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Résumé

Cette thése concerne I’étude de quelques problémes aux limites non linéaires sur
des intervalles infinis et comportant les derivées fractionnaires de type Riemann-
Liouville. La premiére partie concerne un probléme aux limites pour des équations
différentielles fractionnaires avec des retards variables. L’existence, 'unicité et la
stabilité des solutions sont obtenues via les théorémes de point fixe, comme le
théoréme de contraction de Banach et ’alternative non linéaire de Leray-Schauder.
Dans la deuxiéme partie, un probléme aux limites pour les équations différentielles
fractionnaires avec 'opérateur p-Laplacien est étudié. Les principaux résultats
d’existence sont établis par le théoréme du point fixe de Krasnoselskii. En outre,
quelques exemples illustratifs sont donnés.

Mots clés: Equations différentielles fractionnaires, Probléme aux limites, Dérivée
fractionnaire de Riemann-Liouville, Existence, Unicité, Stabilité des solutions,
Equation différentielle a retard, Intervalle infini, Opérateur p-Laplacien, Théoréme
du point fixe, Théoréme de Krasnoselskii, Principe de contraction de Banach,

Leray-Schauder nonlinéaire alternative.
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Abstract

This thesis deals wit the study of some nonlinear Riemann-Liouville fractional
boundary value problems on the half-line. The first part concerns a boundary
value problem for fractional differential equations with variable delays. The ex-
istence, uniqueness and stability of solutions are obtained via certain fixed point
theorems, such as the Banach’s contraction theorem, the nonlinear alternative
Leray-Schauder. In the second part, we deal with a boundary value problem for
fractional differential equations with the p-Laplacian operator. The main existence
results are established by the help of Krasnoselskii fixed point theorem. Further-
more, some illustrative examples are given.

Keywords: Fractional differential equations, Boundary value problem, Riemann-
Liouville fractional derivative, Existence, Uniqueness, Stability of solutions, Delay
differential equations, Infinite interval, p-Laplacian operator, Fixed point theorem,
Krasnoselskii fixed point, Banach contraction principle, Leray-Schauder nonlinear

alternative.
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Introduction



Fractional integrals and derivatives can be seen as generalization of classical
calculus. Although fractional calculus has a history of over three hundred years,
and dates back to the mathematicians Leibniz and Euler, it was only recently de-
veloped. Over the past three decades, the subject has grown exponentially and
many researchers are actively working on this subject, mainly due to its various
applications in many fields of science such as physics, mechanics, chemistry, en-
gineering, see [43, [64), 46, 66, 66, (52l 60, [71] and the references therein.

Liouville was the first person to try to solve fractional differential equations,
then, some books played a considerable role in understanding the subject and gave
the applications of fractional differential equations and methods to solve them, such
as the books of Miller and Ross, Oldham and Spanier, Podlubny, Samko, Kilbas,
Marichev,...

Fractional calculus studies have reached a significant and appropriate level for
modern mathematics in the past decades, and since then efficient and reliable
techniques for solving modeled problems with fractional integral and differential
operators have been established.

Over the years, various definitions corresponding to the idea of an integral
or a derivative of non integer order have been used, but the Riemann-Liouville
definition of integrals and derivatives of fractional order remains the most common
popular in the world of fractional calculus, moreover, most of the other definitions
of fractional calculus are largely variations of that of Riemann-Liouville, it is this
version that will be mainly discussed in this thesis.

Boundary value problems over infinite intervals often appear in applied math-
ematics and physics and thus the existence of solutions for such problems has
become an important area of investigation and many papers focus on the exist-
ence solutions for boundary value problems on unbounded intervals, see [28], [49]
12, 46, 18, 23, 47, K1, 50, 27].

In [40], the authors studied a Riemann-Liouville fractional boundary value

problem at resonance and on an infinite interval:



Dgix(t) = f(t,z(t)), t>0

172 (0) = 0, D$ ' (c0) = D§ 'z (0) .

Where 1 < o < 2, Dy, denotes the Riemann-Liouville derivative and Igj “ denotes
the Riemann-Liouville integral. Under some conditions on the nonlinear term f,
the authors proved the existence of maximal and minimal positive solutions uppon
the upper and lower solutions method and a fixed point theorem for an increasing
operator.

Differential equations involving p-Laplacian operator have been studied in sev-
eral papers and attracted more attention since they have various applications in
different fields of sciences such as fluid flow in a porous medium, elasticity, elec-
trorheological fluid,...see [7, 1T, 17, B35, (1, 57, 70, [79).

Leibenson [48] applied the p-Laplacian differential equation for the first time
to model the turbulent flow in a porous medium, then he proved the existence of

solutions of the p-Laplacian differential equation

(0, (w'(1))" = f(t,u(t), 0<t <1,

where ¢, is the p-Laplacian operator defined by ¢,(s) = [s|” s, p>1.
In [35], the authors proved the existence of positive solutions by using some
fixed point theorems, for a Riemann-Liouville fractional boundary value problem

containing the p-Laplacian operator:

D€+ (QS (D0+x())) = f(t,i(](t)), 0<t<l1

z(0) = Dj.x(0) =0,

-2
D x(1) = a; Dy, x(n;)
-
¢, (Dgex(1)) = Y _ b, (Dgra(n,)),
=1



where 1 < o, < 2, 0<~v < 1,0 < ai,byym, < 1,71 =1,.m—-2, f €
C([0,1] x Ry, R, ), f is singular at x = 0.

The stability of solutions for fractional differential equations is an important
topic to study. Note that fractional derivatives are nonlocal and have a singular
kernel and therefore the analysis of the stability of fractional differential equations
is more complex than ordinary differential equations. The most used methods are
those of Lyapunov direct or indirect, for some papers dealing with the stability of
solutions for fractional differential equations, we refer to [14} 15, 20, 52, [55].

In [20], the stability of a Caputo fractional initial value problem is discussed

by Krasnoselskii’s fixed point theorem in a weighted Banach space:

“Dex(t) = f(t,o(t),t>0, 1<a<?2,

z(0) = =z, 2'(0)=mx.

In [55], thanks to Caputo type fractional comparison principle and a fractional
differential inequality, the authors investigated the stability and instability of a

class of Caputo fractional differential equations

CD%:):(t) = f(tx(t), t>t, 0<a<l,

x(to) = xo.

A differential equation of delay is a differential equation where the temporal
derivatives at the current instant depend on the solution and possibly on its de-
rivatives at the preceding instants. Instead of a simple initial condition, an initial
history function must be specified. In many current models, the history is a con-
stant, but we regularly encounter nonconstant history functions.

The differential equations involving delays are useful for analysis and prediction

in various domains of sciences as in population dynamics, epidemiology, immuno-



logy, physiology..., see [1l, 4, @, 10, [30}, [74} (75} [76].
In In [I], the existence and uniqueness of solutions for a delay Riemann-
Liouville fractional boundary value problem is investigated by some fixed point

theorems,

Dg.ax(t)=f(t,z(t),z(t—71)), te[0,T], 0<a<l,

z(t)=¢(t), te[-7,0].

The aim of this thesis is to discuss the existence, uniqueness and stability
for some fractional nonlinear boundary value problems on infinite intervals, by
application of fixed point theory. Let us give the review of each chapter of the
thesis.

In Chapter 1, we expose its properties. We provide some basic properties for
fractional integrals and derivatives. We give some useful fixed point theorems,
then we end this chapter by citing the concept of stability of solutions.

Chapter [2] focuses on the existence, uniqueness and stability of solutions for
a nonlinear Riemann-Liouville fractional boundary value problem with variable

delays:
(Dgou(t) — qlt)f(tult — 0:(8)), ult — 0(8) = 0, >0,

u(t) =¢(t), tel-7,0],

u’(0) =0,  limyo DI Mu(t) = T(a)u(0),

where 2 < o < 3, D, denotes the Riemann-Liouville fractional derivative
of order a, the functions 6, € C(Ry,R;) such limy (¢t — 0;(t)) = +o0, i =
1,2, 7 = —ming<;<o mingo(t — 6;(¢)). We assume that ¢ : [0,00) — [0,00), f €
C (R, x R?,R) and ¢ is a continuous function on the interval [—7, 0].

