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ABSTRACT

In this thesis, we study some time-delay evolution systems with the presence of different
mechanisms of dissipation. We begin this thesis by presenting a brief summary about
dynamical systems theory where we will introduce a historical overview of its origins.

Then, we recall some reminders on functional spaces, and semigroups theory.
The monograph is composed of two parts, the first one is divided to three chapters,

the first chapter is devoted to study a thermo-viscoelastic system of Timoshenko-type
with nonlinear damping and a distributed delay acting on transverse displacement. We
use the energy method and some properties of convex functions to prove a general decay
estimate. In chapter 2, we concern with a one-dimensional Timoshenko system of ther-
moelasticity of type III with infinite memory damped by weakly nonlinear feedbacks. We
obtain a general stability estimates using the multiplier method without assuming equal
or nonequal speeds of propagation of waves. The third chapter is devoted to study a
thermo-viscoelastic Bresse system with second sound and delay terms. We obtain results
regardless of the speeds of wave propagation and the stable number which is introduced
in some works before. The second part is divided to two chapters, we study non-uniform
flexible structures systems, first one with second sound and a distributed delay term, and
the second in thermoelasticity with micro-temperature effect. We prove the well-posed of

each system as well its stability results under suitable assumptions.

Keywords: Evolution systems, Semigroups theory, Lyapunov functional, Exponential

stability, Viscoelasticity, Thermelasticity, Delay.
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RESUME

Dans cette these, nous étudions certains systemes d’évolution a retard de différents
mécanismes de dissipation. Nous commencgons cette these en présentant un bref résumé
sur la théorie des systemes dynamiques o1 nous présenterons un apercu historique de ses
origines. Ensuite, nous rappelons quelques notions sur certains espaces fonctionnels et la
théorie des semi-groupes.

La monographie est composée de deux parties, la premiere est divisée en trois chapitres,
le premier chapitre est consacré a I’étude d’un systeme thermo-viscoélastique de type
Timoshenko a amortissement non linéaire et a retard distribué agissant sur le déplacement
transversal. Nous utilisons la méthode de 1’énergie et certaines propriétés des fonctions
convexes pour prouver une estimation de décroissance générale. Dans le chapitre 2, nous
nous intéressons a un systeme de Timoshenko unidimensionnel de thermoélasticité de type
[T & mémoire infinie amorti par des rétroactions faiblement non linéaires. On obtient une
estimation générale de la stabilité en utilisant la méthode du multiplicateur sans supposer
des vitesses égales ou non de propagation des ondes. Le troisieme chapitre est consacré a
I’étude d'un systeme de Bresse thermo-viscoélastique avec deuxieme son a retard. Nous
obtenons des résultats quelles que soient les vitesses de propagation des ondes et le nombre
stable qui est introduit dans certains travaux précédents. La deuxieme partie est divisée
en deux chapitres, nous étudions des systémes des structures flexibles non uniformes,
la premiere avec deuxieme son a retard distribué et la seconde en thermélasticité avec
I'effet de micro-température. Nous prouvons le bien-posé de chaque systeme ainsi que ses

stabilités sous des hypotheses appropriées.

Mots-clés: Systemes d’évolution, Théorie des semigroupes, Fonctionnelle de Lya-

punov, Stabilité exponentielle, Viscoélasticité, Thermoélasticité, Retard.
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CHAPTER 1

INTRODUCTION

This thesis is devoted to a study of stability of some time-delay evolution systems,
a subject that has long been vigorously pursued by such authors as much diversely rep-
resented as in mathematics, science, engineering, and economics. It is comforting, that
the subject is more enduring than transient, and indeed has sustained a surprising de-
gree of vitality. In particular, for the last decade or so, it has received visible research
attention and the advance has been notable. It appears warranted to assert, due to this
period of creative work, that the subject has undergone a significant leap conceptually
and on practical measures, both its nature and scope have been dramatically advanced
and broadened.

What defines a time-delay system is the feature that the system’s future evolution
depends not only on its present state, but also on a period of its history. This particular
cause-effect relationship can be most succinctly captured, and indeed has been tradi-
tionally so modeled by differential-difference equations, or more generally, by functional
differential equations. While in practice many dynamical systems may be satisfactorily
described by ordinary differential equations alone, for which the system’s future evolution
depends solely on its current state, there are times when delay effect cannot be neglected,
or it will be more beneficial for it to be accounted for. In a word, we reckon that many
will agree time delay is by no means a matter of rarity, in fact, it is more prevalent than
uncommon, numerous results mentioned in this thesis and elsewhere serve to solidify this
standpoint. It is thus unsurprising, due to their omnipresence, and for their intrinsic
scientific interest and practical implication, that time-delay systems have been studied
long and well. It has for decades been an active area of scientific research in mathematics,
biology, ecology, economics, and in engineering, under such terms as hereditary systems,
systems with aftereffect, or systems with time-lag (system with time-delay terms), and

more generally as a subclass of functional differential equations and infinite dimensional
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systems. The field of time-delay systems as a whole has its beginning dated back to the
eighteenth century, and it received substantial attention in the early twentieth century in

works devoted to the modeling of biological, ecological, as well as engineering systems.
A differential equation with delay describing a dynamical system belongs to the class

of retarded functional differential equations (also sometimes called retarded differential-
difference equations). One can also consider other classes of delay differential equations
(DDE), namely neutral DDEs and advanced DDEs. If the evolution of a DDE depends on
the past rates of changes in addition to its present and past values, then the corresponding
DDE is referred to as a neutral DDE. An advanced type DDE is the one in which the
evolution depends on its present and future values [88]. For example, consider the simple

case of a linear scalar first order equation
aoxy(t) + a1y (t — 7) + boz(t) + bz (t — 7) = f(),

where ag, a1, by and by are arbitrary constants and f(t) is a forcing function. The above
equation is said to be a DDE of retarded type if ag # 0 and a; = 0, it is said to be of

neutral type if ap # 0 and a; # 0, and of advanced type if ay = 0 and a; # 0.
In particular, the evolution of a dynamical variable corresponding to a retarded DDE

depends not only on its present value, x(t), but also on its values at earlier times, x(t'),
t' € (—,0), where 7 > 0 is the delay time. As a consequence, a time-dependent solution
of a system of DDEs is not uniquely determined by its initial state at a given moment
alone. Instead, the solution profile (initial function) on an interval of length equal to the
maximal delay prior to the time ¢ = 0 has to be prescribed. That is, we need to define
a set of infinite (but continuous) number of initial conditions for —7 < ¢ < 0 and hence
DDEs are effectively infinite-dimensional systems, even if we have only a single scalar

delay differential equation.
The most common type of infinite-dimensional dynamical systems involve the evolu-

tion of functions in time. For instance, if we want to study the evolution of chemical
concentrations in time and space, we can phrase the problem as the change in time of
the spatial distribution of chemicals. This distribution can be represented by a function
of the spatial variables, that is, C' = C(r). This is also one of the reasons for increasing
interest of physics community for DDEs as they provide a natural link with space ex-
tended systems by means of the two variable representation of the time ¢t = ¢ + 67, where

¢ € (0,7) is the continuous space variable, and 6 € N is a discrete temporal variable.
Generally, stabilization of DDE systems aims to attenuate vibrations by feedback, so it

consists in guaranteeing the decrease of the energy of the solutions towards 0 more or less
quickly by a dissipation mechanism. More precisely, the stabilization problem in which
we are interested comes down to determining the asymptotic behavior of the energy that

we note £(t), to study its limit in order to determine if this limit is zero or not, and if
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this limit is zero, to give an estimate of its rate of decrease towards zero.

Description and objective of the thesis

We present in this thesis a study on the existence, uniqueness and stability of some elas-
tic, thermoelastic, viscoelastic and delayed evolution problems, such as the Timoshenko
systems, Bresse systems and systems of flexible structures.

In recent decades, much work on local existence, global existence, and asymptotic
behavior of solutions to some initial condition and boundary problems as well as Cauchy
problems in one-dimensional and multidimensional thermoelasticity have been done.

In this regard, the objective of this thesis is to study the behavior of solutions of certain
evolution systems where dissipation is introduced by the presence of a thermoelastic,
micro-temperature, nonlinear or viscoelastic term, and the retardation by a constant
or distributed delay term. Several results concerning the decrease of solutions in non-
classical thermoelasticity have been proved. In this study, we generalize and improve
various previous results.

In the following, we will give a brief analysis of the content of the thesis which is divided
into six chapters.

The first one consists of a theoretical support for the study, we will find the different
tools on which our study will be based. We begin this chapter by presenting a brief
summary of dynamical systems theory where we will introduce a historical overview of its
origins. Then, we recall some reminders on Hilbert spaces, the L” spaces, Sobolev spaces
and semigroups theory.

The second chapter is devoted to study a thermo-viscoelastic system of Timoshenko-

type with nonlinear damping and a distributed delay acting on transverse displacement

prpw — K(oz + ) + e + f:f pa(s)pr (x,t — s)ds =0

potbu — Bas + K(pn + 1) + [5 g (t — 5) (a(2)¥u(s)), ds + ps()b(z) f (1) + 05 = 0
p36; + kqe + i =0

paqr + 0q + kB, = 0.

The heat flux of the system is governed by Cattaneo’s law. We use the energy method and
some properties of convex functions to prove, regardless of the speeds of wave propagation,
general decay estimate from which the exponential, logarithmic and polynomial types of
decay are only special cases. (see [19]).

In third chapter, we consider a one-dimensional Timoshenko system of thermoelasticity

of type III with infinite memory damped by weakly nonlinear feedbacks

P11t — Kk (z + 1), + B0+ (t) f (1) =0
patie — bibyr + k ((Pm + ¢) + fooog (3) (2 (t - S) ds — 0y =0
P39tt - 591’90 - ke:cxt + VPt + ’y,@Z}t + « (t) f (9,5) =0.




