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Abstract

This thesis is devoted to the study of some systems for fractional differential
equations containing both left and right fractional derivatives. In the first part, we
study a system of nonlinear differential equations with mixed fractional derivatives
and nonlocal boundary conditions. Using Krasnoselskii’s fixed point theorem, the
existence of solutions is established.

In the second part, we discuss the existence, uniqueness and positivity of solu-
tions for a system of differential equations containing the p-Laplacian operator and
mixed fractional derivatives. The proofs are obtained by the help of some fixed
point theorems such Guo-Krasnoselski’is fixed point theorem on cones, Schauder
fixed point theorem and Banach fixed point theorem.

To guarantee the usefulness of the obtained results some illustrative examples
are given.

We believe that the obtained results are new and will contribute to the devel-
opment of the studies on fractional differential equations.

Keywords: Fractional derivative, Boundary value problem, Integral condi-
tion, System of fractional differential equations, Existence of solutions, Positive

solution, uniqueness of a solution, Fixed point theorem.

v



Résumé

Cette thése est consacrée a I’étude de certains systémes d’équations différenti-
elles fractionnaires contenant a la fois des dérivées fractionnaires gauche et droite.
Dans la premiére partie, nous étudions un systéme d’équations différentielles non
linéaires avec des dérivées fractionnaires mixtes et des conditions aux limites non
locales. En utilisant le théoréme du point fixe de Krasnoselskii, 1’existence de
solutions est établie.

Dans la deuxiéme partie, nous discutons l’existence, I'unicité et la positivité
des solutions pour un systéme d’équations différentielles contenant ’opérateur p-
Laplacien et des dérivées fractionnaires mixtes. Les démonstrations sont obtenues
a l'aide de quelques théoréemes de point fixe tels que le théoréme de point fixe
de Guo-Krasnoselski sur les cones, le théoréme de point fixe de Schauder et le
théoréme de point fixe de Banach.

Pour garantir la validité des résultats obtenus, quelques exemples illustratifs
sont donnés.

Nous pensons que les résultats obtenus sont nouveaux et contribueront au
développement des études sur les équations différentielles fractionnaires.

Mots-clés : Dérivée fractionnaire, Probléme aux limites, Condition intégrale,
Systéme d’équations différentielles fractionnaires, Existence de solutions, Solution

positive, Unicité de la solution, Théoréme du point fixe.
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Introduction



The theory of derivatives of fractional order dates back to Leibniz’s letter to
the Hospital in 1695 where he raised the question of the meaning of the derivative of
noninteger order. Since then many mathematicians have contributed to this theory,
including Liouville, Riemann, Weyl, Fourier, Abel, Lacroix, Leibniz, Grunwald and
Letnikov. Abel in 1823, was the first who use fractional operators in the solution
of tautochrone problems. The first major study of fractional calculus was made
by Liouville in 1832, where he applied his definitions to some problems.

Fractional calculus theory is a branch of mathematics that studies the proper-
ties of derivatives and integrals of non-integer order.

Recently, fractional calculus has become a very attractive subject for mathem-
aticians, and many different forms of fractional differential operators have appeared
as fractional derivatives of Grunwald - Letnikow, Riemann - Liouville, Hadamard,
Caputo, Riesz ...For more historical details, see [66, 68, [74]

Furthermore, fractional order calculus plays an important role in several fields
of science such as in physics, electrical engineering, control systems, robotics, signal
processing, chaos theory, etc, [12, 25] 45] 67].

Various techniques and methods are applied in the study of fractional differ-
ential equations. We mention some of them such Mawhin theory, decomposition
method, variational iteration method, the homotopy method, lower and upper
solutions method.... Some contributions concerning the applications of fixed point
theorems in fractional differential equations to show the existence, uniqueness and
stability of the solution can be found in [1I, 14} 16, 19, 46l 50, B3|, 65, 79, 86]. In
[T7, 42], the authors have investigated the existence of one and two solutions by
applying the fixed point index.

The monotonic iterative techniques jointed to the upper and lower solutions
method is a powerful tool to prove the existence of solutions of differential equa-
tions of fractional order, this kind of work can be found in [8, 12} 5T, 64} [71 [8T].

Moreover, the existence and multiplicity of positive solutions for the nonlinear
fractional differential equations have been investigated in [4] [7), [16], [17, 48], [80L
83]. The existence of positive solutions to fractional boundary value problems is
discussed in 28| 34], B5], 52, (9, [75].

Recently, differential equations containing both left and right fractional deriv-



atives are discussed in several papers.

. In physics, if the left fractional derivative is interpreted as a past state of
the process, in which memory effects occur, then the right fractional derivative
is interpreted as a future state of this process. Since the evolution of a certain
phenomena depends on both their past and future, the differential equations stud-
ied in this thesis contain a combination of left and right fractional derivatives of
Caputo and Riemann-Liouville types in order to represent their evolution. There
are many papers that have studied differential equations of fractional order using
fixed point theory, but few of them have studied these equations by fixed point
theory [9, B6], [52], by the critical point theory and the variational methods [10], 47],
also by using the Min-Max Theorem In [49, [77].

The existence and uniqueness of the solutions of some systems of nonlinear
fractional differential equations have been studied using various methods such as
the fixed point theory, the method of lower and upper solutions, the theory of
degrees of coincidence, see [, 23, 35, 138, [42] 44. [81]. On this point, we can cite
the following works.

Using fixed point theory or coincidence degree theory, the existence and unique-
ness of some systems for nonlinear fractional differential equations have been stud-
ied in [T}, 29, 40, OT].

In [3], the authors derived the existence and uniqueness results for a system of

coupled three-point Caputo fractional differential equations:

2
> Dy (t) = f(ta,y), 0<t<1,0<8<1
=1

The existence of solutions is established by the nonlinear alternative of Leray-
Schauder and the uniqueness result is proved by Banach’s contraction principle.

In [29], the authors used coincidence degree theory to prove the existence results



for the following resonant boundary value problem:

DY Dx(t)=f(t,x(t), 0<t<1,
x(0) =0,D5,x (1) = Dg.x(0),

where 0 < v < 1, 04+v > 1, f € C([0,1] xR,R), D! and DY, denote
respectively the right and left Caputo fractional derivatives.

In [85], the author applied a fixed point theorem in cones to prove the existence
of positive solutions as well as multiplicity and nonexistence of solutions for the
following system involving singular nonlinear higher order fractional differential

equations subject to nonlocal boundary conditions:

D u(t) +ho () fr (G u(t),v(t) =0, t€[0,1],
Dg v () +ha (1) fa (tu(t) v (t) =0,
u® (0) =0, v (0)=0,1<i<n-2,
Dy u (1) =mDou(&),  Diyu(l) =mnDgiu(&s),

where D, Dg denote the Riemann-Liouville fractional derivatives, n—1 < a, f <
n,1<pr<n—3andn>3¢&e(0,1),0<n& " <1,0<nd <1,
fieC([0,1] xR2,Ry), hy € C([0,1] x Ry,Ry), i =1,2.

In [35], the authors used the upper and lower solutions method and Schauder
fixed point theorem to prove the existence of positive solutions for a system of
multi-order fractional differential equations with nonlocal boundary conditions,
that is

where the function u = (uy, ug, .., u,), u; : [0,1] — R,

Dg.u(t) = (Dgtus (£), Dg2us (t) s Dipun () -



Dy denote the Riemann-Liouville fractional derivatives, 2 < a; < 3,7 € {1,2,..,n},
n > 2. The function f is such that

f<t7u) = (fl (tau) . (t,u)),

fieC([0,1] x R R,), A= (ay,...,as), B=(by,...,b,) € R".

Furthermore, the existence of solutions for coupled systems of fractional dif-
ferential equations is discussed in [5l [TT], 65, [72], [75] [79, 81, 86], and systems with
fractional differential equations subject to various types of boundary conditions
such Riemann—Stieltjes integral conditions or multi-point conditions are studied
in [6l, 2], 611, 63, 89l ©0].

In [111, 23, 26, [0, [58, 60, 76, 86, 8], the authors investigated the existence and
multiplicity of positive solutions of systems for nonlinear fractional differential
equations with nonlocal boundary conditions.

On the other hand, the p-Laplacian operator is widely applied in mechanics,
physics and dynamic systems, and the related fields of mathematical modeling.
Leibenson [57] is the first who introduce the p-Laplacian operator when studying a
mechanics problem that is the turbulent flow in porous media. Various methods are
applied to investigate this kind of problems such fixed point theory, the coincidence
degree theory, lower and upper solutions method....

In [I8, 22], a coupled system of fractional differential equations involving the p-
Laplacian operator at resonance is studied by using the coincidence degree theory.

In [32], the authors discussed, by the help of the lower and upper solutions
method and Schauder’s fixed point theorem, the existence of solutions for fractional

p-Laplacian differential equations containing mixed type of fractional derivatives:

—CDV (¢, (Dgu(t))) + f (t,u(t) =0,0 <t <1,
w(0) = u' (0) = 0, D% u(1) = 0,

where 1l <a <2, 0< 8 <1, CDf, and D, denote respectively the right Caputo
derivative and the left Riemann-Liouville derivative.

