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 الملخص

 

-وتتضمن مشتقات كسرية من نوع ريمان لانهائي مجالغير الخطية على  الحدية القيم مسائلتتعلق هذه الأطروحة بدراسة بعض     

يتم الحصول على وجود .للمعادلات التفاضلية الكسرية ذات التأخيرات المتغيرة الحدية القيم. يتعلق الجزء الأول بمشكلة ليوفيل                                                                                           

يالجزء الثان تمت      في و    شودر  .  لوري و   بناخ     مثل نظرية واستقرارها من خلال نظريات النقطة الثابتة      الحلول وتفردها 

نظرية بواسطة يتم تحديد نتائج الوجود   . لابلاسيان  باستخدامالتفاضلية الكسرية  للمعادلات الحدية القيم دراسة مشكلة ف-  

بالإضافة إلى ذلك ،،  سكيكراسنوسيل   تم إعطاء بعض الأمثلة التوضيحية                                                     النقطة الثابتة      

 

، استقرار الوحدانية  ليوفيل الكسري ، الوجود ،-، مشتق ريمان الحدية القيم مسألةالكسرية ، : المعادلات التفاضلية الكلمات المفتاحية

نظرية النقطة ،شودر لوري نظرية النقطة الثابتة ،منتهي الغير المجال ، لابلاسيان -ف عامل ،بتأخر التفاضلية المعادلات الحلول ،      

  . كراسنوسيسكيل  الثابتة النقطة نظرية ، لبناخ الثابتة
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Résumé

Cette thèse concerne l�étude de quelques problèmes aux limites non linéaires sur

des intervalles in�nis et comportant les derivées fractionnaires de type Riemann-

Liouville. La première partie concerne un problème aux limites pour des équations

di¤érentielles fractionnaires avec des retards variables. L�existence, l�unicité et la

stabilité des solutions sont obtenues via les théorèmes de point �xe, comme le

théorème de contraction de Banach et l�alternative non linéaire de Leray-Schauder.

Dans la deuxième partie, un problème aux limites pour les équations di¤érentielles

fractionnaires avec l�opérateur p-Laplacien est étudié. Les principaux résultats

d�existence sont établis par le théorème du point �xe de Krasnoselskii. En outre,

quelques exemples illustratifs sont donnés.

Mots clés: Equations di¤érentielles fractionnaires, Problème aux limites, Dérivée

fractionnaire de Riemann-Liouville, Existence, Unicité, Stabilité des solutions,

Équation di¤érentielle à retard, Intervalle in�ni, Opérateur p-Laplacien, Théorème

du point �xe, Théorème de Krasnoselskii, Principe de contraction de Banach,

Leray-Schauder nonlinéaire alternative.
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Abstract

This thesis deals wit the study of some nonlinear Riemann-Liouville fractional

boundary value problems on the half-line. The �rst part concerns a boundary

value problem for fractional di¤erential equations with variable delays. The ex-

istence, uniqueness and stability of solutions are obtained via certain �xed point

theorems, such as the Banach�s contraction theorem, the nonlinear alternative

Leray-Schauder. In the second part, we deal with a boundary value problem for

fractional di¤erential equations with the p-Laplacian operator. The main existence

results are established by the help of Krasnoselskii �xed point theorem. Further-

more, some illustrative examples are given.

Keywords: Fractional di¤erential equations, Boundary value problem, Riemann-
Liouville fractional derivative, Existence, Uniqueness, Stability of solutions, Delay

di¤erential equations, In�nite interval, p-Laplacian operator, Fixed point theorem,

Krasnoselskii �xed point, Banach contraction principle, Leray-Schauder nonlinear

alternative.
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Fractional integrals and derivatives can be seen as generalization of classical

calculus. Although fractional calculus has a history of over three hundred years,

and dates back to the mathematicians Leibniz and Euler, it was only recently de-

veloped. Over the past three decades, the subject has grown exponentially and

many researchers are actively working on this subject, mainly due to its various

applications in many �elds of science such as physics, mechanics, chemistry, en-

gineering, see [43, 64, 46, 66, 66, 52, 60, 71] and the references therein.

Liouville was the �rst person to try to solve fractional di¤erential equations,

then, some books played a considerable role in understanding the subject and gave

the applications of fractional di¤erential equations and methods to solve them, such

as the books of Miller and Ross, Oldham and Spanier, Podlubny, Samko, Kilbas,

Marichev,...

Fractional calculus studies have reached a signi�cant and appropriate level for

modern mathematics in the past decades, and since then e¢ cient and reliable

techniques for solving modeled problems with fractional integral and di¤erential

operators have been established.

Over the years, various de�nitions corresponding to the idea of an integral

or a derivative of non integer order have been used, but the Riemann-Liouville

de�nition of integrals and derivatives of fractional order remains the most common

popular in the world of fractional calculus, moreover, most of the other de�nitions

of fractional calculus are largely variations of that of Riemann-Liouville, it is this

version that will be mainly discussed in this thesis.

Boundary value problems over in�nite intervals often appear in applied math-

ematics and physics and thus the existence of solutions for such problems has

become an important area of investigation and many papers focus on the exist-

ence solutions for boundary value problems on unbounded intervals, see [28, 49,

12, 46, 18, 23, 47, 51, 50, 27].

In [40], the authors studied a Riemann-Liouville fractional boundary value

problem at resonance and on an in�nite interval:
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D�
0+x (t) = f (t; x (t)) ; t > 0

I2��0+ x (0) = 0; D��1
0+ x (1) = D��1

0+ x (0) :

Where 1 < � < 2; D�
0+ denotes the Riemann-Liouville derivative and I

2��
0+ denotes

the Riemann-Liouville integral. Under some conditions on the nonlinear term f;

the authors proved the existence of maximal and minimal positive solutions uppon

the upper and lower solutions method and a �xed point theorem for an increasing

operator.

Di¤erential equations involving p-Laplacian operator have been studied in sev-

eral papers and attracted more attention since they have various applications in

di¤erent �elds of sciences such as �uid �ow in a porous medium, elasticity, elec-

trorheological �uid,...see [7, 11, 17, 35, 51, 57, 70, 79].

Leibenson [48] applied the p-Laplacian di¤erential equation for the �rst time

to model the turbulent �ow in a porous medium, then he proved the existence of

solutions of the p-Laplacian di¤erential equation

(�p(u
0(t)))0 = f(t; u(t)); 0 � t � 1;

where �p is the p-Laplacian operator de�ned by �p(s) = jsj
p�2 s, p > 1:

In [35], the authors proved the existence of positive solutions by using some

�xed point theorems, for a Riemann-Liouville fractional boundary value problem

containing the p-Laplacian operator:

D�
0+

�
�p (D

�
0+x (t))

�
= f (t; x (t)) ; 0 < t < 1

x (0) = D

0+x(0) = 0;

D

0+x(1) =

m�2X
i=1

aiD


0+x(�i)

�p (D
�
0+x(1)) =

m�2X
i=1

bi�p (D
�
0+x(�i)) ;

3



where 1 < �; � � 2; 0 < 
 � 1; 0 < ai; bi; �i < 1; i = 1; :::m � 2; f 2
C ([0; 1]� R+;R+) ; f is singular at x = 0:
The stability of solutions for fractional di¤erential equations is an important

topic to study. Note that fractional derivatives are nonlocal and have a singular

kernel and therefore the analysis of the stability of fractional di¤erential equations

is more complex than ordinary di¤erential equations. The most used methods are

those of Lyapunov direct or indirect, for some papers dealing with the stability of

solutions for fractional di¤erential equations, we refer to [14, 15, 20, 52, 55].

In [20], the stability of a Caputo fractional initial value problem is discussed

by Krasnoselskii�s �xed point theorem in a weighted Banach space:

CD�
0+x (t) = f (t; x (t)) ; t > 0; 1 < � < 2;

x (0) = x0; x
0 (0) = x1:

In [55], thanks to Caputo type fractional comparison principle and a fractional

di¤erential inequality, the authors investigated the stability and instability of a

class of Caputo fractional di¤erential equations

CD�
t+0
x (t) = f (t; x (t)) ; t > t0; 0 < � < 1;

x (t0) = x0:

A di¤erential equation of delay is a di¤erential equation where the temporal

derivatives at the current instant depend on the solution and possibly on its de-

rivatives at the preceding instants. Instead of a simple initial condition, an initial

history function must be speci�ed. In many current models, the history is a con-

stant, but we regularly encounter nonconstant history functions.

The di¤erential equations involving delays are useful for analysis and prediction

in various domains of sciences as in population dynamics, epidemiology, immuno-
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logy, physiology..., see [1, 4, 9, 10, 30, 74, 75, 76].

In In [1], the existence and uniqueness of solutions for a delay Riemann-

Liouville fractional boundary value problem is investigated by some �xed point

theorems,

D�
0+x (t) = f (t; x (t) ; x (t� �)) ; t 2 [0; T ] ; 0 < � < 1;

x (t) = ' (t) ; t 2 [�� ; 0] :

The aim of this thesis is to discuss the existence, uniqueness and stability

for some fractional nonlinear boundary value problems on in�nite intervals, by

application of �xed point theory. Let us give the review of each chapter of the

thesis.

In Chapter 1, we expose its properties. We provide some basic properties for

fractional integrals and derivatives. We give some useful �xed point theorems,

then we end this chapter by citing the concept of stability of solutions.

