
 

 

 

           

 
 

Université Badji Mokhtar Annaba 

 

Badji Mokhtar University - Annaba                       

 

Faculté des Sciences 

Département de Mathématiques 
 

 
 

THÈSE 
 

Présentée en vue de l’obtention du diplôme de Doctorat 

Option : Mathématiques Appliquées   
 

 

Periodicity and stability of solutions for nonlinear 

delay dynamic equations on time scales 

by the fixed point technique 
 

Par : 

Gouasmia Manel 

Sous la direction de 

DIRECTEUR DE THÈSE :    Ardjouni Abdelouaheb     Prof.           Univ. Souk Ahras 

CO-DIRECTEUR DE THÈSE :    Djoudi Ahcène          Prof.           Univ. Annaba 

 

Devant le jury 
 

PRESIDENT : Kelaiaia Smail  Prof.                         Univ. Annaba   

EXAMINATEURS : Salmi Abdelouahab  MCA Univ. Annaba 

 Khemis Rabah MCA Univ. Skikda 

  

Année : 2020 



Periodicity and stability of solutions for nonlinear

delay dynamic equations on time scales by the fixed

point technique

A Doctoral Thesis, By Manel Gouasmia

Advisors: Pr. A. Ardjouni and Pr. A. Djoudi



Dedication

I dedicate this work to:

My very dear parents,

My dear brothers and sisters,

All my family,

And all my friends and all my teachers.



Acknowledgement

In the Name of Allah, the Most Merciful, the Most Compassionate all praise be to Allah,

the Lord of the worlds; and prayers and peace be upon Mohammed His servant and

messenger.

First and foremost I wish to thank Allah for his help and making all kind of task

easy, he is indeed the merciful and compassionate.

I address my deep thanks to my advisor, Prof. Ardjouni Abdelouaheb, senior

lecturer at Souk Ahras University. He has been supportive since the first days I began this

work. His insightful discussions about the research were significant. Without his guidance

and helpful career advice and suggestions, this work would not have been possible.

I also express my sincere thanks to my co-advisor Prof. Djoudi Ahcène from Badji

Mokhtar university of Annaba for his guidance and availability, advice and helpful sug-

gestions.

I would like to thank the members of my dissertation committee, Prof. Kelaiaia

Smail for accepting to examine my work and to preside over the committee, and Dr.

Salmi Abdelouahab, Dr. Khemis Rabah for participating in this committee and for

examining this document.

I thank my very dear parents, my father” AL Hadi” the one who gave everything

so that I could reach my goal, my mother ”Fatima” for her great love, her patience her

prayers; may allah offer them a long life and good health.

I thank my brothers, and my sisters for their encouragement.

Finally my sincere gratitude go to all my friends and all my teachers.



 خــــــــــــصـلـم
 

في مخريفح اىمجالاخ  ذيقائيعيى مقياط صمىي تشنو  راخ ذأخشذظهش اىمعادلاخ اىذيىامينيح 

  اىعيميح مثو اىفيضياء واىهىذسح واىطة واىنيمياء اىنهشتائيح ووظشيح اىرحنم وما إىى رىل.

 واىفيضيائيح اىطثيعيح مه اىظىاهش اىعذيذ ومزجح في اىمعادلاخ مه اىىىع ىهزا اىنثيشج اىفعاىيح

 .واىىىعيح اىنميح جىاوثها ىذساسح اىثاحثيه مه اىنثيش شجعد

واسرقشاس حيىه اىمعادلاخ  وايجاتيح دوسيح اىهذف مه هزي الأطشوحح هى دساسح وجىد و 

 طحج في هزا اىعمو إىى ذقىياخ اىىقذسرىذ اىىرائ. ذأخيش عيى مقياط صمىي راخاىذيىامينيح 

 اىثاترح.
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ىحيىه اىمعادلاخ اىذيىامينيح اىمحايذج اىمخريطح  اىمقاسب ذسط أيضًا اىسيىكسى مماو صمىي.
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Abstract

Delay dynamic equations on time scales appear as a natural description of observed evo-

lution phenomena in various scientific areas such as physics, engineering, medicine, elec-

trochemistry, control theory, etc. The effectiveness of these equations in the modeling of

several real-world phenomena has motivated many researchers to study their quantitative

and qualitative aspects. The objective of this thesis is the study the existence, periodicity,

positivity and stability of solutions of neutral dynamic equations with delay on time scale.

Results in this work are based on fixed point techniques. Using Krasnoselskii-Burton’s

fixed point theorem for show the existence results of periodic and nonnegative solutions

and their stability for nonlinear dynamic equations of neutral type on time scale, and also

study of asymptotic behavior of solutions of mixed type neutral dynamic equations on

time scales using the contraction principle.

Keywords: Fixed point theory, periodicity, positivity, stability, neutral dynamic equa-

tions, asymptotic behavior, time scales.

Mathematics Subject Classification: 34K20, 34K30, 34K40.



Résumé

Les équations dynamiques à retard sur des échelles de temps apparaissent naturelle-

ment dans différents domaines scientiques comme la physique, l’ingénierie, la médicine,

l’électrochimie, la théorie du contrôle, etc. L’efficacité de ces équations dans la

modélisation de plusieurs phénomènes du monde réel a motivé beaucoup de chercheurs

à étudier leurs aspects quantitatifs et qualitatifs. L’objectif de cette thèse est l’étude de

l’existence, la périodicité, la positivité et la stabilité des solutions d’équations dynamiques

neutrales à retard sur des échelle de temps. Les résultats dans ce travail sont basée sur les

techniques du point fixe. En utilisant le théorème du point fixe de Krasnoselskii-Burton

pour montrer les résultats d’existence de solutions périodiques et non négatives et leur

stabilité pour des équations dynamiques non linéaires de type neutre sur des échelles de

temps, et étude aussi le comportement asymptotique de solutions d’équations dynamiques

de type neutre mixte sur une échelle de temps à l’aide le principe d’application contrac-

tante.

Mots-clés: Théorie de point fixe, periodicité, positivité, stabilité, equations dy-

namique neutral, le comportement asymptotique, échelles de temps.

Mathematics Subject Classification: 34K20, 34K30, 34K40.
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Introduction

Delay differential equations play significant roles in every facet of real life applications.

For example, in the birth process biological populations. Many phenomena encountered in

physics, biology, chemistry, engineering, medicine, electrochemistry, control theory, etc,

have found in the theory of delay differential equations, late, a good modeling means,

(a more realistic means than in the case of ordinary differential equations). DDEs are

differential equations where the derivatives of some unknown functions at two different

time instants (past and present) are correlated.

From years (40), the theory of delay equations has known a great development, notably

we find Belman and Cooke (1963), Hale (1977), etc. But recently, many phenomena have

been proposed for the modeling of some complicated situations, the delay equations were

introduced to model phenomena in which there is a time lag between the action on the

system and the response of the system to this action. The nature of the delay (discrete,

continuous, infin, dependent on the state, ...) potentially complicates the study of the

equations.

Many researchers are studying the existence, uniqueness, periodicity and positivity of

solutions of delay differential equations [1], [4]-[6], [25], [26], [27], [41], [49], [52].

Fixed point theory is at the heart of nonlinear analysis and then provides the tools

necessary to have existence theorems in many different non-linear problems. In the 19th

century The study of fixed point theory was initiated by Poincare and in 20th century

developed by many mathematicians like Brouwer, Schauder, Kakutani, Banach, Kannan,

Tarski, and others. The precursors of the approximate fixed-point theory are explicit in

Picard’s work, and in 1922 the Polish mathematician Stefan Banach, who is credited on

the placement of an abstract idea, Banach established the existence and the uniqueness

of the fixed point of a contraction mapping in a complete metric space. This theorem

gives a regular behavior of the fixed point with respect to the parameters. In addition, it

provides a fixed point approximation algorithm as the limit of an iterated sequence.

Among the hundreds of fixed point theorems, Brouwer’s is particularly famous, in
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partly because it is used in many mathematical branches. The theorem is supposed to

have originated from Brouwer’s observation of a cup of coffee. If one stirs to dissolve a

lump of sugar, it appears there is always a point without motion. He drew the conclusion

that at any moment, there is a point on the surface that is not moving. The fixed point is

not necessarily the point that seems to be motionless, since the center of the turbulence

moves a little bit. The result is not intuitive, since the original fixed point may become

mobile when another fixed point appears.

Schauder’s Fixed Point Theorem established in 1930, and states that a continuous

application on a compact convex admits a fixed point, which is not necessarily unique.

In 1955, Krasnoselskii combined the geometrical fixed point theory of Banach and the

topological fixed point theory of Schauder and established a theorem of point fixes hybrid

known under its name. In 1996, Burton introduced the concept of large contraction

and established that a large contraction possesses a fixed point in a complete metric

space. Subsequently, Burton has investigated Krasnoselskii’s fixed point theorem and has

established, what we have called, Krasnoselskii-Burton theorem,

In 1892 Liapunov published a large work on the stability of ordinary differential equa-

tions based on definite positive functions. His work was the foundation of the theory of

stability as we know it today for EDP, EDO, differential equations and integral equations

as well as in control theory.

There is still a multitude of difficulties that persist in this theory and it seems that

there are no other avenues to study. During this last decade several investigators have

undertaken a study, with the aim of overcoming these difficulties, based on the fixed point

theory.

The fixed point method used for stability purposes has been used in a number of recent

works such as [1], [4], [5], [6], [7], [12], [20], [21], [22], [23], [25], [26], [36], [37], [40], [49],

[50], [56]. This method is based on three fundamental elements. Namely,

• A fixed point application,

• A functional space suitable for containing the desirable solutions,

• A fixed point theorem.

This method has shown significant advantages over that of Liapunov. In particular

when the coefficients are unbounded and / or if the delay is unbounded the direct method

of Liapunov showed its limits in contrast to that of the fixed point. In addition, the

conditions of the fixed point method are average, on the other hand, those of the second

are always punctual.

The concept of time scales analysis is a fairly new idea, was introduced in 1988 by the

German mathematician Stefan Hilger [35] in its thesis of doctorate under the direction of

Contents
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professor Bern Aulbach. However, similar ideas have been used before and go back at least

to the introduction of the Riemann-Stieltjes integral which unifies sums and integrals. Its

principal objective is to unify the discrete analysis and the continuous analysis, Bohner and

Peterson [8] and [9] (2001, 2003) further develop TSC using many of the usual notions of

calculus over time scales, including a generalized derivative, a unified set of differentiation

rules for finding derivatives (power, product, quotient, and chain rules), and solutions to

first-order equations.

A time scale is simply any closed subset of real numbers with the purpose of developing

an equation that evolves over values in this scale.It is clear that if T = R, the dynamic

equations on a the time scales become differential equations. If T = Z, the dynamic

equations on a the time scales become difference equations.

For example, for a differential equation that models population density, the time scale

would begin at time equals zero and run over all positive real numbers. In the case of a

difference equation model that describes a population of dividing cells, time is discrete.

Each time step is the amount of time it takes for a single cell to divide. In this case, the

time scale would be positive integers. Time-scale calculus provides a unified theoretical

tool for any combination of differential and difference equations.

For example, they can model insect populations that evolve continuously while in

season, die out in winter while their eggs are incubating or dormant, and then hatch in

a new season, giving rise to a non-overlapping population. The time scale for a mosquito

population would be T = mosquito season 1 ∪ winter moths ∪ mosquito season 2 ∪ winter

moths ...

By working under a general time scale, it is possible to simultaneously advance these

two fields of mathematics. In a second step, the theory developed around the time scales

allows the study of phenomena modeling in a way that calls simultaneously discrete and

continuous.

Presentation of the thesis

This thesis consists of five chapters. In the following, a summary of the content of each

part is presented:

Chapter 1: This chapter is devoted to the presentation of some useful preliminaries

as well as reminders of some essential definitions and necessary to better understand the

manuscript.

Chapter 2: This Chapter presents a theoretical basis for calculating at time scales.

The essential of this thesis is presented in the Third, Fourth and Fifth chapters which

correspond to published articles.

Chapter 3: The subject of the third chapter is the study of the existence of periodic

and nonnegative periodic solutions of nonlinear neutral dynamic equation with variable

Contents
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delay of the form

x∆(t) = −a(t)h(xσ(t)) +Q(t, x(t− τ(t)))∆ +G(t, x(t), x(t− τ(t))).

This existence is obtained by the Krasnoselskii-Burton theorem. We invert the given

equation to obtain an equivalent integral equation from which we define a fixed point

mapping written as a sum of a large contraction and a completely continuous map. The

Caratheodory condition is used for the functions Q and G. The results presented in this

chapter are published in International Journal of Analysis and Applications (2018) (see

[28]).

Chapter 4: We use the Krasnoselskii-Burton fixed point theorem to obtain stability

results about the zero solution for the following neutral nonlinear dynamic equations with

variable delay given by

x∆(t) = −a(t)h(xσ(t)) +Q(t, x(t− τ(t)))∆ +G(t, x(t), x(t− τ(t))),

with an assumed initial function

x(t) = ψ(t), t ∈ [m0, 0] ∩ T.

The results presented in this chapter are accepted publication in Memoirs on Differential

Equations and Mathematical Physics (2020) (see [30]).

Chapter 5: We concentrate on the asymptotic behavior of solutions for the neutral

mixed type dynamic equation

x∆ (t) + a (t)x∆̃ (τ (t)) +
k∑
i=1

bi (t)x (τi (t)) +
l∑

j=1

cj (t)x (rj (t)) = 0,

with the initial condition where θ ∈ Crd([τ0, t0]∩T,R). The results presented in this chap-

ter are published in Mathematics in Engineering, Science and Aerospace MESA (2019)

(see [29]).

We conclude this thesis with a general conclusion, as well as the perspectives of our

future research.

Contents



Chapter 1
Fixed point theory, functional differential

equations and stability

Keywords. Fixed point theory, functional differential equations, stability.

In this chapter, We introduce the concepts necessary for the proper understanding of

manuscript, It shares in four sections, the first section includes a brief reminder on the

basic elements of functional analysis. the second section reserved for the various fixed

point theorems used in this work. the third section is devoted to the presentation of

the basic notion of the theory of delay functional differential equations. we conclude the

chapter by the theory of stability. The illustrated in this chapter for specific references

and many more examples and applications, (see [2], [10], [11], [14], [32], [33] [41], [42],

[43], [45], [53], [54] and [55]).

1.1 Notation and preliminaries

Definition 1.1 (Metric space) A pair (X, d) is a metric space if X is a set and d :

X ×X → [0,∞) such that when y, z and u are in X then

i) d(y, z) ≥ 0, d(y, y) = 0 and d(y, z) = 0 implies y = z,

ii) d(y, z) = d(z, y),

iii) d(y, z) ≤ d(y, u) + d(u, z).

The metric space is complete if every Cauchy sequence in (X, d) has a limit in that

space. A sequence {xn} ⊂ X is a Cauchy sequence if for each ε > 0 there exists N such

that n,m > N imply d(xn, xm) < ε.

Theorem 1.1 (Convergent sequence ) Every convergent sequence in a metric space

is a Cauchy sequence.

7



Chapter 1. Fixed point theory, functional differential equations and stability 8

Definition 1.2 (Normed space) A vector space (X,+, .) is a normed space if for each

x, y ∈ X there is a nonnegative real number ‖x‖, called the norm of x, such that

i) ‖x‖ = 0 if and only if x = 0,

ii) ‖αx‖ = |α| ‖x‖for each α ∈ R,

iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A normed space is a vector space and it a metric space with d (x, y) = ‖x− y‖. But a

vector space with a metric is not always a normed space.

Definition 1.3 A normed space (X, ‖.‖) is said to be complete if it is complete as a

metric space (X, d), i.e., every Cauchy sequence is convergent in X.

Definition 1.4 (Banach space) A Banach space is a complete normed space.

Example 1.1 (a) Let X = Rn, n > 1 be a linear space. Then Rn is a normed space with

the following norms

‖x‖1 =
n∑
i=1

|xi| for all x = (x1, x2, ..., xn) ∈ Rn;

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

for all x = (x1, x2, ..., xn) ∈ Rn and p ∈ (1,∞);

‖x‖∞ = max
1≤i≤n

|xi| for all x = (x1, x2, ..., xn) ∈ Rn.

(b) With any of these norms, (Rn, ‖.‖) is a Banach space. It is complete because the

real numbers are complete.

Theorem 1.2 A closed subspace of a Banach space is a Banach space.

Definition 1.5 (Compactness ) A subset M of a metric space (X; d) is compact if any

sequence {xn} of M admits a subsequence with limit in M . M is relatively compact if

every sequence of M admits a subsequence converging towards a limit belonging to X

(i.e. M is compact).