We investigate the existence of solutions, by the nonlinear alternative of Leray
Schauder and the uniqueness of solution by the Banach contraction principle and
finally we discuss the uniform stability of the solution.

The results of this chapter are submitted for publication:



F. Fenizri, A. Guezane-Lakoud, R. Khaldi, Stability of solutions to fractional
differential equations with time delays.

In Chapter [3| we study the existence of solutions for a fractional boundary
value problem with the p-Laplacian operateur, by using Krasnoselskii fixed point

theorem:

(D3 (6,(Dgyu (1)) + () f(t, ult), DG ult)) = 0, > 0

u(0) =0, Dg:tu(oo) = [ g(s)u(s)ds,

Dg?u(0) = [;° h(s)u(s)ds, Dy (¢,(Dgvu(0))) =0,

\ 0

where Df, and Dg+, are the standard Riemann-Liouville fractional derivatives,
2<a<3,0<0<1,9,(s) = s s,p>1,q:[0,00) = Rand f: [0,00) xR? —
R are continuous functions and g, h € L' ([0, 00)) are nonnegative functions. The
results of this chapter are published in:

F. Fenizri, A. Guezane-Lakoud, R. Khaldi, Existence of solutions for integral
boundary value problems with p-Laplacian operator on infinite interval, J. Non-
linear Funct. Anal., 2021 (2021), Article ID 13, 1-13.



CHAPTER 1

Preliminaries




1.1. Function spaces

In this chapter, we introduce some important functions that are used in frac-
tional calculus such the Gamma function that acts as a generalized factorial. We
give some necessary concepts on the theory of fractional calculus, namely the in-
tegral and the derivative of Riemann-Liouville and the derivative of Caputo. We
quote their basic properties including the rules of their composition. We can find
more information in [30} [60, 1T, 12, 29, 63, 56, 62]. We expose some important

fixed point theorems as well as the concept of stability.

1.1 Function spaces

1.1.1 Integral function spaces

The spaces LP are spaces of measurable functions that are p-integrables in the

sense of Lebesgue.

Definition 1.1.1 [65] Let I = (a,b), where —oco < a < b < 400, be a finite or
infinite interval in R. We denote by LP(I) (1 < p < 00). the set of those Lebesgue

real valued measurable functions f on I for which

p

11, = / F)lPds | < oo

If p = oo the space LP(I) consists of all measurable functions with a finite norm

[ flleo = essigg\f(t)!

1.1.2 Space of absolutely continuous functions

Let I = [a,b]), be a bounded interval.

Definition 1.1.2 [65] We denote by AC|a,b] the space of functions f which are

absolutely continuous on [a,b]. It coincides with the space of primitives of Lebesque



1.2. Gamma function

summable functions:

T

f(z) € ACla,b] & f(x) =c+ /go(t)dt : (p(t) € L(a,b)),

a

Definition 1.1.3 [65] We denote by C™ (I) the space of functions f which are n

times continuously differentiable on I with respect to the norm

fllgn = D max[£*(z)]

In particular, forn =0, C° (I) = C (I) is the space of continuous functions f on

I with respect to the norm
A1l = max | f(z)]

1.2 Gamma function

Here we give some information about the gamma function, which plays an im-
portant role in the theory of fractional order differentiation and in the theory of

fractional differential equations.

Definition 1.2.1 [60] The Gamma function I (.) is defined by the integral

+oo
['(z2)= /e_tt’z_ldt, Vz e R

0

and possesses the following basic properties
'(z4+1)=2I'(2), Re(z) >0,
for any integer n > 0, we have

I'(n+1)=nl,



1.3. Fractional integrals and fractional derivatives

and

A limit definition of the Gamma function is given by

z

|
I'(z) = lim nn

iy Fe) >0

1.3 Fractional integrals and fractional derivat-
ives

Definition 1.3.1 [63] The Riemann-Liouville fractional integral of order o > 0

of a function g is defined by

t

/(t— $)* g(s)ds, t >a

a

12:9)(0) = 77

provided that the right side is pointwise defined on (a,+00).

Properties [65] Let «, 8 > 0, then the following relations hold

I'(5)

o (z—a)’ () = ot B (t —a)**
I la =) (0= 577 (- a).

In particular, if >0 and k € N, then
(D*129) (2) = It *g (x).
If >0 and 8 >0, then
S Llig (@) = 157 (x)

Definition 1.3.2 [63/The Riemann-Liouville fractional derivative of order a €

10



1.3. Fractional integrals and fractional derivatives

R of a function g is defined by
(0% d " n—«
Do) = (5 ) (g))

—F@%:6<%)é/@—sfﬂqg@ﬁmt>a,

where n = [a] + 1, [a] is the integer part of a.

Properties. [65] Let o, 5 > 0 and n = [a] + 1, then the following relation
holds:

(D5 =™ ) 0 = s =)

On the other hand, for k=1,2,...,n, we have

(D2 (=) ™) (1) =0,

In particular, the Riemann-Liouville fractional derivative of a constant is in general

not equal to zero, in fact

(x—a)"”

(Dg+1) (z) = T(—a)

,0<a< 1.
Lemma 1.3.1 [65/Let o > 0, then the fractional differential equation
D8+g (t) = Oa

has

g(t) = et P h et F gt b L et
¢ € Ri=12..n

as solution.

Lemma 1.3.2 [65] Let « >0, n=[a|+ 1. If g € L' [a,b] and g,,—o € AC" [a,b],

11



1.4. Fixed point theorems

then the equality

n (n—j) ]
(3+D+ In—a () (t_a)afj

9) (
FlF T(a—j+1)

holds almost every where on [a,b]. In particular for 0 < o < 1, we have

oD% g (1) = g (1) — 22D (¢ gyet

where gn_o = 1)7%g and g1_o = I;jag.

Lemma 1.3.3 [65] Let B > a > 0, then we have

D212 () = I g (x).

1.4 Fixed point theorems

Fixed point theory is an important subject with a large number of applications
in various fields of mathematics. The fixed point theorems concern a function
f satisfying f(z) = 2z under some conditions on f. Depending on whether the
conditions are imposed on the function or the set, different fixed point theorems

are given, we quote the following that can be found in [65].

Theorem 1.4.1 (Banach contraction principle) Let T' be a contraction on a Banach

space X. Then T has a unique fixed point.

Theorem 1.4.2 (Leray-Schauder nonlinear alternative) Let C' be a convex subset
of a Banach space, U be an open subset of C with 0 € U. Let N : U — C be a
completely continuous mapping. Then either

(i) N has a fived point in U, or

(it) There is an © € OU and A € (0,1) with x = ANx.

Theorem 1.4.3 (Krasnoselskii fized point theorem) Let € be a closed bounded and
convexr nonempty subset of a Banach space X. Suppose that A and T map ) into
X such that

12



1.4. Fixed point theorems

(i) A is continuous and compact.

(i) T is a contraction mapping.

(iii) Az + Ty € Q for all x,y € Q.

Then there exists x € Q with v = Ax + Tx.

The criteria for compactness for sets in the space of continuous functions
C(la, b)) is the following,.

Theorem 1.4.4 (Arzela-Ascoli theorem) A set Q2 C C([a,b]) is relatively compact

in C([a,b]) iff the functions in Q are uniformly bounded and equicontinuous on
la, b].

We recall that a family €2 of continuous functions is uniformly bounded if there
exists M > 0 such that

|f|l = max |f(z)] < M, VfeQ.

z€[a,b]

The family €2 is equicontinuous on [a, b , if Ve > 0, 3 > 0 such that Vi, 2 € [a, b]
and V[ € (), we have

[t —taf <n=|f(t1) — ft2)] <e.

As the Arzela-Ascoli theorem is no longer valid in the case of a non-compact

interval, the following compactness criteria will be useful [14].

