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 ملخص

هذه الأطروحة مخصصة لدراسة بعض أنظمة المعادلات التفاضلية الكسرية     

التي تحتوي على المشتقات الكسرية من اليمين و من اليسار. في الجزء الأول قمنا 

بدراسة وجود حلول  لبعض أنظمة المعادلات التفاضلية غير خطية بمشتقات 

حيث تم الحصول على النتائج باستخدام  ،كسرية مختلطة وشروط حدية غير محلية

 نظرية كراسنوسلسكي للنقطة الصامدة.

ايجابية وحدانية و  ،في الجزء الثاني من هذه الأطروحة قمنا بمناقشة الوجود    

لابلاسيا -pالتي تحوي على المؤثر  الحلول لنظام من معادلات تفاضلية مختلفة

ائج باستخدام بعض نظريات ومشتقات كسرية مختلطة. تم الحصول على النت

نظرية شاودر و  ، كراسنوسلسكي في المخروط-النقطة الصامدة مثل نظرية جيو

 نظرية التقليص لبناخ.

 لضمان فائدة النتائج المحصل عليها قدمنا بعض الأمثلة التوضيحية.    

نعتقد أن النتائج المحصل عليها جديدة و ستساهم في تطوير الدراسات حول     

 المعادلات التفاضلية الكسرية

 :الكلمات المفتاحية 

 كسرية،معادلات تفاضلية  جملالتكامل،مشتق كسري، مسالة القيمة الحدية، شرط 

 .الصامدةية النقطة نظر ،الحلوحدانية الحل الموجب،  حلول،وجود 

 

 

 

 

 

 

 

 

 

 

 

iii 



Abstract

This thesis is devoted to the study of some systems for fractional di¤erential

equations containing both left and right fractional derivatives. In the �rst part, we

study a system of nonlinear di¤erential equations with mixed fractional derivatives

and nonlocal boundary conditions. Using Krasnoselskii�s �xed point theorem, the

existence of solutions is established.

In the second part, we discuss the existence, uniqueness and positivity of solu-

tions for a system of di¤erential equations containing the p-Laplacian operator and

mixed fractional derivatives. The proofs are obtained by the help of some �xed

point theorems such Guo-Krasnoselski�is �xed point theorem on cones, Schauder

�xed point theorem and Banach �xed point theorem.

To guarantee the usefulness of the obtained results some illustrative examples

are given.

We believe that the obtained results are new and will contribute to the devel-

opment of the studies on fractional di¤erential equations.

Keywords: Fractional derivative, Boundary value problem, Integral condi-
tion, System of fractional di¤erential equations, Existence of solutions, Positive

solution, uniqueness of a solution, Fixed point theorem.
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Résumé

Cette thèse est consacrée à l�étude de certains systèmes d�équations di¤érenti-

elles fractionnaires contenant à la fois des dérivées fractionnaires gauche et droite.

Dans la première partie, nous étudions un système d�équations di¤érentielles non

linéaires avec des dérivées fractionnaires mixtes et des conditions aux limites non

locales. En utilisant le théorème du point �xe de Krasnoselskii, l�existence de

solutions est établie.

Dans la deuxième partie, nous discutons l�existence, l�unicité et la positivité

des solutions pour un système d�équations di¤érentielles contenant l�opérateur p-

Laplacien et des dérivées fractionnaires mixtes. Les démonstrations sont obtenues

à l�aide de quelques théorèmes de point �xe tels que le théorème de point �xe

de Guo-Krasnoselski sur les cônes, le théorème de point �xe de Schauder et le

théorème de point �xe de Banach.

Pour garantir la validité des résultats obtenus, quelques exemples illustratifs

sont donnés.

Nous pensons que les résultats obtenus sont nouveaux et contribueront au

développement des études sur les équations di¤érentielles fractionnaires.

Mots-clés : Dérivée fractionnaire, Problème aux limites, Condition intégrale,
Système d�équations di¤érentielles fractionnaires, Existence de solutions, Solution

positive, Unicité de la solution, Théorème du point �xe.
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The theory of derivatives of fractional order dates back to Leibniz�s letter to

the Hospital in 1695 where he raised the question of the meaning of the derivative of

noninteger order. Since then many mathematicians have contributed to this theory,

including Liouville, Riemann, Weyl, Fourier, Abel, Lacroix, Leibniz, Grunwald and

Letnikov. Abel in 1823, was the �rst who use fractional operators in the solution

of tautochrone problems. The �rst major study of fractional calculus was made

by Liouville in 1832, where he applied his de�nitions to some problems.

Fractional calculus theory is a branch of mathematics that studies the proper-

ties of derivatives and integrals of non-integer order.

Recently, fractional calculus has become a very attractive subject for mathem-

aticians, and many di¤erent forms of fractional di¤erential operators have appeared

as fractional derivatives of Grunwald - Letnikow, Riemann - Liouville, Hadamard,

Caputo, Riesz ...For more historical details, see [66, 68, 74]

Furthermore, fractional order calculus plays an important role in several �elds

of science such as in physics, electrical engineering, control systems, robotics, signal

processing, chaos theory, etc, [12, 25, 45, 67].

Various techniques and methods are applied in the study of fractional di¤er-

ential equations. We mention some of them such Mawhin theory, decomposition

method, variational iteration method, the homotopy method, lower and upper

solutions method.... Some contributions concerning the applications of �xed point

theorems in fractional di¤erential equations to show the existence, uniqueness and

stability of the solution can be found in [1, 14, 16, 19, 46, 50, 53, 65, 79, 86]. In

[17, 42], the authors have investigated the existence of one and two solutions by

applying the �xed point index.

The monotonic iterative techniques jointed to the upper and lower solutions

method is a powerful tool to prove the existence of solutions of di¤erential equa-

tions of fractional order, this kind of work can be found in [8, 12, 51, 64, 71, 81].

Moreover, the existence and multiplicity of positive solutions for the nonlinear

fractional di¤erential equations have been investigated in [4, 7, 16, 17, 48, 80,

83]. The existence of positive solutions to fractional boundary value problems is

discussed in [28, 34, 35, 52, 59, 75].

Recently, di¤erential equations containing both left and right fractional deriv-
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atives are discussed in several papers.

. In physics, if the left fractional derivative is interpreted as a past state of

the process, in which memory e¤ects occur, then the right fractional derivative

is interpreted as a future state of this process. Since the evolution of a certain

phenomena depends on both their past and future, the di¤erential equations stud-

ied in this thesis contain a combination of left and right fractional derivatives of

Caputo and Riemann-Liouville types in order to represent their evolution. There

are many papers that have studied di¤erential equations of fractional order using

�xed point theory, but few of them have studied these equations by �xed point

theory [9, 36, 52], by the critical point theory and the variational methods [10, 47],

also by using the Min-Max Theorem In [49, 77].

The existence and uniqueness of the solutions of some systems of nonlinear

fractional di¤erential equations have been studied using various methods such as

the �xed point theory, the method of lower and upper solutions, the theory of

degrees of coincidence, see [5, 23, 35, 38, 42, 44, 81]. On this point, we can cite

the following works.

Using �xed point theory or coincidence degree theory, the existence and unique-

ness of some systems for nonlinear fractional di¤erential equations have been stud-

ied in [1, 29, 40, 91].

In [3], the authors derived the existence and uniqueness results for a system of

coupled three-point Caputo fractional di¤erential equations:

2X
i=1

aiD
�+i
0+ x (t) = f (t; x; y) , 0 < t < 1; 0 � � < 1

2X
i=1

biD
�+i
0+ y (t) = g (t; x; y) , 0 � � < 1

x (0) = x0 (0) = 0; x (1) = ay (�) ;

y (0) = y0 (0) = 0; y (1) = bx (�) :

The existence of solutions is established by the nonlinear alternative of Leray-

Schauder and the uniqueness result is proved by Banach�s contraction principle.

In [29], the authors used coincidence degree theory to prove the existence results

3



for the following resonant boundary value problem:(
D�
1�D

�
0+x (t) = f (t; x (t)) ; 0 < t < 1;

x (0) = 0; D�
0+x (1) = D

�
0+x (0) ;

where 0 < �; � < 1, � + � > 1, f 2 C ([0; 1]� R;R) ; D�
1� and D

�
0+ denote

respectively the right and left Caputo fractional derivatives.

In [85], the author applied a �xed point theorem in cones to prove the existence

of positive solutions as well as multiplicity and nonexistence of solutions for the

following system involving singular nonlinear higher order fractional di¤erential

equations subject to nonlocal boundary conditions:

D�
0+u (t) + h1 (t) f1 (t; u (t) ; v (t)) = 0; t 2 [0; 1] ;

D�
0+v (t) + h2 (t) f2 (t; u (t) ; v (t)) = 0;

u(i) (0) = 0; v(i) (0) = 0; 1 � i � n� 2;
D�
0+u (1) = �1D

�
0+u (�1) ; D�

0+u (1) = �2D
�
0+u (�2) ;

whereD�
0+; D

�
0+denote the Riemann�Liouville fractional derivatives, n�1 < �; � �

n; 1 � �; � � n � 3 and n > 3; �i 2 (0; 1) ; 0 < �1�
����1
1 < 1; 0 < �2�

����1
2 < 1;

fi 2 C
�
[0; 1]� R2+;R+

�
; hi 2 C ([0; 1]� R+;R+) ; i = 1; 2:

In [35], the authors used the upper and lower solutions method and Schauder

�xed point theorem to prove the existence of positive solutions for a system of

multi-order fractional di¤erential equations with nonlocal boundary conditions,

that is

D�
0+u (t) + f (t; u (t)) = 0; 0 < t < 1

u (0) = u
0
(0) = 0

Au (1)�Bu0 (1) = 0

where the function u = (u1; u2; ::; un) ; ui : [0; 1]! R;

D�
0+u (t) =

�
D�1
0+u1 (t) ; D

�2
0+u2 (t) ; :::; D

�n
0+un (t)

�
;
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D�i
0+ denote the Riemann�Liouville fractional derivatives, 2 < �i < 3; i 2 f1; 2; ::; ng ;

n � 2: The function f is such that

f (t; u) = (f1 (t; u) ; :::; fn (t; u)) ;

fi 2 C ([0; 1]� Rn;R+) ; A = (a1; :::; a2) ; B = (b1; :::; bn) 2 Rn:
Furthermore, the existence of solutions for coupled systems of fractional dif-

ferential equations is discussed in [5, 11, 65, 72, 75, 79, 81, 86], and systems with

fractional di¤erential equations subject to various types of boundary conditions

such Riemann�Stieltjes integral conditions or multi-point conditions are studied

in [6, 21, 61, 63, 89, 90].

In [11, 23, 26, 40, 58, 60, 76, 86, 88], the authors investigated the existence and

multiplicity of positive solutions of systems for nonlinear fractional di¤erential

equations with nonlocal boundary conditions.

On the other hand, the p-Laplacian operator is widely applied in mechanics,

physics and dynamic systems, and the related �elds of mathematical modeling.

Leibenson [57] is the �rst who introduce the p-Laplacian operator when studying a

mechanics problem that is the turbulent �ow in porous media. Various methods are

applied to investigate this kind of problems such �xed point theory, the coincidence

degree theory, lower and upper solutions method....

In [18, 22], a coupled system of fractional di¤erential equations involving the p-

Laplacian operator at resonance is studied by using the coincidence degree theory.

In [32], the authors discussed, by the help of the lower and upper solutions

method and Schauder�s �xed point theorem, the existence of solutions for fractional

p-Laplacian di¤erential equations containing mixed type of fractional derivatives:(
�CD�

1�

�
�p
�
D�
0+u (t)

��
+ f (t; u (t)) = 0; 0 � t � 1;

u (0) = u0 (0) = 0; D�
0+u(1) = 0;

where 1 < � < 2; 0 < � < 1, CD�
1� and D

�
0+ denote respectively the right Caputo

derivative and the left Riemann-Liouville derivative.

