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 خــــــــــــصـلـم
 

 يٍ يختهفة فئبت حهىلن انُىعية انخصبئض بعض دراسة هى الأطزوحة هذِ يٍ انهذف

 يٍ ةيختهف أَىاع تتضًٍ انتي انخطية غيز انكسزية انتفبضهية الاَتًبءاتو انًعبدلات

 ثى يكبفئة تكبيهية يعبدنة إنى عطىانً انًشكم بتحىيم َقىو انهذف، نهذا. انكسزية انًشتقبت

 هي عهيهب انحصىل تى انتي انثببتة انُقبط تكىٌ بحيث انًُبسبة انثببتة انُقطة َظزيبت َستخذو

 انُتبئج فعبنية لإظهبر يذروس يشكم نكم تىضيحيب لايثب أيضب قذوَ. عطىانً نهًشكم حهىل

 .انُظزية

 

 ،انهجيُة انكسزية انتفبضهية انًعـبدلات ،انكسزيةانتفبضهية  ًعـبدلاتان: المفتاحيـة الكلمـات

 ،انكسزية انًشتق ،انكسزية انتفبضهية الاَتًبءات ،انكسزية انتفبضهية انتكبيهية انًعـبدلات

انىجىد،  تزاص،ان نعذو كىراتىفسكي قيبسانُقطة انثببتة،  ،فضبء بُبخ ،انًشبكم انحذية

 .أولاو استقزار انىحذاَية،

 



Abstract

The objective of this thesis is to study some qualitative properties of solutions for various

classes of nonlinear fractional differential equations and inclusions involving various kinds

of fractional derivatives. For this aim, we convert the given problem into an equivalent

integral equation and then use the appropriate fixed point theorems such that the fixed points

obtained are the solutions of the given problem. We also provide an illustrative example to

each of the considered problem to show the effectiveness of the theoretical results.

Keywords: Fractional differential equations, hybrid fractional differential equations, frac-

tional integro-differential equations, fractional differential inclusions, fractional derivatives,

boundary value problems, Banach space, fixed point, Kuratowski measure of noncompact-

ness, existence, uniqueness, Ulam stability.

Mathematics Subject Classification: 26A33, 34A08, 34A12, 34B15, 34K20, 47H08.
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Résumé

L’objectif de cette thèse est d’étudier certaines propriétés qualitatives des solutions pour di-

verses classes d’équations et d’inclusions différentielles fractionnaires non linéaires impliquant

divers types de dérivées fractionnaires. Pour ce but, nous convertissons le problème donné

en une équation intégrale équivalente puis utilisons les théorèmes de points fixes appropriés

tels que les points fixes obtenus sont les solutions du problème donné. Nous fournissons

également un exemple illustratif à chaque problème considéré pour montrer l’efficacité des

résultats théoriques.

Mots-clés: Équations différentielles fractionnaires, équations différentielles fractionnaires

hybrides, équations intégro-différentielles fractionnaires, inclusions différentielles fraction-

naires, dérivées fractionnaires, problèmes aux limites, espace de Banach, point fixe, mesure

de non-compactité de Kuratowski, existence, unicité, stabilité d’Ulam.

Mathematics Subject Classification: 26A33, 34A08, 34A12, 34B15, 34K20, 47H08.
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Introduction

The concept of fractional calculus is a generalization of the ordinary differentiation and

integration to arbitrary non integer order. The fractional calculus appeared in the year 1695

[64, 65, 66], in an exchange of correspondence between L’Hopital and Leibniz, even during the

construction of the classic differential and integral calculus. In these correspondences Leibniz

urged the possible generalization of the whole-order derivative to an arbitrary order, L’Hopital

then questioned him about the special case where the order of the derivative was 1
2
. In the

reply letter, dated September 30, 1695, Leibniz presented a correct reflection, in which he

affirmed that very important consequences would come from these developments [64, 65, 66].

This date is regarded as the exact birthday of the fractional calculus. Encouraged by this new

perspective of fractional calculus application, several authors have developed definitions for

fractional derivatives and integrals in subsequent decades, but some of these definitions have

contradicted each other. One of these definitions, which emerged in the nineteenth century; is

the proposal by Liouville, which was later reformulated by Riemann, more information about

the definitions of the Riemann-Liouville derivative and integral can be found in [46, 79, 87].

In this sense, Caputo introduced the so-called Caputo fractional derivative, fundamental in

the study of memory effects and also in the modeling of real problems by means of differential

equations.

Among other applications that over time were justifying the relevance of the frac-

tional derivative, the emergence of many definitions of fractional derivatives, among which

we mention: Hadamard, Weyl, Caputo-Hadamard, Katugampola, Caputo-Katugampola,

Caputo-Fabrizio, Hilfer, Hilfer-Hadamard, Hilfer-Katugampola, Jumarie, Erdélyi-Kober,

Riesz, Caputo-Riesz, Cassar, Grünwald-Letnikov, each with its respective importance and

application [9, 24, 36, 41, 43, 46, 78, 79, 87]. These integrals and fractional derivatives have a

different kernel and this makes the number of definitions wide. Recently in 2017, Sousa and

Oliviera [89] proposed interpolator of ψ-Riemann-Liouville and ψ-Caputo fractional deriva-

tives in Hilfer’s sense of definition so-called ψ-Hilfer fractional derivative, ie, a fractional

derivative of a function with respect to another ψ-function. With this fractional derivative,

we recover a wide class of fractional derivatives and integrals. This work is undoubtedly one

4



Introduction 5

of the first to collect scattered results, a detailed historical account is given in the introduc-

tion of [81] and also can surveys of the history of the fractional theory derivative can be found

in [32, 71, 77, 82, 87].

In the last two decades, fractional differential equations have received very broad regard

because of their applicability in many scientific disciplines. Moreover, it is an excellent

tool for the description of properties of various materials and processes such as chemistry,

physics, biology, fractional dynamics, fitting of experimental data, signal and image process-

ing, economics and control theory. See for instance [16, 27, 39, 45, 62, 68, 96, 104]. For

the recent development of the topic, we refer the reader to a series of books and papers

[2, 7, 13, 14, 22, 24, 42, 46, 69, 70, 73, 75, 79, 89, 100].

On the other hand, the theory of fixed point is one of the most powerful tools of modern

mathematics, as it has been applied in such diverse fields as Biology, Chemistry, Economics,

Engineering, Game Theory, and Physics. In particular, in obtaining existence results for a

variety of mathematical problems. In addition, in most of the existed articles, Banach con-

traction principle, Schauder’s fixed point theorem and Krasnoselskii’s fixed point theorem,

etc. have been used to obtain the existence,uniqueness of solutions of various problems of

fractional differential equations and inclusions with initial conditions, boundary conditions,

integral boundary conditions, nonlinear boundary conditions, and periodic boundary con-

ditions, under suitable conditions. Some contributions around applications of fixed point

theorems in fractional differential equations and inclusions to show the existence, uniqueness

and stability of solution can be found in [1, 8, 11, 51, 53, 58, 60, 70, 75, 76, 84, 90, 91, 99]

and the references therein. But, in the absence of compacity and the Lipschitz condition,

the previously mentioned theorems are not applicable. In such cases, the measure of non-

compactness (briefly, MNC) argument appears as the most convenient and useful in appli-

cations. It is a method which was first introduced by Kuratowski [49] in 1930 which was

further extended to general Banach spaces by Banás and Goebel (see [17]). After, that many

authors used this technique in study and solve different kind problems, as differential equa-

tions, integral equations, fractional differential equations and integro-differential equations,

see [4, 19, 20, 37, 74, 85, 86, 92] and the references therein. We also refer the readers to the

recent book [18], where several applications of the measure of noncompactness can be found.

This thesis is arranged as follows

In Chapter 1, we present some basic concepts, definitions and lemmas about fractional

calculus, measures of noncompactness, multivalued analysis, Ulam stability and some fixed-

point theorems that are used throughout this thesis.

In Chapter 2, we are concerned with the existence and uniqueness of solutions for two

classes of nonlinear fractional differential equations, The desired results are based on fixed

point theorems (Banach, Schaefer, Krasnoselskii). More specifically, in Section 2.1, we debate

the existence and uniqueness of mild solutions for the following fractional boundary value

Introduction
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problem with integral and anti-periodic conditions

C
HD

α
1+x (t) = f (t, x (t)) , t ∈ (1, T ),

x (1) + x (T ) = b

∫ T

1

x (s)
ds

s
,

where f : [1, T ]×R→ R is a continuous function, CHD
α
1+ is the Caputo-Hadamard fractional

derivative of order 0 < α < 1 and b ∈ R such that 2− b log (T ) > 0. The main outcomes of

this problem are published in [52].

In Section 2.2, we give similar results to another class of fractional differential equations,

but this time with Riemann-Liouville fractional derivative and subject to nonlocal conditions

of the form {
RLDα

0+x (t) = f
(
t, x (t) ,RLDα

0+x (t)
)
, t ∈ (0, T ] ,

t1−αx (t)|t=0 = x0 − g(x), x0 ∈ R,

where RLDα
0+ is the standard Riemann-Liouville fractional derivative of order 0 < α < 1,

f : (0, T ] × R × R → R and g : C ((0, T ] ,R) → R are continuous nonlinear functions. This

problem has been studied in [57].

Finally, an example demonstrating the effectiveness of the theoretical results is presented

at the end of each section.

In Chapter 3, we are interested to study some qualitative properties for certain classes of

nonlinear hybrid fractional differential equations. More specifically, in Section 3.1, we discuss

the existence and uniqueness of solutions and Ulam stability for the following nonlinear hybrid

implicit Caputo fractional differential equations{
CDα

0+

(
x(t)−f(t,x(t))
g(t,x(t))

)
= h

(
t, x (t) ,C Dα

0+

(
x(t)−f(t,x(t))
g(t,x(t))

))
, t ∈ (0, T ],

x (0) = θg (0, x(0)) + f (0, x(0)) , θ ∈ R,

where f : [0, T ]× R → R, g : [0, T ]× R → R\{0} and h : [0, T ]× R× R → R are nonlinear

continuous functions and CDα
0+ denotes the Caputo fractional derivative of order 0 < α < 1.

We provide an example to illustrate our obtained results at the end of this section. The main

results of this problem are published in [59].

In Section 3.2, we give some results about the existence, interval of existence, unique-

ness and estimation of solutions for nonlinear hybrid implicit Caputo-Hadamard fractional

differential equations of the form{
C
HD

α
1+

(
x(t)−f(t,x(t))
g(t,x(t))

)
= h

(
t, x (t) ,CH Dα

1+

(
x(t)−f(t,x(t))
g(t,x(t))

))
, t ∈ (1, T ] ,

x (1) = θg (1, x(1)) + f (1, x(1)) , θ ∈ R,

where f : [1, T ]× R → R, g : [1, T ]× R → R\{0} and h : [1, T ]× R× R → R are nonlinear

continuous functions and C
HD

α
1+ denotes the Caputo-Hadamard fractional derivative of order

0 < α < 1. This problem has been considered in the paper [10].

Introduction
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Chapter 4, is devoted to the existence of solutions for certain classes of fractional differ-

ential equations in Banach spaces. The desired findings are based on Mönch’s fixed point

theorem combined with the technique of Kuratowski measure of noncompactness. More

specifically, in Section 4.1, we look into the existence of solutions for a nonlinear fractional

differential equations involving Riemann-Liouville fractional derivative subject to integral

boundary conditions{
RLDα

0+x (t)− f (t, x (t)) = RLDα−1
0+ g (t, x (t)) , t ∈ (0, 1) ,

x (0) = 0, x (1) =
∫ 1

0
g (s, x (s)) ds,

where RLDα
0+ is the standard Riemann-Liouville fractional derivative of order 1 < α ≤ 2,

f, g : J×X → X are given functions satisfying some assumptions that will be specified later,

and X be a Banach space with the norm ‖.‖. The main results of this problem are published

in [56].

As a second problem we debate in Section 4.2, the existence of solutions for the following

nonlinear fractional differential equations involving Hadamard fractional derivative with two

nonlinear terms {
HDα

1+x (t)− f (t, x (t)) = HDα−1
1+ g (t, x (t)) , t ∈ (1, e) ,

x (1) = 0, x (e) =
∫ e

1
g (s, x (s)) ds

s
,

where HDα
1+ denotes the Hadamard fractional derivatives of order 1 < α ≤ 2, f, g : [1, e] ×

X → X are given functions satisfying some hypotheses that will be specified later.

Finally, an example is given at the end of each section to illustrate the theoretical results.

In Chapter 5, we are interested with the existence of solutions for certain classes of

fractional differential inclusions involving convex and nonconvex multivalued maps. The

results obtained are based on some fixed point theorems of multivalued analysis. More

specifically, in Section 5.1. we study the existence of solutions for a nonlinear sequential

Caputo and Caputo-Hadamard fractional differential inclusions with three-point boundary

conditions of the form{
CDβ

0+

[
C
HD

α
0+x (t)

]
∈ F (t, x (t)) , t ∈ (a, b) , a ≥ 1,

x (a) = 0, x (b) = λx (η) , a < η < b,

where C
HD

α
0+ and CDβ

0+ are the Caputo-Hadamard and Caputo fractional derivatives of orders

α and β respectively, 0 < α, β ≤ 1 and F : [a, b] × R → P (R) is a multivalued map from

[a, b]× R to the family of P (R) ⊂ R. This problem has been studied in [55].

In Section 5.2, we discuss the existence of solutions for the following nonlinear Hilfer frac-

tional differential inclusion with nonlocal Erdélyi-Kober fractional integral boundary condi-

tions 
HDα,β

0+ x (t) ∈ F (t, x (t)) , t ∈ (0, T ) , T > 0,

x (0) = 0, x (T ) =
m∑
i=1

θi
EKIηi;ξi0+,γi

x (δi) ,

Introduction
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where HDα,β
0+ is the Hilfer fractional derivative of order α ∈ (1, 2) and type β ∈ [0, 1], EKIηi;ξi0+,γi

is the Erdelyi-Kober fractional integral of order ξi > 0 with γi > 0 and ηi ∈ R, F : [0, T ]×R→
P (R) is a set-valued map from [0, T ]×R to the family of P (R) ⊂ R, θi ∈ R and δi ∈ (0, T ),

i = 1, 2, ...,m. This problem has been considered in the paper [54].

Finally, some pertinent examples demonstrating the effectiveness of the theoretical results

are presented at the end of each section.

In Chapter 6, we study the existence and uniqueness of solutions for nonlinear ψ-Hilfer

fractional integro-differential equations with nonlocal integral boundary conditions. More-

over, we discuss various kinds of stability of Ulam-Hyers for solutions to the given problem.

The arguments are based on appropriate fixed point theorems together with generalized

Gronwall inequality the desired results are proven.
HDα,β;ψ

a+ x (t) = f
(
t, x (t) ,

∫ t
a
h (t, σ, x (σ)) dσ

)
, t ∈ (a, b) ,

x (a) = 0, I2−v;ψ
a+ x (b) =

m∑
i=1

θiI
ηi;ψ
a+ x (δi) ,

where HDα,β;ψ
a+ is the ψ-Hilfer fractional derivative of order α ∈ (1, 2) and type β ∈ [0, 1], I2−v;ψ

and Iηi;ψ are the ψ-fractional integral of orders 2−v, ηi > 0 respectively, v = α+β (2− α) ∈
(1, 2), ∞ < a < b < ∞, θi ∈ R, i = 1, 2, ...,m, 0 ≤ a ≤ δ1 < δ2 < δ3 < ... < δm ≤ b,

f : [a, b] × R × R → R and h : [a, b] × [a, b] × R → R are given continuous functions. This

problem has been studied in [61].

Finally, some examples are presented to show the validity of the obtained results.

Introduction



Chapter 1
Preliminaries and Background Materials

In this chapter, we introduce the necessary concepts for the good understanding of this

thesis. We present some fundamental notions, definitions, and lemmas related to fractional

calculus, measures of noncompactness, multivalued analysis, Ulam stability and some fixed

point theorems which play an important role in the achievement of the desired results in this

thesis.

1.1 Functional spaces

Let J = [a, b], the compact intervals of R. We present the following functional spaces:

Definition 1.1 Denote by C (J,R) the Banach space of all continuous functions f : J → R
endowed with the norm

‖f‖∞ = sup {|f (t)| : t ∈ J} ,

and Cn (J,R) denotes the class of all real valued functions defined on J which have a contin-

uous n th order derivative.

Definition 1.2 Denote by L1 (J,R) the Banach space of measurable functions f : J → R
that are Lebesgue integrable with norm

‖f‖L1 =

∫
J

|f (t)| dt,

and by Lp (J,R) we denote the space of Lebesgue integrable functions on J where |f |P belongs

to L1 (J,R) endowed with the norm

‖f‖LP =

(∫
J

|f (t)|P dt
) 1

p

.

Definition 1.3 A function f : J → R is said absolutely continuous on J if for all ε > 0

there exists a number δε such that; for all finite partition [ai, bi] in J , then
p∑
i=1

(bi − ai) < δε

9
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implies that
p∑
i=1

|f (bi)− f (ai)| < ε.

Definition 1.4 Let AC(J,R) be the space of absolutely continuous functions on J . For

n ∈ N, we denote by ACn(J,R) the space of functions f : J → R which have continuous

derivatives up to order n− 1 on J such that f (n−1) belongs to AC(J,R) defined by

ACn (J,R) =
{
f : J → E : f, f ′, f ′′, , fn−1 ∈ C(J,R) and fn−1 ∈ AC(J,R)

}
.

For more details about AC(J,R) and ACn (J,R), see the book of Kolmogorov and Fomin

([48, pp.388]).

1.2 Special functions

In what follows, we recall three types of functions that are important in fractional calculus:

the Gamma, Beta, and Mittag-Leffler functions. More details about these functions can be

found in [33, 46, 79].

1.2.1 Gamma Function

Definition 1.5 (Gamma function [79]) The Gamma function, denoted by Γ (z) is a gen-

eralization of the factorial function n!, i.e., Γ (n) = (n− 1)! for n ∈ N. For complex arguments

with positive real part it is defined as

Γ (z) =

∞∫
0

tz−1 exp (−t) dt, < (z) > 0.

By analytic continuation the function is extended to the whole complex plane except for the

points 0, −1, −2, −3, ..., where it has simple poles. Thus, Γ : C\ {0,−1,−2, ...} → C. Some

of the most properties are

Γ (1) = Γ (2) = 1, Γ (z + 1) = zΓ (z) ,

Γ (n) = (n− 1)!, n ∈ N, Γ

(
1

2

)
= π. (1.1)

The Gamma function is studied by many mathematicians. There is a long list of well known

properties (see, for example [33]) but in this survey formulas (1.1) are sufficient.

1.2.2 Beta Function

Definition 1.6 (Beta function [79]) The Beta function is defined by the integral

B (z, w) =

1∫
0

tz−1 (1− t)w−1 dt, < (z) > 0, < (w) > 0.

1.2. Special functions
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The functions Γ (.) and B (., .) are related by the formula

B (z, w) =
Γ (z) Γ (w)

Γ (z + w)
.

To demonstrate this relationship, we use the Laplace transform, see [46].

1.2.3 Mittag-Leffler Function

Definition 1.7 (Mittag-Leffler function [79]) The Mittag-Leffler function in one param-

eter is defined by

Eα (z) =
∞∑
k=0

zk

Γ (kα + 1)
, α > 0, z ∈ C.

where it was introduced by Mittag-Leffler [72].

The two-parameter function of the Mittag-Leffler type is defined by the series expansion

Eα,β (z) =
∞∑
k=0

zk

Γ (kα + β)
, α, β > 0, z ∈ C.

which is of great importance for the fractional calculus. In particular,

E1,1 (z) = exp (z) , E2,1 (z) = cosh
(√

z
)
, Eα,1 (z) = Eα (z) .

1.3 Elements from fractional calculus theory

The fractional calculus is a field of mathematical analysis that embraces the integrals and

derivatives of functions of any real or complex order. For the past few decades, this field has

been one of the handover fist sprawling fields of mathematics by the virtue of the amazing

findings obtained when researchers enrolled the fractional operators in their attempts to

construe some problems that arise in the nature. See [27, 30, 46, 68, 79, 87, 96].

At the beginning of the fractional calculus in 1695 [64], it was consisted of one main integral

operator, namely the Riemann-Liouville fractional integral and two fractional derivatives,

namely the Riemann-Liouville and Caputo derivatives. Because of penurious number of

operators, researchers were compelled to discover and develop new fractional operators that

allow them better comprehend the world around them. In this purpose, new derivatives and

fractional integrals has been arising. The kernel of these integrals and fractional derivatives

differs, resulting in a large number of definitions, see [36, 41, 43, 46, 78, 79, 87].

Due to the large number of integral and fractional derivative definitions, it was necessary

to create a fractional derivative of a function f with respect to another function, which is

called ψ-Riemann-Liouville, using the fractional derivative in the Riemann-Liouville sense,

which given by [46]

RLDα;ψ
a+ f (t) =

(
1

ψ′ (t)

d

dt

)n
I

(n−α);ψ
a+ f (t) .

1.3. Elements from fractional calculus theory
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where α ∈ (n− 1, n), n = [α] + 1 for α 6∈ N and n = α for α ∈ N. However, such a definition

only encompasses the possible fractional derivatives that contain the differentiation operator

acting on the integral operator. On the other hand, In subsection 1.3.2, We will mention a

corresponding fractional integral which generalized the Riemann-Liouville fractional integrals

and some special cases of this operator.

In the same way, recently, Almeida [9] using the idea of the fractional derivative in the

Caputo sense, proposes a new fractional derivative called ψ-Caputo derivative with respect

to another function ψ, which generalizes a class of fractional derivatives, whose definition is

given by
CDα;ψ

a+ f (t) = I
(n−α);ψ
a+ f [n] (t) ,

where α ∈ (n− 1, n), n = [α] + 1 for α 6∈ N and n = α for α ∈ N.

Despite that the ψ-Riemann-Liouville and ψ-Caputo definitions of fractional derivatives

are very broad, there is the possibility of proposing a fractional differentiable operator that

combines these operators and overcomes the wide range of definitions. Motivated by the

Hilfer [39] fractional derivative definition, which includes the classical Riemann-Liouville and

Caputo fractional derivatives as special cases. Depending on ψ-Riemann-Liouville and ψ-

Caputo fractional derivatives in Hilfer’s sense of definition, Sousa and Oliviera [89] introduced

a new fractional derivative of a function with respect to another ψ function so-called ψ-Hilfer

derivative. Which unify a wide class of fractional derivatives. the definition of ψ-Hilfer

fractional derivative, its relation with the ψ-Riemann-Liouville fractional integral and some

special cases of this derivative are will presented in subsection 1.3.4.

The advantage of the fractional operator ψ-Hilfer proposed here is the freedom of choice of

the classical differentiation operator and the choice of the function ψ, i.e., from the choice of

the function ψ, the operator of classical differentiation, can act on the fractional integration

operator or else the fractional integration operator can act on the classical differentiation

operator. As a result, the properties of the two fractional operators mentioned above can be

unified and obtained.

There are several definitions in fractional calculus that are widely used and important

in showing different fractional calculus outcomes. In this section, We will present some

definitions of classical fractional integrals and fractional derivatives and its properties. Next,

we introduce a new class of fractional integrals and fractional derivatives, because there are

so many different fractional operator definitions, the following definition is a special approach

when the kernel is unknown, involving a function ψ, making this new operator a generalization

of the fractional operators that we use throughout this thesis.

1.3.1 Fractional integrals and fractional derivatives

Let J = [a, b], (−∞ < a < b <∞), be a finite interval on R. In this subsection, we present

some definitions of classical fractional integrals, fractional derivatives and its properties.

1.3. Elements from fractional calculus theory
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Definition 1.8 (Cauchy formula [46]) The Cauchy formula of nth integral of a locally

integrable function f on R+ is given by

Inf (t) =
1

(n− 1)!

∫ t

0

(t− s)n−1 f (s) ds.

Definition 1.9 (Riemann-Liouville fractional integral [46]) For α > 0. The left-side

(right-side resp.) of Riemann-Liouville fractional integral of the function f ∈ L1 (J,R) of

order α is defined by

RLIαa+f (t) =
1

Γ (α)

∫ t

a

(t− s)α−1 f (s) ds, t ∈ J,

RLIαb−f (t) =
1

Γ (α)

∫ b

t

(s− t)α−1 f (s) ds, t ∈ J,

resp., where t ∈ J .

Riemann-Liouville fractional derivative are defined depending on their fractional integral

and integer order derivative as follows.

Definition 1.10 (Riemann-Liouville fractional derivative [46]) For α > 0. The left-

side (right-side resp.) of Riemann-Liouville fractional order derivative of order α of f ∈
L1 (J,R), is given by

RLDα
a+f (t) =

(
d

dt

)n (
RLIn−αa+ f (t)

)
=

1

Γ (n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1 f (s) ds,

RLDα
b−f (t) =

(
− d

dt

)n (
RLIn−αb− f (t)

)
=

1

Γ (n− α)

(
− d

dt

)n ∫ b

t

(s− t)n−α−1 f (s) ds,

resp., where n = [α] + 1 and [α] denotes the integer part of real number α.

Definition 1.11 (Caputo fractional derivative [46]) For α > 0. The left-side (right-

side resp.) of Caputo fractional order derivative of order α of f ∈ ACn (J,R), is defined

by

CDα
a+f(t) = RLIn−αa+

(
f (n) (t)

)
=

1

Γ (n− α)

∫ t

a

(t− s)n−α−1 f (n) (s) ds, t ∈ J,

CDα
b−f(t) = RLIn−αb−

(
f (n) (t)

)
=

1

Γ (n− α)

∫ b

t

(s− t)n−α−1 f (n) (s) ds, t ∈ J,

resp., where n = [α] + 1 and [α] denotes the integer part of real number α.

In what follows, we consider some properties of the Riemann-Liouville and Caputo frac-

tional integral and derivatives. In particular, we are interested by the left-side fractional

derivatives and integrals.

1.3. Elements from fractional calculus theory
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Lemma 1.1 (Relation between Riemann-Liouville and Caputo derivatives [46])

Let α ∈ (n− 1, n]. If the function f ∈ Cn (J), then

CDα
a+f(t) = RLDα

a+f (t)−
n∑
k=0

f (k) (a)

Γ (k − α + 1)
(t− a)k−α.

Lemma 1.2 ([46]) For α, β > 0 and f ∈ L1 (J). Then, we have

1) The integral operator RLIαa+ is linear,

2) RLIαa+
RLIβa+f (t) =RL Iβa+

RLIαa+f (t) = RLIα+β
a+ f (t) ,

3) RLDα
a+

RLIαa+f (t) = f (t) ,

4) RLDβ
a+

RLIαa+f (t) = RLIα−βa+ f (t) .

Lemma 1.3 ([46]) For α ≥ 0 and β > 0, we have

(
RLIαa+(t− a)β−1

)
(x) =

Γ (β)

Γ (β + α)
(x− a)β+α−1, α > 0,

(
RLDα

a+(t− a)β−1
)

(x) =
Γ (β)

Γ (β − α)
(x− a)β−α−1, α ≥ 0.

Lemma 1.4 ([46]) Let n− 1 < α ≤ n, n ∈ N. and f ∈ C (J), then, the Riemann-Liouville

fractional differential equation
RLDα

a+f (t) = 0,

has a general solution

f (t) = c1(t− a)α−1 + c2(t− a)α−2 + c3(t− a)α−3 + ...+ cn(t− a)α−n, ci ∈ R, i = 1, 2, ..., n,

From the above lemma, it follows that

RLIαa+
RLDα

a+f(t) = f (t)− c1(t− a)α−1 − c2(t− a)α−2 − c3(t− a)α−3 − ...− cn(t− a)α−n,

for some ci ∈ R, i = 0, 1, 2, ..., n.

Lemma 1.5 ([46]) Let n− 1 < α ≤ n, n ∈ N. If f ∈ ACn (J), then the Caputo fractional

differential equation
CDα

a+f (t) = 0,

has a general solution

f (t) = c0 + c1(t− a) + c2(t− a)2 + ...+ cn−1(t− a)n−1,

From the above lemma, it follows that

RLIα0+
CDα

0+f(t) = f (t)− c0 − c1(t− a)− c2(t− a)2 − ...− cn−1(t− a)n−1,

for some ci ∈ R, i = 0, 1, 2, ..., n− 1.

