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Résumé

Le travail présenté dans cette thése est consacré a I'étude de I'existence et
la multiplicité de solutions positives non triviales d'un systeme de type elliptique
fractionnaire singulier associé a 'opérateur p-Laplacien fractionnaire dans un do-
maine borné de RY. Les résultats sont obtenus en utilisant certaines techniques
variationnelle, la variété de Nehari, la méthode des fibering (EM), et le principe
variationnelle d’Ekeland.

Mots-clés: Opérateur fractionnaire, la variété de Nehari, méthode des fiber-

ing, principe d’Ekeland.



Abstract

The work presented in this thesis is devoted to studying the existence and
multiplicity of non-trivial positive solutions of a singular fractional elliptic type
system associated with the fractional p-Laplacian operator in a bounded domain
RY. The results are obtained using some of the variational techniques, Nehari
Manifold, Fibering method (EM), and applying the Ekeland variational principle.

Keywords: Fractional operator, Nehari Manifold, Fibering method, Ekeland’s

variational principle.
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Notation

To achieve the understanding of what will follow, we give an interpretation

of the notations and abbreviations used in this thesis.

0 Bounded domain in R¥.

RN Euclidean space provided with its usual denoted norm ||.||.
RM\Q complementary to €.

E F Banach space with dual £’

(.,.): Ex E' — R Dual pairing, occasionally also used to denote scalar product in R".

pi Fractional critical Sobolev exponent.

A Energy functional.

.1l Norm in F.

IRIP™ Induced norm in F'.

— Weak convergence.

— Strong Convergence .

a.e almost everywhere.

c(92) Set of continuous functions on 2.

LP(Q2) Standard Lebesgue space on (2 of exponent p.

L>(Q) Standard Lebesgue space on €2 of exponent co.

We=r(Q) Fractional Sobolev space.

e/l 1o e Norm of u on L*(Q2) defined by [Jul| .y = (/, [ul” da:)% :
[ull oo ) Norm of u on L*(£2) defined by ||ul| ;) = €sssup,eq [u(z)].



Introduction

In this thesis, we focus on the variational case to prove the existence and
multiplicity of nontrivial positive solutions for singular fractional elliptic system
via the Nehari manifold, fibering method, and applying Ekeland’s variational
principl.

We study the existence and multiplicity of nontrivial positive solutions for the

following singular fractional elliptic system

(=AY u=a(x)u™ + \f(x,u,v) in Q,

(P (—A)?

L,V =0(x)v™7 + Ag(x,u,v) in €,

u=1v=0onRV\Q.

Where ( is a smooth bounded set in RV, N > ps with s € (0, 1), A is a positive
parameter and 0 < v < 1 < p < r < pf — 1, where p! = NNTI;S is the fractional
critical Sobolev exponent. Where « and b are positive functions of class L>(12).
Let f,g € C(Q2 x R x R, R) be positively homogeneous of degree (r — 1) that is

f(z, tu, tv) = "1 f(x,u,v),
(0.0. 1) Vit > 0,Y(z,u,v) € 2 xR xR: ( ) ( )

gz, tu, tv) = " g(x,u,v).
Our aim in the present work is to show how the variational method can estab-
lish the existence and multiplicity of nontrivial positive solutions combine with
Nehari Manifold, fibering maps introduced by Pohozaev (i.e., maps of the form

t — Jx(tu) where J, is the Euler function associated with the equation) and
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Ekeland’s variational principle, they gave an interesting explanation. For more
detail, we refer the reader to see [2,4,5,11].
This method has been applied to partial differential equations, systems non-
linear, semilinear and quasilinear involving Laplacian and P-Laplacian fractional
among the many studies have been published, we refer the reader to see [1,9,17,19,20,32].
At this point, we briefly recall literature concerning related singular problems

and systems. In [23], K. Saoudi & A. Ghanmi studied a singular problem

(A u= " 4 \f(2,u) in Q,

u =0 on RV\Q,

where Q € RY, N > 2 be a bounded smooth domain, a € L*°(2), A is a pos-

itive parameter, p > 2 such that N > psand 0 < v < 1 < p < r < p! where

* _ _Np
pS—prs

and r is the homogeneity degree of the function f. Under appropriate
assumptions on the function f, the authors employ the method of Nehari mani-
fold combined with the fibering maps in order to show the existence of 7, ., such
that for all\ € (0,7,,,,). Then, the problem has at least two positives solutions.

The equations of this type have growing interest since they arise in many
fields of sciences, physical phenomena, probability, stochastic calculus, and fi-
nance. For more details, one can see [6,7,16,22].

Moreover in [2] Adimurthi and Giacomoni proved the multiplicity of posi-
tive solutions for a singular and critical elliptic problem in R2. In [15,26] Mo-

hammed, Coclite and Palmieri established the existence of Positive solutions
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of the p-Laplace equation with singular nonlinearity. In [13] Caffarelli and Sil-
vestre studied the fractional Laplacian through extension theory. In [14] Chen,
Hajaiej and Wang, established the existence, non-existence and uniqueness of
positive weak solutions of the semilinear fractional equation.

Some other results dealing with the existence of solutions concerning the sin-
gular problem has been treated in Ghanmi, Saoudi and Kratou (see[24,27,28])
they studied the existence and multiplicity of solutions of the semilinear singular
elliptic equations involving the fractional Laplace and fractional p-Laplacian op-
erator using Nehari manifold, the fibering method and applying Ekeland’s varia-
tional principle with boundary conditions displaying more interests on semilinear
problems involving fractional Laplace operator, see for instance [29-30] and the
references therein.

In the first chapter, we give a brief some basic notations and preliminaries
about the subject used in subsequent chapters.

In the second chapter, we present everything devoted to the theory of Nehari
manifold, the fibering method, and Ekeland’s variational principl.

In the third chapter, we give the main results of this thesis.
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Chapter 1. Preliminaries

In this chapter, we briefly recall the essential definitions on space of contin-
uous functions, LP(£2) spaces , Sobolev and fractional Sobolev spaces, will be
useful to us later and we let us give, at the same time, the critical points theory,
and recall the Lagrange multiply theorem, Implicit function theorem, Maximum

principle. The chapter ends with some definitions.

1.1 Functional spaces

1.1.1 Space of continuous functions

Definition 1.1.1. Let Q C RY be an open and u : Q — R a function. We say

that u is continuous if

Vg € Q,Ve > 0,36 > 0,

such that

r € B |x— x| <= |u(z) —uly)| <e,
where the norm in RY is the Euclidean norm.
Definition 1.1.2. Let 2 be an open in R. We define :
C(92) :={u: Q — R uis continuous} ,

C () := {u: Q — R uis continous and extends continuously to Q} .
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Let

u +— sup |u(z)| is a norm.
e

1.1.2 [P(Q)) Spaces
Let pc Rwith 1 < p < oo and 2 C RY, we set
LP(Q) = {f:Q — R\ fis measurable and [ |f|"du < oo},
we define the L? norm of f by
1/p
e =171, = (= [ 1)
Q
If p = oo, the space L™ (2) satisfy
L*(Q)={f:Q — R/ fis measurable and 3C > 0 such that |f (z)| < C a.e on Q},
we define the L*° norm of f by
11l = Ifll,e = inf {C5]f] < C ae on O},

L*> (Q) is a Banach space.
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If p = 2, the space L?(Q) is a Hilbert space for scalar product

(f,g9) = ({f(.’ﬂ)g(x)dx

We denote by L}, (©) the set of locally integrable functions on €2 and we write

loc
L,.(Q) = {u:ue L'(K) for all compact K of Q} .
Remark 1.1.1. o - If f € L™ (Q) then we have |f| < ||f|;~ a.e. on Q.

e [ (Q)C L.(Q)foralll <p<oo.

o (LP (Q), H.Hp> is Banach space for 1 < p < oo, separable for 1 < p < oo

and reflexive for 1 < p < oc.