Lemma 1.1 A compact subset M of a metric space is closed and bounded.

Proposition 1.1 The set M is compact if f it is relatively compact and closed.

Proposition 1.2 Each relatively compact set is bounded.

Definition 1.6 Let {fn} be a sequence of real valued functions with fn : [a, b]→ R.

a) {fn} is uniformly bounded on [a, b] if there exists M > 0 such that |fn (t)| ≤M for

all n and all t ∈ [a, b].

1.1. Notation and preliminaries
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b) {fn} is equicontinuous if for any ε > 0 there exists δ > 0 such that t1, t 2 ∈ [a, b]

and |t1 − t2| < δ imply |fn (t1)− fn (t2)| < ε for all n.

Theorem 1.3 (Ascoli-Arzela [14]) If {fn (t)} is a uniformly bounded and equicontin-

uous sequence of real functions on an interval [a, b], then there is a subsequence which

converges uniformly on [a, b] to a continuous function.

But here we manipulate function spaces defined on infinite t-intervals. So, for com-

pactness we need an extension of the Arzelà-Ascoli theorem. This extension is taken from

([19], Theorem 1.2.2 p. 20) and is as follows.

Theorem 1.4 Let q : R+ → R be a continuous function such that q (t) → 0 as t → ∞.

If {fn} is an equicontinuous sequence of Rm-valued functions on R+ with |fn (t)| ≤ q (t)

for t ∈ R+, then there is a subsequence that converges uniformly on R+ to a continuous

function f (t) with |f (t)| ≤ q (t) for t ∈ R+, where |·| denotes the Euclidean norm on Rm.

Definition 1.7 Let M be a subset of a Banach space X and T : M → X. If T is

continuous and T (M) is contained in a compact subset of X, then T is a compact

mapping.

Definition 1.8 Let M and Y be Banach space, and T : D (T ) ⊆M → Y an operator.T

is called compact if

(i) T is continuous,

(ii) T maps bounded sets into relatively compact sets.

Example 1.2 a) The space C ([a, b] ,Rn) consisting of all continuous functions f :

[a, b]→ Rn is a vector space over the reels.

b) If ‖f‖ = maxt∈[a,b] |f (t)|, where |·| is a norm in Rn, then it is a Banach space.

c) For a given pair of positive constants M and K, the set

L = {f ∈ C ([a, b] ,Rn) | ‖f‖ ≤M, |f (u)− f (v)| ≤ K |u− v|} ,

is compact. To see this, note first that Ascoli’s theorem is also true for vector

sequences; apply it to each component successively. If {fn} is any sequence in L,

then it is uniformly bounded and equicontinuous. By Ascoli’s theorem it has a

subsequence converging uniformly to a continuous function f : [a, b] → Rn. But

1.1. Notation and preliminaries



Chapter 1. Fixed point theory, functional differential equations and stability 10

|fn (t)| ≤ M for any fixed t, so ‖f‖ ≤ M . Moreover, if we denote the subsequence

by {fn} again, then for fixed u and v there exist εn > 0 and δn > 0 with

|f (u)− f (v)| ≤ |f (u)− fn (u)|+ |fn (u)− fn (v)|+ |fn (v)− f (v)|
= εn + |fn (u)− fn (v)|+ δn

≤ v + δn + k |u− v| → k |u− v| ,

as n→∞. Hence, f ∈ L and L is compact.

Definition 1.9 Let P be a mapping from a metric space (X, d) into another metric space

(Y, ρ). Then P is said to satisfy Lipschitz condition on X if there exists a constant

L > 0 such that

ρ(Px, Py) ≤ Ld(x, y) for all x, y ∈ X.

If L is the least number for which Lipschitz condition holds, then L is called Lipschitz

constant. In this case, we say that P is an L-Lipschitz mapping or simply a Lipschitzia

mapping with Lipschitz constant L. Otherwise, it is called non-Lipschitzian mapping.

An L-Lipschitz mapping P is said to be contraction if L < 1 and nonexpansive if L = 1.

The mapping P is said to be contractive if

ρ(Px, Py) < d(x, y) for all x, y ∈ X, x 6= y.

Definition 1.10 Let (X, d) be a complete metric space and P : X → X. The mapping

P is a contraction if there is an α ∈ (0, 1) such that x, y ∈ X imply

d (Px, Py) ≤ αd (x, y) .

Definition 1.11 Let (X, d) be a metric space and assume that P : X → X. P is said to

be a large contraction, if for x, y ∈ X, with x 6= y, we have

d(Px, Py) < d(x, y), and ∀ε > 0, ∃δ < 1 such that

[x, y ∈ X, d(x, y) ≥ ε]⇒ d(Px, Py) < δd(x, y).

Definition 1.12 A set X in a vector space is convex if x, y ∈ X and 0 ≤ k ≤ 1 imply

kx+ (1− k) y ∈ X.

1.2 Fixed point theorems

Definition 1.13 Let f be a mapping in the set M . we call fixed point of f any point

x satisfying f (x) = x. If there exists such x, we say that f has a fixed point, which is

equivalent to saying that the equation f (x)− x = 0 has a null solution.

1.2. Fixed point theorems
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Theorem 1.5 (Brouwer Fixed Point Theorem (1912)) Suppose that M is a

nonempty, convex, compact subset of RN where N > 1, and that f : M → M is a

continuous mapping. Then f has a fixed point.

Theorem 1.6 (Contraction Mapping Principle (1922) [14]) Let (X, d) a complete

metric space and let P : X → X a contraction mapping. Then there is one and only

one point z ∈ X with Pz = z. Moreover z = lim zn where zn+1 = Pzn and z1 chosen

arbitrarily in X.

Theorem 1.7 ([14]) Let (X, d) a compact nonempty metric space and let P : X → X.

If

d (Px, Py) < d (x, y) , for x 6= y

Then P has a fixed point.

Theorem 1.8 ([14]) If (X, d) is a complete metric space and P : X → X is a α-

contraction operator with fixed point x, then for any y ∈ X we have

(a) d (x, y) ≤ d (y, Py)� (1− α).

(b) d (P ny, x) ≤ αnd (y, Py)� (1− α).

1.2.1 Krasnoselskii fixed point theorem

The fixed point theorem of Krasnoselskii is an hybrid result and is based on Banach and

Schauder theorems. Firstly, we recall the theorem of Schauder

Definition 1.14 ([53]) A topological space X has the fixed-point property if whenever

P : X → X is continuous, then P has a fixed point.

Theorem 1.9 (Schauder’s first fixed-point theorem (1930) [53]) Any compact

convex nonempty subset M of a Banach space has the X fixed-point property.

Theorem 1.10 (Schauder’s second fixed point theorem [53]) Let M be a

nonempty closed convex bounded subset of a Banach space (X, ‖.‖). Then every

continuous compact mapping P : M →M has a fixed point.

The fixed point theorem of Krasnoselskii is a combination of Banach theorem and that

of Schauder. It was the object of several studies these last years and one meets it in several

forms. In particular, the theorem of Krasnoselskii gives the existence and the stability of

the solutions of the functional differential equations and the nonlinear integral equations

with delay of mixed type.

In 1955 Krasnoselskii (see [52], [53]) observed that in a good number of problems, the

integration of a perturbed differential operator gives rise to a sum of two applications, a

contraction and a compact application. It declares then,

1.2. Fixed point theorems
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Principle: the integration of a perturbed differential operator can produce

a sum of two applications, a contraction and a compact operator.

Consider the differential equation

x′ (t) = −a (t)x (t)− g (t, x) . (1.1)

We can transform this equation in another form while writing, formally

x′ (t) e
∫ t
0 a(s)ds = −a (t)x (t) e

∫ t
0 a(s)ds − g (t, x) e

∫ t
0 a(s)ds,

thus

x′ (t) e
∫ t
0 a(s)ds + a (t)x (t) e

∫ t
0 a(s)ds = −g (t, x) e

∫ t
0 a(s)ds,

or (
x (t) e

∫ t
0 a(s)ds

)′
= −g (t, x) e

∫ t
0 a(s)ds,

then integrating from t− T to t, we obtain∫ t

t−T

(
x (u) e

∫ u
0 a(s)ds

)′
du = −

∫ t

t−T
g (u, x) e

∫ u
0 a(s)dsdu,

what gives

x (t) = x (t− T ) e−
∫ t
t−T a(s)ds −

∫ t

t−T
g (u, x) e−

∫ t
u a(s)dsdu. (1.2)

If we suppose that e−
∫ t
t−T a(s)ds = α < 1 and if (M, ‖.‖) is the Banach space of functions

continuous and T -periodic ϕ : R→ R, then the equation (1.2) can be written as

ϕ (t) = (Bϕ) (t) + (Aϕ) (t) := (Pϕ) (t) ,

where B is contraction provides that the constant α < 1 and A is compact mapping.

This example shows the birth of the mapping (Pϕ) := (Bϕ) + (Aϕ) who is identified

with a sum of a contraction and a compact mapping.

Thus, the search of the solution for (1.2) requires an adequate theorem which applies

to this hybrid operator P and who can conclude the existence for a fixed point which will

be, in his turn, solution of the initial equation (1.1). Krasnoselskii found the solution by

combining the two theorems of Banach and that of Schauder in one hybrid theorem which

bears its name. In light, it establishes the following result ([15], [53]).

Theorem 1.11 (Krasnoselskii (1955)) Let M be a closed bounded convex nonempty

subset of a Banach space (X, ‖.‖). Suppose that A and B map M into X such that

(i) A is compact and continuous,

(ii) B is a contraction mapping,

1.2. Fixed point theorems
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(iii) x, y ∈M , implies Ax+By ∈M ,

Then there exists z ∈M with z = Az +Bz.

Note that if A = 0, the theorem become the theorem of Banach. If B = 0, then the

theorem is not other than the theorem of Schauder.

Proof. According to the condition (iii) we have

‖(I −B)x− (I −B) y‖ = ‖(x− y)− (Bx−By)‖
≤ ‖x− y‖+ ‖Bx−By‖
≤ ‖x− y‖+ α ‖x− y‖
= (1 + α) ‖x− y‖ ,

and

‖(I −B)x− (I −B) y‖ = ‖(x− y)− (Bx−By)‖
≥ ‖x− y‖ − ‖Bx−By‖
≥ ‖x− y‖ − α ‖x− y‖
= (1− α) ‖x− y‖ .

In short

(1− α) ‖x− y‖ ≤ ‖(I −B)x− (I −B) y‖ ≤ (1 + α) ‖x− y‖ .

This inequality shows that (I − B) : M → (I − B)M is continuous and bijective. Thus,

(I − B)−1 exist and is continuous. Let us pose U := (I − B)−1A. It is clear that U is

compact mapping, because U is a composition of a continuous mapping with a compact.

Under the theorem of Schauder, U has a fixed point, i.e.

∃z ∈M such that (I −B)−1Az = z.

This is equivalent to z = Az +Bz.

1.2.2 Krasnoselskii-Burton fixed point theorem

In this many work on stability with the help of the technique of fixed point T.A. Burton

( [11]) observed that Krasnoselskii result can be more interesting in applications with

certain changes and formulated the Theorem 1.13 below (see [11] for the proof).

Burton ([11]) remarked that in certain problems the situation does not arise in con-

traction form. For example, if we consider the equation x
′
= −x3 = −x+ (x− x3).

It is proved in [11] that a large contraction defined on a bounded and complete metric

space has a unique fixed point.

1.2. Fixed point theorems
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Theorem 1.12 (Burton [11]) Let (X, d) be a complete metric space and P be a large

contraction. Suppose there is an x ∈ X and an L > 0, such that (x, P nx) ≤ L for all

n ≥ 1. Then P has a unique fixed point in X.

Proof. Suppose there exist x ∈ X, consider {P nx}. If this is a Cauchy sequence then by

the triangle inequality we have for m ≥ n

d (P nx, Pmx) ≤ d
(
P nx, P n+1x

)
+ d

(
P n+1x, P n+2x

)
+ ...+ d

(
Pm−1x, Pmx

)
≤

(
δn + δn+1 + ...+ δm−1

)
d (x, Px)

≤ δn

1− δ
d (x, Px) .

Thus d (P nx, Pmx)→ 0 if n,m→∞, since (X, d) is a complete metric space the sequence

{P nx} has a limit y in X. This fixed point is unique since Pz = z and Pw = w we have

d (z, w) = d (Pz, Pw) ≤ δd (z, w) ,

so that d (z, w) = 0, that is z = w.

Suppose now the contradiction, if {P nx} is not a Cauchy sequence, then there

∃ε > 0, {Nk} ↑ ∞, nk > Nk,mk > nk,

with d (Pmkx, P nkx) ≥ ε. Thus

ε ≤ d (Pmkx, P nkx) ≤ d
(
Pmk−1x, P nk−1x

)
≤ d

(
Pmk−2x, P nk−2x

)
≤ ... ≤ d

(
Pmk−nk+1x, Px

)
≤ d

(
Pmk−nkx, x

)
.

Since P is large contraction, for this ε > 0 there is a δ < 1 such that

ε ≤ d (Pmkx, P nkx) ≤ d
(
Pmk−1x, P nk−1x

)
≤ ... ≤ δnkd

(
Pmk−nkx, x

)
,

which contradict the fact that ε > 0 and δ < 1 for nk → ∞. Then P has a unique fixed

point in X.

Lemma 1.2 ([11]) If (X, ‖.‖) is a normed space, if M ⊂ X, if B : M → X is a large

contraction, then (I −B) is a homeomorphism of M onto (I −B)M .

Proof. Clearly, I −B is continuous. To see that if x 6= y, then

‖(I −B)x− (I −B) y‖ = ‖(x− y)− (Bx−By)‖
≥ ‖x− y‖ − ‖Bx−By‖
≥ ‖x− y‖ − ‖x− y‖
= 0.
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Hence, I −B is 1− 1 and (I −B)−1 exists.

Suppose that (I −B)−1 is not continuous. Then ∃ (I −B) y and (I −B)xn →
(I −B) y but xn 9 y.

Now for

∀ε > 0∃N such that n > N ⇒
ε ≥ ‖(I −B)xn − (I −B) y‖ ≥ ‖xn − y‖ − ‖Bxn −By‖ . (1.3)

Since xn 9 y ∃ε0 > 0 and {xnk} with ‖y − xnk‖ ≥ ε0; as B is a large contraction there is

a δ < 1 with ‖By −Bxnk‖ ≤ δ ‖y − xnk‖. Thus, from (1.3) we have

ε ≥ ‖(I −B)xnk − (I −B) y‖
≥ ‖xnk − y‖ − δ ‖xnk − y‖
= (1− δ) ‖xnk − y‖
≥ (1− δ) ε0.

But ε0 is fixed, δ < 1, and a contradiction occurs as ε → 0; that is, as ε → 0, nk → ∞,

but ε0 remains fixed. This completes the proof.

Theorem 1.13 (Krasnoselskii-Burton’s (1996) [11]) Let M be a closed bounded

convex non-empty subset of a Banach space (X, ‖.‖). Suppose that A, B map M into

M and that

(i) A is continuous and AM is contained in a compact subset of M ,

(ii) B is a large contraction,

(iii) for all x, y ∈M =⇒ Ax+By ∈M ,

Then there is y ∈M with y = Ay +By.

Proof. For each fixed y ∈ M the mapping Pz = Bz + Ay is a large contraction on

M with unique fixed point z (since M is bounded the L is assured in Theorem 1.12) so

that z = Bz + Ay has a unique solution z. Thus, (I −B) z = Ay and by the lemma 1.2

Hy := (I −B)−1Ay is a continuous mapping of M into M . Now AM is contained in a

compact subset of M and (I −B)−1 is a continuous mapping of A into M ; it is then well

known that (I −B)−1AM is contained in a compact subset of M . By Schauder’s second

theorem there is a fixed point y = (I −B)−1Ay or y = Ay +By, as required.
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1.3 Functional differential equations with delay

Delay-differential equations (DDEs) are a large and important class of dynamical systems.

They often arise in either natural or technological control problems The delay is a natural

component of different processes in biology, chemistry and communications to mention a

few.

A delay differential equation (DDE) is an equation where the evolution of the system

at a certain time, solution t, depends on the state of the system at an earlier time;

Depending on the kind of delay, we distinguish

Constant delay problems (τ = const), time dependent delay problems (τ = τ(t)), state

dependent delay problems (τ = τ(t, y(t))), neutral delay problems (τ = τ(t, y(t),
.
y(t))).

1.3.1 Basic statements on functional differential equations with

delays

suppose τ ≥ 0 is a given real number, R = (−∞,∞) , Rn is an n-dimensional linear vector

space over the reals with norm |.|, denote C ([a, b] ,Rn), is the Banach space of continuous

functions mapping the interval [a, b] into Rn with the topology of uniform convergence.

