n−1∑

t=n−τ(n)

A(t)x(t)


+K−1(n)

P (n) + A(n)

Q (n, x (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)x(t)


+U(n)x (n− τ (n)) +

n∑
k=−∞

D (n, k) f (x (k))

]
= K−1(n)

(
I − A (n)B−1(n)

)
×

P (n) + A(n)

Q (n, x (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)x(t)


+U(n)x (n− τ (n)) +

n∑
k=−∞

D (n, k) f (x (k))

]
.
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Summing of the above equation from 0 to n− 1 yields

x (n) = Q (n, x (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)x(t)

+K(n)

x (0)−Q (0, x (0− g (0))) +
−1∑

t=−τ(0)

A(t)x(t)


+K(n)

n−1∑
s=0

K−1(s)
(
I − A (s)B−1(s)

)
[P (s)

+ A (s)

Q (s, x (s− g (s)))−
s−1∑

t=s−τ(s)

A(t)x(t)


+U(s)x (s− τ (s)) +

s∑
k=−∞

D (s, k) f (x (k))

]
. (9.10)

For the sake of simplicity, we let

H (s) =
(
I − A (s)B−1(s)

)P (s) + A (s)

Q (s, x (s− g (s)))−
s−1∑

t=s−τ(s)

A(t)x(t)


+U(s)x (s− τ (s)) +

s∑
k=−∞

D (s, k) f (x (k))

]
.

Since x(T ) = x0 = x(0), using (9.10) we get

x (0)−Q (0, x (0− τ (0))) +
−1∑

t=−τ(0)

A(t)x(t)

= (I −K(T ))−1
T−1∑
s=0

K(T )K−1(s)H (s) . (9.11)

A substitution of (9.11) into (9.10) yields

x (n) = Q (n, x (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)x(t)

+K(n) (I −K(T ))−1
T−1∑
s=0

K(T )K−1(s)H (s)

+
n−1∑
s=0

K(n)K−1(s)H (s) . (9.12)

It remains to show that expression (9.12) is equivalent to equation (9.8). Since

(I −K(T ))−1 =
(
K(T )

(
K(T )−1 − I

))−1
=
(
K(T )−1 − I

)−1
K−1(T ),
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then the equations (9.12) becomes

x (n) = Q (n, x (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)x(t)

+K(n)
(
K(T )−1 − I

)−1
T−1∑
s=0

K−1(s)H (s) +
n−1∑
s=0

K(n)K−1(s)H (s)

= Q (n, x (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)x(t) +K(n)
(
K(T )−1 − I

)−1

×

{
T−1∑
s=0

K−1(s)H (s) +
n−1∑
s=0

K(T )−1K−1(s)H (s)−
n−1∑
s=0

K−1(s)H (s)

}
= Q (n, x (n− g (n))) +K(n)

(
K(T )−1 − I

)−1

×

{
−

n−1∑
s=T

K−1(s)H (s) +
n−1∑
s=0

K(T )−1K−1(s)H (s)

}
.

By letting s = u− T in the third term on the right side of the above expression, we end

up with

x (n) = Q (n, x (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)x(t) +K(n)
(
K(T )−1 − I

)−1

×

{
−

n−1∑
s=T

K−1(s)H (s) +
T+n−1∑
u=T

K(T )−1K−1(u− T )H (u− T )

}
. (9.13)

By (d) we have K(n− T ) = K(n)L−T and K(T ) = LT . Hence,

K−1(T )K−1(u− T ) = K−1(u).

Moreover, since H (u− T ) = H (u) then the expression (9.13) becomes

x (n) = Q (n, x (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)x(t) +K(n)
(
K(T )−1 − I

)−1

×

{
−

n−1∑
s=T

K−1(s)H (s) +
n+T−1∑
s=T

K−1(s)H (s)

}

= Q (n, x (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)x(t)

+K(n)
(
K(T )−1 − I

)−1
n+T−1∑
s=n

K−1(s)H (s) .

The converse implication is easily obtained and the proof is complete.

