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 ملخّص

 المنحلة الكسرية التفاضلية  المعادلات بدراسة المتعلق الرياضياتي المجال شهد

 الميادين  شتى في المتنوعة لتطبيقاتها وذلك الأخير العقد خلال ملحوظا تطورا

 مسألة حل ووحدانية وجود دراسة الأطروحة هذه تتناول. والهندسة بالعلوم المتعلقة

 كيفي بناخ فضاء في منحلّة  كابوتو نوع من كسرية رتب ذات لمشتقة تفاضلية

 تتناول كما. درازين مقلوب وخاصة بسيطة جبرية عمليات على بالاعتماد

 المشتقات نوع من مختلفة كسرية بمشتقة المسألة  لنفس حل مناقشة أيضا المطروحة

 المعادلات من النوع هذا انتظام يناقش جزء إلى بالإضافة الموافقة، الكسرية

 المحصل النتائج  صحة لإثبات توضيحية أمثلة سنقدم كما. جديدة مقاربة ستعمالبا

 . عليها

 و  الوجود, درازين مقلوب, منحلة كسرية تفاضلية معادلات :مفتاحية كلمات

الموافقة الكسرية المشتقة, كابوتو مشتقة, الوحدانية .  

    

                                 

 

 

 

 
 



Abstract

Recently, the research area of singular fractional systems, known also as "degenerate" or

"differential-algebraic" fractional systems, has attracted many mathematicians and physi-

cists. The first application of such systems have arisen in modeling systems of science and

engineering, such as electrical networks, economics, optimization problems, analysis of con-

trol systems, constrained mechanics, aircraft and robot dynamics, biology. The aim of the

present thesis is to establish a rigorous analytical study on fractional singular initial value

problems on a Banach space by studying the existence and uniqueness of the solution. More-

over, a new approach to regularity using Drazin inverses is presented. We also use a suitable

method to write down the explicit formula to the solution of the given Cauchy problem us-

ing decompositions and canonical forms. In addition, we illustrate our results with some

numerical examples. Finally, concluding remarks are given together with future perspec-

tives.

Keyword: singular equations, Drazin inverse, Caputo’s fractional Cauchy Problem, frac-

tional conformable derivatives, Banach space, existence and uniqueness.
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Résumé

Au cours de ces derniéres annèes l’ètude des problèmes fractionnaires singuliers est un sujet

de recherche très actif, vu ses applications nombreuses dans la modélisation des différentes

systèmes en science et ingénierie notamment les systèmes de contrôles, l’économie, la mé-

canique des fluides et même la sociologie. Dans cette thèse, on étudie d’une façon analytique

un système de Cauchy fractionnaire singulier généralisé dans un espace de Banach, en trai-

tant l’existence et l’unicité du problème présenté sous deux types de dérivées fractionnaires

différentes: la dérivée fractionnaire de Caputo et la nouvelle dérivée fractionnaire conforme

avec des exemples numériques pour rendre concret nos résultats théoriques. En plus, une

nouvelle approche de la régularité au sens de l’inverse de Drazin est proposée. Finalement,

on conclut avec des remarques et des perspectives.

Mots clés: problème de Cauchy fractionnaire singulier, existence et unicité, espace de Ba-

nach, inverse de Drazin, dérivée conforme.
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Introduction

Fractional Calculus is a branch of mathematics as old as Classical Calculus, its origin began

with an innocent question asked by Marquise De l’Hopital to the mathematician Gottfried

W. Leibniz in 1695 concerning the new notation of the nth-derivation introduced by the lat-

ter, namely dn

d xn . He asked him whether it was suitable to use the non-integer value n = 1
2 .

Since it was too difficult to give a rigorous mathematical answer at that time, he simply

answered him in a prescient way, "This is an apparent paradox from which one day use-

ful consequences will be drawn...". In fact, this naive question is now a revealed reality

that has been deeply explored and exploited by a variety of researchers in the context of

Fractional Calculus [3, 11]. Due to the non-local character of fractional derivative, several

real-world processes and natural phenomena are mathematically modeled by different types

of fractional derivatives, including Caputo’s derivative and conformable derivative, for more

details see [8, 14, 22, 13].

As mentioned earlier, fractional differential equations occur in the modeling of many sys-

tems in physics and engineering. The following example was originally proposed by Nutting

[19]. It explains the need for the use of fractional order derivatives in systems of mechan-

ics. We want to describe the behavior of certain materials under the influence of external

forces. Usually, we use the laws of Hooke and Newton, the relation we are interested in is

the relation between the stress σ(t) and the strain ε(t). Now, if we are dealing with viscous

fluids, then Newton’s law holds

σ(t) = θD1ε(t),
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where θ is the viscosity of the material. However, in the case of modeling the stress-strain

relationship for elastic solids, we use Hooke’s law

σ(t) = ED0ε(t) = Eε(t).

Now consider such an experiment with ε(t) = t for t ∈ [0, T] and T ≥ 0. It follows that the

stress behaves as follows

σ(t) = Et,

if it is an elastic solid, and

σ(t) = θ = const,

for a viscous fluid.

We can then summarize these equations as follows.

γk =
σ(t)
ε(t)

tk. (1)

Obviously, the case k = 0 corresponds to Hooke’s law for solids and k = 1 to Newton’s

law for liquids. So we can say that for materials called viscoelastic that exhibit behavior

somewhere between pure viscous fluid and pure elastic solid, such as polymers or even

some types of biological tissues, at least under certain temperature and pressure conditions,

relation (1) is observed for 0< k < 1.

In view of all these properties, it is reasonable to suppose that it is possible to express the

relation between stress and strain for such a viscoelastic material by means of an equation

of the form

σ(t) = µDkε(t),

where µ is a material constant and k ∈ (0, 1), which is called Nutting’s law.

On the other hand, ordinary differential equations are a universal tool to describe and model

physical processes, but there are physical systems in which we are forced to add more con-
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straints, which are usually written in terms of algebraic equations and the system is consid-

ered as singular. Therefore, singular equations are considered to be a more natural way to

model a variety of systems in science and engineering, see [6, 7, 15, 21, 23, 26] for more

details.

Nevertheless, recently the combination of the above topics Fractional Calculus and Sin-

gular Systems has been an active area of research, although it can be really difficult to ob-

tain analytical solutions for singular fractional differential initial value problems, because of

their complexity and also, because it is sometimes difficult to separate the algebraic equa-

tions from the differential equations in order to identify the analytical solution.

In [15], a rigorous study of ordinary singular differential systems with constant coefficient

matrix and time-varying matrix was presented, while in [27], the solution and stability of a

homogeneous singular system under Riemman-Liouville fractional derivative was discussed.

Meanwhile, in [20] the author used projections on Banach spaces to give the solution to a

linear and a non linear degenerate Caputo fractional Cauchy problem. In this manuscript,

we are interested in the analytical study of two kinds of fractional singular initial value prob-

lems, we mention previous stability results, and discuss the existence and uniqueness of the

solution with respect to the regularity of the given problem. Moreover, we use generalized

inverses and canonical forms to obtain the solution explicit formula. We refer the reader to

recent research works on differential fractional singular systems by authors E. Shishkina &

S. Sitnik [23], Y. Zhao [26], S. Bu & G. Cai [5], M. Plekhanova [20], and references therein.

The structure of this thesis is as follows: We begin by recalling basic notions and definitions

from the theory of both fractional and singular systems. In Chapter2 we discuss the exis-

tence and uniqueness of a singular system of Caputo type; we derive an explicit formula

of the solution by using the Drazin inverse and canonical representations. Two numerical

examples are shown to illustrate the results, and a new concept of regularity is introduced

at the end of this chapter. In Chapter 3, we introduce a new type of fractional singular

problems by using the new conformable fractional derivative introduced in [13].
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Then, we discuss the existence and uniqueness of solution to these systems, using a similar

approach as in Chapter 2. Furthermore, In chapter 4, a numerical application is presented

to compare both solution formulas given in Chapter 2 and Chapter 3.

Finally, we finish our thesis with some concluding remarks and some perspectives for future

investigations in fractional singular differential systems and their applications.

ix



Chapter 1

Preliminaries

In this chapter, we briefly state known definitions and theorems from the field of Fractional

Calculus, such as the one of systems of differential algebraic equations in order to guar-

antee the coherence of this manuscript. We first start by presenting the functional spaces

we needed throughout our work. Then, we give an overview on the theory of Fractional

Calculus especially Caputo fractional derivatives and Conformable fractional derivative.

Finally, we turn our attention to the theory of Differential Algebraic equations.