In [62], by the help of Guo-Krasnosel’skii fixed-point theorem, the authors
investigated the existence and nonexistence of positive solutions for the following

couple system of nonlinear Riemann—Liouville fractional differential equations with



ri-Laplacian and ry-Laplacian operators:

D36y, (Dt () +Af (u(t) v (8) = 0,t€(0,1),

D336, Dy (1)) + g (u () v (1) = 0,4 € (0,1),
and multi-point boundary conditions:

u (0)=0,j=1,..n—2,
Diru(0) =0,

N
Ditu(l) =) aDHu(g,)
=1

v (0)=0,j=1,..m—2,
D2 (0) =0,

M
Drv(1)=> bDEv(n,),
=1

where a1, s € (0,1], 8y,€ (n—1,n], By € (m—1,m], n,m >3, p; € (1,n — 2],
pe € (IL,m—2], ¢ € (0,p1], @2 € (0,pa], a;,0;,&,,m ER, 0 <& < .o <&y < 1,
0<m<..<nmy<lr,ro>1XAp>0,fgeC([0,1] xR R,). DF denotes
the Riemann—Liouville derivative of order k.

The main objective of this thesis is to prove the existence, uniqueness and
positivity results for certain systems of nonlinear fractional differential equations
involving mixed type fractional derivatives. To this end, we use various fun-
damental concepts of fractional calculus as well as some fixed point theorems.
We use Schauder’s fixed point theorem, Krasnoselskii fixed point theorem, Guo-
Krasnoselskii fixed point theorem, for the existence and positivity of solutions, as
well as Banach’s contraction principle for the uniqueness result.

Let us give the review of each chapter of the thesis.

In Chapter 1, we recall the definitions of certain fundamental functional spaces,
special functions, fractional derivatives and integrals, such as Riemann-Liouville
fractional integrals, Riemann-Liouville fractional derivatives, Caputo fractional

derivatives, certain tools of functional analysis, the p-Laplacian operator, and then



we present some fixed point theorems.
In Chapter 2, using Krasnoselskii fixed point theorem, we study the existence
of solutions for the following system of fractional differential equations involving

left and right Riemann-Liouville fractional derivatives.

D <D€+u(t)) = —f(tbu(t),0<t <1,
DJu(0) = D u(l) =0,
u' (1) =u(0) =0.

where u = (uq, ug, ..., un)T is the unknown function with, w; : [0,1] — R,
D¢ (DPu(t)) = (D (DPruy (1)), Dy (D22 uy (t) D¢ (DPru, (t
1 o+ U () 1 oru (t) ), D oruz (t) ), DY orun (t) ) ) -

Denote D{" the left Riemann-Liouville fractional derivative and Dgi the right
Reimann-Liouville fractional derivative of order 5,, 1 < a, 5, < 2, 8 = (51, Ba; s Br) 5
ie{l,..,n},n>2, f:[0,1] x R — R",

f (t,U) = (fl (taubu?a 7un) ) f2 (tvubu?a 7un) )ty fn (t7u17u27 7un)>

where f; € C'([0,1] x R",R,).

The results of this chapter are published in:

[37] A. Guezane-Lakoud, S. Ramdane, Existence of solutions for a system of
mixed fractional differential equations, Journal of Taibah University for Science,
Volume 12, 2018, Issue 4, (2018).

Chapter [3| concerns the existence, uniqueness and positivity of solutions for
p-Laplacian systems with integral conditions involving left and right fractional

derivatives:

Do, (CDgiu (b)) +ar (8) fi (w(t) v (1) =0, t € 0,1],

D56, (Do (1)) +ax (1) fo (w (1) 0 (1) = 0, £ € [0,1],



Where 0 < a < 1, 8 = (6;,085), such that 1 < 8, < 2,7, > 1, (i=1,2) and
o, (s) = IsP%s, p > 1, ¢, = (qbp)_l,% —1—5 = 1, #D{ the right Riemann-
Liouville fractional derivative,CDgi denotes the left Caputo fractional derivat-
ive of order ;, the functions a; € C ([0,1],R"), fi € C(RT x R*,R"), ¢; €
C([0,1] x Rt x R*,R") for i =1,2.

We prove the existence of at least one solution by the help of Schauder fixed
point theorem. The existence of a unique solution is established by means of
Banach contraction principle, while the existence of positive solutions is obtained
by applying Guo-Krasnosel’skii’s fixed point theorem. Moreover, we give sufficient
conditions to have no positive solutions.

The results of this Chapter are published in:

[70] S. Ramdane, A. Guezane-Lakoud: Existence of positive solutions for p-
Laplacian systems involving left and right fractional derivatives, Arab Journal of

Mathematical Sciences, (2021), DOI 10.1108/AJMS-10-2020-0086.



CHAPTER 1

Preliminaries




1.1. Functional spaces and tools

In this chapter, we give some basic notations, definitions, properties, some
necessary concepts on the theory of fractional calculus and some fixed point the-
orems, which are useful for studying the next chapters. For more details, we refer
to the books of Kilbas [54], Kolmogorov [55], Podlubny [68, [69], Samko [73] and
Zeidler [87).

1.1 Functional spaces and tools

We present in this Section, some definitions, lemmas and properties of certain
spaces that will be used later. Let I = [a,b] (—o0 < a < b < 00) be a finite interval

on the real axis R.

1.1.1 Spaces of continuous functions
Definition 1.1.1 Let C™ (I,R), m € N, is the Banach space of functions x: [ —
R where x is m time continuously differentiable on I with the norm

2|l om = ZHm(k = max‘x (1)

tel

We denote in particular, by C = C (I,R) = C([a,b]), when m = 0 the Banach

space of continuous functions x: I — R, equipped with the norm

], = masx 2 (1)

1.1.2 Spaces of absolutely continuous functions

Definition 1.1.2 A function x : I — R is said absolutely continuous on I if for
all € > 0, there exists a number 6 > 0 such that; for all finite partition [ag, b]}_,

m I, then
q

Z(bk—ak <5:>Z bk —x(ak))<5

k=1 k=1

10



1.1. Functional spaces and tools

Definition 1.1.3 [5]]
1- Let AC (I,R) = AC [a,b] be the space of functions absolutely continuous on
la,b]. It is known that AC'|a,b] coincides with the space of primitives of Lebesgue

summable functions:

xEAC’[a,b]@x(t):ch/go(s)ds (p € Ly (a,b)), (1.1)

a

2- Forn € N, we denote by AC™ [a, b] the space of real-valued functions x that have

continuous derivatives up to order (n — 1) on [a,b] i.e.. z™ 1 € AC[a,b] :
AC™ [a,b] = {z: [a,0] — R, 2"V € AC[a,0]}.

The space AC™ [a,b] consists of those and only those functions x which can be

represented in the form

2 (t) = (I2,6) O+ Y it =a)' (1.2)

where ¢ € Ly [a,b], ¢;, 1 € {1,2,...,n — 1} are arbitrary constants.

For more details about AC(I,R) and AC™(I,R) see Samko [73].

1.1.3 Spaces of integral functions

Definition 1.1.4 1- We denote by L, (I,R), 1 < p < oo, the set of all Lebesgue

measurable functions x, real valued in general for which
/\x(t)]p dt < 0.
I

equipped with the norm

B =

lollo, = { [ I

I

11



1.1. Functional spaces and tools

2- For p = 1, the space Ly (I,R) is defined as all Lebesque measurable functions

with a finite norm

=, = / |2 (t)| dt.

3- For p = 00, Lo (I,R) is the space of all functions = that are essentially bounded

on I with essential supremum
lz|l, = (is}ssupm(t)] =inf{C>0: |z(t)| <C fora.e. t}.
> S

Definition 1.1.5 Let X andY two Banach spaces and T’ be a mapping defined on
X inY. We say that T is completely continuous if it is continuous and transforms

any bounded set of X into a relatively compact set in'Y .

Remark 1.1.1 7 : X — Y is called compact if T (B) is relatively compact in Y,
(T (B) is compact in'Y'), for all bounded subset B of X.

Theorem 1.1.1 (Arzela-Ascoli Theorem)[5])]
Let Q be a bounded subset of C'[a,b] equipped with the uniform norm. Then €
is relatively compact in C'[a,b] if and only if, 2 is uniformly bounded and equicon-

tinuous.

Let us recall,

a) € is uniformly bounded i.e,
AM >0 for all x € Q,||z|| < M.
b) Q is equicontinuous, i.e

Ve > 0, 40 >0, s.t.
Vo € Qand Vit € a,b] with [t —¢| <6 = |z(t) —x ()] <e.

Definition 1.1.6 [2]/ A function x: I xR — R is said to be generalized Lipschitz
if there exists a function k € Ly (I,R) such that

Ix (t,x) = x (t,y)| < k(t) |z —y| ae t €I foralzyecR.

12



1.1. Functional spaces and tools

The function k s called the Lipschitz function of x.

Definition 1.1.7 [Z]|] Let X be a normed linear space and let ¢ : X — X. ¢ is
called Lipschitz if there exists a constant h > 0 such that

oz —pyl| < hllz—yl|| forallz,ye X.

The constant h is called a Lipschitz constant of ¢ on X.

Remark 1.1.2 Further if h < 1, then ¢ is called a contraction on X with con-

traction constant k.

1.1.4 Gamma function

We introduce the Gamma function which play an important role in the theory of

fractional differential equations.

Definition 1.1.8 [27, [54/The Euler Gamma function I' (.) is defined by

“+o00

I'(z) = /e‘ttz_ldt = /1 <log %) . dt, (Re(z) > 0), (1.3)

which is the FEuler integral of second kind and converges in the right half of the

complex plane Re(z) > 0. Here t*~! = e(z=Dlogt,

The Gamma function I' (z) can be defined by the following expression

I'z)=1 1.4
() nggoz(z—i—l) ..... (z+n) (14)

One of the basic properties of the Gamma function is
I'(z+1)=2I'(z), Re(z)>0. (1.5)

13



1.1. Functional spaces and tools

1.1.5 p-Laplacian operator
Definition 1.1.9 [90/The p-Laplacian operator ¢, p € (1,+00) is defined on R
as )
lz|" "z, x#0
¢, () =
0, xz=0.

