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Résumé
Le travail présenté dans cette thèse est consacré à l’étude de l’existence et

la multiplicité de solutions positives non triviales d’un système de type elliptique

fractionnaire singulier associé à l’opérateur p-Laplacien fractionnaire dans un do-

maine borné de RN . Les résultats sont obtenus en utilisant certaines techniques

variationnelle, la variété de Nehari, la méthode des fibering (F.M), et le principe

variationnelle d’Ekeland.

Mots-clés: Opérateur fractionnaire, la variété de Nehari, méthode des fiber-

ing, principe d’Ekeland.
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Abstract
The work presented in this thesis is devoted to studying the existence and

multiplicity of non-trivial positive solutions of a singular fractional elliptic type

system associated with the fractional p-Laplacian operator in a bounded domain

RN . The results are obtained using some of the variational techniques, Nehari

Manifold, Fibering method (F.M), and applying the Ekeland variational principle.

Keywords: Fractional operator, Nehari Manifold, Fibering method, Ekeland’s

variational principle.
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صـــــــملخ  
 

 من لنظام التافهة غير الإيجابية الحلول وتعدد وجود لدراسة الأطروحة هذه في المقدم العمل تخصيص تم
.  N  من  محدود مجال في الكسري Laplacian‐p بالمؤثر المرتبط المفرد الكسري. البيضاوي النوع
 Nehari Manifold ،Fibreing method ، التنويع تقنيات بعض باستخدام النتائج على الحصول تم

(F.M) ، ل  التباين  مبدأ وتطبيقEkeland 

ل  التباين  مبدأ ، Fibreing طريقة ،  Nehari Manifold ، الكسري المعامل: المفتاحية الكلمات
Ekeland 



Notation
To achieve the understanding of what will follow, we give an interpretation

of the notations and abbreviations used in this thesis.


 Bounded domain in RN :

RN Euclidean space provided with its usual denoted norm k:k :

RNn
 complementary to 
:

E; E 0 Banach space with dual E 0:

h:; :i : E � E 0 ! R Dual pairing, occasionally also used to denote scalar product in RN :

p�s Fractional critical Sobolev exponent.

J� Energy functional.

k:kE Norm in E:

k:kE0 Induced norm in E 0:

* Weak convergence.

�! Strong Convergence .

a:e almost everywhere.

C(
) Set of continuous functions on 
:

Lp(
) Standard Lebesgue space on 
 of exponent p:

L1(
) Standard Lebesgue space on 
 of exponent 1:

W s;p(
) Fractional Sobolev space.

kukLp(
) Norm of u on Lp(
) defined by kukLp(
) =
�R


jujp dx

� 1
p :

kukL1(
) Norm of u on L1(
) defined by kukL1(
) = ess supx2
 ju(x)j :
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Introduction
In this thesis, we focus on the variational case to prove the existence and

multiplicity of nontrivial positive solutions for singular fractional elliptic system

via the Nehari manifold, fibering method, and applying Ekeland’s variational

principl.

We study the existence and multiplicity of nontrivial positive solutions for the

following singular fractional elliptic system

(P�)

8>>>><>>>>:
(��)sp u = a(x)u� + �f(x; u; v) in 
;

(��)sp v = b(x)v� + �g(x; u; v) in 
;

u = v = 0 on RNn
:

Where 
 is a smooth bounded set in RN ; N > ps with s 2 (0; 1); � is a positive

parameter and 0 <  < 1 < p < r < p�s � 1; where p�s =
Np
N�ps is the fractional

critical Sobolev exponent. Where a and b are positive functions of class L1(
).

Let f; g 2 C(
� R� R;R) be positively homogeneous of degree (r � 1) that is

(0. 0. 1) 8t > 0;8(x; u; v) 2 
� R� R :

8><>: f(x; tu; tv) = tr�1f(x; u; v);

g(x; tu; tv) = tr�1g(x; u; v):

Our aim in the present work is to show how the variational method can estab-

lish the existence and multiplicity of nontrivial positive solutions combine with

Nehari Manifold, fibering maps introduced by Pohozaev (i.e., maps of the form

t ! J�(tu) where J� is the Euler function associated with the equation) and

9



Chapter 0. Contents

Ekeland’s variational principle, they gave an interesting explanation. For more

detail, we refer the reader to see [2,4,5,11].

This method has been applied to partial differential equations, systems non-

linear, semilinear and quasilinear involving Laplacian and P-Laplacian fractional

among the many studies have been published, we refer the reader to see [1,9,17,19,20,32].

At this point, we briefly recall literature concerning related singular problems

and systems. In [23], K. Saoudi & A. Ghanmi studied a singular problem8><>: (��)sp u =
a(x)
u
+ �f(x; u) in 
;

u = 0 on RNn
;

where 
 � RN , N � 2 be a bounded smooth domain, a 2 L1(
), � is a pos-

itive parameter, p � 2 such that N � ps and 0 <  < 1 < p < r < p�s where

p�s =
Np
N�ps and r is the homogeneity degree of the function f . Under appropriate

assumptions on the function f , the authors employ the method of Nehari mani-

fold combined with the fibering maps in order to show the existence of Tp;r; such

that for all� 2 (0; Tp;r;). Then, the problem has at least two positives solutions.

The equations of this type have growing interest since they arise in many

fields of sciences, physical phenomena, probability, stochastic calculus, and fi-

nance. For more details, one can see [6,7,16,22].

Moreover in [2] Adimurthi and Giacomoni proved the multiplicity of posi-

tive solutions for a singular and critical elliptic problem in R2. In [15,26] Mo-

hammed, Coclite and Palmieri established the existence of Positive solutions

10



Chapter 0. Contents

of the p-Laplace equation with singular nonlinearity. In [13] Caffarelli and Sil-

vestre studied the fractional Laplacian through extension theory. In [14] Chen,

Hajaiej and Wang, established the existence, non-existence and uniqueness of

positive weak solutions of the semilinear fractional equation.

Some other results dealing with the existence of solutions concerning the sin-

gular problem has been treated in Ghanmi, Saoudi and Kratou (see[24,27,28])

they studied the existence and multiplicity of solutions of the semilinear singular

elliptic equations involving the fractional Laplace and fractional p-Laplacian op-

erator using Nehari manifold, the fibering method and applying Ekeland’s varia-

tional principle with boundary conditions displaying more interests on semilinear

problems involving fractional Laplace operator, see for instance [29–30] and the

references therein.

In the first chapter, we give a brief some basic notations and preliminaries

about the subject used in subsequent chapters.

In the second chapter, we present everything devoted to the theory of Nehari

manifold, the fibering method, and Ekeland’s variational principl.

In the third chapter, we give the main results of this thesis.
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Chapter 1. Preliminaries

In this chapter, we briefly recall the essential definitions on space of contin-

uous functions, Lp(
) spaces , Sobolev and fractional Sobolev spaces, will be

useful to us later and we let us give, at the same time, the critical points theory,

and recall the Lagrange multiply theorem, Implicit function theorem, Maximum

principle. The chapter ends with some definitions.

1.1 Functional spaces

1.1.1 Space of continuous functions

Definition 1.1.1. Let 
 � RN be an open and u : 
 ! R a function. We say

that u is continuous if

8x0 2 
;8" > 0;9� > 0;

such that

x 2 E; kx� x0k < � =) ju(x)� u(y)j < ";

where the norm in RN is the Euclidean norm.

Definition 1.1.2. Let 
 be an open in R. We define :

C (
) := fu : 
! R u is continuousg ;

C
�


�
:=
�
u : 
! R u is continous and extends continuously to 


	
:

13



Chapter 1. Preliminaries

Let

k:kC : C
�


�
! R;

u 7�! sup
x2


ju(x)j is a norm.

1.1.2 Lp(
) Spaces

Let p 2 R with 1 � p <1 and 
 � RN ; we set

Lp (
) =
�
f : 
 �! Rn f is measurable and

R
jf jp d� <1

	
;

we define the Lp norm of f by

kfkLp = kfkp =
�
=

Z



jf jp d�
�1=p

:

If p =1; the space L1 (
) satisfy

L1 (
) = ff : 
 �! R= f is measurable and 9C > 0 such that jf (x)j � C a.e on 
g ;

we define the L1 norm of f by

kfkL1 = kfk1 = inf fC; jf j � C a.e on 
g ;

L1 (
) is a Banach space.