1.3. Elements from fractional calculus theory
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Definition 1.12 (Hadamard fractional integral [46]) Let a > 0. The Hadamard frac-

tional integral of order α > 0 for a function f ∈ L1 (J,R) is defined as

HIαa+f (t) =
1

Γ (α)

∫ t

a

(
log

t

s

)a−1

f (s)
ds

s
, t ∈ J.

Set δ =
(
t d
dt

)
, a, α > 0, n = [α] + 1, where α denotes the integer part of α. Define the

space

ACn
δ (J,R) =

{
f : J → R : δn−1f (t) ∈ AC(J,R)

}
.

Definition 1.13 (Hadamard fractional derivative [46]) Let a > 0. The Hadamard

fractional derivative of order α > 0 for a function f ∈ ACn
δ (J,R) is defined as

HDα
a+f (t) = δn

(
HIn−αa+ f

)
(t) =

1

Γ (n− α)

(
t
d

dt

)n ∫ t

a

(
log

t

s

)n−a−1

f (s)
ds

s
.

Definition 1.14 (Caputo-Hadamard fractional derivative [41, 46]) Let a > 0. The

Caputo-Hadamard fractional derivative of order α > 0 for a function f ∈ ACn
δ (J,R) is

defined as

C
HD

α
a+f (t) =

(
HIn−αa+ δnf

)
(t) =

1

Γ (n− α)

∫ t

a

(
log

t

s

)n−a−1

δnf (s)
ds

s
.

Lemma 1.6 ([41, 46]) Let α, β > 0 and n = [α] + 1. Then, we have

1) The integral operator HIαa+ is linear,

2) HIαa+ (log t)β−1 (x) = Γ(α)
Γ(α+β)

(
log x

a

)β+α−1
,

3) C
HD

α
a+ (log t)β−1 (x) = Γ(α)

Γ(α−β)

(
log x

a

)β−α−1
, β > n,

4) C
HD

α
a+ (log t)k = 0, k = 0, 1, ..., n− 1.

Lemma 1.7 ([46]) let n− 1 < α ≤ n, n ∈ N, the general solution of the fractional differen-

tial equation
HDα

a+f (t) = 0,

is given by

f (t) =
n∑
k=1

ck

(
log

t

a

)α−k
,

where ck ∈ R, k = 1, 2, ..., n are arbitrary constants.

From the above lemma, it follows that

HIαa+
HDα

a+f (t) = f (t)−
n∑
k=1

ck

(
log

t

a

)α−k
,

for some ck ∈ R, k = 1, 2, ..., n are arbitrary constants.

1.3. Elements from fractional calculus theory
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Lemma 1.8 ([41, 46]) Let n − 1 < α ≤ n, n ∈ N. If f ∈ ACn
δ (J,R), then the Caputo-

Hadamard fractional differential equation

C
HD

α
a+f (t) = 0,

has a solution

f (t) =
n−1∑
k=0

ck

(
log

t

a

)k
,

and the following formula holds

HIαa+

(
C
HD

α
a+f (t)

)
= f (t)−

n−1∑
k=0

ck

(
log

t

a

)k
,

where ck ∈ R, k = 0, 1, 2, ..., n− 1.

1.3.2 Fractional ψ-integral

Definition 1.15 ([89]) Let (a, b) , (−∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the

real line R and α > 0. Also let ψ (t) be an increasing and positive monotone function on

(a, b), having a continuous derivative ψ′ (t) on (a, b). The left sided fractional integral of a

function f with respect to another function ψ on [a, b] is defined by

Iα;ψ
a+ f (t) =

1

Γ (α)

∫ t

a

ψ′ (s) (ψ (t)− ψ (s))α−1 f (s) ds. (1.2)

Lemma 1.9 ([46, 89]) Let α, β, δ > 0. Then, the left-sided ψ-fractional integral satisfies

the following properties

1) The integral operator Iα;ψ
a+ is linear,

2) The semigroup property of the fractional integration operator Iα;ψ
a+ is given by the fol-

lowing result

Iα;ψ
a+ Iβ;ψ

a+ f (t) = Iα+β;ψ
a+ f (t) ,

holds almost everywhere if f ∈ L1 (J,R).

3) Commutativity

Iα;ψ
a+

(
Iβ;ψ
a+ f (t)

)
= Iβ;ψ

a+

(
Iα;ψ
a+ f (t)

)
.

Lemma 1.10 ([89]) Let α, β > 0. Then

Iα;ψ
a+ (ψ (t)− ψ (a))β−1 (t) =

Γ (β)

Γ (α + β)
(ψ (t)− ψ (a))α+β−1 .

The fractional integral operator with respect to another function defined in (1.2) is a

general operator, in the sense that it is enough to choose a function ψ and obtain an existing

fractional integral operator. In the following, we present a class of fractional integrals, based

on the choice of the arbitrary ψ function.

1.3. Elements from fractional calculus theory



Chapter 1. Preliminaries and Background Materials 17

1) Choosing ψ (t) = t and replacing in equation (1.2), we get

Iα;t
a+h (t) =

1

Γ (α)

∫ t

a

(t− s)α−1 f (s) ds = RLIαa+f (t) ,

the Riemann-Liouville fractional integral.

2) If we consider ψ (t) = log(t) and a > 0 in equation (1.2), we have

Iα;t
a+h (t) =

1

Γ (α)

∫ t

a

1

s
(log t− log s)α−1 f (s) ds

=
1

Γ (α)

∫ t

a

(
log

t

s

)a−1

f (s)
ds

s
= HIαa+f (t) ,

the Hadamard fractional integral.

3) Choosing ψ (t) = tδ and g (t) = tαηf (t) and substituting in equation (1.2), we get

t−δ(α+η)Iα;tδ

a+ g (t) = t−δ(α+η)Iα;tδ

a+ tαηf (t)

=
δt−δ(α+η)

Γ (α)

∫ t

a

sαη+δ−1
(
tδ − sδ

)α−1
f (s) ds

= EkIη,αa+,δ f (t) ,

the Erdélyi-Kober fractional integral.

1.3.3 Fractional ψ-derivative

We start by evoking two definitions of fractional derivatives with respect to another function,

both of which are motivated by the fractional derivatives of Riemann-Liouville and Caputo,

in that order, choosing a specific function ψ.

Definition 1.16 ([46]) Let ψ′ (t) 6= 0 (−∞ ≤ a < t < b ≤ ∞) and α > 0, n ∈ N. The

Riemann-Liouville derivative of a function f with respect to ψ of order α correspondent to

the Riemann-Liouville, is defined by

RLDα;ψ
a+ f (t) =

(
1

ψ′ (t)

d

dt

)n
I

(n−α);ψ
a+ f (t) ,

=
1

Γ (n− α)

(
1

ψ′ (t)

d

dt

)n ∫ t

a

ψ′ (s) (ψ (t)− ψ (s))n−α−1 f (s) ds,

where n = [α] + 1 and [α] denotes the integer part of real number α.

Definition 1.17 ([9]) Let α > 0, n ∈ N, J = [a, b] is the interval −∞ ≤ a < b ≤ ∞,
f, ψ ∈ Cn (J,R) two functions such that ψ is increasing and ψ′ (t) 6= 0, for any t ∈ J . The

left sided ψ-Caputo fractional derivative of a function f of order α is given by

CDα;ψ
a+ f (t) = I

(n−α);ψ
a+

(
1

ψ′ (t)

d

dt

)n
f (t) .

1.3. Elements from fractional calculus theory
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Lemma 1.11 ([42, 87]) Let α, β > 0. Then

CDα;ψ
a+ (ψ (t)− ψ (a))β−1 (t) =

Γ (β)

Γ (β − α)
(ψ (t)− ψ (a))α+β−1 .

Lemma 1.12 ([89]) If f ∈ Cn (J,R) and α ∈ (n− 1, n), then

Iα;ψ C
a+ Dα;ψ

a+ f (t) = f (t)−
n−1∑
k=0

f [n] (a+)

k!
(ψ (t)− ψ (a))k .

In particular, given α ∈ (0, 1), we have

Iα;ψ C
a+ Dα;ψ

a+ f (t) = f (t)− f (a) .

1.3.4 Fractional ψ-Hilfer derivative

From the definition of fractional derivative in the Riemann-Liouville sense and the Caputo

sense [46], was introduced the Hilfer fractional derivative [39], which combines both deriva-

tives. Motivated by the definition of Hilfer, we present a new generalized operator the so-

called ψ-Hilfer fractional derivative of a function f with respect to another function. From the

fractional derivative ψ-Hilfer, we introduce some relations between the ψ-fractional integral

and the fractional derivative ψ-Hilfer.

Definition 1.18 ([89]) Let α ∈ (n− 1, n) with n ∈ N, J = [a, b] is the interval −∞ ≤
a < b ≤ ∞, f, ψ ∈ Cn (J,R) two functions such that ψ is increasing and ψ′ (t) 6= 0, for any

t ∈ J . The left sided ψ-Hilfer fractional derivative HDα,β;ψ
a+ (.) of function f of order α and

type β ∈ [0, 1] is defined by

HDα,β;ψ
a+ f (t) = I

β(n−α);ψ
a+

(
1

ψ′ (t)

d

dt

)n
I

(1−β)(n−α);ψ
a+ f (t) , n ∈ N. (1.3)

Lemma 1.13 ([89]) For δ > 0, α ∈ (n− 1, n) and β ∈ [0, 1], we have

HDα,β;ψ
a+ (ψ (t)− ψ (a))δ−1 =

Γ (δ)

Γ (δ − α)
(ψ (t)− ψ (a))δ−α−1 , δ > n.

Lemma 1.14 ([89]) In particular, given n ≤ k ∈ N and as δ > n we have

HDα,β;ψ
a+ (ψ (t)− ψ (a))k =

k!

Γ (k + 1− α)
(ψ (t)− ψ (a))k−α .

On the other hand, for n > k ∈ N0, we have

HDα,β;ψ
a+ (ψ (t)− ψ (a))k = 0.

Lemma 1.15 ([89]) Let n− 1 < α < n, β ∈ [0, 1] and γ = α+ β (n− α). If f ∈ Cn (J,R),

then

1) Iα;ψ
a+

HDα,β;ψ
a+ f (t) = f (t) −

n∑
k=1

(ψ(t)−ψ(a))γ−k

Γ(γ−k+1)
f

[n−k]
ψ I

(1−β)(n−α);ψ
a+ f (a) where f

[n−k]
ψ f (t) =(

1
ψ′(t)

d
dt

)n−k
f (t),

2) HDα,β;ψ
a+ Iα;ψ

a+ f (t) = f (t).

1.3. Elements from fractional calculus theory
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In the following, using the ψ-Hilfer fractional derivative operator defined in equation (1.3),

we can combine in this derivative a different types of fractional derivatives by changing the

value for ψ and taking the limit of the parameter β. Some of them are presented below.

1) Consider the ψ (t) = t and taking the limit β → 1 on both sides of equation (1.3), we

get

HDα,1;t
a+ f (t) = I

(n−α);t
a+

(
d

dt

)n
f (t)

=
1

Γ (n− α)

∫ t

a

(t− s)n−α−1

(
d

dt

)n
f (s) ds

= CDα
a+f(t),

the Caputo fractional derivative.

2) For ψ (t) = t and taking the limit β → 0 on both sides of equation (1.3), we have

HDα,0;t
a+ f (t) =

(
d

dt

)n
I

(n−α);t
a+ f (t)

=
1

Γ (n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1 f (s) ds

=RL Dα
a+f (t) =

1

Γ (n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1 f (s) ds,

the Riemann-Liouville fractional derivative.

3) For ψ (t) = log t, a > 0 and taking the limit β → 0 on both sides of equation (1.3), we

have

HDα,0;log t
a+ f (t) =

(
t
d

dt

)n
I

(n−α);t
a+ f (t)

=
1

Γ (n− α)

(
t
d

dt

)n ∫ t

a

(
log

t

s

)n−a−1

f (s)
ds

s

= HDα
+af (t) ,

the Hadamard fractional derivative.

4) For ψ (t) = log t, a > 0 and taking the limit β → 1 on both sides of equation (1.3), we

have

HDα,1;t
a+ f (t) = I

(n−α);t
a+

(
t
d

dt

)n
f (t)

=
1

Γ (n− α)

∫ t

a

(
log

t

s

)n−a−1(
s
d

ds

)n
f (s)

ds

s

= C
HD

α
a+f (t) ,

the Caputo-Hadamard fractional derivative.
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5) For ψ (t) = t and replacing in equation (1.3), we have

HDα,β;t
a+ f (t) = I

β(n−α);t
a+

(
d

dt

)n
I

(1−β)(n−α);t
0+ f (t)

= RLI
β(n−α)
a+ D[n] RLI

(1−β)(n−α)
a+ f (t)

= HDα,β
a+ f (t) ,

the Hilfer fractional derivative.

1.4 Functional tools

In what follows, we present some concepts of functional analysis that will we use throughout

this thesis.

Theorem 1.1 (Ascoli-Arzela Theorem [23]) Let A ⊂ C ([0, T ] ,R). A is relatively com-

pact (i.e A is compact) if

1) A is uniformly bounded i.e, there exists M > 0 such that

|f (t)| ≤M for every f ∈ A and t ∈ [0, T ] ,

2) A is equicontinuous i.e, for every ε > 0, there exists δ > 0 such that for each t1, t2 ∈
[0, T ], |t1 − t2| ≤ δ implies |f (t1)− f (t2)| ≤ ε for every f ∈ A.

Definition 1.19 ([28]) A map f : [0, T ]×X → X is said to be Carathéodory if

1) t→ f (t, x) is measurable for each x ∈ X,

2) x→ f (t, x) is continuous for almost all t ∈ [0, T ].

Moreover, f is called L1-Carathéodory if ∀ρ > 0, there exists ϕρ ∈ L1 ([0, T ] ,R+) such

that

|f (t, x)| ≤ ϕρ (t) , for all |x| ≤ ρ and for a.e. t ∈ [0, T ] .

Lemma 1.16 (Standard Gronwall inequality 01 [38]) Let f : [0, T ]→ R+ be real func-

tion and w is a nonnegative locally integrable function on [0, T ] .

Assume that there is a constant a > 0 such that for 0 < α < 1

f(t) ≤ w(t) + a

∫ t

0

(t− s)α−1 f(s)ds.

Then, there exist a constant k = k(α) such that

f(t) ≤ w(t) + ka

∫ t

0

(t− s)α−1w(s)ds.

1.4. Functional tools
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Lemma 1.17 (Standard Gronwall inequality 02 [67]) Let f : [1, T ] → [0,∞) be a real

function and w is a nonnegative locally integrable function on [1, T ]. Assume that there is a

constant a > 0 such that for 0 < α < 1

f(t) ≤ w(t) + a

∫ t

1

(
log

t

s

)α−1

f(s)
ds

s
.

Then, there exists a constant k = k(α) such that

f(t) ≤ w(t) + ka

∫ t

1

(
log

t

s

)α−1

w(s)
ds

s
.

for every t ∈ [1, T ].

Lemma 1.18 (Generalization of Gronwall inequality [102]) Let f, g be two integrable

functions and h be continuous with domain [a, b]. Let Ψ ∈ C1 ([a, b] ,R) be an increasing

function such that Ψ′ (t) 6= 0, ∀t ∈ [a, b]. Assume that

1) f and g are nonnegative functions,

2) h is nonnegative and nondecreasing.

If

f (t) ≤ g (t) + h (t)

∫ t

a

Ψ′ (s) (Ψ (t)−Ψ (s))α−1 f (s) ds,

then

f (t) ≤ g (t) +

∫ t

a

∞∑
k=1

[h (t) Γ (α)]k

Γ (kα)
Ψ′ (s) (Ψ (t)−Ψ (s))kα−1 g (s) ds.

Lemma 1.19 ([102]) Under the hypotheses of Lemma (1.18), assume further that g (t) is

nondecreasing function for t ∈ [a, b]. Then

f (t) ≤ g (t)Eα (h (t) Γ (α) (Ψ (t)−Ψ (s))α) .

1.5 Background about measures of non-compactness

1.5.1 The general notion of a measure of noncompactness

Firstly, we need to fix the notation. In what follows, (E, d) will be a metric space, and

(X, ‖.‖) a Banach space. Let Q is non-empty subset of X, then Q and convQ denote the

closure and the closed convex closure of Q, respectively. When Q is a bounded subset, Diam

(Q) denotes the diameter of Q. Also, we denote by BE (resp.BX) the class of nonempty and

bounded subsets of E (resp. of X).

We begin with the following general definition.

Definition 1.20 ([15, 19]) A mapping µ : BE → R+ will be called a measure of noncom-

pactness in E if it satisfies the following conditions

1.5. Background about measures of non-compactness
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1) Regularity : µ (Q) = 0 if, and only if, Q is a precompact set.

2) Invariant under closure: µ (Q) = µ
(
Q
)
, for all Q ∈ BE.

3) Semi-additivity : µ (Q1 ∪Q2) = max {µ (Q1) , µ (Q1)}, for all Q1 , Q2 ∈ BE.

To have a MNC in a Banach space X we need to add the two following additional properties

4) Semi homogeneity : µ (λQ) = |λ|µ (Q) for λ ∈ R and Q ∈ BX .

5) Invariant under translations : µ (x+Q) = µ (Q), for all x ∈ X and Q ∈ BX .

Three main and most frequently used MNCs: the Kuratowski MNC, the Hausdorff MNC,

and the De Blasi Measure of Weak Noncompactness. In this thesis, we are interested by

Kuratowski MNC.

1.5.2 The Kuratowski measure of noncompactness

Now we present some fundamental facts of the notion of Kuratowski measure of noncom-

pactness.

Definition 1.21 ([49, 50]) Let (E, d) be a metric vector space and Q be a bounded subset

of E. Then the Kuratowski measure of noncompactness (the set-measure of noncompactness,

k-measure) of Q, denoted by µk (Q), is the infimum of the set of all numbers ε > 0 such that

Q can be covered by a finite number of sets with diameters < ε, i.e.,

µk (Q) = inf {ε > 0 : Q ⊆ ∪ni=1Si, Si ⊂ E, diam (Si) < ε, i = 1, 2, ..., n, n ∈ N} .

This measure of noncompactness satisfies the following properties

1) Regularity : µk (Q) = 0 if and only if, Q is a precompact set.

2) Invariant under passage to the closure : µk (Q) = µk
(
Q
)
, for all Q ∈ BE.

3) Semi-additivity : µk (Q1 ∪Q2) = max {µk (Q1) , µk (Q1)}, for all Q1, Q2 ∈ BE.

4) Monotonicity : Q1 ⊂ Q2 ⇒ µk (Q1) ≤ µk (Q2).

5) Algebraic semi-additivity : µk (Q1 +Q2) ≤ µk (Q1) + µk (Q2), for all Q1, Q2 ∈ BE.

6) Semi-homogeneity : µk (λQ1) = |λ|µk (Q1) , for λ ∈ R and Q1 ∈ BE.

7) Invariant under passage to the convex hull : µk (convQ) = µk (Q).

8) µk (Q1 ∩Q2) ≤ min {µk (Q1) , µk (Q1)}, for all Q1, Q2 ∈ BE.

The following lemma is important in order to attain the desired outcomes in this work.

Lemma 1.20 ([92]) Let J = [0, T ] and D be a bounded, closed and convex subset of the

Banach space C (J,X). Let G be a continuous function on J × J and f a function from

J × X → X, which satisfies the Carathéodory conditions, and assume there exists p ∈
L1 (J,R+) such that, for each t ∈ J and each bounded set B ⊂ X, we have

lim
h→0+

µk (f (Jt,h ×B)) ≤ p (t)µk (B) , here Jt,h = [t− h, t] ∩ J.

If V is an equicontinuous subset of D, then

µk

({∫
J

G (s, t) f (s, y (s)) ds : y ∈ V
})
≤
∫
J

‖G (s, t)‖ p (s)µk (V (s)) ds.
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1.6 Multivalued Analysis

In this section, we introduce some definitions, notations, and preliminary facts for multivalued

analysis, which are used throughout this thesis.

Definition 1.22 ([28]) Let (X, ‖.‖) and (Y, ‖.‖) two Banach spaces. A multivalued function

F (or a set valued map, multivalued map ) from X into P (Y ) is a correspondence that

associates to each element x ∈ X a subset F (x) of Y .

We denote this correspondence by the symbol F : X → P (Y ). We define

1) The effective domain DomF = {x ∈ X, F (X) 6= ∅} .
2) The graph Gr (F) = {(x, y) ∈ X × Y, x ∈ DomF , y ∈ F (x)} .
3) The image of the set A ∈ P (X) : F (A) = x ∈ ∪x∈AF (x).

4) The inverse image of the set B ∈ P (Y ) : F−1 (B) = {x ∈ X : F (x) ∩B = ∅} .
5) The multivalued map F : X → P (Y ) is convex (closed, compact) valued if F (x) is

convex (closed, compact) for all x ∈ X.

6) F is bounded on bounded sets if F (B) = ∪x∈B F (x) is bounded in Y for all bounded

set B of X, i.e.,

sup
x∈B
{sup {‖y‖ : y ∈ F (x)}} <∞.

7) F is called upper semi-continuous (u.s.c for short) on X if F−1 (A) is closed in X

whenever A ⊂ X is closed.

8) F is said to be completely continuous if F (B) is relatively compact for every bounded

subset B of X.

9) A multivalued map F : X → P0 (Y ) ( where P0 (Y ) = {A ∈ P0 (Y ) , A 6= ∅}) is said to

be measurable if for every open U ⊂ X the set F−1 (U) is a measurable set.

10) F has a fixed point if there exists x ∈ X such that x ∈ F (x). The fixed point set of

the multivalued operator F will be denoted by Fix F .

For each y ∈ C ([a, b] ,R), the set of selections of F at point y is defined by

SF ,y =
{
v ∈ L1 ([a, b] ,R) : v (t) ∈ F (t, y) for a.e. t ∈ [a, b]

}
.

In the following, by Pp we denote the set of all nonempty subsets of X which have the

property ”p” where ”p” will be bounded (b), closed (cl), convex (c), compact (cp) etc.

Thus Pb (X) = {A ∈ P (X) : A is bounded}, Pcl (X) = {A ∈ P (X) : A is closed}, Pcp (X) =

{A ∈ P (X) : A is compact}, and Pcp,c (X) = {A ∈ P (X) : A is compact and convex}.

Definition 1.23 ([28]) A multivalued map F : [a, b]×R→ P (R) is said to be Carathéodory

if

1) t→ F (t, x) is measurable for each x ∈ R,

2) x→ F (t, x) is uppe semi-continuous for almost all t ∈ [a, b].

Further, a Carathéodory function F is called L1-Carathéodory if

1.6. Multivalued Analysis
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3) for each ρ > 0, there exists ϕρ ∈ L1 ([a, b] ,R+) such that

‖F (t, x)‖ = sup {|v| : v ∈ F (t, x)} ≤ ϕρ (t) ,

for all ‖x‖ ≤ ρ and for a.e. t ∈ [a, b].

Lemma 1.21 ([47]) Let (E, d) be a metric space induced from the normed space (X, ‖.‖).

Consider Hd : P (X)× P (X)→ R+ ∪ {∞} given by

Hd (A,B) = max

{
sup
a∈A

d (a,B) , sup
b∈B

d (A, b)

}
,

where d (A, b) = infa∈A d (a, b) and d (a,B) = infb∈B d (a, b). Then (Pb,cl (X) , Hd) is a metric

space.

Definition 1.24 ([28]) A multivalued operator N : X → Pcl (X) is called

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd (N (x) , N (y)) ≤ γd (x, y) for each x, y ∈ X.

(b) A contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 1.22 ([28], Proposition 1.2) If F : X → Pcl (Y ) is u.s.c., then Gr (F) is a closed

subset of X × Y , i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if when n → ∞,

xn → x∗, yn → y∗ and yn ∈ F (xn). then y∗ ∈ F (x∗). Conversely, if F is completely

continuous and has a closed graph, then it is upper semi-continuous.

Lemma 1.23 ([63]) Let X be a separable Banach space. Let F : [a, b]×X → Pcp,c (X)be an

L1-Carathéodory multivalued map and let Θ be a linear continuous mapping from L1 ([a, b] , X)

to C ([a, b] , X). Then the operator

Θ ◦ SF : C ([a, b] , X)→ Pcp,c (C ([a, b] , X)) , x→ (Θ ◦ SF) (x) = Θ (SF ,x) ,

is a closed graph operator in C ([a, b] , X)× C ([a, b] , X).

For more details on multivalued maps and the proof of the known results cited in this

section, we refer the interested reader to the books by Deimling [28], Gorniewicz [35] and Hu

and Papageorgiou [40].

1.7 Fixed point theorems

The theory of fixed points is one of the most powerful tools of modern mathematics, which

used to show the existence and uniqueness of fixed points of various kinds of equations.

Throughout this study, we convert the given problem into an equivalent integral equation

and then use the appropriate fixed point theorem such that the fixed points obtained are thus

the solutions of the given problem. In this section we collect the fixed point theorems which

are used in the proofs of our main results. We start with the definition of a fixed point.

1.7. Fixed point theorems
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Definition 1.25 For a mapping Φ of a set E Into itself, an element x of E is a fixed point

of Φ, if Φ (x) = x.

Theorem 1.2 (Banach’s fixed point theorem [88]) Let Ω be a non-empty closed subset

of a Banach space (X, ‖.‖), then any contraction mapping Φ of Ω into itself has a unique

fixed point.

Theorem 1.3 (Schauder’s fixed point theorem [88]) Let Ω be a nonempty closed

bounded convex subset of a Banach space X and Φ : Ω→ Ω be a continuous compact operator.

Then Φ has a fixed point in Ω.

Theorem 1.4 (Schaefer’s fixed point theorem [88]) Let X be a Banach space, and Φ :

X → X is completely continuous operator. If the set Bλ = {x ∈ X : x = λΦx, λ ∈ (0, 1)} is

bounded. Then Φ has fixed point in X.

Theorem 1.5 (Krasnoselskii’s fixed point theorem [88]) Let Ω be a non-empty closed

bounded convex subset of a Banach space (X, ‖.‖). Suppose that F1 and F2 map Ω into X

such that

1) F1x+ F2y ∈ Ω for all x, y ∈ Ω,

2) F1 is continuous and compact,

3) F2 is a contraction with constant l < 1.

Then there is a x ∈ Ω with F1x+ F2x = x.

Theorem 1.6 (Mönch’s fixed point theorem [5]) Let Ω be a bounded, closed and con-

vex subset of the Banach space such that 0 ∈ Ω, and let Φ be a continuous mapping of Ω into

itself. If the implication

V = conv Φ (V ) or V = Φ (V ) ∪ {0} ⇒ µ (V ) = 0,

holds for every V of Ω, then Φ has a fixed point.

Theorem 1.7 (Nonlinear alternative of Kakutani maps [34]) Let Ω be a closed con-

vex subset of a Banach space X and U be an open subset of Ω with 0 ∈ U . Suppose that

N : U → Pcp,c (Ω) is an upper semi-continuous compact map. Then either

(i) N has a fixed point in U , or

(ii) there is a x ∈ ∂U and µ ∈ (0, 1) with x ∈ µN (x).

Theorem 1.8 (Covitz and Nadler fixed point theorem [26]) Let (E, d) be complete

metric space. If N : E → Pcl (E) is a contraction, then Fix N 6= ∅.

1.8 Ulam’s stability

The stability of the Ulam can be viewed as a special kind of data dependence which was

initiated by the Ulam in [97]. Rassias in [80] extended the concept of Ulam-Hyers stability.
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In latest years, many authors discussed Ulam-Hyers stability problem for various types of

fractional integral and fractional differential equation using different techniques, for more

details see [2, 12, 21, 70, 98] and the references therein.

To define Ulam’s stability, we consider the following fractional differential equation

HDα,β;ψ
0+ x (t) = f (t, x (t)) , t ∈ [0, T ] . (1.4)

Definition 1.26 ([83]) The equation (1.4) is said to be Ulam-Hyers stable if there exists a

real number k > 0 such that for each ε > 0 and for each y ∈ C ([0, T ] ,R) solution of the

inequality ∣∣∣HDα,β;ψ
0+ y (t)− f (t, y (t) , )

∣∣∣ ≤ ε, t ∈ [0, T ] , (1.5)

there exists a solution x ∈ C ([0, T ] ,R) of the equation (1.4) with

|y(t)− x (t)| ≤ kε, t ∈ [0, T ] .

Definition 1.27 ([83]) Assume that y ∈ C ([0, T ] ,R) satisfies the inequality in (1.5) and

x ∈ C ([0, T ] ,R) is a solution of the equation (1.4). If there is a function φf ∈ C (R+,R+)

with φf (0) = 0 satisfying

|y(t)− x (t)| ≤ φf (ε), t ∈ [0, T ] .

