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Abstact

In this dissertation, we study the well-posedness and the stability of the so-
lutions of some evolution problems in the presence of delay, and under assump-
tions on initial and boundary conditions. In this regard, we study four problems
and establish an exponential decay result under some suitable assumptions. The
first and second problems relate to a laminated beam system, while the third
and fourth problems relate to a flexible structure system.

We demonstrate the existence of the solution by the semi-group method, then
we demonstrate the exponential stability by the disturbed energy method by an
adequate construction of the Lyapunov functional.

Key words: Evolution problems, laminated beam system, flexible structure

system, delay term, distributed delay term, well-posedness, exponential decay.
Résumé

Dans cette these, nous étudions 'existence, ’'unicité et la stabilité des solu-
tions de quelques problemes d’évolution en présence de retard, et sous des hy-
pothéses sur les données initiales et les conditions aux limites. A cet égard, nous
étudions quatre problémes et nous établissons un résultat de décroissance ex-
ponentielle sous certaines hypotheses appropriées. Les premier et second prob-
lemes concernent un systéeme de poutre feuilletée, tandis que les troisieme et
quatrieme problemes concernent un systeme de structure flexible.

Nous démontrons I'existence de la solution par la méthode de semi-groupe, en-
suite nous démontrons la stabilité exponentielle par la méthode de I’énergie
perturbée par une construction adéquate de la fonctionnelle de Lyapunov.

Mots clés: Problemes d’évolution, systéme de poutres laminées, systeme
de structure flexible, terme de retard, terme de retard distribué, l’existence,

I'unicité, décroissance exponentielle.
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Introduction

Many problems in physics can be modeled by partial differential equations
(PDEs) which generally depend on time (evolution problems). The study of the
existence and stability of development problems has been the subject of many
recent works. In this thesis we were interested in the study of the global exis-
tence and the stabilization of some evolution equations. The purpose of stabi-
lization is to attenuate the vibrations by feedback, thus it consists in guarantee-
ing the decrease of energy of the solutions to zero in a more or less fast way by a
mechanism of dissipation.

More precisely, the problem of stabilization consists in determining the asymp-
totic behaviour of the energy by E(t), to study its limits in order to determine if
this limit is null or not and if this limit is null, to give an estimate of the decay

rate of the energy to zero. There are several types of stabilization, of which:
 Strong stabilization: E(t) — 0, as t — oo,
* polynomial stabilization: E(t) < at P, ¥t>0, (a,p>0),
* exponential (uniform) stabilization: E(t) < ae P!, Vt>0, (a,f > 0).

We use the multiplier method to establish the desired stability results of the
systems. Multiplier method relies mostly on the construction of an appropriate
Lyapunov functional L equivalent to the energy of the solution E. By equiva-

lence L ~ E, we mean

aE(t) < L(t) < BE(t), Yt >0, (1)

for two positive constants a and . To prove the exponential stability, we show

that L satisfies
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L'(t)<yL(t), Yt>0, (2)

for some y > 0. A simple integration of (2) over (0, t) together with (1) gives the
desired exponential stability result.

Time delays arise in many applications of most phenomena naturally mod-
ulate by partial differential equations problems, where the rate of change in a
state is not only determined by the present states but also by the past states.
The delay differential equations (DDEs) are differential equations in which the
derivatives of some unknown functions at present time depend on the values
of the functions at previous times. Mathematically, a simple delay differential
equation for x(t) € IR” takes the form

$x(t) = f(t,x),

where x; = {x(7), T <t} represents the trajectory of the solution in the past. The
functional operator f takes a time input and a continuous function x; and gen-

erates a real number —x(t) as its output. Examples of such equation include:

dt

* discrete/constant delay %x(t) =f(t,x(t—1)),

* time-varying delay ; x(t) = f (t,x(t—17(t))),

* distributed delay ix ( fo x(t—s) ds)

where 7 is the delay in time.

In recent years, the PDEs with time delay effects have become an active area
of research. Many authors have focused on this problem (see [9} (10} 23} 44, 45|
52,153} 154])). The presence of delay may be a source of instability. It may turn
a well-behaved system into a wild one. In [9] for example, R. Datko, J. Lagnese
and M. P. Polis proved that a small delay may destabilize a system. In [45],
Nicaise and Pignotti considered wave equation with linear frictional damping
and internal distributed delay

3]

“au o) | (o) r-9)ds =0, in Qx (0,09),

1
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with initial and Dirichlet-Neumann boundary conditions and a is a function
chosen in an appropriate space. They established exponential stability of the
solution under the assumption that

T2
||a||o<,f 1> ()ds < .
T

1
Regarding the similar result concerning boundary distributed delay see [4] 42,
43]]. Moreover, Nicaise, Pignotti and Valein [46] replaced the constant delay
term in the boundary condition of [44] by a time-varying delay term and ob-
tained an exponential decay result under an appropriate assumption on the
weights of the damping and delay. Moreover, Kafini et al. [27]] examined a
coupling Timoshenko-thermoelasticity of type III system with time delay and
established exponential and polynomial stability results depending on the wave
propagation speeds. For other related results, we refer the reader to [8}, (11}, 15,
26}, 130].

The aim of this thesis is to investigate the well-posedness and asymptotic be-
havior of solutions of some evolution problems in the presence of delay, and
under assumptions on initial data and boundary conditions. In this regard,
we study four problems and establish an exponential decay result for the one-
dimensional case under some suitable assumptions. The first and second prob-
lems relate to a laminated beam system, while the third and fourth problems
relate to a flexible structure system.

A laminated beam system

Laminated beam, which is a relevant research subject due to the high ap-
plicability of such materials in the industry, was firstly introduced by Hansen
and Spies [24, [25]. Hansen [24] proposed a model of laminated beam based
on the Timoshenko system which is one of particular interest. In [25], Hansen
and Spies derived three mathematical models for two-layered beams with struc-
tural damping due to the interfacial slip. Assume that each individual beam (of

length 1) satisfies the Timoshenko system [50]],

{ PP+ G —¢x), =0,
Iplzbtt +G (Y —@y) —Dihy, =0,
where t denotes the time variable and x is the space variable along the beam

of length L, in its equilibrium configuration, ¢ represents the transverse dis-
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placement, 1 is the rotation angle produced by the beam deflection, and the
parameters p, G, Ip, D mean respectively, mass density, shear stiffness, moment
of mass inertia and flexural rigidity. Then, as shown in [24]} [25]], the laminated

beam featuring longitudinal slip can be modeled through the system

PP+ G(P—@y), =0,
I, Bw—-v), -G - ) -DBw-1),, =0, (3)
Ipwtt +G (- @)+ %Vw_’_ %ﬁwt —Dwy, =0,

where (x,t) € (0,1) x (0, +00), with w accounts for the interfacial slip, y > 0 rep-
resents the adhesive stiffness and > 0 is a damping parameter.

In recent years, an increasing interest has been developed to determine the
asymptotic behavior of the solution of several laminated beam problems, we
refer the reader to [5, 29| 31), 132, 33}, /48], 49, [51]] and the references therein. In
[48], Raposo considered system (3) with two frictional dampings of the form

P1P1+ G —@x) + ki@ =0,
p2(3w—11b)tt _G(¢_(pX) _D(3w_17b)xx+k2 (3w—1ﬂb)t = 0’
Po2Wi + G(lp_(Px) + %yw'l_ %ﬂwt - Dw,, =0,

where (x,t) € (0,1) x (0,+00), and obtained the exponential decay result under
appropriate initial and boundary conditions. In [51]], Wang, Xu and Yung con-
sidered system with the cantilever boundary conditions and two different
wave speeds (\/g and \/g). W. Liu and W. Zhao [32]] considered a coupled sys-
tem of a laminated beam with Fourier’s type heat conduction, which has the
form

PP+ G —x), =0,

L,Bw-¢); -G -¢y)-DBw-1),, +060,=0,

Lwy +G (P —px) + %yw + %ﬁwt —Dw,, =0,

kO — 10 +0(Bw—-1),, =0,
where (x,t) € (0,1) x (0,+00), they used the energy method to prove an exponen-
tial decay result for the case of equal wave speeds. (See also [2,8],128, 36} 140])).

For the Timoshenko system of thermo-viscoelasticity of type III, Messaoudi

and Said-Houari [37]] considered the following one-dimensional linear Timo-
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shenko system of thermoelastic type

P19 —K(px+¢), =0,
p2¢tt - b¢xx +K ((Px + ¢) + ﬂex =0,
p36tt - 669(96 + V¢ttx - Ketxx =0,

where (x,t) € (0,1) x (0,+0c0), they used the energy method to prove an expo-
nential decay under the condition % = %. A similar result was also obtained
by Rivera and Racke [40]. Since this theory predicts an infinite speed of heat
propagation, many theories have emerged, to overcome this physical paradox.
Green and Naghdi (20} 21} 22], suggest a replacing Fourier’s law by the so-
called thermoelasticity of type III. This is for heat conduction modeling thermal
disturbances as wave-like pulses traveling at finite speed. For more details, see
[7]. A large number of interesting decay results depending on the stability num-
ber have been established, (see [16},[35,136],/41]] and references therein). In [34],Y.
Luan, W. Liu and G. Li considered a coupled system of a laminated beam with

thermoelasticity of type III, which has the form:

P1P1t+ G (P —@x), =0,

I,, Bw-1),;,—DBw-19),., —G(p—@s)+ab,=0,
Ipla)tt Dy + G (- @) + %ﬁlw + %/320% =0,
P201t =005+ Y Bw — 1)y, — kO = 0,

where (x,t) € (0,1) x (0, +00), they used the energy method to prove an exponen-
tial decay result for the case of equal wave speeds.

A flexible structure system

One of the main issues concerning the vibrations in models of flexible struc-
tural systems is the question of the stabilization of the structure, the linear dif-
ferential equation describing the vibrations of an inhomogeneous flexible struc-

ture with an exterior disturbing force can be described by the following equation
m (x) gy = (p (x) 1y + 26 (X) uyy), = f (x), on (0,L) xR, (4)

where u = u(x,t) is the displacement of a particle at position x € (0,L) and time
t > 0. The parameters m(x), o(x) and p(x) is responsible for the non-uniform
structure of the body, where m(x) denote mass per unit length of structure, o(x)

coefficient of internal material damping and p(x) a positive function related to
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the stress acting on the body at a point x. We recall the assumptions of the func-

tions m(x),d(x) and p(x) in [3] such that
m,d,p € W1'°°(O,L), m(x),o(x),p(x) >0, Vxe[0,L]

The distributed force f : (0,L) xIR" — R is the uncertain disturbance appearing
in the model which is assumed to be continuously differentiable for all t > 0. In
[19]], Gorain has established uniform exponential stability of the problem (4). It
is physically relevant to take into account thermal effects in flexible structures,
in 2014, M. Siddhartha et al. [38] showed the exponential stability of the vibra-
tions of a inhomogeneous flexible structure with thermal effect governed by the
Fourier law,
{ ()t = (p () 4 + 20 (x) ), + 605 = f, )
0; — Oyx + KUy = 0.
In the above model, the temperature has an infinite velocity of propagation (heat
equation). this property of the model is not consistent with the reality, where
the heating or cooling of a flexible structure will usually take some time. Many
researches have thus been conducted in order to modify the model of thermal
effect.
In [17]], the Authors consider a non-uniform flexible structure system with

time delay under Cattaneo’s law of heat condition:

m(x) = (p (X) Uy + 20 (%) thyy), + 7Oy + puiy (x,t —79) = 0,x € (0,L), ¢ >0,
O, +xq,+nu =0, x€(0,L), t>0, (6)
tq;+pq+x0,=0, xe€(0,L), t>0,

with boundary condition
u(0,t)=u(L,t)=0, 6(0,t)=0(L,t)=0, t >0, (7)
and initial condition
u(x,0) = ug (x), 1 (x,0) = 1 (x),0(x,0) = 69 (x),q (x,0) = g9 (x), x € [0, L]. ~ (8)

They proved that system (6)-(8) is well-posed, and the system is exponential
decay under a small condition on time delay. M. S. Alves et al. [3] consider the

system (6)-(8) without delay term, and obtained an exponential stability result
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for one set of boundary conditions, and at least polynomial for another set of
boundary conditions.

The plan of the thesis is as follows.

Chapter 1. In this chapter, we recall some basic knowledge in fonctional analy-

sis.

Part I. We study two problems relate to a laminated beam system.

Chapter 2. In this chapter, we study the well-posedness and the asymptotic be-
havior of a one-dimensional laminated beam system with a distributed
delay term in the first equation, where the heat conduction is given by
Fourier’s law effective in the rotation angle displacements. We first give
the well-posedness of the system by using the semigroup method. Then,
we show that the system is exponentially stable under the assumption of

equal wave speeds.

Chapter 3. In this chapter, we study the well-posedness and asymptotic be-
haviour of solutions to a laminated beam in thermoelasticity of type III
with delay term in the first equation. We show that the system is well-
posed by using Lumer-Phillips theorem and prove that the system is expo-

nentially stable if and only if the wave speeds are equal.

Part II. We study two problems relate to a flexible structure system.

Chapter 4. In this chapter, we study the well-posedness and asymptotic be-
haviour of solutions to a flexible structure with Fourier’s type heat con-
duction and distributed delay. we prove well-posedness by using the semi-
group theory. Also we establish a decay result by introducing a suitable

Lyaponov functional.

Chapter 5. In this chapter, we study well-posedness and exponential stability
for coupled flexible structure system with distributed delay in the two
equations. We first give the well-posedness of the system by using semi-
group method. Then, by using the perturbed energy method and construct

some Lyapunov functionals, we then obtain the exponential decay result.
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Chapterl. Preliminaries 9

In this chapter, we recall some concepts and properties in functional analysis
related to the subsequent chapters, reader should consult [1]], [6]], [18]] and [47]]

for proofs and more details.

1.1 Some functional spaces

1.1.1 Banach spaces

Definition 1.1. (Normed linear space) A normed vector space X is a vector space
equipped with a norm ||.|| : X — R that satisfies the following properties:

1. ||x]| =0, and ||x|| =0 = x =0,

2. ||lax|| = |al||x|| for any scalar a,

5 -5l < s+ ol

Recall that completeness of a normed vector space X means that all Cauchy se-

quences in X converge in X.

Definition 1.2. (Banach spaces) A Banach space is a complete normed vector space.

1.1.2 Hilbert spaces

Definition 1.3. (Inner product space) An inner product space X is a vector space
equipped with an inner product (.,.) : X x X — IR that satisfies the following proper-
ties:

1. {u,v) =(v,u),

2. {au +bv,w) =alu,w)+b{v,w),

3. (u,uy>0with{u,u)y=0u=0.

An inner product induces a norm, ||u|| = V{(u,u), and hence a metric.

Definition 1.4. A Hilbert space H is a vectorial space supplied with inner product
(u,v) such that ||\u|| = V{u, u) is the norm which let H complete.

Theorem 1.1. Let (u,),cn is a bounded sequence in the Hilbert space 'H, then it

possess a subsequence which converges in the weak topology of 'H.

Theorem 1.2. (Lax-Milgram) Let H be a Hilbert space, B be a bilinear form and L

be a linear form. Assume that
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(i) The bilinear form B is continuous, i.e., there exists a constant M such that
|B(u, v)| <M lullllvl| forall u,veH,
(ii) The bilinear form B is V-elliptic, i.e., there exists a constant m > 0 such that
|B(u,u)| > m|ul|> forall ueH,
(iii) The linear form L is continuous, i.e., there exists a constant C such that
|L(u)| < C|lu|| forall ueH.

There exists a unique u € H that solves the abstract variational problem: Find u € H
such that
VYveH, B(u,v)=L(u).