Lemma 1.1.1 [90/The p-Laplacian operator ¢, : R — R is an homeomorphism
and strictly monotone increasing, and ¢, ! (.) is continuous, sends bounded sets to

bounded sets, and is defined by

q—2
@%@=¢Am={§* RN

1,1 _
wherez—)+5—1.

Lemma 1.1.2 [77] Let ¢ > 0, v > 0. for any z,y € [0, c| we have
(i) if v>1, then

7" =y’ < vz —y|.

(17) if 0 <v <1, then
2" —y"| < |z —y|".

Lemma 1.1.3 Let ¢, : R — R be a p-Laplacian operator. Then we have following
nequalities
(i) If1 <p<2 a,b>0,|al,|b] > M >0, then
|6, (a) = &, ()] < (p— 1) M""*|a — 1],

(i) If p > 2, |a] |b] < ¢, then

16, () — &, (B)] < (p—1) P2 |a—b|.

14



1.2. Fractional integrals and fractional derivatives

1.2 Fractional integrals and fractional derivat-
ives

The integral and differential operators of fractional order are nonlocal in nature
and allow a better understanding of the past and future histories of the associated
phenomena.

In this Section we present the definitions of fractional integrals operators of
Riemann-Liouville and fractional derivatives of Riemann-Liouville and Caputo
types on a finite interval of the real line, then we expose some of their proper-

ties, for more details see [54), (68, [73].

Definition 1.2.1 [54, [68, [75] The Riemann-Liouwville fractional integrals IS, f
and I f of order a € RT are defined by

« _ 1 f(S) s a
([aJrf) <t> - r (a) a/ (t _ S)l—ad ) t> (16)
and ,
« _ 1 f(S) s
([bff) (t) - r (Oé) / (8 . t)l_ad ) t< b’ (17)

these integrals are called the left and right fractional integrals respectively. Provided

the right-hand sides are pointwise defined on I = [a,b], —00 < a < b < oc.

In particular, when a = n (1.6|) and (|1.7)) coincide with the nth integrals of the
form

(L?—l—f) (t> - (TL _1 1),

t>a, neN,

Se—
—~
~
[~

w
SN—

.

3

=8
o

and

(I ) () = (n—11)!/(5i<;)1—nd5’ t<b, neN.

Lemma 1.2.1 The fractional integral operators I$, f and I} f with o € R are

15



1.2. Fractional integrals and fractional derivatives

bounded in Ly, [a,b], 1 <p < oo,

|l < KA,

1z Al < K £l
_ (b—a)®
S T(a+1)

Properties.
Letaa >0, a>m>0meN, D= % the classical derivative and f € L, [a, 0],
(1 < p < o0). Then the following relations hold:

(DI f) (8) = (1o f) (), (1.8)
(DmIlfif) (t)=(—1)" (Il?_*m ) (1). (1.9)

If m =1, then
(DIE ) (1) = (15 F) (). (1.10)

(DI f) (1) = = (L7 £) (1)

Definition 1.2.2 [57, [68, [73] The left and right Riemann-Liouville fractional de-
rivatives DY, f and Dy f of order « € RY are defined by

ppfw = () eno {0

and

i = (%) @eno (112)

16



1.2. Fractional integrals and fractional derivatives

where n = [a] + 1. [a] denotes the integer part of .

In particular, if 0 < a <1 and n =1 then,

w1 d [ f(s)
Dy, (t)—ma/mds, t>a,

a

and
b

o _ —1 d f(S)
Dbf(t)_ma/(s_t)ads, t<b

t

Properties.

We have the following properties for a > 0, 8 > 0 :

(12 =" ) @) = i o)™
(D=0 @) = o=
(1 0=0"") @) = g -0,
(D 6-6"") (@) = %(b—x)ﬁ-a*.

Moreover, the Riemann-Liouville fractional derivative of a constant is in general

not equal to zero,
Example 1.2.1 ¢f =1 and 0 < a < 1 we have

L

(b—xz) "

(D) () = Fg

Corollary 1.2.1 For a > 0, and n = [o] + 1 we have
a) (Dg“+f) (t) = 0 if, and only if,

ft) = Zc (t—a)*". (1.13)

17



1.2. Fractional integrals and fractional derivatives

b) (D,‘_j‘, f) (t) = 0 if, and only if,
Fy=> di(b—1)", (1.14)

i=1

where ¢;,d; € R, 1 =1,2,..n, are arbitrary constants.

In particular, when 0 < o < 1, then and take the following forms
fe)=c(t—a) ",

and
f)y=do—t",

where ¢,d € R are arbitrary constants.

Lemma 1.2.2 [5], [73/Assume that f € L;[a,b] and a > 0, then

DT 0= £+ crlt— o) (1.15)
D = )+ db— (1.16)

where ¢;,d; € R(i =1,2,...n) are arbitrary constants and n = [o] + 1.
In particular, when 0 < o < 1, then the relations and take the
following forms
15,02 () = £ (1) +elt—a)* ™, (1.17)

and
DR f)=f(t)+db—t)"", (1.18)

where c,d € R are arbitrary constants.

Definition 1.2.3 [5, [75]The left and right Caputo derivative “ DS, and “ Dy of

order a € Rt of the function f can be defined via the above Riemann-Liouville

18



1.2. Fractional integrals and fractional derivatives

fractional derivatives by

Dy f(t) = (Df;+ fa) -3 (k;!(‘” (a:—a)k]> (1) (1.19)

and

[ nl (k)
D5 (1) = (Dz: - 00 w)]) CIENES
respectively, where n = [a] + 1.

Lemma 1.2.3 [54, [73] For a > 0, and n = [a] + 1 we have

C’D24+ (t):Dg"' (t>>

;
f fla)=1 (@)= fO (@) = . = f™ (a) =0,
and

Dy f(t) =D f (1),
if

Theorem 1.2.1 [5],[73] Let f € AC™ [a,b], then the Caputo fractional derivatives

“D® f and °Dg_f exist a.e. on [a,b] and are represented by

“Dgf (t)

(I2-*D™ f) (t)

1

= — — )" ) (8) ds a
o [T O s e

a

“Dift) = (1) (1”‘“D(”)f) (t)

b
= /s—t"al f™ (s)ds, t<b.

19



1.2. Fractional integrals and fractional derivatives

respectively, where n = [a] + 1.

Properties. Let o, > 0 and n = o] + 1, then the following relations hold:

oz -0 @) = -

(G-
A L T

In particular, if 3 =1 we get

(“Dgi1) (z) = 0,
(“Dy-1) () = 0.

Lemma 1.2.4 Let o > 0.

i) The fractional differential equation
CDng (t)=0

has

as solution.

i1) The fractional differential equation
‘D f(t)=0

has

Fy=>Y di(b—t).,d R
i=1
as solution.

Lemma 1.2.5 Let a > 0. If f € C" [a,b], then

—_

2D fO=Ff)+) c(t—a), e eR, (1.21)
0

3

ES
Il
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1.3. Fixed point theorems

n—1
Dy f(t)=f(t)+) d(b—t)" dp €R. (1.22)
k=0

1.3 Fixed point theorems

Fixed point theorem states that a mapping A has at least one fixed point, i.e.
A(z) = x, under certain conditions on A. In a wide range of mathematics, the
existence of a solution to a problem is equivalent to the existence of a fixed point
for a suitable operator. Fixed points are therefore of importance in many fields of
mathematics, science and engineering.

Many situations in the study of nonlinear equations can be formulated in the
term of a fixed point problem. Therefore, fixed point theorems are useful math-
ematical tools for discussing the existence, uniqueness and positivity of solutions
for differential equations. In this section, we recall some fixed point theorems that

will be used later.

Definition 1.3.1 For a mapping T from a set X into itself, an element x of X
is a fixed point of T if T (x) = x.

Definition 1.3.2 [3Y] Let X be a Banach space. A nonempty closed set P C X
18 called a cone of X if it satisfies the following conditions:

a) x € P, A > 0, implies A\x € P,

b) x € P, —x € P, implies © = 0.

Theorem 1.3.1 [75,[78, (87](Banach’s fixed point Theorem).

Let T be a contraction on a Banach space X. Then T has a unique fixed point.

Theorem 1.3.2 [78,(87/(Schauder’s fired point Theorem)
Let M be a closed convex subset of a Banach space E. If A : M — M is

continuous and the set A(M) is compact, then A has a fized point in M.

Theorem 1.3.3 [54, [78, (87/(Krasnoselskii fixed point Theorem)

Let 2 be a closed bounded convex nonempty subset of a Banach space X. Sup-
pose that A and B map 2 into X such that

(i) z,y € Q implies Az + By € Q.
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1.3. Fixed point theorems

(ii) B is a contraction mapping.
(11i) A is completely continuous.

Then there exists z € ) such z = Az + Bxz.

Theorem 1.3.4 [73, 169, |78, |87 (Guo-Krasnoselskit Theorem)

Let E be a Banach space, and let K C E, be a cone. Assume Q1 and Qs are
open subsets of E with 0 € Q, O C Qp and let T : K N (Q\) — K, be a
completely continuous operator such that

(1) |Tu|| < ||ull, v € KN and ||[Tu|| > ||ul|, v € KNIy, or

(1) || Tu|| > |ul|, v € KNI and ||Tul| < ||ul|, v € K N ON,.