14



Chapter 1. Preliminaries

If p = 2; the space L2 (
) is a Hilbert space for scalar product

(f; g) =
R



f(x)g(x)dx:

We denote by L1loc(
) the set of locally integrable functions on 
 and we write

L1loc(
) =
�
u : u 2 L1(K) for all compact K of 


	
:

Remark 1.1.1. � - If f 2 L1 (
) then we have jf j � kfkL1 a.e. on 
:

� Lp (
) � L1loc(
) for all 1 � p � 1:

�
�
Lp (
) ; k:kp

�
is Banach space for 1 � p � 1, separable for 1 � p < 1

and reflexive for 1 < p <1.

Theorem 1.1.1. [10] (Hölder’s inequality)

Let 1 � p � 1; we denote by p0 the conjugate exponent,

1

p
+
1

p0
= 1:

Assume that f 2 Lp (
) and g 2 Lp0 (
), then fg 2 L1 (
) and

Z



jfgj � kfkLp kgkLp0 :

15



Chapter 1. Preliminaries

Lemma 1.1.1. (Brezis–Lieb’s).[11] Let 
 be a bounded open in Rn and 1 <

p < +1, (fn)n ! f a.e. in Lp(
) , then

f 2 Lp(
) and kfkpp = kfnk
p
p � kfn � fkpp + �(1):

1.1.3 Sobolev Space W 1;p(
)

Let 
 � RN be an open set and let p 2 R with 1 � p � 1:

Definition 1.1.3. The Sobolev space W 1;p(
) is defined by

W 1;p(
) =

�
u 2 Lp(
) : 9g1; :::; gN 2 Lp(
) such that

R



u
@'

@xi
= �

R



gi' 8' 2 C1c (
); 8i = 1; N
�
:

We set

H1(
) =W 1;2(
):

For u 2 W 1;p(
) we define @u
@xi
= gi;and we write

ru = gradu =
�
@u

@x1
;
@u

@x2
; :::;

@u

@xN

�
:

The space W 1;p(
) is equipped with the norm

kukW 1;p = kukLp +
NP
i=1

 @u@xi

Lp
:

Proposition 1.1.1. W 1;p(
) is a Banach space for every 1 � p � 1. W 1;p(
)

is reflexive for 1 < p <1, and it is separable for 1 � p <1.

16



Chapter 1. Preliminaries

Corollary 1.1.1. Let 1 � p � 1: We have

� W 1;p(
) � Lp
�
(
); where 1

p� =
1
p
� 1

N
; if p < N;

� W 1;p(
) � Lq(
); 8q 2 [p;+1); if p = N;

� W 1;p(
) � L1(
); if p > N;

and all these injections are continuous. Moreover, if p > N we have, for all

u 2 W 1;p(
),

ju(x)� u(y)j � C kukW 1;p jx� yj� a.e. x; y 2 
;

with � = 1� (N=p) and C is a constant depends only on 
; p; and N . In particular

W 1;p(
) � C(
):

Theorem 1.1.2. [10] (Rellich–Kondrachov)

Suppose that 
 is bounded and of class C1. Then we have the following compact

injections:

� W 1;p(
) � Lq(
); 8q 2 [1; p�)W 1;p(
) � Lq(
); 8q 2 [1; p�), where 1
p� =

1
p
� 1

N
; if p < N;

� W 1;p(
) � Lq(
); 8q 2 [p;+1), if p = N;

� W 1;p(
) � C(
); 8q 2 [p;+1), if p > N:

In particular, W 1;p(
) � Lp(
); with compact injection for all p (and all N).

17



Chapter 1. Preliminaries

1.1.4 Fractional Sobolev spaces W s;p(
)

Let 
 be a smooth bounded domain in RN ; N > ps with s 2 (0; 1); we introduce

fractional Sobolev space

W s;p(
) =

(
u 2 Lp(
) : u(x)� u(y)

jx� yj
N+ps
p

2 Lp(
)
)
;

with the norm

kukW s;p(
) = kukLp(
) +
�Z


�


ju(x)� u(y)jp

jx� yjN+ps
dxdy

� 1
p

:

Consider the space

X =

(
u : RN ! R; u 2 Lp(
) and

u(x)� u(y)

jx� yj
N+ps
p

2 Lp(�)
)
;

with the norm

kukX = kukLp(
) +
�Z

�

ju(x)� u(y)jp

jx� yjN+ps
� 1

p

:

Proposition 1.1.2. The space W s;p(
) is of local type, that is, for every u in

W s;p(
) and for every ' 2 D(
), the product 'u belongs to W s;p(
).

Proposition 1.1.3. The space D(RN) is dense in W s;p(
):

Theorem 1.1.3. [10]

Let s 2]0; 1[ and let p 2]1;1[. We have

� If sp < N , then W s;p(RN) ,! Lq(RN) for every q � Np=(N � sp).

18



Chapter 1. Preliminaries

� If N = sp, then W s;p(RN) ,! Lq(RN) for every q <1.

� If sp > N , then W s;p(RN) ,! L1(RN) and, more precisely,

W s;p(RN) ,! C
0;s�N=p
b (RN):

Proposition 1.1.4. Let s 2 [0; 1[ and let p > 1. Let 
 be an open set that admits

an (s; p)-extension; then D(
), the space of restrictions to 
 of functions in D(RN),

is dense in W s;p(RN).

Corollary 1.1.2. Let s 2]0; 1[ and let p 2]1;1[. Let 
 be a Lipschitz open set.

We then have:

� If sp < N , then W s;p(
) ,! Lq(
) for every q � Np=(N � sp).

� If N = sp, then W s;p(
) ,! Lq(
) for every q <1.

� If sp > N , then W s;p(
) ,! L1(
) and, more precisely,

W s;p(
) ,! C
0;s�N=p
b (
):

Theorem 1.1.4. [10]

Let 
 be a bounded Lipschitz open subset of RN . Let s 2 [0; 1[, let p > 1, and let

N � 1. We then have

� If sp < N , then the embedding of W s;p(
) into Lk is compact for every

k < Np=(N � sp):

19
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� If sp = N , then the embedding of W s;p(
) into Lq is compact for every

q <1.

� If sp > N , then the embedding of W s;p(
) into C0;�b (
) is compact for

� < s�N=p.

1.2 Convergence criteria

Theorem 1.2.1. [10] ( Lebesgue’s dominated convergence )

Let (fn) be a sequence of functions in L1(
) that satisfy

� fn(x) �! f a.e, on 
,

� There is a function g 2 L1(
) such that for all n,

jfn(x)j � g(x); a:e: on 
:

Then

f 2 L1(
) and kfn � fkL1 �! 0:

Theorem 1.2.2. (Vitali’s convergence theorem)

Let f1; f2; :::be Lp-integrable functions on some measure space, for 1 � p < 1.

The sequence ffng converges in Lp to a measurable function f if and and only if

� The sequence ffng converges to f in measure.

� The functions fjfnjpgare uniformly integrable.

20



Chapter 1. Preliminaries

� For every � > 0, there exists a set Eof finite measure, such that
R
Ec
jfnjp <

�for all n:

Theorem 1.2.3. [10] Let (fn)n2N be a sequence in Lp (
) and f 2 Lp (
) such

that

kfn � fkp �!n�!1
0:

Then, there exist a subsequence (fnk)k2N and a function h 2 Lp (
) such that

� fnk (x) �! f (x) a:e on 
;

� jfnk (x)j � h (x) 8k; a:e: on 
.

Lemma 1.2.1. [10] (Fatou’s Lemma)

Let (fn) a sequence of functions in L1(
) that satisfy

� For all n; fn � 0 a.e.

� sup
n

R
fn <1:

� For almost all x 2 
 we set f(x) = lim inf
n!1

fn(x) � +1. Then f 2 L1 (
)

and Z



f(x)dx � lim
n!1

inf

Z



fn(x)dx:

21
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1.3 Maximum principle

A very large number of results of regularity, uniqueness or existence of solu-

tions in second order elliptical problems can be established using (one might say

only) the maximum principle.

Let 
 be an open set of RN , a(�) := (aij(�))1�i;j�N a matrix, b(�) := (bi(�))1�i�N

a vector field and c a function.