Moreover, if B(.,.) is symmetric, then u € H is characterized by:

%B(u,u) ~L(u) = riggg(%B(v,v)—L(v))-

1.1.3 The LP(Q)) spaces

Definition 1.5. Let p € R with 1 < p < 400, and let () be on open domain in R",
define the standard Lebesgue space LP(Q), by

LP(Q) = {u : Q) > R; f is measurable and f lu (x)|P dx < +oo}.
Q
If p =+o0, we have

u is measurable and there is a constant C
L¥(Q)={u:Q->R; .

such that |u(x)| < C a.e. on Q
For u € LP(Q)), we define the norms
1
14
llle ) = llull, = (J‘Q | (x)IP dX) , 1 <p<+oo,

il () = llulloo = €55 suglu (x)|=inf{C; |u(x)| < C a.e. on Q}, p=+oo.
xe
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1.1.4 Sobolev Spaces

Definition 1.6. Let Q) be a domain in R" and let m be a non-negative integer. We
define by C™ (Q)) the linear space of continuous functions on () whose partial deriva-
tives D%u, |a| < m, exist and continuous, where

1%y (x)

= ag aj Ay’
dx| ' dx,°...0x),

D%u (x) a=(ay,ay,..,a,), la|=a;+ar +...+ a,.

Definition 1.7. (weak derivative) If u,v € LP(Q), v is called a weak derivative of

order a of u if

f u (x) DD (x)dx = (-1)'“'J v (x)®@ (x)dx, YD e CP(Q).
Q Q

Definition 1.8. (Sobolev spaces) Let () be an open set of R",the Sobolev space
W™P(Q)), me IN*, 1 < p < +o0, is defined as

W™P(Q) = {u € LP(Q); D%u € LP(Q), |a| < m).

WP(Q)) is equipped with the following norm:

1
) 1
(LosialemID ullls )’ 1<p<+oo,
lullwme ) = “
max [[Du|pe (), p = +oo.
0<|ar|<m

Specially, when m = 0, WOP = LP; when p = 2, W™2(Q) is denoted as H™(Q) and it
is a Hilbert space, the norm of u € H™(Q)) is defined as

1

2
Z JID“wx)Fdx] ,
0<|a|<m Q

and the inner product is expressed as

ol () =

(U, v)gm(q) = Z ReJ D%u (x)Dev (x)dx.
0<|a|<m Q
Definition 1.9. (The Sobolev space WP (QQ)) Let Q) be an open domain of R" and
1 < p < +oo, The Sobolev space WP (Q) is defined to be

WP (Q) :{

u € LP(Q);dv; € LP(Q) such thath u%dx = —fQ v;pdx,
i=1,2,...,n Yo e CP(Q) '
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is called the Sobolev space of order one and it is equipped with the norm

du
lullyro =llulle + ) |l

- 8xi
1<i<n

4

LP

1
p \p
LP .

Remark 1.3. WIP(Q) = H' (Q) is a Hilbert space with respect to the inner product

du dv
(U, v)m = JQ uvdx + Z J;) a_xi&‘_xidx'

1<i<n

or sometimes, if 1 < p < oo, with the equivalent norm

p
Il :(||u||Lp+ )

1<i<n

Ju

axi

Definition 1.10. (The Sobolev space W(l)’p (Q)) Let Q) be an open domain of R" and
1 < p < 400, we define the space W(l)’p (Q) to be the closure of Cy (Q) with respect to
the norm of WLP(Q).

1.2 Some useful inequalities

In this section, we shall recall some inequalities which will be used in the sub-

sequent chapters.

Theorem 1.4. (Young’s Inequality) The following inequalities hold

aP bl p
ab< —+—, g=——, 1 <p<+oo, forall a,b>0,
P q p-1

1
abgfap+ — b, q:Ll,1<p<+oo, forall a,b,e > 0.

p gqu

Theorem 1.5. (The Cauchy-Schwarz Inequality) There holds that

'x.yi <] |y , forall x,y e R",

here |x| = (x,x)"/2 = (L1, x7)Y/2 for all x € R".

Theorem 1.6. (Holder’s Inequality) Let () C R" be a domain, assume that u €
LP(Q)), v e L1(Q) with 1 <p,q < +oco and Ilj+ % =1. Then

L juvldx < lullpnioy ellioy-
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Theorem 1.7. (Minkowski’s Inequality) Assume that 1 < p < +co. Then for any
u,veLP(Q),

lu+ vl ) < ullp @) + IVllce ) -

Theorem 1.8. (Poincaré’s Inequality) Assume that ) is bounded in one direction

and 1 < p < +oo. Then there is a positive constant C = C(Q, p) such that

11
lullr @) < ClIVullpr(q), Yu € W, (Q).

1.3 The theory of semi-groups

1.3.1 Semigroups

Numerous physical models can be written in the form of an abstract Cauchy

problem
ig:AU,t>O,
dt (1.1)
U(O) = Uo,

where A is the infinitesimal generator of a Cy-semigroup S(t) over a Hilbert
space H and U, € H is given. We are looking for a solution U : R, — H. There-

fore, we start by introducing some basic concepts concerning the semigroups.

Definition 1.11. (Semigroups) Let X be a Banach space. A one parameter family
S(t), 0 <t < oo, of bounded linear operators from X into X is a semigroup of bounded
linear operators on X if

(i) S(0) = Id, (1d is the identity operator on X).

(i1) S(t+s) = S(t)S(s) for every s, t > 0.

Definition 1.12. (Cy-Semigroups) A semigroup S(t), 0 <t < oo, from X to X is

called a strong continuous semigroup of bounded linear operators if

lim S(t)x=x or tlirr&r IS(t)x—x|| =0, forall xeX,

t—07*

i.e., S(t) is a Cy-semigroup.

Definition 1.13. (Contraction Semigroups) The semigroup S(t) is a contraction

semigroup if there exists a constant a > 0 (0 < a < 1) such that for all t > 0,

[S(t)x =Sty < a|x-p|, forall x,yeX.
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Definition 1.14. The linear operator A defined by

D(A) = {x e X; lim &tx—x exists},

t—0*
and
Ax = lin(} > (t)tx—x = d(Sd(tt)x) li=o for all x € D(A)
t—07*

is called the infinitesimal generator of the semigroup S(t), D(.A) is called the domain
of A.

Theorem 1.9. Let S(t), 0 <t < oo be a Cy-semigroup. Then there exist constants

M > 0 and w > 0 such that
IS (#)]| < Me®! forall t>0.

In the above theorem, if M = 1 and w = 0, then we obtain a Cy-semigroup of contrac-

tions.

For the existence of solutions, we normally use the Lumer-Phillips Theorem

or Hille-Yosida Theorem.

Definition 1.15. Let H denotes a Hilbert space, an unbounded linear operator A :

D(A) Cc H — H is said to be monotone (or that —A is dissipative) if it satisfies
(AU,U) >0, YU e D(A).
It is called maximal monotone if, in addition, R(Id + A) = H, i.e.,
VF eH, AU € D(A) such that U + AU =F.

Proposition 1.10. Let A be a maximal monotone operator. Then

1. D(A) is dense in 'H,

2. Ais a closed operator,

3. For every A > 0, (I+A.A) is bijective from D(A) onto H, (Id+A.A)~! is abounded
operator, and ||(Id + /\A)_ln <l1.

Theorem 1.11. (Lumer-Phillips Theorem) Let A be a linear operator with dense
domain D(A) in a Banach space X.

(1) If A is dissipative and there exists a Aq > 0 such that the range R(AgId—A) = X,
then A generates a Cy-semigroup of contractions on X.

(i1) If A is the infinitesimal generator of a Cy-semigroup of contractions on X then

R(AId —A) =X for all >0 and A is dissipative.
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Consequently, A is maximal dissipative on a Hilbert space H if and only
if it generates a Cy-semigroup of contractions on H and thus the existence of
the solution is justified by the following corollary which follows from Lumer-

Phillips theorem.

Corollaire 1.12. Let H be a Hilbert space and let A be a linear operator defined from
D(A) c Hinto H. If A is maximal dissipative then the initial value problem has
a unique weak solution U € C([0;+00); H), for each initial data U, € H. Moreover, if
Uy € D(A), then U € C'([0,+00); H) N C([0, +00); D(A)).

Theorem 1.13. (Hille-Yosida Theorem) Let A be a maximal monotone operator.

Then, given any Uy € D(A) there exists a unique function

U e CY([0,+00); H) N C([0, +0); D(A)),

satisfying
il_[t] + AU =0, on [0,+c0),
U(0) = U,.
Moreover,

|U (t)] <|Up| and ‘ii—lt](t)‘:|AU(t)|s|AU0| Vit >0.
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2.1 Presentation of the problem

In the present chapter, we consider the laminated beam system where the heat
flux is given by Fourier’s law with distributed delay term (See [14])). The system

is written as

P1Pet + G (P = @r) + popr + LTIZ 1(s) @i (x,t—s)ds =0,
p2Bw—-1), — G —@y)-DBw-1),, +00, =0,
P2wie + G (= @x) + 37w+ 3pw, — Dwyy = 0,

kO; - 10y +0 (Bw—-1),, =0,

(2.1)

where (x,t) € (0,1) x(0,+00), and py, G, p2, D, 0, ¥, B, k, T are positive constant

coefficients, with Dirichlet-Neumann boundary conditions

@(0,1) = .(0,£) =w,(0,£) =6(0,£) =0,  t€[0,+c0), 22)

ey =p(1,t)=w(l,t)=0,(1,6)=0, t€[0,+c0). '
and the initial conditions

@(x,0) = @o(x), ps(x,0) = p1(x),  x€[0,1],

P(x,0) = o(x), Pi(x,0) = Py (x),  x€[0,1],

w(x,0) = wo(x), ws(x,0) =wq(x), x€[0,1], (2.3)

0(x,0) = Oy(x), x€[0,1],

¢t ,—t):fo(x,t), (X;t)E(O,l)X(O,’Q),

where 7, and 7, are two real numbers with 0 < 7y < 1, y is a positive constant,
and p: [1,7,] — Ris an L® function, p > 0 almost everywhere, and the initial
data (@g, @1, 3wy — g, 3wy — Y1, wy, w1, Oy, fy) belong to a suitable Sobolev space.

Here, we prove the well-posedness and stability results for problem on the

following parameter, under the assumption

Ho > f 2 p(s)ds. (2.4)

1
The rest of the chapter is organized as follows. In Section 2.2, by using Hille-
Yosida theorem, we state and prove the well posedness of problem (2.1)-(2.3).
In Section 2.3, by using the perturbed energy method, we then establish the

; ; e P11 _ P2
exponential result if and only if 7 = 3.
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2.2 Well-posedness of the problem

In this section, we will prove that system (2.1)-(2.3) are well posed using

semigroup theory by introducing the following new variable as in [45].
z(x,p,t,5) = @ (x,t —ps), x€(0,1), pe(0,1), t>0, se(1y,77).
Then, we have
szi(x,p,t,5) +zp(x,p, t,s)=0, x€(0,1), pe(0,1), t >0, s€(1,12). (2.5)
Therefore, problem takes the form

pl(Pi’t + G(ljb - (Px)x + IMO(Pt + J::;Z ’/l(S)Z(x, 11 t,S)dS = 0;
P2(3w—¢)tt—G(‘P—(Px)—D(?’W—‘P)XX"'UQx = 0'

(2.6)
Po2Wy + G(IIJ - (Px) + %Vw + %ﬁwt —Dwy, =0,
kO;—10x+0(Bw—-1),, =0,
with Dirichlet-Neumann boundary conditions
@(0,1) =1,(0,t) =w,(0,t) =6(0,t) =0, t €[0,+00), (2.7)
P, = (L) =w(l,t)=0,(1,8)=0, te[0,+o0), '

and the initial conditions

(P(x; 0) = (PO(X); (Pt(xl O) = (X), X € [0’ 1];
P(x,0) = Po(x), Pi(x,0) =y(x), x€[0,1],
w(x,0) = wo(x), wi(x,0) =w;i(x), x€[0,1],

z(x,0,t,5) = @4 (x,t) on (0,1) % (0,00) x (71, T3),

z(x,p,0,5) = fo(x,p,5) on (0,1)x(0,1) x (71, 77).

Introducing the vector function
T
U= ((107 (pt’ 3w - Ijb’ (3w - #J)t}w; Wy, 6; Z) )

problem (2.6)-(2.8) can be written as

dau (t) _AU,
at (2.9)
U (x,0) = Uy (x) = (@0, 91, 3wo — 1o, 3wy — 1, wo, w1, O, fo) T,
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where the operator A is defined by

Pt
G 'MO ]. Ty
2 (4 — -, - = s)z(x,1,t,s)ds
o (%~ ¢x)y PR pls)z( )
(Bw-1v),
G D o
—(p—q@)+—Bw- -—0
AU = pz(l’b (Px) pz( )xx 02 X
Wy
G 4y 4p D
— (Y- -——wW-—w;+ —W
L P P
_Gxx_ (3w_¢)tx
—s‘lzp

We consider the following spaces

H!(0,1) = {x/x€H'(0,1): x(0)

{x/x e H'(0,1): x (1)

Il
o
—

H!(0,1)

0}.
Let

H = H!0,1)xL?(0,1)xH!(0,1)xL*(0,1)x H} (0,1)
xL?(0,1) xL2(0,1)><L2((0,1) x (11,7,),H" (0,1)),

be the Hilbert space equipped with the inner product

1
<U, U>H = L [p19:Pr + p2 (Bw— ), (3% - lp)t +3p,w,wdx + kOO

+4ywﬁ+ G(1,b - (Px)(a_ ax) +D (3w— ¢)x(3w_ ibi)x

1
0

1 (%)
+3Dwxﬁx]dx+j f sy(s)f z(x,p,8)z(x,p,5)dpdsdx.
0 T

The domain of A is

UeH|peH?*(0,1)nH!(0,1), 06 H!(0,1),
3w—1h,we H?(0,1)nH! (0,1),
@i € H!(0,1),(3w—1),, wy € H! (0,1),
®x(1,1) = P, (0,1) =wy (0,£) = 0,94 (x) = 2(x,0,5)in(0, 1)

and it is dense in H. The well-posedness of problem (2.9) is ensured by
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Theorem 2.1. Assume that U° € H and holds, then problem exists a
unique weak solution U € C (R";H). Moreover, if U € D (A), then

U e C(R*D(A)nC' (R H)).

Proof. To prove the well-posedness result, it suffices to show that A: D(A) —
H is a maximal monotone operator, which means A is dissipative and Id — A is
surjective.

First, we prove that A is dissipative.
Forany U = ((p, Q3w -1, Bw—-1),, w,w;, 0, z)T € D(A), by using the inner prod-

uct and integrating by parts, we have

1 1 T
(AU, UYy, = —MOL <p?<x>dx—f0 <pt<x>(f y(s)z(x,l,sms)dx

1

1 1 1 (%)
—4ﬁj wtzdx—EJ J y(s)z2 (x,1,s)dsdx
0 0 T

1 1 (%) 1
—TJ 6%dx+—j y(s)dsj @? (x)dx.
0 2 T 0

Now, using Young’s and Cauchy-Schwarz inequalities, we can estimate

_J: @ (x) (J:Z u(s)z(x, 1,s)ds)dx

T 1 1 o
< l(j pt(s)ds)f (pf(x)dx+lj j 1(s)z% (x,1,s)dsdx.
2 (3] 0 2 0 Jrg

Therefore, from the assumption (2.4) we have

(AU, U)y

1 1 T 1
< —TJ Qfdx—élﬁj wfdx+(—y0+J y(s)ds)f @? (x)dx <0.
0 0 7 0

Consequently, A is a dissipative operator.

Next, we prove that the operator Id — A is surjective.

