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Abstract

The aim of this thesis is the study of the uniqueness, existence and positivity
of solutions for some classes of impulsive initial and boundary value problems,
where the differential equations may involves Caputo fractional derivative, delay,
right and left Caputo derivatives and p-Laplacian operator. The main results
are obtained using fixed point theorems such as Banach’s contraction principle,
Schauder’s fixed point theorem, Krasnoselski fixed point theorem and a fixed point
theorem in cones. The presence of impulse moments with left and right fractional
derivatives in the problems makes it more complicated and interesting. The results
of this thesis can be considered as a contribution to the development of the study
of impulsive fractional differential equations.

Keywords: Impulsive differential equation, Existence of solution, Uniqueness
of solution, Delay differential equation, Positive solution, p-Laplacian operator,

Fractional derivative, Fixed point theorem.



Resumé

Le but de cette these est 'étude de 'unicité, l'existence et la positivité des
solutions pour certaines classes de problémes impulsifs initials et aux limites, ol
les équations différentielles peuvent contenir la dérivée fractionnaire de Caputo,
le retard, les dérivées de Caputo a droite et a gauche et I'opérateur p-Laplacien .
Les principaux résultats sont obtenus en utilisant des théorémes de point fixe tels
que le principe de contraction de Banach, le théoréme de point fixe de Schauder,
le théoréeme de point fixe de Krasnoselski et un théoréme de point fixe sur le cone.
La présence des moments d’impulsion avec des dérivées fractionnaires gauche et
droite dans les problémes les rend plus compliqué et intéressant. Les résultats de
cette thése peuvent étre considérés comme une contribution au développement de

I’étude des équations différentielles fractionnaires impulsives.

Mots-clés: Equation différentielle impulsive, Existence de la solution, Unicité
de la solution, Equation differentielle a retard , Solution positive, Operateur p-

Laplacien, Dérivée fractionnaire, Théoréme du point fixe.
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Introduction



The theory of fractional calculus which as a branch of mathematics studies
the properties of integrals and derivatives of non-integer order which we gener-
ally call fractional integrals and fractional derivatives that are generalization of
differentiation and integration to a non-integer order.

The theory of fractional calculus began almost at the same time as that of
classical calculus theory. In his letter to L’Hopital in 1695, Leibniz mentionned
the fractional order derivation by asking about the meaning of Cg:—f, a = % Sub-
sequently many relevant scientists have contributed to the development of frac-
tional calculus, a simple chronology in the period from 1650 to 1970 is shown in

figure 1.

Gottfried Leibniz, 1646 -1716

Isaac Newton, 1643-1727
= Guillaume de I'Hépital, 1661- 1704

1650

e Leonhard Euler, 1707-1783
] ' Joseph-Louis Lagrange, 1736-1813
Joseph Fourier ~  Pierre-Simon Laplace
1768-1830 o A 1749-1827
a 1750
Niels Abel, 1802-1829 Q
:,i Joseph Liouville

Bernhard Riemann 4.4 1800 1809-1882
1826-1866

Anton Grinwald -
1838-1920 M
Aleksey Letnikov A
: 1850 ¥
1837-1888 1853-1924
2 : Marce| Riesz
Oliver :egvizige P ] 1886-1969
1850-1925 William Feller
Magnus Mittag-Leffler :? 1906-1970

1846-1927

Hermann weyl

Godfrey Hardy ) 1300
1877-1947 - g - 1885-1955
John Littlewood ﬂ : x4 i
'

Karl Weierstrass
1815-1897

Pavel Nekrasov

1885-1977 Paul Lévy
1886-1971

Fig. 1 Timeline of main scientists in the area of Fractional Calculus.

The development of the theory of fractional calculus is due to many mathem-
aticians such as Spanier, Oldham, Ross, Nishimito, Marichev, Kilbas, Srivastava,
Bagley, Podlubny, Miller, Caputo, ....

Nowadays, fractional mathematical theory is applied in all branches where dif-
ferential equations are used to describe physical phenomena. There are several ap-
proaches to fractional calculus, such as Riemann-Liouville, Hadamard, Grunwald-
Letnikov, Weyl, Caputo ...



Due to the fact that the formulation of initial value problems with fractional
derivative of Caputo type is more similar to the formulation with a classical de-
rivative, the Caputo fractional derivative is more widely used in the literature. In
fact, the applied problems require definitions of fractional derivative allowing the
use of physically interpretable initial conditions, and then the fractional derivative
of Caputo, initially introduced by Caputo [23] and then adopted in the theory of
linear viscoelasticity, satisfies this demand.

For a good bibliography on fractional calculus and their applications, we refer
to [15, 27, 54, 66, [73, 74, [75], [78, [79, 83] and the references therein.

The fractional derivative being a non-local operator, the fractional differential
equations model situations in which it is important to consider the history and the
future of the phenomenon studied.

Different methods have been applied in the study of boundary value problems
for fractional differential equations such as fixed point theorems, upper and lower
solutions method, critical point theorem... see [31], [32] 33, B4, [37, 43, 44 [45] 53,
50, 68, [88], ©6].

For example, in [45], the authors studied the existence of one and two solutions
by applying the fixed point index theory. In [58], the authors obtained the existence
of positive solutions by the help of lower and upper solutions method and Schauder
fixed point theorem. In [36], the authors applied Krasnoselskii fixed point theorem
to prove the existence of solutions.

Impulsive differential equations appear as a natural description of many evolu-
tionary phenomena undergoing sudden changes and which are often of very short
duration and are therefore produced instantaneously in the form of impulses, like
biological systems, optimal control models in economics, population dynamics,
natural disasters....

Impulsive differential equations were introduced in 1960 by Milman and My-
shkis in their paper [67]. Since then, this type of differential equations has gained
popularity and significant consideration and several monographs have been pub-
lished by many authors such a like Samoilenko and Perestyuk [80, 8I], Laksh-
mikantham, Bainov and Simeonov [56], Bainov and Simeonov [I4], Bainov and
Covachev [13], and Benchohra, Henderson and Ntouyas [17].

In [2], the authors launched the study of impulsive fractional differential equa-



tions. In [I9], the authors studied impulsive initial value problems for Caputo
fractional differential equations. Since then, the investigation of the existence of
solutions for impulsive initial or boundary value problems for fractional differential
equations was the subject of several papers [2], 8 [5, 8, 13| 14, I8, 21 22, B39, [46],
9, [60), (72, [76], 86, ©5]

Different types of impulsive fractional boundary and initial value problems are
studied such, in [7), 28] [05] where the authors investigated impulsive anti-periodic
boundary value problems.

In [59, 65, 84, O3], impulsive periodic boundary value problems are considered.
Impulsive initial value problems, have been treated in [19, [68]. One-point, two-
point, three-point or multi-point impulsive boundary value problems have been
studied in [12], 43, 144, 58, [77, 87, 00, 94].

For impulsive boundary value problems on infinite intervals, we refer to [60), 2]
and for impulsive mixed fractional differential equations with left and right Caputo
fractional derivatives see [71].

In addition, when these processes deal with hereditary phenomena or delay
that can lead to undesirable performance in the system, it is necessary to analyze
the effect of delay on the dynamic behaviors of the impulsive fractional differential
equations. For more results on the impulsive fractional differential equations with
delay, we refer to [1l B, 8 [18].

On the other hand, the p-Laplacian operator is widely applied in the mathem-
atical modeling of several real world phenomena in physics, mechanics, dynamical
systems, etc. This operator was introduced in 1945 by Leibenson [57] during his
studies of a fundamental problem of turbulent flow in porous media. Moreover,
different methods such as critical point theorems, variational methods and energy
functional, are used to obtain the existence and multiplicity of the solutions of
this class of problems, For more results on nonlinear fractional differential equa-
tions involving p-Laplacian operator, we refer the reader to a series of papers
[4, 24, 25|, 26], 43, 44 [61, 62), 63, ’2, [85] ©0] 011, 94].

Motivated by the above works, we are interested in the existence of solutions for
some classes of impulsive initial and boundary value problems for fractional order
with delay, p-Laplacian operator, single and multiple base points and involving

both left and right Caputo fractional derivatives. In physics, the right fractional



derivative is interpreted as a future state of the process, while the left fractional
derivative is interpreted as a past state of the process, in which intervene memory
effects. Since the evolution of a certain resource depends on its past and its future,
the differential equations studied in this thesis contain a combination of left and

right Caputo fractional derivatives to model their evolution.

This thesis is devoted to the study nonlinear impulsive mixed fractional dif-
ferential equations with delay and p-Laplacian operator. We are interested in the
question of the existence of solutions and positive solutions of certain nonlinear
impulsive fractional differential equations with the left and right Caputo fractional

derivatives. The results obtained are based on some fixed point theorems.

The remaining part of the thesis is divided into four chapters followed by a

bibliography. In what follows, we give a brief outline of each chapter.

In Chapter [I we provide the basic preliminaries, definitions, theorems and
other auxiliary results required for proving the main results. In Section 1.1, we
give some generalities about functional analysis. In Sections 1.2 and 1.3, we give a
brief review of fractional calculus, such as left and right Riemann-Liouville integral
and derivatives of fractional-order, left and right Caputo derivative of fractional-

order. Section 1.4 is devoted to some fixed point theorems.

In Chapter 2], we consider the question of existence and uniqueness of a solution
for a class of initial value problems for impulsive fractional differential equations

involving Caputo fractional derivative in a Banach space with single base point:

(“Dgpu) () = f(t,u), teJ =J\{ts,...t,}; J=1[0,1],
u (0) = uy,
Au(t;) = h; (u(ty)), j=1,2..p

and with multi base points

(“D2u) () = f(tu(t)), 0<t <1, t#t; j=0,1.p,



where CD§+ and ©“ D¢ denote the single and multiple base points Caputo frac-
tional derivatives respectively, u is the unknown function, the functions f, and h;,

are given for 1 = 0,....mand 0 =ty <t; < -+ <ty <ty = 1.

Chapter [3, Concerns the existence of solutions for a boundary value problem
for impulsive fractional differential equations with delay and involving multi-base

points right and left fractional derivatives

(
CDZ‘H <0D@u(t)> = f(t,uy) L 0<t<1, t#t; j=0,1.p,
u(t) = p(t) , te[-r 0], r>0,
' (0) =0
<ij+u>| g (G () —u () L G=0.1,p
t=ti
Au (t;) = h; (t7,u(t;)) L i=1,2..p
| AW (t) = hy (t5,0/(t5)) ,j=12.p

where 0 < a < 1, 1 < § < 2, such that a + [ > 2, CD?, and CDf+ are
J+1 i

respectively the left and the right Caputo fractional derivatives, f, g;, h; and h;,

for j = 0,--- ,p, are given functions satisfying some assumptions that will be

specified later.
The results of this chapter are accepted for publication:

E. Kenef and A. Guezane-Lakoud, Impulsive Mixed Fractional Differential
Equations with Delay, Prog. Frac. Diff. Appl., 7 (3) (2021), 1-13.

Chapter [4] is devoted to the study of a boundary value problem for nonlinear

impulsive mixed fractional differential equation with p-Laplacian operator:



(D] (¢, (°Dgiu)) (t) = f (t,u(t), t €0, 1], t#t, i=1,...,m,
Ag, (¢ 0+u)( u(t;)), i1=1,...,m,
Ao, (¢ 0+u)) = J; (u(t;)), i=1,...,m,

@ (6, (°Dg.u)) (0) b (6, (CDg.u)) (1) =0,

o (€Db) ©) -5 6 Dy (=

AU(Z)—[z

L yu(0) —n

(u(t;)), Au' () = J; (u(ty)), i=1,...,m,
(1) =0, v’ (0) —nu' (1) = 0.

where CDT‘, and CDg+ denote the left and the right Caputo fractional derivat-
ives, u is the unknown function, the functions f, I;, Ji, I;, and J;, for i = 0,....,m
and 0 =1y <t; < -+ <ty <tn1 =1, are given. We end this chapter with some

examples.

The results of this chapter are accepted for publication by the journal of Non-

linear Studies:

E. Kenef and A. Guezane-Lakoud, Positive solutions for impulsive mixed frac-
tional differential equations with p-Laplacian operator, Nonlinear Studies, 28 (2)
(2021), 357-373.



CHAPTER 1

Preliminaries




1.1. Generalities

We provide the basic notations, definitions, theorems, lemmas and results from
functional analysis, fractional calculus and theory of fixed points in Banach spaces,
for later use. For more details we refer to the books

[27, 40, @1, 47, 54, 55, 66, [79].

1.1 Generalities

In this section, we give some tools and preliminary notions of analysis which are

used throughout this thesis.

Let J = [a,b], (—00 < a < b < 0) be a finite interval of the real axis R =
(—00, +00).

1.1.1 Some functional spaces

Let C (J,R) = C (J) be the Banach space of all continuous functions from J into
R with the Chebyshev norm

[eller) = sup |u(@)] .
teJ

We denote by C™([a, b] ,R) the space of functions f that are m times continu-

ously differentiable on J with the norm

ull g gy Z\W HC m € N.

Let L,(J,R) = L,(J) (1 <p <o0) denotes the set of Lebesgue real-valued

measurable functions f on J for which || pr ) < 00, where

b
1B ) = / P dt

and
1Nl 2 () = €58 Sup |f @) =inf {M >0,|f ()] < M, a.e on J}
S



1.1. Generalities

In particular, for p =1, Ly (J,R) = Ly (J).
Denote by AC (J,R) = AC (J), the space of all functions f which are ab-
solutely continuous on J. It is known that AC (J) coincides with the space of

primitives of Lebesgue summable functions .i.e:

x

feAC(J)<:>f(x):c+/go(t)dt,goeL1(J),

a

For n € N, we define AC™ (J) by
AC™(J)={f:J =R, and f" Y € AC (J)},

For more details, see [54].

Let Jo = [0,t1], J&x = (tastesa], Jp = (tp,1] where & = 1,--- ,p — 1 and
0=ty <ty <---<t, <ty = 1. Denote by PC([0,1],R), PC*([0,1],R) and
PC ([—r,1],R) the Banach spaces defined respectively by

PC(0,1],R) = PC(0.1)
= {u:[0,1] >R, ueC(J, R), fork=0,---,p
and there exist u (¢) and u (¢;) with w (t;) = u(ty)},

PCY([0,1],R) = PC'(0,1)
= {u :0,1] =R, ue C*(J,R), o (tﬁ)
and u' (t;), k=0,---,p, exists and v (t;) = o' (t)} .

and

PC([-r1],R) = PC([-r1))
= {u:[-r1] >R, ueC(J, R)UC([-,0], R), u(t])
and u (t;), k=0, -+ ,p, exists and u (¢;;) = u ()},

10



1.1. Generalities

equiped with the normes

= t
||u||PC([0,1]) tfél[glf] |u ()]

I !
Jull e gony = mas u (6] + ma o (2)
and

= t
HUHPC(HJ}) tg[ljz(l] |u (8)]

Denote by u; the element of C' ([—r,0],R) defined by:
u () =u(t+0), 0e[-r0,tel,

u () represent the evolution history of equation state from time t — r to time ¢.
We refer to [T, B, B, I8, 54] for more details.