1.1 Functional spaces

Let (X ,‖.‖) be a complex Banach space. We denote by B (X ) the Banach space of linear

bounded operators from X into itself endowed with the norm ‖A‖op = sup {‖Ax‖ : ‖x‖= 1},

for every A∈B (X ).

Definition 1.1.1 A function f : R+→ X is said to be absolutely continuous, if for any compact

interval J ⊂ R+ and, for any ε > 0, there exists a positive real number δ > 0, such that

n
∑

k=1

‖ f (bk)− f (ak)‖X < ε,

1



for any finite set of mutually disjoint intervals [ak, bk] ⊂ J, k = 1, 2, . . . , n, such that

n
∑

k=1

(bk − ak)< δ.

Definition 1.1.2 The vector space of all absolutely continuous functions on R+ taking their

values in X is denoted by AC (R+; X ). Moreover, we shall use the following generalization: If

n ∈ N∗ := {1,2, 3, ...}, then

ACn
�

R+; X
�

=
�

f : R+→ X : f ∈ Cn−1
�

R+; X
�

and f (n−1) ∈ AC
�

R+; X
�	

.

In particular, we have AC1 (R+; X ) := AC (R+; X ).

Remark 1.1.1 We notice that a function f : R+ → X is absolutely continuous if and only if

there are ϕ ∈ L1 (R+; X ) and a constant vector c ∈ X such that

f (x) = c +

∫ x

0

ϕ(t)d t, x ≥ 0,

and from which we get f ′ (x) = ϕ (x), a.e. x ≥ 0.

1.2 Fractional Calculus

Some definitions for the fractional derivatives were driven over the years [14, 8, 22], in

this manuscript, we restrict our attention to the use of Caputo fractional derivatives and

conformable fractional derivative. In this section, we introduce some basic definitions and

properties of the fractional integrals and fractional derivatives which are further used in this

manuscript.

Definition 1.2.1 [14] The Gamma function Γ (z) is defined by

Γ (z) =

∫ +∞

0

tz−1e−t d t, Re(z)> 0,

2



where tz−1 = e(z−1)log(t). This integral is convergent for all complex z ∈ C : Re(z) > 0. For this

function the reduction formula

Γ (z + 1) = zΓ (z), Re(z)> 0

holds. In particular, if z = n ∈ N, then

Γ (n+ 1) = n!, n ∈ N

with 0!= 1.

Definition 1.2.2 [14](Mittag-Leffler function) Let α > 0. The function Eα defined for z ∈ C

by

Eα(z) =
∞
∑

j=0

z j

Γ (α j + 1)

is called the Mittag-Leffler function of order α. This function has been introduced by Mittag-

Leffler and one can immediately notice that

E1(z) = ex p(z)

which is the well known exponential function.

Let us consider some of the starting points ideas of the theory of fractional calculus for a

better understanding of this theory, this has began with the fractional integral which is a

generalization of repeated integration. Thus if f is locally integrable on (0,∞), then the

n-fold iterated integral is given by

D−n f (t) =

∫ t

0

∫ σ1

a

· · ·
∫ σn−1

0

f (σn)dσn · · · dσ2 dσ1 =
1

(n− 1)!

∫ t

0

(t − s)n−1 f (s)ds,

for t > 0 and n ∈ N. Based on this integral an immediate generalization for α ∈ C, where

Re(α)> 0, called the Riemman-Liouville fractional integral. Let us first introduce the Frac-

tional Liouville-Riemman integral

3



Definition 1.2.3 [14] Let α ∈ C, and let N be given by N = [α] + 1 where Re(α) > 0, for

f ∈ L1(R+, X ), the Riemman-Liouville fractional integral is defined by

Jα f (t) =
1
Γ (α)

∫ t

0

(t − s)α−1 f (s)ds, t > 0.

1.2.1 Caputo Fractional derivative

Definition 1.2.4 [14] Let α ∈ R∗+, and let N be given by N = [α] + 1 if α /∈ N0. The Caputo

fractional derivative of a function f ∈ ACN (R+, X ) of order α, C Dα0 f (t) exists, and it is given

by

C Dα0 f (t) =
1

Γ (N −α)

∫ t

0

(t − s)N−α−1 f (N)(s)ds.

In particular, when 0< α < 1, then

C Dα0 f (t) = Dα0 ( f (t)− f (0)),

where Dα0 denotes the Riemman-Liouville fractional derivative.

If α= N ∈ N and the usual derivative f (N)(t) of order N exists, then C Dα0 f (t) is represented by

C DN
0 f (t) = f (N)(t).

Property 1.2.1 [14] For α ∈ (0,1) and f ∈ AC(R+, X ),

C Dα0 f (t) =
1

Γ (1−α)

∫ t

0

(t − s)−α f ′(s)ds

and

C Dα0 (J
α
0 f (t)) = f (t),∀t ≥ 0

Remark 1.2.1 we point out that the Caputo’s fractional derivative of order α on a Banach

space is well defined whenever f ∈ ACN (R+; X ).

4



If we define the convolution product ϕ ∗ψ of two functions ϕ and ψ by

ϕ ∗ψ (t) =
∫ t

0

ϕ (s)ψ (t − s) ds, t > 0,

We have these two useful relations:

• CDα0+Jα0+ f = f , whenever Jα0+ f ∈ ACN (R+; X ),

• JαC
0+ Dα0+ f (t) = f (t)−

N−1
∑

k=0

f (k) (0+)
k!

tk , for f ∈ ACN (R+; X ).

We shall denote throughout this thesis the left-sided Caputo’s fractional derivative of order

α of f : R+→ X , initiated at 0, by Dα0+ f (t) instead of C Dα0+ f (t).

• All the integrals presented in this work are taken in Bochner’s sense, that is, a strongly

measurable function f : (0, b)→ X is Bochner integrable if || f || is Lebesgue integrable

over (0,b).

The Laplace transform

As known in the theory of Ordinary Differential Equations(ODEs), Laplace transform is a

very simple and efficient way to solve a linear ODE, let us state without proof some facts

about the application of Laplace transform to Caputo’s fractional derivative initiated at the

origin. We have

Definition 1.2.5 [14] Let f : R+→ X be piecewise continuous on every finite interval [0, T],

T > 0, and if there exist positive constants M and a such that ‖ f (t)‖ ≤ Meat , t ≥ 0, then the

Laplace transform of f (t) is defined by

F(p) =L ( f )(p) =
∫ +∞

0

e−ps f (s)ds, Re(p)> a.

The inverse Laplace transform is formally given by

f (t+) + f (t−)
2

=L −1(F) (t) =
1

2πi

∫ c+i∞

c−i∞
et pF(p)dp, t > 0,

5



where the integral is carried out along the line c + i y,−∞< y < +∞, with c > a.

Let α > 0 and N = [α] + 1, if α is non integer and N = α, if α is integer, then the

Laplace transform of the Caputo’s fractional derivative Dα0+ g of a vector-valued function

g ∈ CN (R+; X ) such that g(N) ∈ L1 (0, T ; X ), for every T > 0 and

�

�g(N) (x)
�

�≤ Meax , for every x > T > 0,

for some constants M > 0 and a > 0, is given by

(LDα0+ g)(p) = pα(L g)(p)−
N−1
∑

k=0

g(k) (0) pα−k−1, Re(p)> a. (1.1)

1.2.2 Conformable Fractional derivative

As stated previously fractional derivatives previously defined using the Riemann-Liouville

integral cannot satisfy some of the basic properties that usual derivatives have, such as the

product rule and chain rule. However, in [13] the authors introduced a new well behaved

simple fractional derivative called "a conformable fractional derivative" (CFD), defined by:

Definition 1.2.6 [13] Given a function f : [0,+∞) → R. Then the so called conformable

fractional derivative of f of order α ∈ (0, 1] is defined by

Tα( f )(t) = lim
ε→0

f (t + εtα−1)− f (t)
ε

for all t > 0. If f is α-differentiable in some (0, b), b > 0, and lim
t→0+

f (α)(t) exists, then we put

f (α)(0) := lim
t→0+

f (α)(t).

If the conformable fractional derivative of f of order α exists, then we simply say that f is

α-differentiable.

Definition 1.2.7 [13] Let α ∈ (0, 1], the conformable integral of order α starting at the origin

6



of a function f of order α is defined by

Iα0 f (t) =

∫ t

0

sα−1 f (s)ds.

We have the following results:

Lemma 1.2.1 [13] Let f be a continuous function on [0,+∞[, then we have

TαIα0 f (t) = f (t), t > 0

Theorem 1.2.1 If a function f : [0,+∞)→ R is α-differentiable at t0 > 0,α ∈ [0, 1), then f

is continuous at t0.

