Kypeall kg Lipagll il dypgaall
People’s Democratic Republic of Algeria

oalell iaylly ullzll el
Ministry of Higher Education and Scientific Research

Badji Mokhtar-Annaba University - &ylad— glpna galy dealy
Faculty of Science gl 0 — gglell 832
Department of Mathematics

THESE

Présentée en vue de I'obtention du diplome de
Doctorat en Sciences
Spécialité : Mathématiques

Option : Mathématiques appliquées

Etude de quelques classes d’équations différentielles

d’ordre fractionnaire

Par:
Moffek Hamza
Sous la direction de

DIRECTRICE DE THESE : Assia Guezane-Lakoud Prof. U.B.M.Annaba
CO-DIRECTEUR : Rabah Khaldi Prof. U.B.M.Annaba

Devant le jury

PRESIDENT : Khaled Boukerrioua Prof Univ Annaba
EXAMINATEUR : Abderezak Chaoui Prof Univ Guelma
EXAMINATEUR : Assia Frioui MCA Univ Guelma
EXAMINATEUR : Amel Berhail MCA Univ Guelma

2022



Dedication

To my dear Mother, and To my father
To my wife and my daughter Aya Ismahane
To my sisters and brothers

To my friends and co-workers



ACKNOWLEDGMENTS

First of all, I thank God who enabled me to do this
work.

Special and big thanks to to my supervisor Prof.
Assia Guezane-Lakoud and my co-advisor Prof.
Rabah Khaldi.I thank them for all the advice,
guidance and knowledge they gave me. And T will
not forget what they did for me, to make me a
successful researcher.

Thank them very much
I also thank all of the professor

Boukerrioua Khaled, Chaoui Abderezak, Frioui
Assia and Fateh Ellaggoune

.To accept them to be on the jury.



I

II

Contents

1 Introduction . . . .. L. L e e 1
Preliminaries 3
I.L1 Special functions . . . . . . . .. ... 3
[.2  Fractional integrals and fractional derivatives . . . . . . .. .. ... ... .... 4
.3 Functional spaces . . . . . . . . . . . . e 7
[.4 Fixed pointtheorems . . . . . . . . . . . . . .. ... 8
Existence of solutions to a class of nonlinear boundary value problems with right and

left fractional derivatives 10
II.L1 Introduction . . . . . . . . . . . . . . e e e e e 10
IL2 Mainresults . . . . . . . . . . e e 11

III Existence Solutions Of Multi-Point Boundary Value Problems For Nonlinear Frac-

tional Differential Equations 17
III.1 Introduction . . . . . . . . .. . . e 17
III.2 Uniqueness result via Banach fixed point theorem . . . . . . . ... ... ... .. 20
III.3 Existence result via Krasnoselskii fixed point theorem . . . . . . . . ... ... .. 21
IIT.4 Existence result via Leray-Schauder nonlinear alternative . . . . . . .. ... ... 24
III.5 Boundary Value Problems With Fractional Derivatives in a Fractional Sobolev Space 25
1.6 Exemples . . . . . . . . . . e e 32
IV Boundary Value Problem of Fractional Oscillator Equation 35
IV.1 Introduction . . . . . . . . . L e e 35
IV.2 Mainresults . . . . . . .. oL e 35
IV3 AnExample . . . . . . . . .. 40
V On a Fractional Oscillator Equation With Finite Delay 43
V.1 Introduction . . . . . . ... 43
V.2 Existence of solutions . . . . . . .. ... L L 44
V3 Exemples . . . . . . . e e e 47



roadla

Gdiall (e JS e (g sa3 A ) Alialaill Jilsall (iany (o p2i A g ylaYl o2a b
(sl e )1 lall (e (5 S (BLlall ae 5 50 el (a5 S

c&.ujsc\...as cBM\@\)ﬂ\cu)u&aﬁua\;wgd)ﬁéﬁ}&Q\A‘)..J\eﬂ
5aeleall A i ey (g Sl B 1 gun il L

(‘).IA‘U‘:LJMJ..}G‘ﬁﬂ\ﬁdd&)umla})uﬁmb\)ﬂ\o&w

daalide cilalg

Lo g il ¢yl Y g3 g elimd (i 5l e liad cBaalial) Adadal) Ay Hlat Ay puS Aaliales Alalas



ABSTRACT

In this thesis, we study nonlinear fractional boundary value problems
involving both the right Caputo and the left Riemann-Liouville fractional
derivatives, and also problems for nonlinear fractional differential
equations with Riemann-Liouville fractional derivative. Several boundary
conditions (multi-point, non-local, delay) are included.

The existence results are proven by using some fixed-point theorems, in
different functional spaces (continuous functions space, Lebesgue space,
fractional Sobolev Space).

Keywords:

Fractional differential equation, fixed-point theorem, Lebesgue space,
Fractional Sobolev space, Non-local conditions.



Résumé

Dans cette these, nous étudions quelques problemes aux limites contenant
des dérivées fractionnaires a droite de Caputo et a gauche de Riemann-
Liouville et des conditions aux imites non locales

Les résultats d’existence des solutions sont démontrés en utilisant des
théorémes de point fixe et dans différents espaces fonctionnels (espace des
fonctions continues, espace de Lebesgue, espace de Sobolev fractionnaire)

Mots clés:

Equation aux dérivées fractionnaires, Théoreme du point fixe, Espace de
Lebesgue, Espace de Sobolev fractionnaire, Condition non locale.



Introduction

.1 Introduction

Fractional calculus started with some attempts by Leibniz in 1695 and 1697 and was developed
until recent years (see [61,75,77]), due to the fact that differential equations of noninteger order can
represent the dynamics of various memory systems and arise from a variety of applications, includ-
ing several fields of science and engineering such as geology, physics, optics, chemistry, biology,
economics, signal and image processing,... Although the literature on fractional differential equa-
tions is now vast, more studies are needed. Recently, the investigation of the qualitative properties
of solutions to fractional initial and boundary value problems has attracted the attention of many
authors [5,73], and different tools are used in these researches, such as the method of upper and
lower solutions, the variational method, the coincidence degree theory, the fixed point theorems ...

In the last few years, many researchers studied linear and nonlinear boundary value problems
involving both the right Caputo and the left Riemann-Liouville fractional derivatives, and they used
several methods. By the help of operational method and the successive approximations, some linear
differential equations containing left and right fractional derivatives that may appear in fractional
variational calculus, are studied in [26,32]. Recently, the method of upper and lower solutions is
applied in [51,63,64] to solve nonlinear differential equations containing mixed fractional deriva-
tives.

The main objective of this thesis is to study nonlinear boundary value problem with right and left
fractional derivatives in different functional spaces

This thesis is divided into five chapters as follows:
In Chapter 1, we introduce definitions, basic properties of fractional calculus, functional spaces
the L” spaces, Sobolev spaces, and some fixed point theorems.

In Chapter 2, we the study of the existence of solutions for the following nonlinear boundary
value problem involving both the right Caputo and the left Riemann-Liouville fractional derivatives:

—C DYDY u(t) + wu(t) + f(t,u(t) =0, te J =0, 1]. (1)

DY u(1) =0, u(0) =0 (2)

where 0 < o, S < 1,a+p > 1,w € R, CDT‘, and Dng denote respectively the right Caputo deriva-
tive and the left Riemann Liouville derivative, v is the unknown functionand f : / xR — Risa
Caratheodory function.

By Krasnoselskii fixed point theorem, we prove the existence of solution for problem (1)-(2).The
results of this chapter are published:

H. Moffek, A. Guezane-Lakoud, Existence of solutions to a class of nonlinear boundary value prob-
lems with right and left fractional derivarives, AIMS Mathematics, 5(5): 4770-4780 (2020)

Chapter 3, we discuss the existence and uniqueness of solutions for fractional differential equa-
tions with multipoint boundary value conditions:

Dgu(t) + f(tu(t) 4+ gt DiTtu(t) =0, t € J =10, 1]. (3)
U(O) =0,, D§+u(1) - kaDngu(nk) 4)
k=1
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where 1 <a<20<B<1,0<a—-8-1,0<&,m <1, k=1.nm—1,denotes D}, the
left Riemann-Liouville , u is the unknown function and f, g : J x R, — R are given continuous
functions .

We get a result with Banachs fixed point theorem ,Krasnoselskii fixed point theorem and Leray-
Schauder nonlinear alternative.

By Krasnoselskii fixed point theorem, we prove the existence of solutions for fractional differential
equations with multipoint boundary value conditions in a fractional Sobolev space :

D u(t) + f(t,u(t) + g(t, Dgru(t)) =0, t € J = [0, 1]. (5)

D((]i_l)u(()) =0, 1=2..n, 0+u ng’ 0+u 77/{} (6)

wheren — 1 <a<n, n>4,0<5<1,0<&,m <1, k= 1.m — 1, denote D§+ the left
Riemann-Liouville, u is the unknown function and f,g : J x R, — R are given Caratheodory
functions .

Chapter 4, this chapter investigates the existence of solutions for a nonlinear fractional oscil-
lator equation with both left and right Caputo fractional derivatives subject to nonlocal conditions.

— DY CDP u(t) + wu(t) + ft,ult), Dl u(t)) =0, t € J =10, 1]. (7)

DS (1) =0, u(0) = g(u) , w'(0) = h(u). (8)

where 0 < o < 1,1 < B < 2,w € R, “D¢_, CD(’?+ denote the right and left Caputo derivative
respectively, denotes Dg+ the left Riemann-Liouville, f : J x R? — R is a continuous function,
and g, h : C(J,R) — R are continuous functions.

We use the Krasnoselskiis fixed point theorem.

Chapter 5, Concerns the existence of solutions for a boundary value problem for a nonlinear
fractional oscillator equation with both left Riemann-Liouville and right Caputo fractional deriva-
tives, of the form:

—ODX DY u(t) + wu(t) + f(t,u) =0, t€J =0, 1]. )

CDPu(1) =0, u(t) = ¢(t), t € [—d, 0]. (10)

where 0 < a <1, 0< <1, w€R, YD denotes the right Caputo derivative, denotes D the
left Riemann-Liouville, u is the unknown function, f : J x C([—d, 0],R) — Risa contmuous
function, and ¢ € C([—d, 0], R) with ¢(0) = 0. For any continuous function u defined on [—d, 1]
and any ¢ € J, we denote by u; the element of C'([—d, 0], R) defined by

w(r) =u(t+71), 7 € [—d, 0].

Here w;(+) represents the history of the state from time (¢ — d) up to the present time t.

The Banach fixed point theorem is used to prove the existence and uniqueness of solutions of the
problem (9)-(10), then we apply Leray-Schauder fixed point theorem to conclude the existence of
nontrivial solutions.



Chapter I

Preliminaries

In this chapter, we present some notations, definitions, theorems and properties that will be used in
the sequel.

This chapter is divided into 4 sections. in the first section, we introduced the special functions, in
the second section, we focused on fractional calculus and in section 3, we introduce some functional
spaces. Finally, the last section contains some fixed point theorems.

I.1 Special functions

We provide definitions and some properties of the gamma function and the beta function These two
functions play a very important role in the theory of fractional calculus.(see [78]).

The Gamma function
Definition 1 The Gamma function I'(.) is defined by

I(z) = /0 " et (Re(2) > 0)

This integral is convergent for any complex z € C such that (Re(z) > 0).

Proposition 2 The Gamma function satisfies
1) T(z+1)=2zI'(2) (Re(z)> 0) and for any integer n > 0, we have

L(n+1) =n!~V2mnn"e™™ (Stirling's formula)

+o0
2) F(”)(z)—/ e~ '* T og" (t)dt,
0

xT

nin
3) T li ; > 0.
) <$>n—1>rfoo r(x+1)...(x +n)’ v
1 o s
4) —— =zxe’® H(l + E)eT , (Weierstrass formula), where v = 05772... is Euler’s constant
[(x) vt n
1 +oo 172
5 = 1—
) [(x)I'(1—2) xg( nQ)
7
6) I'x)I'(1 —x) =
) D@ —z) sin(mx)
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1 T
7) D(x)'(z+ 5) = %F(Qm) (Legendre formula)

8) T(z)'(z + %)F(z + %)...T(m 4+ ; 1) = (27)"2 n2""*T(nx), (Gauss formula).
Some special values of I'(.)
1
D I =vr
2 T(n+ %) _ 1.3.5...2(3n - 1)\/7_“ neN,
3) T+ %) _ 1.4.7...?5371 — 2>F(%), neN,
& T(n+ i) _ 1.5.9...§n— 3>F(i)’ neN,

The Beta function

Definition 3 The beta function is given by
1
Bz w) = / £ — 4" ldt,  (Re(z) > 0, Re(w) > 0).
0
Proposition4 /) B(z,w) =

2) B(z,w)= B(w, 225
3) B(z+1,w) = P B(z,w)

Y Blel-2)= sin(mzx)’ v >0
5) B(x,1) —%
6) B(z,n)= (n—1)! L.

etl)(mtn_1y "2

I.2 Fractional integrals and fractional derivatives

We introduce concepts about fractional calculus and will focus on the Riemann-Liouville integral,
and Riemann-Liouville and Caputo derivatives and the relationship between them. We support this
chapter with some examples (see[44,61,75,77])

Definition 5 ([61,75]) Let J = [a, b] be a finite interval on the real axis R. The Riemann-Liouville
fractional integral I, f and I} [ of order o € R, are defined by

N = | g 7o

xr —t)t-a’
G = | G 7 <h

respectively. Here I'(«) is the Gamma function. These integrals are called the left-sided and the
right-sided fractional integrals
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Theorem 6 ([61,75]) Let f € L'[a, b] and a > 0. Then, the integral 1%, exists for almost every
x € [a, bl. Moreover, the function 1%, itself is also an element of L'[a , b].