Definition 1.1.1 [/0/Let E be a Banach space. A nonempty closed set C C E is
called a cone of E if it satisfies the following two conditions:

1.z e C, A\ >0, implies \x € C,

2.x€C, —x € C, implies v = 0.

Example 1.1.1 Let E = C(J) and let Py, Py be two subsets of E defined as
P ={zxeC(J), z(t) >0,t e J}

Py = {a: €C(J), z(t) 20,1 € J and minz (t) = & ||$||C(J)}

where gq is a given number satisfying 0 < g < 1. It is easy to show that P, and

Py are cones in C (J).

1.1.2 Functional analysis tools

Let E be a Banach space.

Definition 1.1.2 (Nemytskii operator)[10)] Let f : J x E — E. The Nemytskii

11



1.1. Generalities

operator or induced Nemytskii Ny is defined by

N;: E/ - EJ
u— f(u()

where B = {u, uw:.J — E}. This means N; is the map that associates to every
function u : J — E the function Ny (u) defined as follow

Niy(uw): J—E
t— ftu()).
Definition 1.1.3 A function f: J x E — E is said to be generalized Lipshitz, if

there exists a positive function v : J — R, such that

[Ny(z) (1) = Ne(y) (O] <o @) [« (&) —y @)1

forallt € J ; x,y € E. ¢ is called the Lipschitz function of f, and Ny the induced
Nemytskii of f.

Remark 1.1.1 If ¢ (t) =k, for allt € J where k > 0, Ny is a Lipschitz function
with a Lipschitzian constant k (k— Lipschitzian). In this case if 0 < k < 1 then

Ny is called a contraction function with a contraction constant k.

Definition 1.1.4 [[0/ An operator A: E — E is called compact if the image of

each bounded set B C F is relatively compact i.e ( A(B) is compact).

Definition 1.1.5 [[0] An operator A: E — FE is called completely continuous

operator if it is continuous and compact.

We recall that a family H of continuous functions on J into R is called:

1. Uniformly bounded if there exists a constant M > 0 such that

[f ey = max[f(6)] < M, Vf € H.

teJ

12



1.1. Generalities

2. Equicontinuous on J, if, for every ¢ > 0, there exists some 1 > 0 such that
for all f € H and all 1, t5 € J, with |t; — t2| <7, we have

|f(t1) — f(t2)] <e.

The criteria for compactness for sets in the space of continuous functions C(.J) is

the following.

Theorem 1.1.1 (Arzela-Ascoli theorem)[54)]. Let H be a subset of C(J) equipped
with the Chebyshev norm. Then H is relatively compact in C(J) if and only if, H

18 equicontinuous and uniformly bounded.

We present now, another version of Ascoli-Arzela Theorem in PC' (.J) space.

Lemma 1.1.1 (PC-type Ascoli-Arzela theorem)[43, |61, [89]. Let Q@ C PC (J).
Suppose the following conditions are satisfied:

(i) Q2 is uniformly bounded subset of PC (J);

(17) Q2 is equicontinuous in Jg, k= 0,1,...,p.

Then §2 is relatively compact in PC (J).

Proof See [89]. ®

Definition 1.1.6 (p-Laplacian operator)[2, [61] The p-Laplacian operator ¢,is
defined on R as

0p (1) = [ul" " u, u#0, ¢,(0) =0,
where p > 1.

Some basic properties of the p-Laplacian operator are given in the following

lemmas.

Lemma 1.1.2 [89] The p-Laplacian operator ¢, is a homeomorphism from R to

R. Moreover, (¢p) 15 continuous, sends bounded sets to bounded sets, and is
defined as follow

(6,) " (w) = ¢, (u),u#0,(¢,) " (0) =0,
such that % + % = 1.

13



1.2. Some fixed point theorems

We need the following inequalities:

Lemma 1.1.3 [2]) If z, y > 0, v > 0, then
(z+y) <max{277', 1} (27 +y7).

Lemma 1.1.4 [2]] Let ¢ > 0, v > 0. For any z, y € [0, ¢], we have that
i) If v > 1, then |27 —y7| <y~ |z —yl;
i) If 0 <y < 1, then |27 — 7| < |z —y|”.

Lemma 1.1.5 [2], [67] Let ¢, : R — R be a p-Laplacian operator.
(1) If1<p<2 2y >0,|z|,|lyl >m >0, then

|6, (1) — 6, ()| < (p—1)mP 2 |z — yl;

(id) Ifp > 2, |e] |yl < M, then

|9, (x) =6, )| < (p—1) MP 2 |z —y|.

1.2 Some fixed point theorems

Fixed point theorems are the basic mathematical tools that help to establish the
existence of solutions of differential equations. The main results of this thesis are
proved by the help of fixed point method that consists of transforming the given
problem into a fixed point problem, and then the fixed points of the transformed
problem are thus the solutions of the given problem.

In this section we recall the famous fixed point theorems that we used to obtain
the existence results. We start with the Krasnoselskii fixed point theorem which

only gives the existence of a fixed point without its uniqueness.

Theorem 1.2.1 (Krasnoselskii fixed point theorem) [55]. Let H be a closed bounded
and convex nonempty subset of a Banach space X. Suppose that A and B map H
into X such that

(i) A is continuous and compact;

(i) B is a contraction mapping;

14



1.2. Some fixed point theorems

(iii) x, y € H, implies Ax + By € H;
Then there exists x € H with t = Ax + Bz.

Banach’s fixed point theorem guarantees the existence of a unique fixed point
for a contraction in a Banach space. This theorem, proved in 1922 by Stefan

Banach, is based essentially on the notion of a contraction mapping.

Theorem 1.2.2 (Banach’s fixed point theorem)[29]. Let 2 be a non-empty closed
subset of a Banach space E, then any contraction mapping A of Q into itself has

a unique fixed point.

The third fixed point theorem that we will state is that Schauder fixed point

theorem that gives the existence of at least one fixed point.

Theorem 1.2.3 (Schauder fized point theorem)[29] Let E a Banach space and §)
be a closed convex subset of E and A : Q — € is compact, and continuous map.

Then A has at least one fized point in §2.

Denote H and OH the closure of H and the boundary of H, respectively. Let
E be a Banach space and let C' C F be a cone. The following lemma is often

called the fixed point theorem in a cone.

Lemma 1.2.1 [0, [§7]. Suppose Hy and Hy are open subsets of E such that
0 € H, C H, C Hy and suppose

A:Cn (H\Hy) —C

18 completely continuous operator such that

) (i)ngH |Aul| > 0, and pAu # u for everyuw € CNOHy and p > 1, and pAu # u
ueCn 1

for everyu € CNOHy and 0 < u < 1; or

o éngH |Aul| > 0, and pAu # u for everyuw € CNOHy and p > 1, and pAu # u
ueln 2

for everyu € CNOH;, and 0 < pu < 1;

then A has a fized point in C'N (E\Hl) :

15



1.3. Riemann-Liouville Fractional Integrals

1.3 Riemann-Liouville Fractional Integrals

Definition 1.3.1 [5], [75,[79] The left and the right Riemann-Liowville fractional
integrals 18, f and I f of order a € R™ are defined by

t

12:0) ) = a5 / (t— 5" f (s)ds, t>a

a

and
b

(12 f) (1) = ﬁ / (s — )" f(s)ds, £ < b

t

respectively. Provided the right-hand sides are pointwise defined on .J.

Here I'(.) is the Euler gamma function defined by

Definition 1.3.2 [57, [75, [79] The Euler gamma function I'(.) is defined by the

so-called Fuler integral of the second kind:

“+o0

I'(a) = / 2letdt, (o> 0), (1.1)

0

where t*~1 = el@=D1oe) " This integral is convergent in the right half of the real

line, that is, a > 0.

For this function the reduction formula
F'a+1)=aol(a), (a>0), (1.2)

holds. We have
I'(n+1)=nl, (neN).

Property. If a, g > 0, then the following relations hold:

(12 (= ™) () = iy (£ - 0™,

16



1.4. Fractional derivatives

and

(1 0=V ) ) = g 0= 07

In particular, for £ € N and o > 0, then
(D*I f) (6) = I8 f (¢)

and
(DAL f) (1) = (=) L= f (1)

Lemma 1.3.1 [54, [79] If « > 0 and > 0, then the equations
(ret2or) (&) = (1271) 0 (1.3)

and

(117 £) 0 = (5777) @) (1.4)
are satisfied at almost every point x € J for f € Lp(J) (1 <p < o0). Ifa+£ > 1,
then the relations in and hold at any point of J.

1.4 Fractional derivatives

Differentiation of fractional order is a generalization of the classical differentiation.
There are many mathematical definitions for the fractional derivative. We will

present two approaches that of Riemann-Liouville and the other of Caputo.
1.4.1 Approach of Riemann-Liouville derivative

Historically, the first definition of the noninteger order derivative was given by
Riemann and Liouville as a consequence of Abel’s solution to integral equations.
This derivative has been designated in their honor as the operators Riemann-

Liouville fractional derivative.

Definition 1.4.1 [5]] The left and the right Riemann-Liouville fractional deriv-

17



1.4. Fractional derivatives

atives D¢, and Dy of order « € R of the function f are defined by

00 0= () a0

t

_ ﬁ (%)n/(t — O f (s)ds, £ > a,

a

and

D) 0= () G

_ ﬁ (_%)n/b(s " f(s)ds, t < b,

respectively, where n = [a] + 1, [a] is the integer part of a. In particular, when

a=n €N, then

(Dyef) () =D"f () = f™ (1)
and
(Dy-f) (8) = (=1)" D" f (t) = (=1)" f (1),
where ) is the usual derivative of f of order n.
Property. If a > 8 > 0, then for f € L, (J) (1 < p < 00), the relations hold
almost everywhere on J :

(Dl1es) 0 =175 (1)

(D1 f) () =1 (1),

(D2 (2 =0y ) () = =Pyt

G-
(D5 0= 2)") () = iy (0= 07

18



1.4. Fractional derivatives

On the other hand, for £ = 1,2, ...,n, we have
« a—Fk
(Ds (e =) ) () = 0,
(D =2 = o,

In particular, the Riemann-Liouville fractional derivative of a constant is in general

not equal to zero, in fact

(t—a)™"

( gu)(@:m, 0<a<l.
(D?l)(t):%, 0<a<l

1.4.2 Approach of Caputo derivative

To compute the Riemann-Liouville fractional derivative of order «, we must cal-
culate the integral of order (n — «) and then derive the result obtained. For the
definition of Caputo, a different construction is used with a reverse order of oper-
ation, that is first the function is derived n times and then the integral of order

(n — @) is determined.

Definition 1.4.2 [5]] The left and the right Caputo derivatives D, and ©Dg-
of order o € RT of the function f are defined by

-1

®) (g )
s )<t>=( 2 [f(x)—sz!( ><x—a>])<t>,t>a,

)(t), t <b.

If o =n € N and the classical derivative f™ of order n exists then

3

and

n—1 (k)
(D5 £) (1) = (Dga [m)—zf Dy

k=0

respectively, where n = [a] + 1, for « ¢ N; n = « for a € N.

(CDrf) (t) = f™(t),(n € N),
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1.4. Fractional derivatives

and

(“Dp-f) (t) = (=1)" f™(t),(n € N).

Theorem 1.4.1 [5])] Let o« > 0 and let n = [o] + 1, fora ¢ N; n = a for a € N.
If f € AC™(J), then the Caputo fractional derivatives D™, f (t) and “Dj- f (t)

exist almost every where on J.
1. Ifa ¢ N, D2 f and “Dy f are represented by

t
1

“pe = — — )"t ) () ds
(DN O = gy [ =T O ()

= (I:;O‘D"f) (t), t>a,

and

N ) L DD
CDEN 0 = ot [ =T (5

t

= (=1)"([J7*D"f) (t), t <b.

respectively where D = - and n = [o] + 1.
2. If a € N, Cngf and CD;‘,f are represented by

(D ) (1) = (“Di f) (1) = f™(),
and

(Dp-f) (1) = (“Dp-f) (t)
= (-1)"f"(1),(neN),

In particular
(“D0f) () = (D) f) (1) = £(1).

Property. Let o, 5 > 0 and n = [a] + 1, then the following relations hold:

(D% = ™) () = gy - ™ B2
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1.4. Fractional derivatives

(CD,?, (b— x)ﬂ—l) (1) = = LB _yp goa

(8 =)
On the other hand, for £ = 1,2, ...,n, we have

<CD2‘+ (x — a)k> (t) =0, (CD?_ (x — a)k> (t) = 0.

In particular, the Caputo fractional derivative of a constant is zero, i.e.

(“Dg1) (t) = (“Dy-1) (t) = 0.
For more details see [54, [75], [79].

Lemma 1.4.1 [5]] Let « € RT. If f € AC™(J) or f € C™(J), then

CDf () = f(t) -

and

3

-t ) (b
-[b CDb ( )

k=0
where n = o] + 1, for a ¢ N; n = a for o € N.
In particular if 0 < o« <1 and f € AC (J) or f € C(J) , then

LD f (1) = f () = [ (a),

and

LDy f(t) = f(t) = £ (b).

Lemma 1.4.2 For a > 0, the solution of the fractional differential equation
“D*.u(t) =0 is given by

u(t) = co+ it + cot® + . eyt !

where c; e Ryt e J,i=0,...,n—1,n=[a+ 1.
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CHAPTER 2

Initial value problems for Impulsive Fractional Differential

Equations with Single and Multiple Base Points
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2.1. Introduction and motivation

2.1 Introduction and motivation

The states of many evolutionary processes are often subject to instantaneous dis-
turbances and undergo abrupt changes at certain points of time. The duration of
the changes is very short and negligible compared to the duration of the considered
process, and can be considered as impulses. This type of differential equations be-
comes an interesting field of research and still attract more attention in many fields
of nonlinear science. For example, in population ecology, communications secur-
ity, neural networks, electronics, automatic control systems, computer networks,
artificial intelligence, robotics and telecommunications. Many sudden and abrupt
changes occur instantaneously in these systems, in the form of impulses which
cannot be well described by a continuous or pure discrete time model.