We consider second-order L elliptic differential operators of the form

(1. 3. 1) Lu := �
NP

i;j=1

aij@iju+
NP
i=1

bi@iu+ cu:

As a general rule, we will suppose that the matrix a(:) satisfies the condition of

coercivity (or ellipticity):

(1. 3. 2)

8>>>>><>>>>>:
8� > 0;8& 2 RN ; p:p: on 
;

a(:)&:& =
NP

i;j=1

aij(x)&j& i � � j&j2 :

Where j&j denote the Euclidean norm of & in R:

Theorem 1.3.1. [10] (Classical maximum principle)

Let 
 be a connexe bounded open, and L as in (1. 3. 1). We assume c � 0, that

(1. 3. 2) is satisfied and that aij; bi; c 2 C(
): If u 2 C2(
)\C1(
) verifies Lu � 0

22



Chapter 1. Preliminaries

then we have

sup
x2


u(x) � sup
�2@


u+(�); or u+(�) = max(u(�); 0):

Theorem 1.3.2. [10] (Principle of the Hopf maximum)

Let 
 be a connexe bounded open, and L as in (1. 3. 1). We assume c � 0, that

(1. 3. 2) is satisfied and that aij; bi; c 2 C(
): If u 2 C2(
)\C1(
) verifies Lu � 0

and if u attains a maximum � 0 inside 
, then u is constant over 
:

Definition 1.3.1. (Directional derivative)

Let w be a part of a Banach space X and F : w ! R a real valued function.

If u 2 w and z 2 X we have u + tz 2 w; we say that F admits (at the point u) a

derivative in the direction z if the limit

lim
t!

+
0

F (u+ tz)� F (u)

t
; for all t > 0 small enough.

We will denote this limit F 0z(u):

The Gateaux differential generalizes the idea of a directional derivative.

Definition 1.3.2. (Gateaux derivative)

Let w be a part of a Banach space X and F : w ! R. If u 2 w; we say that

F is Gateaux differentiable in u; if there exists l 2 X 0 or F (u + tz) for t > 0 small

23



Chapter 1. Preliminaries

enough. The Gateaux differential is defined

hl; zi = lim
t!

+
0

F (u+ tz)� F (u)

t
;

where F 0(u) := l:

Definition 1.3.3. (Frechet derivative)

Let X be a Banach space, w an open space in X and F a function. If u 2 w,

we say that F is differentiable (or derivable) in u (in the sense of Frechet) if there

exists l 2 X 0, such that

8v 2 w F (v)� F (u) = hl; v � ui+ �(v � u):

If F is differentiable, l is unique and we denote by F 0(u) := l. The set of differen-

tiable functions of w ! R will be denoted by C1(w;R).

1.4 Notions on operators

Let (X; k:k) be a real Banach space and let X 0 be topological dual.

Definition 1.4.1. Let A : X ! X 0; we say that

� A is bounded by the image by A of any born of X is bound of X.

� Continuous if kAxn � AxkX0 ! 0 when kxn � xkX ! 0:

� Compact if A(BX) is relatively compact in X 0, where BX denotes the ball

unit in X.

24
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� Coercive if

lim
kxk!+1

hA(x); xi
kxk = +1:

� Monotonous if

hAu� Av; u� vi�0; 8u; v 2 X with u 6= v:

� Strictly monotonous if

hAu� Av; u� vi>0;8u; v 2 X with u 6= v:

� Bounded if the image by A of any bounded of X is a bounded of X 0.

� Semi-continuous (continuous from strong X in X 0weak)

if un ! u when 1 implies Aun * Au when n!1:

� Strongly continuous

if un * u when 1 implies Aun ! Au when n!1:

25
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Chapter 2. Nehari manifold and Fibering method

2.1 Introduction

The aim of this chapter is to present some variational methods used in nonlin-

ear analysis. Apply a variational method means, that rather than directly search a

solution of a PDE or a Hamiltonian system, we consider the equivalent system of

finding a critical point of a functional. We begin by presenting a unified approach

and a generalization to the method of Nehari manifold for functionals that have

a local minimum at 0 of finding positive solutions and multiple solutions.

2.2 Fractional p-Laplacian operator

Let (��)sp u be the fractional p-Laplacian operator defined on smooth func-

tions by

(��)sp u = 2lim"!0

Z
RNnB"(x)

ju(x)� u(y)jp�2 (u(x)� u(y))

jx� yjN+ps
dy; x 2 RN :

If p = 2, (��)spcoincides with the usual fractional Laplacian operator (��)s,

defined as follows

(�4)su(x) = C(n; s)P:V:
R
RN

u(x)� u(y)

jx� yjN+2s
(jx� yj) dy;

= C(n; s) lim
�!0+

R
RNnB"(x)

u(x)� u(y)

jx� yjN+2s
(jx� yj) dy:

Here P:V: is a commonly used abbreviation for “in the principal value
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Chapter 2. Nehari manifold and Fibering method

sense” (as defined by the latter equation) and C(n; s) is a dimensional

constant that depends on n and s, precisely given by

C(n; s) =

 R
RN

1� cos(&1)
j&1jN+2s

d&1

!�1
:

2.3 Critical point theory

Definition 2.3.1. (Homogeneous function of degree k)

Let f be a function of n variables defined on a set S for which (tx1; :::; txn) 2 S

whenever t > 0 and (tx1; :::; txn) 2 S. Then f is homogeneous of degree k if

f(tx1; :::; txn) = tkf(x1; :::; xn) for all (x1; :::; xn) 2 S and all t > 0:

Definition 2.3.2. (Variationnal system)

In general, we distinguish two types of variational elliptical systems

(1) Lagrangian system: where the non-linearity is the gradient of a function

H

@H (x; u; v)

@u
= f (x; u; v) and

@H (x; u; v)

@v
= g (x; u; v) :

(2) Hamiltonian system: where ther exist H verifie

@H (x; u; v)

@u
= g (x; u; v) and

@H (x; u; v)

@v
= f (x; u; v) :
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Chapter 2. Nehari manifold and Fibering method

Let E be a reflexive Banach space, J� 2 C1(E;R). There are several notions

of derivatives for functions defined on Banach spaces.

Definition 2.3.3. (Critical point)

A point (u; v) 2 E is critical if J 0�(u; v) = 0; otherwise (u; v) is regular. If J�(u; v)

= c for some critical point (u; v) 2 E of J�, the value c is critical, otherwise c is

regular.

Lagrange multiplier

Let E be a Banach space, � 2 C1(E;R) is a set of constraints:

N = fv 2 E : �(v) = 0g;

Definition 2.3.4. we suppose that for all u 2 N , we have �0(u) 6= 0: If J

2 C1(E;R) we say that c 2 R is critical value of J on N ; if there exists u 2 N ; and

� 2 R such that

J(u) = c and J 0(u) = ��0(u):

The point u is a critical point of J on N and the real � is called the Lagrange

multiplier for the critical value c (or the critical point u).

When X is a functional space and the equation J 0(u) = ��0(u) corresponds to

a partial derivative equation, we say that J 0(u) = ��0(u) is the Euler-Lagrange

equation (or the Euler’s equation) satisfied by the critical point u on the constraint

N .
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Chapter 2. Nehari manifold and Fibering method

Theorem 2.3.1. Let (E; k:k) be a Banach space, 
 an open in E and J : 
! R

a differentiable function on 
 and � 2 C1(
;Rn) of components �1; :::;�n. Given

a point in Rn, we set K = ��1(a) which we assume not empty, if at a point u0 2 K

J(u0) = inf
x2K

J(u);

and if moreover the differential �0(u0) 2 L(E;Rn) is surjective then there exist real

numbers �1; :::; �n for which

J 0(u0) =
nP
i=1

�i�
0
i(u0):

2.4 The Nehari Manifold

Nehari has introduced a variational method very useful in critical point theory

and eventually came to bear his name. He considered a boundary value problem

for a certain nonlinear second-order ordinary differential equation in an interval

[a; b] and proved that it has a nontrivial solution which may be obtained by con-

strained minimization. To describe Nehari’s method in an abstract setting, let E

be a Banach space and J 2 C1(E;R) a functional. The Frechet derivative of J at

u, J 0(u); is an element of the dual space E 0. Suppose u 6= 0 is a critical point of

J , i.e., J 0
(u) = 0: Then necessarily u is contained in the set

N =
n
u 2 En f0g :

D
J
0
(u); u

E
= 0
o
:
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Chapter 2. Nehari manifold and Fibering method

So N is a natural constraint for the problem of finding nontrivial critical points

of J(u) by minimizing the energy functional J on the constraint N is called the

Nehari manifold. Set

c := inf J(u):
u2N

Under appropriate conditions on J one hopes that c is attained at some u0 2 N

and that u0 is a critical point.

2.5 Fibering method

At the end of the 1990s, the fibering method or the decomposition method

introduced by Pohozaev for investigating some variational problems, and its ap-

plications to nonlinear elliptic equations.