If [a, b] = [−τ, 0], we let C = C ([−τ, 0] ,Rn) and designate the norm of an element ϕ in

C by ‖ϕ‖ = sup−τ≤θ≤0 |ϕ (θ)|. Even though single bars are used for norms is different

spaces, no confusion should arise.

Let t0 ∈ R, A ≥ 0 and x ∈ C ([t0 − τ, t0 + A] ,Rn), then for any t ∈ [t0, t0 + A], we let

xt ∈ C, be defined by

xt (θ) = x (t+ θ) , for − τ ≤ θ ≤ 0.

Definition 1.15 ([32]) If D is a subset of R × C, and f : D → Rn is a given function

and represents the right - hand derivative, we say that the relation

x′ = f (t, xt) , (1.4)

xt (θ) = x (t+ θ) , for θ ∈ [−τ, 0] .

is a retarded functional differential equation onD and will denote this equation by RFDE.

Definition 1.16 ([32]) A function x is said to be a solution of equation (1.4) on

[t0 − τ, t0 + A) if there are t0 ∈ R and A > 0 such that x ∈ C ([t0 − τ, t0 + A) ,Rn),

(t, xt) ∈ D and x (t) satisfies equation (1.4) for t ∈ [t0, t0 + A). For given t0 ∈ R, ϕ ∈ C,

we say x (t, t0, ϕ) is a solution of equation (1.4) with initial value ϕ at t0 or simply a

solution through (t0, ϕ) if there is an A > 0 such that x (t, t0, ϕ) is a solution of equation

(1.4) on [t0 − τ, t0 + A) and xt0 (t, t0, ϕ) = ϕ.

1.3. Functional differential equations with delay
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Equation (1.4) is a very general type of equation and includes ordinary differential

equations (τ = 0)

x′ (t) = f (x (t)) ,

differential-difference equations of the type

x′ (t) = f (t, x (t) , x (t− τ1 (t)) , ..., x (t− τp (t))) ,

with 0 ≤ τj (t) ≤ r, j = 1, 2, ..., p, as well as the integro-differential equation

x′ (t) =

∫ 0

−τ
g (t, θ, x (t+ θ)) dθ.

Much more general equation are also included in equation (1.4).

We say equation (1.4) is linear delay differential equation if f (t, ϕ) = L (t, ϕ) + h (t)

where L (t, ϕ) is linear in ϕ and; Linear homogeneous if h ≡ 0. The equation (1.4) is

autonomous if f (t, ϕ) = g (ϕ) where g does not depend on t.

Example 1.3 For example the following equation EDFR.

a) x′ (t) = x (t− 1) ,

b) x′(t) = −x(t) + x2( t
2
),

c) x′(t) = −x3(t) + x(t− sin2 t).

Equation a) has a constant delay τ(t) = 1. Equation b) has a variable delay τ(t) = t
2

and equation c) has a variable and bounded funtional delay τ(t) = sin2(t).

Remark 1.1 A natural classification of functional differential equation is retarded

FDEs, neutral FDEs, advanced FDEs, and mixed FDEs. This classification de-

pends on whether the rate of change of the current state of the system depends on past

values or future values or both.

Lemma 1.3 ([32]) If t0 ∈ R, ϕ ∈ C are given and f (t, ϕ) is continuous, then finding a

solution of Equation (1.4) through (t0, ϕ) is equivalent to solving the integral equation

xt0 = ϕ,

x (t) = ϕ (0) +

∫ t

t0

f (t, xs) ds, t ≥ t0.

Lemma 1.4 ([32]) If x ∈ C ([t0 − τ, t0 + A] ,Rn), then xt is a continuous function of t

for t in [t0, t0 + A].

1.3. Functional differential equations with delay
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Proof. Since x is continuous on [t0 − τ, t0 + A], it is uniformly continuous and thus for

any ε > 0 there is δ > 0, such that |x (t)− x (s)| < ε if |t− s| < δ. Consequently for t in

[t0, t0 + A], |t− s| < δ we have

|x (t+ θ)− x (s+ θ)| < ε, ∀θ ∈ [−τ, 0] .

Theorem 1.14 (Existence, [32]) Let M be an open subset of R× C and f : M → Rn

be continuous. For any (t0, ϕ) ∈ M , there exists a solution of equation (1.4) through

(t0, ϕ).

Theorem 1.15 (uniqueness [32]) Let M be an open subset of R×C and suppose that

f : M → Rn be continuous and f (t, ϕ) be lipschitzian with respect to ϕ in every compact

subset of M . If (t0, ϕ) ∈ M , then equation (1.4) has a unique solution passing through

(t0, ϕ).

1.3.2 The Method of steps

One way of solving the delay differential equations (DDEs) is using the so-called Method

of Steps. The idea is to start with the initial history on the interval [−τ, 0] and then use the

differential equation to obtain a piece of solution on the next interval [0, τ ]. This process

can then be repeated to generate the solution on succeeding intervals.n for understanding

these method we give illustrative example.

Example 1.4 A delay differential equation is given by the following relation

x′ (t) = 2x

(
t− 1

2

)
,

x (t) = 1 for t ∈
[
−1

2
, 0

]
,

to find a solution for t ∈
[
0, 1

2

]
0 ≤ t ≤ 1

2
⇒ −1

2
≤ t− 1

2
≤ 0⇒ x

(
t− 1

2

)
= 1,

the equation becomes x′ (t) = 2 and the general solution will be

x (t) = 2t+ c.

Now we replace t by zero to obtain

x (t) = 1 + 2t on

[
0,

1

2

]
.
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We repeat this process now for t ∈
[

1
2
, 1
]
,

1

2
≤ t ≤ 1⇒ 0 ≤ t− 1

2
≤ 1

2
⇒ x

(
t− 1

2

)
= 1 + 2

(
t− 1

2

)
,

and

x′ (t) = 2

(
1 + 2

(
t− 1

2

))
= 4t.

It has the general solution

x (t) = 2t2 + d, d = constant.

We replace t = 1
2

in the solution which we found for t ∈
[
0, 1

2

]
to obtain d = 3

2
, we have

x (t) = 2t2 +
3

2
, t ∈

[
1

2
, 1

]
.

We can progress in this process and solve the DDE (1.4) like an infinite series of EDO.

1.3.3 Neutral delay differential equations

Definition 1.17 ([32]) Suppose Ω ⊆ R × C is open with elements (t, ϕ). A function

D : Ω→ Rn is said to be atomic at β on Ω. if D is continuous together with its first and

second Fréchet derivatives with respect to ’ϕ and Dϕ’, the derivative with respect to ’ϕ,

is atomic at β on Ω.

Definition 1.18 ([32]) Suppose Ω ⊆ R×C is open, f : Ω→ Rn, D : Ω→ Rn are given

continuous functions with D atomic at zero. The equation

d

dt
D (t, xt) = f (t, xt) , (1.5)

is called the neutral delay differential equation NDDE.

Definition 1.19 ([32]) A function x is said to be a solution of Equation (1.5) if there

are t0 ∈ R and A > 0 such that

x ∈ C ([t0 − τ, t0 + A) ,Rn) , (t, xt) ∈ Ω, t ∈ [t0, t0 + A) ,

D (t, xt) is continuously differentiable and satisfies Eq. (1.5) on t ∈ [t0, t0 + A). For given

t0 ∈ R, ϕ ∈ C, and (t0, ϕ) ∈ Ω, we say x (t0, ϕ) is a solution of Eq. (1.5) with initial value

ϕ at t0 or simply a solution through (t0, ϕ) if there is an A > 0 such that x (t0, ϕ) is a

solution of Eq. (1.5) on [t0 − τ, t0 + A) and xt0 (t0, ϕ) = ϕ.
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Example 1.5 ([32]) If τ > 0, B is an n × n constant matrix, D (ϕ) = ϕ (0) − B (−r)
and f : Ω→ Rn is continuous, then the pair (D, f) defines an NDDE,

d

dt
[x (t)−Bx (t− r)] = f (t, xt) .

Theorem 1.16 ([32]) Let Ω be an open subset of R×C and f : Ω→ Rn be continuous.

For any (t0, ϕ) ∈ Ω, there exists a solution of equation (1.5) through (t0, ϕ).

Theorem 1.17 (Existence and uniqueness [32]) Let Ω be an open subset of R × C
and suppose that f : Ω → Rn be continuous and f (t, ϕ) be lipschitzian with respect to ϕ

in every compact subset of Ω. If (t0, ϕ) ∈ Ω, then equation (1.5) has a unique solution

passing through (t0, ϕ).

1.3.4 Real examples of delay differential equations

Modeling of Cancer with delays

Time delays in the immune response (Delay equations for Tumor modelling)

In [44], a further class of models deals with interactions of tumor cells with the cells of

the immune system.

These models are simplifications of the physiological phenomenon and consider mainly

the following two-populations dynamics

tumor cells ≡ target cells ≡ prey,

immune system cells ≡ effectors ≡ predators.

Hypothesis of antitumoral immune surveillance (Burnet, 1970): the immune system

patrols the cells of the body, and, upon recognition of a (group of) cell(s) that has become

cancerous, it will attempt to destroy it (them), thus preventing the growth of some tumors.

Observed facts

• The immune system can, in some cases, eradicate the tumor.

• The tumor may escape from the immune system control and grow.

• An equilibrium is established: the tumor survives in a microscopic (steady) state.

Idea: do not treat the tumor but the immune system!

Immunotherapy focuses on the stimulation of the immune system

• Cancer vaccine trains the immune system to recognize tumor cells as targets ma-

nipulation of therapeutic antibodies stimulates the immune system to attack the

tumor.

Aim: if it is not possible to eradicate the tumor, reduce its size to a life-compatible

dimension.
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One of the first models. Starting from an existing ODE Model (Mayer, 1995), Búric

et al. investigated the effects of time delays in the immune system response. Their

motivation was essentially mathematical: since the ODE model could not describe the

frequently observed, irregular or chaotic dynamics, they introduced chaotic behavior as

an effect of the time delay

T ′ = rT − kTI, target cells,

I ′ = pf(aT + (1− a)TτT ) + sg(bI + (1− b)IτI )− I, immuneagent (IS),

where

X = X(t), Xτ = X(t− τ),

and with

f (T ) =
T 4

1 + T 4
, activation of IS duetothetumor,

g (I) = p
I3

1 + I3
, self-regulation of IS.

This model includes two constant delays for the activation of the immune system:

1) τ
T

is the delay due to the size of the tumor

2) τ
I

is the delay due to the self-regulation processes in the IS effectors.

Predator-prey models by A. d’Onofrio A. d’Onofrio worked from 2005 to a general

class of predator-prey models for tumor-immune system interplay. The general model is

an ODE system

T ′ = T (f(T )− φ(T, I)), tumor,

I ′ = β(T )I − µ(T )I + σq(T ) + θ(t), immune agent (IS).

• f(T ) is a bounded, positive, non-growing function which describes the tumor

growth.

• φ(T, I) is the loss of tumor cells due to the attack by the immune system.

• σq(T ), with q(0) = 1, represents the influx of immune cells in tumor in situ (may

depend on the tumor size).

• β(T ) is a growing function of T and models the stimulating effect of the tumor on

immune cells proliferation.
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• µ(T ) is the loss rate of effectors(IS) due to their interactions with the tumor.

• θ(t) models the immunotherapy (constant, periodic or absent).

In 2010 the basic ODE model was modified by including a delay for the immune system

response

T ′ = T (f(T )− φ(T, I)), tumor,

I ′ = β(Tτ )I − µ(T )I + σq(T ) + θ(t), immune agent (IS).

Interactions between delayed immune response and immunotherapy were investigated.

The therapy was assumed to be ω-periodic

θ (t) = θA exp

(
−1

γ

(
t− ω

⌊
t

ω

⌋))
,

where θA is the maximal ’boost’ for the influx of effectors, ω is the time between two

consecutive deliveries and γ is a measure of decay time.

Blowfly equation

The blowfly equation describes the (adult) population of flies P at time t

P ′ (t) = b (P (t− τ))P (t− τ)− µ (P (t))P (t) ,

P (t) = φ0 (t) , t ≤ 0.

Here the delay occurs in the birth-term b: individuals have to grow up before they can

reproduce.

1.4 Stability theory for the functional differential

equations with delay

This section is devoted to the study of stability properties of solutions of the differential

system

x′ (t) = f (t, xt) , f (t, 0) = 0, (1.6)

where f : (−∞,+∞) × C → Rn, with C = C ([−τ, 0] ,Rn) the Banach space of

continuous functions ϕ : [−τ, 0] → Rn, τ > 0 equipped with the supremum norm

‖ϕ‖ = sup−τ≤t≤0 |ϕ (t)|, ϕ ∈ C. We suppose that f is continuous and is supposed to

satisfy all the conditions which guarantee a solution. We define

β (t) = {ϕ : [t− τ, t]→ Rn, ϕ is continuous} .

1.4. Stability theory for the functional differential equations with delay
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Definition 1.20 ([14]) The zero solution of (1.6) is

a) Stable if for every ε > 0 and to t0 ≥ 0 there exists δ > 0 such that

[ϕ ∈ β (t0) , ‖ϕ‖ < δ and t ≥ t0] imply that |x (t, t0, ϕ)| < ε.

b) Uniformly stable if it is stable and if δ is independent of t0.

c) Asymptotically stable if it is stable and for each t1 ≥ t0 there is an η > 0 such that

[ϕ ∈ β (t1) , ‖ϕ‖ < η and t ≥ t1]⇒ |x (t, t0, ϕ)| → 0 as t→ +∞.

d) Uniformly asymptotically stable if it is uniformly stable and if there is an η > 0

and for γ > 0, ∃T > 0 such that

[t1 ≥ t0, ϕ ∈ β (t1) , ‖ϕ‖ < η and t ≥ t0 + T ]⇒ |x (t, t0, ϕ)| < γ.

The method of fixed point theory

When one wants to study the stability of the trivial solution of a differential equation

with delay by the method of fixed point one will have to proceed as follows

1) A delay differential equation requires primarily a an initial function defined on an

appropriate initial interval It0 i.e. ψ : It0 → Rn. We must fall immediately after a suitable

space C of functions ϕ : It0 ∪ [t0,∞) → Rn which coincide on It0 with ψ. According to

the case of needs we can always add other restrictions to the functions ϕ of C such as the

boundary or the condition ϕ (t)→ 0 when t→∞. This last condition is necessary if we

wish to study asymptotic stability.

2) Then we have to invert the differential equation to define what we call a fixed point

application i.e., a mapping S : C → C whose fixed point is the solution of the given delay

equation (the original equation). Nevertheless, this inversion can be a delicate task in

many cases. For example if the equation does not have a linear term in its structure we

will not be able to use the variation of the parameters. It is therefore essential to act

differently and to try if a transformation of this equation is possible.

3) A fixed point theorem must be chosen allowing the equation S(x) = x to have a

solution. Especially if S is a contraction we can apply the Banach fixed point theorem,

if S is compact then we will apply the theorem of Schauder or Schaeffer and if S is puts

in the form of a sum of a contraction and a compact application then the Krasnoselskii

hybrid theorem can give satisfaction. It thus becomes clear that the stability method by

the fixed point method relies on three essential things, the variation of the parameters, a

complete space and a fixed point theorem. In one stage we can conclude the existence(or

even uniqueness) and stability. In addition, it will be seen that this method always

requires conditions on average however the conditions of the Lyapunov method are always

punctual.

1.4. Stability theory for the functional differential equations with delay
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Keywords. Time scales, differentiation, integration, exponential function.

In this chapter, We introduce the time scales. We also present usual derivation and

integration results for denoted functions on arbitrary time scales. In addition, We recall

the exponential function on time scales. which will allow us to study the nonlinear delay

differential equations of neutral type on time scales. For specific references and many

more examples and applications, see [8], [9] and [51].

2.1 Terminology of time scales

Definition 2.1 A time scale is an arbitrary nonempty closed subset of the set of real

numbers R and denoted by T. Examples of time scales are the reals R, the integers

Z, the positive integers N, and the nonnegative integers N0, along with any finite union

of closed intervals, such as [0, 1] ∪ [2, 3]. The most common time scales are T = R for

continuous calculus and T = Z for discrete calculus.

Definition 2.2 Let T be a time scale.

• The forward and backward jump operators σ, ρ : T→ T are defined by

σ (t) = inf {s ∈ T : s > t} for all t ∈ T,

and

ρ (t) = sup {s ∈ T : s < t} for all t ∈ T,

respectively.

Let ∅ denotes the empty set, we put inf ∅ = supT (i.e., σ (t) = t if T has a maximum

t) and sup∅ = inf T (i.e., ρ (t) = t if T has a minimum t).