Given F = (fi, fa f5 fur for for f- f5) T € H, we prove that there exists a unique
U = (¢, 03w, (3w—),, w,w,,0,2) €D(A)such that

(Id—A)U =F, (2.10)
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that is,
P=¢:=fr
(p1+1o) Pt — Goxx — G(Bw—19), +3Gw, + L? u(s)z(x,1,t,5)ds
=p1/2
Bw-9)-(Bw-1), = f3
p2(Bw—1), +Gp,+GBw—-9)-DBw-1),, —3Gw+00, (2.11)
=2/
w-w; = fs,
(p2+ %) wi = Gpu - G(Bw =)+ (3G + ) w—Dw,, = pof,
kO —10, +0 (Bw—-1),, =kfy,
z+57 'z, = fa.
From (2.11),(2.11); and (2.11)5 we have
Pr=9-fi,
(Bw-), = Bw-9)- f, (2.12)
=w-—fs.
Inserting (2.12) into (2.11)),, (2.11))4, (2.11)¢ and (2.11),, we get
(o +P1) @ = GPux = G (3w =), +3Gwy + [ pu(s)2(x, 1, 1,5)ds
=p1(fi+f2)+Hohrs
P2Bw—-9)+ G, +GBw—-19)-DBw-1),, —3Gw+00,
=p2(f3+ fa),
(2.13)
(p2+ 4?ﬁ)w—G(px—G(3w—z,b)+(3G+ %)w—Dwxx
=p2(fs+ fo) + £S5
kO — 10, +0 (Bw—-1), =0 (f3), +kf7,
z+57 'z, = fa.
Using and the fact that z(x,0,s) = ¢; (x), we get
z(x,0,5) = p(x)e " — fie P +se7P* J;p fo(x,0,5)e%ds. (2.14)

In order to solve (2.11), we consider the following variational formulation

B(((p,3w—¢,w,9)T,($,3u7—z,E,w,§)T) = L(@,W—lﬁ,w@T, (2.15)
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where B [H,} (0,1)x HL(0,1)x H (0,1)x L2(0, 1)]2 —> Ris the bilinear form de-
fined by

B(((p,?:w pw,0) (5,357~ ,7,0) |
1

1 1
G(—px+ 1) (Px+AE)dX+J y0+p1)(p(pdx+J k66dx
0 0

1 1
+J P2 (3w — 1,[) 3w ¢)dx+j (3p2+4p +4y)wwdx
0 0

1 1 1

+f D (3w—-1), z;bv) dx+J 3Dwxz7xdx+TJ- 0,0.dx

0 x 0 0
1 1

+0 Gx(317—$)dx+aj (3w—1,b)x§dx

0 0

1
j (p(pf e *dsdx,

and L : [H*1 (0,1)x H! (0,1)x H! (0,1) x L2(0, 1)] —> R is the linear form defined
by

L(p,3w-19, w,é)

1 1 _
J f1+f2)<f’dx+jo P‘oflfﬁderJ; p2(f3 +f4)(3ﬁ—1,b)dx
1 1 1
+f 3p2(f5+f6)u7dx+f0 4B fswdx + O a(f3)x§dx+fo kf,0dx

J f s)zg (x,s)dsdx.

Now, for V.= H! (0,1) x H! (0,1) x H} (0,1) x L2 (0, 1) equipped with the norm

(.30 =, w,0)|, = |0 + |3 + Il +[|3ws = 5 + will? + 16,13

It is easy to verify that B(.,.) is continuous and coercive, and L(.) is continuous.

So applying the Lax-Milgram theorem, problem admits a unique solution
@ eH!0,1), Bw-y)eH!(0,1), weH!(0,1), 8 €L?(0,1).
The substitution of ¢, 3w — 1 and w into , we obtain
preHN(0,1), Bw—-1),eH!(0,1), w,eH!(0,1).
Applying the classical elliptic regularity, it follows from that
@ € H*0,1)nH!(0,1),(3w—-1)e H*(0,1)nH} (0,1),6 e H! (0,1),
w € H*(0,1)NnH!(0,1),9:(1) = Bw—1),(0) = w,(0) = 0.
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Therefore, the operator Id — A is surjective. Consequently, the well-posedness
result stated in Theorem follows from the Hille-Yosida theorem (see [6]]).
O

2.3 Exponential stability of solution

In this section, we show that, under the assumption p > JTZ p(s)ds and for
pG1 = p2 , the solution of problem . . decays exponentially to the study
state. To achieve our goal we use the energy method to produce a suitable Lya-

punov functional. We define the energy functional E (t) as

1 1
E(t):= fo [Pl(Pt2+P2(3wt—’Pt)2 +3pyw7 + G (¢ — i) + dyw? + k67 (2.16)
+D (3w, — Abx) +3Dw2]dx+ fo Io Ll su(s)z (x,p,s,t)dsdpdx.

Theorem 2.2. Assume that pé = pﬁ and (.) holds. Let U° € H , then there exists
positive constants cy and ¢y such that the energy E (t) associated with problem (2.6)-

satisfies,

E(t) <cpe ', Yt > 0.
In order to prove this result, we need the following lemmas.

Lemma 2.3. Let (¢, ), w,0,z) be the solution of ([2.6)-(2.8) and assume holds.
Then the energy functional, defined by satisfies

1 1 Ty
t)£—4ﬁf wtzdx—rf Qﬁdx—(yo—J y(s)ds)j Prdx<0. (2.17)
0 0 T

Proof. Multiplying (2.6);, (2.6)5, (2.6)3 and (2.6)4 by ¢;, 3 (w —¢),, 3w; and O, re-

spectively, and integrating over (0,1), using integration by parts and the bound-

ary conditions in (2.7), we get

;tll (plf ¢ dx+GJ1(lP—(Px)2dx)]
= J (¥ — @x) prdx - MOJ pidx— J %J s) e (x,t —s)dsdx,

(2.18)
a1 o2 2 )l
dt[z(pzj; (Bw; — ;) dx+DJO (Bw, —1Py) dx

1 1
GL (gb—(px)(3w—yb)tdx—aj0 0, (3w —-1),dx, (2.19)
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l (3p2J- fdx+4yf wzdx+3DJ w,%dx)l

1
= —?)Gj0 (w—(px)wtdx—élﬁJ; widx, (2.20)

d|1 1 L
dt[ kJ; 0 dx] Jo (3w—¢)t6xdx—TJ; 0;dx. (2.21)

On the other hand, multiplying (2.5) by u(s)z(x,p,s,t) and integrating over
(0,1)x(0,1) x(1y,T,), we obtain

J J J (x,0,5,1)2: (x,p,5,t)dsdpdx

J J J (x,p,5,1)z (x,p,s,t)dsdpdx: 0.
Thus, we have

2dtj J j (x,0,s,t)dsdpdx
I

= ——J‘ J 2(x,1,s, )dsdx+zj p(s )dsJ‘ pXdx.  (2.22)
T

Summing up (2.18)-(2.22), we arrive at

T - —4ﬁf wtdx—(yo—l(rw)d ))fwx
J 02dx — J(ptj z(x,1,s,t)dsdx
-—f f (x,1,5, ) dsdx.

Young’s and Cauchy-Schwarz inequalities applied to the fourth term on the

and

(2.23)

right-hand side yield

J GUtJ (x,1,s,t)dsdx < %(Isz( )ds)j Pldx
J J 2(x,1,s,t)dsdx.

(2.24)

Simple substitution of (2.24) into (2.23) and using (2.4) give (2.17), which con-
cludes the proof. ]
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Now, we are going to construct a Lyapunov functional equivalent to the en-
ergy. For this, we will prove several lemmas with the purpose of creating nega-

tive counterparts of the terms that appear in the energy.

Lemma 2.4. Let (¢, 1, w,0,z2) be the solution of (2.6)-(2.8). Then the functional

1
Fi(t):= plf ppdx
0

satisfies the estimate

1 1
R < 8 [ granic | <¢—<px>2dx+czf (B~ ) dx
0

+C3j wldx + = f J (x,1,s,t)dsdx, (2.25)

2 2 T2
C, = 3G+@+JA u(s)ds, CQ:G+ﬁ+2J u(s)ds,
2 pl T1 pl T

where

1845 ©
C; = 9G+ ”0+18f u(s)ds.
T

P1 1

Proof. Taking the derivative of F; (¢) with respect to ¢, using the first equation in
(2.6), and integrating by parts, gives

1 1 1
Fi(t) = —plf p7dx— GJ (ab—qox)%dxw()f Prpdx
0

f J- (x,1,t,5)dsdx.
Note that

1 1 1
— — — — 2 — —
GL (0 1) prdx GL (- pu) dx GL P (- py)dx

Then, we deduce that

Fi(t) = —plf qothGj (1 — px)>dx - GJ P (P - px)dx

+y0f (pt(pdx+J f (x,1,t,5)dsdx.

We then use Young’s 1nequa11ty, we obtain

Fi(t) < pl 2dx+—f (Y —@y) dx+—f 2dx

2
Ho 1j )J 2
+|—+= s)ds dx

1 Ty
J ;/t(s)z2 (x,1,s,t)dsdx.
0 T
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By using (2.4) and the trivial relation

1 1 1
J p?dx < 2—[ (Y- dx+2 | ¢2dx,
0 0 0

we obtain
Fi(t) < —% 01 pldx +(32G+&%+frzy(s)ds)ﬁl(¢—¢x)2dx
(50 J 0] vt
J J (x,1,s,t)dsdx.
Note that

1 1
j gbzdx—f L= 3w, +3w,) 2 dx < 2f (3wx—1,bx)2dx+ 18J w2dx.
0 0
Then the estimate (2.25) is established. O

Lemma 2.5. Let (¢, 1, w, 0,z) be the solution of (2.6)-(2.8). Then the functional

1
Fz(t):PzJ; (3w ) (3w p), dx
satisfies the estimate
) D (! 2 ' 2
Fy(t) < ) (Bwy—tpy) dx+py | (Bw,—1py) dx
0 0
G2 1 2 02 1 2
+3L (Y —y) dx+3jo 0“dx. (2.26)

Proof. By differentiating F, () with respect to ¢, then exploiting the second equa-
tion in (2.6), and integrating by parts, we obtain

1 1
Fy() = ‘DL <3wx—¢x>2dx+pzf0 (3w, — ) dx

1 1
GJ (¢—gox)(3w—tp)dx+af (Bw—1), Odx. (2.27)
0 0
Using Young’s inequality, we obtain estimate ([2.26). O

Lemma 2.6. Let (¢, ,w,0,z) be the solution of (2.6)-(2.8). Then the functional

1
F5(t):= pzj ww,dx
0
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satisfies, for any €1 > 0, the estimate

4y 1 1 1
F;(t) < _(?_gl)fo wzdx—DL widx+C4(51)J; w?dx

G2 (!
% (nb @) dx, (2.28)

where )
8p~
C

s(e1)=p2+ 45— 9%,
Proof. By differentiating Fj (t) with respect to ¢, then exploiting the third equa-

tion in (2.6), and integrating by parts, we obtain

1 1 1
B0 = o2 [ wiar=G [ wip-goar-3y [ widx
0 0 0

4 (! 1
—gﬁf wwdx — DJ w2dx.
0 0

Using Young’s inequality with &; > 0, we obtain estimate (2.28). O

Lemma 2.7. Let (¢, 1, w,0,z) be the solution of (2.6)-(2.8). Then the functional

k 1 X
F4(t)::ﬂjo (3w—¢)tfo 0dydx

o

satisfies, for any €, > 0, the estimate
1

1 1
P < -2 [ Guimptaxe Cten | Odrees | (p-guds

1 1
+£2J (Bwy —1y) dx+2gif Qﬁdx, (2.29)
0 0
where , s .
D
Cs(ey)=k+ k kG

+ .
45202 46202
Proof. By differentiating F, (¢) with respect to t, using the second and the fourth
equations in (2.6)), and integrating by parts, we obtain

1 1 x
Rt = —pr | Guimpotaxs T [ g | oayax

kD
o Jo

1
(3w—¢)x9dx+kf

0%dx + sz (Bw—1), 0, dx.
0 0

(2.30)

Then, using Young’s and Poincaré inequalities with ¢, > 0, we arrive at (2.29).
[]
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Lemma 2.8. Let (¢, 1, w,0,z) be the solution of (2.6)-(2.8). Then the functional

1 1 Dpl 1
Fs()=p [ - padxps [ wnpudx- 20 [ (g - wag)ds
0 0 0

satisfies, for any €5 > 0, the estimate

1 1 1612 (!
Fi(t) < —EJ (gb—(px)zdx+€3f (3wt—1,bt)2dx+ oy J w?dx

1 1
+C6J w dx+C7(e3)J 2dx + -2 Do (ptdx
0

2G
J f x,l s, t)dsdx, (2.31)
where b . L6s? 5
6= 2’20 C p(s)ds, Cy(e3) = 9(/); +2p—23+9€3

Proof. Using the first and the thlrd equations in (2.6), and integrating by parts,

d 1
aile: [ wtv-pos]
Dp, [d (! ! D (!
o F R R

+_J J s) @y (x,t —s)dsdx — GJ1(¢—¢x)2dx

1 1
_?7/ W(ED_(Px)dX—?ﬁ wt(yb—(px)dx+p2f withdx
0 0 0

d 1 1
T {PZJ wt(dex} + P2f Wi PxdX.
0

We conclude for

Fo(t) = D(%—%)J wtt(pxdx—i-m(); . wx(ptdx

Ty 1
+—J. wxf (x,1,s,t)dsdx — GJ (t,b—(px)zdx
0

we obtain

4 4 1 1
i 4 w(z,b—qox)dx——ﬁ wt(t,b—qox)dx+p2J- wPdx.
3 Jo 3 Jo 0
Using Young’s inequality and p2 = ‘2, we obtain (2.31). O

Lemma 2.9. Let (¢, 1, w,0,z) be the solution of (2.6)-(2.8) and (2.5). Then the

functional
J j j se*Pu(s) x,p,s, t)dsdpdx
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satisfies, for some positive constant n, the following estimate

—nf J J (x,p,s,t)dsdpdx
1

—nf f (x,1,s, )dsdx+yoj pidx. (2.32)
0

Proof. By differentiating Fg (¢) with respect to f, and using the equation (2.5), we

obtain

, 1 1 (%)
Fg(t) = —2J ff e Pu(s)z(x,p,s,t)z,(x,p,5,t)dsdpdx

J J x,1 s, t)— (x,O,s,t)]dex
(3

f f J se*Pu(s)z”(x,p,s,t)dsdpdx. (2.33)

Using the fact that z(x,0,s,t) = ¢; and e™* <e™F <1, for all 0 <p <1, we obtain
(%) 1

f f e u(s xlst)dsdx+j y(s)dsj @idx
T

—nlj J J x,p,s, t)dsdpdx. (2.34)

Because —e™* is an increasing function, we have —e™ < —e™ %2, for all s € 1y, 15].
Finally, setting n = e~™ and recalling (2.4), we obtain (2.32). O

Next, we define a Lyapunov functional L(¢) and show that it is equivalent to

the energy functional E (¢).