Then T has a fixed point in K N (Qg\Ql) )

22



CHAPTER 2

LEXistence of solutions for a system of mixed fractional

differential equations
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2.1. Introduction

2.1 Introduction

Fractional differential equations are gaining more and more attention, this is
due to their several applications in different scientific disciplines such as physics,
chemistry, viscoelasticity, aerodynamics, electromagnetic see [54) [68, [73] and the
references therein.

In [23], the author studied the existence of solutions for a system of multi-order
fractional differential equations with nonlocal boundary conditions, here the order

of each equation may be different from the order of the other equations:

Dgiug = fi(t,u1,ug, ..., un),u;(0) =0, 0<a; <1, 1<i<n,

where 0 < ¢t < T. Dg‘i denote the standard Riemann-Liouville fractional de-
rivatives and f; : [0,7] x R} — Ry.
In [48], the authors discussed the existence of positive solutions of the following

fractional boundary value problem

Dyju+a(t) f(u)=00<t<l,1<a<2
u(0) =0,/ (1) =0

where D, is the Riemann-Liouville derivative , f € C'(R,R;) and a is a positive
and continuous function on [0, 1].

Fractional differential equations involving both left and right fractional deriv-
atives attract much attention recently, as they appear in Euler-Lagrange equations
when studying variational principles.

The existence results for such type of differential equations are obtained by
means of different methods such as fixed point theorems, lower and upper solution
method, variational methods, ...we refer to [7, O, I3, 15, 34} 52].

In [34], the authors established by using the lower and upper solutions method
the existence of solutions for fractional oscillator equation involving mixed type

fractional derivatives with an initial condition and a natural boundary condition:
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2.1. Introduction

DY Dfu(t) +wiu(t) = f(tu(t),0<t<1,weRw#0,
u(0) = 0,
Dju(l) = 0

where 0 < p,q < 1, CDf_ and D, denote the right Caputo derivative and the left
Riemann-Liouville respectively and f € C'([0,1] x R,R).
In [36], the authors discussed the existence of solutions for the following bound-

ary value problem containing a mixed type of fractional derivatives:

{CDﬁ(DmuU>+f( w(t)=00<t<1
u(0) =4 (0)=u(l)=0

Where 0 < o < 1,1 < 8 < 2,f :[0,1] x R — R. The proofs are based on
Krasnoselskii’s fixed point theorem.
This chapter is devoted to the study of the following system of fractional dif-

ferential equations with boundary conditions:

Dﬁ(DmuU>+f@u(»:Q0<t<L
(S) DS u(0) = Dl u(1) =0, (2.1)
u (1) = u (0) = 0.

where the function u = (uy, ua, ..., un)T is an unknown function, u; : [0, 1] — R,
8 5 T
Dy (Dgou(t)) = (D3 (Dot (), D (Dgtuz () o DY (Dgtun (1))

Dgi andD{" denote the left and right Riemann-Liouville fractional derivatives re-
spectively, 1 < o, 8, < 2,7 € {1,..,n}, n>2, f:[0,1] x R* — R™,

f (t,U) = (fl (tau17u27 7un) ) 7fn (t7u17u27 "'aun))Ta

fi e C(0,1] x R",R).

This chapter is organized as follows. In Section 2, we establish the existence of
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2.2. Auxiliary results

a unique solution for the corresponding linear system (S), then we present some
properties of the Green functions. In Section 3, we convert the system (S) to a
sum of a contraction and a compact operator, then we use Krasnoselskii fixed point
theorem to prove the existence of at least one solution to system (S). In Section

4, two examples are constructed to validate the results.

2.2 Auxiliary results

We shall transform the system (2.1) to an equivalent system of integral equations.

Consider the corresponding linear system:

zﬁ(Dﬁw@):—%@, 0<t<1, (2.2)
Dyiu; (0) = Dgiu; (1) =0, (23)
ui (1) = u; (0) =0 (2.4)

here i € {1,2,...n}.

Lemma 2.2.1 Assume that y; € C[0,1], i € {1,...,n}, then the system (2.9)-
, has a unique solution u = (uy, ..., u,) given by

1 1
u; (t) = /Gi (t,r)y; (r)dr + g; (t) /sa_lyi (s)ds, (2.5)
0 0
where
Jy (Bt =s)P = =) ) (=) s,
0<r<t<li
Gi (t,?“) = vl - - - =7
R B M L (e N e e R
0<t<r<l1.
1 / Bi-1
- a— 7
gz(t)ZW /(t—s)ﬁl 1(1—8) 1d3—m

0
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2.2. Auxiliary results

Proof Applying the integral operator I{ to equation (2.2)), it yields
Diiui(t) = =Ty, () + e (1 =) 4o (1—1)*7 (2.6)

where ¢, co € R.
Conditions ([2.3]), implies

1
1
Cy = 0, c1 = m /Salyi (S) ds. (27)
0

Substituting ¢; and ¢, in (2.6]), we get

1 1

. 1 a—1 a—1 a—1
Dgiui(t):m (1—1) O/s yi(s)ds—/(s—t) yi(s)ds | . (2.8)

t

Now, we obtain by applying the operator Igi to equation 1}

1

w(t) = I+ s (B0 =07) [e s o)

0
—I—Cgtﬁi_l + C4t6i_2,

it’s easy to get ¢4 = 0 by the boundary conditions (2.4). Differentiating the

obtained equation, we obtain

1

W) =~ 0+ i (B a0 [

0
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2.2. Auxiliary results

Using the initial conditions (2.4]), we obtain

1

= T i>1F m (/(15)@2 (/ (r— )"y (r) dr)

s _ 1 ! _ 5Pt ; r— O Y (1) dre .

) F(ﬁi)r(a)o/(t ) (/( ) yl()d)d
wo L 1 .

+F(ﬂi)r(06)0/(1 S) (5/ (7“—3) n (T)d?”) ds
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2.2. Auxiliary results

Thanks to Fubini theorem, we get

A _ 1 ¢ T ) (g — ) Vs | s () dr
) F(&)F(a)o/ / (t=s)" " (r—s) d)yz()d
_ 1 1 t A A e Vdr
F(ﬁi)F(a)/ / (t=s)" (r—s) d)yz()d
= = s | ar

+
=
|
NI
=l L
2
/_\O\H
[en)
N—

t
51
t /(t s (1= 5" Vds
0

hence (2.5 holds. m

Let us present the properties of the functions ¢g; and G;, i =1, ..., n.

Lemma 2.2.2 The functions G; and g;, i = 1,....,n are continuous and satisfy the

following properties:

1
(a+3,—=2)T(B;)T ()’

0<Gi(tr) < 0<t,r<i (2.10)

1
(a+ 8, =2)T(B,)T ()’

Proof G, are nonnegative. In fact, if 0 <r <t <1, then

g (t) <0, g (t)] < 0<t<1. (2.11)

T

Gi(t,r) = m / (tﬁfl (1—s5)"2—(t— s)'B"_1>

0
X (r—s)* "ds

T

> m/ (tﬁi_l —(t— 3)671) (r—s)*"ds>0,

0

29



2.2. Auxiliary results

and if 0 <t <r <1, then

Gi(t,r) = 1 (tﬁll / (1—8)%2(r— )" ds—

thi—1 r Bi=2 . a1, / et
> W(/(l—s) (r—s)" "ds /(r s) ds)

0 0

thimt h a-1 t a-1
> W(/(TS) ds—/(r—s) ds)ZO.

0 0

On the other hand, we have if 0 <r <t <1

Giltir) < P(ﬁi)lf () /tﬂil(l_s)ﬂi_Q (r—s)*""ds
1 / B;+a—3 s
= r(m)rm)o/“ QN
- 1

(a+ 8, =2)T(B,) T (a)

and if 0 <t <r <1, then

. r tﬁi—ilﬁifl _Sﬁi—Q T—Sa_l s
B CAT O/“ pormd
tBi—1 T B3

= F(ﬁi)F(a)/(T s
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2.3. Existence of solutions

Similarly, we prove that the functions g; are non positive. Indeed, we have

t

tBi—1

50 = w6 0 e

0
1
thi—1 ol ;. 1
= TEIT () O/“‘S) S
1Pt Bi—2
= TEIT () <a+@-—2)§0‘

Moreover, we have,

lg: (1) = —a:i(t)
_ 1 tBi—1 - ! et
T T(B)T(a) \a+8,—2 /(t )it

0
1

(a+8;=2)T(B;)T ()

IN

2.3 Existence of solutions

We consider the Banach space X of all functions

r = (r1,T2,....,2,) € C[0,1] x ... x C'[0, 1]

N J/
-~

n times

with the norm ||.|| defined by

el = > max [z; (¢)] .

telo,1
iy o

31
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2.3. Existence of solutions

Define the integral operators A and B on X by

Ax (t) = (Alxl (t) ,A2$2 (t) ey Anxn (t))
Bx (t) = (Bll’l (t) ,BQ[L‘Q (t) ey anrn (t))

where

Aia:i (t) = /Gz t?” fz r, ;E(T’))dr
0

Biz; (t) = g (t)/so‘_lfi (s,z(s))ds

0

Lemma 2.3.1 The function v = (x1, s, ...,2,) € X is a solution of the system
(S) if and only if A;x; (t) + Bix; (t) = x; (t) for allt € [0,1] andi=1,...,n

Consequently, to prove the existence of a solution for the system (S) it suffices

to prove that the operator A 4+ B has a fixed point, that is
Az (t)+ Bx (t) = z (1), telo,1].