Definition 2.3 ([51]) For t ∈ T we have the following cases

(a) If σ (t) > t, then we say that t is right-scattered.

24
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(b) If t < supTand σ (t) = t, then we say that t is right-dense.

(c) If ρ (t) < t, then we say that t is left-scattered.

(d) If t > inf T and ρ (t) = t, then we say that t is left-dense.

(e) If ρ (t) < t < σ (t) , then we say that t is isolated.

(f) If ρ (t) = t = σ (t) , then we say that t is dense.

In addition to the set T, the set Tk is defined as follows. If T contains the left scattered

maximum m, then Tk = T\ {m}. Else Tk = T. Therefore,

Tk =

{
T\ (ρ (supT) , supT] if supT <∞,
T if supT =∞.

Definition 2.4 Let T be a time scale. The graininess function µ : T→ [0,∞) is given

by the formula

µ (t) = σ (t)− t for all t ∈ T.

Example 2.1 We consider the two examples of time scales T = R and T = Z.

i) If T = R, then for any t ∈ R

σ (t) = inf {s ∈ R : s > t} = inf ]t,∞[ = t,

and

µ(t) = σ (t)− t = 0 for all t ∈ T.

ii) If T = Z, then for any t ∈ Z

σ (t) = inf {s ∈ R : s > t} = inf {t+ 1, t+ 2, ...} = t+ 1,

and

µ(t) = (t+ 1)− t = 1 for all t ∈ T.

The next definitions are about periodic time scale.

Definition 2.5 We say that a time scale T is periodic if there exist a w > 0 such that

if t ∈ T then t ± w ∈ T. For T 6= R, the smallest positive w is called the period of the

time scale.

Example 2.2 The following time scales are periodic.

1) T =
∞
∪

i=−∞
[2(i− 1)h, 2ih] , h > 0 has period w = 2h.

2) T = hZ has period w = h.

3) T = R.

2.1. Terminology of time scales
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Remark 2.1 ([39]) All periodic time scales are unbounded above and below.

Definition 2.6 Let T 6= R be a periodic time scales with the period w. We say that the

function f : T→ R is periodic with period T if there exists a natural number n such

that T = nw, f(t ± T ) = f (t) for all t ∈ T and T is the smallest number such that

f(t±T ) = f (t). If T = R, we say that f is periodic with period T > 0 if T is the smallest

positive number such that f(t± T ) = f (t) for all t ∈ T.

Remark 2.2 If T is a periodic time scale with period w, then σ(t ± nw) = σ(t) ± nw.

Consequently, the graininess function µ satisfies µ(t ± nw) = σ(t ± nw) − (t ± nw) =

σ(t)− t = µ(t) and so, is a periodic function with period w.

2.2 Differentiation on time scales

Further we explore new properties of delta derivative (Hilger derivative) of function f :

T→ R at a point t ∈ Tk.

Definition 2.7 ([8]) The function f : T → R is called ∆-differentiable at a point

t ∈ Tk if there exists γ ∈ R such that for any ε > 0 there exists a U -neighborhood of

t ∈ Tk satisfying

|[f (σ (t))− f (s)]− γ [σ (t)− s]| ≤ ε |σ (t)− s| , for all s ∈ U.

In this case we shall write f∆ (t) = γ.

The function f is ∆-differentiable for any t ∈ Tk, then f : T → R is called ∆-

differentiable on Tk.

Theorem 2.1 ([8]) Assume that f : T→ R be a function and t ∈ Tk. Then we have the

following

1) If f is differentiable at t, then f is continuous at t.

2) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f∆ (t) =
f (σ (t))− f (t)

µ (t)
.

3) If t is right-dense, then f is differentiable at t if f there exists the limit

lim
s→t

f (t)− f (s)

t− s
,

as a finite number, and then

f∆ (t) = lim
s→t

f (t)− f (s)

t− s
.

2.2. Differentiation on time scales
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4) If f is differentiable at t, then

f (σ (t)) = f (t) + f∆ (t)µ (t) .

Note that, if T = R, then f∆ (t) = f ′ (t), which is the usual derivative of f , and if

T = Z, then f∆ (t) = ∆f(t) = f (t+ 1)− f (t), which is the forward difference of f .

Theorem 2.2 ([8]) Assume that the functions f, g : T→ R are differentiable at t ∈ Tk.

Then the following assertions are valid:

1) The sum f + g : T→ R is differentiable at t and

(f + g)∆ (t) = f∆(t) + g∆(t).

2) For any constant α, the function αf : T→ R is differentiable at t and

(αf)∆ (t) = αf∆(t).

3) The product f, g : T→ R is differentiable at t and

(fg)∆ (t) = f∆ (t) g (t) + fσ (t) g∆ (t) ,

(fg)∆ (t) = f (t) g∆ (t) + f∆ (t) gσ (t) .

3) If f (t) fσ (t) 6= 0 then the function 1
f

is differentiable at t and(
1

f

)∆

(t) = − f∆ (t)

f (t) fσ (t)
;

5) If g (t) gσ (t) 6= 0 then the function f
g

is differentiable at t and(
f

g

)∆

(t) =
f∆ (t) g (t)− f (t) g∆ (t)

g (t) gσ (t)
.

Theorem 2.3 ( Chain Rule [8]) Assume v : T → R is strictly increasing and T̃ :=

v(T) is a time scale. Let w : T̃→ R. If v∆(t) and w∆̃ (v(t)) exist for t ∈ Tk, then

(w ◦ v)∆ = (w∆̃ ◦ v)v∆.

In the sequel we will need to differentiate and integrate functions of the form f(t −
τ(t)) = f (v (t)) where, v(t) := t− τ(t). Our next theorem is the substitution rule

2.2. Differentiation on time scales
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2.3 Integration on time scales

Definition 2.8 ([8]) A function f : T→ R is called regulated provided its right-sided

limit exist (finite) at all right-dense points in T and its left-sided limits exist (finite) at

all left-dense points in T.

Definition 2.9 ([8]) • A function f : T → R is called rd-continuous provided it is

continuous at all right-dense points in T and its left-sided limits exist (finite) at all left-

dense points in T.

• The set of all rd-continuous functions f : T→ R is denoted by

Crd = Crd(T) = Crd(T,R).

The set of functions f : T → R that are delta differentiable and whose derivatives are

rd-continuous is denoted by

C1
rd = C1

rd(T) = C1
rd(T,R).

Proposition 2.1 If T is compact, Crd(T,R) is a Banach space.

Theorem 2.4 ([8]) Assume that f : T→ R. Then the following assertions are true.

1) If f is continuous on T, then it is rd-continuous on T;

2) if f is rd-continuous on T, then it is regulated on T;

3) the jump operator σ : T→ T is rd-continuous;

4) if f is regulated or rd-continuous on T, then the function f ◦ σ possesses the same

property;

5) if f : T → R is continuous and g : T → R is regulated and rd-continuous, then the

function f ◦ g possesses the same property.

Definition 2.10 ([8]) A continuous function f : T→ R is called pre-differentiable

with (region of differentiation) D, provided D ⊂ Tk, Tk\D is countable and contains no

right-scattered elements of T, and f is differentiable at each t ∈ D.

Definition 2.11 ([8]) Assume f : T → R is a regulated function. Any function F is

called a pre-antiderivative of f . We define the indefinite integral of a regulated function

f by ∫
f(t)∆t = F (t) + C,

2.3. Integration on time scales
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where C is an arbitrary constant and F is a pre-antiderivative of f . We define the Cauchy

integral by ∫ s

r

f(t)∆t = F (s)− F (r) for all s, r ∈ T.

A function F : T→ R is called an antiderivative of f : T→ R provided

F∆ (t) = f (t) holds for all t ∈ Tk.

Theorem 2.5 (Existence of Antiderivatives [8]) Every rd-continuous function has

an antiderivative. In particular if t0 ∈ T, then F defined by

F (t) =

∫ t

t0

f(τ)∆τ for t ∈ T,

is an antiderivative of f .

Theorem 2.6 ([8]) If f ∈ Crd and t ∈ Tk, then∫ σ(t)

t

f (τ) ∆τ = µ (t) f (t) .

Some properties of integration on T are presented next.

Theorem 2.7 ([8]) Let a, b, c ∈ T, α ∈ R, and f, g ∈ Crd(T). Then

1)
∫ b
a

[f(t) + g(t)] ∆t =
∫ b
a
f(t)∆t+

∫ b
a
g(t)∆t;

2)
∫ b
a
(αf)(t)∆t = α

∫ b
a
f(t)∆t;

3)
∫ b
a
f(t)∆t = −

∫ a
b
f(t)∆t;

4)
∫ b
a
f(t)∆t =

∫ c
a
f(t)∆t+

∫ b
c
f(t)∆t;

5)
∫ b
a
f(σ(t))g∆(t)∆t = (fg) (b)− (fg) (a) +

∫ b
a
f∆(t)g(t)∆t;

5)
∫ b
a
f∆(t)g(t)∆t = (fg) (b)− (fg) (a) +

∫ b
a
f(σ(t))g∆(t)∆t;

7)
∫ a
a
f(t)∆t = 0;

8)
∫ σ(t)

t
f(τ)∆τ = µ(t)f(t);

9) If |f | ≤ g on [a, b), then
∣∣∣∫ ba f(t)∆t

∣∣∣ ≤ ∫ ba g(t)∆t;

10) If f ≥ 0 on [a, b), then
∫ b
a
f(t)∆t ≥ 0.

Theorem 2.8 ([8]) Let a, b ∈ T and f ∈ Crd.

2.3. Integration on time scales
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1) If T = R, then ∫ b

a

f (t) ∆t =

∫ b

a

f (t) dt,

where the integral on the right is the usual Riemann integral from calculus.

2) If [a, b] = {t ∈ T : a ≤ t ≤ b} consists of only isolated points, then

∫ b

a

f (t) ∆t =


∑

t∈[a,b) µ (t) f (t) if a < b,

0 if a = b,

−
∑

t∈[b,a) µ (t) f (t) if a > b.

3) If T = hZ = {hk : k ∈ Z}, where h > 0, then

∫ b

a

f (t) ∆t =


∑ b

h
−1

k= a
h
f (kh)h if a < b,

0 if a = b,

−
∑ a

h
−1

k= b
h

f (kh)h if a > b.

4) If T = Z, then

∫ b

a

f (t) ∆t =


∑b−1

t=a f (t) if a < b,

0 if a = b,

−
∑a−1

t=b f (t) if a > b.

The notion of the improper integral is defined as follows.

Definition 2.12 ([8]) If supT = ∞, and f is rd-continuous on [a,∞); then the im-

proper integral is defined by∫ ∞
a

f(t)∆t = lim
b→∞

∫ b

a

F (t)∆t for a ∈ T

provided this limit exists, and we say that the improper integral converges in this case.

If this limit does not exist, then we say that the improper integral diverges.

Theorem 2.9 ([8]) Suppose f : R → R is continuously differentiable and g : T → R is

∆-differentiable on T. Then f ◦ g : T→ R is ∆-differentiable, and the formula

(f ◦ g)∆ (t) =

{∫ 1

0

f ′
(
(g (t)) + hµ (t) g∆ (t)

)
dh

}
g∆(t),

holds.

2.3. Integration on time scales
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Theorem 2.10 (Substitution [8]) Assume v : T → R is strictly increasing and T̃ :=

v(T) is a time scale. If f : T → R is an rd-continuous function and v is differentiable

with rd-continuous derivative, then for a, b ∈ T ,∫ b

a

f(t)v∆(t)∆t =

∫ v(b)

v(a)

(
f ◦ v−1

)
(s) ∆̃s.

Theorem 2.11 ([8]) Let a ∈ Tk, b ∈ Tk and assume f : T× Tk→ R is continuous at

(t, t), where t ∈ Tk with t > a. Also assume that f∆(t, .) is rd-continuous on [a, σ(t)].

Suppose that for each ε > 0 there exists a neighborhood U of t, independent of r ∈ [a, σ(t)],

such that ∣∣f(σ(t), r)− f(s, τ)− f∆(t, r)(σ(t)− s)
∣∣ ≤ ε |σ(t)− s| for all s ∈ U,

where f∆ denotes the derivative of f with respect to the first variable. Then

(i) g(t) : =

∫ t

a

f(t, r)∆r implies g∆(t) :=

∫ t

a

f∆(t, r)∆r + f(σ(t), t),

(ii) h(t) : =

∫ b

t

f(t, r)∆r implies h∆(t) :=

∫ b

t

f∆(t, r)∆r − f(σ(t), t),

Lemma 2.1 ([8]) Let a ∈ Tk and assume f : T× Tk→ R is continuous at (t, t), where

t ∈ Tk with t > a. Also assume that f∆(t, .) is rd-continuous on [a, σ(t)]. Where f∆

denotes the derivative of f with respect to the first variable. then(∫ β(t)

α(t)

f(t, r)∆r

)∆

= β∆(t)f(σ(t), β(t)) + α∆(t)f(σ(t), α(t)) +

∫ β(t)

α(t)

f∆(t, r)∆r.

2.4 The exponential function on time scales

Definition 2.13 ([8]) We say that a function p : T→ R is regressive provided

1 + µ (t) p (t) 6= 0 for all t ∈ Tk,

holds. The set of all regressive and rd-continuous function p : T→ R will be denoted by

R = R (T) = R (T,R) .

And an rd-continuous function p : T→ R is positively regressive if

1 + µ (t) p (t) > 0 for all t ∈ T.

Definition 2.14 ([8]) Let p ∈ R, the exponential function ep is defined by the ex-

pression

ep(t, s) = exp

(∫ t

s

1

µ (z)
log (1 + µ (z) p (z)) ∆z

)
for all (t, s) ∈ T× T (2.1)

2.4. The exponential function on time scales
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It is well known that if p ∈ R+, then ep(t, s) > 0 for all t ∈ T. Also, the exponential

function y(t) = ep(t, s) is the solution to the initial value problem y∆ = p(t)y, y(s) = 1.

Other properties of the exponential function are given in the following lemma

Theorem 2.12 ([8]) Let p, q ∈ R and t, r, s ∈ T Then

1) e0 (t, s) ≡ 1 and ep (t, t) ≡ 1;

2) ep (σ (t) , s) = (1 + µ (t) p (t)) ep (t, s);

3) 1
ep(t,s)

= e	p (t, s), where 	p (t) = − p(t)
1+µ(t)p(t)

;

4) ep (t, s) = 1
ep(s,t)

= e	p (s, t);

5) ep (t, s) ep (s, r) = ep (t, r);

6) ep (t, s) eq (t, s) = ep⊕q (t, s);

7) e∆
p (., s) = pep (., s) and

(
1

ep(.,s)

)∆

= − p(t)
eσp (.,s)

;

8) ep(t,s)

eq(t,s)
= ep	q (t, s);

9) if T = R, then ep (t, s) = e
∫ t
s p(τ)dτ ;

10) if T = R and p (t) ≡ α, then ep (t, s) = eα(t−s);

11) if T = Z, then ep (t, s) =
t−1∏
τ=s

(1 + p (τ));

12) if T = hZ with h > 0 and p (t) ≡ α, then ep (t, s) = (1 + hα)
t−s
h .

Lemma 2.2 ([1]) If p ∈ R+, then

0 < ep (t, s) ≤ exp

(∫ t

s

p (u) ∆u

)
, ∀t ∈ T.

Corollary 2.1 If p ∈ R+ and p (t) < 0 for all t ∈ T, then for all s ∈ T with s ≤ t we

have

0 < ep (t, s) ≤ exp

(∫ t

s

p (u) ∆u

)
< 1.

Theorem 2.13 ([8]) Let T be a periodic time scale with period w > 0. If p ∈ Crd(T) is

a periodic function with the period T = nw, then∫ b+T

a+T

p(u)∆u =

∫ b

a

p(u)∆u, ep(b+ T, a+ T ) = ep(b, a) if p ∈ R,

and ep(t+ T, t) is independent of t ∈ T whenever p ∈ R.

2.4. The exponential function on time scales
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Definition 2.15 A function f : [0, T ]× Rn → R is an L1
∆−Caratheodory function if

it satisfies the following conditions

(i) For each z ∈ Rn, the mapping t 7→ f(t, z) is ∆−measurable.

(ii) For almost all t ∈ [0, T ], the mapping z 7→ f(t, z) is continuous on Rn.

(iii) For each r > 0, there exists αr ∈ L1
∆ ([0, T ] ,R) such that for almost all t ∈ [0, T ]

and for all z such that |z| < r, we have |f(t, z)| ≤ αr(t).