The purpose of this Chapter, is to establish existence and uniqueness results

to the following initial value problems IVP:

(“Dgu) (t) = f(t,u), t€J =T\ {t1,...tp}, J=1[0,1], (2.1)
u (0) = ug, (2.2)
Au(t;) = hj (u(t})), j=1,2..p (2.3)
and
(“Dou) (t) = f(tu(t), 0<t <1, t#t; j=0,1.p, (2.4)
u (0) = uq (2.5)
Au(t;) = hj (u(t;)), j=1,2..p (2.6)

where 0 < a < 1, CD8‘+, is the standard Caputo fractional derivative at the
base point ¢ = 0, then equation is called single base fractional differential
equation. “D%u is the standard Caputo fractional derivative at the base points
0,t1, .., tp, that is (CD%u) (£) = (CD%U) (1), for all t € (t; tjs1],j = 1,2, ..., p,
then equation ([2.4) is called multi-base fractional differential equation. w is the
unknown function , f : [0,1] x R — R is measurable on [0, 1] with respect to the ¢
for any u. The functions h; : [0,1] — R, for j = 1,...,p are given. The impulsive
moments ¢, are such, 0 =ty <t; < -+ <t, <t,y1 =1, Au(t;) =u (t;r) —u (t;) ,
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2.1. Introduction and motivation

u(th) = hlirél+u (t;+h), and u (t;) = hlirél_u (t; + h) are the right and left limits
of u (t) at the point t =t;, j = 1,...,p respectively.

Recent work on the existence of solutions for the boundary value problems of
Caputo-type impulsive fractional differential equations can be found in a series of
papers [2, [5, 46l 60].

In [46] the authors considered the following multi-base points initial value prob-

lem for impulsive fractional differential equations:

CDeu(t) = f(t,u(t)), t € (0,b]\ {t1, ..., tm},a € (0,2],
u(tf) =1 (u(ty)), k=1,2,..,m,

() = T (u (1)) s k= 1,20,

u(0) =a,u (0) =c,

and
CDu(t) = f(t,u(t)), t € (0,b]\ {t1, ..., tm},a € (0,1],
U (t,j) =1 (u (t,;)) L k=1,2,...,m,

where 0 =ty < t; < --- < t,, < b, t; are the impulsive points 7+ = 0,1, 2,...,m,
D is the standard Caputo fractional derivative at the base points 0,1, ..., t,
feC(0,b] xR,R), and [;,J; € C(R,R)(j=1,2,...,m). The existence results
are proved by means of Leray—Schauder nonlinear alternative.

Thanks to Schauder fixed point theorem, the existence of solutions are discussed
for both single base point and multi-base points fractional initial value problems

with impulses on the half line in [60]:

Dyeu(t) = q(t) f (Lu(t), (*Dgu) (1)), t >0,
u (0) = ug
Au(ty) =1; (t;,u(t;)), j=1,2,...

“Dxu(t) = q(t) f (tu(t), ("Diu) (1), t >0,
u (0) = ug
Au(ty) =1; (t7,u(ty)), j=1,2,...

herequR,O<ﬁ<a<1,0:to<t1<"'<tj, liij+ootj:+oo, CD8+
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2.2. Existence and uniqueness results for IVP with a single base point

is the standard Caputo fractional derivative at the base point ¢t = 0, and D¢ is
the standard Caputo fractional derivative at the base points ¢;, ¢ : Ry — R, f :
R, xR* > R,and [; : Ry xR — R(j =1,2,...), that is for all ¢ € (¢; t;41] we

have “D¢ =¢ D¢,
J

In this chapter, we transform the problems (2.1)-(2.3) and (2.4))-(2.6) to equi-

valent integral equtions, then we prove the existence of a unique solution by the
help of Banach contraction principal while the existence of at least on solution is

obtained by Schauder fixed point theorem.

2.2 Existence and uniqueness results for IVP with
a single base point
First, let us give the definition of the solution of the problem ({2.1f)-(2.3) .

Definition 2.2.1 A function uw € PC (J) is said to be a solution of the problem
(2.1))-(2.3)) if u satisfies the differential equation

(CD8‘+U) (t) = f(t,u), teJ = 0,1\ {t1, ... Jtp}
and the conditions
u(0) = wug
Au(t;) = hy(t;, ut;)),j=1,2..p,

Remark 2.2.1 Note that

1 1

u(t):uo—m/(a—s)alf(s)ds—i-m/(t—s)alf(s)ds
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2.2. Existence and uniqueness results for IVP with a single base point

solves the Cauchy problems

CD0+U( ) =1 (1)

where ug € R, and a € RY.

We get the following result immediately

Lemma 2.2.1 Let g : J — R be continuous. A function u € C(J) is a solution

of the fractional integral equation

a

u(t):uo—ﬁ/(a—s)a_lg(s)ds—i—ﬁ/(t—s)a_lg(s)ds

0 0

if and only if u is a solution of the following fractional Cauchy problems

Dty =g), te
u(a) = up, a>0.

As a consequence of Lemma, we have the following result which is useful

in the sequel.

Lemma 2.2.2 Let g be continuous on J. A function u is a solution of the frac-

tional integral equation

( t

up + ﬁ/(t— $)* g (s)ds,t € (0,t4],

u(t) = k 0 t

ugp + Zhj (u(t;)) + ﬁ/ (t—s)* " g(s)ds,t € (t,trsa] , k=1,...,p

\ j=1 0

(2.7)
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2.2. Existence and uniqueness results for IVP with a single base point

if and only if u is a solution of the following impulsive problem

( 0+u) = ,teJ =J\{ty,...t,}; J=10,1],
= ( t; ) =1,2..p, (2.8)
u (0) = uy.
Proof Suppose that u satisfies (2.8) and let ¢ € (0, ¢;], thus

(“Dgeu) (t) =g (1), t € (0,t1], u(0) = uo. (2.9)

Applying the fractional integral I, to the equation (|2 , it yields

Ift e (tl, tg], then

(“Dgu) () =g (1), t € (tr,ta] with u () =u (t7) + b (u(ty)),

Lemma implies
1 1 a—1 1 / a—1
u(t):u(tf)—r—a)o/(tl—s) g(s)ds—l—mo/(t—s) g(s)ds
1 1 / a1
=u (t7) + hi (u(t; _WO/ ty — s g(s)ds—l—mo/(t—s) g(s)ds
:UQ—l—hl( (tl %/(ﬁ—s *1g(s)d3
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2.2. Existence and uniqueness results for IVP with a single base point

If t € (tg,txs1] then again by Lemma we deduce

wl) = u(t)) = 5 [ = o @ dst s [ =9 g ) ds
k t
= ug + Zhj (u(t;y)) + ﬁ/ (t—s)*""g(s)ds.

consequently u satisfies ([2.7)).
Now, let us show the converse. If ¢ € (0,¢;] then u(0) = ug, since YD, is the

left inverse of I, we get (2.9). If t € (tx, tx41],k = 1, ..., p, then using the fact that
the Caputo derivative of a constant is equal to zero, we obtain (“Dg,u) (t) = g (¢),
t € (tgtepr) and w () =w (t;) + he (u(t;)). M

2.2.1 Uniqueness of solution

We make the following assumptions.
H1l) feC(JxRR).
H?2) There exists a nonnegative function k; € C (J, R, ), such that

|f(t,$)—f(t,y)| Skl(t)lx_m» te [071]7 Z, yGR.

H3) hj e C(R,R), j=1,...,p.
H4) There exists a positive constant ks > 0, such that

|hj () —hj (y)| < kg |lxz—y|, forallz, yeR, j=1,..,p

The following theorem gives an uniqueness result.

Theorem 2.2.1 Assume that (H1) — (H4) hold. If

pko + <1, L= ||k1||C(J,]R+) :

I'(a+1)

then the problem (2.1))-(2.3)) has a unique solution.
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2.2. Existence and uniqueness results for IVP with a single base point

Proof Taking Lemma into account, we transform the problem ([2.1))-(12.3])
to a fixed point problem. In fact, define the operator F; : PC(J) — PC(J) as

t

—/ (=) f(s,u(s)ds,  (210)

Obviously F; is well defined due to (H1).
We shall prove that F is a contraction. Indeed, let u,v € PC (J) and t €
(tg,trs1], j =1, ...p, we have

() 0~ (Fo) 01 < D 1y (3 57)) — s 0 5)

1 / a—1
*W/(H) F (s,u(s)) = £ (5,0 (s))] ds

0
L
< (sz + m) [ = vl pesy -

By Banach'’s fixed point theorem, we deduce that F; has a unique fixed point that
is a solution of the problem (2.1)-(2.3). m

2.2.2 Existence of solutions

Let us introduce the following conditions:
(H'2) There exists a constant a; > 0 such that

|f(t,u)| < ay(1+ |u]), for each ¢t € J and all u € R.
(H'4) There exists a constant ay > 0 such that
|hj(u)] < az(l+ |uf), for all u € R and j =1, ..., p.

Now we are ready to give the existence results.
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2.2. Existence and uniqueness results for IVP with a single base point

Theorem 2.2.2 Assume that (H1),(H3),(H'2) and (H'4) hold. If

ai

— <1
I'(a+1) ’

asp +

then the problem (2.1)-(2.3) has at least one solution in PC (J).

Proof For convenience, the proof will be done in several steps.
Claim 1. Fj is continuous. In fact, let (u,) be a sequence such that u,, — u
in PC(J). Then for each t € (ty,txs1],k = 1,...p, we have

< pllhj (un () = hy (w ()l pes)

1
il 1f Coun () = f Cu)llpewy -

+

In view of (H1) and (H3), it yields
I(Fiuy,) (.) — (Fiu) (.)HPC(J) — 0 as n — oo.

Claim 2. F; maps bounded sets into bounded sets in PC(J). Indeed, it suf-
fices to show that for n > 0, there exists a [ > 0 such that for each u € B, =
{u € PO(T), [ull pory < n} , we have || Fiu|| < . Foreach t € (ty, topa], k= 1, ..p,

we have

1

|(Fru) (0)] < Juol +Z [ (u (t5))] + W/(t_ $)*7Hf (s,u(s))] ds

a1
< ol +azp (14 [0l pey) + Ty PRy (14 el per)

a
< |uo| + agp (14 1) + 1)(1+77),

I'a+1
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2.2. Existence and uniqueness results for IVP with a single base point

consequently

| Fiul] < |ug| 4+ asp (1 +1) + (1+n) =1L

a1
I'(a+1)

Claim 3. F; maps bounded sets into equicontinuous sets of PC(J). Let t, < t; <
ty < tgs1,k=1,...,p, u € B,. Thanks to (H'2) and (H'4) we obtain

t1

1 a—1 a—1
|(Fyu) (t2) = (Fru) (t)] < W/ (1= 9)"" = (2= 5)") |f (5,u(s)) ds

to

7 / (t2 — )M |f (s,u(s))] ds

As t; — to , the right hand side of the above inequality tends to zero, hence F is
equicontinuous on the intervals (g, tx41], k=1, ..., p.
We conclude by Arzela-Ascoli Theorem [I.1.1] that F} is completely continuous.
Claim 4. Let B be the closed convex set in PC(J),

B ={uePC(), Jullpey <R}

such that
(Juol +aop) T (e +1) + ay

F(a+1)— (apl (a+ 1) +ay)
We shall prove that F; (B) C B. Indeed for each (¢, tx11],k = 1,...,p, we have

R >

() (0] < ool + 3 [y (o ()] + gy [ 6= 907 1F s () s

0
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2.3. Existence and uniqueness results for IVP with multi-base points

ar (14 lullpog
I'(a+1)

< |uo| + azp (1 + HUHPC(J)> +
ay a1
< R — _ <R.
< ol + azp+ s+ (o 2 ) ol
By Schauder’s fixed point theorem, we deduce that Fi has a fixed point and then

the problem ([2.1)-(]2.3)) has at least one solution. H

2.3 Existence and uniqueness results for IVP with

multi-base points
Let us give the definition of the solution of the problem ([2.4))-(2.6)) .

Definition 2.3.1 A function u € PC (J) is said to be a solution of the problem

(2.4)-(2.6]) if u satisfies the equation
(“Dgeu) (8= £ (tou) on Js = (tj,t511]
and the conditions

Au(t;) = hy(ut;)),j=1,2..p,
u(0) = wup.

A direct result is the following

Lemma 2.3.1 Let g be continuous on J. A function u is a solution of the frac-
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2.3. Existence and uniqueness results for IVP with multi-base points

tional integral equation

( t

u(t)=q w03 hy (u (%))+Zﬁ/(@—s)a‘lg(s>ds (2.11)

t

+#a)/‘ (t— 3>a719(5) ds,t € (tg,tpsa], k=1,...,p.

\ tk

if and only if u 1s a solution of the following impulsive problem

(“Dgu) () =g(0), t€ (ttis] 5= 0,1,
Au(t;) = h; (u(t;)), j=1,2..p, (2.12)
u (0) = up.

Proof Assume that u satisfies (2.12) and let ¢ € (0, ¢;], then
(“Dgeu) (t) =g (t), t € (0,1] with u(0) = ug (2.13)

applying the fractional integral I, to (2.13), we get

t

1 a—1
u(t):uo—kmo/(t—s) g (s)ds.

Ift e (tl, tg}, then

(CD%U) (t) =g (), t € (tr,ta] withu (t]) =w(t7) +ha (u(ty)),  (2.14)
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2.3. Existence and uniqueness results for IVP with multi-base points

let us apply the fractional integral I} to the equation (2.14)), and taking into
1
account conditions (2.6) it yields

t

+ 1 a—-1
u(t):u(tl)—i-m/(t—s) g(s)ds

=u (tl_) + hy (u (tl_)) + m/ (t — s)o‘_lg(s) ds

t1
t1 t

=up+hi (u(ty)) + ﬁ/ (t1 —5)* " g(s)ds + ﬁ/ (t—5)""g(s)ds.

t1

If t € (tx,tr+1] then conditions (2.6) imply

t

+ 1 a—1
u(t):u(tk)ijO/(t—s) g(s)ds
:u0+2h3 (u(tj))fZFLOé)/ (t; — 5)° g (s)ds

Conversely, assume that u satisfies (2.11]). If ¢ € (0,¢;] then u(0) = wy. Taking
into account that “Dg, is the left inverse of I§}, we obtain (2.12)). Now let ¢ €
(tkstir1], k= 1,...,p then <0Dt‘§5u> ) =g (@), t € (t, tea] and u () = u (t;) +

hy, (u (t,;)), since the Caputo derivative of a constant is equal to zero. W

2.3.1 Uniqueness of solution

Theorem 2.3.1 Assume that (H1) — (H4) holds. If

(p+1)L

k N 7
PRt v 1)

<1,
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2.3. Existence and uniqueness results for IVP with multi-base points

then the problem (2.4))-(2.6)) has a unique solution.