Chapter 2, focuses on the existence, uniqueness and stability of solutions for

a nonlinear Riemann-Liouville fractional boundary value problem with variable

delays: 8>>>>>><>>>>>>:

D�
0+u (t)� q(t)f(t; u(t� �1(t)); u(t� �2(t)) = 0; t > 0;

u (t) = '(t); t 2 [�� ; 0] ;

u00(0) = 0; limt!1D
��1
0+ u(t) = �(�)u(0);

where 2 � � < 3; D�
0+ denotes the Riemann-Liouville fractional derivative

of order �, the functions �i 2 C (R+;R+) such limt!1(t � �i(t)) = +1; i =
1; 2, � = �min0�i�2mint�0(t � �i(t)): We assume that q : [0;1) ! [0;1); f 2
C (R+ � R2;R) and ' is a continuous function on the interval [�� ; 0].
We investigate the existence of solutions, by the nonlinear alternative of Leray

Schauder and the uniqueness of solution by the Banach contraction principle and

�nally we discuss the uniform stability of the solution.

The results of this chapter are submitted for publication:

5



F. Fenizri, A. Guezane-Lakoud, R. Khaldi, Stability of solutions to fractional

di¤erential equations with time delays.

In Chapter 3, we study the existence of solutions for a fractional boundary

value problem with the p-Laplacian operateur, by using Krasnoselskii �xed point

theorem: 8>>>>>><>>>>>>:

D�
0+(�p(D

�
0+u (t))) + q(t)f(t; u(t); D

��1
0+ u(t)) = 0; t > 0

u(0) = 0; D��1
0+ u(1) =

R1
0
g(s)u(s)ds;

D��2
0+ u(0) =

R1
0
h(s)u(s)ds; D��1

0+ (�p(D
�
0+u (0))) = 0;

where D�
0+ and D

�
0+; are the standard Riemann-Liouville fractional derivatives,

2 < � � 3; 0 < � � 1; �p(s) = jsj
p�2 s; p > 1; q : [0;1)! R and f : [0;1)�R2 !

R are continuous functions and g; h 2 L1 ([0;1)) are nonnegative functions. The
results of this chapter are published in:

F. Fenizri; A. Guezane-Lakoud, R. Khaldi, Existence of solutions for integral

boundary value problems with p-Laplacian operator on in�nite interval, J. Non-

linear Funct. Anal., 2021 (2021), Article ID 13, 1�13.
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CHAPTER 1

Preliminaries
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1.1. Function spaces

In this chapter, we introduce some important functions that are used in frac-

tional calculus such the Gamma function that acts as a generalized factorial. We

give some necessary concepts on the theory of fractional calculus, namely the in-

tegral and the derivative of Riemann-Liouville and the derivative of Caputo. We

quote their basic properties including the rules of their composition. We can �nd

more information in [30, 60, 11, 12, 29, 53, 56, 62]. We expose some important

�xed point theorems as well as the concept of stability.

1.1 Function spaces

1.1.1 Integral function spaces

The spaces Lp are spaces of measurable functions that are p-integrables in the

sense of Lebesgue.

De�nition 1.1.1 [65] Let I = (a; b), where �1 � a < b � +1, be a �nite or
in�nite interval in R: We denote by Lp(I) (1 � p <1). the set of those Lebesgue
real valued measurable functions f on I for which

kfkp =

0@Z
I

jf(s)jp ds

1A 1
p

<1

If p =1 the space Lp(I) consists of all measurable functions with a �nite norm

kfk1 = ess sup
t2J
jf(t)j

1.1.2 Space of absolutely continuous functions

Let I = [a; b]), be a bounded interval:

De�nition 1.1.2 [65] We denote by AC[a; b] the space of functions f which are
absolutely continuous on [a; b]: It coincides with the space of primitives of Lebesgue

8



1.2. Gamma function

summable functions:

f(x) 2 AC[a; b], f(x) = c+

xZ
a

'(t)dt : ('(t) 2 L(a; b)) ;

De�nition 1.1.3 [65] We denote by Cn (I) the space of functions f which are n
times continuously di¤erentiable on I with respect to the norm

kfkCn =
nX
k=0

max
x2I

��fk(x)�� :
In particular, for n = 0, C0 (I) = C (I) is the space of continuous functions f on

I with respect to the norm

kfk = max
x2I

jf(x)j

1.2 Gamma function

Here we give some information about the gamma function, which plays an im-

portant role in the theory of fractional order di¤erentiation and in the theory of

fractional di¤erential equations.

De�nition 1.2.1 [60] The Gamma function � (:) is de�ned by the integral

� (z) =

+1Z
0

e�ttz�1dt; 8z 2 R�+

and possesses the following basic properties

� (z + 1) = z� (z) , Re (z) > 0;

for any integer n � 0, we have

� (n+ 1) = n!;

9



1.3. Fractional integrals and fractional derivatives

and

�(
1

2
) =

p
�:

A limit de�nition of the Gamma function is given by

� (z) = lim
n!1

n!nz

z (z + 1) ::: (z + n)
; Re (z) > 0:

1.3 Fractional integrals and fractional derivat-

ives

De�nition 1.3.1 [65] The Riemann-Liouville fractional integral of order � > 0

of a function g is de�ned by

(I�a+g) (t) =
1

� (�)

tZ
a

(t� s)��1 g (s) ds; t > a

provided that the right side is pointwise de�ned on (a;+1).

Properties [65] Let �; � > 0, then the following relations hold

I�a+ (x� a)
��1 (t) =

� (�)

� (�+ �)
(t� a)�+��1 ;

I1a+ (x� a)
� (t) =

1

� + 1
(t� a)�+1 :

In particular, if � > 0 and k 2 N, then

�
DkI�a+g

�
(x) = I��ka+ g (x) :

If � > 0 and � > 0, then

I�a+I
�
a+g (x) = I

�+�
a+ g (x)

De�nition 1.3.2 [65]The Riemann-Liouville fractional derivative of order � 2

10



1.3. Fractional integrals and fractional derivatives

R+ of a function g is de�ned by

D�
a+g (t) :=

�
d

dx

�n
(In��a+ g)(x)

=
1

� (n� �)

�
d

ds

�n tZ
a

(t� s)n���1 g (s) dt; t > a;

where n = [�] + 1; [�] is the integer part of �.

Properties. [65] Let �; � > 0 and n = [�] + 1, then the following relation

holds: �
D�
a+ (x� a)

��1
�
(t) =

� (�)

� (� � �) (t� a)
����1 :

On the other hand, for k = 1; 2; :::; n, we have�
D�
a+ (x� a)

��k
�
(t) = 0:

In particular, the Riemann-Liouville fractional derivative of a constant is in general

not equal to zero, in fact

(D�
a+1) (x) =

(x� a)��

� (1� �) ; 0 < � < 1:

Lemma 1.3.1 [65]Let � > 0; then the fractional di¤erential equation

D�
0+g (t) = 0;

has

g (t) = c1t
��1 + c2t

��2 + c3t
��3 + :::+ cnt

��n;

ci 2 R; i = 1; 2; :::; n

as solution.

Lemma 1.3.2 [65] Let � > 0, n = [�] + 1. If g 2 L1 [a; b] and gn�� 2 ACn [a; b],

11



1.4. Fixed point theorems

then the equality

(I�a+D
�
a+g) (t) = g (t)�

nX
j=1

g
(n�j)
n�� (a)

� (�� j + 1) (t� a)
��j

holds almost every where on [a; b]. In particular for 0 < � < 1, we have

I�a+D
�
a+g (t) = g (t)�

g1�� (a)

� (�)
(t� a)��1 ,

where gn�� = In��a+ g and g1�� = I1��a+ g.

Lemma 1.3.3 [65] Let � > � > 0, then we have

D�
a+I

�
a+g (x) = I

���
a+ g (x) :

1.4 Fixed point theorems

Fixed point theory is an important subject with a large number of applications

in various �elds of mathematics. The �xed point theorems concern a function

f satisfying f(x) = x under some conditions on f: Depending on whether the

conditions are imposed on the function or the set, di¤erent �xed point theorems

are given, we quote the following that can be found in [65].

Theorem 1.4.1 (Banach contraction principle) Let T be a contraction on a Banach
space X. Then T has a unique �xed point.

Theorem 1.4.2 (Leray-Schauder nonlinear alternative) Let C be a convex subset
of a Banach space, U be an open subset of C with 0 2 U . Let N : �U ! C be a

completely continuous mapping. Then either

(i) N has a �xed point in �U; or

(ii) There is an x 2 @U and � 2 (0; 1) with x = �Nx:

Theorem 1.4.3 (Krasnoselskii �xed point theorem) Let 
 be a closed bounded and
convex nonempty subset of a Banach space X. Suppose that A and T map 
 into

X such that

12



1.4. Fixed point theorems

(i) A is continuous and compact.

(ii) T is a contraction mapping.

(iii) Ax+ Ty 2 
 for all x; y 2 
:
Then there exists x 2 
 with x = Ax+ Tx:

The criteria for compactness for sets in the space of continuous functions

C([a; b]) is the following.

Theorem 1.4.4 (Arzela-Ascoli theorem) A set 
 � C([a; b]) is relatively compact
in C([a; b]) i¤ the functions in 
 are uniformly bounded and equicontinuous on

[a; b].

We recall that a family 
 of continuous functions is uniformly bounded if there

exists M > 0 such that

kfk = max j
x2[a;b]

f(x)j �M; 8f 2 
:

The family 
 is equicontinuous on [a; b] ; if 8" > 0; 9� > 0 such that 8t1; t2 2 [a; b]
and 8f 2 
; we have

jt1 � t2j < � ) jf(t1)� f(t2)j < ":

As the Arzela-Ascoli theorem is no longer valid in the case of a non-compact

interval, the following compactness criteria will be useful [14].

Theorem 1.4.5 Let C1 = fy 2 C ([0;+1)) ; limt!1 y (t) existsg equipped with
the norm kyk1 = sup

t2[0;+1)
jy (t)j : Let F � C1. Then F is relatively compact if

the following conditions hold :

(1) F is bounded in C1:

(2) The functions belonging to F are equicontinuous on any compact subinterval

of [0;1) :
(3) The functions from F are equiconvergent at +1.