Proof Since

f (t0 + εt1−α
0 )− f (t0) =

f (t0 + εt1−α
0 )− f (t0)

ε
ε.

Then,

lim
ε→0
[ f (t0 + εt1−α

0 )− f (t0)] = lim
ε→0

f (t0 + εt1−α
0 )− f (t0)

ε
lim
ε→0
ε.

Let h= εt1−α
0 . Then,

lim
h→0
[ f (t0 + h)− f (t0)] = f (α)(t0) = 0

which implies that

lim
h→0

f (t0 + h) = f (t0).

Hence, f is continuous at t0.

Furthermore, we have the following theorem

Theorem 1.2.2 [13] Let α ∈ (0,1], f , g be α-differentiable at a point t > 0. Then

• Tα(a f + bg)(t) = aTα( f )(t) + bTα(g)(t), for all a, b ∈ R,

• Tα(t p) = pt p−α, for every p ∈ R,

7



• Tα(λ) = 0, for every constant λ ∈ R,

• Tα( f g)(t) = f Tαg(t) + gTα f (t),

• Tα( f
g )(t) =

gTα f (t)− f Tαg(t)
g(t)2

, with g(t) 6= 0,

• In addition, if f is differentiable at t, then Tα f (t) = t1−α f ′(t).

The following theorem deals with the conformable fractional derivative’s chain rule,

Theorem 1.2.3 [13](chain rule). Assume f , g : (0,∞) → (0,∞) be α-differentiable func-

tions, where 0< α≤ 1. Let h(t) = f (g(t)), then h(t) is α-differentiable and for all t ∈ (0,∞)

such that g(t) 6= 0, we have

Tα(h(t)) = Tα( f (g(t))Tαg(t)gα−1(t).

If t=0, we have

Tα(h(t)) = lim
t→0

Tα( f (g(t))Tαg(t)gα−1 g(t).

Proof By setting u= t + εt1−α in the definition and using continuity of g we see that

Tαh(t) = lim
u→t

f (g(u))− f (g(t))
(u− t)

t1−α

= lim
u→t

f (g(u))− f (g(t))
(g(u)− g(t))

∆ lim
u→t

g(u)− g(t)
u− t

t1−α

= lim
g(u)→g(t)

f (g(u))− f (g(t))
(g(u)− g(t))

∆g(t)1−α∆Tαg(t)∆gα−1(t) = (Tα f )(g(t))∆(Tαg)(t)∆gα−1(t).

The CFD attracted a lot of scientists and researches for its main advantages such as

• It satisfies all the concepts and rules of an ordinary derivative such as: quotient, prod-

uct and chain rule while the other fractional definitions fail to meet these rules.

8



• It can be extended to solve exactly and numerically fractional differential equations

and systems easily and efficiently.

• It generalizes well-known transforms such as Laplace transforms and are used as tools

for solving some singular fractional differential equations.

• It enables new comparisons of CFD and other previous fractional definitions in many

applications.

Here are some conformable fractional derivative of certain functions:

• Tα(ecx) = cx1−αecx , for any constant c ∈ R,

• Tα(t p) = pt p−α for all p ∈ R,

• Tα(1) = 0,

• Tα( 1
α tα) = 1.

1.3 Differential Algebraic Equations

1.3.1 What is a differential algebraic equation?

Initial value problems as well as boundary value problems, are usually written in the form

of an explicit differential equation system

x ′ = f (t, x),

subject to some initial or boundary conditions. A more general form could be an implicit

ODE of the form

F(t, y, y ′) = 0,

where the Jacobian matrix is assumed to be nonsingular for all values in an appropriate

domain.
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However, we may encounter another form of an explicit ODE

x ′ = f (t, x , z), (1.2)

0= g(t, x , z). (1.3)

with some appropriate algebraic constraints This kind of ODE for x(t) depends on additional

algebraic variables z(t), therefore the solution is forced in addition to satisfy the algebraic

constraints, and the jacobian matrix is no longer nonsingular. Such an ODE is called a dif-

ferential algebraic equations (DAE), singular, degenerate, implicit equations. In order

to be solved systems of the form (1.2)-(1.3) were usually transformed into ordinary differ-

ential equations

x ′ = g(t, x)

via analytical transformations. One way to achieve this is to explicitly solve the constraint

equations analytically in order to reduce the given differential-algebraic equation to an or-

dinary differential equation with fewer variables. Nevertheless, this approach heavily relies

on either transformations by hand or symbolic computation software which are both not

feasible for medium or large scale systems.

Another way to treat this kind of equations is the algebraic approach via canonical forms

and generalized inverses, which allows us to study them in a systematic way besides being

very efficient in numerical discretization methods.

1.3.2 Drazin inverse operator

As we mentioned previously, solving DAEs is not trivial, one can face real difficulties when

trying to solve a system of DAEs for the reason that it contains two parts, a differential and

an algebraic part. To show that, we consider the following linear system:

Ax = b,
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where A∈B(X ) is a singular operator, so the system has no solution or has multiple ones.

However, what if we can find a suitable operator E such that above system admits x = Eb

as a solution?. In fact, such an operator E exists and is called the generalized inverse of A

which is reduced to the regular inverse A−1 when A is nonsingular. Although, several classes

of generalized inverses are given, namely, the Moore-Penrose inverse, the {i, j, k} inverses,

we are interested in the Drazin inverse operator defined as follows:

Definition 1.3.1 [24] The index of an operator E ∈ B (X ), denoted indE, is the least non-

negative integer m such that ker Em = ker Em+1 and R (Em) =R
�

Em+1
�

.

Definition 1.3.2 [24] Let E ∈ B(X ), indE = m<∞, andR (Em) is closed, then the unique

operator ED ∈ B (X ) satisfying

EDEED = ED,

EDE = EED,

EDEm+1 = Em,

is called the Drazin inverse of E.

Remark 1.3.1 If E is invertible, then ED = E−1 and indE = 0; we set indE = 1, if E = 0.

Now, having defined the Drazin inverse and the index of an operator, it is time to argue

about the existence theorem of the Drazin inverse of an operator.

Theorem 1.3.1 [24] Let E ∈ B(X ), if ind(E) = m <∞, then the Drazin inverse exists and

ED ∈ L (X ). Moreover, if R(Em) is closed, then ED ∈B(X ).

Theorem 1.3.2 [24] if the Drazin inverse of E ∈B(X ) exists, then it is unique.

Definition 1.3.3 Let E ∈B(X ), ind(E) = m, andR(Em) be closed, we call the product EEDE

the core part of E, denoted by C. Let N = E − C, then

E = C + N

11



is the core-nilpotent decomposition of E. It follows that N is the nilpotent operator with index

m, since

N m = (E − EEDE)m = Em(I − EDE) = 0,

and

N = E l(I − EED) 6= 0, l < m.

Theorem 1.3.3 [24] Let E ∈B(X ), ind(E) = m, and R(Em) be closed, then

• ind(ED) = ind(C) = 1, when ind(E)≥ 1, when ind(E) = 0;

• NC = CN = 0;

• N ED = EDN = 0;

• C EED = EEDC = C;

• E = C if and only if ind(E)≤ 1;

• ((E)D)D = C;

• ED = C D;

• (ED)p = (Ep)D, where p is an arbitrary positive integer;

• (ED)∗ = (E∗)D.

We have the following Proposition,

Proposition 1.3.1 Let A, L ∈B (X ) such that L is bijective and LA= AL. Then

ker (LA) = ker(A) and R (LA) =R (A) .

Moreover, if indA= m<∞, then

ind (LA) = indA. (1.4)
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Proof Let x ∈ ker (LA), then L (Ax) = 0; hence Ax = 0 , that is x ∈ ker A. Conversely, if

x ∈ ker A, then Ax = 0 implying that LAx = 0; hence x ∈ ker (LA). Therefore, we obtain

ker (LA) = ker A.

To prove the relation (1.4), let z ∈ R (LA), there is x ∈ X : z = LAx = A(Lx). It follows

that z ∈ R (A). Conversely, if z ∈ R (A), then there exists x ∈ X : z = Ax = LA
�

L−1 x
�

, and

so, z ∈ R (LA). Therefore, R (LA) =R (A).

Suppose that indA = m, then m is the least integer number for which we have ker Am =

ker Am+1 andR (Am) =R
�

Am+1
�

. Since Lm and Lm+1 are bijective we can apply the previous

assertion of this Proposition to {Lm, Am} and
�

Lm+1, Am+1
	

to get

ker (LA)m = ker Am = ker Am+1 = ker (LA)m+1 ,

R (LA)m = R (Am) =R
�

Am+1
�

=R (LA)m+1 .