Lemma 2.10. Let N, N,, N3, Ny, N5, Ng > 0 and p_G1 = %, we define
i=6
L(t):= NE(t)+F, (t)+ ZN,-F,-(t) (2.35)

i=2

For two positive constants 1 and p,, we have
B1E(t) <L(t) < BoE(t),Yt > 0. (2.36)

Proof. Now, let
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1 1
L) < plfo |qoqot|dx+szzf0 (G- ) (3w - ), dx

r1 kp 1 X
+N3p; |wwt|dx+N4—2J (3w—gb)tJ Ody|dx
Jo 0 Jo 0
r1 Dpl 1
+N5p |Wt(¢—¢x)|dx+NsTJ l(wr@r —wyr)|dx
Jo 0
r1

+Ns505 | |wepy|dx
JO

1 1 o
+N6J J J |se—59ﬂ(s)22 (x, 0,5, t)idsdpdx_
0o Jo Jr

Exploiting Young’s, Poincaré and Cauchy-Schwarz inequalities, (2.16), and the
fact that e™*? <1 for all p € [0, 1], we obtain

|L (1) < Cjol [(pt2 + (3w, — %)2 + th + (1 — (Px)2 + (3w, — ¢x)2 N w,% ol GZ]dx
+ Cjol jol j:lz Sp (S)ZZ (X, P: 2, t) dede <cE (t)

Consequently, |L(t) — NE(t)| < cE(t), which yields
(N-c)E(t)<L(t)<(N+c)E(t).
Choosing such that (N —c¢) > 0, we obtain estimate (2.36). O

Now, we are ready to state and prove the main result of this section.

Proof. (Of Theorem
By differentiating (2.35) and recalling (2.25), (2.26), (2.28)), (2.29)), (2.31) and
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(2.32)), we obtain
Ty 1
' P1 _ Pho
< - _——— —
L (t) = (:MO Ll :u(s)dS)N-i' 5 G 5 'MON6‘|J;) (Ptdx
4 162 1
_?VN3—51N3— 92/; N5lJ; w?dx
1
- 4]j 02dx
207 0
1 02 1
_[DN3_C3_C6N5]j W£dx+[—N2+C5(€2)N4]J 92dx
0
G
e go i
[%NrpzNz—estUo (3w, ~ ) d
~[4BN — Cy(e1) N3 — C7 (e3) Ns] f widx
D 1 )
[2N2_C2_52N4] (Bwx = 1hy)"dx
nN6]J j j sp(s X,p,s, t)dsdpdx
["NG_E_ENF’ J J “(x, 1,5, t)dsdx. (2.37)

At this point, we need to choose our constants very carefully. First, we take N,

large enough, such that

D
FN2=Co>0.

Then, we choose Ny and Nj large enough, so that

5 G G?
%N4—p2N220 2N5—C1—3N2>0

Next, we pick £ small and choose N3 large enough, such that

Then, we select N3 even smaller (if needed) and ¢,, €3 small enough, so that

4
DN3 - C3 —C6N5 > O, ?VN:), —€1N3 —

162

9G

Ns > 0.

D 2
E 2—C2—€2N4Z 0, %N4—p2N2—€3N5 > O,

G G? G?
ENS _Cl —3N2—2—N3—€2N4 > 0.
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Furthermore, we choose Ng¢ large enough, so that

D 1
Ne— —N-—=>0.
N6 =56V 752

Finally, we choose N so large such that

\%
&

(]
(ﬂo—f V()dS)NﬁLpzl 220N5_FON6
T

4BN — Cy(e1)N3—Cy7(e3)N5 > 0.

Thus, we deduce that there exist positive constants a; and a, such that (2.37)

becomes

o2

[nN6—2—2GN5 J J 2%(x,1,s,t)dsdx

< —mE(t)+ azj 02dx.

0
By (2.17), we obtain

P2 ! ! 2
L'(t) £ —-aE(t)- [TN—Z N4]J- 0 dx+azf 0°dx
0

L' (t) < —aE(t)—a3E’(t), (2.38)

for some a3 > 0. It is obvious that
L(t)=L(t)+azE(t) ~ E(t).
Next, exploiting (2.38), we get
L'(t)=L'(t)+a3E (t) < —a1E(t) < —c; G (t), (2.39)
for some c¢; > 0. Integration (2.39) over (0,t), leads to
L(t) <L(0)e Yt > 0. (2.40)

It gives the desired result theorem [2.2) when combined with the equivalence of
L(t) and E (t). [
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3.1 Presentation of the problem

In the present chapter, we are concerned onedimensional laminated beam sys-
tem in thermoelasticity of type III with delay term (See [13]), which has the
form

P19+ G (P — @) + 1P (X, 1) + popy (x, £ —7T) = 0,
P2Bw =)y =G —9y) =DBw—1), +06,, =0,
P2 + G (P — i) + %7’0) + %ﬁwt —Dwyy =0,

0304 — 00, + 0 (3w —1),, —kOpx =0,

(3.1)

where (x,t) € (0,1) x (0, +00), with the following initial and boundary conditions

@(x,0) = @o(x), @1 (x,0) = @1 (x), x€[0,1],

P(x,0) = Po(x), Yy (x,0) = Py (x), xel0,1],

w(x,0) = wo(x), ws(x,0) = wi(x), x€[0,1],

O(x,0) = Oy(x),0:(x,0) = 61(x), x€[0,1], (3.2)
Qi (x,t—7) = fo(x, t—1), x€(0,1), te(0,1),

©x(0,1) =1(0,t) = w(0,t) = 6(0,t) =0, VYt >0,

(L) =(Lt)=w(1,t)=0,(1,t)=0, Vt>0.

Here ¢ = @(x,t) denotes the transverse displacement of the beam which de-
parts from its equilibrium position, 1 = (x,t) represents the rotation angle,
w = w(x,t) is proportional to the amount of slip along the interface at time t and
longitudinal spatial variable x, 6 = O(x,t) is the differential temperature, and
01, P2, P3» G, D, o, v, B, 9, k, py are positive constants, y, is a real number, and
T > 0 represents the time delay.

We will assume that

p1> |2l (3.3)

and show the well-posedness of the problem and that this condition is sufficient
to prove the uniform decay of the solution energy.

The purpose of this chapter is to study the well-posedness and asymptotic
behaviour of solutions to the laminated beam (3.1)-(3.2) in thermoelasticity of
type III with delay term appearing in the control term in the first equation.
Introducing the delay term p,@; (x,t — 7) makes the problem different from those

considered in the literature. In Section 3.2, we prove the well-posedness of the
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system. In Section 3.3, we prove that the system is exponentially stable in the

case of equal wave speeds.

3.2 Well-posedness of the problem

In this Section, we prove the well-posedness of problem (3.1)-(3.2) by using

Lumer-Phillips theorem. We introduce as in [44] the new variable
z(x,p,t) =i (x,t—7p), (x,p,t)€(0,1)x(0,1)%(0,00).
Thus, we have
TZ4 (x,p,t)+zp (x,p,t) =0, (x,p,t)€(0,1)x(0,1)x(0,00).
Therefore, system takes the form

P19+ G (P — @) + 1@ (X, 1) + poz(x,1,¢) = 0,

P2Bw—1);, —G(P—@x) D (Bw—1),, + 00, =0,

P20t + G (= @y) + 37 + 3pw; — Dy, = 0, (3.4)
0304 =00y +0 (3w =), — kO = 0,

Tz (%, 0, 1) + 2, (x,0,1) = 0,

where (x,p,t) € (0,1) x(0,1) x (0,00), with the following initial and boundary

conditions
@(x,0) = @o(x), @:(x,0) = p1(x), x€[0,1],
P(x,0) = o(x), Pi(x,0) = Py (x), x€[0,1],
w(x,0) = wo(x), ws(x,0) =wq(x), x€][0,1],

0(x,0) = Oy(x),04(x,0)=601(x), x€][0,1],
z(x,0,0) = fo(x,—tp), x€(0,1), pe(0,1),

( (x,1), x€(0,1), t€(0,00),
@.(0,8) = 9(0,£) = w(0,) = O(0,£) =0, V>0,
Px(L )= (L,t)=w(1,t)=0,(1,t)=0, Vt>0.

(3.5)

In order to be able to use Poincaré’s inequality for 0, we introduce

1 1
0(x,t):= G(x,t)—fo O (x)dx — tJO 01 (x)dx.



Chapter3. A laminated beam in thermoelasticity of type 11l with delay term 37

Then by (3.4), we have
1
J 6 (x,t)dx =0, Yt > 0.
0

In this case, Poincaré’s inequality is applicable for 0, furthermore, (go,gb,w,@,z)
satisfies the same equations and boundary conditions. In what follows, we will
work with 6. For convenience, we write 6 instead of 6.
From now on, we let
T
U=(p,¢p30—-1,3w; — Py, 0, w4, 0,04, 2)

J

then (3.4) and (3.5) can be written as an evolutionary equation

du(t)
I =AU (t), t>0,

U (0) = Uy = (¢o, 1, 3w0 — o, 3w — by, wg, @1,60,01, fo)

(3.6)

where A is a linear operator defined by

P Pt

Py — o (P =)= i (6, 1) = B2z (x,1,1)
B3w—1 3w =1y
3w;— Py =)+ D Bw—1) ~ O

A w = w;

wp ~S (=)~ 3E w0 = h 0+ By

0 0,

0 0= (30 =) + 101

z ~%p

We consider the following spaces:

1
2 : ds=0¢,
{weL (0,1) J; w(s)ds 0}

H'(0,1)nL2(0,1),

L2(0,1)

H; (0,1)
H2(0,1) = {w e H2(0,1): w, (0) = w, (1) = 0},

and the energy space:

H = H!(0,1)xL2(0,1)x H} (0,1)x L?(0,1) x H} (0,1)
xL?(0,1)x H! (0,1)x LZ(0,1) x L*((0,1),L? (0, 1)).
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The inner product on Hilbert space H is defined by

(U’fj)H - pljo

1
+p2JO (Bw-1), (36) - yﬁ)t dx + 3p2f W, @pdx

0

1 1

1
(pt@mcf <¢—(px>(sﬁ—<ﬁx)dx+4yf wddx
0 0

1

+DL1(3w_¢)x(3a~)_¢)xdx+3DL Wy Dydx

1 1 1 1
+p3f Qtétdxjtéf Qxéxdx+/\f J zzdpdx,
0 0 0o Jo

where A is the positive constant satisfying

{ T|P[2'</\<T(2]x[1—|]xl2 ), if |[/12|<,1/11;
A=1yy, if |/,¢2|:/,11.

The domain of A is
UeH|p,6eH0,1)NnH!(0,1),
w,p € H?(0,1)NH; (0,1), ¢, w; € Hy (0,1),

¢, 0, € H!(0,1), 60 +k0O, € H?(0,1),
2,2, € L2((0,1),L2(0,1)), z(x,0) = ; (x)

D(A) =

and it is dense in H.

The well-posedness of problem (3.6) is ensured by

Theorem 3.1. Assume that Uy € H and holds. Then there exists a unique
solution U € C (R*;'H) of problem (3.6). Moreover, if Uy € D (A), then

U e C(R*D(A)NC! (R H)).

Proof. To obtain the above result, we need to prove that A: D(A) —» H is a
maximal monotone operator. First, we prove that A is dissipative.

For any U € D (A), by using the inner product and integration by parts, we
can imply that

1 1 1
(AU, U)y = —4ﬁj a)tzdx—kj Gtzxdx—,ulj @idx
0 0 0

1 1,1
—ﬂzf (Ptz(xyl,t)dx—if J zzp(x,p,t)dpdx. (3.8)
0 T Jo Jo
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By using Young’s inequality, the fourth term on the right-hand side of Equation

(3.8) gives

1 1 1
—luzj gotz(x,l,t)dstJ‘ gofdx+MJ- z?
0 2 Jo 2 Jo

Also, using integration by parts and the fact that z(x,0) = ¢; (x), the last term in
the right-hand side of (3.8) gives
J J 2(x,p,t)dpdx

/\ 1 1
_;L L 22, (x,p,t) dpdx
= (<p2 2(x,1,1))dx.
0

2’[
Consequently, (3.8)) yields

1 1 1 |ﬂ2| 1
(AU, U)y < —4p wtzdx—kj 02 dx —|p — ——-—= J @ldx
0 2t 2 0

A |ﬂ2|
[2T 5 ]L (x,1,t)dx.

Keeping in mind condition (3.7)), we observe that

ALl A el

) > 0.
2T 2 2T 2

Consequently, A is a dissipative operator. Next, we prove that the operator Id—A
is surjective. Given F = (fl,...,fg)T € H, we prove that there exists a unique

U =(@,¢130-,(30-1),,,0,6,0,,z) € D(A) such that
(Id-A)U =F,
which is equivalent to

P—¢ = fi,

P19t + G (Y = @y) + p1pr + paz(x,1,1) = p1 fo,
Bw-9)-Bw-1), = f3,

283w =), =G —9) —DBw—-1),, + 001 =p2fy,

w-w = fs (3.9)
3p2wt+3G(¢_(Px)+4yw+4ﬁwt_3Dwxx = 3p2f61
Q—Qt :f7,

p39t - 66xx t+0o (3(0 - ¢) - ketxx = p3f8’
Tz(X,0,1) + 2, (x,0,1) = Tfo.
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The last equation in (3.9) and the fact that z(x,0) = ¢; (x,t), we get
P
z(x,p)=@(x)e" P —e " f + Te_Tpf e™ fo(x,s)ds,

0
B9, s, B35 and I, give

=¢-fi,
Bw-9),=CBw-9)-fs
=w-fs
0;,=0-f.

Inserting into (3.9),, (3-9)4, (3-9)s and (3.9)s, we get

(P1+p1+ 12" ) Q= GPu —GBw =), +3Gwy
=(p1+pm+p2e ") fi+p1fa—pore™” fol e’ fods,
(p2+G)Bw—-19)+ G, —3Gw-DBw—-1),, +00,
=p2(f3+ fa) + 00y f7,
@pz+4ﬁ+4y+9Gﬁv—3G(&v—¢)—3G¢x—3Da&X
=(3p2+4p) f5+3p2fe

939 - (5 + k)exx t0 (3C‘) - ’P)x =pP3 (f7 +f8) + O~axf3 - kaxxf7-

(3.10)

(3.11)

(3.12)

Multiplying the forth equation of system (3.12) by ¢, (3(?) - yb),cf) and 0 respec-

tively, and integrating over (0, 1), we arrive

1 1 1 -
(p1+p1+ ,uze_T)fO ePdx + GIO QxPxdx — Gfo (Bw—1), pdx
1 S T 1, .
+3Gf0 W, Pdx = (p1 + 1 + ppe T)jo fipdx+p; fo frpdx
—ppte " fol fol e fopdsdx,

(p2+G) [, Bw-) (3@ ¢)dx+Dj01 (Bw-p),(30-1) dx
+Gj01<px(3w $)dx-3G [j w (35) P)dx+o [} 0,(30-)dx
=02 Jy (f+ (30— 9)dx+ 0 [ 9cfr (30~ P)dx,

(3p2+ 4B +4y +9G) [, w@dx—3G [, (3w — ) ddx —3G [ p,@dx
1 - 1 - 1 -
+3D jo W D dx = (3p, + 4[5)f0 fswdx +3p, Io fewdx,

03 [ 00dx+(5+K) [} 6.0 dx+0 [} (3w 1), Odx
1 ~ 1 ~ 1 ~
=pP3 JO (f7 +f8)9dx+ GIO axf39dx—kf0 axxf79dx.