Proof We transform the problem ({2.4))-(2.6)) into a fixed point problem as follows.
Consider the operator Iy : PC(J) — PC(J) defined by

t

k k A
(Fou) (t) = uo + Z hi (u(t;)) + Z ﬁ / (t; =) f(s,u(s))ds (2.15)

j—1
t

[a=9 i) ds

tk

b
['(a)

_|_
In view of (H1), F; is well defined.

F, is a contraction mapping, in fact for arbitrary u,v € PC(J) and each

t € (tg,trsr1],7 = 1,...p, we have

[(Fou) (1) = (Foo) O] < D [y (u (1)) = hs (v (1))

k
+;ﬁ/ (t; = )" | f (s,u(s) = f(s,v(s))| ds

j—1
t

1 a—1
*W/(H) 1f (s,u(s)) = f (5,0 (5))] ds

123

kalHC([o 1], Ry) HleC([O 1], Ry)
< k ) y N4 ) s Nt _ .
< (p 2 + T(a+1) + T(a+ 1) Ju UHPC(J)

Thanks to the Banach’s fixed point theorem, we deduce that F, has a unique fixed
point which is a the unique solution for the problem (2.4))-(2.6). =

2.3.2 Existence of solution

Theorem 2.3.2 Assume that (H1),(H3),(H'2) and (H'4) hold. If

ap (p+1)

— <1
I'(a+1) ’

asp +
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2.3. Existence and uniqueness results for IVP with multi-base points

then the problem (2.4)-(2.6)) has at least one solution in PC(J).

Proof Let F, be defined as in (2.15)). The proof will be done in several steps.

Claim 1. F, is continuous. Let (u,) be a sequence such that uw, — u in
PC(J). Then for each t € (ty, tgi1],k = 1,...p, we have

[(Foun) (1) = (Fou) (] < 3 [ (un (7)) = s (u (1))

J

tj

+]Zlﬁ/ (t; = 9) 7 [ f (5,un (5)) = f (s,u(s))| ds

j—1
t
1

T =97 s ) = F ()]s
< pllhy (un (1) = hy (w ()l pes

p+1
+ m If(un ()= f(u (-))HPC(J) :

Thanks to (H1) and (H3), we get

|(Fauy) () — (Fyu) (-)||PC(J) —0asn — oo.

Claim 2. F, maps bounded sets into bounded sets in PC(J). In fact, let
prove that for any n > 0, there exists a [ > 0 such that for each v € B,

o
0

{u € PC(J), ullpesy < 77} , we have || Fyu|| < [. Foreacht € (t, tgi1], k=1, ..
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2.3. Existence and uniqueness results for IVP with multi-base points

we obtain

[(Fow) (O] < Juol + 3 [ (u (1))

k
+Zﬁ/ (t; — )" 1f (s,u(s))] ds

j—1
t

n ﬁ / (t = )" f (s,u(s))] ds

ty
a; (p+1)
< |uo| + azp (1 + HUHPC(J)) T Tlag 1) Mleew
ap (p+1)

< 1

(T+m),

hence
as (p+1)

I'(a+1)
Claim 3. F5» maps bounded sets into equicontinuous sets of PC(J). For t; <t <
ty < tgy1,k =1,...,p and u € B, we obtain by the help of conditions [H’'2] and
[H'4]

[Foul| < uol + arp (1 +7) + (1+n) =1

t1

[(Fyu) (t2) — (Fou) (b)] < ﬁ/ (k=) = (ta—5)*7) | f (s5,u(s))| ds
7 -
gy [ 2= 9 U )] as

t1

ar (14 lullpeg)

<—= @D (2(ta — t1)" + (1 — te)* — (t2 — tr)”)
a; (1+n) o o a
Sm(Q(t2—tl) + (1 —t)" = (2 —t)"),

when t; — t5 , the right hand side of the above inequality tends to zero, therefore

F, is equicontinuous on the intervals (tg, tr41],k =1, ..., p.
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2.3. Existence and uniqueness results for IVP with multi-base points

From the above steps and Arzela-Ascoli Theorem [I.1.1] we deduce that F5 is

completely continuous.
Claim 4. We shall prove that F; (A) C A, where

A ={ue PO, lullpegy < R}

such that
(Juo| +agp) T (@ +1) + a1 (p+1)

D(a+1)— (agpl' (@ + 1) +ay (p+1))°

R >

Indeed for each (ty,tx 1],k =1,...,p, we get

[(Fow) (B)] < Juol + 3 [ (u (1))

" Zﬁ / (t; — )71 f (s,u ()] ds

t

1 a-1
Ty A AN

tg

< |uo| 4 agp (1 + ||u||PC(J)>

ar (p+1) (14 4l oy )
I'(a+1)

ar(p+1)

I'(a+1)

a1 (p+1)
m) ullpeery < .

_|_
< |uo| 4 azp +
+ <a2p+

We deduce by Schauder’s fixed point theorem that F3 has a fixed point and con-
sequently the problem ([2.4)-(2.6]) has at least one solution. W
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2.4 Examples

2.4.1 Example 1
Consider in problems (2.1)-(2.3) and (2.4)-([2.6), a = 1, p = 1 and the functions f

and h; given as

fltu(t) = 2u+25ﬁﬁmmmy%v€RjeJHﬁ}:mﬂh{%}
4y - ()]
h1(u(t1)) = 20(1+|u<t1_)),u€]R

UOZO.

We shall check that conditions (H1)-(H4) are satisfied. In fact

e—t

tou) — f(t < —— |u-
Fn =l < gl
= ki (t)|u—o|, forall u,v € R, and t € J,

and .
|h1 (u) — hy (V)] < %|u—v| = ko |lu—|, for all u,v € R.
By computations, we obtain
1 1
L=- ky=—
47" 20
pL
ko + ——— =0.33209 < 1
PRt w1 )
(p+1)L
ko + ———=10.61419< 1
R TP

Then all assumptions of Theorems [2.2.1| and [2.3.1] are satisfied. Hence we conclude
the uniqueness of solution for problems (2.1)-(2.3) and (2.4)-(2.6) respectively.
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2.4.2 Example 2
Consider the problems (2.1)-(2.3) and ([2.4)-(2.6) with o = 1, p =2 and

Pt 0) = 5 e gt € M) = 0V {35

u(0) =uy=0
~ 1+ |u(t7)] - 1+ |u ()]
R VT N e e cRaT )

We claim that (H1),(H3),(H'2) and (H’4) hold. Indeed,

et 1
|f(t,U)|S2(1—+€t)(1+|UDSZ(1+|UI)=a1(1+|UI),U€R,t€J,
and
1 1
(@)l < 55 (Ut ul) = 55 L+ ful) = a1 (1 + [ul) ,u € R,
1 1
by ()] < 5 (1 ful) = o5 (L ul) = an (14 ul) u € R
Moreover
T 0.38209 < 1
a — = 0.
2P F(Oé—'—l) )
ap+ 2P gu608 <1
T T(a+1) ' ‘

T 1
(wo| +asp) D@t Dt _ 1937 072 R,
T (a+1) = (agpl (o + 1) + ay)

D(a+1)—(agpl (a+1)+ai (p+1))
Since all assumptions of Theorems [2.2.2] and [2.3.2) are satisfied, then there exists at

least one solution to problems (2.1)-(2.3]) and (2.4)-(2.6]) in B and A respectively.
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CHAPTER 3

LImpulsive Mixed Fractional Differential Equations with
Delay
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3.1. Introduction and motivation

3.1 Introduction and motivation

Impulsive differential equations describe processes that endure a sudden change
in their state at certain times.

Processes with such a characteristic, are modeled by impulsive differential equa-
tions and occur naturally in different fields of science such in physics, economics,
population dynamics...

This chapter concerns the existence of solutions for an impulsive boundary

value problem with delay and involving multi-base points right and left Caputo

derivatives:

CD%H (CDgu(t)> =f(t,u), 0<t<l1, t#t; j=01.p, (3.1)
u(t) =(t), t € [-r0] (3.2)
W (0) =0 (3.3)
(c Dgu) — g (b (t) —u (E)), G=0,1,..p (3.4

‘iztj_ﬂ
Au(t;) = h; (t7,ut;)), j=1,2..p (3.5)
A (ty) = hy (7,0 (), j=1,2..p (3.6)

where 0 < o < 1,1 < 8 < 2, such that a + 5 > 2, CDg, CDta, are respectively
. o

the left and the right Caputo fractional derivatives, j = 6, cee ;7, u is the unknown

function and the history of state is u; (#) = (t +60), for 0 € [—-r,0], f : [0,1]xD —

R, where

D = {u:[-r1] — R, u is continuous every where except for a finite number
of point 6 at which u (#) and the right limit u (67) exist
and u (07) =u(0)}

and f (t,u;) is measurable on [0,1] with respect to the ¢ for any u,; € D. The

functions h;, hj, g; : [0,1] x R — R, for j = 1,..., p are given. The initial function

¢ : R — R, satisfies ¢ (0) = 0. The impulsive moments ¢, are such, 0 = ¢, <
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3.1. Introduction and motivation

t <o <ty <tppr =1, Au(ty) =u(t]) —u(ty), u(t]) = Jim w (t; + 1), and
—0
u(ty) = hlim u (t; + h) are the right and the left limits of u (t) at the point ¢t = t;,
—0~
- . o + — + o .
Jj =1,...,p respectively. Au'(t;) = ' (tj) — (tj ), (tj) = hli%lJru, (tj+h),
and o' (t;) = hlim u' (t; + h) are the right and the left limits of «’ () to the point
—0—

J n
J

Since impulsive fractional differential equations have several applications in

t=t;,j=1,...,p respectively, and (CDf+u> = lim < Dt+u) (1).
[t=t

various fields of research, they have been investigated in numerous articles in the
literature, see [I, B, B, B, 0, [7, I8, BI, P2, 89, 46, 64, 71, [72, [76, 77, K1, &6).,
where questions of existence, uniqueness and stability of solutions are addressed.
In addition, when these processes deal with hereditary phenomena or delay the
argumentation that can lead to undesirable performance in the system, it is ne-
cessary to analyze the effect of delay on the dynamic behaviors of the impulsive
fractional differential equations. For more results on the impulsive fractional dif-
ferential equations with delay, we refer to [1l Bl &, [1§].

Recently, fractional differential equations involving the left and right fractional
derivatives have been considered in [6, [1T), 15, 16, 20, B0, B5, B6, 52]. The left
and right fractional derivatives may arise naturally as in some physical situations,
where the state of the process depends on all its past states and on the results of
its future development, for more details see [6l, [16].

In [71], the existence of at least one solution or infinitely many solutions for
the following impulsive fractional problem is investigated by means of variational

method and critical point theory:

CDa( () =f(@t x), 0<t<T, t#t,
X

A (*Df- (D)) (t7) = ( (7)) 5 =12,m,

z(0) =2(T) =0,

Whereae(%, 1],0:t0<t1<...<tn<tn+1:T.

In [I8], an initial value problem for fractional differential equations with infinite
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3.2. Equivalent integral equation

delay is considered:

“Dgia(t)=f(t, x), 0<t<b 0<a<l,
z(t)=¢(t), t € (—o0, 0].

The existence of solutions is established by the help of Banach fixed point theorem
and the nonlinear alternative of Leray-Schauder.

This chapter is organized as follows. In the next Section, we transform the
problem — to an equivalent integral equation then we give some proper-
ties of the Green’s function. In Section 3, we present the main result which is the
existence of at least one solution, for this end, we rewritte the posed problem as a
sum of a compact operator and a contraction, then we apply Krasnoselskii’s fixed
point theorem to conclude the existence of a nontrivial solution. Two illustrative

examples are given in Section 4.

3.2 Equivalent integral equation

Let us define the functional space where the problem (3.1]) — (3.6) will be solved.
Denote by F the Banach space

E = PC ([-r,1],R)n PC*([0,1],R)

with the norm

= t)|.
Juls = ma fu (1)

Definition 3.2.1 A functionu € E is said to be a solution for problem —(@
if it satisfies the differential equation and the conditions —(@.

First, we establish an equivalence between the problem (3.1)-(3.6) and some

integral equations.

Lemma 3.2.1 The boundary value problem (3.1)) — (3.6|) is equivalent to the fol-

lowing integral equation:



3.2. Equivalent integral equation

if t €10,t1) then

X ts [t L .
+F(04)F(B)/ (/(t $)7T (T —9) dS)f(TUT)dT
X to/ T o i
+F(a)F(ﬁ)0/ (t/(tl )7 (T —s) dS)f(TuT>d7'
B
(17 00) + 1 - 590 (17 17) = 0%))
lgt(gil)l) a1 (t3,u (ty) —u (7))
+ (t —t1) (F(a Fl(ﬁ—l)/ (/ (t —s)ﬁ (r—s)* " ds) f(r,u,)dr
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3.2. Equivalent integral equation

Ift e (tj,tiv1], j=2,...,p, then

u(t) = /Gj (t,7) f(T,u;)dr

tj

v kz (/ Fi () f (Tour) dr + by (8, u (t]))

k—1

. B
At () - 6)

_|_Zt_tk (/Hk (7 ur) dr + hy, (ty,u (ty))

+(t—t)) (/Hk( ) f (7, un) dr 4 Ry (1 ()

k=1

where

(5
( T
/(t—s)ﬁ_1 (1—8)""ds, t; <7 <t <tj,
1 t;
Gj(t,7)= !
A R I S
/(t—s) (r— )" Vds, t; <t <7<t
\ &)
forvVj=0,---,p, and
F; ()= ! /T(t-—s)’g Yr—s)* s, tj, <T <t
" Tarm ) ¢ -
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3.2. Equivalent integral equation

H; (7) = I'(a) Fl(ﬁ -1) / (tj = )" (1= )" Nds, 0 <7<

t]'_l

where, j =1,--- ,p.

Proof It is obvious that u (t) = ¢ (t), t € [—r, 0] since it is the history condition.
Let ¢t € [0,t1], then equation (3.1)) becomes

Dy (CD§+u(t)) = f(tiu), 0<t<t, (3.7)
then by applying the fractional integral ];11_ to the equation , we obtain
Dl u(t) = I f (8 ue) + co, (3.8)
condition implies
co = qo (tl_,u (tl_) —u (O+)) )
substituting ¢y in , we get
“Dfu(t) = It?f (t,ue) + go (7, u (t7) —u (07)) . (3.9)
Now, applying the fractional integral I'OBJr to the equation , it yields
w(t) =I5 I f () + 1y (g0 (7w (67) —u (07))) + e + eat. (3.10)
thanks to (3.2) and (3.3)), we obtain

c1=¢(0)=0, o =1 (0) =0,
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3.2. Equivalent integral equation

that we substitute in (3.10]) to get

8
u(t) = [§+It?f (t,up) + mgo (tf,u (tf) —u (O*))

t t1

_ )P (=) f(ru)dr | ds
8

= mgo (ty,u(ty) —u(0h)).