We conclude that

ind (LA) = indA= m.
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Chapter 2

Singular Caputo Fractional initial values

problems

Let R+ := [0,∞) be the set of nonnegative real numbers, α a positive non integer number

and let N = [α]+1, where [α] is the integral part of α, (X ,‖.‖) is a complex Banach space.

We denote by B (X ) the Banach space of linear bounded operators from X into itself en-

dowed with the norm ‖A‖op = sup {‖Ax‖ : ‖x‖= 1}, for every A∈B (X ). We are interested

in solving explicitly the following singular fractional differential initial value problem with

respect to Caputo’s fractional derivative in the unknown vector function x (t) : R+ → X ,

namely

EDα0+ x(t) = Ax(t) + f (t), t > 0, (2.1)

subject to the initial conditions

x (k)(0) = vk, k = 0,1, . . . , N − 1, (2.2)

where E, A ∈ B (X ), so that ker E 6= {0} (and possibly ker A 6= {0}), and Dα0+ denotes the

(left sided) Caputo’s fractional derivative of order α > 0 initiated at 0, (v0, v1, ..., vN ) are

known vectors in X and f is a given absolutely continuous function defined on R+.
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Unlike the projection operators approach used in the works [10, 20], we shall express the

solution to problem (2.1)-(2.2) in terms of Mittag-Leffler functions and Drazin inverses

[12, 24] of the operators A and E, when AE = EA. In particular, if these operators are non

singular, we obtain the explicit solution of a regular fractional initial value problem. The

technique used in our investigation consists of decoupling the operator E into the sum of

two operators, one of them is nilpotent, so that the given problem (2.1)-(2.2) is equivalent

to a certain couple of manageable subproblems.

Finally, at the end of this chapter and in order to investigate general singular fractional ini-

tial value problems, when the operators A and E do not necessarily commute we introduce

a new notion of regularity that allows solving this type of problems.

2.1 Explicit solution to a singular fractional Caputo type

Cauchy problem

Let us first state and solve explicitly some fractional differential equation with a nilpotent

operator coefficient. The obtained solution is unique and there is no initial value imposed.

We have

Lemma 2.1.1 [2] Let B, N, L ∈ B (X ) such that B is invertible, N a nilpotent operator of

index (of nilpotency) m ∈ N∗ so that BLN = LNB. Then, for any function f : R+ → X such

that
�

B−1
�k+1
(LN)k

�

Dα0+
�k

f ∈ AC
�

R+; X
�

, for k = 0,1, . . . , m− 1,

the fractional differential equation

LNDα0+ξ (t) = Bξ (t) + f (t) , t > 0, (2.3)
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has a unique solution given by

ξ (t) = −
m−1
∑

k=0

�

B−1
�k+1
(LN)k

�

Dα0+
�k

f (t) , t > 0. (2.4)

Proof By applying B−1 to the both sides of the first equation of (2.3) we find

B−1 LNDα0+ξ (t) = ξ (t) + B−1 f (t) . (2.5)

It is worth to notice that the assumption BLN = LNB implies that B (LN)k = (LN)k B, for

k = 1, 2, . . . , m − 1, and so (LN)k B−1 = B−1 (LN)k, for k = 1, 2, . . . , m − 1. Setting Q =

B−1 LNDα0+ , we get for every k = 1, 2, . . . , m− 1,

QkB−1 =
�

B−1 LNDα0+
�k

B−1 =
�

B−1
�k
(LN)k B−1

�

Dα0+
�k

=
�

B−1
�k+1
(LN)k

�

Dα0+
�k

.

By expressing equation (2.5) in term of Q we obtain

Qξ (t) = ξ (t) + B−1 f (t) . (2.6)

Next, we apply the operators Qk, k = 1, 2, . . . , m− 1, to equation (2.6) we get respectively

Q2ξ (t) = Qξ (t) +QB−1 f (t)

= ξ (t) + B−1 f (t) +QB−1 f (t) ,

Q3ξ (t) = Qξ (t) +QB−1 f (t) +Q2B−1 f (t)

= ξ (t) + B−1 f (t) +QB−1 f (t) +Q2B−1 f (t) ,

...
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Qmξ (t) = 0= ξ (t) +
m−1
∑

k=0

QkB−1 f (t) .

So that, the unique solution to the fractional differential equation (2.3) is given by

ξ (t) = −
m−1
∑

k=0

QkB−1 f (t)

= −
m−1
∑

k=0

�

B−1
�k+1
(LN)k

�

Dα0+
�k

f (t) , t ≥ 0,

which completes the Lemma’s proof.

Our next step is to establish an equivalence between the fractional differential equation

(2.1) and a couple of appropriate fractional differential equations. We have

Proposition 2.1.1 Let E, A ∈ B (X ) with ker E 6= {0}. We assume the Drazin inverse ED

exists and EA= AE. Then, equation (2.1) is equivalent to the fractional differential system







CDα0+ y (t) = Ay (t) + f1(t),

NDα0+z (t) = Az (t) + f2(t), t ≥ 0,
(2.7)

where C= EEDE, N= E −C, and

y (t) = EDEx (t) , z (t) =
�

I − EDE
�

x (t) ,

f1(t) = EDE f (t) , f2 (t) =
�

I − EDE
�

f (t) .

Moreover, the function y (t) = EDEx (t) is a solution to the first equation of (2.7), if and only

if, it satisfies the regular fractional differential equation

Dα0+ y (t) = EDAy (t) + ED f1(t), t ≥ 0. (2.8)

Proof It is worth to notice that we have
�

EDE
�2
= EDE, so that, by applying the operator
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EDE to both sides of equation (2.1) we obtain the following fractional differential equation

�

EDE
�2

EDα0+ x(t) = EEDEDα0+
�

EDE
�

x(t)

= CDα0+ y(t)

= EDEAx(t) + EDE f (t)

= Ay (t) + f1 (t) ,

which is a solution to equation (2.7)1.

Likewise, noticing that
�

I − EDE
�2
=
�

I − EDE
�

, and applying the operator
�

I − EDE
�

to both

sides of equation (2.1) we get

�

I − EDE
�2

EDα0+ x(t) = E
�

I − EDE
�

Dα0+
�

I − EDE
�

x(t)

= NDα0+z(t)

=
�

I − EDE
�

Ax(t) +
�

I − EDE
�

f (t)

= Az (t) + f2 (t) .

Therefore, z (t) satisfies second equation from (2.7).

Conversely, if (y (t) , z (t)) satisfies system (2.7), then, thanks to the linearity of the frac-

tional derivative, the function x (t) = y (t) + z (t) satisfies

EDα0+ x(t) = EDα0+ (y (t) + z (t)) = EDα0+ y (t) + EDα0+z (t)

= A(y (t) + z (t)) + f1 (t) + f2 (t)

= Ax (t) + f (t) .

To establish the last assertion we notice that y (t) = EDEx (t) is already a solution to the
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first equation of (2.7), and we have

Dα0+ y (t) = Dα0+
�

EDE
�

x (t) = EDEDα0+ x (t)

= ED (Ax (t) + f (t))

= ED
�

A
�

EDE
�

x (t) + EDE f (t)
�

= EDAy (t) + ED f1(t), t ≥ 0.

Conversely, multiplying (2.8) by C we obtain

CDα0+ y (t) = EDEAy (t) +CED f (t)

= EDEA
�

EDEx (t)
�

+ f1(t)

= Ay (t) + f1 (t) .

Let us now state and prove another important result which is

Proposition 2.1.2 Let E, A∈B (X ) such that EA= AE and ED, AD exist. Then the following

assertions are equivalent

a)

ker ED ∩ ker AD = {0} . (2.9)

b)

ADA
�

I − EDE
�

= I − EDE. (2.10)

Proof a)⇒b): Suppose that ker ED ∩ ker AD = {0} and set

B = ADA
�

I − EDE
�

−
�

I − EDE
�

.
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Applying the operators AD and ED to the latter equation we get respectively

ADB = ADADA
�

I − EDE
�

− AD
�

I − EDE
�

= AD
�

I − EDE
�

− AD
�

I − EDE
�

= 0,

and

EDB = EDADA
�

I − EDE
�

− ED
�

I − EDE
�

= ADA
�

ED − EDEDE
�

−
�

ED − EDEDE
�

= 0.

Hence, for any x ∈ X , we have

AD (Bx) = ED (Bx) = 0,

that is

Bx ∈ ker ED ∩ ker AD = {0} .

