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ABSTRACT

In this thesis, we study some time-delay evolution systems with the presence of different

mechanisms of dissipation. We begin this thesis by presenting a brief summary about

dynamical systems theory where we will introduce a historical overview of its origins.

Then, we recall some reminders on functional spaces, and semigroups theory.

The monograph is composed of two parts, the first one is divided to three chapters,

the first chapter is devoted to study a thermo-viscoelastic system of Timoshenko-type

with nonlinear damping and a distributed delay acting on transverse displacement. We

use the energy method and some properties of convex functions to prove a general decay

estimate. In chapter 2, we concern with a one-dimensional Timoshenko system of ther-

moelasticity of type III with infinite memory damped by weakly nonlinear feedbacks. We

obtain a general stability estimates using the multiplier method without assuming equal

or nonequal speeds of propagation of waves. The third chapter is devoted to study a

thermo-viscoelastic Bresse system with second sound and delay terms. We obtain results

regardless of the speeds of wave propagation and the stable number which is introduced

in some works before. The second part is divided to two chapters, we study non-uniform

flexible structures systems, first one with second sound and a distributed delay term, and

the second in thermoelasticity with micro-temperature effect. We prove the well-posed of

each system as well its stability results under suitable assumptions.

Keywords: Evolution systems, Semigroups theory, Lyapunov functional, Exponential

stability, Viscoelasticity, Thermelasticity, Delay.
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صـمــلخ  

  

ٍ ــــــــبؼط أَظًت انخطٕس راث انخأخٍش انضيًُ يغ ٔصٕد آنٍبث يخخهفت ي فً ْزِ الأغشٔحت َذسط     

حٍذ سُقذو نًحت  ،ت بخقذٌى يهخص يٕصض نُظشٌت الأَظًت انذٌُبيٍكٍتــْزِ الأغشٔح مــــــــَسخٓانخبذٌذ. 

 . الزمرشبه ت ــَٔظشٌ انخببؼٍتفعبءاث بؼط انٕل ـــــح حزكٍشَقذو  ،كـــــذ رنـــبؼ .بَشأحٓحبسٌخٍت ػٍ 

ت ــــنذساس صـــــخصالأٔل ي انضضء الأٔل ٌعى رلاد فصٕل، ،ٍٍــــصضئـيٍ  ٌٕــسٕف حك دساسخُب   

 زيـــانًٕصع ان شــً ٔانخأخٍـــــذ غٍش انخطـــــًٍــخـانخيغ  تیموشینكوحشاسي نضس يشٌ يٍ َٕع  بوـَظ

بث ــــبئص انذٔال انًحذبت لإربـــٔبؼط خص بقتــــقت انطـٌذو غشــ. َسخخػهى الإصاحت انؼشظٍت مــٌؼً

. ظبوـنهُ انؼبو ظًحلالالا  

بنذ يغ ــــــشَٔت انحشاسٌت يٍ انُٕع انزــــأحبدي انبؼذ نهً تیموشینكوبُظبو  سُٓخى،  انزبًَفً انفصم     

و خذاـببسخزبج ٔصٕد انحم ٔ ٔحذاٍَخّ بسبت ، َيُ ششٔغ. فً ظم ٍش خطٍتـغدانت ذ بٕاسطت ــشة يخًـراك

سشػبث بو ببسخخذاو غشٌقت انًعبػف دٌٔ افخشاض ـحقذٌشاث الاسخقشاس انؼك نكزانضيش، ٔ شبَّظشٌت 

.انًٕصبث بســــيخسبٌٔت أٔ غٍش يخسبٌٔت لاَخش  

سشػبث اَخشبس انًحصم ػهٍٓب ُْب غٍش يخؼهقت ب ُخبئشان.  براسانفصم انزبنذ يخصص نذساست َظبو     

هٍٍ ـانفص عىٍـفبًَ ـانضضء انز أيب م.ـــفً بؼط الأػًبل يٍ قب ركشِببج انزي حى ــــــت ٔ انزـــــــــانًٕص

 ت، ٔانزبٍَانًٕصعأخٍش ـٕث انزبًَ ٔ انخـش انًُخظًت ، الأٔنى يغ انصـذسط انٍٓبكم انًشَت غٍـسُ،  5ٔ  4

 ٔحذاٍَخّ ٔ انحم ٔصٕد انذقٍقت. نقذ أربخُب ضضٌئبثنا ػبش شاسةـحـغ حأرٍش دسصت انشاسٌت يــانحفً انًشَٔت 

.ٍبث يُبسبتـــــم فشظـــــفً ظ اسخقشاسِ بو ببلإظبفت إنىــــكم َظنببنُسبت   

 

 ضٔصت،ـــــً، انهـــخقشاس الأسـ، الإسلیابونوفأَظًت انخطٕس، َظشٌت شبّ انضيش، دانت : الكلمات المفتاحیة

.انخأخٍش ، انحشاسٌت شَٔتانًــ  

 

 

 



RÉSUMÉ

Dans cette thèse, nous étudions certains systèmes d’évolution à retard de différents

mécanismes de dissipation. Nous commençons cette thèse en présentant un bref résumé

sur la théorie des systèmes dynamiques où nous présenterons un aperçu historique de ses

origines. Ensuite, nous rappelons quelques notions sur certains espaces fonctionnels et la

théorie des semi-groupes.

La monographie est composée de deux parties, la première est divisée en trois chapitres,

le premier chapitre est consacré à l’étude d’un système thermo-viscoélastique de type

Timoshenko à amortissement non linéaire et à retard distribué agissant sur le déplacement

transversal. Nous utilisons la méthode de l’énergie et certaines propriétés des fonctions

convexes pour prouver une estimation de décroissance générale. Dans le chapitre 2, nous

nous intéressons à un système de Timoshenko unidimensionnel de thermoélasticité de type

III à mémoire infinie amorti par des rétroactions faiblement non linéaires. On obtient une

estimation générale de la stabilité en utilisant la méthode du multiplicateur sans supposer

des vitesses égales ou non de propagation des ondes. Le troisième chapitre est consacré à

l’étude d’un système de Bresse thermo-viscoélastique avec deuxième son à retard. Nous

obtenons des résultats quelles que soient les vitesses de propagation des ondes et le nombre

stable qui est introduit dans certains travaux précédents. La deuxième partie est divisée

en deux chapitres, nous étudions des systèmes des structures flexibles non uniformes,

la première avec deuxième son à retard distribué et la seconde en thermélasticité avec

l’effet de micro-température. Nous prouvons le bien-posé de chaque système ainsi que ses

stabilités sous des hypothèses appropriées.

Mots-clés: Systèmes d’évolution, Théorie des semigroupes, Fonctionnelle de Lya-

punov, Stabilité exponentielle, Viscoélasticité, Thermoélasticité, Retard.
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CHAPTER 1

INTRODUCTION

This thesis is devoted to a study of stability of some time-delay evolution systems,

a subject that has long been vigorously pursued by such authors as much diversely rep-

resented as in mathematics, science, engineering, and economics. It is comforting, that

the subject is more enduring than transient, and indeed has sustained a surprising de-

gree of vitality. In particular, for the last decade or so, it has received visible research

attention and the advance has been notable. It appears warranted to assert, due to this

period of creative work, that the subject has undergone a significant leap conceptually

and on practical measures, both its nature and scope have been dramatically advanced

and broadened.

What defines a time-delay system is the feature that the system’s future evolution

depends not only on its present state, but also on a period of its history. This particular

cause-effect relationship can be most succinctly captured, and indeed has been tradi-

tionally so modeled by differential-difference equations, or more generally, by functional

differential equations. While in practice many dynamical systems may be satisfactorily

described by ordinary differential equations alone, for which the system’s future evolution

depends solely on its current state, there are times when delay effect cannot be neglected,

or it will be more beneficial for it to be accounted for. In a word, we reckon that many

will agree time delay is by no means a matter of rarity, in fact, it is more prevalent than

uncommon, numerous results mentioned in this thesis and elsewhere serve to solidify this

standpoint. It is thus unsurprising, due to their omnipresence, and for their intrinsic

scientific interest and practical implication, that time-delay systems have been studied

long and well. It has for decades been an active area of scientific research in mathematics,

biology, ecology, economics, and in engineering, under such terms as hereditary systems,

systems with aftereffect, or systems with time-lag (system with time-delay terms), and

more generally as a subclass of functional differential equations and infinite dimensional

1



Chapter 1. Introduction 2

systems. The field of time-delay systems as a whole has its beginning dated back to the

eighteenth century, and it received substantial attention in the early twentieth century in

works devoted to the modeling of biological, ecological, as well as engineering systems.

A differential equation with delay describing a dynamical system belongs to the class

of retarded functional differential equations (also sometimes called retarded differential-

difference equations). One can also consider other classes of delay differential equations

(DDE), namely neutral DDEs and advanced DDEs. If the evolution of a DDE depends on

the past rates of changes in addition to its present and past values, then the corresponding

DDE is referred to as a neutral DDE. An advanced type DDE is the one in which the

evolution depends on its present and future values [88]. For example, consider the simple

case of a linear scalar first order equation

a0xt(t) + a1xt(t− τ) + b0x(t) + b1x(t− τ) = f(t),

where a0, a1, b0 and b1 are arbitrary constants and f(t) is a forcing function. The above

equation is said to be a DDE of retarded type if a0 6= 0 and a1 = 0, it is said to be of

neutral type if a0 6= 0 and a1 6= 0, and of advanced type if a0 = 0 and a1 6= 0.

In particular, the evolution of a dynamical variable corresponding to a retarded DDE

depends not only on its present value, x(t), but also on its values at earlier times, x(t′),

t′ ∈ (−τ, 0), where τ > 0 is the delay time. As a consequence, a time-dependent solution

of a system of DDEs is not uniquely determined by its initial state at a given moment

alone. Instead, the solution profile (initial function) on an interval of length equal to the

maximal delay prior to the time t = 0 has to be prescribed. That is, we need to define

a set of infinite (but continuous) number of initial conditions for −τ < t < 0 and hence

DDEs are effectively infinite-dimensional systems, even if we have only a single scalar

delay differential equation.

The most common type of infinite-dimensional dynamical systems involve the evolu-

tion of functions in time. For instance, if we want to study the evolution of chemical

concentrations in time and space, we can phrase the problem as the change in time of

the spatial distribution of chemicals. This distribution can be represented by a function

of the spatial variables, that is, C = C(r). This is also one of the reasons for increasing

interest of physics community for DDEs as they provide a natural link with space ex-

tended systems by means of the two variable representation of the time t = ς + θτ , where

ς ∈ (0, τ) is the continuous space variable, and θ ∈ N is a discrete temporal variable.

Generally, stabilization of DDE systems aims to attenuate vibrations by feedback, so it

consists in guaranteeing the decrease of the energy of the solutions towards 0 more or less

quickly by a dissipation mechanism. More precisely, the stabilization problem in which

we are interested comes down to determining the asymptotic behavior of the energy that

we note E(t), to study its limit in order to determine if this limit is zero or not, and if
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this limit is zero, to give an estimate of its rate of decrease towards zero.

Description and objective of the thesis

We present in this thesis a study on the existence, uniqueness and stability of some elas-

tic, thermoelastic, viscoelastic and delayed evolution problems, such as the Timoshenko

systems, Bresse systems and systems of flexible structures.

In recent decades, much work on local existence, global existence, and asymptotic

behavior of solutions to some initial condition and boundary problems as well as Cauchy

problems in one-dimensional and multidimensional thermoelasticity have been done.

In this regard, the objective of this thesis is to study the behavior of solutions of certain

evolution systems where dissipation is introduced by the presence of a thermoelastic,

micro-temperature, nonlinear or viscoelastic term, and the retardation by a constant

or distributed delay term. Several results concerning the decrease of solutions in non-

classical thermoelasticity have been proved. In this study, we generalize and improve

various previous results.

In the following, we will give a brief analysis of the content of the thesis which is divided

into six chapters.

The first one consists of a theoretical support for the study, we will find the different

tools on which our study will be based. We begin this chapter by presenting a brief

summary of dynamical systems theory where we will introduce a historical overview of its

origins. Then, we recall some reminders on Hilbert spaces, the Lp spaces, Sobolev spaces

and semigroups theory.

The second chapter is devoted to study a thermo-viscoelastic system of Timoshenko-

type with nonlinear damping and a distributed delay acting on transverse displacement
ρ1ϕtt −K(ϕx + ψ)x + µ1ϕt +

∫ τ2
τ1
µ2(s)ϕt (x, t− s) ds = 0

ρ2ψtt − βψxx +K(ϕx + ψ) +
∫ t

0
g (t− s) (a(x)ψx(s))x ds+ µ3(t)b(x)f(ψt) + γθx = 0

ρ3θt + kqx + γψtx = 0

ρ4qt + δq + kθx = 0.

The heat flux of the system is governed by Cattaneo’s law. We use the energy method and

some properties of convex functions to prove, regardless of the speeds of wave propagation,

general decay estimate from which the exponential, logarithmic and polynomial types of

decay are only special cases. (see [49]).

In third chapter, we consider a one-dimensional Timoshenko system of thermoelasticity

of type III with infinite memory damped by weakly nonlinear feedbacks
ρ1ϕtt − k (ϕx + ψ)x + βθtx + α (t) f (ϕt) = 0

ρ2ψtt − bψxx + k (ϕx + ψ) +
∫∞

0
g (s)ψxx (t− s) ds− βθt = 0

ρ3θtt − δθxx − kθxxt + γϕtx + γψt + α (t) f (θt) = 0.
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Under suitable conditions, we establish the well-posedness of the problem using semi-

groups theory, and a general stability estimates using the multiplier method with no

growth assumption on f at the origin and without assuming equal or nonequal speeds of

propagation of waves which is mentioned in numerous works (e.g. [14, 29, 35, 48, 68]).

Our results show that the damping effect leads to general decay rate for the energy func-

tion and also remove the necessity of the assumption on equal speeds which has been

imposed in the prior literature (see [51]).

The fourth chapter is devoted to study a thermo-viscoelastic Bresse system with second

sound and delay terms,

ρ1ϕtt − k (ϕx + ψ + lω)x − k0l (ωx − lϕ) + µ1ϕt + µ2ϕt (x, t− τ1) = 0

ρ2ψtt − bψxx + k (ϕx + ψ + lω) + δ
∫ t

0
g (t− s)ψxx (x, s) ds+ γθx = 0

ρ1ωtt − k0 (ωx − lϕ)x + kl (ϕx + ψ + lω) + λ1ωt + λ2ωt (x, t− τ2) = 0

ρ3θt + qx + γψtx = 0

αqt + βq + θx = 0,

where the heat flux is given by Cattaneo’s law. Regardless of the speeds of wave prop-

agation and the stable number, which is introduced in [59, 64], we prove an exponential

stability result using energy method under suitable assumptions on the weights of the

delays and the frictional damping (see [50]).

In the fifth chapter, we study a non-uniform delayed flexible structure damped by a

non-linear dissipation term,
m(x)utt − (p(x)ux + 2δ(x)uxt)x + ηθx + f(ut) +

∫ τ2
τ1
µ(s)ut (t− s) ds = 0

θt + ηutx + kqx = 0

τqt + βq + kθx = 0,

where the heat flux is given by Cattaneo’s law. We prove the well-posed of the system

using semi-group theory and general stability using multiplier method under suitable as-

sumptions on the weights of the delay, heating effect and material damping and regardless

of growth assumption on the nonlinear damping term f at the origin. (see [52]).

The final chapter is devoted to study a non-uniform flexible structure with micro-

temperature effect
m(x)utt − (p(x)ux + 2δ(x)uxt)x + dwx + ηθx = 0

cθt − kθxx + ηutx + k1wx = 0

τwt − k3wxx + k2w + k1θx + dutx = 0.

We prove the well-posed of the problem using semi-group theory, as well as an exponential

stability using the multiplier method without any restriction or relation on the coefficients

of the system (see [53]).
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Methodology

In this work, to ensure the well-posed of our problems, we use the theory of semi-groups

to establish the existence and uniqueness of the solutions. In semigroups theory, the

Hille-Yosida theorem is a powerful and fundamental tool relating the energy dissipation

properties of an unbounded operator A : D (A) ⊂ H → H to the existence, uniqueness

and regularity of the solutions of a stationary differential equation (Cauchy problem){
Φ′(t) = A(t)Φ(t), t > 0

Φ (0) = Φ0,

For the stability results, we use the multiplier method based on the construction of a

Lyapunov function L equivalent to the energy E of the solution. We denote by L ∼ E the

equivalence

c1E(t) ≤ L(t) ≤ c2E(t), ∀t ≥ 0, (1.1)

for two positive constants c1 and c2. For example, to establish exponential stability, it

suffices to show that

L′(t) ≤ −cL(t), ∀t > 0, (1.2)

for some c > 0. A simple integration of (1.2) over [0, t] with (1.1) leads to the desired

result of exponential stability. It is worth noting that Lyapunov’s theorems are only suffi-

cient conditions for the stability and the difficulty here is to find the adequate Lyapunov

function.
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CHAPTER 2

GENERALITIES

In this chapter, we shall introduce a brief summary of dynamical systems theory and

then state some necessary materials needed in the proof of our results, such as basic

results which concerning the Hilbert spaces, the Lp space, Sobolev spaces, some theorems

on these last and existence and uniqueness theorem. The knowledge of all these notions

and results are important for our study.

2.1 About dynamical systems theory

The qualitative analysis of dynamical systems introduced by H. Poincaré at the end of

the nineteenth century [82] gave birth to the fruitful field on dynamical systems theory,

with all the profound implications and applications we have nowadays including, among

others, systems and control theory. Before Poincaré’s differential equations were mostly

viewed as equations to be solved, similarly to as algebraic equations. Poincaré had the

bright idea to try to study differential equations in a qualitative way, which essentially

means that finding solutions is not the objective anymore, but instead, we focus on estab-

lishing certain properties of the solutions. This point of view is particularly relevant since

many differential equations do not admit closed-form solutions and can only be solved

numerically. In the same vein of Poincaré’s ideas, A.M. Lyapunov developed the theory

of stability of dynamical systems during his Ph.D. thesis [67], which was supervised by

P. Chebyshev. Stability is a fundamental property of dynamical systems having deep

consequences in sciences and engineering. Stability essentially means that solutions of

a dynamical system starting close to an equilibrium point (which is a resting point of

the system), remain close to this equilibrium point. A typical example is the pendulum

example. Pendulums with rigid rod admit two equilibrium points, one is when the rod is

vertical and the mass down, the other is when the mass is up. Consider the first equilib-

6
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rium point and assume that there is no friction. A small push from this resting position

will result in sustained oscillations of bounded amplitude around it. This equilibrium

point is therefore stable. An equilibrium point is, moreover, said to be asymptotically

stable if it is stable and the trajectories starting nearby to it converge back to it. Taking

again the pendulum example and adding friction to the problem will result in damped

oscillations around the equilibrium point. Eventually, the pendulum will stop oscillating

and will return to its resting position. This equilibrium point is therefore asymptotically

stable. Opposed to stable equilibrium points, unstable ones are resting positions from

which arbitrarily small perturbations will be amplified, pushing then the dynamical sys-

tem away from them. For instance, the second equilibrium point of the pendulum with

friction, i.e., the one with the mass up, is unstable since when slightly pushed from its

equilibrium position, it does not return there. Instead, it converges to the asymptotically

stable equilibrium point. A fundamental and appealing feature of Lyapunov’s results is

that, in the same spirit as Poincaré’s ideas, the properties of the trajectories in a neigh-

borhood of an equilibrium point can be assessed without even computing the solutions

of the dynamical system. This can be actually performed using potential functions, now

referred to as Lyapunov functions. These functions form the cornerstones of the powerful

Stability theory also called Lyapunov’s theory of stability or even Lyapunov theory.

This theory has been broadly accepted by systems and control theorists as a fun-

damental starting point for dealing with the analysis and control of dynamical systems.

Whenever control systems are concerned, stability is one of the most important properties

a control system should possess. Ensuring asymptotic stability of the closed-loop system

is an efficient way for assessing that the controlled process behaves in the desired way, for

instance, converges to a desired equilibrium point. Another striking point is the versatility

of the approach which has been adapted, since then, to an immense variety of systems such

as time-varying systems, discrete-time systems, hybrid systems, and infinite-dimensional

systems. The dynamical systems we are interested in this thesis do not escape this rule,

and Lyapunov theory will be shown to be an adequate tool for dealing with time-delay

and linear parameter-varying systems. Whereas time-delay systems can be approached

as a pure mathematical problem arising from a scientific field such as biology, ecology or

physics, parameter-varying systems essentially come up from engineering problems such

as filtering and control. In this regard, the field of linear parameter-varying time-delay

systems is mostly of engineering interest only. We refer the interested readers to the books

[22, 42, 45, 60, 62] for details discussion on the theory and to [91] for different examples

of time-delay problems.

2.1. About dynamical systems theory
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2.2 Hilbert spaces

The proper setting for the rigorous theory of partial differential equation turns out to

be the most important function space in modern physics and modern analysis, known as

Hilbert spaces. We will suffice to mention its definition.

Definition 2.1 [24] A Hilbert space H is a vectorial space supplied with inner product

〈u, v〉 such that ‖u‖ =
√
〈u, u〉 is the norm which let H complete.

2.3 Functional Spaces

The Lp (Ω) spaces:

Definition 2.2 [24] Let 1 ≤ p ≤ ∞, and let Ω be an open domain in Rn, n ∈ N. Define

the standard Lebesgue space Lp (Ω), by

Lp (Ω) =

{
f : Ω→ R : f is measurable and

∫
Ω

|f (x)|p dx <∞
}
.

Notation 2.1 For p ∈ R and 1 ≤ p ≤ ∞, denote by

‖f‖p =

(∫
Ω

|f (x)|p dx
) 1

p

.

If p =∞, we have

L∞ (Ω) = {f : Ω→ R : f is measurable and there exists a constant C

such that, |f(x)| ≤ C a.e in Ω} .

Also, we denote by

‖f‖∞ = inf {C, |f(x)| ≤ C a.e in Ω} .

Notation 2.2 Let 1 ≤ p ≤ ∞, we denote by q the conjugate of p i.e. 1
p

+ 1
q

= 1.

Remark 2.1 In particularly, when p = 2, L2 (Ω) equipped with the inner product

〈f, g〉L2(Ω) =

∫
Ω

f (x) g (x) dx,

is a Hilbert space.

2.2. Hilbert spaces
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The Sobolev spaces Wm,p (Ω) :

Definition 2.3 Let m ∈ N and p ∈ [0,∞] . The Wm,p (Ω) is the space of all f ∈
Lp (Ω) , defined as

Wm,p (Ω) = {f ∈ Lp (Ω) , such that ∂αf ∈ Lp (Ω) for all α ∈ Nn such that

|α| =
n∑
j=1

αj ≤ m, where ∂α = ∂α1
1 ∂α2

2 ...∂αnn

}
.

Theorem 2.1 ([28]) Wm,p (Ω) is a Banach space with their usual norm

‖f‖Wm,p(Ω) =
∑
|α|≤m

‖∂αf‖Lp , 1 ≤ p ≤ ∞, for all f ∈ Lp (Ω) .

Definition 2.4 When p = 2, we prefer to denote by Wm,2 (Ω) = Hm (Ω) and Wm,p
0 (Ω) =

Hm
0 (Ω) for p ∈ [0,∞[ supplied with the norm

‖f‖Hm(Ω) =

∑
|α|≤m

(‖∂αf‖L2)
2

 1
2

,

which do at Hm (Ω) a real Hilbert space with their usual scalar product

〈u, v〉Hm(Ω) =
∑
|α|≤m

∫
Ω

∂αu∂αvdx.

The next result provides a basic characterization of functions in W 1,p
0 (Ω) .

Theorem 2.2 [24] Let u ∈ W 1,p (Ω). Then u ∈ W 1,p
0 (Ω) if and only if u = 0 on ∂Ω.

Remark 2.2 1. Theorem 2.2 explains the central role played by the space W 1,p
0 (Ω).

Differential equations (or partial differential equations) are often coupled with bound-

ary conditions, i.e., the value of u is prescribed on ∂Ω.

2. We have the following characterization of Hm
0 (Ω)

Hm
0 (Ω) = {u ∈ Hm (Ω) , u = u′ = ... = u(m−1) = 0 on ∂Ω}

It is essential to notice the distinction between

H2
0 (Ω) = {u ∈ H2 (Ω) , u = u′ = 0 on ∂Ω},

and

H2 (Ω) ∩H1
0 (Ω) = {u ∈ H2 (Ω) , u = 0 on ∂Ω}.

2.3. Functional Spaces
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2.4 Some integral inequalities

We will give here some important integral inequalities. These inequalities play an impor-

tant role in applied mathematics and also, it is very useful in our next chapters.

Lemma 2.1 ([24], Hölder’s Inequality ) Let 1 ≤ p ≤ ∞, assume that f ∈ Lp (Ω) and

g ∈ Lq (Ω) then, fg ∈ L1 (Ω) and∫
Ω

|fg| dx ≤ ‖f‖p ‖g‖q . (2.1)

The next result is an important prototype of a Sobolev inequality (also called a Sobolev

embedding).

Lemma 2.2 ([24]) There exists a constant C (depending only on |I| ≤ ∞) such that

‖u‖L∞(I) ≤ C ‖u‖W 1,p(I) , ∀ u ∈ W
1,p (I) , ∀ 1 ≤ p ≤ ∞. (2.2)

Lemma 2.3 [24] (Poincaré’s inequality) Suppose I is a bounded interval. Then there

exists a constant C (depending on |I| <∞) such that

‖u‖W 1,p(I) ≤ C ‖u′‖LP (I) , for all u ∈ W 1,p
0 (I) . (2.3)

Lemma 2.4 [74] (Poincaré type Scheeffer’s inequality): Let h ∈ H1
0 (0, L). Then it holds∫ L

0

|h|2 dx ≤ l

∫ L

0

|hx|2 dx, l =
L2

π2
. (2.4)

2.5 Some Algebraic inequalities

Since our study based on some known algebraic inequalities, we want to recall few of them

here.

Lemma 2.5 ([24], Cauchy-Schwarz Inequality) Every inner product satisfies the Cauchy-

Schwarz inequality

〈x1, x2〉 ≤ ‖x1‖ ‖x2‖ . (2.5)

The equality sign holds if and only if x1 and x2 are dependent.

Lemma 2.6 [24](Young’s Inequality) For all a, b ∈ R+, we have

ab ≤ εa2 +
b2

4ε
, (2.6)

where ε is any positive constant.

2.4. Some integral inequalities
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Now, Let us denote by h∗ the conjugate function in the sense of Young of a convex

function h (see [13], p. 64), i.e.,

h∗ (p) = sup
t∈R+

(pt− h(t)).

Assume that h′′ > 0, then for p ≥ 0 a given number, h∗ is the Legendre transform of h

(see Liu and Zuazua [66]), which is given by

h∗ (p) := p [h′]
−1

(p)− h([h′]
−1

(p)), (2.7)

and which satisfies the following inequality

Lemma 2.7 [81](Young’s Inequality for the convex functions) Let h a convex function,

h∗ its conjugate in the sense of Young, we have

px ≤ h(x) + h∗(p) ∀p, x ≥ 0. (2.8)

Remark 2.3 The relation (2.7) and the fact that h(0) = 0 and (h′)−1, h are increasing

functions yield

h∗ (p) ≤ p [h′]
−1

(p) ∀p ≥ 0. (2.9)

2.6 Existence and uniqueness theorem

Lax-Milgram Lemma

The existence and uniqueness of a solution to the weak formulation of the problem can

be proved using the Lax-Milgram Lemma. This states that the weak formulation admits

a unique solution.

Lemma 2.8 [24] (Lax-Milgram lemma). Let a (·, ·) be a bilinear form on a Hilbert space

H equipped with norm ‖·‖H and the following properties:

i) a (·, ·) is continuous, that is

∃γ1 > 0 such that |a (w, v)| ≤ γ1 ‖w‖H ‖v‖H , ∀w, v ∈ H,

ii) a (·, ·) coercive (or H-elliptic), that is

∃α > 0 such that |a (v, v)| ≤ α ‖v‖2
H , ∀v ∈ H,

iii) L is a linear mapping on H (thus L is continuous), that is

∃γ2 > 0 such that |L (w)| ≤ γ2 ‖w‖H , ∀w ∈ H,

Then there exists a unique u ∈ H such that

a (w, u) = L (w) , ∀w ∈ H.

2.6. Existence and uniqueness theorem
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C0-Semigroup of bounded linear operators

Throughout this section H denotes a Hilbert space.

Definition 2.5 [81] Let X be a Banach space. A one parameter family (S (t))t≥0 of

bounded linear operators defined from X into X is a strongly continuous semigroup of

bounded linear operators on X if:

• S (0) = I (I identity operator on X).

• S (t+ s) = S (t)S (s) for every t, s ≥ 0.

• S (t)x→ x, as t→ 0, ∀x ∈ X.

Such a semigroup is called a C0-semigroup.

Definition 2.6 [81] The infinitesimal generator A of the semigroup (S (t))t≥0 is defined

by:

D (A) =

{
x ∈ X : lim

t→0

S (t)x− x
t

exists

}
and

Ax = lim
t→0

S (t)x− x
t

, x ∈ D (A) .