In [62], by the help of Guo�Krasnosel�skii �xed-point theorem, the authors

investigated the existence and nonexistence of positive solutions for the following

couple system of nonlinear Riemann�Liouville fractional di¤erential equations with

5



r1-Laplacian and r2-Laplacian operators:

D�1
0+�r1

�
D
�1
0+u (t)

�
+ �f (u (t) ; v (t)) = 0, t 2 (0; 1) ;

D�2
0+�r2

�
D
�2
0+v (t)

�
+ �g (u (t) ; v (t)) = 0, t 2 (0; 1) ;

and multi-point boundary conditions:

u(j) (0) = 0; j = 1; :::n� 2;
D
�1
0+u (0) = 0;

Dp1
0+u (1) =

NX
i=1

aiD
q1
0+u (�i)

v(j) (0) = 0; j = 1; :::m� 2;
D
�2
0+v (0) = 0;

Dp2
0+v (1) =

MX
i=1

biD
q2
0+v (�i) ;

where �1; �2 2 (0; 1] ; �1;2 (n� 1; n] ; �2 2 (m� 1;m] ; n;m � 3; p1 2 (1; n� 2] ;
p2 2 (1;m� 2] ; q1 2 (0; p1] ; q2 2 (0; p2] ; ai; bi; �i; �i 2 R, 0 < �i < :::: < �N < 1;
0 < �1 < ::: < �M < 1; r1; r2 > 1; �; � > 0, f; g 2 C ([0; 1]� R2;R+) : Dk

0+ denotes

the Riemann�Liouville derivative of order k.

The main objective of this thesis is to prove the existence, uniqueness and

positivity results for certain systems of nonlinear fractional di¤erential equations

involving mixed type fractional derivatives. To this end, we use various fun-

damental concepts of fractional calculus as well as some �xed point theorems.

We use Schauder�s �xed point theorem, Krasnoselskii �xed point theorem, Guo-

Krasnoselskii �xed point theorem, for the existence and positivity of solutions, as

well as Banach�s contraction principle for the uniqueness result.

Let us give the review of each chapter of the thesis.

In Chapter 1, we recall the de�nitions of certain fundamental functional spaces,

special functions, fractional derivatives and integrals, such as Riemann-Liouville

fractional integrals, Riemann-Liouville fractional derivatives, Caputo fractional

derivatives, certain tools of functional analysis, the p-Laplacian operator, and then

6



we present some �xed point theorems.

In Chapter 2, using Krasnoselskii �xed point theorem, we study the existence

of solutions for the following system of fractional di¤erential equations involving

left and right Riemann-Liouville fractional derivatives.

D�
1�

�
D�
0+u (t)

�
= �f (t; u (t)) , 0 < t < 1;

D�
0+u (0) = D

�
0+u (1) = 0;

u0 (1) = u (0) = 0:

where u = (u1; u2; :::; un)
T is the unknown function with, ui : [0; 1]! R;

D�
1�

�
D�
0+u (t)

�
=
�
D�
1�

�
D
�1
0+u1 (t)

�
; D�

1�

�
D
�2
0+u2 (t)

�
; :::; D�

1�

�
D
�n
0+un (t)

��
:

Denote D�
1� the left Riemann-Liouville fractional derivative and D

�i
0+ the right

Reimann-Liouville fractional derivative of order �i, 1 < �; �i < 2, � = (�1; �2; ::; �n) ;

i 2 f1; ::; ng ; n � 2, f : [0; 1]� Rn ! Rn+,

f (t; u) = (f1 (t; u1; u2; :::; un) ; f2 (t; u1; u2; :::; un) ; ::; fn (t; u1; u2; :::; un))

where fi 2 C ([0; 1]� Rn;R+) :
The results of this chapter are published in:

[37] A. Guezane-Lakoud, S. Ramdane, Existence of solutions for a system of

mixed fractional di¤erential equations, Journal of Taibah University for Science,

Volume 12, 2018, Issue 4, (2018).

Chapter 3 concerns the existence, uniqueness and positivity of solutions for

p-Laplacian systems with integral conditions involving left and right fractional

derivatives:

RD�
1��p

�
CD

�1
0+u (t)

�
+ a1 (t) f1 (u (t) ; v (t)) = 0, t 2 [0; 1] ;

RD�
1��p

�
CD

�2
0+v (t)

�
+ a2 (t) f2 (u (t) ; v (t)) = 0, t 2 [0; 1] ;

7



�p

�
CD

�1
0+u (1)

�
= 0; u0 (0) = 0;

�1u (1)� u (0) =
1Z
0

g1 (s; u (s) ; v (s)) ds;

�p

�
CD

�2
0+v (1)

�
= 0; v0 (0) = 0;

�2v (1)� v (0) =
1Z
0

g2 (s; u (s) ; v (s)) ds:

Where 0 < � < 1, � = (�1; �2) ; such that 1 < �i < 2; �i > 1; (i = 1; 2) and

�p (s) = jsjp�2 s; p > 1; �q =
�
�p
��1

; 1
p
+ 1

q
= 1; RD�

1� the right Riemann-

Liouville fractional derivative,CD�i
0+ denotes the left Caputo fractional derivat-

ive of order �i; the functions ai 2 C ([0; 1] ;R+) ; fi 2 C (R+ � R+;R+) ; gi 2
C ([0; 1]� R+ � R+;R+) for i = 1; 2:
We prove the existence of at least one solution by the help of Schauder �xed

point theorem. The existence of a unique solution is established by means of

Banach contraction principle, while the existence of positive solutions is obtained

by applying Guo-Krasnosel�ski¼¬�s �xed point theorem. Moreover, we give su¢ cient

conditions to have no positive solutions.

The results of this Chapter are published in:

[70] S. Ramdane, A. Guezane-Lakoud: Existence of positive solutions for p-

Laplacian systems involving left and right fractional derivatives, Arab Journal of

Mathematical Sciences, (2021), DOI 10.1108/AJMS-10-2020-0086.

8



CHAPTER 1

Preliminaries

9



1.1. Functional spaces and tools

In this chapter, we give some basic notations, de�nitions, properties, some

necessary concepts on the theory of fractional calculus and some �xed point the-

orems, which are useful for studying the next chapters. For more details, we refer

to the books of Kilbas [54], Kolmogorov [55], Podlubny [68, 69], Samko [73] and

Zeidler [87].

1.1 Functional spaces and tools

We present in this Section, some de�nitions, lemmas and properties of certain

spaces that will be used later. Let I = [a; b] (�1 < a < b <1) be a �nite interval
on the real axis R:

1.1.1 Spaces of continuous functions

De�nition 1.1.1 Let Cm (I;R) ; m 2 N; is the Banach space of functions x : I !
R where x is m time continuously di¤erentiable on I with the norm

kxkCm =
mX
k=0



x(k)

1 = mX
k=0

max
t2I

��x(k) (t)�� ;
We denote in particular, by C = C (I;R) = C ([a; b]) ; when m = 0 the Banach

space of continuous functions x : I ! R, equipped with the norm

kxk1 = maxt2I
jx (t)j :

1.1.2 Spaces of absolutely continuous functions

De�nition 1.1.2 A function x : I ! R is said absolutely continuous on I if for
all " > 0; there exists a number � > 0 such that; for all �nite partition [ak; bk]

q
k=1

in I , then
qX
k=1

(bk � ak) < � )
qX
k=1

(x (bk)� x (ak)) < "

10



1.1. Functional spaces and tools

De�nition 1.1.3 [55]
1- Let AC (I;R) = AC [a; b] be the space of functions absolutely continuous on

[a; b]. It is known that AC [a; b] coincides with the space of primitives of Lebesgue

summable functions:

x 2 AC [a; b], x (t) = c+

tZ
a

' (s) ds (' 2 L1 (a; b)) ; (1.1)

2- For n 2 N; we denote by ACn [a; b] the space of real-valued functions x that have
continuous derivatives up to order (n� 1) on [a; b] i.e.. x(n�1) 2 AC [a; b] :

ACn [a; b] =
�
x : [a; b]! R; x(n�1) 2 AC [a; b]

	
:

The space ACn [a; b] consists of those and only those functions x which can be

represented in the form

x (t) =
�
Ina+'

�
(t) +

n�1X
i=0

ci (t� a)i ; (1.2)

where ' 2 L1 [a; b] ; ci; i 2 f1; 2; :::; n� 1g are arbitrary constants.

For more details about AC(I;R) and ACn(I;R) see Samko [73].

1.1.3 Spaces of integral functions

De�nition 1.1.4 1- We denote by Lp (I;R) ; 1 < p < 1; the set of all Lebesgue
measurable functions x, real valued in general for whichZ

I

jx (t)jp dt <1:

equipped with the norm

kxkLp =

0@Z
I

jx (t)jp dt

1A 1
p

:

11



1.1. Functional spaces and tools

2- For p = 1; the space L1 (I;R) is de�ned as all Lebesgue measurable functions
with a �nite norm

kxkL1 =
Z
I

jx (t)j dt:

3- For p =1; L1 (I;R) is the space of all functions x that are essentially bounded
on I with essential supremum

kxkL1 = esst2I sup jx (t)j = inf fC � 0 : jx (t)j � C for a.e. tg :

De�nition 1.1.5 Let X and Y two Banach spaces and T be a mapping de�ned on

X in Y . We say that T is completely continuous if it is continuous and transforms

any bounded set of X into a relatively compact set in Y .

Remark 1.1.1 T : X ! Y is called compact if T (B) is relatively compact in Y;�
T (B) is compact in Y ) ; for all bounded subset B of X:

Theorem 1.1.1 (Arzela-Ascoli Theorem)[54]
Let 
 be a bounded subset of C [a; b] equipped with the uniform norm. Then 


is relatively compact in C [a; b] if and only if, 
 is uniformly bounded and equicon-

tinuous.

Let us recall,

a) 
 is uniformly bounded i.e,

9M > 0 for all x 2 
; kxk �M:

b) 
 is equicontinuous, i.e

8" > 0; 9� > 0, s.t.
8 x 2 
 and 8t; t0 2 [a; b] with jt� t0j < � ) jx (t)� x (t0)j < ":

De�nition 1.1.6 [24] A function � : I�R! R is said to be generalized Lipschitz
if there exists a function k 2 L1 (I;R) such that

j� (t; x)� � (t; y)j � k (t) jx� yj a.e. t 2 I for all x; y 2 R:

12



1.1. Functional spaces and tools

The function k is called the Lipschitz function of �:

De�nition 1.1.7 [24] Let X be a normed linear space and let ' : X ! X: ' is

called Lipschitz if there exists a constant h > 0 such that

k'x� 'yk � h kx� yk for all x; y 2 X:

The constant h is called a Lipschitz constant of ' on X:

Remark 1.1.2 Further if h < 1, then ' is called a contraction on X with con-

traction constant k.

1.1.4 Gamma function

We introduce the Gamma function which play an important role in the theory of

fractional di¤erential equations.

De�nition 1.1.8 [27, 54]The Euler Gamma function � (:) is de�ned by

� (z) =

+1Z
0

e�ttz�1dt =

1Z
0

�
log

1

t

�z�1
dt; (Re(z) > 0); (1.3)

which is the Euler integral of second kind and converges in the right half of the
complex plane Re(z) > 0: Here tz�1 = e(z�1) log t:

The Gamma function � (z) can be de�ned by the following expression

� (z) = lim
n!1

n!nz

z (z + 1) ::::: (z + n)
: (1.4)

One of the basic properties of the Gamma function is

� (z + 1) = z� (z) ; Re (z) > 0: (1.5)

13



1.1. Functional spaces and tools

1.1.5 p-Laplacian operator

De�nition 1.1.9 [90]The p-Laplacian operator �p; p 2 (1;+1) is de�ned on R
as

�p (x) =

(
jxjp�2 x; x 6= 0
0; x = 0:

Lemma 1.1.1 [90]The p-Laplacian operator �p : R ! R is an homeomorphism

and strictly monotone increasing, and ��1p (:) is continuous, sends bounded sets to

bounded sets, and is de�ned by

��1p (x) = �q (x) =

(
jxjq�2 x; x 6= 0
0; x = 0;

where 1
p
+ 1

q
= 1:

Lemma 1.1.2 [17] Let c > 0, � > 0: for any x; y 2 [0; c] we have
(i) if � > 1; then

jx� � y� j � �c��1 jx� yj :

(ii) if 0 < � � 1; then
jx� � y� j � jx� yj
 :

Lemma 1.1.3 Let �p : R! R be a p-Laplacian operator. Then we have following
inequalities

(i) If 1 < p < 2; a; b > 0; jaj ; jbj �M > 0; then

���p (a)� �p (b)�� � (p� 1)Mp�2 ja� bj ;

(ii) If p � 2; jaj ; jbj � c; then

���p (a)� �p (b)�� � (p� 1) cp�2 ja� bj :

14



1.2. Fractional integrals and fractional derivatives

1.2 Fractional integrals and fractional derivat-

ives

The integral and di¤erential operators of fractional order are nonlocal in nature

and allow a better understanding of the past and future histories of the associated

phenomena.