(3.13)
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The sum of the equations in (3.13)) gives the following variational formulation

e T . AT
B(((p,3w—gb,a),@)f,((p,%)—gb,a),@) ) = L(((p,3w—¢,w,9) ), (3.14)
V(@30 -, @,6) €HL(0,1)x Hy (0,1)x Hy (0,1)x H! (0,1),

where B : (H*1 (0,1)x HJ (0,1)x Hy (0,1) x H}! (O,l))2 —> R is the bilinear form
defined by

B((#,30-4,0,0)" (9,30~ ,.0)')
1
= fo [G W= @) (P = Px) + (1 + 1 + poe™) pp + 3Dy

+02(3w =) (30 -9)+ D (Bw—9), (30— ) +ps00
+(3pr+4B+4y)wd +0 (Bw—1), 0+ (5 +k)0,60,
+06x(3a~)—1ﬁ)]dx,

and L : (H*1 (O,1)><H& (O,l)xH& (0,1)x H! (0,1)) —> R is the linear functional

given by
qa 36 -1, ®,0) )
1
lpl"'//ll"'//lze ) 1P+ p1fap — pae TJ; e fopds
+02(f3+ f4) (3w—¢) U(axf7)(3a~)—‘p)+(3pz+4/3)f503
+3p2fo@+ p3 (fr + fs) 0 + 0 (O fs) 0 + k(3 fy) O | dx.
Now, for

V =H!0,1)x H} (0,1)x H} (0,1)x H} (0,1),
equipped with the norm
2 2 2
lo:30-1,0,0[, = [-p:-Bw-p)+30f; + gl +[|3w - 9),[|;
+lwxll5 + 1015 + 1104115 -

It is clear that B and L are bounded. Furthermore, using integration by parts,

we have
B((¢,30 -1, @,0)",(¢,30 -1, 0,0)")
1
= f [G(¢ — @)+ (1 + i+ e ) Q%+ p2 (3w —1)? + D (3w — )2
0
+(3p, + 4B + 4y) w? + 3Dw? + p30% + (5 + k) Gﬁ]dx
> m| Q3w -9, w,
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for some m Thus, B is coercive.

Hence, we assert that B(-,-) is a bilinear continuous coercive form on V x V,
and L(-) is a linear continuous form on V. Applying the Lax-Milgram theorem
[47]), we obtain that has a unique solution

(¢,3w0 -1, w,0) € H (0,1)x Hy (0,1)x Hy (0,1) x H} (0, 1).
The substitution of ¢,3w -1, w and 6O into yields
(@p, 3w, — Py, w4, 0,) € HY(0,1) x Hy (0,1) x Hy (0,1) x H} (0,1).
Next, it remains to show that

¢ € (H2(0,1)nH!(0,1)), (3w—z,b),we(Hz(o,l)mHg(o,l)),
0 € (H2(0,1)NH!(0,1)).

Furthermore, if (3@ - 4, ®,6) = (0,0,0) € Hy (0,1)xHy (0,1)xH/ (0,1), then (3.14

reduces to

B((¢,30 -1, @,0)",(¢,0,0,0)")

1
| -6 G010 Gpud+ 3G0up + o+ + o )
0
1
J

forall V¢ € H! (0,1),which implies

1
(p1+m +pae ") i +p1foP - ﬂzTe_Tf e“fgfpds] dx,
0

(3.15)

Gy = (pl+}41+}42€_T)(P+3wa—G(3w—¢)x
1
—(p1+p1+me ") fi—p1fa +V2T€_TJ e® fods. (3.16)
0

Consequently, by the regularity theory for the linear elliptic equations, it follows
that
@ eH?(0,1)nH!(0,1).

Moreover, (3.15) is also true for any ¢p € C'[0,1] € H} (0,1). Hence, we have
1 1
J Go, P dx+ J [(pl +pu+ e )e-GBw-1), +3CGw,
0 0

1
—(p1+m+me ) fi-p1fat I*zTe_Tf e”f9dsl ¢pdx =0,
0
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for all ¢ € C1[0,1]. Thus, using integration by parts and bearing in mind (3.16),

we obtain
Px (1) (1) = (0)$(0) =0, € C'[0,1].

Therefore, ¢, (0) = ¢, (1) = 0. Consequently, we obtain
@ eH?(0,1)nH!(0,1).
Similarly, we obtain

(Bw—1), we H*(0,1)NH}) (0,1).

Also, if we take (9,30 -, @) = (0,0,0) € H} (0,1) x H} (0,1) x Hj (0,1) in (3.14),
then using (3.9); and (3.9)7, we get

59xx + ketxx = pSQt - p3f8 to (36‘) - ll))tx’

and we conclude that
50 + k0, € H*(0,1).

Furthermore, it is obvious from

00, + kO = p3 J 0:dx —p3 J‘ fsdx+o (Bw—-1),,
0 0
that
(69x + ketx)(o) = (6636 + ketx)(l) =0,

then, we get
50 + k0, € H2(0,1).

Finally, it follows, from (3.10)), that
z(x,0) = ¢;(x) and z,z, € LZ((O, 1),L%(0, 1))

Hence, there exists a unique U € D (A) such that (3.14) is satisfied, the operator
Id — A is surjective. Moreover, it is easy to see that D (.A) is dense in H. Conse-

quently, the result of Theorem [3.1|follows from Lumer-Phillips theorem. O
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3.3 Exponential stability of solution

P1 _ P2

L
o = for
the solution of problem (3.4)-(3.5) decays exponentially to the study state. To

achieve our goal we use the perturbed energy method to produce a suitable

In this section, we show that, under the assumption |]42| < p; and

Lyapunov functional. We define the energy functional E () as

1 (!
EW =5 [ [piod+erGa-pi e300l 40307+ G
0
2 2 2 2 AT,
+D(Bw - 1), +4yw” +3Dwy + 00 +7 z°(x,p,t)ds|dx.
0
If the wave speeds are equal, we have the following exponentially stable result.

Theorem 3.2. Assume that p_G1 = % and holds. Let U° € H, then there exists
positive constants cg, c; such that the energy E (t) associated with problem ({3.4)-(3.5)
satisfies

E(t) <cpe !, t>0.

To prove our this result, we will state and prove some useful lemmas in ad-

vance.

Lemma 3.3. Let (@, ¢, w,0,z2) be the solution of (3.4)-(3.5) with (3.7). Then the

energy functional satisfies

1 1 1 1
iE(t) < —4/3J wfdx—kj Qtzxdx—le <p3dx-c2J 2% (x,1,t)dx
dt 0 0 0 0
0,

IA

where

C]ZPI]—%—@ZO , szi—w>0.

Proof. First, multiplying (3.4); by ¢;, integrating over (0, 1), using integration
by parts and the boundary conditions in (3.5)), we have

4 (L 12d -G l(— ) yd
ar\ 2P ) eidx 04) Px) Prcdx

1 1
= —Iﬁj @?dx—ﬂzf Piz(x,1,t)dx, (3.17)
0 0
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note that

1
—Gf (- @) (— P — ), dx
0

il 1 1 ) 1
—(——GJ; (¥ —¢y) dX)+G_[0 (Y — @x) Prdx.

1
GJO (§ - 02) pradx

dt\ 2

Hence, equation (3.17)) becomes

1d 1 1 )
Zdt(m_f <Pth+GJ (%= px) dx)
1 1 1
. GL <¢—<px>¢tdx—mfo §0t2dx—l42J; ez(olt)dx.  (3.18)

Similarly, multiplying (3.4), (3.4)s, (3-4)4 by 3w - ¢),, 3w, 6, and integrating
over (0,1), using integration by parts and the boundary conditions in (3.5), we

can get

1
- GL <¢—(px><3w—¢>tdx—o~f0 0, Bw-p)dx,  (3.19)

14 1 1 1
——(3p2J a)fdx+4yj a)zdx+3Dj a),%dx)

1 1
= —3GJ; (gb—(px)a)tdx—ﬁlﬁJ; a)tzdx, (3.20)

1 1 1 1
%%(pgf 9?dx+5f egdx):af (3w—1p)t9txdx—kf 02.dx.  (3.21)
0 0 0 0

Now, multiplying (3.4)s, by %z and integrating over (0,1) x (0, 1), using integra-

tion by parts and the boundary conditions in (3.5), we can get

2dt_f j (x,p,t dpdx———f (x,1,¢)— )dx. (3.22)
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Finally, adding (3.18)), (3.19), (3.20), (3.21) and (3.22), we obtain

1 1
[plf dx+GJ (gb—(px)2dx+DJ (3cu—z,l))2dx
Zdt 0 X
1 1
+p2f (Bw— L/J)fdx+p3j 2dx+5J- 0 dx+4yf 2dx
0
1
+3p2f wtzdx+3Dj 2dx]+——f J (x,p,t)dpdx
0 0
1 1
= —4ﬁj wfdx—kj 2 dx— ylj pidx - ]/lzf Qiz(x,1,t)dx
0 0

At A (!
o . zz(x,l,t)dx+2—TJ; (ptzdx.

Meanwhile, using Young’s inequality, we have

1 1 1
—y2J gotz(x,l,t)dxswj gofdx+MJ- 22 (
0 2 Jo 2 Jo

d 2 A |ﬂ2| ! 2
EE < —4ﬁf dx kJ‘ 9 dx—[ﬂl—Z—T]J; (ptdx
(/\ Iml) f (010,
2t 2 0

using (3.7), we obtain the result. O

Hence,

Next, in order to construct a Lyapunov functional equivalent to the energy,
we will prove several lemmas with the purpose of creating negative counterparts

of the terms that appear in the energy.

Lemma 3.4. Let (¢,1, w, 0,2) be the solution of (3.4)-(3.5). Then the functional

1
I (t) := pZJ; Bw—-1)(Bw—-1),dx

satisfies the estimate

1

() < -= | Bw-1v) dx+p2J- (Bw-1)?d

0

NU

Q

2 rl
—J (1 —py) dx+—f 07dx, (3.23)
0

U
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Proof. Taking the derivative of I; (t) with respect to ¢, using (3.4), and integrat-
ing by parts, we get

1

1
0 - sz; <3w—¢>$dx+cf0 (4 02) (B — ) dx

1 1
—DJ (Bw—1)2dx+ aj 0, (3w — 1), dx.
0 0
Using Young’s and Poincaré inequalities, we arrive at ((3.23). [

Lemma 3.5. Let (¢, 1, w, 0,z) be the solution of (3.4)-(3.5). Then the functional

1
I, (t):= pZJ wwdx
0

satisfies the estimate

2 1 1 1 3G2 (! )
Ié(t)s——yf a)zdx—DJ a),zcdx+C3J- a)tzdx+—f (Y —q@y) dx, (3.24)
3" Jo 0 0 4y Jo

where
2

_ 38
C3—p2+ 37/

Proof. By differentiating I, with respect to t with respect to ¢, using (3.4)3; and

integrating by parts, we obtain

1 1 4 1 4 (!
L(t) = pzj a)tzdx—GJ (gb—(px)wdx——yf a)zdx——ﬁj wrwdx
0 0 3" Jo 3" Jo

1
—DJ w2dx.
0

Using Young’s inequality, we establish (3.24). O

Lemma 3.6. Let (¢,1, w,0,2) be the solution of (3.4)-(3.5). Then the functional

I3(t) := (32103.[0

satisfies the estimate

1

X 1
=), | 0:0.0dpdx=p20 | 030 -p)ax

1

, o 1 1
I(t) < —‘%L (3w—gb)fdx+eljo (gb—(px)zdx+C4(el)J; 02.dx

1
+51J; (Bw— )2 dx, (3.25)

for any €1 > 0, where

22 2.2 2 2.2
P3G~ 0°p;  p2k”  D7pj
C = .
e =0pst ot S e S T,
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Proof. Taking the derivative of I3(t) with respect to ¢, using (3.4),, (3.4)4 and
integrating by parts, we get

I5(t)

1 X
02 [ (6@ +D B0l =00 | 0,7, 1dyds
1 X
+p2J (3w—gb)tf |00,y + kOryx = 7 (30 = ), | dpdx
0 1 0 1
—6p2f0 Gxt(?)w—yb)dx—épzjo 0, (Bw —1),dx
1 X
= p3L ngjo 0, (y,t)dydx
1
+p2J (3a)—gb)t[59x+k9tx—0‘(3a)—z,b)t]dx
0
1 x
+p3J; [—G(px+D(3a)—gb)xx—06tx]J; O; (v, t)dydx

1 1
—6p2J O, (Bw —1)dx — 6p2J 0, (Bw—1),dx
0 0
1

1 X
= p3J; G(lp_(Px)L Gt(y,t)dydx—ész; Oy (3w —1)dx

X x=1

+ [Pa (—G§0 +D@Bw-19), - GQf)L 0: (3, t)dyl

x=0
1

1 1
+0p3j Gde—pzaJ (3w—1,b)t2dx+p2kf (3w — 1), Odx
0 0 0

1
—Dp3f 0; (3w - 1), dx.
0

Note that
1 d 1
[ ownay=1 [ omnay=o
0 0

then, by Young’s and Poincaré inequalities with ¢; > 0 to obtain (3.25). O

Lemma 3.7. Let (9,1, w,0,z) be the solution of problem (3.4)-(3.5). the functional

1
I(t):= J lp39t6 + gef +0(Bw-1), 9] dx
0

satisfies the estimate

1 1 1
Ii(t)s-éj 6,%dx+C5(ez)J Qtzdx+ezj (3w — )2 dx, (3.26)
0 0 0

for any £, > 0, where

02

Cs(ep) =p3+ I,
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Proof. By differentiating I, with respect to t, using (3.4), and integrating by

parts, we obtain

Iy (t)

1 1 1
J p36tt6dx+f p39t2dx+f %(Gxt6x+9x9xt)dx
0 0 0
1 1
+J 0(3w—¢)xt9dx+J o (Bw—1), 0,dx
0 0
1 1
= f [59xx+k6txx—a(3w—1,b)tx]6dx+J p307dx
0 0

1 1 1
—J k@xxtedx+J a(3w—¢)xt9dx+f o(Bw—1), 0,dx
0 0 0

1 1 1
f 50,,0dx + f p307dx + f o (Bw—1), 0,dx.
0 0 0
Using Young’s inequality with ¢, > 0, we establish (3.26). O

Lemma 3.8. Let (¢, 9, w,6,z) be the solution of (3.4)-(3.5). Then the functional

1 pl
B0 =0 [ B0l 9ies P [ G- ), s

0

satisfies the estimate

o (! P2 2
——J dx+ﬁ thdx+463f widx

(Pz+€3)J; (30~ ) dx+(ﬂ—pz)£<3w—¢>xt<ptdx

! 141 2 Dzl‘% ! 2
+€4J; (Bw— 1/1) dx+ZGZ j on dx+2G254J; z°(x,1,t)dx,
(3.27)

for any 3,64 > 0.

Proof. By differentiating I5 with respect to t, using (3.4), (3.4), and integrating
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by parts, we obtain

I5(1)

1 1
pzf <3w—¢>tt<<px—¢>dx+pzf (3w =), (@x— ), dx
0 0

Dpl

Dpl 1
0 0

1 1
— - | G- prars | Dol lpi- i
0 0

1 1
- [ outp-wrdxpr [ 30 (0 ) ax
0 0

D 1
+%f0 Bw= Py pidx=D [ (0=, (4= g, dx
_% (Bw-1), ¢, x_—f LZ(x,1,t)dx

1 1
— _ —_ 2 — —_
_ Gjo (s — ) dx of 01 (¢ - ) dx

o <3»w—¢>tzptdx+(ﬁ—pz)f1 (0= ) i

D
-% (3w ), sz-—f z(x1,t)dx.
Using Young’s inequality with €3, &4 > 0, we establish (3.27). O

Lemma 3.9. Let (9,1, w, 0,z) be the solution of (3.4)-(3.5). Then the functional

1 1
:f f e_zwzz(x,p,t)dpdx
0 Jo
satisfies the estimate

1 1 1 1
Ié(t)s—mj J zz(x,p,t)dpdx—gj 2% (x,1,t)dx + 1j p?dx,  (3.28)
0o Jo T Jo T

for any m,c > 0.

Proof. By differentiating I with respect to t, using (3.4)s and integrating by

parts, we obtain

1,1
—EJ J e_2sz(x,p,t)zp(x,p,t)dpdx
tJo Jo
1 1 1,1
—ZJ- J e‘hpzz(x,p,t)dpdx—lj J i(e_zwzz(x,p,t))dpdx
0o Jo 9p
1
—mJ J (x,p,t dpdx——f (x,l,t)dx+%f0 pidx.