Theorem 1.1.1. [10] (Holder’s inequality)

Let 1 < p < oo, we denote by p' the conjugate exponent,
1 1
p P

Assume that f € L (Q) and g € L* (Q), then fg € L' (Q) and

/Q 19l < 1f o 9l
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Lemma 1.1.1. (Bregis-Lieb’s).[11] Let 2 be a bounded open in R" and 1 <

p <400, (fu)n — fae. in LP(Q)), then

feP(Q)and [|fI; = [Ifall; = I1fn = fI + o(1).

1.1.3 Sobolev Space W'2(Q)

Let Q Cc RY be an open set and let p € R with 1 < p < 0.

Definition 1.1.3. The Sobolev space W'*(Q) is defined by

WP (Q) = {u € LP(Q) : g1, ..., gn € LP(Q) such thatfuggo = —[gip Vo e CX(Q), Vi=1,N }
Q 0

7

We set

H'(Q) = W2(Q).

For uw € W?(Q) we define % = g;,and we write

Vu—gradu—(au Ou au).

8561 ’ 8372’ o 8LEN
The space W'(Q) is equipped with the norm

ou
8@

N
lellwre = [l + 22
i=1 Lp

Proposition 1.1.1. W?(Q) is a Banach space for every 1 < p < co. WH?(Q)

is reflexive for 1 < p < oo, and it is separable for 1 < p < .




Chapter 1. Preliminaries

Corollary 1.1.1. Let 1 < p < co. We have

o WHP(Q) C LP" (), where I% = % —w fp<N,
o WHP(Q) C LYQ), Vq € [p, +00), if p= N,
o WLP(Q) C L=(Q),if p> N,

and all these injections are continuous. Moreover, if p > N we have, for all

u € WHP(Q),
u(z) = u()] < Cllullyrs |z —yl* ae z,y €,

with « = 1 — (N/p) and C'is a constant depends only on 2, p, and N. In particular
Wr(Q) c C(Q).

Theorem 1.1.2. [10] (Rellich-Kondrachov)
Suppose that € is bounded and of class C'. Then we have the following compact

injections:

o WhP(Q) C LYQ), Vg € [1,p")W'P(Q) C LUQ), Vg € [1,p*), where - =

o WHP(Q) C LU(Q), Vq € [p, +00), if p= N,

o W'(Q) C C(Q), Vg € [p, +00), if p > N.

In particular, WP(Q2) C LP(Q), with compact injection for all p (and all N).
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1.1.4 Fractional Sobolev spaces WW*? ()

Let 2 be a smooth bounded domain in RY, N > ps with s € (0, 1), we introduce

fractional Sobolev space

WP (Q) = {u e Ir(@): U U)o LP(Q)} ,

v —y| 7

with the norm

@) — u(y)P
sy = lllomiey + ( [ W= g,

|z — 9|

=

Consider the space

X = {U:RNﬁR,uELP(Q) andMeLp(A) ,
lz—y|l v

with the norm

1
() — u(y) "\ *
lully =l +( / Ju() = u@w)"
X Lr(Q) A |x_y|N+ps

Proposition 1.1.2. The space W*P?({2) is of local type, that is, for every u in

W#P(Q) and for every ¢ € D(X2), the product pu belongs to W*P(Q).
Proposition 1.1.3. The space D(RY) is dense in W*?(2).

Theorem 1.1.3. [10]

Let s €]0,1] and let p €]1, co|. We have

e If sp < N, then WP(RN) — L4(RY) for every ¢ < Np/(N — sp).
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o If N = sp, then W*P(RY) — LI(RY) for every q < cc.

e If sp > N, then WP(RY) — L°°(RY) and, more precisely,
Wr(RN) — Oy VP (RY),

Proposition 1.1.4. Let s € [0, 1] and let p > 1. Let 2 be an open set that admits
an (s, p)-extension; then D(Q), the space of restrictions to § of functions in D(RY),

is dense in W*P(RY).

Corollary 1.1.2. Let s €]0,1[ and let p €]|1,00[. Let 2 be a Lipschitz open set.

We then have:

e If sp < N, then W*P(Q) — L%(Q) for every ¢ < Np/(N — sp).
o If N = sp, then W*P(Q) — L9(Q) for every q < cc.

e If sp > N, then W*?(Q)) — L>(2) and, more precisely,
WP(Q) — CNP(Q).

Theorem 1.1.4. [10]
Let ) be a bounded Lipschitz open subset of RY. Let s € [0, 1], let p > 1, and let

N > 1. We then have

e If sp < N, then the embedding of W*?(Q2) into L* is compact for every

k < Np/(N — sp).
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e If sp = N, then the embedding of W*P(Q)) into LY is compact for every
q < .
e If sp > N, then the embedding of W**(Q) into Cy"*(Q) is compact for

A <s—N/p.

1.2 Convergence criteria

Theorem 1.2.1. [10] ( Lebesgue’s dominated convergence )

Let (f,,) be a sequence of functions in L'(Q) that satisfy

o fu(v) — f ae onQ,

o There is a function g € L'(Q) such that for all n,
|fu(@)| < g(x), a.e.on Q.

Then

feL'(Q) and ||fy— fll0 — 0.

Theorem 1.2.2. (Vitali’s convergence theorem)
Let f1, fo,...be LP-integrable functions on some measure space, for 1 < p < oc.

The sequence { f,,} converges in LP to a measurable function f if and and only if

e The sequence { f,} converges to f in measure.

e The functions {|f,|" }are uniformly integrable.
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e For every ¢ > 0, there exists a set Eof finite measure, such that [ |f,|" <
Ec

efor all n.

Theorem 1.2.3. [10] Let (f,),cy be a sequence in L (2) and f € LP (2) such

that

V= £ll, — 0.

Then, there exist a subsequence ( f,, ),y and a function h € L? (Q2) such that

o [ (x) — f(z)a.eonQ,

o |fn, ()| < h(x)VE, a.e.on .

Lemma 1.2.1. [10] (Fatou’s Lemma)

Let (f,) a sequence of functions in L'(Q) that satisfy

e Foralln, f, > 0a.e.

e sup [ f, < oco.

e For almost all x € Q we set f(z) = liminff,(z) < +oo. Then f € L' (Q)

n—

and

n—oo

/Q f(z)dz < lim inf /Q Fo(@)dz.
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1.3 Maximum principle

A very large number of results of regularity, uniqueness or existence of solu-
tions in second order elliptical problems can be established using (one might say
only) the maximum principle.

Let 2 be an open set of RY, a(-) := (a;;(*))1<ij<n a matrix, b(-) := (b;(*))1<i<n
a vector field and ¢ a function.

We consider second-order L elliptic differential operators of the form

N N
(1 3. 1) Lu:=— Z aij&ju + Z bzdu + cu.
=1

1,j=1

As a general rule, we will suppose that the matrix a(.) satisfies the condition of
coercivity (or ellipticity):

p

Va > 0,¥s € RN, p.p. on Q,

(1. 3. 2)

N 2
a(.)s.s = > ai(w)s;si > als]”.
\ ig=1

Where |¢| denote the Euclidean norm of < in R.