2.4. The exponential function on time scales
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Periodic and nonnegative periodic solutions
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In this chapter, we expose the work cited in [28] as follow

M. Gouasmia, A. Ardjouni and A. Djoudi, Periodic and nonnegative periodic solutions

of nonlinear neutral dynamic equations on a time scale, International Journal of Analysis

and Applications 16(2) (2018), 162–177.

We use in this chapter the Krasnoselskii-Burton’s fixed point theorem to obtain periodic

and nonnegative periodic solutions of nonlinear neutral dynamic equations on a time scale.

The results obtained here extend the work of Mesmouli, Ardjouni and Djoudi [46].

3.1 Introduction

In 1988, Stephan Hilger [35] introduced the theory of time scales (measure chains) as a

means of unifying discrete and continuum calculi. Since Hilger’s initial work there has

been significant growth in the theory of dynamic equations on time scales, covering a

variety of different problems; see [8], [9], and references therein.

Let T be a periodic time scale such that 0 ∈ T. In this research, we are interested

in the analysis of qualitative theory of periodic and positive periodic solutions of neutral

dynamic equations. Motivated by the papers [[1], [18], [[38], [37], [48], [46]] and the

references therein, we consider the following nonlinear neutral dynamic equation

x∆(t) = −a(t)h(xσ(t)) +Q(t, x(t− τ(t)))∆ +G(t, x(t), x(t− τ(t))), t ∈ T. (3.1)

Throughout this chapter we assume that a and τ are positive rd-continuous functions,
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id − τ : T→ T is increasing so that the function x(t − τ(t)) is well defined over T. The

function h is continuous, Q and G satisfying the Caratheodory condition. To reach our

desired end we have to transform (3.1) into an integral equation written as a sum of

two mapping, one is a contraction and the other is continuous and compact. After that,

we use Krasnoselskii-Burton’s fixed point theorem, to show the existence of periodic and

nonnegative periodic solutions.

3.2 Existence of periodic solutions

Let T > 0, T ∈ T be fixed and if T 6= R, T = nω for some n ∈ N. By the notation

[a, b] ∩ T we mean

[a, b] ∩ T = {t ∈ T : a ≤ t ≤ b} ,

unless otherwise specified. The intervals [a, b) ∩ T, (a, b] ∩ T and (a, b) ∩ T are defined

similarly.

For T > 0 define

PT = {φ ∈ C(T,R), φ(t+ T ) = φ(t)} ,

where C(T,R) is the space of all real valued rd-continuous functions. Then (PT , ‖.‖) is a

Banach space when it is endowed with the supremum norm

‖φ‖ = sup |φ(t)|
t∈[0,T ]

.

Lemma 3.1 Let x ∈ PT . Then ‖xσ‖ = ‖x ◦ σ‖ exists and ‖xσ‖ = ‖x‖.

In this chapter we assume that h is continuous, a ∈ R+ is rd-continuous and

a(t− T ) = a(t), τ(t− T ) = τ(t), τ(t) ≥ τ ∗ > 0, (3.2)

with τ continuously and τ ∗ is positive constant, a is positive function and

1− e�a(t, t− T ) ≡ 1

η
6= 0. (3.3)

The functions Q(t, x) and G(t, x, y) are periodic in t of period T . That is

Q(t− T, x) = Q(t, x), G(t− T, x, y) = G(t, x, y). (3.4)

The following lemma is fundamental to our results.
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Lemma 3.2 Suppose (3.2)–(3.4) hold. If x ∈ PT , then x is a solution of equation (3.1)

if and only if

x(t)

= η

∫ t

t−T
k(t, u)a(u)[xσ(u)− h(xσ(u))]∆u+Q(t, x(t− τ(t)))

+ η

∫ t

t−T
k(t, u) [−a(u)Qσ(u, x(u− τ(u))) +G(u, x(u), x(u− τ(u)))] ∆u, (3.5)

where

k(t, u) = e�a(t, u). (3.6)

Proof. Let x ∈ PT be a solution of (3.1). Rewrite the equation (3.1) as

(x(t)−Q(t, x(t− τ(t))))∆ + a(t)[xσ(t)−Qσ(t, x(t− τ(t)))]

= a(t) [xσ(t)− h(xσ(t))]− a(t)Qσ(t, x(t− τ(t))) +G(t, x(t), x(t− τ(t))).

Multiply both sides of the above equation by ea(t, 0) and then integrate from t − T to t

to obtain ∫ t

t−T
((x(u)−Q(u, x(u− τ(u))))ea(u, 0))∆∆u

=

∫ t

t−T
a(u)[xσ(u)− h(xσ(u))]ea(u, 0)∆u

+

∫ t

t−T
[−a(u)Qσ(u, x(u− τ(u))) +G(u, x(u), x(u− τ(u)))]ea(u, 0)∆u.

As a consequence, we arrive at

(x(t)−Q(t, x(t− τ(t))))ea(t, 0)

− (x(t− T )−Q(t− T, x(t− T − τ(t− T ))))ea(t− T, 0)

=

∫ t

t−T
a(u)[xσ(u)− h(xσ(u))]ea(u, 0)∆u

+

∫ t

t−T
[−a(u)Qσ(u, x(u− τ(u))) +G(u, x(u), x(u− τ(u)))]ea(u, 0)∆u.

By dividing both sides of the above equation by ea(t, 0) and using the fact that x(t) =

x(t− T ), we obtain

x(t)−Q(t, x(t− τ(t)))

= η

∫ t

t−T
a(u)[xσ(u)− h(xσ(u))]e�a(t, u)∆u

+ η

∫ t

t−T
[−a(u)Qσ(u, x(u− τ(u))) +G(u, x(u), x(u− τ(u)))]e�a(t, u)∆u. (3.7)
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The converse implication is easily obtained and the proof is complete.

To apply Theorem 1.13, we need to define a Banach space B, a closed bounded convex

subsetM of B and construct two mappings; one is a completely continuous and the other

is large contraction. So, we let (B, ‖.‖) = (PT , ‖.‖) and

M = {ϕ ∈ PT , ‖ϕ‖ ≤ L} , (3.8)

with L ∈ (0, 1]. For x ∈M, let the mapping H be defined by

H(x) = xσ − h(xσ), (3.9)

and by (3.5), define the mapping S : PT → PT by

(Sϕ) (t)

= η

∫ t

t−T
k(t, u)a(u)H(ϕ(u))∆u+Q(t, ϕ(t− τ(t)))

+ η

∫ t

t−T
k(t, u)[−a(u)Qσ(u, ϕ(u− τ(u))) +G(u, ϕ(u), ϕ(u− τ(u)))]∆u. (3.10)

Therefore, we express the above equation as

(Sϕ) (t) = (Aϕ) (t) + (Bϕ) (t),

where A,B : PT → PT are given by

(Aϕ) (t)

= Q(t, ϕ(t− τ(t)))

+ η

∫ t

t−T
k(t, u) [−a(u)Qσ(u, ϕ(u− τ(u))) +G(u, ϕ(u), ϕ(u− τ(u)))] ∆u. (3.11)

and

(Bϕ) (t) = η

∫ t

t−T
k(t, u)a(u)H(ϕ(u))∆u. (3.12)

We will assume that the following conditions hold.

(H1) a ∈ L1
∆ [0, T ] is bounded.

(H2) Q, G satisfies Caratheodory conditions with respect to L1
∆ [0, T ].

(H3) There exists periodic functions q1, q2 ∈ L1
∆ [0, T ], with period T , such that

|Q(t, x)| ≤ q1(t) |x|+ q2(t).
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(H4) There exists periodic functions g1, g2, g3 ∈ L1
∆ [0, T ], with period T , such that

|G(t, x, y)| ≤ g1(t) |x|+ g2(t) |y|+ g3(t).

Now, we need the following assumptions

q1(t)L+ q2(t) ≤ γ1

2
L, (3.13)

g1(t)L+ g2(t)L+ g3(t) ≤ γ2La(t), (3.14)

J (γ1 + γ2) ≤ 1, (3.15)

where γ1, γ2 and J are positive constants with J ≥ 3.

Lemma 3.3 For A defined in (3.11), suppose that (3.2)–(3.4), (3.13)–(3.15) and (H1)–

(H4) hold. Then A :M→M.

Proof. Let A be defined by (3.11). Obviously, Aϕ is rd-continuous. First by (3.2) and

(3.4), a change of variable in (3.11) shows that (Aϕ)(t+T ) = (Aϕ)(t). That is, if ϕ ∈ PT
then Aϕ is periodic with period T . Next, let ϕ ∈M, by (3.13)–(3.15) and (H1)–(H4) we

have

|(Aϕ) (t)|
≤ |Q(t, ϕ(t− τ(t)))|

+ η

∫ t

t−T
k(t, u) [a(u) |Qσ(u, ϕ(u− τ(u)))|+ |G(u, ϕ(u), ϕ(u− τ(u)))|] ∆u

≤ q1(t) |ϕ(t− τ(t))|+ q2(t)

+ η

∫ t

t−T
k(t, u)a(u)[q1(u) |ϕ(u− τ(u))|+ q2(u)]∆u

+ η

∫ t

t−T
k(t, u)[g1(u) |ϕ(u)|+ g2(u) |ϕ(u− τ(u))|+ g3(u)]∆u

≤ γ1L+ γ2L ≤
L

J
≤ L.

That is Aϕ ∈M.

Lemma 3.4 For A :M→M defined in (3.11), suppose that (3.2)–(3.4), (3.13)–(3.15)

and (H1)–(H4) hold. Then A is completely continuous.

Proof. We show that A is continuous in the supremum norm, Let ϕn ∈M where n is a
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positive integer such that ϕn → ϕ as n→∞.

|(Aϕn) (t)− (Aϕ) (t)|
≤ |Q(t, ϕn(t− τ(t)))−Q(t, ϕ(t− τ(t)))|

+ η

∫ t

t−T
k(t, u)a(u) |Qσ(u, ϕn(u− τ(u)))−Qσ(u, ϕ(u− τ(u)))|∆u

+ η

∫ t

t−T
k(t, u) |G(u, ϕn(u), ϕn(u− τ(u)))−G(u, ϕ(u), ϕ(u− τ(u)))|∆u.

By the Dominated Convergence Theorem, lim
n→∞

|(Aϕn) (t)− (Aϕ) (t)| = 0. Then A is

continuous. We next show that A is completely continuous. Let ϕ ∈M, then, by Lemma

3.3, we see that

‖Aϕ‖ ≤ L.

And so the family of functions Aϕ is uniformly bounded. Again, let ϕ ∈ M. Without

loss of generality, we can pick ω < t such that t− ω < T . Then

|(Aϕ) (t)− (Aϕ) (ω)|
≤ |Q(t, ϕ(t− τ(t)))−Q(ω, ϕ(ω − τ(ω)))|

+ η

∣∣∣∣∫ t

t−T
k(t, u)a(u)Qσ(u, ϕ(u− τ(u)))∆u

−
∫ ω

ω−T
k(ω, u)a(u)Qσ(u, ϕ(u− τ(u)))∆u

∣∣∣∣
+ η

∣∣∣∣∫ t

t−T
k(t, u)G(u, ϕ(u), ϕ(u− τ(u)))∆u

−
∫ ω

ω−T
k(ω, u)G(u, ϕ(u), ϕ(u− τ(u)))∆u

∣∣∣∣
≤ |Q(t, ϕ(t− τ(t)))−Q(ω, ϕ(ω − τ(ω)))|

+ 2ηk0

∫ t−T

ω−T

[
a(u)qL(u) + g√2L(u)

]
∆u

+ η

∫ ω

ω−T
|k(t, u)− k(ω, u)|

[
a(u)qL(u) + g√2L(u)

]
∆u

≤ |Q(t, ϕ(t− τ(t)))−Q(ω, ϕ(ω − τ(ω)))|

+ 2ηk0

∫ t

ω

[
a(u)qL(u) + g√2L(u)

]
∆u

+ η

∫ T

0

|k(t, u)− k(ω, u)|
[
a(u)qL(u) + g√2L(u)

]
∆u,

where k0 = max
u∈[t−T,t]

{k(t, u)}, then by the Dominated Convergence Theorem

|(Aϕ)(t)− (Aϕ)(ω)| → 0 as t − ω → 0 independently of ϕ ∈ M. Thus (Aϕ) is equicon-

tinuous. Hence by Ascoli-Arzela’s theorem A is completely continuous.
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Now, we state an important result see [1, Theorem 3.4] and for convenience we present

below its proof, we deduce by this theorem that the following are sufficient conditions

implying that the mapping H given by (3.9) is a large contraction on the set M.

(H5) h : R→ R is continuous on [−L,L] and differentiable on (−L,L),

(H6) the function h is strictly increasing on [−L,L],

(H7) sup
t∈(−L,L)

h′(t) ≤ 1.

Theorem 3.1 Let h : R → R be a function satisfying (H5)–(H7). Then the mapping H

in (3.9) is a large contraction on the set M.

Proof. Let ϕσ, ψσ ∈ M with ϕσ 6= ψσ. Then ϕσ(t) 6= ψσ(t) for some t ∈ T. Let us

denote the set of all such t by D(ϕ, ψ), i.e.,

D(ϕ, ψ) = {t ∈ T : ϕσ(t) 6= ψσ(t)} .

For all t ∈ D(ϕ, ψ), we have

|(Hϕ)(t)− (Hψ)(t)|
≤ |ϕσ(t)− ψσ(t)− h(ϕσ(t)) + h(ψσ(t))|

≤ |ϕσ(t)− ψσ(t)|
∣∣∣∣1− h(ϕσ(t))− h(ψσ(t))

ϕσ(t)− ψσ(t)

∣∣∣∣ . (3.16)

Since h is a strictly increasing function we have

h(ϕσ(t))− h(ψσ(t))

ϕσ(t)− ψσ(t)
> 0 for all t ∈ D(ϕ, ψ). (3.17)

For each fixed t ∈ D(ϕ, ψ) define the interval It ⊂ [−L,L] by

It =

{
(ϕσ(t), ψσ(t)) if ϕσ(t) < ψσ(t),

(ψσ(t), ϕσ(t)) if ψσ(t) < ϕσ(t).

The Mean Value Theorem implies that for each fixed t ∈ D(ϕ, ψ) there exists a real

number ct ∈ It such that
h(ϕσ(t))− h(ψσ(t))

ϕσ(t)− ψσ(t)
= h′(ct).

By (H6) and (H7) we have

0 ≤ inf
u∈(−L,L)

h′(u) ≤ inf
u∈It

h′(u) ≤ h′(ct) ≤ sup
u∈It

h′(u) ≤ suph′

u∈(−L,L)

(u) ≤ 1. (3.18)
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Hence, by (3.16)–(3.18) we obtain

|(Hϕ)(t)− (Hψ)(t)| ≤ |ϕσ(t)− ψσ(t)|
∣∣∣∣1− inf

u∈(−L,L)
h′(u)

∣∣∣∣ , (3.19)

for all t ∈ D(ϕ, ψ). This implies a large contraction in the supremum norm. To see this,

choose a fixed ε ∈ (0, 1) and assume that ϕ and ψ are two functions in M satisfying

ε ≤ sup
t∈(−L,L)

|ϕ(t)− ψ(t)| = ‖ϕ− ψ‖ .

If |ϕσ(t)− ψσ(t)| ≤ ε
2

for some t ∈ D(ϕ, ψ), then we get by (3.18) and (3.19) that

|(Hϕ)(t)− (Hψ)(t)| ≤ |ϕσ(t)− ψσ(t)| ≤ 1

2
‖ϕ− ψ‖ . (3.20)

Since h is continuous and strictly increasing, the function h(u + ε
2
) − h(u) attains its

minimum on the closed and bounded interval [−L,L]. Thus, if ε
2
≤ |ϕσ(t)− ψσ(t)| for

some t ∈ D(ϕ, ψ), then by (H6) and (H7) we conclude that

1 ≥ h(ϕσ(t))− h(ψσ(t))

ϕσ(t)− ψσ(t)
> λ,

where

λ :=
1

2L
min

{
h(u+

ε

2
)− h(u) : u ∈ [−L,L]

}
> 0.

Hence, (3.16) implies

|(Hϕ)(t)− (Hψ)(t)| ≤ (1− λ) ‖ϕ− ψ‖ . (3.21)

Consequently, combining (3.20) and (3.21) we obtain

|(Hϕ)(t)− (Hψ)(t)| ≤ δ ‖ϕ− ψ‖ , (3.22)

where

δ = max

{
1

2
, 1− λ

}
.

The proof is complete.

The next result shows the relationship between the mappings H and B in the sense of

large contractions. Assume that

max {|H(−L)| , |H(L)|} ≤ 2L

J
. (3.23)

Lemma 3.5 Let B be defined by (3.12), suppose (H5)–(H6) hold. Then B :M→M is

a large contraction.
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Proof. Let B be defined by (3.12). Obviously, Bϕ is continuous and it is easy to show

that (Bϕ)(t+ T ) = (Bϕ)(t). Let ϕ ∈M

|(Bϕ)(t)| ≤ η

∫ t

t−T
k(t, u)a(u) max {|H(−L)| , |H(L)|}∆u

≤ 2L

J
< L,

which implies B :M→M.