Let X and Y be Banach spaces, and let A be an nonlinear operator acting

from X to Y . We consider the equation

(2. 5. 1) A(u) = h:

The fibering method is based on representation of solutions of equation (2. 5. 1)

in the form

u = tu:

Where t is a real parameter, t 6= 0 in some open J � R: Now, we give a complete

description of the fibering method, we begin by defining the fibre map of the
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following

�(t) : R+ ! R such that �(t) = J(tu);

then, we calculate �0(t); �00(t) the first and second derivative of �(t). We decom-

pose N into three parts N+;N�, and N 0 corresponding respectively, to local

minima, local maxima and points of inflection of � defined as follows

N+ = fu 2 N : �00(1) > 0g ;

N� = fu 2 N : �00(1) < 1g ;

N 0 = fu 2 N : �00(1) = 0g ;

and it is �00(1) which is used for these definitions, since it is clear that if u is a

local minimum for J , then u has a local minimum at t = 1.

The method of decomposition (F:M)makes it possible to find solutions to the

noncoercive problems and in the absence of the continuity of the operator A.

Example 2.5.1. We consider the following problem:

(P )

8>>>><>>>>:
��u(x) = f(x; u(x) in 
;

u(x) = 0 on x 2 @ 
:
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Let E = W 1;2
0 (
) be the Banach space. The energy functional J : E ! R corre-

sponding to the problem (P ) defined as follows

J(u) =
1

2

Z



jru(x)j2 dx�
Z



F (x; u(x))dx:

Where F (x; u(x)) =
R u
0
f(x; s)dx: Obviously, the functional J may not be bounded

on all the space but can be on some parts of E (called the Nehari manifold N )

defined as follows

N =
n
u 2 E :

D
J
0
(u); u

E
= 0
o
:

Theorem 2.5.1. Let u 2 En f0g and t > 0: Then tu 2 N if and only if

�0u(t) = 0

where

�u(t) = J(tu):

Proof. By definition, one has

�u(t) = J(tu):

Therefore

�0u(t) = hJ 0(u); ui =
1

t
hJ 0(tu); tui :

If �0u(t) = 0; then hJ 0(tu); tui = 0 i.e tu 2 N . In other terms, the points of

the manifold N correspond to the stationary points of the maps �u(t). On the
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Chapter 2. Nehari manifold and Fibering method

other hand, we decomposeN into three partsN+;N�;N 0 corresponding to local

minima, local maxima and points of inflection of �u(t): For that, we calculate the

second derivative of �u(t)

�0u(t) = hJ 0(tu); ui

=
R



jr(tu)j jruj dx� �
R



f(x; tu)udx

= t
R



jruj2 dx� �
R



f(x; tu)udx;

So

�
00

u(t) =
R



jruj2 dx� �
R



(f 0u(x; tu)u)udx

=
R



jruj2 dx� �
R



f 0u(x; tu)u
2dx:
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Thus, we conclude N+;N�; and N 0defined as follows

N 0 =

�
u 2 N ;

R



(jruj2 � �(f 0u(x; u)u
2)dx = 0

�
;

N+ =

�
u 2 N ;

R



(jruj2 � �(f 0u(x; u)u
2)dx > 0

�
;

N� =

�
u 2 N ;

R



(jruj2 � �(f 0u(x; u)u
2)dx < 0

�
;

and it is �
00

u(1) which is used for these definitions, since it is clear that if u is a

local minimum for J , then u has a local minimum at t = 1:

Theorem 2.5.2. Let u 2 N . Then

� (i) �0u(1) = 0:;

� (ii) 8>>>><>>>>:
u 2 N+ if �

00

u(1) > 0;

u 2 N� if �
00

u(1) < 0;

u 2 N 0 if �
00

u(1) = 0:

Proof. Let u 2 N if and only if

D
J
0
(u); u

E
= 0;

which is equivalent to : �0u(1) = 0 hence (i):

For (ii), there are three cases:
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case 1 : u 2 N+; then

R



(jruj2 � �f 0u(x; u)u
2)dx > 0

which is equivalent to �
00

u(1) > 0:

case 2 : u 2 N�; then

R



(jruj2 � �f 0u(x; u)u
2)dx < 0

which is equivalent to �
00

u(1) < 0:

case 3 : u 2 N 0; then

R



(jruj2 � �f 0u(x; u)u
2)dx = 0

which is equivalent to �
00

u(1) = 0:

The following theorem attests that the minimizers of J on the manifold N

are true, in general, critical points of J:

Theorem 2.5.3. Suppose u0 is a local minimizer for J on N and u0 =2 N 0.

Then

J 0(u0) = 0:

Proof. According to Lagrange’s multiplier theorem

9� 2 R : J 0(u0) = ��0(u0);
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so

hJ 0(u0); u0i = � h�0(u0); u0i :

The constraint � defined as follows

�(u) = hJ 0(u); ui =
R



(jruj2 � �f(x; u)u)dx:

For all u0 2 N ; we have

hJ 0(u0); u0i = � h�0(u0); u0i = 0:

Therefore R



(jru0j2 � �f(x; u0)u0)dx = 0;

then R



(jru0j2 dx = �
R



f(x; u0)u0dx;

thus

h�0(u0); u0i =
R



(2 jru0j2 � �f 0u(x; u0)u
2
0)dx� �

R



f(x; u0)u0dx

=
R



(jru0j2 � �f 0u(x; u0)u
2
0)dx

= �00u0(1) 6= 0:
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Which implies that � = 0; then J 0(u0) = 0:

2.6 Ekeland’s variational principle

In general, it is not clear that a bounded and lower semi-continuous func-

tional E actually attains its infimum. The analytic function f(x) = arctanx, for

example, neither attains its infimum nor its supremum on the real line.

A variant due to Ekeland of Dirichlet’s principle, however, permits one to

construct minimizing sequences for such functionals E whose elements um each

minimize a functional Em, for a sequence of functionals fEmg converging locally

uniformly to E:

Theorem 2.6.1. [31] Let E be a reflexive Banach space with norm k:k, and

J : E ! R is coercive and weakly lower semi-continuous on E , that is, suppose the

following conditions are fullfilled:

� J(u; v)!1 as k(u; v)k ! 1; (u; v) 2 E:

� For any (u; v) 2 E; any sequence (un; vn) in E such that (un; vn)+ (u; v)

weakly in E there holds

J(u; v) � lim inf
n!1

J(un; vn):
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� Then J is bounded from below on E and attains its infimum in E such

that

J(u0; v0) = inf
E
J:

Theorem 2.6.2. [31] Let M be a complete metric space with metric d, and let

J :M ! R[f+1g be lower semi-continuous, bounded from below, and 6=1:Then

for any �; � > 0; any u 2M with

J(u) � inf
M
J(u) + �;

there is an element v 2M strictly minimizing the functional

Jv(w) � J(w) +
�

�
d(v; w):

Moreover, we have

J(v) � J(u); d(u; v) � �:
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Chapter 3. Singular fractional elliptic system

3.1 Introduction

In this chapter, we apply the Nehari Manifold, Fibering method, and Eke-

land’s variational principle to establish the existence and multiplicity results of

nontrivial positive solutions for the system (p�): We consider the following sin-

gular fractional elliptic system

(P�)

8>>>>>>>>>>><>>>>>>>>>>>:

(��)sp u = a(x)u� + �f(x; u; v) in 
;

(��)sp v = b(x)v� + �g(x; u; v) in 
;

u = v = 0 on RNn
:

Where 
 is a smooth bounded set in RN ; N > ps with s 2 (0; 1); � is a positive

parameter and 0 <  < 1 < p < r < p�s � 1; where p�s =
Np
N�ps is the fractional

critical Sobolev exponent. Where a and b are positive functions of class L1(
):

We assume there exists a function H : �
� R� R! R satisfying

Hu (u; v) = f (u; v) and Hv (u; v) = g (u; v) :

From (0: 0: 1), we can easily deduce that H is homogeneous of degree r which

satisfies the following assumptions
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H : �
� R� R! R

H(x; tu; tv) = trH(x; u; v); t > 0;

rH(x; u; v) = uf(x; u; v) + vg(x; u; v) (Euler identity);

jH(x; u; v)j � K (jujr + jvjr) ; for some constant K > 0: (3. 1. 1)

(3. 1. 2) H�(x; u; v) = max(�H(x; u; v); 0) 6= 0 for all (u; v) 6= (0; 0):

Let � = R2Nn((RNn
) � (RNn
)), X denote the usual space defined as

followX0 denote the usual space define as follow

X0 =
�
u 2 X : u = 0 a.e. in RNn


	
;

with the norm

kukX0 = (T (u; u))
1
p =

�Z
�

ju(x)� u(y)jp

jx� yjN+ps
dxdy

� 1
p

;

where

T (u; z) =

Z
�

ju(x)� u(y)jp�2 (u(x)� u(y))(z(x)� z(y))

jx� yjN+ps
dxdy:
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Setting E = X0 �X0 a reflexive Banach space; with the norm

k(u; v)kE =
�
kukpX0 + kvk

p
X0

� 1
p = (T (u; u) + T (v; v))

1
p ;

where �s;p is the best Sobolev constant of the embedding from X0 into Lp
�
s(
)

given by

(3. 1. 3) �s;p = inf
u2X0

� kukX0
kukLp�s

�p
:

Now, we give the definition of the weak solution.