Theorem 1.4.5 Let C, = {y € C ([0, +00)),lim; o y (t) exists} equipped with

the norm ||yl = sup |y (t)|. Let F C Cs. Then F is relatively compact if
te[0,+00)
the following conditions hold :

(1) F is bounded in Cw.
(2) The functions belonging to I are equicontinuous on any compact subinterval
of [0,00).

(3) The functions from F' are equiconvergent at +oc.

13



1.5. Stability of solutions

1.5 Stability of solutions

The stability of nonlinear fractional differential equations is studied by different
methods such as Mittag-Leffler stability, Ulam stability, Lypunov method ... Since
it is difficult to apply these methods when the fractional order is higher to one,
much work is devoted to finding another efficient method to study the stability of
nonlinear fractional differential equations.

Let X be a Banach space, g : [ty,0) X X — X be a function and consider the

differential equation

d

S gta) ty <t < oo (1.1)
dt

with ¢ (¢,0) = 0.

Definition 1.5.1 [5] A solution x of equation 1s said to be stable if for
every € > 0 there exists § = 6 (¢,tg) > 0 such that for every xy € X, the inequality
o] < & implies ||x (t,to, z0)|| < €, for all t > to.

A solution x of equation s said to be uniformly stable if the constant ¢
can be chosen independly of to, i.e. 0 = (¢)

A solution x of equation is said to be asymptotically stable if it’s stable
and for any t > to, there exists 6 = 0 (to) > 0 such that ||xo| < 0 implies

limy— oo (t, g, m9) = 0.

14



CHAPTER 2

LStability of solutions for nonlinear fractional differential

equations with variable delays
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2.1. Introduction

2.1 Introduction

Fractional differential equations involving delays are becoming an active area of re-
search and therefore attracting increasing interest, this is due to their applications
to a variety of problems in science and engineering, such as population dynamics,
epidemiology, immunology, physiology, we refer to [Il 4, Ol 10, B0, [74, [75], [76] for
some interesting articles.

When the course of the process at a certain point in time depends on its past
history, the delays may be related to the duration of certain previous processes
such as the duration of the infectious period, the time between the infection of a
cell and the production of new viruses.

In this chapter, we are interested in investigating the following nonlinear frac-

tional boundary value problem with variable delays:

[ Deu(t) +q) f(tult — 0:(t),u(t — 0(t)) =0, 2<a<3, t>0,

u”(0) = 0,limy_.oo Dy 'u(t) = T'(a)u(0),

\

where Df, denotes the Riemann-Liouville fractional derivative of order «, the
functions 6; : [0,00) — [0,00) are continuous for all ¢ = 1,2, such lim; (¢ —
0;(t)) = +00, T = — ming<;<e mingo(t — 6;(t)), q : [0,00) — [0, 00), the function f
is continuous on [0, 00) x R2and ¢ is a continuous function on the interval [—7, 0].

By means of the nonlinear alternative of Leray Schauder and the Banach con-
traction principle, we prove the existence and uniqueness results then we analyze
the stability of the solution.

Recently, several works have appeared dealing with the existence of solutions
for fractional differential equations with delay, [1, 9, 43, 75} [76].

In [43], the authors discussed the existence of solutions for the fractional Riemann-

Liouville differential equations with a constant delay,

16



2.1. Introduction

Dgiu(t) = w(t)+ f(tu(t),ut—71)), 0<a<l1, te(0,1)

u (t) = (p(t% te [_T7O]>
subject to the boundary conditions

u(0) = lim ' %u(t) = u(1),

t—0+t
Dii®u(t)imo = ().

In [77], by Leray-Schauder nonlinear alternative, sufficient conditions on the
nonlinear term, that guarantee the existence of solutions to the following fractional

boundary value problem over an unbounded interval are established,

Dgiu(t) + f(t,u(t) = 0, ae(1,2), te (0,00)

u(0) = 0, tlim Do tu(t) = Bu(€), 0< €< .

Where Dy, is the Riemann-Liouville fractional derivative and f is a continuous
function.

In [75], the author established the stability of solutions for a nonlinear fractional
differential equation on an infinite interval with constant delays and subject to a

Riemann-Liouville fractional integral boundary condition:

Dgiu(t) = iaj(t)f(t,u(t),u(t—ﬁ):0, 0<a<l 0<t<oo

J=1

u(t) = @), t<0

(()lJr_lu(t)\tZO = 0, lim Sp(t) =0,

t—0—

17



2.2. Existence and uniqueness of solution

here f : R x R* — R is a continuous function, a; and ¢ are given continuous

functions, 7; > 0, j = 1,2, ..., n are constants.

2.2 Existence and uniqueness of solution

First, we prove that the corresponding linear problem has a unique solution, then

we transform the problem (P) into a fixed point problem.
Lemma 2.2.1 The following linear fractional boundary value problem

Dgu(t) =—e(t), 2<a<3, t>0

u(t) =o(t), te[-,0
u”(0) = 0,limy_0e Dy Mu(t) = T'(a)u(0)
has a unique solution given by

S(0)°1 £ [ G(t, s)e(s)ds, £ >0
u(t) = °

where

G(t,s) = —
(¢, 5) N a—1 0<t<s<o0.

)

1 ot —(t—9)* 0<s<t<oo
) t

Proof Applying the integral operator [, to the equation Dy, u (t) = —e(t),then

using Lemma ( , it yields,

w(t) = et et et — Ie(t). (2.1)

18



2.2. Existence and uniqueness of solution

The conditions u (0) = ¢(0) and «”(0) = 0, imply ¢; = ¢3 = 0 and the boundary

condition limy ., DJ; 'u(t) = I'(a)u(0), gives

o0

o
Cc1 = F(a €

0

Replacing the constants c1, co and c3 by their values in (2.1)), then the solution

can be written as
o

u(t) = (0)t*! +/G(t, s)e(s)ds,

0

where

1 ol —(t—s)1, 0<s<t<oo
G(t,s) = 57— ot
') te 0<t<s <.

Lemma 2.2.2 The function G is continuous, nonnegative and satisfies

G(t,s) < 1
1+t1 = I(a)’

forall s,t >0

Proof The proof is easy, then we omit it. W
Let (X, ||.||) be the Banach space

X:{uEC[—T,oo): sup |u(—t>|<oo}

te0,00) 1 + 171
with respect to the norm
Jullx = llully + [lull ,
where
= e )l = sup L
The following compactness criteria will be useful as we are on an infinite interval,

see [14. [67].

Lemma 2.2.3 Let Z C X be a bounded set. Then Z is relatively compact in X if
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2.2. Existence and uniqueness of solution

the following condition hold:

i) The functions belonging to Z are equicontinuous on any compact subinterval
of [-7,00) .

it) The functions from Z are equiconvergent at +o00, i.e. given € > 0,there

exists a constant | =1 (g) > 0 such that

uty) — u(ts)

<e tita>1 ueZ
L+ T 145! e

Denote by T' the operator

T : X—-X
e(0)t>t + of G(t,s)q(s)f(s,u(s —01(s)),u(s — Oa(s))ds, t >0,

p(t), tel-70],

Tu(t) =

We therefore transform the problem (P) into a fixed point problem, i.e. u is a
solution for the problem (P) if and only if u is a fixed point for the operator T,
ie. Tu = u.

Let us make the assumptions necessary to solve the problem (P).

1 ere exist Two nonneqative Junclions 1, L2 c , 00 ) suc a
H,\)Th st t tive functions Ly, L, € L' (0 h that

‘f(t, (L4t oy, (L+ 2 y) = F(E (14 Daa, (14 )yo)

)

< Li(f) w1 — 2| + La(t) [y1 — o, (2.2)
for all x1,y1,22,y2o € R, t >0 and

C' = max /q(s)Ll(s)ds, /q(s)Lg(s)ds < @. (2.3)

0 0

(Hy) There exist t; > 0, such that t — 0;(t) <0, if 0 <t <t; t—0;(t) >0, if
t>t,i=1,2.
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2.2. Existence and uniqueness of solution

(Hs) The function f is continuous and there exist nonnegative functions a, b
and ¢ € L' (0,00) such that

[f(t,u,0)] < alt) ul + b(E) o] + c(t)

and

o)

/q(t) (L+t*7Y) (a(t) +b(t)dt < oo,

0
oo

/q(t) (a(t) +b(t))dt < oo,

/q(t)c(t)dt < o0.