Theorem 1.3.1. [10] (Classical maximum principle)
Let ) be a connexe bounded open, and L as in (1. 3. 1). We assume ¢ > 0, that

(1. 3. 2) is satisfied and that a;;,b;,c € C(Q). If u € C?(Q) NCY(Q) verifies Lu < 0
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then we have

supu(z) < sup ut (o), or ut (o) = max(u(c),0).
e o€

Theorem 1.3.2. [10] (Principle of the Hopf maximum)
Let Q2 be a connexe bounded open, and L as in (1. 3. 1). We assume ¢ > 0, that
(1. 3. 2) is satisfied and that a;;,b;,c € C(Q). If u € C?(Q)NCY(Q) verifies Lu < 0

and if u attains a maximum > 0 inside €, then u is constant over ).

Definition 1.3.1. (Directional derivative)

Let w be a part of a Banach space X and F': w — R a real valued function.
If w € wand z € X we have u + tz € w, we say that F' admits (at the point u) a

derivative in the direction z if the limit

Fu+tz) — F(u)

; , for all ¢ > 0 small enough.

lim
+
t—0

We will denote this limit F(u).

The Gateaux differential generalizes the idea of a directional derivative.

Definition 1.3.2. (Gateaux derivative)
Let w be a part of a Banach space X and F : w — R. If u € w, we say that

F is Gateaux differentiable in wu, if there exists [ € X' or F(u + tz) for t > 0 small
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enough. The Gateaux differential is defined

Flu+tz) — F(u)

l,2) =1i
(1, 2) im ; ,

+
t—0

where F'(u) := .

Definition 1.3.3. (Frechet derivative)
Let X be a Banach space, w an open space in X and F a function. If u € w,
we say that F is differentiable (or derivable) in u (in the sense of Frechet) if there

exists | € X', such that
Yo ew F(v) — F(u) = (l,v —u) + o(v —u).

If F is differentiable, [ is unique and we denote by F'(u) := [. The set of differen-

tiable functions of w — R will be denoted by C'(w, R).

1.4 Notions on operators

Let (X, ]|.]|) be a real Banach space and let X’ be topological dual.

Definition 1.4.1. Let A: X — X', we say that

e A is bounded by the image by A of any born of X is bound of X.
e Continuous if || Az, — Az||y, — 0 when ||z, — x|y — 0.
e Compact if A(By) is relatively compact in X', where By denotes the ball

unit in X.
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e Coercive if

e Monotonous if

(Au — Av,u — v) >0, Yu,v € X with u # v.

e Strictly monotonous if

(Au — Av,u —v) >0,Yu,v € X with u # v.

e Bounded if the image by A of any bounded of X is a bounded of X'.

e Semi-continuous (continuous from strong X in X'weak)

if u, — u when oo implies Au,, — Au when n — oc.

e Strongly continuous

if u, — u when oo implies Au,, — Au when n — oc.
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Chapter 2. Nehari manifold and Fibering method

2.1 Introduction

The aim of this chapter is to present some variational methods used in nonlin-
ear analysis. Apply a variational method means, that rather than directly search a
solution of a PDE or a Hamiltonian system, we consider the equivalent system of
finding a critical point of a functional. We begin by presenting a unified approach
and a generalization to the method of Nehari manifold for functionals that have

a local minimum at O of finding positive solutions and multiple solutions.

2.2 Fractional p-Laplacian operator

Let (—A), u be the fractional p-Laplacian operator defined on smooth func-

tions by

u(e) —u@)" (o) ~uw)

(—A)? u = 2lim
P =0 JRV\B. () |z —y|

S

If p = 2, (—A), coincides with the usual fractional Laplacian operator (—A)’,

defined as follows

(A ulz) = Clms)pv. [ D=8 (0,

BN ’flj _ y’N+2s

~ Cstm [ M) gy,

N+2s
+
0" pN\B.(2) |7 — ¥

Here P.V. is a commonly used abbreviation for “in the principal value
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sense” (as defined by the latter equation) and C'(n, s) is a dimensional

constant that depends on n and s, precisely given by

C(n.s) = (f 1_,—N“)d<) -

RN ‘§1

2.3 Critical point theory

Definition 2.3.1. (Homogeneous function of degree k)
Let f be a function of n variables defined on a set S for which (txy,...,tz,) € S

whenever t > 0 and (tzy, ...,tx,) € S. Then f is homogeneous of degree k if
fltwy, ... tw,) =t f(zy, ..., 2y) for all (a1, ...,x,) € S and all t > 0.

Definition 2.3.2. (Variationnal system)

In general, we distinguish two types of variational elliptical systems

(1) Lagrangian system: where the non-linearity is the gradient of a function

H

OH (z,u,v)

M :f(x,u,v) anda— :g(x,u,v).
(%

ou
(2) Hamiltonian system: where ther exist H verifie

OH (x,u,v)
ou

OH (x,u,v)

5 = f(x,u,v).

=g(x,u,v) and
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Let E be a reflexive Banach space, J, € C'(E,R). There are several notions

of derivatives for functions defined on Banach spaces.

Definition 2.3.3. (Critical point)
A point (u,v) € E'is critical if J{(u,v) = 0, otherwise (u, v) is regular. If Jy(u, v)
= c¢ for some critical point (u,v) € E of J,, the value c is critical, otherwise c is

regular.

Lagrange multiplier

Let £ be a Banach space, ® € C*(E, R) is a set of constraints:

N={veE:d(v)=0},

Definition 2.3.4. we suppose that for all uw € N, we have ®'(u) # 0. If J
€ C1(E,R) we say that c € R is critical value of J on N, if there exists u € N, and
A € R such that

J(u) = cand J'(u) = A\®'(u).

The point u is a critical point of J on N and the real \ is called the Lagrange
multiplier for the critical value c (or the critical point u).

When X is a functional space and the equation J'(u) = A®'(u) corresponds to
a partial derivative equation, we say that J'(u) = A®'(u) is the Euler-Lagrange
equation (or the Euler’s equation) satisfied by the critical point u on the constraint

N.
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Theorem 2.3.1. Let (F, ||.|) be a Banach space, 2 an openin E and J : ! — R
a differentiable function on Q and ® € C'(Q,R") of components ¥, ..., d,. Given

a point in R", we set K = ®~!(a) which we assume not empty, if at a point uy € K
J(uo) = inf J(u),

and if moreover the differential ®'(ug) € L(E,R") is surjective then there exist real

numbers A1, ..., A, for which

2.4 The Nehari Manifold

Nehari has introduced a variational method very useful in critical point theory
and eventually came to bear his name. He considered a boundary value problem
for a certain nonlinear second-order ordinary differential equation in an interval
la, b] and proved that it has a nontrivial solution which may be obtained by con-
strained minimization. To describe Nehari’s method in an abstract setting, let F
be a Banach space and J € C'(E, R) a functional. The Frechet derivative of J at
u, J'(u), is an element of the dual space E’. Suppose u # 0 is a critical point of

J, i.e., J (u) = 0. Then necessarily v is contained in the set

N = {u e B\ {0} : <J’(u),u> - o} .
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So N is a natural constraint for the problem of finding nontrivial critical points
of J(u) by minimizing the energy functional J on the constraint N is called the
Nehari manifold. Set

¢ = inf J(u).
ueN

Under appropriate conditions on J one hopes that ¢ is attained at some ug € N/

and that v is a critical point.

2.5 Fibering method

At the end of the 1990s, the fibering method or the decomposition method
introduced by Pohozaev for investigating some variational problems, and its ap-
plications to nonlinear elliptic equations.

Let X and Y be Banach spaces, and let A be an nonlinear operator acting

from X to Y. We consider the equation
(2.5.1) A(u) = h.