Chapter 1. Introduction 4

Under suitable conditions, we establish the well-posedness of the problem using semi-
groups theory, and a general stability estimates using the multiplier method with no
growth assumption on f at the origin and without assuming equal or nonequal speeds of
propagation of waves which is mentioned in numerous works (e.g. [14, 29, 35, 48, 63]).
Our results show that the damping effect leads to general decay rate for the energy func-
tion and also remove the necessity of the assumption on equal speeds which has been
imposed in the prior literature (see [51]).

The fourth chapter is devoted to study a thermo-viscoelastic Bresse system with second

sound and delay terms,

(

prow — k (0p + U +lw), — kol (wy — L) + ppr + popy (x,t — 1) =0
potie — by + k(0o + 0 +10) + 3 [ g (t — 8) Vuu (2, 8) ds + 70, = 0
prw — ko (we — l@), + El (@ + ¢ + 1lw) + Awy + Aowy (2,6 —75) =0
p30; + gz + Y1 =0

aq + Bq+ 0, =0,

\

where the heat flux is given by Cattaneo’s law. Regardless of the speeds of wave prop-
agation and the stable number, which is introduced in [59, (4], we prove an exponential
stability result using energy method under suitable assumptions on the weights of the
delays and the frictional damping (see [50]).

In the fifth chapter, we study a non-uniform delayed flexible structure damped by a

non-linear dissipation term,

m(x)ug — (P(@)uy + 20(2) ) + 10 + f(ue) + f:f p(s)ug (t —s)ds =0
Ht + Nty + k‘qm = 0
Tq: + Bq+ kb, =0,

where the heat flux is given by Cattaneo’s law. We prove the well-posed of the system
using semi-group theory and general stability using multiplier method under suitable as-
sumptions on the weights of the delay, heating effect and material damping and regardless
of growth assumption on the nonlinear damping term f at the origin. (see [52]).

The final chapter is devoted to study a non-uniform flexible structure with micro-
temperature effect

m(z)uy — (p(x)uy + 20(2)ugt)z + dwy + 1, =0
cly — kO, + nug, + kiw, =0
TWy — k3Wag + kow + k165 + dugy = 0.

We prove the well-posed of the problem using semi-group theory, as well as an exponential
stability using the multiplier method without any restriction or relation on the coefficients

of the system (see [53]).
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Methodology

In this work, to ensure the well-posed of our problems, we use the theory of semi-groups
to establish the existence and uniqueness of the solutions. In semigroups theory, the
Hille-Yosida theorem is a powerful and fundamental tool relating the energy dissipation
properties of an unbounded operator A : D (A) C H — H to the existence, uniqueness

and regularity of the solutions of a stationary differential equation (Cauchy problem)

() = AD)D(), t>0
® (0) = o,

For the stability results, we use the multiplier method based on the construction of a
Lyapunov function £ equivalent to the energy &€ of the solution. We denote by £ ~ & the
equivalence

aE(t) < L) < eE(), V>0, (1.1)

for two positive constants ¢; and cy. For example, to establish exponential stability, it
suffices to show that

L'(t) < —cL(t), Vt>0, (1.2)
for some ¢ > 0. A simple integration of (1.2) over [0,¢] with (1.1) leads to the desired

result of exponential stability. It is worth noting that Lyapunov’s theorems are only suffi-
cient conditions for the stability and the difficulty here is to find the adequate Lyapunov

function.
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CHAPTER 2

GENERALITIES

In this chapter, we shall introduce a brief summary of dynamical systems theory and
then state some necessary materials needed in the proof of our results, such as basic
results which concerning the Hilbert spaces, the LP space, Sobolev spaces, some theorems
on these last and existence and uniqueness theorem. The knowledge of all these notions

and results are important for our study.

2.1 About dynamical systems theory

The qualitative analysis of dynamical systems introduced by H. Poincaré at the end of
the nineteenth century [32] gave birth to the fruitful field on dynamical systems theory,
with all the profound implications and applications we have nowadays including, among
others, systems and control theory. Before Poincaré’s differential equations were mostly
viewed as equations to be solved, similarly to as algebraic equations. Poincaré had the
bright idea to try to study differential equations in a qualitative way, which essentially
means that finding solutions is not the objective anymore, but instead, we focus on estab-
lishing certain properties of the solutions. This point of view is particularly relevant since
many differential equations do not admit closed-form solutions and can only be solved
numerically. In the same vein of Poincaré’s ideas, A.M. Lyapunov developed the theory
of stability of dynamical systems during his Ph.D. thesis [67], which was supervised by
P. Chebyshev. Stability is a fundamental property of dynamical systems having deep
consequences in sciences and engineering. Stability essentially means that solutions of
a dynamical system starting close to an equilibrium point (which is a resting point of
the system), remain close to this equilibrium point. A typical example is the pendulum
example. Pendulums with rigid rod admit two equilibrium points, one is when the rod is

vertical and the mass down, the other is when the mass is up. Consider the first equilib-
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rium point and assume that there is no friction. A small push from this resting position
will result in sustained oscillations of bounded amplitude around it. This equilibrium
point is therefore stable. An equilibrium point is, moreover, said to be asymptotically
stable if it is stable and the trajectories starting nearby to it converge back to it. Taking
again the pendulum example and adding friction to the problem will result in damped
oscillations around the equilibrium point. Eventually, the pendulum will stop oscillating
and will return to its resting position. This equilibrium point is therefore asymptotically
stable. Opposed to stable equilibrium points, unstable ones are resting positions from
which arbitrarily small perturbations will be amplified, pushing then the dynamical sys-
tem away from them. For instance, the second equilibrium point of the pendulum with
friction, i.e., the one with the mass up, is unstable since when slightly pushed from its
equilibrium position, it does not return there. Instead, it converges to the asymptotically
stable equilibrium point. A fundamental and appealing feature of Lyapunov’s results is
that, in the same spirit as Poincaré’s ideas, the properties of the trajectories in a neigh-
borhood of an equilibrium point can be assessed without even computing the solutions
of the dynamical system. This can be actually performed using potential functions, now
referred to as Lyapunov functions. These functions form the cornerstones of the powerful

Stability theory also called Lyapunov’s theory of stability or even Lyapunov theory.
This theory has been broadly accepted by systems and control theorists as a fun-

damental starting point for dealing with the analysis and control of dynamical systems.
Whenever control systems are concerned, stability is one of the most important properties
a control system should possess. Ensuring asymptotic stability of the closed-loop system
is an efficient way for assessing that the controlled process behaves in the desired way, for
instance, converges to a desired equilibrium point. Another striking point is the versatility
of the approach which has been adapted, since then, to an immense variety of systems such
as time-varying systems, discrete-time systems, hybrid systems, and infinite-dimensional
systems. The dynamical systems we are interested in this thesis do not escape this rule,
and Lyapunov theory will be shown to be an adequate tool for dealing with time-delay
and linear parameter-varying systems. Whereas time-delay systems can be approached
as a pure mathematical problem arising from a scientific field such as biology, ecology or
physics, parameter-varying systems essentially come up from engineering problems such
as filtering and control. In this regard, the field of linear parameter-varying time-delay
systems is mostly of engineering interest only. We refer the interested readers to the books
(22, 42,45, 60, 62] for details discussion on the theory and to [91] for different examples

of time-delay problems.

2.1. About dynamical systems theory
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2.2 Hilbert spaces

The proper setting for the rigorous theory of partial differential equation turns out to
be the most important function space in modern physics and modern analysis, known as

Hilbert spaces. We will suffice to mention its definition.

Definition 2.1 [21] A Hilbert space H is a vectorial space supplied with inner product
(u,v) such that ||ul| = \/(u,u) is the norm which let H complete.

2.3 Functional Spaces

The L? (2) spaces:

Definition 2.2 [21] Let 1 < p < 00, and let 2 be an open domain in R", n € N. Define
the standard Lebesgue space L? (), by

LP(Q):{f:Q%R:fismeasurableand /]f(:c)]pdx<oo}.
Q

Notation 2.1 Forp e R and 1 < p < oo, denote by

wmp:(lﬂf@wmm)?

L>*(Q) = {f:Q—R: f is measurable and there exists a constant C
such that, |f(z)] < C a.e in Q} .

If p= o0, we have

Also, we denote by
[flloo = inf{C, [f(z)] < C a.cinQ}.

Notation 2.2 Let 1 < p < 0o, we denote by q the conjugate of p i.e. }—174— % =1

Remark 2.1 In particularly, when p = 2, L*(Q) equipped with the inner product

%mwm:LfWM@M%

is a Hilbert space.

2.2. Hilbert spaces
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The Sobolev spaces WP (Q) :

Definition 2.3 Let m € N and p € [0,00]. The W™ (Q) is the space of all f €
LP (§2), defined as

wmr(Q) = {feL” (), such that 0°f € L” (Q2) for all « € N" such that

n
la] = Zaj < 'm, where 0% = 8?1832...&2‘"} .

=1

Theorem 2.1 ([25]) WP (Q) is a Banach space with their usual norm

oy = D 10°flle. 1< p < oo, forall f€LP(Q).

laj<m

Definition 2.4 When p = 2, we prefer to denote by W2 (Q) = H™ () and Wy"? (Q) =
H{ (Q) for p € [0, 00| supplied with the norm

Wiy = D WO°fll)* |

laf<m

which do at H™ (€2) a real Hilbert space with their usual scalar product

Uy V) prm oy = 0“u0“vdx.
(e = 2

laj<m
The next result provides a basic characterization of functions in W,* (Q) .
Theorem 2.2 [2/] Let u € W' (). Then u € WP () if and only if u =0 on 0.

Remark 2.2 1. Theorem 2.2 explains the central role played by the space Wy (Q).
Differential equations (or partial differential equations) are often coupled with bound-

ary conditions, i.e., the value of u is prescribed on 0f).