It follows that Bx = 0, for every x ∈ X , and accordingly (2.10) holds.

b)⇒a): Suppose that (2.10) holds. Let x ∈ ker ED ∩ ker AD, then

AD x = ED x = 0.

It follows that

�

I − EDE
�

x = x − EED x = x

= A
�

I − EDE
�

AD x = 0.

Hence x = 0; therefore ker ED ∩ ker AD = {0}.
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Remark 2.1.1 i) It is not hard to check the following inclusion by using the property ED =

EDEDE and AD = ADADA,

ker E ∩ ker A⊂ ker ED ∩ ker AD.

ii) If E, A∈B (X ) commute, ED, AD exist, with indE = m<∞ and indA= k <∞, and

ker Em ∩ ker Ak = {0} ,

then the relation (2.10) holds. Indeed, applying respectively Em and Ak to the operator B we

obtain

EmB = EmADA
�

I − EDE
�

− Em
�

I − EDE
�

= AD
�

Em − EDEm+1
�

− AD
�

Em − EDEm+1
�

= 0,

and

AkB = AkADA
�

I − EDE
�

− Ak
�

I − EDE
�

= Ak
�

I − EDE
�

− Ak
�

I − EDE
�

= 0.

Reasoning as above we conclude that (2.10) holds.

Before tackling the general singular fractional differential equation we would like to inves-

tigate the homogeneous one, we have

Theorem 2.1.1 Let E, A ∈ B (X ) with ker E 6= {0} so that EA = AE and indE = m. We

assume that E and A have bounded Drazin inverses ED and AD obeying condition (2.9). Then,

the general solution of

EDα0+ x(t) = Ax(t), t > 0, (2.11)
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is given by

x(t) =
N−1
∑

k=0

tkEα,k+1

�

tαEDA
�

EDEbk, t ≥ 0,

for some constant vectors b0, b1, . . . , bN−1 ∈ X , where

Eα,β (t) =
∑

k≥0

1
Γ (αk+ β)

tk (2.12)

is the Mittag-Leffler function of two parameters α,β > 0.

Proof Let us define y (t) = EDEx (t), then

Dα0+ y (t) = EDEDα0+ x (t) = EDAy (t) , t ≥ 0. (2.13)

By applying Laplace transform to the equation (2.13), we obtain by virtue of the linearity

of L ,

L (Dα0+ y)(p) = pα(L y)(p)−
N−1
∑

k=0

y (k) (0) pα−k−1

= L (EDAy)(p) = EDAL (y) (p) .

Setting Y (p) = (L y)(p), we infer

�

pαI − EDA
�

Y (p) =
N−1
∑

k=0

pα−k−1 y (k) (0) .

If |p|>




EDA






1/α

op , then we get

�

pαI − EDA
�−1
=
∑

j≥0

p−α( j+1)
�

EDA
� j

.
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It follows that

Y (p) =
�

pαI − EDA
�−1

N−1
∑

k=0

pα−k−1 y (k) (0) (2.14)

= L

�

N−1
∑

k=0

tkEα,k+1

�

tαEDA
�

y (k) (0)

�

. (2.15)

To simplify the solution’s expression we shall put throughout

Tα,β (t) := tβ−1Eα,β

�

tαEDA
�

. (2.16)

Therefore,

y(t) =
N−1
∑

k=0

Tα,k+1 (t) y (k) (0) . (2.17)

We notice that for any constant vectors b0, b1,. . . , bN−1 ∈ X the function

y (t) =
N−1
∑

k=0

Tα,k+1 (t) bk,

satisfies the following

CDα0+ y (t) = C
N−1
∑

k=0

Dα0+Tα,k+1 (t) bk

= EEDA
N−1
∑

k=0

Tα,k+1 (t) bk = Ay (t) .

Hence y (t) is a solution to the homogeneous equation associated with first equation from

(2.7).

Let us now obtain the closed form of the general solution to the equation (2.11).

Consider the following homogeneous equation associated with the second equation of (2.7)

NDα0+z (t) = Az (t) , t > 0 (2.18)
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Applying Nm−1 to both sides of (2.18) we infer

NmDα0+z (t) = 0= ANm−1z (t) .

It follows that ADANm−1z (t) = 0, and thanks to the assumption (2.9) and Proposition 2.1.2

we get

0 = ADA
�

I − EDE
�

Nm−1z (t)

=
�

I − EDE
�

Nm−1z (t) = Nm−1z (t) ,

by assuming of course that m−1> 0. Hence, Nm−1z (t) = 0, and continuing in this manner

we arrive at the final result Nz (t) = 0, which in turn implies that

NDα0+z (t) = D
α
0+

Nz (t) = 0= Az (t) .

Finally, since
�

I − EDE
�

y (t) = EDEz (t) = 0, then
�

I − EDE
�

z (t) = z (t). It follows by

virtue of Proposition 2.1.2 that

ADA
�

I − EDE
�

z (t) = AD
�

I − EDE
�

Az (t) = 0

=
�

I − EDE
�

z (t) = z (t) .

Therefore, the unique solution to the differential equation (2.18) is the null one. Accord-

ingly, the general solution to the singular fractional differential equation (2.18) is

x (t) = y (t) = EDE y (t) =
N−1
∑

k=0

Tα,k+1 (t) E
DEbk, t ≥ 0,

for some constant vectors b0, b1, . . . , bN−1 ∈ X .

We are now in the position to establish the existence and uniqueness of the solution to the

singular fractional differential initial value problem (2.1)-(2.2). We have
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Theorem 2.1.2 Let E, A ∈ B (X ) with ker E 6= {0} so that AE = EA and indE = m. We

assume that E and A possess bounded Drazin inverses ED and AD and both satisfy condition

(2.9). Let f ∈ CN (R+; X ) so that Tα,α ∗ f is integrable, the composite Caputo’s fractional

derivative (Dα0+)
i f (t), t > 0, exists for every i = 1, . . . , m− 1, limt→0+(Dα0+)

i f ( j)(t) exists for

every i = 1, . . . , m− 1 and j = 0, 1, . . . , N − 1. If the initial conditions satisfy

v j = EDEb j − (I − EDE)
m−1
∑

i=0

(ADE)iAD(Dα0+)
i f ( j)(0+), (2.19)

for j = 0,1, . . . , N − 1,

for some constant vectors b j, j = 0,1, . . . , N − 1, then the unique solution x (t) to problem

(2.1)-(2.2) has the closed form

x(t) =
N−1
∑

k=0

Tα,k+1 (t) E
DEbk +

∫ t

0

Tα,α (s) E
D f (t − s) ds

−(I − EDE)
m−1
∑

i=0

(ADE)iAD(Dα0+)
i f (t), t ≥ 0.

Proof By applying the Laplace transform L to the equation (2.8), we obtain by virtue of

the linearity of L ,

L (Dα0+ y)(p) = pα(L y)(p)−
n−1
∑

k=0

y (k) (0) pα−k−1

= EDAL (y) (p) + EDL ( f )(p).

Setting Y (p) = (L y)(p) and F (p) =L ( f )(p), the latter equation becomes

�

pαI − EDA
�

Y (p) =
n−1
∑

k=0

pα−k−1 y (k) (0) + EDF (p) .

Assuming that |p|>




EDA






1/α

op we obtain

�

pαI − EDA
�−1
=
∑

j≥0

p−α( j+1)
�

EDA
� j

.
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It follows that

Y (p) =
�

pαI − EDA
�−1

n−1
∑

k=0

pα−k−1 y (k) (0) +
�

pαI − EDA
�−1

EDF (p)

= L

�

n−1
∑

k=0

Tα,k+1 (t) y (k) (0) + Tα,α (t) ∗ ED f (t)

�

.

Therefore,

y(t) =
n−1
∑

k=0

Tα,k+1 (t) y (k) (0) + Tα,α (t) ∗ ED f (t)

=
n−1
∑

k=0

Tα,k+1 (t) E
DEbk +

∫ t

0

Tα,α (s) E
D f (t − s) ds,

for some constant vectors b j, j = 0,1, . . . , N − 1,.

Next, to solve explicitly the nilpotent fractional differential equation from (2.7) we apply

the operator AD to both sides of the equation and by virtue of Proposition 2.1.2, we get

ADNDα0+z (t) = ADAz (t) + AD
�

I − EDE
�

f (t)

=
�

I − EDE
�

x (t) + AD
�

I − EDE
�

f (t)

= z (t) + AD
�

I − EDE
�

f (t),

Next, we apply Lemma 2.1.1, for B = I and L = AD, one gets the unique solution of the

latter equation which is

z (t) = −
�

I − EDE
�

m−1
∑

i=0

�

ADN
�i �
Dα0+

�i
AD f (t) , t ≥ 0.