9.2. Preliminaries
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9.3 Existence and uniqueness of periodic solutions

By applying Theorems 1.4 and 1.2, we obtain in this section the existence and the unique-

ness of the periodic solution of (9.1). So, let a Banach space (CT , ‖.‖), a closed bounded

convex subset of CT ,

M = {ϕ ∈ CT , ‖ϕ‖ ≤ J} , (9.14)

with J > 0, and by the Lemma 9.1, let a mapping F given by

(Fϕ) (n) = Q (n, ϕ (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)ϕ(t)

+
n+T−1∑
s=n

Θ (n, s)

P (s) + A (s)

Q (s, ϕ (s− g (s)))−
s−1∑

t=s−τ(s)

A(t)ϕ(t)


+U(s)ϕ (s− τ (s)) +

s∑
k=−∞

D (s, k) f (ϕ (k))

]
. (9.15)

Therefore, we express equation (9.15) as

Fϕ = Rϕ+ Sϕ,

where R and S are given by

(Rϕ) (n) =
n+T−1∑
s=n

Θ (n, s)

P (s) + A (s)

Q (s, ϕ (s− g (s)))−
s−1∑

t=s−τ(s)

A(t)ϕ(t)


+U(s)ϕ (s− τ (s)) +

s∑
k=−∞

D (s, k) f (ϕ (k))

]
, (9.16)

and

(Sϕ) (n) = Q (n, ϕ (n− g (n)))−
n−1∑

t=n−τ(n)

A(t)ϕ(t). (9.17)

By a series of steps we will prove the fulfillment of (i), (ii) and (iii) in Theorem 1.4.

So that, since ϕ ∈ CT , (9.3) and (9.4) hold, we have for ϕ ∈M

(Rϕ) (n+ T ) = (Rϕ) (n) and Rϕ ∈ C
(
Z,RN

)
=⇒ R (M) ⊂ CT , (9.18)

and

(Sϕ) (n+ T ) = (Sϕ) (n) and Sϕ ∈ C
(
Z,RN

)
=⇒ S (M) ⊂ CT . (9.19)

The next lemma plays an important role in the compactness of R.

Lemma 9.2 Suppose (9.3)–(9.7) hold. If R is defined by (9.16), then R is continuous

and the image of R is contained in a compact set.
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Proof. Let ϕN ∈M where N is a positive integer such that ϕN → ϕ as N →∞. Then

|(RϕN ) (n)− (Rϕ) (n)|

≤
n+T−1∑
s=n

|Θ (n, s)|

|A (s)|

 s−1∑
t=s−τ(s)

|A(t)| |ϕN (t)− ϕ(t)|

+ |Q (s, ϕN (s− g (s)))−Q (s, ϕ (s− g (s)))|
+ |U(s)| |ϕN (s− τ (s))− ϕ (s− τ (s))|

+
s∑

k=−∞

|D (s, k)| |f (ϕN (k))− f (ϕ (k))|

]
.

Since Q and f are continuous, the Dominated Convergence Theorem implies,

lim
N→∞

|(RϕN ) (n)− (Rϕ) (n)| = 0,

then R is continuous. Next, we show that the image of R is contained in a compact set,

let M defined by (9.14), by (9.5) and (9.6), we obtain

|Q (n, x)| ≤ |Q (n, x)−Q (n, 0) +Q (n, 0)|
≤ k1 |x|+ |Q (n, 0)| ,

and

|f (x)| ≤ |f (x)− f (0) + f (0)| ≤ k2 |x| .

Let ϕ ∈M, then by (9.16) we obtain

‖Rϕ‖ ≤ c
T−1∑
s=0

[α + |A| (k1J + γ + β |A| J) + |U | J + k3k2J ]

≤ cT [α + |A| (k1J + γ + β |A| J) + |U | J + k3k2J ] ,

where

α = sup
n∈[0,T−1]∩Z

|P (n)| , β = sup
n∈[0,T−1]∩Z

|τ (n)| , γ = sup
n∈[0,T−1]∩Z

|Q (n, 0)| ,

and

c = sup
n∈[0,T−1]∩Z

(
sup

s∈[n,n+T−1]∩Z
|Θ (n, s)|

)
.