In this Section we present the de�nitions of fractional integrals operators of

Riemann-Liouville and fractional derivatives of Riemann-Liouville and Caputo

types on a �nite interval of the real line, then we expose some of their proper-

ties, for more details see:[54, 68, 73].

De�nition 1.2.1 [54, 68, 73] The Riemann-Liouville fractional integrals I�a+f
and I�b�f of order � 2 R+ are de�ned by

�
I�a+f

�
(t) =

1

� (�)

tZ
a

f (s)

(t� s)1��
ds, t > a (1.6)

and �
I�b�f

�
(t) =

1

� (�)

bZ
t

f (s)

(s� t)1��
ds; t < b; (1.7)

these integrals are called the left and right fractional integrals respectively. Provided

the right-hand sides are pointwise de�ned on I = [a; b]; �1 < a < b <1:

In particular, when � = n (1.6) and (1.7) coincide with the nth integrals of the

form �
I�a+f

�
(t) =

1

(n� 1)!

tZ
a

f (s)

(t� s)1�n
ds; t > a; n 2 N;

and �
I�b�f

�
(t) =

1

(n� 1)!

bZ
t

f (s)

(s� t)1�n
ds; t < b; n 2 N:

Lemma 1.2.1 The fractional integral operators I�a+f and I
�
b�f with � 2 R+ are

15



1.2. Fractional integrals and fractional derivatives

bounded in Lp [a; b], 1 � p � 1;

I�a+f

 � K kfkLp ;

I�b�f

 � K kfkLp ;
K =

(b� a)�

� (�+ 1)
:

Properties.
Let � > 0; � > m > 0; m 2 N, D = d

dt
the classical derivative and f 2 Lp [a; b] ;

(1 � p � 1) : Then the following relations hold:

�
DmI�a+f

�
(t) =

�
I��ma+ f

�
(t) ; (1.8)

�
DmI�b�f

�
(t) = (�1)m

�
I��mb� f

�
(t) : (1.9)

If m = 1; then �
DI�a+f

�
(t) =

�
I��1a+ f

�
(t) ; (1.10)�

DI�b�f
�
(t) = �

�
I��1b� f

�
(t) :

De�nition 1.2.2 [54, 68, 73] The left and right Riemann-Liouville fractional de-
rivatives D�

a+f and D
�
b�f of order � 2 R+ are de�ned by

D�
a+f (t) =

�
d

dt

�n �
In��a+ f

�
(t) (1.11)

=
1

� (n� �)

�
d

dt

�n tZ
a

f (s)

(t� s)��n+1
ds , t > a

and

D�
b�f (t) =

�
� d
dt

�n �
In��b� f

�
(t) (1.12)

=
(�1)n

� (n� �)

�
d

dt

�n bZ
t

f (s)

(s� t)��n+1
ds , t < b

16



1.2. Fractional integrals and fractional derivatives

where n = [�] + 1: [�] denotes the integer part of �.

In particular, if 0 < � < 1 and n = 1 then,

D�
a+f (t) =

1

� (1� �)
d

dt

tZ
a

f (s)

(t� s)�ds, t > a;

and

D�
b�f (t) =

�1
� (1� �)

d

dt

bZ
t

f (s)

(s� t)�ds, t < b:

Properties.
We have the following properties for � � 0; � > 0 :�

I�a+ (t� a)
��1
�
(x) =

� (�)

� (� + �)
(x� a)�+��1 ;�

D�
a+ (t� a)

��1
�
(x) =

� (�)

� (� � �) (x� a)
����1 ;�

I�b� (b� t)
��1
�
(x) =

� (�)

� (� + �)
(b� x)�+��1 ;�

D�
b� (b� t)

��1
�
(x) =

� (�)

� (� � �) (b� x)
����1 :

Moreover, the Riemann-Liouville fractional derivative of a constant is in general

not equal to zero,

Example 1.2.1 if � = 1 and 0 � � < 1 we have

(D�
a+1) (x) =

(x� a)��

� (1� �) ;

(D�
b�1) (x) =

(b� x)��

� (1� �) :

Corollary 1.2.1 For � > 0; and n = [�] + 1 we have
a)
�
D�
a+f
�
(t) = 0 if, and only if,

f (t) =
nX
i=1

ci (t� a)��i : (1.13)

17



1.2. Fractional integrals and fractional derivatives

b)
�
D�
b�f
�
(t) = 0 if, and only if,

f (t) =
nX
i=1

di (b� t)��i ; (1.14)

where ci; di 2 R; i = 1; 2; :::n; are arbitrary constants.
In particular, when 0 < � < 1; then (1.13) and (1.14) take the following forms

f (t) = c (t� a)��1 ;

and

f (t) = d (b� t)��1 ;

where c; d 2 R are arbitrary constants.

Lemma 1.2.2 [54, 73]Assume that f 2 L1 [a; b] and � > 0, then

I�a+D
�
a+f (t) = f (t) +

nX
i=1

ci (t� a)��i ; (1.15)

I�b�D
�
b�f (t) = f (t) +

nX
i=1

di (b� t)��i ; (1.16)

where ci; di 2 R (i = 1; 2; :::n) are arbitrary constants and n = [�] + 1:
In particular, when 0 < � < 1; then the relations (1.15) and (1.16) take the

following forms

I�a+D
�
a+f (t) = f (t) + c (t� a)

��1 ; (1.17)

and

I�b�D
�
b�f (t) = f (t) + d (b� t)

��1 ; (1.18)

where c; d 2 R are arbitrary constants.

De�nition 1.2.3 [54, 73]The left and right Caputo derivative CD�
a+ and

CD�
b� of

order � 2 R+ of the function f can be de�ned via the above Riemann-Liouville

18



1.2. Fractional integrals and fractional derivatives

fractional derivatives by

CD�
a+f (t) =

 
D�
a+

"
f (x)�

n�1X
k=0

f (k) (a)

k!
(x� a)k

#!
(t) (1.19)

and

CD�
b�f (t) =

 
D�
b�

"
f (x)�

n�1X
k=0

f (k) (b)

k!
(b� x)k

#!
(t) (1.20)

respectively, where n = [�] + 1:

Lemma 1.2.3 [54, 73] For � > 0; and n = [�] + 1 we have

CD�
a+f (t) = D

�
a+f (t) ;

if

f (a) = f
0
(a) = f (2) (a) = ::::: = f (n) (a) = 0;

and
CD�

b�f (t) = D
�
b�f (t) ;

if

f (b) = f
0
(b) = f (2) (b) = ::::: = f (n) (b) = 0:

Theorem 1.2.1 [54, 73] Let f 2 ACn [a; b] ; then the Caputo fractional derivatives
CD�

a+f and
CD�

b�f exist a:e: on [a; b] and are represented by

CD�
a+f (t) =

�
In��a+ D(n)f

�
(t)

=
1

� (n� �)

tZ
a

(t� s)n���1 f (n) (s) ds; t > a;

CD�
b�f (t) = (�1)n

�
In��b� D(n)f

�
(t)

=
(�1)n

� (n� �)

bZ
t

(s� t)n���1 f (n) (s) ds; t < b:
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1.2. Fractional integrals and fractional derivatives

respectively, where n = [�] + 1:

Properties. Let �; � > 0 and n = [�] + 1, then the following relations hold:

�
CD�

a+ (t� a)
��1
�
(x) =

� (�)

� (� � �) (x� a)
��1 ;�

CD�
b� (b� t)

��1
�
(x) =

� (�)

� (� � �) (b� x)
��1

In particular, if � = 1 we get

�
CD�

a+1
�
(x) = 0;�

CD�
b�1
�
(x) = 0:

Lemma 1.2.4 Let � > 0:
i) The fractional di¤erential equation

CD�
a+f (t) = 0

has

f (t) =
nX
i=1

ci (t� a)i ; ci 2 R;

as solution.

ii) The fractional di¤erential equation

CD�
b�f (t) = 0

has

f (t) =
nX
i=1

di (b� t)i ; di 2 R;

as solution.

Lemma 1.2.5 Let � > 0: If f 2 Cn [a; b], then

I�a+D
�
a+f (t) = f (t) +

n�1X
k=0

ck (t� a)k ; ck 2 R; (1.21)
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1.3. Fixed point theorems

I�b�D
�
b�f (t) = f (t) +

n�1X
k=0

dk (b� t)k ; dk 2 R: (1.22)

1.3 Fixed point theorems

Fixed point theorem states that a mapping A has at least one �xed point, i.e.

A(x) = x, under certain conditions on A. In a wide range of mathematics, the

existence of a solution to a problem is equivalent to the existence of a �xed point

for a suitable operator. Fixed points are therefore of importance in many �elds of

mathematics, science and engineering.

Many situations in the study of nonlinear equations can be formulated in the

term of a �xed point problem. Therefore, �xed point theorems are useful math-

ematical tools for discussing the existence, uniqueness and positivity of solutions

for di¤erential equations. In this section, we recall some �xed point theorems that

will be used later.

De�nition 1.3.1 For a mapping T from a set X into itself, an element x of X

is a �xed point of T if T (x) = x.

De�nition 1.3.2 [39] Let X be a Banach space. A nonempty closed set P � X
is called a cone of X if it satis�es the following conditions:

a) x 2 P; � � 0, implies �x 2 P;
b) x 2 P; �x 2 P , implies x = 0.

Theorem 1.3.1 [73, 78, 87](Banach�s �xed point Theorem).
Let T be a contraction on a Banach space X. Then T has a unique �xed point.

Theorem 1.3.2 [78, 87](Schauder�s �xed point Theorem)
Let M be a closed convex subset of a Banach space E. If A : M ! M is

continuous and the set A(M) is compact, then A has a �xed point in M .

Theorem 1.3.3 [56, 78, 87](Krasnoselskii �xed point Theorem)
Let 
 be a closed bounded convex nonempty subset of a Banach space X. Sup-

pose that A and B map 
 into X such that

(i) x; y 2 
 implies Ax+By 2 
:
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1.3. Fixed point theorems

(ii) B is a contraction mapping.

(iii) A is completely continuous.

Then there exists z 2 
 such z = Az +Bz:

Theorem 1.3.4 [73, 69, 78, 87] (Guo-Krasnoselskii Theorem)
Let E be a Banach space, and let K � E, be a cone. Assume 
1 and 
2 are

open subsets of E with 0 2 
1; �
1 � 
2 and let T : K \
�
�
2n
1

�
! K, be a

completely continuous operator such that

(i) kTuk � kuk, u 2 K \ @
1 and kTuk � kuk, u 2 K \ @
2, or
(ii) kTuk � kuk, u 2 K \ @
1 and kTuk � kuk, u 2 K \ @
2.
Then T has a �xed point in K \

�
�
2n
1

�
:

22



CHAPTER 2

Existence of solutions for a system of mixed fractional

di¤erential equations
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2.1. Introduction

2.1 Introduction

Fractional di¤erential equations are gaining more and more attention, this is
due to their several applications in di¤erent scienti�c disciplines such as physics,

chemistry, viscoelasticity, aerodynamics, electromagnetic see [54, 68, 73] and the

references therein.

In [23], the author studied the existence of solutions for a system of multi-order

fractional di¤erential equations with nonlocal boundary conditions, here the order

of each equation may be di¤erent from the order of the other equations:

(
D�i
0+ui = fi(t; u1; u2; :::; un); ui(0) = 0; 0 < �i < 1; 1 � i � n:

ui(0) = 0:

where 0 � t � T: D�i
0+ denote the standard Riemann�Liouville fractional de-

rivatives and fi : [0; T ]� Rn+ ! R+:
In [48], the authors discussed the existence of positive solutions of the following

fractional boundary value problem(
D�
0+u+ a (t) f (u) = 0; 0 < t < 1; 1 < � < 2

u (0) = 0; u0 (1) = 0

where D�
0+ is the Riemann-Liouville derivative , f 2 C (R;R+) and a is a positive

and continuous function on [0; 1]:

Fractional di¤erential equations involving both left and right fractional deriv-

atives attract much attention recently, as they appear in Euler-Lagrange equations

when studying variational principles.