Theorem 2.2.1 Assume that assumptions (Hy) and (Hs) hold, then the nonlinear

fractional boundary value problem (P) has a unique solution in X.

Proof To prove the uniqueness of the solution, we shall apply the Banach con-

traction principle. Let wu,v € X, we have
|Tw —To||, = H[laX] |Tu(t) — Tw(t)| = 0. (2.4)
te|—7,0

Now, let ¢t > 0, then it yields

Tu(t) —
1+ta1

\g ! /q )1 (s, u(s — 1(5)), uls — 0a(s))
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2.2. Existence and uniqueness of solution

. ﬁ/q(s) 'f(& (1+ salliz(il— (s) (1+ sa11+) Zc(fl_ 0a(s),
(s (1+ so‘;lJ)rZ(il— 61(5))7 (1+ so‘;:)Lq;(as_l— 05(s)) s

. ﬁoﬁ(% YECECIEICEGI

. ﬁ]’q(s)w) o =0~ =)

S ﬁjq(% )| Mo D ks = o,

. ﬁ]q(% )L =D —wls =),

" ﬁ O] (o) La(s) |1~ 2B g

. ﬁzq(s)%(s) o = 0se) —le =)

< e (= vl + lu=vlL), 2.5)
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2.2. Existence and uniqueness of solution

consequently,

2C
1T = Tolx < () lu = vl x -

Taking (2.4) and (2.5)) into account, we obtain

[T =Tl < lu = vllx -

2C
I(a)
Thanks to (2.3]), we conclude that T is a contraction then by Banach contrac-
tion principle we deduce that the operator T" has a unique fixed point in X which
is the unique solution of the problem (P). H

The properties of the operator T are given in the following.

Theorem 2.2.2 Assume that (Hs) and (Hs) hold. Then the operator T is com-

pletely continuous.

Proof We prove it in four steps.

Step 1: We show that 7' is continuous. Let u, — u as n — oo in X, we have

U (1) _ u(t)
Ltot 14l

If —7 <t <0, then
| Tu, — Tul|l, = max |Tu,(t) — Tu(t)| = 0.
te[—7,0]

If t > 0, then the continuity of T" follows from the continuity of f, in fact we have

‘Tu"ftl ;Tlu(t) ' < r(la) / a(5) 11 (5 un(s = 01(5)), un(s — 02(5))

—f(s,u(s —61(s)),u(s — 0s(s))|ds — 0, n — oo,

thus

| Tu, — Tul|ly — 0, n — o0,

hence, T is continuous.
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2.2. Existence and uniqueness of solution

Step 2: The operator T is uniformly bounded. In fact, let L > 0 and A =
{u € X,||ul|x < L} be any bounded subset of X. Let u € A, then

Tul|l, = Tu(t)| = < 00.
ITully = maxx [Tu(®)] = el < o0

' Tu(t)
1+ tot

< |o(0) #¥1-+/'G@8)(@ﬂ&u@—emﬁxMS—%@»w

= 1+ ¢t 1+¢o1?
0

q(s) [ (s, u(s = 01(s)), uls — b2(s))| ds

swmn+—33/aﬁm@HMS—m@»waHMS—%@m+w@»w
ﬁwwwwwm

1 1
_/b ‘/U/S_QQ ‘dS m
0

0\8
Q

1 1
W/Q(S) a(s) [u(s — 01(s))| ds + mo/q( $)b(s) [u(s — 0a(s))| ds
17 L%
+mdmuwwmmi@ﬁmw
<o)+ 12 [ (o) meﬁ (14 ) ds
lully |, -
+N®!£@uwk+Fm0/¢>m>@+s ) ds
1 [e¢]
+ mg/q(s)c(s)ds
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2.2. Existence and uniqueness of solution

Hence, T'(A) is uniformly bounded.
Step 3. We shall prove that T'(A) is equicontinuous on any compact subinter-

val of [—7, 00).
Case 1. Let S > 0, t1,t3 € [0, 5] and u € A. Assume that ¢y > t1, then

t()t—l ta—l
0 2 . 1
'@( )(1+t3‘—1 1+t‘f—1)‘

I N

|a(s).f (s, uls — 01(s)), uls — Oa(s))| ds

(t2,s) t1,
J]gley - stoy
1+t5~ 1+t

0
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2.2. Existence and uniqueness of solution

5! ot
< 0 —
= '“0( )<1—|—t§‘_1 1+t‘{“1>

IN

GtQS tls
+ al_ a—1
1+t 1+t
0

xq(s) [(a(s) +b(s)) (lully + (1 +5*7) [Jull,)

+7 tl? _ tla
IR
0
xq(s) [(a(s) +b(s)) (lully + (1 +57) [|ull,,)
toc—l ta—l
0 2 L
‘SO( )<1+t04—1 1+to¢—1>

tQS tls
+ a—1 a—1
1+ 1 1+ t5
0

xq(s) [(a(s) +b(s)) ([lullo + (1 +5"7") [lull)

+7‘ G(ts)  Glt,s)

T+ttt 14t

xq(s) [(a(s) +b(s)) (llully + (1 +5*7) [Jull)

26
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2.2. Existence and uniqueness of solution

5! ot
< 0 _
= '“0( )<1—|—t§‘_1 1+t‘{“1>

t1

o

0

(t5 =107 = (e =) = (L —5)*)
(1+t57 )T ()

xq(s) [(a(s) +b(s)) (lully + (L+ ") Jull) + e(s)] ds

to

o

t1

ty =7t (ty — s)?

14ty

xq(s) [(a(s) +b(s)) (lullo + (1 + 57 llull ) + c(s)] ds

(o)

o

t2

ot — ¢t
(1+t57 )T (a)

xq(s) [(a(s) +b(s)) (lullo + (14577 [lull.) + c(s)] ds

T 1 1

+ [ |G(ty,s —
/‘ (h )(1+t§“‘1 1+t‘f‘1)
0

xq(s) [(a(s) +b(s)) (lullo + (1457 llull ) + c(s)] ds
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2.2. Existence and uniqueness of solution

a—1 a—1
t2 tl

< ‘w(o) 1~

I e
t1
“f

0

(5 =t = (e =)' = (L —5)*)
(1 + t;"l) INEY!

x q(s) [(a(s) +b(s)) (lully + (1 +577) [lull,) + c(5)] ds

352~ 1
TE / o(s) Dl

+(a(s) +b(s)) (1 +5"7") Jull +c(s)) | ds

/ (s )l

+ (a(s) +b(s)) (L4 5*7") lull, +c(s))| ds

ta l_ta 1

1+to¢1

1
(o)

/ (s ) lull

+(as) +b(s)) (L+ 5°7) [lull . + e(s))] ds

a—1 a—1
tl — t2

+ Ares ) (16

—>0, aStlﬁtQ
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2.2. Existence and uniqueness of solution

Case 2. Let —7 <t; <ty <0, then

max |[Tu(ts) — Tu(ty)| = max |p(ta) — p(t1)| — 0, as t; — to
tl,tQE[*T,O] tl,tze[*T,O]

Case 3. Let —7 <t; <0 <ty < o0, hence

Tu(t Tult Tu(t Tu(t
ulty) _ Tult) || Tell) gy (0) + 7o) — -0
1+ 15 141 1+ 1 1+t
7 — Tu(0 Tu(0) —
tOl 1 t2
< 5 _ G(0,

x q(s) [(a(s) +b(s)) (lully + (1 +5°7") lull o) + c(s)] ds
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2.2. Existence and uniqueness of solution

a—1
t2

1+t571

<005 [ate) 4 560 (lully + (127 ull) + ()] s+ f |

[2)

x q(s) [(a(s) +b(s)) ([ully + (14577 [|ull,) + c(s)] ds

+ ‘ (0) - 1 i(z%)—l

— 0, ast; — 0 ,ty — 0.