By Theorem 3.1, H is large contraction on M, then for any ϕ, ψ ∈ M, with ϕ 6= ψ

and for any ε > 0, from the proof of that Theorem, we have found a δ < 1, such that

|(Bϕ)(t)− (Bψ)(t)| =
∣∣∣∣η ∫ t

t−T
k(t, u)a(u)[H(ϕ(u))−H(ψ(u))]∆u

∣∣∣∣
≤ δ ‖ϕ− ψ‖ η

∫ t

t−T
k(t, u)a(u)∆u ≤ δ ‖ϕ− ψ‖ .

The proof is complete.

Theorem 3.2 Suppose the hypothesis of Lemmas 3.3, 3.4 and 3.5 hold. Let M defined

by (3.8). Then the equation (3.1) has a T -periodic solution in M.

Proof. By Lemma 3.3, 3.4, A is continuous and A(M) is contained in a compact set. Also,

from Lemma 3.5, the mapping B is a large contraction. Next, we show that if ϕ, ψ ∈M,

we have ‖Aψ +Bϕ‖ ≤ L. Let ϕ, ψ ∈M with ‖ϕ‖ , ‖ψ‖ ≤ L. By (3.13)–(3.15)

‖Aψ +Bϕ‖ ≤ (γ1 + γ2)L+
2L

J

≤ L

J
+

2L

J
≤ L.

Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem are satisfied. Thus there

exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 3.2 this fixed point is a

solution of (3.1). Hence (3.1) has a T -periodic solution.

3.3 Existence of nonnegative periodic solutions

In this section we obtain the existence of a nonnegative periodic solution of (3.1). By

applying Theorem 1.13, we need to define a closed, convex, and bounded subset M of PT .

So, let

M = {φ ∈ PT : 0 ≤ φ ≤ K} . (3.24)

where K is positive constant. To simplify notation, we let

m = min
u∈[t−T,t]

e�a(t, u), M = max
u∈[t−T,t]

e�a(t, u). (3.25)
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It is easy to see that for all (t, u) ∈ [0, 2T ]2,

m ≤ k(t, u) ≤M. (3.26)

Then we obtain the existence of a nonnegative periodic solution of (3.1) by considering

the two cases;

1) Q(t, y) ≥ 0, ∀t ∈ [0, T ] , y ∈M.

2) Q(t, y) ≤ 0, ∀t ∈ [0, T ] , y ∈M.

In the case one, we assume for all t ∈ [0, T ], x, y ∈ M, that there exist a positive

constant c1 such that

0 ≤ Q(t, y) ≤ c1y, (3.27)

c1 < 1, (3.28)

0 ≤ −a(t)Qσ(t, y) +G(t, x, y), (3.29)

a(t)H(ϕ(t))− a (t)Qσ (t, y) +G(t, x, y) ≤ K (1− c1)

MηT
. (3.30)

Lemma 3.6 Let A, B given by (3.11), (3.12) respectively, assume (3.27)–(3.30) hold.

Then A,B : M→M.

Proof. Let A defined by (3.12). So, for any ϕ ∈M, we have

0 ≤ (Aϕ) (t) ≤ Q(t, ϕ(t− τ(t)))

+ η

∫ t

t−T
k(t, u) [−a(u)Qσ(u, ϕ(u− τ(u))) +G(u, ϕ(u), ϕ(u− τ(u)))] ∆u

≤ η

∫ t

t−T
M
K (1− c1)

MηT
∆u+ c1K = K,

That is Aϕ ∈M.

Now, let B defined by (3.12). So, for any ϕ ∈M, we have

0 ≤ (Bϕ)(t) ≤ η

∫ t

t−T
M
K (1− c1)

MηT
∆u ≤MηT

K

MηT
= K.

That is Bϕ ∈M.

Theorem 3.3 Suppose the hypothesis of Lemmas 3.4, 3.5 and 3.6 hold. Then equation

(3.1) has a nonnegative T -periodic solution x in the subset M.
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Proof. By Lemma 3.4, A is completely continuous. Also, from Lemma 3.5, the mapping

B is a large contraction. By Lemma 3.6, A,B : M→M. Next, we show that if ϕ, ψ ∈M,
we have 0 ≤ Aψ +Bϕ ≤ K. Let ϕ, ψ ∈M with 0 ≤ ϕ, ψ ≤ K. By (3.27)–(3.30)

(Aψ)(t) + (Bϕ)(t)

= η

∫ t

t−T
k(t, u)a(u)H(ϕ(u))∆u+Q(t, ψ(t− τ(t)))

+ η

∫ t

t−T
k(t, u) [−a(u)Qσ(u, ψ(u− τ(u))) +G(u, ψ(u), ψ(u− τ(u)))] ∆u

≤ η

∫ t

t−T
k(t, u)

K (1− c1)

MηT
∆u+ c1K

≤ η

∫ t

t−T
M
K (1− c1)

MηT
∆u+ c1K = K.

On the other hand,

(Aψ)(t) + (Bϕ)(t) ≥ 0.

Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem are satisfied. Thus there

exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 3.2 this fixed point is a

solution of (3.1) and the proof is complete.

In the case two, we substitute conditions (3.27)–(3.30) with the following conditions

respectively. We assume that there exist a negative constant c2 such that

c2y ≤ Q(t, y) ≤ 0, (3.31)

− c2 < 1, (3.32)

−c2K

MηT
≤ a(t)H(ϕ(t))− a(t)Q(t, y) +G(t, x, y), (3.33)

a(t)H(ϕ(t))− a (t)Q (t, y) +G(t, x, y) ≤ K

MηT
. (3.34)

Theorem 3.4 Suppose (3.31)–(3.34) and the hypothesis of Lemmas 3.3, 3.4 and 3.5 hold.

Then equation (3.1) has a nonnegative T -periodic solution x in the subset M.

Proof. By Lemma 3.3, 3.4, A is completely continuous. Also, from Lemma 3.5, the

mapping B is a large contraction. To see that, it is easy to show as in Lemma 3.6,

A,B : M → M. Next, we show that if ϕ, ψ ∈ M, we have 0 ≤ Aψ + Bϕ ≤ K. Let
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ϕ, ψ ∈M, with 0 ≤ ϕ, ψ ≤ K. By (3.31)– (3.34)

(Aψ) (t) + (Bϕ) (t)

= η

∫ t

t−T
k(t, u)a(u)H(ϕ(u))∆u+Q(t, ψ(t− τ(t)))

+ η

∫ t

t−T
k(t, u) [−a(u)Qσ(u, ψ(u− τ(u))) +G(u, ψ(u), ψ(u− τ(u)))] ∆u

≤ η

∫ t

t−T
k(t, u)

K

MηT
∆u = η

∫ t

t−T
M

K

MηT
∆u = K.

On the other hand,

(Aψ)(t) + (Bϕ) (t) ≥ η

∫ t

t−T
M
−c2K

MηT
∆u+ c2K = 0.

Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem are satisfied. Thus there

exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 3.2 this fixed point is a

solution of (3.1) and the proof is complete.
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In this chapter, we expose the work cited in [30] as follow

M. Gouasmia, A. Ardjouni, A. Djoudi, Study of stability in nonlinear neutral dynamic

equations on time scales using Krasnoselskii–Burton’s fixed point, Memoirs on Differential

Equations and Mathematical Physics, Accepted 2020.

In this chapter, we use the Krasnoselskii-Burton’s fixed point theorem to obtain stabil-

ity results about the zero solution for a nonlinear neutral dynamic equation with variable

delay.

4.1 Introduction

In this chapter, we consider the following nonlinear neutral dynamic equations with vari-

able delay given by

x∆(t) = −a(t)h(xσ(t)) + (Q(t, x(t− τ(t))))∆ +G(t, x(t), x(t− τ(t))), (4.1)

with an assumed initial function

x(t) = ψ(t), t ∈ [m0, 0] ∩ T,

where T is an unbounded above and below time scale and such that 0 ∈ T.

Our purpose here is to use a modification of Krasnoselskii’s fixed point theorem due to

Burton (see [16, Theorem 3]) to show the asymptotic stability and the stability of the zero

solution for equation (4.1). Clearly, the present problem is totally nonlinear so that the
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variation of parameters can not be applied directly. Then, we resort to the idea of adding

and subtracting a linear term. As noted by Burton in [16], the added term destroys a

contraction already present in part of the equation but it replaces it with the so called a

large contraction mapping which is suitable for fixed point theory. During the process we

have to transform (4.1) into an integral equation written as a sum of two mapping; one is

a large contraction and the other is compact. After that, we use a variant of Krasnoselskii

fixed point theorem, to show the asymptotic stability and the stability of the zero for

equation (4.1). In the special case T = R, Mesmouli, Ardjouni and Djoudi [47] show the

zero solution of (4.1) is asymptotically stable by using Krasnoselskii-Burton’s fixed point

theorem. Then, the results presented in this chapter extend the main results in [47].

In this chapter, we give the assumptions as follows that will be used in the main results.

(H1) τ : [0,∞) ∩ T→ T is a positive rd-continuous function, id − τ : [0,∞) ∩ T→ T
is an increasing mapping such that (id− τ) ([0,∞) ∩ T) is closed where id is the identity

function. Moreover, there exists a constants l2 > 0 such that for 0 ≤ t1 < t2

|τ(t2)− τ(t1)| ≤ l2|t2 − t1|.

(H2) ψ : [m0, 0] ∩ T→ R is a rd-continuous function with m0 = −τ (0).

(H3) a : [0,∞) ∩ T → (0,∞) is a bounded rd-continuous function and there exists a

constant l3 > 0 such that for 0 ≤ t1 < t2∣∣∣∣∫ t2

t1

a(u)∆u

∣∣∣∣ ≤ l3|t2 − t1|.

(H4) Q : T× R→ R is a Lipschitz continuous function and Q (t, 0) = 0, that is, for

t1, t2 ≥ 0 and x, y ∈ [−R,R] where R ∈ (0, 1], there exist constants l0, EQ > 0, such that

|Q(t1, x)−Q(t2, y)| ≤ l0 |t1 − t2|+ EQ |x− y| .

Also, Q is a bounded function and satisfies the Caratheodory condition with respect to

L1
∆ ([0,∞) ∩ T), such that

|Q(t, ϕ(t− τ(t)))| ≤ qR(t) ≤ α1

2
R,

where α1 is a positive constant.

(H5) The function G : T× R× R→ R satisfies the Caratheodory condition with re-

spect to L1
∆ ([0,∞) ∩ T), G/a is a bounded function and G (t, 0, 0) = 0, such that for

t ≥ 0,

|G(t, ϕ(t), ϕ(t− τ(t)))| ≤ g√2R(t) ≤ α2a(t)R,

where α2 is a positive constant.

(H6) There exists a constant J > 3, such that

J(α1 + α2) ≤ 1,

4.1. Introduction
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and

(EQ + EQl2) l1 + l0 + 3R

(
α1

2
+ α2 +

2

J

)
l3 < l1,

where l1 is a positive constant.

(H7) h : R → R is continuous and strictly increasing on [−R,R], h (0) = 0, h is

differentiable on (−R,R) with h′(x) ≤ 1 for x ∈ (−R,R).

(H8) For γ > 0 small enough,

[1 + EQ] γ + (EQ + EQl2) l1 + l0 + 3R

(
α1

2
+ α2 +

2

J

)
l3 ≤ l1,

and

[1 + EQ] γe	a(t, 0) +
3R

J
≤ R.

Also,

max {|H(−R)| , |H(R)|} ≤ 2R

J
,

where H(x) = xσ − h(xσ).

(H9) t− τ(t)→∞, e	a(t, 0)→ 0, qR(t)→ 0 and
g√2R (t)

a (t)
→ 0 as t→∞.

4.2 Stability

We begin this section by the following lemma.

Lemma 4.1 x is a solution of equation (4.1) if and only if

x(t) = [ψ(0)−Q(0, ψ(−τ(0)))] e	a(t, 0)

+

∫ t

0

a(s)e	a(t, s)H(x(s))∆s+Q(t, x(t− τ(t)))

+

∫ t

0

e	a(t, s) [−a(s)Qσ(s, x(s− τ(s))) +G(s, x(s), x(s− τ(s)))] ∆s, (4.2)

where

H(x) = xσ − h(xσ). (4.3)

Proof. Let x be a solution of (4.1). Rewrite the equation (4.1) as

(x(t)−Q(t, x(t− τ(t))))∆ + a(t)[xσ(t)−Qσ(t, x(t− τ(t)))]

= a(t) [xσ(t)− h(xσ(t))]− a(t)Qσ(t, x(t− τ(t))) +G(t, x(t), x(t− τ(t))).

4.2. Stability
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Multiply both sides of the above equation by ea(t, 0) and then integrate from 0 to t , we

obtain ∫ t

0

((x(s)−Q(s, x(s− τ(s))))ea(s, 0))∆∆s

=

∫ t

0

a(s)[xσ(s)− h(xσ(s))]ea(s, 0)∆s

+

∫ t

0

[−a(s)Qσ(s, x(s− τ(s))) +G(s, x(s), x(s− τ(s)))]ea(s, 0)∆s.

As a consequence, we arrive at

[x(t)−Q(t, x(t− τ(t)))] ea(t, 0)− ψ(0) +Q(0, ψ(−τ(0)))

=

∫ t

0

a(s)[xσ(s)− h(xσ(s))]ea(s, 0)∆s

+

∫ t

0

[−a(s)Qσ(s, x(s− τ(s))) +G(s, x(s), x(s− τ(s)))]ea(s, 0)∆s.

By dividing both sides of the above equation by ea(t, 0) we obtain

x(t)−Q(t, x(t− τ(t)))− [ψ(0)−Q(0, ψ(−τ(0)))] e	a(t, 0)

=

∫ t

0

a(s)[xσ(s)− h(xσ(s))]e	a(t, s)∆s

+

∫ t

0

[−a(s)Qσ(s, x(s− τ(s))) +G(s, x(s), x(s− τ(s)))]e	a(t, s)∆s. (4.4)

The converse implication is easily obtained and the proof is complete.

From the existence theory, which can be found in [18] or [32], we conclude that for each

rd-continuous initial function ψ ∈ Crd([m0, 0]∩T,R), there exists a rd-continuous solution

x(t, 0, ψ) which satisfies (4.1) on an interval [0, σ)∩T for some σ > 0 and x(t, 0, ψ) = ψ(t),

t ∈ [m0, 0] ∩ T.

To apply Theorem 1.13, we need to define a Banach space χ, a closed bounded convex

subsetM of χ and construct two mappings; one large contraction and the other is compact

operator. So, let ω : [m0,∞) ∩ T → [1,∞) be any strictly increasing and rd-continuous

function with ω(m0) = 1, ω(t) → ∞ as t → ∞. Let (S, |.|ω) be the Banach space of

rd-continuous ϕ : [m0,∞) ∩ T→ R for which

|ϕ|ω = sup
t≥m0

∣∣∣∣ϕ(t)

ω(t)

∣∣∣∣ <∞.
Let R ∈ (0, 1] and define the set

M : = {ϕ ∈ S : ϕ is l1-Lipschitzian, |ϕ(t)| ≤ R, t ∈ [m0,∞) ∩ T
and ϕ(t) = ψ(t) if t ∈ [m0, 0] ∩ T} . (4.5)

4.2. Stability
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Clearly, if {ϕn} is a sequence of l1-Lipschitzian functions converging to some function ϕ,

then

|ϕ(t)− ϕ(s)| = |ϕ(t)− ϕn(t) + ϕn(t)− ϕn(s) + ϕn(s)− ϕ(s)|
≤ |ϕ(t)− ϕn(t)|+ |ϕn(t)− ϕn(s)|+ |ϕn(s)− ϕ(s)|
≤ l1|t− s|,

as n → ∞, which implies ϕ is l1-Lipschitzian. It is clear that M is closed convex and

bounded. For ϕ ∈M and t ≥ 0, we define by (4.2) the mapping P :M→ S as follows

(Pϕ)(t) = [ψ(0)−Q(0, ψ(−τ(0)))] e	a(t, 0)

+

∫ t

0

a(s)e	a(t, s)H(ϕ(s))∆s+Q(t, ϕ(t− τ(t)))

+

∫ t

0

e	a(t, s) [−a(s)Qσ(s, ϕ(s− τ(s))) +G(s, ϕ(s), ϕ(s− τ(s)))] ∆s. (4.6)

Therefore, we express mapping (4.6) as

Pϕ = Aϕ+Bϕ,

where A,B :M→ S are given by

(Aϕ)(t) = Q(t, ϕ(t− τ(t)))

+

∫ t

0

e	a(t, s) [−a(s)Qσ(s, ϕ(s− τ(s))) +G(s, ϕ(s), ϕ(s− τ(s)))] ∆s, (4.7)

and

(Bϕ)(t) = [ψ(0)−Q(0, ψ(−τ(0)))] e	a(t, 0) +

∫ t

0

a(s)e	a(t, s)H(ϕ(s))∆s. (4.8)

By applying Theorem 1.13, we need to prove that P has a fixed point ϕ on the setM,

where x(t, 0, ψ) = ϕ(t) for t ≥ 0 and x(t, 0, ψ) = ψ(t) on [m0, 0] ∩ T, x(t, 0, ψ) satisfies

(4.1) and |x(t, 0, ψ)| ≤ R with R ∈ (0, 1].