13



1.5. Stability of solutions

1.5 Stability of solutions

The stability of nonlinear fractional di¤erential equations is studied by di¤erent

methods such as Mittag-Le­ er stability, Ulam stability, Lypunov method ... Since

it is di¢ cult to apply these methods when the fractional order is higher to one,

much work is devoted to �nding another e¢ cient method to study the stability of

nonlinear fractional di¤erential equations.

Let X be a Banach space, g : [t0;1)�X ! X be a function and consider the

di¤erential equation
dx

dt
= g (t; x) ; t0 � t <1: (1.1)

with g (t; 0) = 0:

De�nition 1.5.1 [5] A solution x of equation (1.1) is said to be stable if for

every " > 0 there exists � = � ("; t0) > 0 such that for every x0 2 X; the inequality
kx0k < � implies kx (t; t0; x0)k < "; for all t � t0:
A solution x of equation (1.1) is said to be uniformly stable if the constant �

can be chosen independly of t0, i.e. � = � (")

A solution x of equation (1.1) is said to be asymptotically stable if it�s stable

and for any t � t0, there exists � = � (t0) > 0 such that kx0k < � implies

limt!+1x (t; t0; x0) = 0:
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CHAPTER 2

Stability of solutions for nonlinear fractional di¤erential

equations with variable delays
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2.1. Introduction

2.1 Introduction

Fractional di¤erential equations involving delays are becoming an active area of re-

search and therefore attracting increasing interest, this is due to their applications

to a variety of problems in science and engineering, such as population dynamics,

epidemiology, immunology, physiology, we refer to [1, 4, 9, 10, 30, 74, 75, 76] for

some interesting articles.

When the course of the process at a certain point in time depends on its past

history, the delays may be related to the duration of certain previous processes

such as the duration of the infectious period, the time between the infection of a

cell and the production of new viruses.

In this chapter, we are interested in investigating the following nonlinear frac-

tional boundary value problem with variable delays:

(P )

8>>>>>><>>>>>>:

D�
0+u (t) + q(t)f(t; u(t� �1(t)); u(t� �2(t)) = 0; 2 � � < 3; t > 0;

u (t) = '(t); t 2 [�� ; 0] ;

u00(0) = 0; limt!1D
��1
0+ u(t) = �(�)u(0);

where D�
0+ denotes the Riemann-Liouville fractional derivative of order �, the

functions �i : [0;1) ! [0;1) are continuous for all i = 1; 2, such limt!1(t �
�i(t)) = +1; � = �min0�i�2mint�0(t� �i(t)); q : [0;1)! [0;1); the function f
is continuous on [0;1) �R2and ' is a continuous function on the interval [�� ; 0].
By means of the nonlinear alternative of Leray Schauder and the Banach con-

traction principle, we prove the existence and uniqueness results then we analyze

the stability of the solution.

Recently, several works have appeared dealing with the existence of solutions

for fractional di¤erential equations with delay, [1, 9, 43, 75, 76].

In [43], the authors discussed the existence of solutions for the fractional Riemann-

Liouville di¤erential equations with a constant delay,
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2.1. Introduction

D�
0+u (t) = u(t) + f(t; u(t); u(t� �)); 0 < � < 1; t 2 (0; 1)

u (t) = '(t); t 2 [�� ; 0] ;

subject to the boundary conditions

u(0) = lim
t!0+

t1��u(t) = u(1);

D1��
0+ u(t)t=0 = c�(�):

In [77], by Leray-Schauder nonlinear alternative, su¢ cient conditions on the

nonlinear term, that guarantee the existence of solutions to the following fractional

boundary value problem over an unbounded interval are established,

D�
0+u (t) + f(t; u(t)) = 0; � 2 (1; 2) ; t 2 (0;1)

u (0) = 0; lim
t!1

D��1
0+ u(t) = �u(�); 0 < � <1:

Where D�
0+ is the Riemann-Liouville fractional derivative and f is a continuous

function.

In [75], the author established the stability of solutions for a nonlinear fractional

di¤erential equation on an in�nite interval with constant delays and subject to a

Riemann-Liouville fractional integral boundary condition:

D�
0+u (t) =

nX
j=1

aj(t)f(t; u(t); u(t� � j) = 0; 0 < � < 1; 0 < t <1

u (t) = '(t); t < 0

I��10+ u(t)jt=0 = 0; lim
t�!0�

'(t) = 0;

17



2.2. Existence and uniqueness of solution

here f : R+�R2 �! R is a continuous function, aj and ' are given continuous
functions, � j � 0; j = 1; 2; :::; n are constants.

2.2 Existence and uniqueness of solution

First, we prove that the corresponding linear problem has a unique solution, then

we transform the problem (P) into a �xed point problem.

Lemma 2.2.1 The following linear fractional boundary value problem

D�
0+u (t) = �e(t); 2 � � < 3; t > 0

u (t) = '(t); t 2 [�� ; 0]

u00(0) = 0; limt!1D
��1
0+ u(t) = �(�)u(0)

has a unique solution given by

u(t) =

8>>><>>>:
'(0)t��1 +

1R
0

G(t; s)e(s)ds; t > 0

'(t); t 2 [�� ; 0]

where

G(t; s) =
1

�(�)

(
t��1 � (t� s)��1; 0 � s � t <1

t��1; 0 � t � s <1:

Proof Applying the integral operator I�0+ to the equation D
�
0+u (t) = �e(t);then

using Lemma (1.3.1), it yields,

u (t) = c1t
��1 + c2t

��2 + c3t
��3 � I�0+e(t): (2.1)
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2.2. Existence and uniqueness of solution

The conditions u (0) = '(0) and u00(0) = 0; imply c2 = c3 = 0 and the boundary

condition limt!1D
��1
0+ u(t) = �(�)u(0); gives

c1 = '(0) +
1

�(�)

1Z
0

e(s)ds:

Replacing the constants c1; c2 and c3 by their values in (2.1), then the solution

can be written as

u (t) = '(0)t��1 +

1Z
0

G(t; s)e(s)ds;

where

G(t; s) =
1

�(�)

(
t��1 � (t� s)��1; 0 � s � t <1

t��1; 0 � t � s <1:

Lemma 2.2.2 The function G is continuous, nonnegative and satis�es

G(t; s)

1 + t��1
� 1

�(�)
; for all s; t � 0

Proof The proof is easy, then we omit it.

Let (X; k:k) be the Banach space

X =

(
u 2 C [�� ;1) : sup

t2[0;1)

ju(t)j
1 + t��1

<1
)

with respect to the norm

kukX = kuk0 + kuk1 ;

where

kuk0 = max
t2[��;0]

ju(t)j ; kuk01 = sup
t2[0;1)

ju(t)j
1 + t��1

The following compactness criteria will be useful as we are on an in�nite interval,

see [14, 67].

Lemma 2.2.3 Let Z � X be a bounded set. Then Z is relatively compact in X if
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2.2. Existence and uniqueness of solution

the following condition hold:

i) The functions belonging to Z are equicontinuous on any compact subinterval

of [�� ;1) :
ii) The functions from Z are equiconvergent at +1, i.e. given " > 0;there

exists a constant l = l (") > 0 such that���� u(t1)1 + t��11

� u(t2)

1 + t��12

���� < ", t1; t2 � l; u 2 Z:
Denote by T the operator

T : X ! X

Tu(t) =

8<: '(0)t��1 +
1R
0

G(t; s)q(s)f(s; u(s� �1(s)); u(s� �2(s))ds; t > 0;

'(t); t 2 [�� ; 0] ;

We therefore transform the problem (P) into a �xed point problem, i.e. u is a

solution for the problem (P) if and only if u is a �xed point for the operator T ,

i.e. Tu = u:

Let us make the assumptions necessary to solve the problem (P).

(H1)There exist two nonnegative functions L1; L2 2 L1 (0;1) such that��f(t; (1 + t��1)x1; (1 + t��1)y1)� f(t; (1 + t��1)x2; (1 + t��1)y2)�� ;
� L1(t) jx1 � x2j+ L2(t) jy1 � y2j ; (2.2)

for all x1; y1; x2; y2 2 R; t > 0 and

C = max

0@ 1Z
0

q(s)L1(s)ds;

1Z
0

q(s)L2(s)ds

1A <
�(�)

2
: (2.3)

(H2) There exist ti > 0; such that t� �i(t) < 0; if 0 � t � ti; t� �i(t) � 0; if
t > ti, i = 1; 2:
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2.2. Existence and uniqueness of solution

(H3) The function f is continuous and there exist nonnegative functions a; b

and c 2 L1 (0;1) such that

jf(t; u; v)j � a(t) juj+ b(t) jvj+ c(t)

and

1Z
0

q(t)
�
1 + t��1

�
(a(t) + b(t)) dt < 1;

1Z
0

q(t) (a(t) + b(t)) dt < 1;

1Z
0

q(t)c(t)dt < 1:

Theorem 2.2.1 Assume that assumptions (H1) and (H2) hold, then the nonlinear
fractional boundary value problem (P ) has a unique solution in X.