Then the equation (1.4) is said to be generalized Ulam-Hyers stable.

Definition 1.28 ([83]) The equation (1.4) is said to be Ulam-Hyres-Rassias stable with

respect to φf ∈ C ([0, T ] ,R+) if there exists a real number k > 0 such that for each ε > 0

and for each y ∈ C ([0, T ] ,R) solution of the inequality∣∣∣HDα,β;ψ
0+ y (t)− f (t, y (t))

∣∣∣ ≤ εφf (t), t ∈ [0, T ] , (1.6)

there exists a solution x ∈ C ([0, T ] ,R) of the equation (1.4) with

|y(t)− x (t)| ≤ kφf (t)ε, t ∈ [0, T ] .

Definition 1.29 ([83]) Assume that y ∈ C ([0, T ] ,R) satisfies the inequality in (1.6) and

x ∈ C ([0, T ] ,R) is a solution of the equation (1.4). If there exists a constant k > 0 such that

|y(t)− x (t)| ≤ kφf (t), t ∈ [0, T ] .

Then the equation (1.4) is said to be generalized Ulam-Hyres-Rassias stable.

Remark 1.1 If there is a function v ∈ C ([0, T ] ,R) (dependent on y), such that

1) |v (t)| ≤ ε, for all t ∈ [0, T ],

2) HDα,β;ψ
0+ y (t) = f (t, y (t)) + v (t), t ∈ [0, T ].

Then a function y ∈ C ([0, T ] ,R) is a solution of the inequality (1.5).

1.8. Ulam’s stability



Chapter 2
Existence and uniqueness results for two classes

of nonlinear fractional differential equations

In this chapter, we are concerned with the existence and uniqueness of solutions for two

classes of nonlinear fractional differential equations. In section 2.1, we study the existence

and uniqueness of mild solutions of a boundary value problem for Caputo-Hadamard frac-

tional differential equations with integral and anti-periodic conditions. In section 2.2, we

establish sufficient conditions for the existence and uniqueness of solutions for nonlinear im-

plicit Riemann-Liouville fractional differential equations with nonlocal conditions. our results

are obtained via fixed point theorems. An example demonstrating the effectiveness of the

theoretical results is presented at the end of each section.

2.1 Existence and uniqueness of mild solutions of

boundary value problems for Caputo-Hadamard

fractional differential equations with integral and

anti-periodic conditions

In this section, we study the existence and uniqueness of mild solutions for a nonlinear

fractional differential equation with integral and anti-periodic conditions as follows

C
HD

α
1+x (t) = f (t, x (t)) , t ∈ (1, T ), (2.1)

x (1) + x (T ) = b

∫ T

1

x (s)
ds

s
, (2.2)

where f : [1, T ]×R→ R is a continuous function, CHD
α
1+ is the Caputo-Hadamard fractional

derivative of order 0 < α < 1 and b ∈ R such that 2−b log (T ) > 0. To show the existence and

uniqueness of solutions, we transform the problem (2.1)-(2.2) into an integral equation and

27
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then use the Schaefer fixed point theorem to prove the existence result, while the uniqueness

is demonstrated by using the Banach’s contraction mapping principle.

At the end of each section, An example demonstrating the effectiveness of the theoretical

results is presented.

2.1.1 Existence results

First, we start by defining what we mean by a solution of the boundary value problem

(2.1)-(2.2).

Definition 2.1 Let J = [1, T ], A function x ∈ C (J,R) is said to be a mild solution of the

problem (2.1)-(2.2) if x satisfies the corresponding integral equation of (2.1)-(2.2).

For the existence of solutions for (2.1)-(2.2), we need the following auxiliary lemma.

Lemma 2.1 Let ∆ = 2 − b log (T ), x ∈ C (J,R) and x′ exists. If x is a solution of the

boundary value problem (2.1)-(2.2), then x is a solution of the integral equation

x(t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s

+
b

∆Γ (α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

f (σ, x (σ))
dσ

σ

)
ds

s

− 1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

f (s, x (s))
ds

s
, for t ∈ [1, T ] . (2.3)

Proof. Suppose x satisfies the problem (2.1)-(2.2). Then, by applying HIα1+ to both sides of

(2.1), we have
HIα1+

(
C
HD

α
1+x (t)

)
= H Iα1+ (f (t, x (t))) .

In view of Lemma 1.8, we get

x (t) = x (1) + H Iα1+ (f (t, x (t))) . (2.4)

The condition (2.2) implies that

2x (1) +
1

Γ (α)

∫ T

1

(
log

T

s

)α−1

f (s, x (s))
ds

s

= b log (T )x (1) +
b

Γ (α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

f (σ, x (σ))
dσ

σ

)
ds

s
,

so

x (1) =
b

∆Γ (α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

f (σ, x (σ))
dσ

σ

)
ds

s

− 1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

f (s, x (s))
ds

s
. (2.5)

2.1. Existence and uniqueness of mild solutions of boundary value problems for
Caputo-Hadamard fractional differential equations with integral and anti-periodic
conditions
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Substituting (2.5) in (2.4) we get the integral equation (2.3). The proof is completed.

Now, we transform the integral equation (2.3) to be applicable to fixed point theorems,

we define the operator Φ : C (J,R)→ C (J,R) by

(Φx) (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s

+
b

∆Γ (α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

f (σ, x (σ))
dσ

σ

)
ds

s

− 1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

f (s, x (s))
ds

s
.

Where figured fixed point must satisfy the identity operator equation Φu = u.

In the following, we prove existence, as well as existence and uniqueness results for the

boundary value problem (2.1)-(2.2) by using a variety of fixed point theorems.

Existence and uniqueness results via Banach’s fixed point theorem

Theorem 2.1 Assume the following hypothesis

(H1) There exists a constant k > 0 such that

|f (t, x)− f (t, y)| ≤ k |x− y| , for t ∈ J and x, y ∈ R.

If
k (log T )α

Γ (α + 1)
+
k |b| (log T )α+1

∆Γ (α + 2)
+

k (log T )α

∆Γ (α + 1)
< 1, (2.6)

then the boundary value problem (2.1)-(2.2) has a unique mild solution on J .

Proof. Let Φ defined by (2.3). Clearly, the fixed points of operator Φ are mild solutions of

the problem (2.1)-(2.2). Let x, y ∈ C (J,R). Then for t ∈ J , we have

|(Φx) (t)− (Φy) (t)|

≤ 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|f (s, x (s))− f(t, y (s))| ds
s

+
|b|

∆Γ (α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

|f (σ, x (σ))− f(t, y (s))| dσ
σ

)
ds

s

+
1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

|f (s, x (s))− f(t, y (s))| ds
s

≤ k (log t)α

Γ (α + 1)
‖x− y‖∞ +

k |b| (log T )α+1

∆Γ (α + 2)
‖x− y‖∞ +

k (log T )α

∆Γ (α + 1)
‖x− y‖∞

≤

(
k (log T )α

Γ (α + 1)
+
k |b| (log T )α+1

∆Γ (α + 2)
+

k (log T )α

∆Γ (α + 1)

)
‖x− y‖∞ .

2.1. Existence and uniqueness of mild solutions of boundary value problems for
Caputo-Hadamard fractional differential equations with integral and anti-periodic
conditions
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Therefore

‖Φx− Φy‖∞ ≤

(
k (log T )α

Γ (α + 1)
+
k |b| (log T )α+1

∆Γ (α + 2)
+

k (log T )α

∆Γ (α + 1)

)
‖x− y‖∞ .

From (2.6), Φ is a contraction. As a consequence of Banach’s fixed point theorem, we get

that Φ has a unique fixed point which is the unique mild solution of (2.1)-(2.2).

Existence results via Schaefer’s fixed point theorem

Theorem 2.2 Assume the following hypothesis

(H2) There exists a constant M > 0 such that

|f (t, x)| ≤M, for t ∈ J and each x ∈ R.

Then the boundary value problem (2.1)-(2.2) has at least one mild solution on J .

Proof. We shall use Schaefer’s fixed point theorem to prove that Φ defined by (2.3) has a

fixed point. The proof will be given in several steps.

Step 1. The continuity of f implies the continuity of the operator Φ defined by (2.3).

Step 2. Φ maps bounded sets into bounded sets in C (J,R).

Indeed, it is enough to show that for any η > 0, there exists a positive constant l such

that for each x ∈ Ω = {x ∈ C (J,R) : ‖x‖∞ ≤ η}, we have ‖Φx‖∞ ≤ l. In fact, we have

|(Φx) (t)| ≤ 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|f (s, x (s))| ds
s

+
|b|

∆Γ (α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

|f (σ, x (σ))| dσ
σ

)
ds

s

+
1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

|f (s, x (s))| ds
s

≤ M

Γ (α + 1)
(log t)α +

M |b|
∆Γ (α + 2)

(log T )α+1 +
M

∆Γ (α + 1)
(log T )α

≤
(

∆ +
|b| log T

α + 1
+ 1

)
M

∆Γ (α + 1)
(log T )α .

Thus

‖Φx‖∞ ≤
(

(∆ + 1) (α + 1) + |b| log T

α + 1

)
M

∆Γ (α + 1)
(log T )α = l.

Step 3. Φ maps bounded sets into equicontinuous sets of C (J,R).

Let t1, t2 ∈ J with t1 < t2, Ω be a bounded set of C (J,R) as in Step 2, and let x ∈ Ω.

2.1. Existence and uniqueness of mild solutions of boundary value problems for
Caputo-Hadamard fractional differential equations with integral and anti-periodic
conditions
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Then

|(Φx) (t2)− (Φx) (t1)|

≤

∣∣∣∣∣ 1

Γ(α)

∫ t2

1

(
log

t2
s

)α−1

f (s, x (s))
ds

s
− 1

Γ(α)

∫ t1

1

(
log

t1
s

)α−1

f (s, x (s))
ds

s

∣∣∣∣∣
≤ 1

Γ(α)

∫ t1

1

∣∣∣∣∣
(

log
t2
s

)α−1

−
(

log
t1
s

)α−1
∣∣∣∣∣ |f (s, x (s))| ds

s

+
1

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1

|f (s, x (s))| ds
s

≤ M

Γ(α)

∫ t1

1

((
log

t1
s

)α−1

−
(

log
t2
s

)α−1
)
ds

s
+

M

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1
ds

s

≤ M

Γ(α + 1)

(
(log t1)α +

(
log

t2
t1

)α
− (log t2)α +

(
log

t2
t1

)α)
≤ 2M

Γ(α + 1)

(
log

t2
t1

)α
.

As t1 → t2, the right-hand side of the above inequality tends to zero and the convergence is

independent of x in Ω. As consequence of Step 1 to Step 3, together with the Arzela-Ascoli

theorem, we can conclude that Φ is completely continuous.

Step 4. A priori bounds.

Now it remains to show that the set

Bλ = {x ∈ C (J,R) : x = λΦx for some 0 < λ < 1} ,

is bounded. Let x ∈ Bλ, then x = λΦx for some 0 < λ < 1. Thus, for each t ∈ J we have

x (t) = λ

[
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s

+
b

∆Γ (α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

f (σ, x (σ))
dσ

σ

)
ds

s

− 1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

f (s, x (s))
ds

s

]
.

2.1. Existence and uniqueness of mild solutions of boundary value problems for
Caputo-Hadamard fractional differential equations with integral and anti-periodic
conditions
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For λ ∈ (0, 1), we have

|(Φx) (t)| ≤ 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|f (s, x (s))| ds
s

+
|b|

∆Γ (α)

∫ T

1

(∫ s

1

(
log

s

σ

)α−1

|f (σ, x (σ))| dσ
σ

)
ds

s

+
1

∆Γ (α)

∫ T

1

(
log

T

s

)α−1

|f (s, x (s))| ds
s

≤ M

Γ (α + 1)
(log t)α +

M |b|
∆Γ (α + 2)

(log T )α+1 +
M

∆Γ (α + 1)
(log T )α

≤
(

∆ +
|b| log T

α + 1
+ 1

)
M

∆Γ (α + 1)
(log T )α = R.

Thus

‖Φx‖∞ ≤
(

(∆ + 1) (α + 1) + |b| log T

α + 1

)
M

∆Γ (α + 1)
(log T )α = R.

This implies that the set Bλ is bounded. As a consequence of Schaefer’s fixed point theorem,

we deduce that Φ has a fixed point which is a mild solution of the problem (2.1)-(2.2).

2.1.2 Examples

In this subsection, we present some examples to illustrate our results of the previous subsec-

tion.

Example 2.1 We consider the problem for Caputo-Hadamard fractional differential equa-

tions of the form

C
HD

1
2
1+x (t) =

sin (x (t))

5t
, t ∈ [1, e] , (2.7)

x (1) + x (e) =

∫ e

1

x (s)
ds

s
, (2.8)

where α = 1
2
, T = e, b = 1 and f (t, x) = sin(x)

5t
. For any x, y ∈ R and t ∈ [1, e], we have

|f (t, x)− f (t, y)| ≤ 1

5
|x− y| .

Therefore, the condition k(log T )α

Γ(α+1)
+ k|b|(log T )α+1

∆Γ(α+2)
+ k(log T )α

∆Γ(α+1)
< 1 holds with k = 1

5
and ∆ = 1.

Indeed, 2

5Γ( 1
2

+1)
+ 1

5Γ( 1
2

+2)
' 0.60 < 1. By Theorem 2.1, the problem (2.7)-(2.8) has a unique

mild solution on [1, e].

Example 2.2 We consider the following fractional boundary value problem

C
HD

1
2
1+x (t) =

cos (x (t))

2 exp (−t)
, t ∈ [1, e] , (2.9)

x (1) + x (e) =
1

2

∫ e

1

x (s)
ds

s
, (2.10)

2.1. Existence and uniqueness of mild solutions of boundary value problems for
Caputo-Hadamard fractional differential equations with integral and anti-periodic
conditions
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where α = 1
2
, T = e, b = 1

2
, ∆ = 3

2
and f (t, x) = cos(x)

2 exp(−t) . We have

|f (t, x)| ≤ |cos (x)|
2 exp (−t)

≤ 1

2e−e
. ∀ (t, x) ∈ [1, e]× R.

Choosing M = 1
2e−e

, then by Theorem 2.2, the problem (2.9)-(2.10) has a mild solution on

[1, e].

2.2 Existence and uniqueness results for nonlinear

implicit Riemann-Liouville fractional differential

equations with nonlocal conditions

In this section, we study the existence and uniqueness of solutions for the following fractional

differential equation with nonlocal conditions{
RLDα

0+x (t) = f
(
t, x (t) ,RLDα

0+x (t)
)
, t ∈ (0, T ] ,

t1−αx (t)|t=0 = x0 − g(x), x0 ∈ R,
(2.11)

where RLDα
0+ is the standard Riemann-Liouville fractional derivative of order 0 < α < 1,

f : (0, T ] × R × R → R and g : C ((0, T ] ,R) → R are continuous nonlinear functions. To

prove the existence and uniqueness of solutions, we transform (2.11) into an integral equation

and then use the Banach and Krasnoselskii fixed point theorems.

2.2.1 Existence of solutions

First, we start by defining what we mean by a solution of the problem (2.11).

Definition 2.2 A function x ∈ C ((0, T ] ,R) is said to be a solution of (2.11) if x satisfies
RLDα

0+x (t) = f
(
t, x (t) ,RLDα

0+x (t)
)

for any t ∈ (0, T ] and t1−αx (t)|t=0 = x0 − g(x).

For the existence of solutions for the problem (2.11), we need the following auxiliary

lemma.

Lemma 2.2 The function x solves (2.11) if and only if it is a solution of the integral equation

x (t) = tα−1 (x0 − g (x)) +
1

Γ (α)

∫ t

0

(t− s)α−1 f
(
t, x (t) ,RLDα

0+x (t)
)
ds, t ∈ (0, T ] . (2.12)

Proof. Suppose the function x satisfies the problem (2.11), then applying RLIαa+ to both

sides of (2.11), we have

RLIαa+
RLDα

0+x (t) = RLIαa+ f
(
t, x (t) ,RLDα

0+x (t)
)
.

2.2. Existence and uniqueness results for nonlinear implicit Riemann-Liouville
fractional differential equations with nonlocal conditions
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In view of Lemma 1.4, we get

x (t) = c1t
α−1 +

1

Γ (α)

∫ t

0

(t− s)α−1 f
(
t, x (t) ,RLDα

0+x (t)
)
ds. (2.13)

The condition t1−αx (t)|t=0 = x0 − g(x) implies that

c1 = x0 − g (x) . (2.14)

Substituting (2.14) in (2.13) we get the integral equation (2.12). The converse can be proven

by direct computations. The proof is completed.

In what follows, we show existence, as well as existence and uniqueness results, for the

problem (2.11) by using a variety of fixed point theorems.

The following assumptions will be used in our results.

(H1) There exist constants k1 > 0 and k2 ∈ (0, 1) such that

|f (t, u, v)− f (t, u∗, v∗)| ≤ k1 |u− u∗|+ k2 |v − v∗| ,

for t ∈ (0, T ], u, v, u∗, v∗ ∈ R and f (., 0, 0) ∈ C1−α ([0, T ] ,R), where C1−α ([0, T ] ,R) is the

weighted space of continuous functions defined by

C1−α ([0, T ] ,R) =
{
x : (0, T ]→ R : t1−αx ∈ C ([0, T ] ,R)

}
,

with the norm

‖x‖C1−α
= sup

t∈[0,T ]

∣∣t1−αx (t)
∣∣ .

(H2) There exist a constant b ∈ (0, 1) such that

|g (u)− g (u∗)| ≤ b ‖u− u∗‖C1−α
,

for u, u∗ ∈ C1−α ([0, T ] ,R).

Existence and uniqueness results via Banach’s fixed point theorem

Theorem 2.3 Assume that the assumptions (H1) and (H2) are satisfied. If

b+
Γ (α) k1T

α

Γ (2α) (1− k2)
< 1, (2.15)

then there exists a unique solution for the problem (2.11) in the space C1−α ([0, T ] ,R).

Proof. We define the operator Φ : C1−α ([0, T ] ,R)→ C1−α ([0, T ] ,R) by

(Φx) (t) = tα−1 (x0 − g (x)) +
1

Γ (α)

∫ t

0

(t− s)α−1 h (s) ds, t ∈ (0, T ] ,

where h : (0, T ]→ R be a function satisfying the functional equation

h (t) = f (t, x (t) , h (t)) .

2.2. Existence and uniqueness results for nonlinear implicit Riemann-Liouville
fractional differential equations with nonlocal conditions
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By Lemma 2.2, the fixed points of operator Φ are solutions of (2.11). The operator Φ is well

define, i.e. for every x ∈ C1−α ([0, T ] ,R) and t > 0, the integral

1

Γ (α)

∫ t

0

(t− s)α−1 h (s) ds, (2.16)

belongs to C1−α ([0, T ] ,R). Under the condition (H1),

|h (t)| = |f (t, x (t) , h (t))|

≤ k1

1− k2

|x (t)|+ ctα−1 for each t ∈ (0, T ] , (2.17)

where c =
supt∈J |t1−αf(t,0,0)|

1−k2 . For every x ∈ C1−α ([0, T ] ,R), we have∣∣∣∣ t1−αΓ (α)

∫ t

0

(t− s)α−1 h (s) ds

∣∣∣∣
≤ t1−α

Γ (α)

∫ t

0

(t− s)α−1 |h (s)| ds

≤ t1−α

Γ (α)

∫ t

0

(t− s)α−1

(
k1

1− k2

|x (s)|+ csα−1

)
ds

≤ t1−α

Γ (α)

∫ t

0

(t− s)α−1 sα−1

(
k1

1− k2

∣∣s1−αx (s)
∣∣+ c

)
ds

≤
(

k1

1− k2

‖x‖C1−α
+ c

)
t RLIαa+

(
tα−1

)
.

By Lemma 1.3, we have∣∣∣∣ t1−αΓ (α)

∫ t

0

(t− s)α−1 h (s) ds

∣∣∣∣ ≤ (
k1

1− k2

‖x‖C1−α
+ c

)
Γ (α) tα

Γ (2α)

≤
(

k1

1− k2

‖x‖C1−α
+ c

)
Γ (α)Tα

Γ (2α)
.

That is to say that the integral exists and belongs to C1−α ([0, T ] ,R).

Let x, y ∈ C1−α ([0, T ] ,R). Then for t ∈ (0, T ], we have

|(Φx) (t)− (Φy) (t)|

≤ tα−1 |g (x)− g (y)|+ 1

Γ (α)

∫ t

0

(t− s)α−1 |hx (s)− hy (s)| ds,

where hx, hy ∈ C1−α ([0, T ] ,R) be such that

hx (t) = f (t, x (t) , hx (t)) ,

and

hy (t) = f (t, y (t) , hy (t)) .

2.2. Existence and uniqueness results for nonlinear implicit Riemann-Liouville
fractional differential equations with nonlocal conditions
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By (H1) we have

|hx (t)− hy (t)| = |f (t, x (t) , hx (t))− f (t, y (t) , hy (t))|
≤ k1 |x (t)− y (t)|+ k2 |hx (t)− hy (t)| .

Then

|hx (t)− hy (t)| ≤ k1

1− k2

|x (t)− y (t)| .

Therefore, for each t ∈ (0, T ]

|(Φx) (t)− (Φy) (t)|

≤ btα−1 ‖x− y‖C1−α
+

k1

Γ (α) (1− k2)

∫ t

0

(t− s)α−1 |x (s)− y (s)| ds

= tα−1b ‖x− y‖C1−α
+

k1

Γ (α) (1− k2)

∫ t

0

(t− s)α−1 sα−1
∣∣s1−α (x (s)− y (s))

∣∣ ds
≤ tα−1b ‖x− y‖C1−α

+
k1

1− k2

RLIαa+

(
tα−1

)
‖x− y‖C1−α

.

By Lemma 1.3, we have

|(Φx) (t)− (Φy) (t)| ≤ tα−1b ‖x− y‖C1−α
+

Γ (α) k1t
2α−1

Γ (2α) (1− k2)
‖x− y‖C1−α

,

which implies that ∣∣t1−α ((Φx) (t)− (Φy) (t))
∣∣

≤ b ‖x− y‖C1−α
+

Γ (α) k1t
α

Γ (2α) (1− k2)
‖x− y‖C1−α

≤ b ‖x− y‖C1−α
+

Γ (α) k1T
α

Γ (2α) (1− k2)
‖x− y‖C1−α

.

Thus

‖Φx− Φy‖C1−α
≤
(
b+

Γ (α) k1T
α

Γ (2α) (1− k2)

)
‖x− y‖C1−α

.

From (2.15), Φ is a contraction. As a consequence of Banach’s fixed point theorem, we get

that Φ has a unique fixed point which is a unique solution of the problem (2.11).

Existence results via Krasnoselskii’s fixed point theorem

Theorem 2.4 Assume (H1), (H2) and the following hypothesis

(H3) There exist p1 ∈ C1−α ([0, T ] ,R+), p2, p3 ∈ C ([0, T ] ,R+) with p∗3 = sup
t∈[0,T ]

p3 (t) < 1

such that

|f (t, u, v)| ≤ p1 (t) + p2 (t) |u|+ p3 (t) |v| ,

for t ∈ (0, T ] and each u, v ∈ R.

2.2. Existence and uniqueness results for nonlinear implicit Riemann-Liouville
fractional differential equations with nonlocal conditions
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If

λ = b+
p∗2Γ (α)Tα

(1− p∗3) Γ (2α)
< 1,

where p∗2 = sup
t∈[0,T ]

p2 (t). Then the boundary value problem (2.11) has at least one solution in

Ω.

Proof. Set

R =
1

1− λ
, Λ = |x0|+Q+

Tαp∗1Γ (α)

(1− p∗3) Γ (2α)
,

where p∗1 = sup
t∈[0,T ]

{t1−αp1 (t)} and Q = |g (0)|. Let us fix

M ≥ RΛ.

Consider the non-empty closed bounded convex subset

Ω =
{
x ∈ C1−α ([0, T ] ,R) : ‖x‖C1−α

≤M
}
,

and define two operators F1 and F2 on Ω, as follows

(F1x) (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 h (s) ds,

and

(F2x) (t) = tα−1 (x0 − g (x)) ,

where h : (0, T ]→ R be a function satisfying the functional equation

h (t) = f (t, x (t) , h (t)) .

We shall use the Krasnoselskii fixed point theorem to prove there exists at least one fixed

point of the operator F1 + F2 in Ω. The proof will be given in several steps.

Step 1. We prove that F1x+ F2y ∈ Ω for all x, y ∈ Ω.

For any x, y ∈ Ω and t ∈ (0, T ], we have

|(F1x) (t) + (F2y) (t)|

≤
∣∣∣∣tα−1 (x0 − g (x)) +

1

Γ (α)

∫ t

0

(t− s)α−1 h (s) ds

∣∣∣∣
≤ tα−1 |x0|+ tα−1 |g (x)− g (0)|+ tα−1 |g (0)|

+
1

Γ (α)

∫ t

0

(t− s)α−1 sα−1
∣∣s1−αh (s)

∣∣ ds
≤ tα−1 |x0|+ tα−1b ‖x‖C1−α

+ tα−1Q

+
1

Γ (α)

∫ t

0

(t− s)α−1 sα−1
∣∣s1−αh (s)

∣∣ ds
≤ tα−1 |x0|+ tα−1bM + tα−1Q

+
1

Γ (α)

∫ t

0

(t− s)α−1 sα−1
∣∣s1−αh (s)

∣∣ ds. (2.18)

2.2. Existence and uniqueness results for nonlinear implicit Riemann-Liouville
fractional differential equations with nonlocal conditions
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By (H3), for each t ∈ (0, T ], we have

|h (t)| = |f (t, x (t) , h (t))|
≤ p1 (t) + p2 (t) |x (t)|+ p3 (t) |h (t)| .

Hence, we get ∣∣t1−αh (t)
∣∣ ≤ t1−αp1 (t) + p2 (t)

∣∣t1−αx (t)
∣∣+ p3 (t)

∣∣t1−αh (t)
∣∣

≤ p∗1 + p∗2M + p∗3
∣∣t1−αh (t)

∣∣ ,
then, we have ∣∣t1−αh (t)

∣∣ ≤ p∗1 + p∗2M

1− p∗3
. (2.19)

Replacing (2.19) in the inequality (2.18) and with Lemma 1.3, we get

|(F1x) (t) + (F2y) (t)|
≤ tα−1 |x0|+ tα−1bM + tα−1Q

+

(
p∗1 + p∗2M

1− p∗3

)
1

Γ (α)

∫ t

0

(t− s)α−1 sα−1ds

≤ tα−1 |x0|+ tα−1bM + tα−1Q+

(
p∗1 + p∗2M

1− p∗3

)
Γ (α)

Γ (2α)
t2α−1.

Therefore ∣∣t1−α ((F1x) (t) + (F2x) (t))
∣∣

≤ |x0|+Q+
Tαp∗1Γ (α)

(1− p∗3) Γ (2α)
+

(
b+

p∗2Γ (α)Tα

(1− p∗3) Γ (2α)

)
M.

Thus

‖F1x+ F2x‖C1−α

≤ Λ + λM ≤ M

R
+

(
1− 1

R

)
M = M.

Hence F1x+ F2y ∈ Ω for all x, y ∈ Ω.

Step 2. We show that F1 is continuous.

Let (xn)n∈N be a sequence such that xn → x in C1−α ([0, T ] ,R), then for each t ∈ (0, T ],

we have

|(F1xn) (t)− (F1x) (t)| ≤ 1

Γ (α)

∫ t

0

(t− s)α−1 |hn (s)− h (s)| ds, (2.20)

where hn, h ∈ C1−α ([0, T ] ,R) be such that

hn (t) = f (t, xn (t) , hn (t)) ,

2.2. Existence and uniqueness results for nonlinear implicit Riemann-Liouville
fractional differential equations with nonlocal conditions
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and

h (t) = f (t, x (t) , h (t)) .

By (H1) we have

|hn (t)− h (t)| = |f (t, xn (t) , hn (t))− f (t, x (t) , h (t))|
≤ k1 |xn (t)− x (t)|+ k2 |hn (t)− h (t)| .