Definition 2.7 [24] An unbounded linear operator A : D (A) ⊂ H → H is said to be

monotone if it satisfies

(Au, u) ≥ 0, ∀u ∈ D (A) ,

It is called maximal monotone if, in addition

R (I +A) = H, i.e.,

∀f ∈ H, ∃u ∈ D (A) such that u+ Au = f.

Proposition 2.1 [24] Let A be a maximal monotone operator. Then D (A) is dense in

H.

Generally speaking, the first step in dealing with the study of the well-posedness of the

solution is to rewrite our evolution system of partial differential equations as a Cauchy

problem on some appropriate Hilbert space H called the energy space{
u′ +A(t)u = 0,

u (0) = u0,

where A(t) is an unbounded operator on H. Then we prove that A(t) is the infinitesi-

mal generator of a C0-semigroup of contractions (S (t))t≥0 on H in order to deduce the

existence of a solution in a certain Hilbert space. The solution is hence of the form

u (t) = S (t)u0. We mention here Hille–Yosida Theorem: Lumer-Phillips form (see [24])

which is applied to justify the existence and uniqueness of solutions of some partial dif-

ferential equations.

2.6. Existence and uniqueness theorem
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Theorem 2.3 Let A be a maximal monotone operator. Then, given any u0 ∈ D(A) there

exists a unique function

u ∈ C([0,∞[, D (A)) ∩ C1([0,∞[,H)

satisfying {
u′ +A(t)u = 0 on [0,∞[

u (0) = u0.

Moreover,

|u(t)| ≤ |u0|, ∀t ≥ 0 and |du
dt

(t)| = |Au(t)| ≤ |Au0|, ∀t > 0.

Remark 2.4 1. The main interest of Theorem 2.3 lies in the fact that we reduce

the study of an “evolution problem” to the study of the “stationary equation”

u′ + Au = f.

2. The space D(A) is equipped with the graph norm |u|+ |Au| or with the equivalent

Hilbert norm
√
|u|2 + |Au|2.

3. We refer the interested readers to [61, 90] and references therein for details discus-

sion on existence and uniqueness of local or global solutions of nonlinear evolution

equations.

2.6. Existence and uniqueness theorem
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Timoshenko–Bresse Systems
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CHAPTER 3

GENERAL DECAY FOR A VISCOELASTIC DAMPED TIMOSHENKO SYSTEM

OF SECOND SOUND WITH DISTRIBUTED DELAY

3.1 Introduction

We consider the following Timoshenko-type system:
ρ1ϕtt −K(ϕx + ψ)x + µ1ϕt +

∫ τ2
τ1
µ2(s)ϕt (x, t− s) ds = 0,

ρ2ψtt − βψxx +K(ϕx + ψ) +
∫ t

0
g (t− s) (a(x)ψx(s))x ds+ µ3(t)b(x)f(ψt) + γθx = 0,

ρ3θt + kqx + γψtx = 0,

ρ4qt + δq + kθx = 0,

(3.1)

where t ∈ (0,+∞) denotes the time variable and x ∈ (0, 1) is the space variable. Here

ϕ, ψ, θ and q are respectively the transverse displacement of the beam, the rotation

angle, the difference temperature and the heat flux. a, b, f, µ3 and g are specific functions,

ϕ0, ϕ1, ψ0, ψ1, θ0, q0 are initial data. The coefficients, ρ1, ρ2, ρ3, ρ4, γ, δ, k, β, µ1 and K are

positive constants, µ2 : [τ1; τ2] −→ R is a bounded function, where τ1, τ2 two real numbers

satisfying 0 ≤ τ1 < τ2.

We consider the following initial and boundary conditions:

ϕ (., 0) = ϕ0 (x) , ϕt (., 0) = ϕ1 (x) , θ (., 0) = θ0 (x) in (0, 1) ,

ψ (., 0) = ψ0 (x) , ψt (., 0) = ψ1 (x) , q (., 0) = q0 (x) in (0, 1) ,

ϕ (0, t) = ϕ (1, t) = ψ (0, t) = ψ (1, t) = θ (0, t) = θ (1, t) = 0 in (0,∞) ,

ϕt (x,−t) = f0(x, t) in (0, 1)× (0, τ2) ,

(3.2)

where f0 is the history function.

It is well-known that a great number of processes of the applied sciences (like treatments

of physical, biological, chemical, economic, and thermal phenomena), can be modeled by

15
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means of delay differential equations, these last are differential equations involving not

only the function and their derivatives at present state t but also the function and\or

their derivatives at some past times. Then this makes the control of PDEs with time

delay effects becomes an active area of research. In recent years, the issue of existence

and stability of evolution problems with delay has attracted a great deal of attention

[9, 19, 21, 35, 36, 79, 92]. Kafini et al. [57] concerned with the following Timoshenko

system of thermoelasticity of type III with distributive delay:
ρ1ϕtt − k(ϕx + ψ)x = 0,

ρ2ψtt − bψxx + k(ϕx + ψ) + βθtx = 0,

ρ3θtt − δθxx − kθtxx −
∫ τ2
τ1
g (s) θtxx(x, t− s)ds+ γψtx = 0,

(3.3)

where τ1 < τ2 are non-negative constants. They proved an exponential decay in the case

of equal wave speeds and a polynomial decay result in the case of nonequal wave speeds

with smooth initial data. Also, Kafini et al. [58] considered the following Timoshenko

system of thermoelasticity of type III with delay:
ρ1φtt −K(φx + ψ)x + µ1φt(x, t) + µ2φt(x, t− τ) = 0,

ρ2ψtt − bψxx +K(φx + ψ) + βθtx = 0,

ρ3θtt − δθxx + γψtx − kθtxx = 0.

(3.4)

They established the well-posedness and the stability of the system for the cases of equal

and nonequal speeds of wave propagation, they showed that the energy decays exponen-

tially in the case of equal wave speeds in spite of the existence of the delay, and in the

opposite case it decays polynomially. Very recently, Hao and Wang [48] considered the

following Timoshenko-type system with distributed delay and past history:
ρ1ϕtt − k(ϕx + ψ)x + βθtx = 0,

ρ2ψtt − bψxx + k(ϕx + ψ) +
∫∞

0
g (s)ψxx(x, t− s)ds− βθt + f(ψ) = 0,

ρ3θtt − δθxx − lθtxx + γϕtx + γψt −
∫ τ2
τ1
µ (ς) θtxx(x, t− ς)dς = 0.

(3.5)

They proved the well-posedness and the stability of the system for the cases of equal

and nonequal speeds of wave propagation. Their results show that the damping effect is

strong enough to uniformly stabilize the system even in the existence of time delay under

suitable conditions. Chen et al. [29] studied the following thermo-viscoelastic system of

Timoshenko of type III with frictional damping and delay terms:
ρ1ϕtt − k(ϕx + ψ)x = 0,

ρ2ψtt − bψxx + k(ϕx + ψ) + βθx = 0,

ρ3θtt − δθxx + γψttx +
∫ t

0
g (t− s) θxxds+ µ1θt(x, t) + µ2θt(x, t− τ) = 0.

(3.6)

Under a hypothesis between the weights of the frictional damping and the delay, they

proved the global existence of solutions by using the Faedo–Galerkin approximations,

3.1. Introduction
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and established a general energy decay result from which the polynomial and exponential

types of decay are only special cases.

In the absence of delay (µ2 = 0), viscoelastic term (g = 0) and nonlinear damping (f =

0), Messaoudi et al. [72] considered (3.1 ) for both linear and nonlinear case and proved

that the system is exponentially stable without any restriction on the coefficients. Apalara

[9] and Ouchenane [79] extended this last to a Timoshenko system with delay term of the

form
∫ τ2
τ1
µ2(s)ϕt (x, t− s) ds and µ2ϕt(x, t− τ) respectively. Under suitable assumptions

on the weights of the delay and the frictional damping, both authors established the

well-posedness result and proved that the system is also exponentially stable regardless of

the speeds of wave propagation. Fareh and Messaoudi [35] extended the result obtained

by Apalara [9] to a thermoelastic system of type III, they proved the well-posedness and

exponential stability results in the presence and the absence of an extra frictional damping

under some conditions.

Motivated by the works mentioned above, we investigate system (3.1) under suitable

assumptions and show that even in the presence of the viscoelastic term (g 6= 0) and

nonlinear damping (f 6= 0), we can establish a general energy decay regardless also of the

speeds of wave propagation. We prove our result by using the energy method together

with some properties of convex functions. These arguments of convexity were introduced

by Lasiecka and Tataru [63] and used by Liu and Zuazua [66] and others.

3.2 Preliminaries

In this section, we present some materials needed in the proof of our results. We also state,

without proof, a local existence result for problem (3.1). The proof can be established by

using Faedo–Galerkin method [29]. Throughout this thesis, c represents a generic positive

constant and is different in various occurrences.

As in [78], Taking the following new variable

z(x, ρ, s, t) = ϕt (x, t− ρs) , in (0, 1)× (0, 1)× (τ1, τ2)× (0,∞) .

Then we obtain {
szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0,

z(x, 0, s, t) = ϕt(x, t).

3.2. Preliminaries
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Consequently, problem (3.1)-(3.2) is equivalent to

ρ1ϕtt −K(ϕx + ψ)x + µ1ϕt +
∫ τ2
τ1
µ2(s)z(x, 1, s, t)ds = 0,

ρ2ψtt − βψxx +K(ϕx + ψ) +
∫ t

0
g (t− s) (a(x)ψx(s))x ds+ µ3(t)b(x)f(ψt) + γθx = 0,

ρ3θt + kqx + γψtx = 0,

ρ4qt + δq + kθx = 0,

szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0,

(3.7)

where (x, ρ, s, t) ∈ (0, 1)×(0, 1)×(τ1, τ2)×(0,∞) , with the following initial and boundary

conditions:

ϕ (., 0) = ϕ0 (x) , ϕt (., 0) = ϕ1 (x) , θ (., 0) = θ0 (x) in (0, 1) ,

ψ (., 0) = ψ0 (x) , ψt (., 0) = ψ1 (x) , q (., 0) = q0 (x) in (0, 1) ,

ϕ (0, t) = ϕ (1, t) = ψ (0, t) = ψ (1, t) = θ (0, t) = θ (1, t) = 0 in (0,∞) ,

z(x, ρ, s, 0) = f0(x, ρs) in (0, 1)× (0, 1)× (0, τ2) .

(3.8)

We shall use the following assumptions:

Assumption 2.1. µ2 : [τ1; τ2] −→ R is a bounded function satisfying∫ τ2

τ1

|µ2(s)| ds < µ1 (3.9)

Assumption 2.2. The functions a and b will be supposed continuous, non-negatives

and satisfy

a ∈ C1 ([0, 1]) ,

a = 0 or a (0) + a (1) > 0,

inf
x∈[0,1]

{a (x) + b (x)} > 0.

Assumption 2.3. f : R → R is a continuous and non-decreasing function such that

there exist positive constants k1, k2 and l and a convex, continuous and increasing function

h : R+ → R+ of class C1 (R+) ∩ C2 (]0,+∞[) satisfying: h (0) = 0 and h′′ = 0 on [0, l] or

( h′ (0) = 0 and h′′ > 0 on (0, l]) such that

h (s2 + f 2 (s)) ≤ f (s) s for |s| ≤ l,

k1s
2 ≤ f (s) s ≤ k2s

2 for |s| > l.
(3.10)

Assumption 2.4. g : R+ → R+ is a differentiable function such that

g (0) > 0,

∫ ∞
0

g (s) ds = g1, β − ‖a‖∞
∫ ∞

0

g (s) ds > 0. (3.11)

Assumption 2.5. There exists a non-increasing differentiable function η : R+ → R+

satisfying

g′ (s) ≤ −η (s) g (s) , for s ≥ 0.

3.2. Preliminaries
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Assumption 2.6. µ3 : R+ →]0,+∞[ is a non-increasing C1-function satisfying∫ ∞
0

µ3 (s) ds = +∞.

Remark 3.1 1. From assumption 2.3 we easily infer that f(s)s ≥ 0 for s ∈ R.

2. Assumption 2.6 implies that µ3 is bounded .

3. According to our knowledge, Assumption 2.3 was first introduced by Lasiecka and

Tataru [63].

4. Since g is positive and g(0) > 0 then for any t0 > 0 we have∫ t

0

g (s) ds ≥
∫ t0

0

g (s) ds = g0 > 0, ∀t ≥ t0. (3.12)

Using the fact that a (0) > 0 and a is continuous, then there exists ε > 0 such that

infx∈[0,ε] a (x) ≥ ε. Let us denote

d = min

{
ε, inf

x∈[0,1]
{a (x) + b (x)}

}
> 0,

and let α ∈ C1 ([0, 1]) be such that 0 ≤ α ≤ a and α (x) = 0 if a (x) ≤ d
4
,

α (x) = a (x) if a (x) ≥ d
2
.

Lemma 3.1 [26] The function α is not identically zero and satisfies

inf
x∈[0,1]

{α (x) + b (x)} ≥ d

2
.

Now, for ε0 > 0 we define the functions J and K by:

J(t) :=

{
t if h′′ = 0 on [0, l] ,

th′(ε0t) if h′(0) = 0 and h′′ > 0 on (0, l] .
(3.13)

K (t) =

∫ 1

t

1

J (s)
ds. (3.14)

To facilitate our calculations we introduce the following notations

(φ ∗ ψ) (t) :=
∫ t

0
φ (t− τ)ψ (τ) dτ,

(φ � ψ) (t) :=
∫ t

0
φ (t− τ) (ψ (t)− ψ (τ))2 dxdτ,

(g M v)(t) :=
∫ 1

0
α (x)

∫ t
0
g (s) (v (t)− v (s)) dsdx, ∀v ∈ L2 (0, 1) ,

(g ◦ ν) (t) :=
∫ 1

0
a(x)

∫ t
0
g (t− s) (ν (t)− ν (s))2dsdx, ∀ν ∈ L2(0, 1).

3.2. Preliminaries
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Lemma 3.2 [75] For any function φ ∈ C1 (R) and any ψ ∈ H1 (0, 1), we have

(φ ∗ ψ) (t)ψt (t) = −1

2
φ (t) |ψ (t)|2 +

1

2
(φ′ � ψ) (t)

−1

2

d

dt

{
(φ � ψ) (t)−

(∫ t

0

φ (τ) dτ

)
|ψ (t)|2

}
.

Lemma 3.3 [46] There exists a positive constant c such that

(g M v)2 ≤ cg ◦ vx, ∀v ∈ H1
0 (0, 1) .

The energy functional associated to (3.7)-(3.8), is

E (t, ϕ, ψ, θ, q, z) =
1

2

∫ 1

0

{
ρ1ϕ

2
t + ρ2ψ

2
t +

(
β − a (x)

∫ t

0

g (s) ds

)
ψ2
x

}
dx

+
1

2

∫ 1

0

{
K (ϕx + ψ)2 + ρ3θ

2 + ρ4q
2
}
dx+

1

2
(g ◦ ψx)

+
1

2

∫ 1

0

∫ 1

0

∫ τ2

τ1

s |µ2(s)| z2(x, ρ, s, t)dsdρdx, (3.15)

we denote E(t) = E (t, ϕ, ψ, θ, q, z) and E(0) = E (0, ϕ0, ψ0, θ0, q0, f0) for simplicity of

notations.

For state a local existence result, we introduce the vector function Φ = (ϕ, u, ψ, v, θ, q, z)T ,

where u = ϕt and v = ψt, using the standard Lebesgue space L2(0, 1) and the Sobolev

space H1
0 (0, 1) with their usual scalar products and norms for define the spaceH as follows

H :=
[
H1

0 (0, 1)× L2(0, 1)
]2 × [L2(0, 1)

]2 × L2((0, 1)× (0, 1)× (τ1, τ2)).

Proposition 3.1 Let Φ0 = (ϕ0, ϕ1, ψ0, ψ1, θ0, q0, f0)T ∈ H be given. Assume that as-

sumption 2.1 - assumption 2.4 are satisfied, Problem (3.7)-(3.8) possesses then a unique

global (weak) solution satisfying

Φ = (ϕ, u, ψ, v, θ, q, z)T ∈ C (R+;H) .

3.3 Technical Lemmas

In this section we establish several lemmas needed for the proof of our main result.

Lemma 3.4 Let (ϕ, ψ, θ, q, z) be the solution of (3.7)-(3.8), then the energy E is decreas-

ing function and satisfies, for all t ≥ 0 and η0 > 0,

E ′(t) = −δ
∫ 1

0

q2dx− 1

2
g (t)

∫ 1

0

a (x)ψ2
xdx−

∫ 1

0

b (x)ψtf (ψt) dx

+
1

2
(g′ ◦ ψx)− µ1

∫ 1

0

ϕ2
tdx−

∫ 1

0

ϕt

∫ τ2

τ1

µ2(s)z(x, 1, s, t)dsdx

≤ −δ
∫ 1

0

q2dx− µ3(t)

∫ 1

0

b (x)ψtf (ψt) dx+
1

2
(g′ ◦ ψx)− η0

∫ 1

0

ϕ2
tdx ≤ 0,

(3.16)
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Proof. Multiplying (3.7)1,(3.7)2,(3.7)3,(3.7)4,(3.7)5 by ϕt, ψt, θ, q and |µ2(s)| z respec-

tively, and integrating over (0, 1), using integration by parts, Lemma (3.3), Young’s and

Cauchy–Schwarz inequalities we get (3.16).

Lemma 3.5 Let (ϕ, ψ, θ, q, z) be the solution of (3.7)-(3.8). Then the functional

F1 (t) : = −ρ2

∫ 1

0

α (x)ψt

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx

+
γρ4

κ

∫ 1

0

α (x) q

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx,

satisfies

F ′1 (t) ≤ −
(
ρ2

∫ t

0

g (s) ds− ε1

(
ρ2

2 +

∫ t

0

g (s) ds

))∫ 1

0

α (x)ψ2
t dx

+ε′1K
2

∫ 1

0

(ϕx + ψ)2 dx+ cε1

∫ 1

0

b(x)f 2(ψt)dx

+ε′1
(
2β2 + 1

) ∫ 1

0

ψ2
xdx+

(
cε1 +

1

ε1

∫ t

0

g (s) ds

)∫ 1

0

q2dx

+c

(
ε′1 +

1

ε′1

)
g ◦ ψx + c

(
ε1 +

1

ε1

)
g ◦ ψx −

c

ε1

g′ ◦ ψx, (3.17)

for any ε1, ε′1 > 0.

Proof. For simplicity we write

F1 (t) := I1 (t) + I2 (t) .

where

I1 (t) = −ρ2

∫ 1

0

α (x)ψt

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx,

I2 (t) =
γρ4

κ

∫ 1

0

α (x) q

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx.

Differentiating I1 gives

I ′1 (t) = −
∫ 1

0

ρ2α(x)ψtt

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx

−
∫ 1

0

ρ2α (x)ψt

∫ t

0

g′ (t− s) (ψ (t)− ψ (s)) dsdx

−
∫ 1

0

ρ2α (x)ψ2
t

∫ t

0

g (s) dsdx. (3.18)
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Using (3.7)2, we get

−
∫ 1

0

ρ2α(x)ψtt

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx

=

∫ 1

0

βα (x)ψx

∫ t

0

g (t− s) (ψx (t)− ψx (s)) dsdx

+

∫ t

0

Kα (x) (ϕx + ψ)

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx

−
∫ 1

0

α (x) a (x)

(∫ t

0

g (t− s)ψx (s) ds

)(∫ t

0

g (t− s) (ψx (t)− ψx (s)) ds

)
dx

+µ3(t)

∫ 1

0

b (x) f (ψt)

(∫ t

0

g (t− s) (ψ (t)− ψ (s)) ds

)
dx

+

∫ 1

0

α (x) γθx

(∫ t

0

g (t− s) (ψ (t)− ψ (s)) ds

)
dx

+

∫ 1

0

α′ (x)

(
βψx − a (x)

∫ t

0

g (s)ψx (s) ds

)(∫ t

0

g (t− s) (ψ (t)− ψ (s)) ds

)
dx.

(3.19)

Next, by using Lemma 3.3, we have for any ε1 > 0

−
∫ 1

0

ρ2α (x)ψt

∫ t

0

g′ (t− s) (ψ (t)− ψ (s)) dsdx

≤ ε1ρ
2
2

∫ 1

0

α (x)ψ2
t dx−

c

ε1

g′ ◦ ψx. (3.20)

Also,

I ′2 (t) =
γρ4

κ

∫ 1

0

α (x) qt

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx

+
γρ4

κ

∫ 1

0

α (x) q

∫ t

0

g′ (t− s) (ψ (t)− ψ (s)) dsdx

+
γρ4

κ

∫ 1

0

α (x) qψt

∫ t

0

g (s) ds.

Using (3.7)4, which gives

I ′2 (t) = −γδ
κ

∫ 1

0

α (x) q

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx

−
∫ 1

0

α (x) γθx

(∫ t

0

g (t− s) (ψ (t)− ψ (s)) ds

)
dx

+
γρ4

κ

∫ 1

0

α (x) q

∫ t

0

g′ (t− s) (ψ (t)− ψ (s)) dsdx

+
γρ4

κ

(∫ t

0

g (s) ds

)∫ 1

0

α (x) qψtdx. (3.21)
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Similarly to (3.20), we treat the terms in the right-hand side of (3.19) as follows∫ 1

0

βα (x)ψx

∫ t

0

g (t− s) (ψx (t)− ψx (s)) dsdx

≤ ε′1β
2

∫ 1

0

ψ2
xdx+

c

ε′1
g ◦ ψx. (3.22)

Also, ∫ t

0

Kα (x) (ϕx + ψ)

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx

≤ ε′1K
2

∫ 1

0

(ϕx + ψ)2 dx+
c

ε′1
g ◦ ψx. (3.23)

By the same method used in [46], we have these estimates

−
∫ 1

0

α (x) a (x)

(∫ t

0

g (s)ψx (s) ds

)(∫ t

0

g (t− s) (ψx (t)− ψx (s)) ds

)
dx

≤ ε′1

∫ 1

0

ψ2
xdx+ c

(
ε′1 +

1

ε′1

)
g ◦ ψx, (3.24)

and

µ3(t)

∫ 1

0

b (x) f (ψt)

(∫ t

0

g (t− s) (ψ (t)− ψ (s)) ds

)
dx

≤ ε1c

∫ 1

0

b(x)f 2(ψt)dx+ c

(
ε1 +

1

ε1

)
g ◦ ψx. (3.25)

Finally, ∫ 1

0

α′ (x)

(
βψx − a (x)

∫ t

0

g (s)ψx (s) ds

)(∫ t

0

g (t− s) (ψ (t)− ψ (s)) ds

)
dx

≤ ε′1β
2

∫ 1

0

ψ2
xdx+ c

(
ε′1 +

1

ε′1

)
g ◦ ψx. (3.26)

As in (3.20), we find easily that

γρ4

κ

∫ 1

0

α (x) q

∫ t

0

g′ (t− s) (ψ (t)− ψ (s)) dsdx

≤ ε1

∫ 1

0

q2dx− c

ε1

g′ ◦ ψx. (3.27)

Also, we estimate the first term in the right-hand side of (3.21) as follows

−γδ
κ

∫ 1

0

α (x) q

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx

≤
(
γδ

κ

)2

ε1

∫ 1

0

q2dx+
c

ε1

g ◦ ψx, (3.28)
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and

γρ4

κ

(∫ t

0

g (s) ds

)∫ 1

0

α (x) qψtdx

≤
(∫ t

0

g (s) ds

)
1

ε1

∫ 1

0

q2dx+

(∫ t

0

g (s) ds

)
cε1

∫ 1

0

ψ2
t dx. (3.29)

By combining the estimates (3.18)−(3.29), we complete the proof.

As in [48], we introduce the multiplier w which is the solution of

−wxx = ψx, w (0) = w (1) = 0. (3.30)

Lemma 3.6 The solution of (3.30) satisfies∫ 1

0

w2
xdx ≤

∫ 1

0

ψ2dx, (3.31)

∫ 1

0

w2
t dx ≤

∫ 1

0

ψ2
t dx. (3.32)

Lemma 3.7 Let (ϕ, ψ, θ, q, z) be the solution of (3.7)-(3.8). Then the functional

F2 (t) := ρ2

∫ 1

0

ψtψdx+ ρ1

∫ 1

0

ϕtwdx−
γρ4

κ

∫ 1

0

ψqdx. (3.33)

satisfies

F ′2 (t) ≤ −
(
β +

cε2µ1

2
− δγε2

2κ

)∫ 1

0

ψ2
xdx+

(
ρ1

2ε2

+
µ1

2ε2

)∫ 1

0

ϕ2
tdx

+
(
ρ2 +

γρ4ε2

2κ
+
ρ1ε2

2

)∫ 1

0

ψ2
t dx+

c

ε2

g ◦ ψx

+

(
γρ4

2κε2

+
δγ

2κε2

)∫ 1

0

q2dx+
c

2ε2

∫ 1

0

b (x) f 2 (ψt) dx

+
1

2ε2

∫ 1

0

∫ τ2

τ1

|µ2(s)| z2(x, 1, s, t)dsdx, (3.34)

for any ε2 > 0.

Proof. By taking the derivative of F2, we get

F ′2 (t) =

∫ 1

0

(
ρ2ψttψ + ρ2ψ

2
t

)
dx︸ ︷︷ ︸

:=J1

+

∫ 1

0

(ρ1ϕttw + ρ1ϕtwt) dx︸ ︷︷ ︸
:=J2

−γρ4

κ

∫ 1

0

(ψtq + ψqt) dx︸ ︷︷ ︸
:=J3

. (3.35)
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Next, using (3.7)1 and (3.7)4, we obtain

J2 + J3 = −K
∫ 1

0

ϕψxdx+K

∫ 1

0

w2
xdx+ ρ1

∫ 1

0

ϕtwtdx

−γρ4

κ

∫ 1

0

ψtqdx+
δγ

κ

∫ 1

0

ψqdx+ γ

∫ 1

0

ψθxdx

−µ1

∫ 1

0

ϕtwdx−
∫ 1

0

w

∫ τ2

τ1

µ2(s)z(x, 1, s, t)dsdx. (3.36)

Using (3.7)2, we get also

J1 = −β
∫ 1

0

ψ2
xdx+ ρ2

∫ 1

0

ψ2
t dx+

∫ 1

0

ψx

∫ t

0

g (t− s) a (x)ψx (s) dsdx

−K
∫ 1

0

ψ2dx−K
∫ 1

0

ϕxψdx− µ3(t)

∫ 1

0

b (x)ψf (ψt) dx−
∫ 1

0

γψθxdx.

(3.37)

From (3.36), (3.37) and by using Lemma 3.6, we deduce

F ′2 (t) ≤ −µ1

∫ 1

0

ϕtwdx+ ρ1

∫ 1

0

ϕtwtdx−
γρ4

κ

∫ 1

0

ψtqdx+
δγ

κ

∫ 1

0

ψqdx

−β
∫ 1

0

ψ2
xdx+ ρ2

∫ 1

0

ψ2
t dx− µ3(t)

∫ 1

0

b (x)ψf (ψt) dx

+

∫ 1

0

a (x)ψx

∫ t

0

g (t− s)ψx (s) dsdx−
∫ 1

0

w

∫ τ2

τ1

µ2(s)z(x, 1, s, t)dsdx.

By exploiting the inequality

|ab| ≤ ν

2
a2 +

1

2ν
b2, a, b ∈ R, ν > 0,

we easily find, for any ε2 > 0,

F ′2 (t) ≤ −β
∫ 1

0

ψ2
xdx+

µ

2

∫ 1

0

(
1

ε2

ϕ2
t + ε2w

2

)
+
ρ1

2

∫ 1

0

(
1

ε2

ϕ2
t + ε2w

2
t

)
dx

+
γρ4

2κ

∫ 1

0

(
ε2ψ

2
t +

1

ε2

q2

)
dx+

δγ

2κ

∫ 1

0

(
ε2ψ

2 +
1

ε2

q2

)
dx

−
∫ 1

0

w

∫ τ2

τ1

µ2(s)z(x, 1, s, t)dsdx+ ρ2

∫ 1

0

ψ2
t dx− µ3(t)

∫ 1

0

b (x)ψf (ψt) dx

+

∫ 1

0

a (x)ψx

∫ t

0

g (t− s)ψx (s) dsdx. (3.38)

Now, we estimate the last three terms in the right-hand side of (3.38). by Young’s,

Cauchy-Schwartz and Poincaré inequalities, we arrive at∣∣∣∣µ3(t)

∫ 1

0

b (x)ψf (ψt) dx

∣∣∣∣ ≤ ε2c

∫ 1

0

ψ2
xdx+

c

2ε2

∫ 1

0

b (x) f 2 (ψt) dx. (3.39)
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∣∣∣∣∫ 1

0

a (x)ψx

∫ t

0

g (t− s)ψx (s) dsdx

∣∣∣∣ ≤ ε2c

∫ 1

0

ψ2
xdx+

c

ε2

g ◦ ψx, (3.40)

−
∫ 1

0

w

∫ τ2

τ1

µ2(s)z(x, 1, s, t)dsdx

≤ cε2µ1

2

∫ 1

0

ψ2
xdx+

1

2ε2

∫ 1

0

∫ τ2

τ1

|µ2(s)| z2(x, 1, s, t)dsdx. (3.41)

Then, plugging (3.39) and (3.41) into (3.38) and using (3.32) completes the proof.