This gives (3.28). O

Ig(1)

IA
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Proof. (of Theorem
G

To finalize the proof, we assume o = % and define a Lyapunov functional £

as follows
ﬁ(t) :=NE (t) + N1P1 (t) + F2 (t) +N3P3 (t) + P4 (t) + N5F5 (t) + F6 (t),

where N,Nj, N3, N5 are positive constants to be chosen properly later. Using
Cauchy-Schwarz inequality and the Poincare inequality, one can easily see that
all F;(t),1=1,2,3,4,5,6 are bounded by an expression with the existing terms
in the energy E (). This leads to the equivalence of £(¢) and E (¢). Gathering the

estimates in the previous lemmas and using

1 1
2 2
J O7dx < J- 0;,.dx,
0 0
we arrive at

) — ﬂl 1 ! 2 ! 2
L(t) < —|C(N———N5—— Q;dx—D | widx
! 0 0

2G2e,
[ 1 1
- 451\7—(:3—4—pz SU cufdx—éf 02dx
L 0 0
v _SN Cy(e1)Ns = Cs (€2) Ozwulezd
- -— € -Cs(&)— — X
_ D 1~ %“4\c]1 3 5\¢2 2G 5 0 tx

(G a2 3G2 !
- _fNS - BNl Y €1N3]J; (px—9)° dx

,D 1
— 3N1—€1N3—€2—€4N5]J\ (30) 11[)) dx—— J a)zdx
L 0

— PZ N3—p2N1 (p2+€3 NS]JA 3(() ¢)fdx

2
¢ D’ :
—[CoN + — N ,1,t)d
N+ T 2G2y J;) (. 11)
1 1
—m z? (x,p,t)dpdx. (3.29)

0o Jo
At this point, we choose our constants carefully. First, we take N; large enough

and ¢, small, such that

D
?Nl —&,>0.
Then, we choose N5 large enough, so that
G, o’ 3G2
—N5 - —N1 -—>0.

2 D 4y
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Next, we pick 5 small and choose N3 large enough such that

P20

> ~——N3 - poN; —(p2 +€3) N5 > 0.

Furthermore, we select €; and ¢4 so small that

G o? 3G? D
EN5—DN1—E—€1N3>O EN1—€1N3—82—€4N5>0.

Finally, we choose N so large such that

1
C\N - ZGfl Ns——>0, 4/5N—C3—4p2N5 >0,
G? o2
kN — 3Nl C4(€1)N3—C5(82)— ENS > 0.

From the above, we deduce that for some positive constants a;, a, one has
E(t) < L(t) < ayE(t).

Therefore, (3.29) becomes
L' (t) < —cE(t).

c
For ¢c; = —, we get
o

L' (t) < —c1L(t),Yt>0. (3.30)

A simple integration of (3.30) over (0, t) leads to
L(t) < L(0)e !Vt > 0.

It gives the desired result Theorem [3.2] when combined with the equivalence of
L (t) and E(t). O
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4.1 Presentation of the problem

In the present chapter, we consider a coupled system of a flexible structure with

Fourier’s type heat conduction and distributed delay. The system is written as

m(x)utt - (p(x)”x + 26(x)uxt)x + )/Qx T Holtt
+LT12 p(s)u; (x,t—s)ds =0, (4.1)

9t — GXX + yuxt = O,
where (x,t) € (0,L) X (0,+00), with the following initial and boundary conditions

u(x,0)=ug(x), us(x,0)=uq(x), 0(.,0)=0q(x), Vx €[0,L],
w(0,8) = u(L,t)=0, 0(0,t)=O(L,t)=0, ¥Vt >0, (4.2)
u (x,—t) = fo(x,t), 0<t<1,,

where u = u(x,t) is the displacement of a particle at position x € (0,L) and time
t >0. 6 =0(x,t) is the temperature difference and y is a constant known as
coupling coefficient. ug, uy, 0 are initial data, and f; is the history function. The
parameters m(x), 6(x) and p(x) is responsible for the non-uniform structure of
the body, where m(x) denote mass per unit length of structure, o(x) coefficient of
internal material damping and p(x) a positive function related to the stress act-
ing on the body at a point x. We recall the assumptions of the functions m(x), 0(x)

and p(x) in [3] such that
m,d,p € W1'°°(O,L), m(x),o(x),p(x) >0, Vxe[0,L]

The coefficients y is positive constants, and y: [11;7,] — R is a bounded func-
tion, where 7; and 7, are two real numbers satisfying 0 < 7 < 7,. Here, we prove
the well-posedness and stability results for problem on the following parameter,

under the assumption
T2
1o > j | (s)| ds. (4.3)
T

The rest of the chapter is organized as follows. In Section 4.2, we state and
prove the well-posedness of system (4.1)-(4.2) by using semigroup method and
Lumer-Phillips theorem. In Section 4.3, we establish an exponential stability by

using the perturbed energy method and construct some Lyapunov functionals.
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4.2 Well-posedness of the problem

In this section, we prove the existence and uniqueness of solutions for (4.1))-(4.2)

using the semigroup theory [47]. As in [45], we introduce the new variable
z(x,p,t,8) = u;(x,t —ps), xe(0,L),p€(0,1),s € (11,73),t>0. (4.4)
It is straight forward to check that z satisfies
sz1(x,0,1,5) +zp(x,p,1,5) = 0in (0,L) x (0,1) x (0, 00) X (11, 72). (4.5)
Therefore, problem takes the form

m(x)”tt - (p(x)ux + 26(x)uxt)x + )/Qx + Mol
+LT12 u(s)z(x,1,t,5)ds = 0,

(4.6)
01— Oxx + Yy =0,
szi(x,p,t,8) + zp(x, p,t,5) =0,
with the following initial and boundary conditions
u(x,0) =ug(x), us(x,0)=uy (x), 6(.,0)=0¢(x), Yx €[0,L],
0,t)=u(L,t)=0, 6(0,t)=0(L,t)=0, Vt >0,
u(0,6)=u(L,t)=0,0(0,1) =0 (L) )

z(x,0,t,8) = u; (x,t) on (0,L) x (0,00) X (71, T3),

z(x,p,0,5) = fo(x,ps) on (0,L) x(0,1) x (11, 73).

Introducing the vector function U = (1,v,0,z)" , where v = u,, system 1)1}

can be written as

du(t)
T =AU (t), t>0, (4.8)

U (0) = Ug = (ug, 11,00, fo)7,

where the operator A is defined by

v

1
AU =| "™

(P(x)ity +25(x)vy) = y O = pov = [, puls)z(x, 1,1,5)ds

Qxx - va

—5_12

p

Let
H =H} (0,L)x L?(0,L) x L? (0,L) x L*((0,L) x (0, 1) x (11, T5)),
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be the Hilbert space equipped with the inner product
N L L L
<U, U>H = J p(x)u, i, dx + J m(x )v'v”dx+f 00dx
0

fj,[ s|u(s)|z(x, p,5)Z(x, p, ) dsdpdx.

Then, the domain of A is given by

UeH|u6eH?(0,L)nH;(0,L), veH)(0,L),
D(A)=1 p(x)u,+25(x)v, € H(0,L), O, +yv e H(0,L),
2,2, € L*((0,L) x (0,1) x (11, 72)), 2(x,0,5) = v (x)

Clearly, D (.A) is dense in H.

We have the following existence and uniqueness result.

Theorem 4.1. Assume that Uy € H and holds, then problem exists a
unique solution U € C (R*; H). Moreover, if Uy € D (A), then

UeC(R;D(A)NCHRY;H).

Proof. We use the semigroup approach to prove that 4 is a maximal monotone
operator, which means A is dissipative and Id — A is surjective. First, we prove
that A is dissipative. For any U = (4, 7,0, 2)T e D(A), by using the inner product

and integrating by parts, we obtain

(AU,UY; = —2JL5( v 2dx—(y0—lrz| )|ds)J;Lv2dx
f de——f j 2(x,1,s)dsdx
f f 2(x,1,t,5)dsdx. (4.9)

Using Young’s inequality, the last term in (4.9)), we can estimate

J J )z(x,1,t,s)dsdx
< EL |y(s)|dsj vZdx+ = JJ 2(x,1,s)dsdx.  (4.10)

Substituting (4.10) in (4.9), and using (4.3)), we obtain

L 7 L L
—2J 61(x)v§dx—(y0—J‘ |y(s)|ds)f vzdx—j 02dx
0 7 0 0

0.

IA

(AU, U)y

IA
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Hence, A is a dissipative operator.

Next, we prove that the operator Id— A is surjective.

Given F = (fl,fz,f3,f4)T € 'H, we prove that there exists U = (u,v,0, z)T €
D (A) satisfying
(Id—A)U =F, (4.11)
that is
u-—-v= fl'
(m.(x) + o) v = (p(x)1u + 25(x)ve)o + ¥Ox + [ pls)z(x, 1,1,5)ds
= m(x) f> (4.12)
0 -0 +yvy = f3,
Sz+2z, = Sfy.
Suppose that we have found u. Then, equation (4.12), yield
v=u-fi, (4.13)
it is clear that v € Hé (0,L).
Equation (4.12)4 with (4.13) and recall z(x,0,¢,s) = v yield
p
z(x,p,8) =u(x)e P — fi(x)e P + se‘psf falx, T,5)edr, (4.14)
0

clearly, z,z, € L*((0,L) x (0,1) x (11, 73)). Inserting (4.13) and (4.14) into (4.12),,
and inserting (4.13)) into (4.12))3, we get

Mt = (p(x)iy +20(x)vy)x + Y 0x = g1,
Oy +0+yu, =g, (4.15)
Uy —VUx = &3,
where
M= m(x)+po+ [ p(s)eds,
g1=mfitm(x)fr— f:lz Se_sy(S)fol falx,T,5)e™dtds,
& =f3+7fio
83 = fix-
The variational formulation corresponding to Equation takes the form

B((u,e)T,(ﬁ,é)T):G(a,é)T, (4.16)
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2
where B : [H& (0,L)x L? (O,L)] — R is the bilinear form given by

B((u, Q)T, (ﬁ, é)T) = m JOL uiidx + LL(p(x) +20(x))uy i dx

L L L _
+7/j Gxﬁdx+f 6x6xdx+J 00dx
0 0 0

L —~
+yj u,0dx,
0

and G: [H& (0,L)x L? (O,L)] —> R is the linear form defined by

L

L L
G(U,g)T:J glﬁdx+f gzgdx+J 25(x)g3ildx.
0 0 0

Now, we introduce the Hilbert space V = H; (0,L) x L?(0,L), equipped with the
norm

2 2 2 2 2
(24, O)IIy = Nually + llaell2 + 10117 + 1615 -

It is clear that B(.,.) and G(.) are bounded. Furthermore, we can obtain that

there exists a positive constant k such that

L L
T T _ 2 2
B((w,0)",(1,0)7) = quo " dx+J; (p(x) + 25(x))udx

L L
+J 0%dx + J 02dx,
0 0

> (w03,

which implies that B(.,.) is coercive. Consequently, by the Lax-Milgram theo-
rem, problem has a unique solution (u,0) € H& (0,L)x L?(0,L). Applying
the classical elliptic regularity, it follows from (4.15) that (1, 0) € (H& (0,L) N H?(0, L))z.
Hence, there exists a unique U = (u, v, G,Z)T € D(.A) such that 1) is satisfied,
the operator Id— A is surjective. At last, the result of Theorem follows from

the Lumer-Phillips theorem. [

4.3 Exponential stability of solution

In this section, we prove the exponential decay for system (4.6)-(4.7). It will be
achieved by using the perturbed energy method. We define the energy func-
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tional E (t) as
L
E(t) = %J [m(x)ut2+p(x)u§+92]dx
0

1 L 1 Ty
+—f f J s|;4(s)|22(x,p,t,s)dsdpdx. (4.17)
2 0 0 T

We have the following exponentially stable result.

Theorem 4.2. Let (u,v,0,z) be the solution of (4.6)-(4.7) and assume holds.

Then there exists positive constants Ay and Ay such that the energy E (t) satisfies
E(t) < Age” M, t> 0. (4.18)
To prove our this result, we will state some useful lemmas in advance.

Lemma 4.3. (Poincaré-type Scheeffer’s inequality, [39]]): Let h € H&(O,L). Then

it holds
L Lz L
h?dx< = | |h|*dx. (4.19)
2
0 ™ Jo

Lemma 4.4. (Mean value theorem, [3]): Let (u,v,0,z) be the solution to system
(4.1)-(4.2), with an initial datum in D(A). Then, for any t > 0, there exists a se-
quence of real numbers (depending on t), denoted by C; € [0,L](i = 1,...,6), such that

AL L L L
p@dr=p(@y) | udr, | mixuddr=mcy) | utax,

Jo 0 0 0

~L L L L
m(x)uzdx:m(C3)J u’dx, j 6(x)u2dx:5(C4)J u’dx,

Jo 0 0 0

rL L

6(x)u§dx = 6(C5)j

L L
uldx, J o(x)uZ,dx = 5(C6)J uZ,dx.
Jo 0 0 0

Lemma 4.5. Let (u,v,0,z) be the solution of (4.6)-(4.7) and assume holds.
Then the energy functional defined by (4.17), satisfies the estimate

L L o L
E’(t)S—ZJ 6(x)u§tdx—J Gfdx—(yo—J |y(s)|ds)f u?dx <0, (4.20)
0 0 T 0

1

forall t > 0.

Proof. A simple multiplication of Equations (4.6); and (4.6), by u; and 0, respec-

tively, and integrating over (0,L), using integration by parts and the boundary
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conditions in (4.7)), we get

2dtf [m x)u? +p(x)u? +62]dx

L L
= —ZJ o (x)uzdx— J Qidx—,uof uldx
0
f utf z(x,1,t,s)dsdx. (4.21)

On the other hand, multiplying 1} by | H(s)
(0,L)x (0,1) x (71, 7,), and recall that z(x,0,t,s) = u,, yleld

2dtf J f |/u 2% (x,p,t,5)dsdpdx
= __J J 2(x,1,t,5)dsdx + = J utf (s)|dsdx. (4.22)

A combination of (4.21) and (4.22) gives

E'(t) = —2J‘L6( yu2,dx - J‘Lefdx—(,uo—%J;T2|y(s)|ds)J;Lut2dx
——f J 2(x,1,t,5)dsdx
J utJ z(x,1,t,s)dsdx. (4.23)

Now, using Young’s inequality, the last term in (4.23) and using (4.3)) give (4.20),
which concludes the proof. O

Before defining a Lyapunov functional, we need some lemmas as follows.

Lemma 4.6. Let (u,v,0,z) be the solution of (4.6)-(4.7). Then the functions

L L
Il(t)::fo 6(x)u£’dx+J; m (x) uudx, (4.24)

satisfies, for all €1,¢;,,€3 > 0, the estimate

L2y? 12¢ L L
I[(t) < —(p(C1)— 2”0 7/62——23)J‘ uldx + Vf 0%dx
0

1
+(m(C2)+2—gl)f dx+4€3J J |z (x,1,t,5)dsdx.

(4.25)
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Proof. By differentiating I; (t) with respect to ¢, using (4.7); and integrating by

parts, we obtain

L L L
I[(t) = —J p(x)udx - ”OJ utudx+yf Ou,dx
0

L
j J z(x, 1, ts)dsdx+J m(x)u’dx.
0

By using Young'’s inequality, lemma [5.3|and (4.3)), we get for &1, ¢5,63>0

L L2l‘% t 42 1 t 2
_MOJ(; usudx < 2 le; cdx+ 2_51 ufdx, (4.26)
L L y L
yj Ou,dx < yezf 2dx+ j 6%dx, (4.27)
0 0 €2 Jo
J. J (x,1,s,t)dsdx
& uldx + 10 j J (x,1,1,5)dsdx. (4.28)
7(2 483 ! )

Consequently, using lemma 5.4} (4.26)), (4.27) and (4.28), we establish (4.25).