Now, let us make the necessary hypotheses to prove the existence results for the
system (S).
H;) There exist nonnegative functions K; € L; (0,1), such that:

fi (8, 2) — fi (t,y)| < K (¢ Z|x] vil .
€[0,1],z,y € R, ze{l,...,n},

where .
K.
| HL1 <

1
2 (0T h DI (BIT@ <

=1

(2.12)

H,) The functions f; (¢,0) are continuous and not identically null on [0,1], Vi €

{1,...,n}.
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2.3. Existence of solutions

Theorem 2.3.1 Under hypotheses (Hy) and (Hs) the system (S) has at least one

nontrivial solution.

Proof Let Q= {z € X, ||z|| < R}, here R is chosen such

n L,
A D S AR TR 219

and set

L=  (,0
mmax | (£, 0]

Clearly, €2 is a nonempty, bounded and convex subset of X.

We will use Krasnoselskii’s fixed point theorem to prove that the operator A+ B
has a fixed point, to this end, the proof will be done in three steps.

Step 1: Ax + By € Q) for all x,y € €. In fact, taking into account hypothesis
(H,) and the properties of the functions G;, we get for alli =1,...,n

1

r&mw|s_/a@mnﬁmxm»w

0

e /Iﬁrw — i, 0) + 1 (0)
(04—1—5—2 0/( |Z\xz !+L>
mem+h

(a+8; =2)I ()T (o)
Taking the maximum over ¢t € [0, 1], it yields

1 Kill,, R+ Li
(a+ 8, =2)T(B)T (a)

Summing the n inequalities in (2.14)), then in view of (2.12) and (2.13)), we obtain

Kl AL\ R
et <3 (G 2o s ) < 7 219)

| Ass|| <

(2.14)
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2.3. Existence of solutions

Thanks to hypothesis (H3) and the properties of the functions g¢;, we get

| Biyi (t)]

IN

195 () / S f (5, (5))] ds

1

/ (g (7)) — £ (O] + I (1, 0)) dr

0

(a+p5,—2)T

||KZ||L1R+L2

@t BT (BT () "= Lmn

Taking the supremum over [0, 1], then summing the n obtained inequalities ac-
cording to 7 from 1 to n, we get by the help of (2.12) and (2.13)),

Ky R L\ _E
e <3 (s o) <2

=1

Hence
|Az + By|| < [|Az]| + || By[| < R.

So, Az + By € Q for all z,y € Q.
Step 2: The mapping B is a contraction on (). Indeed let x,y € 2, then by
hypothesis (H;) it yields

|Bizi (t) — Biyi (1) < |gi (2)] /Sa_l |fi (s, (s)) = fi(s,y(s))|ds
1 1 n
(a+ 8, =2)T(B,)T () (/ | K (s)] ; |z; — yi| ds

1Kl , (12 =yl
(@48, =2) T (B)T ()’

=1,...n

Taking the maximum over ¢ € [0, 1], we get

1Kl , [l =yl
(a+8; =2)T(5) T ()

|Bizi — Biyil| < (2.16)
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2.3. Existence of solutions

Summing the n inequalities in (2.16]), then taking (2.12)) into account, we obtain:

"KL e -l
Bx — B L
1B2=Bul < 3 5 )T
e — gl
llo =l

Step 3: The operator A is completely continuous on 2. In fact,

i) A is continuous on . Let (z1), = (z},2},...2}), be a sequence such that

Ty — x = (2}, ...,2") in Q, 2} — 2 as k — oo. Taking into account hypothesis

(H1) and the properties of the functions G;, we get

Ak )~ A (O] < [ Goln)Ifi () = filr ()] dr

- K[, Nz, — =]
T (a8, =-2)T(B)T (o)

< MHO, as k — oo.

Hence, ||Azy — Az|| — 0, when k tends to co.
ii) A(Q) C Q. Indeed, let z € Q. From (2.15)) we get

R
A _
Az < 5

iii) (Ax) is equicontinuous on Q. Let z € Q, 0 < t; <ty <1,
t1
A (1) — At (1) st/wxmm G, (b0, )| I (ry e ()] i
0
to
+ [16:(tr) = Gt If: v (1)
t1

+/K%ww) G, (ts )| s (ry 2 ()] dr

35



2.4. Examples

IA
h
w
/N
~
N
|
~
@
N—

ast; — to, 1 =1,

Consequently (Au) is equicontinuous on {2

From the above steps, it follows by Arzela-Ascoli’s theorem that A is completely
continuous mapping on {2

Finally, we conclude by Krasnoselskii fixed point theorem that the operator

A + B has at least one fixed point in €2, and consequently the system (S) has at
least one solution in 2. W

2.4 Examples

Now, we give two examples to illustrate the usefulness of our main results

Example 2.4.1 Consider the following two-dimensional fractional order system

DI (Dt (0) = U522 (12 - 525
D12 (DiSuy (1)) = £ (tu2 +1 (30— 7))
(51) Difuy (0) = DiPuy (1) = 0,

Dgfus (0) = DgPug (1) =0
uy (1) = uy (0) = 0,1y (1) = uy (0) = 0.
Here we have « = 1.2, f;, =1.9, 5, =1.5

e =57 (v g

14 u?)

\

and

—t

f2 (t,u) = 66—0 <tU2+% (3U1 — ;)) .

1+ ud
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Hypotheses (Hy) and (Hs) hold, in fact

o (1=2t)
fl (t70> - 720 )
f2 (t70> = _m7

IA
—~
—_
|
~
~—
=5
no
|
<
»

it u) = fi(t,0)]

and
[f2(tu) = fa(t0)l < 5 > Jui — v

=1

= K ® u—ul.

=1

Moreover, we get by computations,
/ 3
Kl = [ o5 (1= 0)de = 0075,
0

K|, = /e—dt—l 5803 x 102,

0

— (a+0; =2)T'(B) T () 4’
1 1

Ly = max |f, (¢,0)| = Ly = max |f2 (¢,0)| =

t€[0,1] 20’ t€[0,1] 120°

Then R can be chosen as

||MM

< (o + B —2 (6) (a)’
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We conclude by Theorem that the system (S1) has at least one non-trivial
solution u such that ||ul| < 0.5.

Example 2.4.2 Consider the system

—t
[ D15 (DL, (1) = z— (g — uy) — &
DY (DYus () = W (t (ur + ug) + 3)
D5 (Didug (1)) = 22 (u2 ! )
(S5) 3 2(14ud)
D}Puq (0) = DyPuq (1) =0,
DYuz (0) = DiPuz (1) =0,
DiFus (0) = Diug (1) = 0,

| u; (1) =u; =0,i=1,2,3
hereoz:%,ﬁi:%,izlﬂ,?),tE[O,l],u€R3,
et t
fit,u) = E(W—ul)—m,
) = S (b +ug) + 2
2L, u) = 60 Uy — U3 5]

.
B = 5 (e )

and
t
fl(t,O) - _m’
R0 = =
2 \Y - 1207
tsin?t
f3(t,0) = — 5
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Hypotheses (Hy) and (Hy) are satisfied. Indeed,

—t

|fi(tu) = fi(t,v)] < E(|u1—v1|+|uQ—v2|)
3
= t)zyui_vi‘a
i=1
et o
|f2(t,’LL)—f2(t,’U)’ < _OZIUZ—’UA
i=1
3
= K2(t)2|ui_vl‘
i=1
2sin’t
|fs (tu) — f3(t,v)] < 3 |ug — vy

Some computations yield,

1K1, = 0.063212,

|55l = 0.010535,

3
t) Z |uz — Ui| .
=1

| K|, = 0.18178,

1
L pr— _ —_—
] trg[gf]\fl( 0= 1507
1
L, = —
5 mnax |f2(t,0)] = 150"
sin? 1
L3 = Inax ‘fg (t 0)‘ = 011801,
t€[0,1]
3
| Kl 1
0.11796 < -,
;(Wrﬁ—?) [(B;)T (a) 4
ZS: Li = 0.23555
—~ (a+8;=2)T'(B) T (a) ' '
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2.4. Examples

Let us choose R =1 > 0.9422. Hence Theorem implies that the problem (S5)

has a nontrivial solution u satisfying ||ul| < 1.
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CHAPTER 3

LExistence of positive solutions for p-Laplacian systems

involving left and right fractional derivatives
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3.1. Introduction

3.1 Introduction

This Chapter concerns the study of the existence, uniqueness and positivity of
solutions for the following system of a coupled nonlinear differential equations

involving the p-Laplacian operator and a mixed type of fractional derivatives:

(

Bpe ¢ (CDPu (t) DA WE),v)=0,0<t<1,
RD ¢, (Dgzv (1) ) fo(u(t),v(t) =0, 0<t <1,

5] & (DRuw) =0 W@ =0,
771“( ) <0> fo 9 (S,U(S) U
(0052 (1)) v (0) =0,

[ v (1) =0 (0) = fJ 95 (s,

p

Where 0 < a < 1,1 < 3, < 2,7, > 1,7 = 1,2 and ¢,(s) = Is|P%s, p > 1.
Denote by #D%  the right Riemann-Liouville fractional derivative. CDg}'r denotes
the left Caputo fractional derivative of order §,. The functions a; € C ([0,1] ,R™),
fi € C(RT xRT RY), g, € C([0,1] x Rt x R, R*),i=1,2.

The uniqueness of the solution is obtained by means of Banach contraction
principle, while the existence of positive solutions is proved by the help of Guo-
Krasnoselskii fixed point theorem in cones. Furthermore, under some conditions
on the nonlinear terms, we prove the nonexistence of positive solutions.