By a series of steps we will prove the fulfillment of (i), (ii) and (iii) in Theorem 1.13.

Lemma 4.2 For A defined in (4.7), suppose that (H1)–(H6) hold. Then, A : M→M
and A is continuous and AM is contained in a compact subset of M.

Proof. Let A be defined by (4.7). Then, for any ϕ ∈M, we have

|(Aϕ) (t)| ≤ |Q(t, ϕ(t− τ(t)))|+
∫ t

0

e	a(t, s) [a(s) |Qσ(s, ϕ(s− τ(s)))|

+ |G(s, ϕ(s), ϕ(s− τ(s)))|] ∆s

≤ qR(t) +R

∫ t

0

e	a(t, s)

(
a(s)

qR(s)

R
+
g√2R(s)

R

)
∆s

≤ α1

2
R +

α1

2
R + α2R ≤

R

J
< R.
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That is |(Aϕ) (t)| < R. Second we show that, for any ϕ ∈ M the function Aϕ is l1-

Lipschitzian. Let ϕ ∈M, and let 0 ≤ t1 < t2, then

|(Aϕ) (t2)− (Aϕ) (t1)|
≤ |Q(t2, ϕ(t2 − τ(t2)))−Q(t1, ϕ(t1 − τ(t1)))|

+

∣∣∣∣∫ t2

0

e	a(t2, s) [−a(s)Qσ(s, ϕ(s− τ(s))) +G(s, ϕ(s), ϕ(s− τ(s)))] ∆s

−
∫ t1

0

e	a(t1, s) [−a(s)Qσ(s, ϕ(s− τ(s))) +G(s, ϕ(s), ϕ(s− τ(s)))] ∆s

∣∣∣∣ . (4.9)

By hypotheses (H1), (H3) and (H4), we have

|Q(t2, ϕ(t2 − τ(t2)))−Q(t1, ϕ(t1 − τ(t1)))|
≤ l0|t2 − t1|+ EQl1|(t2 − t1)− (τ(t2)− τ(t1))|
≤ (l0 + EQl1 + EQl1l2)|t2 − t1|, (4.10)

where l1 is the Lipschitz constant of ϕ. In the same way, by (H3)–(H5), we have∣∣∣∣∣∣
t2∫

0

e	a(t2, s) [−a(s)Qσ(s, ϕ(s− τ(s))) +G(s, ϕ(s), ϕ(s− τ(s)))] ∆s

−
t1∫

0

e	a(t1, s) [−a(s)Qσ(s, ϕ(s− τ(s))) +G(s, ϕ(s), ϕ(s− τ(s)))] ∆s

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
t1∫

0

[−a(s)Qσ(s, ϕ(s− τ(s))) +G(s, ϕ(s), ϕ(s− τ(s)))] ∆s

×e	a(t1, s) (e	a(t2, t1)− 1) ∆s|

+

∣∣∣∣∣∣
t2∫
t1

e	a(t2, s) [−a(s)Qσ(s, ϕ(s− τ(s))) +G(s, ϕ(s), ϕ(s− τ(s)))] ∆s

∣∣∣∣∣∣
≤
(α1

2
+ α2

)
R |e	a(t2, t1)− 1|

∫ t1

0

a(s)e	a(t1, s)∆s

+

∫ t2

t1

e	a(t2, s)
(
a(s)qR(s) + g√2R(s)

)
∆s

≤
(α1

2
+ α2

)
R

∫ t2

t1

a(s)∆s

+

∫ t2

t1

a(s)e	a(t2, s)

(∫ s

t1

(
a(r)qR(r) + g√2R(r)

)
∆r

)∆

∆s,
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so, ∣∣∣∣∣∣
t2∫

0

e	a(t2, s) [−a(s)Qσ(s, ϕ(s− τ(s))) +G(s, ϕ(s), ϕ(s− τ(s)))] ∆s

−
t1∫

0

e	a(t1, s) [−a(s)Qσ(s, ϕ(s− τ(s))) +G(s, ϕ(s), ϕ(s− τ(s)))] ∆s

∣∣∣∣∣∣
≤
(α1

2
+ α2

)
R

∫ t2

t1

a(s)∆s+

[
e	a(t2, s)

∫ s

t1

(
a(r)qR(r) + g√2R(r)

)
∆r

]t2
t1

+

∫ t2

t1

a(s)e	a(t2, s)

∫ s

t1

(
a(r)qR(r) + g√2R(r)

)
∆r∆s

≤
(α1

2
+ α2

)
R

∫ t2

t1

a(s)∆s

+

∫ t2

t1

(
a(s)qR(s) + g√2R(s)

)
∆s

(
1 +

∫ t2

t1

a(s)e	a(t2, s)∆s

)
≤
(α1

2
+ α2

)
R

∫ t2

t1

a(s)∆s+ 2

∫ t2

t1

(
a(s)qR(s) + g√2R(s)

)
∆s

≤
(α1

2
+ α2

)
R

∫ t2

t1

a(s)∆s+ 2
(α1

2
+ α2

)
R

∫ t2

t1

a(s)∆s

≤ 3R
(α1

2
+ α2

)
l3 |t2 − t1| . (4.11)

Thus, by substituting (4.10) and (4.11) in (4.9), we obtain

|(Aϕ) (t2)− (Aϕ) (t1)|

≤ (l0 + EQl1 + EQl1l2)|t2 − t1|+ 3R
(α1

2
+ α2

)
l3 |t2 − t1|

≤ l1 |t2 − t1| .

This shows that Aϕ is l1-Lipschitzian if ϕ is. This completes the proof of A :M→M.

Since Aϕ is l1-Lipschitzian, then AM is equicontinuous, which implies that the set

AM resides in a compact set in the space (S, |.|ω).
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Now, we show that A is continuous in the weighted norm, let ϕn ∈ M where n is a

positive integer such that ϕn → ϕ as n→∞. Then∣∣∣∣(Aϕn) (t)− (Aϕ) (t)

ω(t)

∣∣∣∣
≤ |Q(t, ϕn(t− τ(t)))−Q(t, ϕ(t− τ(t)))|ω

+

t∫
0

a(s)e	a(t, s) |Qσ(s, ϕn(s− τ(s)))−Qσ(s, ϕ(s− τ(s)))|ω ∆s

+

t∫
0

e	a(t, s) |G(s, ϕn(s), ϕn(s− τ(s)))−G(s, ϕ(s), ϕ(s− τ(s)))|ω ∆s.

By the dominated convergence theorem, lim
n→∞

|(Aϕn)(t)− (Aϕ)(t)|ω = 0. Then A is con-

tinuous. This completes the proof of A :M→M is continuous and AM is contained in

a compact subset of M.

Now, we state an important result implying that the mapping H given by (4.3) is a

large contraction on the set M. This result was already obtained in [1, Theorem 3.4].

Theorem 4.1 Let h : R → R be a function satisfying (H7). Then the mapping H in

(4.3) is a large contraction on the set M.

The relations of (H8) will be used below in Lemma 4.3 and Theorem 4.2 to show that

if ε = R and if ‖ψ‖ < γ, then the solutions satisfies |x(t, 0, ψ)| < ε.

Lemma 4.3 Let B be defined by (4.8). Suppose that (H1)–(H3), (H7) and (H8) hold.

Then B :M→M and B is a large contraction.

Proof. Let B be defined by (4.8). Obviously, B is continuous with the weighted norm.

Let ϕ ∈M,

|(Bϕ) (t)| ≤ |ψ(0)−Q(0, ψ(−τ(0)))| e	a(t, 0) +

∫ t

0

a(s)e	a(t, s) |H(ϕ(s))|∆s

≤ [1 + EQ] γe	a(t, 0) +

∫ t

0

a(s)e	a(t, s) max {|H(−R)| , |H(R)|}∆s ≤ R,

and we use a method like in Lemma 4.2, we deduce that, for any ϕ ∈M the function Bϕ

is l1-Lipschitzian, which implies B :M→M.

By Theorem 4.1, H is large contraction onM, then for any ϕ, φ ∈M, with ϕ 6= φ and

for any ε > 0, from the proof of that Theorem, we have found a δ < 1, such that∣∣∣∣Bϕ(t)−Bφ(t)

ω(t)

∣∣∣∣ ≤ ∫ t

0

a(s)e	a(t, s) |H(ϕ(s))−H(φ(s))|ω ∆s

≤ δ |ϕ− φ|ω .

The proof is complete.

4.2. Stability
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Theorem 4.2 Assume that (H1)–(H8) hold. Then the zero solution of (4.1) is stable.

Proof. By Lemmas 4.2 and 4.4, A : M →M is continuous and AM is contained in a

compact set. Also, from Lemma 4.3, the mapping B : M → M is a large contraction.

Firstly, we show that if ϕ, φ ∈ M, we have ‖Aϕ+Bφ‖ ≤ R. Let ϕ, φ ∈ M with

‖ϕ‖ , ‖φ‖ ≤ R, then

‖Aϕ+Bφ‖ ≤ (1 + EQ) γe	a(t, 0) + (α1 + α2)R +
2R

J

≤ (1 + EQ)γe	a(t, 0) +
R

J
+

2R

J
≤ R.

Secondly, we prove that, for any ϕ, φ ∈ M the function Aϕ + Bφ is l1-Lipschitzian. Let

ϕ, φ ∈M, and let 0 ≤ t1 < t2, then

|(Aϕ+Bφ) (t2)− (Aϕ+Bφ) (t1)|

≤
(

[1 + EQ] γ + (EQ + EQl2) l1 + l0 + 3R

(
α1

2
+ α2 +

2

J

)
l3

)
|t2 − t1|

≤ l1|t2 − t1|.

Clearly, all the hypotheses of the Krasnoselskii-Burton theorem are satisfied. Thus there

exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 4.1 this fixed point is a

solution of (4.1). Hence the zero solution of (4.1) is stable.

Remark 4.1 When T = R, Theorem 4.2 reduces to Theorem 4 of [47]. Therefore,

Theorem 4.2 is a generalization of Theorem 4 of [47].

4.3 Asymptotic stability

Now, for the asymptotic stability, define M0 by

M0 := {ϕ ∈ S : ϕ is l1-Lipschitzian, |ϕ(t)| ≤ R, t ∈ [m0,∞) ∩ T,
ϕ(t) = ψ(t) if t ∈ [m0, 0] ∩ T and |ϕ(t)| → 0 as t→∞} . (4.12)

All of the calculations in the proof of Theorem 4.2 hold with ω(t) = 1 when |.|ω is replaced

by the supremum norm ‖.‖.

Lemma 4.4 Let (H1)–(H6) and (H9) hold. Then, the operator A mapsM into a compact

subset of M.

Proof. First, we deduce by the Lemma 4.2 that AM is equicontinuous. Next, we notice

that for arbitrary ϕ ∈M we have

|(Aϕ) (t)| ≤ qR(t) +

∫ t

0

e	a(t, s)a(s)

(
qR(s) +

g√2R (s)

a (s)

)
∆s := q(t).

4.3. Asymptotic stability
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We see that q(t)→ 0 as t→∞ which implies that the set AM resides in a compact set

in the space (S, ‖.‖) by Theorem 1.4.

Theorem 4.3 Assume that (H1)–(H9) hold. Then the zero solution of (4.1) is asymp-

totically stable.

Proof. Note that, all of the steps in the proof of Theorem 4.2 hold with ω(t) = 1 when

|.|ω is replaced by the supremum norm ‖.‖. It is sufficient to show, for ϕ ∈ M0 then

Aϕ→ 0 and Bϕ→ 0. Let ϕ ∈M0 be fixed, we will prove that |(Aϕ) (t)| → 0 as t→∞,

as above we have

|(Aϕ) (t)| ≤ |Q(t, ϕ(t− τ(t)))|

+

∫ t

0

e	a(t, s) [a(s) |Qσ(s, ϕ(s− τ(s)))|+ |G(s, ϕ(s), ϕ(s− τ(s)))|] ∆s.

First, we have

|Q(t, ϕ(t− τ(t)))| ≤ qR (t)→ 0 as t→∞,

Second, let ε > 0 be given. Find T such that |ϕ(t − τ(t))|, |ϕ(t)| < ε , for t ≥ T . Then

we have∫ t

0

e	a(t, s) [a(s) |Qσ(s, ϕ(s− τ(s)))|+ |G(s, ϕ(s), ϕ(s− τ(s)))|] ∆s

= e	a(t, T )

∫ T

0

e	a(T, s) [a(s) |Qσ(s, ϕ(s− τ(s)))|+ |G(s, ϕ(s), ϕ(s− τ(s)))|] ∆s

+

∫ t

T

e	a(t, s) [a(s) |Qσ(s, ϕ(s− τ(s)))|+ |G(s, ϕ(s), ϕ(s− τ(s)))|] ∆s

≤ e	a(t, T )
(α1

2
+ α2

)
R +

(α1

2
+ α2

)
ε.

By (H9) the term e	a(t, T )
(
α1

2
+ α2

)
R is arbitrarily small, as t → ∞, In the same way,

we obtain Bϕ→ 0. Then, by the Krasnoselskii-Burton theorem, there exists a fixed point

z ∈ M0 such that z = Az + Bz. By Lemma 4.1 this fixed point is a solution of (4.1).

Hence the zero solution of (4.1) is asymptotically stable.This completes the proof.

Remark 4.2 1) When T = R, Theorem 4.3 reduces to Theorem 5 of [47]. Therefore,

Theorem 4.3 is a generalization of Theorem 5 of [47].

2) The sufficient conditions (H1)–(H9) of Theorem 4.3 are essentially for applying

Theorems 1.13 and 1.4.

4.3. Asymptotic stability



Chapter 5
Study of asymptotic behavior of solutions of

neutral mixed type dynamic equations on a

time scale
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behavior, time scales.

In this chapter, we expose the work cited in [29] as follow

M. Gouasmia, A. Ardjouni and A. Djoudi, Study of asymptotic behavior solution of

neutral mixed type dynamic equations on a time scale, Mathematics in Engineering,

Science and Aerospace MESA 10(2) (2019), 291–301.

The objective of this work is to study the asymptotic behavior of solutions of a neutral

mixed type dynamic equation on a time scale.

5.1 Introduction

Let T be a time scale which is unbounded above and below and such that t0 ∈ T. In this

work, we consider the mixed type neutral dynamic equation on time scale of the from:

x∆ (t) + a (t)x∆̃ (τ (t)) +
k∑
i=1

bi (t)x (τi (t)) +
l∑

j=1

cj (t)x (rj (t)) = 0, (5.1)

with the initial condition

x(t) = θ(t) for t ∈ [τ0, t0] ∩ T, (5.2)

where θ ∈ Crd([τ0, t0] ∩ T,R) and

τ0 = inf{τi(s) : s ≥ t0, i = 1, ...k}.
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Also, a, bi and cj are rd-continuous functions and τ , τi and rj are non-negative rd-

continuous functions such that

τ (t) → ∞ as t→∞, τ (t) ≥ t, t ≥ t0

τi (t) → ∞ as t→∞, i = 1, ..., k, τi (t) ≤ t, t ≥ t0.

rj (t) → ∞ as t→∞, j = 1, ..., l, rj (t) ≥ t, t ≥ t0.

In order for the functions x(τ(t)), x(τi(t)) and x(rj(t)) to be well-defined and rd-continuous

over [t0,∞)∩T, we assume that τ, τi, rj : [t0,∞)∩T→ T are increasing mappings such that

τ ([t0,∞) ∩ T), τi ([t0,∞) ∩ T) and rj ([t0,∞) ∩ T) are closed. To show the asymptotic

behavior of solutions of (5.1), we transform (5.1) into an integral equation and then use

the contraction mapping principle. Further, we will establish necessary and sufficient

conditions for all solutions of (5.1) to converge to zero. In the special case T = R, Bicer

[24] show the asymptotic behavior of solutions of (5.1) by using the fixed point theorem.