By using the Fubini theorem, we get

= ! (] )P (r— )2 s T,u; ) dr

u(t)—r(a>m)0/ 0/@ Ve sy s | () d
X to/ ot o .

+F(&)F(ﬁ)/ O/(t )\ (r—98)""ds | f(T,u,)dr

B
" m% (5 u () —u (07))

Now, let t € [t1,t]. Applying the fractional integral /> to the equation 1} then
2
the condition ((3.4) implies

CDZU (t) = I f (t,ue) + g1 (t5,u (ty) —u (t)) . (3.11)

2

We get by applying the fractional integral I to the equation (3.11)), the following
1

PR
u(t) = Iéff;—f (t, ur) + %gl (ty,u(ty) —u(t)) +b1+by (t —ta). (3.12)
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3.2. Equivalent integral equation

In view of conditions (3.5 and (3.6)), we obtain

b= (t7) = hy (17, u(ty)) +u (t7)

B
= I (t7 u(ty)) + ﬁ% (tr,u (t7) —u (0%))

1 T — )N (r =8 ds T,ur;)dr

and

T Fl(ﬁ - 1)/ ( / (h =) (r—s)"" ds) f (r,u,)dr,

0 0

substituting b; and by in (3.12), and then using Fubini theorem, it yields

- (] — ) N (r =) s T, u,) dT

t1 t1

+ m/ (/ (t=5)" (7 =)™ dS) f(r,u;)dr

t1
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3.2. Equivalent integral equation

(t—t1

o (e () —u(t))
t))

By proceeding in a similar manner for t € [t,, 1], we get

( (t; — 3)672 (1 — s)ail ds) f(r,u,)dr

)
8=
+hy (u + 5 1

0 5 - 0)) ).

t T

- —s)P (= 5)* L ds T u.)dr

LN ([ — ) (r = 5)* s T, Uy ) dT
+r<a>r<ﬂ>/ (/(t SR d)f(7 .

p 1 ty T _85_1 T_Sa—l ) . - — (-
2> (P—m)rwz/ </<t’“ L d)f(’ e

_ B
A e 0.0

+ Y (t, — t) (F(a) Fl(ﬁ— 1)/ (/ (tx —3)672 (T—S)ail ds) f(r,u,)dr

k—1




3.2. Equivalent integral equation

Conversely, supposing that u satisfies the integral equations in Lemma [3.2.1
then by direct computations, we prove that u satisfies the problem — .
|

The properties of the functions G;, Fj and Hj, for j = 0,--- ,p are given in

the following lemma.

Lemma 3.2.2 The functions G;, F; and H;, are nonnegative and satisfy the fol-

lowing estimates for all t,7 € [tj,t;41], 7 =0,--- ,p:
1)
G (t7) < L
i\ T) > )
! (a+B8-2)T'(a)T(B)
2)
F;(r) < L
(r) < :
! (a+8—=2)I ()T (B)
1
H: (1
10 S G- IT I o)
Proof From the expressions of G, Fj and Hj, for j =0,--- ,p we see that are
nonnegative functions. Let t; <7 <t <t;44, j=0,---,p, then

T

G, (t, 1) = W/ (t — s)ﬁfl (r — s)ail ds

1 ) g — (1 —1;)"
SF(a)F(ﬁ)/( S = @ T ()
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3.3. Existence of solutions

Fort; <7t <t<tjy,j=0,---,p, we have

t

G, (t,7) = m / (t— )" (r — 5)° L ds

(t _ tj)Oerﬁfl

(a+8=2)T' ()L (B)

—5) P2 s =

|
—
S
'1 -
=
—oe T
=

thus,
G (t,7) < ! < Tt <ti,j=0
F\LT) > (&+5—2)F(O&)F(6)’ § T, 0 > 1i41,] = U, » Dy
In the same way, we prove that for all 7 € [t;_1,t;], j=1,--- ,p we have
F; (1) < L
(r :
T (a+ B-2)T ()T (B)
and .
H (1) < .
1O G )T @
|

3.3 Existence of solutions

In this section, we shall prove the existence of solution for problem ([3.1))-(3.6)) by
means of Krasnoselski fixed point Theorem [[.2.T} Define the operators A and B

on E by
0, te[-r0
AU(t): ) e[ T, ] |
A]u(t)7 te[tj,tj+1]’ j:()”p

&Mﬂ:{wﬁ%tGan

Bju(t)a te [tj7tj+1]7 j: 07 y D-
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3.3. Existence of solutions

where »
Aju(t) = J/Gj (&, 7) f(Tuc)dr, L€ty tin], j=0,---,p
and tj
Bju(t) = ; / Fy (7) f (ryur) dr + By (8, u (1)
+(t1'i (_;frll)) g (B ou () —u (8] 1)))
S [ 0 16+ 0

NS /Hk (r) f (rup) dr + o (1 u (17))
e N (T R )
I (8) k-1 \Tg , U (T, U\l q )

fOI‘ t e [tj,t]url],j :0, , P-
Then u is a solution for problem (3.1]) — (3.6)) if and only if

Au(t) + Bu(t) =u(t), t € [-r,1]

that is u is a fixed point for the operator A + B.
We will use the following assumptions:
Hy) The function f(.,0) is continuous and not identically null on [0, 1], and there

exists a nonnegative function k € Ly ([0,1],R), such that
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3.3. Existence of solutions

and (a+ﬁ—2)lﬂ(0¢)r(ﬁ)'

15l 2y o, r ) < 24p (3.13)

H,) The functions h;(.,0) =0, for all j = 1,--- ,p, and there exist nonnegative
functions a; € C ([0,1] ,R}), j=1,---,p, such that

|hj(tam)_hj(t>y)|Saj(t)|x_y|7 OStSL z, yGR, jzl,"',p,

and
1

a= max (H%qu,u&ﬂ <o (3.14)

Hs3) l~1j (,0) =0, for all j =1,---,p, and there exist nonnegative functions b; €
C([0,1], Ry), j=1,---,p, such that

flj(t7$>—ﬁj(t7y)\Sbj(t)b:—yl, 0<t<1,z, yeR, j=1---,p,

1
b= ]irll,aX,p (Hbjuc([()’l]’RJr)) < @ (315)

Hy) There exist nonnegative functions ¢; € C ([0,1],Ry), j=0,---,p, such that

|gj(tax)_gj(tay)|Scj(t)|x_y|7 Ogtglv z, yERJ jZO,"',p,

_ I'(8)
¢= max (||Cj||o([o,1],R+)> < Ry (3.16)

Let
M = {u€ E,||lu| <R}.

where R is chosen such that

(3.17)

24pL 24
R > max ( P pd)

(a+B=2)T' () (B) —24p |k, T (B)

where
L = max |f(¢,0)], d= max (max g, (t,())|).

te[0,1] Jj=0,+,p \ t€[0,1]

Clearly, M is a nonempty, bounded and convex subset of E.
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3.3. Existence of solutions

Theorem 3.3.1 Under assumptions (Hy) — (H,), the problem (3.1)-(5.6) has at

least one nontrivial solution in M.

Proof We shall prove that all assumptions of krasnoselskii’s fixed point Theorem
are satisfied, for this the proof will be done in some steps.

Claim 1. The mapping A is continuous on M. Let (u,,), be a convergent sequence
in M, that is u, — w in M. By Lemma [3.2.2] and assumption (H;) we deduce for

S [tj7t]+1]7j:07 D

|[Auy, (t) = Au (8)] = |Ajun (1) = Aju (1)]

s/@@ﬂuwwwwmmwf

||kHL1([0,1],R+)

S @ B-2T (L@ "

—ul|.

Claim 2. (Au) is uniformly bounded on M. In fact, by assumption (H;) it yields
forue M and t € [tj,tj+1],j:0,--- , P

IMMFMWWS/@%ﬂWMMW (3.18)
S /G] (t77)|f(7—aur)_f<7—70)|d7_+ /GJ (t’7)|f(7_70)|d7_

R HkHLl([o,l],RJr) +L
(a+B—=2)T ()T (B)

- [l Wl L, oy myy + L
T (a+B8-2)T ()T (5)

<

Claim 3. (Au) is equicontinuous on M. We have, for u € M, and t; < 71 < 73 <
tjt1, for j=0,---p

|Au (12) — Au (11)] = |Aju (T2) — Aju (11)]
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3.3. Existence of solutions

< / G, (7, 7) = Gy (r1, 7| | (7 )| dr

T / G, (ran7) — Gy (r1. || (7o) d

T / G (rau7) — Gy (r1, || ()| dr

T2

< RIEl L, o rey + L

- I'(a)T ()

X / /<(T2—S)B — (11— )’ )(7’ s)* 'ds | dr
+ ((72 - 3)6_ — (11— S)’B_ ) (T S)a_l ds | dr
+/ /(7'2 — S)’B_ (1 s)a_1 ds | dr

tiv1 [ 7o

—l—/ / (T2 — 5)6_1 (T — 3)a_1 ds | dr

< 3(rs— ) RIE[ 1, oyry T L
=02 U T+ )T (B+1) )

hence, |Au (73) — Au (71)] tends to zero as 71 — T5. Consequently (Au) is equicon-
tinuous for ¢ # ¢;, j = 1,...,p + 1. We shall prove the equicontinuity of (Au) at
t = t;, for this, we firstly prove the equicontinuity of (Au) at ¢t = ¢; . Let us fix
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3.3. Existence of solutions

d1 > 0 such that {tx, k# j}N[t; — 61, t; + 1] =0, for 0 < h < 01, we have that

|Au (t;) — Au(t; — h)| = [Ajoau (ty) — Ajoau (t; — )]
< (2 (t; —tj1)" —2(t; —tj_1 — h)’ — h5>

. R|[EllL, o2, + L
T(a+1)T(B+1) )’

as h — 0, then the right-hand side tends to zero. Similarly, we prove the equicon-
tinuity of (Au) at t = ¢. Fixing d > 0 such that {t,, k # j}N[t; — 02, t; + 0o] =
(), then for 0 < h < 09, it yields

|Au (t; + h) — Au (t;)] = [Aju (t; + h) — Aju(t;)]

RIE| 2, oy ryy + L
<K’ (0.1 R) , as h — 0.
: ( F o) (5)

We conclude by Arzela-Ascoli Theorem [I.1.1] that A is completely continuous on
M.

Claim 4. The mapping B is contraction on M. Taking assumptions (H;) — (Hy)
into account, then we get for u, v € M and t € [t;, t;11], j=1,---,p,

|Bu (t) = Bo (t)| = |Bju(t) = Bjv (1)]

3p |’k”L1([O,1],R+)
(a+B-2)T(a)T ()

+ pa

3pc
+2pb + —} uU—v
s | =
[u — v

— 2 9
thus B is contraction on M.

Claim 5. (Au+ Bv) € M for all u,v € M. Indeed, in view of (3.17) and (3.18),
it yields

Rkl oz, + L
(a+p5=2)T ()T ()

R
24"

|Au (2)] < <
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Taking (3.14)),(3.15)) and (3.16)) into account, we obtain for v € M

Rp
(a+8-2)T' ()T (B)
x (3|, +a(a+5—2)T (o) T (3) + 20T (B) + 6¢)
L+da+p-2)T(a)

(a+6=2)T ()T (5)
oR

< )
- 8

|Bu (1)] <

+ 3p

hence oR
|Au (t) + Bo (t)| < |Au(t)] + |Bo (t)] < 5 < R, u, ve M.

Finally, we conclude by Krasnoselskii fixed point Theorem that A + B has
a fixed point © € M and then the problem (3.1)-(3.6) has at least one nontrivial

solution in M. A

3.4 Examples

3.4.1 Example 1
Consider the problem (3.1)-(3.6), with p =1, t; = 3, «

0.75, 8 =1.75, and

1
Cpa_ <0D€+u (t)) = f(tu), 0<t <=,
3 2
1
“Df- (CD?+u<t>> =f(tu), ;<t<l,
2
—r,0], «' (0) =0,

|
D} (wlt) |,y =7 DY () =i =0,
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3.4. Examples

2sin t2 t
t = - t 1 R
Flta) =25 (o= g )t 2R
t2 - in {2
hl(t,x):xcos , t€l0,1], z €R, hl(t,x):xsm , tel0,1], zeR.

16
Let us check the assumptions of Theorem We have

t sin t2

f(t70) =

nonidentically null on [0,1],

2 sin t2
15 |$—y|:]{7(t)|l'—y|,t6[0,1],$,y€R,

If @t x) = f(ty)l =

1

. t2
Ik, = /51?5 dt = 0.020685

0

< 0.023463 = (2B~ 22)4F ()T (B),

Then hypothesis (H;) is satisfied. Moreover we have

hl (ta O) = 07
cos 12
’hl(t7x)_hl(t>y)’: 8 ‘x_y‘7t€[071]7x7y6R7
cos t? cos1 1
t) = = =0.067538 < = =10.125
all( ) 8 ) a 8 8 )
and
hy (t,0) =0,
- - sin t?
hl(t7x)_h1(t7y) = 16 |5L’—y|,t€[0, 1]7$7y€R7
sin 1

b

1
= 0.052592 < — = 0.0625.
16 0.05259 <16 0.0625

Thus hypotheses (Hs) and (Hs) hold. By calculation, we get

I (1.75)
24

c=max |||, =0 <
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3.4. Examples

2sin 1
45

L=sup{|f(t, 0)], 0<t<1}= = 0.037399,

d=0,

and
24pL 24pd

max ;
((a +8=2)T ()T (8) — 24p |k, T ()
hence, hypothesis (H,) is satisfied. Finally, we conclude by Theorem that

the problem (3.1)-(3.6)) has at least one nontrivial solution u satisfying ||u|| < R,
with R > 6.7311.

> = 6.7311,

3.4.2 Example 2

Let us consider the impulsive boundary value problem with delay (3.1))-(3.6|), with
pzl,tlzé,azﬁzlb,

1~ 1™ tx
- - = —,t 1 R
5 ,u(2 )) TR €[0,1], x € R,
1 ~ (17 1~ tr
Au =) = — - = — 1 R.
u (2) h1 (2 ,u(2 )) 18,156[0, ], z €

(1+xz)e?
(25 +€t)

All assumptions of Theorem are satisfied. In fact, we have

f(t,z)= , t€0,1], z € R,

—t

f(tao):m

nonidentically null on [0, 1],
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eft

|f(t,x) = fty)l = m\x—?ﬂ

= k(t)|z—y|,t€]0,1],z,y € R,

1

—t
e
0

(a+5-2)T ()T (5)
24 '

< 0.032725 =
hl (t, 0) - 0,

t
|h1(t7$)_h1<t7y)|:E’x_y’7 te [071]7 xz, yeR7

t 1 1
ar(t) = 15, t€ [0, 1], a= - = 0.06667 < & =0.125.