2. We have the following characterization of Hj" (€2)
H' Q) ={uc H"(Q), u=u = ... =u™ Y =0 on 0Q}
It is essential to notice the distinction between
H3(Q)={uec H*(Q), u=1u'=0on 00N},

and
H*(Q)NH) (Q)={uec H*(Q), u=0on dN}.

2.3. Functional Spaces
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2.4 Some integral inequalities

We will give here some important integral inequalities. These inequalities play an impor-

tant role in applied mathematics and also, it is very useful in our next chapters.

Lemma 2.1 ([2/], Holder’s Inequality ) Let 1 < p < oo, assume that f € LP () and
g € L1(Q) then, fg € L' (Q) and

/Q Folde < £, lgll, (2.1)

The next result is an important prototype of a Sobolev inequality (also called a Sobolev

embedding).
Lemma 2.2 ([2/]) There exists a constant C' (depending only on |I| < co) such that
ull oy < Cllllyprngy, Y u€ WH(I), ¥ 1< p < oo. (2.2)

Lemma 2.3 [2/] (Poincaré’s inequality) Suppose I is a bounded interval. Then there
ezists a constant C' (depending on |I| < 0o) such that

||“||W11p(1) <C HU’/HLP(I) ; Jorallu e Wol’p (1) (2.3)

Lemma 2.4 [7/] (Poincaré type Scheeffer’s inequality): Let h € HJ(0,L). Then it holds
L ) L ) L2

/ B2 da < z/ hof2dz, 1=2 (2.4)
0 0 T

2.5 Some Algebraic inequalities

Since our study based on some known algebraic inequalities, we want to recall few of them

here.

Lemma 2.5 ([2/], Cauchy-Schwarz Inequality) Every inner product satisfies the Cauchy-

Schwarz inequality
(1, 22) < |z [|2l - (2.5)

The equality sign holds if and only if 2; and x5 are dependent.

Lemma 2.6 [2/](Young’s Inequality) For all a,b € R*, we have

bQ
ab < ea® + —, (2.6)
4e

where € is any positive constant.

2.4. Some integral inequalities
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Now, Let us denote by A* the conjugate function in the sense of Young of a convex

function h (see [13], p. 64), i.e.,

h* (p) = sup (pt — h(t)).

teR4

Assume that A” > 0, then for p > 0 a given number, h* is the Legendre transform of h

(see Liu and Zuazua [66]), which is given by

e (p) = p ] (p) = h(W] " (p), (2.7)
and which satisfies the following inequality

Lemma 2.7 [51](Young’s Inequality for the convex functions) Let h a convex function,

h* its conjugate in the sense of Young, we have
pr < h(x) + h*(p) Vp,x > 0. (2.8)

Remark 2.3 The relation (2.7) and the fact that h(0) = 0 and (h')™!, h are increasing
functions yield

h*(p) <p[W]"" (p) Vp>0. (2.9)

2.6 Existence and uniqueness theorem

Lax-Milgram Lemma

The existence and uniqueness of a solution to the weak formulation of the problem can
be proved using the Lax-Milgram Lemma. This states that the weak formulation admits

a unique solution.

Lemma 2.8 [2/] (Lax-Milgram lemma). Let a (-,-) be a bilinear form on a Hilbert space

H equipped with norm ||-||,, and the following properties:
i) a(-,+) is continuous, that is

1 > 0 such that |a(w,v)| <7 |lwlly [|v]l;, Yw,v e H,
it) a(-,-) coercive (or H-elliptic), that is
Ja > 0 such that |a(v,v)| < « ||v||3_[7 YveH,
iii) L is a linear mapping on H (thus L is continuous), that is
e > 0 such that |L(w)] < v ||lw|ly, Yw € H,
Then there exists a unique u € H such that

a(w,u) =L (w), Vwe H.

2.6. Existence and uniqueness theorem
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Co-Semigroup of bounded linear operators

Throughout this section H denotes a Hilbert space.

Definition 2.5 [31] Let X be a Banach space. A one parameter family (S (¢)),5, of
bounded linear operators defined from X into X is a strongly continuous semigroup of

bounded linear operators on X if:
e S (0) =1 (I identity operator on X).
e S(t+s)=25(t)S(s) for every t,s > 0.
e S(t)yx »x,ast — 0, Vo € X.

Such a semigroup is called a Cy-semigroup.

Definition 2.6 [51] The infinitesimal generator A of the semigroup (5 (t)),, is defined

by:
D(A) = {az €X: lir%w exists}
—
and St
Ax:ygilﬂlgxeDQM.

Definition 2.7 [21] An unbounded linear operator A : D (A) C H — H is said to be
monotone if it satisfies
(Au,u) >0, Yu € D (A),
It is called maximal monotone if, in addition
R(Z+A)="H,ie,
VfeH, Jue D(A) such that u + Au = f.

Proposition 2.1 [2/] Let A be a mazximal monotone operator. Then D (A) is dense in

H.

Generally speaking, the first step in dealing with the study of the well-posedness of the
solution is to rewrite our evolution system of partial differential equations as a Cauchy

problem on some appropriate Hilbert space H called the energy space

{w+A@u—q
u (0) = wy,

where A(t) is an unbounded operator on H. Then we prove that A(t) is the infinitesi-
mal generator of a Cy-semigroup of contractions (S (t)),, on H in order to deduce the
existence of a solution in a certain Hilbert space. The solution is hence of the form
u(t) = S (t) up. We mention here Hille-Yosida Theorem: Lumer-Phillips form (see [21])
which is applied to justify the existence and uniqueness of solutions of some partial dif-

ferential equations.

2.6. Existence and uniqueness theorem
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Theorem 2.3 Let A be a maximal monotone operator. Then, given any ug € D(A) there

exists a unique function
u € C([0,00[, D (A)) N C*([0, 00[, H)

satisfying
w4+ Alt)u=0 on [0,00]
u (0) = wo.

Moreover,

d
lu(t)| < |uo|, Yt >0 and |d—7;(t)| = |Au(t)| < |Augl, ¥t > 0.

Remark 2.4 1. The main interest of Theorem 2.3 lies in the fact that we reduce

the study of an “evolution problem” to the study of the “stationary equation”
u' 4+ Au = f.

2. The space D(A) is equipped with the graph norm |u| 4+ |Au| or with the equivalent
Hilbert norm +/|ul? + |Aul?.

3. We refer the interested readers to [01, 90] and references therein for details discus-
sion on existence and uniqueness of local or global solutions of nonlinear evolution

equations.

2.6. Existence and uniqueness theorem
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CHAPTER 3

LGENERAL DECAY FOR A VISCOELASTIC DAMPED TIMOSHENKO SYSTEM

OF SECOND SOUND WITH DISTRIBUTED DELAY

3.1 Introduction

"" e consider the following Timoshenko-type system:

prpe — K (e + 1), +u190t+fT (s)¢r (w,t — s)ds =0,

Pt — Bibaa + K (0 + ) + [5 9 (t = 5) (a()ihs(s)),, ds + ps(1)b(x) f (1) + 16 = 0,
p3be + kge + Y = 0,

paqr + 6q + kO, =0,

(3.1)
where t € (0,4+00) denotes the time variable and = € (0, 1) is the space variable. Here
p, ¥, 8 and g are respectively the transverse displacement of the beam, the rotation
angle, the difference temperature and the heat flux. a, b, f, u3 and g are specific functions,
o, 1, Yo, Y1, 0o, qo are initial data. The coefficients, p1, po, p3, 4,7, 9, k, B, 1 and K are
positive constants, ps : [11; 2] — R is a bounded function, where 71, 75 two real numbers
satisfying 0 < 7 < 7.

We consider the following initial and boundary conditions:

e (,0)=wo(z), ¢ (,0) =p1(z), 0(.,0) =06 () in (0,1),

w<'70>:¢0<x>7 wt(70>:¢1<x> ( ): (ZE) in (071)7 (32>

90(07t):90<1’t):¢(07t) ¢(1 ): (O ):0(1’t)201n (0700)’ .
= )

fo(z,t) in (0,1) x (0,7

where fj is the history function.
It is well-known that a great number of processes of the applied sciences (like treatments

of physical, biological, chemical, economic, and thermal phenomena), can be modeled by

15
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means of delay differential equations, these last are differential equations involving not
only the function and their derivatives at present state ¢ but also the function and\or
their derivatives at some past times. Then this makes the control of PDEs with time
delay effects becomes an active area of research. In recent years, the issue of existence
and stability of evolution problems with delay has attracted a great deal of attention
[9, 19, 21, 35, 36, 79, 92]. Kafini et al. [57] concerned with the following Timoshenko

system of thermoelasticity of type III with distributive delay:

prps — k(pz + )z =0,
ptht - wax + k(gpx + w) _'_ ﬁem = 07 (33>
P30i = 002 — KOiao — [ 9 (5) Ora(, t — 5)ds + Yihra = 0,

where 71 < 7 are non-negative constants. They proved an exponential decay in the case
of equal wave speeds and a polynomial decay result in the case of nonequal wave speeds
with smooth initial data. Also, Kafini et al. [5&] considered the following Timoshenko

system of thermoelasticity of type III with delay:

p1¢tt - K(¢a¢ + w>x + M1¢t($7t) + M2¢t(x7t - T) = 07
p2¢tt - b¢zz + K(¢m + 1/)) + Betz - 07 (34>
P39tt - 503:30 + 7¢tw - ket:ca: =0.