Proposition 7 ([61]) Let o, 3 > 0 and f € L'[a , b]. Then

LI Il f =10 08 f =I5,

2. 18I0 f=10 I f =127,

Lemma 8 ([61]) 1. The fractional integration operators I, and I} with o > 0 are bounded in
LPla, b],1 <p < +o0

« « _ (b B a)a
R B g ]

1
2. If0<a<landl < p < —, then the operators 1, and I{" are bounded from LP(a ,b) into
o

Li(a ,b), where ¢ = 1 b

Example 9 Let f(z) = (v — a)? for some 3 > —1 and o > 0. Then,

2 f) = )

CETES I

Theorem 10 ( [44]) Let o > 0. Assume that ( f;,)32, is a uniformly convergent sequence of contin-
uous functions on [a , b]. Then we may interchange the fractional integral operator and the limit
process, i.e.

I% 1 =( lim I¢ .
(g dim  fi)(x) = ( lim TG fi)(2)
In particular, the sequence of functions (12, fi,)32, is uniformly convergent.

Theorem 11 ([44]) Let 1 < p < oo and let (a)3>, be a convergent sequence of nonnegative
numbers with limit «.. Then, for every f € LP[a , b]

lim % f = I%f.

k—+o0

where the convergence is in the sense of the L”[a , b| norm.

Theorem 12 ([44]) Ler f € Cla, b] and a > 0. Moreover assume that ()52, is a sequence of

positive numbers such that lim oy = «. Then, for every € > (),
k—+o00

lim  sup | I f(x) - I3 f(2) |= 0.

k—+o00 z€[ate ,b]

Definition 13 ([61,75]) The Riemann-Liouville fractional derivative D%, f and D;" of order o €
R, are defined by

(D20 i= (G 0) = e () | s (= ol +1)
and

b s)as
(D1 (0) = (= ") ) = s ()" [ ot s (n= ] + )

s — x)a7n+1

respectively, where [o] means the integer part of o

5
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Example 14 Let f(x) = (x — a)® for some 3 > —1 and o > 0. Then,

D (0) = gy (o = @)

Proposition 15 ([61,77]) Let o« > 3 > 0, then for f € LP[a , b], (1 < p < ), the relations
(D212, ) (@) = 127 f (&) and (DI f)(z) = 12~ f(a)
holds almost everywhere on |a , b]. In particular if « = [ we get
(D I3 f)(x) = f(x) and (D) I~ f)(z) = f(x).

Proposition 16 ([61,75]) Leta > 0, m € Nand D = dix denotes the classical derivative. 1. If
the fractional derivative (D, f)(z) and (D™ f)(z) exist, then

(D™D () = (D f)(x)
2. If the fractional derivative (D f)(x) and (D} f)(x) exist, then

(D™D f)(x) = (=)™ (D f) ().

Remark 17 ([61,77]) In the general case the Riemann-Liouville fractional derivative operators
D¢, and Df +, (D= and Df_) do not commute, i.e.

DD f# DL.Ds f # DitPf, DD f # D) Di-f # Dy’ f, «, 8> 0.
Lemma 18 ([61,77]) Let f(x) € L'[a, b] and fn,a(w) € AC"[a , bl,then the equality

>>
Doy —a)*.
(1 z o)
holds almost everywhere on |a , b. In particular, if 0 < o < 1, then

fl—a(a)

(I3 D3 ) () = (o) = T —a) ™

where fr_o = 1" f and fi_, = I;jo‘
Lemma 19 ([61,77]) Let o > 0, then the fractional differential equation

has f(t) = et P 4+ ot 2 + 3t 2 + -+t ¢ €R, 1 = 1,2, n, as solution, where
= [o] + 1.

Definition 20 ( [61,77]) The left and right Caputo fractional derivatives of order o > 0 of a func-
tion f € AC"[a , b] are defined respectively as

n x M) (s)ds
¢pe, (x)—[:+a(%f(gg))—r<nl_a)/ (f ()fl

T — S)O‘ n+1"

" —1)" b f)(s)ds
CD?—f(l“)=(—1)”[g:a(d_f(x)): (=) )/ (f (s)d

dx™ I'(n—« s — )t

where n = [a] + 1.
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Example 21 Let f(x) = (z — a)? for some 3 > 0 and o > 0,n = [a] + 1. Then,
0 if B€1{0,1,2,...n — 1},
r'g+1 .
‘DY f(x) = %(m—@ﬁ_a if BeNandp>n
or 8¢ Nandf >n—1.

Lemma 22 ([61,77]) Let f € C"[a , b], then

n—1 (k)a
19005 () = fa) - 3 LD (ot

and
n—1

Dy f D) (b— )k
k=0

Proposition 23 ([61,77]) Let o« > 0,n = [a] + L and f € AC"[a, b, then

n—1
DS f(x) = 2 Th—a+1) Jr 0 (x —a)t°
d
" ¢ A0 '
Dy f(x) = Dy f(z) = ) m(b —x) "
k=0

I.3 Functional spaces

This section contains notations, definitions, and properties of Lebesgue spaces and Sobolev spaces,
we need this section in chapter 2, chapters 5 and 6 (see[3,38,45,58])

Definition 24 (L” Spaces) 1) Letp € Rwith1 < p < oo and let ) be a domain in R"

LP(Q) ={f: Q — R; f is measurable cmd/ | f(t) |P dt < oo}
Q
with .
r= = t) [P at)”.
£ =1 = ([ 1560 P at)
2) Sip = o0, we set

L>*(Q) = {f:Q—R; f[ismeasurable and
there is a constant C such that |  f(t) |< C a.e. on 2}

with
| f llzee=inf{C; ] f(z) |< C OnQ2}.
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1 1
Lemma 25 Let 1 < p < oo and let p’ such that — + — =1
p p
1) (Holder’s inequality) Assume that f € L and g € L”'. Then fg € L' and

/ g1 £ ol 9 T
Q

2) (Minkowski’s inequality) Assume that f € LP and g € LP. Then f + g € L” and

1+ glle<Il f i+ 1Tyl

Definition 26 (Sobolev Space) Ler Q2 = (a,b) be an open interval, possibly unbounded, and let
pEeRwithl <p<oo.
The Sobolev space WP (Q) is defined to be

WP(Q) = {u € LP(Q);u' € LP(Q)}

where v is the weak derivative.
The W' (Q) space is equipped with the norm || u |lwro=| uw ||, + || v’ ||, -

Definition 27 (Riemann-Liouville fractional Sobolev spaces) Ler p € [1,+o0] and 0 < s < 1.
We define the left Riemann-Liouville fractional Sobolev space of order s and summability p as

W;f7a+(9) = {u€ LP(Q) : I}7°(u) € WHP(Q)},

endowed with the norm || u ||W;f Nl KA I'7*(u) |lws - And we define the right Riemann-
Liouville fractional Sobolev spacé of order s and summability p as

WP (Q) = {u € LP(Q) : [I=*(u) € W'P(Q)}.

RLb-

endowed with the norm || u ||W}52fb—:|| ullpy + || L=°(w) lwiw -
Remark 28 1) (W7;* (Q),] u ngf . ) is a Banach space.

RL,a™* i
2) The norm || u HW;; . ) is equivalent to the norm || u |[rr, where || u |[pr:=[| w [|, + |
,a

DZ+ (u) ||p

Theorem 29 (Riesz compactness criteria ([38])) Let F' be a bounded set in LP[0,1],1 < p < 0.
Assume that:

(i) limp_yo || 7o.f — f |l,= O uniformly on F, where 7, f(t) = f(t + h).

(i) lim._, fll_a | f(t) |P dt = O uniformly on F.

Then F is relatively compact in L?[0, 1].

I.4 Fixed point theorems
In this section, we cite some fixed point theorems.

Theorem 30 (Banach) Ler A be a contraction on a Banach space E. Then A has a unique fixed
point
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Theorem 31 (Nonlinear Alternative of Leray-Schauder Type) Let X be a Banach space,C a
closed, convex subset of X, U an open subset of C and 0 € U.Suppose that A : U — C is a
continuous and compact map. Then either

(i) A has a fixed point in U, or

(ii) There exists \ € (0,1) and x € OU (the boundary of U in C) with v = MA(x).

Theorem 32 (Krasnoselskii [65]) Let M be a closed bounded convex nonempty subset of a Ba-
nach space E. Suppose that A and B map M into E such that

(i) A is completely continuous,

(ii) B is a contraction mapping,

(iii) x,y € M implies Ax + By € M

Then there exists z € M with z = Az + Bz.



Chapter 11

Existence of solutions to a class of nonlinear boundary value problems with
right and left fractional derivatives

II.1 Introduction

The aim of this chapter is the study of the existence of solutions, for the following nonlinear bound-
ary value problem (P) involving both the right Caputo and the left Riemann-Liouville fractional
derivatives:

¢ DS DP u(t) + wu(t) + f(tu(t) =0, t€J =0, 1]. (P)

DEu(1)=0, u(0) =0

where 0 < o, < l,a+ 3 > L,w € R, “D and Dg+ denote respectively the right Caputo
derivative and the left Riemann Liouville derivative,  is the unknown functionand f : JxR — R
is a Caratheodory function.

Let us mention that if & and /3 tend to one, then problem (P) is a classical oscillator boundary value
problem that is investigated in [6]. Note that problem (P) is studied in [51] by lower and upper
solutions method, the authors proved the existence of solution under some specific conditions on
the nonlinear term f. In the present study, we prove the existence of solution for problem ( P) under
Lipschitz type condition on the nonlinear term f and by using Krasnoselskiis fixed point theorem.
In [10], the authors considered a coupled system of nonlinear differential equations involving mixed
type fractional derivatives

—C D DY () = F(t,2(t), y(1)).
CDP7 Dq (t) =g Y

with nonlocal boundary conditions

2(0) = 2’(0) = 0, x(1) =~y(n), 0 <n <1,
y(0) =4y (0) =0, y(1) =dx(0), 0 <O < 1.

here 1 < a,p < 2,0 < 8,9 < 1,7,0 € R. The existence and uniqueness of solution is proved by
the help of Leray-Schauder alternative and Banach fixed point theorem.

By Krasnoselskii’s fixed point theorem, the authors in [48,52], investigated some boundary value
problems involving mixed type fractional derivatives. In particular in [48], proved, under Lipschitz
type condition on the nonlinear term, the existence of solution in a weighted space, for the following
boundary value problem

f(t,u(t), 0<t<1

u(n),

CDQ D0+u( ) =
lim tl Pu(t) =

t—0t

u(1)

10
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where 0 < a,f < 1,1 <a+ <2
In [52], the authors studied by the help of Krasnoselskii’s fixed point theorem and Arzela-Ascoli
theorem, the existence of solution for the problem

—~CD¢ DPu(t) = f(t,u(t), 0<t<1
u(0) = u/(0) = u(l) =0,

where0 < o< 1,1 < 3 <2° D? denotes right Caputo derivative, D€+ denotes the left Riemann-
Liouville and f : [0, 1] x R — R satisfies Lipschitz type condition.

I1.2 Main results

To study the nonlinear problem (), we consider first, the associated linear problem

~C DYDY u(t) +y(t) =0, te J =0, 1]. (IL1)

DY (1) =0, u(0) = 0. (IL.2)

Lemma 33 Assume that y € LP(J),p > 1, then u is a solution to the linear boundary value
problem (11.1)(I11.2) if and only if u satisfies the integral equation

u(t):/o G(t,T)y(T)dr

where

G(t, 1) =

1 { Jo @t —=s)P 1 —s)*tds, 0<7<t<1, (IL.3)

C(@)L(B) | fot =) r—s)*Mds, 0<t<r <1
Proof. Applying the right-hand side fractional integral I{ to equation (I1.1), we get
Dy.ult) = Ii-y(t) +a, a€ R

The boundary condition D§+u(1) = 0, gives a = 0, then applying the fractional integral Ig;, the
obtained equation, it yields

w(t) =I5 I8 y(t) +ct® 1, ceR - (2.5)
Multiplying the equation (2.5) by ¢! ~#, then using the condition u(0) = 0, we obtain ¢ = 0, thus

ult) = [§+]f,y(t)

= m /Ut(t — 8)5—1(/51(7_ - s)O‘_ly(T)dT>ds.