Then

|hn (t)− h (t)| ≤ k1

1− k2

|xn (t)− x (t)| . (2.21)

By replacing (2.21) in inequality (2.20), we find

|(F1xn) (t)− (F1x) (t)|

≤ k1

(1− k2) Γ (α)

∫ t

0

(t− s)α−1 |xn (t)− x (t)| ds

=
k1

(1− k2) Γ (α)

∫ t

0

(t− s)α−1 sα−1
∣∣s1−α (xn (t)− x (t))

∣∣ ds
≤ k1

1− k2

Iα0+
(
tα−1

)
‖xn − x‖C1−α

.

By Lemma 1.3, we have

|(F1xn) (t)− (F1x) (t)| ≤ Γ (α) k1t
2α−1

(1− k2) Γ (2α)
‖xn − x‖C1−α

,

which implies that∣∣t1−α ((F1xn) (t)− (F1x) (t))
∣∣ ≤ Γ (α) k1t

α

(1− k2) Γ (2α)
‖xn − x‖C1−α

≤ Γ (α) k1T
α

(1− k2) Γ (2α)
‖xn − x‖C1−α

.

Thus

‖F1xn − F1x‖C1−α
≤ Γ (α) k1T

α

(1− k2) Γ (2α)
‖xn − x‖C1−α

,

and hence

‖F1xn − F1x‖C1−α
→ 0 as n→∞.

Consequently, F1 is continuous.

Step 3. We prove that F1 is compact.

For all x ∈ Ω and t ∈ (0, T ], we have

|(F1x) (t)| ≤ 1

Γ (α)

∫ t

0

(t− s)α−1 sα−1
∣∣s1−αh (s)

∣∣ ds. (2.22)

2.2. Existence and uniqueness results for nonlinear implicit Riemann-Liouville
fractional differential equations with nonlocal conditions
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Replacing (2.19) in the inequality (2.22) and with Lemma 1.3, we get

|(F1x) (t)| ≤
(
p∗1 + p∗2M

1− p∗3

)
Γ (α)

Γ (2α)
t2α−1.

Therefore ∣∣t1−α (F1x) (t)
∣∣ ≤ (p∗1 + p∗2M

1− p∗3

)
Γ (α)

Γ (2α)
Tα.

Thus

‖F1x‖C1−α
≤
(
p∗1 + p∗2M

1− p∗3

)
Γ (α)

Γ (2α)
Tα.

Hence F1 (Ω) is uniformly bounded.

It remains to show that F1 (Ω) is equicontinuous, let 0 ≤ t1 < t2 ≤ T and x ∈ Ω. Then∣∣t1−α2 (F1x) (t2)− t1−α1 (F1x) (t1)
∣∣

=
1

Γ (α)

∣∣∣∣∫ t1

0

t1−α2 (t2 − s)α−1 h (s) ds+

∫ t2

t1

t1−α2 (t2 − s)α−1 h (s) ds

−
∫ t1

0

t1−α1 (t1 − s)α−1 h (s) ds

∣∣∣∣
≤ 1

Γ (α)

∫ t1

0

∣∣t1−α2 (t2 − s)α−1 sα−1 − t1−α1 (t1 − s)α−1 sα−1
∣∣ ∣∣s1−αh (s)

∣∣ ds
+

1

Γ (α)

∫ t2

t1

t1−α2 (t2 − s)α−1 sα−1
∣∣s1−αh (s)

∣∣ ds
≤ p∗1 + p∗2M

1− p∗3

(
1

Γ (α)

∫ t1

0

∣∣t1−α2 (t2 − s)α−1 − t1−α1 (t1 − s)α−1
∣∣ sα−1ds

)
+
p∗1 + p∗2M

1− p∗3

(
1

Γ (α)

∫ t2

t1

t1−α2 (t2 − s)α−1 sα−1ds

)
.

As t1 → t2, the right-hand side of the above inequality tends to zero. That is to say that

F1 (Ω) is equicontinuous, then by Ascoli-Arzela theorem, we can conclude that the operator

F1 is compact.

Step 4. We prove that F2 : Ω→ C1−α ([0, T ] ,R) is a contraction mapping.

For all x ∈ Ω and from (H2), we have

|(F2x) (t)− (F2y) (t)| =
∣∣tα−1 (g (x)− g (y))

∣∣
≤ tα−1b ‖x− y‖C1−α

.

Therefore ∣∣t1−α ((F2x) (t)− (F2y) (t))
∣∣ ≤ b ‖x− y‖C1−α

.

Thus

‖F2x− F2y‖C1−α
≤ b ‖x− y‖C1−α

.

Hence, the operator F2 is a contraction.

Clearly, all the hypotheses of the Krasnoselskii fixed point theorem are satisfied. Thus

there a fixed point x ∈ Ω such that x = F1x+F2x, which is a solution of the problem (2.11).

2.2. Existence and uniqueness results for nonlinear implicit Riemann-Liouville
fractional differential equations with nonlocal conditions
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2.2.2 An example

We consider the following fractional initial value problem
RLD

2
3
0+x (t) = 1

4 exp(−t+2)

(
1+|x(t)|+

∣∣∣∣RLD 2
3
0+x(t)

∣∣∣∣) + 1

t
1
3
, t ∈ (0, 1] ,

t
1
3x (t)

∣∣∣
t=0

= 1
2
−

n∑
i=1

cit
1
3
i y (ti) ,

(2.23)

where 0 < t1 < ... < tn < 1 and ci, i = 1, ..., n are positive constants with

n∑
i=1

ci ≤
1

4
.

Set

f (t, u, v) =
1

4 exp(−t+ 2) (1 + |u|+ |v|)
+

1

t
1
3

, t ∈ (0, 1] , u, v ∈ R,

We have

C1−α ([0, 1] ,R) = C 1
3

([0, 1] ,R) =
{
h : (0, 1]→ R : t

1
3h ∈ C ([0, 1] ,R)

}
,

with α = 2
3
. Clearly the functions f and g are continuous, f (., 0, 0) ∈ C 1

3
([0, 1] ,R). For each

u, u∗, v, v∗ ∈ R and t ∈ (0, 1], we have

|f (t, u, v)− f (t, u∗, v∗)|

=

∣∣∣∣ 1

4 exp(−t+ 2)

(
1

(1 + |u|+ |v|)
− 1

(1 + |u∗|+ |v∗|)

)∣∣∣∣
≤ |u− u∗|+ |v − v∗|

4 exp(−t+ 2) (1 + |u|+ |v|) (1 + |u∗|+ |v∗|)

≤ 1

4e
(|u− u∗|+ |v − v∗|) ,

and

|g (u)− g (u∗)| ≤
n∑
i=1

cit
1
3
i |u (ti)− u∗ (ti)|

≤
n∑
i=1

ci ‖u− u∗‖C 1
3

≤ 1

4
‖u− u∗‖C 1

3

.

Hence, conditions (H1) and (H2) are satisfied with k1 = k2 = 1
4e

and b = 1
4
. The condition

b+
Γ (α) k1T

α

Γ (2α) (1− k2)
=

1

4
+

Γ( 2
3)

4e

Γ
(

4
3

) (
1− 1

4e

) ' 0.4 < 1,

is satisfied with T = 1. It follows from Theorem 2.3 that the problem (2.23) has a unique

solution in the space C 1
3

([0, 1] ,R).

2.2. Existence and uniqueness results for nonlinear implicit Riemann-Liouville
fractional differential equations with nonlocal conditions



Chapter 3
Some qualitative properties for certain classes

of nonlinear hybrid fractional differential

equations

The area of differential equations where the terms in the equation are perturbed either

linearly or quadratically or through the combination of first and second types is called hybrid

differential equations. Perturbation taking place in the form of the sum or difference of terms

in an equation is called linear. On the other hand, if the equation is perturbed through the

product or quotient of the terms in it, then it is called quadratic perturbation. So the

study of the hybrid differential equation is more general and covers several dynamic systems

for some developments on the existence results of hybrid fractional differential equations.

In latest years, the existence theory for solutions of boundary value problems of hybrid

fractional differential equations has attracted the attention of many researchers, we refer to

[7, 22, 29, 84, 91, 103] and the references therein for the recent development in this area.

In this chapter, we are interested to study some qualitative properties for certain classes of

nonlinear hybrid fractional differential equations. First, In section 3.1, we study the existence

and uniqueness of solutions and Ulam stability results for nonlinear hybrid implicit Caputo

fractional differential equations. Next, In section 3.2, we present some results about the

existence, interval of existence, uniqueness and estimation of solutions for nonlinear hybrid

implicit Caputo-Hadamard fractional differential equations.

42
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3.1 Existence and Ulam stability results for nonlinear

hybrid implicit Caputo fractional differential equa-

tions

In this section, we study the existence and uniqueness of solutions and the Ulam stability for

the following nonlinear hybrid implicit Caputo fractional differential equation{
CDα

0+

(
x(t)−f(t,x(t))
g(t,x(t))

)
= h

(
t, x (t) ,C Dα

0+

(
x(t)−f(t,x(t))
g(t,x(t))

))
, t ∈ (0, T ],

x (0) = θg (0, x(0)) + f (0, x(0)) , θ ∈ R,
(3.1)

where f : [0, T ]× R → R, g : [0, T ]× R → R\{0} and h : [0, T ]× R× R → R are nonlinear

continuous functions and CDα
0+ denotes the Caputo fractional derivative of order 0 < α < 1.

To show the existence, uniqueness and estimate of solutions of (3.1), we transform (3.1)

into an integral equation and then use the contraction mapping principle and Gronwall’s

inequality. Further, we obtain Ulam-Hyers and Ulam-Hyers-Rassias stability results of (3.1).

Finally, we provide an example to illustrate our obtained results.

3.1.1 Existence and estimate of solutions

First, we start by defining what we mean by a solution of the problem (3.1).

Definition 3.1 A function x ∈ AC ([0, T ] ,R) is said to be a solution of (3.1) if x satis-

fies CDα
0+

(
x(t)−f(t,x(t))
g(t,x(t))

)
= h

(
t, x (t) ,C Dα

0+

(
x(t)−f(t,x(t))
g(t,x(t))

))
for any t ∈ [0, T ] and x (0) =

θg (0, x(0)) + f (0, x(0)).

To obtain our results, we need the following auxiliary lemma.

Lemma 3.1 If the functions f : [0, T ] × R → R, g : [0, T ] × R → R\ {0} and h : [0, T ] ×
R×R→ R are continuous, then the initial value problem (3.1) is equivalent to the nonlinear

fractional Volterra integro-differential equation

x(t) = f (t, x(t)) + θg(t, x (t))

+
g (t, x (t))

Γ (α)

∫ t

0

(t− s)α−1 h

(
s, x (s) ,C Dα

0+

(
x (s)− f (s, x(s))

g(s, x (s))

))
ds,

for t ∈ [0, T ].

The proof of the above lemma is close to the proof of Lemma 6.2 given in [30].

Existence and uniqueness results via Banach’s fixed point theorem

Theorem 3.1 Let T > 0. Assume that the continuous functions f : [0, T ] × R → R,

g : [0, T ]× R→ R\ {0} and h : [0, T ]× R× R→ R satisfy the following conditions

3.1. Existence and Ulam stability results for nonlinear hybrid implicit Caputo
fractional differential equations
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(H1) There exists Mg ∈ R+ such that

|g (t, u)| ≤Mg,

for all u ∈ R and t ∈ [0, T ].

(H2) There exists Mh ∈ R+ such that

|h (t, u, v)| ≤Mh,

for all u, v ∈ R and t ∈ [0, T ].

(H3) There exist K1, K2, K3 ∈ R+, K4 ∈ (0, 1) with K1 +K2 |θ| ∈ (0, 1) such that

|f (t, u)− f (t, u∗)| ≤ K1 |u− v| ,
|g (t, u)− g (t, u∗)| ≤ K2 |u− v| ,

and

|h (t, u, v)− h (t, u∗, v∗)| ≤ K3 |u− u∗|+K4 |v − v∗| ,

for all u, v, u∗, v∗ ∈ R and t ∈ [0, T ].

If

β = K1 +K2 |θ|+MhK2 +
MgK3

(1−K4)

Tα

Γ (α + 1)
< 1. (3.2)

Then, the problem (3.1) has a unique solution x ∈ C ([0, T ] ,R).

Proof. Let

CDα
0+

(
x (t)− f (t, x(t))

g (t, x(t))

)
= zx (t) , x (0) = θg (0, x(0)) + f (0, x(0)) ,

then by Lemma 3.1, we have

x(t) = f (t, x(t)) + θg(t, x (t)) +
g (t, x (t))

Γ (α)

∫ t

0

(t− s)α−1 zx (s) ds,

where

zx (t) = h
(
t, f (t, x(t)) + θg(t, x (t)) + g (t, x (t))RL Iα0+zx (t) , zx (t)

)
.

That is x (t) = f (t, x(t)) + θg(t, x (t)) + g (t, x (t))RL Iα0+zx (t). Define the mapping Φ :

C ([0, T ] ,R)→ C ([0, T ] ,R) as follows

(Φx) (t) = f (t, x(t)) + θg(t, x (t)) +
g (t, x (t))

Γ (α)

∫ t

0

(t− s)α−1 zx (s) ds.

3.1. Existence and Ulam stability results for nonlinear hybrid implicit Caputo
fractional differential equations
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It is clear that the fixed points of Φ are solutions of (3.1). Let x, y ∈ C ([0, T ] ,R), then we

have

|(Φx) (t)− (Φy) (t)|

=

∣∣∣∣f (t, x(t)) + θg(t, x (t)) +
g (t, x (t))

Γ (α)

∫ t

0

(t− s)α−1 zx (s) ds

−f (t, y(t))− θg(t, y (t))− g (t, y (t))

Γ (α)

∫ t

0

(t− s)α−1 zy (s) ds

∣∣∣∣
≤ |f (t, x(t))− f (t, y(t))|+ |θ| |g(t, x (t))− g(t, y (t))|

+ |g (t, x (t))− g (t, y (t))| 1

Γ (α)

∫ t

0

(t− s)α−1 |zx (s)| ds

+ |g (t, y (t))| 1

Γ (α)

∫ t

0

(t− s)α−1 |zx (s)− zy (s)| ds

≤ K1 |x(t)− y(t)|+K2 |θ| |x(t)− y(t)|

+K2 |x(t)− y(t)| Mh

Γ (α)

∫ t

0

(t− s)α−1 ds

+
Mg

Γ (α)

∫ t

0

(t− s)α−1 |zx (s)− zy (s)| ds, (3.3)

and

|zx (t)− zy (t)| ≤ |h (t, x(t), zx (t))− h (t, y(t), zy (t))|
≤ K3 |x(t)− y(t)|+K4 |zx (t)− zy (t)|

≤ K3

1−K4

|x(t)− y(t)| . (3.4)

By replacing (3.4) in the inequality (3.3), we get

|(Φx) (t)− (Φy) (t)|
≤ K1 |x(t)− y(t)|+K2 |θ| |x(t)− y(t)|

+K2 |x(t)− y(t)| Mh

Γ (α)

∫ t

0

(t− s)α−1 ds

+
Mg

Γ (α)

K3

1−K4

∫ t

0

(t− s)α−1 |x(s)− y(s)| ds

≤ K1 ‖x− y‖∞ +K2

(
|θ|+ Mht

α

Γ (α + 1)

)
‖x− y‖∞

+
Mg

Γ (α)

K3

1−K4

(∫ t

0

(t− s)α−1 ds

)
‖x− y‖∞

≤
(
K1 +K2 |θ|+

(
MhK2 +

MgK3

1−K4

)
tα

Γ (α + 1)

)
‖x− y‖∞

≤
(
K1 +K2 |θ|+

(
MhK2 +

MgK3

1−K4

)
Tα

Γ (α + 1)

)
‖x− y‖∞ .
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Then

‖Φx− Φy‖∞ ≤ β ‖x− y‖∞ .

By (3.2), the mapping Φ is a contraction in C ([0, T ] ,R). Hence Φ has a unique fixed point

x ∈ C ([0, T ] ,R). Therefore (3.1) has a unique solution.

Estimate of solutions

Theorem 3.2 Assume that f : [0, T ]×R→ R, g : [0, T ]×R→ R\ {0} and h : [0, T ]×R×
R→ R satisfy (H1)-(H3) and (3.2) holds. Then (3.1) has a unique solution x and

|x (t)| ≤
(

(1−K4) (1− (K1 +K2 |θ|)) Γ (α + 1) +MgK3KT
α

(1−K4) (1− (K1 +K2 |θ|))2 Γ (α + 1)

)
×
(
Q1 + |θ|Q2 +

MgQ3T
α

(1−K4) Γ (α + 1)

)
,

where Q1 = sup
t∈[0,T ]

|f (t, 0)|, Q2 = sup
t∈[0,T ]

|g (t, 0)|, Q3 = sup
t∈[0,T ]

|h (t, 0, 0)| and K ∈ R+ is a

constant.

Proof. Theorem 3.1 shows that the problem (3.1) has a unique solution. Let

CDα
0+

(
x (t)− f (t, x(t))

g (t, x(t))

)
= zx (t) , x (0) = θg (0, x(0)) + f (0, x(0)) ,

then by Lemma 3.1, x(t) = f (t, x(t)) + θg(t, x (t)) + g (t, x (t))RL Iα0+zx (t). Then by (H1),

(H2) and (H3), for any t ∈ [0, T ] we have

|x (t)| ≤ |f (t, x(t))|+ |θ| |g(t, x (t))|+ |g (t, x (t))|
∣∣RLIα0+zx (t)

∣∣
≤ |f (t, x(t))− f (t, 0)|+ |f (t, 0)|
+ |θ| (|g(t, x (t))− g(t, 0)|+ |g(t, 0)|) +Mg

∣∣RLIα0+zx (t)
∣∣

≤ K1 |x (t)|+Q1 + |θ| (K2 |x (t)|+Q2) +Mg
RLIα0+ |zx (t)| .

On the other hand, for any t ∈ [0, T ] we get

|zx (t)| = |h (t, x (t) , zx (t))|
≤ |h (t, x (t) , zx (t))− h (t, 0, 0)|+ |h (t, 0, 0)|
≤ K3 |x (t)|+K4 |zx (t)|+ |h (t, 0, 0)|

≤ K3

1−K4

|x (t)|+ Q3

1−K4

.

Therefore

|x (t)| ≤ K1 |x (t)|+Q1 + |θ| (K2 |x (t)|+Q2)

+Mg
RLIα0+

(
K3

1−K4

|x (t)|+ Q3

1−K4

)
.
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Thus

(1− (K1 +K2 |θ|)) |x (t)|

≤ Q1 + |θ|Q2 +
MgQ3T

α

(1−K4) Γ (α + 1)

+

(
MgK3

(1−K4) (1− (K1 +K2 |θ|))

)(
RLIαa+ {(1− (K1 +K2 |θ|)) |x (t)|}

)
.

By Lemma 1.16, there is a constant K = K (α) such that

(1− (K1 +K2 |θ|)) |x (t)|

≤ Q1 + |θ|Q2 +
MgQ3T

α

(1−K4) Γ (α + 1)

+

(
MgK3KT

α

(1−K4) (1− (K1 +K2 |θ|)) Γ (α + 1)

)
×
(
Q1 + |θ|Q2 +

MgQ3T
α

(1−K4) Γ (α + 1)

)
≤
(

(1−K4) (1− (K1 +K2 |θ|)) Γ (α + 1) +MgK3KT
α

(1−K4) (1− (K1 +K2 |θ|)) Γ (α + 1)

)
×
(
Q1 + |θ|Q2 +

MgQ3T
α

(1−K4) Γ (α + 1)

)
.

Hence

|x (t)| ≤
(

(1−K4) (1− (K1 +K2 |θ|)) Γ (α + 1) +MgK3KT
α

(1−K4) (1− (K1 +K2 |θ|))2 Γ (α + 1)

)
×
(
Q1 + |θ|Q2 +

MgQ3T
α

(1−K4) Γ (α + 1)

)
.

This completes the proof.

3.1.2 Ulam stability

In the following, we will study two types of Ulam stability of the hybrid implicit Caputo frac-

tional differential equation (3.1) which are Ulam-Hyers and Ulam-Hyers-Rassias stabilities.

Lemma 3.2 Assume that g satisfies (H1). If y ∈ C ([0, T ] ,R) is a solution of the fractional

differential inequality for each ε > 0∣∣∣∣CDα
0+

(
y (t)− f (t, y(t))

g (t, y(t))

)
− h

(
t, y (t) ,C Dα

0+

(
y (t)− f (t, y(t))

g (t, y(t))

))∣∣∣∣ ≤ ε, (3.5)

then, y is a solution of the following inequality

|y(t)− (Φy) (t)| ≤ εMgT
α

Γ (α + 1)
. (3.6)
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Proof. Let y ∈ C ([0, T ] ,R) be a solution of the inequality (3.5) for each ε > 0. Then, from

Remark 1.1 and Lemma 3.1 for some continuous function v (t) such that |v (t)| < ε, t ∈ [0, T ],

we have

y(t) = f (t, y(t)) + θg(t, y (t)) +
g (t, y (t))

Γ (α)

∫ t

0

(t− s)α−1

×
(
h

(
s, y (s) ,C Dα

0+

(
y (s)− f (s, y(s))

g(s, y (s))

))
+ v (s)

)
ds.

Then, by Remark 1.1 and (H1), we obtain

|y (t)− (Φy) (t)| =

∣∣∣∣g (t, y (t))

Γ (α)

∫ t

0

(t− s)α−1 v (s) ds

∣∣∣∣
≤ |g (t, y (t))|

Γ (α)

∫ t

0

(t− s)α−1 |v (s)| ds

≤ εMgT
α

Γ (α + 1)
.

which is satisfied inequality (3.6). This completes the proof.

Theorem 3.3 Assume that the assumptions (H1)–(H3) are fulfilled and (3.2) holds. Then

the problem (3.1) is Ulam-Hyers stable.

Proof. Under (H1)–(H3) and (3.2), the problem (3.1) has a unique solution in C ([0, T ] ,R).

Let y ∈ C ([0, T ] ,R) be a solution of the inequality (3.5), then for each t ∈ [0, T ], we have

|y (t)− x (t)|
= |y (t)− f (t, x(t)) + θg(t, x (t))

+
g (t, x (t))

Γ (α)

∫ t

0

(t− s)α−1 h

(
s, x (s) ,C Dα

0+

(
x (s)− f (s, x(s))

g(s, x (s))

))
ds

∣∣∣∣
= |y (t)− Φy (t) + Φy (t)− Φx (t)|
≤ |y (t)− Φy (t)|+ |Φy (t)− Φx (t)|

≤ εMgT
α

Γ (α + 1)
+ β ‖y − x‖∞ .

Then

‖y − x‖∞ ≤
εMgT

α

(1− β) Γ (α + 1)
.

By setting

k =
MgT

α

(1− β) Γ (α + 1)
,

we obtain

|y (t)− x (t)| ≤ kε.

Therefore, the problem (3.1) is Ulam-Hyers stable. This completes the proof.
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In the next, we introduce the following function.

(H4) The function φ ∈ C ([0, T ] ,R+) is increasing and there exists a constant λφ > 0 such

that, for each t ∈ [0, T ], we have

RLIφ (t) ≤ λφφ (t) .

Lemma 3.3 Assume that (H1) and (H4) are satisfied. If y ∈ C ([0, T ] ,R) is a solution of

the fractional differential inequality for each ε > 0∣∣∣∣CDα
0+

(
y (t)− f (t, y(t))

g (t, y(t))

)
− h

(
t, y (t) ,C Dα

0+

(
y (t)− f (t, y(t))

g (t, y(t))

))∣∣∣∣ ≤ εφ (t) , (3.7)

then, y is a solution of the following inequality

|y(t)− (Φy) (t)| ≤ εMgλφφ (t) . (3.8)

Proof. Let y ∈ C ([0, T ] ,R) be a solution of the inequality (3.7) for each ε > 0. Then,

from Remark 1.1 and Lemma 3.1 for some continuous function v (t) such that |v (t)| < εφ (t),

t ∈ [0, T ], we have

|y (t)− (Φy) (t)| =

∣∣∣∣g (t, y (t))

Γ (α)

∫ t

0

(t− s)α−1 v (s) ds

∣∣∣∣
≤ |g (t, y (t))|

Γ (α)

∫ t

0

(t− s)α−1 |v (s)| ds

≤ εMg

Γ (α)

∫ t

0

(t− s)α−1 φ (s) ds

≤ εMgλφφ (t) .

which is satisfied inequality (3.8). This completes the proof.

Theorem 3.4 Assume that the assumptions (H1)–(H4) are fulfilled and (3.2) holds. Then

the problem (3.1) is Ulam-Hyers-Rassias stable.

Proof. Under (H1)–(H4) and (3.2), the problem has a unique solution in C ([0, T ] ,R). Let

y ∈ C ([0, T ] ,R) be a solution of the inequality (3.7), then for each t ∈ [0, T ], we have

|y (t)− x (t)|

=

∣∣∣∣y (t)− f (t, x(t)) + θg(t, x (t)) +
g (t, x (t))

Γ (α)

∫ t

0

(t− s)α−1

×h
(
s, x (s) ,C Dα

0+

(
x (s)− f (s, x(s))

g(s, x (s))

))
ds

∣∣∣∣
= |y (t)− (Φy) (t) + (Φy) (t)− (Φx) (t)|
≤ |y (t)− (Φy) (t)|+ |(Φy) (t)− (Φx) (t)|
≤ εMgλφφ (t) + β ‖y − x‖∞ .
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Then

|y (t)− x (t)| ≤ εMgλφφ (t)

1− β
.

By taking a constant

kφ,f =
Mgλφ
1− β

,

we obtain

|y (t)− x (t)| ≤ kφ,fεφ (t) .

Therefore, the problem (3.1) is Ulam-Hyers-Rassias stable. This completes the proof.

3.1.3 An example

We consider the following fractional nonlinear hybrid implicit Caputo fractional differential

equation 
CD

3
4
0+

(
x(t)− 1

4
t sin(x(t))

1+ 1
10

exp(−t2) cos(x(t))

)
= 1

5
t cos (x (t)) + 1

(et+24)

(
1+

∣∣∣∣CD 3
4
0+

(
x(t)− 1

4 t sin(x(t))

1+ 1
10 exp(−t2) cos(x(t))

)∣∣∣∣) , t ∈ [0, 1] ,

x (0) = g (0, x(0)) + f (0, x(0)) .

(3.9)

where θ = 1, f (t, x (t)) = 1
4
t sin (x (t)) , g (t, x(t)) = 1 + 1

10
exp (−t2) cos (x (t)) and

h

(
t, x (t) ,C D

3
4
0+

(
x (t)− f (t, x(t))

g (t, x(t))

))
=

1

5
t cos (x (t)) +

1

(et + 24)
(

1 +
∣∣∣CD 3

4
0+

(
x(t)− 1

4
t sin(x(t))

1+ 1
10

exp(−t2) cos(x(t))

)∣∣∣) .
Set h (t, u, v) = 1

5
t cos (u) + 1

(et+24)(1+|v|) . For any u, v, u∗, v∗ ∈ R and t ∈ [0, 1], we have

|f (t, u)− f (t, u∗)| ≤ 1

4
|u− u∗| ,

|g (t, u)− g (t, u∗)| ≤ 1

10
|u− u∗| ,

|h (t, u, v)− h (t, u∗, v∗)| ≤ 1

5
|u− u∗|+ 1

25
|v − v∗| ,

and

|g (t, u)| ≤ 11

10
, |h (t, u, v)| ≤ e+ 29

5e+ 120
.

Hence, all conditions of Theorem 3.1 are fulfilled and β = 0.62309 < 1, with

Mg =
11

10
, Mh =

e+ 29

5e+ 120
, K1 =

1

4
, K2 =

1

10
, K3 =

1

5
, K4 =

1

25
.

Then the problem (3.9) has a unique solution x ∈ C ([0, T ] ,R). And from Theorem 3.3 we

deduce that (3.9) is Ulam-Hyers stable.
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Now, we choose φ (t) = t2 and in view of Lemma 1.3, we have

RLIα0+φ (t) =
Γ (3)

Γ (3 + α)
t2+α ≤ 2

Γ
(

7
2

)t2 = λφφ (t) .

Thus condition (H4) is satisfied with φ (t) = t2 and λφ = 2

Γ( 7
2)

= 16
15
√
π
, it follows from

Theorem 3.4 that the problem (3.9) is Ulam-Hyers-Rassias stable.