The p-Laplacian operator was introduce for the first time by Leibenson [57]
when studying the turbulent flow in porous media. Thenceforward, the p-Laplacian
operator was widely introduced in different fields of mathematical modeling, such
in mechanics, physics, dynamic systems, ...Moreover, several methods are applied
to study differential equations involving the p-Laplacian operator such upper and
lower solutions method, fixed point theory, the coincidence degree theory, critical
point theory, variational methods, see [6], 20, 2T, 4T, 80, 82].

In [I7] the author discussed the existence of positive solutions for p-Laplacian
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3.1. Introduction

fractional differential equations with nonlocal boundary conditions

DS ¢, (DSu(t)) + f(t,u(t)=0,0<t <1,

D2, (0) = 0,
Dgiu (1) + oD u(l) =0,
u (0) = 0.

Where 1 < a <2,0<8<1,¢,(s) = ]s|p_2 s, p>1, D8‘+,Dg+ are the Riemann-
Liouville fractional derivatives, 0 < v < 1, the function f : [0,1] x RT — R is
continuous.

Recently, more attention are paid to the investigation of initial and boundary
value problems involving different types of fractional derivatives. In particular, the
existence results for differential equations involving both left and right fractional
derivatives is discussed in several articles, see [4, [16, 26, 35, 36, 37, (2L (0L 84, 85].
Let us recall that the left fractional derivative is interpreted as the past state of
the process, in which memory effects occur, while the right fractional derivative
is interpreted as the future state of this process. In physics, the evolution of
many phenomenon depends on both the past and future, then the presence of left
and right fractional derivatives in differential equations may appear naturally to
represent the evolution of the process.

In [2], the authors discussed by means of fixed point theorems the existence
and uniqueness of solutions for a system of coupled differential equations involving

mixed type Caputo fractional derivatives

0)=2"(0)=0, z(1)=ay(n),

Here 0 < 8, < 1,1 <a,p<2,9D% and CDg+ denote respectively the right and
left Caputo derivatives.

This Chapter is structured as follows. Section 2, we study the solvability of
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3.2. Solvability of an auxiliary system

the corresponding linear system and we present some properties of the associated
Green functions.

In Section 3, first, we prove, by Guo-Krasnosel’skii fixed-point theorem, the
existence of positive solutions for the nonlinear system (S). Second, we prove the
existence of nonnegative solutions under some conditions on the nonlinear terms
and by the help of Schauder’s fixed point theorem.

In Section 4, we establish by Banach fixed-point theorem the uniqueness of a
solution.

In section 5, we study the nonexistence of positive solutions for the system (.5)

and in Section 6, some examples are also given to illustrate the obtained results.

3.2 Solvability of an auxiliary system

Let us consider the linear boundary value problem

N~—
I

CDlu(t) +y(t 0,0<t<1,1<f;,<2 (3.1)

Lemma 3.2.1 Let y € C([0,1]), then the unique solution of the boundary value
problem , and s given by

1 1

u(t) = /Gi (t,s)y(s)ds+ 77’1_1 /gi (s)ds (3.4)

)

where

<1
(3.5)
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3.2. Solvability of an auxiliary system

Proof We apply to equation , it yields
w(t) = —Iyiy (t) +a + ast. (3.6)
Differentiating , we get
o (1) =~y (1) + as.

by the boundary condition (3.2)) we obtain ay = 0, and by (3.3))

1 1

= 1 il — )iy (s)ds (s)ds
o= r(@)O/“ Py ds s [ o)

Substituting a; and as in (3.6), then

Lemma 3.2.2 Let y € C([0,1]). Then the boundary value problem

Do, (“Dgiu(®) +y (1) =0,0<t <1 (3.7)

6, (“DJiu(1)) =0 (3.8)
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3.2. Solvability of an auxiliary system

u(0) = 0 (3.9)
1
nu() =) = [g()ds
0
has a unique solution
1 1 o1 . 1
u(t) = /Gi(t,s)d)q /%y(ﬂdT st o /gi(s)ds
0 s 0
where Gy(t, s) are defined in (3.5).
Proof Applying the fractional integral /7" to equation (3.7]), we obtain
s, (CDgiu(t)) = Py ta (-, a R, (3.10)

then the boundary condition ({3.8]) implies a; = 0, hence equation (3.10)) becomes
“Dyiu(t) = ¢, (= Iy (1))

thus
1

C nbs 1 ol _
Dt (t) + 6, m/(s—t) y(s)ds | =o0. (3.11)

t
Consequently the problem (3.7)-(3.9)) is equivalent to

1

Cngru (t) + o, %oz) / (s — t)ai1 y(s)ds | =0,t €[0,1]
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3.2. Solvability of an auxiliary system

Now, thanks to Lemma [3.2.1] we conclude that the fractional boundary value

problem (3.7, (3.8)) and (3.9) has a unique solution given by

n;

u(t):/lGi(t,s)gbq ﬁ/l(T—s)aly(T)dT ds + l_l/lgi(s)ds.

Lemma 3.2.3 The functions G;(t,s), i = 1,2 are continuous, nonnegative for
t,s € [0,1] and satisfy

L Gi(5,9) < Gi(tis) < Gi(s5), tscl01], i=1,2 (3.12)

Proof It is easy to show that G; (¢, s) are continuous and nonnegative for ¢, s €
[0,1], @ = 1,2. Now we shall show the inequalities in (3.12). For s <t < 1, we
have
Bi-1
N g1 (t—s)"
Gi(t,s) = ——=—~1—-9)"" ——"F+—
) (m; — 1) T7(8;) ( ) I' ()
)

S| S— A i (s, s
S monrg LT =a

Y

moreover, since G; (t,s) is decreasing with respect to ¢ then G; (t,s) > G; (1,s),
hence 51
(1—s)"" 1
Gi(t,s) > Gi(l,8) = ——=—~ = —G; (s,9).
(o) 2 Gl = T m ) — g )

Now, let t < s, we have

Gi(t,s) = HW (1— )" =G, (s,5),

remarking that G; (¢, s) is independent of ¢ and 7, > 1, then
B8,—1
N B,—1 (1—s)" 1
Gi(t,s) = ——F——~(1—38)"" >——— = —G,(s,9).
B T T 7 R o P A R
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3.3. Existence of positive solutions

3.3 Existence of positive solutions

We need to introduce the functional tools and notations for the forthcoming dis-
cussion. Let Y = C'[0,1] and X = C [0, 1] x C'[0, 1] be the Banach spaces endowed

respectively with the norms

lelloo = maxu(®)], wev,
I(ur, ua)l = maxflull g, (u1,u9) € X,

Define the cones

1
P = {u €Y, min u(t) > — ||u||oo} cy,
t€[0,1] M1

1
Py = {u €Y, min u(t) > — HuHOO} cy,
t€[0,1] Up)

then P =P, x P, C X.

We need the following assumptions.

Hy) f; € C(R"xR*"R"), i=1,2.
Hs) a; € C([0,1],RY), i=1,2.
Hs) gi € C([0,1] xR* xR, RY), i=1,2

Set
1
A, = /Gi(s,s)ds,
0
1 1 q-1
afi]_l a—1
A = T (Oj))qlo/Gz (s,5) /(T—s) dr ds,
where
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3.3. Existence of positive solutions

Simple calculations give

Ai - i ’
(m =1L (B+1)
q—1

A; = ;4 ‘
(n, = 1) (T (a+ 1) T(B) [a(g— 1) (B, — 1) +1]

Lemma 3.3.1 (u,v) is a solution for the coupled system (S) if and only if (u,v)

1s a solution for the following system of integral equations:

e

ult) = [1Gr(t,5) (i [ =9 0 (1) £ (u (7)o (7)) dr) s

r (o? 1
Jo 91 (s,u(s),v(s))ds

_|_

m—1
1 a—1 Q*l
0(0) = J3 Galt:5) (1 [ =9 (D) a0 o ar) s
1
+77 — fol g2 (s,u(s),v(s))ds
0 2
(3.13)
Proof The proof is immediately obtained by Lemma [3.2.2l ®
Define the operator
XX (3.14)
F(“?”) = (Fl (U,U),F2 (U,U)),
where
F,: X—->Y
1 X 1
Fi(u,v) = /Gi (t,s) m/(f—s) a; (1) X (3.15)
0 s
1
fi(u(r),v (1) dr)" " ds + ! ] /gi (s,u(s),v(s))ds.
N —

0

Thanks to Lemma the system (S) is equivalent to a fixed point problem,

that is to prove the existence of solutions for the system (S) it suffices to prove
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3.3. Existence of positive solutions

that the operator f has a fixed point, i.e. F (u,v) = (u,v).

Lemma 3.3.2 The operator F is completely continuous and F (P) C P.

Proof First, let us show that F (P) C P. Let t € [0, 1], then taking (3.2.3)) into
account, we get

()0 (8)] < / Gy (s.8) | —— / (r—9)" " a ()

fitu(r),v(7))dr)"  ds+ 0

1_1 /gi (s,u(s),v(s))ds,

that implies by taking the supremum over [0, 1]

1 g1

IF w0l < [ Gitsos) | o [ =9 @ h) wimar | ds

n, 1_ 1 /gi (s,u(s),v(s))ds.

0

+

Furthermore, we have

1 1

1 1 a—1
Fi(u(t),v(t) > 77_io G (s,9) m/(T—s) a(r) X

s

(2

R 0Ot o). v ds

thus, .
Fi(u(t),v(t)) = p” 1 (u,0) ]l

which implies F (P) C P.
Second, we shall prove that F is completely continuous. Let €2 be an open
bounded set in P.
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3.3. Existence of positive solutions

Set

Li = maxfi (U (t) U (t)) < o9, lz = Inax g; (tvu (t) U (t))
(u,0)EQ (t,u,0)€[0,1]xQ

The proof will be done in two steps.