3.2 Main results

Let us start by defining the notion of weak solution of the system (P�):

Definition 3.2.1. (Weak solution)We say that (u; v) 2 E is a weak solution of

system (P�) if for every (z; w) 2 E we have

T (u; z) + T (v; w) =

Z



�
a(x)u�zdx+ b(x)v�w

�
dx

+�

Z



(zf(x; u; v) + wg(x; u; v)) dx; (3. 2. 1)
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where

T (u; z) =

Z
�

ju(x)� u(y)jp�2 (u(x)� u(y))(z(x)� z(y))

jx� yjN+ps
dxdy;

T (v; w) =

Z
�

jv(x)� v(y)jp�2 (v(x)� v(y))(w(x)� w(y))

jx� yjN+ps
dxdy:

The following theorem show the existence and multiplicity of positive nontrivial

solutions to the system (p�) for all � 2 (0;�):

Theorem 3.2.1. Suppose that 0 <  < 1 < p < r < p�s�1 and the assumptions

(0:0:1)� (3: 1:2) holds. Then, there exists � > 0: Such that, system (P�) has at least

two positive nontrivial solutions for all � 2 (0;�):

Let � be a constant define by

(3. 2. 2)

� =
1

rK

�
p+  � 1
r +  � 1

���
r +  � 1
r � p

�
�
�1
p

s;p max(kak1 ; kbk1)
� p�r
p�1+

j
j
(r+�1)(p�p�s)
p�s(p+�1) :

3.3 The Nehari Manifold and the Fibering maps

We consider the energy functional J� : E ! R corresponding to the system

(P�) defined as

J�(u; v) =
1

p
k(u; v)kpE �

1

1� 

Z



(a(x)u1� + b(x)v1�)dx� �

Z



H(x; u; v)dx:
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Then, the functional J� is Fréchet derivative and the critical points are the weak

solutions of (P�):

Notations

To simplify the calculus, we put

Q = Q (u; v) = k(u; v)kpE = T (u; u) + T (v; v);

R = R (u; v) =

Z



(a(x)u1� + b(x)v1�)dx;

S = S (u; v) =

Z



H(x; u; v)dx:

We consider a sequence f(un; vn)g 2 E such that (un; vn) ! (u; v) in E; as n !

+1: Therfore, one has

Qn = Q (un; vn) ; Rn = R (un; vn) and Sn = S (un; vn) ;

Furthermore, (u0; v0) 2 N 0
� is a critical point of J� such that

Q0 = Q (u0; v0) ; R0 = R (u0; v0) and S0 = S (u0; v0) :

Thus, we can write J� as follows

J�(u; v) =
1

p
Q� 1

1� 
R� �S:
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Also, J� 2 C1(E;R) and J 0
� : E ! E

0 for every (u; v) 2 E, we have that

D
J
0

�(u; v); (u; v)
E
= Q�R� �rS:

To find the critical points of J� , we will minimize the energy functional J� on

the constraint of the Nehari Manifold defined as follows

N� =
n
(u; v) 2 En f(0; 0)g :

D
J
0

�(u; v); (u; v)
E
= 0
o
:

Then, (u; v) 2 N� if and only if

(3. 3. 1) Q�R� �rS = 0 for all (u; v) 2 E n (0; 0);

we define the fiber map �u;v(t) : R+ ! R as follows

�u;v(t) = J�(tu; tv) =
1

p
Qtp � 1

1� 
Rt1� � �Str;

the first and the second derivative of the map �u;v(t) is given by

�0u;v(t) = Qtp�1 �Rt� � �rStr�1;

and

�00u;v(t) = (p� 1)Qtp�2 + Rt��1 � �r(r � 1)Str�2:
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It is easy to see that

(tu; tv) 2 N� if and only if �0u;v(t) = 0;

and

(u; v) 2 N� if and only if �0u;v(1) = 0:

Hence for (u; v) 2 N�; we obtain

�00u;v(1) = (p� 1)Q+ R� �r(r � 1)S;

= (r +  � 1)R� (r � p)Q;

= (p+  � 1)Q� �r(r +  � 1)S;

= (p+  � 1)R� �r(r � p)S:

Now, we decomposeN� into three partsN+
� ;N�

� ;N 0
� corresponding to local min-

ima, local maxima and points of inflection of �u;v defined as follows

N 0
� =

�
(u; v) 2 N�; �

00
u;v(1) = 0

	
;

N+
� =

�
(u; v) 2 N�; �

00
u;v(1) > 0

	
;

N�
� =

�
(u; v) 2 N�; �

00
u;v(1) < 0

	
:
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It’s clear that, if (u; v) 2 N+
� ; we have

(3. 3. 2) R >
r � p

r +  � 1Q > 0 then R > 0:

Now, we give some very interesting lemmas.

Lemma 3.3.1. Suppose that (u0; v0) is a local minimizer of J� on N� and that

(u0; v0) =2 N 0
� . Then (u0; v0) is a critical point of J�:

Proof. According to the theorem of Lagrange multiplier

9� 2 R : J 0�(u0; v0) = ��0(u0; v0);

(u0; v0) 2 N� : hJ 0�(u0; v0); (u0; v0)i = � h�0(u0; v0); (u0; v0)i = 0:

Where the constraint is

�(u; v) = Q�R� �rS:

For all (u; v) 2 N� and (u0; v0) =2 N 0
� ; we have

h�0(u; v); (u; v)i = pQ� (1� )R� �r2S

= (p� 1)Q+ R� �r(r � 1)S

= �00u;v(1) 6= 0:

Which implies that � = 0; then J 0�(u0; v0) = 0:

Lemma 3.3.2. J�is coercive and bounded from below on N�:
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Proof. Let (u; v) 2 N�. From (3. 1. 3) and the Hölder’s inequality, we obtain

R � �
�1
p

s;p j
j
p�s+�1

p�s max(kak1 ; kbk1) k(u; v)k
1�
E :

= �
�1
p

s;p j
j
p�s+�1

p�s max(kak1 ; kbk1)Q
1�
p : (3. 3. 3)

and

S � K

Z



(jujr + jvjr) dx � K j
j
p�s�r
p�s

�
kukrp�s + kvk

r
p�s

�
� K j
j

p�s�r
p�s �

�r
p
s;p k(u; v)krE = K j
j

p�s�r
p�s �

�r
p
s;pQ

r
p : (3. 3. 4)

From the assumptions, (3. 3. 1) and (3. 3. 3) we have that, for all (u; v) 2 N� ,

J�(u; v) =
1

p
Q� 1

1� 
R� �S

=

�
r � p

rp

�
Q�

�
 + r � 1
r(1� )

�
R

�
�
r � p

rp

�
Q�

�
 + r � 1
r(1� )

�
�
�1
p

s;p (kak1 + kbk1) j
j
p�s+�1

p�s Q
1�
p ;

since 0 <  < 1 and r > p > 1 > 1� , the functional J� is coercive and bounded

from below on N�.