Consequently, T'(A) is equicontinuous on any compact subinterval of [—7, 00).
Step 4. We show that T is equiconvergent at co. In view of assumption (H3),

it yields for any u € A,

o0

/Q(S) (s, u(s = 01(s)), uls — B2(s))| ds

0

o0

< /Q(S) ((a(s) +b(s)) llully + (als) + b(s)) (1 +5°71) [lull, + c(s)) ds

0

< L / q(s) (a(s) +b(s))ds + L / q(s) (a(s) +b(s)) (1 + Sa_l) ds + /q(s)c(s)ds
< OoQ.
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2.2. Existence and uniqueness of solution

Now, since lim;_, 13:;&11 = 1, then there exists 77 > 0 such that , for any
to > 11 > Tl,
tgvfl t?*l tgéfl tafl
— < |——— -1+l -——| <e. 2.6
’1+t§“1 Rl N b 1+t (2:6)
Moreover, we have lim; . “Hff—fll = 1 for all N > 0. Thus there exists T,
such that, for any to > ¢; > Ty and 0 < s < N,
a—1 a—1 a—1 a—1
to — s t1— s to — s t1 —s
( 2 2—1 - ( : 0?—1 ( : 3—1 =1+ 1= ( - (3—1 (2-7)
<|1- % 1- <1—a)—1 <e
1415 149

Choose M > max {71, T2}, then for any u € A, to > t; > M and t; — t3, by

(2.6) — (2.7) we obtain
taf]- tafl
< 0 2 _ 1
- ‘w( )<1+t§” 1+t§“1)'
(t9, s t1,
i - g
L+t 1+t
0
taf]- tafl
< 0 2 _ 1

t1

+ F(la) 0/

x q(s) [(a(s) +b(s)) (llully + (L + 57" lull) + c(s)] ds

I S T

|q().f (s, uls — 01(s)), uls — Oa(s))[ ds

tg! tet (ta—5)*" (1 —5)*")

I S A 7 1+t
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2.2. Existence and uniqueness of solution

to
1 / 5=t et (g —s)!
D(e) ) |1+t 141070 14457t
t1
x q(s) [(a(s) +b(s)) (lullo + (L +5°7") [Jull,,) +c(s)] ds
1 / 5! ot
Lla) ) |14+t 148970
to

x q(s) [(a(s) +b(s)) (lully + (1 +5°71) ull ) + c(s)] ds

e + 455 / a(s) ) lull

+(a(s) +b(s)) (1+5*7) llull o +c(s)) | ds

+mt/|q(s) ((a(s) + b(s)) [[ul,

+(a(s) +0(s)) (1457 [Jull + c(s))| ds

+ / (s )l

+ (a(s) 4+ b(s)) (1 + sa_l) lull, + c(s)) ‘ ds
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2.2. Existence and uniqueness of solution

< (90(0) N %) . / 19(s) ((as) + b(s)) [luly

+ (a(s) +b(s)) (1 + ) |lull, + c(s)) ‘ ds

— 0 as ti1,t0 > M.

Hence T is equiconvergent at oco. Finally by Lemma we conclude that T is
completely continuous. W

Now we give an existence result.

Theorem 2.2.3 Assume that (Hy) and (Hj) hold. Then boundary value problem

(P) has at least one solution.

Proof We will prove that all the assumptions of the Leray-Schauder nonlinear

alternative are satisfied. Set
U={ueX:|uly<n},

where
2ol + ﬁ /q(s) (a(s) +b(s)) [1 + (1 + 5] ds + ﬁ /q(s)c(s)ds <.

Assume that there exists © € OU with u = AT'w and A € (0, 1), then

— |ATul, = ATu(t)] < Tu(t)| = )] =
ullg = |ANTul|, tén[g%o“ U()|_t£§$0]| u(t))| t£1§0]|¢()| el »

ATu(t)
1+ ¢t

‘ Tu(t)
sup o
tef0,00) | L 1

lull. = [ATull. = sup '

te[0,00)

ot G(t,
< s o0 / 2D 5) 5.t — 01()), s — ()
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2.3. Stability of solutions

(@)
< el + gy [ a(s) (alo) + sy ds e [ a(6) (a) + 55D (1457 ds

: 70
F q
0
Now taking into account (2.8) and the fact that u € OU, it yields

1 =l =y + full
2l + g [ 066) (als) +8(s)) [1 (1)) st s [ ate)etonas

< 7

which is impossible and then we conclude by the nonlinear alternative of Leray-
Schauder that the operator T has a fixed point in U and then the problem (P)

has at least one solution satisfying ||ul|y < 7. W

2.3 Stability of solutions

In this section, we analyze the stability of the solution for the nonlinear frac-

tional boundary value problem (P). Let @ be a solution of the following fractional
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2.3. Stability of solutions

boundary value problem

D () — a(t) F(t, @t — 0u(t)),alt — 05()) =0, 2< a<3,t>0
(P) u (t) = @(t)v te [_T7 0]
@(0) = 0,limy ..o D*Vii(t) = T(a)ii(0).

By a stable solution we mean the following:

Definition 2.3.1 The solution of the fractional boundary value problem (P) is
stable if for any € > 0, there exists & > 0 such that for any two solutions u and @

of the problems (P) and (P) respectively, one has || — @|l, < 8, then |Ju — 4y <

E.

Theorem 2.3.1 Under the assumptions (Hy) and (Hs), the unique solution of the

fractional boundary value problem (P) is uniformly stable.

Proof Let u be the unique solution of the problem (P) and @ be the unique

solution of the problem (P). Then we get

lu—ally = ma

hax u(t) —a(t)] = max o) = @(B)] = lle = 2llo - (2.9)

7,0 te[—7,0

Now, let ¢t > 0, then we have

I < e -0
i 40 s = 0a(5). s = ()
~ (s, = 04()), (s = (s)) | ds
< T 60— 0)
by [amals) =A== 0D
iy a0 ale [HE= D =R =) g



2.4. Examples

By following a reasoning similar to that of the proof of theorem [2.2.1} we obtain

la—aly < (1425 ) o= @l + 2 u—

thus [(a) + 20
a) +
— U < | =—— — @l - 2.1
o= il < (oo ) e = Plo (2.10)
From (E3) and (ZT0), we get
. 2T («v) N
o=l < (g —gg) 1o~ e

2T ()
I'(a)—2C

|u — a||y < €, that proves the uniformly stability of the unique solution. W

-1
Hence, for € > 0, there exists § = < ) e such that if ||p — @||, < 0, then

Now we give some numerical examples.

2.4 Examples

Example 2.4.1 Consider the fractional boundary value problem (P) where

12 et 1
— 2 r - ty — t) = t2
e 5,f(,a:,y) 6(w+y x>,so() :

1+ a2
q(t) = # 0:(t) = % + % By (t) = % ; ;= %
Then the assumptions (H,) and (Hs) hold. In fact, if we choose
- 1427

- 5 et ) -

6 Y
then the assumption (Hy) holds with C' = 0,54036.

Choosing t, = ta = 1, then t — 0,(t) < 0, for 0 <t < 1, and t — 0,(t) > 0,
if t > 1,49 = 1,2. Hence the hypothesis (Hsy) is satisfied. By Theorems and
we deduce that the problem (P) has a unique solution which is uniformly

stable in X.
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2.4. Examples

Example 2.4.2 Consider the fractional boundary value problem (P) where

f(t,z,y) (e + (t) =1

o= — T = —_— _— —=

Y 77y 10 1+t y 790 )
1 t 1

t) = 0.(t) =1, 0(t) = =+ = =1

Q() 1+t37 1() ’ 2() 2+277-

Let us check the hypotheses of Theorem In fact the hypothesis (Hy) holds if

we choose

3 3
- 2 te~t (1+t§)
et [ 1+t
=15 1+t |’ 2(t) 10
and then
7 () L1 (s)d —]O L s —5.9635 x 10~
NP = [ 7570 = ’
0 0
T Oose’s 5
/Q(S)L2<S)d82/ 10 ds = 0.1, F(§>:1'3293’
0 0

C=0,1<0,66465.