3.2 Existence and uniqueness results for nonlinear hy-

brid implicit Caputo-Hadamard fractional differen-

tial equations

In this section, we study the existence, interval of existence and uniqueness of solution for

the following nonlinear hybrid implicit Caputo-Hadamard fractional differential equation{
C
HD

α
1+

(
x(t)−f(t,x(t))
g(t,x(t))

)
= h

(
t, x (t) ,CH Dα

1+

(
x(t)−f(t,x(t))
g(t,x(t))

))
, t ∈ (1, T ] ,

x (1) = θg (1, x(1)) + f (1, x(1)) , θ ∈ R,
(3.10)

where f : [1, T ]× R → R, g : [1, T ]× R → R\{0} and h : [1, T ]× R× R → R are nonlinear

continuous functions and C
HD

α
1+ denotes the Caputo-Hadamard fractional derivative of order

0 < α < 1. To show the existence, interval of existence and uniqueness of solutions, we

transform (3.10) into an integral equation and then use the Banach fixed point theorem.

Further, by Gronwall’s inequality we obtain the estimate of solutions of (3.10).

3.2.1 Existence and estimate of solutions

First, we start by defining what we mean by a solution of the problem (3.10).

Definition 3.2 A function x ∈ AC1 ([1, T ] ,R) is said to be a solution of (3.10) if x sat-

isfies C
HD

α
1+

(
x(t)−f(t,x(t))
g(t,x(t))

)
= h

(
t, x (t) ,CH Dα

1+

(
x(t)−f(t,x(t))
g(t,x(t))

))
for any t ∈ [1, T ] and x (1) =

θg (1, x(1)) + f (1, x(1)).

To obtain our results, we need the following auxiliary lemma.

Lemma 3.4 If the functions f : [1, T ]×R→ R, g : [1, T ]×R→ R\ {0} and h : [1, T ]×R2 →
R are continuous, then the initial value problem (3.10) is equivalent to the nonlinear fractional

Volterra integro-differential equation

x(t) = f (t, x(t)) + θg(t, x (t))

+
g (t, x (t))

Γ (α)

∫ t

1

(
log

t

s

)α−1

h

(
s, x (s) ,CH Dα

1+

(
x (s)− f (s, x(s))

g(s, x (s))

))
ds

s
,

for t ∈ [1, T ].

The proof of the above lemma is close to the proof of Lemma 6.2 given in [30].
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Existence and uniqueness results via Banach’s fixed point theorem

Theorem 3.5 Let T > 0. Assume that the continuous functions f : [1, T ] × R → R,

g : [1, T ]× R→ R\ {0} and h : [1, T ]× R2 → R satisfy the following conditions

(H1) There exists Mg ∈ R+ such that

|g (t, u)| ≤Mg,

for all u ∈ R and t ∈ [1, T ].

(H2) There exists Mh ∈ R+ such that

|h (t, u, v)| ≤Mh,

for all u, v ∈ R and t ∈ [1, T ].

(H3) There exist K1, K2, K3 ∈ R+, K4 ∈ (0, 1) with K1 +K2 |θ| ∈ (0, 1) such that

|f (t, u)− f (t, u∗)| ≤ K1 |u− v| ,
|g (t, u)− g (t, u∗)| ≤ K2 |u− v| ,

and

|h (t, u, v)− h (t, u∗, v∗)| ≤ K3 |u− u∗|+K4 |v − v∗| ,

for all u, v, u∗, v∗ ∈ R and t ∈ [1, T ].

Let

1 < b < min

{
T, exp

(
((1− (K1 +K2 |θ|)) (1−K4) Γ (α + 1))

(MhK2 (1−K4) +MgK3)

) 1
α

}
. (3.11)

Then (3.10) has a unique solution x ∈ C ([1, b] ,R).

Proof. Let

C
HD

α
1+

(
x (t)− f (t, x(t))

g (t, x(t))

)
= zx (t) , x (1) = θg (1, x(1)) + f (1, x(1)) ,

then by Lemma 3.4,

x(t) = f (t, x(t)) + θg(t, x (t)) +
g (t, x (t))

Γ (α)

∫ t

1

(
log

t

s

)α−1

zx (s)
ds

s
,

where

zx (t) = h
(
t, f (t, x(t)) + θg(t, x (t)) + g (t, x (t))H Iα1+zx (t) , zx (t)

)
.

That is x (t) = f (t, x(t)) + θg(t, x (t)) + g (t, x (t))H Iα1+zx (t). Define the mapping Φ :

C ([1, b] ,R)→ C ([1, b] ,R) as follows

(Φx) (t) = f (t, x(t)) + θg(t, x (t)) +
g (t, x (t))

Γ (α)

∫ t

1

(
log

t

s

)α−1

zx (s)
ds

s
.
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It is clear that the fixed points of Φ are solutions of (3.10). Let x, y ∈ C ([1, b] ,R), then we

have

|(Φx) (t)− (Φy) (t)|

=

∣∣∣∣∣f (t, x(t)) + θg(t, x (t)) +
g (t, x (t))

Γ (α)

∫ t

1

(
log

t

s

)α−1

zx (s)
ds

s

−f (t, y(t)) + θg(t, y (t))− g (t, y (t))

Γ (α)

∫ t

1

(
log

t

s

)α−1

zy (s)
ds

s

∣∣∣∣∣
≤ |f (t, x(t))− f (t, y(t))|+ |θ| |g(t, x (t))− g(t, y (t))|

+ |g (t, x (t))− g (t, y (t))| 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|zx (s)| ds
s

+ |g (t, y (t))| 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|zx (s)− zy (s)| ds
s

≤ K1 |x(t)− y(t)|+K2 |θ| |x(t)− y(t)|

+K2 |x(t)− y(t)| Mh

Γ (α)

∫ t

1

(
log

t

s

)α−1
ds

s

+
Mg

Γ (α)

∫ t

1

(
log

t

s

)α−1

|zx (s)− zy (s)| ds
s
, (3.12)

and

|zx (t)− zy (t)| ≤ |h (t, x(t), zx (t))− h (t, x(t), zy (t))|
≤ K3 |x(t)− y(t)|+K4 |zx (t)− zy (t)|

≤ K3

1−K4

|x(t)− y(t)| . (3.13)

By replacing (3.13) in the inequality (3.12), we get

|(Φx) (t)− (Φy) (t)|
≤ K1 |x(t)− y(t)|+K2 |θ| |x(t)− y(t)|

+K2 |x(t)− y(t)| Mh

Γ (α)

∫ t

1

(
log

t

s

)α−1
ds

s

+
Mg

Γ (α)

K3

1−K4

∫ t

1

(
log

t

s

)α−1

|x(s)− y(s)| ds
s

≤ K1 ‖x− y‖∞ +K2

(
|θ|+ Mh (log t)α

Γ (α + 1)

)
‖x− y‖∞

+
K3

1−K4

(
Mg (log t)α

Γ (α + 1)

)
‖x− y‖∞

≤ (K1 +K2 |θ|+
(
MhK2 +

MgK3

1−K4

)
(log t)α

Γ (α + 1)
) ‖x− y‖∞ .
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Since t ∈ [1, b], Then

‖Φx− Φy‖∞ ≤ β ‖x− y‖∞ ,

where

β = K1 +K2 |θ|+
(
MhK2 +

MgK3

1−K4

)
(log b)α

Γ (α + 1)
.

That is to say the mapping Φ is a contraction in C ([1, b] ,R). Hence, by the Banach fixed

point theorem, Φ has a unique fixed point x ∈ C ([1, b] ,R). Therefore, (3.10) has a unique

solution.

Estimate of solutions

Theorem 3.6 Assume that f : [1, T ]×R→ R, g : [1, T ]×R→ R\ {0} and h : [1, T ]×R2 → R
satisfy (H1), (H2) and (H3). If x is a solution of (3.10), then

|x (t)| ≤
(

(1−K4) (1− (K1 +K2 |θ|)) Γ (α + 1) +MgK3K (log T )α

(1−K4) (1− (K1 +K2 |θ|)) Γ (α + 1)

)
×
(
Q1 + |θ|Q2 +

MgQ3 (log T )α

(1−K4) Γ (α + 1)

)
,

where Q1 = sup
t∈[1,T ]

|f (t, 0)| , Q2 = sup
t∈[1,T ]

|g (t, 0)| , Q3 = sup
t∈[1,T ]

|h (t, 0, 0)| and K ∈ R+ is a

constant.

Proof. Let

C
HD

α
1+

(
x (t)− f (t, x(t))

g (t, x(t))

)
= zx (t) , x (1) = θg (1, x(1)) + f (1, x(1)) ,

then by Lemma 3.4, x(t) = f (t, x(t)) + θg(t, x (t)) + g (t, x (t))H Iα1+zx (t). Then by (H1),

(H2) and (H3), for any t ∈ [1, T ] we have

|x (t)| ≤ |f (t, x(t))|+ |θ| |g(t, x (t))|+ |g (t, x (t))|
∣∣HIα1+zx (t)

∣∣
≤ |f (t, x(t))− f (t, 0)|+ |f (t, 0)|
+ |θ| (|g(t, x (t))− g(t, 0)|+ |g(t, 0)|) +Mg

∣∣HIα1+zx (t)
∣∣

≤ K1 |x (t)|+Q1 + |θ| (K2 |x (t)|+Q2) +Mg
HIα1+ |zx (t)| .

On the other hand, for any t ∈ [1, T ] we get

|zx (t)| = |h (t, x (t) , zx (t))|
≤ |h (t, x (t) , zx (t))− h (t, 0, 0)|+ |h (t, 0, 0)|
≤ K3 |x (t)|+K4 |zx (t)|+ |h (t, 0, 0)|

≤ K3

1−K4

|x (t)|+ Q3

1−K4

.
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Therefore

|x (t)| ≤ K1 |x (t)|+Q1 + |θ| (K2 |x (t)|+Q2) +Mg
HIα1+

(
K3

1−K4

|x (t)|+ Q3

1−K4

)
.

Thus

(1− (K1 +K2 |θ|)) |x (t)|

≤ Q1 + |θ|Q2 +
MgQ3 (log T )α

(1−K4) Γ (α + 1)
+

(
MgK3

(1−K4) (1− (K1 +K2 |θ|))

)
×
(
HIα1+ {(1− (K1 +K2 |θ|)) |x (t)|}

)
.

By Lemma 1.17, there is a constant K = K (α) such that

(1− (K1 +K2 |θ|)) |x (t)|

≤ Q1 + |θ|Q2 +
MgQ3 (log T )α

(1−K4) Γ (α + 1)

+

(
MgK3K (log T )α

(1−K4) (1− (K1 +K2 |θ|)) Γ (α + 1)

)
×
(
Q1 + |θ|Q2 +

MgQ3 (log T )α

(1−K4) Γ (α + 1)

)
≤
(

(1−K4) (1− (K1 +K2 |θ|)) Γ (α + 1) +MgK3K (log T )α

(1−K4) (1− (K1 +K2 |θ|)) Γ (α + 1)

)
×
(
Q1 + |θ|Q2 +

MgQ3 (log T )α

(1−K4) Γ (α + 1)

)
.

Hence

|x (t)| ≤
(

(1−K4) (1− (K1 +K2 |θ|)) Γ (α + 1) +MgK3K (log T )α

(1−K4) (1− (K1 +K2 |θ|)) Γ (α + 1)

)
×
(
Q1 + |θ|Q2 +

MgQ3 (log T )α

(1−K4) Γ (α + 1)

)
.

This completes the proof.

3.2. Existence and uniqueness results for nonlinear hybrid implicit Caputo-Hadamard
fractional differential equations



Chapter 4
Existence of solutions for certain classes of

nonlinear fractional differential equations via

Kuratowski measure of noncompactness

In this chapter, we are interested with the existence of solutions for certain classes of frac-

tional differential equations via Kuratowski measure of noncompactness. In section 4.1, we

study the existence of solutions for a nonlinear fractional differential equations involving

Riemann-Liouville fractional derivative subject to integral boundary conditions in Banach

spaces. In section 4.2, we establish sufficient conditions for the existence of solutions for a

nonlinear fractional differential equations involving Hadamard fractional derivative with two

nonlinear terms in Banach spaces. The used approach is based on Mönch’s fixed point the-

orem combined with the technique of Kuratowski measure of noncompactness. An example

demonstrating the effectiveness of the theoretical results is given at the end of each section.

4.1 Existence results for integral boundary value prob-

lems of fractional differential equations in Banach

spaces

In this section, we study the existence of solutions for the boundary value problem of a

fractional differential equation with integral boundary conditions of the form{
RLDα

0+x (t)− f (t, x (t)) = RLDα−1
0+ g (t, x (t)) , t ∈ (0, 1) ,

x (0) = 0, x (1) =
∫ 1

0
g (s, x (s)) ds,

(4.1)

where RLDα
0+ is the standard Riemann-Liouville fractional derivative of order 1 < α ≤ 2,

f, g : J × X → X are given functions satisfying some assumptions that will be specified

later, and X be a Banach space with the norm ‖.‖. In the case X = R, Xu and Sun in [101]

56
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investigated the existence and uniqueness of a positive solution of (4.1) by using the method

of the upper and lower solutions and the Schauder and Banach fixed point theorems. Then,

the existence results obtained here extend the main results in [101].

4.1.1 Existence results

First, we start by defining what we mean by a solution of the problem (4.1).

Definition 4.1 Let J = [0, 1], A function x ∈ C (J,X) is said to be a solution of problem

(4.1) if x satisfies the equation RLDα
0+x (t) − f (t, x (t)) = RLDα−1

0+ g (t, x (t)) on J and the

conditions x (0) = 0, x (1) =
∫ 1

0
g (s, x (s)) ds.

For the existence of solutions for the problem (4.1), we need the following auxiliary lemma.

Lemma 4.1 The function x solves the problem (4.1) if and only if it is a solution of the

integral equation

x (t) =

∫ 1

0

G (t, s) f (s, x (s)) ds+

∫ t

0

g (s, x (s)) ds, t ∈ J,

where G is the Green function given by

G (t, s) =

{
[t(1−s)]α−1−(t−s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

[t(1−s)]α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

Proof. From Lemma 1.4, applying the Riemann-Liouville fractional integral RLIα0+ on both

sides of (4.1), we have

x (t)− c1t
α−1 − c2t

α−2 +RL Iα0+f (t, x (t)) = RLI0+

(
RLIα−1

0+
RLDα−1

0+ g (t, x (t))
)

= RLI0+

(
g (t, x (t))− c3t

α−2
)
.

That is,

x (t) = c1t
α−1 + c2t

α−2 − 1

Γ (α)

∫ t

0

(t− s)α−1 f (s, x (s)) ds

+

∫ t

0

g (s, x (s)) ds− c3

α− 1
tα−1.

By the boundary conditions x (0) = 0, x (1) =
∫ 1

0
g (s, x (s)) ds, one has c2 = 0 and

c1 =
1

Γ (α)

∫ 1

0

(1− s)α−1 f (s, x (s)) ds+
c3

α− 1
.

Therefore

x (t) =
1

Γ (α)

∫ 1

0

tα−1 (1− s)α−1 f (s, x (s)) ds

− 1

Γ (α)

∫ t

0

(t− s)α−1 f (s, x (s)) ds+

∫ t

0

g (s, x (s)) ds

=

∫ 1

0

G (t, s) f (s, x (s)) ds+

∫ t

0

g (s, x (s)) ds.

4.1. Existence results for integral boundary value problems of fractional differential
equations in Banach spaces
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This process is reversible. The proof is complete.

In the following, we prove existence results for the boundary value problem (4.1) by using

a Mönch fixed point theorem.

The following assumptions will be used in our main results.

(H1) The functions f, g : J ×X → X satisfy the Carathéodory conditions.

(H2) There exist pf , pg ∈ L1 (J,R+) ∩ C (J,R+) such that

‖f (t, x)‖ ≤ pf (t) ‖x‖ , for t ∈ J and each x ∈ X,
‖g (t, x)‖ ≤ pg (t) ‖x‖ , for t ∈ J and each x ∈ X.

(H3) For each t ∈ J and each bounded set B ⊂ X, we have

lim
h→0+

µk (f (Jt,h ×B)) ≤ pf (t)µk (B) , here Jt,h = [t− h, t] ∩ J,

lim
h→0+

µk (g (Jt,h ×B)) ≤ pg (t)µk (B) , here Jt,h = [t− h, t] ∩ J.

Theorem 4.1 Assume that the assumptions (H1)-(H3) hold. If

2

Γ (α + 1)
‖pf‖∞ + ‖pg‖∞ < 1, (4.2)

then the boundary value problem (4.1) has at least one solution.

Proof. We transform the problem (4.1) into a fixed point problem by defining an operator

Φ : C (J,X)→ C (J,X) as

(Φx) (t) =
1

Γ (α)

∫ 1

0

tα−1 (1− s)α−1 f (s, x (s)) ds

− 1

Γ (α)

∫ t

0

(t− s)α−1 f (s, x (s)) ds+

∫ t

0

g (s, x (s)) ds.

Clearly, the fixed points of operator Φ are solutions of the problem (4.1). Let R > 0 and

consider the set

Ω = {x ∈ C (J,X) : ‖x‖∞ ≤ R} .

Clearly, the subset Ω is closed, bounded, and convex. We will show that Φ satisfies the

assumptions of Theorem 1.6. The proof will be given in three steps.

Step 1. Φ maps Ω into itself.

For each x ∈ Ω, by (H2) and (4.2) we have for each t ∈ J

‖(Φx) (t)‖ ≤ 1

Γ (α)

∫ 1

0

tα−1 (1− s)α−1 ‖f (s, x (s))‖ ds

+
1

Γ (α)

∫ t

0

(t− s)α−1 ‖f (s, x (s))‖ ds+

∫ t

0

‖g (s, x (s))‖ ds

≤ R

(
2

Γ (α + 1)
‖pf‖∞ + ‖pg‖∞

)
≤ R.

4.1. Existence results for integral boundary value problems of fractional differential
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Step 2. Φ (Ω) is bounded and equicontinuous.

By Step 1, we have Φ (Ω) = {Φx : x ∈ Ω} ⊂ Ω. Thus, for each x ∈ Ω, we have ‖Φx‖∞ ≤ R,

which means that Φ (Ω) is bounded. For the equicontinuity of Φ (Ω). Let t1, t2 ∈ J , t1 < t2

and x ∈ Ω. Then

‖(Φx) (t2)− (Φx) (t1)‖

≤ tα−1
2 − tα−1

1

Γ (α)

∫ 1

0

(1− s)α−1 ‖f (s, x (s))‖ ds

+
1

Γ (α)

∫ t1

0

∣∣(t1 − s)α−1 − (t2 − s)α−1
∣∣ ‖f (s, x (s))‖ ds

+
1

Γ (α)

∫ t2

t1

(t2 − s)α−1 ‖f (s, x (s))‖ ds+

∫ t2

t1

‖g (s, x (s))‖ ds

≤ tα−1
2 − tα−1

1

Γ (α)

∫ 1

0

(1− s)α−1 pf (s) ‖x (s)‖ ds

+
1

Γ (α)

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1) pf (s) ‖x (s)‖ ds

+
1

Γ (α)

∫ t2

t1

(t2 − s)α−1 pf (s) ‖x (s)‖ ds+

∫ t2

t1

pg (s) ‖x (s)‖ ds

≤
‖pf‖∞R
Γ (α + 1)

(
tα−1
2 − tα−1

1 + tα2 − tα1
)

+ ‖pg‖∞R (t2 − t1) .

As t1 → t2, the right-hand side of the above inequality tends to zero.

Step 3. Φ is continuous.

Let {xn} be sequence such that xn → x in C (J,X). Then, for each t ∈ J

‖(Φxn) (t)− (Φx) (t)‖

≤ 1

Γ (α)

∫ 1

0

tα−1 (1− s)α−1 ‖f (s, xn (s))− f (s, x (s))‖ ds

+
1

Γ (α)

∫ t

0

(t− s)α−1 ‖f (s, xn (s))− f (s, x (s))‖ ds

+

∫ t

0

‖g (s, xn (s))− g (s, x (s))‖ ds.

Since f and g are Carathéodory functions, the Lebesgue dominated convergence theorem

implies that

‖(Φxn) (t)− (Φx) (t)‖ → 0 as n→∞.

This shows that (Φxn) converges pointwise to Φx on J . Moreover, the sequence (Φxn) is

equicontinuous by a similar proof of Step 2. Therefore (Φxn) converges uniformly to Φx and

hence Φ is continuous.

Now let V be a subset of Ω such that V ⊂ conv ((ΦV ) ∪ {0}). V is bounded and equicon-

tinuous, and therefore the function v → v (t) = µk (V (t)) is continuous on J . By assumption

4.1. Existence results for integral boundary value problems of fractional differential
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(H3), Lemma 1.20 and the properties of the measure µk we have for each t ∈ J

v (t) ≤ µk ((ΦV ) (t) ∪ {0}) ≤ µk ((ΦV ) (t))

≤ 1

Γ (α)

∫ 1

0

tα−1 (1− s)α−1 pf (s)µk (V (s)) ds

+
1

Γ (α)

∫ t

0

(t− s)α−1 pf (s)µk (V (s)) ds+

∫ t

0

pg (s)µk (V (s)) ds

≤ ‖v‖∞
(

2

Γ (α + 1)
‖pf‖∞ + ‖pg‖∞

)
.

This means that

‖v‖∞
(

1−
[

2

Γ (α + 1)
‖pf‖∞ + ‖pg‖∞

])
≤ 0.

By (4.2), it follows that ‖v‖∞ = 0, that is v (t) = 0 for each t ∈ J , and then V (t) is relatively

compact in X. In view of the Ascoli-Arzela theorem, V is relatively compact in Ω. Applying

now Theorem 1.6, we conclude that Φ has a fixed point, which is a solution of the problem

(4.1).

4.1.2 An example

As an application of our results, we consider the following boundary value problem of a

fractional differential equation{
RLD

3
2
0+x (t)− 1

3+exp(t)
x (t) =RL D

1
2
0+

1
5+exp(t2)

x (t) , t ∈ (0, 1) ,

x (0) = 0, x (1) =
∫ 1

0
1

5+exp(s2)
x (s) ds.

(4.3)

Let

X = l1 =

{
x = (x1, x2, ..., xn, ...) :

∞∑
n=1

|xn| <∞

}
,

equipped with the norm

‖x‖X =
∞∑
n=1

|xn| .

Set

x = (x1, x2, ..., xn, ...) , f = (f1, f2, ..., fn, ...) , g = (g1, g2, ..., gn, ...) ,

and

fn (t, xn) =
1

3 + exp (t)
xn, t ∈ J,

gn (t, xn) =
1

5 + exp (t2)
xn, t ∈ J.

For each xn and t ∈ J , we have

|fn (t, xn)| ≤ 1

3 + exp (t)
|xn| , (4.4)

4.1. Existence results for integral boundary value problems of fractional differential
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and

|gn (t, xn)| ≤ 1

5 + exp (t2)
|xn| . (4.5)

Hence conditions (H1) and (H2) are satisfied with pf (t) = 1
3+exp(t)

and pg (t) = 1
5+exp(t2)

. By

(4.4) and (4.5), for any bounded set B ⊂ l1, we have

µk (f (t, B)) ≤ 1

3 + exp (t)
µk (B) for each t ∈ J,

µk (g (t, B)) ≤ 1

5 + exp (t2)
µk (B) for each t ∈ J.

Hence (H3) is satisfied. The condition

2

Γ (α + 1)
‖pf‖∞ + ‖pg‖∞ ' 0.54 < 1,

is satisfied with ‖pf‖∞ = 1
4
, ‖pg‖∞ = 1

6
and α = 3

2
. Consequently, Theorem 4.1 implies that

the problem (4.3) has a solution define on J .

4.2 Existence of solutions for Hadamard fractional dif-

ferential equations with two nonlinear terms in Ba-

nach spaces

In this section, we prove the existence of solutions for nonlinear fractional differential equation

involving Hadamard fractional derivative with integral boundary conditions of the type{
HDα

1+x (t)− f (t, x (t)) = HDα−1
1+ g (t, x (t)) , t ∈ (1, e) ,

x (1) = 0, x (e) =
∫ e

1
g (s, x (s)) ds

s
.

(4.6)

where HDα
1+ denotes the Hadamard fractional derivatives of order 1 < α ≤ 2, f, g : [1, e] ×

X → X are given functions satisfying some assumptions that will be specified later, and X

be a Banach space with the norm ‖.‖.

4.2.1 Existence results

First, we start by defining what we mean by a solution of the problem (4.6).

Definition 4.2 Let J = [1, e], A function x ∈ C (J,X) is said to be a solution of problem

(4.6) if x satisfies the equation HDα
1+x (t) − f (t, x (t)) = HDα−1

1+ g (t, x (t)) on J and the

conditions x (1) = 0, x (e) =
∫ e

1
g (s, x (s)) ds

s
.

For the existence of solutions for the problem (4.6), we need the following auxiliary lemma.

4.2. Existence of solutions for Hadamard fractional differential equations with two
nonlinear terms in Banach spaces
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Lemma 4.2 The function x solves problem (4.6) if and only if is a solution of the integral

equation

x (t) =

∫ e

1

G (t, s) f (s, x (s))
ds

s
+

∫ t

1

g (s, x (s))
ds

s
, t ∈ J,

where G is the Green function given by

G (t, s) =


[(log t)(log e

s)]
α−1
−(log t

s)
α−1

Γ(α)
1 ≤ s ≤ t ≤ e,

[(log t)(log e
s)]

α−1

Γ(α)
, 1 ≤ t ≤ s ≤ e.

Proof. From Lemma 1.7,applying the Hadamard fractional integral HIα1+ on both sides of

equation (4.6), we have

x (t)− c1 (log t)α−1 − c2 (log t)α−2 +H Iα1+f (t, x (t)) = HI1+

(
HIα−1

1+
HDα−1

1+ g (t, x (t))
)

= HI1+

(
g (t, x (t))− c3 (log t)α−2) ,

that is,

x (t) = c1 (log t)α−1 + c2 (log t)α−2 − 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s

+

∫ t

1

g (s, x (s))
ds

s
− c3

α− 1
(log t)α−1 .

By boundary conditions x (1) = 0, x (e) =
∫ e

1
g (s, x (s)) ds, one has c2 = 0 and

c1 =
1

Γ (α)

∫ e

1

(
log

e

s

)α−1

f (s, x (s))
ds

s
+

c3

α− 1
.

Therefore

x (t) =
1

Γ (α)

∫ e

1

(log t)α−1
(

log
e

s

)α−1

f (s, x (s))
ds

s

− 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s
+

∫ t

1

g (s, x (s))
ds

s

=

∫ e

1

G (t, s) f (s, x (s))
ds

s
+

∫ t

1

g (s, x (s))
ds

s
.

The converse follows by direct computation which completes the proof.

In the following we prove existence results for the boundary value problem (4.6) by using

a Mönch fixed point theorem.

The following assumptions will be used in our main results.

(H1) The functions f, g : J ×X → X satisfy the Carathéodory conditions.

(H2) There exist pf , pg ∈ L1 (J,R+) ∩ C (J,R+) such that

‖f (t, x)‖ ≤ pf (t) ‖x‖ , for t ∈ J and each x ∈ X,
‖g (t, x)‖ ≤ pg (t) ‖x‖ , for t ∈ J and each x ∈ X.

4.2. Existence of solutions for Hadamard fractional differential equations with two
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(H3) For each t ∈ J and each bounded set B ⊂ X, we have

lim
h→0+

µk (f (Jt,h ×B)) ≤ pf (t)µk (B) , here Jt,h = [t− h, t] ∩ J,

lim
h→0+

µk (g (Jt,h ×B)) ≤ pg (t)µk (B) , here Jt,h = [t− h, t] ∩ J.

Theorem 4.2 Assume that the assumptions (H1)-(H3) hold. If

2

Γ (α + 1)
‖pf‖∞ + ‖pg‖∞ < 1, (4.7)

then the boundary value problem (4.6) has at least one solution.

Proof. We transform the problem (4.6) into a fixed point problem by defining an operator

Φ : C (J,X)→ C (J,X) as

(Φx) (t) =
1

Γ (α)

∫ e

1

(log t)α−1
(

log
e

s

)α−1

f (s, x (s))
ds

s

− 1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s
+

∫ t

1

g (s, x (s))
ds

s
.

Clearly, the fixed points of operator Φ are solutions of problem (4.6). Let R > 0 and consider

the set

Ω = {x ∈ C (J,X) : ‖x‖∞ ≤ R} .

Clearly, the subset Ω is closed, bounded, and convex. We will show that Φ satisfies the

assumptions of Theorem 1.6. The proof will be given in three steps.

Step 1: Φ maps Ω into itself.