Proof To prove the uniqueness of the solution, we shall apply the Banach con-

traction principle. Let u; v 2 X; we have

kTu� Tvk0 = max
t2[��;0]

jTu(t)� Tv(t)j = 0: (2.4)

Now, let t > 0; then it yields

����Tu(t)� Tv(t)1 + t��1

���� � 1

�(�)

1Z
0

q(s) jf(s; u(s� �1(s)); u(s� �2(s))

�f(s; v(s� �1(s)); v(s� �2(s))j ds

21



2.2. Existence and uniqueness of solution

� 1

�(�)

1Z
0

q(s)

����f(s; (1 + s��1)u(s� �1(s))1 + s��1
;
(1 + s��1)u(s� �2(s)

1 + s��1
)

� f(s; (1 + s
��1) v(s� �1(s))
1 + s��1

;
(1 + s��1) v(s� �2(s))

1 + s��1

���� ds

� 1

�(�)

1Z
0

q(s)L1(s)

����u(s� �1(s))� v(s� �1(s))1 + s��1

���� ds

+
1

�(�)

1Z
0

q(s)L2(s)

����u(s� �2(s))� v(s� �2(s))1 + s��1

���� ds

� 1

�(�)

t1Z
0

q(s)L1(s)

����u(s� �1(s))� v(s� �1(s))1 + s��1

���� ds

+
1

�(�)

1Z
t1

q(s)L1(s)

����u(s� �1(s))� v(s� �1(s))1 + s��1

���� ds

+
1

�(�)

t2Z
0

q(s)L2(s)

����u(s� �2(s))� v(s� �2(s))1 + s��1

���� ds

+
1

�(�)

1Z
t2

q(s)L2(s)

����u(s� �2(s))� v(s� �2(s))1 + s��1

���� ds
� 2C

�(�)
(ku� vk0 + ku� vk1) ; (2.5)
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2.2. Existence and uniqueness of solution

consequently,

kTu� TvkX �
2C

�(�)
ku� vkX :

Taking (2.4) and (2.5) into account, we obtain

kTu� TvkX �
2C

�(�)
ku� vkX :

Thanks to (2.3), we conclude that T is a contraction then by Banach contrac-

tion principle we deduce that the operator T has a unique �xed point in X which

is the unique solution of the problem (P ).

The properties of the operator T are given in the following.

Theorem 2.2.2 Assume that (H2) and (H3) hold. Then the operator T is com-
pletely continuous.

Proof We prove it in four steps.

Step 1: We show that T is continuous. Let un ! u as n!1 in X; we have

un(t)

1 + t��1
! u(t)

1 + t��1
; n!1:

If �� � t � 0; then

kTun � Tuk0 = max
t2[��;0]

jTun(t)� Tu(t)j = 0:

If t > 0; then the continuity of T follows from the continuity of f; in fact we have

����Tun(t)� Tu(t)1 + t��1

���� � 1

�(�)

1Z
0

q(s) jf(s; un(s� �1(s)); un(s� �2(s))

�f(s; u(s� �1(s)); u(s� �2(s))j ds! 0; n!1;

thus

kTun � TukX ! 0; n!1;

hence, T is continuous.
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2.2. Existence and uniqueness of solution

Step 2: The operator T is uniformly bounded. In fact, let L > 0 and � =

fu 2 X; kukX < Lg be any bounded subset of X: Let u 2 �; then

kTuk0 = max
t2[��;0]

jTu(t)j = k'k0 <1:���� Tu(t)1 + t��1

���� �
������'(0) t��1

1 + t��1
+

1Z
0

G(t; s)

1 + t��1
q(s)f(s; u(s� �1(s)); u(s� �2(s))ds

������
� j'(0)j+ 1

�(�)

1Z
0

q(s) jf(s; u(s� �1(s)); u(s� �2(s))j ds

� j'(0)j+ 1

�(�)

1Z
0

q(s) (a(s) ju(s� �1(s))j+ b(s) ju(s� �2(s))j+ c(s)) ds

� j'(0)j+ 1

�(�)

1Z
0

q(s)a(s) ju(s� �1(s))j ds

+
1

�(�)

1Z
0

b(s) ju(s� �2(s))j ds+
1

�(�)

1Z
0

c(s)ds

� j'(0)j+ 1

�(�)

t1Z
0

q(s)a(s) ju(s� �1(s))j ds

+
1

�(�)

1Z
t1

q(s)a(s) ju(s� �1(s))j ds+
1

�(�)

t2Z
0

q(s)b(s) ju(s� �2(s))j ds

+
1

�(�)

1Z
t2

q(s)b(s) ju(s� �2(s))j ds+
1

�(�)

1Z
0

q(s)c(s)ds

� j'(0)j+ kuk0
�(�)

t1Z
0

q(s)a(s)ds+
kuk1
�(�)

1Z
t1

q(s)a(s)
�
1 + s��1

�
ds

+
kuk0
�(�)

t2Z
0

q(s)b(s)ds+
kuk1
�(�)

1Z
t2

q(s)b(s)
�
1 + s��1

�
ds

+
1

�(�)

1Z
0

q(s)c(s)ds
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2.2. Existence and uniqueness of solution

� j'(0)j+ kuk0
�(�)

1Z
0

q(s)a(s)ds+
kuk1
�(�)

1Z
0

q(s)a(s)
�
1 + s��1

�
ds

+
kuk0
�(�)

1Z
0

q(s)b(s)ds+
kuk1
�(�)

1Z
0

q(s)b(s)
�
1 + s��1

�
ds

+
1

�(�)

1Z
0

q(s)c(s)ds

� j'(0)j+ L

�(�)

1Z
0

q(s) (a(s) + b(s)) ds

+
L

�(�)

1Z
0

q(s) (a(s) + b(s))
�
1 + s��1

�
ds

+
1

�(�)

1Z
0

q(s)c(s)ds <1:

Hence, T (�) is uniformly bounded.

Step 3. We shall prove that T (�) is equicontinuous on any compact subinter-
val of [�� ;1).
Case 1. Let S > 0; t1; t2 2 [0; S] and u 2 �: Assume that t2 > t1; then

���� Tu(t2)1 + t��12

� Tu(t1)

1 + t��11

���� �
����'(0)� t��12

1 + t��12

� t��11

1 + t��11

�����

+

1Z
0

���� G(t2; s)1 + t��12

� G(t1; s)

1 + t��11

���� jq(s)f(s; u(s� �1(s)); u(s� �2(s))j ds
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2.2. Existence and uniqueness of solution

�
����'(0)� t��12

1 + t��12

� t��11

1 + t��11

�����

+

1Z
0

���� G(t2; s)1 + t��12

� G(t1; s)

1 + t��12

����

�q(s)
�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds

+

1Z
0

���� G(t1; s)1 + t��12

� G(t1; s)

1 + t��11

����

�q(s)
�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds

�
����'(0)� t��12

1 + t��12

� t��11

1 + t��11

�����
+

1Z
0

���� G(t2; s)1 + t��12

� G(t1; s)

1 + t��12

����
�q(s)

�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds

+

1Z
0

���� G(t1; s)1 + t��12

� G(t1; s)

1 + t��11

����

�q(s)
�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds
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�
����'(0)� t��12

1 + t��12

� t��11

1 + t��11

�����

+

t1Z
0

�����(t��12 � t��11 )� ((t2 � s)��1 � (t1 � s)��1)�
1 + t��12

�
�(�)

�����

�q(s)
�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds

+

t2Z
t1

����t��12 � t��11 � (t2 � s)��1

1 + t��12

����

�q(s)
�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds

+

1Z
t2

����� t��12 � t��11�
1 + t��12

�
�(�)

�����

�q(s)
�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds

+

1Z
0

����G(t1; s)� 1

1 + t��12

� 1

1 + t��11

�����

�q(s)
�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds
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�
����'(0) t��12

1 + t��12

� t��11

1 + t��11

����

+

t1Z
0

�����(t��12 � t��11 )� ((t2 � s)��1 � (t1 � s)��1)�
1 + t��12

�
�(�)

�����
� q(s)

�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds

+
3S��1�

1 + t��12

�
�(�)

t2Z
t1

jq(s) ((a(s) + b(s)) kuk0

+(a(s) + b(s))
�
1 + s��1

�
kuk1 + c(s)

��� ds
+

����� t��12 � t��11�
1 + t��12

�
�(�)

�����
1Z
t2

jq(s) ((a(s) + b(s)) kuk0

+(a(s) + b(s))
�
1 + s��1

�
kuk1 + c(s)

��� ds
+

1

�(�)

����� t��11 � t��12�
1 + t��12

� �
1 + t��11

������

�
1Z
0

jq(s) ((a(s) + b(s)) kuk0

+(a(s) + b(s))
�
1 + s��1

�
kuk1 + c(s)

��� ds
! 0; as t1 ! t2
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2.2. Existence and uniqueness of solution

Case 2. Let �� � t1 < t2 � 0; then

max
t1;t22[��;0]

jTu(t2)� Tu(t1)j = max
t1;t22[��;0]

j'(t2)� '(t1)j ! 0; as t1 ! t2

Case 3. Let �� � t1 < 0 < t2 <1; hence

���� Tu(t2)1 + t��12

� Tu(t1)

1 + t��11

���� = ���� Tu(t2)1 + t��12

� Tu(0) + Tu(0)� Tu(t1)

1 + t��11

����

�
���� Tu(t2)1 + t��12

� Tu(0)
����+ ����Tu(0)� Tu(t1)

1 + t��11

����

�
����'(0) t��12

1 + t��12

����+
1Z
0

���� G(t2; s)1 + t��12

�G(0; s)
����

� q(s)
�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds

+

����'(0)� '(t1)

1 + t��11

����
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�
����'(0) t��12

1 + t��12

����+
t2Z
0

�����t��12 � (t2 � s)��1

1 + t��12

� s��1
�����

� q(s)
�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds+

1Z
t2

���� t��12

1 + t��12

����
� q(s)

�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds

+

����'(0)� '(t1)

1 + t��11

����
! 0; as t1 ! 0�; t2 ! 0+:

Consequently, T (�) is equicontinuous on any compact subinterval of [�� ;1).
Step 4. We show that T is equiconvergent at 1: In view of assumption (H3);

it yields for any u 2 �,

1Z
0

q(s) jf(s; u(s� �1(s)); u(s� �2(s))j ds

�
1Z
0

q(s)
�
(a(s) + b(s)) kuk0 + (a(s) + b(s))