- ¢
hl(tax)_hd(t:y) :E|x_y|> t€[071]7 z, y €R,

t
hl(t;()):();bl(t)zﬁy te [0,1],

1 1
b 12 0055556<16 0.0625

Thus assumptions (H;)-(Hy) hold. Furthermore, by computation it yields

I'(1.5)
24

¢=max|lgl|, =0<

1
L=sup{|f(10)], 0<t <1} = . =0038462,

d=0

max( 24pl 24pd
(a+B8=2)T()T(8) —24p|lkl[,” T ()

) =4.303 2.
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3.4. Examples

Thanks to Theorem [3.3.1] we deduce that the problem (3.1)-(3.6) has at least one
nontrivial solution u satisfying ||u|| < R where R > 4.3032.
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CHAPTER 4

LPositive Solutions for Impulsive Mixed Fractional
Differential Equations with p-Laplacian Operator
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4.1. Introduction and motivation

4.1 Introduction and motivation

This chapter is devoted to the study of the existence, uniqueness and positivity of
solutions for the following nonlinear impulsive boundary value problem involving

mixed type fractional derivatives and the p-Laplacian operator

D} ¢, (“Dgu(t)) = ft,ut), t€ J=1[0,1], t#t;, i=1,....m, (4.1)

A¢, (CDgu(ty)) =L (u(t)), i=1,...,m, (4.2)

A (¢, (CDgu(t )))' = Ji(u(t), i=1,...,m, (4.3)

ad, (“Dgiu(0)) — bo, (“Diiu(1)) =0, b>a>0, (4.4)

a (¢, (°Dgu(0)) b (e, (CDgu(1))) =0, b>a>0, (4.5)

Au(t) =T (u(t)), i=1,...,m, (4.6)

Au(t) = J;(u(t)), i=1,...,m, (4.7)

yu (0) —nu (1) =0, v >n >0, (4.8)

3l (0) = (1) = 0, v > 1 > 0. (4.9)

where 1 < o, 8 <2,v>n>0,b>a>0,p>1. We make the following notations

fori=1,...,m

Ag, ( o+U) t:) = (&, (° o+U))( ) = (8, (“Dgu)) (1),

:<p( Grw) (67) = (8, (“Dg-u)" (1) .
—u(t;),
zu’(t> o (1)
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4.1. Introduction and motivation

here

b, (CDO+U( )) = hmgb ( O+u) (t),

t~>t

b, (CD0+U( )) = lim ¢, ( 0+u) (1),

t—t;

(6, (“Dgew))” (tF) = Tim (6, (“Dgiu))" (1),

t—th

(6, (“Dgeu (£7)))" = lim (6, (D))’ (),

t—t,

u(tf) = limu(t), u(t;) = limu (),

t—t} t—t;
W () = limd/ (¢), o (t;7) = limu/ (£).
t—tF t—t;

Denote CDg+ and CDT‘, the left and the right Caputo fractional derivatives re-
spectively, u is the unknown function, f :[0,1] x RT — R*, the functions J;, I,
J iRt - Rt I, :RY 5 R, i=0,...,mare given, 0 = tg < t; < -+ < tp, <
tmi1 = 1.

The existence and uniqueness of solution are obtained by means of Banach con-
traction principle and Schauder fixed point theorem while the existence of positive
solutions is established by the help of a fixed point theorem in cones.

Fractional differential equations involving the p-Laplacian operator have several
applications in many fields such as in turbulent filtration in porous media, blood
circulation problems, rheology, viscoelasticity modeling,....

The p-Laplacian differential equation was introduced, to model a mechanical
problem that is the turbulent flow in a porous medium, by Leibenson [57] where

he studied the following equation

¢, (W (1) = f(t,u(t)=0,0<t<1.

Since then, much attention has been paid to this type of differential equations
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4.1. Introduction and motivation

but few papers has been done on the existence of positive solutions to fractional
boundary value problems involving the p-Laplacian operator, see [24, [44], 64], 85,
011, [94). Let us cite in particular a few articles in the literature

Using critical point theory and variational methods, the authors in [94], ob-
tained the existence of multiple solutions for the following p-Laplacian impulsive

fractional boundary value problems

D56, (DRU ) + lu O 2u(t) = f(hu(t), 0<t<T, t+t,
A (:Dg- o, (§Dfu)) (1) = I; (u(ty)) j=1...,m,
u(0) =u(T)=0.

Where 0 < o < 1, p > 1, D denotes the right Riemann-Liouville derivative and
§ D denotes the left Caputo derivative, 0 = tg < t; < -+ <ty <ty =T, and

A (D70, (D7) (t) = A (Dg-¢, (G D)) (8) = A (:Df-, (¢ DFw)) (1)

where

(D0, (§D5w)) (1) = i (:D§-0, (§Df)) (1),

t—th

(D56, (D7) (17) = 1 (D5, (S D5w)) (1)
In [24], the author established the existence and multiplicity of positive solu-
tions for a boundary value problem of fractional differential equation with p-

Laplacian operator

DJ.¢, (D&u(t)) = f(tu®) 0<t<l
u(0) =0,u (1) +oDj u(l) =0, Dgu(0)=0,

where Dy, , Dg+ and D, are the standard Riemann-Liouville derivatives with 1 <
a<2,0<pB,7v<1,0<a—~—1, the constant ¢ is a positive number. Thanks
to the fixed point theorem in cones the main results are proved.

This chapter is structured as follows. In Section 2, we prove the equivalence
between the problem — and an integral equation then we give some prop-

erties of the Green’s function. In Section 3, we prove the existence of a unique
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4.2. Equivalent integral equation

solution by using Banach’s contration principle. The existence of at least one
solution is proved by the help of Schauder fixed point theorem and the existence
of positive solutions is discussed by means of a fixed point theorems in the cone.

Some illustrative examples are given in Section 4.

4.2 Equivalent integral equation
Define what we mean by a solution for the problem (4.1))-(4.9).

Definition 4.2.1 A function u € PC (J,R,) is said to be a solution to the bound-

ary value problem - if u satisfies and conditions-.

The corresponding linear differential equation
°D ¢, (°Dgiu(t)) =h(t), te J=[0,1], t #£t;, i=1,...,m, (4.10)

Now we are ready to give the expression of the auxiliary problem (4.10f)-(4.2)-(4.9)).

Lemma 4.2.1 The solutions u € PC (J,R") of the impulsive fractional boundary

value problem —— 18 given by the integral equation
1 1 -
w(t) = /K1 (t,s) /G1 (5,7 h () dr+ 3 Go(s,t) (<L (w(t))  (411)
0 0 i=1

™ Z Gs (s, ti) Ji (u (Q))) ds

DKo (1) i (u (1) + D K (1), (u (1)

where
(t=5)°"1 | n(1=s)°"1 | 2(1-8)°"% | tn(1-s5)*"2
T T @ T oopfran T (-1
Ki(t,s) =} 0<s<t<l, (4.12)
n(l—s)*"! ?(1—s)>"2 tn(1—s)* 2
(@ T ofre-) T ey 0<s=t<l
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4.2. Equivalent integral equation

(S_t)ﬁfl asB—1 a2s8—2 (1—t)a55*2
e T at® T ooty T a1
Gl(t,S): 0<t<s<1,
asP—1 a2sP—2 (1—t)asP—2

0—aT® T 6wt D T G-ar-n: 0 <s=t<L

0 t<t; <1
Ky (t,t;) = 7*77’0< Sti<l
’ A 0<t; <t<1

y=n’

a

_a_ <t
Gg(tm:{ ARV

—a O0<t; <t<1

Ul y(t=ti) )
)2+ e O<t<t; <1

M o<t <t <1

- a ab
Gy (t,t;) = o (I—t) +n(I-t)+gim, 0<t <t <1,
ﬁ(l_ti)—{_%@(l_t)—i_(bfl;)% 0<t; <t<1,

foralli=1,...,m.

Proof Sct z () = ¢, (“Dg.u(t)), then equation (4.10) becomes
Dl z(ty=h(t), teJ t#t, i=1...m
1 )

By Lemma[1.4.1] we get for k =0,...,m,

z(t) = ﬁ/(s—t)ﬁ_lh(s)dSnLckerk(l—t), t€ [t trs]

t
Differentiating (4.18) we obtain

1
—1

S G

t
Using conditions (4.4)) and (4.5)), it yields

1

@[ h(s)d do — bey, =
F(B)O/s (s)ds + acy + ady — by, =0,
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(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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4.2. Equivalent integral equation

1
/sﬂ ?h (s)ds — adg + bd,, = 0. (4.21)

0
Applying the impulsive condition (| — we get

Cp — Cp—1 = Ik (u (tk)) - (1 - tk) Jk (u (tk)) s k= 1, e, (422)

dk,1 — dk = Jk (u (tk)) y k= 1, s,y (423)

Moreover using ) and (| -, we obtain

1

_ a B2 () ds b
do_(b—a)F(ﬂ—l)O/ h{s)d +(b_a);=fz( (1)), (4.24)
_ a 136—2 o b~ o
dm_(b—a)F(@—l)o/ h(s)d +(b—a);‘]’< (), (4.25)
k
dh=do =3 1) (426)
m k
~(-ar -10/ hls)ds+7 ZJ ;qu(tz)),
taking into account , and , we get
Co : P71 (s) ds @’ 21 () ds
(b—a)F<ﬁ)0/ h()d +(b—a)2f(ﬂ—1)0/ h()d (427)
ab " b m b m
Y OTep g Tl () = 5= Z::I () + 53 ; (1—t;) Js (u(t)),



4.2. Equivalent integral equation

cp = co+ Z (L; (u(t;) — (L —t;) J; (u(t:))) (4.28)

b m
+ (b — a) Zzl (1 - tZ) Ji (u (tz))
+ 30 (u () — Z (1—t;) J; (u(t;))

Substituting (4.24)) and (4.27) in (4.18) for ¢t € Jy = [0,t1], we obtain

1

r(t) = ——— S—B_lss+sﬂ_lss
" F(ﬁ)/( ’ h<)d+(b—a)F(ﬁ)0/ he

t

1
/35 2h
b—a
0
1

“ — p-2 S S
*(b—a)rw—u/“ B hls)d

0

+3 g (@)

= ab b b
+,L-Z((b—a)2 To-a) “‘ti”mﬂ—t)) Ji (u (t:)

Gy (t,s)h(s ds+ZG2tt +ZG3tt (t:))

i=1

Il
“\ T

where the functions G, (¢, s), Gs (t,t;) and Gy (t,t;), for i = 1,...,m are defined

in (I13). (LT5) and (119,
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4.2. Equivalent integral equation

Similarly, substituting (4.26]) and (4.28)) in {4.18) for ¢ € [ty tx—1], k= 1,...,m,
it yields

i—1 (b—a) R
" Z ((b fbaf i (b i a) (A=t + (b i a) (1- t)> Ji (u(ts))
- ab b b
+,_2k;1<(b—a)2+(b—a) A=t + =g <1—t>) Ji (u (1),
hence
z(t) = /G1 (t,8) h(s)ds+ Z G (t,t:) (—I; (u (1)) + Z Gy (t,1:) J; (u (1)) .
Now, since

z(t)=¢, (“D§iu(t)), t € (ts, tsa], k=0,...,m,

then, the problem (£.10)), (4.2)-(.9) can be rewritten as

(O Dgut)=¢,(x®), teJ=[0,1], t£t,i=1,...,m,
Au(t) =L (u(t)), i=1,...,m,

AU (t) = Ji(u(ty), i=1,...,m,

Yu(0) —nu (1) =0, v >n>0,

yu' (0) —nu' (1) =0, v>n>0.

\

Setting ¢ (t) = ¢, ( (t)) , then similarly to the above arguments, we conclude the

required result. W
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4.2. Equivalent integral equation

The properties of the functions Ky, K,, K3, G1, G2 and G5 are given in the

next lemma.
Lemma 4.2.2 The functions K1, Ky, K3, Gy, G2 and G3 are positive and satisfy
the following properties fort, t; € J,i=1,...,m, s € (0,1):

gMK (S) S Kl (ta 5) S MK (S)’

where
=9t oy (—s)
M) = O =T T =P Ta— 1)
Mg (s) = hsP—1 n abs?—2
T -aT(B) " b—a)’T(B-1)

Proof The positivity of the functions K, K5, K3, G, G5 and G3 is direct from
their expressions. Moreover K; and GG are increasing with respect to ¢t € J for all

s € (0,1). To simplify we use the following notations

(1) I ) T (€ ) b n?(1—s)* 2 tn(1—s)* 2
K, (t, S) = T(a) + (v=m)T(a) + (v=n)?T(a—1) ' (y—n)T(a—1)’
0<s<t«l1
(2) _ n—s)* " n?(1—s)*"? tn(1—s)*"?
K7 (ts) = G-of@ T oM T G-nla 1)’
0<t<s<l.
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4.2. Equivalent integral equation

(1) I ) asP—1 a?sP—2 (1—t)as®—2
G (ts) = I'(B) T (b—a)L'(B) + (b—a)T(8-1) + (b—a)T(6-1)°
0<t<s<l,
(2) _ _asP? a’sP—2 (1—t)as®—2
G (t,s) = (b—a)T'(B) + (b—a)?T(B—1) + (b—a)T(B—1)’
O<s<t<l.

By computation we get

maxK; (¢,$) = max (max Kfl) (t,s), max K\ (t, S)>

teJ te(1,s) te(0,s)
= max (K{" (1,5), K7 (5,5))

y(1—s)*" 7y (1—s)
(y=mT(a) (y=n)’T(a—1)

a—2

= Kfl) (1,s) =

:MK(S),

rtni}lKl (t,s) = min ( min K{l) (t,s), min Kf) (, s))
€

tG(l,S) tE(O,S)
— min (KP (s,5), K2 (0, s))

n(l—s)" 72 (1—s)"?

_K® (0 6) —
=K 0 = T T - T e )

n
=-M (S) ’
v K

I?%XGl (t,s) = max (max Ggl) (t,s), max GgQ) (t, s))
€

te(0,s) te(sl,)
= max (G (0,5), G (5.5))
bsP1 abs?~2

(b—a)r(5)+(b—a)2F(6—1)

=GV (0,5) =

= Mg (s),
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minG (¢, s) = min ( min Gﬁ” (t,s), min G?) (t, s))

teJ te(0,s) te(s,1)
= min (G{ (s,5), G (1,))
asP~1 a2sP—2

G—aTB)  b—a’T(G-1

=GP 1,s) =

= > Mg (s).