Finally, by Fubini theorem, we get

u(t) = m /Ot (/OT(t —5)P 71 — s)a_lds>y(7')d7'

11
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Lemma 34 The function G satisfies the following properties:
(1) The function G(t,T) is nonnegative.

(2) G(t, 1) < forallt, 7 € J

(@ + 6 - DI)I(B)

1
Remark 35 Let us mention the case o + 3 — 1. Sincea + 3 > 1and 0 < o, B < 1, then o > 3

or } > %.Ifoz > %, then o + 8 — 17 implies (« — 1~ and f — 0) or (o — gandﬁﬁ 1?),
then the problem (P) is reduced respectively to
u' + wru(t) + f(tu(t) =0, teJ=][0,1].
uw(0) =0 1
and
—CD2 DEu(t) + wiult) + f(tu(t) =0, teJ=10,1]. )

u(0) =0, Dg,u(l)=0.

1
For problem (P2), let us fix o = Y then we have,

1. R 1
“EY Jo(t = st ONGIEETE
= =1 fol(l - 3)6_3615 = =1 7 00,
OGS, TG =1

as f — —

thus the Green function is not bounded.

Lemma 36 The function u € LP(0, 1) is a solution of the integral equation

1 1
u(t) = / G(t,7)f(1,u(t))dr + w? / G(t,7)u(r)dr.
0 0
if and only if u is a solution of the fractional boundary value problem (P).

Now we define the operators A and B on L*(0, 1) as

Au(t):/ G(t, ) f(r,u(r))dr,

Bu(t) = u? /O G(t, Yu(r)dr

Obviously, the problem (P) has a solution if and only if the operator A + B has a fixed point in
LP(0,1).
Before stating and proving the main results, we introduce the following hypotheses.

1
(H1) M = supy<;<; | f(t,0) |< oo, and there exists a constant &, 0 < < 3

(@ + 8 = DI(a)L(B)

such that
| f(tu) = ftv) [k [u—v], 0<t<1, uveR.
(H2) W <1
(a+B8-=DI'(@l(@B) 2

12
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Theorem 37 Assume that (H1)-(H2) hold, then the fractional boundary value problem (P) has a
nontrivial solution in L?(0,1).

To prove Theorem 37, we need the following lemmas.
Lemma 38 Under the hypotheses (HI)-(H2), the operator A is completely continuous on L*(0,1).

Proof. Let
Q= {u € Lp(()? 1)7 H u HLpg R}

such that
M

T2 T B DT@I(B) — (r+ )
Clearly, (2 is a nonempty, bounded and convex subset of the Banach space L?(0,1). We should
prove that A is continuous and relatively compact on L”(0, 1).
Claim 1. The mapping A is continuous on €. In fact, consider the sequence (u,), € €2, such that
u, — win LP(0, 1), then from Lemma 34, hypothesis (H1) and Holder inequality, we get

|Aun@>—f%ww|sbé Gt ) | f(run(r)) — f(r,u(r)) | dr
l{? 1
§<a+5—mnmrwxﬁ'““”‘“””d7

k
= {av g i) |7 ey

(1L.4)

Hence
k

| Aun(.) = Aul.) [[Lro.)< (a+ 6 —1D(a)l(3)

Claim 2. (Au) is bounded in LP(0.1). Indeed, let u € €2, then by condition (H1) and Holder
inequality, it yields

|Au<t>|§(a+ﬁ Foz /|f7'u ) | dr
1
§(a+5_1 k:/|u ) | dr) /|fTO|dT

_ kR+ M
~ (a4 p =1l (a)l(B)’

| un(.) —u(.) ||Lr(0.0)—> 0, as n — oo.

thus
KR+ M

(4 8 =1L ()L(B)

Claim 3. (Au) is relatively compact. In fact, let u € (2, and p > 1, we have

I Au [l <

| Au(t + h) — Au(t) |< /0 | G(t+ h,7) = G(t,7) || f(r,u(T)) | dr
SA!G@+Mﬂ—GWﬂ\%!Mﬂ%Hfh®DM

< (kR—I—M)(/Ol | G(t+ h,7) — G(t,7) |pd7)”

13
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< (k:R+M)</t | G(t+h,7) — G(t,7) |? d¢+/t+h | G(t+ h,7) — G(t,7) | dr

1

+/1 | Glt+ h,7) — G(t,7) |Pd7)5

t+h

(kR + M) -5 =) (1 — 5)* Lds) dr
< ()(6)(/(/«75 Pt (t+h= )" ) (r = 5)ds)'d

/tl(/((t )7 = (t+h—s)" ) (1 —5) " ds)"dr
%1AHh«A%t+h—sf]ykf¢>;

_ (kR+ M)
~ D(e)r(B)

hence

'u\»—‘

(L + I+ I3)7,

(kR + M)

T (3) (L + L+ I3)». L5)

| Au(t 4+ h) — Au(t) |<

Let us calculate /;, 1 =1, 2, 3.
t T
L = / (/ (t=s)"" = (t+h—s)" )T —s)*ds)"dr
o Jo

< (h(1=3))" /Ot (/OT(T — S)a_lds)pdT < (—Zgilﬁlg)p

I, = /t (/o ((t— 3)6_1 —(t+h— S)B_l)(T — s)o‘_lds)pdT

R O (1C )
S A e e
Iy = /Hh / (t+h—s)"""ds)’dr
t+h pBp+1
p — 7)°)Pdr )
_Bp/t (R — (t+h —7)P)Pdr < o

Finally, we get

(kR+ M) //h(1—B)\» (h(1—pB))P KPP\ ;
['(a)D(B) <<04(Oé+1)) + ap + 1 T o )

By taking the limit in (IL.6) as h — 0, we obtain that || Au(. + h) — Au(.) ||[Lr— 0 for any
u € Q.
On the other hand we have by the help of claim 2

| Au(. + h) — Au(.) || < (I1.6)

/1 | Au(t) [P dth((a—l—ﬁkiQSF]\{a)F(ﬁ))p_}O as e — 0.

By Riesz compactness criteria Theorem , we conclude that A is relatively compact on (2. From the
above discussion we conclude that A completely continuous on L”(0,1). m

14
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Lemma 39 Under the hypothesis (H2), the mapping B is a contraction on ().
Proof. Let v € QY and ¢ € J, we have

|Bmw—¢%@ngwfé<ﬂaﬂ|u@)—mﬂ|dr

w2

=@t 8- DN@T()

lw—= v,

hence

w?

(@+ 65— DI (a)I(B)

by hypothesis (H2), we conclude that B is a contraction. m

| Bu—Bu < Ju—0lles,

Lemma 40 Assume that hypotheses (H1) and (H2) hold, then Au + Bv € Q for all u,v € Q.

Proof. Let u, v € 2 then taking (II.4) into account, it yields

| Au+ B |lo <|| Au||1o + || Bo ||1o
2
< Rw*+k)+ M <R
(a+ 6 =1 (a)I(B)

hence Au+ Bv € ). m

Proof of Theorem 37. By Lemmas 38, 39 and 40, we conclude respectively that the mapping
A is completely continuous, the mapping B is a contraction and Au + Bv € 2 for all u,v € €,
then all hypotheses of Theorem 32 are satisfied. Hence, there exists a nontrivial solution u € €2 for
problem (P) such that u = Au + Bu. The proof is complete.
Now, we give an example to illustrate the usefulness of the obtained results.
Example 1. Consider the problem (P) with

et .

L, r) = ———— t R
f(wr) 9+6t(1+1‘2)+€7 <7I)€JX )

w=05 a=05 8=08
M = sup | f(t,0) |=e = 2.7183.

0<t<1
Let us check hypotheses (H1)-(H2). We have for all (¢,z) € J x R

—t

| 70) = ft) 1S g lo =yl 5 L=y |

9+ et

1 1
then k = 10 0<k=01< 5(044—6— DI'(a)T'(B) = 0.30953. By Theorem 37, we conclude that

the problem (P) has a nontrivial solution © € L”(0, 1), such that || u ||.»< R where R > 10.103
and v = Au + Bu.
Example 2. Consider the problem (P) with

t% sinx + t3

ft,x) = 15 , (t,x) e J xR,
1 1 3
W_Eaa_gaﬂ_zla
1
M = sup | f(t,0) |= —.
0<t<1 15

15
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We have for all (¢,z) € J xR

| (t.2) = f(t,) 1< 17 | sina) = sin(y) |< o= |~y |
1 k 1 w? 3
and k = . Y ES e 0..24360 < 7, R BN ENE — 3.6554 x 1072 <

1
3 Thus hypotheses (H1) and (H2) are satisfied.
By Theorem 37, we conclude that the problem ( P) has a nontrivial solution u € L?(0, 1), such that

M
»< Rwhere R =1 =0.33858 andu = A Bu.
|| wl|»< R where > (613D @) = (h v o?) and u u+ Bu

16



Chapter 111

Existence Solutions Of Multi-Point Boundary Value Problems For Nonlinear
Fractional Differential Equations

II1.1 Introduction

In this chapter, we study the existence of solutions for fractional differential equations with multi-
point boundary value conditions. We get a result with Banach fixed point theorem, Krasnoselskii
fixed point theorem and Leray-Schauder nonlinear alternative.

In [54], the authors studied the existence of positive solutions in a Sobolev space for a fractional
boundary value problem:

limy ot “u(t) = 0, 1=2,..,n,

u(1) = 327g Aelg ).

wheren — 1 < a < nn>40<vy<1,8>0X\ >00<mn<1,k=0,.,mand
f:[0,1] x R* — R, is Caratheodory function By utilizing the method of the lower and upper
solution and Schauder fixed-point theorem,the authors got the existence of a solution.

{ Dg u(t) + f(t,u(t), Dj u(t)), 0<t<l,

In [68], by using the Schauder fixed point theorem, the author proved the positivity of solutions
for the following multi-point boundary value problem (BVP)

D%u(t) + f(t,u(t) =0,  te(0,1),
{ u(0) =0, DJ u(l) = Zgiﬂgu(m).

where 1 SO[SQ?OS/BS ]-7 0<Oé—/8—]_, 0<€27n2< ]-7 Z.:]-"m’zginia_ﬂ_l#l,
=1

denotes D€+ the left Riemann-Liouville, and f : [0, 1] x R, — R, is continuous.

The aim of this chapter is to study of existence of solutions for fractional differential equations
with multipoint boundary value conditions :

Dgu(t) + f(t,u(t) 4+ gt D 'u(t) =0, t € J =10, 1]. (I1L.1)
u(0) =0,, Dgu(l) =Y &Dy u(n). (I11.2)
k=1
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where 1 <a<20<8<1,0<a-0—-1,0<&m<1, k=1.m, denoteng+ the
left Riemann-Liouville , u is the unknown function and f,¢g : J x R — R are given continuous
functions.

To study the nonlinear problem (III.1)(IIL.2), we first consider the associated linear problem

Deult) +h(t) =0, te J =0, 1]. (IIL3)
w(0) =0, Du(l ng D ou(mg). (111.4)

Lemma 41 Assume that h € C(J) and 6 > 0, then w is a solution to the linear boundary value
problem (111.3)(111.4) if and only if u satisfies the integral equation

- > &G / H (1, 7)h(7)dr
k=1 0

u(t):/O G(t, 7)h(T)

where 0 = 1 — kano‘ A1

k=1

. ta_l(l _ T)a—ﬁ—l — (-7t 0<7<t<1,
G(t,7) = (IIL.5)

() o1 =) f 0<t <7<,
and
B e e A ek D e S S
Htr) = . , (I11.6)
(@) tef (1 — 7)ol o<t <7 <1

Proof. we apply the left-hand side fractional integral [, to equation (II1.3). We get

a—1 a—2 1 ' a-1
u(t) = et + ot — W/O (t —7)* h(T)dr

Using the boundary conditions u(0) = 0,, we get

a—1 1 ! a—1
u(t) = ert _W/o (t — )0 h(r)dr

then using the condition D0+u Z & kDmu Mk ), We obtain

D0+U(1) = F(Oé_—iﬁ)/o (1 —7)* P h(r)dr + CI—F(E(g)ﬁ)

m

DE-ulm) = %Z&f [ o= i+

an‘“‘”
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So
Cl:arto»(/o( T dT_Zg’“/ (e =)™ h(r)dr )
Then
u(t) = _ﬁ/o (t —7)* th(T)dr + ;l(j(a) (/0 (1 —7)*P=h(r)dr
Y& /0 " o - T)“_B_lh(T)dT)
:_ﬁ/o (t— 1) (r)dr+
et (1= g +Z€na )
(o) .
(/O (1 —7)* " h( )dT—Zék/onk(nk )" h(r)d )
B ﬁ / (M (=) = (= ) ()
+/tl(t0‘_1(1 ) P h(T)dr
- 51&04) ,;fkm‘i‘_ﬂ_l /Onk 7 (1= )" h(r)dr
+5Fta)szn;?_ﬂ_l / (1 =) h(r)dr
- & / "t gy — 1) h(r)dr
:/ G(t, 7)h(r)dr + aglz&g H (g, T)h(T)dT
0 k=1 0
|

Lemma 42 The functions G and H are continuous and satisfy
1

0< Gt 1)< <1 0<H(tT) < ()’

()’
Proof. If 0 < 7 <t < 1,we have
=) P =) =t —tr) T =) P = (t—1)* >0,
if0<t<7<1,wehave t* (1 —7)*#1 > 0,500 < G(t,7)
1 1
then G(t,7) < —— (1 —7)* P < ——to (1l — 7)o Pl < ——
Accordingly,, we have

t,TeJ

(t o T)afﬂfl — tafﬂfl(l . %>a,/5,1 S tafﬁfl(l . T)afﬁfl
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Similary, we prove the properties for H (¢, 7). m
Define the space
X={ulueC(J), Di'ue C(J)}

endowed with the norm || u ||x= max lu (t)] + max |Dgtu(t)]. Ttis clear that (X, ]| . [|x) is a
€ S
Banach space.