�
1 + s��1

�
kuk1 + c(s)

�
ds

� L

1Z
0

q(s) (a(s) + b(s)) ds+ L

1Z
0

q (s) (a(s) + b(s))
�
1 + s��1

�
ds+

1Z
0

q(s)c(s)ds

< 1:
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2.2. Existence and uniqueness of solution

Now, since limt!1
t��1

1+t��1 = 1; then there exists T1 > 0 such that , for any

t2 > t1 > T1;���� t��12

1 + t��12

� t��11

1 + t��11

���� �
���� t��12

1 + t��12

� 1
����+ ����1� t��11

1 + t��11

���� < ": (2.6)

Moreover, we have limt!1
(t�N)��1
1+t��1 = 1 for all N > 0: Thus there exists T2

such that, for any t2 > t1 > T2 and 0 � s � N;�����(t2 � s)��11 + t��12

� (t1 � s)
��1

1 + t��11

����� �
�����(t2 � s)��11 + t��12

� 1
�����+
�����1� (t1 � s)��11 + t��11

����� (2.7)

�
�����1� (t2 �N)��11 + t��12

�����+
�����1� (t1 �N)��11 + t��11

����� < ":
Choose M > max fT1; T2g ; then for any u 2 �; t2 > t1 > M and t1 ! t2; by

(2.6)� (2.7) we obtain

���� Tu(t2)1 + t��12

� Tu(t1)

1 + t��11

���� � ����'(0)� t��12

1 + t��12

� t��11

1 + t��11

�����

+

1Z
0

���� G(t2; s)1 + t��12

� G(t1; s)

1 + t��11

���� jq(s)f(s; u(s� �1(s)); u(s� �2(s))j ds

�
����'(0)� t��12

1 + t��12

� t��11

1 + t��11

�����

+
1

�(�)

t1Z
0

���� t��12

1 + t��12

� t��11

1 + t��11

� (t2 � s)
��1

1 + t��12

+
(t1 � s)��1)
1 + t��11

����
� q(s)

�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds
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+
1

�(�)

t2Z
t1

���� t��12

1 + t��12

� t��11

1 + t��11

� (t2 � s)
��1

1 + t��12

����
� q(s)

�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds

+
1

�(�)

1Z
t2

���� t��12

1 + t��12

� t��11

1 + t��11

����
� q(s)

�
(a(s) + b(s))

�
kuk0 +

�
1 + s��1

�
kuk1

�
+ c(s)

�
ds

� '(0)"++ 2"

�(�)

t1Z
0

jq(s) ((a(s) + b(s)) kuk0

+(a(s) + b(s))
�
1 + s��1

�
kuk1 + c(s)

��� ds
+

"

�(�)

t2Z
t1

jq(s) ((a(s) + b(s)) kuk0

+(a(s) + b(s))
�
1 + s��1

�
kuk1 + c(s)

��� ds
+

"

�(�)

1Z
t2

jq(s) ((a(s) + b(s)) kuk0

+(a(s) + b(s))
�
1 + s��1

�
kuk1 + c(s)

��� ds
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�
�
'(0) +

6

�(�)

�
"

1Z
0

jq(s) ((a(s) + b(s)) kuk0

+(a(s) + b(s))
�
1 + s��1

�
kuk1 + c(s)

��� ds
! 0 as t1; t2 > M:

Hence T is equiconvergent at 1: Finally by Lemma 2.2.3 we conclude that T is
completely continuous.

Now we give an existence result.

Theorem 2.2.3 Assume that (H2) and (H3) hold. Then boundary value problem
(P ) has at least one solution.

Proof We will prove that all the assumptions of the Leray-Schauder nonlinear

alternative are satis�ed. Set

U = fu 2 X : kukX < �g ;

where

2 k'k0 +
�

�(�)

1Z
0

q(s) (a(s) + b(s))
�
1 +

�
1 + s��1

��
ds+

1

�(�)

1Z
0

q(s)c(s)ds < �:

(2.8)

Assume that there exists u 2 @U with u = �Tu and � 2 (0; 1), then

kuk0 = k�Tuk0 = max
t2[��;0]

j�Tu(t)j � max
t2[��;0]

jTu(t)j = max
t2[��;0]

j'(t)j = k'k0 ;

kuk1 = k�Tuk1 = sup
t2[0;1)

���� �Tu(t)1 + t��1

���� � sup
t2[0;1)

���� Tu(t)1 + t��1

����
� sup

t2[0;1)

������'(0) t��1

1 + t��1
+

1Z
0

G(t; s)

1 + t��1
q(s)f(s; u(s� �1(s)); u(s� �2(s))ds

������
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� j'(0)j+ kuk0
�(�)

1Z
0

q(s) (a(s) + b(s)) ds+
kuk1
�(�)

1Z
0

q(s) (a(s) + b(s))
�
1 + s��1

�
ds

+
1

�(�)

1Z
0

q(s)c(s)ds

� k'k0 +
�

�(�)

1Z
0

q(s) (a(s) + b(s)) ds+
�

�(�)

1Z
0

q(s) (a(s) + b(s))
�
1 + s��1

�
ds

+
1

�(�)

1Z
0

q(s)c(s)ds

Now taking into account (2.8) and the fact that u 2 @U , it yields

� = kukX = kuk0 + kuk1

� 2 k'k0 +
�

�(�)

1Z
0

q(s) (a(s) + b(s))
�
1 +

�
1 + s��1

��
ds+

1

�(�)

1Z
0

q(s)c(s)ds

< �;

which is impossible and then we conclude by the nonlinear alternative of Leray-

Schauder that the operator T has a �xed point in U and then the problem (P )

has at least one solution satisfying kukX � �.

2.3 Stability of solutions

In this section, we analyze the stability of the solution for the nonlinear frac-

tional boundary value problem (P ). Let ~u be a solution of the following fractional
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2.3. Stability of solutions

boundary value problem

( ~P )

8><>:
D�
0+~u (t)� q(t)f(t; ~u(t� �1(t)); �u(t� �2(t)) = 0; 2 � � < 3; t > 0

~u (t) = ~'(t); t 2 [�� ; 0]
~u00(0) = 0; limt!1D

��1~u(t) = �(�)~u(0):

By a stable solution we mean the following:

De�nition 2.3.1 The solution of the fractional boundary value problem (P ) is

stable if for any " > 0, there exists � > 0 such that for any two solutions u and ~u

of the problems (P ) and ( ~P ) respectively, one has k'� ~'k0 � �, then ku� ~ukX <
":

Theorem 2.3.1 Under the assumptions (H1) and (H2), the unique solution of the
fractional boundary value problem (P ) is uniformly stable.

Proof Let u be the unique solution of the problem (P) and ~u be the unique

solution of the problem ( ~P ). Then we get

ku� ~uk0 = max
t2[��;0]

ju(t)� ~u(t)j = max
t2[��;0]

j'(t)� ~'(t)j = k'� ~'k0 : (2.9)

Now, let t > 0, then we have����u(t)� ~u(t)1 + t��1

���� � t��1

1 + t��1
j'(0)� ~'(0)j

+
1

�(�)

1Z
0

q(s) jf(s; u(s� �1(s)); u(s� �2(s))

�f(s; ~u(s� �1(s)); ~u(s� �2(s))j ds

� t��1

1 + t��1
j'(0)� ~'(0)j

+
1

�(�)

1Z
0

q(s)L1(s)

����u(s� �1(s))� ~u(s� �1(s))1 + s��1

���� ds
+

1

�(�)

1Z
0

q(s)L2(s)

����u(s� �2(s))� ~u(s� �2(s))1 + s��1

���� ds:
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By following a reasoning similar to that of the proof of theorem 2.2.1, we obtain

ku� ~uk1 �
�
1 +

2C

�(�)

�
k'� ~'k0 +

2C

�(�)
ku� ~uk1 ;

thus

ku� ~uk1 �
�
�(�) + 2C

�(�)� 2C

�
k'� ~'k0 : (2.10)

From (2.9) and (2.10); we get

ku� ~ukX �
�

2�(�)

�(�)� 2C

�
k'� ~'k0 :

Hence, for � > 0, there exists � =
�

2�(�)
�(�)�2C

��1
" such that if k'� ~'k0 < �, then

ku� ~ukX < �; that proves the uniformly stability of the unique solution.
Now we give some numerical examples.

2.4 Examples

Example 2.4.1 Consider the fractional boundary value problem (P) where

� =
12

5
; f(t; x; y) =

e�t

6

�
x+ ty � 1

1 + x2

�
; '(t) = t2;

q(t) =
1

1 + t��1
; �1(t) =

t

2
+
1

2
; �2(t) =

2t

3
+
1

3
; � =

1

2
:

Then the assumptions (H1) and (H2) hold. In fact, if we choose

L1(t) =
e�t

6

�
1 + t��1 +

�
1 + t��1

�2�
; L2(t) =

te�t (1 + t��1)

6
;

then the assumption (H1) holds with C = 0; 54036:

Choosing t1 = t2 = 1; then t � �i(t) < 0, for 0 � t � 1; and t � �i(t) � 0;

if t > 1; i = 1; 2: Hence the hypothesis (H2) is satis�ed. By Theorems 2.2.1 and

2.3.1;we deduce that the problem (P ) has a unique solution which is uniformly

stable in X:
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Example 2.4.2 Consider the fractional boundary value problem (P) where

� =
5

2
; f(t; x; y) =

e�t

10

�
x

1 + t
+ ty

�
; '(t) = t2;

q(t) =
1

1 + t
3
2

; �1(t) = 1; �2(t) =
t

2
+
1

2
; � = 1

Let us check the hypotheses of Theorem 2.2.1: In fact the hypothesis (H1) holds if

we choose

L1(t) =
e�t

10

0@1 + t 32
1 + t

1A ; L2(t) =
te�t

�
1 + t

3
2

�
10

and then

1Z
0

q(s)L1(s)ds =

1Z
0

1

1 + s

e�s

10
ds = 5: 963 5� 10�2;