Further, we easily obtain for t, ¢; € Jandi=1,...,m

_n
Y=

S K2 (t7t1> S L7

2

S|
S
3

< Ga(t ) <

4.3 Uniqueness, existence and existence of pos-

itive solutions

Let us define the functional space needed in this study. Denote by E the Banach

space

E = PC(J,R")
= {u: J — RT, uEC’((tk,tkH], R+), fork=0,---,p
and there exist u () and w (¢;) with w (t;) = u(t)},
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4.3. Uniqueness, existence and existence of positive solutions

according to the norm

i) = max u ()]

Define the positive cone

Q = {ue B |ull <r},r>0
C = {ueE u(t)=5ull, teJ},

2 2\ ¢-1
n a

0 < 0=—=|— < 1.
ok (252)

We will use the notations

1
2
—1
El_/KP)(Ls)ds_ v rle- Dy
J (-1 T+ 1)
1

b+ (B —1)ab
(b—a)’T(B+1)

E, = /Ggl) (0,s)ds =

0

Define the operator A : E — E by
1 1
Au (t) = /K1 (t,s) /G1 (s,7) f(r,u(r))dr (4.29)
0 0

+ Z Go (s,t;) (—1; (u (t;))) + Z Gs(s,t;) Ji (u (W)) ds
+ Z Ko (t,4) T (u (t:)) + Z K (t,t;) J; (u(t;))

To prove the existence of solutions for problem (4.1))-(4.9) it suffices to prove
that the operator A has a fixed point i.e. Au = u, hence the fixed point of the
operator A coincides with the solution of problem (4.1))-(4.9).

4.3.1 Uniqueness of a solution

Let us introduce the following hypotheses.
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4.3. Uniqueness, existence and existence of positive solutions

H1) feC(JxRYR).
H2) I, € C(RT,R7), Ji, I;, J; € C (R, R").
H3) There exist a constant k; > 0 such that

\f (t,z) — f(t,y)] < ki|z —y|, for each ¢t € [0,1] and all z,y € RT.
H4) There exist a constants ko, c; > 0 such that
I (2) — I (y)| < kg lz —y|, forall z,y e RT k=1,2,....m.
Hb5) There exists a constant k3 > 0 such that
| T () — T (y)| < kzlz —y|, forall z,y e R" k=1,2,....m.

H6) There exists a constant k4 > 0 such that

I (z) — I (y)’ <kylr—y|, forall z,y e R* k=1,2,....,m.

HT) There exists a constant ks > 0 such that

’Jk (z) — Jj (y)) <ks|lr—uy|, forall z,y e RY k =1,2,....m.
In the next theorem we give an uniqueness result in the case 1 < p < 2.

Theorem 4.3.1 Suppose that 1 < p < 2, the hypotheses (H1)— (HT) are satisfied,
and further suppose that the following hypotheses hold:
HB8) There exists a nonnegative function w € C[0,1], such that

If (t,z)| <w(t), forallt € [0,1] and x € R".

H9) There exists a constants co > 0 such that

S (L (u (1)) < ca.

m
k=1

76



4.3. Uniqueness, existence and existence of positive solutions

H10) There exists a constant c3 > 0 such that

Z Ji (u(tr)) < cs.

H11) If

2

bm 20*m nm n*m
r = (q— 1) MY 2B, ( Egky + 2k +—k)+( ka + k)<1,
(q ) 1( 2K b—a2 (b—a)23 7_774 (7—77)25

where

M201E2+ +

and

¢; = maxw (t)
te(0,1]

Then the problem — has a unique solution in E.

Proof We will show that A is a contraction mapping. Taking hypotheses (H8)—
(H10) and the fact that 1 < p < 2, then ¢ > 2, into account, it yields

/Gl (5,7) f (T,u (7)) dr + > Ga (s,1:) (—1; (u (1)) + ZGS (s, t) Ji (u (t:))

=1

—Qa -
=1

< [Gimu@dr+ oY Chw ) + s > ()
bCQ 2b203 .
§61E1+b_a+ (b—a)2 =M

Applying the first statement of Lemma [I.1.4] and Lemma [£.2.2] we get for all

7



4.3. Uniqueness, existence and existence of positive solutions

u,v € Eand t € [ty, tiq1], E=0,1,...,m,

1 q-1

/G1 (s,7) f (7, u (7)) dr + Z Gy (s,t:) (=1 (u (t))) + Z Gs (s, t;) J; (u (t))

- /Gl (SyT)f(Tav(T))dTJFZ@ (s,ti) (=1 (v (t:))) +ZG3 (s,ti) Ji (v (t:))

m

L (u (t:) = I (v (ti))‘ +> K (tt)

=1

(u (8) = Ji (0 (1)

+ i K (t,1,)
=1

< (g 1) M / Gy (5,7 |f (ryu () — f (r,0(r))|dr

+ZG2 (s,t:) |1 (u () — L; (v (t:))] +ZG3 (s,ti) |Ji (u(t:) — Ji (v (ti))|>

+ ZK2 (t,ta) L (u (8:)) = L (v (ti))’ + ZK3 (t 1) | Ji (u(t:)) = Ji (v (tz'))’
Thanks to hypotheses (H3)-(HT7) we get
|Au(t) — Av ()] < {(Q—l)MqQE (Ek L 20%m k;)
= 1 2h g K2 (b—a)23
nm n*m Y
+ (7_nk:4+ (7_71)2/65)} lu— o]l
= r|u—uvl.

We have from condition (H11) that r < 1, then by Banach’s fixed point theorem,
we conclude the existence of a unique solution in F for the problem (4.1])-(4.9). ®

In the following theorem we shall give an uniqueness result in the case p > 2.

Theorem 4.3.2 Assume that p > 2, the assumptions (H1) — (H7) are satisfied

and further suppose that the following assumptions hold:
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4.3. Uniqueness, existence and existence of positive solutions

H12) There exists a constant A > 0 such that
\f (t,x)| > A, forallt €]0,1] and x € RT

H13)

bm 20°m 2
=(q—1)MI2E, | Exk k k k k 1
r = (¢ — 1) M 1(21+b—a2+(b—a)2 3>-|—<7 4+ 25)< )

where My = $AEs.
Then the problem — has a unique solution in E.

Proof Let us show that A is contraction mapping. According to hypothesis
(H12) and the fact that p > 2 then 1 < ¢ < 2, we obtain

1

/Gl (s,7) f (T ,u(7))dr + ZGz (s,t:) (=L (u(t:))) + ZGs (s,ti) Ji (u(t:))

0

1
2/6‘1 (s,7) Adr > %)\EQ:Ml >0
0

By hypotheses (H3)-(H7), (H13) and from Lemmas|1.1.5/and |4.2.2, we obtain for
all u,v € E, and t € [ty, tg11], k=0,1,....;m,

2 2
|Au (t) — Av (t)] < {(q -1) M{’_QEI (Egkl + bm ko + b m2k3)
b—a (b—a)

m 2m

+<” by 4+ —1 kaﬂnu—uu
YN (y—mn)

= 71 |lu—2

Finally Banach’s fixed point theorem guarantees the existence of a unique solution
in E for the problem (4.1)-(4.9). m
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4.3. Uniqueness, existence and existence of positive solutions

4.3.2 Existence of solutions

Lemma 4.3.1 Assume that hypotheses (H1) and (H2) hold, then the operatorA
is completely continuous and A (C) C C.

Proof The proof will be done in some steps.

Claim 1: The operator A maps bounded sets into bounded sets. Indeed let B be
an arbitrary bounded set in £. Then there exists M > 0 such that ||u|| < M, for all
u € B. In view of hypotheses (H1) — (H2), we set for t € (t,tx1],i=1,...,m,
u € B:

L= t,r) < 4.30
o 2oan? () < o 30

[, = max ( max (—1; (x))) < o0,

i=T,m \x€[0,M]

Obviously the constants L, [;, l;, for i = 1,2 are positive. Let t € J;, i = 1,...,m,
u € B, then

q—1

1 1
bl 26*ml
0 < (Au) () < /MK(s)ds L/Mg(T)dT—l-bnj;—l— mi
0 0

(b—a)®
nm 51+ nzml}2
y=1n (y—n)

2h2 q—1 7 2.7
< B (LE2—|— bml, N b mlg2) N nmiy N n m122
b—a (b-a) Y0 (y—n)

hence ||Aul| < C.

Claim 2: A is equicontinuous on B. In fact, fix s € J then for u € B and any 71,
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4.3. Uniqueness, existence and existence of positive solutions

To € (tkathrl] , T1 < Ta, it yields

Au(r) Aﬂtnn-—t/<Kavm )= K, (71, 5)) U/lerﬂf(ﬂU(ﬂ)dr
+ZG2 5.t ( (t)))+ZG3(s,t1)Jz(u(tz))> ds

bmly  20%mly "
g(LE2+ UL m22>
b—a (b-a)
T1 T2
| [ (50 ) = K r9)) ds [ (KD (o) = K (2,9 s
0 T1
1 m
—|—/ <K(2)(72,3) KF)(Tl,S))dS +l~12|K2(727 i) — Ko (11, 3)]
1=1

T2

+122|K3 T2, i) — K3 (71, 1))

bl 2b%miy \ 7 n 7§ — 71§
<|LE — —
_< 2+b—a+(b—a>2> <T2 7'1)—|— o

I
+—2m(77+7) (te —71) = 0 as 71 — 7.

(y—=n)

Thus (Au) is equicontinuous on all the subinterval (¢, tx41], £ = 0,...,m. By PC
type Ascoli-Arzela Theorem [I.1.1], we conclude that A is compact.

Claim 3: The operator A is continuous. Let (u,), be a convergent sequence in £
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4.3. Uniqueness, existence and existence of positive solutions

ie. u, — uy € F, then

0< (_Ik(un(tk))) Slh le Jk? k:]-)"'vm7
OSJk(un(tk))Sl%te‘]kak:]-?7ma

where L, [;, for i = 1, 2 are defined in (4.30f). By computation we get

1

/G1 (s,7) f (7, u (7)) dr + ZGz (s,t:) (=1 (u(£)))

0
m

+) Gy (s,ti) J; (u(t:)
i=1
2
SLEQ—l— bmh i 2b ml22 — .
b — a (b — a)

Now, since the functions f, I, Ji, Ix, Ji, k = 1,...,m, are uniformly continuous
for and ||u,, — up|| — 0, then there exists ng > 1 such that for n > ng, the following

estimate hold

£ (6 () = f (0 ()] < &,
L (tn (tr)) = I (uo (r))] <&,

i (tn (81)) = T (10 ()] <
[T (tn (tr)) = Ji (uo (£6))] <&,
e o (1)) = J (g (1)) < 2

We have two cases to explore.
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4.3. Uniqueness, existence and existence of positive solutions

Case 1. If 1 < ¢ < 2, then from the second statement of Lemma we have

0 i=1

(/G1 (5,7) f (7, un (7)) dr + ) Ga (5,t;) (=1 (un (1))

+ZG3 (Sati) Jz (un (tz))> - /Gl (877—).]‘.(7—7”0 (T)) dT

m

+) G (s, 1) (=1 (uo (1)) + Z Gs (s,t:) Ji (ug (ti)))

i=1

< (/Gl (s, ) | (7, un (7)) = (7, u0 (7)) | dT

+ Z Go (8,t;) | L; (up, (t;)) — I; (uo ()]

+ Z G (s,t:) | Ji (un (t:)) — Ji (uo (tz))|)

bm 20%°m, >q_1
p) s

that implies

b 2b? a1
HAun — AUOH S €q71E1 <E2 + m + m2)
b—a (b—a)

m 2m
+(77 + 1 2)5,
Y=n (vy—n)

thus A is continuous on F.
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4.3. Uniqueness, existence and existence of positive solutions

Case 2. If ¢ > 2, then the first statement of Lemma implies

1 q-1

/&@ﬂﬂmmmM+i%@mehw@m+i%@mﬁ%m»

i=1 i=1
0

1 q-1

— /G1 (s,7) f(T,uo (7)) dr + Zil Go (s,t;) (—I; (ug (t;))) + Zi Gs (s,t;) Ji (uo (t;))

0

< (g1 /bmaﬂuwwmw»—fkuﬂnm

bm 26°m
<(g-1c?|E
s(a=1)e < 2—i_b—ct+(l)—a)2)g7
consequently,
bm 26*m
Au,, — Augll < (¢ — 1) 7 2E, | E
e Y e e I

2
m m
+ ( 7 + 7 2) g,
T (y—n)
thus A is continuous operator on E.
From the above analysis, we deduce that the operator A is completely continu-
ous on F.

Finally, let us show that A (C') C C. In fact, in view of Lemmas [4.2.1] and 4.2.2|
we obtain for t € (ty,tx 1] and u € C, k=0,...,m,

(Au) (1) > /MK /MG ))d7+¥

=1 (b— )
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4.3. Uniqueness, existence and existence of positive solutions

Moreover, we have

,L':lb—a

@mwgtﬂ@@@ /mewwmm+i

+5 2 nwe) + 5 R+ S )
i (Ul A C A i i))>
S (b—a)? =17 =1 = (y—n)
then
2 2\ 91
_ (e
|| Au|| = 2 (262) ItIéE}z(Au t)

hence (Au) (t) > ¢ ||Aul|, for u € C, that is A(C) C C. &
Now, we give an existence result for the problem —, the proof is based
on Schauder’s fixed point theorem, for this end, we make the following hypotheses.
(H14) There exist p; € C (J,R") and two positive constants ¢; and 01, 0 <
0 < p%l such that

|f (t,u)| < p1(t) + qu’t, for each t € J and all u € RY,
(H15) There exist two positive constants ps, g2 > 0 such that

|1, (w)] < p2 + gau, for all u € RY,
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4.3. Uniqueness, existence and existence of positive solutions

(H16) There exist two positive constants ps, g3 > 0, such that
| Tk (u)] < ps + gsu, for all u € RY,

(H17) There exist positive constants py, g4 > 0, and d5 € (0, 1] such that
)fk (u)’ < pa + quu®?, for all u € RT,

(H18) There exist pa, g2 > 0, such that
‘jk (u)‘ < ps + qsu’?, for all u € RY,

Theorem 4.3.3 Assume that (H1)-(H2) and (H14)-(H18) hold. Then the prob-
lem - has at least one solution in E.