Lemma 3.3.3. Let � 2 (0;�). Then, there exist two number denoted t1 and t2

such that

�0u;v(t1) = �0u;v(t2) = 0;
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and

�00u;v(t1) < 0 < �00u;v(t1);

that is (t1u; t1v) 2 N+
� and (t2u; t2v) 2 N�

� :

Proof. We consider  u;v(t) : R+ ! R defined by

 u;v(t) = Qtp�r �Rt1��r � �rS:

The first derivative  u;v(t) is given by

 
0

u;v(t) = (r +  � 1)Rt��r � (r � p)Qtp�r�1

= (r +  � 1)Rt��r � (r � p)Qtp�r�1;

then  
0

u;v(t) = 0 if and only if  u;v(t) has a unique critical point at

(3. 3. 5) tmax =

�
(r +  � 1)R
(r � p)Q

� 1
p+�1

;

and

lim
t!+1

 u;v(t) = ��rS and lim
t!0+

 u;v(t) = �1:

Moreover,  
0

u;v(t) > 0 for all 0 < t < tmax and  
0

u;v(t) < 0 for all t > tmax: Then

 u;v(tmax) = Qtp�rmax �Rt��r+1max � �rS

=

�
 + r � 1
r � p

� p�r
p�1+

�
p+  � 1
 + r � 1

�
Q

+r�1
p+�1R

p�r
p+�1 � �rS:(3. 3. 6)

50



Chapter 3. Singular fractional elliptic system

From (3. 2. 2) ; (3. 3. 3) and (3. 3. 4) ; one sees that

 (tmax) �
�
 + r � 1
r � p

� p�r
p+�1

�
p+  � 1
r +  � 1

�0BBB@ Qr+�1�
�
�1
p

s;p j
j
p�s+�1

p�s max(kak1 ; kbk1)Q
1�
p

�r�p
1CCCA

1
p+�1

��rK j
j
p�s�r
p�s �

�r
p
s;pQ

r
p

�

26664
�
p+  � 1
r +  � 1

� �� r+�1
r�p

�
�
�1
p

s;p max(kak1 ; kbk1)
� p�r

p�1+

rK j
j
(r+�1)(p�s�p)
p�s(p+�1)

� �

37775 rK��r
p
s;p j
j

p�s�r
p�s Q

r
p

= (�� �) rK�
�r
p
s;p j
j

p�s�r
p�s k(u; v)krE :

Then, for all � 2 (0;�) ;we obtain

 (tmax) � 0:

As a consequence, there exist t1 and t2 such that 0 < t1 < tmax < t2 verifies

 u;v(t1) =  u;v(t2) = 0;

and

 
0

u;v(t1) < 0 <  
0

u;v(t2):

We conclude that (t1u; t1v) 2 N+
� and (t2u; t2v) 2 N�

� :
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Corollary 3.3.1. For all � 2 (0;�), then N�
� 6= ; and N 0

� = f(0; 0)g : Moreover

N�
� is a closed set in E�topology.

Proof. First, according to the Lemma 3. 3. 3, N�
� are non-empty for all � 2

(0;�) : Now, we proceed by contradiction to establish that N 0
� = f(0; 0)g for all

� 2 (0;�). For this, let us suppose that there exists (0; 0) 6= (u0; v0) 2 N 0
� : Then

we get

(3. 3. 7) (p+  � 1)Q0 � �r(r +  � 1)S0 = 0;

which implies that

(3. 3. 8) 0 = Q0 �R0 � �rS0 =

�
r � p

r +  � 1

�
Q0 �R0:

From (3. 3. 7) and (3. 3. 8), we obtain

0 <  u0;v0(tmax)� �rS0

=

�
 + r � 1
r � p

� p�r
p�1+

�
p� 1 + 
 + r � 1

�
(Q0)

+r�1
p+�1

(R0)
r�p

p+�1
� �rS0

�
�
r +  � 1
r � p

� p�r
p�1+

�
p+  � 1
r +  � 1

��
r +  � 1
r � p

� r�p
p+�1

Q0 �
�
p+  � 1
r +  � 1

�
Q0 = 0;

for all � 2 (0;�), which is impossible. Thus N 0
� = f(0; 0)g :

Now, to prove that N�
� is closed for all � 2 (0;�), we consider a sequence

f(un; vn)g � N�
� such that (un; vn) ! (u; v) in E as n ! +1; then (u; v) � N�

� .
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Using the definition of N�
� , we get

Qn �Rn � �rSn = 0;

and

(p� 1)Qn + Rn � �r(r � 1)Sn < 0:

Hence, we get that

Q�R� �rS = 0;

and

(p� 1)Q+ R� �r(r � 1)S � 0:

Therefore, (u; v) 2 N 0
� [N�

� = N�
� :

Lemma 3.3.4. Let (u; v) 2 N+
� (respectively N�

� ), with u; v � 0 then for any

(z; w) 2 E with z; w � 0; there exists a number " > 0 and a continuous function

g : B(0; ")! R such that

g(0) = 1 and g (s) (u+ sz; v + sw) 2 N+
� (respectively N�

� ).

Proof. We give the proof only for the case (u; v) 2 N+
� ; the case N�

� may be

preceded exactly. We define 	 : R+ � R+ ! R as follows

	(t; s) = Q (u+ sz; v + sw) tp+�1 � �rS(u+ sz; v + sw)tr+�1

�R (u+ sz; v + sw) :
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The first derivative of the function 	 is given by

	t(t; s) = (p+  � 1)Q (u+ sz; v + sw) tp+�2

��r(r +  � 1)S(u+ sz; v + sw)tr+�2:

It is clear that the function 	t(t; s) is continuous in R+ � R+. Moreover, since

(u; v) 2 N+
� � N�; we obtain

	(1; 0) = Q�R� �rS = 0;

and

	t(1; 0) = (p+  � 1)Q� �r(r � 1)S > 0:

Thus, Using the implicit function theorem at the point (1; 0), we have that there

exists � > 0 and a positive continuous function g : B(0; ")! R such that

g(0) = 1; g(s)(u+ sz; v + sw) 2 N�;8s 2 B(0; �):

Hence, putting " > 0 smaller enough, we get

g(s)(u+ sz; v + sw) 2 N+
� ;8s 2 B(0; "):

The proof of the Lemma 3.3.4 is completed.
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3.4 Existence and multiplicity results

Now, we prove the theorem of existence and multiplicity of positive nontrivial

solutions to the system (p�) for all � 2 (0;�) in N�
� :

Since J�(u; v) = J�(juj ; jvj) for all � 2 (0;�); we can assume that all the price

elements in N� are nonnegative and from Lemma 3. 3. 2 and Lemma 3. 3. 3

we can found �+ and �� such that

�+ = inf
(u;v)2N+

�

J�(u; v) and �� = inf
(u;v)2N�

�

J�(u; v):

3.4.1 Positive solutions in N+
�

For all (u; v) 2 N+
� ; and consequently since r > p > 1 > 1�  and 0 <  < 1; we

have that

J�(u; v) =
1

p
Q� 1

1� 
R� �S = �(p+  � 1)(r � p)

rp(1� )
Q < 0:

Which means that

(3. 4. 1) �+ = inf
(u;v)2N+

�

J�(u; v) < 0 for all � 2 (0;�):

Proof of Theorem 3. 2. 1. The proof is split into two steps.
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Proof. Step 1: Let us consider the minimizing sequences f(un; vn)g and apply-

ing Ekeland’s variational principle, we obtain8>>>><>>>>:
i) J�(un; vn) < �+ + 1

n
;

ii) J�(u; v) � J�(un; vn)� 1
n
k(u� un; v � vn)kE for all (u; v) 2 N+

� :

We can assume that un; vn � 0: Clearly, as J� is coercive on N�; f(un; vn)g is

bounded in E: so there exists a sub-sequence denoted by f(un; vn)g and u0; v0 � 0

such that (un; vn)* (u0; v0) weakly in E, strongly in Lq (
)� Lq (
) ; 1 < q < p�s,

and un(x) ! u0(x); vn(x) ! v0(x); a.e in 
; Therefore, from (3. 4. 1) and by

using the weak lower semi-continuity of norm, we obtain

(3. 4. 2) J�(u0; v0) � lim
n!1

inf
(u;v)2N+

�

J�(un; vn) = inf
(u;v)2N+

�

J�(u; v) < 0:

Claim 1. u0(x); v0(x) > 0 a. e. in 
:

Firstly, we start by observing that, since (un; vn) 2 N+
� , one has

(3. 4. 3) (p+  � 1)Qn � �r(r +  � 1)Sn > 0;

equivalent to

(3. 4. 4) (p+  � 1)Rn � �r(r � p)Sn > 0:
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By Vitali’s convergence theorem, we have that

(3. 4. 5) lim
n!1

Sn = lim
n!1

Z



H(x; un; vn)dx =

Z



H(x; u0; v0)dx = S0:

Moreover, using Hölder inequality, we obtain that, as n!1

Z



a (x)u1�n dx �
Z



a (x)u1�0 dx+ kak1
Z



jun � u0j1� dx

�
Z



a (x)u1�0 dx+ j
j
p+�1

p kak1 kun � u0k1�Lp(
) ;

=

Z



a (x)u1�0 dx+ o (1)

and

Z



a (x)u1�0 dx �
Z



a (x)u1�n dx+ kak1
Z



jun � u0j1� dx

�
Z



a (x)u1�n dx+ j
j
p+�1

p kak1 kun � u0k1�Lp(
) ;