Since we have N= E
�

I − EDE
�

and
�

I − EDE
�i
=
�

I − EDE
�

, for i = 1,2, . . . , m− 1, then

z (t) = −
�

I − EDE
�

m−1
∑

i=0

�

ADE
�i �
Dα0+

�i
AD f (t) .

Summing up the solutions of the above subproblems y (t) and z (t) we obtain the unique
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solution to the singular fractional differential initial value problem (2.1)-(2.2), that is

x (t) = y (t) + z (t)

=
N−1
∑

k=0

Tα,k+1 (t) E
DEbk +

∫ t

0

Tα,α (s) E
D f (t − s) ds

−
�

I − EDE
�

m−1
∑

i=0

�

ADE
�i �
Dα0+

�i
AD f (t) , t ≥ 0.

Let us now check the given initial values. Using the derivation rule regarding integrals

depending upon a certain real parameter, we get, for j = 1, . . . , N − 1, the following

x ( j)(t) =
j−1
∑

k=0

∑

m≥1

αm
Γ (αm+ k− j + 1)

tαm+k− j
�

EDA
�m

EDEbk

+
N−1
∑

k= j

∑

m≥0

αm
Γ (αm+ k− j + 1)

tαm+k− j
�

EDA
�m

EDEbk

+
j−1
∑

k=0

Tα,α−k (t) E
D f ( j−k−1) (0) +

∫ t

0

Tα,α (s) E
D f ( j) (t − s) ds

−
�

I − EDE
�

m−1
∑

i=0

�

ADE
�i �
Dα0+

�i
AD f ( j) (t)

so that, by letting t → 0+, we obtain

x ( j)(0) = v j = EDEb j −
�

I − EDE
�

m−1
∑

i=0

�

ADE
�i �
Dα0+

�i
AD f ( j) (0)

j = 0, 1, . . . , N − 1.

Regarding the uniqueness of the solution (under assumption (2.19)), it suffices to cope with

the homogeneous problem whose solution is identically zero, and accordingly the unique-

ness follows.

Remark 2.1.2 We point out that if f ≡ 0, then the compatibility assumption (2.19) reduces

merely to v j = EDEv j, for j = 0,1, . . . , N − 1. Moreover, if E is nonsingular, then EDE = I ,

and once again, assumption (2.19) becomes v j = EDEv j, for j = 0, 1, . . . , N − 1. Whence, we
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obtain as a unique solution in such a case as expected the function

x (t) =
N−1
∑

k=0

Tα,k+1 (t) vk +

∫ t

0

Tα,α (s) E
−1 f (t − s) ds, , t ≥ 0.

2.2 Stability Concepts

In order to guarantee that problem (2.1) is stable, we state the following theorem,

Theorem 2.2.1 [16] Consider system (2.1) and its reduced form (2.7) with inherent ODE

c Dα0+ y(t) = Ay(t)

• If the inherent ODE is stable and ||A|| ≤ c holds with some constant c > 0 for all t > 0,

then (2.1) is stable in the sense that ||y(t, 0)||< L on [0,∞), for some positive constant

L.

• If the inherent ODE is asymptotically stable and ||A|| ≤ c holds for some constant c > 0

for all t ∈ I , then (2.1) is asymptotically stable in the sense that y(t, 0)→ 0 as t →∞.

Theorem 2.2.2 [5] Consider the fractional differential initial value problem

C Dα0+ y(t) = Ay(t),

y(0) = v0.

Where y(t) is a Cn(R+, X ) function and A is a bounded linear operator on X .

• The trivial solution of the fractional differential equation (2.1) is said to be stable if

||A|| < c, where c is a positive constant and for every ε > 0 there exists a σ = σ(ε) such

that for any initial condition ||v0||< σ, the solution y(t) of the system (2.1) satisfies the

inequality ||y(t)||< ε for all t > 0.
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• The trivial solution of the system (2.1) is said to be asymptotically stable if it is stable

and furthermore lim
t →+∞

y(t) = 0.

2.3 Illustrating examples

In order to illustrate the obtained results we consider the following examples.

Example 2.3.1 Consider the following singular fractional differential initial value problem in

R4:


















ED4/3
0+ x(t) = Ax(t) + f (t), t > 0,

x0 =
�

−1, 1, 0, 1
�T

,

x1 =
�

1, 1, 1, 1
�T

,

(2.20)

where E, A∈ R4×4 are as follows

E =
1
12

















10 −1 4 5

5 −2 −1 4

4 5 10 −1

−1 4 5 −2

















, A=

















1
2 1 1

2 −1

0 1
2 0 1

2

1
2 −1 1

2 1

0 1
2 0 1

2

















,

and f (t) =
�

t2, t, 0, −t
�T

and D4/3
0+ is Caputo derivative of order α=

4
3

, We notice that

E and A are singular matrices whose Drazin inverses are

ED =

















1 −2 1 −2

−2 7 −2 7

1 −2 1 −2

−2 7 −2 7

















, AD =

















1
2 0 1

2 0

0 1
2 0 1

2

1
2 0 1

2 0

0 1
2 0 1

2

















.
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Hence, using our previous results the explicit representation of the solution is given by

x(t) = T4
3 ,1(t)E

DEx0 + T4
3 ,2(t)E

DEx1 +

∫ t

0

T4
3 , 4

3
(s)EDF(t − s)ds

−(I − EED)
1
∑

i=0

(ADE)iAD(D4/3
0+ )

i f (t),

with

−(I − EED)
1
∑

i=0

(ADE)iAD(D4/3
0+ )

i f (t) = 0.

Therefore, the closed form of the solution to the given problem is

x(t) =

















T4
3 ,1(t)−

1
2 T4

3 ,2(t) +
∫ t

0
T4

3 , 4
3
(s)(t − s)2ds

T4
3 ,1(t) + T4

3 ,2(t)− 2
∫ t

0
T4

3 , 4
3
(s)(t − s)2ds

T4
3 ,1(t)−

1
2 T4

3 ,2(t) +
∫ t

0
T4

3 , 4
3
(s)(t − s)2ds

T4
3 ,1(t) + T4

3 ,2(t)− 2
∫ t

0
T4

3 , 4
3
(s)(t − s)2ds

















, t ≥ 0.

Our next example deals with a singular fractional differential initial value problem in an

infinite dimensional space, namely the Banach space

l2 =

¨

x = (xn)n≥1 ⊂ R :
∑

n≥1

|xn|
2 <∞

«

,

endowed with the norm ‖x‖=
�

∑

n≥1
|xn|

2

�1/2

. We have

Example 2.3.2 Consider the following singular fractional differential initial value problem







ED2/3
0+

x (t) = Ax (t) + f (t) , t > 0,

x (0) = (1, 1
2 , 1

3 , . . . , 1
n , ...) ∈ l2,

(2.21)

where, f (t) = ( 1
n sin nt)n≥1, E, A∈ L (l2) are projection operators, defined respectively by

Ex =
�

x1, x2, 0, 0, x5, x6, 0, 0, x9, x10, 0, 0, x13, x14, 0, 0, ...
�

(2.22)
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and

Ax =
�

x1, 0, x3, x4, x5, 0, x7, x8, x9, 0, x11, x12, x13, 0, ...
�

. (2.23)

Taking into account the projection properties, we get at once

ED = E, AD = A,

and

ADA(I − EDE) = I − EDE.

Hence condition (2.10) in Proposition 2.1.2 is satisfied, and so, according to Theorem 2.1.2,

we obtain

x(t) = T2
3 ,1(t)Ex(0) +

∫ t

0

T2
3 , 2

3
(s)E f (t − s)ds

−(I − E)Af (t)− (I − E)EAD2/3
0+ f (t).

We notice that

−(I − E)EAD2/3
0+ f (t) = 0, t > 0.

It follows that the closed form of the given singular fractional differential initial value problem

is

x(t) = (xn)n≥1 ,

where

xn (t) =







− 1
n sin nt, if n ∈ J = {4k− 1,4k, for k = 1, 2, ...} ,

1
n T2

3 ,1(t) +
1
n

∫ t

0
T2

3 , 2
3
(s) sin n(t − s)ds, if n ∈ N∗\J .
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2.4 Drazin regular problems

We shall revisit along this section the problem (2.1)-(2.2) under some regularity between

the given operators AD and ED. We set the following

Definition 2.4.1 For any given two operators E, A ∈ B (X ), the operator pair (E, A) is called

Drazin regular if there is some λ ∈ C such that λED − AD is invertible. The system (2.1) is

called Drazin regular, if (E, A) is Drazin regular. If (E, A) is a Drazin regular pair of bounded

linear operators and there λ ∈ C such that λED−AD is invertible, then the following notations

will be used

Iλ =
�

λED − AD
�−1

, Eλ = IλE, Aλ = IλA, (2.24)

fλ = Iλ f , Tλ
α,β (t) = tβ−1Eα,β

�

tαED
λ

Aλ
�

.