Proof We introduce the following notations

P2 +

A =3 2072 1} Ey | Eop
1 max{ ; } 1( 2p1+b—a b—a)

m m~y?
+3< i p4+ i 2p5>
TN (v —n)
mb N 2mb? o1
b—&% (b_a)QC]?,
m m~?
A3_3( 7(14‘1‘ i 295)
T=n (y—mn)
P = max P (t)

mb 2mb? -1
2p3

A2 =3 (qul +

Let

r > max {Al, (Az)ﬁ ) (A3)1_152 } :

and set Q, = {u € E, ||u|| <r}. We shall show that A(Q,) C €,. Taking into
account Lemmas|l.1.3|and [4.2.2)and hypotheses (H1)-(H2) and (H14)-(H18), we
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4.3. Uniqueness, existence and existence of positive solutions

get for all u € Q,., t € (t,thsa], k=1,...,m,

1

/m (5,7) /G1 (5,7) F (rou () dr + 3 Go (5,8) (<L (u () (4.31)

0 =1

+ Z G (s, ti) Ji (u (tz))) ds

< /K1 (s,7) /Gl (s,7)|f (T,u (7)) dr + ZGQ (s,t:) | 1; (u(t;))]
+ZG3 (s,t:) |J; (u (ti))|> ds
< /K1 (s,7) /G1 (s,7) (p1 t)+ ¢ |u|§1> dr + ZGQ (s,t;) (p2 + ¢ |u\51>
+ZG3 (s,t:) (P3+CJ3 ’U‘&)) ds
. X mb N 2mb? ) a1
< E [Eg (L4 ar®) + 57— (2 + @r”) + b_a? (ps + g )}

mb 2mb?
<k ((Eﬂf{ + — + 2p3)

—a (b—a)
mb 2mb? -1
By + 2 gy + 7 )
+( 21 + b_a(Z2+ (b—a)qu>T )
b 2mb? a1
< 212 1V By | ( Byt + -
_max{ ) } 1 < 2p1+b_ap2+(b_a)2p3>

mb 2mb? -1
E d1(¢=1) |
+ ( 2(]1+b_a(h+ (b—a)2q3> T
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4.3. Uniqueness, existence and existence of positive solutions

From (4.31)) and hypotheses (H1)-(H2), (H10)-(H11) and Lemma it yields

Bt 4 mb N 2mb? -t
2p1 b . CLp2 (b . a)2p3

mb 2mb? -1
E d1(g—1)
+( 2611+b_QQ2+(b_a)QQ3> r
2

m m m my>
+( il Ps+ il 2p5)+( 7 Q4+—7 2q5> r62<7",
/! (v —mn) /i (v —n)

|Au(t)] < max {2971} B

so A (€,) C Q,. Since the operators A is completely continuous by Lemma [£.3.1]
then Schauder’s fixed point theorem, guarantees that A has at least one fixed point
which is a solution of the problem (4.1))-(4.9). =

4.3.3 Existence of positive solutions

Let us introduce the following hypotheses.
(H19) limsup,_, , o (%I%XM) <l
c

rp—1

H20) liminf, o+ ( minM> >\
teJ

where '
| — <max{27_171}E1)ﬁ
E, ’
o i
a0t eE,
Set
b X ) -
N; = max { =) ; (=L (u(ty)), b—a) ;Ji (u (tz))} ;
= max 7 m~iui LmNiui .
N, = {w_n); ), ((t))}

Now, we are ready to give an existence result for the positive solutions. The

proof is based on Lemma [1.2.1
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4.3. Uniqueness, existence and existence of positive solutions

Theorem 4.3.4 Assume that (H1)—(H2) and (H19)—(H20) hold. Then problem
- has at least one positive solution.

Proof Let A:C — C, then from Lemma [£.3.T) we have A is completely continu-
ous. Firstly, taking hypothesis (H18) into account, we can choose g € (0,1), such

that ;
lim sup <maxf( ’x)> <1 — ey,

rotoo \ teJ P71

thus, there exists Ry > 0, such that the inequality

ftx) <(—ep)at™, te Ja> Ry

is satisfied. Let M = max  f(¢,x), then
(t,x)eJ x[0,Ro]
ft,x) <(l—gp)a?’ '+ M, Ve e RT, t € J. (4.32)

Since (I —g9)? " < 197!, we can choose k > 0, such that (I —go)? " < 177! — k. Set

D1 = max{2q72, 1} Elquil, F= le
G = max {2[1727 1} E1 (EQM + 2N1)q_1 + 2N2

Let R > & set Hp = {u € C, |lu| < R}. We shall prove that the relation
Au # pu, Yu € OHg, > 1, (4.33)

holds. Indeed, Reasoning by contradiction, then there exists uq € 0Hpg, and
fo > 1, with Aug = pyug. from (4.32)), it yields

(I—eo)ul " + M
(l—&"())Rpil—l—M,

J(t;uo (1))

IN

IA
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4.3. Uniqueness, existence and existence of positive solutions

thus

1

0 < (Aug) (t) < /MK (s)ds

1 q—1
« / Mg (1) (1 — e0) R+ M) dr + 2N, | +2N,
0
< By (B ((1— o) R+ M) +2N,)" " + 2N,
remembering that (p — 1) (¢ — 1) = 1, then we get by Lemma|[l.1.3]
(B2 ((1— o) R+ M) +2N) " <

max {2772 1} (B (1 — g0)" ' R+ (B2 M +2N,)" 1)
< max {20721} (BSE (171 — k) R+ (ByM +2Ny)" 1)

hence
(Aug) (t) < max {27721}
x (ByES (171 — k) R+ By (EoM +2N,)71) + 2N,
<max {292 1} BBy (197 - k) R
+max {27721} By (EoM +2N;)" " + 2N,
< (D' = F)R+G,
thus

Uo (t) S HoUo (t) = (AU()) (t) S (Dllq_l — F) R + G,t e J. (434)
Since D197 = 1, then implies

R=llull <(1-F)R+G

and so R < %, that contradicts the choice of R and consequently condition (4.33])

is satisfied.
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4.3. Uniqueness, existence and existence of positive solutions

Now, in view of hypothesis (H19), we can choose ¢y > 0, such that

lim inf <minf(t’f)) > A\ + &g,

z—0t \ teJ P~

then there exists r; > 0, such that

ft,2)>N+eo)aP™t, teJ xel0,r].
p—l 2 q_l 4 2
Choose r such 0 < r < min | R,ry, 2P (<E1%) ‘bl—QNl) ,TZNQ , and set

Hy={ue P, |lul <r}

Now, we will show that
i) Inf ||Aul > 0.

UEaHr

i) Au # pu, Yu € 0H,., u € (0, 1].
q—1
Let w € OH,, we have ¢ ||u|| < wu(t) < ||ul|, where 6 = w2 , then
% 2b

ftu(t) > (A +eo)ul(t )”‘1
> (A +e0) (0 ||u||)

> (A+eo)(0r)" ", ted
hence
1 q-1
2
t) > /K1 (t,s) /G1 (5,7) (X + o) (0r) " dr + L 5 N1 ds + iNg
0 ’ 7
q— 2
1 a 21
> ;El (EEQ (A +20) (6r)" " + 2 N1> + 7]\[27
thus
n =1, n p=1 2 g1 212
||AU|| Z (—5E1) —E2 (/\ + 60) Tp_l + (—E1> —2N1 +_2N2 =C> 0,
g b g b g
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consequently, the first statement is satisfied. Now suppose that there exists a
up € OH,, and i, € (0,1], such that pyug = Aug. By similar argument used to get
(4.35) and using the definition of A, we get

p—1 a 1 p—1 a2 (a=1)(p—1)
[ Auol| = (35E1> B A+e) Pt + Tl <(QE1> —N1>

2> T
+7N2>(2p + o +§—T.

Since i € (0,1], then
= lluoll = o [[uoll = [ Auol] > r,

which is impossible, consequently the statement (ii) holds. Then from Lemma
, the operator A has a fixed point v € C'N (H_R\Hr). Therefore, u is a
positive solution to the problem (4.1)-(4.9). M

4.4 Examples

4.4.1 Example 1

Consider the fractional boundary value problem (4.1)-(4.9) with v =b =2, n =
a=1la=0=3%p=3 ¢=3,
t2 et

1
t,r) = teJ=1[0,1], t # = Rt
f(,ﬂf) 1OO+(99+€t)(fl§'—|—1)7 € [7 ]7 7&27 M )

L (z) = —%eéx, r e RT,
Ji(z) = 6%6_2“, r € RY,
L(z) = %11 , v €RT,
Ji(z) = % . ji , v € RT



4.4. Examples

Then all assumptions of Theorem are satisfied. In fact, we have

e—t

(99 +¢t)
1
100

If () = fty)l <

x y ‘
(x+1) y+1
r—y ’
(z+1)(y+1)

IN

1
1—00|$—y|:k1|l’—y|,t€[0,1], I7y€R+

IN

Further

2 et

100 T 091 e

< z + ! tel0,1], z e RT
— 4+ — x

= 100 ' 100’ b ’

fltx) <

so there exists a nonnegative function w € C'[0, 1], such that

A P
w(t) = —+ —
100~ 100’ T
)=
cp = maxw (t) = —.
! te[0,1] 50
By computation, we get
L@~ L) < oleb—eb
x) — — e 2 —e
1 1) = 16
1
< glr-yl=klr—yl,xeRY,
1
—1 < — =
1(r) < 16 C2

1
|J1 () = Ji(y)| < 6—4!x—y!=k3!x—y!,xeR+
1_
64

IN

C3

Jl (I)
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- - 1 T Y
11<I)_Il(y)‘ < %‘1+x—m

1
5—0\:'3—1/\:/’~f4|:lf—y|,:l:eJRi+

1

|z —y| = ks |z —y|,x € RT.

50
Then ) .
o e Clut DL/ BEP R VST
(y=n)"T(a+1)
B+ (B—1)b
A Ak D LU VY
(b—a)"T(B+1)
b 2?
M=eBy 2 1 200 039503
b—a b—a
b 2?
ro= (¢-1)ME (E27€1+ "kt m2k3>+< m
b—a (b—a) y—n

= 0.74367 <1

We conclude by Theorem that the problem (4.1)-(4.9)) has a unique solution

in €Q,.

4.4.2 Example 2

Consider the fractional boundary value problem (4.1))-(4.9) with v =b =2, n =

a=1l,a=0=3%p=3q¢=3%,

80

1
f(t.z) = + . teJ=[01], t# 5, z R,

(1+t) (1+x)

94



4.4. Examples

Ii(z) = —1%0, z € R,
Ji(x) = %, reR",
L(z) = %1133, r € RY,
Ji(z) = %lj—x’ reRT.

Let us check that all assumptions of Theorem hold. We have

tx)— f(ty)] =
< ]a;—y]:k1|x—y|,te[0,1],x,ye]R*,

x y ‘

80
j%tx)2<1+t>_

E, = Ey, =3.7613,

V

40 = ),

Aﬂ;:%AEgz——x376K}x40:752%L

DN | —

3_, bm 20%°m ) (nm n*m >
r = —1YM2 "B | BEsky + ko + ks | + ka + k
(q ) M 1( 21 g 2 (b—a)23 7_774 (7_77)25
= 0.85775 < 1.

From Theorem , we deduce that the problem (4.1))-(4.9) has unique solution
in Q,.

4.4.3 Example 3

Consider the fractional boundary value problem ({4.1))-(4.9) with v =b =2, n =
a=la=0=35p=3q=3,

400t + 23

f(tx)= 10" +2)

1
tEJ:[O,l],t#§,a:GR+,
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4.4. Examples

Ii(x) = —20— - x5, x € R,
1

Ji(xz) = 5—1—@%, r € RY,

. 1 1 22

i I R+
1(7) 50 501+ a TEN
. 1 1 g2

J - 4 R,
1) = 5ot ap0rTaa ¥ €

It is clear that all assumptions of Theorem hold. Indeed,

1
If (tu)] < 40t+ﬁx§, for each t € J and all z € RT,

1

|1 ()] <20+ ;—O for all z € R,

1

JL (W) <5+ forall z € RY,
80

- 1 3
L (u)‘ < ——1—%, for all z € RT,

- 1 q;%
< —+ —, for all R*
Ji (u)| < 500 + 500 forallz € R,

By calculation it yields

1 1
b2 07p3 57p4 507195 2007 1 2 3.76 37

P2 +

mb 2mb? )q_l
b—a (b _ a)gpS

A; =3max {297% 1} E, <E2p’{ +

2
+3< T+ 2p5> — 092331,
T (y—m)

mb 2mb? -1
=0.1 2
b_an—f- (b—a)2q3> 0.19762,

Ag =3 (qul +
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4.4. Examples

2
A3:3( my qa + sl 2(]5) =0.18.
T (y=m)

Consequently, the problem (4.1)-(4.9)) has at least one solution in €., where
r=1> max {Al, (Ag) 5D | (Ag)ﬁ} — 0.92331.
4.4.4 Example 4

Let us choose for problem {.1)-(4.9), v =b=2,n=a=1,a=p= %7 p =3,

q=3,
Flta) = ’ teJ=[01], t£ 2, 2R
T A0 +a) A M
1 1
I = (14— R*
(o) = —5 (14735 ) ern
1 1
= —(1 R*
Jl(l') 32( +1 x),l'e ,
~ 1 1
I = -1 R*
1 () 8< +1+I),x6 ,
~ 1 1
= — (1 R*
By computation we get
2 —1 )
g o= Yl Um 5 g3
(v=n)T(a+1) T(3)
b? —1)0b
By = +<§B Jba_ _ o _ 37613,
(b—a)’T(B+1) T (3)
1
b = P
8v/2
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4.4. Examples

_1 3
(max {2772, 1} )70 (T'(3)) i
I 5 = 8793 x 1072,
b ("E 5)”’
g 2r (3) 8
— — 1.3612.
a 023 Fy 53 36

On the other hand we have

t 1 1
lim sup rnaxM = lim sup (max =0<I,
etoo \ ted Pl votoo \ e \ (1+1)z(1+2)

. fa)y L . 1 1 B
i inf (mip 50 ) =t g, (i (7)) = e
It follows from Theorem that the problem (4.1)-(4.9) has at least one

positive solution.
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Conclusion

The aim of this thesis is to discuss, in Banach spaces, the existence of solutions for
some classes of impulsive fractional differential equations with delay, involving the
right and left Caputo derivatives and the p-Laplacian operator. The results are
obtained using some fixed point theorems such the Banach’s contraction principle,
Schauder’s fixed point theorem and a fixed point theorem in cones. The presence of
impulsive moments with left and right fractional derivatives in the problem makes
it more complicated and interesting.

To conclude this thesis,we outline a possible further development on this sub-
ject.

First, we can consider the case of the infinite interval to obtain more specific
results similar to those of the impulsive that we have studied in the finite interval
[0,1]. Then another interesting branch would be questions about the stability of
solutions. In addition, the study of the existence of solutions to problems by the
method of lower and upper solutions can be very interesting.

Second, we can also extend our results by considering nonlinear differential
equations with more general forms for the nonlinear term f. Similar problems

with different types of fractional derivatives will be investigated in future works.
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