Lemma 3.8 Let (ϕ, ψ, θ, q, z) be the solution of (3.7)-(3.8). Then the functional

F3 (t) := ρ1

∫ 1

0

ϕt

(
−ϕ+

∫ x

0

ψ(y)dy

)
dx. (3.42)

satisfies

F ′3 (t) ≤ −K
2

∫ 1

0

(ϕx + ψ)2dx+ ε3

∫ 1

0

ψ2
t dx+ c(1 +

1

ε3

)

∫ 1

0

ϕ2
tdx

+
µ1

K

∫ 1

0

∫ τ2

τ1

|µ2(s)| z2(x, 1, s, t)dsdx, (3.43)

for any ε3 > 0.

Proof. Taking the derivative of (3.42), exploiting (3.7)1 and integrating by parts, we

obtain

F ′3 (t) = ρ1

∫ 1

0

ϕt

(∫ x

0

ψt(y)dy

)
dx−

∫ 1

0

(
ϕ+

∫ x

0

ψ(y)dy

)∫ τ2

τ1

µ2(s)z(x, 1, s, t)dsdx

−K
∫ 1

0

(ϕx + ψ)2dx+ ρ1

∫ 1

0

ϕ2
tdx− µ1

∫ 1

0

ϕt

(
ϕ+

∫ x

0

ψ(y)dy

)
dx. (3.44)

Using Young’s, Poincaré and Cauchy-Schwarz inequalities and the fact that

−µ1

∫ 1

0

ϕt

(
ϕ+

∫ x

0

ψ(y)dy

)
dx ≤ K

4

∫ 1

0

(ϕx + ψ)2dx+ c

∫ 1

0

ϕ2
tdx,

then lead to Estimate (3.43).

Lemma 3.9 Let (ϕ, ψ, θ, q, z) be the solution of (3.7)-(3.8). Then the functional

F4(t) := −ρ3ρ4

∫ 1

0

q

(∫ x

0

θ(y)dy

)
dx, (3.45)

satisfies

F ′4 (t) ≤
(
−ρ3κ+

ε4ρ3δc

2

)∫ 1

0

θ2dx+
ε4ρ4γ

2

∫ 1

0

ψ2
t dx

+

(
ρ4κ+

ρ3δ

2ε4

+
ρ4γ

2ε4

)∫ 1

0

q2dx, (3.46)

for any ε4 > 0.
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Proof. Taking the derivative of (3.45) and using (3.7)3, (3.7)4, integration by parts and

Young’s inequality, we obtain (3.46).

Lemma 3.10 Let (ϕ, ψ, θ, q, z) be the solution of (3.7)-(3.8). Then, for η1 > 0, the

functional

F5 (t) =

∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ |µ2(s)| z2(x, ρ, s, t)dsdρdx (3.47)

satisfies

F ′5 (t) ≤ −η1

∫ 1

0

∫ 1

0

∫ τ2

τ1

s |µ2(s)| z2(x, ρ, s, t)dsdρdx

−η1

∫ 1

0

∫ τ2

τ1

|µ2(s)| z2(x, 1, s, t)dsdx+ µ1

∫ 1

0

ϕ2
tdx. (3.48)

Proof. Differentiating (3.47) and using (3.7)5, the fact that z(x, 0, s, t) = ϕt and e−s ≤
e−sρ ≤ 1 we get for all ρ ∈ [0, 1]

F ′5(t) ≤
∫ 1

0

∫ τ2

τ1

e−s |µ2(s)| z2(x, 1, s, t)dsdx+

(∫ τ2

τ1

|µ2(s)| ds
)∫ 1

0

ϕ2
tdx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

se−s |µ2(s)| z2(x, ρ, s, t)dsdρdx.

Since s 7→ −e−s is an increasing function, we have −e−s ≤ −e−τ2 for all s ∈ [τ1, τ2].

Finally, setting η1 = −e−τ2 and recalling (3.9), we obtain (3.48).

3.4 Proof of the stability result

In this section we prove our stability result. First, we define a Lyapunov functional L by

L(t) := NE (t) +N1F1(t) + F2(t) + F3(t) + F4(t) +N2F5(t) (3.49)

where N1, N2 and N are positive real numbers to be chosen appropriately later.

Lemma 3.11 For N sufficiently large we have

L(t) ∼ E(t). (3.50)

Proof. Let L(t) := N1F1(t) + F2(t) + F3(t) + F4(t) +N2F5(t),

we get

|L(t)| ≤ ρ2N1

∫ 1

0

∣∣∣∣α (x)ψt

∫ t

0

g (t− s) (ψ (t)− ψ (s)) ds

∣∣∣∣ dx

3.4. Proof of the stability result
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+N1
γρ4

κ

∫ 1

0

∣∣∣∣α (x) q

∫ t

0

g (t− s) (ψ (t)− ψ (s)) ds

∣∣∣∣ dx
+ρ2

∫ 1

0

|ψtψ| dx+ ρ1

∫ 1

0

|ϕtw| dx+
γρ4

κ

∫ 1

0

|ψq| dx

+ρ1

∫ 1

0

∣∣∣∣ϕt(ϕ+

∫ x

0

ψ(y)dy

)∣∣∣∣ dx+ ρ3ρ4

∫ 1

0

∣∣∣∣q(∫ x

0

θ(y)dy

)∣∣∣∣ dx
+N2

∫ 1

0

∫ 1

0

∫ τ2

τ1

s
∣∣e−sρµ2(s)

∣∣ z2(x, ρ, s, t)dsdρdx (3.51)

By the same techniques used in the proof of Lemma (3.5), we easily estimate the first

and the second term in the right-hand side of (3.51). Exploiting Young’s, Poincaré and

Cauchy-Schwarz inequalities, (3.15) and the fact that e−sρ ≤ 1 for all ρ ∈ [0, 1], we obtain

|L(t)| ≤ c

∫ 1

0

[
ϕ2
t + ψ2

t + ψ2
x + (ϕx + ψ)2 + θ2 + q2

]
dx

+cg ◦ ψx + c

∫ 1

0

∫ 1

0

∫ τ2

τ1

s |µ2(s)| z2(x, ρ, s, t)dsdρdx

≤ cE (t) .

Thus, |L(t)−NE (t)| ≤ cE (t), which yields

(N − c)E (t) ≤ L(t) ≤ (N + c)E (t) .

Choosing N large enough, then there exist two positive constants β1 and β2 such that

β1E (t) ≤ L(t) ≤ β2E (t) .

This completes the proof.

Theorem 3.1 Let (ϕ0, ϕ1, ψ0, ψ1, θ0, q0, f0)T ∈ H be given. Assume that assumption 2.1

- assumption 2.6 are satisfied, then there exist c1,c2 > 0 for which the (weak) solution of

problem (3.7)-(3.8) satisfies

E (t) ≤ c1K
−1

(
c2

∫ t

0

(µ3η) (s) ds

)
, ∀t ≥ 0, (3.52)

where η = 1 if a = 0.

1. The last result is satisfied regardless of the speeds of wave propagation.

2. Since limt→0+ K(t) = +∞, then for
∫ +∞

0
(µ3η) (s) ds = +∞ we have the strong

stability of (3.7)-(3.8), that is

lim
t→+∞

E(t) = 0.

3.4. Proof of the stability result
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Proof. By combining (3.16), (3.17), (3.34), (3.43) and (3.46), using (3.11) and (3.12), we

arrive at

L′(t) ≤ −N1

{
ρ2g0 − ε1

(
ρ2

2 + g1

)} ∫ 1

0

(α (x) + b (x))ψ2
t dx

+

{
ρ2 +

γρ4ε2

2κ
+
ρ4γε4 + ρ1ε2

2
+ ε3

}∫ 1

0

ψ2
t dx−Nµ3(t)

∫ 1

0

b (x)ψtf (ψt) dx

+

{
µ1 + ρ1

2ε2

+ c

(
1 +

1

ε3

)
+N2µ1 −Nη0

}∫ 1

0

ϕ2
tdx

+

{
N1cε1 +

c

2ε2

}∫ 1

0

b(x)f 2(ψt)dx+N1

{
ρ2g0 − ε1

(
ρ2

2 + g1

)} ∫ 1

0

b (x)ψ2
t dx

+

{
N1ε

′
1

(
2β2 + 1

)
−
(
β +

cε2µ1

2
+
cδγε2

2κ

)}∫ 1

0

ψ2
xdx

+

{
cN1

(
ε1 +

1

ε1

)
+ cN1

(
ε′1 +

1

ε′1

)
+

c

ε2

}
g ◦ ψx +

(
N

2
− cN1

ε1

)
g′ ◦ ψx

+

{
N1

(
cε1 +

g1

ε1

)
+
δγ + γρ4

2κε2

+
ρ4γ + ρ3δ

2ε4

+ ρ4κ− δN
}∫ 1

0

q2dx

+

{
1

2ε2

+
µ1

K
−N2η1

}∫ 1

0

∫ τ2

τ1

|µ2(s)| z2(x, 1, s, t)dsdx

+

{
N1ε

′
1K

2 − K

2

}∫ 1

0

(ϕx + ψ)2dx+

{
−ρ3κ+

ε4ρ3δc

2

}∫ 1

0

θ2dx

−N2η1

∫ 1

0

∫ 1

0

∫ τ2

τ1

s |µ2(s)| z2(x, ρ, s, t)dsdρdx. (3.53)

for all t ≥ t0.

Now, we have to choose our constants very carefully. First, let us take ε2 = 1, ε1 and ε4

small enough such that

ε1 <
ρ2g0

ρ2
2 + g1

, ε4 <
2κ

δc
.

Next, taking ε3 = (τ0γε4 + ρ1) /2, using Lemma 3.1, and choosing N1, N2 large enough

such that

N1

(
ρ2g0 − ε1

(
ρ2

2 + g1

))
>
(
ρ1 + ρ2 + ρ4γε4 +

γρ4

2k

) 2

d
, N2 >

1

2η1

+
µ1

Kη1

,

then, we can select ε′1 so small such that

ε′1 < min

{
1

2N1K
,

(
β +

cµ1

2
+
cγδ

2k

)
/ N1

(
2β2 + 1

)}
.

Finally, we choose N large enough (even larger so that (3.50) remains valid) and

µ1 + ρ1

2
+ c

(
1 +

1

ε3

)
+N2µ1 −Nη0 < 0,

cN1

ε1

− N

2
< 0,

3.4. Proof of the stability result
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N1

(
cε1 +

g1

ε1

)
+
δγ + γρ4

2κ
+
ρ4γ + ρ3δ

2ε4

+ ρ4κ− δN < 0.

Therefore, (3.53) becomes

L′(t) ≤ −c
∫ 1

0

[
ϕ2
t + (α (x) + b (x))ψ2

t + ψ2
x + (ϕx + ψ)2 + θ2 + q2

]
dx

−c
∫ 1

0

∫ 1

0

∫ τ2

τ1

s |µ2(s)| z2(x, ρ, s, t)dsdρdx+ cg ◦ ψx

+c

∫ 1

0

b (x)
(
ψ2
t + f 2 (ψt)

)
dx.

By using lemma (3.1) and estimate (3.15) then lead to

L′(t) ≤ −cE(t) + cg ◦ ψx + c

∫ 1

0

b (x)
(
ψ2
t + f 2 (ψt)

)
dx, ∀t ≥ t0. (3.54)

Let us define the following sets

Σψ = {x ∈ (0, 1) : |ψt (x, t)| > l} and Θψ = (0, 1) \Σψ.

We work now for estimate the last term in the right-hand side of (3.54) First, note that∫ 1

0

b (x)
(
ψ2
t + f 2 (ψt)

)
dx =

∫
Σψ

b (x)
(
ψ2
t + f 2 (ψt)

)
dx

+

∫
Θψ

b (x)
(
ψ2
t + f 2 (ψt)

)
dx

Using assumption 2.3 and (3.16), we easily show that

µ3(t)

∫
Σψ

b (x)
(
ψ2
t + f 2 (ψt)

)
dx ≤ (k−1

1 + k2)

∫
Σψ

µ3(t)b (x)ψtf (ψt) dx

≤ (k−1
1 + k2)

∫ 1

0

µ3(t)b (x)ψtf (ψt) dx

≤ −cE ′ (t) . (3.55)

If h′′ = 0 on [0, l]: This implies that there exist k′1, k
′
2 > 0 such that k′1s

2 ≤ f (s) s ≤ k′2s
2

for all s ∈ R+, and then (3.55) is also satisfied for |ψt (x, t)| ≤ l, then on all (0, 1). From

(3.54), (3.55) and the fact that µ′3 ≤ 0, we arrive at

(µ3(t)L(t) + cE (t))′ ≤ −cµ3(t)J (E (t)) + cg ◦ ψx, ∀t ≥ t0, (3.56)

where J is defined in (3.13).

If h′(0) = 0 and h′′ > 0 on (0, l]: Since h is convex and increasing, h−1 is concave

and increasing, by using assumption 2.3, the reversed Jensen’s inequality for concave

3.4. Proof of the stability result
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function (see [87], p. 61), and (3.16), we obtain,

µ3(t)

∫
Θψ

b (x)
(
ψ2
t + f 2 (ψt)

)
dx ≤ µ3(t)

∫
Θψ

b (x)h−1 (ψtf (ψt)) dx

≤ µ3(t)

∫
Θψ

h−1 (b (x)ψtf (ψt)) dx

≤ µ3(t) |Θψ|h−1

(∫
Θψ

1

|Θψ|
b (x)ψtf (ψt) dx

)

≤ cµ3(t)h−1

(∫
Θψ

b (x)ψtf (ψt) dx

)

≤ cµ3(t)h−1

(∫ 1

0

b (x)ψtf (ψt)

)
dx

≤ cµ3(t)h−1 (−cE ′ (t)) . (3.57)

Therefore, from (3.54), (3.55) and (3.57), we find that

µ3(t)L′(t) ≤ −cµ3(t)E (t) + cµ3(t)h−1(−cE ′ (t))− cE ′ (t) + cg ◦ ψx, ∀t ≥ t0.

By using Young’s inequality (2.8) and the fact that

h∗ (p) ≤ p[h′]−1(p), E ′ ≤ 0, h′′ > 0 and µ′3 ≤ 0,

we obtain for ε0 > 0 small enough and c0 > 0 large enough,

[h′ (ε0E (t)) [µ3(t)L(t) + cE (t)] + c0E (t)]
′

= ε0E
′ (t)h′′ (ε0E (t)) [µ3(t)L(t) + cE (t)]

+h′ (ε0E (t)) [µ3(t)L′(t) + µ′3(t)L(t) + cE ′ (t)] + c0E
′ (t)

≤ −cµ3(t)h′ (ε0E (t))E (t) + cµ3(t)h′ (ε0E (t))h−1(−cE ′ (t))
+c0E

′ (t) + ch′ (ε0E (t)) g ◦ ψx
≤ −cµ3(t)h′ (ε0E (t))E (t) + cµ3(t)h∗(h′ (ε0E (t)))− cE ′ (t)

+c0E
′ (t) + ch′ (ε0E (0)) g ◦ ψx

≤ −cµ3(t)h′ (ε0E (t))E (t) + cε0µ3(t)h′ (ε0E (t))E (t) + cg ◦ ψx
≤ −cµ3(t)h′ (ε0E (t))E (t) + cg ◦ ψx = −cµ3(t)J (E (t)) + cg ◦ ψx. (3.58)

Now, let us define the following functional:

F (t) =

{
µ3(t)L(t) + cE (t) if h′′ = 0 on [0, l] ,

h′ (ε0E (t)) [µ3(t)L(t) + cE (t)] + c0E (t) if h′(0) = 0 and h′′ > 0 on (0, l] .

Using (3.50), we have

F ∼ E,

3.4. Proof of the stability result
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and exploiting (3.56) and (3.58), we easily deduce that

F ′ (t) ≤ −cµ3(t)J (E (t)) + cg ◦ ψx, ∀t ≥ t0.

By using (3.16) and assumption 2.5, we obtain

(η (t)F (t))′ = η′ (t)F (t) + η (t)F ′ (t)
≤ −cµ3(t)η (t) J (E (t)) + cη (t) g ◦ ψx
≤ −cµ3(t)η (t) J (E (t)) + c (ηg) ◦ ψx
≤ −cµ3(t)η (t) J (E (t))− cg′ ◦ ψx
≤ −cµ3(t)η (t) J (E (t))− cE ′ (t) .

Next, let

R (t) = ε (η (t)F (t) + cE (t)) ,

where 0 < ε < ε̄ and ε̄ is a positive constant satisfying

η (t)F (t) + cE (t) ≤ 1

ε̄
E (t) , ∀t ≥ 0.

We also have

R ∼ E, (3.59)

and for t ≥ t0

R′ (t) ≤ −cεµ3(t)η (t) J (R (t)) . (3.60)

Noting that K ′ = −1/J (see (3.14)), we get from (3.60)

R′ (t)K ′ (R (t)) ≥ cεµ3(t)η (t) , ∀t ≥ t0,

A simple integration over (t0, t) then yields

K (R (t)) ≥ K (R (t0)) + cε

∫ t

0

µ3(s)η (s) ds− cε
∫ t0

0

µ3(s)η (s) ds,

On the other hand, since lim
t→0+

K (t) = +∞ and

0 ≤ R (t0) ≤ ε

ε̄
E (t0) ≤ ε

ε̄
E (0) ,

we obtain for ε small enough

K (R (t0))− cε
∫ t0

0

µ3(s)η (s) ds > 0.

Then, thanks to the fact that K−1 is decreasing , we infer

R (t) ≤ K−1

(
K (R (t0)) + cε

∫ t

0

µ3(s)η (s) ds− cε
∫ t0

0

µ3(s)η (s) ds

)
≤ K−1

(
cε

∫ t

0

(µ3η) (s) ds

)
.

From this end inequality and (3.59) we get easily (3.52). Then the proof is completed.

3.4. Proof of the stability result



CHAPTER 4

GLOBAL EXISTENCE AND GENERAL DECAY OF A WEAKLY NON-LINEAR

DAMPED TIMOSHENKO SYSTEM OF THERMOELASTICITY OF TYPE III

WITH INFINITE MEMORY

4.1 Introduction

Consider the following weakly nonlinear damped Timoshenko-type system for ther-

moelasticity of type III with infinite memory:
ρ1ϕtt − k (ϕx + ψ)x + βθtx + α (t) f (ϕt) = 0

ρ2ψtt − bψxx + k (ϕx + ψ) +
∫∞

0
g (s)ψxx (t− s) ds− βθt = 0

ρ3θtt − δθxx − kθxxt + γϕtx + γψt + α (t) f (θt) = 0,

(4.1)

where t ∈ (0,+∞) denotes the time variable and x ∈ (0, 1) is the space variable. Here ϕ,

ψ and θ are respectively the transverse displacement of the beam, the rotation angle and

the difference temperature. α, f, and g are specific functions satisfying some conditions to

be determined later. α (t) f (ϕt) and α (t) f (θt) are the weak nonlinear dissipative terms,

the infinite integral depending on g represents the infinite memory term. ϕ0, ϕ1, ψ0, ψ1, θ0,

θ1 are initial data. The coefficients, ρ1, ρ2, ρ3, γ, δ, β, b and k are positive constants.

With the following initial and boundary conditions:

ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) , θ (x, 0) = θ0 (x) , in (0, 1) ,

ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) , θt (x, 0) = θ1 (x) in (0, 1) ,

ϕ (0, t) = ϕ (1, t) = ψ (0, t) = ψ (1, t) = θ (0, t) = θ (1, t) = 0 in (0,∞) .

(4.2)

There is a large number of publications concerning the stabilization of Timoshenko sys-

tems with dissipative mechanisms of several types, such as viscoelastic or memory type,

feedback and control forces (e.g. [26, 35, 40, 48, 57, 58, 71]). In the context of asymptotic

33
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stabilization with nonlinear feedback damping, first results are given in [1] where the au-

thor studies the asymptotic behavior of the system governing the non-linear vibrations of

a Timoshenko beam,{
utt − αβ (ux − v)x − γ ‖ux‖

2 uxx + g (ut) = 0,
1
α
vtt − vxx − αβ (ux − v) + g (vt) = 0,

(4.3)

where g : R→ R is a C1-class, non-increasing function with g(0) = 0 and satisfying

c1 |x|r ≤ g (x) ≤ c2 |x|1/r for |x| ≤ 1,

c3 |x|k ≤ g (x) ≤ c4 |x|s for |x| > 1.

Alabau-Boussouira [4] considered the asymptotic behavior for the following Timo-

shenko system with a single nonlinear damping:{
ρ1ϕtt − k (ϕx + ψ)x = 0,

ρ2ψtt − bvxx + k (ϕx + ψ) + α (ψt) = 0.
(4.4)

He established a general semi-explicit formula for the decay rate of the energy at

infinity in the case of the same speed of propagation in the two equations of the system(
i.e. k

ρ1
= b

ρ2

)
. Park and Kang [80] concerned with the decay property of the solutions

for Timoshenko beam with a weak non-linear dissipation{
utt − (ux + v)x + σ (t) g (ut) = 0,

vtt − vxx + (ux + v) + σ (t) g (vt) = 0.
(4.5)

Without assuming equal speeds of propagation of waves, Cavalcanti et al. [25] con-

sidered the Timoshenko model for vibrating beams under effect of two nonlinear and

localized frictional damping mechanisms{
ρ1ϕtt − k (ϕx + ψ)x + α1 (x) g1 (ϕt) = 0,

ρ2ψtt − bψxx + k (ϕx + ψ) + α2 (x) g2 (ψt) = 0.
(4.6)

They proved that the damping placed on an arbitrarily small support, unquantitized at

the origin, leads to uniform decay rates (asymptotic in time) for the energy function. Feng

and Yang [37] studied the nonlinear Timoshenko system with a time delay term in the

internal feedback{
ρ1ϕtt − k (ϕx + ψ)x = h (x) ,

ρ2ψtt − bψxx + k (ϕx + ψ) + µ1ψt + µ2ψt(x, t− τ) + f (ψ) = g (x) .
(4.7)

Under some suitable assumptions on the weights of feedback, the authors established the

existence of a global attractor with finite fractal dimension for the case of equal speed

wave propagation, as well as the existence of exponential attractors.

4.1. Introduction
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For Timoshenko systems in classical thermoelasticity of type III, Djebabla and Tatar

[33] considered the system

ρ1ϕtt − k (ϕx + ψ)x = 0,

ρ2ψtt − bψxx + k (ϕx + ψ) + γθx = 0,

ρ3θtt − lθxx + γψttx + β
∫ t

0
g (t− s) θxx (x, s) ds = 0,

ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) , ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) , in (0, 1) ,

ϕ (0, t) = ϕ (1, t) = ψ (0, t) = ψ (1, t) = θx (0, t) = θx (1, t) in (0,∞) .

(4.8)

and proved, under suitable conditions on its coefficients, and for g decaying exponen-

tially, that the energy function also decays exponentially. Messaoudi and Fareh [69, 70]

discussed a similar system of porous-thermoelasticity with viscoelastic damping term in

the second equation of the form
∫ t

0
g (s)ψxx (x, t− s) ds. They established some general

decay results for the solutions in the case of equal wave speeds
(

k
ρ1

= b
ρ2

)
as well as

for different speeds of wave propagation
(

k
ρ1
6= b

ρ2

)
. Kafini [56] improved the result of

Djebabla and Tatar [33] with more general relaxation functions. He proved, under the

same conditions on the coefficients, a general decay result, from which the usual expo-

nential and polynomial decays are only special cases. We refer the interested readers to

[3, 12, 14, 15, 17] and references therein for details discussion on problems with weak or

strong non-linear dissipation.

Motivated by in works of Cavalcanti et al., Kafini and Messaoudi and Fareh mentioned

above, we investigate (4.1) under suitable conditions and establish the well-posedness of

the problem using semigroups theory, as well as the energy decay of solution which depends

on α, f and g by using the multiplier method with some properties of convex functions.

Our purpose in the present manuscript is to obtain general decay rate estimates of the

energy for the thermoelastic Timoshenko system with infinite memory subjected to a

weakly nonlinear damping placed in first and third equations, but without any restriction

or relation on the coefficients. We prove our result then regardless of equal speeds of

propagation of waves and no growth assumption on f at the origin.

4.2 Preliminaries and well-posedness result

In this section, we present some materials needed in the proof of our results. We also

state, with proof, an existence and uniqueness result for problem (4.1). The proof is

established by using semi-group method.

First, to facilitate our calculations we introduce the following notation

(g ◦ ν) (t) :=
∫ 1

0

∫∞
0
g (s) (ν (x, t)− ν (x, t− s))2dsdx, ∀ν ∈ L2(0, 1).

4.2. Preliminaries and well-posedness result



Chapter 4. Global existence and general decay of a weakly non-linear damped
Timoshenko system of thermoelasticity of type III with infinite memory 36

It is easy to obtain the following inequalities, we omit their proofs.

Lemma 4.1 [48] The following inequalities hold,∫ 1

0

(∫ ∞
0

g(s)ψx(t− s)ds
)2

dx ≤ 2g0(g ◦ ψx)(t) + 2g0

∫ 1

0

ψ2
xdx,∫ 1

0

(∫ ∞
0

g(s)(ψx(t)− ψx(t− s))ds
)2

dx ≤ g0(g ◦ ψx)(t),∫ 1

0

(∫ ∞
0

g(s)(ψ(t)− ψ(t− s))ds
)2

dx ≤ d1(g ◦ ψx)(t),∫ 1

0

(∫ ∞
0

g′(s)(ψ(t)− ψ(t− s))ds
)2

dx ≤ −d2(g′ ◦ ψx)(t),∫ 1

0

(∫ ∞
0

g′(s)(ψx(t)− ψx(t− s))ds
)2

dx ≤ −g(0)(g′ ◦ ψx)(t),

where d1 and d2 are positive constants.

The energy functional associated to (4.1)-(4.2), is

E(t) : = E (t, ϕ, ψ, θ)

=
γ

2

∫ 1

0

{
ρ1ϕ

2
t + ρ2ψ

2
t + k(ϕx + ψ)2 +

(
b−

∫ ∞
0

g(s)ds

)
ψ2
x

}
dx

+
γ

2
(g ◦ ψx)(t) +

β

2

∫ 1

0

{
ρ3θ

2
t + δθ2

x

}
dx, (4.9)

we denote E(t) = E (t, ϕ, ψ, θ) and E(0) = E (0, ϕ0, ψ0, θ0) for simplicity of notations.

Then the energy E is decreasing function and satisfies, for all t ≥ 0,

E ′(t) = −kβ
∫ 1

0

θ2
txdx− α(t)

{
γ

∫ 1

0

ϕtf (ϕt) dx+ β

∫ 1

0

θtf (θt) dx

}
+
γ

2
(g′ ◦ ψx) (t) ≤ 0.

To obtain precise decay rates of E(t) as t → +∞, we consider the following assump-

tions:

A1. f : R→ R is a Lipschitz continuous and non-decreasing function such that there exist

positive constants k1 and l and a convex, continuous and increasing function h : R+ → R+

of class C1 (R+) ∩ C2 (]0,+∞[) satisfying: h (0) = 0 and

h′′ = 0 on [0, l], (4.10)

or

h′ (0) = 0 and h′′ > 0 on (0, l], (4.11)
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such that
h (f 2 (s)) ≤ f (s) s for |s| ≤ l,

|f (s)| ≤ k1 |s| for |s| ≥ l.

A2. g : R+ → R+ is a differentiable function such that

g (0) > 0,

∫ ∞
0

g (s) ds = g0, ` = b− g0 > 0.

A3. There exists a non-increasing differentiable function η : R+ → R+ satisfying

g′ (s) ≤ −η (s) g (s) , for s ≥ 0.

A4. α : R+ →]0,+∞[ is a non-increasing C1-function satisfying∫ ∞
0

α (s) ds = +∞.

Next, we take the following notation

ηt(x, s) = ψ(x, t)− ψ(x, t− s), t ∈ R+, (x, s) ∈ (0, 1)× R+, (4.12)

let

η0(x, s) := η0(x, s) = ψ0(x, 0)− ψ0(x, s), (x, s) ∈ (0, 1)× R+.

ηt is the relative history of ψ, we have

ηtt + ηts − ψt = 0, (x, t, s) ∈ (0, 1)× R+ × R+,

ηt(0, s) = ηt(1, s) = 0, (t, s) ∈ R+ × R+,

ηt(x, 0) = 0, (x, t) ∈ (0, 1)× R+. (4.13)

Then the second equation of (4.1) becomes

ρ2ψtt − bψxx + k(ϕx + ψ) + g0ψxx(x, t)−
∫ ∞

0

g(s)ηtxx(x, s)ds− βθt = 0.