The existence results for such type of di¤erential equations are obtained by

means of di¤erent methods such as �xed point theorems, lower and upper solution

method, variational methods, ...we refer to [7, 9, 13, 15, 34, 52].

In [34], the authors established by using the lower and upper solutions method

the existence of solutions for fractional oscillator equation involving mixed type

fractional derivatives with an initial condition and a natural boundary condition:

24



2.1. Introduction

�CDp
1�D

q
0+u (t) + !

2u (t) = f (t; u (t)) ; 0 � t � 1; ! 2 R; ! 6= 0;
u (0) = 0;

Dq
0+u (1) = 0

where 0 < p; q < 1; CDp
1� and D

q
0+ denote the right Caputo derivative and the left

Riemann�Liouville respectively and f 2 C ([0; 1]� R;R) :
In [36], the authors discussed the existence of solutions for the following bound-

ary value problem containing a mixed type of fractional derivatives:(
CD�

1�

�
D�
0+u (t)

�
+ f (t; u (t)) = 0; 0 < t < 1

u (0) = u0 (0) = u (1) = 0

Where 0 < � � 1; 1 < � � 2; f : [0; 1] � R ! R. The proofs are based on
Krasnoselskii�s �xed point theorem.

This chapter is devoted to the study of the following system of fractional dif-

ferential equations with boundary conditions:

(S)

8>><>>:
D�
1�

�
D�
0+u (t)

�
+ f (t; u (t)) = 0, 0 < t < 1;

D�
0+u (0) = D

�
0+u (1) = 0;

u
0
(1) = u (0) = 0:

(2.1)

where the function u = (u1; u2; :::; un)
T is an unknown function, ui : [0; 1]! R;

D�
1�

�
D�
0+u (t)

�
=
�
D�
1�

�
D
�1
0+u1 (t)

�
; D�

1�

�
D
�2
0+u2 (t)

�
; :::; D�

1�

�
D
�n
0+un (t)

��T
;

D
�i
0+andD

�
1� denote the left and right Riemann-Liouville fractional derivatives re-

spectively, 1 < �; �i < 2, i 2 f1; ::; ng ; n � 2, f : [0; 1]� Rn ! Rn,

f (t; u) = (f1 (t; u1; u2; :::; un) ; :::; fn (t; u1; u2; :::; un))
T ;

fi 2 C ([0; 1]� Rn;R) :
This chapter is organized as follows. In Section 2, we establish the existence of
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2.2. Auxiliary results

a unique solution for the corresponding linear system (S), then we present some

properties of the Green functions. In Section 3, we convert the system (S) to a

sum of a contraction and a compact operator, then we use Krasnoselskii �xed point

theorem to prove the existence of at least one solution to system (S). In Section

4, two examples are constructed to validate the results.

2.2 Auxiliary results

We shall transform the system (2.1) to an equivalent system of integral equations.

Consider the corresponding linear system:

D�
1�

�
D
�i
0+ui (t)

�
= �yi (t) ; 0 � t � 1; (2.2)

D
�i
0+ui (0) = D

�i
0+ui (1) = 0; (2.3)

u0i (1) = ui (0) = 0: (2.4)

here i 2 f1; 2; :::ng :

Lemma 2.2.1 Assume that yi 2 C [0; 1], i 2 f1; :::; ng ; then the system (2.2)-

(2.4), has a unique solution u = (u1; :::; un) given by

ui (t) =

1Z
0

Gi (t; r) yi (r) dr + gi (t)

1Z
0

s��1yi (s) ds; (2.5)

where

Gi (t; r) =
1

�(�i)�(�)

8>>>><>>>>:

R r
0

�
t�i�1 (1� s)�i�2 � (t� s)�i�1

�
(r � s)��1 ds;

0 � r � t � 1;
t�i�1

R r
0
(1� s)�i�2 (r � s)��1 ds�

R t
0
(t� s)�i�1 (r � s)��1 ds;

0 � t � r � 1:

gi (t) =
1

� (�i) � (�)

0@ tZ
0

(t� s)�i�1 (1� s)��1 ds� t�i�1

�+ �i � 2

1A :
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Proof Applying the integral operator I�1� to equation (2.2), it yields

D
�i
0+ui (t) = �I

�
1�yi (t) + c1 (1� t)

��1 + c2 (1� t)��2 (2.6)

where c1; c2 2 R:
Conditions (2.3), implies

c2 = 0; c1 =
1

� (�)

1Z
0

s��1yi (s) ds: (2.7)

Substituting c1 and c2 in (2.6), we get

D
�i
0+ui (t) =

1

� (�)

0@(1� t)��1 1Z
0

s��1yi (s) ds�
1Z
t

(s� t)��1 yi (s) ds

1A : (2.8)

Now, we obtain by applying the operator I�i0+ to equation (2.8):

ui (t) = �I�i0+I
�
1�yi (t) +

1

� (�)

�
I
�i
0+ (1� t)

��1
� 1Z
0

s��1yi (s) ds (2.9)

+c3t
�i�1 + c4t

�i�2;

it�s easy to get c4 = 0 by the boundary conditions (2.4). Di¤erentiating the

obtained equation, we obtain

u0i (t) = �I�i�10+ I�1�yi (t) +
1

� (�)

�
I
�i�1
0+ (1� t)��1

� 1Z
0

s��1yi (s) ds

+(�i � 1) c3t�i�2:
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Using the initial conditions (2.4), we obtain

c3 =
1

� (�i) � (�)

0@ 1Z
0

(1� s)�i�2
0@ 1Z
s

(r � s)��1 yi (r) dr

1A
�

0@ 1Z
0

(1� s)�i�2 (1� s)��1 ds

1A�
0@ 1Z
0

s��1yi (s) ds

1A1A
1

� (�i) � (�)

0@ 1Z
0

(1� s)�i�2
0@ 1Z
s

(r � s)��1 yi (r) dr

1A�
1

�+ �i � 2

0@ 1Z
0

s��1yi (s) ds

1A1A :
Substituting c3 and c4 in (2.9) yields

ui (t) = � 1

� (�i) � (�)

tZ
0

(t� s)�i�1
0@ 1Z
s

(r � s)��1 yi (r) dr

1A ds
+

t�
�1
i

� (�i) � (�)

1Z
0

(1� s)�i�2
0@ 1Z
s

(r � s)��1 yi (r) dr

1A ds
+

1

� (�)

 �
I
�i
0+ (1� t)

��1
�
� t�

�1
i

(�+ � � 2) � (�i)

!

�
1Z
0

s��1yi (s) ds:

28



2.2. Auxiliary results

Thanks to Fubini theorem, we get

ui (t) = � 1

� (�i) � (�)

tZ
0

0@ rZ
0

(t� s)�i�1 (r � s)��1 ds

1A yi (r) dr
� 1

� (�i) � (�)

1Z
t

0@ tZ
0

(t� s)�i�1 (r � s)��1 ds

1A yi (r) dr
+

t�i�1

� (�i) � (�)

1Z
0

0@ rZ
0

(1� s)�i�2 (r � s)��1 ds

1A yi (r) dr
� 1

� (�i) � (�)

0@ t�i�1

�+ �i � 2
�

0@ tZ
0

(t� s)�i�1 (1� s)��1 ds

1A1A
�

0@ 1Z
0

s��1yi (s) ds

1A ;
hence (2.5) holds.

Let us present the properties of the functions gi and Gi; i = 1; :::; n:

Lemma 2.2.2 The functions Gi and gi; i = 1; :::; n are continuous and satisfy the
following properties:

0 � Gi (t; r) �
1

(�+ �i � 2) � (�i) � (�)
; 0 � t; r � 1 (2.10)

gi (t) � 0; jgi (t)j �
1

(�+ �i � 2) � (�i) � (�)
; 0 � t � 1: (2.11)

Proof Gi are nonnegative. In fact, if 0 � r � t � 1; then

Gi (t; r) =
1

� (�i) � (�)

rZ
0

�
t�i�1 (1� s)�i�2 � (t� s)�i�1

�
� (r � s)��1 ds

� 1

� (�i) � (�)

rZ
0

�
t�i�1 � (t� s)�i�1

�
(r � s)��1 ds � 0;
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and if 0 � t � r � 1; then

Gi (t; r) =
1

� (�i) � (�)

0@t�i�1 rZ
0

(1� s)�i�2 (r � s)��1 ds�

tZ
0

(t� s)�i�1 (r � s)��1 ds

1A
� t�i�1

� (�i) � (�)

0@ rZ
0

(1� s)�i�2 (r � s)��1 ds�
tZ
0

(r � s)��1 ds

1A
� t�i�1

� (�i) � (�)

0@ rZ
0

(r � s)��1 ds�
tZ
0

(r � s)��1 ds

1A � 0:

On the other hand, we have if 0 � r � t � 1

Gi (t; r) � 1

� (�i) � (�)

rZ
0

t�i�1 (1� s)�i�2 (r � s)��1 ds

� 1

� (�i) � (�)

rZ
0

(r � s)�i+��3 ds

� 1

(�+ �i � 2) � (�i) � (�)

and if 0 � t � r � 1; then

Gi (t; r) � t�i�1

� (�i) � (�)
t�i�1

rZ
0

(1� s)�i�2 (r � s)��1 ds

� t�i�1

� (�i) � (�)

rZ
0

(r � s)�i+��3 ds

� 1

(�+ �i � 2) � (�i) � (�)
:
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Similarly, we prove that the functions gi are non positive. Indeed, we have

gi (t) =
1

� (�i) � (�)

0@ tZ
0

(t� s)�i�1 (1� s)��1 ds� t�i�1

�+ �i � 2

1A
� t�i�1

� (�i) � (�)

0@ 1Z
0

(1� s)��1 ds� 1

�+ �i � 2

1A
� t�i�1

� (�i) � (�)

�
�i � 2

�+ �i � 2

�
� 0:

Moreover, we have,

jgi (t)j = �gi (t)

=
1

� (�i) � (�)

0@ t�i�1

�+ �i � 2
�

tZ
0

(t� s)�i�1 (1� s)��1 ds

1A
� 1

(�+ �i � 2) � (�i) � (�)
:

2.3 Existence of solutions

We consider the Banach space X of all functions

x = (x1; x2; :::; xn) 2 C [0; 1]� :::� C [0; 1]| {z }
n times

with the norm k:k de�ned by

kxk =
nX
i=1

max
t2[0;1]

jxi (t)j :
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De�ne the integral operators A and B on X by

Ax (t) = (A1x1 (t) ; A2x2 (t) ; :::; Anxn (t))

Bx (t) = (B1x1 (t) ; B2x2 (t) ; :::; Bnxn (t))

where

Aixi (t) =

1Z
0

Gi (t; r) fi (r; x (r)) dr

Bixi (t) = gi (t)

1Z
0

s��1fi (s; x (s)) ds

Lemma 2.3.1 The function x = (x1; x2; :::; xn) 2 X is a solution of the system

(S) if and only if Aixi (t) +Bixi (t) = xi (t) for all t 2 [0; 1] and i = 1; :::; n:

Consequently, to prove the existence of a solution for the system (S) it su¢ ces

to prove that the operator A+B has a �xed point, that is

Ax (t) +Bx (t) = x (t) ; t 2 [0; 1] :

Now, let us make the necessary hypotheses to prove the existence results for the

system (S).

H1) There exist nonnegative functions Ki 2 L1 (0; 1) ; such that:

jfi (t; x)� fi (t; y)j � Ki (t)

nX
j=1

jxj � yjj ;

t 2 [0; 1] ; x; y 2 R; i 2 f1; :::; ng ;

where
nX
i=1

kKikL1
(�+ �i � 2) � (�i) � (�)

<
1

4
: (2.12)

H2) The functions fi (t; 0) are continuous and not identically null on [0; 1] ; 8i 2
f1; :::; ng :
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Theorem 2.3.1 Under hypotheses (H1) and (H2) the system (S) has at least one
nontrivial solution.