Lemma 4.7. Let (u,v,0,z) be the solution of (4.6)-(4.7). Then the functions

J J f se 5P I/,t x,p,t s)dsdpdx, (4.29)

satisfies, for some positive constant ny, the estimate

_nlj J J |;/L x,p,ts)dsdpdx
L

—nlj J 2(x,1, ts)dsdx+,qu- ufdx. (4.30)
0

Proof. By differentiating I, (t) with respect to t, and using the equation (4.6);,

L 1 (%)
L(t) = —2J f f e_SP|y(s)|z(x,p,t,s)zp(x,p,t,s)dsdpdx
= J J J 5p|y x p,t,s)dsdpdx
J J J se 5P |/,t x,p,t s)dsdpdx.

we obtain
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Hence

L (%)
—J f |u(s)|[e 2% (x,1,1,5) — 2%(x, 0, 1,5)|dsdx
T
J J J se Sp|;4 2(x,p, t,5)dsdpdx.

Using the fact that z(x,0,t,5) = u; and e™* <e™*P < 1, for all p € [0, 1], we obtain

Ty L
J J 2(x,1, ts)dsdx+J |y(s)|dsf uldx
71 1 0
f j j se 59|/4 2(x,p, t,8)dsdpdx.

Because —e~* is an increasing function, we have —e™* < -7, for all s € [1, 15].

Finally, setting n; = e™™ and recalling (4.3), we obtain (4.30). O

Now, we define a Lyapunov functional L and show that it is equivalent to the

energy functional E.

Lemma 4.8. Let N,N, > 0, the functional defined by

L(t):=NE(t)+1(t)+ NyI(¢). (4.31)
For two positive constants a and , we have

aE(t) <L(t)<BE(t),Vt>0. (4.32)

Proof. Now, let

Then

L L
IL(H)] < Joé(x)ufdx+J; m (x) |uyu|dx

L 1 T,
+N2j J f S|ﬂ(5)e_sp|zz(x, 0,5, t)dsdpdx,
0 Jo Jr

Exploiting Cauchy-Schwarz inequality, lemma lemma (4.17) and the
fact that e™*? <1 for all p € [0, 1], we obtain

IL(t)] < coE(t),
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where

L*m(C3) | 26(Cs)

=1+ +
0 @) @)
Consequently, |L(t) — NE(t)| < coE(t), which yields

+ 2N2

(N —co)E(t) < L(t) < (N +c¢g) E(t).
Choosing N large enough, we obtain estimate (4.32). O

Now, we prove our main result in this section.

Proof. (Of Theorem
By differentiating (4.31)) and recalling (4.20)), (4.25) and (4.30), we obtain

Ty 1 L
L'(t) < _l(ﬂo_J |,u(5)|ds)N—(m(C2)+g)—,uoNzlJ utzdx

T 1 0

L2 2 LZ L
—[(P(Cl)— : —YyE&r—— )lf uZdx - NJ O7dx

L

—ZNJ‘ o(x uxtdx nlsz J- J- |y x p,t,s)dsdpdx
+£J; 0 dx—[n1N2—4—€3]J J 2(x,1,t,5)dsdx,

using lemma|[5.3|and lemma[5.4] gives

, [ L? 1\ L? L
L'(t) < —-WN—H—( (C2)+2—€1)—£N2]J0 updx

_ (p(cl)_—ﬂzoel_ygz__2£3)lf uldx
T 0
- nlNQ——lJ f 2(x,1,t,5)dsdx
483
_nlsz J J |y 2(x, p,t,s)dsdpdx
1

(N— Ljy )L 02dx, (4.33)

€&y

L? 2
0= ?(ﬂo —J |/u(s)|ds)+25((:6) >0

1

where

At this point, we need to choose our constants Very carefully. First, we choose

U 1 P‘o L? p(Cy)
2L2M2P(C1)and € <7 ZP(CI)SO thatP(Cl)—z—nz — 28>

& <
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Next, we select N, large enough so that n;N, — :T? > 0.
3
p(Cy)
2

Then, we choose ¢, small enough, satisfies —yer > 0.

Finally, we then choose N large enough so that

L? 1 L? L?
N-Z(m@)+—|-=EN, 50, N-=L >0,
1 72 26, 72

By (4.17), we deduce that there exist positive constant ¢; such that (4.33) be-
comes

L' (t) < —cE(t), Yt >0, (4.34)

using (4.32), we have
L'(t)<-A{L(t), Yt >0, (4.35)

where 1, = ‘o Then, a simple integration of (4.35) over (0, t) leads to

L(t)<L(0)e M, Vi > 0. (4.36)

E(0
Combining (4.32) and (4.36) we obtain (4.18) with Ay = ﬁT(). Hence, the proof

is complete. O
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5.1 Presentation of the problem

In the present chapter, we consider the coupled flexible structure system with

distributed delay in the two equations (See [12]]). The system is written as

i ()1t = (P1 () ik + 201 ()it )+ oty + [* p () (x, £ =) ds = 0, _
My (xX) Vi = (P2(X)Vy + 202(X)Vs)x + poVs + L? Ha(s)ve (x,t —s)ds =0,

where (x,t) € (0,L) x (0, +00), with the following initial and boundary conditions:

(,0) =uo(x), us(,0)=uy (x), ¥x€[0,L]
u(0,t)=u(L,t)=0, Vt >0,
(-
(

NS

<

,0) =v(x), v:(,0) =v(x), Yx€[0,L]
0,t)=v(L, ) 0, Vit >0,
uy (x,—t) = fo(x,t), 0<t<1y,

(

(x,t), 0<t<T,,

(5.2)

<

v (x,—t)

where u = u(x,t), v = v(x,t) are the displacements of a particle at position
x € (0,L) and time t > 0. u(, v, are initial data, and fj, gy are the history func-
tion. The parameters m;(x), 6;(x) and p;(x) (for i = 1,2) are responsible for the
non-uniform structure of the body, where m;(x) denote mass per unit length
of structure, 6;(x) coefficient of internal material damping and p;(x) a positive
function related to the stress acting on the body at a point x. We recall the as-

sumptions of the functions m;(x), 9;(x) and p;(x) in [3] such that:
m;, 8;,pi € W(0,L), m;(x),0;(x),pi(x) >0, VYxe[0,L], fori=1,2.

The coefficients g, i, are positive constants, and py, 5 : [71;7,] — Ris a bounded
function, where 7; and 7, are two real numbers satisfying 0 < 1; < 7,. Here, we
prove the well-posedness and stability results for problem on the following pa-

rameter, under the assumption:

Mo > L? |11 (s)| s, (5.3)

Ho> [ |z (s)] ds. '
The rest of the chapter is organized as follows. In Section 5.2, we state and prove
the well-posedness of system (5.1))-(5.2) by using semigroup method. In Section
5.3, we establish an exponential stability by using the perturbed energy method

and construct some Lyapunov functionals.
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5.2 Well-posedness of the problem

In this section, we give a brief idea about the existence and uniqueness of solu-
tions for (5.1)-(5.2) using the semigroup theory [47]. We introduce as in [45] the

new variable
z1(x,p,t,5) =us (x,t —ps), x€(0,L),p€(0,1),s €(1y,72),t > 0. (5.4)

zy(x,p,t,8) =vi(x,t—ps), x€(0,L),pe(0,1),5s € (11, 72),t>0. (5.5)

Then, we have
szit(x,p,1,8) + Zjp(x,p,£,5) = 0in (0,L) % (0,1) x (0,00) X (11, 73), for i =1,2. (5.6)
Therefore, problem ([5.1) takes the form

1 ()it = (p1 (%)t + 201 ()it )+ oty + [ * p(8)z1 (x,1,1,8)ds = 0,
sz1(x, 0, 1,5) + z15(x, 0, t,5) = 0,

! (5.7)
My (X)vs — (P2(X)Vy + 202 (X)Vxt ) + povs + LTIZ H2(8)z2(x,1,t,5)ds = 0,
szpi(x,p,t,5) + zzp(x, p,t,8) =0,
with the following initial and boundary conditions
u(.,0)=uy(x), us(.,0)=uy(x), Yxe€[0,L]
u(0,t)=u(L,t)=0, Vt >0,
v(.,0) =vo(x), v4(.,0)=v;(x), Vx€[0,L],
0,t)=v(L,t)=0, Vt >0,
V(0.0 =v(L1) 58
21 (x,0,t,5) = u; (x,t) on (0,L) x (0,00) X (11, 72),
23 (x,0,1,5) = v (x,£) on (0,L) % (0,00) X (1, 72),
21 (X P:O 5) fO(xlps) (0 L)X(O,l)X(Tl,TZ),
23 (x,0,0,5) = go (x,ps) on (0,L)x (0,1) x (71, 75)

Introducing the vector function U = (u, ¢, 2;,v,1,2,)" , where ¢ = u; and ¢ = v;,

system (5.7)-(5.8) can be written as

AU (1)
dt
U (0) = Ug = (g, 41, fo,v0,v1,80) 7

+ AU (t)=0, t>0,
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where the operator A is defined by

s (D1 () + 281 (X)) +

AU =

_mzl(x) (pZ(x)vx + 262(x)lpx)x +

Next, we define the energy space as

H = H}(0,L)xL*(0,L)x

xH; (0,L) x L*(0,L)

equipped with the inner product
(U.0), =

J
L

J

Then, the domain of A is given by

UeH|u,veH*(0,L
D(A) =

L
f p1(x)uy s dx + J
0 0

rL 1 Ty
+ J J‘ s |;41 (s)|zl (x,0,5)z1 (x,p,5)dsdpdx
0 0 T

-¢
T
m’:?x) (P + mll(x) J:rlz M1 (S)Zl ('xl ]-; t, S)dS
S_lzlp
—1p
0 T
ml;?x) l)b + mzl(X) Irlz ”2(5)22 (X, 1,t, S)dS

57125,

L*((0,L) % (0,1) x (1, 72))
x L2((0,L) x (0,1) X (11, 13)),

L
my(x)ppdx

L o~
+ pz<x>vx’zfxdx+j o (x) i
0 0

rL 1 Ty
+ J J S |;42 (s)|22 (x,0,5)22(x,p,5)dsdpdx.
0 0 T

)NH}(0,L), ¢, € Hy (0,L),

Zl,le, 27, ZQP c L2 ((O, L) X (0, 1) X (Tl, Tz)),

21 (x,0,8) = ¢ (x),22(x,0,5) = ¥ (x)

Clearly, D (.A) is dense in H.

The well-posedness of problem (5.9) is ensured by

Theorem 5.1. Assume that Uy € H and holds, then problem exists a

unique solution U € C (R*; H). Moreover,

if Uy € D(A), then

UeC(R;D(A)NCHRY;H).
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Proof. The result follows from Lumer-Phillips theorem provided we prove that
A:D(A) - H is a maximal monotone operator. First, we prove that .A is mono-
tone. For any U = (u,,z1,v,1, 2,)" € D(A), by using the inner product and

integrating by parts, we obtain

(AU, Uy = ZJ. dx+f J p1(s)zy(x,1,t,5)dsdx
+I*0J <P2dx+f J |;41 |21 (x,0,5)21p (x, p,5)dsdpdx
0 0 J

Ty
L L
+2J 52(x)z,b§dx+ z,bj Ua(s)zo(x,1,t,5)dsdx
0 JO 1

0
L L rl 1
+146j ¢2dx+f J |I42(S)|Zz(x,p,5)zzp(x,p,s)dsdpdx,
0 o Jo Jog
(5.10)

Integrating by parts in p, we have

L Ty 1
J J J |i (s)| 2i (x, p,5) zip (x, 0, 5) dpd sdx
0 (51 0
1 L Ty
EJ j |yi (s)”zl2 (x,l,s)—zi2 (x, O,S)]dsdx, fori=1,2.

Using the fact that z; (x,0,s,t) = ¢ and 2z, (x,0,s,t) = ¢, we obtain

(AU, Uy = ZJ 2dx+J f p1(s)zy(x,1,t,5)dsdx

Ty A
J J pi(s z1 (x,1,s)dsdx
+2f 62(x)1,b§dx+f ¢J 12(5)22(x, 1,1, 5)dsdx
0 0 T
, 1 Ty L 5
+(I‘o—§j |#2(S)|ds)f Ppdx
T 0
1 L (%)
+§J j |y2(s)|z§(x,l,s)dsdx. (5.11)
0 T

Now, using Young’s inequality, we can estimate

J‘ J u1(s)z1(x,1,t,5)dsdx
J |]/l1 |dsj 2dx——fj |;41 z1 (x,1,s)dsdx, (5.12)

\%
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and

J ¢j Ha(8)za(x,1,t,5)dsdx
__J- |12 (5) |d5f ) dx——f f |12 ()| 23 (x,1,5)dsdx.  (5.13)

Substituting (5.12) and (5.13) in (5.11), and using (5.3)), we obtain
L (%) L
(AU Uy > 2 [ oiteiptaxs (ﬂo [ ds)fo pPdx
1

L T, L
+2J; 85(x) §dx+(,4g)—f |y2(s)|ds)J; P2dx

> 0.

Hence, A is monotone. Next, we prove that the operator I+ A is surjective, that
is, for any F = (fl,fz,f3,f4,f5,f6)T € H, there exists U = (u, @, z1,v, 9, zz)T e D(A)
satisfying

(I+A)U=F (5.14)

which is equivalent to

u—@=fi,

(1 (x) + o) @ = (P1 ()1t + 261 (X)) + [ pr(s)z1(x, L, 1,5)ds = my (x) fo,
21 +21p = Sf3,

V=P =fy

(112 () + 15 ) = (Pa(X)vy + 205 (Vi) + [ pia(s)2a(x, 1,1, 5)ds = s (x) f,

$23 + 23 = Sfe-

(5.15)
Suppose that we have found u and v. Then, equations (5.15); and (5.15))4 yield
{ p=u-f (5.16)

p=v-fs

It is clear that @ € H1 (0,L) and ¢ € H1 (0,L). Equatlons 3 and 6 with
6) and recall z; (x,0,t,5) = @, 25 (x,0,t,5) = ¥ yield

P
z1(x,p,8) = u(x —filx)e P +se ™ | f3(x,7,s)e"dr, (5.17)
JO
and )
-
2y (x,0,8) =v(x)e P = fy(x)e P +se7 P | fe(x,7,5)e"d. (5.18)
JO
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Clearly, z1, 21,2, 22 € L?((0,L) % (0, 1) (Tl,’(z Inserting 5.161 and (D into

(5.15),, and inserting (5.16), and (5.18) into (5.15)5, we get

Mu = (p1(x)uy + 201 (X)Px)x = &1
12V — (P2(x)vx + 262(x) by )x = &2,
Uy = Px = &3/
Uy — Py = 8u,

(5.19)

where
T
= my (x)+ po + le pi(s)e~*ds,
Hp = my (X) + py + L:z Ha(s)e~3ds,

g1 =mfi+m(x)fr— L? spy(s)e fo f3(x,T,s)e"dds,
8 =Nafa+my(x)f5— L? Spa(s)e fo fe(x,T,s)e"drds,
93 = fiv
84 = fax-

The variational formulation corresponding to Equation (5.19) takes the form

B((wv)" (@) )= G@n)', (5.20)

where

B:[Hy (0,L) x Hy (o,L)]2 —R

is the bilinear form given by

B @) = |

0

L L
uiidx + f (p1(x)+ 201 (x))u il dx
0

L L
+172J m?dx+f (p2(x) +20,(x))vy v, dx,
0 0

and

G:[H} (0,L)x Hy (0,L)] — R

is the linear form defined by

L L L L
G(iI,i/‘)T: ; glﬂdx+JO gzﬁdx+JO 261(x)g311xdx+f0 205(x)g4V dx.