For each x ∈ Ω, by (H2) and (4.7) we have for each t ∈ J

‖(Φx) (t)‖ ≤ 1

Γ (α)

∫ e

1

(log t)α−1
(

log
e

s

)α−1

‖f (s, x (s))‖ ds
s

+
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

‖f (s, x (s))‖ ds
s

+

∫ t

1

‖g (s, x (s))‖ ds
s

≤
‖pf‖∞
Γ (α)

∫ e

1

(log t)α−1
(

log
e

s

)α−1 ds

s
+
‖pf‖∞
Γ (α)

∫ t

1

(
log

t

s

)α−1
ds

s

+

∫ e

1

‖g (s, x (s))‖ ds
s

≤ R

(
2

Γ (α + 1)
‖pf‖∞ + ‖pg‖∞

)
≤ R.

Step 2: Φ (Ω) is bounded and equicontinuous.

By Step 1, we have Φ (Ω) = {Φx : x ∈ Ω} ⊂ Ω. Thus, for each x ∈ Ω, we have ‖Φx‖∞ ≤ R,

which means that Φ (Ω) is bounded.
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For the equicontinuity of Φ (Ω). Let t1, t2 ∈ J , t1 < t2 and x ∈ Ω. Then

‖(Φx) (t2)− (Φx) (t1)‖

≤
(
(log t2)α−1 − (log t1)α−1)

Γ (α)

∫ e

1

(
log

e

s

)α−1

‖f (s, x (s))‖ ds
s

+
1

Γ (α)

∫ t1

1

∥∥∥∥∥
(

log
t2
s

)α−1

−
(

log
t1
s

)α−1
∥∥∥∥∥ ‖f (s, x (s))‖ ds

s

+
1

Γ (α)

∫ t2

t1

(
log

t2
s

)α−1

‖f (s, x (s))‖ ds
s

+

∫ t2

t1

‖g (s, x (s))‖ ds
s

≤
(
(log t2)α−1 − (log t1)α−1)

Γ (α)

∫ e

1

(
log

e

s

)α−1

pf (s) ‖x (s)‖ ds
s

+
1

Γ (α)

∫ t1

1

((
log

t2
s

)α−1

−
(

log
t1
s

)α−1
)
pf (s) ‖x (s)‖ ds

s

+
1

Γ (α)

∫ t2

t1

(
log

t2
s

)α−1

pf (s) ‖x (s)‖ ds
s

+

∫ t2

t1

pg (s) ‖x (s)‖ ds
s

≤
‖pf‖∞R
Γ (α + 1)

(
(log t2)α−1 − (log t1)α−1 + (log t2)α − (log t1)α

)
+ ‖pg‖∞R ((log t2)− (log t1)) .

As t1 → t2, the right-hand side of the above inequality tends to zero.

Step 3: Φ is continuous.

Let {xn} be sequence such that xn → x in C (J,X). Then, for each t ∈ J

‖(Φxn) (t)− (Φx) (t)‖

≤ 1

Γ (α)

∫ e

1

(log t)α−1
(

log
e

s

)α−1

‖f (s, xn (s))− f (s, x (s))‖ ds
s

+
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

‖f (s, xn (s))− f (s, x (s))‖ ds
s

+

∫ t

1

‖g (s, xn (s))− g (s, x (s))‖ ds
s
.

Since f and g are Carathéodory functions, the Lebesgue dominated convergence theorem

implies that

‖(Φxn) (t)− (Φx) (t)‖∞ → 0 as n→∞.

Now let V be a subset of Ω such that V ⊂ conv ((ΦV ) ∪ {0}). V is bounded and equicon-

tinuous, and therefore the function v → v (t) = µk (V (t)) is continuous on J . By assumption
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(H3), Lemma 1.20 and the properties of the measure µk we have for each t ∈ J

v (t) ≤ µk ((ΦV ) (t) ∪ {0}) ≤ µk ((ΦV ) (t))

≤ 1

Γ (α)

∫ e

1

(log t)α−1
(

log
e

s

)α−1

pf (s)µk (V (s))
ds

s

+
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

pf (s)µk (V (s))
ds

s
+

∫ e

1

pg (s)µk (V (s))
ds

s

≤ ‖v‖∞
(

2

Γ (α + 1)
‖pf‖∞ + ‖pg‖∞

)
.

This means that

‖v‖∞
(

1−
[

2

Γ (α + 1)
‖pf‖∞ + ‖pg‖∞

])
≤ 0.

By (4.7), it follows that ‖v‖∞ = 0, that is v (t) = 0 for each t ∈ J , and then V (t) is relatively

compact in X. In view of the Ascoli-Arzela theorem, V is relatively compact in Ω. Applying

now Theorem 1.6, we conclude that Φ has fixed point, which is a solution of the problem

(4.6)

4.2.2 An example

To validate the existence results., we consider the following boundary value problem of a

fractional differential equation HD
3
2
1+x (t)− 1

exp(t2−1)+3

(
|x|
|x|+1

)
= HD

1
2
1+

cos(t)
5+exp(t2)

x (t) , t ∈ (1, e) ,

x (1) = 0, x (e) =
∫ e

1
cos(s)

5+exp(s2)
x (s) ds

s
.

(4.8)

Here α = 3
2
. Let

X = l1 =

{
x = (x1, x2, ..., xn, ...) :

∞∑
n=1

|xn| <∞

}
,

equipped with the norm

‖x‖X =
∞∑
n=1

|xn| .

Set

x = (x1, x2, ..., xn, ...) , f = (f1, f2, ..., fn, ...) , g = (g1, g2, ..., gn, ...) ,

and

fn (t, xn) =
1

exp (t2 − 1) + 3
xn, t ∈ J,

gn (t, xn) =
cos (t)

5 + exp (t2)
xn, t ∈ J.
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For each xn and t ∈ J , we have

|fn (t, xn)| ≤ 1

exp (t2 − 1) + 3
|xn| , (4.9)

and

|gn (t, xn)| ≤ 1

5 + exp (t2)
|xn| . (4.10)

Hence conditions (H1) and (H2) are satisfied with

pf (t) =
1

exp (t2 − 1) + 3
and pg (t) =

1

5 + exp (t2)
.

By (4.9) and (4.10), for any bounded set B ⊂ l1, we have

µk (f (t, B)) ≤ 1

exp (t2 − 1) + 3
µk (B) for each t ∈ J,

µk (g (t, B)) ≤ 1

5 + exp (t2)
µk (B) for each t ∈ J.

Hence (H3) is satisfied. The condition

2

Γ (α + 1)
‖pf‖∞ + ‖pg‖∞ ' 0.51 < 1,

is satisfied with

‖pf‖∞ =
1

4
and ‖pg‖∞ =

1

5 + e
.

Consequently,Theorem 4.2 implies that problem (4.8) has a solution defined on J .
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Chapter 5
A study of certain classes of fractional

differential inclusions

In this chapter, we are dealing with the existence of solutions for certain classes of fractional

differential inclusions involving convex and nonconvex multivalued maps, In section 5.1. we

prove the existence of solutions for a nonlinear sequential Caputo and Caputo-Hadamard frac-

tional differential inclusions with three-point boundary conditions. In section 5.2, we debate

the existence of solutions for a nonlinear Hilfer fractional differential inclusion with nonlocal

Erdélyi-Kober fractional integral boundary conditions. The results obtained are based on

some fixed point theorems of multivalued analysis. Some pertinent examples demonstrating

the effectiveness of the theoretical results are presented at the end of each section.

5.1 Nonlinear sequential Caputo and Caputo-

Hadamard fractional differential inclusions with

three-point boundary conditions

In this section, we study the existence of solutions for nonlinear sequential Caputo and

Caputo-Hadamard fractional differential inclusions with three-point boundary conditions as{
CDβ

a+

[
C
HD

α
a+x (t)

]
∈ F (t, x (t)) , t ∈ (a, b) , a ≥ 1,

x (a) = 0, x (b) = λx (η) , a < η < b,
(5.1)

where C
HD

α
a+ and CDβ

a+ are the Caputo-Hadamard and Caputo fractional derivatives of orders

α and β respectively, 0 < α, β ≤ 1 and F : [a, b] × R → P (R) is a multivalued map from

[a, b]× R to the family of P (R) ⊂ R.

5.1.1 Existence results for multivalued problem

Let J = [a, b]. To obtain our desired results, we need the following auxiliary lemma.

67
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Lemma 5.1 Let Λ =

(
λ

(log η
a)

α

Γ(α+1)
− (log b

a)
α

Γ(α+1)

)
6= 0. For any q ∈ C (J,R), the unique solution

of the boundary value problem{
CDβ

a+

[
C
HD

α
a+x (t)

]
= q (t) , t ∈ (a, b) ,

x (a) = 0, x (b) = λx (η) , a < η < b,
(5.2)

is given by

x (t) = HIαa+

(
RLIβa+q

)
(t) +

(
log t

a

)α
Γ (β + 1) Λ

(
HIαa+

(
RLIβa+q

)
(b)− λHIαa+

(
RLIβa+q

)
(η)
)

=
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 q (σ) dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 q (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 q (σ) dσ

)
ds

s

)
. (5.3)

Proof. Taking the Riemann-Liouville fractional integral of order β to the first equation of

(5.2), we get
C
HD

α
a+x (t) = RLIβa+q (t) + c0. (5.4)

Again taking the Hadamard fractional integral of order α to the above equation, we obtain

x (t) = HIαa+

(
RLIβa+q

)
(t) +

[
log
(
t
a

)]α
Γ (α + 1)

c0 + c1. (5.5)

Substituting t = a in (5.5) and applying the first boundary condition of (5.2), it follows that

c1 = 0. For t = b in (5.5) we get

x (b) = HIαa+

(
RLIβa+q

)
(b) +

[
log
(
b
a

)]α
Γ (α + 1)

c0,

and for t = η, we have

x (η) = HIαa+

(
RLIβa+q

)
(η) +

[
log
(
η
a

)]α
Γ (α + 1)

c0.

Using the second boundary condition of (5.2), we have

HIαa+

(
RLIβa+q

)
(b) +

[
log
(
b
a

)]α
Γ (α + 1)

c0 = λHIαa+

(
RLIβa+q

)
(η) + λ

[
log
(
η
a

)]α
Γ (α + 1)

c0. (5.6)

By solving (5.6), we find that

c0 =
1(

λ
[log( ηa)]

α

Γ(α+1)
− [log( ba)]

α

Γ(α+1)

) (HIαa+

(
RLIβa+q

)
(b)− λHIαa+

(
RLIβa+q

)
(η)
)

=
1

Λ

(
HIαa+

(
RLIβa+q

)
(b)− λHIαa+

(
RLIβa+q

)
(η)
)
.

Replacing the values of c0 and c1 into (5.5), we get (5.3). The converse follows by direct

computation which completes the proof.

5.1. Nonlinear sequential Caputo and Caputo-Hadamard fractional differential
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Definition 5.1 A function x ∈ AC (J,R) is said to be a solution of the problem (5.1) if

there exists a function v ∈ L1 (J,R) with v (t) ∈ F (t, x) for all t ∈ J satisfying the boundary

conditions

x (a) = 0, x (b) = λx (η) , a < η < b,

and

x (t) = HIαa+

(
RLIβa+v

)
(t) +

(
log t

a

)α
Γ (β + 1) Λ

(
HIαa+

(
RLIβa+v

)
(b)− λHIαa+

(
RLIβa+v

)
(η)
)

=
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

)
.

The upper semi-continuous case

Our first result, dealing with the convex valued F , is based on Leray-Schauder nonlinear

alternative for multivalued maps.

Theorem 5.1 Set

Λ1 =
(b− a)β

(
log b

a

)α
Γ (β + 1) Γ (α + 1)

(
1 +

(
log b

a

)α
Γ (α + 1) |Λ|

(1 + |λ|)

)
, (5.7)

and assume that

(A1) F : J × R→ Pcp,c (R) is a L1-Carathéodory multivalued map,

(A2) there exist a continuous nondecreasing function Q : [0,∞)→ (0,∞) and a function

P ∈ C (J,R+) such that

‖F (t, x)‖P = sup {|y| : y ∈ F (t, x)} ≤ P (t)Q (‖x‖∞) ,

for each (t, x) ∈ J × R,

(A3) there exists a constant M > 0 such that

M

Λ1 ‖P‖∞Q (M)
> 1. (5.8)

Then the boundary value problem (5.1) has at least one solution on J .

Proof. Firstly, we transform the problem (5.1) into a fixed point problem. Consider the
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multivalued map N : C (J,R)→ P (C (J,R)) defined by

N (x) =



h ∈ C (J,R) ,

h (t) =


1

Γ(α)Γ(β)

∫ t
a

(
log t

s

)α−1
(∫ s

a
(s− σ)β−1 v (σ) dσ

)
ds
s

+
(log t

a)
α

Γ(α+1)Λ

(
1

Γ(α)Γ(β)

∫ b
a

(
log b

s

)α−1
(∫ s

a
(s− σ)β−1 v (σ) dσ

)
ds
s

− λ
Γ(α)Γ(β)

∫ η
a

(
log η

s

)α−1
(∫ s

a
(s− σ)β−1 v (σ) dσ

)
ds
s

)
,


,

(5.9)

for v ∈ SF ,x. Clearly the fixed points of N are solutions of the problem (5.1). Now we

proceed to show that the operator N satisfies all condition of Theorem 1.7. This is done in

several steps.

Step 1. N (x) is convex for each x ∈ C (J,R).

Indeed, if h1 and h2 belong to N (x), then there exist v1, v2 ∈ SF ,x such that for each

t ∈ J , we have

hi (t) =
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 vi (σ) dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 vi (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 vi (σ) dσ

)
ds

s

)
, i = 1, 2.

Let 0 ≤ θ ≤ 1. Then, for each t ∈ J , we have

[θh1 + (1− θ)h2] (t)

=
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 [θv1 (σ) + (1− θ) v2 (σ)] dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 [θv1 (σ) + (1− θ) v2 (σ)] dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 [θv1 (σ) + (1− θ) v2 (σ)] dσ

)
ds

s

)
.

Since F has convex values, so SF ,x is convex and [θv1 (σ) + (1− θ) v2 (σ)] ∈ SF ,x. Thus,

θh1 + (1− θ)h2 ∈ N (x).

Step 2. N (x) maps bounded sets into bounded sets in C (J,R).

For a positive constant r, let Ω = {x ∈ C (J,R) : ‖x‖∞ ≤ r} be a bounded set in C (J,R).
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Then for each h ∈ N (x), x ∈ Ω, there exists v ∈ SF ,x such that

h (t) =
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

)
.

In view of (A2), for each t ∈ J , we have

|h (t)| ≤ 1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 |v (σ)| dσ
)
ds

s

+

(
log t

a

)α
Γ (α + 1) |Λ|

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 |v (σ)| dσ
)
ds

s

+ |λ| 1

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 |v (σ)| dσ
)
ds

s

)
≤ ‖P‖∞Q (r)

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 dσ

)
ds

s

+
‖P‖∞Q (r)

(
log t

a

)α
Γ (α + 1) |Λ|

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 dσ

)
ds

s

+
|λ|

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 dσ

)
ds

s

)
.

Also, note that∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 dσ

)
ds

s
≤

(b− a)β
(
log b

a

)α
Γ (β + 1) Γ (α + 1)

, (5.10)

where we have used the fact that (s− a)β ≤ (b− a)β for 0 < β ≤ 1. Using the above

arguments, we have

|h (t)| ≤
‖P‖∞Q (r) (b− a)β

(
log b

a

)α
Γ (β + 1) Γ (α + 1)

(
1 +

(
log b

a

)α
Γ (α + 1) |Λ|

(1 + |λ|)

)
.

Thus

‖h‖∞ ≤ Λ1 ‖P‖∞Q (r) .

Step 3. N (x) maps bounded sets into equicontinuous sets of C (J,R).

Let x be any element in Ω and h ∈ N (x). Then there exists a function v ∈ SF ,x such that
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for each t ∈ J , we have

h (t) =
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

)
.

Let t1, t2 ∈ J, t1 < t2. Then

|h(t2)− h(t1)|

≤ 1

Γ (α) Γ (β)

∫ t1

a

((
log

t1
s

)α−1

−
(

log
t2
s

)α−1
)(∫ s

a

(s− σ)β−1 |v (σ)| dσ
)
ds

s

+
1

Γ (α) Γ (β)

∫ t2

t1

(
log

t2
s

)α−1(∫ s

a

(s− σ)β−1 |v (σ)| dσ
)
ds

s

+

(
log t2

a

)α − (log t1
a

)α
|Λ|Γ (α + 1) Γ (α) Γ (β)

(∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 |v (σ)| dσ
)
ds

s

+ |λ|
∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 |v (σ)| dσ
)
ds

s

)

≤ ‖P‖∞Q (r) (b− a)β

Γ (β + 1) Γ (α)

[∫ t1

a

((
log

t1
s

)α−1

−
(

log
t2
s

)α−1
)
ds

s
+

∫ t2

t1

(
log

t2
s

)α−1
ds

s

]

+

(
log t2

a

)α − (log t1
a

)α
Γ (α + 1) |Λ|

‖P‖∞Q (r) (b− a)β
(
log b

a

)α
Γ (β + 1) Γ (α + 1)

(1 + |λ|)

≤ ‖P‖∞Q (r) (b− a)β

Γ (β + 1) Γ (α + 1)

(
2

(
log

t2
t1

)α)
+

(
log t2

a

)α − (log t1
a

)α
Γ (α + 1) |Λ|

‖P‖∞Q (r) (b− a)β
(
log b

a

)α
Γ (β + 1) Γ (α + 1)

(1 + |λ|) .

The right hand side of the above inequality tends to zero independently of x ∈ Ω as t1 → t2.

As a consequence of Steps 1–3 together with Arzela-Ascoli theorem, we conclude that N :

C (J,R)→ P (C (J,R)) is completely continuous.

Since N is completely continuous, it is enough to show that it has a closed graph in view

of Lemma 1.22, which will imply that N is u.s.c. This is done in the following step.

Step 4. N has a closed graph.

Let xn → x∗, hn ∈ N (xn) and hn → h∗. Then we need to show that h∗ ∈ N (x∗). Observe
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that hn ∈ N (xn) implies that there exists vn ∈ SF ,xn such that for each t ∈ J ,

hn (t) =
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 vn (σ) dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 vn (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 vn (σ) dσ

)
ds

s

)
.

Therefore, we must show that there exists v∗ ∈ SF ,x∗ such that, for each t ∈ J ,

h∗ (t) =
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 v∗ (σ) dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 v∗ (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 v∗ (σ) dσ

)
ds

s

)
.

Consider the continuous linear operator Θ : L1 (J,X)→ C (J,X) defined by

v → Θ (v) (t) =
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

)
.

Observe that

‖hn − h∗‖∞

=

∥∥∥∥∥ 1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 (vn (σ)− v∗ (σ)) dσ

)
ds

s

+

(
log t

a

)α
ΛΓ (α + 1) Γ (α) Γ (β)

(∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 (vn (σ)− v∗ (σ)) dσ

)
ds

s

−λ
∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 (vn (σ)− v∗ (σ)) dσ

)
ds

s

∥∥∥∥
∞
→ 0,

as n→∞. So it follows from Lemma 1.23, that Θ◦SF ,x is a closed graph operator. Moreover,

we have

hn ∈ Θ (SF ,xn) .
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Since xn → x∗, Lemma 1.23 implies that

h∗ (t) =
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 v∗ (σ) dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 v∗ (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 v∗ (σ) dσ

)
ds

s

)
,

for some v∗ ∈ SF ,x∗ .
Step 5. We show there exists an open set U ⊆ C (J,R) with x 6∈ µN (x) for any µ ∈ (0, 1)

and all x ∈ ∂U .

Let µ ∈ (0, 1) and x ∈ µN (x). Then there exists v ∈ L1 (J,R) with v ∈ SF ,x such that,

for t ∈ J , we have

x (t) =
µ

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

+
µ
(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

)
.

Using the method of computation employed in Step 2, for each t ∈ J , we get

|x (t)| ≤ Λ1 ‖P‖∞Q (‖x‖∞) ,

which can alternatively be written as

‖x‖∞
Λ1 ‖P‖∞Q (‖x‖∞)

≤ 1.

In view of (A3), there exists M such that ‖x‖∞ 6= M . Let us set

U = {x ∈ C (J,R) : ‖x‖∞ < M} .

Note that the operator N : U → P (C (J,R)) is upper semi-continuous and completely

continuous. From the choice of U , there is no x ∈ ∂U such that x ∈ µN (x) for some

µ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type 1.7, we deduce

that N has a fixed point x ∈ U which is a solution of the boundary value problem (5.1). This

completes the proof.

The Lipschitz case

Now we prove the existence of solutions for the boundary value problem (5.1) with nonconvex-

valued right hand side by applying a fixed point theorem for multivalued map due to Covitz

and Nadler 1.8.
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Theorem 5.2 Assume that the following condition hold

(A4) F : J×R→ Pcp (R) is such that F (., x) : J → Pcp (R) is measurable for each x ∈ R,

(A5) Hd (F (t, x) ,F (t, x)) ≤ m (t) |x− x| for almost all t ∈ J and x, x ∈ R with m ∈
C (J,R+) and d (0,F (t, 0)) ≤ m (t) for almost all t ∈ J .

Then the boundary value problem (5.1) has at least one solution on J if

Λ1 ‖m‖∞ < 1,

where Λ1is given by (5.7).

Proof. Observe that the set SF ,x is nonempty for each x ∈ C (J,R) by assumption (A4),

so F has a measurable selection (see [25, Theorem III.6]). Now we show that the operator

N : C (J,R) → P (C (J,R)) defined in (5.9) satisfies the assumptions of Theorem 1.8. To

show that N (x) is closed for each x ∈ C (J,R). Let {un}n≥0 ∈ N (x) be such that un → u

(n→∞) in C (J,R). Then u ∈ C (J,R) and there exists vn ∈ SF ,x such that, for each t ∈ J ,

un (t) =
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 vn (σ) dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 vn (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 vn (σ) dσ

)
ds

s

)
.

As F has compact values, we pass onto a subsequence to obtain that {vn} converges to v in

L1 (J,R). Thus v ∈ SF ,x and for each t ∈ J , we have

un (t)→ u (t) =
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 v (σ) dσ

)
ds

s

)
.

Hence u ∈ N (x).

Next we show that there exists 0 < τ < 1, (τ = Λ1 ‖m‖∞) such that

Hd (N (x) , N (x)) ≤ τ ‖x− x‖∞ for each x, x ∈ C (J,R) .

Let x, x ∈ C (J,R) and h1 ∈ N (x). Then there exists v1 (t) ∈ F (t, x (t)) such that, for each
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t ∈ J ,

h1 (t) =
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 v1 (σ) dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 v1 (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 v1 (σ) dσ

)
ds

s

)
.

By (A5), we have

Hd (F (t, x (t)) ,F (t, x (t))) ≤ m (t) |x (t)− x (t)| .

Therefore, there exists w ∈ F (t, x (t)) such that

|v1 (t)− w| ≤ m (t) |x (t)− x (t)| , t ∈ J.

Define U : J → P (R) by

U (t) = {w ∈ R : |v1 (t)− w| ≤ m (t) |x (t)− x (t)|} .

Since the multivalued operator U (t) ∩ F (t, x (t)) is measurable (see [25, Proposition III.4]),

there exists a function v2 which is a measurable selection for U . So v2 (t) ∈ F (t, x (t)) and

or each t ∈ J , we have |v1 (t)− v2 (t)| ≤ m (t) |x (t)− x (t)|.
For each t ∈ J , let us define

h2 (t) =
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 v2 (σ) dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) Λ

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 v2 (σ) dσ

)
ds

s

− λ

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 v2 (σ) dσ

)
ds

s

)
.
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In consequence, we get

|h1 (t)− h2 (t)|

≤ 1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 |v1 (σ)− v2 (σ)| dσ
)
ds

s

+

(
log t

a

)α
|Λ|Γ (α + 1) Γ (α) Γ (β)

(∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 |v1 (σ)− v2 (σ)| dσ
)
ds

s

+ |λ|
∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 |v1 (σ)− v2 (σ)| dσ
)
ds

s

)
≤ ‖m‖∞ ‖x− x‖∞

(
1

Γ (α) Γ (β)

∫ t

a

(
log

t

s

)α−1(∫ s

a

(s− σ)β−1 dσ

)
ds

s

+

(
log t

a

)α
Γ (α + 1) |Λ|

(
1

Γ (α) Γ (β)

∫ b

a

(
log

b

s

)α−1(∫ s

a

(s− σ)β−1 dσ

)
ds

s

+
|λ|

Γ (α) Γ (β)

∫ η

a

(
log

η

s

)α−1
(∫ s

a

(s− σ)β−1 dσ

)
ds

s

))
,

by (5.10), we have

|h1 (t)− h2 (t)| ≤
‖m‖∞ ‖x− x‖∞ (b− a)β

(
log b

a

)α
Γ (β + 1) Γ (α + 1)

[
1 +

(
log b

a

)α
Γ (α + 1) |Λ|

(1 + |λ|)

]
.

Hence

‖h1 − h2‖∞ ≤ Λ1 ‖m‖∞ ‖x− x‖∞ .

Analogously, interchanging the roles of x and x, we obtain

Hd (N (x) , N (x)) ≤ Λ1 ‖m‖∞ ‖x− x‖∞ .

Since N is a contraction, it follows from Theorem 1.8 that N has a fixed point x which is a

solution of (5.1). This completes the proof.

5.1.2 Examples

In this part, we present two examples to validate the existence results.

Example 5.1 Consider the sequential fractional boundary value problem{
CD

1
2
1+

[
C
HD

1
4
1+x (t)

]
∈ F (t, x) , t ∈ (1, 2) ,

x (1) = 0, x (2) = 1
8
x
(

3
2

)
,

(5.11)

where a = 1, b = 2, α = 1
4
, β = 1

2
, λ = 1

8
, η = 3

2
and F : [1, 2]× R→ P (R) is a multivalued

map given by

x→ F (t, x) =

[
1

(t3 + 4 exp (t))

x2

6 (x2 + 1)
,

1

2
√
t+ 3

|x|
|x|+ 1

]
.
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With these date we find Λ = −0.89662 6= 0. Clearly the multivalued map F satisfies condition

(A1) and that

‖F (t, x)‖P = sup {|y| : y ∈ F (t, x)} ≤ 1

2
√
t+ 3

= P (t)Q (‖x‖∞) ,

which yields ‖P‖∞ = 1
4

and Q (‖x‖∞) = 1. Therefore, the condition (A2) is fulfilled. By the

condition (A3), it found that M > 0.64265. Hence all assumptions of Theorem 5.1 hold. So

there exists at least one solution of the problem (5.11) on [1, 2].

Example 5.2 Consider the sequential fractional boundary value problem{
CD

1
2
1+

[
C
HD

2
3
1+x (t)

]
∈ F (t, x) , t ∈ (1, 2) ,

x (1) = 0, x (2) = 1
10
x
(

3
2

)
.

(5.12)

Here a = 1, b = 2, α = 2
3
, β = 1

2
, λ = 1

10
, η = 3

2
and F : [1, 2]× R→ P (R) is a multivalued

map given by

x→ F (t, x) =

[
0,

2 sin (x)

(t2 + 7)
+

1

12

]
.

With these date we find Λ = −0.80691 6= 0. Clearly Hd (F (t, x) ,F (t, x)) ≤ m (t) |x− x|,
where m (t) = 2

t2+7
. Also d (0,F (t, 0)) = 1

12
≤ m (t) for almost all t ∈ [1, 2]. In addition, we

get ‖m‖∞ = 1
4

which leads to Λ1 ‖m‖∞ ≈ 0.53 < 1. As the hypothesis of Theorem 5.2 is

satisfied, therefore we conclude that the multivalued problem (5.12) has at least one solution

on [1, 2].

5.2 Hilfer fractional differential inclusions with

Erdélyi-Kober fractional integral boundary condi-

tion

In this section, we discuss the existence of solutions for a nonlinear Hilfer fractional differential

inclusion with Erdélyi-Kober fractional integral boundary conditions as follows
HDα,β

0+ x (t) ∈ F (t, x (t)) , t ∈ (0, T ) , T > 0,

x (0) = 0, x (T ) =
m∑
i=1

θi
EKIηi;ξi0+,γi

x (δi) ,
(5.13)

where HDα,β
0+ is the Hilfer fractional derivative of order α ∈ (1, 2) and type β ∈ [0, 1], EKIηi;ξi0+,γi

is the Erdelyi-Kober fractional integral of order ξi > 0 with γi > 0 and ηi ∈ R, F : [0, T ]×R→
P (R) is a set-valued map from [0, T ]×R to the family of P (R) ⊂ R, θi ∈ R and δi ∈ (0, T ),

i = 1, 2, ... , m.