Proof Let 
 = fx 2 X; kxk � Rg, here R is chosen such

R � 4
nX
i=1

Li
(�+ �i � 2) � (�i) � (�)

; (2.13)

and set

Li = max
t2[0;1]

jfi (t; 0)j :

Clearly, 
 is a nonempty, bounded and convex subset of X:

We will use Krasnoselskii�s �xed point theorem to prove that the operator A+B

has a �xed point, to this end, the proof will be done in three steps.

Step 1: Ax+By 2 
 for all x; y 2 
: In fact, taking into account hypothesis
(H2) and the properties of the functions Gi, we get for all i = 1; :::; n,

jAixi (t)j �
1Z
0

Gi (t; r) jfi (r; x (r))j dr

� 1

(�+ �i � 2) � (�i) � (�)

1Z
0

(jfi (r; x (r))� fi (r; 0)j+ jfi (r; 0)j) dr

� 1

(�+ �i � 2) � (�i) � (�)

1Z
0

 
jKi (r)j

nX
i=1

jxi (r)j+ Li

!
dr

�
R kKikL1 + Li

(�+ �i � 2) � (�i) � (�)

Taking the maximum over t 2 [0; 1], it yields

kAixik �
kKikL1 R + Li

(�+ �i � 2) � (�i) � (�)
: (2.14)

Summing the n inequalities in (2.14); then in view of (2.12) and (2.13), we obtain

kAxk �
nX
i=1

� kKikL1 R + Li
(�+ �i � 2) � (�i) � (�)

�
<
R

2
: (2.15)
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2.3. Existence of solutions

Thanks to hypothesis (H2) and the properties of the functions gi; we get

jBiyi (t)j � jgi (t)j
1Z
0

s��1 jfi (s; y (s))j ds

� 1

(�+ �i � 2) � (�i) � (�)

1Z
0

(jfi (r; y (r))� fi (r; 0)j+ jfi (r; 0)j) dr

�
jjKijjL1 R + Li

(�+ �i � 2) � (�i) � (�)
; 8i = 1; :::; n:

Taking the supremum over [0; 1], then summing the n obtained inequalities ac-

cording to i from 1 to n, we get by the help of (2.12) and (2.13),

kByk �
nX
i=1

� kKikL1 R + Li
(�+ �i � 2) � (�i) � (�)

�
<
R

2
:

Hence

kAx+Byk � kAxk+ kByk < R:

So, Ax+By 2 
 for all x; y 2 
:
Step 2: The mapping B is a contraction on 
: Indeed let x; y 2 
; then by

hypothesis (H1) it yields

jBixi (t)�Biyi (t)j � jgi (t)j
1Z
0

s��1 jfi (s; x (s))� fi (s; y (s))j ds

� 1

(�+ �i � 2) � (�i) � (�)

1Z
0

jKi (s)j
nX
i=1

jxi � yij ds

�
kKikL1 jjx� yjj

(�+ �i � 2) � (�i) � (�)
; i = 1; :::; n:

Taking the maximum over t 2 [0; 1], we get

kBixi �Biyik �
kKikL1 jjx� yjj

(�+ �i � 2) � (�i) � (�)
(2.16)
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Summing the n inequalities in (2.16); then taking (2.12) into account, we obtain:

kBx�Byk �
nX
i=1

kKikL1 jjx� yjj
(�+ �i � 2) � (�i) � (�)

<
jjx� yjj
4

:

Step 3: The operator A is completely continuous on 
: In fact,
i) A is continuous on 
: Let (xk)k = (x1k; x

2
k; :::x

n
k)k be a sequence such that

xk ! x = (x1; :::; xn) in 
; xik ! xi as k ! 1: Taking into account hypothesis
(H1) and the properties of the functions Gi, we get

��Aixik (t)� Aixi (t)�� �
1Z
0

Gi (t; r) jfi (r; xn (r))� fi (r; x (r))j dr

�
jjKijjL1 jjxk � xjj

(�+ �i � 2) � (�i) � (�)

<
jjxk � xjj

4
! 0; as k !1:

Hence, kAxk � Axk ! 0, when k tends to 1:
ii) A (
) � 
: Indeed, let x 2 
: From (2.15) we get

kAxk < R

2

iii) (Ax) is equicontinuous on 
. Let x 2 
; 0 � t1 � t2 � 1;

��Aixi (t1)� Aixi (t2)�� �
t1Z
0

jGi (t1; r)�Gi (t2; r)j jfi (r; x (r))j dr

+

t2Z
t1

jGi (t1; r)�Gi (t2; r)j jfi (r; x (r))j dr

+

1Z
t2

jGi (t1; r)�Gi (t2; r)j jfi (r; x (r))j dr
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� L

� (�) � (�i)

243
�
t
�i�1
2 � t�i�11

�
�i � 1

+
2
�
t
�i
2 � t

�i
1

�
� (t2 � t1)�i

�i
+ 3 (t2 � t1)

35! 0;

as t1 ! t2; i = 1; :::; n:

Consequently (Au) is equicontinuous on 
:

From the above steps, it follows by Arzela-Ascoli�s theorem that A is completely

continuous mapping on 
:

Finally, we conclude by Krasnoselskii �xed point theorem that the operator

A + B has at least one �xed point in 
; and consequently the system (S) has at

least one solution in 
:

2.4 Examples

Now, we give two examples to illustrate the usefulness of our main results.

Example 2.4.1 Consider the following two-dimensional fractional order system

(S1)

8>>>>>>>><>>>>>>>>:

D1:2
1�

�
D1:9
0+u1 (t)

�
= (1�2t)

10

�
u2 � 1

2(1+u22)

�
D1:2
1�

�
D1:5
0+u2 (t)

�
= e�t

60

�
tu2 +

1
2

�
3u1 � 1

1+u22

��
D1:9
0+u1 (0) = D

1:9
0+u1 (1) = 0;

D1:5
0+u2 (0) = D

1:5
0+u2 (1) = 0

u
0
1 (1) = u1 (0) = 0; u

0
2 (1) = u2 (0) = 0:

Here we have � = 1:2; �1 = 1:9; �2 = 1:5;

f1 (t; u) =
(1� 2t)
10

�
u2 �

1

2 (1 + u22)

�
and

f2 (t; u) =
e�t

60

�
tu2 +

1

2

�
3u1 �

1

1 + u22

��
:
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Hypotheses (H1) and (H2) hold, in fact

f1 (t; 0) = �(1� 2t)
20

;

f2 (t; 0) = � e
�t

120
;

jf1 (t; u)� f1 (t; v)j �
3

20
(1� t) ju2 � v2j

= K1 (t) ju2 � v2j

and

jf2 (t; u)� f2 (t; v)j �
e�t

40

2X
i=1

jui � vij

= K2 (t)
2X
i=1

jui � vij :

Moreover, we get by computations,

kK1kL1 =
1Z
0

3

20
(1� t) dt = 0:075;

kK2kL1 =
1Z
0

e�t

40
dt = 1: 580 3� 10�2;

2X
i=1

kKikL1
(�+ �i � 2) � (�i) � (�)

= 0:10495 <
1

4
;

L1 = max
t2[0;1]

jf1 (t; 0)j =
1

20
; L2 = max

t2[0;1]
jf2 (t; 0)j =

1

120
:

Then R can be chosen as

R = 0:5 � 4
2X
i=1

Li
(�+ �i � 2) � (�i) � (�)

;
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We conclude by Theorem 2.3.1 that the system (S1) has at least one non-trivial

solution u such that kuk � 0:5:

Example 2.4.2 Consider the system

(S2)

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

D1:5
1�

�
D1:5
0+u1 (t)

�
=
e�t

10
(u2 � u1)� t

4

D1:5
1�

�
D1:5
0+u2 (t)

�
=
e�t

60

�
t (u1 + u3) +

1
2

�
D1:5
1�

�
D1:5
0+u3 (t)

�
=
sin2 t

3

�
u2 �

t

2 (1 + u22)

�
D1:5
0+u1 (0) = D

1:5
0+u1 (1) = 0;

D1:5
0+u2 (0) = D

1:5
0+u2 (1) = 0;

D1:5
0+u3 (0) = D

1:5
0+u3 (1) = 0;

u
0
i (1) = ui = 0; i = 1; 2; 3:

here � = 3
2
; �i =

3
2
; i = 1; 2; 3 ; t 2 [0; 1] ; u 2 R3;

f1 (t; u) =
e�t

10
(u2 � u1)�

t

100
;

f2 (t; u) =
e�t

60

�
t (u1 + u3) +

1

2

�
;

f3 (t; u) =
sin2 t

3

�
u2 �

t

2 (1 + u22)

�
and

f1 (t; 0) = � t

100
;

f2 (t; 0) =
e�t

120
;

f3 (t; 0) = �t sin
2 t

6
:
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Hypotheses (H1) and (H1) are satis�ed. Indeed,

jf1 (t; u)� f1 (t; v)j �
e�t

10
(ju1 � v1j+ ju2 � v2j)

= K1 (t)

3X
i=1

jui � vij ;

jf2 (t; u)� f2 (t; v)j �
e�t

60

3X
i=1

jui � vij

= K2 (t)
3X
i=1

jui � vij

jf3 (t; u)� f3 (t; v)j �
2 sin2 t

3
ju2 � v2j

= K3 (t)
3X
i=1

jui � vij :

Some computations yield,

kK1kL1 = 0:063212; kK2kL1 = 0:010535; kK3kL1 = 0:181 78;

L1 = max
t2[0;1]

jf1 (t; 0)j =
1

100
;

L2 = max
t2[0;1]

jf2 (t; 0)j =
1

120
;

L3 = max
t2[0;1]

jf3 (t; 0)j =
sin2 1

6
= 0:11801;

3X
i=1

kKikL1
(�+ �i � 2) � (�i) � (�)

= 0:11796 <
1

4
;

3X
i=1

Li

(�+ �i � 2) � (�i) � (�)
= 0:23555:
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Let us choose R = 1 � 0:9422. Hence Theorem 2.3.1 implies that the problem (S2)
has a nontrivial solution u satisfying kuk < 1:
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CHAPTER 3

Existence of positive solutions for p-Laplacian systems

involving left and right fractional derivatives

41



3.1. Introduction

3.1 Introduction

This Chapter concerns the study of the existence, uniqueness and positivity of

solutions for the following system of a coupled nonlinear di¤erential equations

involving the p-Laplacian operator and a mixed type of fractional derivatives:

(S)

8>>>>>>>>>>><>>>>>>>>>>>:

RD�
1��p

�
CD

�1
0+u (t)

�
+ a1 (t) f1 (u (t) ; v (t)) = 0; 0 < t < 1;

RD�
1��p

�
CD

�2
0+v (t)

�
+ a2 (t) f2 (u (t) ; v (t)) = 0; 0 < t < 1;

�p

�
CD

�1
0+u (1)

�
= 0; u0 (0) = 0;

�1u (1)� u (0) =
R 1
0
g1 (s; u (s) ; v (s)) ds;

�p

�
CD

�2
0+v (1)

�
= 0; v0 (0) = 0;

�2v (1)� v (0) =
R 1
0
g2 (s; u (s) ; v (s)) ds:

Where 0 < � < 1, 1 < �i < 2; �i > 1; i = 1; 2 and �p (s) = jsjp�2 s; p > 1:

Denote by RD�
1� the right Riemann-Liouville fractional derivative.

CD
�i
0+ denotes

the left Caputo fractional derivative of order �i: The functions ai 2 C ([0; 1] ;R+) ;
fi 2 C (R+ � R+;R+) ; gi 2 C ([0; 1]� R+ � R+;R+), i = 1; 2:
The uniqueness of the solution is obtained by means of Banach contraction

principle, while the existence of positive solutions is proved by the help of Guo-

Krasnoselskii �xed point theorem in cones. Furthermore, under some conditions

on the nonlinear terms, we prove the nonexistence of positive solutions.

The p-Laplacian operator was introduce for the �rst time by Leibenson [57]

when studying the turbulent �ow in porous media. Thenceforward, the p-Laplacian

operator was widely introduced in di¤erent �elds of mathematical modeling, such

in mechanics, physics, dynamic systems, ...Moreover, several methods are applied

to study di¤erential equations involving the p-Laplacian operator such upper and

lower solutions method, �xed point theory, the coincidence degree theory, critical

point theory, variational methods, see [6, 20, 21, 41, 80, 82].