For state an existence result, we set u = ϕt, v = ψt and ω = θt and introduce the vector

function Φ = (ϕ, u, ψ, v, θ, ω, ηt)T . Using the standard Lebesgue space L2(0, 1) and the

Sobolev space H1
0 (0, 1) with their usual scalar products and norms for define the space H

as follows

H :=
[
H1

0 (0, 1)× L2(0, 1)
]3 × Lg,

where

Lg =

{
w : R+ → H1

0 (0, 1),

∫ 1

0

∫ ∞
0

g(s)w2
x ds dx <∞

}
.
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Then problem (4.1) becomes the following problem for an abstract first-order evolu-

tionary equation,

d

dt
Φ +AΦ = B(Φ), (4.14)

Φ(0) = Φ0 = (ϕ0, ϕ1, ψ0, ψ1, θ0, θ1, η0)T ,

where Φ = (ϕ, u, ψ, v, θ, ω, ηt) and the linear operator A : D(A) ⊂ H → H is defined by

AΦ =



−u
− k
ρ1

(ϕx + ψ)x + β
ρ1
ωx

−v
− b
ρ2
ψxx + k

ρ2
(ϕx + ψ) + g0

ρ2
ψxx − 1

ρ2

∫∞
0
g(s)ηtxx(x, t, s)ds−

β
ρ2
ω

−ω
− δ
ρ3
θxx − k

ρ3
ωxx + γ

ρ3
ux + γ

ρ3
v

ηts − v


, (4.15)

B(Φ) =



0

−α(t)
ρ1
f(ϕt)

0

0

0

−α(t)
ρ3
f(θt)

0


. (4.16)

For any Φ = (ϕ, u, ψ, v, θ, ω, ηt)T ∈ H, Φ̃ = (ϕ̃, ũ, ψ̃, ṽ, θ̃, ω̃, η̃t)T ∈ H, we equip H with

the inner product defined by

〈Φ, Φ̃〉H = γ

∫ 1

0

(ρ1uũ+ k(ϕx + ψ)(ϕ̃x + ψ̃) + ρ2vṽ − g0ψxψ̃x + bψxψ̃x)dx

+ β

∫ 1

0

(δθxθ̃x + ρ3ωω̃)dx+ γ < ηt, η̃t >Lg ,

where

〈w1, w2〉Lg =

∫ 1

0

∫ ∞
0

g(s)w1x(s)w2x(s) ds dx.

The domain of A is

D(A) =
{

Φ ∈ H : ϕ, ψ, θ ∈ H2(0, 1) ∩H1
0 (0, 1), u, v, ω ∈ H1

0 (0, 1), ηt ∈ Lg
}
,

which is dense in H.
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Proposition 4.1 Assume Φ0 ∈ H and A1 - A4 hold. Then, there exists a unique solution

Φ ∈ C(R+,H) of problem (4.1)-(4.2). Moreover, if Φ0 ∈ D(A) then

Φ ∈ C(R+, D(A)) ∩ C1(R+,H).

Proof. We use the semigroups approach. We prove that A is a maximal monotone

operator. First, we prove that A is monotone, for any Φ ∈ D(A), we have

(AΦ,Φ)H = βk

∫ 1

0

ω2
xdx+ γ

∫ 1

0

∫ ∞
0

g(s)ηtsxη
t
x(x, t, s)dsdx. (4.17)

Since g : R+ → R+ is non-increasing, then we get∫ ∞
0

g(s)ηtsxη
t
x(x, t, s)ds =

1

2

∫ ∞
0

g(s)
d

ds

(
ηtx
)2

(x, t, s)ds

= −1

2

∫ ∞
0

g′(s)
(
ηtx
)2

(x, t, s)ds.

The last term in the left-hand side of (4.17) gives

γ

∫ 1

0

∫ ∞
0

g(s)ηtsxη
t
x(x, t, s)dsdx = −γ

2
g′ ◦ ψx.

Consequently,

(AΦ,Φ)H = βk

∫ 1

0

ω2
xdx−

γ

2
g′ ◦ ψx ≥ 0.

Thus, A is monotone. Next, we prove that the operator I + A is surjective. Given

G = (g1, g2, g3, g4, g5, g6, g7)T ∈ H, we prove that there exists a unique Φ ∈ D(A) such

that

(I +A)Φ = G. (4.18)

That is,

ϕ− u = g1 ∈ H1
0 (0, 1),

ρ1u− k(ϕx + ψ)x + βωx = ρ1g2 ∈ L2(0, 1),

ψ − v = g3 ∈ H1
0 (0, 1),

ρ2v − bψxx + k(ϕx + ψ)− βω −
∫∞

0
g(s)ηtxx(x, t, s)ds

+ψxx
∫∞

0
g(s)ds = ρ2g4 ∈ L2(0, 1),

θ − ω = g5 ∈ H1
0 (0, 1),

ρ3ω − δθxx − kωxx + γux + γv = ρ3g6 ∈ L2(0, 1),

ηt + ηts − v = g7 ∈ Lg.

(4.19)

Using last line in the above equation, we obtain

ηt = e−s
∫ s

0

eτ (v + g7(τ))dτ. (4.20)
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Inserting u = ϕ− g1, v = ψ− g3, ω = θ− g5 and (4.20) in (4.19)2, (4.19)4 and (4.19)6, we

obtain

ρ1ϕ− k(ϕx + ψ)x + βθx = h1 ∈ L2(0, 1),

ρ2ψ − bψxx + k(ϕx + ψ)− βθ −
∫∞

0
g(s)e−s

∫ s
0
ψxxe

τdτds

+
∫∞

0
g(s)dsψxx = h2 ∈ L2(0, 1),

ρ3θ − δθxx − kθxx + γϕx + γψ = h3 ∈ L2(0, 1),

(4.21)

here

h1= g2ρ1 + g1ρ1 + βg5x,

h2= ρ2g4+ρ2g3−βg5 +

∫ ∞
0

g(s)e−s
∫ s

0

(g7 − g3)xxe
τdτds,

h3 = ρ3g5 − kg5xx + γg1x + γg3 + g6ρ3.

Considering the following variational formulation

K((ϕ, ψ, θ), (ϕ1, ψ1, θ1)) = F (ϕ1, ψ1, θ1), (4.22)

where K : [H1
0 (0, 1)×H1

0 (0, 1)×H1
0 (0, 1)]

2 → R is the bilinear form defined by

K((ϕ, ψ, θ), (ϕ1, ψ1, θ1))

= γρ1

∫ 1

0

ϕϕ1dx+ kγ

∫ 1

0

(ϕx + ψ)(ϕ1x + ψ1)dx+ γβ

∫ 1

0

θxϕ1dx

+γρ2

∫ 1

0

ψψ1dx+ bγ

∫ 1

0

ψxψ1xdx− γ
∫ ∞

0

g(s)ds

∫ 1

0

ψxψ1xdx

+ γ

∫ 1

0

ψ1x

∫ ∞
0

g(s)e−s
∫ s

0

ψxe
τdτdsdx− βγ

∫ 1

0

θψ1 dx

+ ρ3β

∫ 1

0

θθ1dx+ βδ

∫ 1

0

θxθ1xdx+ kβ

∫ 1

0

θxθ1xdx+ γβ

∫ 1

0

ϕxθ1dx

+ γβ

∫ 1

0

ψθ1dx,

and F : H1
0 (0, 1)×H1

0 (0, 1)×H1
0 (0, 1)→ R is the linear functional

F [(ϕ1, ψ1, θ1)] = γ

∫ 1

0

h1ϕ1dx+ γ

∫ 1

0

h2ψ1dx+ β

∫ 1

0

h3θ1dx.

Now, for V = [H1
0 (0, 1)]

3
equipped with the norm

‖ϕ, ψ, θ‖2
V = ‖ϕ‖2

2 + ‖θ‖2
2 + ‖ϕx + ψ‖2

2 + ‖ψx‖2
2 + ‖θx‖2

2,
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where ‖.‖2 is the usual norm, using integration by parts we have

K((ϕ, ψ, θ), (ϕ, ψ, θ))

= γρ1

∫ 1

0

ϕ2dx+ kγ

∫ 1

0

(ϕx + ψ)2dx+ γρ2

∫ 1

0

ψ2dx

+ (b−
∫ ∞

0

g(s)ds)γ

∫ 1

0

ψ2
xdx+ γ

∫ 1

0

ψ2
xdx

∫ ∞
0

g(s)

∫ s

0

eτdτe−sds

+ ρ3β

∫ 1

0

θ2dx+ βδ

∫ 1

0

θ2
xdx+ kβ

∫ 1

0

θ2
xdx,

≥ λ‖ϕ, ψ, θ‖2
V ,

for some λ > 0. Thus, K is coercive.

On the other hand, using Hölder’s (2.1) and Poincaré’s inequalities (2.3), we obtain

|K((ϕ, ψ, θ), (ϕ1, ψ1, θ1))| ≤ c‖ϕ, ψ, θ‖V ‖ϕ1, ψ1, θ1‖V .

Similarly

|F (ϕ1, ψ1, θ1)| ≤ c‖ϕ1, ψ1, θ1‖V .

Consequently, by the Lax-Milgram Lemma, system (4.21) has a unique solution

(ϕ, ψ, θ) ∈
[
H1

0 (0, 1)
]3
,

satisfying

K((ϕ, ψ, θ), (ϕ1, ψ1, θ1)) = F (ϕ1, ψ1, θ1), (ϕ1, ψ1, θ1) ∈ V.

The substitution of ϕ, ψ and θ into (4.19)1, (4.19)3 and (4.19)5 yields

(u, v, ω) ∈
[
H1

0 (0, 1)
]3
.

Similarly, inserting v in (4.20) and bearing in mind (4.19)7, we obtain ηt ∈ Lg. Moreover,

if we take (ϕ1, θ1) ≡ (0, 0) ∈ [H1
0 (0, 1)]

2
in (4.22), we obtain

k

∫ 1

0

(ϕx + ψ)ψ1dx+ ρ2

∫ 1

0

ψψ1dx+ b

∫ 1

0

ψxψ1xdx− β
∫ 1

0

θψ1dx

−
∫ ∞

0

g(s)ds

∫ 1

0

ψxψ1xdx+

∫ ∞
0

g(s)(1− e−s)ds
∫ 1

0

ψxψ1xdx

=

∫ 1

0

h2ψ1dx.

Then we obtain

b

∫ 1

0

ψxψ1xdx−
∫ ∞

0

g(s)ds

∫ 1

0

ψxψ1xdx+

∫ ∞
0

g(s)(1− e−s)ds
∫ 1

0

ψxψ1xdx

=

∫ 1

0

[−k(ϕx + ψ)− ρ2ψ + βθ + h2]ψ1dx, ψ1 ∈ H1
0 (0, 1).
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By noting that −k(ϕx +ψ)− ρ2ψ+βθ+h2 ∈ L2(0, 1), we obtain ψ ∈ H2(0, 1)∩H1
0 (0, 1).

Consequently using integration by parts we get∫ 1

0

[−bψxx +

∫ ∞
0

g(s)dsψxxdx−
∫ ∞

0

g(s)(1− e−s)dsψxx

+ k(ϕx + ψ) + ρ2ψ − βθ − h2]ψ1dx = 0, ψ1 ∈ H1
0 (0, 1).

Therefore,

−bψxx +

∫ ∞
0

g(s)dsψxxdx−
∫ ∞

0

g(s)(1− e−s)dsψxx + k(ϕx + ψ) + ρ2ψ − βθ = h2.

This gives (4.21)2. Similarly, if we take (ϕ1, ψ1) ≡ (0, 0) ∈ [H1
0 (0, 1)]

2
in (4.22), we can

show that

θ ∈ H2(0, 1) ∩H1
0 (0, 1),

and (4.21)3 are satisfied.

If we take (ψ1, θ1) ≡ (0, 0) ∈ [H1
0 (0, 1)]

2
in (4.22), we can show that

ϕ ∈ H2(0, 1) ∩H1
0 (0, 1),

and (4.21)1 are satisfied.

Finally, from (4.20) we can get ηt ∈ Lg. Hence, there exists a unique Φ ∈ D(A) such

that (4.18) is satisfied. Therefore, A is a maximal monotone operator, then D(A) is dense

in H (see Proposition 7.1 in [24] ).

Now, we prove that the operator B defined in (4.14) is locally Lipschitz in H. Let Φ =

(ϕ, u, ψ, v, θ, ω, ηt)T and Φ̃ = (ϕ̃, ũ, ψ̃, ṽ, θ̃, ω̃, η̃t)T , since Lipschitz continuous function,

then we have

‖B(Φ)− B(Φ̃)‖H ≤ α (t)

ρ1

(
‖f(ϕt)− f(ϕ̃t)‖L2 + ‖f(θt)− f(θ̃t)‖L2

)
≤ c

(
‖ϕt − ϕ̃t‖L2 + ‖θt − θ̃t‖L2

)
≤ c (‖u− ũ‖L2 + ‖ω − ω̃‖L2)

≤ c‖Φ− Φ̃‖H.

Then the operator B is locally Lipschitz in H. Consequently, A+ B is the infinitesimal

generator of a linear contraction C0-semigroup on H. Hence, the result of Proposition

4.1 follows (see [61, 83]) and the references therein.

4.3 Technical Lemmas and stability result

In this section, we start with establish several lemmas needed for our work then proof our

main result.

Let us first prove that the energy function E is decreasing, we have
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Lemma 4.2 Let (ϕ, ψ, θ) be the solution of (4.1)-(4.2), then the energy E is decreasing

function and satisfies, for all t ≥ 0,

E ′(t) = −kβ
∫ 1

0

θ2
txdx− α(t)

{
γ

∫ 1

0

ϕtf (ϕt) dx+ β

∫ 1

0

θtf (θt) dx

}
+
γ

2
(g′ ◦ ψx) (t) ≤ 0. (4.23)

Proof. Multiplying (4.1)1,(4.1)2 and (4.1)3 by γϕt, γψt and βθt respectively, and inte-

grating over (0, 1), using integration by parts, we get

γ

2

d

dt

∫ 1

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + k(ϕx + ψ)2 + bψ2

x

)
dx

+
β

2

d

dt

∫ 1

0

(ρ3θ
2
t + δθ2

x)dx+ γ

∫ 1

0

ψt

∫ ∞
0

g (s)ψxx (t− s) dsdx

= −kβ
∫ 1

0

θ2
txdx− α(t)

[
γ

∫ 1

0

ϕtf (ϕt) dx+ β

∫ 1

0

θtf (θt) dx

]
. (4.24)

Using Lemma (4.1) and Young’s inequality, the last term in the left-hand side of (4.24)

becomes ∫ 1

0

ψt

∫ ∞
0

g (s)ψxx (t− s) dsdx

=

∫ 1

0

ψxt

∫ ∞
0

g (s) (ψx (t)− ψx (t− s)) dsdx−
(∫ ∞

0

g (s) ds

)∫ 1

0

ψxtψxdx

=
1

2

d

dt

[
(g ◦ ψx) (t)−

(∫ ∞
0

g (s) ds

)∫ 1

0

ψ2
xdx

]
− 1

2
(g′ ◦ ψx) (t). (4.25)

A combination of (4.24) and (4.25) gives

E ′(t) = −kβ
∫ 1

0

θ2
txdx+

γ

2
(g′ ◦ ψx) (t)

−α(t)

[
γ

∫ 1

0

ϕtf (ϕt) dx+ β

∫ 1

0

θtf (θt) dx

]
≤ 0.

Lemma 4.3 The functional

I1(t) := −ρ1

∫ 1

0

ϕtϕdx− ρ2

∫ 1

0

ψtψ dx (4.26)

satisfies

I ′1(t) ≤ −ρ1

∫ 1

0

ϕ2
tdx− ρ2

∫ 1

0

ψ2
t dx+ (k + 2c+ βε1)

∫ 1

0

(ϕx + ψ)2dx

+
β

ε1

∫ 1

0

θ2
t dx+ c(2 + ε1)

∫ 1

0

ψ2
xdx+ c(g ◦ ψx)(t) + c

∫ 1

0

f 2 (ϕt) , (4.27)

for any ε1 > 0.
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Proof. By computations, using (4.1), we obtain

I ′1(t) = −ρ1

∫ 1

0

ϕ2
tdx+ k

∫ 1

0

(ϕx + ψ)2dx− β
∫ 1

0

θtϕx dx− ρ2

∫ 1

0

ψ2
t dx

+ b

∫ 1

0

ψ2
xdx− β

∫ 1

0

θtψ dx−
∫ 1

0

ψx

∫ ∞
0

g(s)ψx(x, t− s) ds dx

+ α (t)

∫ 1

0

ϕf(ϕt) dx.

By using Young’s inequality and Poincaré’s inequality, we obtain for ε1 > 0,

I ′1(t) ≤ −ρ1

∫ 1

0

ϕ2
tdx− ρ2

∫ 1

0

ψ2
t dx+ k

∫ 1

0

(ϕx + ψ)2dx+
βε1

2

∫ 1

0

ϕ2
xdx

+
β

ε1

∫ 1

0

θ2
t dx+ (2b+

βε1

2
)

∫ 1

0

ψ2
xdx

+
1

4b

∫ 1

0

(∫ ∞
0

g(s)ψx(x, t− s)ds
)2

dx+ α (t)

∫ 1

0

ϕf(ϕt) dx. (4.28)

By using Lemma (4.1) and Poincaré’s inequality, we have∫ 1

0

ϕ2
xdx ≤ 2

∫ 1

0

(ϕx + ψ)2dx+ 2

∫ 1

0

ψ2dx ≤ 2

∫ 1

0

(ϕx + ψ)2dx+ 2

∫ 1

0

ψ2
xdx, (4.29)

α (t)

∫ 1

0

ϕf(ϕt) dx ≤
1

2

∫ 1

0

ϕ2dx+ c

∫ 1

0

f 2(ϕt) dx

≤ c

∫ 1

0

ψ2
xdx+ c

∫ 1

0

(ϕx + ψ)2dx+ c

∫ 1

0

f 2(ϕt) dx, (4.30)

∫ 1

0

(∫ ∞
0

g(s)ψx(x, t− s)ds
)2

dx ≤ c

(
g ◦ ψx(t) +

∫ 1

0

ψ2
xdx

)
. (4.31)

The substitution of (4.29), (4.30) and (4.31) into (4.28) gives (6.36).

Lemma 4.4 The functional

I2(t) := −ρ2

∫ 1

0

ψt

∫ ∞
0

g(s)(ψ(t)− ψ(t− s)) ds dx

satisfies

I ′2(t) ≤ ε2c

∫ 1

0

ψ2
xdx− (ρ2g0 − ε′2ρ2)

∫ 1

0

ψ2
t dx+ c(ε2 +

1

ε2

)(g ◦ ψx)(t)

+ ε2k

∫ 1

0

(ϕx + ψ)2dx+ ε2β
2

∫ 1

0

θ2
t dx−

c

4ε′2
(g′ ◦ ψx)(t), (4.32)

for any ε2, ε
′
2 > 0.
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Proof. First, we have

∂

∂t

(∫ ∞
0

g(s)(ψ(t)− ψ(t− s))ds
)

= − ∂

∂t

(∫ −∞
t

g(t− s)(ψ(t)− ψ(s))ds

)
=

∂

∂t

(∫ t

−∞
g(t− s)(ψ(t)− ψ(s))ds

)
=

∫ t

−∞
g′(t− s)(ψ(t)− ψ(s))ds+

∫ t

−∞
g(t− s)ψt(t)ds

= g0ψt(t) +

∫ ∞
0

g′(s)(ψ(t)− ψ(t− s))ds.

Then, by differentiating I2(t) and using (4.1), we find

I ′2(t) = b

∫ 1

0

ψx

∫ ∞
0

g(s)(ψx(t)− ψx(t− s)) ds dx− g0ρ2

∫ 1

0

ψ2
t dx

− ρ2

∫ 1

0

ψt

∫ ∞
0

g′(s)(ψ(t)− ψ(t− s)) ds dx

+ k

∫ 1

0

(ϕx + ψ)

∫ ∞
0

g(s)(ψ(t)− ψ(t− s)) ds dx

− β
∫ 1

0

θt

∫ ∞
0

g(s)(ψ(t)− ψ(t− s)) ds dx

−
∫ 1

0

∫ ∞
0

g(s)ψx(t− s)ds
∫ ∞

0

g(s)(ψx(t)− ψx(t− s)) ds dx. (4.33)

By using Young’s and Poincaré’s inequalities,

b

∫ 1

0

ψx

∫ ∞
0

g(s)(ψx(t)− ψx(t− s)) ds dx

≤ ε2b

∫ 1

0

ψ2
xdx+

b

4ε2

∫ 1

0

(∫ ∞
0

g(s)(ψx(t)− ψx(t− s))ds
)2

dx

≤ ε2b

∫ 1

0

ψ2
xdx+

bg0

4ε2

(g ◦ ψx)(t), (4.34)

−ρ2

∫ 1

0

ψt

∫ ∞
0

g′(s)(ψ(t)− ψ(t− s)) ds dx

≤ ε′2

∫ 1

0

ρ2ψ
2
t dx+

ρ2

4ε′2

∫ 1

0

(∫ ∞
0

g′(s)(ψ(t)− ψ(t− s))ds
)2

dx

≤ ε′2

∫ 1

0

ρ2ψ
2
t dx−

ρ2d2

4ε′2
(g′ ◦ ψx)(t), (4.35)
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k

∫ 1

0

(ϕx + ψ)

∫ ∞
0

g(s)(ψ(t)− ψ(t− s)) ds dx

≤ ε2k

∫ 1

0

(ϕx + ψ)2dx+
k

4ε2

∫ 1

0

(∫ ∞
0

g(s)(ψ(t)− ψ(t− s))ds
)2

dx

≤ ε2k

∫ 1

0

(ϕx + ψ)2dx+
kd1

4ε2

(g ◦ ψx)(t), (4.36)

β

∫ 1

0

θt

∫ ∞
0

g(s)(ψ(t)− ψ(t− s)) ds dx

≤ ε2β
2

∫ 1

0

θ2
t dx+

1

4ε2

∫ 1

0

(∫ ∞
0

g(s)(ψ(t)− ψ(t− s))ds
)2

dx

≤ ε2β
2

∫ 1

0

θ2
t dx+

d1

4ε2

(g ◦ ψx)(t), (4.37)

∫ 1

0

∫ ∞
0

g(s)ψx(t− s)ds
∫ ∞

0

g(s)(ψx(t)− ψx(t− s)) ds dx

≤ ε2

∫ 1

0

(∫ ∞
0

g(s)ψx(t− s)ds
)2

dx

+
1

4ε2

∫ 1

0

(∫ ∞
0

g(s)(ψx(t)− ψx(t− s))ds
)2

dx

≤
(

2ε2 +
1

4ε2

)
g0(g ◦ ψx) + 2ε2g0

∫ 1

0

ψ2
xdx. (4.38)

By substituting (4.34)-(4.38) into (4.33), we obtain (4.32).

Lemma 4.5 The functional

I3(t) :=
k

2

∫ 1

0

θ2
xdx+ ρ3

∫ 1

0

θtθ dx+ γ

∫ 1

0

ϕxθ dx

satisfies

I ′3(t) ≤
(
cε3 −

3δ

4

)∫ 1

0

θ2
xdx+

(
ρ3 +

γ2

2ε3

)∫ 1

0

θ2
t dx+ ε3

∫ 1

0

ψ2
xdx

+
γ2

δ

∫ 1

0

ψ2
t dx+ ε3

∫ 1

0

(ϕx + ψ)2dx+
c

4ε3

∫ 1

0

f 2 (θt) dx, (4.39)

for any ε3 > 0.

Proof. By differentiating I3(t) and using (4.1), we obtain

I ′3(t) = ρ3

∫ 1

0

θ2
t dx+ γ

∫ 1

0

ϕxθtdx− δ
∫ 1

0

θ2
xdx− γ

∫ 1

0

ψtθ dx

− α (t)

∫ 1

0

f (θt) θ dx.
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By using Young’s and Poincaré’s inequalities, we obtain for any ε3 > 0

γ

∫ 1

0

ϕxθtdx ≤ ε3

∫ 1

0

(ϕx + ψ)2dx+ ε3

∫ 1

0

ψ2
xdx+

γ2

2ε3

∫ 1

0

θ2
t dx,

γ

∫ 1

0

ψtθ dx ≤
δ

4

∫ 1

0

θ2
xdx+

γ2

δ

∫ 1

0

ψ2
t dx,

(
for ε =

δ

4

)
,

−α (t)

∫ 1

0

θf(θt) dx ≤ ε3

∫ 1

0

θ2dx+
c

4ε3

∫ 1

0

f 2(θt) dx

≤ cε3

∫ 1

0

θ2
xdx+

c

4ε3

∫ 1

0

f 2(θt) dx.

Using these last inequalities completes the proof.

Lemma 4.6 The functional

I4(t) := 2ρ1

∫ 1

0

xϕxϕt dx (4.40)

satisfies

I ′4(t) ≤ −ρ1

∫ 1

0

ϕ2
tdx− (k − cε4)

∫ 1

0

(ϕx + ψ)2dx+
β2

2ε4

∫ 1

0

θ2
txdx

+

(
cε4 +

1

ε4

)∫ 1

0

ψ2
xdx+

c

2ε4

∫ 1

0

f 2 (ϕt) dx, (4.41)

for any ε4 > 0.

Proof. by differentiating I4(t) and using (4.1), we find that

I ′4(t) = 2

∫ 1

0

[k(ϕx + ψ)x − βθtx − α (t) f (ϕt)] (xϕx) dx+ 2ρ1

∫ 1

0

x
d

dt
ϕ2
tdx

= 2k

∫ 1

0

(ϕx + ψ)xxϕxdx− 2β

∫ 1

0

θtxxϕxdx− 2α (t)

∫ 1

0

f (ϕt)xϕxdx

−2ρ1

∫ 1

0

ϕ2
tdx

= k

∫ 1

0

x
[
(ϕx + ψ)2

]
x
dx− 2k

∫ 1

0

x(ϕx + ψ)ψdx− 2β

∫ 1

0

θtxxϕxdx

−2α (t)

∫ 1

0

f (ϕt)xϕxdx− 2ρ1

∫ 1

0

ϕ2
tdx

= −k
∫ 1

0

(ϕx + ψ)2dx+ 2k

∫ 1

0

x(ϕx + ψ)ψxdx+ 2k

∫ 1

0

(ϕx + ψ)ψdx

−2β

∫ 1

0

θtxxϕxdx− 2α (t)

∫ 1

0

f (ϕt)xϕxdx− 2ρ1

∫ 1

0

ϕ2
tdx,
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then

2k

∫ 1

0

x(ϕx + ψ)ψxdx ≤ k2ε4

∫ 1

0

(ϕx + ψ)2 +
1

ε4

∫ 1

0

ψ2
xdx,

−2β

∫ 1

0

θtxxϕxdx ≤ 2ε4

∫ 1

0

ϕ2
x +

β2

2ε4

∫ 1

0

θ2
txdx,

≤ 4ε4

∫ 1

0

(ϕx + ψ)2 + cε4

∫ 1

0

ψ2
xdx+

β2

2ε4

∫ 1

0

θ2
txdx,

and

−2α (t)

∫ 1

0

f (ϕt)xϕxdx ≤ 2ε4

∫ 1

0

ϕ2
x +

c

2ε4

∫ 1

0

f 2(ϕt)dx.

The substitution of these last inequalities gives (4.41).

As in [37], we introduce the multiplier ω which is the solution of

−wxx = ψx, w(0) = w(1) = 0. (4.42)

Lemma 4.7 The solution of (4.42) satisfies∫ 1

0

w2
xdx ≤

∫ 1

0

ψ2dx ≤
∫ 1

0

ψ2
xdx,∫ 1

0

w2
t dx ≤

∫ 1

0

w2
xtdx ≤

∫ 1

0

ψ2
t dx.

Lemma 4.8 The functional

I5(t) :=

∫ 1

0

(ρ1ϕtw + ρ2ψtψ)dx,

satisfies

I ′5(t) ≤
(
cε′5 −

`

2

)∫ 1

0

ψ2
x(t)dx+

3β2

`

∫ 1

0

θ2
t (t)dx+ ε5

∫ 1

0

ϕ2
tdx

+ (ρ2 +
ρ2

1

4ε5

)

∫ 1

0

ψ2
t dx+

3g0

2`
(g ◦ ψx)(t) +

c

4ε′5

∫ 1

0

f 2(ϕt)dx. (4.43)

for any ε5, ε
′
5 > 0.