Second, we show that R maps bounded subsets into compact sets. As M is bounded

and R is continuous, then R (M) is a subset of RNT which is bounded. Thus R (M)

is contained in a compact subset of M. Therefore R is continuous in M and R (M) is

contained in a compact subset of M.
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Lemma 9.3 Suppose (9.3)–(9.5) hold and

k1 + β |A| < 1. (9.20)

If S is defined by (9.17), then S is a contraction.

Proof. Let S be defined by (9.17). Then for ϕ1, ϕ2 ∈M , we have by (9.5)

|(Sϕ1) (n)− (Sϕ2) (n)|
= |Q (n, ϕ1 (n− g (n)))−Q (n, ϕ2 (n− g (n)))

+
n−1∑

t=n−τ(n)

A(t)ϕ1(t)−
n−1∑

t=n−τ(n)

A(t)ϕ2(t)

∣∣∣∣∣∣
≤ (k1 + β |A|) ‖ϕ1 − ϕ2‖ .

Hence S is contraction by (9.20).

Theorem 9.1 Suppose that the assumptions of the Lemmas 9.2 and 9.3 hold. If there

exists a constant J > 0 defined in M such that

cT [α + |A| (k1J + γ + β |A| J) + |U | J + k3k2J ] + k1J + γ + β |A| J ≤ J. (9.21)

Then (9.1) has a T -periodic solution in the subset M.

Proof. By Lemma 9.2, R : M→ CT is continuous and R(M) is contained in a compact

set. Also, from Lemma 9.3, the mapping S : M → CT is a contraction. Next, we show

that if ϕ, φ ∈M, we have‖Rϕ+ Sφ‖ ≤ J . Let ϕ, φ ∈M with ‖ϕ‖ , ‖φ‖ ≤ J . Then

‖Rϕ+ Sφ‖
≤ cT [α + |A| (k1J + γ + β |A| J) + |U | J + k3k2J ] + k1J + γ + β |A| J
≤ J.

Clearly, all the hypotheses of Krasnoselskii’s theorem are satisfied. Thus there exists a

fixed point z ∈M such that z = Rz + Sz. By Lemma 9.1 this fixed point is a solution of

(9.1). Hence (9.1) has a T -periodic solution.

Theorem 9.2 Suppose the assumptions of Lemma 9.1 hold. If

cT [|A| (k1 + β |A|) + |U |+ k3k2] + k1 + β |A| < 1, (9.22)

then (9.1) has a unique T -periodic solution.

9.3. Existence and uniqueness of periodic solutions



Chapter 9. Existence and uniqueness of periodic solutions in neutral nonlinear
summation-difference systems with infinite delay 111

Proof. Let the mapping F be given by (9.15). For ϕ1, ϕ2 ∈ CT , we have

|(Fϕ1) (n)− (Fϕ2) (n)|
≤ |Q (n, ϕ1 (n− g (n)))−Q (n, ϕ2 (n− g (n)))

+
n−1∑

t=n−τ(n)

A(t)ϕ2(t)−
n−1∑

t=n−τ(n)

A(t)ϕ1(t)

∣∣∣∣∣∣
+

n+T−1∑
s=n

|Θ (n, s)| |A (s)|

 s−1∑
t=s−τ(s)

|A(t)| |ϕ1(t)− ϕ2(t)|

+ |Q (s, ϕ1 (s− g (s)))−Q (s, ϕ2 (s− g (s)))|]

+
n+T−1∑
s=n

|Θ (n, s)| [|U(s)| |ϕ1 (s− τ (s))− ϕ2 (s− τ (s))|

+
s∑

k=−∞

|D (s, k)| |f (ϕ1 (k))− f (ϕ2 (k))|

]
≤ [k1 + β |A|+ cT [|A| (β |A|+ k1) + |U |+ k3k2]] ‖ϕ1 − ϕ2‖ .

Since (9.22) holds, the contraction mapping principle completes the proof.

Corollary 9.1 Suppose (9.3) and (9.4) hold. Let M defined by (9.14). Suppose there are

positive constants k∗1, k∗2 and k∗3, such that for x, y ∈M and n ∈ Z we have

|Q (n, x (n− g (n)))−Q (n, y (n− g (n)))| ≤ k∗1 ‖x− y‖ and k∗1 < 1,

|f (x (n))− f (y (n))| ≤ k∗2 ‖x− y‖ , f (0) = 0,

n∑
k=−∞

|D (n, k)| ≤ k∗3 <∞,

and

cT [α + |A| (k∗1J + γ + β |A| J) + |U | J + k∗3k
∗
2J ] + k∗1J + γ + β |A| J ≤ J.