The fibering method is based on representation of solutions of equation (2. 5. 1)
in the form

u = tu.

Where t is a real parameter, ¢ # 0 in some open J C R. Now, we give a complete

description of the fibering method, we begin by defining the fibre map of the
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following

#(t) : RT — R such that ¢(t) = J(tu),

then, we calculate ¢'(t), ¢”"(¢) the first and second derivative of ¢(¢). We decom-
pose N into three parts N, N, and N corresponding respectively, to local

minima, local maxima and points of inflection of ¢ defined as follows

NT = {ueN:¢"(1) >0},

N™ = {ueN:¢"(1) <1},

N = {ueN:¢"(1)=0},
and it is ¢”(1) which is used for these definitions, since it is clear that if « is a
local minimum for J, then « has a local minimum at ¢ = 1.

The method of decomposition (F. M) makes it possible to find solutions to the

noncoercive problems and in the absence of the continuity of the operator A.

Example 2.5.1. We consider the following problem:

—Au(z) = f(z,u(x) in Q,
(P)

u(xr) =0onz € 0.
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Let E = W,?(Q) be the Banach space. The energy functional J : E — R corre-

sponding to the problem (P) defined as follows

() = % /Q V() de — /Q Fla, u(z))dz.

Where F(z,u(xz)) = [} f(z, s)dz. Obviously, the functional J may not be bounded
on all the space but can be on some parts of E (called the Nehari manifold N)

defined as follows
N = {u €eFE: <J,(u),u> :O}.

Theorem 2.5.1. Let u € E\ {0} and t > 0. Then tu € N if and only if

where

Proof. By definition, one has

Therefore
6,0) = /() u) = 5 (7 (b))

If ¢/,(t) = 0, then (J'(tu),tu) = 0 i.e tu € N. In other terms, the points of

the manifold N correspond to the stationary points of the maps ¢,(¢). On the
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other hand, we decompose N into three parts N*, N—, NV corresponding to local
minima, local maxima and points of inflection of ¢, (¢). For that, we calculate the

second derivative of ¢, ()

PL(t) = (J(tu),u)
= [IV(tu)||Vu|dz — X[ f(z, tu)udx
& Q

= t[|Vu|’dz — \[ f(x, tu)udz,
Q Q
So

¢, () = ({\VUFdI—)\S{(f;(x,tu)u)ud:v

= [|Vul*dz — X[ f(z, tu)u?dz.
Q 0
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Thus, we conclude A", N, and AV 'defined as follows

AN = {u € N, [Vl = A s = 0} |
Nt = {u e N,({(Wuf — \(f! (2, u)u?)dx > o} ,

N™ = {u eN, [(IVul’ = M fi(x,u)u®)dx < O} :
Q
and it is ¢, (1) which is used for these definitions, since it is clear that if u is a
local minimum for J, then u has a local minimum at¢=1. m

Theorem 2.5.2. Let u € N. Then

o (1) ¢,(1) =0,

we Ntif g, (1) >0,
we N if ¢, (1) <0,
ue Nif ¢, (1)

0.

Proof. Let u € N if and only if

<J’(u),u> —0,

which is equivalent to : ¢/,(1) = 0 hence ().

For (ii), there are three cases:
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case 1 : w € N't, then

f(|Vu|2 — M (2, u)u?)dz > 0
Q

which is equivalent to ¢, (1) > 0.
case 2 :u € N, then

S{(\VU\Q — Az, u)u?)dz < 0

which is equivalent to ¢, (1) < 0.

case 3 : u € N, then

J(Vul* = Moz, u)u®)dz = 0
Q

which is equivalent to ¢, (1) = 0. m
The following theorem attests that the minimizers of J on the manifold N

are true, in general, critical points of .J.

Theorem 2.5.3. Suppose uq is a local minimiger for J on N and uy ¢ N°.

Then

J’(Uo) =0.

Proof. According to Lagrange’s multiplier theorem

In e R: J'(ug) =1 (uo),
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S0
(J'(uo), uo) = n (€ (uo), uo) -

The constraint ¢ defined as follows

E(w) = (J'(u),u) = [(IVul* = Af (2, u)u)da.

Q

For all ug € N, we have

(J'(uo), u0) = 1 (€' (uo), uo) = 0.

Therefore
S{(\VUOF — Mz, up)ug)dz = 0,
then
[(IVuo|* dz = X[ f(x, uo)uod,
Q Q
thus

(€' (up), ug) = hf(2 \Vuo|> = Af (@, up)ul)de — Ag{f(a:, ug)ugdx

= [(IVuol® = Mi(x, uo)ud)dw
Q

= ¢u,(1) #0.
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Which implies that » = 0, then J'(up) = 0. m

2.6 Ekeland’s variational principle

In general, it is not clear that a bounded and lower semi-continuous func-
tional £ actually attains its infimum. The analytic function f(z) = arctanz, for
example, neither attains its infimum nor its supremum on the real line.

A variant due to Ekeland of Dirichlet’s principle, however, permits one to
construct minimizing sequences for such functionals E whose elements u,, each
minimize a functional £,,, for a sequence of functionals { £,,} converging locally

uniformly to E.

Theorem 2.6.1. [31] Let E be a reflexive Banach space with norm ||.||, and
J : E — R s coercive and weakly lower semi-continuous on F , that is, suppose the

following conditions are fullfilled:

o J(u,v) = oo as [|(u,v)]| = oo, (u,v) € E.
e For any (u,v) € E, any sequence (u,, v,) in £ such that (u,, v,) — (u,v)
weakly in E there holds

J(u,v) < liminfJ(u,,v,).

n—oo
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e Then J is bounded from below on F and attains its infimum in £ such

that

J(ug, vo) = 1%fJ.

Theorem 2.6.2. [31] Let M be a complete metric space with metric d, and let
J : M — RU{+o0} be lower semi-continuous, bounded from below, and # oc.Then

forany €,0 > 0, any u € M with
J(u) < i]r\14fJ(u) +¢,
there is an element v € M strictly minimizing the functional

Jo(w) < J(w) + gd(v,w).

Moreover, we have

J(v) < J(u), d(u,v) <4.
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Chapter 3. Singular fractional elliptic system

3.1 Introduction

In this chapter, we apply the Nehari Manifold, Fibering method, and Eke-
land’s variational principle to establish the existence and multiplicity results of
nontrivial positive solutions for the system (p,). We consider the following sin-

gular fractional elliptic system

(=AY u=a(x)u™" + Af(z,u,v) in Q,

p

(P)) (=AY v =">0b(z)v™7 + Ag(x,u,v) in Q,

p

u=1v=0onRV\Q.
\

Where () is a smooth bounded set in RY, N > ps with s € (0,1), A is a positive

Np

& is the fractional
s

parameter and 0 < v < 1 < p < r < pf — 1, where p! =

critical Sobolev exponent. Where a and b are positive functions of class L>°((2).

We assume there exists a function H : Q x R x R — R satisfying

H, (u,v) = f (u,v) and H, (u,v) = g (u,v).

From (0. 0. 1), we can easily deduce that H is homogeneous of degree » which

satisfies the following assumptions
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H:OxRxR—>R

H(x, tu,tv) = t"H(z,u,v),t >0,
rH(z,u,v) = uf(z,u,v)+vg(x,u,v) (Euler identity),

|H(z,u,v)] < K(lu|"+|v|"), for some constant K > 0. (3.1.1)

(3.1.2) H*(z,u,v) = max(+H (z,u,v),0) # 0 for all (u,v) # (0,0).