They established the well-posedness and the stability of the system for the cases of equal
and nonequal speeds of wave propagation, they showed that the energy decays exponen-
tially in the case of equal wave speeds in spite of the existence of the delay, and in the
opposite case it decays polynomially. Very recently, Hao and Wang [18] considered the
following Timoshenko-type system with distributed delay and past history:

P1Ptt — k?(%c + w)x + 6. = 0,
p2¢tt - wax + k(‘px + ¢) + fgoo g (S) ¢:L‘ac(xat - S)ds - ﬁet + fW) = Oa (35>
P39tt - 56196 - let:p:}: + VPta + ’th - f.,-? % <§> 0txm<x7t - §>d§ = O

They proved the well-posedness and the stability of the system for the cases of equal
and nonequal speeds of wave propagation. Their results show that the damping effect is
strong enough to uniformly stabilize the system even in the existence of time delay under
suitable conditions. Chen et al. [29] studied the following thermo-viscoelastic system of

Timoshenko of type III with frictional damping and delay terms:

prow — k(ps + 1), =0,
P30 — 00z + Vuuz + [y g (t — 8) Opuds + p110y(2,) + poby(w,t — 7) = 0.

Under a hypothesis between the weights of the frictional damping and the delay, they

proved the global existence of solutions by using the Faedo—Galerkin approximations,

3.1. Introduction
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and established a general energy decay result from which the polynomial and exponential

types of decay are only special cases.
In the absence of delay (us = 0), viscoelastic term (¢ = 0) and nonlinear damping (f =

0), Messaoudi et al. [72] considered (3.1 ) for both linear and nonlinear case and proved
that the system is exponentially stable without any restriction on the coefficients. Apalara
[9] and Ouchenane [79] extended this last to a Timoshenko system with delay term of the
form f:f po(s)ps (x,t — s)ds and popi(x,t — 7) respectively. Under suitable assumptions
on the weights of the delay and the frictional damping, both authors established the
well-posedness result and proved that the system is also exponentially stable regardless of
the speeds of wave propagation. Fareh and Messaoudi [35] extended the result obtained
by Apalara [9] to a thermoelastic system of type III, they proved the well-posedness and
exponential stability results in the presence and the absence of an extra frictional damping
under some conditions.

Motivated by the works mentioned above, we investigate system (3.1) under suitable
assumptions and show that even in the presence of the viscoelastic term (g # 0) and
nonlinear damping (f # 0), we can establish a general energy decay regardless also of the
speeds of wave propagation. We prove our result by using the energy method together
with some properties of convex functions. These arguments of convexity were introduced

by Lasiecka and Tataru [03] and used by Liu and Zuazua [60] and others.

3.2 Preliminaries

In this section, we present some materials needed in the proof of our results. We also state,
without proof, a local existence result for problem (3.1). The proof can be established by
using Faedo—Galerkin method [29]. Throughout this thesis, ¢ represents a generic positive
constant and is different in various occurrences.

As in [78], Taking the following new variable

Z($7P»3at) =¥t (ZL‘,t - p8>7 n (071) X (07 1) X (7-177_2) X (07 OO) :
Then we obtain

sz(x, p, s, t) + zp(x, p, s, t) =0,
2(x,0,5,t) = p(x, 1).

3.2. Preliminaries
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Consequently, problem (3.1)-(3.2) is equivalent to

( p1ou — K (0 +0)s + s + I pa(s)z(x,1, 5, t)ds = 0,

P2t — Bza + K(pp + 1) + f(f g (t —s) (a(x)(s)), ds + ps(t)b(x) f(¢r) + 70, = 0,
p30; + kqz + Y = 0,

paqi + 0q + k6, = 0,

sz(z, p, s, t) + z,(x, p,s,t) =0,

‘ (3.7)

where (z, p, s,t) € (0,1) x(0,1) X (71, 72) x (0, 00) , with the following initial and boundary

conditions:

90( 0): () (7())_ 1(1’), 0(70):60(33) n (0’1)7
(- q( q

V(.0 =t (@), 6 (,0) = (), 4(,0) = (x) i (0,1 .
0(0,t) = (1,t) =9 (0,t) =1 (1,¢) = 0(0,¢) =0 (1,1) = 0 in (0, 00)
(I p7570) (;U,pS) ( 1) X (07 1) X (07T2)
We shall use the following assumptions:
Assumption 2.1. ps: [11;72] — R is a bounded function satisfying
| alds < (39

Assumption 2.2. The functions a and b will be supposed continuous, non-negatives
and satisfy
a € C([0,1]),
a=0ora(0)+a(l)>0,
inf {a(z)+0b(z)} > 0.
z€[0,1]

Assumption 2.3. f : R — R is a continuous and non-decreasing function such that
there exist positive constants ky, ks and [ and a convex, continuous and increasing function
h:R, — R, of class C' (R,) N C?(]0, +o0) satisfying: h(0) = 0 and 2" = 0 on [0,1] or
( A (0) =0 and A” > 0 on (0,!]) such that

h(s®*+ f2(s)) < f(s)s for |s| <,

3.10
ks < f(s)s <kys*  for |s| > 1. (3.10)
Assumption 2.4. g : R, — R, is a differentiable function such that
9 >0, [Ty ds =g 5-lall. [ gds>0 (311)
0 0

Assumption 2.5. There exists a non-increasing differentiable function n : Ry — Ry
satisfying
g (s) < —n(s)g(s), for s > 0.

3.2. Preliminaries
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Assumption 2.6. 3 : R, —]0, 400 is a non-increasing C''-function satisfying

/ ps (s) ds = +oo.
0

Remark 3.1 1. From assumption 2.3 we easily infer that f(s)s >0 for s € R.

2. Assumption 2.6 implies that s is bounded.

3. According to our knowledge, Assumption 2.3 was first introduced by Lasiecka and

Tataru [07].

4. Since g is positive and g(0) > 0 then for any ty > 0 we have

t to
/g(s)ds 2/ g(s)ds =gy >0, Vt>t.
0 0

(3.12)

Using the fact that a (0) > 0 and a is continuous, then there exists ¢ > 0 such that

infieoq @ (x) > €. Let us denote

d = min {5, inf {a(x)+ b(m)}} > 0,
z€[0,1]
and let a € C* ([0,1]) be such that 0 < o < a and
a(x)=0 if a(z) <4

a(z)=a(z) if a(z) > L.

Lemma 3.1 [206] The function « is not identically zero and satisfies

d
f >
inf () +bla)} 2 5.
Now, for ¢y > 0 we define the functions J and K by:

J(t) = t if W =0on [0,1],
" | th(ept) if W(0)=0and h” >0 on (0,1].

K (t) :/t J}s) ds.

To facilitate our calculations we introduce the following notations

(@*0)(t) = [yt —7)v(r)dr,

(por) (t) == [yo(t—7) (W (t) = (7)) dudr,

(g Av)(t) = fol a(x) fotg (s) (v(t) — v (s))dsdzr, Yv e L?(0,1),

(gov)(t) = f fo (t —s) (v (t) — v (s))*dsdx, Yv € L*(0,1).

(3.13)

(3.14)

3.2. Preliminaries
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Lemma 3.2 [75] For any function ¢ € C* (R) and any v € H' (0,1), we have

G 0) O (t) = 56O OF +5 (8 o%) (1)

i l{weno-([omar)wwr}.

Lemma 3.3 [/0] There ezists a positive constant ¢ such that

(g Av)° <cgouy, Yoe H)(0,1).
The energy functional associated to (3.7)-(3.8), is

1 t

1/t 2 2 2 1
+5 {K(%HD) +030° + pag’ } dx + 5 (g 0 )

/// s|pa(9)| 2% (w, p, s, t)dsdpdr, (3.15)

we denote E(t) = E (t,¢,%,0,¢,2) and E(0) = E (0, 0o, %0, 00, o, fo) for simplicity of
notations.
For state a local existence result, we introduce the vector function ® = (i, u, 1, v, 0, q, 2),

where u = ¢; and v = 1, using the standard Lebesgue space L*(0,1) and the Sobolev
space H}(0,1) with their usual scalar products and norms for define the space H as follows

H o= [HY(0,1) x L2(0,1)] x [L*(0,1)]* x L*((0,1) x (0,1) x (11, 72)).
Proposition 3.1 Let &y = (g, @1, %0, V1,60, qo, fo)L € H be given. Assume that as-

sumption 2.1 - assumption 2.4 are satisfied, Problem (3.7)-(3.8) possesses then a unique

global (weak) solution satisfying
¢ = (%%%%97% Z)T € C<R+,H) .

3.3 Technical Lemmas

In this section we establish several lemmas needed for the proof of our main result.

Lemma 3.4 Let (p,,0,q, z) be the solution of (3.7)-(3.8), then the energy E is decreas-
ing function and satisfies, for all t >0 and ny > 0,

O e = Lo / a2 / ) (0 do

1 1 1 T2
+§ (9" 0z) — ,ul/ prdr — / got/ pa(8)z(x, 1, s, t)dsdx
0 0 T

1 1 1
—5/0 ¢’dx — us(t)/o b(z)uf () do + % (¢ o1by) — no/o idr <0,
(3.16)

IN

3.3. Technical Lemmas
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Proof. Multiplying (3.7)1,(3.7)2,(3.7)3,(3.7)4,(3.7)5 by @, ¥r, 0, ¢ and |us(s)| z respec-
tively, and integrating over (0, 1), using integration by parts, Lemma (3.3), Young’s and

Cauchy—Schwarz inequalities we get (3.16). =

Lemma 3.5 Let (p,1,0,q,z) be the solution of (3.7)-(3.8). Then the functional

F(t) : Z—Pz/o a(mm/Og<t—s><w<t>—w<s>>dsdx

+224 [ 0 (2) g / g(t—s) (b (t) — v (s)) dsda,

Kk Jo

satisfies

F(t) < _<02/0tg(5)d5_51 (p§+/0t9(8)d8>)/0104($)¢3dfv

1 1
+e| K? / (0o + 1) d + ce / b(x) f2(¢;)dax
0 0

1 1 t 1
+€} (252+1)/ Vidw + (cal—l——/ g (s) ds)/ ¢ dr
0 €1 Jo 0
/ 1 1 c ,
+c 6l—l—_/ 90¢x+0 €1+ — 90¢x——90¢m (317)
& €1 €1

for any €1, €} > 0.
Proof. For simplicity we write
where

0

1

L) =—p | a(®), / g (t—s) (0 (t) —  (5)) dsda,
Lo =22 [ a@aq| g

/0 (t—3s) (¥ (t) —(s))dsde.