III.2 Uniqueness result via Banach fixed point theorem

Define the operator 7" on X by

Theorem 43 Assume that:
(HI) Foreacht € J and all u,v € R. There exists a constants Ly, Lo > 0 such that

| ftu) = ftv) [< Ly fu—vl,

| g(t7u> —g(t,’U) |S L2 ‘ u—=v |
(H2)

m

(L+D()) &

max(Ly, Ly) k=1 ><1

[(a)

(1 1ol (a) + ;

If conditions (H1)-(H2) hold, then the fractional boundary value problem (I11.1)-(111.2) has a unique
solutions in X.

Proof. Let u, v € X, then

| Tu(t) — To(t) IS/0 G(t,7)(| f(7,u(r)) = f(7,0(7)) |
+ | g(r, D u(r)) — g(7, Dgto(7)) Ddr

Z@/thk (| F(ru(r)) = f(r,o(r)) |
T | g(r, D3 u(r)) — g(r, DS o)) [)dr
D

< a1 5

tozl
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and

| D' Tu(t) — D To(t) |< I (| f(7,u(7) = f(7,0(7)) |
+ | g(r, Dgulr)) — g(r. D ho(7)) | )

n / (1= 7)Y flru(r) — fro(r) |

+ | g(r, D7 (1)) — g(7, D o(7)) | )dr

@Zg / Hn, ) (| f(r,u(r) = f(r,0(r)) |

+ | g(r, Dgflu(r)) —g(r, Dgflv(T)) | )dT

+

<9 /O (L | u(r) — o(r) | +Lz | DS ulr) — Do o(r) | Ydr

#3536 [ (I Ju(r) = v(r) | +L2 | D utr) = D5 to(r) |Jar

< (2 i ’f=:5 ) max(Ly, La) || u — v ||x .

So

(14 7)) Y&
k=1 ) maX(Ll, Lz)
) ['(a)
Consequently 7' is a contraction. Therefore, by Banach fixed point theorem, we deduce that 7" has
a unique fixed point which is the unique solution of problem (II1.1)-(II1.2). m

| Tu—Tv |x< (1+20(a) + lu—wvx

III.3 Existence result via Krasnoselskii fixed point theorem

Now we define the operators A and B on X as

Auft) = / Gt 7)(f (7 u(r)) + g(r, D u(r)))dr,

Bu(t) = D & [ Hner)(f(r,u(r) + g(r, Dy tu(r)))dr

Obviously, problem (III.1)-(IT1.2) has a solution if and only if A + B has a fixed point. We
introduce the following hypothesis.
H’1) For each t € J and all u € R, there exist constants L; > 0 and L/, > 0 such that:

| ) [< Ly [ul, | g(tu) |< Ly |ul,

(H’2)

(14 I'(a)) max(Ly, Ly) / ~—
ST (@) (X&) <1
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Theorem 44 Assume that (H’1) and (H’2) hold, then the fractional boundary value problem (I11.1)-
(I11.2) has at least one solution.

Proof. Let B, = {u € X :|| u ||x< r}. Clearly, B, is a nonempty, bounded and convex subset
of the Banach space X.

Step 1. The mapping A is continuous on B,.. Consider the sequence (u,,),cn such that u,, — u
in B,, the hypothesis (H 1) we get

| Au,(t) — Au(t) |<

/0 Gt 7)(| f(r,un(7)) = f(r,u()) | + | 9(7, D5 un(7)) — g(7, Dgi (7)) [)dr

< L/0 sup | f(7,un(7)) = f(7,u(r)) | +sup | g(7, D§ " un(7)) — g(7, D5 tu(r)) [)dr

~ I'(«) reJ Ted
< il () = F0(0) e+ 1 (7, Di () = 907, D5 ) o

and

| DO Au, (t) — DT Aut) |
< Ioi (| f (7 un(7)) = f(1,u(r)) | + | 9(7, Dgs un(7)) — g(7, D= tu(r)) |)
<[ fCun() = FGu()) oo + 11 9( DT un () — g D)) oo

So obtained

1
_ < (—
I A = Au S (g + 1)

C I FGua() = fGul) e + 11 g(s DE ua() = g Dot ul) lloo)

Since f and g are continuous, then || Au,, — Au ||x— 0asn — oco.
Step 2. The mapping A is uniformly bounded on B,. Let u € B, then by condition (H’1) it yields

| Aut) |< / G(t.7)(] f(ru()) + g(r, D2 Mu(r)) )

<L / (I F(ryu(m)) | + | g(r, D2 Mu(r)) | dr

1

()

L 1 , ulr , a_lu . T Mr
SF(a)/O(L1| (1) [ +Ly [ Dgru(r) [)dr < ['(«) ’

and we have
| DG Au () 1< 3y (| f(mu(r) | + | g(r, D3 Mu(r)) |) < max(Zh, Ly)r.

and consequently
1
I Au[[x< (57— + 1) max(Ly, Ly)r

(o)

thus A is uniformly bounded.

22



Existence Solutions Of Multi-Point Boundary Value Problems For Nonlinear Fractional

Chapter 3 Differential Equations

Step 3.(Au) is equicontinuous on B,.. We have, foru € B,, 0 < t; <ty < 1.

| Au(ts) — Au(ty) [=| /0 (G(t2,7) = G(tr, 7)) (f(7,u(r) + g(7, D u(7)))dr |

></ <ta - ”‘ﬂ_l‘“rﬂa‘l)(ﬂf u(r)) + g(r, Dy~ u(r)))dr

F

- [M(Era-me <t1—T>a-1)<f<m<r>>+g<f, Dy u(r)))dr
/ (157 (1= 7)) (F(r. () + g D ulr)))dr

- [ (57 =) o) + o6 Dt | )
gm“(rL('l’” ( (t = (= b)) = 51— (- ) )

=ty 1 ( . —8 _ jo-1 -8
19711 — 1) F — 111 — 1) )
T +@_5 5 ( 2) 7 1)

— 0 when to — 11

and

| D5t Aulty) — D=t Aulty) [=] Toe (f (b2, ults)) + g(t2, Dy tu(tz)
— Igs (f(t1,u(tr)) + g(tr, Dy u(ty))) |

- / “(f(ryulr)) + g(r, De u(r)))dr / (F(r () + g(r, De u(r)))dr |
< ((Lll + LQ)T’)(tQ — tl) — 0 when ty — 14

thus (Au) is equicontinuous. Finally, by Arzela-Ascoli theorem, it follows that A is a completely
continuous mapping on B,..

Step 4. B is a contraction on B,.. Let u, v € B,, then
o= 1 m
| Bult) - 2 [ HOw S u(r) = 7000
+g(r, Dy u(T)) — (T D0+ fu(r)))ldr |

= 5&&) Z&;/O (Ly | u(r) = v(7) |) + Lo | D& u(r) — Do (T) |)dr

k=1
max (L, Ly) ~—
< ey b el
and
P(O‘)ng
| D7 Bu(t) — DS Bo(t) < %x

/0 H (e, 7)( | f(7,u(r) = f(r,0(7) | + | g(r, DG u(r)) — g(7, Dgiu(r) |)dr

< L) (S e ) fuv s
k=1
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Hence

| B s CEREEEE (36 e Iy

taking Hypothesis (H’2) into account, we conclude that B is a contraction.
Step 5. Au+ Bv € B, forall u,v € B,, in fact

(1 +T'(a)) max(L, L) ng

B <
H U HX— r 5F(CK)

k=1

and

| Au+ B ||x<| Au [x + || Bv [x<

(1+ () max(Ly, I4) (| S0,
=7 T(a) (1+_%Ti)<r

thus Au + Bv € B,.
Then all the hypotheses of Theorem 32 are satisfied. Thus there exists at least one solution u € B,
for problem (III.1)-(II.2). =

II1.4 Existence result via Leray-Schauder nonlinear alternative

Theorem 45 Assume that the following conditions are satisfied
(H”1) There exist a function p € C(J,R,) and a continuous nondecreasing function ® :
R, — R, such that:

| g(t,u) |[< p(t)®(|u]|), for each (t,u) e JxR

(H”’2) There exists a constant N > 0 such that:

m

(1+7@) Y&

(M + pB(V) AP

()

(1 4 20(a) + -

where p = max Ip(t)| and M = max {|f(t,u)|, t € J, |u| < N} . Then the problem (111.1)-(111.2)

has at least one solution.

Proof. Claim 1. The mapping 7" is continuous since f and g are continuous.
Claim 2. Set
U={uveX:|ul|x< N}

then U is an open in X and 0 € U. Then T'(U) is uniformly bounded. In fact, let u € U, then by
conditions (H’1), it yields

(1+7@) Y&
k=1

(M + pe(N)) (1+2P(a) + - )

INGY!

| Tu |x<
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Claim 3.(7T'u) is equicontinuous on U. We have, foru € U,0 < t; <ty < 1.

| Tu(ty) — Tu(ty) |=| / (Glta, ) = Gltr, 7)) (f(7,u(r) + g(7, DG u(7)))dr |

+u26k/ H (g, 7) | £(m,u(r)) + (7, Dgtu(r)) | dr
(MApP(N) (1 (i i vashy  sali 1 s ap
Zf(ll—t% 1 a—1 a— a—1 a—

R

TG Esk / H(w)|f<r,u<7>>+g<nD8:1u<T>>|df)

— O when t; — t;

and we have
to
| D5 Tults) = D Tultn) <] [ S ur)) |+ | gl D5 () s
t1
< (M + @(N))(tz — tl) — Owhenty — t;

thus (7T'u) is equicontinuous. Finally, by Arzela-Ascoli theorem, it follows that 7" is a completely
continuous mapping on Bp.
Claim 4. Assume that there exists u € QU such that u = AT (u),for some 0 < A < 1. Then

N = Jlullx=A[Tulx<| Tu [
(1 + F(a)) ka
< WM +p2)) J;ff)(m) (1 +20(a) + — )

that contradicts hypothesis (H”’2). Then the statement (ii) in Theorem 31 does not hold. As conse-
quence of the nonlinear alternative of Leray-Schauder, we deduce that the operator 7" has at least
one fixed point u* € U, which is the solution of the problem (III.1)-(II1.2). m

III.S Boundary Value Problems With Fractional Derivatives in
a Fractional Sobolev Space

The aim of this section is to study of existence of solutions in the Riemann-Liouville fractional
Sobolev space for the nonlinear boundary value problem (I1I.1)-(I11.2).

Definition 46 The Riemann-Liouville fractional Sobolev space is defined by
Wy

RLat = 1u € LP(a,b), I'Pu e WPl (a,b),0 < s < 1}

where
WP (a,b) = {u € LP(a,b),u’ € L’(a,b)}.
Wyl o+ is a Banach space endowed with the norm

lullwer =l e + [ I flwes
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Denote E = Wng o+» 0 < B < 1, then the norm is

lu lle=llw lle + | L77u o + || Dgyu |lzo

Define the operators (), and (), on E as

Quult) = / G(t, 7)(g(r, DL u(r)))dr

e / H(m, 7)(g(7, Dl u(r)dr

Obviously, problem (III.1)-(II.2) has a solution if and only if @); + @) has a fixed point. We
introduce the following hypotheses.

1 f,g:J xR — R are Caratheordory functions.

(C2) There exists a function ¢» € L' (J,R, ) such forany ¢ € J and any u,v € R

| f(tu) = f(t,0) [< () [u—wv]

@ (2 ! ZmTf) (1 tra ot raf)m) <!

where ¢* = [} | ¥(t) | dt.
(C3) There exists a function ¢ € L' (J,R, ) such for any ¢ € J and any u € R

| g(t,u) [< ()

(C4) There exists p > 0 such

- 1 1 1
(" +p™ + M) 2+k*1(5 (F +r + >§p

where p* = [ | @(t) | dt, M =sup,c, | f(£,0) .