Let A = R2V\((RM\Q) x (R¥\Q)), X denote the usual space defined as

follow X, denote the usual space define as follow
={ueX:u=0ae inR"\Q},

with the norm

hSA

1 lu(z
Jull, = (7w 0)? = [ N+,,s lu(z) — w4},

where

s - [ = vl ) (ula) — ) (@) = 20)
E

y’N-l—ps
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Setting £ = X, x X, a reflexive Banach space, with the norm

— (T(u,u) + T(v,v))7 ,

RS

()l = (lullf, + llvl%,)

where y, , is the best Sobolev constant of the embedding from X, into L*:(Q)

given by

p
(3. 1. 3) )y, = inf (||U||XO) '

ueXo \ [l Lo

Now, we give the definition of the weak solution.

3.2 Main results

Let us start by defining the notion of weak solution of the system (P).

Definition 3.2.1. (Weak solution)We say that (u,v) € E is a weak solution of

system (P,) if for every (z,w) € FE we have

T(u,z)+ T(v,w) = /Q (a(z)u™"zdz + b(z)vw) dx

—I—/\/ (zf(z,u,v) + wg(z,u,v))de, (3.2.1)
Q
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where

s = [ 1) =ly ) (o) — ul) @) = 2w) )

‘ y‘N—FpS

o) /|U<x>_U@)\p—z(v@)_U@))(w(@_w@))dmy

|{L‘ . y|N+ps

The following theorem show the existence and multiplicity of positive nontrivial

solutions to the system (p,) for all A € (0,T).

Theorem 3.2.1. Suppose that 0 < v < 1 < p < r < pt—1 and the assumptions
(0.0.1) — (3. 1.2) holds. Then, there exists I' > 0. Such that, system (P,) has at least

two positive nontrivial solutions for all A € (0,T").

Let I" be a constant define by

(3.2.2)

1 —1 —1\ 2=t =17 (1) (p—ph
po & (AT HrEY I S a(lal el | e e
rK \r+~v—1 r—p o0 o0

3.3 The Nehari Manifold and the Fibering maps

We consider the energy functional J, : £ — R corresponding to the system

(Py) defined as

1

1
In(u,v) = = |[(u, )|, — ——
o) = o)l — = [

(a(x)u'™" + b(x)v' ") dz — A /Q H(z,u,v)dz.
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Then, the functional J, is Fréchet derivative and the critical points are the weak

solutions of (P,).
Notations

To simplify the calculus, we put
Q = Q(u,v)=Il(u,0)lg="T(u,u) +T(v,v),
R = R(u,v)= /(a(az)ul_7 + b(2)v' ) dw,
Q

S = S(uv) = /Q H(z,u,v)dz.

We consider a sequence {(u,,v,)} € E such that (u,,v,) — (u,v) in E, asn —

+oo. Therfore, one has
Qn = Q (una Un) ) Rn =R (una Un) and Sn =S (Un, Un) 5

Furthermore, (ug,vo) € N is a critical point of .J, such that

Qo = Q (uo,v0) , Ry = R (uo,v0) and Sy = S (uo, vo) .
Thus, we can write J, as follows

1 1
J(u,v) = =Q — ——R — \S.
(t:0) p I—v
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Also, Jy € CY(E,R) and J, : E — E' for every (u,v) € E, we have that

<J;(u, v), (u,v)> =Q—-—R-MS.

To find the critical points of J, , we will minimize the energy functional .J, on

the constraint of the Nehari Manifold defined as follows
Ny = {(w,0) € EN{(0,0)} : {(J3(u.0), (u,0)) = 0}

Then, (u,v) € N, if and only if
(3.3. 1) Q — R—XrS =0forall (u,v) € E\ (0,0),
we define the fiber map ¢, ,(t) : R* — R as follows

By (1) = Ja(tu, tv) = th” ~ L R s

o ’ p 1—~ ’

the first and the second derivative of the map qﬁw(zﬁ) is given by

¢, ,(t) = Q" — Rt™7 — ArSt™,

and

Gro(t) = (p = 1DQI"2 + 4RI = Ar(r — 1)St™2,
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It is easy to see that

(tu,tv) € Ny if and only if ¢/, ,(t) =0,
and

(u,v) € N, if and only if ¢, (1) = 0.

Hence for (u,v) € N,, we obtain

$uo(l) = (p—1Q+R—Ar(r —1)S,
= (r+v-DR-(r—pQ,
= (p+y—-1)Q —Nr(r+~v-1)85,
= (p+~v—1)R—-Ar(r —p)S.

Now, we decompose N, into three parts V", Ny, N corresponding to local min-

ima, local maxima and points of inflection of ¢, , defined as follows

N)(\J = {(U,U) = NA?¢Z,U<1> = 0}7
N;r = {(u,v) € N)\7¢Z,v(1> > O}v

Ny = {(wv) € Nagl, (1) < 0}
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It’s clear that, if (u,v) € Ny, we have

(3.3.2) R>—"P O>0thenR>0.

r+vy—1
Now, we give some very interesting lemmas.

Lemma 3.3.1. Suppose that (ug, vo) is a local minimizer of J, on N and that

(ug, vo) & NY. Then (ug,vo) is a critical point of J.

Proof. According to the theorem of Lagrange multiplier
Tn € R : J}(ug, vo) = né'(uo, vo),

(u0,v0) € N : {J}(uo, o), (o, v0)) = 1 (€ (uo, vo), (uo, v0)) = 0.

Where the constraint is

E(u,v) =Q — R— ArS.
For all (u,v) € N, and (ug,vy) ¢ N7, we have
(€' (u,v),(u,v)) = pQ—(1-7)R— NS
= (p—1)Q+YR—Ir(r—1)S
= ¢u0(1) #0.
Which implies that = 0, then J} (ug,v9) = 0. =

Lemma 3.3.2. Jyis coercive and bounded from below on N,.
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Proof. Let (u,v) € N,. From (3. 1. 3) and the Holder’s inequality, we obtain

pEty-1
p*

L71
R < pap Q7 max(flaf g, 10]) (. 0)]15

pity—1
s

= 1y
= psp |9 max([al|, , [[ll)Q 7 - (3.3.3)

and

;; + HU

S < K [ (ul + bl de < K190 (Ju
Q

T
f

< KIJQUE s [[(u,0)llp = K QI 7 pdp Q. 3.3.4)

From the assumptions, (3. 3. 1) and (3. 3. 3) we have that, for all (u,v) € N, ,

1 1
Ja(u,v) = -Q— ——R—\S
p- 1l-=v

- (e (i)

r—p y+r—1\ =2 Pity=l 1oy
Q—(—) op (lallo + 101190 7 Q7
(S) @ (1550 ) ik Gl + bl 9

v

since0 <y < 1landr >p>1>1-—+,the functional J, is coercive and bounded

from below on ;. =

Lemma 3.3.3. Let A € (0,I"). Then, there exist two number denoted t, and t,

such that

¢2L,’U<t1) = qb;,v(t?) =0,
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and

qbg,v(tl) <0< ¢Z,v(t1)7

that is (tﬂt,tﬂ)) c N; and (tQU, tQU) S N;