Step 1. The operator F is uniformly bounded and equicontinuous on ().
Indeed, let (¢,u,v) € [0, 1] x Q, we have

UCRIG g Rt (ﬁ [e-9" wm i <T>,U<T>>df) ds

0

LiCLi -1 lz
= | E; < 00,
[F (o + 1)} o1

i

thus £ (€2) is uniformly bounded.
Now, let (u,v) € Q,0 < t; <ty < 1. We have

[Fi(u(t),v(t)) — Fi(u(t2),v(t2))]

< Zgi (ta, s) — G; (t1, 8)] X (m

/ (r—s)" a(7)f (u (T),v(r))dT) ds
T (a)

to
—|—/|Gz (tQ,S) — G, (t1,8)| X (—
t1
1

/ (r—s)" a(7)f (u (T),U(T))dT) ds

s
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3.3. Existence of positive solutions

1
+/‘Gz (tQ,S)_Gi (tl,S)’
to

1 q-1

1
m/“-ﬂ a; () fi(u(r),v(r))dr | ds

s

[ Lia; rl |t2—t16i
—|T(a+1) LB, +1)

—>0, ast2—>t1

Thus F (€2) is equicontinuous. We conclude by Arzela—Ascoli’s theorem that the
operator [ is compact on (2.
Step 2. F is continuous. In fact, let (u,,v,) be an arbitrary convergent

sequence in P such (u,,v,) — (u,v) € P. Since f; are continuous, then
0< fi(un(T)7vn(T)) < Lia T € [7 n > O,

S0,

1 1 ot (liLZ‘
W/<T_s> @i (7) fi (un (7) 00 (7)) dr < 0=

S

Taking into account that f; are uniformly continuous, then there exists N > 1
such that for n > N, we have

[fi (un (7)), 00 (7)) = fi (u(7) ;0 (7)) <,

19i (8, un (), 00 (7)) — gi (5,u(s),v (7)) <e.

According to the values of p and then of ¢, we have the following.
i) If 1 < ¢ < 2, then by the help of Lemma it yields
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3.3. Existence of positive solutions

(/(TS)alai(T)fi(un(T)?vn(T»dT)

S

- (/(7—_5)&1ai(7_)fi(u(7—)7v<7_))d7—)

s

< (/ (1= 8)"" i (7) |fi (un (7) 0 (7)) = fi (u (7) 0 (7)) dT)

s

e 791
< [—al} .
o
Consequently,
1
q—1_qg—1
al e €
Fi(up,vy,) —Fi(u,v)] < Z—_/Gi s,8)ds +
q—1_qg—1 1
o a € At
(T (a+1)) n; — 1
and then
alTA, 1
Fi (Un,vn) — F i (u,0)]| o < L+ S 3.17
IF ) = o)l < (P + ) 1)

ii) If ¢ > 2, then by the help of Lemma[l.1.2] we obtain
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3.3. Existence of positive solutions

=D [ .
S / (7 — )" ay (7) | (tn () 0 (7)) — fi (u (7) 0 (7)) 7

(¢ —1)c! 2

I'(a+1)
Hence,
G- a |
q—1)¢ ay '
|Fi (U, vy) — F i (u,0)] < Tlot D) /Gl(s,s)ds—l—m_1 £,
0
consequently
(¢ —1) ¢ 2, 1 )
7 nyUn) — 7 ) < —lAz—i_ . 3.18
IF G = Pl < (Cisas o)e )

In view of (3.17) and (3.18]) we conclude the continuity of F. Finally, we deduce
from the above discussing that the operator F is completely continuous on P. W

Now we give an existence result.

Theorem 3.3.1 Assume that hypotheses (Hy) — (H3) hold and

H,) There exist two nonnegative functions ¢y, cy € L' [0,1] and two constants
b1, by > 0 such that for (u,v) € RT x R,

gi (tu,v) < b () (u+v),

. < i -
el < %
Then the system (S) has at least one positive solution (u,v), in the case Dy; = 0

and Do, ; = 00, i = 1,2, where

fi (u,v)

— (0 = 0" or + o0 ,
(ful+o) =6 (|u| 4 v])P ! ( )

Ds; =

o4



3.3. Existence of positive solutions

Proof Since Dy; =0, 7 = 1,2, then for

L\
-
0<6—;2i,%{(m) }

there exists p; > 0, such that if 0 < u + v < p;, then

fi(u,0) < e (Jul + o)

Let
Q1 = {(U,’U) S Xv ||(U7U>|| < /01}7

and (u,v) € PN Oy, then,

Fi(u(t),v(t)) §/Gi (s,s) ﬁ/@'—s)a_l a; (T)€(|u|+|v|)p71d7 ds

[ b (ul + e ds,

+
n; —1
0

1

< <W> / Gi(s:) | [(r=9)" () x

s
1

— -1 bz
(lullo + o) dr)* ds + - /Cz‘ (5) (llelle + llvllc) ds

)

s

< (@A 3 ) ol

Hence
IF (w,0)|| < |[(u,v)]|, for (u,v) € 9% NP

On the other hand since D, ; = 00, @ = 1,2, then for

w2 {2 (0 )

i=1,2 51
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3.3. Existence of positive solutions

where
1 1 q-1

gi:/ai (s, 5) /(T—s)“ o (rydr | ds,

0 s
there exists p > 0, such that if u + v > p, then
fi (uy0) = o (fu] + o)
Setting p, = max (5p1,7m;p) and
Q2 = {(U,U) € Xa H(U,'U)H < 102}7

then Q) C Q. Let (u,v) € PN 0Q,, then

Fi(u(t),v ()

vV
S|
O\H
)
2
V2)

S—

X

q—1

1 a1 -
(F—a) [e=9" et + oy ar | ds
1
n

- <%)“0/Gi (5,5)
(/1 (7—=5)" a; (7) (Jull + ]l )" dr qlds
> (ﬁ)& o) > s 0)]

thus
1F (w,0)[| = [[(u,v)], (u,v) € 90 N P.

By the help of Guo-Krasnoselskii fixed point Theorem we deduce that F has a
fixed point (u,v) € PN (Q2\ Q1) , i.e. the system (S) has at least one positive

solution (u,v). W
Remark 3.3.1 The case Dy; = 0 and D ; = o0 is called superlinear case and
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3.3. Existence of positive solutions

the case Dy; = 0o and Dy, ; = 0 1s called sublinear case.

Theorem 3.3.2 Assume that hypotheses (Hy) — (Hs) are satisfied and
(Hs) There exist constants ¢;,d; >0, 0 < 0;,p; <1, such

p—1
0< fi(u,v) < (01 \u!el + ¢y ]v!92> ,

0 < fo(u,v) < (dy [ul + da|v|)"" .
(Hg) There exist two nonnegative functions h(t),k(t) € Ly [0, 1] such that

g1 (t,u,v) < h(t)+a |u|91 + ¢o |v|92 ,
go (t,u,v) < k(t)+dy|ul™ +dg|v]™.

Then the fractional boundary value problem (S) has at least one positive solution.

Proof We shall use Schauder fixed-point Theorem. From lemma |3.3.2, we know

that F is completely continuous. Let

M = {(u,v) € P,[|(u,v) x < R},

R > max { [3er (A + A1) 77, [3es (Ay + A1) 77

1

3dy (Ao + Ao)| 771, [3ds (As + Ay)| 77 | 3H, 3K} ,

where . )
Al == 5 A2 - )
n —1 ny—1

and
H = Ar|[h]l,, K=Ak],-
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3.3. Existence of positive solutions

We shall prove that F (M) C M. Let (u,v) € M, then

|mm@mwns/&@@ ﬁa/v—#lmmx

0 s

p
(01 |u\91 + ¢ |U\92)
1

1
/ (h (s) + 1 |ul™ + ¢, |v|92> ds
m—1

0
1 1

g/Gl (s,8) ﬁ/(T—S)Q_Ial (1) x

s

qg—1
dr) ds+

q—1

(1R + cuR%) d¢> ds+
1
/ (h(s) + a1 R™ + o R™) ds.
0
<Ay (@R + R”) + Ay [|hl,, + R + 2 R%]

= (Al + Al) ClRel + (Al + A1> CQRQ2 + H,

1
n —1

thus,
R R R
—+—-+-=R
I ol <3 +5+3
Similarly, we get
1Fa(u,0)]| < (Ag+ Ay) dy R + (Ay + Ag) dyRP2 + K
< i + i + i R
33 3 7
that implies
|F (u,v)|| < R.

Thus, we have F (M) C M.

Finally, we conclude by Schauder fixed-point theorem that the operator F has
at least one fixed point (u,v) € M, that implies the system (S) has at least one
positive solution in M C P. W
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3.3. Existence of positive solutions

3.3.1 Examples

Example 3.3.1 Consider the system (S), with

fi(u,v) = (u+ U)3 ,
ap (t) = e 2
fa(u,v) = et 1,
as (t) = 17
(1—1t)(u+ U)2
t
gl(auav) 3u + 4o ’
(tu,0) = &
go (t,u,v gu.

g1 (t7U,U) S

g2 (t,U,U) S

Since hypotheses (Hy)-(Hy) and (Hy) hold, then by Theorem it follows that

the system (S) has at least one positive solution.