Proof. By a simple differentiation of I5(t) and using (4.1), we get

I ′5(t) = β

∫ 1

0

θtwx dx+ k

∫ 1

0

w2
xdx+ ρ1

∫ 1

0

ϕtwtdx+ β

∫ 1

0

θtψ dx

− b
∫ 1

0

ψ2
xdx− k

∫ 1

0

ψ2dx+ ρ2

∫ 1

0

ψ2
t dx− α (t)

∫ 1

0

f(ϕt)w dx

+

∫ 1

0

∫ ∞
0

g(s)ψx(x, t− s)dsψx(t)dx,

4.3. Technical Lemmas and stability result



Chapter 4. Global existence and general decay of a weakly non-linear damped
Timoshenko system of thermoelasticity of type III with infinite memory 49

where we have used integration by parts, (4.42) and the boundary conditions (4.2). By

using Young’s, Poincaré’s inequalities, Lemma 4.1 and Lemma 4.7, we have

β

∫ 1

0

θtωx dx ≤
`

6

∫ 1

0

ψ2
x dx+

3β2

2`

∫ 1

0

θ2
t dx,

ρ1

∫ 1

0

ϕtωtdx ≤ ε5

∫ 1

0

ϕ2
tdx+

ρ2
1

4ε5

∫ 1

0

ψ2
t dx,

β

∫ 1

0

θtψ dx ≤
`

6

∫ 1

0

ψ2
x dx+

3β2

2`

∫ 1

0

θ2
t dx,

−α (t)

∫ 1

0

f(ϕt)w dx ≤ cε′5

∫ 1

0

ψ2
x(t)dx+

c

4ε′5

∫ 1

0

f 2(ϕt)dx,

and ∫ 1

0

∫ ∞
0

g(s)ψx(x, t− s)dsψx(t)dx

=

∫ 1

0

∫ ∞
0

g(s)(ψx(x, t− s)− ψx(t) + ψx(t))dsψx(t)dx

=

∫ 1

0

∫ ∞
0

g(s)(ψx(x, t− s)− ψx(t))dsψx(t)dx+

∫ ∞
0

g(s)ds

∫ 1

0

ψ2
x(t)dx

≤ `

6

∫ 1

0

ψ2
x(t)dx+

3

2`

∫ 1

0

(∫ ∞
0

g(s)(ψx(x, t− s)− ψx(t))ds
)2

dx

+

∫ ∞
0

g(s)ds

∫ 1

0

ψ2
x(t)dx

≤ `

6

∫ 1

0

ψ2
x(t)dx+

3g0

2`
(g ◦ ψx)(t) + g0

∫ 1

0

ψ2
x(t)dx.

By using these last inequalities, we get (4.43).

Now, we prove our stability result. First, we define a Lyapunov functional L by

L(t) := NE (t) + I1(t) +N1I2(t) + I3(t) +N2I4(t) +N3I5(t), (4.44)

where N1, N2, N3 and N are positive real numbers to be chosen appropriately later. One

sees that, for N sufficiently large we have

L(t) ∼ E(t). (4.45)

Theorem 4.1 Let (ϕ0, ϕ1, ψ0, ψ1, θ0)T ∈ H be given. Assume that A1- A4 are satisfied,

then there exist c1,c2 > 0 for which the solution of problem (4.1)-(4.2) satisfies

E (t) ≤ c1H
−1
1

(
c2

∫ t

0

(αη) (s) ds

)
, ∀t ≥ 0, (4.46)

where the functions H1 and H2 are defined by:
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for ε0 > 0

H2(t) :=

{
t if h′′ = 0 on [0, l] ,

th′(ε0t) if h′(0) = 0 and h′′ > 0 on (0, l] ,
(4.47)

and

H1 (t) =

∫ 1

t

1

H2 (s)
ds. (4.48)

Proof. By combining (4.23), (4.27), (4.32), (4.39), (4.41) and (4.43), and letting ε1 = 1

and ε2 = 1
N1

, we arrive at

L′(t) ≤
{
N1ρ2(ε′2 − g0)− ρ2 +

(
ρ2 +

ρ2
1

4ε5

)
N3 +

γ2

δ

}∫ 1

0

ψ2
t dx

+ {−ρ1 (N2 + 1) + ε5N3}
∫ 1

0

ϕ2
tdx+

{
cε3 −

3δ

4

}∫ 1

0

θ2
xdx

+

{
N3

(
cε′5 −

`

2

)
+ ε3 + 3c+N2

(
cε4 +

1

ε4

)
+ c

}∫ 1

0

ψ2
xdx

+ {N2 (cε4 − k) + 2c+ β + 2k + ε3}
∫ 1

0

(ϕx + ψ)2dx

+

{
c

(
β + ρ3 +

γ2

2ε3

+ β2

(
N2

1

2ε4

+
3

`
N3 + 1

))
−Nkβ

}∫ 1

0

θ2
xtdx

+

{
c
(
N2

1 + 2
)

+
3g0

2`
N3

}
g ◦ ψx(t)−

{
N1

c

4ε′2
−N γ

2

}
g′ ◦ ψx(t)

+
c

4ε4

∫ 1

0

f 2(θt)dx+ c

{
N2

2ε4

+
N3

4ε′5
+ 1

}∫ 1

0

f 2(ϕt)dx

−Nα(t)

{
γ

∫ 1

0

ϕtf (ϕt) dx+ β

∫ 1

0

θtf (θt) dx

}
, (4.49)

for all t ≥ t0.

Now, we have to choose our constants very carefully. First, let us take ε3, ε4, ε
′
2 and

ε′5 small enough such that

cε3 −
3δ

4
< 0, cε4 − k < 0, ε′2 − g0 < 0, cε′5 −

`

2
< 0.

After that, we pick N2 large enough so that

N2 (cε4 − k) + 2c+ β + 2k + ε3 < 0,

then, we choose N3 large enough such that

N3

(
cε′5 −

`

2

)
+ ε3 + 3c+N2

(
cε4 +

1

ε4

)
+ c < 0.
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Now, we select ε5 sufficiently small so that

−ρ1 (N2 + 1) + ε5N3 < 0,

next, we take N1 large enough such that

N1ρ2(ε′2 − g0)− ρ2 +

(
ρ2 +

ρ2
1

4ε5

)
N3 +

γ2

δ
< 0.

Finally, we choose N large enough (even larger so that (4.45) remains valid) and

c

(
β + ρ3 +

γ2

2ε3

+ β2

(
N2

1

2ε4

+
3

`
N3 + 1

))
−Nkβ < 0,

N1
c

4ε′2
−N γ

2
< 0.

Therefore, (4.49) becomes

L′(t) ≤ −c
∫ 1

0

[
ϕ2
t + ψ2

t + ψ2
x + (ϕx + ψ)2 + θ2

x + θ2
t

]
dx+ cg ◦ ψx(t) + cg′ ◦ ψx(t)

+c

∫ 1

0

f 2(θt)dx+ c

∫ 1

0

f 2(ϕt)dx− c
∫ 1

0

(ϕtf (ϕt) + θtf (θt)) dx.

By using the estimate (4.9) then lead to

L′(t) ≤ −cE(t) + cg ◦ ψx(t) + c

∫ 1

0

(
f 2(θt) + f 2(ϕt)

)
dx, ∀t ≥ t0. (4.50)

Let us define the following sets

Σϕ+ = {x ∈ (0, 1) : |ϕt (x, t)| > l} , Σϕ− = (0, 1) \ Σϕ+ ,

Σθ+ = {x ∈ (0, 1) : |θt (x, t)| > l} , Σθ− = (0, 1) \ Σθ+ .

We work now for estimate the last term in the right-hand side of (4.50). First, note that∫ 1

0

(
f 2 (ϕt) + f 2 (θt)

)
dx =

∫
Σϕ+

f 2 (ϕt) dx+

∫
Σθ+

f 2 (θt) dx

+

∫
Σϕ−

f 2 (ϕt) dx+

∫
Σθ−

f 2 (θt) dx.

Using A1 and (4.23), we easily show that

α(t)

[∫
Σϕ+

f 2 (ϕt) dx+

∫
Σθ+

f 2 (θt) dx

]
≤ k1

∫
Σϕ+

α(t)ϕtf (ϕt) dx+ k
′

1

∫
Σθ+

α(t)θtf (θt) dx

≤ k1

∫ 1

0

α(t)ϕtf (ϕt) dx+ k
′

1

∫ 1

0

α(t)θtf (θt) dx

≤ − (λ1 + λ2)E ′ (t)

≤ −cE ′ (t) , (4.51)
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for λ1, λ2 > 0.

If h′′ = 0 on [0, l]: This implies that there exist k2 > 0 such that |f (s)| ≤ k
′
1 |s| for all

s ∈ R+, and then (4.51) is also satisfied for |ϕt (x, t)| ≤ l and |θt (x, t)| ≤ l , then on all

(0, 1). From (4.50), (4.51) and the fact that α′ ≤ 0, we arrive at

(α(t)L(t) + cE (t))′ ≤ −cα(t)H2 (E (t)) + cg ◦ ψx(t), ∀t ≥ t0, (4.52)

where H2 is defined in (4.47).

If h′(0) = 0 and h′′ > 0 on (0, l]: Since h is convex and increasing, h−1 is concave and

increasing, by using A1, the reversed Jensen’s inequality for concave function (see [87], p.

61), and (4.23), we obtain,

α(t)

[∫
Σϕ−

f 2 (ϕt) dx+

∫
Σθ−

f 2 (θt) dx

]
≤ α(t)

∫
Σϕ−

h−1 (ϕtf (ϕt)) dx

+α(t)

∫
Σθ−

h−1 (θtf (θt)) dx

≤ Cα(t)h−1

(∫
Σϕ−

ϕtf (ϕt) dx

)

+Cα(t)h−1

(∫
Σθ−

θtf (θt) dx

)

≤ Cα(t)h−1

(∫ 1

0

ϕtf (ϕt) dx

)
+Cα(t)h−1

(∫ 1

0

θtf (θt) dx

)
≤ Cα(t)

{
h−1 (−c′1E ′ (t)) + h−1 (−c′2E ′ (t))

}
≤ 2Cα(t)h−1 (−cE ′ (t))
≤ cα(t)h−1 (−cE ′ (t)) ,

where c = max{c′1, c′2}.
Therefore, from (4.50), (6.45), (6.47) and the fact that α′ ≤ 0, we find that

(α(t)L(t) + cE (t))′ ≤ cα(t)h−1(−cE ′ (t))− cα(t)E (t) + cg ◦ ψx(t), ∀t ≥ t0.

By using Young’s inequality (2.8) and the fact that

h∗ (p) ≤ p[h′]−1(p), E ′ ≤ 0, h′′ > 0,
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we obtain for ε0 > 0 small enough and c0 > 0 large enough,

[h′ (ε0E (t)) [α(t)L(t) + cE (t)] + c0E (t)]
′

= ε0E
′ (t)h′′ (ε0E (t)) [α(t)L(t) + cE (t)] + c0E

′ (t)

+h′ (ε0E (t)) [α(t)L′(t) + α′(t)L(t) + cE ′ (t)]

≤ −cα(t)h′ (ε0E (t))E (t) + cα(t)h′ (ε0E (t))h−1(−cE ′ (t))
+c0E

′ (t) + ch′ (ε0E (t)) g ◦ ψx(t)
≤ −cα(t)h′ (ε0E (t))E (t) + cα(t)h∗(h′ (ε0E (t)))− cE ′ (t)

+c0E
′ (t) + ch′ (ε0E (0)) g ◦ ψx(t)

≤ −cα(t)h′ (ε0E (t))E (t) + cε0α(t)h′ (ε0E (t))E (t) + cg ◦ ψx(t)
≤ −cα(t)h′ (ε0E (t))E (t) + cg ◦ ψx(t) = −cα(t)H2 (E (t)) + cg ◦ ψx(t). (4.53)

Now, let us define the following functional:

F (t) =

{
α(t)L(t) + cE (t) if (4.10) holds,

h′ (ε0E (t)) [α(t)L(t) + cE (t)] + c0E (t) if (4.11) holds.

Using (4.45), we have

F ∼ E,

and exploiting (4.52) and (4.53), we easily deduce that

F ′ (t) ≤ −cα(t)H2 (E (t)) + cg ◦ ψx(t), ∀t ≥ t0.

By using (4.23) and A3, we obtain

(η (t)F (t))′ = η′ (t)F (t) + η (t)F ′ (t)
≤ −cα(t)η (t)H2 (E (t)) + cη (t) g ◦ ψx(t)
≤ −cα(t)η (t)H2 (E (t)) + c (ηg) ◦ ψx(t)
≤ −cα(t)η (t)H2 (E (t))− cg′ ◦ ψx(t)
≤ −cα(t)η (t)H2 (E (t))− cE ′ (t) .

Next, let

R (t) = ε (η (t)F (t) + cE (t)) ,

where 0 < ε < ε̄ and ε̄ is a positive constant satisfying

η (t)F (t) + cE (t) ≤ 1

ε̄
E (t) , ∀t ≥ 0.

We also have

R ∼ E, (4.54)
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and for t ≥ t0

R′ (t) ≤ −cεα(t)η (t)H2 (R (t)) . (4.55)

Noting that H ′1 = −1/H2 (see (4.48)), we get from (4.55)

R′ (t)H ′1 (R (t)) ≥ cεα(t)η (t) , ∀t ≥ t0,

A simple integration over (t0, t) then yields

H1 (R (t)) ≥ H1 (R (t0)) + cε

∫ t

0

α(t)η (s) ds− cε
∫ t0

0

α(t)η (s) ds.

On the other hand, since lim
t→0+

H1 (t) = +∞ and

0 ≤ R (t0) ≤ ε

ε̄
E (t0) ≤ ε

ε̄
E (0) ,

we obtain for ε small enough

H1 (R (t0))− cε
∫ t0

0

α(t)η (s) ds > 0.

Then, thanks to the fact that H−1
1 is decreasing , we infer

R (t) ≤ H−1
1

(
H1 (R (t0)) + cε

∫ t

0

α(t)η (s) ds− cε
∫ t0

0

α(t)η (s) ds

)
≤ H−1

1

(
cε

∫ t

0

(αη) (s) ds

)
.

From this end inequality and (4.54) we get easily (4.46). Then the proof is completed.

Remark 4.1 We can obtain the same result by using a similar techniques even in the

absence of the second nonlinear term f (θt) .

4.3. Technical Lemmas and stability result



CHAPTER 5

EXPONENTIAL DECAY FOR A THERMO-VISCOELASTIC BRESSE SYSTEM

WITH SECOND SOUND AND DELAY TERMS

5.1 Introduction

In the present chapter, we consider the following thermo-viscoelastic Bresse system

with second sound and delay terms

ρ1ϕtt − k (ϕx + ψ + lω)x − k0l (ωx − lϕ) + µ1ϕt + µ2ϕt (x, t− τ1) = 0

ρ2ψtt − bψxx + k (ϕx + ψ + lω) + δ
∫ t

0
g (t− s)ψxx (x, s) ds+ γθx = 0

ρ1ωtt − k0 (ωx − lϕ)x + kl (ϕx + ψ + lω) + λ1ωt + λ2ωt (x, t− τ2) = 0

ρ3θt + qx + γψtx = 0

αqt + βq + θx = 0,

(5.1)

with the initial data and boundary conditions

ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) , ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) ,

ω (x, 0) = ω0 (x) , ωt (x, 0) = ω1 (x) , θ (x, 0) = θ0 (x) , θt (x, 0) = θ1 (x) ,

q (x, 0) = q0 (x) , qt (x, 0) = q1 (x) .

ϕ (0, t) = ψx (0, t) = ωx (0, t) = θ (0, t) = ω (L, t) = ψ (L, t) = ϕx (L, t)

= q (L, t) = 0, t ∈ (0,+∞).

ϕt (x, t− τ1) = f0 (x, t− τ1) , (x, t) ∈ (0, L)× (0, τ1) ,

ωt (x, t− τ2) = f̃0 (x, t− τ2) , (x, t) ∈ (0, L)× (0, τ2) .

(5.2)

where (x, t) ∈ (0, L)×R+, ρ1, ρ2, ρ3, α, β, k, k0, l, b, δ, γ, µ1, λ1 are positive constants, µ2 and

λ2 are real numbers, τ1, τ2 > 0 represent the time delays, θ is the difference temperature,

q is the heat flux and g is a positive function satisfying some conditions to be determined

later.
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Originally, the Bresse system consists of three wave equations where the main vari-

ables describing the longitudinal, vertical and shear angle displacements, which can be

represented as (see [23]): 
ρ1ϕtt = Qx + lN + F1

ρ2ψtt = Mx −Q+ F2

ρ1ωtt = Nx − lQ+ F3,

(5.3)

where in our work

M = bψx − δ
∫ t

0

g (t− s)ψx (., s) ds, N = k0 (ωx − lϕ) , Q = k (ϕx + ψ + lω) ,

F1 = −µ1ϕt − µ2ϕt (., t− τ1) , F2 = 0, and F3 = −λ1ωt − λ2ωt (., t− τ2) .

N , Q and M denote the axial force, the shear force and the bending moment. By ω, ϕ,

and ψ, we are denoting the longitudinal, vertical and shear angle displacements. Here

ρ1 = ρA, ρ2 = ρl, b = EI, k0 = EA, k = k0GA and l = R−1. For material properties, we

use ρ for density, E for the modulus of elasticity, G for the shear modulus, k for the shear

factor, A for the cross-sectional area, I for the second moment of area of the cross-section

and R for the radius of curvature and we assume that all this quantities are positives. Also

by Fi we are denote external forces. The Bresse system ( 5.3), is more general than the

well-known Timoshenko system where the longitudinal displacement ω is not considered

(l = 0).

The issue of existence and stability of Bresse system has attracted a great deal of

attention in the last decades (e.g. [5, 7, 16, 23, 38, 39]). In the absence of viscoelastic

damping (g = 0), frictional damping µ1 = λ1 = 0 and delay terms µ2 = λ2 = 0, Keddi et

al. [59] studied the following one-dimensional thermoelastic Bresse system

ρ1ϕtt − k (ϕx + ψ + lω)x − k0l (ωx − lϕ) = 0

ρ2ψtt − bψxx + k (ϕx + ψ + lω) + γθx = 0

ρ1ωtt − k0 (ωx − lϕ)x + kl (ϕx + ψ + lω) = 0

ρ3θt + qx + γψtx = 0

τqt + βq + θx = 0,

(5.4)

where the heat conduction is given by Cattaneo’s law effective in the shear angle displace-

ment. They established the well-posedness of the system and proved, under a condition

on the parameters ζ, k and k0, which is

ζ :=

(
1− τkρ3

ρ1

)(ρ1

k
− ρ2

b

)
− τγ2

b
= 0 and k = k0,

that the system was exponentially stable depending on the stable number of the system,

and showed that in general, the system was polynomially stable if ζ 6= 0 and k = k0. Li

5.1. Introduction
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et al. [64] extended this last result to the following Bresse system with delay

ρ1ϕtt − k (ϕx + ψ + lω)x − k0l (ωx − lϕ) + µϕt (x, t− τ0) = 0

ρ2ψtt − bψxx + k (ϕx + ψ + lω) + γθx = 0

ρ1ωtt − k0 (ωx − lϕ)x + kl (ϕx + ψ + lω) = 0

ρ3θt + qx + γψtx = 0

τqt + βq + θx = 0,

(5.5)

They proved that the system is well-posed by using the semigroups method, and under a

similar condition on the precedent parameters, that is

ζ :=

(
τ − ρ1

kρ3

)(ρ2

b
− ρ1

k

)
− τγ2ρ1

bkρ3

= 0 and k = k0,

they showed that the dissipation induced by the heat is strong enough to exponentially

stabilize the system in the presence of a ”small” delay when the stable number is zero.

Motivated by the works mentioned above, we investigate system (5.1) under suitable

assumptions and show that even in the presence of the viscoelastic term (g 6= 0), the

frictional damping (λ1, µ1 6= 0) and the second delay term (λ2 6= 0), we can establish an

exponential decay result regardless of the stable number ζ. We prove our result by using

the energy method together with some hypotheses on the weights of the delays and the

frictional damping as well the relaxation function g.

5.2 Preliminaries

In this section, we present some materials needed in the proof of our results. We also state,

without proof, a local existence result for problem (5.1). The proof can be established by

using Faedo–Galerkin method [29].

We shall use the following assumptions:

(A1) g : R+ → R+ is a differentiable function such that

g(0) > 0, b− δ
∫ ∞

0

g(s)ds = b− δg1 = l > 0, (5.6)

(A2) There exists a non-increasing differentiable function η : R+ → R+ such that

g′(t) ≤ −η(t)g(t), t ≥ 0 and

∫ ∞
0

η(t)dt = +∞. (5.7)

We introduce the new variable as in [78]

z1(x, ρ, t) = ϕt(x, t− τ1ρ), x ∈ (0, L), ρ ∈ (0, 1), t > 0, (5.8)

z2(x, ρ, t) = ωt(x, t− τ2ρ), x ∈ (0, L), ρ ∈ (0, 1), t > 0. (5.9)

5.2. Preliminaries
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Then, we have

τz1t(x, ρ, t) + z1ρ(x, ρ, t) = 0, x ∈ (0, L), ρ ∈ (0, 1), t > 0,

τz2t(x, ρ, t) + z2ρ(x, ρ, t) = 0, x ∈ (0, L), ρ ∈ (0, 1), t > 0.

Hence, problem (5.1)-(5.2) is equivalent to the following system, where (x, ρ, t) ∈ (0, L)×
(0, 1)× (0,+∞)

ρ1ϕtt − k (ϕx + ψ + lω)x − k0l (ωx − lϕ) + µ1ϕt + µ2z1(x, 1, t) = 0

τ1z1t(x, ρ, t) + z1ρ(x, ρ, t) = 0

ρ2ψtt − bψxx + k (ϕx + ψ + lω) + δ
∫ t

0
g (t− s)ψxx (x, s) ds+ γθx = 0

ρ1ωtt − k0 (ωx − lϕ)x + kl (ϕx + ψ + lω) + λ1ωt + λ2z2(x, 1, t) = 0

τ2z2t(x, ρ, t) + z2ρ(x, ρ, t) = 0

ρ3θt + qx + γψtx = 0

αq + βq + θx = 0.

(5.10)

With the following initial data and boundary conditions

ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) ,

ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) ,

ω (x, 0) = ω0 (x) , ωt (x, 0) = ω1 (x) ,

q (x, 0) = q0 (x) , qt (x, 0) = q1 (x) ,

θ (x, 0) = θ0 (x) , θt (x, 0) = θ1 (x) ,

z1(x, ρ, 0) = f0(x,−ρτ1), z2(x, ρ, 0) = f̃0(x,−ρτ2)

z1(x, 0, t) = ϕt(x, t), z2(x, 0, t) = ωt(x, t)

ϕ (0, t) = ψx (0, t) = ωx (0, t) = θ (0, t) = 0,

ω (L, t) = ψ (L, t) = ϕx (L, t) = q (L, t) = 0,

x ∈ (0, L),

x ∈ (0, L),

x ∈ (0, L),

x ∈ (0, L),

x ∈ (0, L),

(x, ρ) ∈ (0, L)× (0, 1)

(x, t) ∈ (0, L)× (0,+∞),

t ∈ (0,+∞),

t ∈ (0,+∞).

(5.11)

Along this section, we use the following notations

(f � v)(t) =
∫ t

0
f(t− s) (v(t)− v(s)) ds, ∀v ∈ L2(0, L),

(f ◦ v)(t) =
∫ t

0
f(t− s)(v(s)− v(t))2ds.

The energy functional associated to (5.10)-(5.11), is

E(t) =
1

2

∫ L

0

{
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1ω

2
t + ρ3θ

2 + αq2 +

(
b− δ

∫ t

0

g(s)ds

)
ψ2
x

}
dx

+
1

2

∫ L

0

{
ξ1

∫ 1

0

z2
1(x, ρ, t)dρ+ ξ2

∫ 1

0

z2
2(x, ρ, t)dρ+ k (ϕx + ψ + lω)2

}
dx

+
1

2

∫ L

0

{
k0 (ωx − lϕ)2 + δ(g ◦ ψx)

}
dx (5.12)

5.2. Preliminaries



Chapter 5. Exponential decay for a thermo-viscoelastic Bresse system with
second sound and delay terms 59

we denote E(t) = E (t, ϕ, ψ, ω, θ, q, z1, z2) and E(0) = E
(

0, ϕ0, ψ0, ω0, θ0, q0, f0, f̃0

)
for

simplicity of notations.

For state a local existence result, we introduce the vector function:

Φ = (ϕ, u, ψ, v, ω, w, θ, q, z1, z2)T , where u = ϕt, v = ψt and w = ωt, using the standard

Lebesgue space L2(0, L) and the Sobolev space H1
0 (0, L) with their usual scalar products

and norms for define the space H as follows

H := H1
∗ (0, L)× L2(0, L)×

[
H̃1
∗ (0, L)× L2(0, L)

]2

×
[
L2(0, L)

]2 × [L2((0, L)× (0, 1))
]2
,

where
H1
∗ (0, L) = {f ∈ H1(0, L), f (0) = 0} ,

H̃1
∗ (0, L) = {f ∈ H1(0, L), f (L) = 0} ,

H2
∗ (0, L) = H2(0, L) ∩H1

∗ (0, L),

H̃2
∗ (0, L) = H2(0, L) ∩ H̃1

∗ (0, L).

Proposition 5.1 Let Φ0 = (ϕ0, ϕ1, ψ0, ψ1, ω0, ω1, θ0, q0, f0, f̃0)T ∈ H be given. Assume

that (A1), (A2), µ1 > |µ2| and λ1 > |λ2| are satisfied. Then Problem (5.10)-(5.11) pos-

sesses a unique global (weak) solution satisfying

Φ = (ϕ, u, ψ, v, ω, w, θ, q, z1, z2)T ∈ C (R+;H) .

5.3 Exponential stability result

In this section, we state and prove our exponential decay result for the energy of the

solution of system (5.1)-(5.2), using the Lyapunov functional which is equivalent to the

energy functional. To achieve our goal, we need the following technical lemmas.

The two inequalities in the following lemma are introduced in [33] and [48] respectively.

Lemma 5.1 For any function g ∈ C([0,+∞),R+) and any v ∈ L2(0, L) we have

[g � v(t)]2 dx ≤
(∫ t

0

g(s)ds

)
g ◦ v(t), ∀t ≥ 0, (5.13)

∫ L

0

(∫ t

0

g(t− s)vx(s)ds
)2

dx ≤ 2g1

∫ L

0

g ◦ vxdx+ 2g1

∫ L

0

v2
xdx. (5.14)

Lemma 5.2 [38] There exists a positive constant c such that the following inequality holds

for every (ϕ, ψ, ω) ∈ [H1
0 (0, L)]

3

∫ L

0

(ϕ2
x + ψ2

x + ω2
x)dx ≤ c

∫ L

0

[
bψ2

x + k(ϕx + ψx + ωx)
2 + k0(ωx − lϕ)2

]
dx. (5.15)
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Lemma 5.3 Let (ϕ, ψ, ω, θ, q, z1, z2) be the solution of (5.10)-(5.11). Then the energy

functional satisfies, for some n0, n
′
0 > 0,

E ′(t) ≤ −β
∫ L

0

q2dx+
δ

2

∫ L

0

(g
′ ◦ ψx)dx−

δ

2
g(t)

∫ L

0

ψ2
xdx

−n0

(∫ L

0

ϕ2
tdx+

∫ L

0

z2
1(x, 1, t)dx

)
− n′0

(∫ L

0

ω2
t dx+

∫ L

0

z2
2(x, 1, t)dx

)
≤ 0

where

τ1 |µ2| < ξ1 < τ1(2µ1 − |µ2|) and τ2 |λ2| < ξ2 < τ2(2λ1 − |λ2|). (5.16)

Proof. Multiplying Equation (5.10)1 by ϕt , (5.10)3 by ψt, (5.10)4 by ωt, (5.10)6 by θt

and (5.10)7 by q, then integrating over (0, L). Next, multiplying (5.10)2 by (ξ1/τ1)z1 and

(5.10)5 by (ξ2/τ2)z2 and integrating over (0, L)× (0, 1) with respect to ρ and x, we get

1

2

d

dt

∫ L

0

{
ρ1ϕ

2
t + ρ2ψ

2
t + ρ1ω

2
t + ρ3θ

2 + bψ2
x

}
dx (5.17)

+
1

2

d

dt

∫ L

0

{
k (ϕx + ψ + lω)2 + k0 (ωx − lϕ)2 + αq2

}
dx

= −µ1

∫ L

0

ϕ2
t − λ1

∫ L

0

ω2
t − µ2

∫ L

0

z1(x, 1, t)ϕtdx− β
∫ L

0

q2dx

−λ2

∫ L

0

z2(x, 1, t)ωtdx− δ
∫ L

0

ψt

∫ t

0

g(t− s)ψxx(s)dsdx,

and

ξ1

τ1

∫ L

0

∫ 1

0

z1z1ρ(x, ρ, t)dρdx =
ξ1

τ1

∫ L

0

∫ 1

0

d

2dρ
z2

1(x, ρ, t)dρdx

=
ξ1

2τ1

∫ L

0

[z2
1(x, 1, t)− z2

1(x, 0, t)]dx

=
ξ1

2τ1

∫ L

0

z2
1(x, 1, t)dx− ξ1

2τ1

∫ L

0

ϕ2
tdx,

ξ2

τ2

∫ L

0

∫ 1

0

z2z2ρ(x, ρ, t)dρdx =
ξ2

τ2

∫ L

0

∫ 1

0

d

2dρ
z2

2(x, ρ, t)dρdx

=
ξ2

2τ2

∫ L

0

[z2
2(x, 1, t)− z2

2(x, 0, t)]dx

=
ξ2

2τ2

∫ L

0

z2
2(x, 1, t)dx− ξ2

2τ2

∫ L

0

ω2
t dx.