Differentiating I; gives -
10 = - [ ma [ o-9)w0 v 6) dsie
[ oo [ o @90 - v () dsi
— /0 1 pacy () Y7 /0 t g (s)dsdz. (3.18)

3.3. Technical Lemmas
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Using (3.7)z, we gt
- el I gt = 5) (0 ()~ ¥ () dsdo
/50‘ / (t =) (W (t) = ¥ () dsdz
+/0 Ka (@) (px+¢)/0t9(t_5)(¢(t)—1/1(8))dsdx

_/Oloz(x)a(x) </Otg(t—s)1/)m(s)ds> (/Ot (t—s)(%()—%(s))ds)dx

tust) [0 10 ([ 009 @0 v ) as) s
+/01a<a:>fyex (/Otga—s)w(t)—w(s))ds) &z

+/010/(x) <5%—a(9§)/0t9(3)%(8)ds> (/Otg(t—s) (w(t)—w(s))ds) de.

(3.19)
Next, by using Lemma 3.3, we have for any &1 > 0
[ oat@rv [ o @9 w0 - v () dsi
< et [ atwide= S ov (3.20)
Also,
B0 = 2 [ a@a [ 909w 0 v )
= 0(0)a [ 9116 =9) (0 ()= () ds
2 [Cawan [ 96
Using (3.7)s, which gives
B0 = -2 [a@a [ ot-9@ 0 -vE)asis
~[awne ([ ot-9@n-vepds) i
22 [ [t 900 - v o) dsts
+% (/Otg(s) ds> /Oloc(:c) qirds. (3.21)

3.3. Technical Lemmas
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Similarly to (3.20), we treat the terms in the right-hand side of (3.19) as follows

[ B [ o9 e )~ vu o) s
< B /01 wgd:chE—C,lgowx. (3.22)
Also,
[ K@t n) [t 00 0 - () s
< 5’1K2/01 (90:c+¢)2d$+5—cllgo¢x. (3.23)
By the same method used in [46], we have these estimates
- [awaw ([ a6rimas) ([ o-900 - )is)
< & /01 Yidr + c (6’1 + %) g0y, (3.24)
and
walt) [0 70 ([ 9t =9) 00— (9 ds)
< e /O b)) 4o <€1 + gil) 01, (3.25)
Finally,
[ @@ (s =at [ a6 as) ([o0-9w0-ve)as)
< &p /01 Yidr + c (5’1 + %) G0 Yy (3.26)

As in (3.20), we find easily that

201 a<x>q/0 g (t = 5) (0 (£) — v (s)) dsda

K Jo
! 2 c
< 61/ q°dr — —g' oy, (3.27)
0 €1

Also, we estimate the first term in the right-hand side of (3.21) as follows

0 a(x)q/o g (t— ) (1 () —  (5)) dsdz

K Jo

5\° ! c
<l> €1 / ¢dx + —g oy, (3.28)
K 0 61

3.3. Technical Lemmas
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o ( /;9(3) d5> /0 ' (o) uds
< (/;9(3) dS) gil/olfdm + (/Otg(s) ds) cel /01 Yide. (3.29)

By combining the estimates (3.18)—(3.29), we complete the proof. =
As in [18], we introduce the multiplier w which is the solution of

and

Wy =Yz,  w(0)=w(1)=0. (3.30)

Lemma 3.6 The solution of (3.50) satisfies

1 1
/ widr < / Vide, (3.31)
0 0

1 1
/ w?dr < / Vidw. (3.32)
0 0

Lemma 3.7 Let (¢,1,0,q, z) be the solution of (3.7)-(3.8). Then the functional

' ' VP4 !
Fy(t) := p2/ ypdx + pl/ prwdr — 7/ Yaqdx. (3.33)
0 0 0

1
6+C52M1_5’752 /T/Jd"' _+_ /gofdx
252 252 0

€ €
< ’Yﬂ42 p12/¢tdx+ £ o,

VP4 oy b, c 1 ,
* (2/{52 + 2,%2) /0 dx + 9 b(x) 7 (¢r) d

// \p2(s)] 2% (x, 1, 5, t)dsdz, (3.34)

satisfies

for any €2 > 0.

Proof. By taking the derivative of F,, we get

1 1
Fy(t) = /0 (p2ut) + pat}) dx +/0 (prpuw + progwy) d

N N

=J =J2

1
(vrq + qe) dz. (3.35)

0 J/
Vv

=J3

_Jpa

3.3. Technical Lemmas
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Next, using (3.7); and (3.7)4, we obtain

1 1 1
Jo+J3 = —K/ gowmdx—FK/ widm—l—pl/ prwdr

m/% dx+—/ wqda:+'y/ Vo, dx

—u1/ gotwdx—/ w/ po(s)z(x, 1, s, t)dsdz. (3.36)
0 0 T1
Using (3.7)2, we get also

J = —B/wdx+p2/ ¢tdx+/ww/ (t—s)a(x) iy (s)dsde

5 [ wde =k [t =) [ oes @ [t
(3.37)

From (3.36), (3.37) and by using Lemma 3.6, we deduce

1 1
F(t) < —pl/ gotwdm+,01/ gotwtdx— / g dm—i——/ Wqdx
0 0

—6/ wdxm/ wtd:c—w()/ () wf () da

+f (@) / gt — ) (s) dsd — / u / als)2 (2, 1,5, )dsda.

By exploiting the inequality
1
lab| < g(f +5o0 abeR V>0,
v

we easily find, for any 5 > 0,
1 1/ 1/
Fy(t) < —5/ widas + H/ (—gof + 52w2) + %/ (g—gof + 52wt2) de
0
P4 1 2 1
+2— g2 + —q dx + — o) + —q dx
/ / pa(s)z(x, 1, s,t) dsda:+p2/ Vidr — ps(t / b(x)f () dx

n / a (x) s / (t = 5) s (s) dsda. (338)

Now, we estimate the last three terms in the right-hand side of (3.38). by Young’s,

Cauchy-Schwartz and Poincaré inequalities, we arrive at

m()/ol (2) 0 f (1) do <€2C/ wd:c+—/ 2) 12 () d (3.39)

3.3. Technical Lemmas
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[ @ [ ot sv. o) dsa

/ / po(s)z(xz, 1, s, t)dsdx

CeQMI/ Yad + _/ / 2(s)| 2 (2, 1, 5, t)dsd. (3-41)

Then, plugging (3.39) and (3.41) into (3.38) and using (3.32) completes the proof. m

< 520/ Vidr + —g 0 1Yy, (3.40)

Lemma 3.8 Let (p,1,0,q,z) be the solution of (3.7)-(3.8). Then the functional

Fy (1) i= py /0 o (—so " /0 xw<y>dy) dz. (3.42)

K 1 1 1 1
Fj(t) < ——/ (<Px+¢)2dx+€3/ ¢fd:1:+c(1—l—€—)/ ©2dx
0 3 0

// \p2(s)] 2% (, 1, 5, t)dsdz, (3.43)

Proof. Taking the derivative of (3.42), exploiting (3.7); and integrating by parts, we

satisfies

for any e3 > 0.

obtain

Fi(t) = pl/l% (/xwt(y)dy> d:c—/ <g0+/ Y(y dy)/ po(s)z(x, 1, s,t)dsdx

1
-K %er) dfv+p1/ sotdx—ul/ sot(<p+/ P(y dy>dfc (3.44)

Using Young’s, Pomcare and Cauchy-Schwarz inequalities and the fact that

1 x K 1 1
—Ml/ @t (Wr/ @b(y)dy) dr < Z/ (¢x+@/})2dl’+0/ pidz,
0 0 0 0

then lead to Estimate (3.43). m

Lemma 3.9 Let (p,1,0,q,z) be the solution of (3.7)-(3.8). Then the functional

1 x
Fuw) == [ o [ oty (3.45)
0 0
satisfies
5 1 1
Fl(t) < (—,Oglﬁ—l—&lp; C) / ezdx+€4’2)” / Y2de
0
AN A
s 4
+<p4/<:+24+254)/0 q-dz, (3.46)

for any €4 > 0.

3.3. Technical Lemmas
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Proof. Taking the derivative of (3.45) and using (3.7)3, (3.7)4, integration by parts and
Young’s inequality, we obtain (3.46). m

Lemma 3.10 Let (p,1,0,q,2) be the solution of (3.7)-(5.8). Then, for my > 0, the

functional
1 1 T2
F5 (t)—/ / / se”* |uy(s)| 2% (w, p, s, t)dsdpdzx (3.47)
0 0 T

satisfies
1 1 T2
B < - [ [ [ sl 2w p s 0dsdpda
0 0 1
1 T2 1
—771/ / |,u2(s)|z2(x,1,s,t)dsdx+u1/ pid. (3.48)
0 T1 0

Proof. Differentiating (3.47) and using (3.7)5, the fact that z(z,0,s,t) = ¢; and e <
e % < 1 we get for all p € [0,1]

1 T T 1
Bo < [ [T o2 s+ ([Cslds) [
11 1 T2 '
—/ // se” 5 |ua(s)| 22(z, p, 5, t)dsdpdz.
0 0 T

® is an increasing function, we have —e™* < —e ™ for all s € |1, 7).