Furthermore, there exist t; = to = 1, such that t — 0;(t) < 0, for 0 <t <1 and
t—0;(t) >0, ift > 1,0 =1,2. Then the hypothesis (Hs) is satisfied. We deduce
by Theorems |2.2.1 and |2.3.1| that the problem (P) has a unique solution that is

uniformly stable in X.

Example 2.4.3 Consider the fractional boundary value problem (P) where

LS 1 . 1 SV +( Lt if )

‘- T 30(1 ) 30exp{vi} \30(1+2)
1 ¢
=t q(t) = 0.(t) = — + -
2% 1 1
Op(t) = 2> 4+ = 7—==
o) =5 +3. 7=3
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2.4. Examples

By computation, we get

|z e~V 1 eVt 1+ t5
t < + + -

then, we can set

eVt
60

1 eVt
o) = (30(1+t2)+ 60 )

1+1t5
c(t) = <m>,

and by calculation, we obtain

o0

/ a(t) (1 + °7) (alt) + b(t)) dt

0

—7 ! <1+t%) L 011903
) 144 60  30(1L-+t2) 60 - ’
0

7 1 S SR »
) 145 \60exp {vt}  30(1+1t2)  60exp {1}

0

=4.7284 x 1072,
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2.4. Examples

T Tl 1+ %

He(t)dt = dt =5.2360 x 1072
|/ atte /1+t§<30<1+t2>> S
0

0

12 1
' —)=12422 = -.
(%) el =3

Moreover, the inequality (@) 1s satisfied if n > 2.646 5. Hence, from Theorem
we conclude that problem (P) has at least one solution u such that ||u|| <.

Example 2.4.4 Consider the fractional boundary value problem (P) with

5 1y e 'V ]zyl 1
o = -, f(t,l',y)— + + 3 y
2 WA+ 40 10 (14+143) (1+1)
2 —t t 1
p(t) = t°, q(t) =€, 01(t) =1, 92(t)=§+§,T:1.

Then by computation it yields

—t

1 —t 1
|f(t,z,y)| < 68—0!33\ + (ereg—O) ly| + 3 5
(1+1) 40<1+t§>(1+t)

|
40 (1+t%> (1+1)

q(t) (1+t*7") (a(t) + b(t)) dt

3 2et 1
—ty (1443 dt = 0.04471
exp =t} (1+4) < 80 +40(1+t)> ’

0\8 0\8
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2.4. Examples

/q(t) (a(t) + b(t)) dt — /et (286(; T (11+ t)) dt = 2.7409 x 102,

1
/q(t)c(t)dt = /e_t - dt =1.0624 x 1072
40 (1 +t5> (1+1)

Finally, if we choose n > 2.1232 then the inequality (@ holds and then we
conclude by Theorem [2.2. that the problem (P) has at least one solution u such
that |[ull < n.
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CHAPTER 3

LExistence of solutions for integral boundary value

problems with p-Laplacian operator on infinite interval
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3.1. Introduction

3.1 Introduction

Differential equations with p-Laplacian operator appear in the modeling of several
problems in science and engineering. It is well known that differential equations
with p-Laplacian operators are often used to simulate practical problems such as
tides caused by celestial gravity and elastic deformation of beams [I7, [79].

To solve fractional differential equations with a p-Laplacian operator, several
methods are used such as the fixed point theory, upper and lower solutions method,
coincidence degree theory, iterative method, ... [57, [61, 17, 1T, [79, [7]

In [57], the authors discussed the existence of solutions for the following p-
Laplacian fractional boundary value problem involving left and right fractional

derivatives,

—°DY (¢, (Dgou(t))) + f(tu(t) =0, 0 <t <1,
u(0) = (0) =0, D u(l) =0,

where l < a <2, 0< (<1, CDlﬁ, represents the right Caputo derivative of order
[, defined as

°Dl_f(t) =

Dg, denotes the left Riemann-Liouville derivative of order o and f € C([0,1] x
R,R). Using the lower and upper solutions method and Schauder’s fixed point
theorem, they proved the existence results.

In [35], a multipoint Riemann-Liouville fractional boundary value problem is
studied,

Dy (¢,(Dgeu (1)) = f(tu(t), 0<t<1
u(0) = 0, Dj.u(1) = 3277 a; D u(Ey),

Dgu(0) = 0, ¢,(Dgu (1)) = X707 bigy, (Dgulny))
where 1 < o, <2, 0<vy<1,0<¢&,n, <1,i=1,2...m — 2, the function f is
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3.2. Existence of solutions

nonnegative and may be singular at v = 0. Thanks to a fixed point theorem for
mixed monotone operators, the existence of positive solutions is proved.

This chapter focuses on the study of a fractional differential equation over an
infinite interval and involving fractional derivatives of Riemann-Liouville type and

the p-Laplacian operator:
(D). (,(Dgyu (1)) + a(t) f(t,ult), Dgi tu(t)) =0, t >0

w(0) = 0, DT u(+00) = [7° g(s)u(s)ds, (P)

0

L D§2u(0) = [ h(s)u(s)ds, I;:°(¢,(Dgiu(0))) =0,

where D, and Dg+ denote the Riemann-Liouville fractional derivatives, 2 <
a<3,0<6<1,¢,(s) = |s|”"%s, p > 1. The functions a : [0, +00) — [0, +00),
f:1]0,+00) x R? — R are continuous and g, h € L; [0, +0c) are nonnegative.

To prove the existence of solutions for the nonlinear fractional boundary value
problem (]ED, we use Krasnoselskii fixed point theorem and the boundedness of the

Riemann-Liouville fractional operator.

3.2 Existence of solutions

To solve the problem , we need the following theorem on the boundedness of

Riemann-Liouville fractional integral operator.

Theorem 3.2.1 [6]] Let 1 < p,v < 4oo and 0 < 6 < 1. If1 < p < 3 and

v =145, then the operator 19, is bounded from L, (0,400) to L, (0,+00) :

1
5

1
v

+oo +oo
/ [va(r)|"dr | <k /|a(r)|“d7’ :
0 0

1
where the constant k = F‘(‘—l)

Throughout this paper, we assume the following conditions.
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3.2. Existence of solutions

(C1) For all p > 0, there exists M, > 0 such that

‘f (t, (1 +t"‘_1) x,y)| <M,, forallt >0, z,y € [-p,p].

(C2) The function a is not identical null on any closed subinterval of [0,+00)

and .
/ g % / (s — 7“)6_1 a(r)dr | ds < 4o0.
0 0

If a € L,[0,+00), where pp = #1_1) such that 0 < u < %

(C2) is satisfied. Indeed, taking v = ¢ — 1 = 5 in Theorem we obtain

, then condition

+oo S +oo
/ b, ﬁ / (s — ) ta(r)dr | ds = / }[g+a(r)|q71 dr
0 0 0

Set (X, ||.||) the Banach space [67],

X = {u:veC(R"R), D'ueC(R"R),
a—1
Sup Topo 1 < 400, tsel]gi ‘Do+ u(t)! < —1—00} ,

with the norm

|u(®)] -
ul| = max ¢ su . sup [DXu(t)| ¢ .
i {teRg [ o teRg! o u(t)]

The following compactness criteria will be useful as we are on infinite intervals
[14], 67]
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3.2. Existence of solutions

Lemma 3.2.1 Let Z C X be bounded set. Then Z is relatively compact in X if
the following condition hold:

i) The functions belonging to Z are equicontinuous on any compact subinterval

of [0,00), i.e. for any u € Z, 1ffi),1 and nglu(t) are equicontinuous on any
compact interval of RT.
it) The functions from Z are equiconvergent at +oo. i.e. given € > 0,there

exists a constant | =1 (g) > 0 such that

u(ty)  u(ta)
T+t 145t

<e and |Dy u(ty) — Dy tu(ts)] <e,

for any ti,to > l,u € Z.
Lemma 3.2.2 Assume e € L' (RT). The linear boundary value problem