If ‖Fϕ‖ ≤ J , for ϕ ∈M, then (9.1) has a T -periodic solution in M. Moreover, if

cT [|A| (k∗1 + β |A|) + |U |+ k∗3k
∗
2] + k∗1 + β |A| < 1,

then (9.1) has a unique T -periodic solution in M.

Proof. Let the mapping F defined by (9.15). Then the proof follow immediately from

Theorem 9.1 and Theorem 9.2.
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Example 9.1 Consider the 2-dimensional nonlinear neutral summation-difference system

∆

(
x1 (n)

x2 (n)

)
=

(
0

λ4 sin (n)

)
+

(
0 λ1

−λ1 −λ1

)(
x1 (n− τ (n))

x2 (n− τ (n))

)

+ ∆

(
0

λ2 sin (n)x2
1 (n− g (n))

)

+
n∑

k=−∞

(
0 0

0 λ32k−n

)(
0

x2
1 (k)

)
, (9.23)

where

P (n) =

(
0

λ4 sin (n)

)
, A (n) =

(
0 λ1

−λ1 −λ1

)
,

Q (n, x (n− g (n))) =

(
0

λ2 sin (n)x2
1 (n− g (n))

)
,

and

D (n, k) =

(
0 0

0 λ32k−n

)
, f (x (k)) =

(
0

x2
1 (k)

)
.

Let τ (n) = β ∈ Z+, g : Z → Z+ is a nonnegative sequence and 2π-periodic. Since the

matrix B = I +A has eigenvalues with non-zero real parts, the system x(n+ 1) = Bx(n)

is noncritical. So, let a Banach space (C2π, ‖.‖),

C2π =
{
φ ∈ C

(
Z,R2

)
, φ (n+ 2π) = φ (n)

}
,

a closed bounded convex subset of C2π,

M = {ϕ ∈ C2π, ‖ϕ‖ ≤ J} .

Let ϕ = (ϕ1, ϕ2) , φ = (φ1, φ2). Then for ϕ, φ ∈M we have

|Q(n, x (n− g (n)))−Q(n, y (n− g (n)))| ≤ 2λ2J ‖x− y‖ ,

|f(x (n))− f(y (n))| ≤ 2J ‖x− y‖ , f (0) = 0,

and
n∑

k=−∞

|D (n, k)| =
n∑

k=−∞

λ32k−n = 2λ3 <∞.

Hence k∗1 = 2λ2J , k∗2 = 2J , k∗3 = 2λ3, α = λ4, γ = 0 and

U(n) = A(n)− (1−∆τ (n))A (n− τ (n)) = 0, |A| = 2λ1.

Consequently

cT
[
λ4 + λ1

(
2λ2J

2 + βλ1J
)

+ 4λ3J
2
]

+ 2λ2J
2 + 2βλ1J ≤ J,

9.3. Existence and uniqueness of periodic solutions



Chapter 9. Existence and uniqueness of periodic solutions in neutral nonlinear
summation-difference systems with infinite delay 113

for all λi, 1 ≤ i ≤ 4 small enough. Then (9.23) has a 2π-periodic solution, by Corollary

9.1. Moreover,

cT [λ1 (2λ2J + βλ1) + 4λ3J ] + 2λ2J + 2βλ1 < 1,

is satisfied for λi, 1 ≤ i ≤ 3 small enough. Then (9.23) has a unique 2π-periodic solution,

by Corollary 9.1.

9.3. Existence and uniqueness of periodic solutions



Conclusion

As we have seen in the present thesis, we used the technique of fixed point to study

the existence, uniqueness, periodicity, positivity and stability of solutions for a class of

nonlinear delay functional equations and systems, because its have been of great interest

recently. We have reached new results from which we can proceed in the future.

The main aspect of the future work is to take other problems of functional equations

and systems with or without delay with different conditions and study it theoretical and

numerical.
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