Now, we estimate the last term on the left-hand side of (5.17).

δ

∫ L

0

ψt(t)

∫ t

0

g(t− s)ψxx(s)dsdx =
δ

2

d

dt

∫ L

0

(g ◦ ψx)dx+
δ

2
g(t)

∫ L

0

ψ2
x(t)dx

−δ
2

d

dt

(∫ t

0

g(s)ds

∫ 1

0

ψ2
x(t)dx

)
− δ

2

∫ L

0

(g
′ ◦ ψx)dx.
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We have also

−µ2

∫ L

0

z1(x, 1, t)ϕtdx ≤
|µ2|
2

(∫ L

0

ϕ2
tdx+

∫ L

0

z2
1(x, 1, t)dx

)
,

−λ2

∫ L

0

z2(x, 1, t)ωtdx ≤
|λ2|
2

(∫ L

0

ω2
t dx+

∫ L

0

z2
2(x, 1, t)dx

)
So, we conclude

E ′(t) ≤ δ

2

∫ L

0

(g
′ ◦ ψx)dx−

δ

2
g(t)

∫ L

0

ψ2
xdx−

(
µ1 −

ξ1

2τ1

− |µ2|
2

)∫ L

0

ϕ2
tdx

−
(
λ1 −

ξ2

2τ2

− |λ2|
2

)∫ L

0

ω2
t dx−

(
ξ1

2τ1

− |µ2|
2

)∫ L

0

z2
1(x, 1, t)dx

−
(
ξ2

2τ2

− |λ2|
2

)∫ L

0

z2
2(x, 1, t)dx.

Using (5.16), we have, for some n0, n
′
0 > 0,

E ′(t) ≤ δ

2

∫ L

0

(g
′ ◦ ψx)dx−

δ

2
g(t)

∫ L

0

ψ2
xdx− n0

(∫ L

0

ϕ2
tdx+

∫ L

0

z2
1(x, 1, t)dx

)
−n′0

(∫ L

0

ω2
t dx+

∫ L

0

z2
2(x, 1, t)dx

)
≤ 0.

Lemma 5.4 Let (ϕ, ψ, ω, θ, q, z1, z2) be a solution of (5.10)-(5.11). Then the functional

I1(t) = −ρ2

∫ L

0

ψt

(∫ t

0

g(t− s)(ψ(t)− ψ(s)ds

)
dx (5.18)

satisfies for any δ
′
> 0

I ′1(t) ≤ −ρ2

(
g0 − δ

′
)∫ L

0

ψ2
t dx+

(
b2 + δ2g2

1 − 2bδg0

)
δ
′
∫ L

0

ψ2
xdx

+kδ
′
∫ L

0

(ϕx + ψ + lω)2 dx− ρ2g (0)

4δ′

∫ L

0

(g′ ◦ ψx) dx

+C
(
δ
′
)∫ L

0

g ◦ ψxdx+
1

2

∫ L

0

θ2dx. (5.19)

Proof. Taking the derivative of I1, using the third equation in (5.10), we obtain

I ′1(t) = −ρ2

∫ L

0

ψt (g′ � ψ) dx− ρ2

(∫ t

0

g (s) ds

)∫ L

0

ψ2
t dx (5.20)

+

(
b− δ

∫ t

0

g (s) ds

)∫ L

0

(g � ψx)ψxdx+ k

∫ L

0

(ϕx + ψ + lw) (g � ψ) dx

+δ

∫ L

0

(g � ψx)2 dx−
∫ L

0

θ (g � ψx) dx
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By using Young’s inequality, and (5.13), we get, for any δ
′
> 0

δ

∫ L

0

(g � ψx)2 dx ≤ δg1

∫ L

0

(g ◦ ψx) dx (5.21)

−
∫ L

0

ψt (g′ � ψ) dx ≤ δ
′
∫ L

0

ψ2
t dx−

ρ2g (0)

4δ′

∫ L

0

(g′ ◦ ψx) dx (5.22)

k

∫ L

0

(ϕx + ψ + lw) (g � ψ) dx ≤ kδ
′
∫ L

0

(ϕx + ψ + lw)2 dx+
g1k

4δ′

∫ L

0

(g ◦ ψx) dx (5.23)

(
b− δ

∫ t

0

g (s) ds

)∫ L

0

(g � ψx)ψxdx ≤
(
b2 + δ2g2

1 − 2bδg0

)
δ
′
∫ L

0

ψ2
xdx

+
g1

4δ′

∫ L

0

(g ◦ ψx) dx (5.24)

−
∫ L

0

θ (g � ψx) dx ≤
1

2

∫ L

0

θ2dx+
g1

2

∫ L

0

(g ◦ ψx) dx (5.25)

Combining (5.20)-(5.25), the result follows.

Lemma 5.5 Let (ϕ, ψ, ω, θ, q, z1, z2) be the solution of (5.10)-(5.11), then for ε1, ε2, ε3 >

0, the functional

I2(t) = −ρ2ρ3

γ

∫ L

0

θ

∫ x

0

ψt(y)dydx (5.26)

satisfies the estimate

I ′2(t) ≤ −ρ2

γ

∫ L

0

ψ2
t dx+ ε1

∫ L

0

(ϕx + ψ + lω)2 dx+ c

(
1

ε1
+

1

ε2
+

1

ε3
+ 1

)∫ L

0

θ2dx

+ (ε2 + 2g1ε3)

∫ L

0

ψ2
xdx+ c

∫ L

0

q2dx+ 2g1ε3

∫ L

0

g ◦ ψxdx. (5.27)

Proof. A simple differentiation of I2, then exploiting the third and sixth equations in

(5.10), leads to

I ′2(t) = −ρ2

∫ L

0

ψ2
t dx+ ρ3

∫ L

0

θ2dx− ρ2

γ

∫ L

0

qψtdx−
bρ3

γ

∫ L

0

θψxdx

−kρ3

γ

∫ L

0

(ϕx + ψ + lω)

∫ x

0

θ(y)dydx+
δρ3

γ

∫ L

0

θ

∫ t

0

g(t− s)ψxdsdx

Estimate (5.27) follows by using Cauchy–Schwarz and Young’s inequalities.

Lemma 5.6 Let (ϕ, ψ, ω, θ, q, z1, z2) be the solution of (5.10)-(5.11), then for ε4 > 0, the

functional

I3(t) = αρ3

∫ L

0

θ

∫ x

0

q(y)dydx (5.28)
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satisfies the estimate

I ′3(t) ≤ −ρ3

2

∫ L

0

θ2dx+ δ
′
∫ L

0

ψ2
t dx+ c

(
1 +

1

4δ′

)∫ L

0

q2dx. (5.29)

Proof. A simple differentiation of I3, then exploiting the last two equations in (5.10),

leads to

I ′3(t) = −ρ3

∫ L

0

θ2dx+ α

∫ L

0

q2dx+ αγ

∫ L

0

qψtdx− βρ3

∫ L

0

θ

∫ x

0

q(y)dydx

Estimate (5.29) follows by using Cauchy–Schwarz and Young’s inequalities.

Lemma 5.7 Let (ϕ, ψ, ω, θ, q, z1, z2) be the solution of (5.10)-(5.11), then for δ
′
> 0, the

functional

I4(t) = ρ1

∫ L

0

ϕt

(
ϕ+

∫ x

0

ψ(y)dy

)
dx (5.30)

satisfies the estimate

I ′4(t) ≤ −k
2

∫ L

0

(ϕx + ψ + lω)2 dx− lk0

2

∫ L

0

(ωx − lϕ)2 dx+ δ
′
c

∫ L

0

ψ2
t dx

+

(
c+

1

4δ′

)∫ L

0

ϕ2
tdx+ c

∫ L

0

z2
1(x, 1, t)dx. (5.31)

Proof. A simple differentiation of I4, then exploiting the first equation in (5.10), leads

to

I ′4(t) = ρ1

∫ L

0

ϕt

∫ x

0

ψt(y)dydx− µ2

∫ L

0

(
ϕ+

∫ x

0

ψ(y)dy

)
z1(x, 1, t)dx

−k
∫ L

0

(ϕx + ψ + lω)2 dx+ ρ1

∫ L

0

ϕ2
tdx− lk0

∫ L

0

(ωx − lϕ)2 dx

−µ1

∫ L

0

ϕt

(
ϕ+

∫ x

0

ψ(y)dy

)
dx.

Using Cauchy–Schwarz, Poincaré’s and Young’s inequalities gives (5.31).

Lemma 5.8 Let (ϕ, ψ, ω, θ, q, z1, z2) be the solution of (5.10)-(5.11), then for δ
′
, ε4 > 0,

the functional

I5(t) = ρ2

∫ L

0

ψψtdx (5.32)

satisfies the estimate

I ′5(t) ≤
(
− b

2
+
δ2

4δ′
+
γ2

ε4
+ 2g1δ

′
)∫ L

0

ψ2
xdx+ 2g1δ

′
∫ L

0

(g ◦ ψx) dx

+ρ2

∫ L

0

ψ2
t dx+

k2

b

∫ L

0

(ϕx + ψ + lω)2 dx+ ε4

∫ L

0

θ2dx. (5.33)
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Proof. A simple differentiation of I5, then exploiting the first equation in (5.10), leads

to

I ′5(t) = − b
2

∫ L

0

ψ2
xdx+ ρ2

∫ L

0

ψ2
t dx+ γ

∫ L

0

θψxdx

−k
∫ L

0

(ϕx + ψ + lω)ψdx+ δ

∫ L

0

ψx

∫ t

0

g(t− s)ψxdsdx.

Using (5.13), (5.14), Cauchy–Schwarz, Poincaré’s and Young’s inequalities gives (5.33).

Lemma 5.9 Let (ϕ, ψ, ω, θ, q, z1, z2) be the solution of (5.10)-(5.11) and for k = k0 and

δ
′
> 0, the functional

I6(t) = −ρ1

∫ L

0

ϕt (ωx − lϕ) dx− ρ1

∫ L

0

ωt (ϕx + ψ + lω) dx (5.34)

satisfies the estimate

I ′6(t) ≤
(

2δ
′ − k0l

)∫ L

0

(ωx − lϕ)2 dx+

(
ρ1l +

µ2
1

4δ′

)∫ L

0

ϕ2
tdx (5.35)

+
(
kl + 2δ

′
)∫ L

0

(ϕx + ψ + lω)2 dx+

(
ρ2

1

4δ′
+
λ2

1

4δ′
− ρ1l

)∫ L

0

ω2
t dx

+δ
′
∫ L

0

ψ2
t dx+

µ2
2

4δ′

∫ L

0

z2
1(x, 1, t)dx+

λ2
2

4δ′

∫ L

0

z2
2(x, 1, t)dx.

Proof. A simple differentiation of I6, using the first and fourth equations in (5.10), leads

to

I ′6(t) = −k0l

∫ L

0

(ωx − lϕ)2 dx+ ρ1l

∫ L

0

ϕ2
tdx+ kl

∫ L

0

(ϕx + ψ + lω)2 dx

−ρ1l

∫ L

0

ω2
t dx− ρ1

∫ L

0

ωtψtdx+ µ1

∫ L

0

ϕt (ωx − lϕ) dx

+λ1

∫ L

0

ωt (ϕx + ψ + lω) dx+ µ2

∫ L

0

z1(x, 1, t) (ωx − lϕ) dx

+λ2

∫ L

0

z2(x, 1, t) (ϕx + ψ + lω) dx

Using Young’s inequality for the last five terms in the right-hand side gives (5.35) under

the condition k = k0.

Lemma 5.10 Let (ϕ, ψ, ω, θ, q, z1, z2) be a solution of (5.10)-(5.11). Then the functional

I7 (t) = −ρ1

∫ L

0

(ϕϕt + ωωt) dx−
µ1

2

∫ L

0

ϕ2dx− λ1

2

∫ L

0

ω2dx
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satisfies, for c > 0, the estimate

I ′7(t) ≤ −ρ1

∫ L

0

ϕ2
tdx− ρ1

∫ L

0

ω2
t dx+ c

∫ L

0

(ϕx + ψ + lω)2 dx (5.36)

+c

∫ L

0

(ωx − lϕ)2 dx+ c

∫ L

0

ψ2
xdx+

µ2
2

2

∫ L

0

z2
1(x, 1, t)dx

+
λ2

2

2

∫ L

0

z2
2(x, 1, t)dx (5.37)

Proof. Taking the derivative of I7, by using equations in (5.10), we get

I ′7(t) = −ρ1

∫ L

0

ϕ2
tdx− ρ1

∫ L

0

ω2
t dx+ k

∫ L

0

(ϕx + ψ + lω)2 dx (5.38)

+k0

∫ L

0

(ωx − lϕ)2 dx− k
∫ L

0

(ϕx + ψ + lw)ψdx

+µ2

∫ L

0

ϕz1(x, 1, t)dx+ λ2

∫ L

0

ωz2(x, 1, t)dx, (5.39)

according to (5.15), we have the following relation where c is a positive constant∫ L

0

[
ϕ2
x + ψ2

x + ω2
x

]
dx ≤ c

∫ L

0

[
(ϕx + ψ + lω)2 + (ωx − lϕ)2 + ψ2

x

]
dx. (5.40)

We obtain the result by using (5.40) and Young’s inequality.

Lemma 5.11 Let (ϕ, ψ, ω, θ, q, z1, z2) be the solution of (5.10)-(5.11). Then the func-

tional I8 defined by

I8(t) = τ1

∫ L

0

∫ 1

0

e−2τ1ρz2
1(x, ρ, t)dρdx (5.41)

satisfies

I ′8(t) ≤ −2I8(t)− C1

∫ L

0

z2
1(x, 1, t)dx+

∫ L

0

ϕ2
tdx (5.42)

Proof. By differentiating I8, then by using (5.10)2 and (5.10)5, and integrating by parts,

we get

I ′8(t) = −2

∫ L

0

∫ 1

0

e−2τ1ρz1z1ρ(x, ρ, t)dρdx

= −2τ1

∫ L

0

∫ 1

0

e−2τ1ρz2
1(x, ρ, t)dρdx−

∫ L

0

∫ 1

0

d

dρ

(
e−2τ1ρz2

1(x, ρ, t)
)
dρdx

= −2I8(t)−
∫ L

0

e−2τ1z2
1(x, 1, t)dx+

∫ L

0

ϕ2
tdx.

= −2I8(t)− C1

∫ L

0

z2
1(x, 1, t)dx+

∫ L

0

ϕ2
tdx.

for C1 > 0.
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Lemma 5.12 Let (ϕ, ψ, ω, θ, q, z1, z2) be the solution of (5.10)-(5.11). Then the func-

tional I8 defined by

I9(t) = τ2

∫ L

0

∫ 1

0

e−2τ2ρz2
2(x, ρ, t)dρdx (5.43)

satisfies

I ′9(t) ≤ −2I9(t)− C2

∫ L

0

z2
2(x, 1, t)dx+

∫ L

0

ω2
t dx (5.44)

Proof. By differentiating I8, then by using (5.10)2 and (5.10)5, and integrating by parts,

we get

I ′9(t) = −2

∫ L

0

∫ 1

0

e−2τ2ρz2z2ρ(x, ρ, t)dρdx

= −2τ2

∫ L

0

∫ 1

0

e−2τ2ρz2
2(x, ρ, t)dρdx−

∫ L

0

∫ 1

0

d

dρ

(
e−2τ2ρz2

2(x, ρ, t)
)
dρdx

= −2I9(t)−
∫ L

0

e−2τ2z2
2(x, 1, t)dx+

∫ L

0

ω2
t dx.

= −2I9(t)− C2

∫ L

0

z2
2(x, 1, t)dx+

∫ L

0

ω2
t dx.

for C2 > 0.

Now, we are ready to state and prove the main result of this section. First, we define

a Lyapunov functional L as follows

L(t) = NE(t) +
9∑
i=1

NiIi(t) (5.45)

satisfies, for Ni, i = 1, 2, ..., 9 are positive constants to be properly chosen later, with

sufficiently large N , one can easily prove that

α1E(t) ≤ L(t) ≤ α2E(t), ∀t ≥ 0 (5.46)

where α1 and α2 are positive constants.

Theorem 5.1 Let (ϕ, ψ, ω, θ, q, z1, z2) be the solution of (5.10)-(5.11) and assume that

(A1), (A2), k = k0, µ1 > |µ2| and λ1 > |λ2| hold. Then, the energy functional (5.12)

satisfies,

E(t) ≤ c1e
−c2

∫ t
t0
η(s)ds

, ∀t ≥ 0

where c1 and c2 are positive constants.
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Proof. From the estimates of the previous lemmas we have

L′(t) ≤ {−n0N + cN4 + lρ1N6 − ρ1N7 +N8}
∫ L

0

ϕ2
tdx

+

{
−ρ2g0N1 −

ρ2

γ
N2 + ρ2N5

}∫ L

0

ψ2
t dx

+
{
−n′0N − lρ1N6 − ρ1N7 +N9

}∫ L

0

ω2
t dx+ {−βN + cN2 + cN3}

∫ L

0

q2dx

+

{
−N δ

2
g(t) + (ε2 + 2g1ε3)N2 +

(
−b
2

+
γ2

ε4

)
N5 + cN7

}∫ L

0

ψ2
xdx

+

{
N1

2
+ cN2

(
1

ε1
+

1

ε2
+

1

ε3
+ 1

)
− ρ3

2
N3 + ε4N5

}∫ L

0

θ2dx

+

{
− lk0

2
N4 − lk0N6 + cN7

}∫ L

0

(ωx − lϕ)2 dx

+

{
ε1N2 −

k

2
N4 +

k2

b
N5 + lkN6 + cN7

}∫ L

0

(ϕx + ψ + lω)2 dx

+

{
−n0N + cN4 +

µ2
2

2
N7 − C1N8

}∫ L

0

z2
1(x, 1, t)dx

+

{
−n′0N +

λ2
2

2
N7 − C

′

1N9

}∫ L

0

z2
2(x, 1, t)dx

+ {−mN8}
∫ L

0

z2
1(x, ρ, t)dx+ {−mN9}

∫ L

0

z2
2(x, ρ, t)dx

+
{
c(δ

′
N1 + 2g1ε3N2)

}∫ L

0

(g ◦ ψx) dx+N
δ

2

∫ L

0

(
g
′ ◦ ψx

)
dx

+δ
′
∫ L

0

[
(N3 + ρ2N1 + cN4 +N6)ψ2

t + (2N6 + kN1) (ϕx + ψ + lω)2

+2N6 (ωx − lϕ)2 +
[(
b2 + δ2 − 2δbg0

)
N1 + 2g1N5

]
ψ2
x + 2g1N5 (g ◦ ψx)

]
dx

+
1

δ′

∫ L

0

[
ρ2g(0)

4
N1 (g′ ◦ ψx) +

N3

4
cq2 +

δ2

4
N5ψ

2
x +

(
ρ2

1

4
+
λ2

1

4

)
N6ω

2
t

]
dx

+
1

δ′

∫ L

0

[(
µ2

1

4
N6 +

N4

4

)
ϕ2
t +

µ2
2

4
N6z

2
1(x, 1, t) +

λ2
2

4
N6z

2
2(x, 1, t)

]
dx

+ {−mN8}
(∫ L

0

z2
1(x, ρ, t)dx+

∫ L

0

z2
2(x, ρ, t)dx

)

+
{(
c(δ

′
) + 2g1

)
N1

}∫ L

0

(g ◦ ψx) dx+N
δ

2

∫ L

0

(
g
′ ◦ ψx

)
dx

+δ
′
C1(N1, N3, N4)E(t)− 1

δ′
C2(N1, N3, N4)E

′
(t).
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By taking ε2 = ε3 = ε4 = N5 = N6 = N7 = 1, N1 = N2 and N8 = N9, we arrive at

L′(t) ≤ {−n0N + cN4 + lρ1 − ρ1 +N8}
∫ L

0

ϕ2
tdx+

{(
−ρ2g0 −

ρ2

γ

)
N1 + ρ2

}∫ L

0

ψ2
t dx

+
{
−n′0N − lρ1 − ρ1 +N8

}∫ L

0

ω2
t dx+ {−βN + cN2 + cN3}

∫ L

0

q2dx

+

{
−N δ

2
g(t) + (1 + 2g1)N1 +

−b
2

+ γ2 + c

}∫ L

0

ψ2
xdx

+

{(
1

2
+ c

(
1

ε1
+ 3

))
N1 −

ρ3

2
N3 + 1

}∫ L

0

θ2dx

+

{
− lk0

2
N4 − lk0 + c

}∫ L

0

(ωx − lϕ)2 dx

+

{
ε1N1 −

k

2
N4 +

k2

b
+ lk + c

}∫ L

0

(ϕx + ψ + lω)2 dx

+

{
−n0N + cN4 +

µ2
2

2
− C1N8

}∫ L

0

z2
1(x, 1, t)dx

+

{
−n′0N +

λ2
2

2
− C ′1N8

}∫ L

0

z2
2(x, 1, t)dx (5.47)

Let us choose N4 large enough such that

− lk0

2
N4 − lk0 + c < 0,

Picking N4 and choose N1 large enough so that(
−ρ2g0 −

ρ2

γ

)
N1 + ρ2 < 0,

choose ε1 small enough so that

ε1N1 −
k

2
N4 +

k2

b
+ lk + c < 0.

Next, we select N3 large enough such that(
1

2
+ c

(
1

ε1
+ 3

))
N1 −

ρ3

2
N3 + 1 < 0,

Finally, we choose N sufficiently large to satisfy

−n0N + cN4 +N8 + ρ1 (l − 1) < 0, − n′0N − C
′
1N8 +

λ22
2
< 0.

−n′0N +N8 − ρ1 (l + 1) < 0, − n0N + cN4 − C1N8 +
µ22
2
< 0,

−βN + cN1 + cN3 < 0, −N δ
2
g(t) + (1 + 2g1)N1 + −b

2
+ γ2 + c < 0.
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Therefor, (5.47) takes the form

L′(t) ≤ −
[
C0 − C1 (N1, N3, N4) δ

′
]
E(t)− C2 (N1, N3, N4)

δ′
E ′(t) + C3

∫ L

0

(g ◦ ψx)dx

for some positive constants C0, C1, C2, C3. At this point, we take δ
′
< C0

C1
, then for some

m0 > 0, we obtain

L′(t) ≤ −m0E(t) + C3

∫ L

0

(g ◦ ψx)dx−
C2

δ′
E ′(t). (5.48)

Multiplying (5.48) by η(t) gives

η(t)L′(t) ≤ −m0η(t)E(t) + C3η(t)

∫ L

0

(g ◦ ψx)dx−
C2

δ′
η(t)E ′(t). (5.49)

The second term can be estimated, using (A2), as follows

C3η(t)

∫ L

0

(g ◦ ψx)dx = C3η(t)

∫ L

0

∫ t

0

g(t− s) (ψx(t)− ψx(s))2 dsdx

≤ −2C3

β
E ′(t),

so for some C4 > 0, (5.49) becomes as follows

η(t)L′(t) ≤ −m0η(t)E(t)− C ′4E(t)− C2

δ′
η(t)E ′(t). (5.50)

We have

F(t) = η(t)

(
L(t) +

C2

δ′
E(t)

)
∼ E(t)

Therefore, using (5.50) and the fact that η
′
(t) ≤ 0, we arrive at,

F ′(t) = η
′
(t)

(
L(t) +

C2

δ′
E(t)

)
+ η(t)

(
L′(t) +

C2

δ′
E ′(t)

)
≤ η(t)

(
L′(t) +

C2

δ′
E ′(t)

)
.

So

F ′(t) ≤ −m0η(t)E(t)− C ′4E(t).

Now, we set

G(t) = F(t) + C4E(t) ∼ E(t),

gives

G ′(t) = F ′(t) + C4E
′
(t) ≤ −m0η(t)E(t). (5.51)

A simple integration of (5.51) over (t0, t) leads to

G(t) ≤ G(t0)e
−m0

∫ t
t0
η(s)ds

. (5.52)

Recalling (5.46) and the estimate (5.52) completes the proof.

5.3. Exponential stability result
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CHAPTER 6

GLOBAL EXISTENCE AND GENERAL DECAY FOR A DELAYED FLEXIBLE

STRUCTURE WITH SECOND SOUND SUBJECTED TO WEAKLY NONLINEAR

DAMPING

6.1 Introduction

In this chapter, we aim to study the following inhomogeneous delayed flexible structure

system of second sound with weakly nonlinear damping
m(x)utt − (p(x)ux + 2δ(x)uxt)x + ηθx + f(ut) +

∫ τ2
τ1
µ(s)ut (t− s) ds = 0

θt + ηutx + kqx = 0

τqt + βq + kθx = 0,

(6.1)

where u(x, t) is the displacement of a particle at position x ∈ (0, L) and time t > 0.

η > 0 is the coupling constant, that accounts for the heating effect, and β, k > 0. θ is

the temperature of the body, q = q(x, t) is the heat flux and the parameter τ > 0 is

the relaxation time describing the time lag in the response for the temperature. s > 0

is a real number represents the time delay. m(x), δ(x) and p(x) are responsible for the

non-uniform structure of the body, and, respectively, denote mass per unit length of

structure, coefficient of internal material damping and a positive function related to the

stress acting on the body at a point x, and for τ1, τ2 two real numbers satisfying 0 ≤ τ1

< τ2, µ : [τ1; τ2] −→ R is a bounded function. f is specific function satisfying some

conditions to be determined later. Here, f (ut) is the nonlinear dissipative term. The

model of heat condition, originally due to Cattaneo, is of hyperbolic type.
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We consider the following initial and boundary conditions:

u (., 0) = u0 (x) , ut (., 0) = u1 (x) , θ (., 0) = θ0 (x) , q (., 0) = q0 (x) ,

u (0, t) = u (L, t) = θ (0, t) = θ (L, t) = 0, ∀t ≥ 0, ∀x ∈ [0, L],

ut (x,−t) = g0(x, t), 0 < t ≤ τ2,

(6.2)

where g0 is the history function.

The issue of existence and stability of flexible structure system has attracted a great

deal of attention in the last years (e.g. [26, 43]). S. Misra et al. [73] considered the

vibrations of a cantilever structure modeled by the standard linear flexible model of vis-

coelasticity coupled to an expectedly dissipative effect through heat conduction{
m(x)utt − (p(x)ux + 2δ(x)uxt)x − kθx = f

θt − θxx − kutx = 0.

The distributed force f : (0, L)× R → R is the uncertain disturbance appearing in the

model which is assumed to be continuously differentiable for all t ≥ 0. By using semi-

groups theory and multiplier technique, they established the well-posedness and an expo-

nential stability of the system when the disturbing force is insignificant. In the absence

of both delay and nonlinear damping terms, Alves et al. [8] concerned with the system
m(x)utt − (p(x)ux + 2δ(x)uxt)x + ηθx = 0

θt + kqx + ηutx = 0

τqt + βq + kθx = 0.

(6.3)

They established the well-posedness of the system and proved its stability exponential

and polynomial under suitable boundary conditions.

The original motivation of this type of problem was first introduced by Datko et al.

[32] in 1986 when they showed that the presence of the delay may not only destabilize

a system which is asymptotically stable in the absence of the delay but may also lead

to ill-posedness (see also [78] and [84]). On the other hand, it has been established that

voluntary introduction of delay can benefit the control (see [2]). We refer the interested

readers to [9, 10, 18, 20, 41, 42] for details discussion on the subject. In the context of

asymptotic stabilization with nonlinear feedback damping, first results are given in [1]

(in 2002) where the author studies the asymptotic behaviour of the system governing the

nonlinear vibrations of a Timoshenko beam,{
utt − αβ (ux − v)x − γ ‖ux‖

2 uxx + g (ut) = 0
1
α
vtt − vxx − αβ (ux − v) + g (vt) = 0,

(6.4)

where g : R→ R is a C1-class, non-increasing function with g(0) = 0 and satisfying

c1 |x|r ≤ g (x) ≤ c2 |x|1/r for |x| ≤ 1,

c3 |x|k ≤ g (x) ≤ c4 |x|s for |x| > 1.

6.1. Introduction
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Muñoz Rivera and Racke [76] treated a system of the form
ρ1ϕtt − σ (ϕx, ψ)x = 0

ρ2ψtt − bψxx + k (ϕx + ψ) + γθx = 0

ρ3θt −Kθxx + γψxt = 0.

(6.5)

where ϕ, ψ and θ are functions of (x, t) model transverse displacement of the beam,

the rotation angle of the filament and the difference temperature, respectively. Under

appropriate conditions of σ, ρi, b, K and γ, they proved several exponential decay results

for the linearized system and nonexponential stability result for the case of different

wave speeds of propagation. Also, Muñoz Rivera and Racke [77] considered the following

nonlinear Timoshenko system{
ρ1ϕtt − σ (ϕx, ψ)x = 0

ρ2ψtt − bψxx + k (ϕx + ψ) + dψt = 0.
(6.6)

with homogeneous boundary conditions and proved that the system is exponentially stable

if and only if ρ1/k = ρ2/b and a polynomial stability otherwise. Alabau-Boussouira [4]

extended these last results of Muñoz Rivera and Racke to the case of nonlinear feedback

α (ψt), instead of dψ. He considered the following nonlinear Timoshenko system{
ρ1ϕtt − k (ϕx + ψ)x = 0

ρ2ψtt − bψxx + k (ϕx + ψ) + α (ψt) = 0.
(6.7)

where α is a globally Lipchitz function satisfying some growth conditions at the origin, and

established a general semi-explicit formula for the decay rate of the energy at infinity in the

case of the same speed of propagation in the two equations of the system
(

i.e. k
ρ1

= b
ρ2

)
.