Theorem 47 Assume that (C1)-(C4) hold. then the boundary value problem (IIl.1)-(111.2) has at
least one solution

Proof. We will use Krasnoselski fixed point theorem. Let Q2 = {u € E :|| u ||[g< p}.
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Claim 1. (), is continuous and relatively compact. In fact let u € €2, we have

|@1<>|</ G(t,7) | g(r. D su(r)) | dr

/ (e,7) | 9(r, DE,u(r)) | dr

So

and

1-8 | 71-8 (1a—1 L ! — A B (. DP T 1-p U
1 Qu0) 1= 17 () (s [ (0= 1 et Diutryar ) = 115 alt, D)

(cv
I () < ng/ H (., 7)g(r. DY u(r))dr ) |
taf,B * Z&C
<| Jite-p ' 14 k=1
—‘Io+ (t D0+u< ))|+F(Oé—ﬁ+1) + 5
* DG
¥ k=1
24+
“Na—-p+1) J
to obtain .
. D &
H [O+ Ql Hp— F(Oé—ﬁ—l-l) 2+ 5
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and
8 8 g [ 1
| D3Qu(0) =] =D g la(t. Do) + D s [ (1= 7). Dt
o 1 m
+ oL ng/ (g, 7)9(r, D (7)) dr |

< |I137P(g(t, D0+U(t))( + MO T kl)

Pla=p)
. ng

=1

0

<t

)

Hence

8 2
H D0+Q1 ||PS F(Of—ﬁ)

and consequently

| Qi < o* |2+ 22— | x

1 1 1
+ -
<F(a) Ma—p+1) Ila- 5))
thus (), is uniformly bounded.
Claim 2. The mapping (); is continuous in Wg’Lp o+~ consider the sequence (u,,)nen such that

Uy, — uin Wg Lp o+ then by condition (C1), Holder inequality and taking into account that g is a
Caratheordory function, it yields

| Quun(t) — Quu(t) |< /0 G(t,7) | 9(7, Dy un(r)) = g(r, Dgeu(r)) | dr

+ta5_ Zﬁk / H (. 7) | 9(7, Dgyun(7)) = 9(7, Dgyu(r)) | dr
FL Z ) || 9(, DEwn()) = g, DS u()) |,

k:

So

1 1 &
| Quun, — Quu ||,< m(HS; &) | 90 Dgeun()) = g(, Dgyu()) lp

— Qasn — oco.
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And we have

| 132 Quun(t) = 137 Quult) |< ﬁ / (t=7)77 | Quun(r) = Qru(7) | dr

1 1 1 — 5 ;
<t T 52 ) 190 D6l =gl D)) I
thus
” [1—5Qu —Il—BQuH <;L(1+1§:5)
o+ 1Un o+ 1 p= F(2 _ﬁ) F(CY) 5 < k
I g D cun()) = g(, DEcu()) o= O as n — oo,
hence
oG+
A B 1 k=1
I Dy Quun — Doy Quru [p< F(a—6+1)(2+ 5 )

I g(, DEun()) — g, DE () [|[,— 0asn — oo.

Finally, we get || Q1u, — Q1u ||[g— 0 as n — oo.
Claim 3. (), is relatively compact, let u € 2

| Quu(t + h) — Quu(t) IS/O | G(t+h,7) = G(t,7) || g(r, Dgyulr)) | dr

h a—1 _ ja—1 1
L () : t Zék/o H(n,7) | g(r, DEyu(r)) | dr
k=1

¥ ' a=1 _ qa=1y(1 _ pya—B-14-
<o ([ (s nr ==

/Ot@ el /OHh(t +h—r)etar |)

t+ h a—1 __ tafl m . 1
(t+h) : S g / H(ne, 7)dr
0

k=1

S((t+h)o‘1—ta1)< 2" +so*22”:1£k>

+

(a—pB)T (@) I'(a)d
So

=

— Owhenh — 0

and
| L Quult + h) — I Quu(t) |=
1

t+h t
v —7)h u(T)ar — —7)7F° u(T)ar
iy | rn= = [ =0 uiar |
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; t B A (e u(T)ar o — ) PO u(r)dr
SF(1_5)|/0<<t+h )P = (0= 7)) Quurldr + [ (b= )P Quur)ar |

(+R) =0 1
=TT TR (r(a)<1+5;5’“>

that implies

( o ”lin:&ﬂ) :
| Qut+ )~ 1 Q) s = 55,;:1 ([ et —eyar)

— Owhenh — 0

and
| D2 Quult + h) — DY Quult) <] I8 g(t + b, Do+u<t+h>> 187 g(t, Diu(t) |

VR Lo s
jf:gk
Sy g

w* a—p a—p3 a—F
< —F |t + 2h —(t+h
_F(a—BJrl)( (t+h)

ka

5F()
— Owhenh — 0

+

+(1 )((t+ )Pt —gemh)

from the above it follows that || Qiu(. + h) — Qiu(.) |[g— 0 as h — 0.
On the other hand we have

1 1
/ | Quu(r) | dr + / | 17 Quu(T) | dr + / | D2 Quu(r) | dr
1—e 1—¢

—0 as € — 0.

By Theorem 29, we conclude that (); is relatively compact on 2. From the above discussion we
conclude that (); is completely continuous on [E.
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Claim 4. the mapping (), is a contraction on 2. In fact for u,v € 2 and t € J, we have

| Qau(t) — Qau(t) [< /O Gt ) [ f(ru(r)) = f(r,0(7)) [ dr

tozfl

+— Zlgk/o H (o, (| f(m,u(r)) = f(r,0(7)) | dr

k=

P 1 ¢
< F(a)(1+ 5;&) | u—wv ||p
hence
Y RS
| Qe = Qv I Fr5 (L + 5280 Nu=vl
k=1

And we have

! / (t = 1) | Quulr) — Quu(r) | dr

[ 1" Qav(t) = 10" Qau(t) |< 5 |

1 P* 1 —
<T@ s vl
thus
1-8 1-8 1 P* 1 —
| 15" Qav — 17" Qau |[,< mm(l ts &) lu—vl,
k=1
and

| Dy, Qau(t) — Dy, Qou(t) < Ig77 | f(t,0(1)) — f(t,ult)) |

toht ' a—pf-1 — u(t T
+m/ﬂ<1_7> [ f(70(r) = f(7u(r)) | d
t“ T

Zsk/wm ~ f(ru(r) | dr
< —mﬁ S (20 225

|| D5+Q2U — DngQQ’LL ||p§ ﬁ (2 + %) || u—v ||p

Finally, we get
| Qau — Qav [|&

: r@ >+ %) (o e ) b
< oy (3 252 (1 1 ) 10

by hypothesis (C2), we conclude that ()5 is a contraction.
Claim 5. Qu + Qv € €, for u,v € €, indeed, let uw € QL and t € J, by (C2), we have

| Q2 lle< (pv* + M) ( 2’1515'“) (pfa) * F(zl—ﬁ) i F(al—ﬁ))
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then
| Qru+ Qv [[e<|| Qiu [[g + || Q2v [[e<

> &)

k=1

* * = 1 :
(9" +pg" + M) | 2+ = (F(a)+F(Oé—»3+1)+F<O‘_5)>

< p.

Consequently all the conditions of Krasnoselskii’s fixed point theorem are satisfied, we deduce that
the problem (II1.1)-(II1.2) has at least one solution in E. m

III.6 Exemples

Exemple 1. Let us consider the following boundary value problem:

Dgfu(t) + f(t,u(t)) + g(t, DYEu(t)) =0, t € J = [0, 1]. (I11.7)
3
uw(0) =0,  Dgtu(1) = &Dgtulm). (IIL8)
k=1
Here o = 1.8, B = 0.4, & = 0.21,& = 0.01,& = 0.13, 71 = 0.32,1, = 0.17, 13 = 0.31 and
|
ft,x) = 02T te JJx eR

and
1 —t?sin(y + 1)

120 7

g(t,y) = teJyeR

Let u,v € R, then we have

(b w) — F(E0) | — [u—v].

100
and ) .
t
| g(t,u) — g(t,v) |< 90 |sin(u + 1) —sin(v 4+ 1)| < 0 |u—wv
1 1
thus L, = 100’ Ly = 60" then, some computations give us 6 = 0.781 > 0
L, L 14+T m
—maxr(( ; 2) (1+20() + d+ (a? i 5"”) — 053501 < 1.
«

Thus, by Theorem 43, the boundary value problem ((II1.7)-(II1.8) has a unique solution.
Exemple 2. Let us consider the following boundary value problem:

sin(tu(t)) N DY u(t)

Dyfu(t) + 100 100e—2

=0,teJ=10,1]. (11L.9)
3

uw(0) =0,  DyPu(l) = &DPulng). (IIL.10)
k=1
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Here o = 1.7, 8 = 0.5, & = 0.21,& = 0.01,& = 0.13,m = 0.32,7m, = 0.17,m3 = 0.31,
and 6 = 0.781

sin(tx)
— R
f(t,l’) 100 ) tGJ,Qfe +
and
<y JyeRr
ty)=—=,
9(t,y) 00 (€SVER.
Let x,y € R, then we have
1 1
tx)—glty|=— |z — —
1
t -
| ) 12 10 | o
1
tx)—g(t,y) |= — |z —
| g(t,z) —g(ty) | 100' yl,
1
t N

So Ly = Ly = L} = L}, = 0.01, and we can show that

Ly, L 1+T o
max(Ly, Ly) () oT () + (L T(0) 2kt &) _ 4 578 % 1072 < 1.

IN()) 4]

(]' + F(O[)) maX(L/D L,Q) ZZ;l gk =0413 % 1073 <1
() )

As all assumptions of Theorem 44 are satisfied, we conclude that the problem (II1.9)-(II1.10) has at
least one solution
Exemple 3. Let us consider the following boundary value problem:

DE2u(t) + f(t,u(t)) + g(t, DY2u(t)) =0, t € J = [0, 1]. (IL.11)
3
w(0) =0,  Ditu(l) =) &Dulng). (IIL.12)
k=1

Here o = 1.2, 8 = 0.1, & = 0.21, & = 0.01, & = 0.13, 71 = 0.32, mp = 0.17,1m3 = 0.31,

then 6 = 0.781. Choose
tx

tyx)=—, teJ R
f(t,x) 0 € J,xe
and
(t )—t( v ), ted yelR
We have f is a continuous and
tly|
t < -2
l9(t.y) 1= =5

t
Thus p(t) = 1 € C(J,Ry) p =0.1and ®(z) = =z is continuous and nondecreasing on R,

N
M = 10’ then for N = 0.5 we get

(1+7@) Y&

(1 4 oT(a) + = ) — 0.74N < N

(M +p2(N))
()
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Since all conditions of Theorem (45) are satisfied then the problem (III.11)-(I11.12) has at least one
solution.

Exemple 4. Consider the problem (III.1)-(III.2) with
a=12 =03, & = 021,& = 001, & = 013, = 0.32, o = 0.17,n3 = 0.31,

then 6 = 0.781.
o3t

f(t,u):msin(u%—t), teJ uek.

and
g(t,x) = 2t arctan x teJ zekR.

Lett € J,u,v € Ry, then we have

—3t

| S(tu) = fltw) |< Top lu—v]

| g(t,z) |<2t]|arctanx |< 7t

—3t
hence (t) = ——, @(t) = t, 50 " = 3.1674 x 1072 and * = Z, M = sup,c, | f(£,0) |=

100
o3t
SUP;c s 100 sint = 0.001.
Y ( 2 k-1 &) ( 1 () )
2+ 1+ + =0.24996 < 1
['(a) 0 r2-p) Tla=p5)

and for p > 1.6232 the condition (C'4) holds thus by Theorem 47, twe conclude that the bound-

ary value problem (III.1)-(III.2) has at least one solution in the sobolev space ngé.
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Chapter IV

Boundary Value Problem of Fractional Oscillator Equation

IV.1 Introduction

In this chapter ,we study the existence of solutions for a nonlinear fractional oscillator equation
with both left and right Caputo fractional derivatives subject to nonlocal conditions. We use the
Krasnoselskiis fixed point theorem.

Recently, much attention has been focused on the study of fractional differential equations with
nonlocal conditions. For some recent works on the existence of solutions for fractional differential
equations with non-local conditions see [8,11,12,15,16,24,25,28,29,47,56,72]

In [37], the authors studied by means of lower and upper solutions method and Schauder fixed point
theorem the existence of positive solutions

) = n—1<a<n, 0<t<l1
y@(0) =0, 0,1,..., —2
y(1) = Zk:o Ak fo
Where f € C([0,1] xR, R) isagivenfunction,n ENN>2,M>0,0<n<1,Vk=0,....m
The aim of this chapter is the study of existence of solutions for a nonlinear boundary value problem
involving both the right Caputo and the left Caputo fractional derivatives:

{ Dgry(t) + f(t,y(t)

— DD ult) + wiu(t) + f(t,ult), Diu(t)) =0, t € J =10, 1]. IV.1)

DS (1) =0, u(0) = g(u) , w'(0) = h(u). (IV.2)

where0 < a <1, 1< 8 <2 weR, CD?,,C D€+ denotes the right and left Caputo derivative

respectively,and denotes Dg+ the left Riemann-Liouville , u is the unknown function and f : J x
R? — R is a continuous function, and g, h : C(J,R) — R are continuous functions.