Since s — —e~
Finally, setting 7, = —e™™ and recalling (3.9), we obtain (3.48). =

3.4 Proof of the stability result
In this section we prove our stability result. First, we define a Lyapunov functional £ by
L(t) = NE(t) + N1 Fi(t) + Fy(t) + F5(t) + Fy(t) + NoF5(t) (3.49)
where Ny, Ny and N are positive real numbers to be chosen appropriately later.
Lemma 3.11 For N sufficiently large we have
L(t) ~ E(t). (3.50)

Proof. Let L(t) := N1 Fi(t) + Fy(t) + F5(t) + Fu(t) + NoF5(1),

we get

L] < poy / o () / g(t— ) (@ (t) = (s)) ds| da

3.4. Proof of the stability result
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22 [awa [0 0 - v s
1 1
+p2/0 wtw\dx+p1/ puw] da + 122 / [¥q| de

+p1/1 o (90+/ P(y dy> dx+p3p4/0 q(/o H(y)dy)
/ / / sle”*u (z, p, s, t)dsdpdx (3.51)

By the same techniques used in the proof of Lemma (3.5), we easily estimate the first

dx

dx

and the second term in the right-hand side of (3.51). Exploiting Young’s, Poincaré and
Cauchy-Schwarz inequalities, (3.15) and the fact that e~ < 1 for all p € [0, 1], we obtain

20 < o[ [+ 00t b 0 4004 o
+cg o, ~|—c/ / / s |ua(s)| 2% (z, p, s, t)dsdpdx
< cE(1).
Thus, |L(t) — NE (t)| < cE (t), which yields
(N—c)E({t) <L) <(N+c)E(t).
Choosing N large enough, then there exist two positive constants (5, and 35 such that
PE (1) < L(t) < BE (1)
This completes the proof. m

Theorem 3.1 Let (©o, p1, %0, %1, 00, o, fo)T € H be given. Assume that assumption 2.1
- assumption 2.6 are satisfied, then there exist ¢1,co > 0 for which the (weak) solution of
problem (3.7)-(3.8) satisfies

E(t) <e K (02 /Ot(ugn) (s) ds) , Yt >0, (3.52)

where n =1 if a = 0.

1. The last result is satisfied regardless of the speeds of wave propagation.

2. Since limy_,o+ K(t) = 400, then for f0+°°(u377) (s)ds = 400 we have the strong
stability of (5.7)-(3.8), that is

lim E(t) = 0.

t—-+o00

3.4. Proof of the stability result
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Proof. By combining (3.16), (3.17), (3.34), (3.43) and (3.46), using (3.11) and (3.12), we

arrive at

L(t) < —Ni{pg0 — e (P§+91)}/0 (o (@) + b (2)) ide

’VP4€2 n P4YEL + P1€2 } / ¢t2d:L’ — Nps(t )/1 b(z) Y f (Yy) da
0

_|_

4 1

A p1 + Nopy — Nng /@?dl’
2€2

+ N1051+—} f2 (¢r)dx + Ny {0290—51 (PQ"‘gl }/ wtdl’

) <5+C€2M1+65’Y€2)}/ de:z:
1 N N

cN; <€1+ )+CN1( —,)+£}gowx+<——c—l>g’0%
€1 E9 2 €1

0 ) !
N, (csl N ) 72+ Wi et (W}/ Pdr
RE9 254 0

1
g - — Nin}/ / |ILL2 33',1,5 t)deﬂf
2
K
+{N1€/1K2—§}/ (0x + 1) dx—l—{ psk +54p3 C}/ 0%dz

~Nam / / / $|12(8)| 22(z p, 5, )dsdpd. (3.53)

for all t > t,.

Now, we have to choose our constants very carefully. First, let us take e5 = 1, 1 and &4

small enough such that
P290 2K

L eq < —.
pptag T de
Next, taking €3 = (179ve4 + p1) /2, using Lemma 3.1, and choosing N;, N, large enough
such that

e <

2 1 1
N _ 2 ( L) -, Nog> — + —
1 (290 — €1 (03 + 91)) > (p1+ p2+ paves + ok ) d” T 2 +K771

then, we can select €] so small such that

¢ mind L ) @ 2
€1<m1n{2N1K, (5—1— 5 + )/Nl(Qﬁ —|—1)}

Finally, we choose N large enough (even larger so that (3.50) remains valid) and

1 N, N
+C<1+_>+N2/L1—N?70<0, Q——<0,
&3 €1 2

M1+ p1

3.4. Proof of the stability result
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4] o
Ny (e 4 O0) ¢ D008 PO R0 L 5N <.
&1 2/@ 254

Therefore, (3.53) becomes
1
L) < —c/ [ + (a (2) +b(2)) 47 + 97 + (0 + )" +60° + ¢°] du
0
1 T
—C/ / / s |pa(s)] 2°(x, p, 5, t)dsdpda + cg o b,
0 0 T1

e /0 b() (42 + 12 (1)) de.

By using lemma (3.1) and estimate (3.15) then lead to

1
L'(t) < —cE(t) +cgot, + c/ b(x) (V7 + 2 () da, Yt > to. (3.54)
0
Let us define the following sets
Yy ={z€(0,1): ¢ (x,t)] >} and O, = (0,1) \X,.

We work now for estimate the last term in the right-hand side of (3.54) First, note that
1
[r@ @i 2 @)ds = [ @ @+ W) da
0 Ly
s [ ) (4 @) da
Oy
Using assumption 2.3 and (3.16), we easily show that

M3(t)/2 b(x) (U + 2 () dw < (/ff1+k‘z)/2 ps(6)b () P f (¢r) da

< (' k) / s (00D (2) o (62) da
< —cE (). (3.55)

If W’ = 0 on [0,1]: Thisimplies that there exist k7, k5 > 0 such that k{s* < f (s) s < kbs?
for all s € Ry, and then (3.55) is also satisfied for [¢; (z,t)| <[, then on all (0,1). From
(3.54), (3.55) and the fact that uj < 0, we arrive at

(us()L(t) + cE (1)) < —cus(t)J (E (1)) 4 cgohy, Yt >t (3.56)

where J is defined in (3.13).
If ”(0) =0 and A” > 0 on (0,I]: Since h is convex and increasing, h™' is concave

and increasing, by using assumption 2.3, the reversed Jensen’s inequality for concave

3.4. Proof of the stability result
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function (see [37], p. 61), and (3.16), we obtain,

s (1) / b(e) (02 + 2 () de < puslt) / b(2) Bt (nf (1)) da

< ult) [ @) ()

< Ms(t)|@w\h_1< 5 B wtf(wt)d:c)

< cps(t)h™! ( / DU @) dm)

< custh™! ( / b s wt)) e

< cus(t)h ™t (—cE' (1)). (3.57)

Therefore, from (3.54), (3.55) and (3.57), we find that
pa(t)L(t) < —cps(t)E (t) + cuz(t)h™ (—cE' (1)) — cE' (t) + cg o by, V> 1.
By using Young’s inequality (2.8) and the fact that
h* (p) < plh]7'(p), E' <0, h" >0 and pj <0,
we obtain for g9 > 0 small enough and ¢y > 0 large enough,

[0 (20 (1)) [s()L(1) + B (t)] + o E (¢)]
= B () 1" (2B (1)) [pa(t)£(t) + cE (1))

+1 (0B (1)) [us () L'(2) + ps()L(E) + cE ()] + co ' (1)
< —cps(t)h (€0 (1) E (t) + cuz () (0B (1)) h™ (—cE' (1))
+coE' (t) + ch' (goF (1)) g 0 Y,
< —aus(N (20 (1) E (1) + cus(t)h™ (R (0 £ () — cE' (1)
+coE' (t) + ch’ (goE (0)) g 0 ¥,
< —cps() (e (1) E (t) + ceops(t)h (0B (1)) E (t) + cg o ¢y
< —cus(t)h (0B (1) E () + cg o by = —cpz(t)J (E (1)) +cgothy.  (3.58)

Now, let us define the following functional:

F() = ps(t)L(t) + cE (1) %f K" =0on [0,]],
B (eoFE (1)) [us(t)L(t) + cE (t)] + coE (t) if K'(0) =0 and A” > 0 on (0,1].

Using (3.50), we have
F~ L,

3.4. Proof of the stability result
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and exploiting (3.56) and (3.58), we easily deduce that
F'(t) < —cus(t)J (E(t)) + cgothy, Vt>tg.
By using (3.16) and assumption 2.5, we obtain

(n(t) F (1))

Il
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Next, let
R(t)=en(t)F{)+cE()),

where 0 < € < £ and € is a positive constant satisfying
1
n(6) F () +cE(t) < ZE(t), V>0,

We also have
R~ FE, (3.59)

and for t >t
R (t) < —ceps(t)n (1) J (R (1)) . (3.60)
Noting that K" = —1/J (see (3.14)), we get from (3.60)
R (t) K' (R () = ceps(t)n (t), ¥t = to,

A simple integration over (tg,t) then yields

K (R(1) > K (R (o)) + e / s (377 (s) ds — e / " ua(s)n (s) ds,

On the other hand, since lim K (t) = +00 and

t—0t+
0 < R(t) < 2B (t) < ZE(0),
we obtain for € small enough
to
K (R () — 05/ 1s(s)n (s) ds > 0.
0

Then, thanks to the fact that K~! is decreasing , we infer

R(#) < K (K(R(to))Jrca /0 (s (s) ds — ce /0 ! ug(s)n(s)ds)

< K (ce /0 (e (3) ds) |

From this end inequality and (3.59) we get easily (3.52). Then the proof is completed. m

3.4. Proof of the stability result



CHAPTER 4

LGLOBAL EXISTENCE AND GENERAL DECAY OF A WEAKLY NON-LINEAR
DAMPED TIMOSHENKO SYSTEM OF THERMOELASTICITY OF TYPE III

WITH INFINITE MEMORY

4.1 Introduction

Consider the following weakly nonlinear damped Timoshenko-type system for ther-

moelasticity of type III with infinite memory:

prew — k(o +9), +59m+a( )f(sot) =0
p39tt - 59:):23 kezxt + VPtx + ’th + « ( ) f (9,5) = 07

where t € (0, +00) denotes the time variable and x € (0, 1) is the space variable. Here ¢,

1 and 6 are respectively the transverse displacement of the beam, the rotation angle and

the difference temperature. «, f, and g are specific functions satisfying some conditions to

be determined later. « (t) f (¢;) and a (t) f (6;) are the weak nonlinear dissipative terms,

the infinite integral depending on g represents the infinite memory term. ¢, @1, ¥g, 11, 6o,

0, are initial data. The coefficients, p1, p2, p3,7, 0, 5,b and k are positive constants.
With the following initial and boundary conditions:

¢ (2,0) = @o (), @i (2,0) =1 (x), 0(2,0) = b (), in (0,1),
¥ (2,0) = o (2), ¢ (x,0) = ¢ (), 0, (x,0) = 61 (x) in (0,1), (4.2)
2 (0,1) = ¢ (1) = (0,1) = ¢ (1,1) = 0(0,1) = 6 (1,£) = 0 in (0,00).