We have the following Proposition,

Proposition 2.4.1 Let (E, A) be a Drazin regular pair of bounded linear operators and let λ ∈

C such that λED−AD is invertible with inverse Iλ. If B, C ∈ B (X ) commute with E and A and

they have bounded Drazin inverses BD and C D, then

BλCλ = CλBλ, BD
λ

Cλ = CλBD
λ

,

where Bλ = IλB and Cλ = IλC. Moreover, the operators BD
λ

Bλ, BD
λ

Cλ, BλC D
λ

are independent of

the parameter λ. In particular, if B = E and C = A, then the operators ED
λ

Eλ, ED
λ

Aλ, EλA
D
λ

as

well as indEλ are independent of λ.

Proof We have

BλCλ = IλBIλC = IλBC Iλ = IλCBIλ = CλBλ.

Let α ∈ C such that αI − Cλ is invertible, then

[(αI − Cλ)Bλ]
D = [Bλ (αI − Cλ)]

D = (αI − Cλ)
−1 BD

λ
,
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giving

(αI − Cλ)B
D
λ
= BD

λ
(αI − Cλ) .

It follows that BD
λ

Cλ = CλBD
λ

.

To show the remaining relations, it suffices to establish that the operator BD
λ

Iλ is independent

of λ. Indeed, let µ ∈ C such that Iµ is invertible, then

BD
λ

Iλ =
�

IλI−1
µ

IµB
�D

Iλ

=
�

BD
µ

�

IµI−1
λ

�

�

Iλ = BD
µ

Iµ.

So, we have for instance,

BD
λ

Bλ = BD
λ

IλB = BD
µ

IµB = BD
µ

Bµ

BD
λ

Cλ = BD
λ

IλC = BD
µ

IµC = BD
µ

Cµ

BλC D
λ
= C D

λ
Bλ = C D

µ
Bµ (by interchanging the roles of C and B).

Finally, to prove that indEλ is independent ofλ, we notice that Iλ is bijective and it commutes

with E. So, applying the second assertion of Proposition 1.3.1 regarding the index we obtain

indEλ = ind (IλE) = indE.

We have the following Lemma,

Lemma 2.4.1 Let E, A ∈ B (X ) be a commuting pair of Drazin regular operators having

bounded Drazin inverses ED and AD. Let λ ∈ C be such that λED − AD is invertible, then

ker ED
λ
∩ ker AD

λ
= ker ED ∩ ker AD

= ker Eλ ∩ ker Aλ = ker E ∩ ker A= {0} .
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Proof It follows at once from the fact that λED−AD is invertible that ker ED∩ker AD = {0},

and since

ker Eλ ∩ ker Aλ = ker E ∩ ker A⊂ ker ED ∩ ker AD = {0} ,

then

ker ED ∩ ker AD = ker Eλ ∩ ker Aλ = ker E ∩ ker A= {0} .

On the other hand, we have Eλ = IλE = EIλ and Aλ = IλA= AIλ; it follows that

ED
λ
= (EIλ)

D = I−1
λ

ED and AD
λ
= (AIλ)

D = I−1
λ

AD,

from which we get

ker ED
λ
∩ ker AD

λ
= ker ED ∩ ker AD = {0} .

Our last result is the following Theorem:

Theorem 2.4.1 Given a commuting pair of Drazin regular operators A, E ∈ B (X ) having

bounded Drazin inverses ED and AD. Let λ ∈ C be such that λED − AD is invertible and let

indEλ = m. If f ∈ ACN (R+; X ), then the general solution to the degenerate fractional differ-

ential equation (2.1) is given by

x (t) =
n−1
∑

k=0
Tλ
α,k+1 (t) E

D
λ

Eλbk +
∫ t

0
Tλ
α,α (s) E

D
λ

fλ (t − s) ds

−
�

I − ED
λ

Aλ
�

m−1
∑

i=0

�

AD
λ
Eλ
�i �
Dα0+

�i
AD
λ

fλ (t) , t ≥ 0,
(2.25)

for some constant vectors b0, b1, . . . , bN−1 ∈ X .

Moreover, x (t) satisfies the initial conditions (2.2), if and only if,
�

v j

	N−1

j=0
are of the form

v j = ED
λ

Eλb j − (I − ED
λ

Eλ)
m−1
∑

i=0

(AD
λ
Eλ)

iAD
λ
(Dα0+)

i f ( j)
λ
(0),

for j = 0,1, . . . , N − 1,
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for some constant vectors b0, b1, . . . , bN−1 ∈ X ; the solution is therefore unique.

Proof We first note that

AλEλ = IλAIλE = IλIλAE = IλIλEA= IλEIλA= EλAλ.

Next, applying the operator Iλ to both sides of the equation (2.1) we get

EλDα0+ x (t) = Aλx (t) + fλ (t) , t > 0. (2.26)

Thanks to Lemma 2.4.1, we have ker ED
λ
∩ ker AD

λ
= {0}, so condition (2.9) is satisfied. On

the other hand, we have fλ ∈ ACN (R+; X ) and indEλ = m. It suffices to apply Theorem

2.1.2 to get the closed form of the solution (2.25) to problem (2.26). The proof is now

complete.
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Chapter 3

Singular Conformable Cauchy problems

3.1 Introduction

As discussed earlier, the theory of fractional calculus has known a remarkable evolution in

the last decades. However, despite all the work done in fractional calculus a tremendous

work is still needed in order to overcome some issues, like the physical interpretation of

the fractional derivative, the chain rule, the product rule. Nevertheless, recently Khalil et

al.[13] introduced a new definition of fractional derivative, called "fractional conformable

derivative". Unlike other fractional operators, this one provides more useful proprieties

(chain rule, product rule) and so far it is the closest one to the ordinary derivative.

Throughout this chapter, we will combine two trending topics besides conformable frac-

tional differential equations, we will be dealing with singular systems, which are famously

known to be the most natural way to model real world phenomena, and used to describe

plenty of models in science and engineering, see [7, 9, 15, 21].

Let 0 < α <1 and N = [α]+1. Suppose that the state vector function y (t) : [0,+∞[→ Rn,

satisfies the following singular fractional differential equation







ETα y(t)− Ay(t) = f (t), t > 0,

y(0) = v0,
(3.1)

36



Let E,A∈ Cn×n, with det(E) = 0 (and possibly ker A 6= {0}), f and v0 ∈ Rn and Tα denotes

the conformable fractional derivative of order α, f is a given α− differentiable function

defined on R+. In [2], the authors gave the solution to such a fractional (Caputo’s type)

singular equation using generalized inverses, while in [25] the author expressed the solu-

tion of a fractional singular homogenous equation using the canonical forms of algebraic

differential equations presented in [15].

In this section, we shall give the solution formula to problem (3.1) using Drazin inverse but

before, we shall tackle the regularity of the problem

Definition 3.1.1 [15] Let E, A ∈ Cn×n, λ ∈ C. The matrix pair (E,A) is called regular if the

so-called characteristic polynomial defined by

p(λ) = det(λE − A)

is not the zero polynomial.

If (E, A) is a regular pair, then system (3.1) is said to be regular.

Definition 3.1.2 Let A∈ Cn×n. The index of nilpotency of A is the least nonnegative integer k

such that Ak = 0 and Ak−1 6= 0.

Definition 3.1.3 The Drazin inverse of A is the unique matrix AD which satisfies

ADAAD = AD, AAD = ADA, Ak+1AD = AD.

Theorem 3.1.1 [15] Consider matrices E, A∈ Cn×n with EA= AE. Then we have

EAD = ADE,

EDA= AED,

EDAD = ADED.

Theorem 3.1.2 [15] Let E ∈ Cn×n with k = indE. There is one and only one decomposition

E = C + N ,
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with the properties

CN = NC = 0, N k = 0, N k−1 6= 0.

In particular, the following statements hold:

NC D = 0, C DN = 0,

ED = C D,

C DE = EDE

CC DC = C ,

C = EEDE, N = E(I − EDE).