Then, the results obtained here extend the work of Bicer [24].

5.2 Asymptotic behavior of solutions

Theorem 5.1 Let a, bi and cj non-positive functions. Assume that the following inequal-

ity has a nonnegative solution λ ∈ R+

− a (t)λ (τ (t)) eλ (τ (t) , t)−
k∑
i=1

bi (t) e	λ (t, τi (t))−
l∑

j=1

cj (t) eλ (rj (t) , t) ≤ λ (t) , (5.3)

for t ≥ t0. Then (5.1) has a positive solution.

Proof. Let λ0 ∈ R+ be a nonnegative solution of (5.3). Set

λn (t) =


λn−1 (t) , if τ0 ≤ t ≤ t0,

−a (t)λn−1 (τ (t)) eλn−1 (τ (t) , t)−
∑k

i=1 bi (t) e	λn−1 (t, τi (t))

−
∑l

j=1 cj (t) eλn−1 (rj (t) , t) , t ≥ t0,

for n = 1, 2, .... Then, by (5.3), we get

λ0 (t) ≥ −a (t)λ0 (τ (t)) eλ0 (τ (t) , t)−
k∑
i=1

bi (t) e	λ0 (t, τi (t))

−
l∑

j=1

cj (t) eλ0 (rj (t) , t) = λ1 (t) .

Then, we obtain λ0(t) ≥ λ1(t) ≥ ... ≥ λn(t) ≥ 0. So, there exists a pointwise limit

λ(t) = lim
n→∞

λn(t). So, from the Lebesgue convergence theorem, we obtain

λ (t) = −a (t)λ (τ (t)) eλ (τ (t) , t)−
k∑
i=1

bi (t) e	λ (t, τi (t))−
l∑

j=1

cj (t) eλ (rj (t) , t) .
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Hence,

x (t) =

{
λ (t) , if ϕ0 ≤ t ≤ t0,

λ (t0) eλ (t, t0) , t ≥ t0

is a positive solution of (5.1).

Theorem 5.2 Let τ∆(t) 6= 0, a
τ∆ , bi and cj be non-positive functions and let

[
a(t)
τ∆(t)

]∆

> 0,
a(t0)
τ∆(t0)

6= −∞. If ∫ ∞
t0

l∑
j=1

cj (u) ∆u = −∞,

and x is a eventually positive solution of (5.1), then x(t)→∞ as t→∞.

Proof. Assume that x(t) > 0 for t ≥ T1. Choose T ≥ T1 such that T1 ≤ inf{τi(s) : s ≥
T, i = 1, ..., k}. Let m(t) = a(t)

τ∆(t)
. Then x∆(t) + a(t)x∆̃(τ(t)) ≥ 0, for t ≥ T , and

x∆ (t) + a (t)x∆̃ (τ (t)) = −
k∑
i=1

bi (t)x (τi (t))−
l∑

j=1

cj (t)x (rj (t)) ,

that is

[x (t) +m(t)x (τ (t))]∆ −m∆ (t)xσ (τ (t)) ≥ −
l∑

j=1

cj (t)x (rj (t)) .

From this, we can write

[x (t) +m(t)x (τ (t))]∆ ≥ −
l∑

j=1

cj (t)x (rj (t)) ,

[x (t) +m(t)x (τ (t))]∆ ≥ −x (T )
l∑

j=1

cj (t) ,

which implies

x (t) +m(t)x (τ (t)) ≥ m(t0)x (τ (t0))− x (T )

∫ t

t0

l∑
j=1

cj (u) ∆u.

So, we get

x (t) ≥ m(t0)x (τ (t0))− x (T )

∫ t

t0

l∑
j=1

cj (u) ∆u.

Then x(t)→∞ as t→∞.

5.2. Asymptotic behavior of solutions



Chapter 5. Study of asymptotic behavior of solutions of neutral mixed type
dynamic equations on a time scale 59

Theorem 5.3 Let a(t)
τ∆(t)

> 0, bi and cj be non-negative functions and let
[
a(t)
τ∆(t)

]∆

< 0,
a(t0)
τ∆(t0)

6=∞. If ∫ ∞
t0

l∑
j=1

cj (u) ∆u =∞,

and x is a eventually positive solution of (5.1), then x(t)→ 0 as t→∞.

Proof. Let m(t) = a(t)
τ∆(t)

. For t ≥ T1, since x(t) > 0 we choose T ≥ T1 such that

T1 ≤ inf{τi(s) : s ≥ T, i = 1, ..., k}. Then x∆(t) + a(t)x∆̃(τ(t)) ≤ 0, for t ≥ T , and

x∆ (t) + a (t)x∆̃ (τ (t)) ≤ −
l∑

j=1

cj (t)x (rj (t)) ,

that is

[x (t) +m(t)x (τ (t))]∆ −m∆ (t)xσ (τ (t)) ≤ −
l∑

j=1

cj (t)x (rj (t)) .

From this, we can write

[x (t) +m(t)x (τ (t))]∆ ≤ −
l∑

j=1

cj (t)x (rj (t)) ≤ −x (T )
l∑

j=1

cj (t) ,

which implies

x (t) +m(t)x (τ (t)) ≤ m(t0)x (τ (t0))− x (T )

∫ t

t0

l∑
j=1

cj (u) ∆u.

So, we get

x (t) ≤ m(t0)x (τ (t0))− x (T )

∫ t

t0

l∑
j=1

cj (u) ∆u.

Since x(t) > 0, we get a contradiction.Then x(t)→ 0 as t→∞.

Now, we investigate the asymptotic behavior of (5.1), free of the sign of the coefficients.

During the process of inverting (5.1), an integration by parts will have to performed on

the term involving x∆̃(τ(t)). Thus, we require that

τ∆ (t) 6= 0, ∀t ∈ T. (5.4)

Lemma 5.1 Suppose (5.4) holds. A function x is a solution of equation (5.1)–(5.2) if

and only if

x (t) =

(
x (t0) +

a (t0)

τ∆ (t0)
x (τ (t0))

)
e	B (t, t0)− a (t)

τ∆ (t)
x(τ (t))

+

∫ t

t0

h (u)x (τ (u)) e	B (t, u) ∆u+

∫ t

t0

e	B (t, u)B (u)xσ (u) ∆u

−
k∑
i=1

∫ t

t0

e	B (t, u) bi (u)x (τi (u)) ∆u−
l∑

j=1

∫ t

t0

e	B (t, u) cj (u)x (rj (u)) ∆u, (5.5)
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for t ≥ t0, where

B (u) =
k∑
i=1

bi (u) +
l∑

j=1

cj (u) ,

and

h (u) =
τ∆ (u)

(
aσ (u)B (u) + a∆ (u)

)
− τ∆∆ (u) a (u)

τ∆ (u) τ∆ (σ(u))
.

Proof. Since

x (rj (t)) = xσ (t) +

∫ rj(t)

σ(t)

x∆ (u) ∆u,

x (τi (t)) = xσ (t)−
∫ σ(t)

τi(t)

x∆ (u) ∆u,

we can rewrite (5.1) as

x∆ (t) +B (t)xσ (t) = −a (t)x∆̃ (τ (t)) +
k∑
i=1

bi (t)

∫ σ(t)

τi(t)

x∆ (u) ∆u

−
l∑

j=1

cj (t)

∫ rj(t)

σ(t)

x∆ (u) ∆u. (5.6)

Multiplying both sides of (5.6) with eB (t, t0), and integrating from t0 to t, we obtain∫ t

t0

[x (u) eB (u, t0)]∆ ∆u

=

∫ t

t0

−a (u)x∆̃ (τ (u)) eB (u, t0) ∆u

+

∫ t

t0

eB (u, t0)

(
k∑
i=1

bi (u)

∫ σ(u)

τi(u)

x∆ (s) ∆s−
l∑

j=1

cj (u)

∫ rj(u)

σ(u)

x∆ (s) ∆s

)
∆u.

As a consequence, we arrive at

x (t) = x (t0) e	B (t, t0)−
∫ t

t0

a (u)x∆̃ (τ (u)) e	B (t, u) ∆u

+

∫ t

t0

e	B (t, u)

(
k∑
i=1

bi (u)

∫ σ(u)

τi(u)

x∆ (s) ∆s−
l∑

j=1

cj (u)

∫ rj(u)

σ(u)

x∆ (s) ∆s

)
∆u, (5.7)

Rewrite∫ t

t0

a (u)x∆̃ (τ (u)) e	B (t, u) ∆u =

∫ t

t0

a (u)x∆̃ (τ (u))
τ∆(u)

τ∆(u)
e	B (t, u) ∆u.
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By performing an integration by parts on the above integral we get∫ t

t0

a (u)x∆̃ (τ (u)) e	B (t, u) ∆u =
a (t)

τ∆ (t)
x(τ (t))− a (t0)

τ∆ (t0)
x(τ (t0))e	B (t, t0)

−
∫ t

t0

h (u)x (τ (u)) e	B (t, u) ∆u. (5.8)

Therefore, we obtain (5.5) by substituting (5.8) in (5.7). Since each step is reversible, the

converse follows easily. This completes the proof.

Theorem 5.4 Assume that B ∈ R+, (5.4) and the following conditions hold∫ t

t0

1

µ (s)
log (1 + µ (s)B (s)) ∆s→∞ as t→∞, (5.9)

and ∣∣∣∣ a (t)

τ∆ (t)

∣∣∣∣+

∫ t

t0

|h (u)| e	B (t, u) ∆u+

∫ t

t0

e	B (t, u) |B (u)|∆u

+
k∑
i=1

∫ t

t0

e	B (t, u) |bi (u)|∆u+
l∑

j=1

∫ t

t0

e	B (t, u) |cj (u)|∆u ≤ β < 1. (5.10)

Then for each initial condition (5.2), every solution of (5.1) converges to zero.

Proof. Let Crd([τ0,∞) ∩ T) is the space of rd-continuous functions on [τ0,∞) ∩ T and

M = {x ∈ Crd([τ0,∞) ∩ T) : x(t)→ 0, as t→∞},

be a closed subspace of Crd([τ0,∞)∩T). Then (M, ‖.‖) is a Banach space with the norm

‖x‖ = sup
t≥τ0
|x (t)| .

Define the operator φ : M →M by

(φx) (t) =



θ (t) , if τ0 ≤ t ≤ t0,(
x (t0) + a(t0)

τ∆(t0)
x (τ (t0))

)
e	B (t, t0)− a(t)

τ∆(t)
x(τ (t))

+
∫ t
t0
h (u)x (τ (u)) e	B (t, u) ∆u+

∫ t
t0
e	B (t, u)B (u)xσ (u) ∆u

−
k∑
i=1

∫ t
t0
e	B (t, u) bi (u)x (τi (u)) ∆u

−
l∑

j=1

∫ t
t0
e	B (t, u) cj (u)x (rj (u)) ∆u, t ≥ t0.

(5.11)
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It is clear that for x ∈ M , φx is rd-continuous. Now, we will show that, (φx) → 0 as

t→∞. Actually, for x ∈M , we have

|(φx) (t)| ≤
∣∣∣∣x (t0) +

a (t0)

τ∆ (t0)
x (τ (t0))

∣∣∣∣ e	B (t, t0) +

∣∣∣∣ a (t)

τ∆ (t)

∣∣∣∣ |x (τ (t))|

+

∫ t

t0

|h (u)| |x (τ (u))| e	B (t, u) ∆u

+

∫ t

t0

e	B (t, u) |B (u)| |xσ (u)|∆u

+
k∑
i=1

∫ t

t0

|bi (u)| |x (τi (u))| e	B (t, u) ∆u

+
l∑

j=1

∫ t

t0

|cj (u)| |x (rj (u))| e	B (t, u) ∆u. (5.12)

Note that by (5.9),∣∣∣∣x (t0) +
a (t0)

τ∆ (t0)
x (τ (t0))

∣∣∣∣ e	B (t, t0)→ 0 as t→∞.

Moreover, since x(t)→ 0 as t→∞, for each ε > 0, there exists T1 > t0 such that u ≥ T1

implies that |x(τ(u))| < ε
2
. Thus, for t ≥ T1, the third term I3 in (5.11) satisfies

I3 =

∫ t

t0

h (u)x (τ (u)) e	B (t, u) ∆u

≤
∫ T1

t0

e	B (t, u) |h (u)| |x (τ (u))|∆u+

∫ t

T1

e	B (t, u) |h (u)| |x (τ (u))|∆u

≤
∫ T1

t0

e	B (t, u) |h (u)| |x (τ (u))|∆u+
ε

2

∫ t

T1

e	B (t, u) |h (u)|∆u

≤ ε

2
+ β

ε

2
≤ ε.

Thus I3 → 0 as t → ∞. By a similar technique, we can prove that the rest of terms in

(5.11) tend zero as t → ∞. Therefore (φx)(t) → 0 as t → ∞. Now, we will show that φ

is a contraction. Let x, y be two continuous function on [t0,∞) ∩ T and satisfying same
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initial condition (5.2). Then for t ≥ t0, we get

|(φx) (t)− (φy) (t)|

≤
∣∣∣∣ a (t)

τ∆ (t)

∣∣∣∣ |x (τ (t))− y (τ (t))|+
∫ t

t0

|h (u)| |x (τ (u))− y (τ (u))| e	B (t, u) ∆u

+

∫ t

t0

e	B (t, u) |xσ (u)− yσ (u)| |B (u)|∆u

+
k∑
i=1

∫ t

t0

|bi (u)| |x (τi (u))− y (τi (u))| e	B (t, u) ∆u

+
l∑

j=1

∫ t

t0

|cj (u)| |x (rj (u))− y (rj (u))| e	B (t, u) ∆u

≤ β ‖x− y‖ .

Thus, by the contraction mapping principle (see [24]), the operator φ has a unique fixed

point in M , which solves (5.1) and tends to zero as t→∞. This completes the proof.

Theorem 5.5 Suppose that B ∈ R+ (5.4) and(5.10) holds, and

lim
t→∞

inf

∫ t

t0

1

µ (s)
log (1 + µ (s)B (s)) ∆s > −∞. (5.13)

If all solutions of (5.1) converge to zero, then (5.9) holds.

Proof. Suppose that (5.9) does not hold. That is,

lim
t→∞

inf

∫ t

t0

1

µ (s)
log (1 + µ (s)B (s)) ∆s = δ <∞. (5.14)

So, from (5.13), we can write δ > −∞. Then, there exists a sequence {tn} approaching

∞, such that ∫ tn

t0

1

µ (s)
log (1 + µ (s)B (s)) ∆s→ δ, as n→∞.

For x(t0) 6= 0, let x be a solution. Then,

lim
n→∞

(
x (t0) +

a (t0)

τ∆ (t0)
x (τ (t0))

)
e	B (tn, t0) =

(
x (t0) +

a (t0)

τ∆ (t0)
x (τ (t0))

)
e−δ 6= 0.

(5.15)
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From Lemma 5.1, x(tn) satisfies (5.5). On the other hand, we know that

lim
n→∞

[∫ tn

t0

h (u)x (τ (u)) e	B (tn, u) ∆u− a (tn)

τ∆ (tn)
x(τ (tn))

+

∫ tn

t0

e	B (tn, u)B (u)xσ (u) ∆u

−
k∑
i=1

∫ tn

t0

e	B (tn, u) bi (u)x (τi (u)) ∆u

−
l∑

j=1

∫ tn

t0

e	B (tn, u) cj (u)x (rj (u)) ∆u

]
= 0. (5.16)

Since all solutions tend zero, from (5.5), (5.15) and (5.16), we get

lim
n→∞

x (tn) =

(
x (t0) +

a (t0)

τ∆ (t0)
x (τ (t0))

)
e−δ 6= 0,

which contradicts all solutions of (5.1) converge to zero. The proof is completed.
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Conclusion and perspectives

The works presented in this thesis study the existence, periodicity, positivity and stability

of solutions of neutral dynamic equations on the time scale. The fixed point technique

used for this type of equations which shows in this thesis are efficiency.

At the beginning, we gave the preliminary notions useful for a good understanding of

this work. Then we have established the conditions of the existence results of periodic

and non-negative solutions and their stability for nonlinear dynamic equations of neutral

type on time scale using Krasnoselskii-Burton’s theorem. Finally, we have found the

conditions the asymptotic behavior of solutions of mixed-type dynamic equations on a

time scale using the contraction principle.

As a future work on the presented results in this thesis, we can mention a few points

that can be developed and improved

• It can make change in space from either in the type of delay or add stochastic term.

• It can study dynamic equations with a delay superior than two orders, extend to

dynamical equations with distributed delay or dynamic equations with fractional

delay.

• It can also do numerical study.
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