IV.2 Main results
We consider the following boundary value problem:
~C D CDE ult) + K(t,ult), DS u(t) =0, t € J=1[0,1]. (IV.3)

D u(1) =0, u(0) = g(u), u'(0) = h(u). (IV.4)

Where K (t,u(t), D0+u( ) = wu(t) + f(t,ult), D0+u( ), 0<a<l,1<pf<2 Ifuisa
solution of problem (IV.3)-(IV.4), then w is solution of problem (IV.1)-(IV.2).
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To study the nonlinear problem (IV.3)-(IV.4), we first consider the associated linear problem
— DDl u(t) +y(t) =0, t € J = [0,1]. (IV.5)
DS u(1) =0, u(0) = g(u), u'(0) = h(u). (IV.6)

Lemma 48 Assume that y € Li(J), then u is a solution to the linear boundary value problem
(IV.5) — (IV.6) if and only if u satisfies the integral equation

1
ut) = [ Gt rur)dr + g(u) + thiu)
0
where .
/ (t—s) N1 —5)"ds, 0<T<t<1,
0
Gt,7) = —— . (IV.7)
t
/ (t—s) N —s)"ds, 0<t<7T<1.
0
Proof. we apply the right-hand side fractional integral I} to equation (IV.5).We get
C D ult) = I-y(t) + DY u(1)
Using the boundary conditions CD0’3+u(1) =0, we get
DB, ult) = I y()
then we apply the fractional integral / §+ , we get
u(t) = I3, (I y(t)) + u(0) + ta/(0).
Using the conditions nonlocal u(0) = g(u), u/(0) = h(u), so
u(t) = I3, (Ty(®)) + g(u)) + th(w)

o [ ( (- ) Yy(r)dr)ds + g(w) + thlu).

Finally, by using the Fubini theorem, we get

u(t) = m /Ot (/OT(t —5)P 71 — s)o‘_lds>y(7)d7

+m ftl (fot(t —8)P 1 — s)a_lds>y(7)d7'

u(t) =

+g(u)) + th(u).

Lemma 49 The function G satisfy the following properties:
(1) The function G(t, ) is nonnegative.

(2) G(t,7) < m]‘or allt,7 € J
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Let C'(J, X) be the space of all continuous functions defined on .J.
Define the space X = {u | u € C(J), D§+u € C(J)} endowed with the norm || u ||x=

max lu ()| + max ‘Déiu (t)’ It is clear that (X || . ||x) is a Banach space.
SH S

Lemma 50 Let f : J x R?> — R be a continuous function. A function u € X is a solution of the
integral equation

u(t) = /0 G(t,7)f(r,u(t), Df u(r))dr
+w? /0 Gt Pyu(r)dr + g(u)) + th(u).

if and only if w is a solution of the fractional boundary value problem (IV.1)-(1V.2)

Now we define the operators A and B on X as

Au(t):/o G(t,T)f(T,u(T),Df;u(T))dT

Bu(t) = w2/0 G(t, T)u(r)dr + g(u)) + th(u)

Obviously, problem (IV.1)-(IV.2) has a solution if and only if A + B has a fixed point.
Before stating and proving the main results, we introduce the following hypotheses.
(H1) f:J x R? — R is a continuous function,

(H2) For each t € J and all u, v € R. There exists a constant L. > 0 such that

| f(tu,0) [< L+ Ju |+ [v]),
(H3) There exist constants M7, My, M3 > 0 such that u, € X, t € J we have
| g(u) [< My, | h(u) [< Ms, | Dy, (9(u) + th(u)) |< Ms.
(H4) There exists a constants k1, ko, k3 > 0 such that for u,v € X, t € J we have

| 9(u) = g(v) |[< k1 [u—v],
| h(u) = h(v) |[< k2 [u—v],

| Dy, (9(u) + th(u)) — Dy, (9(v) + th(v)) [< ks | u—v |,
and

N o {wQ(l +T(8))

—F(Oz+1)r(ﬁ) —|—/€1+k2+/€3} <1

and there exists B > 0 such that

[ 1+T(5)

m(}%(wz—i—L)—l—L) +M1+M2+M31 <R

Theorem 51 Assume that (HI)-(H4) hold, then the fractional boundary value problem (IV.1)-(1V.2)
has at least one solution in X.
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To prove Theorem 51, we have to prove that all the assumptions of Krasnoselskii’s fixed point
theorem are satisfied, for this we need the following lemmas.

Lemma 52 Under the hypothesis (H1)-(H2), the mapping A is completely continuous on ).

Proof. Set 2 = {u € C(J,X) :|| u ||x< R}. Clearly, €2 is a nonempty, bounded and convex
subset of the Banach space X.
The proof will be done in three steps.
Step 1. The mapping A is continuous on 2. Consider the sequence (u,,),, € €2 such that u,, — u
in €2, then from Lemma 49 and the hypothesis (H1) we get

| Aun(t) = Au(t) [< /0 G(t,7) | f(7,un(r), D un()) = f(r,u(r), D ulr)) | dr

1 1
= r(a+1)r(5)/0 sup | f(7,un(7), Dytn(7)) = f(r,u(7), Dy.u(r) | dr

< S S | ualr). D) = f(ru(r). D) |
And
| D (A (1)) = DJ (Au(t)) [ =] 18- F(t ua(6), D]y un(®)) = I (£, u(t), D) |
( t)a 1 su S, U u — S,U(S p uls S
g[ Sy S | (5, n(s), Dt (5)) = F(s.u(s). Dfou(s) | d
ey | f(5110n(5). Diynls)) = f(s.uls). Djulo)) | |
= I'a+1) (1-1)
_ ey | F(5,10n(5). Dy tinls)) = (s, u(s), Dy u(s)) |
- ['a+1)
Thus, we get
1+T(B)

| Auy — Au [|x< ot DE(F) 5 | f(t,ua(t), Dy un(t)) = f(t,u(t), Dg,u(t)) |

Since f is continuous, then || Au, — Au ||x—> 0 as n — 0.
Step 2. (Au) is uniformly bounded on 2. Let u € €2, then by condition (H2) it yields

| Au(t) |</ G(t,7) | f(r, u(r), DEvu(r)) | dr
L(1+ R)

L1+l ux) < (o + IT(F)

SCESIRG
And
| DY (Au(t)) =] I f(t,u(t), DY u(t)) |

L+ | w[|x) o LO+R)
= T(a+1) (1-1) SF(oz—Fl)'

Hence, we get

| Au ||x< F(l LB rasn).

a+ DHI'(P)
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Step 3. (Au) is equicontinuous on 2. We have, foru € Q, 0 <t; <ty < 1.
t1
| Au(t1) — Au(ts) IS/ | G(t1,7) = G(ta, 7) || f(7,u(7), Dgyu(r)) | dr
0
to
+ [ 1600 = 6t 7) || f(r.u(r). Dyyu(r) | dr

t1
1

+ [ Gt 7) = Glto.7) || f(ru(r), Dgyu(r)) | dr

LA+ R 1o gy, ey (L= t)
S F(a)l“(ﬁ) [(5 1)(t2 tl)( CY(Oé + 1) )
N (1-— tl)j<&_+(i>_ t2)™" } — 0 when t; — to,

and
| Dy, (Au(ty)) — Dy, (Aulta)) |=] I f(tr, ulty), Dycu(ty)) — I3 f(ta, u(tz), Doyults)) |

L . —g)o s, u(s), D% u(s S
<y | 0 S ue), D) | d

n / ((t1— )7 — (b2 — )™ | (s, u(s), Dfyu(s)) | ds

L(1+ R)

— 2| (t; —8)* = (ty — s)* | = O0Owhent;y — ¢
_F(a+1)|(1 s) (ta —8)" | when iy 2

Hence (Au) is equicontinuous. Finally, by Arzela-Ascoli’s theorem, it follows that A is a com-
pletely continuous mapping on ). m

Lemma 53 Under the hypothesis (H3)-(H4), the mapping B is a contraction on §).

Proof. Step 1. Foru € Qandt € J, we get

| Bu(t) |=| w2/0 G(t,m)u(r)dr + g(u)) + th(u) |

w? | u |

SCESINE)
< W3R
= Tlat+ )03

+ M, +tM,

+ My + M.
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And
| Dy Bu(t) |=| w’ I u(t) + Dy, (g(u) + th(w)) |
2 w’R
< W ult) | + | Dy (g(u) +th(u)) |< TatD) + M
50 WR(1+T
| Bu [[x< = I (+J£)F((?)) + My + My + M,

Step 2. Let u, v € (), then

| Bu(t) — Bu(t) |< w2/0 Gt 7) [u(r) —o(r) [ dr+ | g(u)) — g(v) | + [ th(u) — th(v) |

w2
< [ e e
w2
<[ e 1o
And

| Dg: Bu(t) = Dy Bo(t) |< w® | If-u(t) — I o(t) | + | Dg.(9(u) + th(u)) — Dy (9(v) + th(v)) |

w2

< [F(:—il)wa] lu—v|< [WMP’} lu—vx -

So

|| Bu — Bv ||X§ {%—Fkl—i—]@—i—kg} ||U—U||X.

Thus, B is a contraction. m
Lemma 54 Under the hypothesis (H1)-(H4), Au+ Bv € Q) for all u,v € )
Proof. Let u,v € 2

| Au+ Bo [[x<|| Au |lx + || Bv [|x
1+T(B)
~ I'a+ 1)I(P)

so, Au+ Bv e . m

Proof of Theorem 51. Since the mapping A is completely continuous by Lemma 52, the
mapping B is a contraction by Lemma 53 and Au + Bv € () for all u,v € 2 by Lemma 54, then
all the hypotheses of Theorem 32 are satisfied. Thus there exists at least one solution u* € € for
problem (IV.1)-(IV.2) such that u* = Au* + Bu*. The proof is complete.

(R(w2+L)+L)+M1+M2+M3§R

IV.3 An Example

Let us consider the following boundary value problem:
1
—-“D2 CDO+u( )+ 1074 u(t) + £(t, ult), D0+u( N=0,teJ=]0,1]. (IV.8)
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3
“DZ.u(l) =0, u(0) = g(u), u'(0) = h(u). (IV.9)
e u+w) T~ S Ciult;) s
Where f(t,u,v) = , and = I Cuu(ty) | = =0 0,5
ot S ) = e ™ 90 = (Z ) = =2
& 1
where C;,7 = 0, - - - ,n are given constants such that ZC’i < R and0 <ty <---<t, <1,
i=0
> Aulty) - :
and  h(u) = jOF(—g)tg where \;,j = 0,--- ,m are given constants such that j:ZO A < =
and <ty <---<t, <l
Let u,v € [0, o) and ¢ € J. Then we have
e t(u+v) et

| f(Euv) |=|

—t

<
(14 9et) (1 +u+v) = 1+ 9et o]

1
< |1+u+v|§E(1+|u|+|v|).

14 9et
.. ) 1
Hence the condition (H2) holds with L = 10"
Set 6 = max{u(t;),u(t;) :0<i<n;0<j<m}, then we have

| TGl g TLoGlul) | _ 62,
Lol 1= =55 Fay S R =

2

3
2

t

1<

and, we have

ORI O

[ g(u) — g(v) || o £ |
Z?—o Ci | u(t;) —v(t:) | < Zznfo Cilu—v|
- L(3) - L(3)
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therefore k; = ?g - and we have
| h(u) = h( g i () |
_E;”:okj\u( ) (:)\_Z 0N lu—v|
') ()
we get ko = 1%) then we have
|D% (9(u) — g(v) + DE t(h(w) — h(v)) <] DE,(9(u) — 9(v)) | + | Dt (h(u) — h(v)) |
<Sat o B s (S TS Y 1w
wegeths=> . ,C; +£8 > o Aj- So

1—F)>) *i@(”mlé)

2

a ()
)*;AJ(F(I@ T

Hence the condition (H4) holds.
Thus, by Theorem 51, the boundary value problem (IV.8 -1V.9) has at least one solution.
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Chapter V

On a Fractional Oscillator Equation With Finite Delay

V.1 Introduction

This chapter deals with the existence of solutions for initial value problems for nonlinear fractional
oscillator equation with both left Riemann-Liouville and right Caputo fractional derivatives. The
Banach theorem about the fixed point are used to prove the existence and uniqueness of solutions
of the problem considered, then we apply Leray-Schauder fixed point theorem to conclude the
existence of nontrivial solutions

In [60], the following boundary value problem of the fractional differential equation is considered

CDg.u(t) = f(t,u(t), u(d(1).C Diult)), €0,
u(t) =@(t), L€ [—a,0].

where 0 < f < a < 1, § : [0,b] — R is continuous, nondecreasing, 6(t) < t, a = info<;<; 0(%),
and f, ¢ are continuous functions.
The nonlinear fractional differential equation

CDoy(t) = f(t,y),  te€0,¢
y(0) =/ (0) =0, y"(&) = 1.

has been studied In [81], where 2 < o < 3,“D? denotes the standard Caputo fractional derivative,
the function f : Q x C([-r,0]) — R,0 < r < £ and the y, devote y;(0) = y(t + 0), 0 € [—r,0].
By utilizing the Banach fixed point theorem, Schauder fixed point theorem and the nonlinear al-
ternative theorem, the previous problem has a solution. For some recent works on the existence of
solutions for fractional differential equations with finite delay see [20,30,60,67,69,74,79,84].