1Z
0

q(s)L2(s)ds =

1Z
0

se�s

10
ds = 0:1; �(

5

2
) = 1: 329 3;

C = 0; 1 < 0; 66465:

Furthermore, there exist t1 = t2 = 1; such that t � �i(t) < 0, for 0 � t � 1 and

t � �i(t) � 0; if t > 1; i = 1; 2: Then the hypothesis (H2) is satis�ed. We deduce
by Theorems 2.2.1 and 2.3.1 that the problem (P ) has a unique solution that is

uniformly stable in X:

Example 2.4.3 Consider the fractional boundary value problem (P) where

� =
12

5
; f(t; x; y) =

ln (1 + jyj)
30 (1 + t2)

+

p
jxyj

30 exp
�p
t
	 + 1 + t

7
5

30 (1 + t2)

!
;

'(t) = t2; q(t) =
1

1 + t
7
5

; �1(t) =
t

2
+
1

2
;

�2(t) =
2t

3
+
1

3
; � =

1

2
:
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By computation, we get

jf(t; x; y)j � jxj e�
p
t

60
+

 
1

30 (1 + t2)
+
e�

p
t

60

!
jyj+

 
1 + t

7
5

30 (1 + t2)

!
;

then, we can set

a(t) =
e�

p
t

60
;

b(t) =

 
1

30 (1 + t2)
+
e�

p
t

60

!
;

c(t) =

 
1 + t

7
5

30 (1 + t2)

!
;

and by calculation, we obtain

1Z
0

q(t)
�
1 + t��1

�
(a(t) + b(t)) dt

=

1Z
0

1

1 + t
7
5

�
1 + t

7
5

� e�pt
60

+
1

30 (1 + t2)
+
e�

p
t

60

!
dt = 0:119 03;

1Z
0

q(t) (a(t) + b(t)) dt

=

1Z
0

1

1 + t
7
5

 
1

60 exp
�p
t
	 + 1

30 (1 + t2)
+

1

60 exp
�p
t
	! dt

= 4: 728 4� 10�2;
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1Z
0

q(t)c(t)dt =

1Z
0

1

1 + t
7
5

 
1 + t

7
5

30 (1 + t2)

!
dt = 5: 236 0� 10�2;

�

�
12

5

�
= 1:242 2; k'k0 =

1

4
:

Moreover, the inequality (2.8) is satis�ed if � > 2:646 5: Hence, from Theorem

2.2.3, we conclude that problem (P ) has at least one solution u such that kukX � �:

Example 2.4.4 Consider the fractional boundary value problem (P) with

� =
5

2
; f(t; x; y) =

jyj
40 (1 + t)

+
e�t
p
jxyj

40
+

0@ 1

40
�
1 + t

3
2

�
(1 + t)

1A ;
'(t) = t2; q(t) = e�t; �1(t) = 1; �2(t) =

t

2
+
1

2
; � = 1:

Then by computation it yields

jf(t; x; y)j � e�t

80
jxj+

�
1

40 (1 + t)
+
e�t

80

�
jyj+

0@ 1

40
�
1 + t

3
2

�
(1 + t)

1A ;
a(t) =

e�t

80
; b(t) =

�
1

40 (1 + t)
+
e�t

80

�
;

c(t) =

0@ 1

40
�
1 + t

3
2

�
(1 + t)

1A ;
1Z
0

q(t)
�
1 + t��1

�
(a(t) + b(t)) dt

=

1Z
0

exp f�tg
�
1 + t

3
2

��2e�t
80

+
1

40 (1 + t)

�
dt = 0:044 71;
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1Z
0

q(t) (a(t) + b(t)) dt =

1Z
0

e�t
�
2e�t

80
+

1

40 (1 + t)

�
dt = 2:740 9� 10�2;

1Z
0

q(t)c(t)dt =

1Z
0

e�t
1

40
�
1 + t

3
2

�
(1 + t)

dt = 1:062 4� 10�2:

Finally, if we choose � > 2:123 2 then the inequality (2.8) holds and then we

conclude by Theorem 2.2.3 that the problem (P ) has at least one solution u such

that kukX � �:
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CHAPTER 3

Existence of solutions for integral boundary value

problems with p-Laplacian operator on in�nite interval
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3.1. Introduction

3.1 Introduction

Di¤erential equations with p-Laplacian operator appear in the modeling of several

problems in science and engineering. It is well known that di¤erential equations

with p-Laplacian operators are often used to simulate practical problems such as

tides caused by celestial gravity and elastic deformation of beams [17, 79].

To solve fractional di¤erential equations with a p-Laplacian operator, several

methods are used such as the �xed point theory, upper and lower solutions method,

coincidence degree theory, iterative method, ... [57, 51, 17, 11, 79, 7]

In [57], the authors discussed the existence of solutions for the following p-

Laplacian fractional boundary value problem involving left and right fractional

derivatives, (
�CD�

1�

�
�p
�
D�
0+u (t)

��
+ f (t; u (t)) = 0; 0 � t � 1;

u (0) = u0 (0) = 0; D�
0+u(1) = 0;

where 1 < � < 2; 0 < � < 1, CD�
1� represents the right Caputo derivative of order

�, de�ned as

CD�
1�f (t) =

(�1)n

� (n� �)

1Z
t

(s� t)n���1 f (n) (s) ds; t < 1:

D�
0+ denotes the left Riemann-Liouville derivative of order � and f 2 C([0; 1] �

R;R): Using the lower and upper solutions method and Schauder�s �xed point
theorem, they proved the existence results.

In [35], a multipoint Riemann-Liouville fractional boundary value problem is

studied,

D�
0+(�p(D

�
0+u (t))) = f(t; u(t)); 0 < t < 1

u(0) = 0; D

0+u(1) =

Pm�2
i=1 aiD



0+u(�i);

D�
0+u(0) = 0; �p(D

�
0+u (1))) =

Pm�2
i=1 bi�p

�
D�
0+u(�i)

�
;

where 1 < �; � � 2; 0 < 
 � 1; 0 < �i; �i < 1; i = 1; 2:::m � 2; the function f is
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3.2. Existence of solutions

nonnegative and may be singular at u = 0. Thanks to a �xed point theorem for

mixed monotone operators, the existence of positive solutions is proved.

This chapter focuses on the study of a fractional di¤erential equation over an

in�nite interval and involving fractional derivatives of Riemann-Liouville type and

the p-Laplacian operator:8>>>>>><>>>>>>:

D�
0+(�p(D

�
0+u (t))) + a(t)f(t; u(t); D

��1
0+ u(t)) = 0; t > 0

u(0) = 0; D��1
0+ u(+1) =

R +1
0

g(s)u(s)ds;

D��2
0+ u(0) =

R +1
0

h(s)u(s)ds; I1��0+ (�p(D
�
0+u (0))) = 0;

(P)

where D�
0+ and D

�
0+ denote the Riemann-Liouville fractional derivatives, 2 <

� � 3; 0 < � � 1; �p(s) = jsj
p�2 s; p > 1: The functions a : [0;+1) ! [0;+1),

f : [0;+1)� R2 ! R are continuous and g; h 2 L1 [0;+1) are nonnegative.
To prove the existence of solutions for the nonlinear fractional boundary value

problem (P), we use Krasnoselskii �xed point theorem and the boundedness of the

Riemann-Liouville fractional operator.

3.2 Existence of solutions

To solve the problem (P), we need the following theorem on the boundedness of

Riemann-Liouville fractional integral operator.

Theorem 3.2.1 [64] Let 1 � �; � � +1 and 0 < � < 1. If 1 < � < 1
�
and

� = �
1��� , then the operator I

�
0+ is bounded from L� (0;+1) to L� (0;+1) :

0@ +1Z
0

��I�0+a(r)��� dr
1A 1

�

� k

0@ +1Z
0

ja(r)j� dr

1A 1
�

;

where the constant k =
�( 1���)
�( 1�)

> 0.

Throughout this paper, we assume the following conditions.
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3.2. Existence of solutions

(C1) For all � > 0, there exists M� > 0 such that��f �t; �1 + t��1� x; y��� �M�; for all t > 0; x; y 2 [��; �] :

(C2) The function a is not identical null on any closed subinterval of [0;+1)
and

+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)dr

1A ds < +1:

If a 2 L� [0;+1) ; where � = q�1
1+�(q�1) such that 0 < � < 1

�
, then condition

(C2) is satis�ed. Indeed, taking � = q � 1 = �
1��� in Theorem 3.2.1, we obtain

+1Z
0

�q

0@ 1
�(�)

sZ
0

(s� r)��1 a(r)dr

1A ds = +1Z
0

��I�0+a(r)��q�1 dr

� kq�1
0@ +1Z

0

ja(r)j� dr

1A
q�1
�

< +1:

Set (X; k:k) the Banach space [67],

X =
�
u : u 2 C

�
R+;R

�
; D��1

0+ u 2 C
�
R+;R

�
;

sup
t2R+

ju(t)j
1 + t��1

< +1; sup
t2R+

��D��1
0+ u(t)

�� < +1� ;
with the norm

kuk = max
�
sup
t2R+

ju(t)j
1 + t��1

; sup
t2R+

��D��1
0+ u(t)

��� :
The following compactness criteria will be useful as we are on in�nite intervals

[14, 67]
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3.2. Existence of solutions

Lemma 3.2.1 Let Z � X be bounded set. Then Z is relatively compact in X if

the following condition hold:

i) The functions belonging to Z are equicontinuous on any compact subinterval

of [0;1) ; i.e. for any u 2 Z; u(t)
1+t��1 and D

��1
0+ u(t) are equicontinuous on any

compact interval of R+:
ii) The functions from Z are equiconvergent at +1. i.e. given " > 0;there

exists a constant l = l (") > 0 such that���� u(t1)1 + t��11

� u(t2)

1 + t��12

���� < " and ��D��1
0+ u(t1)�D��1

0+ u(t2)
�� < ";

for any t1; t2 � l; u 2 Z.