Proof. We consider ¢, ,(t) : R* — R defined by
Vuo(t) = Q" — Rt'™" — A\rS.
The first derivative v, ,(t) is given by

wu,v(t) = (7" +v - 1)Rt7777ﬂ — (T _ p)Qtp*T‘fl

= (rHy = DR (r=p)Q

then w;’v(t) = 0 if and only if ¢, ,(¢) has a unique critical point at

<r+»y—1)R)p+i1
3. 3 5 max — - A )
( ) ' < (r—p)Q

and

lim v, ,(t) = —ArS and li%rl+ 1, (1) = —00.
: P :

t——+oo

Moreover, 1/1;,”@) >0 forall 0 <t < tya and zﬁ;w(t) < 0forall t > tyax. Then

Vyoltmax) = Qthar — RETT — ArS

max

p—r
_ (v +r— 1) P (p+ 7 — 1_) O RES  v@. 3. 6)
r—p y+r—1
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From (3. 2. 2),(3. 3. 3) and (3. 3. 4), one sees that

-

rT—Dp r+vy-—1 =1 pity—l 19\ F
2 105 max(lal . bll)Q )

P(tmax) > <—7+T_1>M(P+7—1> Q!
(Ns,p |2

MK (9 p,QF
r+y—1 = PEI:-

_ (r+v=1)(pE—p)
rty—1 rK |Q| PE(p+y—1)

A T K sy |Q| Qv

v

— (= N R 1905 (0]
Then, for all A € (0,I") ,we obtain
U (tmax) = 0.
As a consequence, there exist t; and ¢, such that 0 < #; < t,. < t5 Verifies
Vyo(t1) = ¥, (t2) =0,

and

¢;L,’U<t1) <0< ¢;L,’U<t2)'

We conclude that (tu, t;v) € Ny and (tau, tav) € Ny . m
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Corollary 3.3.1. For all A € (0,T), then NiF # () and N = {(0,0)} . Moreover

N is a closed set in E—topology.

Proof. First, according to the Lemma 3. 3. 3, N are non-empty for all \ €
(0,T) . Now, we proceed by contradiction to establish that NY = {(0,0)} for all
A € (0,T). For this, let us suppose that there exists (0,0) # (ug,vo) € NY. Then

we get
(3.3.7) p+y—1)Qo—Ir(r+~v—-1)Sy =0,
which implies that

(3 3. 8) 0= Qo — RO — )\’I“So = (i) QO - RO~
r+v-—1

From (3. 3. 7) and (3. 3. 8), we obtain

0 < wuo,vo (tmax) — )\TSO

(’y +r— 1) T (p 14+ 7) (Qo)r 1 -
— _— pov — 0
r=p YT =1) (Ry)FT

p—r r—p
r+y—1\"1" (p+v—1 r+y—1\rH1 p+vy—1
U . ! Qo — Pr—- Qo =0,

r—p r+vy—1 r—p r+v—1

for all A € (0,T), which is impossible. Thus A? = {(0,0)}.

Now, to prove that N, is closed for all A € (0,I'), we consider a sequence

{(un,v,)} C Ny such that (uy,,v,) — (u,v) in E as n — +o0, then (u,v) C N, .
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Using the definition of NV, we get
Q. — R, —\rS, =0,
and
(p—1)Qn +vR, — Mr(r —1)S, <0.

Hence, we get that

Q—R—-—XMrS=0,

and

(p—1)Q+~vR—Mr(r—1)S <0.

Therefore, (u,v) e NYUN, =N, . =

Lemma 3.3.4. Let (u,v) € N, (respectively N, ), with u,v > 0 then for any
(z,w) € E with z,w > 0, there exists a number ¢ > 0 and a continuous function

g : B(0,e) — R such that

g(0) =1 and g (s) (u+ sz,v+ sw) € Ny (respectively N, ).

Proof. We give the proof only for the case (u,v) € N}, the case N, may be

preceded exactly. We define ¥ : R™ x Rt — R as follows

U(t,s) = Qu+sz,v+sw)tPT ™ — \rS(u+ sz, v+ sw)t"7 1

—R(u+ sz,v+ sw).
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The first derivative of the function ¥ is given by

Ui(t,s) = (p+v—1Q (u+sz,v+sw)trtr2

—Ar(r+v—1)S(u+ sz,v + sw)t" 72,

It is clear that the function U,(¢,s) is continuous in R* x R*. Moreover, since

(u,v) € Ny} € N,, we obtain

U(1,0) =Q —R—ArS =0,

and

U, (1,0)=(p+7—-1)Q — Mr(r—1)S > 0.

Thus, Using the implicit function theorem at the point (1,0), we have that there

exists 0 > 0 and a positive continuous function ¢ : B(0,¢) — R such that

g(0) = 1,9(s)(u+ sz, v+ sw) € Ny, Vs € B(0,0).

Hence, putting ¢ > 0 smaller enough, we get

g(s)(u+ sz,v+ sw) € N}, Vs € B(0,¢).

The proof of the Lemma 3.3.4 is completed. m
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3.4 Existence and multiplicity results

Now, we prove the theorem of existence and multiplicity of positive nontrivial
solutions to the system (p,) for all A € (0,T) in V.

Since Jy(u,v) = Jy(Jul, |v|) for all A € (0,T"), we can assume that all the price
elements in N, are nonnegative and from Lemma 3. 3. 2 and Lemma 3. 3. 3
we can found o™ and o~ such that

at= inf Jy(u,v) anda” = inf Jy(u,0).
(uw)eN; (u,w)EN

3.4.1 Positive solutions in N

For all (u,v) € N,", and consequently sincer >p>1>1—yand 0 <y < 1, we

have that
1 1 —(r —
J/\(uav):_Q_—R—)\S:—(p—i_ry )<T p)Q<O.
p- 1=7 rp(1—7)
Which means that
(3.4.1) at = inf Jy\(u,v) <Oforall A € (0,T).
(u,v)eN;r

Proof of Theorem 3. 2. 1. The proof is split into two steps.
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Proof. Step 1: Let us consider the minimizing sequences {(u,,v,)} and apply-

ing Ekeland’s variational principle, we obtain

i) Ix(tn, v,) < o +

n’

i) Ja(u,v) > Jx(tn,vs) — L |[(u = up, v — v,)| 5 forall (u,v) € Ny

We can assume that w,,v, > 0. Clearly, as J, is coercive on N, {(u,,v,)} is
bounded in £. so there exists a sub-sequence denoted by {(u,, v,)} and ug,vo > 0
such that (u,,v,) — (uo, v9) weakly in F, strongly in L9(Q2) x L1(Q),1 < ¢ < p,
and u,(z) — up(x),v,(z) — vo(z), a.e in Q, Therefore, from (3. 4. 1) and by

using the weak lower semi-continuity of norm, we obtain

(3.4.2) Ia(ug,vo) < lim inf  Jy(u,,v,) = inf  Jy(u,v) <O0.

n—0o0 (u,’v)e./\/’;r (u,v)E/\/)\+

Claim 1. uy(z), vo(x) > 0 a. e. in Q.

Firstly, we start by observing that, since (u,,v,) € N, one has
(3.4.3) p+v—1)Qn—Ar(r+~v—1)S, >0,
equivalent to

3.4.4 (p+~v—1)R, — Ar(r—p)S, > 0.
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By Vitali’s convergence theorem, we have that

(3.4.5) lim S, = lim [ H(z,u,,v,)dx = / H(x,up,vo)dz = Sp.

n—oo n—oo Q

Moreover, using Holder inequality, we obtain that, as n — oo

/a(m)u}l_vdx < /a(m)ué_wdquHaHm/|un—u0|1'ydx
v Q 0

/ a(x)uy "dz + |Q o
Q

IN

ooHun U’OHLP ()

= /Qa (z)uy "dz + o(1)

and
/a(x)u(l)_wd.r < /a(m)ui‘”dw%—“a“oo/|un—u0|1de
0 Q 0
< [a@ul ol = woll e,
= /a(m)u,llwdzv—l—o(l).
Q
Then

/Qa () ul"dx = /Qa (2)ug "dz+o0(1).