Now, we introduce the Hilbert space V = H; (0,L) x H; (0,L), equipped with the

norm

2 2 2 2 2
16, 0)lly = Nluelly + loaells + 1112 + [lvsll -
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It is clear that B(.,.) and G(.) are bounded. Furthermore, we can obtain that

there exists a positive constant a such that

B((u,v)T,(u,v)T)
L L L L
= qlJ; ude+L (pl(x)+261(x))u§dx+172J; vzdx+j0 (p2(x) + 26, (x))v2dx
> all(u,v)ly.

Which implies that B(.,.) is coercive.

Consequently, applying the Lax-Milgram lemma, we obtain that has a
unique solution (u,v)T eV.

Then, by substituting u, v into , we obtain

@, € Hy(0,L).
Next, it remains to show that
u,v e H*(0,L)N H} (0,L).

Furthermore, if v=0 € Hé (0,L), then 1} reduces to

[t 2n = [ ais- [ 20w, adxn [ s
for all w in H& (0,L), which implies
[(p1(x) + 261 ()], = 111 = g1 +2(81(x)83), € L* (0, L).
Thus, by the L2 theory for the linear elliptic equations, we obtain that
ueH?*(0,L)NnH, (0,L).
By a similar way, we have
veH*(0,L)nH, (0,L).

Finally, the application of the classical regularity theory for the linear elliptic
equations guarantees the existence of unique solution U € D(A) which satisfies
. Therefore, the operator A is maximal.

Hence, the result of Theorem [5.1] follows. []
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5.3 Exponential stability of solution

In this section, we prove the exponential decay for problem (5.7)-(5.8). It will
be achieved by using the perturbed energy method. We define the energy func-
tional E (t) as

E(t)=E; (t)+ Ey (1),
Ey(t) = %JOL[ml (x)u? + py (x) ]dx+ zjo Io *s|p1 (s)| 25 (x, . 2, t) dsdpdyx,

t) = %JOL[mz(X)“tZﬂLPz (x) ]dx+ 2f0 Io |/u2 s) |z§ (x,0,2,t)dsdpdx.
(5.21)

(
(

T

2

We have the following exponentially stable result.

Theorem 5.2. Let (u,14,21,v,vy,2;) be the solution of (5.7)-(5.8) and assume

holds. Then there exists positive constants Ay and Ay such that the energy E (t) asso-
ciated with problem ((5.7)-(5.8) satisfies

E(t) < Age M, t> 0. (5.22)

To prove our this result, we will state and prove some useful lemmas in ad-

vance.

Lemma 5.3. (Poincaré-type Scheeffer’s inequality, [39]]): Let h € H&(O,L). Then

it holds
L Lz L
h?dx < = | |h|*dx. (5.23)
2
0 ™ Jo

Lemma 5.4. (Mean value theorem, [3|]): Let (u,u;,v,v;) be the solution to system
(5.1)-(5.2), with an initial datum in D(A). Then, for any t > 0, there exists a se-
quence of real numbers (depending on t), denoted by C;,&; € [0,L](i = 1,...,6), such
that:

~L L L L
p1 (X)”;%dxzpl(Q)J‘ uzdx, f my (x)“tzdxzml(cz)f ufdx,
JO 0 0 0
~L L L L
ml(x)uzdx:ml(Cg,)f u?dx, J 01 (x)uzdxzél(C4)f u’dx,
JO 0 0 0
~L L L L
o1 (uddx=oy(cs) [ uldx, | oi(uddr=0.(Co | ua
JO 0 0 0
~L L L L
polevids=pa(er) | wldx, [ vidx=ma(e) | vl
JO 0 0 0
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L

L L L
J mz(x)vzdx:mZ(Eg;)J v2dx, J 52(x)v2dx:62(cf4)f v2dx,
0 0 0 0

L L L L
f 62<x>v£dx=62<és>f v2dx, J 6z<x>v§tdx=62<é6>j v2,dx.
0 0 0 0

Lemma 5.5. Let (u,1y,2,v,v4,2;) be the solution of (5.7)-(5.8). Then the energy

functional satisfies
E’(t)=E{(t)+E;(t) <0, Vt>0,
E[(6) <2 "o, (x)uddx+ (jjf 1 (5)] ds - yO)IOL uldx <0, (5.24)
E)(t) < —2IOL 5y (x)v2,dx + (L? |y2 (s)| ds — /"E))I()L vZdx < 0.

Proof. Multiplying (5.7); and (5.7)3 by u; and v;, respectively, and integrating
over (0,L), using integration by parts and the boundary conditions in (5.8)), we
get

Zdtj [ml X)u? +pq (x 2]dx

L L (%)
= —ZJ 01 (x)uftdx—yoj ufdx—j utJ‘ p1(s)z1(x,1,t,5)dsdx,
0 0 0 7

(5.25)

%dij [mz X)v? +py(x ]dx

L (%)
= —2J 62(x)v£tdx—y6.f vtzdx—J vtj U2(s)zo(x,1,t,5)dsdx.
0 0 0 7

(5.26)

On the other hand, multiplying 1} and 1) by |,ul (s)| z; and |,u2 (s)|zz, re-
spectively, and integrating over (0,L) x (0,1) x (71, 7,), and recall z; (x,0,t,5) = u,

and z; (x,0,t,s) = v;, we obtain

Zdtf J J |V1 21 X, 0,5, t)dsdpdx
2
) __J-J |IA1(S)|Z%(x’1’5’t)d5dx+—J Mtzf |l41(5)|dsdx, (5.27)
2 Jo 7 2 Jo .

2dtJ JJ s|u2(s)| 25 (x, 0,5, t) dsdpdx
2
) __Jj |”2(5)|Z§(x’1'5'”d5d“—J vtzf |12 (5)] dsdx. (5.28)
2Jo Jq 2 Jo .
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A combination of (5.25) and (5.27) gives

L
E{(t) = —2f o1 (x)uz,dx — yof uldx - f utf p1(s)z1(x,1,t,5)dsdx
L
__J j |I/£1 |Zl x 1 S, t dex+ j |]/ll )|dSJ utzdx_
0

(5.29)

Also, (5.26) and (5.28) gives

L
E)(t) = J 5y (x)vZdx — /u(’)f 2dx - J vtj Ha(8)z2(x, 1,8, 5)dsdx
__J J luz 22 x,]. S, )dex+ j |’/l2 |dSJ tdx'
0

(5.30)

Now, using Young’s inequality, we obtain
rL T

- utf H1(s)z1(x,1,¢,s)dsdx
T

Jo 1

1 (™ 1 1 1 1
> |;41 (s)|dsf utzdx+§J. J. |;41 (s)|zf(x,1,s)dsdx, (5.31)
J1 0 0 T

r‘L Ty
- vtj Ha(8)zo(x,1,¢,5)dsdx
T

JO 1

1 (™ 1 1 (! ™
—f |P‘2(S)|d5—[ vfdx+—f J |12 (9)| 23 (x,1,5)dsdx.  (5.32)
2 T 0 2 0 T

Substitution of (5.35) into (5.29), (5.36) into (5.34) and using (5.3) give (5.24),

which concludes the proof. ]

IA

IA

Next, in order to construct a Lyapunov functional equivalent to the energy,
we will prove several lemmas with the purpose of creating negative counterparts

of the terms that appear in the energy.

Lemma 5.6. Let (u,u;,21,v,vy,2,) be the solution of (5.7)-(5.8). Then the functions

L L
I (1) ::J(; 01 (x)u%dx+f0 my (x)u,udx, (5.33)

L L
Fq(t) :L 0 (x)v 3dx+J; my (x)vvdx, (5.34)
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satisfies, for all €1,e, > 0 and €, €} > 0, the estimates

2,2 12 L ] L
Ij(t) < (Pl(Cl) go € - g2)f 2dx+(rn1(Cz)+E)J; ufdx

72 1
452J f |y1 z1 x,1,s,t)dsdx, (5.35)
) ﬂ L2€l L 1 L
Fi(f) < (P2(51) nzo 1~ n22)f 2dx+(m2(£2)+4—61)f0 vidx
140 I J‘ |y2 22 x,1,s,t)dsdx. (5.36)

Proof. By differentiating I, (t) with respect to ¢, using (5.7); and integrating by

parts, we obtain

L L L 7

Il’(t) = —J pl(x)u,%dx—yof utudx—J uj p1(s)z1(x,1,s,t)dsdx
0 0 0 7
L

+J m (x)ufdx.
0
By using Young’s inequality, lemma5.3and (5.3));, we get for ¢1,&, >0

t Ly g . 1t 42
- < — dx, .37
MOJO usudx < — elj; dx+461 ufdx (5.37)
L Ty
—J uj p1(s)zy(x,1,s,t)dsdx
0
L2€2
< - . uldx +4€2f J pi (s z1 (x,1,s,t)dsdx. (5.38)
Consequently, using Lemma (5.4), (5.37) and (5.38), we establish (5.35).
Similarly, we get (5.36). O

Lemma 5.7. Let (u,u;,21,v,vy,2,) be the solution of (5.7)-(5.8). Then the functions

J J J se Sp|y1 )|z (x,p,5,t)dsdpdx, (5.39)
2

:J J J se_Sp|,u2(s)|z§(x,p,s,t)dsdpdx, (5.40)
0 0 T

satisfies, for some positive constants ny and n,, the estimates

< —nlf J J |/,11 )| 27 (x,p,s,t)dsdpdx
—nlj J |;11 z1 (x,1,s, )dsdx+;/t0j u’dx, (5.41)
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L 1 (%)
Fi(t) < —nzj J J s|y2(s)|z§(x,p,s,t)d5dpdx
0 0 T

L (%) L
—nQJ J |;/12(5)|z§(x,1,s,t)dsdx+pt6f vidx. (5.42)
0 (51 0

Proof. By differentiating I, (t) with respect to ¢, and using the equation (5.7),,
we obtain

I5()

L 1 Ty
—ZJ J J e P |,l/£1 (s)l 21(x, 0,8, t)z1p(x, p, 5, t)dsdpdx
0 0 (51

d L 1 Ty

_ _%L L J e |uy ()| 22 (x, p, 5, t)dsdpdx
T
rl ro 1

rL
— f se P |y1(s)| zf(x, p,s,t)dsdpdx
0 T

JO J
rL 7o
= - |y1(s)| [e2z3(x,1,5,t) — 2} (x, 0,5, )]dsdx
JO J1
rL rl 7o

- f se P |y1(s)|zf(x, p,s,t)dsdpdx.
T

\JO \JO 1

Using the fact that z; (x,0,s,t) = u; and e™* < e <1, for all 0 <p <1, we obtain
L Ty Ty L
I(t) < —J J e’ |y1(s)|zf (x,1,s, t)dsdx+f |y1(s)|dsj uldx
0 71 1 0
L 1 Ty
—J J- J- se”°P |,u1(s)|zf(x, p,s,t)dsdpdx.
0 0 T

Because —e™* is an increasing function, we have —e™ < -2, for all s € [7{, 7, ].

Finally, setting n; = e""and recalling (5.3));, we obtain (5.41).
Similarly, we get (5.36). O

Next, we define a Lyapunov functional L and show that it is equivalent to the

energy functional E.
Lemma 5.8. Let N,Ny,N, > 0, the functional defined by

L(t):=NE(t)+I1(t)+ N1 (t) + F1(t) + NoF(t). (5.43)
For two positive constants ¢y and c,, we have

c,E(t) <L(t) < c,E(t),Vt > 0. (5.44)
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Proof. Now, let
ﬁ(t) = Il(t) +N112(t) +P1(t) +N2P2(t).

Then

L L L
IL(t)] < J o1 (x)u 2dx+ij my (x)u dx+;J my (x)u’dx

+N1J J J |;41 z3(x,p,s,t)dsdpdx
j 8, (x)v 2dx+2j my (x)v dx+2j my (x)v2dx
+N2f f J |;42 )|23(x, p,5,t)dsdpdx

< CEl +C E2 <COE()

where ¢y = max{c’,c”}, with

L*my(C3)  26,(Cs) ” L?my(&3)  26,(&5)
2N, =1
o) @) T &) T palE)

Consequently, |L(t) — NE(t)| < coE(t), which yields

c=1+

Choosing N large enough, we obtain estimate (5.44).

Now, we prove our main result in this section.

Proof. (Of Theorem

+2N2.

By differentiating (5.43)) and recalling (5.24), (5.35), (5.36), (5.41) and (5.42), we
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obtain

’ © 1 L

L'(t) < [(j |P‘1(S)|d5—l40)N+(m1(C2)+—)+N1P‘Olj ufdx
2,2

[pl(Cl) L'ZOQ——EzlJ uZdx - 2N.r o1 (x)u2dx

—nlle j j s|pi(s)| 22 (x, p,5, t)dsdpdx

_ _nlNl —4—602]J; Ll |y1(s)|zf(x,1,s,t)dsdx
[ Ty , 1 L 2
+ '.”2 |d5_140 N +[my(&,) + 4 + Napg vidx
L\JT)

p2(&1) - ezu vidx - ZNJ. &y (x)v2,dx

—nzNZJ j j s|y2(s)|zg(x,p,s,t)dsdpdx
0 0 (51

|

ol (F ™
0/ ‘|f f |V2(5)|Z§(X,l,s, t)dex,
4ey | Jo Jo

using Lemma (5.3) and Lemma (5.4) gives

L'(t)

<

L? 1 L2 L
-71N-— (m1(C2) 4—&1) nﬂONllfo updx

lPl(Cl) Zoel—pgzlj uzdx

—nlle J‘ J‘ |pt1 zl X, 0,5, t)dsdpdx
— nlNl——lf f |y1 z1 x,1,s,t)dsdx

1 Lzluf)
- N-— N d
_7/2 - (mz(cfz) 451) — 2]J; vidx

[ L2’u/2 ) L2 ) L
- pz(él)——oel—ﬁezl‘[ vy 2dx

_n2N2J J j |/,t2 z2 x, 0,5, t)dsdpdx

_ nzNz——O, f f |1a(s)| 23(x, 1,5, t)dsdx, (5.45)
dey | o 7
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where

V1

V2

2601(C6) — —

L w2
- (Ll |1 (s)|ds —P‘o) >0,

20,(&6)

2

2

L2 (™ )
- (Ll |y2(s)|ds—y0)>0.

2

At this point, we need to choose our constants very carefully.

. 2 2
First, we choose ¢, < %P1(C1) and ¢} < %pz(él) so that

p1(Cy)

LZ

7—(2

p1(C1)

s PR
& 5 P2

Next, we choose N; and N, large enough so that

0 H
TllNl—4‘M—€2>O, n2N2—40

2

L=,
(51)—p52>

)

Then, we choose ¢; and ei small enough, satisfies

p1(Cy)

2

g

72

(51) LZ’M(/)Z ’

)

2

Finally, we then choose N large enough so that

L2
71N - pos (ml(Cz) +—

p2(&1)
-

> 0.

p2
&1 >0, > T2 e > 0.
1 L%y,
—-——N,; >0,
481) 72 !

L? 1 L2,
')/2N - ; (m2(€2) + —) - n—zoNz > 0.

/
481

By (5.21)), we deduce that there exist positive constant c; such that (5.45) be-

comes

Finally, by combining

L' (t) < —c3E(t), Yt >0, (5.46)
A combination of and gives
L'(t)<-A{L(t), Yt >0, (5.47)
where 1, = z—i Then, a simple integration of (5.47)) over (0, t) yields
cE(t)<L(t)<L(0)e M, ¥t >0. (5.48)
5.44) and (5.48) we obtain (5.22) with Ao = szl(o), which
O

completes the proof.
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