Lemma 3.2.2 Assume e 2 L1 (R+). The linear boundary value problem8>>>>>><>>>>>>:

D�
0+u (t) + e(t) = 0; t > 0

u(0) = 0; D��1
0+ u(+1) =

R +1
0

g(s)u(s)ds;

D��2
0+ u(0) =

R +1
0

h(s)u(s)ds;

(3.1)

has a unique solution u given by

u (t) =

+1Z
0

k(t; s)e(s)ds+

+1Z
0

G(t; s)u(s)ds;

where

G(t; s) =
g(s)t��1 + (�� 1)h(s)t��2

�(�)
; (3.2)

k(t; s) =
1

�(�)

(
t��1 � (t� s)��1; 0 � s � t < +1

t��1; 0 � t � s < +1:
(3.3)

Proof Applying the integral operator I�0+ to the di¤erential equation in (3.1),

then using Lemma 1.3.1, we get

u (t) = c1t
��1 + c2t

��2 + c3t
��3 � I�0+e(t): (3.4)
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The initial condition u (0) = 0, implies c3 = 0 and by the integral conditions

D��1
0+ u(+1) =

R +1
0

g(s)u(s)ds and D��2
0+ u(0) =

R +1
0

h(s)u(s)ds; it yields

c1 =
1

�(�)

+1Z
0

e(s)ds+
1

�(�)

+1Z
0

g(s)u(s)ds;

c2 =
1

�(�� 1)

+1Z
0

h(s)u(s)ds:

Now substituting the constants ci; i = 1; 2; 3 in (3.4), we obtain

u (t) = �
tZ
0

(t� s)��1

�(�)
e(s)ds+

t��1

�(�)

24 +1Z
0

e(s)ds+

+1Z
0

g(s)u(s)ds

35
+

t��2

�(�� 1)

+1Z
0

h(s)u(s)ds

=

+1Z
0

k(t; s)e(s)ds+

+1Z
0

G(t; s)u(s)ds;

where k(t; s) and G(t; s) are given (3.3) and (3.2) respectively.

Lemma 3.2.3 The function u is a solution of the boundary value problem (P) if

and only if u satis�es the integral equation

u(t) =

+1Z
0

k(t; s)�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A ds
+

+1Z
0

G(t; s)u(s)ds;

where k(t; s) and G(t; s) are de�ned in (3.3) and (3.2) respectively.
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3.2. Existence of solutions

Proof Applying the fractional Riemann-Liouville integral operator I�0+ to the

di¤erential equation in (P), then using Lemma 1.3.1, we get

�p (D
�
0+u(t)) = ct

��1 � 1

�(�)

tZ
0

(t� s)��1 a(s)f(s; u(s); D��1
0+ u(s))ds: (3.5)

By the boundary condition I1��0+ (�p(D
�
0+u (0))) = 0 we obtain c = 0 and then

applying ��1p = �q to the equation (3.5), it yields

D�
0+u(t) = ��q

0@ 1

�(�)

tZ
0

(t� s)��1 a(s)f(s; u(s); D��1
0+ u(s))ds

1A : (3.6)

Now it su¢ ces to apply Lemma 3.2.2, to the fractional di¤erential equation (3.6)

to complete the proof.

Lemma 3.2.4 The functions k(t; s) and G(t; s) are nonnegative and satisfy:

1) 0 � k(t;s)
1+t��1 �

1
�(�)

for all (t; s) 2 (0;+1)� [0;+1) :

2) 0 � G(t;s)
1+t��1 �

1
�(�)

(g(s) + (�� 1)h(s)) for all (t; s) 2 (0;+1)� [0;+1) :

De�ne the operators A and T : X ! X as

Au(t) =

+1Z
0

G(t; s)u(s)ds;

and

Tu(t) =

+1Z
0

k(t; s)�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A ds:
By computations, we get
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3.2. Existence of solutions

D��1
0+ Au(t) =

+1Z
0

g(s)u(s)ds;

D��1
0+ Tu(t) =

+1Z
t

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A ds:
Theorem 3.2.2 If conditions (C1) and (C2) hold, then the operator T is com-

pletely continuous.

Proof First, we shall prove that T is continuous. Let (un) be a sequence in X

that converges to u as n tends to1: Then by the Lebesgue dominated convergence
theorem and the continuity of f; we get

+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; un(r); D��1
0+ un(r)dr

1A ds

!
n!+1

+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A ds:
Thus, ����Tun(t)� Tu(t)1 + t��1

���� =������
+1Z
0

k(t; s)

1 + t��1
�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; un(r); D��1
0+ un(r)dr

1A ds
�

+1Z
0

k(t; s)

1 + t��1
�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A ds
������
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3.2. Existence of solutions

� 1

�(�)

0@������
+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; un(r); D��1
0+ un(r)dr

1A
�

+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A ds
������
1A

! 0; n! +1:

Moreover, we have

��D��1
0+ Tun(t)�D��1

0+ Tu(t)
�� =������

+1Z
t

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; un(r); D��1
0+ un(r)dr

1A ds
�

+1Z
t

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A ds
������

�
+1Z
0

�������q
0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; un(r); D��1
0+ un(r)dr

1A
��q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A������ ds
! 0; n! +1:

So, T is continuous.

Second, we shall show that T is a compact operator. Let B be a nonempty

bounded closed subset of X and let

M = sup
t2[0;+1)

���f(t; u(t); D��1
0+ u(t))

�� ; u 2 B	 :
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3.2. Existence of solutions

Taking condition (C2) into account, we get for any u 2 B,

���� Tu(t)1 + t��1

���� =
������
+1Z
0

k(t; s)

1 + t��1
�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A ds
������

(3.7)

� M q�1

�(�)

+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)dr

1A ds < +1
and

��D��1
0+ Tu(t)

�� =
������
+1Z
t

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A ds
������

�
+1Z
0

�������q
0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A ds
������

�M q�1
+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)dr

1A ds < +1;
thus

kTuk �M q�1
+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)dr

1A ds < +1;
and so, T (B) is bounded.

Furthermore, let l = [0; T0] be a compact interval for T0 > 0. From the con-

tinuity of
k(t; s)

1 + t��1
and

t��1

1 + t��1
; t; s 2 l; we have, for any " > 0; there exists a

constant 0 < �1 < " such that for all t1; t2; s1; s2 2 l and t1 < t2; as jt1 � t2j < �1;
js1 � s2j < �1; we have����k(t1; s1)1 + t��11

� k(t2; s2)

1 + t��12

���� < ", ���� t��11

1 + t��11

� t��12

1 + t��12

���� < ":
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3.2. Existence of solutions

Therefore, we have

���� Tu(t1)1 + t��11

� Tu(t2)

1 + t��12

���� �
t2Z
0

���� k(t1; s)1 + t��11

� k(t2; s)

1 + t��12

������������q
0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A������ ds
+

+1Z
t2

���� k(t1; s)1 + t��11

� k(t2; s)

1 + t��12

������������q
0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A������ ds
� "

t2Z
0

�������q
0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A������ ds
+

1

�(�)

+1Z
t2

���� t��11

1 + t��11

� t��12

1 + t��12

�����������q
0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A������ ds
� "

t2Z
0

�������q
0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A������ ds
+

"

�(�)

+1Z
t2

�������q
0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A������ ds
� 2"

+1Z
0

�������q
0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A������ ds;
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3.2. Existence of solutions

and

��D��1
0+ Tu(t1)�D��1

0+ Tu(t2)
��

=

������
+1Z
t1

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A ds

�
+1Z
t2

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)f(r; u(r); D��1
0+ u(r)dr

1A ds
������

�M q�1
t2Z
t1

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)dr

1A ds

! 0 as t1 ! t2;

hence Tu(t)
1+t��1 and D

��1
0+ Tu(t) are equicontinuous.

Third, we shall show that T is equiconvergent at +1. Let u 2 B; then

+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)
��f(r; u(r); D��1

0+ u(r)
�� dr
1A ds

�M q�1
+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)dr

1A ds < +1;
consequently, for " > 0; there exists a constant L > 0 such that

+1Z
L

�q

0@ 1

�(�)

sZ
0

(s� r)��1 (r)
��f(r; u(r); D��1

0+ u(r)
�� dr
1A ds < ":
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3.2. Existence of solutions

Now, since limt!+1
t��1

1+t��1 = 1, then there exists a constant T1 > 0 such that for

any t1; t2 � T1 ���� t��11

1 + t��11

� t��12

1 + t��12

���� < ":
From limt!+1

K(t;L)
1+t��1 = 0; and the inequalities 0 �

K(t;s)
1+t��1 �

K(t;L)
1+t��1 for 0 � s � L,

there exists a constant T2 > L such that for any t1; t2 � T2 and 0 � s � L; we

have ���� k(t2; s)1 + t��11

� k(t2; s)

1 + t��12

���� < ":
Set T3 > max fT1; T2g ; then for any t1; t2 � T3 and by using Lemma 3.2.4, we get

���� Tu(t1)1 + t��11

� Tu(t2)

1 + t��12

���� �
+1Z
0

���� k(t1; s)1 + t��11

� k(t2; s)

1 + t��12

����

� �q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)
��f(r; u(r); D��1

0+ u(r))
�� dr
1A ds

�
LZ
0

���� k(t2; s)1 + t��11

� k(t2; s)

1 + t��12

����

� �q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)
��f(r; u(r); D��1

0+ u(r))
�� dr
1A ds

+

+1Z
L

���� k(t2; s)1 + t��11

� k(t2; s)

1 + t��12

����

� �q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)
��f(r; u(r); D��1

0+ u(r))
�� dr
1A ds
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3.2. Existence of solutions

� "

+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)
��f(r; u(r); D��1

0+ u(r))
�� dr
1A ds

+
2

�(�)

+1Z
L

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)
��f(r; u(r); D��1

0+ u(r))
�� dr
1A ds

� "

+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)
��f(r; u(r); D��1

0+ u(r))
�� dr
1A ds

+
2

�(�)
" �

0@M q�1
+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)dr

1A ds+ 2

�(�)

1A ";
moreover, we have

��D��1
0+ Tu(t1)�D��1

0+ Tu(t2)
��

�
t2Z
t1

�q

0@ 1
�(�)

sZ
0

(s� r)��1 a(r)
��f(r; u(r); D��1

0+ u(r))
�� dr
1A ds < ":

Finally thanks to Lemma 3.2.1, T (B) is relatively compact and then T is com-

pletely continuous.