The aim of this chapter is the study of the existence of solutions for the following nonlinear bound-
ary value problem:

—C DY D u(t) + wu(t) + f(t,u) =0, t€J=10,1]. (V.1)

CDPu(1) =0, u(t) = ¢(t), t € [~d,0]. (V.2)

where 0 < < 1, 0 < f < 1, w € R, wis the unknown function and f : J x C(|—d,0],R) — R
is a continuous function, and ¢ € C([—d, 0],R) with ¢(0) = 0. For any continuous function u
defined on [—d, 1] and any ¢ € J, we denote by u, the element of C'([—d, 0], R) defined by

w(r) =u(t+71), 7 € [—d,0]
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here w,(+) represents the history of the state from time (¢ — d) up to the present time t.
By C(J,R) we denote the Banach space of all continuous functions from J into R with the norm

[ floor=max{[ u(t) [: T € J}.
Also, C'([—d, 0], R) is endowed with the norm || - ||~ defined by
l'w o= max{| u(7) [: =d <7 < 0}.
Set ¥ = C([—d, 1], R) endowed with the norm

I [l:= max{ ]} w floo, [ w flo}-

V.2 Existence of solutions

Lemma 55 Ler f : J x C(|—d,0],R) — R be a continuous function. A function u is a solution
of the integral equation

¢(t)7 te [_dv 0]7

u(t) = /0 G(t,7)f(T,ur)dT + w2/0 G(t, 7)u(r)dr, ted

if and only if u is a solution of the fractional boundary value problem (V.1)-(V.2)

Theorem 56 Assume that:
(H) There exists a constant L > 0 such that fort € J and u,v € E:

| ftw) — f(tv) [< L”Ut_thca
L+—wz < 1
F(a+ 1HI(B) ’

then the problem (V.1)-(V.2) has solution unique on [—d, 1].

Proof. We shall prove that the operators A is a contraction. Indeed, let u,v € FE, then from
condition (H) and Lemma(49) we have for ¢t € [—d, 1]:

Au)(t) — A) (t) =0, t € [~d, 0]

A (u) () = A(v) (t)] S/O \G(tﬁ)!!f(ﬂur)—f(ﬂvT)\dTﬂLwZ/o G, 7)[ Ju—v|dr

L+ w?

S Farnrg Ivmvl ted

We conclude l )
+w
Alw) — AW) ||I€K =—————
I Aw) = AW IS Fa 3 TEE)
Therefore A is a contraction mapping. As a consequence of the Banach flxed point theorem, we
deduce that A has a unique flxed point which is the unique solution of the problem (V.1) — (V.2).
|

lu—w]
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Theorem 57 Assume that:

(H1) f:JxC([-d, 0], R) — R is continuous function.

(H2) There exist a nonnegative function k € C(J,R™) and a continuous nondecreasing func-
tion x : [0,400) —> [0, +00) such that for t € J,u € C([—d,0], R) we have:

| St ) [< E@Ox w )
(H3) There exists a constant M >|| ¢ ||¢ such that:

MT(a + 1)T(B)
| & x(M) +w*M

Then the problem (V.1) — (V.2) has at least one solution.

Proof. The proof will be given in several steps.
Step 1: A is continuous. In fact, let {u, },cn be a sequence such that u,, — w in E. Then for each

t € J, we have

1
_ X
[(a+ 1)I(B)

/01 (170 ume) = (7 ) | 402 | un(r) = u(r) | )dr
1
=T+ 10)
[ (Csup 1) = slreun [ sup [ un(r) = utr) | )ir

r€[0,1] T€[0,1]

< FGun) = O w) floo 40 [ un() = u(:) lloo
- I'(a+ 1)I'(B)

| Alun)(t) = Au)(t) |<

X

Since f is a continuous function, we have

| £Cten) = £ ) lloo +2 L tn) = () e
| Afun) — Afw) |12 )

— 0, as n — oo.

Step 2 : A maps bounded sets into bounded sets in E. In factletu € Q = {u € E,| u ||< R},
then by condition (H?2) it yields

A0 1= s, (170 1+ L) | ar
1

<t O e+ )

|k oo (R) + w?)R
= T(a+ DI(H)

Then )
| & lloo X(R) +w?)R

I A o Lt

For ¢t € [—d, 0] we get
I Au o=l ¢ llo
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hence

| Aw) l1< max{“ ol ) kﬂfaﬁif(; m}

Step 3 : (Au) is equicontinuous. We have, foru € E,0 <t; <ty <1,
t1
| Au(ty) — Aulty) |< / |Gty 7) — Glta, ) || F(ryuy) +wiulr) | dr
0
to
# [ 16007) = Glta 1) | ) + Pt | i

/ |Gt 7) — Glta, ) || F(ryur) +wPu(r) | dr

1 oo x(ll 1) + 0 L |
: T(@)L(B)

< | /O ’ ( /0 (s — 5) ' — ( ) - 5) s ) dr

[ ([ @ == - sas)an

t1 0

|
= D(@)L(3)
(=
(1 — tl)a+1 — (1 t2)a+1:|
ala+1)

Hence, we get

| & oo x| w [)) +w? [ u ]
I'(a)I(B)

(
1—1¢ a+l 1—¢ a+1
( 1>a(0¢ +(1) 2> i| —0ast; — to,

| Au(ty) = Au(ty) [|<

+

thus (Au) is equicontinuous. Finally, by Arzela-Ascoli’s theorem, it follows that A is a completely
continuous mapping on §2.
Step 4 : (A priori bounds). Let us set

U={ueE:|ul< M}
Assume that there exists u € OU such that u = AA(u), for some 0 < A\ < 1. Then

L el D) +w? [ u |
F(a+ 1)I(5) ’

I wlloo= Al Aw) [loo <l Au) [loo<
I ulle<l ¢ llo
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thus

1K X (M) + oMY _ k|| x(M) +w*M
| u|l< maX{H ¢ lles T(a+ (3 } ~ Dle+DT(B)

This contradicts condition (H3).

Then the statement (ii) in Theorem 31 does not hold. As consequence of the nonlinear alterna-
tive of Leray-Schauder the statement (i) holds, we deduce that the operator A has at least one fixed
point u* € U, which is the the solution of the problem (V.1)-(V.2). m

V.3 Exemples

Exemple 1 :
Let us consider the following fractional boundary value problem:

11 1 ugIn(t 4 1)
_CD2 D3 o et e = 1]. .
= O+u(t)+100u(t)+ T 0,teJ=][0,1] (V.3)
1
D u(1) =0, u(t) = 6(t). t € [~d,0]. (V4)
Set n(t + 1)
un(t +
f(t,U) - 1+—u’ (t,U,) < [07 1] X [0,+OO[
Let ¢t € J, then we have
u v
t,u) — f(t =In(t+1)| — —
| F(ta) = St o) |-t 1) | o = |
|lu—v]|
<1 1) ————— <1 1 — v [<In(2 —
<lIn(t+ )ll—i—qu—i—v\_ nt+1)|u—v|<In2)|u—wv
Choose L = In(2) then
L+w  In(2)+107?

~ 0.296171 < 1.

Tla+1TB)  TETE)

Thus all the assumptions in Theorem (56)are satisfied, then theproblem (V.3- V.4) has a unique
solution in £

Exemple 2 :

Let us consider the following fractional boundary value problem:

iy u? + 1
—C D2 DP,u(t) + wiu(t) + % —0,teJ=1[01 (V.5)
D (1) =0, u(t) = ¢(t), t € [~d,0]. (V.6)
Here,a« = 0.3, 3 =04, w=0.1, ¢(t) = €', and
eltvu? + 1
=Y T R
f(t,w) 1 (hu) € x

Then we have

Ft) =) VT

t+1
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t

t
We get k(t) = ; ‘
M > ¢ ||=1and

. and x(u) = u+ 1. We have || £ ||= g, If we choose M > 2 then

MT (a+ 1)I(B)
1K Moo X (M) + w?M

hence the condition (H3) is satisfied. Since all assumptions of Theorem (57) hold, we conclude
that the problem (V.5-V.6) has at least one solution u such ||u|| < 2.
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Conclusion

Conclusion

In this thesis, we discussed the existence of solutions for some problems for nonlinear fractional
oscillator equation containing both left Riemann-Liouville and right fractional derivatives, differ-
ent boundary conditions and finite delay, in the functional spaces L*(0,1), 1 < p < oo, and in the
space of continuous functions.

We also studied the existence solutions of multi-point boundary value problems for nonlinear frac-
tional differential equations in the Riemann-Liouville fractional Sobolev space W7 ., 0 <s < 1.
To prove the existence results, some fixed point theorems are used, such Banach fixed point theo-
rem, Leray-Schauder nonlinear alternative and Krasnoselskii fixed point theorem.

49



Bibliography

[1] M.I. Abbas, Existence and uniqueness of solution for a boundary value problem of fractional
order involving two Caputos fractional derivatives, Advances in Difference Equations (2015)

[2] S. Abbas. Existence of solutions to fractional order ordinary and delay differential equations
and applications. Electronic Journal of Differential Equations, (09), 1-11(2011).

[3] R. A. Adams and J. Fournier. Sobolev Spaces, Academic press, 2003

[4] O.P. Agrawal,: Fractional variational calculus and transversality condition. J. Phys. A, Math.
Gen. 39, 10375-10384 (2006)

[5] O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems.
J.Math. Anal. Appl., 272 , 368-379.(2002)

[6] R. P. Agarwal, M. Bohner, W. T. Li, Nonoscillation and oscillation: theory for functional
differential equations, Monographs and Textbooks in Pure and Applied Mathematics, 267,
Dekker,New York, 2004

[7] B. Ahmad, S. K. Ntouyas, A. Alsaedi and H. Al-Hutami. Nonlinear gq-fractional differential
equations with nonlocal and sub-strip type boundary conditions. Electron. J. Qual. Theory
Differ. Equ., 2014(26)(2014),

[8] B. Ahmad and S. Sivasundaram. On four-point nonlocal boundary value problems of non-
linear integro-differential equations of fractional order. Appl. Math. Comput., 217(2), 480-
487.(2010)

[9] B. Ahmad, S. K. Ntouyas; A higher-order nonlocal three-point boundary value problem of se-
quential fractional differential equations, Miscolc Math. Notes 15, No. 2, pp. 265- 278.(2014)

[10] B. Ahmad, S. K. Ntouyas, A. Alsaedi, Fractional order differential systems involving right
Caputo and left Riemann-Liouville fractional derivatives with nonlocal coupled conditions,
Boundary Value Problems, Article number: 109 (2019)

[11] B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence theory for nonlocal boundary value problems
involving mixed fractional derivatives. Nonlinear Anal. Model. Control., 24 , 937-957.(2019)

[12] B. Ahmad, A. Broom, A. Alsaedi, et al. Nonlinear integro-differential equations involving
mixed right and left fractional derivatives and integrals with nonlocal boundary data, Mathe-
matics, 8 , 336,(2020)

[13] A. Alsaedi, S. K. Ntouyas, R. P. Agarwal, B. Ahmad; On Caputo type sequential fractional dif-
ferential equations with nonlocal integral boundary conditions, Adv. Difference Equ. (2015)

50



Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

R. Almeida, D. F. M. Torres, Necessary and sufficient conditions for the fractional calculus
of variations with Caputo derivatives, Commun. Nonlinear Sci. Numer. Simul., 16 , 1490—
1500.(2011)

D. Amar, C. Li, Delfim EM. Torres, Approximate controllability of fractional delay dynamic
inclusions with nonlocal control conditions, Appl. Math. Comput. 243 161-175.(2014)

A., Alsaedi, N.,Alghamdi, R. P, Agarwal, S. K., Ntouyas, & B. ,Ahmad .Multi-term
fractional-order boundary-value problems with nonlocal integral boundary conditions. Elec-
tron. J. Differ. Equ, 87, 16.2018.