In [17] the author discussed the existence of positive solutions for p-Laplacian
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3.1. Introduction

fractional di¤erential equations with nonlocal boundary conditions8>>>><>>>>:
D�
0+�p

�
D�
0+u (t)

�
+ f (t; u (t)) = 0, 0 < t < 1;

D�
0+u (0) = 0;

D�
0+u (1) + �D



0+u (1) = 0;

u (0) = 0:

Where 1 < � < 2; 0 < � < 1; �p (s) = jsj
p�2 s; p > 1; D�

0+ ; D
�
0+ are the Riemann-

Liouville fractional derivatives, 0 < 
 � 1; the function f : [0; 1] � R+ ! R+ is
continuous.

Recently, more attention are paid to the investigation of initial and boundary

value problems involving di¤erent types of fractional derivatives. In particular, the

existence results for di¤erential equations involving both left and right fractional

derivatives is discussed in several articles, see [4, 16, 26, 35, 36, 37, 52, 50, 84, 85].

Let us recall that the left fractional derivative is interpreted as the past state of

the process, in which memory e¤ects occur, while the right fractional derivative

is interpreted as the future state of this process. In physics, the evolution of

many phenomenon depends on both the past and future, then the presence of left

and right fractional derivatives in di¤erential equations may appear naturally to

represent the evolution of the process.

In [2], the authors discussed by means of �xed point theorems the existence

and uniqueness of solutions for a system of coupled di¤erential equations involving

mixed type Caputo fractional derivatives

CD�
1�

�
CD�

0+x (t)
�
= f (t; x; y) , 0 < t < 1;

CDp
1�

�
CDq

0+y (t)
�
= g (t; x; y) ,

x (0) = x0 (0) = 0; x (1) = ay (�) ;

y (0) = y0 (0) = 0; y (1) = bx (�) :

Here 0 � �; q < 1; 1 < �; p < 2; CD�
1� and

CD�
0+ denote respectively the right and

left Caputo derivatives.

This Chapter is structured as follows. Section 2, we study the solvability of
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3.2. Solvability of an auxiliary system

the corresponding linear system and we present some properties of the associated

Green functions.

In Section 3, �rst, we prove, by Guo-Krasnosel�skii �xed-point theorem, the

existence of positive solutions for the nonlinear system (S). Second, we prove the

existence of nonnegative solutions under some conditions on the nonlinear terms

and by the help of Schauder�s �xed point theorem.

In Section 4, we establish by Banach �xed-point theorem the uniqueness of a

solution.

In section 5, we study the nonexistence of positive solutions for the system (S)

and in Section 6, some examples are also given to illustrate the obtained results.

3.2 Solvability of an auxiliary system

Let us consider the linear boundary value problem

CD
�i
0+u (t) + y (t) = 0; 0 < t < 1; 1 < �i < 2 (3.1)

u0 (0) = 0; (3.2)

�iu (1)� u (0) =

1Z
0

gi (s) ds; (3.3)

Lemma 3.2.1 Let y 2 C([0; 1]), then the unique solution of the boundary value
problem (3.1),(3.2) and (3.3) is given by

u (t) =

1Z
0

Gi (t; s) y (s) ds+
1

�i � 1

1Z
0

gi (s) ds (3.4)

where

Gi (t; s) =
1

� (�i)

(
�i
�i�1

(1� s)�i�1 � (t� s)�i�1 ; 0 � s � t � 1
�i
�i�1

(1� s)�i�1 ; 0 � t � s � 1:
(3.5)
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3.2. Solvability of an auxiliary system

Proof We apply (1.21) to equation (3.1), it yields

u (t) = �I�i0+y (t) + a1 + a2t: (3.6)

Di¤erentiating (3.6), we get

u0 (t) = �I�i�10+ y (t) + a2;

by the boundary condition (3.2) we obtain a2 = 0; and by (3.3)

a1 =
1

�i � 1

24 �i
� (�i)

1Z
0

(1� s)�i�1 y (s) ds+
1Z
0

gi (s) ds

35 :
Substituting a1 and a2 in (3.6), then

u (t) =
1

� (�i)

24� tZ
0

(t� s)�i�1 y (s) ds+ �i
�i � 1

1Z
0

(1� s)�i�1 y (s) ds

35
+

1

�i � 1

1Z
0

gi (s) ds

=

1Z
0

Gi (t; s) y (s) ds+
1

�i � 1

1Z
0

gi (s) ds:

Lemma 3.2.2 Let y 2 C([0; 1]). Then the boundary value problem

RD�
1��p

�
CD

�i
0+u (t)

�
+ y (t) = 0; 0 � t � 1 (3.7)

�p

�
CD

�i
0+u (1)

�
= 0 (3.8)
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3.2. Solvability of an auxiliary system

u0 (0) = 0 (3.9)

�iu (1)� u (0) =

1Z
0

gi (s) ds

has a unique solution

u (t) =

1Z
0

Gi (t; s)�q

0@ 1Z
s

(� � s)��1

� (�)
y (�) d�

1A ds+ 1

�i � 1

1Z
0

gi (s) ds

where Gi(t; s) are de�ned in (3.5).

Proof Applying the fractional integral I�1�to equation (3.7), we obtain

�p

�
CD

�i
0+u (t)

�
= �I�1�y (t) + a1 (1� t)

��1 ; a1 2 R; (3.10)

then the boundary condition (3.8) implies a1 = 0; hence equation (3.10) becomes

CD
�i
0+u (t) = �q (�I

�
1�y (t))

thus

CD
�i
0+u (t) + �q

0@ 1

� (�)

1Z
t

(s� t)
��1
y (s) ds

1A = 0: (3.11)

Consequently the problem (3.7)-(3.9) is equivalent to

CD
�i
0+u (t) + �q

0@ 1

� (�)

1Z
s

(s� t)
��1
y (s) ds

1A = 0; t 2 [0; 1]

u0 (0) = 0;

�iu (1)� u (0) =
1Z
0

gi (s) ds:
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Now, thanks to Lemma 3.2.1, we conclude that the fractional boundary value

problem (3.7), (3.8) and (3.9) has a unique solution given by

u (t) =

1Z
0

Gi (t; s)�q

0@ 1

� (�)

1Z
s

(� � s)
��1
y (�) d�

1A ds+ 1

�i � 1

1Z
0

gi (s) ds:

Lemma 3.2.3 The functions Gi (t; s) ; i = 1; 2 are continuous, nonnegative for

t; s 2 [0; 1] and satisfy

1

�i
Gi (s; s) � Gi (t; s) � Gi (s; s) ; t; s 2 [0; 1] ; i = 1; 2: (3.12)

Proof It is easy to show that Gi (t; s) are continuous and nonnegative for t; s 2
[0; 1] ; i = 1; 2: Now we shall show the inequalities in (3.12). For s � t � 1, we

have

Gi (t; s) =
�i

(�i � 1) � (�i)
(1� s)�i�1 � (t� s)

�i�1

� (�i)

� �i
(�i � 1) � (�i)

(1� s)�i�1 � Gi (s; s) ;

moreover, since Gi (t; s) is decreasing with respect to t then Gi (t; s) � Gi (1; s) ;

hence

Gi (t; s) � Gi (1; s) =
(1� s)�i�1

(�i � 1) � (�i)
=
1

�i
Gi (s; s) :

Now, let t � s, we have

Gi (t; s) =
�i

(�i � 1) � (�i)
(1� s)�i�1 = Gi (s; s) ;

remarking that Gi (t; s) is independent of t and �i > 1; then

Gi (t; s) =
�i

(�i � 1) � (�i)
(1� s)�i�1 � (1� s)�i�1

(�i � 1) � (�i)
=
1

�i
Gi (s; s) :
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3.3. Existence of positive solutions

3.3 Existence of positive solutions

We need to introduce the functional tools and notations for the forthcoming dis-

cussion. Let Y = C [0; 1] and X = C [0; 1]�C [0; 1] be the Banach spaces endowed
respectively with the norms

kuk1 = max
t2[0;1]

ju (t)j ; u 2 Y;

k(u1; u2)k = max
i=1;2

kuik1 ; (u1; u2) 2 X:

De�ne the cones

P1 =

�
u 2 Y; min

t2[0;1]
u (t) � 1

�1
kuk1

�
� Y;

P2 =

�
u 2 Y; min

t2[0;1]
u (t) � 1

�2
kuk1

�
� Y;

then P = P1 � P2 � X.
We need the following assumptions.

H1) fi 2 C
�
R+ � R+;R+

�
; i = 1; 2:

H2) ai 2 C
�
[0; 1] ;R+

�
; i = 1; 2:

H3) gi 2 C
�
[0; 1]� R+ � R+;R+

�
; i = 1; 2

Set

�i =

1Z
0

Gi (s; s) ds ;

�i =
aq�1i

(� (�))q�1

1Z
0

Gi (s; s)

0@ 1Z
s

(� � s)��1 d�

1Aq�1

ds;

where

ai = max
t2[0:1]

ai (t)
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Simple calculations give

�i =
�i

(�i � 1) � (�i + 1)
;

�i =
�ia

q�1
i

(�i � 1) (� (�+ 1))
q�1 � (�i) [� (q � 1) (�i � 1) + 1]

:

Lemma 3.3.1 (u; v) is a solution for the coupled system (S) if and only if (u; v)

is a solution for the following system of integral equations:8>>>>>>>>>><>>>>>>>>>>:

u (t) =
R 1
0
G1 (t; s)

�
1

� (�)

R 1
s
(� � s)

��1
a1 (�) f1 (u (�) ; v (�)) d�

�q�1
ds

+
1

�1 � 1
R 1
0
g1 (s; u (s) ; v (s)) ds

v (t) =
R 1
0
G2 (t; s)

�
1

� (�)

R 1
s
(� � s)

��1
a2 (�) f2 (u (�) ; v (�)) d�

�q�1
ds

+
1

�2 � 1
R 1
0
g2 (s; u (s) ; v (s)) ds

(3.13)

Proof The proof is immediately obtained by Lemma 3.2.2.

De�ne the operator

z : X ! X (3.14)

z (u; v) = (z1 (u; v) ;z2 (u; v)) ;

where

zi : X ! Y

zi (u; v) =

1Z
0

Gi (t; s)

0@ 1

� (�)

1Z
s

(� � s)
��1
ai (�) � (3.15)

fi (u (�) ; v (�)) d�)
q�1 ds+

1

�i � 1

1Z
0

gi (s; u (s) ; v (s)) ds:

Thanks to Lemma 3.3.1, the system (S) is equivalent to a �xed point problem,

that is to prove the existence of solutions for the system (S) it su¢ ces to prove
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3.3. Existence of positive solutions

that the operator z has a �xed point, i.e. z (u; v) = (u; v).

Lemma 3.3.2 The operator z is completely continuous and z (P ) � P .

Proof First, let us show that z (P ) � P: Let t 2 [0; 1]; then taking (3.2.3) into
account, we get

jzi (u (t) ; v (t))j �
1Z
0

Gi (s; s)

0@ 1

� (�)

1Z
s

(� � s)
��1
ai (�)

fi (u (�) ; v (�)) d�)
q�1 ds+

1

�i � 1

1Z
0

gi (s; u (s) ; v (s)) ds;

that implies by taking the supremum over [0; 1]

kzi (u; v)k1 �
1Z
0

Gi (s; s)

0@ 1

� (�)

1Z
s

(� � s)
��1
ai (�) fi (u (�) ; v (�)) d�

1Aq�1

ds

+
1

�i � 1

1Z
0

gi (s; u (s) ; v (s)) ds:

Furthermore, we have

zi (u (t) ; v (t)) � 1

�i

1Z
0

Gi (s; s)

0@ 1

� (�)

1Z
s

(� � s)
��1
a (�) �

fi (u (�) ; v (�)) d�)
q�1 ds+

1

�i � 1

1Z
0

gi (s; u (s) ; v (s)) ds;

thus,

zi (u (t) ; v (t)) �
1

�i
kzi (u; v)k1 ;

which implies z (P ) � P:
Second, we shall prove that z is completely continuous. Let 
 be an open

bounded set in P .
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Set

Li = max fi (u (t) ; v (t)) <1
(u;v)2


; li = max gi (t; u (t) ; v (t))
(t;u;v)2[0;1]�


:

The proof will be done in two steps.