There is a large number of publications concerning the stabilization of Timoshenko sys-
tems with dissipative mechanisms of several types, such as viscoelastic or memory type,

feedback and control forces (e.g. [20, 35, 40, 48, 57, 58, 71]). In the context of asymptotic

33
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stabilization with nonlinear feedback damping, first results are given in [I] where the au-
thor studies the asymptotic behavior of the system governing the non-linear vibrations of

a Timoshenko beam,

{ uy — af (Uac - U)x -7 HuwH2 Ugz + 9 (ut> =0,

évtt — Ugz — Oéﬂ (uac - U) + g (Ut) = 07 (4?))

where g : R — R is a Cl-class, non-increasing function with ¢(0) = 0 and satisfying

alz]” < g(x) < eolz|V" for |z <1,
eslz” < g(x) <eqlz]”  for |z > 1.

Alabau-Boussouira [1] considered the asymptotic behavior for the following Timo-

shenko system with a single nonlinear damping;:

P1Ptt — k (901 + w>;p = 07 (4 4)
p27vz)tt - bvzz + k (SOr + ¢) + o <wt) =0. ‘

He established a general semi-explicit formula for the decay rate of the energy at

infinity in the case of the same speed of propagation in the two equations of the system
(i.e. pﬁl = p%) Park and Kang [30] concerned with the decay property of the solutions

for Timoshenko beam with a weak non-linear dissipation

gy — (ug +v), +0(t) g (u) =0, (4.5)
Vgt — Vg + (U +0) + 0 (1) g (v;) = 0. '
Without assuming equal speeds of propagation of waves, Cavalcanti et al. [25] con-

sidered the Timoshenko model for vibrating beams under effect of two nonlinear and

localized frictional damping mechanisms

proe — k(o +10), + a1 () g1 (@) =0,
ptht - bwzx +k (90:5 + w) + g (ZL’) gs (@Dt) = 0.

They proved that the damping placed on an arbitrarily small support, unquantitized at

(4.6)

the origin, leads to uniform decay rates (asymptotic in time) for the energy function. Feng
and Yang [37] studied the nonlinear Timoshenko system with a time delay term in the

internal feedback

prow — k (px +1), = h(z), (4.7)

Under some suitable assumptions on the weights of feedback, the authors established the
existence of a global attractor with finite fractal dimension for the case of equal speed

wave propagation, as well as the existence of exponential attractors.

4.1. Introduction
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For Timoshenko systems in classical thermoelasticity of type III, Djebabla and Tatar

[33] considered the system

(

prow =k (z +1), =
P2t — bibay + k (o + 1) + 90, =0,
\ P?ﬁtt—lem‘f‘V%tw‘Fﬁng(t—S)@ (z,8)ds =0,
¢ (2,0) =0 (z), v (2,0) =1 (2), ¥(2,0) =10 (2), ¥ (2,0) =91 (), in (0,1),
. @(O’t>:¢(1>t):¢(07t):w< ) ) O (O ) 99:( 7t) n (0,00).

(4.8)
and proved, under suitable conditions on its coefficients, and for g decaying exponen-
tially, that the energy function also decays exponentially. Messaoudi and Fareh [69, 70]
discussed a similar system of porous- thermoelasticity with viscoelastic damping term in

the second equation of the form fo $) Yz (z,t — $) ds. They established some general

decay results for the solutions in the case of equal wave speeds < pﬁl = ,%) as well as

for different speeds of wave propagation < p% #+ p%) . Kafini [56] improved the result of
Djebabla and Tatar [33] with more general relaxation functions. He proved, under the
same conditions on the coefficients, a general decay result, from which the usual expo-
nential and polynomial decays are only special cases. We refer the interested readers to
[3, 12, 14, 15, 17] and references therein for details discussion on problems with weak or
strong non-linear dissipation.

Motivated by in works of Cavalcanti et al., Kafini and Messaoudi and Fareh mentioned
above, we investigate (4.1) under suitable conditions and establish the well-posedness of
the problem using semigroups theory, as well as the energy decay of solution which depends
on «, f and g by using the multiplier method with some properties of convex functions.
Our purpose in the present manuscript is to obtain general decay rate estimates of the
energy for the thermoelastic Timoshenko system with infinite memory subjected to a
weakly nonlinear damping placed in first and third equations, but without any restriction
or relation on the coefficients. We prove our result then regardless of equal speeds of

propagation of waves and no growth assumption on f at the origin.

4.2 Preliminaries and well-posedness result

In this section, we present some materials needed in the proof of our results. We also
state, with proof, an existence and uniqueness result for problem (4.1). The proof is
established by using semi-group method.

First, to facilitate our calculations we introduce the following notation

(gov) fo 19 (x,t) — v (z,t — s))*dsdx, Vv € L*(0,1).

4.2. Preliminaries and well-posedness result
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It is easy to obtain the following inequalities, we omit their proofs.

Lemma 4.1 [/8] The following inequalities hold,

1
200(g 0 ) (£) + 200 / yRde,

o\
N\
o\_>
3
=
&
=
)
=~
|
&
<
W
N——
no
I
&
[\

[ ([ 900 -t} o < atgo v

/0 1 ( / " gl — it - s))ds)2dw < dilgovn)(t),

01 ( | s - - s>>ds)2dw < —dalg o un)(0)
[ ([ 060000 e~ pas) ae < —gt0)' 02100

where dy and dy are positive constants.

The energy functional associated to (4.1)-(4.2), is

E(it) @ =E(t,p,v,0)

Y ! { 2 2 2 ( ) 2}
= L ; ; k(p, + +1b— d . d
5 /0 P17 + Py + (cp w) /0 g(s) s )Y X

1
—i—%(g o 1h,)(t) + g /O {ps67 + 602} dx, (4.9)

we denote E(t) = E (t,¢,1,0) and E(0) = E (0, o, 1o, 0y) for simplicity of notations.

Then the energy FE is decreasing function and satisfies, for all ¢ > 0,

B = —kﬁ/ 62 dy — {7/01<ptf(got)dx+ﬁ/010tf(9t)dx}

+1 (g o) () <0,

To obtain precise decay rates of E(t) as t — +00, we consider the following assump-
tions:
A,. f:R — Ris a Lipschitz continuous and non-decreasing function such that there exist
positive constants k; and [ and a convex, continuous and increasing function h : R, — R
of class C* (Ry) N C? (]0, +o0[) satisfying: h (0) = 0 and

h" =0 on [0,1], (4.10)

or

h'(0) =0 and A" > 0 on (0, 1], (4.11)

4.2. Preliminaries and well-posedness result
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such that
h(f*(s)) < f(s)s for |s| <1,

|f (s)] < K ls for |s| > 1.
A,. g:R, — R, is a differentiable function such that

g(0) >0, / g(s)ds=go, L=0—go>0.
0
Aj. There exists a non-increasing differentiable function 7 : R, — R satisfying
g'(s) < —n(s)g(s), for s >0.

Ay a: R, —]0,+00[ is a non-increasing C'-function satisfying

/ooa(s)ds = +o00.
0
Next, we take the following notation
n'(z,s) =Y(x,t) —(x,t —s), teR,, (r,s) € (0,1) xRy, (4.12)
let

no(x, s) := 770(3575) = tho(x,0) —o(z,5), (7,5)€(0,1) x Ry.

n' is the relative history of v, we have

77€+77§_wt = 0, <x7t75) € (071) X Ry X Ry,
n'(0,s) = n'(1,8) =0, (t,s)€R, xR,
n'(x,0) = 0, (z,t)€(0,1)xR,. (4.13)

Then the second equation of (4.1) becomes

ptht - bw:ca: + k(%: + ¢) + 90¢x:c($, t) - /(; 9(5)77290(557 S)dS - 66t =0.

For state an existence result, we set u = ¢;, v = ¢4 and w = 6; and introduce the vector
function ® = (¢, u,¥,v,0,w,n")?. Using the standard Lebesgue space L%(0,1) and the
Sobolev space H}(0,1) with their usual scalar products and norms for define the space H
as follows

H = [H}(0,1) x L*(0,1)]” x L,

where

1 00
L,= {w:R+—>H3(O,1), / / g(s)widsdx<oo}.
o Jo
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Then problem (4.1) becomes the following problem for an abstract first-order evolu-

tionary equation,

i@ + AP = B(?),

dt
cI>(0) = ‘boz(900,¢17¢0,1/11,90,917U0)T,

(4.14)

where ® = (p,u, ¥, v,0,w,n") and the linear operator A : D(A) C H — H is defined by

—u
_pﬁl(@x + ) + pﬁlww
—v
AD = —p%@/}m + p%(gax T V) + Lihos — fo s)int,(z,t,s)ds — pﬁw :
—w
_95 _ &k x X

o5 ae — -Wag + SUe + S0

t
N — v

0
—%f@t)
0

B(®) = 0
0
—2@ £ (6,)

03

0

(4.15)

(4.16)

For any ® = (p,u,v,v,0,w,n))" € H, ® = (3,0,¢,7,0,0,7)" € H, we equip H with

the inner product defined by
~ l ~ — —_
0

1
+ 6/ (00,0, + psw)dx +y < ', 0t >,
0

{(wy,ws) / / $)W1,(8)way(s) ds dx.

where

The domain of A is

D(A) ={® e H:p,,0 € H*0,1)NHy(0,1),u,v,w € Hy(0,1),n" € L,},

which is dense in H.
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Proposition 4.1 Assume &g € H and A, - A4 hold. Then, there exists a unique solution
® € C(Ry,H) of problem (4.1)-(4.2). Moreover, if &g € D(A) then

O € C(R., D(A) N C Ry, H).