Our purpose here is to obtain a general decay rate estimates of the energy, for this end

we consider (6.3) with an internal distributed delay term subjected to non-linear damping

in the first equation, under a suitable assumption on the weights of the delay, heating

effect, material damping and the function f , we establish a well-posed result of the system

using semigroups theory and a general stability using the multiplier method with some

properties of convex functions and no growth assumption on f at the origin.

6.2 Well-posedness of the problem

In this section, we present some assumptions and give the existence and uniqueness result

of system (6.1)-(6.2) using the semigroups theory. Taking the following new variable

z(x, ρ, s, t) = ut (x, t− ρs) , in (0, L)× (0, 1)× (τ1, τ2)× (0,∞) .

6.2. Well-posedness of the problem
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Then we obtain {
szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0,

z(x, 0, s, t) = ut(x, t).

Consequently, problem (6.1)-(6.2) is equivalent to
m(x)utt − (p(x)ux + 2δ(x)uxt)x + ηθx + f(ut) +

∫ τ2
τ1
µ(s)z(x, 1, s)ds = 0

θt + kqx + ηutx = 0

τqt + βq + kθx = 0

szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0,

11m (6.8)

where (x, ρ, s, t) ∈ (0, L)×(0, 1)×(τ1, τ2)×(0,∞) , with the following initial and boundary

conditions:

u (., 0) = ϕ0 (x) , ut (., 0) = ϕ1 (x) , θ (., 0) = θ0 (x) , q (., 0) = q0 (x) ,

u (0, t) = u (L, t) = θ (0, t) = θ (L, t) = 0, ∀t > 0, ∀x ∈ [0, L].

z(x, ρ, s, 0) = g0(x, ρs) in (0, L)× (0, 1)× (τ1, τ2) .

(6.9)

We shall use the following assumptions:

(H1) µ : [τ1; τ2] −→ R is a bounded function satisfying∫ τ2

τ1

|µ(s)| ds < η. (6.10)

(H2) The functions m(x), δ(x) and p(x) will be supposed such that:

m, δ, p ∈ W 1,∞(0, L),m(x), p(x) > 0, 2δ(x) > lη,∀x ∈ [0, L], l = L2/π2. (6.11)

(H3) f : R→ R is a Lipschitz continuous and non-decreasing function such that there exist

positive constants k1 and λ and a convex, continuous and increasing function h : R+ → R+

of class C1 (R+) ∩ C2 (]0,+∞[) satisfying: h (0) = 0 and

h′′ = 0 on [0, λ], (6.12)

or

h′ (0) = 0 and h′′ > 0 on (0, λ], (6.13)

such that
h (f 2 (s)) ≤ f (s) s for |s| ≤ λ,

|f (s)| ≤ k1 |s| for |s| ≥ λ.

The aim of this section is to prove that system (6.8) is well-posed. From Equation

(6.8)3 and the boundary conditions (6.9), we have that

d

dt

∫ L

0

q (x, t) dx+
β

τ

∫ L

0

q (x, t) dx = 0.

6.2. Well-posedness of the problem
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So, if we set

q̃ (x, t) = q (x, t)− 1

L

(∫ L

0

q0 (x) dx

)
exp

(
−βt
τ

)
,

then, (u, ut, θ, q̃) satisfies Equation (6.1), and∫ L

0

q̃ (x, t) dx = 0, ∀t ≥ 0.

Therefore, the use of Poincaré’s inequality for q̃ is justified. In the sequel, we shall work

with q̃ but we write q for simplicity.

Let us introducing the vector function U = (u, v, θ, q, z)T , where v = ut, using the

standard Lebesgue space L2(0, L) and the Sobolev space H1
0 (0, L) with their usual scalar

products and norms for define the spaces:

H := H1
0 (0, L)×

[
L2(0, L)

]2 × L2
∗(0, L)× L2((0, L)× (0, 1)× (τ1, τ2)),

and

H1
∗ (0, L) = H1(0, L) ∩ L2

∗(0, L),

where

L2
∗(0, L) =

{
w ∈ L2(0, L) :

∫ L

0

w (s) ds = 0

}
.

We equip H with the inner product

(U, Ũ)H =

∫ L

0

p (x)uxũxdx+

∫ L

0

m (x) vṽdx+

∫ L

0

θθ̃dx+ τ

∫ L

0

qq̃dx

+

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ(s)| z(x, ρ, s)z̃(x, ρ, s)dsdρdx.

Next, the system (6.8)-(6.9) can be reduced to the following abstract Cauchy problem:{
U ′(t) + (A+ B)U(t) = 0, t > 0

U(0) = U0 = (u0, u1, θ0, q0, g0)T ,
(6.14)

where the operators A and B are defined by: A : D(A)→ H

AU =


−v

1
m(x)

(
−(p(x)ux + 2δ(x)vx − ηθ)x +

∫ τ2
τ1
µ(s)z(1, s)ds+ v

∫ τ2
τ1
|µ(s)| ds

)
kqx + ηvx

1
τ
(kθx + βq)

1
s
zρ(x, ρ, s)

 ,

6.2. Well-posedness of the problem
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and B : D(B) = H → H

BU =
1

m(x)


0

−v
∫ τ2
τ1
|µ(s)| ds+ f(v)

0

0

0

 .

The domain of A is then

D(A) =

{
U ∈ H | u ∈ H2(0, L) ∩H1

0 (0, L), v, θ ∈ H1
0 (0, L), q ∈ H1

∗ (0, L)

z, zρ ∈ L2((0, L)× (0, 1)× (τ1, τ2)), z(x, 0, s) = v

}

Clearly, D(A) is dense in H.

Before state an existence and uniqueness result, we refer the reader to [61] (from page

90), [81] and the references therein, for more details discussion about solutions of (6.14),

then we have

Proposition 6.1 Let U0 ∈ H be given. Assume that (H1)−(H3) are satisfied, Problem

(6.14) possesses then a unique solution satisfying U ∈ C (R+;H) . If U0 ∈ D(A), then

U ∈ C1 (R+;H) ∩ C (R+;D(A)) .

Proof. We use the semigroups approach to prove that A is a maximal monotone operator

and that B is a Lipschitz continuous operator. In what follows, we prove that A is

monotone. For any U ∈ D(A), we have

(AU,U)H = −
∫ L

0

p (x) vxuxdx−
∫ L

0

[p (x)ux]x vdx+

∫ L

0

ηθxvdx

−2

∫ L

0

[δ (x) vx]x vdx+

∫ L

0

v

∫ τ2

τ1

µ(s)z(x, 1, s, t)dsdx

+k

∫ L

0

θqxdx+

∫ L

0

ηθvxdx+ k

∫ L

0

θxqdx+

∫ L

0

βq2dx

+

∫ L

0

∫ 1

0

∫ τ2

τ1

|µ(s)| zzρdsdρdx+

∫ τ2

τ1

|µ(s)| ds
∫ L

0

v2dx.

Integration by parts and using the fact that∫ L

0

∫ 1

0

∫ τ2

τ1

|µ(s)| zzρdsdρdx =
1

2

∫ L

0

∫ τ2

τ1

∫ 1

0

|µ(s)| ∂
∂ρ
z2dρdsdx

=
1

2

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx

−1

2

∫ τ2

τ1

|µ(s)| ds
∫ L

0

v2dx,

6.2. Well-posedness of the problem
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we get

(AU,U)H = 2

∫ L

0

δ (x) v2
xdx+

∫ L

0

βq2dx+
1

2

∫ τ2

τ1

|µ(s)| ds
∫ L

0

v2dx

+

∫ L

0

v

∫ τ2

τ1

µ(s)z(x, 1, s)dsdx

+
1

2

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s)dsdx. (6.15)

By using Young’s inequality, the fourth term on the right-hand side of Equation (6.15)

gives

−
∫ L

0

v

∫ τ2

τ1

µ(s)z(x, 1, s)dsdx

≤ 1

2

(∫ τ2

τ1

|µ(s)| ds
)∫ L

0

v2dx+
1

2

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s)dsdx, (6.16)

which implies that∫ L

0

v

∫ τ2

τ1

µ(s)z(x, 1, s)dsdx

≥ −1

2

(∫ τ2

τ1

|µ(s)| ds
)∫ L

0

v2dx− 1

2

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s)dsdx,

from this last, the Equation (6.15) yields

(AU,U)H ≥ 2

∫ L

0

δ (x) v2
xdx+

∫ L

0

βq2dx ≥ 0.

Hence, A is monotone. Next, we prove that the operator I + A is surjective.

Given G = (g1, g2, g3, g4, g5)T ∈ H, we prove that there exists U ∈ D(A) satisfying

(I +A)U = G, (6.17)

which gives

−v + u = g1,

−(p(x)ux + 2δ(x)vx − ηθ)x +
∫ τ2
τ1
µ(s)z(1, s)ds+

(∫ τ2
τ1
|µ(s)| ds+m (x)

)
v = m (x) g2,

kqx + ηvx + θ = g3,

kθx + (β + τ) q = τg4,

zρ + sz = sg5.

(6.18)

Suppose that u, q are given with the appropriate regularity. Then, Equations (6.18)1 and

(6.18)4 yield

v = u− g1 ∈ H1
0 (0, L), (6.19)

6.2. Well-posedness of the problem
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θx =
τ

k
g4 −

β + τ

k
q ∈ L2

∗(0, L), (6.20)

by using (6.20), we get

θ =
τ

k

∫ x

0

g4(y)dy − β + τ

k

∫ x

0

q(y)dy,

and then

θ (0, t) = θ (L, t) = 0.

The last equation in Equation (6.18) together with Equation (6.19) and the fact z(x, 0) =

v(x) = u− g1(x) yield

z(x, ρ, s) = ue−sρ − e−sρg1 + se−sρ
∫ ρ

0

esυg5(x, υ, s)dυ. (6.21)

From equation (6.19)-(6.21), we can easily show that u and q satisfy

−(p(x)ux + 2δ(x)vx)x − η(β+τ)
k

q + u
∫ τ2
τ1
µ(s)e−sds+ γu(x) = f1,

−k2qx + (β + τ)
∫ x

0
q(y)dy − kηux = f2,

−vx + ux = f3,

(6.22)

where

γ = m (x) +
∫ τ2
τ1
|µ(s)| ds,

z0(x, s) = e−sg1(x)− se−s
∫ 1

0
esυg5(x, υ, s)dυ,

f1 = γg1(x) +m (x) g2(x)− ητ
k
g4(x) +

∫ τ2
τ1
µ(s)z0(x, s)ds ∈ L2(0, L),

f2 = −kηg1(x) + τ
∫ x

0
g4(y)dy − kg3 ∈ L2(0, L),

f3 = g1x(x) ∈ L2(0, L).

The variational formulation corresponding to Equation (6.22) takes the form

B((u, q), (ũ, q̃)) = F (ũ, q̃), (6.23)

where B : [H1
0 (0, L)× L2

∗(0, L)]
2 → R is the bilinear form defined by

B((u, q), (ũ, q̃)) =

∫ L

0

(p(x) + 2δ(x))uxũxdx−
η (β + τ)

k

∫ L

0

qũdx

+ (β + τ)

∫ L

0

qq̃dx+ γ

∫ L

0

uũdx

+
(β + τ)2

k2

∫ L

0

(∫ x

0

q(y)dy

∫ x

0

q̃(y)dy

)
dx

+
η (β + τ)

k

∫ L

0

uq̃dx+

∫ L

0

uũ

∫ τ2

τ1

µ(s)e−sdsdx,

6.2. Well-posedness of the problem
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and F : H1
0 (0, L)× L2

∗(0, L)→ R is the linear functional defined by

F (ũ, q̃) =

∫ L

0

f1ũdx+
(β + τ)

k2

∫ L

0

f2

(∫ x

0

q̃(y)dy

)
dx

+

∫ L

0

2f3δ(x)ũxdx.

For V = H1
0 (0, L)× L2

∗(0, L) equipped with the norm

‖(u, q)‖2
V = ‖u‖2

2 + ‖ux‖2
2 + ‖q‖2

2 ,

where ‖.‖2 is the usual norm.

One can easily see that B and F are bounded. Also, we get

B((u, q), (u, q)) =

∫ L

0

(p(x) + 2δ(x))u2
xdx+ (β + τ)

∫ L

0

q2dx

+γ

∫ L

0

u2dx+
β + τ

k2

∫ L

0

(∫ x

0

q(y)dy

)2

dx

+

∫ L

0

u2dx

∫ τ2

τ1

µ(s)e−sds

≥ c ‖(u, q)‖2
V .

Then, B is coercive. Consequently, by the Lax–Milgram lemma, system (6.22) has a

unique solution

u ∈ H1
0 (0, L), q ∈ L2

∗(0, L).

Moreover, if q̃ ≡ 0 ∈ L2
∗(0, L), then Equation (6.23) reduces to

−
∫ L

0

(p(x)ux + 2δ(x)ux)x ũdx+ γ

∫ L

0

uũdx− η (β + τ)

k

∫ L

0

qũdx

+

∫ L

0

uũ

∫ τ2

τ1

µ(s)e−sdsdx

=

∫ L

0

f1ũdx−
∫ L

0

(2f3δ(x))x ũdx, ∀ũ ∈ H
1
0 (0, L) .

That is

− (p(x)ux + 2δ(x)ux)x + γu− η (β + τ)

k
q + u

∫ τ2

τ1

µ(s)e−sds = f1 − (2f3δ(x))x ,

then, we have

(p(x)ux + 2δ(x)ux)x = γu+ u

∫ τ2

τ1

µ(s)e−sds− η (β + τ)

k
q − f1 + (2f3δ(x))x ∈ L

2(0, L).

6.2. Well-posedness of the problem
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Consequently, by the regularity theory for the linear elliptic equations, it follows that

u ∈ H1
0 (0, L) ∩H2(0, L).

Similarly, if ũ ≡ 0 ∈ H1
0 (0, L), we obtain

q ∈ H1
∗ (0, L).

Moreover, from (6.19) and (6.20) we deduce that

v, θ ∈ H1
0 (0, L).

Hence, there exists a unique U ∈ D(A) such that Equation (6.17) is satisfied. Conse-

quently, A is a maximal monotone operator. Then, D(A) is dense in H (see Proposition

7.1 in [24] ).

On the other hand, we show that operator B is Lipschitz continuous. In fact, if

U = (u, v, θ, q, z)T and Ũ = (ũ, ṽ, θ̃, q̃, z̃)T belong to H, we have∥∥∥BU − BŨ∥∥∥
H
≤ c ‖ṽ − v‖L2 + ‖f(v)− f(ṽ)‖L2 . (6.24)

Using the embedding of H1(0, L) into L∞(0, L) (see [24] Theorem 8.8, p. 212) and (H3),

one sees that

c ‖ṽ − v‖L2 ≤ c ‖ṽ − v‖L∞(0,L) ≤ c
∥∥∥U − Ũ∥∥∥

H
. (6.25)

‖f(v)− f(ṽ)‖L2 ≤ c ‖v − ṽ‖L2 ≤ c‖U − Ũ‖H (6.26)

Combining (6.24), (6.25) and (6.26), we infer that B is Lipschitz continuous in H ( see

[18]). Consequently, A + B is the infinitesimal generator of a linear contraction C0-

semigroup on H. Hence, the result of Proposition 6.1 follows (see [61], [83]) and the

references therein.

To state our decay result, we introduce the energy functional associated to (6.8)-(6.9),

namely,

E (t, ϕ, ψ, θ, q, z) =
1

2

∫ L

0

{
p(x)u2

x +m(x)u2
t + θ2 + τq2

}
dx

+
1

2

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ(s)| z2(x, ρ, s, t)dsdρdx, (6.27)

we denote E(t) = E (t, ϕ, ψ, θ, q, z) and E(0) = E (0, ϕ0, ψ0, θ0, q0, g0) for simplicity of

notations.
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6.3 General decay result

In this section, we introduce some lemmas allow us to achieve our goal, which is the proof

of the stability result. The first one will benefit us in the next chapter too.

Lemma 6.1 [8] Let (u, ut, θ, q) be the solution to system (6.1)-(6.2), with an initial datum

in D(A). Then, for any t > 0, there exists a sequence of real numbers (depending on t),

denoted by ξi ∈ [0, L](i = 1, ..., 6), such that:∫ L

0

p (x)u2
xdx = p(ξ1)

∫ L

0

u2
xdx,

∫ L

0

m (x)u2
tdx = m(ξ2)

∫ L

0

u2
tdx,∫ L

0

m (x)u2dx = m(ξ3)

∫ L

0

u2dx,

∫ L

0

δ (x)u2dx = δ(ξ4)

∫ L

0

u2dx,∫ L

0

δ (x)u2
xdx = δ(ξ5)

∫ L

0

u2
xdx,

∫ L

0

δ (x)u2
xtdx = δ(ξ6)

∫ L

0

u2
xtdx.

Lemma 6.2 Let (u, v, θ, q, z) be the solution of (6.8)-(6.9), then the energy E is non-

increasing function and satisfies, for all t ≥ 0,

E ′(t) = −2

∫ L

0

δ (x)u2
xtdx− β

∫ L

0

q2dx−
∫ L

0

ut

∫ τ2

τ1

µ(s)z(x, 1, s, t)dsdx

−1

2

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx+
1

2

∫ L

0

u2
t

∫ τ2

τ1

|µ(s)| dsdx

−
∫ L

0

f(ut)utdx

≤ −β
∫ L

0

q2dx− c
∫ L

0

u2
xtdx−

∫ L

0

f(ut)utdx ≤ 0. (6.28)

where c > 0 is constant.

Proof. Multiplying the equations in (6.8)1,(6.8)2, and (6.8)3 by ut,θ and q, respectively,

and integrate over (0, L), we obtain

1

2

d

dt

∫ L

0

{
p(x)u2

x +m(x)u2
t + θ2 + τq2

}
dx

= −β
∫ L

0

q2dx− 2

∫ L

0

δ (x)u2
xtdx

−
∫ L

0

f(ut)utdx−
∫ L

0

ut

∫ τ2

τ1

µ(s)z(x, 1, s, t)dsdx. (6.29)

Multiplying the last equation in (6.8) by |µ(s)| z, integrating the product over (0, L) ×
(0, 1)× (τ1, τ2), and recall that z(x, 0, s, t) = ut, yield

1

2

d

dt

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ(s)| z2(x, ρ, s, t)dsdρdx

= −1

2

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx+
1

2

∫ L

0

u2
t

∫ τ2

τ1

|µ(s)| dsdx. (6.30)
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Now, a combination of (6.29) and (6.30) gives

E ′(t) = −2

∫ L

0

δ (x)u2
xtdx− β

∫ L

0

q2dx−
∫ L

0

f(ut)utdx

−
∫ L

0

ut

∫ τ2

τ1

µ(s)z(x, 1, s, t)dsdx

−1

2

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx

+
1

2

∫ L

0

u2
t

∫ τ2

τ1

|µ(s)| dsdx. (6.31)

Meanwhile, using Young and Cauchy–Schwarz inequalities, we have

−
∫ L

0

ut

∫ τ2

τ1

µ(s)z(x, 1, s, t)dsdx

≤ 1

2

∫ τ2

τ1

|µ(s)| ds︸ ︷︷ ︸
<η

∫ L

0

u2
tdx+

1

2

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx. (6.32)

Substitution of (6.32) into (6.31), using (6.10), Lemma 6.1 and (2.4) gives

E ′(t) = −2

∫ L

0

δ (x)u2
xtdx− β

∫ L

0

q2dx−
∫ L

0

f(ut)utdx

−
∫ L

0

ut

∫ τ2

τ1

µ(s)z(x, 1, s, t)dsdx+
1

2

∫ L

0

u2
t

∫ τ2

τ1

|µ(s)| dsdx

−1

2

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx

≤ −β
∫ L

0

q2dx− 2

∫ L

0

δ (x)u2
xtdx+ η

∫ L

0

u2
tdx−

∫ L

0

f(ut)utdx

≤ −β
∫ L

0

q2dx− 2δ (ξ6)

∫ L

0

u2
xtdx+ lη

∫ L

0

u2
xtdx−

∫ L

0

f(ut)utdx

≤ −β
∫ L

0

q2dx− (2δ (ξ6)− lη)

∫ L

0

u2
xtdx−

∫ L

0

f(ut)utdx

≤ −β
∫ L

0

q2dx− c
∫ L

0

u2
xtdx−

∫ L

0

f(ut)utdx ≤ 0,

which concludes the proof.

Lemma 6.3 The functional

I1(t) := τ

∫ L

0

θ

(∫ x

0

q(t, y)dy

)
dx, (6.33)
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satisfies

I ′1 (t) ≤ − (κ− βε1)

∫ L

0

θ2dx+ ε2τη

∫ L

0

u2
tdx

+

(
τ +

τη

ε2

+ l
β

ε1

)∫ L

0

q2dx, (6.34)

for ε1, ε2 > 0

Proof. Taking the derivative of (6.33) and using (6.8)2, (6.8)3, (2.4), integration by parts

and Young’s inequality, we obtain (6.34).

Lemma 6.4 Then the functional

I2 (t) :=

∫ L

0

(
δ(x)u2

x +m(x)utu
)
dx, (6.35)

satisfies

I ′2 (t) ≤ − (p(ξ1)− (η + c+ ηl) ε3)

∫ L

0

u2
xdx+m(ξ2)

∫ L

0

u2
tdx

+
η

ε3

∫ L

0

θ2dx+
1

4ε3

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx

+
1

4ε3

∫ L

0

f 2(ut) dx, (6.36)

for any ε3 > 0.

Proof. Differentiating Equation (6.35) with respect to t and using Equations (6.8)1 and

(6.9), we get

I ′2 (t) = −
∫ L

0

p(x)u2
xdx+

∫ L

0

m(x)u2
tdx− η

∫ L

0

θxudx

−
∫ L

0

f(ut)udx−
∫ L

0

u

∫ τ2

τ1

µ(s)z(x, 1, s, t)dsdx.

Using Young’s inequality, we have for ε3 > 0

−η
∫ L

0

θxudx = η

∫ L

0

uxθdx ≤ ηε3

∫ L

0

u2
xdx+

η

ε3

∫ L

0

θ2dx,

from Young’s inequality, (6.10) and (2.4), we find

−
∫ L

0

u

∫ τ2

τ1

µ(s)z(x, 1, s, t)dsdx

≤ ε3

∫ τ2

τ1

|µ(s)| ds︸ ︷︷ ︸
<η

∫ L

0

u2dx+
1

4ε3

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx

≤ lηε3

∫ L

0

u2
xdx+

1

4ε3

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx,
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and

−
∫ L

0

uf(ut) dx ≤ ε3

∫ L

0

u2dx+
1

4ε3

∫ L

0

f 2(ut) dx

≤ cε3

∫ L

0

u2
xdx+

1

4ε3

∫ L

0

f 2(ut) dx,

application of Lemma 6.1 and the recent inequalities completes the proof.

Lemma 6.5 The functional

I3 (t) =

∫ L

0

∫ 1

0

∫ τ2

τ1

se−sρ |µ(s)| z2(x, ρ, s, t)dsdρdx, (6.37)

satisfies

I ′3 (t) ≤ −η1

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ(s)| z2(x, ρ, s, t)dsdρdx

−η1

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx+ η

∫ L

0

u2
tdx. (6.38)

for η1 > 0.

Proof. Differentiating (6.37) and using the last equation in (6.8), we obtain

I ′3(t) = −2

∫ L

0

∫ 1

0

∫ τ2

τ1

e−sρ |µ(s)| z(x, ρ, s, t)zρ(x, ρ, s, t)dsdρdx

= −
∫ L

0

∫ 1

0

∫ τ2

τ1

|µ(s)| ∂
∂ρ

[e−sρz2(x, ρ, s, t)]dsdρdx

−
∫ L

0

∫ 1

0

∫ τ2

τ1

se−sρ |µ(s)| z2(x, ρ, s, t)dsdρdx

= −
∫ L

0

∫ τ2

τ1

|µ(s)| [e−sz2(x, 1, s, t)− z2(x, 0, s, t)]dsdx

−
∫ L

0

∫ 1

0

∫ τ2

τ1

se−sρ |µ(s)| z2(x, ρ, s, t)dsdρdx,

using the fact that z(x, 0, s, t) = ut and e−s ≤ e−sρ ≤ 1, we get for ρ ∈ [0, 1]

I ′3(t) ≤
∫ L

0

∫ τ2

τ1

e−s |µ(s)| z2(x, 1, s, t)dsdx+

∫ τ2

τ1

|µ(s)| ds︸ ︷︷ ︸
<η

∫ L

0

u2
tdx

−
∫ L

0

∫ 1

0

∫ τ2

τ1

se−s |µ(s)| z2(x, ρ, s, t)dsdρdx.

Because −e−s is an increasing function, we have −e−s ≤ −e−τ2 for all s ∈ [τ1, τ2]. Finally,

setting η1 = −e−τ2 and recalling (6.10), we obtain (6.38).

Next, we define a Lyapunov functional L and show that it is equivalent to the energy

functional E.
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Lemma 6.6 For N sufficiently large, the functional defined by

L(t) := NE (t) +N1I1(t) + I2(t) +N2I3(t). (6.39)

where N1 and N2 are positive real numbers to be chosen appropriately later, satisfies

c′1E(t) ≤ L(t) ≤ c′2E(t), ∀t ≥ 0. (6.40)

where c′1 and c′2 are positive constants.

Proof. Let

L(t) := N1I1(t) + I2(t) +N2I3(t).

then, exploiting Young’s, Poincaré’s, Cauchy-Schwarz inequalities, (6.27), and the fact

that e−sρ ≤ 1, we obtain

|L(t)| ≤ N1τ

∫ L

0

∣∣∣∣θ(∫ x

0

q(t, y)dy

)∣∣∣∣ dx+

∫ L

0

δ(x)u2
xdx+

∫ L

0

m(x) |utu| dx

+N2

∫ L

0

∫ 1

0

∫ τ2

τ1

s
∣∣e−sρµ(s)

∣∣ z2(x, ρ, s, t)dsdρdx

≤
∫ L

0

δ(x)u2
x +

1

2

∫ L

0

m(x)u2dx+
1

2

∫ L

0

m(x)u2
tdx

+N1τ l

∫ L

0

|θq| dx+N2

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ(s)| z2(x, ρ, s, t)dsdρdx

≤ 1

2

∫ L

0

m(x)u2
tdx+

‖δ(x)‖∞
λ

∫ L

0

p(x)u2
x +

N1τ l

2

∫ L

0

θ2dx

+
l ‖m(x)‖∞

2λ

∫ L

0

p(x)u2
x +

N1τ l

2

∫ L

0

q2dx

+N2

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ(s)| z2(x, ρ, s, t)dsdρdx

≤ cE (t) ,

where λ = infx∈[0,L] {p(x)} , and c > 0. Consequently,

|L(t)−NE(t)| ≤ cE(t),

which yields

(N − c) E(t) ≤ L(t) ≤ (N + c) E(t).

Choosing N large enough, we obtain estimate (6.40).

Now, we are ready to state and prove the main result of this section.
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Theorem 6.1 Let (u, v, θ, q, z) be the solution of (6.8)-(6.9), assume that (H1)-(H3) are

satisfied, then there exist c1,c2 > 0 for which the energy E satisfies, for all t ≥ 0,

E (t) ≤ c1H
−1
1 (c2t) , ∀t ≥ 0, (6.41)

where the functions H1 and H2 are defined by:

for ε0 > 0

H2(t) :=

{
t if h′′ = 0 on [0, λ] ,

th′(ε0t) if h′(0) = 0 and h′′ > 0 on (0, λ] ,
(6.42)

and

H1 (t) =

∫ 1

t

1

H2 (s)
ds. (6.43)

Proof. We differentiate (6.39), and recall (2.4), (6.28), (6.36), (6.34), and (6.38), to

obtain

L′(t) ≤ N

(
−β
∫ L

0

q2dx− c
∫ L

0

u2
xtdx−

∫ L

0

f(ut)utdx

)
− (p(ξ1)− (η + c+ ηl) ε3)

∫ L

0

u2
xdx+m(ξ2)

∫ L

0

u2
tdx

+
1

4ε3

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx+
η

ε3

∫ L

0

θ2dx

+N1

(
− (κ− βε1)

∫ L

0

θ2dx+ ε2τη

∫ L

0

u2
tdx

)
+N1

(
τ +

τη

ε2
+ l

β

ε1

)∫ L

0

q2dx+
1

4ε3

∫ L

0

f 2(ut) dx

−N2η1

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ(s)| z2(x, ρ, s, t)dsdρdx

−N2η1

∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx+N2η

∫ L

0

u2
tdx

≤ −
{
Nc

l
−N2η −m(ξ2)−N1ε2τη

}∫ L

0

u2
tdx

−{p(ξ1)− (η + c+ ηl) ε3}
∫ L

0

u2
xdx+

1

4ε3

∫ L

0

f 2(ut) dx

−
{
Nβ −N1

(
τ +

τη

ε2
+
β

ε1

l

)}∫ L

0

q2dx−N
∫ L

0

f(ut)utdx

−
{
N1 (κ− βε1)− η

ε3

}∫ L

0

θ2dx

−
{
η1N2 −

1

4ε3

}∫ L

0

∫ τ2

τ1

|µ(s)| z2(x, 1, s, t)dsdx

−η1N2

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ2(s)| z2(x, ρ, s, t)dsdρdx.
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At this point, we take ε2 = 1, then we choose ε1 and ε3 small enough such that

βε1 − k < 0, ε3 <
p(ξ1)

η (l + 1) + c
,

then we choose N1 and N2 large enough so that

N1 (κ− ε1β)− η

ε3
> 0, η1N2 −

1

4ε3
> 0.