Next we give an existence result. Denote

�1 =

+1Z
0

g(s)
�
1 + s��1

�
ds; �2 =

+1Z
0

h(s)
�
1 + s��1

�
ds:

Theorem 3.2.3 Suppose that the conditions (C1)-(C2) hold and the following
condition is satis�ed

(C3) We have

0 < �1 + (�� 1)�2 < �(�); 0 < �1 < 1
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3.2. Existence of solutions

and there exists a constant R > 0 such that

M q�1
+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)dr

1A ds � (1� �1)R: (3.8)

Then the boundary value problem (P) has at least one solution.

Proof We shall prove that all conditions of Krasnoselskii �xed point theorem

are satis�ed.

We know that T is completely continuous from Theorem 3.2.2.

We claim that A is a contraction mapping. In fact, let u; v 2 X, we obtain

����Au(t)� Av(t)1 + t��1

���� � 1

�(�)

+1Z
0

(g(s) + (�� 1)h(s))
�
1 + s��1

� ����u(s)� v(s)1 + s��1

���� ds
(3.9)

� �1 + (�� 1)�2
�(�)

ku� vk

and

��D��1
0+ Au(t)�D��1

0+ Av(t)
�� � +1Z

0

g(s)
�
1 + s��1

� ����u(s)� v(s)1 + s��1

���� ds
� �1 ku� vk :

By the condition (C3), we get 0 < �1+(��1)�2
�(�)

< 1 and then A is a contraction

mapping.

Denote BR = fu 2 X : kuk � Rg a nonempty bounded closed convex subset
of X: Let u; v 2 BR, we claim that Au + Tv 2 BR. In fact, using (3.7), (3.8) and
(3.9), we obtain ����Au(t) + Tv(t)1 + t��1

���� � �1 + (�� 1)�2
�(�)

R < R
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3.2. Existence of solutions

On the other hand we have

��D��1
0+ Au(t) +D��1

0+ Tv(t)
�� =

������
+1Z
0

g(s)x(s)ds

+

+1Z
t

�q

0@ 1

�(�)

sZ
0

(s� r)��1 q(r)f(r; v(r); D��1
0+ v(r))dr

1A ds
������

�
+1Z
0

g(s)
�
1 + s��1

� ju(s)j
1 + s��1

ds

+M q�1
+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 q(r)dr

1A ds

� �1R +M q�1
+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 q(r)dr

1A ds

� �1R + (1� �1)R � R:

Therefore, kAu+ Tvk � R; which implies that Au+ Tv 2 BR.
Hence the problem (P) has at least one solution in X.
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3.3. Examples

3.3 Examples

Example 3.3.1 Consider the following fractional boundary value problem8>>>>><>>>>>:
D

1
2

0+(�p(D
5
2

0+u (t))) + e
�t
p
ju(t)jD

3
2 u(t)�

1+t
3
2

� = 0; t > 0

u(0) = 0; D
3
2u(+1) =

R +1
0

e�t

5
�
1+t

3
2

�u(s)ds;
D

1
2u(0) =

R +1
0

1

15(1+t)2
�
1+t

3
2

�u(s)ds; I 120+(�p(D 3
2

0+u (0))) = 0;

where

p =
4

3
; � =

5

2
; � =

1

2
; a(t) = e�t:

Let us check that all conditions (Ci), i = 1; 2; 3 are satis�ed.

(C1) Let x; y 2 [��; �], then

���f(t;�1 + t 32� x; y)��� =
r�

1 + t
3
2

�
jxjy�

1 + t
3
2

� �M� = �
3
2 :

(C2) Using Theorem 3.2.1, with q = 4; a (t) = e�t, � = 1
2
and � = 3, we obtain

� = 6
5
, 1 < � < 1

�
. Then, we get

+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)�
1
2 a(r)dr

1A ds =

+1Z
0

���I 120+a (s)���3 ds
� k3

0@ +1Z
0

ja(s)j
6
5 ds

1A 5
2

= k3

0@ +1Z
0

e�
6
5
sds

1A 5
2

=

�
5

6

� 5
2

k3 < +1:

where

k =
�
�
1
�
� �
�

�
�
1
�

� =
�
�
1
3

�
�
�
5
6

� ' 2:3733:
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(C3) By computation we obtain

�1 =

+1Z
0

g(s)
�
1 + s��1

�
ds =

+1Z
0

e�s

5
�
1 + s

3
2

� �1 + s 32� ds = 1

5
= 0:2

and

�2 =

+1Z
0

h(s)
�
1 + s��1

�
ds =

+1Z
0

1

15 (1 + s)2
�
1 + s

3
2

� �1 + s 32� ds = 1

15
:

Hence

0 < �2 + (�� 1)�2 = 0:3 < �
�
5

2

�
= 1:329 3

Choosing � =
�
1
4

� 2
3 , it yields

M q�1
�

+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)dr

1A ds � � 92 �5
6

� 5
2

k3

�
�
1

4

�3�
5

6

� 5
2

(2:4)3 ' 0:136 93;

and

(1� �1)R = 0:2;

then

M q�1
+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)dr

1A ds < (1� �1)R:
Thanks to Theorem 3.2.3, the problem (P) has at least one solution in X.
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Example 3.3.2 Consider the following fractional boundary value problem8>>>>>>><>>>>>>>:

D
1
2

0+(�p(D
7
3

0+u (t))) +
1

1+t
4
3
e�t

ju(t)j
�
D
4
3 u(t)

�2
�
1+t

4
3

� = 0; 0 < t < +1

u(0) = 0; D
4
3 u(+1) =

R +1
0

0:1

7
�
1+s

4
3

�
(1+s2)

u(s)ds;

D
1
3u(0) =

R +1
0

0:1

20
�
1+s

4
3

�
(1+s3)

1
2
u(s)ds; I

1
2

0+(�p(D
7
3

0+u (0))) = 0;

where

p =
5

4
; � =

7

3
; � =

1

2
; a(t) =

1

1 + t
4
3

:

Conditions (C1)-(C3) hold. Indeed,

(C1) If x; y 2 [��; �], then

���f(t;�1 + t 43� x; y)��� = e�t
�
1 + t

4
3

�
jxj y2�

1 + t
4
3

� �M� = �
3:

(C2) Applying Theorem 3.2.1 with

q = 5; a (t) =
1

1 + t
4
3

; � =
1

2
; � = 4;

we obtain � = 4
3
thus 1 < � < 1

�
. Moreover, we have

+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)�
1
2 a(r)dr

1A ds = +1Z
0

���I 120+a (s)���4 ds

� k4

0@ +1Z
0

ja(s)j
4
3 ds

1A3

= k4

0@ +1Z
0

�
1

1 + s
4
3

� 4
3

ds

1A3

= 3: 894 8� k4 < +1;
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3.3. Examples

here

k =
�
�
1
�
� �
�

�
�
1
�

� =
�
�
1
4

�
�
�
3
4

� = 2: 958 7:
(C3) By computations it yields,

�1 =

+1Z
0

g(s)
�
1 + s��1

�
ds = 0:0224 40

and

�2 =

+1Z
0

h(s)
�
1 + s��1

�
ds = 0:0140 22:

Taking � =
�
1
3

� 7
12 , then

M q�1
�

+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)dr

1A ds � �12 � 3:894 8� k4

�
�
1

3

�7
� 3:894 8� (2:958 7)4 ' 0:136 47;

(1� �1)R = 0:258 53:

Consequently,

M q�1
+1Z
0

�q

0@ 1

�(�)

sZ
0

(s� r)��1 a(r)dr

1A ds < (1� �1)R:
We conclude by Theorem 3.2.3, that the problem (P) has at least one solution in

X.
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Conclusion

This thesis consists of two main parts. The �rst part is devoted to the study of the

existence, uniqueness and stability of the solutions for a class of nonlocal fractional

boundary value problems on in�nite intervals with variable delays. The results are

obtained via some �xed point theorems such as the Banach contraction principle

and the Leray-Schauder nonlinear alternative.

The second part deals with the existence of solutions for Riemann-Liouville

fractional boundary value problems on an in�nite interval involving the p-Laplacian

and integral boundary conditions. Thanks to Krasnoselskii �xed point theorem

and a Corduneanu compactness criteria, the existence results are established.

Future studies could address to boundary value problems containing other types

of fractional derivatives, such Antagan-Baleanu fractional derivatives, Liouville-

Grunwald fractional derivative, Hadamard fractional derivative, Hille-Tamarkin

fractional derivative, Riesz fractional derivative, Marchaud fractional derivative,

Hilfer fractional derivative, Liouville-Sonine-Caputo fractional derivative, ....

In addition, one can deal with similar problems by using other methods to

prove the existence of solutions such as the method of lower and upper solutions

and numerical methods and then other conditions have to be introduced.
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