3.2 Main results

In order to solve problem (3.1), we start by the following proposition:

Proposition 3.2.1 Let E, A∈ Cn×n with E a singular matrix, and EA= AE. Then, the system

(3.1) is equivalent to






CTαx (t) = Ax (t) + g(t),

NTαz (t) = Az (t) + h(t), t ≥ 0,
(3.2)

where C= EEDE, N= E −C, and

x (t) = EDE y (t) , z (t) =
�

I − EDE
�

y (t) ,

g(t) = EDE f (t) , h (t) =
�

I − EDE
�

f (t) .

Furthermore, the first equation in (3.2) is equivalent to the following

Tαx (t) = EDAx (t) + ED g(t), t ≥ 0. (3.3)
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Proof It is clear that

y(t) = EDE y(t)− EDE y(t) + I y(t) = x(t) + z(t).

Using decomposition in proposition(3.1.2) and following the same steps from the proof of

[15] we obtain the equivalence between (3.2) and (3.1).

Next, instead of solving (3.1) explicitly we solve separately the equations of system (3.2),

and in order to do so, we shall state and establish the following lemma:

Lemma 3.2.1 Let N ∈ Cn×n, a nilpotent matrix of order p > 0 (N p = 0), A an invertible

matrix such that NA−1 = A−1N, h a C∞-function, then the solution of the following fractional

differential equation

N Tα(z(t)) = Az(t) + h(t) (3.4)

is given by

z(t) = −
p−1
∑

i=0

(NA−1Tα)iA−1h(t), t > 0

As an immediate consequence, the solution to the second equation of (3.4) is

z(t) = −(I − EDE)
p−1
∑

i=0

(NA−1Tα)iA−1 f (t).

Proof Multiplying (3.4) by A−1, we get

A−1N Tαz(t) = z(t) + A−1h(t)

setting Q1 = A−1N Tα, equation (3.4) become

Q1z(t) = z(t) + A−1h(t), (3.5)
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applying Q1 k-times to (3.5), we find

0= z(t) +
k−1
∑

i=0

QiA−1h(t).

Thus

z(t) = −(I − EDE)
k−1
∑

i=0

(A−1N Tα)iA−1 f (t).

Our main result is the following:

Theorem 3.2.1 Let E, A ∈ Cn×n with detE = 0 and AE = EA, indE = p. We assume that

system (3.1) is regular, then the homogeneous solution to







Tα y(t) = EDAy(t) + ED f (t), t > 0,

x(0) = v0,
(3.6)

is given by

xh(t) = v0e
∫ t

0 sα−1EDAds.

Furthermore the particular solution for (3.6) is given by

xp(t) = e
tα
α EDA

∫ t

0

e−
sα
α EDAsα−1ED g(s)ds, t > 0.

Finally, the general solution of equation (3.6) is expressed as follows

x(t) = xh(t) + xp = v0e
∫ t

0 sα−1EDAds + e
tα
α EDA

∫ t

0

e−
sα
α EDAsα−1ED g(s)ds, t ≥ 0.

Proof Using the last property from Theorem 2.4, system (3.6) becomes







Et1−αx ′(t) = Ax(t) + g(t), t > 0,

x(0) = v0,
(3.7)
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which is equivalent to the following system







x ′(t) = tα−1EDAx(t) + ED tα−1 g(t), t > 0,

x(0) = v0,
(3.8)

Therefore, the homogeneous solution to system (3.6) is given by

xh(t) = v0e
∫ t

0 sα−1EDAds.

Let us now verify that xp is a particular solution to system (3.6).

xp(t) = e
tα
α EDA

∫ t

0

e−
sα
α EDAsα−1ED g(s)ds.

Indeed, we have

x ′p(t) = tα−1EDAe
tα
α EDA

∫ t

0
e−

sα
α EDAsα−1ED g(s)ds

+e
tα
α EDA d

d t

∫ t

0
e−

sα
α EDAsα−1ED g(s)ds

= tα−1EDAe
tα
α EDA

∫ t

0
e−

sα
α EDAsα−1ED g(s)ds

+e
tα
α EDA[e−

tα
α EDAtα−1ED g(t)]

= tα−1EDAe
tα
α EDA

∫ t

0
e−

sα
α EDAsα−1ED g(s)ds+ tα−1ED g(t)

= tα−1EDAxp(t) + tα−1ED g(t).

This shows that xp is effectively a particular solution to system (3.6).

Theorem 3.2.2 Let E, A ∈ Cn×n with detE = 0 and AE = EA, indE=p. We assume that

system (3.1) is regular. Let f be a α-differentiable function. If the initial conditions satisfy

v0 = EDEv − (I − EDE)
p−1
∑

i=0

(A−1N)iA−1(Tα)i f (0), (3.9)
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for some constant vector v ∈ Rn, then the unique solution y (t) to problem (3.1) is given by

y(t) = x(t) + z(t)

= ve
∫ t

0 sα−1EDAds + e
tα
α EDA

∫ t

0

e−
sα
α EDAsα−1ED f (s)ds

−(I − EDE)
p−1
∑

i=0

(NA−1Tα)iA−1 f (t), t ≥ 0.

3.3 A worked example

In this section, we use Matlab to show the difference between the representation of solution

to a singular equation under the Caputo derivative and the fractional conformable one.

Consider the following singular fractional differential initial value problem in R2:







ED1/2
0+ y(t) = Ay(t) + f (t), t > 0,

y0 =
�

−1,
5
6

�T

,
(3.10)

where E, A∈ R2×2 are as follows

E =





3 2

6 4



 , A=





2 4

−1 2



 ,

and f (t) =
�

t2, −t
�T

, D1/2
0+ is Caputo derivative of order α=

1
2

.

We can easily verify that E is a singular matrix with ind E=1, whereas A is nonsingular, with

the following inverses

ED =
1

49





3 2

6 4



 , A−1 = AD =





1
4

−1
2

1
8

1
4



 .
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Hence, the explicit representation of the solution is given by

y(t) = T1
2 ,1(t)E

DE y0 +

∫ t

0

T1
2 , 1

2
(s)ED f (t − s)ds

−(I − EED)A−1(D1/2
0+ )

0 f (t),

with

−(I − EED)A−1(D1/2
0+ )

0 f (t) = 0

Thus, y(t) the vector solution is given by

y(t) =





−1
7

T1
2 ,1(t) +

1
49

∫ t

0
T1

2 , 1
2
(s)[3(t − s)2 − 2(t − s)]ds

−2
7

T1
2 ,1(t) +

2
49

∫ t

0
T1

2 , 1
2
(s)[3(t − s)2 − 2(t − s)]ds



 , t ≥ 0.

Using ode45, we get the following solution graph of the equivalent ordinary singular differ-

ential equation to system (3.10)

Figure 3.1: Solution to a DAE for α= 1
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Using the following Matlab code fde12.m,

Figure 3.2: The fde12.m code used to solve the DAE

we get the solution graph of system (3.10) under the Caputo derivative,

Figure 3.3: Solution to a Caputo fractional DAE for α= 0.5.

Now, the solution formula of a singular conformable fractional initial value problem using

the same previous data and formula (3.10), is given by

y(t) =
�

8
49

�

e
p

t e4
p

t

e2
p

t e8
p

t

�

�

−1
1

�

+ 32
493

�

e
p

t 4e
p

t

2e
p

t 8e
p

t

�

∫ t

0

�

e−2s
1
2 4e−2s

1
2

2e−2s
1
2 8e−2s

1
2

�

�

3s
3
2 +2s

1
2

6s
3
2 +4s

1
2

�

ds
�

, t > 0
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Plotting the vector solution y(t), we get

Figure 3.4: Solution of a conformable fractional DAE for α= 0.5.

Comments

Since we have used three types of derivatives, namely the ordinary one, Caputo’s fractional

and the conformable derivatives, then we have three expressions of the solutions. The

first figure corresponds to the graph of the solution to system (3.10) with the ordinary

derivative, the second figure is the graph of the solution to the same system using Caputo

fractional derivative. While the third graph is the graph of the solution of the corresponding

conformable singular system.
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Conclusion

This research thesis was mainly dedicated to the analytical study of singular fractional

Cauchy problems on a Banach space, our goal was to establish the existence and unique-

ness of solution to such problems and find an accessible way to represent their solution using

simple algebraic techniques as decoupling method, canonical forms and Drazin inverse.

We have applied our results to two different types of fractional derivatives: Caputo frac-

tional derivative and the conformable fractional derivative, and as we obtained the solution

formulas to the studied problems under these two derivatives, we also illustrated our theo-

retical results with numerical examples. Our future perspectives are to provide a numerical

study to the systems studied above and maybe to more complicated ones, as the non-linear

case and time-varying case which can be a real challenging topic.
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