(

Deu(t) +e(t) =0, t >0

u(0) =0, D§7 u(+oo) = f0+°° g(s)u(s)ds, (3.1)

D 2u(0) = [ h(s)u(s)ds,

\ 0

has a unique solution u given by

u(t) = / k(t, 5)e(s)ds + / G(t, s)u(s)ds,
e (5) + (o — 1) (s}t
g(s a— s
G(t,s) = o) , (32)
1 ol —(t—s)*l, 0<s<t<+4o0
k(t, s) = ['(a) { to1, 0<t<s<+oo. (33)

Proof Applying the integral operator I, to the differential equation in ([3.1)),
then using Lemma [I.3.1] we get

w(t) = e t* 4 ot 2 et — ISe(t). (3.4)
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3.2. Existence of solutions

The initial condition u (0) = 0, implies ¢ = 0 and by the integral conditions
Dy u(+o0) = OJroog(s)u(s)ds and DS *u(0) = 0+°° h(s)u(s)ds, it yields
+oo +oo
5 [ eos+ s [ gl
¢t = —— [ e(s)ds+ =— s)u(s)ds
' T I ) |
0 0

+oo
1

o = m/h(s)u(s)d&

0
Now substituting the constants ¢;, i = 1,2, 3 in (3.4]), we obtain

t +o00 +o00

u(t) = —/%e(s)ds—i— ;CZ;) /e(s)d8+ /g(s)u(s)ds

ta_Q

+m/h(s)u(s)ds

0
+oo “+o0o

= /k(t,s)e(s)ds—i—/G(t,s)u(s)d&

0 0
where k(t,s) and G(t, s) are given (3.3]) and (3.2)) respectively. W

Lemma 3.2.3 The function u is a solution of the boundary value problem @ if
and only if u satisfies the integral equation
“+o0o s

u(t) = /k(t,s)gbq ﬁ/(s—r)al a(r)f(r,u(r),DgIlu(fr‘)dr ds

+o0

+ / G(t, s)u(s)ds,

0

where k(t,s) and G(t,s) are defined in and respectively.
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3.2. Existence of solutions

Proof Applying the fractional Riemann-Liouville integral operator Ig+ to the
differential equation in (P)), then using Lemma we get

o, (Dgu(t)) = et — ﬁ / (t — )"V a(s)f (s, u(s), DS u(s))ds.  (3.5)

By the boundary condition I, 5(¢p(Dg+u (0))) = 0 we obtain ¢ = 0 and then
applying ¢, 1= ¢, to the equation 1} it yields

t

/ (t— )V a(s)f(s,uls), Deuls))ds | . (3.6)

0

1

Dgru(t) = = W

Now it suffices to apply Lemma [3.2.2 to the fractional differential equation (3.6
to complete the proof. W

Lemma 3.2.4 The functions k(t,s) and G(t,s) are nonnegative and satisfy:

1)0 < Jﬁ—j)l < ﬁforall (t,s) € (0,+00) x [0, 400).

2)0 < li(t% < ﬁ (9(s) + (o — 1)h(s)) for all (t,s) € (0,+00) X [0, +00).
Define the operators A and T': X — X as

+oo

Au(t) = /G(t,s)u(s)ds,

and

+o0 s

Tu(t) = /k(t,s)gbq %/(S—T)al a(r) f(r,u(r), Dy tu(r)dr | ds.

0 0

By computations, we get
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3.2. Existence of solutions

Dy Aut) = [ glsyuts)as.

Dy Tu(t) = /gzﬁq FL/(S—7“)6_1a(r)f(r,u(r),Dé’:lu(r)dr ds.

Theorem 3.2.2 If conditions (C1) and (C2) hold, then the operator T is com-

pletely continuous.

Proof First, we shall prove that 7" is continuous. Let (u,) be a sequence in X
that converges to u as n tends to co. Then by the Lebesgue dominated convergence

theorem and the continuity of f, we get

Thus,
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3.2. Existence of solutions

+oo s
/ ¢q (ﬁ / (5 - T)éil a(r)f(r, un(r>’ Dg+1un(7“)d7")

Moreover, we have

| Do T, (t) — DS Tu(t)| =

So, T is continuous.

Second, we shall show that 7" is a compact operator. Let B be a nonempty
bounded closed subset of X and let

M = sup ){|f(t,u(t),D8‘+_1u(t)) ,u € B}.

te[0,+00
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3.2. Existence of solutions

Taking condition (C2) into account, we get for any u € B,

1+t@ !
(3.7)
Mat 1
P 1 RV =
= T /gbq F((S)/(S r)° " a(r)dr | ds < 400
0 0
and
+oo s

| Dg M Tu(t)| = / b, T0) /(s - 7“)5_1a(r)f(r,u(r),nglu(r)dr ds

thus

|Tul| < M~ 1 —/(s — )’ a(r)dr | ds < 400,
0

and so, T'(B) is bounded.

Furthermore, let [ = [0, Tp] be a compact interval for Ty > 0. From the con-

k(t,s) o1 ,
and , t,s € [, we have, for any € > 0, there exists a
1+ to—t 1+ to-t

constant 0 < §; < € such that for all t1, t9, s1, so € [ and t; < t, as |t; — to] < Iy,

tinuity of

|s1 — s2| < d1, we have

k(t1,s1) B k(ta, s2)
I

S
B S o
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3.2. Existence of solutions

Therefore, we have

Tut1 Tut2
L+tg7h 141571

t18 t28
T4 1+t

/
by (ﬁ / (s =) a(r) f(r,u(r),D3+1u(r)dr) ds
/’uflt’a L 1Jf2t7°‘ I
ds

1 5-1 a1
o, (mo/(s—r) a(r) f(r,u(r), Dg; u(r)dr)

<</ b (r<15> [ 6= ettt O 1u<r>dr) :
1 ¢! g1
+W/ '1+tf{‘1 T 14
ds

1 / 5-1 a1
q (mo/(s —7)" "a(r) f(r,u(r), Dy; u(r)dr)




3.2. Existence of solutions

and
| D5 Tu(ty) = DG Tu(ty)|
+o0o 1 s
= / % | T5) / (s = )" alr)f(r,u(r), Dy u(r)dr | ds
t1 0
+00 1 S
- / 08 _F((S) /(8—7")(S 1a(r)f(r,u(r),Dg‘+ Yu(r)dr | ds
t2 0
2] 1 s
S Mql/% m/(S—T)é_la(r)dr ds
t1 0
— 0 as t; — o,
hence 1?;5@1 and Dy "Tu(t) are equicontinuous.

Third, we shall show that T is equiconvergent at +o0o. Let u € B, then

—+00 s

/ b, ﬁ / (s — 7“)5_1 a(r) ‘f(r, u(r), Dg“jlu(r)‘ dr | ds

0 0

+oo

qu_l/gbq ﬁ/(s—r)ala(r)dr ds < +o0,
0

0
consequently, for € > 0, there exists a constant L > 0 such that

“+o00 s

[ o\ w57 [ 6= 00" 017Gt D ) | ds <

L
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3.2. Existence of solutions

tal

T T = = 1, then there exists a constant 77 > 0 such that for

Now, since lim; ;o 7
any tq,ty > T

ot 5!
1 +to¢—1 1 +ta—1

K(t,L
From lim; ., o 7 +(ta )

= 0, and the inequalities 0 < 1+§a )1 < fm r for 0 < s <L,

there exists a constant 75 > L such that for any t1,t, > T and 0 < s < L, we

have

l{?(tg, S) k?(tg, S)
L+t 14yt

Set T3 > max {7}, T»}, then for any t1,ts > T3 and by using Lemma we get

/ tly . (t27)
AL

Tu(tl) TU tg

L+t 14yt

1
X @, —/(3—7" (r) |f(r,u(r), Dgtu(r)) | dr | ds
0

L
/ k t27 _ (t27 )
ta 1 1+ta 1
0

1
X ¢, —/(3—7" (r) |f(r,u(r), Dgtu(r)) | dr | ds
0

. 7‘ K(ts,s)  K(ta,s)

L+ 145!