Similarly, we can obtain

/Qb(:c) v Ve = /Qb (z) vy Ydx +o0(1).
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Thus
(3. 4. 6) R,=Ry+o0(1).
From the Brézis-Lieb lemma, we obtain that
1 a0 = 11 Catos 00) % + Nt — a0l + N0 — woll%, + o0 (1)
Thus
(3.4.7) Qn==Qo+o(1).

Therefore, it follows from (3. 4. 5) and (3. 4. 6) that

lim [(p+7v—1)Qp — Ar(r + v —1)S,]

n—oo

= lim [(p+7v— 1R, — Ar—p)S,]

n—o0

= (p—=14+7)Ry— Ar(r—p)Se > 0.
Moreover, by contradiction, assume that

(3.4.8) (p+~v—1)Ry — Ar(r —p)Sy = 0.
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Hence, Using (3. 4. 5) — (3. 4. 8), and the weakly lower semi continuity of the

norme, obtain

-1
onO—RO—ArSOZQO—Ar<%)SO.
p+v—1

From (3. 4. 3), one has a contradiction, thus
(3.4.9) (p+~—1)Ry — Mr(r —p)Sy > 0.

Now, let us consider the functions 0 < z,w € E. From Lemma 3.3.4, there exits
a sequence of continuous functions (g,), . such that g, (s) (u, + sz, v, + sw) €

Ny and g, (0) = 1, that is
Q (gn () (uy + 82,0, + sw))—R (g (5) (un, + 82,0, + sW))=ArS (g (8) (up, + $2,0, + sw)) =0,
since

(3. 4. 10) Q, — R, — A\rS, = 0.
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For s small enough, it follows that

0 = (gg (8) - 1) Q (un + sz,v, + Sw) + (Q (un + sz,v, + SU)) - Qn)
— (g};” (s) — 1) R (u, + sz,v, + sw) — (R (u, + sz,v, + sw) — R,)

=Ar (g (s) = 1) S (up + 52,0, + sw) — Ar (S (up + 52,0, + sw) — Sy)

IN

(g7 (s) = 1) @ (un + 52,00 + sw) + (Q (un + 52,0 + sW) — Q)
— (977 (s) = 1) R (un + $2,v5, + sw)

=Ar (g (8) = 1) S (up + sz, v, + sw) — Ar (S (u, + sz,v, + sw) — S,),
dividing by s > 0 and passing to the limit as s — 0, we get

0 < g,(0) (an —(1=7) Ry — /\Tzsn) + 0 (T(tn, 2) + T (0n, w))
—)\7’/9 (z2f (2, up, vn) + wg(z, Up, vy,)) dz

< gn(0)((p=7)Qu+ (r+v—=1)Ry) +p(T(un, 2) + T(vy, w)),

then, by (3. 4. 3) and (3. 4. 10), we obtain

p (T<un= Z) + T@m w))

3.4.11 "0) > —
(3-4.11) 9O 2= 0. T - ) R,

where ¢/, (0) € [—o0, oo] denotes the right derivative of g, (s) at zero and since
(tn,vn) € Ny, gl (0) # —oo. For simplicity, we assume that the right derivative

of g, at s = 0 exists. Moreover, from (3. 4. 11) g/, (0) is uniformly bounded from
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below. Now, using the condition (i), we have

(ttn, vn) | Iz, w)

ga(s) 1/ |

+ 50n (5)

v

Iy (U, v3) — Iy (gn (8) (uy + 82,0, + sw))

= —an + A (M) s,

p(l—=7) 11—~y
p+y—1, <r+7—1)
——g" (5) Q (uy, + 52,0, + 5w) = A | ———— | g, (5) S (up, + 52,0, + sw
ey ACL Y G PACEL )
-1
= DT [Q 52 vt s0) — Qo (6 (9) = 1) Q (e 52,3+ 0)
r+y-—1
—)\1— 1S (wy, + 52,0, + sw) — Sy, + (g5, (5) — 1) S (un + 52,0, + sw)],
-7

dividing by s > 0 and passing to the limit as s — 0, we obtain

%(\gg (O)] 2ty w) | + 112, w) )

%T(()V)((p—r)QnJr(rﬂ—l)Rn)

+M (T (tn, 2) + T, w))

v

r+v—1
-\ <—7> /Q(zf(a:,un,vn) + wg(x, Uy, vy,)) dx
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which implies that

14, (0)] (—M (=) Q= (r 4y~ 1>Rn>)

< - ”('va)H - p(pl—i_—,y’y— 1) (T(Um Z) + T(Um w))
+A (%) /Q (f(z,un,v0)z + g(x, Up, vy)w) d

Hence, there exists a positive constant L such that

_ N, vn) |

n _((p_r)Qn+(T+7_1)Rn)ZL>0>

then

01 < 27 (21wl + P2 ) + T, 0)

A (%) /Q(f(x,un,vn)z + 9(x, i, vn)w) dﬁ(}‘v 4.12)

Thus, according to (3. 4. 12), ¢/, (0) is uniformly bounded from above. Conse-

quently,

(3. 4.13) g, (0) is uniformly bounded for n large enough.
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Thus from condition (i7) it follows that for s > 0 small enough, one has

% (190 (5) = 1] [[(ttns va) | + 590 (5) [|(z, w)]))
> % (llgn (5) (un + 52,00 + sw) — (tn, va)|])
> I\ (Un, vn) = I\ (gn (8) (un + 82,0, + sW))

p -1 1=y -1 p
_ (2 Qu+ 2= (_8)7 R+ A (g5 (s) — 1) S, + 9”;5> (Qn — Q (ty + 52,0, + sw))
n " (s) ,
+ﬁ (R (uy, + sz,v, + sw) — Ry) + Agph (8) (S (upn, + 82,0, + sw) — S,,) ,

dividing by s > 0 and passing to the limit as s — 0, we obtain

%(yg; (O)] | (s ) + 1|z, w) )

—9p, (0) (@n — B = ArSy) = (T(tn, 2) + T'(0n, w))

v

+)\/ (f(z, up, vn)2 + g(x, Up, vp)w) do
0

lim inf <R (n + 52, Un + sW) = R”.) 3. 4. 14)

— 7Ys—07t S

+

From (3. 4. 14), we deduce that

R (u, + sz,v, + sw) — Rn)
s

lim inf <

1— Y s—0t
< T(up, z) + T(vp,w) — )\/ (f(z,un,vn)z + g(x, Up, vy)w) do
Q

419, (0)] ||(unﬂ;:)|| + (2wl

(3. 4.15)

?
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since

R (u, + sz,v, + sw) — R, > 0,Vt > 0,Vz € Q.

Using Fatou’s Lemma, we get

lim inf

— 7Y s—0t

/ (a () u, "z +b(x) v,j”w) dr < (R (un + sz,vg + sw) — Rn) |
Q

hence, using (3. 4. 15), it follow that

/Q (a(@)u,"z+b(z)v, w) dz

< T(up, z) + T(v,,w) — )\/ (f(x,un, vn)z + g(x, Uy, v,)w) do
Q

19n O 1 Cen, v || + [ (2, w)|

Y

for n large enough. By using (3. 4. 14) and Fatou’s Lemma again, we conclude

that

T (ug, z) + T (vg, w)

> / (a(z)ug 'z +b(z)vy 'w) dr + /\/ (f(x,ug,v0)z + g(x, ug, vo(B)4lr16)
Q

Q

for all (z,w) € X,with z,w > 0.Then, the maximum principal theorem implies

that ug () ,vo (z) > 0 a.e. in  and.
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Now, we prove that (ug,vy) € N, for all A € (0,T"). We start by choosing

(z,w) = (up,vo) in (3. 4. 16) , we obtain

QU—RO—)\T’SOZO.