Example 3.3.2 Consider the system (S) with « = 0.5, 5, = 5 = 1.7, n; = 16,
Ty = 100; b= 27

fl(u(t)7v(t)) = U(t)a

- Vv (t)
fa(u(t),v(t) = Yook
g1 (t,u(t),v(t) = 3—|—(t—%> v u(s),

o (tu(t),v(n) = (t— %)5+t (Ve + /0 ().

By computation we get
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3.4. Uniqueness results

IN

$u )+ Yo (t),
u(t) + /v (b),
3+ /u(t)+ /v (b),
1+ /u(t) + /v (#).

IN

S~— SN~— S— S~—
SN~—r S~— S— S~—
IA

IN

So, we have

1
97; = Pi= 5

3
c;, = dlzl,
3, k(t) =

Then, all assumptions of Theorem consequently, the system (S) has at least

one solution (u,v) € P.

3.4 Uniqueness results

In this section, we state and prove uniqueness results for the system (S) by using

Banach fixed point theorem.

Theorem 3.4.1 Assume 1 < p < 2, hypotheses (Hy) — (H3) are satisfied, and
(H;) There exist constants p,;,&; > 0, such that for (uq,ug), (v1,v9) € RT xRT,

we have
2

[ fi (ur,u2) = fi (v, 02)] S Yy — vyl i = 1,2,

Jj=1

and
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3.4. Uniqueness results

(Hs) There eist functions K; € L' [0,1] and §; > 0 such the estimate
’gi(t7u17u2) g; (t V1, Uy ‘ <K Z‘u] 1 ':1’27

holds for all (t,u1,us), (t,v1,v2) € [0,1] x RT x R,
and
(q—1)& 1Kl 0,1y
11221%}2([( ['(a+1) pati + n, —1
then the system (S) has a unique solution.
Proof Taking into account the properties of the function G;, we get

1 q—1

Fau(t)—Fo@) < /G 5, 5) —T—/T—s‘l (7) f: (w1, up) dr

1 q-1

0

a ﬁ/“—s)%lai (1) fi (v1,v2) dT ds
— [ 19i (5,11, u2) = gi (5,01, 05) | ds.
0
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Since 1 < p < 2 then ¢ > 2. In view of Lemma [1.1.3| we get

1 1

- ner
|[Fou(t)—Fo(t) < WO/GZ'(S,S)/(T—S) a; (1) %

| fi (ur,u2) — fi (v, v2)|dT ds +
1

2
— Yl (1) = v; ()]
i =
0
1
(¢— D& /
<
< TT(a) UM G (s
0
! 2
x/7—sa12| (1)| drds
s J=1
2
+— S)|Z uj (s) —v(s);|ds
i —1
0 J
) ) 1 1
—1)! a1
< ZHuj—ijOO % Z/LZ/GZ‘ (S,S)/(T—s) drds
j=1 0 s
s)|ds
(g—1)¢i? 1Kl 10,1
A —_— —vl.
e L

Taking the maximum over ¢ € [0, 1], we obtain
|Fiu=Fllo < Bllu—vlf, i=1,2,

consequently
[Fu—Fol <Blu—uv.

By Banach contraction principle, we deduce the existence of a unique solution for

the system (S). ®
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3.4. Uniqueness results

Theorem 3.4.2 Assume p > 2 and hypotheses (Hy) — (Hs) , (Hy) hold and
(Hy) There exist functions K; € L' [0,1], such that for all (t,uy, us) , (t,v1,v3) €
[0,1] x RT x R*, the estimate

|gi <t7U1,U2) gi (t V1, U2 | < K Z|u1 i, 1=1,2,
holds and
Az’ e Kz 1
C' = max Hid + 15l [0.1] < 1.
=12 | \I'(a+1) n—1

then the system (S) has a unique solution.

Proof The proof follows easily by remarking that 1 < ¢ < 2, then using Lemma
and reasoning as in the proof of Theorem [ |

3.4.1 Example

We consider the system (S) with a =0.5, 8, =, =3,y =1, =4, p=3,
Ji(, uz) = ulu—il- 1 + 2u1uj2L U’
fa (Uhuz) = # )
—t
w ()= 45 @)=
g1 (t,u, uz) = %7
0o (un, ) = t (ug + ug)

120 (uy + ug +ev1)’
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3.4. Uniqueness results

Some calculations give
2
|f1 (ur,u2) — fi (v, v2)] < Z uj — vy,
j=1

2
| fo (u1,u2) — fo(v1,02)] < |ug —vo] < Z lu; — v,
=1
lg1 (t,ur, ug) — gr (t,v1,02)] < —|ug — v,

2
t
‘gl(taulall?)_gl(t,'l}l,’l}2>’ < ﬂzyuj_vj‘a
j=1

1 4
=1 T T T Az = 5
2% , a A4 3T (g)
2
Lz = 27 i = ’
“TT(05)
t 1
Ki(t) = Ta0’ 1K1l 1o,y = 380

t 1
Ky (1) = o HK2HL1[0,1]:§7

Aqpqaq ||K1||L1[0,1]

A = =2.6912x 1072 < 1,
! T (CY + 1) n — 1
A K
Ay = Btttz ellvon g g5 92 <,
I'(a+1) Ny —1
Ajp;a; HKiHLl[o 1)
C = e =] =2.9510x 1072 < 1.
p (F(a+1)+ n —1 g

Hence all assumptions of Theorem are satisfied and then the system (5) has

a unique solution.
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3.5. Nonexistence of positive solutions

3.5 Nonexistence of positive solutions

In this section, we give sufficient conditions for the system (S) to have no positive

solutions.

Theorem 3.5.1 Assume that hypotheses (Hy) — (Hs) are satisfied and that there

exist four positive numbers mq, mo, My, My such that

fi(u,v) <mag, (u+v), (3.19)
fa (u,v) <mag, (u+v), (3.20)
g1 (t,u,v) < My (u+v), (3.21)
g2 (t,u,v) < My (u+v), (3.22)

fort €[0,1], (u,v) € X with

m; M, 1
J=o (= a) A, =12 3.23
¢q(r(a+1)a> o1ty (3:23)

Then the system (S) has no positive solution.

Proof Set

D = max (Jl, J2) < (324)

N
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3.5. Nonexistence of positive solutions

Assume the contrary, i.e. the system (5) has a positive solution (u,v) € P, then

for ¢ € [0,1], we have

u(t) = /G1 (t,5) (L/(TS)Q1 ay (7) fi (U(T)av(T))dT) ds

In view of (3.19)) and (3.21)) of Theorem we obtain

ult) < /Gl (5.5) (ﬁ / (r =) ar (r)mi x (u(7) +U(T))p1d7> ds

1
n —1

1
q—1
my M1
() /bma@@+n11]<um+vw>

< 2D |(u,0)], Ve € [0,1].

_|_

/M1 (u(s)+wv(s))ds

Similarly, by (3.20) and (3.22), it yields
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3.5. Nonexistence of positive solutions

1 1 q—1
asm a—1
00 < [t |2 =9 ar | (ull+ ol ds
1 1
M.
g [ Ml + ol ds
0
< g (e ql]G<>d+'% o]
Tlatl) 2(s,5)ds - u, v
0

= 2D||(u,v)||, vt € [0,1].

Thus
[ulloo < 2D ||(u,v)|| and ||v||,, < 2D |[(u,v)],

taking into ([3.24) account it yields
[[(w, v)[| = max (lull , [[v]l) < 2D [[(u, v)[| < [[(u, v)]]
which is impossible, and then the system (.5) has no positive solution. W

3.5.1 Example

Example 3.5.1 We consider the system (S) with o = 0.5, B, = 5 = 1.7, n; = 16,
1y = 100, p =2 and

it = (o =2,

U

v? }

U,V)= |75 |
f2 (1, 0) [(u—{—v)z—l—f')
et 5

ap (t) = To @ (t) = sin“t,
g1 (u,v) = (2u+t2v),

(u,0) = —

g2\ v = 3u+ 2tv’
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3.5. Nonexistence of positive solutions

we check easily that

IN
&
+
=

fl(u7v)
fa(u,v) < (u+0v),

g1 (U,U) < 2(u+v)
g2 (u,v) < (u+w)
By calculation it yields
1 1
ap = E’GZ 24,m1 mg =1,
4
M1 = 2,M2 =1 Al AQ
3T (3)
4 1 2
Ji = +——024651<05
YT 30 (3) T 10r (15)
4 1 1
Jy = =0.05725 < 0.5
2T 3r@) “uras)

Thanks to Theorem the system (S) has no positive solution.
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Conclusion

In this thesis, we have proved several new and different results for the existence
and uniqueness of solutions for certain types of systems for fractional differential
equations and p-Laplacian fractional differential equations, involving both left and
right fractional derivatives. The main tools used in these studies are fixed point
theorems, such as Banach’s fixed-point theorem, Schauder’s fixed-point theorem,
Krasnoselski’s fixed-point theorem, and Guo-Krasnoselski’s fixed-point theorem in
cones. The results presented in this thesis are an important contribution in the
field of fractional differential equations.

This work opens the way to new developments on fractional nonlinear systems.
Many extensions can be made to our work. In particular, we can study the exist-
ence of solutions for similar systems with other types of fractional derivatives such
as the derivatives of Hadamards, Grunwald -Letnikov, Erdelyi Kober.... Another
perspective is to establish the necessary and sufficient conditions for the existence
of solutions for fractional singular systems.

These perspectives constitute possible orientations for future work which will
find their place both in a theoretical and numerical frameworks of fractional dif-
ferential equations.

Finally, it would be interesting to get similar results presented in this thesis
under other conditions on the nonlinear terms and by applying other methods from

nonlinear analysis.
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