X @, L/(5—7‘ (r) |f(r,u(r), D§ ()| dr | ds
0
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3.2. Existence of solutions

< 5+/Oo¢q %j(s— (r) |f(r,u(r), D tu(r)) | dr | ds
0 0
+%:/Oo¢q ﬁj(s_r (r) | £ryulr), DS u(r))| dr | ds
< 5:/00q5q ﬁj(s (r) | f(r,u(r), Dy u(r)) | dr | ds
S 70% P(lé)/s(s—r)(s_la(r)dr s+ 5y | =
0 0

moreover, we have

|Dg M Tu(ty) — Dy Tu(ts)|

/Qb (5)/ s—r)° (r) |[f(r,u(r), D§ M u(r)) | dr | ds < e.

Finally thanks to Lemma T (B) is relatively compact and then T is com-
pletely continuous. M

Next we give an existence result. Denote

+oo

A= / g(s) (T4 s ds, Ao = / h(s) (14 s*71) ds.

0

Theorem 3.2.3 Suppose that the conditions (C1)-(C2) hold and the following
condition is satisfied
(C3) We have

O<M+ (=1 <I(a), 0<A <1
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3.2. Existence of solutions

and there exists a constant R > 0 such that

+oo s

Mot / o, ﬁ / (s — 1) La(r)dr | ds < (1—\) R. (3.9)

Then the boundary value problem (@ has at least one solution.

Proof We shall prove that all conditions of Krasnoselskii fixed point theorem
are satisfied.
We know that 7" is completely continuous from Theorem [3.2.2]

We claim that A is a contraction mapping. In fact, let u,v € X, we obtain

’Auiti_t(ff(t)' < F(la) / (9(s) + (v — 1) h(s)) (1 + Sa_l) % ds
(3.9)
A+ (a—=1) A
< B
and

u(s) — v(s)]|

| Dyt Au(t) — Dyt Av(t)] < / g(s) (147 | 5o

0
< A flu =]

A1+ (a—1) A2

e < 1 and then A is a contraction

By the condition (C3), we get 0 <

mapping.
Denote Br = {u € X : |ju|| < R} a nonempty bounded closed convex subset
of X. Let u,v € Bg, we claim that Au + Tv € Bg. In fact, using (3.7)), (3.8]) and

(3.9), we obtain

R<R

Au(t) +To(t) - A+ (a—1) A
‘ 14 tot ' - I'(«)

95



3.2. Existence of solutions

On the other hand we have

| Dot Au(t) + DgT M To(t)| = / g(s)x(s)ds

+oo s
< MR+ M / b, ﬁ / (s =) q(r)dr | ds
0

0

<MR+(1-M)R<R

Therefore, ||Au+ Tv| < R, which implies that Au + Tv € Bg.
Hence the problem has at least one solution in X. W
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3.3 Examples

Example 3.3.1 Consider the following fractional boundary value problem

(

1 3 u %u
D, (6,(Dgvu (1)) + e VEPED — g t>0

u(0) = 0, D3u(+00) = [T —="u(s)ds,

0 5Q1+t%)

L 15(1+¢
where A . .
p_§7a:§’5:§7 a(t):eft

Let us check that all conditions (Ci), i = 1,2,3 are satisfied.
(C1) Let x,y € [—p, p|, then

\ \/ (1 +t%> |y
S (14 68) 2y)| = ) <M, =pt.

(C2) Using Theorem with ¢ = 4, a(t) = e, § = L and v = 3, we obtain

2

njwo

,u:g,1<,u<%. Then, we get

—+00 s “+00

/¢q ﬁ/(s—r)_éa(r)dr 5 = /

0 0 0

3
ds

1

I2.a(s)

+o0
/ a(s)[% ds
0

5
2

+o00o 5 g
= i3 /e‘gsds = (6) k3 < +00.
0

QU

Nt

IN
T
w

where
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(C3) By computation we obtain

—+00 “+o00

A = /g(s)(1+s“1)ds:/6—83(1+53)ds:1:0.2
/ / 5(1+sz) 5
and
o b 1 . 1
Ay = O/h(s) (1+5"1)ds = 0/ 0 (1) (1+5%)ds = o
Hence

5
0</\2+(oz—1)/\2:0.3<1“(§) =1.3293

2
3

Choosing p = (i) , it yields

—+o00

Mg_l/(bq ﬁ/(s—r)é_la(r)dr dsgpg (2)2/’{;3
0

0
5
1\° z
g(1> <g> (2.4)% ~ 0.136 93,

and
(1-X)R=0.2,
then
oo 1 S
MI! — — )t 1— :
/¢q F(é)/<8 )’ a(r)dr | ds < ( M) R
0 0

Thanks to Theorem the problem (@ has at least one solution in X.
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Example 3.3.2 Consider the following fractional boundary value problem

( 4
D% D% 1 —t|u(t)‘(D§u(t)>2 0 0
0+<¢p( ()+u (t))) + 1+t%€ (1+t%> = U, <t <400
0)=0,D° _ e oa p
u( ) ’ u(+oo) fo 7(1+s§)(1+52)2j(8> ”
1 Y 0.1 5 £ .
\ D3u(0) = fo 20<1+S%)(1+s3)%u(8)d8, [0+ (¢p(D8+U (0))) =0,
where . ; X .
p 47 « 37 27 a( ) 1 + t%

Conditions (C1)-(C3) hold. Indeed,
(C1) If 2,y € [—p, pl, then

4 (1 1) ol 2
‘f(tv <1+t§> ZL‘,y)‘ :e_t 1 SMp:pg.
(1+t§>

(C2) Applying Theorem with

1
q=5 a(t)=——7F, 6 ==, v=4,
Q 1+1t5 2
we obtain p = ‘—; thus 1 < p < %. Moreover, we have
+o0o S +00
1 1 1 4
b, (o) (s—=7r) 2a(r)dr | ds= Io+a(s)‘ ds
0 0 0
+o0 3
< K /|a(s)\3ds
0
+o0 4 3
1 3
= it /( ) ds| =3.8948 x k* < +o0,
1+ s3
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here

(C3) By computations it yields,

+o0
A= / g(s) (1+s*7") ds = 0.0224 40
0
and

—+00

Ay = / h(s) (14 s*71) ds = 0.014022.

+oo
1
a-t / 5 / (s— ) Ya(r)dr | ds < p x 3.8048 x k!
0 0

IN

(1-X)R = 0.25853.

Consequently,
+0o0 1 s
0 0

We conclude by Theorem that the problem (@ has at least one solution in
X.
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Conclusion

This thesis consists of two main parts. The first part is devoted to the study of the
existence, uniqueness and stability of the solutions for a class of nonlocal fractional
boundary value problems on infinite intervals with variable delays. The results are
obtained via some fixed point theorems such as the Banach contraction principle
and the Leray-Schauder nonlinear alternative.

The second part deals with the existence of solutions for Riemann-Liouville
fractional boundary value problems on an infinite interval involving the p-Laplacian
and integral boundary conditions. Thanks to Krasnoselskii fixed point theorem
and a Corduneanu compactness criteria, the existence results are established.

Future studies could address to boundary value problems containing other types
of fractional derivatives, such Antagan-Baleanu fractional derivatives, Liouville-
Grunwald fractional derivative, Hadamard fractional derivative, Hille-Tamarkin
fractional derivative, Riesz fractional derivative, Marchaud fractional derivative,
Hilfer fractional derivative, Liouville-Sonine-Caputo fractional derivative, ....

In addition, one can deal with similar problems by using other methods to
prove the existence of solutions such as the method of lower and upper solutions

and numerical methods and then other conditions have to be introduced.
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