Remark 5.1

5.2. Hilfer fractional differential inclusions with Erdélyi-Kober fractional integral
boundary condition
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i) In problem (5.13). If we replace Erdelyi-Kober fractional integral EKIηi;ξi0+,γi
with Riemann-

Liouville fractional integral RLIηi0+, then inclusion problem (5.13) has been studied by

Wongcharoen et al., in [99].

ii) If β = 0 in (5.13), then our problem (5.13) reduces to Riemann-Liouville inclusion

problem considered by Ahmad and Ntouyas in [6].

iii) If β = 1 in (5.13), then our problem (5.13) reduces to Caputo inclusion problem.

5.2.1 Existence results for multivalued problem

Let J = [0, T ]. To obtain our desired results, we need the following auxiliary lemma.

Lemma 5.2 ([1]) Let

Λ = T v−1 −
m∑
i=1

θiδ
v−1
i Γ

(
ηi + v−1

γi
+ 1
)

Γ
(
ηi + v−1

γi
+ ξi + 1

) 6= 0, where v = α + β (2− α) , (5.14)

and for any q ∈ C (J,R), then the solution of nonlocal boundary value problem
HDα,β

0+ x (t) = q (t) , t ∈ (0, T ) , T > 0,

x (0) = 0, x (T ) =
m∑
i=1

θi
EKIηi;ξi0+,γi

x (δi) ,
(5.15)

is obtained as

x (t) = RLIα0+q (t) +
tv−1

Λ

(
m∑
i=1

θEKi Iηi;ξi0+,γi
RLIα0+q (δi)− RLIα0+q (T )

)
. (5.16)

Definition 5.2 A function x ∈ C (J,R) is considered as a solution of (5.13), if there is an

integrable function v ∈ L1 (J,R) with v (t) ∈ F (t, x) for all t ∈ J satisfying the nonlocal

boundary conditions

x (0) = 0, x (T ) =
m∑
i=1

θi
EKIηi;ξi0+,γi

x (δi) ,

and

x (t) = RLIα0+v (t) +
tv−1

Λ

(
m∑
i=1

θEKi Iηi;ξi0+,γi
RLIα0+v (δi)− RLIα0+v (T )

)

=
1

Γ (α)

∫ t

0

(t− s)α−1 v (s) ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 v (σ) dσ

)
ds

− 1

Γ (α)

∫ T

0

(T − s)α−1 v (s) ds

)
.
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The upper semi-continuous case

The first outcome deals with the convex valued F relying on Leray-Schauder nonlinear al-

ternative for set-valued maps.

Theorem 5.3 Let

% =
1

Γ (α + 1)

Tα +
T v+α−1

|Λ|
+
T v−1

|Λ|

 m∑
i=1

|θi|
δαi Γ

(
ηi + α

γi
+ 1
)

Γ
(
ηi + α

γi
+ ξi + 1

)
 , (5.17)

and assume that:

(As1) F : J × R→ Pcp,c (R) is a L1-Carathéodory set-valued map,

(As2) There is a nondecreasing function ϑ ∈ C (R+,R+) and a continuous function P :

J → R+ such that

‖F (t, x)‖P = sup {|ρ| : ρ ∈ F (t, x)} ≤ P (t)ϑ (‖x‖∞) , ∀ (t, x) ∈ J × R.

(As3) There is a constant L > 0 such that

L
% ‖P‖∞ ϑ (L)

> 1. (5.18)

Then the problem (5.13) has at least one solution on J .

Proof. Initially, to switch the problem (5.13) into a fixed point problem, we consider the

operator N : C (J,R)→ P (C (J,R)) as

N (x) =



h ∈ C (J,R) ,

h (t) =


1

Γ(α)

∫ t
0

(t− s)α−1 v (s) ds

+ tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ(ξi)Γ(α)

∫ δi
0

sγi+ηi+γi−1

(δγii −sγi)

(∫ s
0

(s− σ)α−1 v (σ) dσ
)
ds

− 1
Γ(α)

∫ T
0

(T − s)α−1 v (s) ds
)
,


(5.19)

for v ∈ SF ,x. Obviously, the solution of (5.13) is as a fixed point of the operator N . The

proof steps will be presented as follows:

Step 1. The set-valued map N (x) is convex for any x ∈ C (J,R).

Let h1, h2 ∈ N (x). Then, there exist v1, v2 ∈ SF ,x such that

hj (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 v (s) ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 vj (σ) dσ

)
ds

− 1

Γ (α)

∫ T

0

(T − s)α−1 vj (s) ds

)
, j = 1, 2, ∀t ∈ J.
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Let λ ∈ [0, 1]. Then for any t ∈ J , we have

[λh1 + (1− λ)h2] (t)

=
1

Γ (α)

∫ t

0

(t− s)α−1 [λv1 (s) + (1− λ) v2 (s)] ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 [λv1 (σ) + (1− λ) v2 (σ)] dσ

)
ds

− 1

Γ (α)

∫ T

0

(T − s)α−1 [λv1 (s) + (1− λ) v2 (s)] ds

)
.

Since F has convex values, SF ,x is convex and [λv1 (t) + (1− λ) v2 (t)] ∈ SF ,x. Thus, λh1 +

(1− λ)h2 ∈ N (x).

Step 2. N is bounded on bounded sets of C (J,R).

For a constant r > 0, let Ω = {x ∈ C (J,R) : ‖x‖∞ ≤ r} be a bounded set in C (J,R).

Then for each h ∈ N (x) and x ∈ Ω, there exists v ∈ SF ,x such that

h (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 v (s) ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 v (σ) dσ

)
ds

− 1

Γ (α)

∫ T

0

(T − s)α−1 v (s) ds

)
.

Under the hypothesis (As2) and for any t ∈ J , we attain

|h (t)|

≤ 1

Γ (α)

∫ t

0

(t− s)α−1 |v (s)| ds

+
tv−1

|Λ|

(
m∑
i=1

|θi|
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 |v (σ)| dσ
)
ds

+
1

Γ (α)

∫ T

0

(T − s)α−1 |v (s)| ds
)

≤ ‖P‖∞ ϑ (r)

Γ (α + 1)

Tα +
T v+α−1

|Λ|
+
T v−1

|Λ|

 m∑
i=1

|θi|
δαi Γ

(
ηi + α

γi
+ 1
)

Γ
(
ηi + α

γi
+ ξi + 1

)
 .

Thus

‖h‖∞ ≤ % ‖P‖∞ ϑ (r) .

Step 3. N sends bounded sets of C (J,R) into equicontinuous sets.
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Let x ∈ Ω and h ∈ N (x). Then there is a function v ∈ SF ,x such that

h (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 v (s) ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 v (σ) dσ

)
ds

− 1

Γ (α)

∫ T

0

(T − s)α−1 v (s) ds

)
.

Let t1, t2 ∈ J, t1 < t2. Then

|h(t2)− h(t1)|

≤ 1

Γ (α)

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1] |v (s)| ds

+
1

Γ (α)

∫ t2

t1

(t2 − s)α−1 |v (s)| ds(
tv−1
2 − tv−1

1

)
|Λ|

(
m∑
i=1

|θi|
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 |v (σ)| dσ
)
ds

+
1

Γ (α)

∫ T

0

(T − s)α−1 v (s) ds

)

≤ ‖P‖∞ ϑ (r)

Γ (α + 1)

(tα2 − tα1 ) +

(
tv−1
2 − tv−1

1

)
|Λ|

 m∑
i=1

|θi|
δαi Γ

(
ηi + α

γi
+ 1
)

Γ
(
ηi + α

γi
+ ξi + 1

) + Tα

 .

As t1 → t2, we obtain

|h(t2)− h(t1)| → 0.

Hence N (Ω) is equicontinuous. From the above-mentioned steps (2− 3) along with theorem

of Arzela-Ascoli, we infer that N is completely continuous.

Step 4. We prove that the graph of N is closed.

Let xn → x∗, hn ∈ N (xn) and hn tends to h∗. We show that h∗ ∈ N (x∗). Since

hn ∈ N (xn), there exists vn ∈ SF ,xn such that

hn (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 vn (s) ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 vn (σ) dσ

)
ds

− 1
Γ(α)

∫ T
0

(T − s)α−1 vn (s) ds
)

, t ∈ J .
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Therefore, we have to prove that there exists v∗ ∈ SF ,x∗ such that, for each t ∈ J ,

h∗ (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 v∗ (s) ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 v∗ (σ) dσ

)
ds

− 1

Γ (α)

∫ T

0

(T − s)α−1 v∗ (s) ds

)
.

Define the continuous linear operator Θ : L1 (J, x)→ C (J, x) as follows

v → Θ (v) (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 v (s) ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 v (σ) dσ

)
ds

− 1
Γ(α)

∫ T
0

(T − s)α−1 v (s) ds
)

, t ∈ J .

Notice that

‖hn − h∗‖∞

=

∥∥∥∥ 1

Γ (α)

∫ t

0

(t− s)α−1 (vn (s)− v∗ (s)) ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 (vn (σ)− v∗ (σ)) dσ

)
ds

− 1
Γ(α)

∫ T
0

(T − s)α−1 (vn (s)− v∗ (s)) dsds
)∥∥∥
∞
→ 0,

when n→∞. So in view of Lemma (1.23) that Θ◦SF ,x is a closed graph operator. Moreover,

we have

hn ∈ Θ (SF ,xn) .

Since xn → x∗, Lemma (1.23) gives

h∗ (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 v∗ (s) ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 v∗ (σ) dσ

)
ds

− 1

Γ (α)

∫ T

0

(T − s)α−1 v∗ (s) ds

)
.

for some v∗ ∈ SF ,x∗ .
Step 5. We show there exists an open set U ⊆ C (J,R) with x 6∈ µN (x) for each 0 < µ < 1

and ∀ x ∈ ∂U .
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Let µ ∈ (0, 1) and x ∈ µN (x). Then there exists v ∈ SF ,x such that

|x (t)| =
∣∣∣∣ µ

Γ (α)

∫ t

0

(t− s)α−1 v (s) ds

+
µtv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 v (σ) dσ

)
ds

− 1

Γ (α)

∫ T

0

(T − s)α−1 v (s) ds

)∣∣∣∣
≤ % ‖P‖∞ ϑ (‖x‖∞) .

Thus, we have

|x (t)| ≤ % ‖P‖∞ ϑ (‖x‖∞) , ∀t ∈ J,

consequently, we obtain
‖x‖∞

% ‖P‖∞ ϑ (‖x‖∞)
≤ 1.

Under the hypothesis (As3), there is a L > 0 such that ‖x‖∞ 6= L. We build the set U as

follows

U = {x ∈ C (J,R) : ‖x‖∞ < L} .

From the steps 1-4, the operator N : U → P (C (J,R)) is upper semi-continuous, and com-

pletely continuous. From the choice of U , there is no x ∈ ∂U such that x ∈ µN (x) for some

µ ∈ (0, 1). So, by Leray-Schauder theorem for set-valued maps, we infer that problem (5.13)

has at least one solution x ∈ U .

The Lipschitz case

For further existence investigation of problem (5.13). In this part, we deal with another

existence criterion under new hypotheses. In what follows, we will demonstrate that our

desired existence of solutions in the case of nonconvex-valued right-hand side follows by

Covitz and Nadler theorem 1.8.

Theorem 5.4 Suppose the following hypotheses are valid

(As4) F : J×R→ Pcp (R) is such that F (., x) : J → Pcp (R) is measurable for any x ∈ R,

(As5) Hd (F (t, x) ,F (t, x)) ≤ $ (t) |x− x| for (a.e.) all t ∈ J and x, x ∈ R with $ ∈
C (J,R+) and d (0,F (t, 0)) ≤ $ (t) for (a.e.) all t ∈ J .

Then, (5.13) has at least one solution on J if

% ‖$‖∞ < 1,

where % is defined in (5.17).
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Proof. By using the hypothesis (As4) and Theorem III.6 in [25], F has a measurable

selection v : J → R, v ∈ L1 (J,R) and so F is integrably bounded. Thus, SF ,x 6= ∅. Now,

we show that N : C (J,R) → P (C (J,R)) defined in (5.19) satisfies the hypotheses of fixed

point theorem of Nadler and Covitz. To prove that N (x) is closed for any x ∈ C (J,R). Let

{un}n≥0 ∈ N (x) be such that un → u (n→∞) in C (J,R). Then u ∈ C (J,R) and there is

vn ∈ SF ,xn such that

un (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 vn (s) ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 vn (σ) dσ

)
ds

− 1

Γ (α)

∫ T

0

(T − s)α−1 vn (s) ds

)
, ∀t ∈ J.

As F has compact values, so there exists a subsequence vn converges to v in L1 (J,R). Thus

v ∈ SF ,x and we get

un (t)→ u (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 v (s) ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 v (σ) dσ

)
ds

− 1

Γ (α)

∫ T

0

(T − s)α−1 v (s) ds

)
, ∀t ∈ J.

Hence u ∈ N (x).

Next, we prove that there is a ϑ ∈ (0, 1) , (ϑ = % ‖$‖∞) such that

Hd (N (x) , N (x)) ≤ ϑ ‖x− x‖∞ for each x, x ∈ C (J,R) .

Let x, x ∈ C (J,R) and h1 ∈ N (x). Then there exists v1 (t) ∈ F (t, x (t)) such that

h1 (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 v1 (s) ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 v1 (σ) dσ

)
ds

− 1

Γ (α)

∫ T

0

(T − s)α−1 v1 (s) ds

)
.

By (As5), we have

Hd (F (t, x) ,F (t, x)) ≤ $ (t) |x (t)− x (t)| .

So, there exists w̃ (t) ∈ F (t, x) such that

|v1 (t)− w̃| ≤ $ (t) |x (t)− x (t)| , t ∈ J.
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We construct a set-valued map E : J → P (R) as follows

E (t) = {w̃ ∈ R : |v1 (t)− w̃| ≤ $ (t) |x (t)− x (t)|} .

We see that v1 and σ = $ |x− x| are measurable, therefore we can conclude that the set-

valued map E (t) ∩ F (t, x) is measurable. Now, we choose the function v2 (t) ∈ F (t, x) such

that

|v1 (t)− v2 (t)| ≤ $ (t) |x (t)− x (t)| , ∀t ∈ J.
We define

h2 (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 v2 (s) ds

+
tv−1

Λ

(
m∑
i=1

θi
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 v2 (σ) dσ

)
ds

− 1

Γ (α)

∫ T

0

(T − s)α−1 v2 (s) ds

)
, ∀t ∈ J.

As a result, we obtain

|h (t)− h2 (t)|

≤ 1

Γ (α)

∫ t

0

(t− s)α−1 |v1 (s)− v2 (s)| ds

+
T v−1

|Λ|

(
m∑
i=1

|θi|
γiδ
−γi(ξi+ηi)
i

Γ (ξi) Γ (α)

∫ δi

0

sγi+ηi+γi−1

(δγii − sγi)

(∫ s

0

(s− σ)α−1 |v1 (σ)− v2 (σ)| dσ
)
ds

+
1

Γ (α)

∫ T

0

(T − s)α−1 |v1 (s)− v2 (s)| ds
)

≤ ‖$‖∞ ‖x− x‖∞
Γ (α + 1)

Tα +
T v+α−1

|Λ|
+
T v−1

|Λ|

 m∑
i=1

|θi|
δαi Γ

(
ηi + α

γi
+ 1
)

Γ
(
ηi + α

γi
+ ξi + 1

)
 .

Therefore

‖h1 − h2‖∞ ≤ % ‖$‖∞ ‖x− x‖∞ .

Similarly, interchanging the roles of x and x, we get

Hd (N (x) , N (x)) ≤ % ‖$‖∞ ‖x− x‖∞ .

Since N is a contraction, in the light of Covitz and Nadler theorem, we infer that N has a

fixed point x which is a solution of (5.13).

5.2.2 Examples

In this portion, we consider the following fractional differential inclusion
HDα,β

0+ x (t) = q (t) , t ∈ (0, T ) , T > 0,

x (0) = 0, x (T ) =
m∑
i=1

θi
EKIηi;ξi0+,γi

x (δi) .
(5.20)
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The next examples are special cases of fractional differential inclusion given by (5.20).

Example 5.3 Consider the fractional differential inclusion given by (5.20). Taking α = 5
4
,

β = 0, T = 1, θ1 = 1
4
, θ2 = 1

6
, η1 = 1

2
, η2 = 5

2
, ξ1 = 1

2
, ξ2 = 3

2
, γ1 = 1

6
, γ2 = 1

8
, δ1 = 1

4
, δ2 = 1

2

Then, the problem (5.20) reduce to HD
5
4
,0

0+ x (t) ∈ F (t, x) , t ∈ (0, 1) ,

x (0) = 0, x (1) = 1
4
I

1
2

; 1
2

0+, 1
6

x
(

1
4

)
+ 1

6
I

5
2

; 3
2

1
8

x
(

1
2

)
,

(5.21)

which is fractional differential inclusion involving Riemann-Liouville fractional derivative. In

this case v = 5
4
. Let F : [0, 1]× R→ P (R) be a mapping such that

x→ F (t, x) =

[
1

6 (t2 + 4 exp (t3))

x2

(x2 + 1)
,

1

2
√
t+ 9

|x|
|x|+ 1

]
. (5.22)

With these date we find Λ ' 0.88343 6= 0. Obviously, F satisfies hypothesis (As1) and

‖F (t, x)‖P = sup {|ρ| : ρ ∈ F (t, x)} ≤ 1

2
√
t+ 9

= P (t)ϑ (‖x‖∞) ,

where ‖P‖∞ = 1
6

and ϑ (‖x‖∞) = 1. Thus, the assumption (As2) is fulfilled, and by (As3),

we get L > 0.31633.

Therefore all hypotheses of Theorem (5.1) are valid. Hence the problem (5.21) with F
given by (5.22) has at least one solution on [0, 1].

Example 5.4 Consider the fractional differential inclusion given by (5.20). Taking α = 3
2
,

β = 1, T = 1, θ1 = 1
2
, θ2 = 1

4
, η1 = 1

4
, η2 = 3

2
, ξ1 = 1

6
, ξ2 = 3

2
, γ1 = 1

2
, γ2 = 1

8
, δ1 = 1

6
, δ2 = 1

4
.

Then, the problem (5.20) reduce to HD
5
4
,0

0+ x (t) ∈ F (t, x) , t ∈ (0, 1) ,

x (0) = 0, x (1) = 1
2
I

1
4

; 1
6

1
2

x
(

1
6

)
+ 1

4
I

3
2

; 3
2

1
8

x
(

1
4

)
,

(5.23)

which is fractional differential inclusion involving Caputo fractional derivative. In this case

v = 2. Let F : [0, 1]× R→ P (R) be a mapping with

x→ F (t, x) =

[
exp

(
−x2

)
+ t+ 5,

|x|
|x|+ 1

+

√
t+ 1

2

]
. (5.24)

With these date we find Λ ' 0.92823 6= 0. Obviously F satisfies hypothesis (As1) and

‖F (t, x)‖P = sup {|ρ| : ρ ∈ F (t, x)} ≤ 7 = P (t)ϑ (‖x‖∞) ,

where ‖P‖∞ = 1 and ϑ (‖x‖∞) = 7. Thus, the assumption (As2) is fulfilled, and by (As3),

we get L > 6.4976.

Therefore all hypotheses of Theorem (5.1) are valid. Then, there exists at least one solution

of (5.23) on [0, 1] with F given by (5.24).

5.2. Hilfer fractional differential inclusions with Erdélyi-Kober fractional integral
boundary condition
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Example 5.5 Consider the fractional differential inclusion given by (5.20). Taking α = 5
4
,

β = 1
2
, T = 1, θ1 = 1

4
, θ2 = 1

6
, η1 = 1

2
, η2 = 5

2
, ξ1 = 1

2
, ξ2 = 3

2
, γ1 = 1

6
, γ2 = 1

8
, δ1 = 1

4
, δ2 = 1

2
.

Then, the problem (5.20) reduce to{
HD

5
4
, 1
2x (t) ∈ F (t, x) , t ∈ (0, 1) ,

x (0) = 0, x (1) = 1
4
I

1
2

; 1
2

1
6

x
(

1
4

)
+ 1

6
I

5
2

; 3
2

1
8

x
(

1
2

)
,

(5.25)

which is fractional differential inclusion involving Hilfer fractional derivative. In this case

v = 13
8

. Let F : [0, 1]× R→ P (R) be given by

x→ F (t, x) =

[
0,

sin (x)

(exp (t2) + 9)
+

1

15

]
. (5.26)

With these date we find Λ ' 0.88343 6= 0. Clearly Hd (F (t, x) ,F (t, x)) ≤ $ (t) |x− x|,
where $ (t) = 1

exp(t2)+9
and d (0,F (t, 0)) = 1

15
≤ $ (t) for (a.e.) all t ∈ [0, 1]. Besides, we

obtain ‖$‖∞ = 1
10

which implies % ‖$‖∞ ≈ 0.19 < 1. Therefore all assumptions of Theorem

(5.2) are valid. Then, there exists at least one solution of (5.25) on [0, 1] with F given by

(5.26).

5.2. Hilfer fractional differential inclusions with Erdélyi-Kober fractional integral
boundary condition



Chapter 6
Existence and stability analysis for a class of

ψ-Hilfer fractional integro-differential equations

In this chapter, we study the existence and uniqueness of solutions for nonlinear fractional

integro-differential equations subject to nonlocal integral boundary conditions in the frame of

a ψ-Hilfer fractional derivative. Further, we discuss different kinds of stability of Ulam-Hyers

for mild solutions to the given problem. Using an appropriate fixed point theorems together

with generalized Gronwall inequality the desired outcomes are proven. Examples are given

which illustrate the effectiveness of the theoretical results.

6.1 Existence and stability results for a ψ-Hilfer frac-

tional integro-differential equations with nonlocal

integral boundary conditions

In this section, we study existence, uniqueness and Ulam stability of the following fractional

integro-differential equation involving ψ-Hilfer fractional derivative with nonlocal integral

boundary conditions
HDα,β;ψ

a+ x (t) = f
(
t, x (t) ,

∫ t
a
h (t, σ, x (σ)) dσ

)
, t ∈ (a, b) ,

x (a) = 0, I2−v;ψ
a+ x (b) =

m∑
i=1

θiI
ηi;ψ
a+ x (δi) ,

(6.1)

where HDα,β;ψ
a+ is the ψ-Hilfer fractional derivative of order α ∈ (1, 2) and type β ∈ [0, 1], I2−v;ψ

and Iηi;ψ are the ψ-fractional integral of orders 2−v, ηi > 0 respectively, v = α+β (2− α) ∈
(1, 2), ∞ < a < b < ∞, θi ∈ R, i = 1, 2, ...,m, 0 ≤ a ≤ δ1 < δ2 < δ3 < ... < δm ≤ b,

f : [a, b]× R× R→ R and h : [a, b]× [a, b]× R→ R are given continuous functions.

89
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6.1.1 Existence results

Let J = [a, b]. To obtain our desired results, we need the following auxiliary lemma.

Lemma 6.1 Let

$ =
(ψ (b)− ψ (a))

Γ (2)
−

m∑
i=1

θi
Γ (v + ηi)

(ψ (δi)− ψ (a))v+ηi−1 6= 0, (6.2)

and for any q ∈ C (J,R), then the nonlocal boundary value problem
HDα,β;ψx (t) = q (t) , t ∈ (a, b) ,

x (a) = 0, I2−v;ψ
a+ x (b) =

m∑
i=1

θiI
ηi;ψ
a+ x (δi) ,

(6.3)

has a unique solution given by

x (t) =
(ψ (t)− ψ (a))v−1

$Γ (v)

(
m∑
i=1

θiI
α+ηi;ψ
a+ q (δi)− I2+α−v;ψ

a+ q (b)

)
+ Iα;ψ

a+ q (t) . (6.4)

Proof. Taking ψ-fractional integral Iα;ψ
a+ to the first equation of (6.3), and from Lemma 1.15,

we obtain

x (t)−
2∑

k=1

(ψ (t)− ψ (a))v−k

Γ (v− k + 1)
h

[2−k]
ψ I

(1−β)(2−α);ψ
a+ x (a) = Iα;ψ

a+ q (t) , t ∈ J. (6.5)

We have (1− β) (2− α) = 2− v. Therefore

x (t) =
(ψ (t)− ψ (a))v−1

Γ (v)

(
1

ψ′ (t)

d

dt

)
I2−v;ψ
a+ x (t)

∣∣∣
t=a

+
(ψ (t)− ψ (a))v−2

Γ (v− 1)
I2−v;ψ
a+ x (t)

∣∣∣
t=a

+ Iα;ψ
a+ q (t)

=
(ψ (t)− ψ (a))v−1

Γ (v)
Dv−1;ψx (t)

∣∣
t=a

+
(ψ (t)− ψ (a))γ−2

Γ (v− 1)
I2−v;ψ
a+ x (t)

∣∣∣
t=a

+ Iα;ψ
a+ q (t) .

Put

c1 = Dv−1;ψx (t)
∣∣
t=a

,

and

c2 = I2−v;ψ
a+ x (t)

∣∣∣
t=a

, t ∈ J.

Then

x (t) =
(ψ (t)− ψ (a))v−1

Γ (v)
c1 +

(ψ (t)− ψ (a))v−2

Γ (v− 1)
c2 + Iα;ψ

a+ q (t) .

Because lim
t=a

(ψ (t)− ψ (a))v−2 = ∞, in the view of boundary conditions x (a) = 0, we must

have

c2 = 0.

6.1. Existence and stability results for a ψ-Hilfer fractional integro-differential
equations with nonlocal integral boundary conditions
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Replacing c2 by their value in (6.5), we get

x (t) =
(ψ (t)− ψ (a))v−1

Γ (v)
c1 + Iα;ψ

a+ q (t) . (6.6)

Next, we use the second boundary condition to determine the constant c1. Applying Iηi;ψa+ on

both side of equation (6.6), we get

Iηi;ψa+ x (t) =
c1

Γ (v + ηi)
(ψ (t)− ψ (a))v+ηi−1 + Iα+ηi;ψ

a+ q (t) . (6.7a)

From the condition x (b) =
m∑
i=1

θiI
ηi;ψ
a+ x (δi) and (6.7a), we have

x (b) =
m∑
i=1

θiI
ηi;ψ
a+ x (δi)

= c1

m∑
i=1

θi
Γ (v + ηi)

(ψ (δi)− ψ (a))v+ηi−1 +
m∑
i=1

θiI
α+ηi;ψ
a+ q (δi) . (6.8)

From equation (6.6) and (6.8), we have

I2−γ;ψ
a+ x (b) =

(ψ (b)− ψ (a))

Γ (2)
c1 + I2+α−v;ψ

a+ q (b)

= c1

m∑
i=1

θi
Γ (v + ηi)

(ψ (δi)− ψ (a))v+ηi−1 +
m∑
i=1

θiI
α+ηi;ψ
a+ q (δi) .

Thus, we find

c1 =
1

$

(
m∑
i=1

θiI
α+ηi;ψ
a+ q (δi)− I2+α−v;ψ

a+ q (b)

)
.

Replacing the value of c1 into (6.6), we obtain (6.4).

In what follows, we apply some fixed point theorems to demonstrate the existence and

uniqueness results for problem (6.1).

To obtain our findings, We need the following assumptions

(As1) There is a constants li > 0, i = 1, 2, 3 such that

|f (t, x1, y1)− f (t, x2, y2)| ≤ l1 |x1 − x2|+ l2 |y1 − y2| ,
|h (t, σ, x1)− h (t, σ, x2)| ≤ l3 |x1 − x2| , ∀(t, ψ, xj, yj) ∈ J2 × R2, j = 1, 2.

(As2) There is a function w ∈ C (J,R+) such that

|f (t, x, y)| ≤ w(t), ∀ (t, x, y) ∈ J × R× R.

6.1. Existence and stability results for a ψ-Hilfer fractional integro-differential
equations with nonlocal integral boundary conditions
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For the sake of convenience, we put

k1 =
m∑
i=1

|θi|
(ψ (b)− ψ (a))α+ηi+v−1

|$|Γ (v) Γ (α + ηi + 1)
, k2 =

(ψ (b)− ψ (a))1+α

|$|Γ (v) Γ (3 + α− v)
, k3 =

(ψ (b)− ψ (a))α

Γ (α + 1)
,

Ax =
m∑
i=1

|θi|

(
Iα+ηi;ψ
a+ f

(
t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)∣∣∣∣
t=δi

− I2+α−v;ψ
a+ f

(
t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)∣∣∣∣
t=b

)
. (6.9)

Existence and uniqueness results via Banach’s fixed point theorem

Theorem 6.1 Let (As1) valid. If

(k1 + k2 + k3) (l1 + l2l3 (b− a)) < 1, (6.10)

then, (6.1) has a unique solution on J , where k1, k2, k3 are given by (6.9).