Once N1 and N2 are fixed, we then choose N large enough so that

Nc

l
−N2η −m(ξ2)−N1τη > 0,

Nβ −N1

(
τ + τη + l

β

ε1

)
> 0.

Thus, using (6.27), we arrive at

L′(t) ≤ −cE(t) + c

∫ L

0

f 2(ut) dx, ∀t > 0. (6.44)

Let us define the following sets

Σ+ = {x ∈ (0, L) : |ut (x, t)| > λ} , Σ− = (0, L) \ Σ+ ,

We work now for estimate the last term in the right-hand side of (6.44). First, note that∫ L

0

f 2 (ut) dx =

∫
Σ+

f 2 (ut) dx+

∫
Σ−

f 2 (ut) dx.

Using A1 and (6.28), we easily show that∫
Σ+

f 2 (ut) dx ≤ k1

∫
Σ+

utf (ut) dx

≤ k1

∫ L

0

utf (ut) dx

≤ −cE ′ (t) . (6.45)

If h′′ = 0 on [0, λ]: This implies that there exist k1 > 0 such that |f (s)| ≤ k1 |s| for all

s ∈ R+, and then (6.45) is also satisfied for |ut (x, t)| ≤ λ, then on all (0, L). From (6.44),

(6.45), we arrive at

(L(t) + cE (t))′ ≤ −cH2 (E (t)) , ∀t ≥ t0, (6.46)

where H2 is defined in (6.42).

If h′(0) = 0 and h′′ > 0 on (0, λ]: Since h is convex and increasing, h−1 is concave and
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increasing, by using (H3), the reversed Jensen’s inequality for concave function (see [87]),

and (6.28), we obtain, ∫
Σ−

f 2 (ut) dx ≤
∫

Σ−

h−1 (utf (ut)) dx

≤ ch−1

(∫
Σ−

utf (ut) dx

)

≤ ch−1

(∫ L

0

utf (ut) dx

)
≤ ch−1 (−cE ′ (t)) . (6.47)

Therefore, from (6.44), (6.45) and (6.47), we find that

(L(t) + cE (t))′ ≤ ch−1(−cE ′ (t))− cE (t) , ∀t ≥ t0.

By using Young’s inequality (2.8) and the fact that

h∗ (p) ≤ p[h′]−1(p), E ′ ≤ 0 and h′′ > 0,

we obtain for ε0 > 0 small enough and c0 > 0 large enough,

[h′ (ε0E (t)) [L(t) + cE (t)] + c0E (t)]
′

= ε0E
′ (t)h′′ (ε0E (t)) [L(t) + cE (t)] + c0E

′ (t)

+h′ (ε0E (t)) [L′(t) + cE ′ (t)]

≤ −ch′ (ε0E (t))E (t) + c.h′ (ε0E (t))h−1(−cE ′ (t))
+c0E

′ (t)

≤ −ch′ (ε0E (t))E (t) + ch∗(h′ (ε0E (t)))− cE ′ (t)
+c0E

′ (t)

≤ −ch′ (ε0E (t))E (t) + cε0h
′ (ε0E (t))E (t)

≤ −ch′ (ε0E (t))E (t) = −cH2 (E (t)) . (6.48)

Now, let us define the following functional:

F (t) =

{
L(t) + cE (t) if (6.12) holds,

h′ (ε0E (t)) [L(t) + cE (t)] + c0E (t) if (6.13) holds.

Using (6.40), we have

F ∼ E,

and exploiting (6.46) and (6.48), we easily deduce that

F ′ (t) ≤ −cH2 (E (t)) , ∀t ≥ t0.
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Next, let

R (t) = εF (t) ,

where 0 < ε < ε̄ and ε̄ is a positive constant satisfying

F (t) ≤ 1

ε̄
E (t) , ∀t ≥ 0.

We also have

R ∼ E, (6.49)

and for t ≥ t0

R′ (t) ≤ −cεH2 (E (t)) ≤ −cεH2 (ε̄F (t)) (6.50)

≤ −cεH2 (εF (t)) = −cεH2 (R (t)) . (6.51)

Noting that H ′1 = −1/H2 (see (6.43)), we get from (6.50)

R′ (t)H ′1 (R (t)) ≥ cε, ∀t ≥ t0.

A simple integration over (t0, t) then yields

H1 (R (t)) ≥ H1 (R (t0)) + cεt− cεt0.

On the other hand, since lim
t→0+

H1 (t) = +∞ and

0 ≤ R (t0) ≤ ε

ε̄
E (t0) ≤ ε

ε̄
E (0) ,

we obtain for ε small enough

H1 (R (t0))− cεt0 > 0.

Then, thanks to the fact that H−1
1 is decreasing , we infer that

R (t) ≤ H−1
1 (H1 (R (t0)) + cεt− cεt0)

≤ H−1
1 (cεt) .

From this end inequality and (6.49) we get easily (6.41). Then the proof is completed.
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CHAPTER 7

ON THE EXPONENTIAL STABILITY OF A FLEXIBLE STRUCTURE IN

THERMO-ELASTICITY WITH MICRO-TEMPERATURE EFFECTS

7.1 Introduction

We shall study the following inhomogeneous flexible structure system with micro-

temperature effect:
m(x)utt − (p(x)ux + 2δ(x)uxt)x + dwx + ηθx = 0,

cθt − kθxx + ηutx + k1wx = 0,

τwt − k3wxx + k2w + k1θx + dutx = 0,

(7.1)

where u(x, t) is the displacement of a particle at position x ∈ (0, L) and time t > 0, θ and

w are the temperature of the body and the micro-temperature vector respectively. η > 0

is the coupling constant, that accounts for the heating effect, and k, k1, k2, k3, c, d, τ > 0.

m(x), δ(x) and p(x) are responsible for the non-uniform structure of the body, and,

respectively, denote mass per unit length of structure, coefficient of internal material

damping and a positive function related to the stress acting on the body at a point x.

We consider the following initial and boundary conditions:

u (., 0) = u0 (x) , ut (., 0) = u1 (x) , θ (., 0) = θ0 (x) , w (., 0) = w0 (x) , ∀x ∈ [0, L]

u (0, t) = u (L, t) = θ (0, t) = θ (L, t) = wx (0, t) = wx (L, t) = 0, ∀t ≥ 0.

(7.2)

In the presence of second sound, Alves et al. [8] concerned with the system
m(x)utt − (p(x)ux + 2δ(x)uxt)x + ηθx = 0,

θt + kqx + ηutx = 0,

τqt + βq + kθx = 0,

(7.3)

90



Chapter 7. On the exponential stability of a flexible structure in thermo-elasticity
with micro-temperature effects 91

They established the well-posedness of the system and proved its stability exponential

and polynomial under suitable boundary conditions. Li et al. [65] considered (7.3) with

a delay term of the form µut (x, t− τ0) in its first equation, they proved that the system

is exponential decay under a ”small” condition on time delay. For more details discussion

on the flexible structure systems see [6, 43] and the references therein.

Historically, the linear theory of thermo-elasticity with micro-temperatures for mate-

rials with inner structure whose particles, in addition to the classical displacement and

temperature fields, possess micro-temperatures was constructed by Ieşan and Quintanilla

[54, 55]. The work is motivated by increasing use of materials which possess thermal

variation at a microstructure level. The same authors proved an existence theorem and

established the continuous dependence of solutions of the initial data and body loads.

We note that the concept of micro-temperature was just used in the theory of thermo-

dynamics for elastic materials with microstructure. In addition to micro-deformations of

the string, the micro-elements of the continuum possess micro-temperatures which rep-

resent the variation of the temperature within a micro-volume. Originally, Grot [44] was

the first to take into consideration the inner structure of a body in order to develop

a thermodynamic theory for thermo-elastic materials where micro-elements, in addition

to classic micro-deformations, possess micro-temperatures. While, the fundamental so-

lution of the equations of the theory of thermo-elasticity with micro-temperatures was

constructed by Svanadze [89]. Riha [85, 86] developed a further study concerning heat

conduction in thermo-elastic materials with inner structure. It is shown that the ex-

perimental data for the silicone rubber containing spherical aluminum particles and for

human blood are conform closely to the predicted theoretical model of thermo-elasticity

with micro-temperatures. We refer the interested readers to [11, 27, 30, 31, 34, 47] for

details discussion on the theory.

Motivated by works mentioned above, we investigate (7.1)-(7.2) under suitable condi-

tion and establish the well-posedness of the problem using semi-group theory, as well as

the stability result of the solution using the multiplier method. Our purpose here is to

obtain an exponential decay rate estimates of the energy function of (7.1) without any

restriction or relation on the coefficients of the system.

7.2 Existence and uniqueness of solution

In this section, we present some assumptions and give the existence and uniqueness result

of system (7.1)-(7.2) using the semigroups theory. Throughout this section, c′ represents

a generic positive constant and is different in various occurrences.

The aim of this section is to prove that system (7.1)-(7.2) is well-posed. From Equation

7.2. Existence and uniqueness of solution
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(7.1)3 and the boundary conditions (7.2), we have

d

dt

∫ L

0

w (x, t) dx+
k2

τ

∫ L

0

w (x, t) dx = 0, ∀t ≥ o,

thus ∫ L

0

w (x, t) dx =

(∫ L

0

w0dx

)
exp

(
−t
τ
k2

)
, ∀t ≥ 0,

So, if we set

w̃ (x, t) = w (x, t)− 1

L

(∫ L

0

w0dx

)
exp

(
−t
τ
k2

)
, t ≥ 0, x ∈ [0, L],

then, (u, ut, θ, w̃) satisfies Equation (7.1), and∫ L

0

w̃ (x, t) dx = 0,

for all t ≥ 0. In the sequel, we shall work with w̃ but we write w for simplicity.

The energy functional associated to (7.1)-(7.2), namely,

E (t, u, ut, θ, w) =
1

2

∫ L

0

{
p(x)u2

x +m(x)u2
t + cθ2 + τw2

}
dx, (7.4)

we denote E(t) = E (t, u, ut, θ, w) and E(0) = E (0, u0, u1, θ0, w0) for simplicity of nota-

tions. Then the energy E is decreasing function and satisfies, for all t ≥ 0,

E ′(t) = −2

∫ L

0

δ (x)u2
xtdx− k2

∫ L

0

w2dx− k3

∫ L

0

w2
xdx− k

∫ L

0

θ2
xdx

≤ −c′
∫ L

0

u2
tdx− k2

∫ L

0

w2dx− k3

∫ L

0

w2
xdx− k

∫ L

0

θ2
xdx (7.5)

≤ 0. (7.6)

To obtain precise decay rates of E(t) as t→ +∞, we assume that

m, δ, p ∈ W 1,∞(0, L), m(x), p(x), δ(x) > 0, ∀x ∈ [0, L]. (7.7)

Let us introducing the vector function U = (u, v, θ, w)T , where v = ut, using the

standard Lebesgue space L2(0, L) and the Sobolev space H1
0 (0, L) with their usual scalar

products and norms for define the spaces:

H := H1
0 (0, L)×

[
L2(0, L)

]2 × L2
∗(0, L),

and

H2
∗ (0, L) =

{
w ∈ H2(0, L) : wx (L) = wx (0) = 0

}
,

7.2. Existence and uniqueness of solution
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where

L2
∗(0, L) =

{
w ∈ L2(0, L) :

∫ L

0

w (s) ds = 0

}
.

We equip H with the inner product

(U, Ũ)H =

∫ L

0

p (x)uxũxdx+

∫ L

0

m (x) vṽdx+ c

∫ L

0

θθ̃dx+ τ

∫ L

0

ww̃dx.

Next, the system (7.1)-(7.2) can be reduced to the following abstract Cauchy problem:{
U ′(t) +AU(t) = 0, t > 0

U(0) = U0 = (u0, u1, θ0, w0)T ,
(7.8)

where the operator A : D(A)→ H is defined by

AU =


−v

− 1
m(x)

(p(x)ux + 2δ(x)vx − ηθ − dw)x
1
c

(−kθxx + ηutx + k1wx)
1
τ
(−k3wxx + k2w + k1θx + dutx)

 .

The domain of A is then

D(A) =

{
U ∈ H | u ∈ H2(0, L) ∩H1

0 (0, L), v ∈ H1
0 (0, L), θ ∈ H2(0, L),

w ∈ L2
∗(0, L) ∩H2

∗ (0, L)

}
,

which is dense in H.

Proposition 7.1 Let U0 ∈ H be given. Problem (7.8) possesses then a unique solution

satisfying U ∈ C (R+;H) . If U0 ∈ D(A), then U ∈ C1 (R+;H) ∩ C (R+;D(A)) .

Proof. For any U ∈ D(A), we have

(AU,U)H = 2

∫ L

0

δ (x) v2
xdx+ k

∫ L

0

θ2
xdx+ k2

∫ L

0

w2dx+ k3

∫ L

0

w2
xdx ≥ 0.

Hence, A is monotone. Next, we prove that the operator I + A is surjective.

Given G = (g1, g2, g3, g4)T ∈ H, we prove that there exists U ∈ D(A) satisfying

(I +A)U = G, (7.9)

which gives

−v + u = g1 ∈ H1
0 (0, L),

−(p(x)ux + 2δ(x)vx − ηθ − dw)x +m (x) v = m (x) g2 ∈ L2(0, L),

−kθxx + ηvx + k1wx + cθ = cg3 ∈ L2(0, L),

−k3wxx + k2w + k1θx + dvx + τw = τg4 ∈ L2
∗(0, L).

(7.10)

7.2. Existence and uniqueness of solution
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Inserting u = v + g1, in (7.10)2, (7.10)3 and (7.10)4, we obtain

−(p(x)ux + 2δ(x)ux − ηθ − dw)x +m (x)u = m (x) (g1 + g2)− 2δ(x)g1xx = f1 ∈ L2(0, L),

−kθxx + ηux + k1wx + cθ = cg3 + ηg1x = f2 ∈ L2(0, L),

−k3wxx + k2w + k1θx + dux + τw = τg4 + dg1x = f3 ∈ L2
∗(0, L).

(7.11)

The variational formulation corresponding to Equation (7.11) takes the form

B((v, θ, w), (ṽ, θ̃, w̃)) = F (ṽ, θ̃,w̃), (7.12)

where B : [H1
0 (0, L)× L2(0, L)× L2

∗(0, L)]
2 → R is the bilinear form defined by

B((v, θ, w), (ṽ, θ̃, w̃)) =

∫ L

0

[(p(x) + 2δ(x))ux − ηθ − dw] ũxdx+

∫ L

0

m (x)uũdx

+k

∫ L

0

θxθ̃xdx− η
∫ L

0

uθ̃xdx− k1

∫ L

0

wθ̃xdx+ c

∫ L

0

θθ̃dx

+k3

∫ L

0

wxw̃xdx+ (k2 + τ)

∫ L

0

ww̃dx+ k1

∫ L

0

θxw̃dx

−d
∫ L

0

uw̃xdx,

and F : H1
0 (0, L)× L2(0, L)× L2

∗(0, L)→ R is the linear functional defined by

F (ṽ, θ̃,w̃) =

∫ L

0

f1ũdx+

∫ L

0

f2θ̃dx+

∫ L

0

f3w̃dx.

For V = H1
0 (0, L)× L2(0, L)× L2

∗(0, L) equipped with the norm

‖(v, θ, w)‖2
V = ‖u‖2

2 + ‖ux‖2
2 + ‖w‖2

2 + ‖θx‖2
2 ,

where ‖.‖2 is the usual norm.

One can easily see that B and F are bounded. Also, we get

B((u, θ, w), (u, θ, w)) =

∫ L

0

(p(x) + 2δ(x))u2
xdx+

∫ L

0

m (x)u2dx+ k

∫ L

0

θ2
xdx

c

∫ L

0

θ2dx+ k3

∫ L

0

w2
xdx+ k2

∫ L

0

w2dx

≥ c ‖(v, θ, w)‖2
V .

Then, B is coercive. Consequently, by the Lax–Milgram lemma, system (7.11) has a

unique solution

u ∈ H1
0 (0, L), θ ∈ L2(0, L), w ∈ L2

∗(0, L).

From (7.10)1, we infer that

v ∈ H1
0 (0, L).

7.2. Existence and uniqueness of solution
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Moreover, if
(
θ̃, w̃

)
≡ (0, 0) ∈ L2(0, L)× L2

∗(0, L), then Equation (7.12) reduces to

−
∫ L

0

[(p(x) + 2δ(x))ux − ηθ − dw]x ũdx+

∫ L

0

m (x)uũ

=

∫ L

0

f1ũdx,

That is

− [(p(x) + 2δ(x))ux]x = ηθx + dwx −m (x)u+ f1 ∈ L2(0, L).

Consequently, by the regularity theory for the linear elliptic equations, it follows that

u ∈ H1
0 (0, L) ∩H2(0, L).

Similarly, if
(
ũ, θ̃
)
≡ (0, 0) ∈ H1

0 (0, L)× L2(0, L), then Equation (7.12) reduces to

k3

∫ L

0

wxw̃xdx+ (k2 + τ)

∫ L

0

ww̃dx+ k1

∫ L

0

θxw̃dx− d
∫ L

0

uw̃xdx

=

∫ L

0

f3w̃dx. (7.13)

That is

k3wxx = (k2 + τ)w + k1θx + dux − f3 ∈ L2(0, L), (7.14)

then, it follows that
∫ L

0
wdx = 0, and we get

w ∈ L2
∗(0, L) ∩H2(0, L).

Moreover, (7.13) is also true for any φ ∈ C1([0;L]) included in L2
∗(0, L). Hence, we have

k3

∫ L

0

wxφxdx+ (k2 + τ)

∫ L

0

wφdx+ k1

∫ L

0

θxφdx− d
∫ L

0

uφxdx

=

∫ L

0

f3φdx,

for all φ ∈ C1([0;L]). Thus, using integration by parts and bearing in mind (7.14), we

obtain

wx (L)φ (L)− wx (0)φ (0) = 0, ∀φ ∈ C1([0;L]).

Therefore, wx (L) = wx (0) = 0, consequently, we have

w ∈ L2
∗(0, L) ∩H2

∗ (0, L).

Now, if (ũ, w̃) ≡ (0, 0) ∈ H1
0 (0, L)× L2

∗(0, L), then Equation (7.12) reduces to

k

∫ L

0

θxθ̃xdx− η
∫ L

0

uθ̃xdx− k1

∫ L

0

wθ̃xdx+ c

∫ L

0

θθ̃dx =

∫ L

0

f2θ̃dx,

7.2. Existence and uniqueness of solution



Chapter 7. On the exponential stability of a flexible structure in thermo-elasticity
with micro-temperature effects 96

that is

−kθxx = f2 − ηux − k1wx − cθ ∈ L2(0, L),

then, we get

θ ∈ H2(0, L).

Hence, there exists a unique U ∈ D(A) such that Equation (7.9) is satisfied. Consequently,

A is a maximal monotone operator. Then, D(A) is dense in H (see Proposition 7.1 in

[24] ) and the result of Proposition (7.1) follows from Lumer-Phillips theorem.

7.3 Stability result

In this section, we introduce some lemmas allow us to achieve our goal, which is the proof

of the stability result.

Lemma 7.1 Let (u, v, θ, w) be the solution of (7.1)-(7.2), then the energy E is non-

increasing function and satisfies, for all t ≥ 0,

E ′(t) = −2

∫ L

0

δ (x)u2
xtdx− k2

∫ L

0

w2dx− k3

∫ L

0

w2
xdx− k

∫ L

0

θ2
xdx

≤ −c′
∫ L

0

u2
tdx− k2

∫ L

0

w2dx− k3

∫ L

0

w2
xdx− k

∫ L

0

θ2
xdx ≤ 0. (7.15)

where c′ = 2δ(ξ6)/l.

Proof. Multiplying the equations in (7.1)1,(7.1)2, and (7.1)3 by ut, θ and w, respectively,

integrate over (0, L) and using (2.4), we obtain (7.15).

Lemma 7.2 The functional

I1 (t) :=

∫ L

0

(
δ(x)u2

x +m(x)utu
)
dx, (7.16)

satisfies

I ′1 (t) ≤ − (p(ξ1)− (η + d) ε1)

∫ L

0

u2
x +m(ξ2)

∫ L

0

u2
t +

η

4ε1

∫ L

0

θ2

+
d

4ε1

∫ L

0

w2dx, (7.17)

for any ε1 > 0.

Proof. Differentiating Equation (7.16) with respect to t and using Equations (7.1)1, we

get

I ′1 (t) = −
∫ L

0

p(x)u2
x +

∫ L

0

m(x)u2
t − η

∫ L

0

θxudx− d
∫ L

0

uwxdx.

7.3. Stability result
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Using Young’s inequality, we have for ε1 > 0

−η
∫ L

0

θxudx = η

∫ L

0

uxθdx ≤ ηε1

∫ L

0

u2
xdx+

η

4ε1

∫ L

0

θ2dx,

−d
∫ L

0

wxudx = d

∫ L

0

uxwdx ≤ dε1

∫ L

0

u2
xdx+

d

4ε1

∫ L

0

w2dx,

application of Lemma 6.1 and the last two inequality completes the proof.

Lemma 7.3 The functional

I2(t) := τc

∫ L

0

θ

(∫ x

0

w(y)dy

)
dx, (7.18)

satisfies

I ′2 (t) ≤ (−k1c+ 3ε2)

∫ L

0

θ2dx+
1

2ε2

∫ L

0

u2
tdx+

1

4ε2

∫ L

0

θ2
xdx

+ (k1τ + 2ε2c
′ + c′)

∫ L

0

w2dx+
1

4ε2

∫ L

0

w2
xdx, (7.19)

for any ε2 > 0.

Proof. Taking the derivative of (7.18) and using (7.1)2 and (7.1)3 we find

I ′2 (t) = τ

(
k

∫ L

0

θxx

(∫ x

0

w(y)dy

)
dx− η

∫ L

0

utx

(∫ x

0

w(y)dy

)
dx

−k1

∫ L

0

wx

(∫ x

0

w(y)dy

)
dx

)
+c

(
k3

∫ L

0

θ

(∫ x

0

wyy(y)dy

)
dx− k2

∫ L

0

θ

(∫ x

0

w(y)dy

)
dx

−k1

∫ L

0

θ

(∫ x

0

θy(y)dy

)
dx− d

∫ L

0

θ

(∫ x

0

uty(y)dy

)
dx

)
.

Integration by parts and the fact that
∫ L

0
w(x)dx = 0, give us

I ′2 (t) = τ

(
−k
∫ L

0

θxwdx+ η

∫ L

0

utwdx+ k1

∫ L

0

w2dx

)
+c

(
k3

∫ L

0

θwxdx− k2

∫ L

0

θ

(∫ x

0

w(y)dy

)
dx

−k1

∫ L

0

θ2dx− d
∫ L

0

θutdx

)
, (7.20)

7.3. Stability result
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using Young’s inequality, we get also

−k
∫ L

0
θxwdx ≤ 1

4ε2

∫ L
0
θ2
xdx+ c′ε2

∫ L
0
w2dx

η
∫ L

0
utwdx ≤ 1

4ε2

∫ L
0
u2
tdx+ c′ε2

∫ L
0
w2dx

k3

∫ L
0
θwxdx ≤ 1

4ε2

∫ L
0
w2
xdx+ ε2

∫ L
0
θ2dx

−k2

∫ L
0
θ
(∫ x

0
w(y)dy

)
dx ≤ ε2

∫ L
0
θ2dx+ c′

∫ L
0
w2dx

−d
∫ L

0
θutdx ≤ 1

4ε2

∫ L
0
u2
tdx+ ε2

∫ L
0
θ2dx.

(7.21)

From (7.20) and (7.21) we infer (7.19).

Next, we define a Lyapunov functional L and show that it is equivalent to the energy

functional.

Lemma 7.4 For N sufficiently large, the functional defined by

L(t) := NE (t) + I1(t) +N1I2(t). (7.22)

where N and N1 are positive real numbers to be chosen appropriately later, satisfies

c′1E(t) ≤ L(t) ≤ c′2E(t), ∀t ≥ 0. (7.23)

where c′1 and c′2 are positive constants.

Proof. Let

L(t) := I1(t) +N1I2(t).

then, exploiting Young’s inequality, (2.4) and (7.4), we obtain

|L(t)| ≤ N1cτ

∫ L

0

∣∣∣∣θ(t, x)

(∫ x

0

w(t, y)dy

)∣∣∣∣ dx+

∫ L

0

(
δ(x)u2

x +m(x) |utu|
)
dx

≤
∫ L

0

δ(x)u2
x +

1

2

∫ L

0

m(x)u2dx+N1τcl

∫ L

0

|θ(t, x)w(t, y)| dx

+
1

2

∫ L

0

m(x)u2
tdx

≤ 1

2

∫ L

0

m(x)u2
tdx+

‖δ(x)‖∞
λ

∫ L

0

p(x)u2
x +

l ‖m(x)‖∞
2λ

∫ L

0

p(x)u2
x

+
N1τcl

2

∫ L

0

θ2dx+
N1τcl

2

∫ L

0

w2(t, y)dx

≤ c′E (t) ,

7.3. Stability result
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where λ = infx∈[0,L] {p(x)} , and c′ > 0. Consequently,

|L(t)−NE(t)| ≤ c′E(t),

which yields

(N − c′) E(t) ≤ L(t) ≤ (N + c′) E(t).

Choosing N large enough, we obtain estimate (7.23).

Now, we are ready to state and prove the main result of this section.

Theorem 7.1 Let (u, v, θ, w) be the solution of (7.1)-(7.2), then the energy E satisfies,

for all t ≥ 0,

E(t) ≤ c1e
−c2t,

where c1 and c2 are positive constants.

Proof. We differentiate (7.22), and recall (7.15), (7.17), and (7.19), we obtain

L′(t) ≤ N

(
−c′

∫ L

0

u2
tdx− k2

∫ L

0

w2dx− k3

∫ L

0

w2
xdx− k

∫ L

0

θ2
xdx

)
− (p(ξ1)− (η + d) ε1)

∫ L

0

u2
x +m(ξ2)

∫ L

0

u2
t +

η

4ε1

∫ L

0

θ2 +
d

4ε1

∫ L

0

w2dx

+N1

(
(−k1c+ 3ε2)

∫ L

0

θ2dx+
1

2ε2

∫ L

0

u2
tdx+

1

4ε2

∫ L

0

θ2
xdx

+ (k1τ + 2ε2c
′ + c′)

∫ L

0

w2dx+
1

4ε2

∫ L

0

w2
xdx

)
≤

{
−Nc′ + N1

2ε2

+m(ξ2)

}∫ L

0

u2
tdx+ {−p(ξ1) + (η + d) ε1}

∫ L

0

u2
xdx

+

{
−Nk2 +N1 (k1τ + 2ε2c

′ + c′) +
d

4ε1

}∫ L

0

w2dx

+

{
N1 (−k1c+ 3ε2) +

η

4ε1

}∫ L

0

θ2dx+

{
−Nk +

N1

4ε2

}∫ L

0

θ2
xdx

+

{
−Nk3 +

N1

4ε2

}∫ L

0

w2
xdx

At this point, we choose ε1 and ε2 small enough such that

−p(ξ1) + (η + d) ε1 < 0, − k1c+ 3ε2 < 0,

then we choose N1 large enough so that

N1 (−k1c+ 3ε2) +
η

4ε1
< 0.

7.3. Stability result
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Once N1 is fixed, we then choose N large enough so that

−Nc′ + N1

2ε2
+m(ξ2) < 0

−Nk2 +N1 (k1τ + 2ε2c
′ + c′) + d

4ε1
< 0,

−Nk + N1

4ε2
< 0,

−Nk3 + N1

4ε2
< 0.

Thus, using (7.4), we arrive at

L′(t) ≤ −cE(t), ∀t > 0. (7.24)

A combination of (7.23) and (7.24) gives

L′(t) ≤ −c2L(t), ∀t > 0. (7.25)

where c2 = c/c′2, a simple integration of (7.25) over (0, t) yields

c′1E(t) ≤ L(t) ≤ L(0)e−c2t , ∀t > 0.

Taking c1 = L(0)/c′1 which completes the proof.

7.3. Stability result
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