=

Z



a (x)u1�n dx+ o (1) :

Then Z



a (x)u1�n dx =

Z



a (x)u1�0 dx+ o (1) :

Similarly, we can obtain

Z



b (x) v1�n dx =

Z



b (x) v1�0 dx+ o (1) :
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Thus

(3. 4. 6) Rn = R0 + o (1) :

From the Brézis-Lieb lemma, we obtain that

k(un; vn)kpE = k(u0; v0)k
p
E + kun � u0kpX0 + kvn � v0kpX0 + o (1) :

Thus

(3. 4. 7) Qn = Q0 + o (1) :

Therefore, it follows from (3. 4. 5) and (3. 4. 6) that

lim
n!1

[(p+  � 1)Qn � �r(r +  � 1)Sn]

= lim
n!1

[(p+  � 1)Rn � �(r � p)Sn]

= (p� 1 + )R0 � �r(r � p)S0 � 0:

Moreover, by contradiction, assume that

(3. 4. 8) (p+  � 1)R0 � �r(r � p)S0 = 0:
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Hence, Using (3. 4. 5) � (3. 4. 8), and the weakly lower semi continuity of the

norme, obtain

0 � Q0 �R0 � �rS0 = Q0 � �r

�
r +  � 1
p+  � 1

�
S0:

From (3. 4. 3), one has a contradiction, thus

(3. 4. 9) (p+  � 1)R0 � �r(r � p)S0 > 0:

Now, let us consider the functions 0 < z;w 2 E: From Lemma 3.3.4, there exits

a sequence of continuous functions (gn)n2N such that gn (s) (un + sz; vn + sw) 2

N+
� and gn (0) = 1; that is

Q (gn (s) (un + sz; vn + sw))�R (gn (s) (un + sz; vn + sw))��rS (gn (s) (un + sz; vn + sw)) = 0;

since

(3. 4. 10) Qn �Rn � �rSn = 0:

59



Chapter 3. Singular fractional elliptic system

For s small enough, it follows that

0 = (gpn (s)� 1)Q (un + sz; vn + sw) + (Q (un + sz; vn + sw)�Qn)

�
�
g1�n (s)� 1

�
R (un + sz; vn + sw)� (R (un + sz; vn + sw)�Rn)

��r (grn (s)� 1)S (un + sz; vn + sw)� �r (S (un + sz; vn + sw)� Sn)

� (gpn (s)� 1)Q (un + sz; vn + sw) + (Q (un + sz; vn + sw)�Qn)

�
�
g1�n (s)� 1

�
R (un + sz; vn + sw)

��r (grn (s)� 1)S (un + sz; vn + sw)� �r (S (un + sz; vn + sw)� Sn) ;

dividing by s > 0 and passing to the limit as s! 0; we get

0 � g0n (0)
�
pQn � (1� )Rn � �r2Sn

�
+ p (T (un; z) + T (vn; w))

��r
Z



(zf(x; un; vn) + wg(x; un; vn)) dx

� g0n (0) ((p� r)Qn + (r +  � 1)Rn) + p (T (un; z) + T (vn; w)) ;

then, by (3. 4. 3) and (3. 4. 10) ; we obtain

(3. 4. 11) g0n (0) � �
p (T (un; z) + T (vn; w))

(p� r)Qn + (r +  � 1)Rn

where g0n (0) 2 [�1;1] denotes the right derivative of gn (s) at zero and since

(un; vn) 2 N+
� ; g

0
n (0) 6= �1. For simplicity, we assume that the right derivative

of gn at s = 0 exists. Moreover, from (3. 4. 11) g0n (0) is uniformly bounded from
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below. Now, using the condition (ii), we have

jgn (s)� 1j
k(un; vn)k

n
+ sgn (s)

k(z; w)k
n

� J� (un; vn)� J� (gn (s) (un + sz; vn + sw))

= �p+  � 1
p (1� )

Qn + �

�
r +  � 1
1� 

�
Sn

+
p+  � 1
p (1� )

gpn (s)Q (un + sz; vn + sw)� �

�
r +  � 1
1� 

�
grn (s)S (un + sz; vn + sw)

=
p+  � 1
p (1� )

[Q (un + sz; vn + sw)�Qn + (g
p
n (s)� 1)Q (un + sz; vn + sw)]

��r +  � 1
1� 

[S (un + sz; vn + sw)� Sn + (g
r
n (s)� 1)S (un + sz; vn + sw)] ;

dividing by s > 0 and passing to the limit as s! 0; we obtain

1

n
(jg0n (0)j k(un; vn)k+ k(z; w)k)

� g0n (0)

1� 
((p� r)Qn + (r +  � 1)Rn)

+
p (p+  � 1)

1� 
(T (un; z) + T (vn; w))

��
�
r +  � 1
1� 

�Z



(zf(x; un; vn) + wg(x; un; vn)) dx
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which implies that

jg0n (0)j
�
�k(un; vn)k

n
� ((r � p)Qn � (r +  � 1)Rn)

�
� 1

n
k(z; w)k � p (p+  � 1)

1� 
(T (un; z) + T (vn; w))

+�

�
r +  � 1
1� 

�Z



(f(x; un; vn)z + g(x; un; vn)w) dx

Hence, there exists a positive constant L such that

�k(un; vn)k
n

� ((p� r)Qn + (r +  � 1)Rn) � L > 0;

then

jg0n (0)j � L�1
�
1

n
k(z; w)k+ p (p+  � 1)

1� 
(T (un; z) + T (vn; w))

+�

�
r +  � 1
1� 

�Z



(f(x; un; vn)z + g(x; un; vn)w) dx

�
;(3. 4. 12)

Thus, according to (3. 4. 12) ; g0n (0) is uniformly bounded from above. Conse-

quently,

(3. 4. 13) g0n (0) is uniformly bounded for n large enough.
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Thus from condition (ii) it follows that for s > 0 small enough, one has

1

n
(jgn (s)� 1j k(un; vn)k+ sgn (s) k(z; w)k)

� 1

n
(kgn (s) (un + sz; vn + sw)� (un; vn)k)

� J� (un; vn)� J� (gn (s) (un + sz; vn + sw))

= �g
p
n (s)� 1

p
Qn +

g1�n (s)� 1
1� 

Rn + � (grn (s)� 1)Sn +
gpn (s)

p
(Qn �Q (un + sz; vn + sw))

+
g1�n (s)

1� 
(R (un + sz; vn + sw)�Rn) + �grn (s) (S (un + sz; vn + sw)� Sn) ;

dividing by s > 0 and passing to the limit as s! 0; we obtain

1

n
(jg0n (0)j k(un; vn)k+ k(z; w)k)

� �g0n (0) (Qn �Rn � �rSn)� (T (un; z) + T (vn; w))

+�

Z



(f(x; un; vn)z + g(x; un; vn)w) dx

+
1

1� 
lim
s!0+

inf

�
R (un + sz; vn + sw)�Rn

s
:

�
(3. 4. 14)

From (3. 4. 14), we deduce that

1

1� 
lim
s!0+

inf

�
R (un + sz; vn + sw)�Rn

s

�
� T (un; z) + T (vn; w)� �

Z



(f(x; un; vn)z + g(x; un; vn)w) dx

+
jg0n (0)j k(un; vn)k+ k(z; w)k

n
; (3. 4. 15)
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since

R (un + sz; vn + sw)�Rn � 0;8t > 0;8x 2 
:

Using Fatou’s Lemma, we get

Z



�
a (x)u�n z + b (x) v�n w

�
dx � 1

1� 
lim
s!0+

inf

�
R (un + sz; vn + sw)�Rn

s

�
;

hence, using (3. 4. 15) ; it follow that

Z



�
a (x)u�n z + b (x) v�n w

�
dx

� T (un; z) + T (vn; w)� �

Z



(f(x; un; vn)z + g(x; un; vn)w) dx

+
jg0n (0)j k(un; vn)k+ k(z; w)k

n
;

for n large enough. By using (3. 4. 14) and Fatou’s Lemma again, we conclude

that

T (u0; z) + T (v0; w)

�
Z



�
a (x)u�0 z + b (x) v�0 w

�
dx+ �

Z



(f(x; u0; v0)z + g(x; u0; v0)w) dx;(3. 4. 16)

for all (z; w) 2 X;with z; w � 0:Then, the maximum principal theorem implies

that u0 (x) ; v0 (x) > 0 a.e. in 
 and.
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Now, we prove that (u0; v0) 2 N+
� for all � 2 (0;�): We start by choosing