Proof. We switch the problem (6.1) into a fixed point problem, we consider the operator

Φ : C (J,R)→ C (J,R) as

(Φx) (t) =
(ψ (t)− ψ (a))v−1

$Γ (v)

(
m∑
i=1

θi I
α+ηi;ψ
a+ f

(
t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)∣∣∣∣
t=δi

− I2+α−v;ψ
a+ f

(
t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)∣∣∣∣
t=b

)
+ Iα;ψ

a+ f

(
t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)
.

Clearly, the solution of (6.1) is as a fixed point of the operator Φ.

By (As1), for any x, y ∈ C (J,R) and t ∈ J , we get

|(Φx) (t)− (Φy) (t)|

≤ (ψ (t)− ψ (a))v−1

|$|Γ (v)

(
m∑
i=1

|θi|
Γ (α + ηi)

∫ δi

a

ψ′ (s) (ψ (δi)− ψ (s))α+ηi−1

×
∣∣∣∣f (s, x (s) ,

∫ s

a

h (s, σ, x (σ)) dσ

)
− f

(
s, y (s) ,

∫ s

a

h (s, σ, y (σ)) dσ

)∣∣∣∣ ds
+

1

Γ (2 + α− v)

∫ b

a

ψ′ (s) (ψ (b)− ψ (s))1+α−v

×
∣∣∣∣f (s, x (s) ,

∫ s

a

h (s, σ, x (σ)) dσ

)
− f

(
s, y (s) ,

∫ s

a

h (s, σ, y (σ)) dσ

)∣∣∣∣ ds)
+

1

Γ (α)

∫ τ

a

ψ′ (s) (ψ (τ)− ψ (s))α−1

×
∣∣∣∣f (s, x (s) ,

∫ s

a

h (s, σ, x (σ)) dσ

)
− f

(
s, y (s) ,

∫ s

a

h (s, σ, y (σ)) dσ

)∣∣∣∣ ds,
6.1. Existence and stability results for a ψ-Hilfer fractional integro-differential
equations with nonlocal integral boundary conditions
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so,

|(Φx) (t)− (Φy) (t)|

≤
m∑
i=1

|θi|
(ψ (b)− ψ (a))α+ηi+v−1

|$|Γ (v) Γ (α + ηi + 1)
(l1 + l2l3 (b− a)) ‖x− y‖∞

+
(ψ (b)− ψ (a))1+α

|$|Γ (v) Γ (3 + α− γ)
(l1 + l2l3 (b− a)) ‖x− y‖∞

+
(ψ (b)− ψ (a))α

Γ (α + 1)
(l1 + l2l3 (b− a)) ‖x− y‖∞

≤ (k1 + k2 + k3) (l1 + l2l3 (b− a)) ‖x− y‖∞ .

Thus

‖(Φx)− (Φy)‖∞ ≤ (k1 + k2 + k3) (l1 + l2l3 (b− a)) ‖x− y‖∞ .

From (6.10), Φ is a contraction. As an outcome of Banach’s fixed point theorem, Φ has a

unique fixed point which is a unique solution of (6.1) on J .

Existence results via Schauder’s fixed point theorem

Theorem 6.2 Suppose that the hypotheses (As1)-(As2) are satisfied. Then, (6.1) has at

least one solution on J .

Proof. Let Ω = {x ∈ C (J,R) : ‖x‖∞ ≤M0} be a non-empty closed bounded convex subset

of C (J,R), and M0 is chosen such

M0 ≥ w∗ (k1 + k2 + k3) ,

where k1, k2, k3 are given by (6.9). It is a known that continuity of the functions f and h

implies that the operator Φ is continuous. It remains to demonstrate that the operator Φ is

compact and will be given in the following steps.

Step 1.We show that Φ (Ω) ⊂ Ω.

Let w∗ = sup {w(t) : t ∈ J}. For x ∈ Ω, we have

|(Φx) (t)| ≤ (ψ (t)− ψ (a))v−1

$Γ (v)

(
m∑
i=1

θi I
α+ηi;ψ
a+

∣∣∣∣f (t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)∣∣∣∣∣∣∣∣
t=δi

+ I2+α−v;ψ
a+

∣∣∣∣f (t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)∣∣∣∣∣∣∣∣
t=b

)
+ Iα;ψ

a+

∣∣∣∣f (t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)∣∣∣∣
≤

m∑
i=1

|θi|
w∗ (ψ (b)− ψ (a))α+ηi+v−1

|$|Γ (v) Γ (α + ηi + 1)
+

w∗ (ψ (b)− ψ (a))1+α

|$|Γ (v) Γ (3 + α− v)

+
w∗ (ψ (b)− ψ (a))α

Γ (α + 1)

≤ w∗ (k1 + k2 + k3) ,

6.1. Existence and stability results for a ψ-Hilfer fractional integro-differential
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and consequently

‖Φx‖∞ ≤M0.

Hence, Φ (Ω) ⊂ Ω and the set Φ (Ω) is uniformly bounded.

Step 2. Φ sends bounded sets of C (J,R) into equicontinuous sets.

For t1, t2 ∈ J , t1 < t2 and for x ∈ Ω, we have

|(Φx) (t2)− (Φx) (t1)|

≤ (ψ (t2)− ψ (a))v−1 − (ψ (t1)− ψ (a))v−1

|$|Γ (v)

×

(
m∑
i=1

|θi|
Γ (α + ηi)

∫ δi

a

ψ′ (s) (ψ (δi)− ψ (s))α+ηi−1

∣∣∣∣f (s, x (s) ,

∫ s

a

h (s, σ, x (σ)) dσ

)∣∣∣∣ ds
+

1

Γ (2 + α− v)

∫ b

a

ψ′ (s) (ψ (b)− ψ (s))1+α−v
∣∣∣∣f (s, x (s) ,

∫ s

a

h (s, σ, x (σ)) dσ

)∣∣∣∣ ds)
+

1

Γ (α)

∫ t1

a

ψ′ (s)
(
(ψ (t2)− ψ (s))α−1 − (ψ (t1)− ψ (s))α−1)

×
∣∣∣∣f (s, x (s) ,

∫ s

a

h (s, σ, x (σ)) dσ

)∣∣∣∣ ds+
1

Γ (α)

∫ τ2

τ1

ψ′ (s) (ψ (τ2)− ψ (s))α−1

×
∣∣∣∣f (s, x (s) ,

∫ s

a

h (s, σ, x (σ)) dσ

)∣∣∣∣ ds
≤
(
(ψ (t2)− ψ (a))v−1 − (ψ (t1)− ψ (a))v−1)w∗

|$|Γ (v)

×

(
m∑
i=1

|θi|
Γ (α + ηi)

∫ δi

a

ψ′ (s) (ψ (δi)− ψ (s))α+ηi−1 ds

+
1

Γ (2 + α− v)

∫ b

a

ψ′ (s) (ψ (b)− ψ (s))1+α−v ds

)
+

w∗

Γ (α + 1)
((ψ (t2)− ψ (a))α − (ψ (t1)− ψ (a))α) .

As t1 → t2, we obtain

|(Φx) (t2)− (Φx) (t1)| → 0.

Hence Φ (Ω) is equicontinuous. The Arzela-Ascoli theorem implies that Φ is compact. Thus

by Schauder fixed point theorem, we prove that Φ has at least one fixed point x ∈ Ω that is

in fact a solution of (6.1) on J .

6.1.2 Ulam stability results

In this portion, we discuss the various types of Ulam stability for the ψ-Hilfer problem (6.1).

Theorem 6.3 Suppose that the hypothesis (As1) and condition (6.10) are satisfied. Then,

the first equation of (6.1) is Ulam-Hyers stable.

6.1. Existence and stability results for a ψ-Hilfer fractional integro-differential
equations with nonlocal integral boundary conditions
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Proof. Let ε > 0. Let y ∈ C (J,R) be any solution of the inequality∣∣∣∣HDα,β;ψ
a+ y (t)− f

(
t, y (t) ,

∫ t

a

h (t, σ, y (σ)) dσ

)∣∣∣∣ ≤ ε, t ∈ J.

Then, there exists v ∈ C (J,R) such that

HDα,β;ψ
a+ y (t) = f

(
t, y (t) ,

∫ t

a

h (t, σ, y (σ)) dσ

)
+ v (t) , t ∈ J, (6.11)

and |v (t)| ≤ ε, t ∈ J . In view of Lemma 6.1, we get

y (t) =
(ψ (t)− ψ (a))v−1

$Γ (v)
Ay + Iα;ψ

a+ f

(
t, y (t) ,

∫ t

a

h (t, σ, y (σ)) dσ

)
+ Iα;ψ

a+ v (t) , (6.12)

is solution of equation (6.11), where

Ay =

(
m∑
i=1

|θi| Iα+ηi;ψ
a+ f

(
t, y (t) ,

∫ t

a

h (t, σ, y (σ)) dσ

)∣∣∣∣
t=δi

−I2+α−v;ψ
a+ f

(
t, y (t) ,

∫ t

a

h (t, σ, y (σ)) dσ

)∣∣∣∣
t=b

)
. (6.13)

From equation (6.12), we have∣∣∣∣∣y (t)− (ψ (t)− ψ (a))v−1

$Γ (v)
Ay − Iα;ψ

a+ f

(
t, y (t) ,

∫ t

a

h (t, σ, y (σ)) dσ

)∣∣∣∣∣
≤ Iα;ψ

a+ |v (t)| ≤ ε
(ψ (t)− ψ (a))α

Γ (α + 1)
. (6.14)

Let x ∈ C (J,R) be solution of the problem{
HDα,β;ψ

a+ y (t) = f
(
t, y (t) ,

∫ t
a
h (t, σ, y (σ)) dσ

)
,

x (a) = y (a) , I2−v;ψ
a+ x (b) = I2−v;ψ

a+ y (b) ,
(6.15)

where I2−v;ψ
a+ x (b) =

m∑
i=1

θiI
ηi;ψ
a+ x (δi) and I2−v;ψ

a+ y (b) =
m∑
i=1

θiI
ηi;ψ
a+ y (δi). By Lemma 6.1, the

equivalent fractional integral equation of (6.15) is

y (t) =
(ψ (t)− ψ (a))v−1

$Γ (v)
Ay + Iα;ψ

a+ f

(
t, y (t) ,

∫ t

a

h (t, σ, y (σ)) dσ

)
,

where Ay is given by (6.13).
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Now, by using the assumption (As1), we obtain

|Ax − Ay|

≤ (ψ (t)− ψ (a))v−1

|$|Γ (v)

(
m∑
i=1

|θi|
Γ (α + ηi)

∫ δi

a

ψ′ (s) (ψ (δi)− ψ (s))α+ηi−1

×
∣∣∣∣f (s, x (s) ,

∫ s

a

h (s, σ, x (σ)) dσ

)
− f

(
s, y (s) ,

∫ s

a

h (s, σ, y (σ)) dσ

)∣∣∣∣ ds
+

1

Γ (2 + α− v)

∫ b

a

ψ′ (s) (ψ (b)− ψ (s))1+α−v

×
∣∣∣∣f (s, x (s) ,

∫ s

a

h (s, σ, x (σ)) dσ

)
− f

(
s, y (s) ,

∫ s

a

h (s, σ, y (σ)) dσ

)∣∣∣∣ ds)
≤ (ψ (t)− ψ (a))v−1

|$|Γ (v)

(
m∑
i=1

|θi| (l1 + l2l3)

Γ (α + ηi)

∫ δi

a

ψ′ (s) (ψ (δi)− ψ (s))α+ηi−1

× |x (s)− y (s)| ds +
l1 + l2l3

Γ (2 + α− v)

∫ b

a

ψ′ (s) (ψ (b)− ψ (s))1+α−v |x (s)− y (s)| ds

≤ (ψ (t)− ψ (a))v−1 (l1 + l2l3)

|$|Γ (v)

×

(
m∑
i=1

|θi| Iα+ηi;ψ
a+ |x (δi)− y (δi)|+ I2+α−γ;ψ

a+ |x (b)− y (b)|
∣∣∣) . (6.16)

Because x (b) = y (b), we must have x (δi) = y (δi), i = 1, 2, ...,m. Therefore, from inequality

(6.16), we obtain Ax = Ay. From (6.14) and (As1), we get

|y (t)− x (t)|

=

∣∣∣∣∣y (t)− (ψ (t)− ψ (a))v−1

�̃Γ (v)
Ax − Iα;ψ

a+ f

(
t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)∣∣∣∣∣
≤

∣∣∣∣∣y (t)− (ψ (t)− ψ (a))v−1

�̃Γ (v)
Ay − Iα;ψ

a+ f

(
t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)∣∣∣∣∣
+

∣∣∣∣Iα;ψ
a+ f

(
t, y (t) ,

∫ t

a

h (t, σ, y (σ)) dσ

)
− Iα;ψ

a+ f

(
t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)∣∣∣∣
≤ ε

(ψ (b)− ψ (a))α

Γ (α + 1)
+
l1 + l2l3

Γ (α)

∫ τ

a

ψ′ (s) (ψ (t)− ψ (s))α−1 |y (s)− x (s)| ds.

Applying Lemma 1.18 with u (t) = |y (t)− x (t)| , v (t) = ε (ψ(b)−ψ(a))α

Γ(α+1)
and z (t) = l1+l2l3

Γ(α)
, we
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obtain

|y (t)− x (t)|

≤ ε
(ψ (b)− ψ (a))α

Γ (α + 1)

[
1 +

∫ t

a

∞∑
k=1

[l1 + l2l3]k

Γ (kα)
ψ′ (s) (ψ (t)− ψ (s))kα−1 ds

]

≤ ε
(ψ (b)− ψ (a))α

Γ (α + 1)

[
1 +

∞∑
k=1

[(l1 + l2l3) (ψ (b)− ψ (a))α]
k

Γ (kα + 1)

]

= ε
(ψ (b)− ψ (a))α

Γ (α + 1)
Eα ((l1 + l2l3) (ψ (b)− ψ (a))α) .

By setting

kf =
(ψ (b)− ψ (a))α

Γ (α + 1)
Eα ((l1 + l2l3) (ψ (b)− ψ (a))α) .

we obtain

|y (t)− x (t)| ≤ kfε. (6.17)

Therefore, the first equation of (6.1) is Ulam-Hyers stable.

Remark 6.1 Define φf : R+ → R+ by φf (ε) = kfε. Then, φf ∈ C (R+,R+) and φf (0) = 0.

Then inequality (6.17) can be written as

|y (t)− x (t)| ≤ φf (ε) .

Thus, the first equation of (6.1) is generalized Ulam-Hyers stable.

In the next, we introduce the following function

(As3) the function φ ∈ C ([a, b] ,R+) is increasing and there is a constant λφ > 0 such that

Iα;ψ
a+ φ (t) ≤ λφφ (t) , ∀t ∈ J.

Theorem 6.4 Assume that the hypotheses (As1), (As3) and condition (6.10) are satisfied.

Then, the first equation of (6.1) is Ulam-Hyres-Rassias stable.

Proof. Let any ε > 0. Let y ∈ C (J,R) be any solution of the inequality∣∣∣∣HDα,β;ψ
a+ y (t)− f

(
t, x (t) ,

∫ t

a

h (t, σ, y (σ)) dσ

)∣∣∣∣ ≤ εφ (t) , t ∈ J.

Then, proceeding as in the proof of Theorem 6.3. From Remark 1.1, for some continuous

function v such that |v (t)| < εφ (t), we get∣∣∣∣∣y (t)− (ψ (t)− ψ (a))v−1

$Γ (v)
Ay − Iα;ψ

a+ f

(
t, y (t) ,

∫ t

a

h (t, σ, y (σ)) dσ

)∣∣∣∣∣
≤ Iα;ψ

a+ |v (t)| ≤ εIα;ψ
a+ |φ (t)| ≤ ελφφ (t) , t ∈ J.
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Taking y ∈ C (J,R) as any solution of (6.15), and following same steps as in the proof of

Theorem 6.3,we get

|y (t)− x (t)|

≤ ελφφ (t) +
l1 + l2l3

Γ (α)

∫ t

a

ψ′ (s) (ψ (t)− ψ (s))α−1 |y (s)− x (s)| ds, t ∈ J.

By applying Corollary 1.19, we obtain

|y (t)− x (t)| ≤ ελφφ (t)Eα ((l1 + l2l3) (ψ (t)− ψ (a))α)

≤ ελφφ (t)Eα ((l1 + l2l3) (ψ (b)− ψ (a))α) .

By taking a constant

kφ, f = λφφ (t)Eα ((l1 + l2l3) (ψ (b)− ψ (a))α) .

We obtain

|y (t)− x (t)| ≤ kφ,fεφ (t) . (6.18)

Therefore, the first equation (6.1) is Ulam-Hyres-Rassias stable.

Remark 6.2 By putting ε = 1 in the inequality (6.18), we deduce that first equation of (6.1)

is generalized Ulam-Hyres-Rassias stable.

6.1.3 Examples

In this section, we consider some particular cases of the nonlinear fractional integro-

differential equation to apply our results in the study of existence and Ulam stabilities,

specifically, Ulam-Hyers and Ulam-Hyres-Rassias.

Consider the nonlinear fractional integro-differential equation of the form
HDα,β;ψ

a+ x (t) = f
(
t, x (t) ,

∫ t
a
h (t, σ, x (σ)) dσ

)
, t ∈ (a, b) ,

x (a) = 0, I2−v;ψ
a+ x (b) =

m∑
i=1

θiI
ηi;ψ
a+ x (δi) .

(6.19)

The following examples are particular cases of the fractional integro-differential equation

given by (6.19).

Example 6.1 Consider the fractional integro-differential equation given by (6.19). Taking

ψ (t) = log t, β → 0, a = 1, b = e, α = 3
2
, θ1 = 1

2
, θ2 = 1

10
, η1 = 1

4
, η2 = 5

2
, δ1 = 3

2
, δ2 = 2 and

f, h are continuous functions defined by

f

(
t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)
=

1

4
x (t) +

1

10

∫ t

1

1

σ exp (t2 − 1) + 4
x (σ) dσ,

h (t, σ, x (σ)) =
1

σ exp (t2 − 1) + 4
x (σ) .
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Then, the problem (6.19) reduce to the following HaD
3
2
,0;log t

1+ x (t) = 1
4
x (t) + 1

10

∫ t
1

1
σ exp(t2−1)+4

x (σ) dσ, t ∈ (1, e) ,

x (1) = 0, I
1
2

;log t

1+ x (e) = 1
2
I

1
4

;log t

1+ x
(

3
2

)
+ 1

10
I

5
2

;log t

1+ x (2) ,
(6.20)

which is nonlinear fractional integro-differential equation involving Hadamard fractional

derivative. In this case v = 3
2
. Set

f (t, x, y) =
1

4
x+

1

10
y, ∀x, y ∈ R.

For xi, yi ∈ R, i = 1, 2 and t ∈ [1, e], using the hypothesis (As1), we get

|f (t, x1, y1)− f (t, x2, y2)| ≤ 1

4
|x1 − x2|+

1

10
|y1 − y2| ,

and

|h (t, σ, x1)− h (t, σ, x2)| ≤ 1

σ exp (t2 − 1) + 4
|x1 − x2|

≤ 1

5
|x1 − x2| ,

thus, the assumption (As1) is satisfied with l1 = 1
4
, l2 = 1

10
and l3 = 1

5
We will check that

condition (6.10) is satisfied. Indeed

(k1 + k2 + k3) (l1 + l2l3 (b− a))

' (0.5 + 0.79 + 0.75)

(
1

4
+

1

50

)
' 0.55 < 1.

Then by Theorem 6.1, (6.20) has a unique solution on [1, e]. Further, by Theorem 6.3 we

conclude that the first equation of (6.20) is Ulam-Hyers stable with

kf =
1

Γ
(

5
2

)E 3
2

(
27

100

)
.

Define

φ (t) = log (t)
3
2 , t ∈ [1, e] .

Then, φ is continuous increasing function such that

I
3
2

;log t

1+ φ (t) =
1

Γ
(

3
2

) ∫ t

1

(
log

t

s

) 1
2

log (t)
3
2
ds

s

≤ 1

Γ
(

3
2

) ∫ t

1

(
log

t

s

) 1
2 ds

s

≤ 1

Γ
(

5
2

) log (t)
3
2 .

Therefore, for λφ = 1

Γ( 5
2)

and φ (t) = log (t)
3
2 , hypothesis (As3) is satisfied. Hence, by

Theorem 6.4 the first equation of (6.20) is Ulam-Hyres-Rassias stable.
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Example 6.2 Consider the fractional integro-differential equation given by (6.19). Taking

ψ (t) = t, β → 0, a = 0, b = 1, α = 5
4
, θ1 = 3, θ2 = 5, η1 = 1

4
, η2 = 1

2
, δ1 = 1

4
, δ2 = 1

2
and f, h

are continuous functions defined by

f

(
t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)
=

1

8
x (t) +

1

6

∫ 1

0

sin (t)

exp (t2) + 9

|x (σ)|
|x (σ)|+ 1

dσ,

h (t, σ, x (σ)) =
sin (t)

exp (t2) + 9

|x (σ)|
|x (σ)|+ 1

.

Then, the problem (6.19) reduce to the following RLD
5
4
,0;t

1+ x (t) = 1
8
x (t) + 1

6

∫ 1

0
sin(t)

exp(t2)+9
|x(σ)|
|x(σ)|+1

dσ, t ∈ (0, 1) ,

x (0) = 0, I
3
4

;t

0+ x (1) = 3I
1
4

;t

0+ x
(

1
4

)
+ 5I

1
2

;t

0+ x
(

1
2

)
,

(6.21)

which is nonlinear fractional integro-differential equation involving Riemann-Liouville frac-

tional derivative. In this case v = 5
4
. Set

f (t, x, y) =
1

8
x+

1

6
y, ∀x, y ∈ R.

For xi, yi ∈ R, i = 1, 2 and t ∈ [0, 1], using the hypothesis (As1), we get

|f (t, x1, y1)− f (t, x2, y2)| ≤ 1

8
|x1 − x2|+

1

6
|y1 − y2| ,

and

|h (t, σ, x1)− h (t, σ, x2)| =
∣∣∣∣ sin (t)

exp (t2) + 9

(
|x1|
|x1|+ 1

− |x2|
|x2|+ 1

)∣∣∣∣
≤ 1

exp (t2) + 9

(
|x1 − x2|

(1 + |x1|) (1 + |x2|)

)
≤ 1

10
(|x1 − x2|) ,

thus, the assumption (As1) is satisfied with l1 = 1
8
, l2 = 1

6
and l3 = 1

10
We will check that

condition (6.10) is satisfied. Indeed

(k1 + k2 + k3) (l1 + l2l3 (b− a))

' (1.51 + 0.14 + 0.88)

(
1

8
+

1

60

)
' 0.36 < 1.

Then by Theorem 6.1, the (6.21) has a unique solution on [0, 1]. Moreover, by Theorem 6.3

we conclude that the first equation of (6.21) is Ulam-Hyers stable with

kf =
1

Γ
(

9
4

)E 5
4

(
17

120

)
.
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Define

φ (t) = t
5
4 , t ∈ [0, 1] .

Then, φ is continuous increasing function such that

I
5
4

;t

0+φ (t) =
1

Γ
(

5
4

) ∫ t

0

(t− s)
1
4 t

5
4ds

≤ 1

Γ
(

5
4

) ∫ t

0

(t− s)
1
4 ds

≤ 1

Γ
(

9
4

)t 54 .
Therefore, for λφ = 1

Γ( 9
4)

and φ (t) = t
5
4 , hypothesis (As3) is satisfied. Hence, by Theorem

6.4 the first equation of (6.21) is Ulam-Hyres-Rassias stable.

Example 6.3 Consider the fractional integro-differential equation given by (6.19). Taking

ψ (t) = t, β → 1
2
, a = 0, b = 1, α = 7

4
, θ1 = 3, θ2 = 5, η1 = 1

4
, η2 = 1

2
, δ1 = 1

4
, δ2 = 1

2
and f, h

are continuous functions defined by

f

(
t, x (t) ,

∫ t

a

h (t, σ, x (σ)) dσ

)
=

1

9
x (t) +

1

30

∫ t

0

cos (t)

exp (t) + 5

|x (σ)|
|x (σ)|+ 1

dσ,

h (t, σ, x (σ)) =
cos (t)

exp (t) + 5

|x (σ)|
|x (σ)|+ 1

.

Then, the problem (6.19) reduce to the following HD
7
4
, 1
2

;t

0+ x (t) = 1
9
x (t) + 1

30

∫ t
0

cos(t)
exp(t)+5

|x(σ)|
|x(σ)|+1

dσ, t ∈ (0, 1) ,

x (0) = 0, I
1
8

;t

0+ x (1) = 3I
1
4

;t

0+ x
(

1
4

)
+ 5I

1
2

;t

0+ x
(

1
2

)
,

(6.22)

which is nonlinear fractional integro-differential equation involving Hilfer fractional deriva-

tive. In this case v = 15
8

. Set

f (t, x, y) =
1

9
x+

1

30
y, ∀x, y ∈ R.

For xi, yi ∈ R, i = 1, 2 and t ∈ [0, 1], using the hypothesis (As1), we get

|f (t, x1, y1)− f (t, x2, y2)| ≤ 1

9
|x1 − x2|+

1

30
|y1 − y2| ,

and

|h (t, σ, x1)− h (t, σ, x2)| =
∣∣∣∣ cos (t)

exp (t) + 5

(
|x1|
|x1|+ 1

− |x2|
|x2|+ 1

)∣∣∣∣
≤ 1

exp (t) + 5

(
|x1 − x2|

(1 + |x1|) (1 + |x2|)

)
≤ 1

6
(|x1 − x2|) ,
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thus, the assumption (As1) is satisfied with l1 = 1
9
, l2 = 1

30
and l3 = 1

6
We will check that

condition (6.10) is satisfied. Indeed

(k1 + k2 + k3) (l1 + l2l3 (b− a))

' (3.07 + 0.5 + 0.62)

(
1

9
+

1

180

)
' 0.49 < 1.

Then by Theorem 6.1, the (6.22) has a unique solution on [0, 1]. Further, by Theorem 6.3

we conclude that the first equation of (6.22) is Ulam-Hyers stable with

kf =
1

Γ
(

11
4

)E 7
4

(
7

60

)
.

Define

φ (t) = t
7
4 , t ∈ [0, 1] .

Then, φ is continuous increasing function such that

I
7
4

;t

0+φ (t) =
1

Γ
(

7
4

) ∫ t

0

(t− s)
1
5 t

7
4ds

≤ 1

Γ
(

7
4

) ∫ t

0

(t− s)
3
4 ds

≤ 1

Γ
(

11
5

)t 74 .
Therefore, for λφ = 1

Γ( 11
5 )

and φ (t) = t
7
4 , hypothesis (As3) is satisfied. Hence, by Theorem

6.4 the first equation of (6.22) is Ulam-Hyres-Rassias stable.
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Conclusion and perspective

In this thesis, we have studied some qualitative properties such as existence, uniqueness and

stability of solutions for various classes of nonlinear fractional differential equations and in-

clusions involving different types of fractional derivatives like Riemann-Liouville, Caputo,

Caputo-Hadamard, Hilfer and ψ-Hilfer. The results are based on the argument of the fixed

point theorems. Some appropriate fixed point theorems have been used, in particular, Banach

contraction, Schaefer’s fixed point theorem, Schauder’s fixed point theorem, Krasnoselskii’s

fixed point theorem, nonlinear alternative of Kakutani maps, Covitz and Nadler fixed point

theorem and Mönch’s fixed point theorem combined with the technique of measures of non-

compactness.

For the perspective, it would be interesting to extend the results of the current thesis by

considering the applied side of fractional differential equations due to their importance in the

study of most natural phenomena and epidemics like transmission dynamics of COVID-19 [94,

95], Cancer [31], Langevin equations [3], pantograph equations [44], Mathieu equations [93],

etc. Also, we will use the some powerful numerical methods such as Laplace transform and

Adomian’s decomposition method, Adams Bashforth method to find approximate solutions

for these applications.
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