Step 1. The operator z is uniformly bounded and equicontinuous on 
.

Indeed, let (t; u; v) 2 [0; 1]� 
; we have

jzi (u (t) ; v (t))j �
1Z
0

Gi (s; s)

0@ 1

� (�)

1Z
s

(� � s)
��1
ai (�) fi (u (�) ; v (�)) d�

1Aq�1

ds

+
1

�i � 1

1Z
0

gi (s; u (s) ; v (s)) ds

�
�

Liai
(� (�+ 1))

�q�1 1Z
0

Gi (s; s) ds+
li

(�i � 1)

=

�
Liai

� (�+ 1)

�q�1
Ei +

li
�i � 1

<1;

thus z (
) is uniformly bounded.
Now, let (u; v) 2 
; 0 � t1 � t2 � 1. We have

jzi (u (t1) ; v (t1))�zi (u (t2) ; v (t2))j

�
t1Z
0

jGi (t2; s)�Gi (t1; s)j �
�

1

� (�)

1Z
s

(� � s)
��1
ai (�) fi (u (�) ; v (�)) d�

1Aq�1

ds

+

t2Z
t1

jGi (t2; s)�Gi (t1; s)j �
�

1

� (�)

1Z
s

(� � s)
��1
ai (�) fi (u (�) ; v (�)) d�

1Aq�1

ds
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::+

1Z
t2

jGi (t2; s)�Gi (t1; s)j

�

0@ 1

� (�)

1Z
s

(� � s)
��1
ai (�) fi (u (�) ; v (�)) d�

1Aq�1

ds

�
�

Liai
� (�+ 1)

�q�1 jt2 � t1j�i
� (�i + 1)

! 0; as t2 ! t1

Thus z (
) is equicontinuous. We conclude by Arzela�Ascoli�s theorem that the

operator z is compact on 
:
Step 2. z is continuous. In fact, let (un; vn) be an arbitrary convergent

sequence in P such (un; vn)! (u; v) 2 P: Since fi are continuous, then

0 � fi (un (�) ; vn (�)) � Li; � 2 I; n � 0;

so,

1

� (�)

1Z
s

(� � s)��1 ai (�) fi (un (�) ; vn (�)) d� �
aiLi

� (�+ 1)
= ci: (3.16)

Taking into account that fi are uniformly continuous, then there exists N � 1

such that for n � N; we have

jfi (un (�) ; vn (�))� fi (u (�) ; v (�))j < ";

jgi (s; un (s) ; vn (�))� gi (s; u (s) ; v (�))j < ":

According to the values of p and then of q, we have the following.

i) If 1 < q � 2; then by the help of Lemma 1.1.2, it yields
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�������
0@ 1Z
s

(� � s)��1 ai (�) fi (un (�) ; vn (�)) d�

1Aq�1

�

0@ 1Z
s

(� � s)��1 ai (�) fi (u (�) ; v (�)) d�

1Aq�1
�������

�

0@ 1Z
s

(� � s)��1 ai (�) jfi (un (�) ; vn (�))� fi (u (�) ; v (�))j d�

1Aq�1

<
h "
�
ai

iq�1
:

Consequently,

jzi (un; vn)�zi (u; v)j <
aq�1i "q�1

(� (�+ 1))q�1

1Z
0

Gi (s; s) ds+
"

�i � 1

=
aq�1i "q�1

(� (�+ 1))q�1
�i +

1

�i � 1
"

and then

kzi (un; vn)�zi (u; v)k1 �
�

aq�1i �i

(� (�+ 1))q�1
+

1

�i � 1

�
"q�1: (3.17)

ii) If q > 2; then by the help of Lemma 1.1.2, we obtain�������
0@ 1

� (�)

1Z
s

(� � s)��1 ai (�) fi (un (�) ; vn (�)) d�

1Aq�1

�

0@ 1

� (�)

1Z
s

(� � s)��1 ai (�) fi (u (�) ; v (�)) d�

1Aq�1
�������
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� (q � 1) (ci)q�2

� (�)

1Z
s

(� � s)��1 ai (�) jfi (un (�) ; vn (�))� fi (u (�) ; v (�))j d�

<
(q � 1) cq�2i ai
� (�+ 1)

":

Hence,

jzi (un; vn)�zi (u; v)j <

0@(q � 1) cq�2i ai
� (�+ 1)

1Z
0

Gi (s; s) ds+
1

�i � 1

1A ";
consequently

kzi (un; vn)�zi (u; v)k1 <
�
(q � 1) cq�2i ai
� (�+ 1)

�i +
1

�i � 1

�
": (3.18)

In view of (3.17) and (3.18) we conclude the continuity of z. Finally, we deduce
from the above discussing that the operator z is completely continuous on P:
Now we give an existence result.

Theorem 3.3.1 Assume that hypotheses (H1)� (H3) hold and

H4) There exist two nonnegative functions c1; c2 2 L1 [0; 1] and two constants
b1; b2 > 0 such that for (u; v) 2 R+ � R+;

gi (t; u; v) � bici (t) (u+ v) ;

kcikL1 � �i � 1
2bi

; i = 1; 2:

Then the system (S) has at least one positive solution (u; v), in the case D0;i = 0

and D1;i =1, i = 1; 2; where

D�;i = lim
(juj+jvj)!�

fi (u; v)

(juj+ jvj)p�1
;
�
� = 0+ or +1

�
;
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Proof Since D0;i = 0; i = 1; 2; then for

0 < " � min
i=1;2

(�
1

2�i

� 1
q�1
)
;

there exists �1 > 0; such that if 0 < u+ v � �1, then

fi (u; v) � " (juj+ jvj)p�1 :

Let


1 = f(u; v) 2 X; k(u; v)k < �1g ;

and (u; v) 2 P \ @
1; then,

zi (u (t) ; v (t)) �
1Z
0

Gi (s; s)

0@ 1

� (�)

1Z
s

(� � s)
��1
ai (�) " (juj+ jvj)p�1 d�

1Aq�1

ds

+
1

�i � 1

1Z
0

bici (s) (juj+ jvj) ds;

�
�

"

� (�)

�q�1 1Z
0

Gi (s; s)

0@ 1Z
s

(� � s)
��1
ai (�) �

(kuk1 + kvk1)
p�1 d�

�q�1
ds+

bi
�i � 1

1Z
s

ci (s) (kuk1 + kvk1) ds

�
�
(")q�1 �i +

1

2

�
k(u; v)k :

Hence

kz (u; v)k � k(u; v)k ; for (u; v) 2 @
1 \ P

On the other hand since D1;i =1; i = 1; 2; then for

�q�1 � max
i=1;2

�
�i
�i

�
(� (�))q�1
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where

�i =

1Z
0

Gi (s; s)

0@ 1Z
s

(� � s)
��1
ai (�) d�

1Aq�1

ds;

there exists � > 0; such that if u+ v � �, then

fi (u; v) � � (juj+ jvj)p�1 :

Setting �2 = max
i=1;2

�
3
2
�1; �i�

�
and


2 = f(u; v) 2 X; k(u; v)k < �2g ;

then �
1 � 
2: Let (u; v) 2 P \ @
2; then

zi (u (t) ; v (t)) � 1

�i

1Z
0

Gi (s; s)�

0@ 1

� (�)

1Z
s

(� � s)
��1
ai (�)� (juj+ jvj)p�1 d�

1Aq�1

ds

� 1

�i

�
�

� (�)

�q�1 1Z
0

Gi (s; s)�

0@ 1Z
s

(� � s)
��1
ai (�) (kuk1 + kvk1)

p�1 d�

1Aq�1

ds

� 1

�i

�
�

� (�)

�q�1
�i k(u; v)k � k(u; v)k

thus

kz (u; v)k � k(u; v)k ; (u; v) 2 @
2 \ P:

By the help of Guo-Krasnoselskii �xed point Theorem we deduce that z has a

�xed point (u; v) 2 P \
�
�
2 n 
1

�
; i.e. the system (S) has at least one positive

solution (u; v).

Remark 3.3.1 The case D0;i = 0 and D1;i = 1 is called superlinear case and
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the case D0;i =1 and D1;i = 0 is called sublinear case.

Theorem 3.3.2 Assume that hypotheses (H1)� (H3) are satis�ed and
(H5) There exist constants ci; di > 0; 0 < �i; �i < 1; such

0 < f1 (u; v) �
�
c1 juj�1 + c2 jvj�2

�p�1
;

0 < f2 (u; v) � (d1 juj�1 + d2 jvj�2)p�1 :

(H6) There exist two nonnegative functions h (t) ; k (t) 2 L1 [0; 1] such that

g1 (t; u; v) � h (t) + c1 juj�1 + c2 jvj�2 ;
g2 (t; u; v) � k (t) + d1 juj�1 + d2 jvj�2 :

Then the fractional boundary value problem (S) has at least one positive solution.

Proof We shall use Schauder �xed-point Theorem. From lemma 3.3.2, we know

that z is completely continuous. Let

M = f(u; v) 2 P; k(u; v)kX < Rg ;

R > max
n
[3c1 (�1 + A1)]

1
1��1 ; [3c2 (�1 + A1)]

1
1��2 ;

[3d1 (�2 + A2)]
1

1��1 ; [3d2 (�2 + A2)]
1

1��2 ; 3H; 3K
o
;

where

A1 =
1

�1 � 1
; A2 =

1

�2 � 1
;

and

H = A1 khkL1 ; K = A2 kkkL1 :
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We shall prove that z (M) �M . Let (u; v) 2M; then

jz1 (u (t) ; v (t))j �
1Z
0

G1 (s; s)

0@ 1

� (�)

1Z
s

(� � s)
��1
a1 (�) �

�
c1 juj�1 + c2 jvj�2

�p�1
d�

�q�1
ds+

1

�1 � 1

1Z
0

�
h (s) + c1 juj�1 + c2 jvj�2

�
ds

�
1Z
0

G1 (s; s)

0@ 1

� (�)

1Z
s

(� � s)
��1
a1 (�) �

�
c1R

�1 + c2R
�2
�p�1

d�
�q�1

ds+

1

�1 � 1

1Z
0

�
h (s) + c1R

�1 + c2R
�2
�
ds:

� �1
�
c1R

�1 + c2R
�2
�
+ A1

�
khkL1 + c1R

�1 + c2R
�2
�

= (�1 + A1) c1R
�1 + (�1 + A1) c2R

�2 +H;

thus,

kz1 (u; v)k <
R

3
+
R

3
+
R

3
= R:

Similarly, we get

kz2 (u; v)k � (�2 + A2) d1R
�1 + (�2 + A2) d2R

�2 +K

<
R

3
+
R

3
+
R

3
= R;

that implies

kz (u; v)k < R:

Thus, we have z (M) �M:
Finally, we conclude by Schauder �xed-point theorem that the operator z has

at least one �xed point (u; v) 2 M; that implies the system (S) has at least one

positive solution in M � P .
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3.3.1 Examples

Example 3.3.1 Consider the system (S), with

f1 (u; v) = (u+ v)
3 ;

a1 (t) = e
�2t;

f2(u; v) = e
(u+v)2 � 1;

a2 (t) = 1;

g1 (t; u; v) =
(1� t) (u+ v)2

3u+ 4v
;

g2 (t; u; v) =
t

9
u:

where � = 1
2
; �1 = �2 =

4
3
; p = 2; �1 =

3
2
; �2 =

5
4
:

Easily we get D0;i = 0, D1;i =1, i = 1; 2:

g1 (t; u; v) � 1� t
3

(u+ v) ;

g2 (t; u; v) � t

5
(u+ v) :

Since hypotheses (H1)-(H1) and (H4) hold, then by Theorem 3.3.1, it follows that

the system (S) has at least one positive solution.