(z; w) = (u0; v0) in (3. 4. 16) ; we obtain

Q0 �R0 � �rS0 � 0:

On the other hand, from the weakly lower semi continuity of the norm, we get

Q0 �R0 � �rS0 � 0;

thus

(3. 4. 17) Q0 �R0 � �rS0 = 0:

This implies that (u0; v0) 2 N�: Hence, combining (3. 4. 9) and (3. 4. 17), we

conclude that (u0; v0) 2 N+
� :

Claim 2. Now, we prove (u0; v0) is positive solution to the system (p�) for

all � 2 (0;�). Let (z; w) 2 X and " > 0: We define (!1; !2) 2 X by (!1; !2) =

(u0 + "z; v0 + "w)and !+1 = max f!1; 0g and !+2 = max f!2; 0g : Let


+" = f(u0 + "z; v0 + "w) : u0 + "z > 0 and v0 + "w > 0g ;


�" = f(u0 + "z; v0 + "w) : u0 + "z � 0 and v0 + "w � 0g ;
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T (u0; !
+
1 ) =

Z
Q

ju0(x)� u0(y)jp�2 (u0(x)� u0(y))(!
+
1 (x)� !+1 (y))

jx� yjN+ps
dxdy

=

Z
Q

ju0(x)� u0(y)jp�2 (u0(x)� u0(y))((u0 + "z) (x)� (u0 + "z) (y))

jx� yjN+ps
dxdy

�
Z

�" �
�"

ju0(x)� u0(y)jp�2 (u0(x)� u0(y))((u0 + "z) (x)� (u0 + "z) (y))

jx� yjN+ps
dxdy

= T (u0; u0) + "T (u0; z)

�
Z

�" �
�"

ju0(x)� u0(y)jp�2 (u0(x)� u0(y))((u0 + "z) (x)� (u0 + "z) (y))

jx� yjN+ps
dxdy:

By Claim 1, the measure of the domain of integration 
�" � 
�" tends to 0 as

"! 0+ that

Z

�" �
�"

ju0(x)� u0(y)jp�2 (u0(x)� u0(y))((u0 + "z) (x)� (u0 + "z) (y))

jx� yjN+ps
dxdy !

"!0+
0;

then

(3. 4. 18) T (u0; !
+
1 ) !

"!0+
T (u0; u0):

By the same manner, we obtain

(3. 4. 19) T (v0; !
+
2 ) !

"!0+
T (v0; v0):
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On the other hand, we have

Z



a (x)u�0 !+1 dx =

Z

+"

a (x)u�0 !1dx

=

Z



a (x)u�0 (u0 + "z) dx�
Z

�"

a (x)u�0 (u0 + "z) dx

=

Z



a (x)u1�0 dx+ "

Z



a (x)u�0 zdx�
Z

�"

a (x)u�0 (u0 + "z) dx

(3. 4. 20) �
Z



a (x)u1�0 dx+ "

Z



a (x)u�0 zdx:

By the same manner, we obtain

(3. 4. 21)
Z



b (x) v�0 !+2 dx �
Z



b (x)u1�0 dx+ "

Z



b (x) v�0 zdx:

Now,

Z



f(x; u0; v0)!
+
1 dx =

Z

+"

f(x; u0; v0)!1dx

=

Z



f(x; u0; v0) (u0 + "z) dx�
Z

�"

f(x; u0; v0) (u0 + "z) dx

=

Z



f(x; u0; v0)u0dx+ "

Z



f(x; u0; v0)zdx�
Z

�"

f(x; u0; v0) (u0 + "z) dx

(3. 4. 22) �
Z



f(x; u0; v0)u0dx+ "

Z



f(x; u0; v0)zdx;
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and

(3. 4. 23)
Z



g(x; u0; v0)!
+
2 dx �

Z



g(x; u0; v0)v0dx+ "

Z



g(x; u0; v0)zdx;

combining (3. 4. 18)� (3. 4. 23) ; we get

0 � T (u0; !
+
1 ) + T (v0; !

+
2 )�

Z



�
a (x)u�0 !+1 + b (x) v�0 !+2

�
dx

��
Z



�
f(x; u0; v0)!

+
1 + g(x; u0; v0)!

+
2

�
dx

� T (u0; u0) + T (v0; v0)�
Z



�
a (x)u1�0 + b (x)u1�0

�
dx

�
�Z




f(x; u0; v0)u0 +

Z



g(x; u0; v0)v0

�
dx

+"

�
T (u0; z) + T (u0; z)�

Z



�
a (x)u�0 z + b (x) v�0 w

�
dx

�
Z



(f(x; u0; v0)z + g(x; u0; v0)w) dx

�
= "

�
T (u0; z) + T (u0; z)�

Z



�
a (x)u�0 z + b (x) v�0 w

�
dx

�
Z



(f(x; u0; v0)z + g(x; u0; v0)w) dx

�
:

then

T (u0; z)+T (u0; z)�
Z



�
a (x)u�0 z + b (x) v�0 w

�
dx�

Z



(f(x; u0; v0)z + g(x; u0; v0)w) dx � 0:

Since the equality holds if we replace (z; w) by (�z;�w) which implies that

(u0; u0) is a positive week solution of the problem (P�).
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3.4.2 Positive solutions in N�
�

Similarly to the arguments in N+
� ; applying Ekeland’s variational principle to

the minimization problem �� = inf(u;v)2N�
�
J�(u; v) there exists a minimizing

sequences f(un; vn)g � N�
� such that8>>>><>>>>:

J�(un; vn) < �� + 1
n
;

J�(u; v) � J�(un; vn)� 1
n
k(u� un; v � vn)kE for all (u; v) 2 N+

� .

Firstly, we may assume that (un; vn) � 0; Clearly f(un; vn)g is a bounded se-

quences in E. So, there exists a subsequences denoted by f(un; vn)g and ~u0; ~v0 �

0 such that (un; vn)* (~u0; ~v0)weakly inE; strongly in L1�(
) and (un(x); vn(x))!

(~u0(x); ~v0(x)) in a.e 
; as n!1: Moreover, using the weak lower semi continu-

ity of norm, which means that

(3. 4. 24) J�(~u0; ~v0) � lim
n!1

inf
(u;v)2N�

�

J�(un; vn) < 0:

we see that (~u0; ~v0) 6= (0; 0) in a.e 
: Now, we prove that ~u0; ~v0 > 0 in a.e 
.

Similarly to the arguments, for (un; vn) 2 N�
� , one has

(3. 4. 25) (p+  � 1)Qn � �r(r +  � 1)Sn < 0;
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equivalent to

(3. 4. 26) (p+  � 1)Rn � �r(r � p)Sn < 0:

Moreover, From (3. 4. 25) and (3. 4. 26), we obtain that

lim
n!1

[(p+  � 1)Qn � �r(r +  � 1)Sn]

= lim
n!1

[(p+  � 1)Rn � �(r � p)Sn]

= (p� 1 + )R0 � �r(r � p)S0 � 0:

Now, repeating the same arguments as in Claim 1, we see that, for all � 2 (0;�)

(3. 4. 27) (p+  � 1)R0 � �r(r � p)S0 < 0:

Let us consider the functions 0 < z;w 2 E: Then, there exits a sequence of con-

tinuous functions (gn)n2N such that gn (s) (un + sz; vn + sw) 2 N�
� and gn (0) = 1:

Therefore, repeating the same arguments as in claim 3.4.1, we have that g0n(0)

is uniformly bounded for n large enough.

We conclude that ~u0 (x) ; ~v0 (x) > 0 a.e. in 
 and

T (~u0; z) + T (~v0; w) � �
Z



�
a (x) ~u�0 z + b (x) ~v�0 w

�
dx

��
Z



(f(x; ~u0; ~v0)z + g(x; ~u0; ~v0)w) dx;(3. 4. 28)
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for all (z; w) 2 E. Finally, we obtain that (~u0; ~v0) positive nontrivial solutions of

system (P�). The proof of the Theorem (3. 2. 1) is completed.
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Conclusion et Perspectives

In this thesis, we have studied the existence and multiplicity of nontrivial positive

solutions of a singular elliptic system associated with the fractional p-Laplacian

operator. the results are obtained using the Nehari manifold, fibering method,

and Ekland’s variational principle.

The results of this thesis can be generalized to singular elliptic systems involv-

ing the fractional p(x)-Laplacian operator or ' (x)-Laplacian in Orlisz Sobolev

spaces.
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