On the other hand, from the weakly lower semi continuity of the norm, we get

Qo — Ry — ArSy <0,

thus

(3 4. 17) QO - Rg - )\TSO =0.

This implies that (ug,v9) € N,. Hence, combining (3. 4. 9) and (3. 4. 17), we
conclude that (ug, v9) € Ny .

Claim 2. Now, we prove (ug,vp) is positive solution to the system (p,) for
all A € (0,I"). Let (z,w) € X and ¢ > 0. We define (w;,wy) € X by (w1,ws) =

(ug + €2,v9 + ew)and wi = max {wy,0} and wj = max {w,, 0} . Let

QF = {(up+ez,v0+ew):ug+ez>0and vy +ew > 0},

Q. = {(U0+527Uo+6w):uo+5z§0andvo+gw§0},

€
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Tlu) = [ Rl I (o) — uo(®) (w1 () — i (1)

——— i
- ) ) ) ) 2) )= ) )
Q |z — y| VP
_ / Juo () — uo(y)|"~* (uo(x) — uo(y))((uo + £2) (x) — (ug + £2) (y>)dxdy
Qo xQF |z — y|N+pS

= T(ug,uo) + €T (uy, 2)
_/ [uo(2) — uo(y) "™ (uo(w) — uo(y))((uo + £2) (2) — (up + £2) (1))
Qo xQo

‘.’L’ _ y‘N+ps

dxdy.

By Claim 1, the measure of the domain of integration 2_ x Q_ tends to 0 as

¢ — 0T that

/ Juo () — uo(y)"” (uo(x) — uo(y)) ((uo + £2) (2) — (uo +£2) (y))

|z — y|V P dvdy =, 0.
then
(3. 4.18) T (ug, wy) e T (ug, uo).
By the same manner, we obtain
(3. 4.19) T (vg, wy) e T (v, vo).
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On the other hand, we have

/a(x)uavwfdm = / a () uy 'widx
Q o
= /a(w)uoy(uo—l—sz)dx—/ a(x)uy” (ug +ez)de
Q

Qg

_ /Q o () ul TV + ¢ /Q o () us " 2 — / o (@)U (g + 22) da

Qs

(3. 4. 20) > / a(x)uy Vdx + 6/ a(x)uy zde.
Q Q

By the same manner, we obtain

(3. 4. 21) / b(z) vy wydr > / b(x)uy "dr + 5/ b(x) vy " zde.
Q Q Q
Now,
/ f(x,ug, vo)wider = [z, ug, vo)widx
Q Qf
= / [z, ug, vo) (up + €2) doe — [z, ug, vo) (up + €2) dx
Q Qe
= / f(x, ug, vo)uodx + 8/ f(z,up, vo)zdr — f(z,ug,v0) (ug + £2) da
Q Q Qe
(3. 4. 22) > / f(x,uo,vo)uodx+€/ f(x, ug, vo)zdz,
Q Q
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and

(3. 4. 23) /g(:p,uo,vo)w;dx > /g(:p,uo,vo)vgdx—l—s/g(m,uo,vo)zdm,
Q Q Q

combining (3. 4. 18) — (3. 4. 23), we get

0 < T(up,w)+ T(vg,wy) — / (a (@) ug wi +b(x) vy w3 ) do
Q

_)‘/ (f(xa Ug, UO)W—{ + g('xa Ug, UO)W;_) dx
Q

IN

T (ug, up) + T (vo,v9) — /Q (a(@)ug " +b(z)uy ) da

— </Q Iz, ug, vo)ug + /Qg(a:,uo,vg)vo) dx

te <T(u0,z)+T(u0,z)— /Q (a (@) ug" + b (@) vy"w) da
—/Q(f(a:,uo,vo)z+g(a:,u0,v0)w) da:)

_ 5(T(uo,z)—|—T(u0,z)— /Q (a (@) ug"z + b () vy "w) da
—/Q(f(a:,uo,vg)z—i—g(x,uo,vo)w) da:) .

then

T(ug, 2)+T (uo, z)—/

(a(z)uy"z+b(z)vy 'w) dx—/ (f(x,ug,v0)z + g(x, up, vo)w) dx > 0.
0

Q

Since the equality holds if we replace (z,w) by (—z, —w) which implies that

(uo, up) is a positive week solution of the problem (P,). =
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3.4.2 Positive solutions in N,

Similarly to the arguments in N,", applying Ekeland’s variational principle to
the minimization problem o~ = inf, c\— Ji(u,v) there exists a minimizing

sequences {(un,v,)} C N, such that

Ia(Up,v,) < @~ + %,

Ia(u,v) = Jy(un, vn) — L [[(u = up, v —v,)||p forall (u,v) € Ny

Firstly, we may assume that (u,,v,) > 0, Clearly {(u,,v,)} is a bounded se-
quences in E. So, there exists a subsequences denoted by {(u,,, v,)} and g, 7y >

0 such that (u,,, v,) — (o, o) weakly in F, strongly in L'=(Q) and (u,(x), v,(x)) —
(to(x), 0o(x)) in a.e 2, as n — oo. Moreover, using the weak lower semi continu-
ity of norm, which means that

(3. 4. 24) Ia(tg, Do) < lim inf  Jy(uy,v,) <O.

n—0oo (u,v)E/\/';

we see that (1, 79) # (0,0) in a.e 2. Now, we prove that u,, 7, > 0 in a.e Q.

Similarly to the arguments, for (u,,v,) € N, , one has

(3. 4. 25) (p+v—1)Qn—M(r+~v—-1)S, <0,
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equivalent to
(3. 4. 26) (p+v—1R, — Mr(r—p)S, <0.
Moreover, From (3. 4. 25) and (3. 4. 26), we obtain that

lim [(p+7v—1)Qp — Ar(r + v —1)S,]

n—oo

= lim [(p+~v—1)R, — A(r — p)S,]

n—0o0

= (p—14+~)Ry— Ar(r —p)Sy < 0.
Now, repeating the same arguments as in Claim 1, we see that, for all A € (0,T)
(3. 4. 27) (p+~v—1)Ro — Ar(r —p)Sy < 0.

Let us consider the functions 0 < z,w € E. Then, there exits a sequence of con-
tinuous functions (g,),,.y such that g, (s) (u, + sz, v, + sw) € N and g, (0) = 1.

Therefore, repeating the same arguments as in claim 3.4.1, we have that g, (0)
is uniformly bounded for n large enough.

We conclude that g (), 9 (z) > 0 a.e. in 2 and

T (g, z) + T (0, w) < —/Q(a(:p)ﬂavqub(x)ﬁO_Ww) dx

—/\/ (f(z,g,00)z + g(x, U, Do)w) da(3. 4. 28)
Q
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for all (»,w) € E. Finally, we obtain that (%, ) positive nontrivial solutions of

system (P,). The proof of the Theorem (3. 2. 1) is completed.




Conclusion et Perspectives

In this thesis, we have studied the existence and multiplicity of nontrivial positive
solutions of a singular elliptic system associated with the fractional p-Laplacian
operator. the results are obtained using the Nehari manifold, fibering method,
and Ekland’s variational principle.

The results of this thesis can be generalized to singular elliptic systems involv-
ing the fractional p(z)-Laplacian operator or ¢ (x)-Laplacian in Orlisz Sobolev

spaces.
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