A. Anguraj, P. Karthikeyan, M. Rivero and J. J. Trujillo. On new existence results for frac-
tional integro-differential equations with impulsive and integral conditions. Comput. Math.
Appl., 66(12), 2587-2594.(2014)

S., Arshad, V., Lupulescu, D.,O’Regan,: Lp-solutions of fractional integral equations. Fract.
Calc. Appl. Anal. 17, 259-276 (2014)

T. M. Atanackovic, B. Stankovic, On a differential equation with left and right fractional
derivatives. Fract. Calc. Appl. Anal., 10, 139-150.(2007)

A.Babakhani, & E. Enteghami. Existence of positive solutions for multiterm fractional differ-
ential equations of finite delay with polynomial coefficients. In Abstract and Applied Analysis
. Hindawi.(Vol. 2009)

S. Baghli and M. Benchohra,Existence Results for Semilinear Neutral Functional Differen-
tial Equations Involving Evolution Operators in Frechet Spaces ~, Georgian Mathematical
Journal,to appear

T.Baszczyk, Ciesielski.M: Numerical solution of fractional Sturm-Liouville equation in inte-
gral form. Fract. Calc. Appl. Anal. 17(2), 307-320 (2014)

S. Baghli and M. Benchohra,Uniqueness Results for Partial Functional Differential Equation-
sin Frechet Spaces “, Fixed Point Theory, Volume 9, Number 2, , 395-406.(2008)

K. Balachandran and J. J. Trujillo. The nonlocal Cauchy problem for nonlinear fractional
integrodifferential equations in Banach spaces. Nonlinear Anal., 72(12), 4587-4593.(2010)

K. Balachandran and S. Kiruthika, Existence results for fractional integrodifferential equa-
tions with nonlocal condition via resolvent operators, Computers and Mathematics with Ap-
plications 62 , 1350-1358.(2011)

D. Baleanu, K. Diethelm, E. Scalas, et al. Fractional calculus models and numerical methods,
World Scientific, Singapore, 2012

A. Baliki and M. Benchohra, Global Existence and Asymptotic Behavior for Functional Evo-
lution Equations, J. Appl. Anal. Comput. 2, 129-139.(2014)

M. Benchohra , S. Hamani a, S.K. Ntouyas , Boundary value problems for differential
equations with fractional order and nonlocal conditions, J. Nonlinear Analysis 71 2391-
2396.(2009)

M. Benchohra, Juan J. Nieto, and Noreddine Rezoug, Second order evolution equations with
nonlocal conditions , Demonstr. Math. ; 50:309-319.2017

51



Bibliography

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for fractional
order functional differential equations with infinite delay, J.Math. Anal. Appl. 338 , 1340-
1350.(2008)

M. Bergounioux, A. Leaci, G. Nardi and F. Tomarelli. Fractional sobolev spaces and functions
of bounded variation of one variable. Fractional Calculus and Applied Analysis, 20(4),936-
962.(2017)

T. Blaszczyk, M. Ciesielski, Numerical solution of Euler-Lagrange equation with Caputo
derivatives, Adv. Appl. Math. Mech, 9, 173-185.(2017)

T. Blaszczyk and M. Ciesielski, Fractional oscillator equation transformation into integral
equation and numerical solution, Appl. Math. Comput. 257, 428-435 (2015).

T. Blaszczyk and M. Ciesielski, Fractional oscillator equation: analytical solution and algo-
rithm for its approximate computation,J. Vib. Control 22 (8), 2045-2052 (2016).

G. Bonanno, R. Rodiiguez-Lopez’S. Tersian, Existence of solutions to boundary value prob-
lem for impulsive fractional differential equations. Fract. Calc. Appl. Anal., 17 , 717-
744.(2014)

A Bragdi, A Frioui, A. Guezane Lakoud, Existence of solutions for nonlinear fractional
integro-differential equations, Advances in Difference Equations 2020 (1), 1-9.

D. Boucenna, A. Guezanne-Lakoud, J.J. Nieto, R. Khaldi, On a multipoint fractional bound-
ary value problem with integral conditions. Nonlinear Funct. Anal. (2017)

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer
New York Dordrecht Heidelberg London, 2010

T. A. Burton and B. Zhang. Lp-solutions of fractional differential equations. Nonlinear
Stud.,19(2), 161-177.(2012)

L. Byszewski, Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy
problem, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz., 18 , 109-112.(1993)

A. Carbotti, & Comi, G. E. A note on Riemann-Liouville fractional Sobolev spaces. arXiv
preprint arXiv:2003.09515. (2020.

G. E. Comi and G. Stefani, A distributional approach to fractional Sobolev spaces and
fractional variation: existence of blow-up, J. Funct. Anal. 277 , no. 10, 3373-3435, DOI
10.1016/}.jfa.2019.03.011.(2019)

F. Crauste, Delay model of hematopoietic stem cell dynamics: asymptotic stability and stabil-
ity switch, Mathematical Modeling of Natural Phenomena 4 , 28-47.(2009)

S. Das, Functional Fractional Calculus, Springer-Verlag, Berlin, Heidelberg, 2011.

E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev
spaces, Bull. Sci. Math. 136 , no. 5, 521-573, DOI 10.1016/j.bulsci.2011.12.004.(2012)

S.Dipierro, & E. Valdinoci. A density property for fractional weighted Sobolev spaces. Ren-
diconti Lincei-Matematica e Applicazioni, 26(4), 397-422. (2015.

52



Bibliography

[47] A.Frioui, A. Guezane-Lakoud, R. Khaldi, Fractional boundary value problems on the half
line, Opuscula Math. 37, 2 (2017), 265-280.

[48] A. Guezane-Lakoud, R. Rodriguez-Lopez, On a fractional boundary value problem in a
weighted space, SeMA 75 , 435-443.(2018)

[49] A. Guezane Lakoud, R. Khaldi, A. Kilicman, Existence of solutions for a mixed fractional
boundary value problem, Advances in Difference Equations, 164. 2017

[50] A. Guezane Lakoud, R. Khaldi, A. Kilicman: Solvability of a boundary value problem at
resonance, SpringerPlus 5, Article ID 1504 (2016)

[51] A. Guezane-Lakoud, R. Khaldi, DFM. Torres, On a fractional oscillator equation with natural
boundary conditions .arXiv preprint arXiv:1701.08962.(2017)

[52] A. Guezane-Lakoud, R. Khaldi, A. Kilicman: Existence of solutions for a mixed fractional
boundary value problem , Advances in Difference Equations 2017:164.(2017)

[53] A. Guezane-Lakoud, A. Kilicman, Unbounded solution for a fractional boundary value prob-
lem. Adv. Differ. Equ. 2014, Article ID 154 (2014)

[54] A. Guezane-Lakoud, R. Khaldi, D. Boucenna, J.J. Nieto, On a Multipoint frac-
tional boundary value problem in a fractional Sobolev space. Differ. Equ. Dyn. Syst.
https://doi.org/10.1007/s12591- 018-0431-9.(2018)

[55] A. Guezane-Lakoud, E. Kenef, Impulsive mixed fractional differential equations with delay,
Progr. Fract. Differ. Appl. 7, No. 3, 203-215 (2021).

[56] A.Guezane-Lakoud and R. Khaldi, Solutions for a nonlinear fractional Euler-Lagrange type
equation,SEMA, Boletin de la Sociedad Espaiiola de Matematica Aplicada, (2019) 76: 195.

[57] A. Guezane-Lakoud, S. Kouachi and, Existence theory and Hyers-Ulam stability for a cou-
ple system of fractional differential equations, Surveys in Mathematics and its Applications,
Volume 14 (2019), 203 - 217.

[58] D. Idczak and S. Walczak, Fractional Sobolev spaces via Riemann-Liouville derivatives, J.
Funct. Spaces Appl., posted on , Art. ID 128043, 15, DOI 10.1155/2013/128043.2013

[59] R. Khaldi, A. Guezane-Lakoud, Minimal and maximal solutions for a fractional boundary
value problem at resonance on the half line, Fractional Differential Calculus, Volume 8, Num-
ber 2 (2018), 299-307.

[60] Y.Jalilian, R. , Jalilian. Existence of solution for delay fractional differential equations.
Mediterranean Journal of Mathematics, 10(4), 1731-1747. (2013

[61] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differ-
ential equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006.

[62] R. Khaldi and A. Guezane-Lakoud, On generalized nonlinear Euler-Bernoulli Beam type
equations, Acta Univ. Sapientiae, Mathematica,10, 1 (2018), 90-100.

[63] R,Khaldi, , A,Guezane-Lakoud,: Higher order fractional boundary value problems for mixed
type derivatives. J. Nonlinear Funct. Anal. 2017, Article ID 30 (2017)

53



Bibliography

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

R. Khaldi, A. Guezane-Lakoud, On generalized nonlinear Euler-Bernoulli Beam type equa-
tions, Acta Univ. Sapientiae, Mathematica, 10, 90-100.(2018)

M. A. Krasnoselskii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl., 10,
345-409.(1958)

M. P. Lazarevi¢, M. R .Rapai¢, T. B. gekara, V. Mladenov, & N. Mastorakis,.Introduction
to fractional calculus with brief historical background. In Advanced Topics on Applications
of Fractional Calculus on Control Problems, System Stability and Modeling (p. 3). WSEAS
Press. (2014

C. Liao and H. Ye, Existence of positive solutions of nonlinear fractional delay differential
equations, Positivity 13, 601-609.(2009)

I. Merzoug, A. Guezane-Lakoud, R. Khaldi, Existence of solutions for a nonlinear fractional
p-Laplacian boundary value problem. Rendiconti del Circolo Matematico di Palermo Series
2,https ://doi.org/10.1007/s12215-019-00459-4

T., Maraaba, D., Baleanu, & F ,Jarad. Existence and uniqueness theorem for a class of delay
differential equations with left and right Caputo fractional derivatives. Journal of Mathemati-
cal Physics, 49(8), 083507. (2008

T. Maraaba Abdeljawad, F. Jarad, and D. Baleanu, “On the existence and the uniqueness
theorem for fractional differential equations with bounded delay within Caputo derivatives,’
Sci. China, Ser. A: Math., Phys., Astron.(2008)

H. Moffek, A. Guezane-Lakoud, Existence of solutions to a class of nonlinear boundary value
problems with right and left fractional derivarives, AIMS Mathematics, 5(5): 4770-4780
(2020)

S. K. Ntouyas, J. Tariboon, W. Sudsutad; Boundary value problems for Riemann-Liouville
fractional differential inclusions with nonlocal Hadamard fractional integral conditions,
Meditter. J. Math., 13 , 939-954.(2016)

N. Nyamoradi, R. Rodriguez-Lopez, On boundary value problems for impulsive fractional
differential equations, Appl. Math. Comput., 271 , 874-892.(2015)

Z. Ouyang. Existence and uniqueness of the solutions for a class of nonlinear fractional order
partial differential equations with delay. Computers & Mathematics with Applications, 61(4),
860-870. (2011

I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, 198,
Academic Press, San Diego, CA, 1999.

M. Qiu and L. Mei. Existence of weak solutions for a class of quasilinear parabolic problems
in weighted Sobolev space. Advances in Pure Mathematics, 3, 204-208.(2013)

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives, translated
from the 1987 Russian original, Gordon and Breach, Yverdon, 1993

A. Souahi, A. Guezane-Lakoud and R. Khaldi, On a fractional higher order initial value prob-
lem, J. Appl. Math. Comput. (2018) 56: 289.

54



Bibliography

[79]

[80]

[81]

[82]

[83]

[84]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sci-
ences, Springer, 2011.

S Ramdane, A. Guezane-Lakoud, Existence of positive solutions for p-Laplacian systems
involving left and right fractional derivatives, Arab Journal of Mathematical Sciences, DOI:
https://doi.org/10.1108/AIMS-10-2020-0086.

M. Xu, Y. Li, Y. Zhao, S. Sun .The Existence of Solutions for Boundary Value Problem
of Fractional Functional Differential Equations with Delay. In MATEC Web of Conferences
(Vol. 228, p. 01005). EDP Sciences. (2018.

M. Q., Xu, & Y. Z, Lin. Simplified reproducing kernel method for fractional differential equa-
tions with delay. Applied Mathematics Letters, 52, 156-161. (2016

L. Zhang, B. Ahmad, G. Wang and R. P. Agarwal. Nonlinear fractional integro-differential
equations on unbounded domains in a Banach space. J. Comput. Appl. Math., 249 , 51-
56.(2013)

K.Zhao, & K. Wang. Existence of solutions for the delayed nonlinear fractional functional
differential equations with three-point integral boundary value conditions. Advances in Dif-
ference Equations, 1-18. (2016)

55



	Introduction
	Preliminaries
	Special functions
	Fractional integrals and fractional derivatives
	Functional spaces
	Fixed point theorems

	Existence of solutions to a class of nonlinear boundary value problems with right and left fractional derivatives
	Introduction
	Main results

	Existence Solutions Of Multi-Point Boundary Value Problems For Nonlinear Fractional Differential Equations
	Introduction
	 Uniqueness result via Banach fixed point theorem
	Existence result via Krasnoselskii fixed point theorem
	Existence result via Leray-Schauder nonlinear alternative
	 Boundary Value Problems With Fractional Derivatives in a Fractional Sobolev Space
	Exemples

	Boundary Value Problem of Fractional Oscillator Equation
	Introduction
	Main results
	An Example

	On a Fractional Oscillator Equation With Finite Delay
	Introduction
	Existence of solutions
	Exemples