Example 3.3.2 Consider the system (S) with � = 0:5; �1 = �2 = 1:7; �1 = 16;

�2 = 100; p = 2;

f1 (u (t) ; v (t)) = 3
p
v (t);

f2 (u (t) ; v (t)) =
3
p
v (t)

1 + 3
p
u(t) + v(t)

;

g1 (t; u (t) ; v (t)) = 3 +

�
t� 1

3

�5
3
p
u (s);

g1 (t; u (t) ; v (t)) =

�
t� 1

3

�5
+ t
�

3
p
u (s) + 3

p
v (s)

�
:

By computation we get
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f1 (u (t) ; v (t)) � 3
p
u (t) + 3

p
v (t);

f2 (u (t) ; v (t)) � 3
p
u (t) + 3

p
v (t);

g1 (t; u (t) ; v (t)) � 3 + 3
p
u (t) + 3

p
v (t);

g1 (t; u (t) ; v (t)) � 1 + 3
p
u (t) + 3

p
v (t):

So, we have

�i = �i =
1

3
;

ci = di = 1;

h (t) = 3; k (t) = 1

Then, all assumptions of Theorem 3.3.2, consequently, the system (S) has at least

one solution (u; v) 2 P:

3.4 Uniqueness results

In this section, we state and prove uniqueness results for the system (S) by using

Banach �xed point theorem.

Theorem 3.4.1 Assume 1 < p < 2, hypotheses (H1)� (H3) are satis�ed, and
(H7) There exist constants �i; �i > 0, such that for (u1; u2) ; (v1; v2) 2 R+�R+,

we have

jfi (u1; u2)� fi (v1; v2)j � �i
2X
j=1

juj � vjj ; i = 1; 2;

and

1

� (�)

1Z
0

ai (�) fi (u1 (�) ; u2 (�)) d� � �i; i = 1; 2:
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3.4. Uniqueness results

(H8) There exist functions Ki 2 L1 [0; 1] and �i > 0 such the estimate

jgi (t; u1; u2)� gi (t; v1; v2)j � Ki (t)

2X
j=1

juj � vjj ; i = 1; 2;

holds for all (t; u1; u2) ; (t; v1; v2) 2 [0; 1]� R+ � R+;
and

B = max
i=1;2

" 
(q � 1) �q�2i

� (�+ 1)
�i�iai +

kKikL1[0;1]
�i � 1

!#
< 1:

then the system (S) has a unique solution.

Proof Taking into account the properties of the function Gi, we get

jziu (t)�ziv (t)j �
1Z
0

Gi (s; s)

�������
0@ 1

� (�)

1Z
s

(� � s)
��1
ai (�) fi (u1; u2) d�

1Aq�1

�

0@ 1

� (�)

1Z
s

(� � s)
��1
ai (�) fi (v1; v2) d�

1Aq�1
������� ds

+
1

�i � 1

1Z
0

jgi (s; u1; u2)� gi (s; v1; v2)j ds:
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Since 1 < p < 2 then q > 2: In view of Lemma 1.1.3, we get

jziu (t)�ziv (t)j �
(q � 1) �q�2i

� (�)

1Z
0

Gi (s; s)

1Z
s

(� � s)
��1
ai (�) �

jfi (u1; u2)� fi (v1; v2)j d� ds+

1

�i � 1

1Z
0

jKi (s)j
2X
j=1

juj (�)� vj (�)j

� (q � 1) �q�2i

� (�)
ai�i

1Z
0

Gi (s; s)

�
1Z
s

(� � s)
��1

2X
j=1

juj (�)� vj (�)j d�ds

+
1

�i � 1

1Z
0

jKi (s)j
2X
j=1

���uj (s)� v (s)j��� ds
�

2X
j=1

kuj � vjk1

0@(q � 1) cq�2i

� (�)
ai�i

1Z
0

Gi (s; s)

1Z
s

(� � s)
��1
d�ds

+
1

�i � 1

1Z
0

jKi (s)j ds

1A
�

"
(q � 1) �q�2i

� (�+ 1)
�i�iai +

kKikL1[0;1]
�i � 1

#
ku� vk :

Taking the maximum over t 2 [0; 1], we obtain

kziu�zivk1 � B ku� vk ; i = 1; 2;

consequently

kzu�zvk � B ku� vk :

By Banach contraction principle, we deduce the existence of a unique solution for

the system (S).
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Theorem 3.4.2 Assume p > 2 and hypotheses (H1)� (H3) ; (H7) hold and
(H9) There exist functionsKi 2 L1 [0; 1] ; such that for all (t; u1; u2) ; (t; v1; v2) 2

[0; 1]� R+ � R+; the estimate

jgi (t; u1; u2)� gi (t; v1; v2)j � Ki (t)

2X
j=1

juj � vjj ; i = 1; 2;

holds and

C = max
i=1;2

" 
�i�iai
� (�+ 1)

+
kKikL1[0;1]
�i � 1

!#
< 1:

then the system (S) has a unique solution.

Proof The proof follows easily by remarking that 1 < q < 2, then using Lemma

1.1.3 and reasoning as in the proof of Theorem 3.4.1.

3.4.1 Example

We consider the system (S) with � = 0:5, �1 = �2 =
3
2
; �1 = �2 = 4; p = 3;

f1 (u1; u2) =
u1

u1 + 1
+

u2
2u1 + u2

;

f2 (u1; u2) =
u2

u2 + eu1+u2
+ 1;

a1 (t) =
1

44
; a2 (t) =

e�t

44
;

g1 (t; u1; u2) =
tu1

56 (u1 + 1)
;

g2 (t; u1; u2) =
t (u1 + u2)

120 (u1 + u2 + eu1)
:
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Some calculations give

jf1 (u1; u2)� f1 (v1; v2)j �
2X
j=1

juj � vjj ;

jf2 (u1; u2)� f2 (v1; v2)j � ju2 � v2j �
2X
j=1

juj � vjj ;

jg1 (t; u1; u2)� g1 (t; v1; v2)j �
t

140
ju1 � v1j ;

jg1 (t; u1; u2)� g1 (t; v1; v2)j �
t

44

2X
j=1

juj � vjj ;

�i = 1; ai =
1

44
; �i =

4

3�
�
5
2

� ;
Li = 2; ci =

2

� (0:5)
;

K1 (t) =
t

140
; kK1kL1[0;1] =

1

280
;

K2 (t) =
t

44
; kK2kL1[0;1] =

1

88
;

A1 =
�1�1a1
� (�+ 1)

+
kK1kL1[0;1]
�1 � 1

= 2: 691 2� 10�2 < 1;

A2 =
�2�2a2
� (�+ 1)

+
kK2kL1[0;1]
�2 � 1

= 2: 951 0� 10�2 < 1;

C = max
i=1;2

" 
�i�iai
� (�+ 1)

+
kKikL1[0;1]
�i � 1

!#
= 2: 951 0� 10�2 < 1:

Hence all assumptions of Theorem 3.4.2 are satis�ed and then the system (S) has

a unique solution.
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3.5 Nonexistence of positive solutions

In this section, we give su¢ cient conditions for the system (S) to have no positive

solutions.

Theorem 3.5.1 Assume that hypotheses (H1)� (H3) are satis�ed and that there
exist four positive numbers m1;m2;M1;M2 such that

f1 (u; v) � m1�p (u+ v) ; (3.19)

f2 (u; v) � m2�p (u+ v) ; (3.20)

g1 (t; u; v) �M1 (u+ v) ; (3.21)

g2 (t; u; v) �M2 (u+ v) ; (3.22)

for t 2 [0; 1], (u; v) 2 X with

Ji = �q

�
mi

� (�+ 1)
ai

�
�i +

Mi

�i � 1
<
1

2
; i = 1; 2: (3.23)

Then the system (S) has no positive solution.

Proof Set

D = max (J1; J2) <
1

2
: (3.24)
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3.5. Nonexistence of positive solutions

Assume the contrary, i.e. the system (S) has a positive solution (u; v) 2 P; then
for t 2 [0; 1], we have

u (t) =

1Z
0

G1 (t; s)

0@ 1

� (�)

1Z
s

(� � s)
��1
a1 (�) f1 (u (�) ; v (�)) d�

1Aq�1

ds

+
1

�1 � 1

1Z
0

g1 (s; u (s) ; v (s)) ds

�
1Z
0

G1 (s; s)

0@ 1

� (�)

1Z
s

(� � s)
��1
a1 (�) f1 (u (�) ; v (�)) d�

1Aq�1

ds

+
1

�1 � 1

1Z
0

g1 (s; u (s) ; v (s)) ds:

In view of (3.19) and (3.21) of Theorem 3.5.1, we obtain

u (t) �
1Z
s

G1 (s; s)

0@ 1

� (�)

1Z
s

(� � s)
��1
a1 (�)m1 � (u (�) + v (�))p�1 d�

1Aq�1

ds

+
1

�1 � 1

1Z
s

M1 (u (s) + v (s)) ds

�

24� m1

� (�+ 1)
a1

�q�1 1Z
s

G1 (s; s) ds+
M1

�1 � 1

35 (kuk1 + kvk1)
< 2D k(u; v)k ; 8t 2 [0; 1] :

Similarly, by (3.20) and (3.22), it yields

v (t) �
1Z
0

G2 (s; s)

0@ 1

� (�)

1Z
s

(� � s)
��1
a2 (�)m2 (u (�) + v (�))

p�1 d�

1Aq�1

ds

+
1

�2 � 1

1Z
0

M2 (u (s) + v (s)) ds
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3.5. Nonexistence of positive solutions

v (t) �
1Z
0

G2 (s; s)

0@a2m2

� (�)

1Z
s

(� � s)
��1
d�

1Aq�1

(kuk1 + kvk1) ds

+
1

�2 � 1

1Z
0

M2 (kuk1 + kvk1) ds

< 2

24� a2m2

� (�+ 1)

�q�1 1Z
0

G2 (s; s) ds+
M2

�2 � 1

35 k(u; v)k
= 2D k(u; v)k ;8t 2 [0; 1] :

Thus

kuk1 < 2D k(u; v)k and kvk1 < 2D k(u; v)k ;

taking into (3.24) account it yields

k(u; v)k = max (kuk1 ; kvk1) < 2D k(u; v)k < k(u; v)k

which is impossible, and then the system (S) has no positive solution.

3.5.1 Example

Example 3.5.1 We consider the system (S) with � = 0:5; �1 = �2 = 1:7; �1 = 16;
�2 = 100; p = 2 and

f1 (u; v) =

�
(u+ v)2 � 1

u

�
;

f2 (u; v) =

�
v2

(u+ v)2 + 5

�
;

a1 (t) =
e�t

10
; a2 (t) = sin

2 t;

g1 (u; v) =
�
2u+ t2v

�
;

g2 (u; v) =
u

3u+ 2tv
;
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3.5. Nonexistence of positive solutions

we check easily that

f1 (u; v) � (u+ v)2 ;

f2 (u; v) � (u+ v)2 ;

g1 (u; v) � 2 (u+ v) ;

g2 (u; v) � (u+ v) :

By calculation it yields

a1 =
1

10
; a2 =

1

24
;m1 = m2 = 1;

M1 = 2;M2 = 1;�1 = �2 =
4

3�
�
5
2

� :

J1 =
4

3�
�
5
2

� � 1

10� (1:5)
+
2

15
= 0:24651 < 0:5

J2 =
4

3�
�
5
2

� � 1

24� (1:5)
+
1

99
= 0:05725 < 0:5

Thanks to Theorem 3.5.1, the system (S) has no positive solution.
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Conclusion

In this thesis, we have proved several new and di¤erent results for the existence

and uniqueness of solutions for certain types of systems for fractional di¤erential

equations and p-Laplacian fractional di¤erential equations, involving both left and

right fractional derivatives. The main tools used in these studies are �xed point

theorems, such as Banach�s �xed-point theorem, Schauder�s �xed-point theorem,

Krasnoselski�s �xed-point theorem, and Guo-Krasnoselski�s �xed-point theorem in

cones. The results presented in this thesis are an important contribution in the

�eld of fractional di¤erential equations.

This work opens the way to new developments on fractional nonlinear systems.

Many extensions can be made to our work. In particular, we can study the exist-

ence of solutions for similar systems with other types of fractional derivatives such

as the derivatives of Hadamards, Grunwald -Letnikov, Erdelyi Kober.... Another

perspective is to establish the necessary and su¢ cient conditions for the existence

of solutions for fractional singular systems.

These perspectives constitute possible orientations for future work which will

�nd their place both in a theoretical and numerical frameworks of fractional dif-

ferential equations.

Finally, it would be interesting to get similar results presented in this thesis

under other conditions on the nonlinear terms and by applying other methods from

nonlinear analysis.
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