Proof. We use the semigroups approach. We prove that A is a maximal monotone

operator. First, we prove that A is monotone, for any ® € D(A), we have

(AD, )y = Bk/ widx + 7/ / s)nt.nk(z,t, s)dsdr. (4.17)

Since g : R, — R, is non-increasing, then we get

| sttt toonis = 5 7o) 00)" @too)is

— —% /OOO q'(s) (77;)2 (z,t,5)ds.

The last term in the left-hand side of (4.17) gives

/ / s)nt.nt(z,t, s)dsdr = —§g 0 1.

1
(AP, D)y = Bk:/ widr — %g’ o1, > 0.
0

Thus, A is monotone. Next, we prove that the operator I + A is surjective. Given

Consequently,

G = (91,92, 93,91, 95, 96, g7). € H, we prove that there exists a unique ® € D(A) such
that

(I+A)®=G. (4.18)
That is,

p-u=g € H}(0,1),
pru— k(o +¥)s + Bws = p19e € L2(0,1),
w—vzgs € Hi(0,1),

bwm + k(pe + ) — Bw — [;7 g(s)nt,(x, ¢, s)ds (4.19)
+¢m J5" g(s)ds = p2ga € L*(0,1),
0 —w=gs € H(0,1),
p3w — 08y — kwyy + YUz + YU = p3ge € L?(0,1),
n'+ni—v=gr €L,

Using last line in the above equation, we obtain

n'=e* /OS e’ (v + g7(7))dr. (4.20)
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Inserting u = ¢ — g1, v =1 — g3, w = 0 — g5 and (4.20) in (4.19), (4.19)4 and (4.19)s, we

obtain

pip — k(pz + )y + b, = I € L*(0,1),

P = Dby + K(pa + ) = B0 = [ g(s)e™ [§ tue”drds (421)
+ Jo" 9(8)dstzy = Ry € L*0,1), '
p30 — 00,0 — KOy + v + 70 = h3 € L*(0,1),

here

hi= gap1 + gi1p1 + BGsa,

ho= pags+p29;—PB9s + / g(s)e™” / (97 — 93)aae” d7ds,
0 0

hs = p3gs — kgsea + V912 + V93 + g6ps3-

Considering the following variational formulation

K((p,9,0), (¢1,91,01)) = F(e1,71,01), (4.22)

where K : [HL(0,1) x HL(0,1) x H}(0,1)]> = R is the bilinear form defined by

K((¢,¢,9), <§017w1;61))
1 1 1
= ’Vpl/o 90¢1dx+k7/0 (som+w)(solz+w1)dx+vﬁ/0 O, p1dz

+7p2 /0 1 Yiprdx + by /0 1 Vothrzdr — 7y /0 oog(S)dS /0 1 Vothrzdx

1 00 s 1
+ ’Y/ ¢1x/ 9(3)6_5/ VYpe’drdsdr — 57/ 011 dx
0 0 0 0

1 1 1 1
+ pg,B/ 00,dz + 55/ 0,.01.dx + kﬁ/ 0,01,dx + 75/ 0 b1 dx
0 0 0 0
1
+18 [ vorda,
0
and F: H}(0,1) x H3(0,1) x H}(0,1) — R is the linear functional
1 1 1
Fl(p1,91,01)] = ’Y/ hiprdz +’Y/ hodx + 5/ h301dx.
0 0 0
Now, for V' = [H}(0, 1)]? equipped with the norm

le, 0, 015 = llell + 10113 + llx + ¥z + [1¥allz + 16212,

4.2. Preliminaries and well-posedness result



Chapter 4. Global existence and general decay of a weakly non-linear damped
Timoshenko system of thermoelasticity of type Ill with infinite memory 41

where ||.||2 is the usual norm, using integration by parts we have
K((,9,0), (9,9,0))
1 1 1
= 7p1 / pde + k'y/ (100 +0) dz + 'VpQ/ VPda
0 0 0

-I—(b—/ooog(s)ds)y/ol @Z)gdx—kv/ol @Didx/ooog(s) /O e"dre *ds

1 1 1
—l—pgﬁ/ 92dx+55/ Hidx—i-k:ﬁ/ 02dx,
0 0 0
> Mg, v, 0%,

for some A > 0. Thus, K is coercive.
On the other hand, using Hélder’s (2.1) and Poincaré’s inequalities (2.3), we obtain

‘K((¢7¢79)7 (¢17¢1791))| S CHQO,1/),9”\/”@1,1/}1761”\/.

Similarly
[F(p1, 91, 01)] < cllgr, ¥, O llv

Consequently, by the Lax-Milgram Lemma, system (4.21) has a unique solution

(p.0,0) € [Hi(0,1)]°,

satisfying
K((@? %ﬁ’ 0)7 ((;017 ’le, 91)) = F(§017 wla 91)7 (Spla wb 91) S V
The substitution of ¢, ¢ and 6 into (4.19)q, (4.19)5 and (4.19)5 yields

(u,v,w) € [HH(0,1)]°.

Similarly, inserting v in (4.20) and bearing in mind (4.19)7, we obtain n* € L,. Moreover,
if we take (¢1,61) = (0,0) € [HE(0,1)]” in (4.22), we obtain

1 1 1 1

k /0 (0 + Onde + po / nda + b / Vatbradz — B /0 O
') 1 ') 1

_ / g(s)ds / tbrada + / 9(s)(1 — e=*)ds / brtbrada

1
= / hgwldﬂf.
0

Then we obtain
1 0o 1 0o 1
b / bytbrode — / g(s)ds / botbrode + / g(s)(1 — e~*)ds / Yathrode
0 0 0 0 0
1

- / = k(u +4) — pto + B0 + halinder, vy € HA(0,1).
0
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By noting that —k(p, + 1) — pat + 30 + hy € L?(0,1), we obtain ¢ € H?*(0,1) N H}(0,1).

Consequently using integration by parts we get

1 00 o9
—b TT d :m:d - 1—e d TT
/0 [—b +/O g(8)dst)ydx /0 g(s)(1 — e %)dsy
+ k(pa + 1) + patp — B0 — holydx = 0, ¢y € Hy(0,1).

Therefore,

—bthee + /0 9(s)dstpypda — /0 9(s)(1 — e7*)dstus + k(pr + 1) + patp — B0 = hs.

This gives (4.21),. Similarly, if we take (o1, 1) = (0,0) € [HE(0,1)]° in (4.22), we can
show that
6 € H*(0,1) N Hy(0,1),
and (4.21)3 are satisfied.
If we take (¢1,61) = (0,0) € [H2(0,1)]” in (4.22), we can show that

¢ € H*(0,1) N Hy(0,1),

and (4.21); are satisfied.

Finally, from (4.20) we can get n* € L,. Hence, there exists a unique ® € D(A) such
that (4.18) is satisfied. Therefore, A is a maximal monotone operator, then D(A) is dense
in H (see Proposition 7.1 in [241] ).

Now, we prove that the operator B defined in (4.14) is locally Lipschitz in H. Let ® =
(o, u,,v,0,w,n")T and d = (o, u, 1;, v, 5,@,7?)? since Lipschitz continuous function,
then we have

Cﬁwvao—f@amwuuwa—f@mm)

¢ (llew = @llze + 160 = Bulz2)
(=l + o = Fllz2)

< o ® — B

IN

1B(®) — B(®)]|5

ININA

Then the operator B is locally Lipschitz in H. Consequently, A + B is the infinitesimal
generator of a linear contraction Cgp-semigroup on H. Hence, the result of Proposition

4.1 follows (see [01, 83]) and the references therein. m

4.3 'Technical Lemmas and stability result

In this section, we start with establish several lemmas needed for our work then proof our

main result.
Let us first prove that the energy function F is decreasing, we have
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Lemma 4.2 Let (p,1,0) be the solution of (4.1)-(4.2), then the energy E is decreasing
function and satisfies, for all t > 0,

B = —kﬁ/ 62 dy — {y/ol%f(%)dﬁﬁ/Oletf(et)dx}

+2 (9 o) (t) <0. (4.23)

Proof. Multiplying (4.1)1,(4.1)2 and (4.1)3 by ¢y, v and B0, respectively, and inte-

grating over (0, 1), using integration by parts, we get

d 1
%a (PW? + p2t} + k(pe + 1) + b07) dx
—1—5% p392 + 60%)dx + 7/ %/ 8) gy (t — 8) dsdx

= —kﬁ/ 02 dz — [ /0 of (00) dx+ﬁ/ 0.f (6,) dx]. (4.24)

Using Lemma (4.1) and Young’s inequality, the last term in the left-hand side of (4.24)

/ wt/ $) Yy (t — ) dsdx
— / th/ — b, (t — 8)) dsdz — (/Ooog(s)ds) /Olthwxdx
- th {( o) (1) = (/Ooog(s) ds) /01 wﬁdm} —%(g'o%) (t). (4.25)

A combination of (4.24) and (4.25) gives

becomes

E() - _w/ e+ 2 (g0 ) (1)

—a(t)[ /gotf(gpt dx+6/ 0.f (6,) da:] <0.

Lemma 4.3 The functional

1 1
L(t) = —pl/o gptgod:p—pg/o V) dx (4.26)

satisfies
1

1 1
I(t) < —py / gofdx — po wfda: + (k +2c+ Beq) / (g +)*dx
0

0
5 92dx+c(2+€1)/ V2id + (g o ,)(t +C/ F () (4.27)

51 0

for any 1 > 0.
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Proof. By computations, using (4.1), we obtain

I(t) = /1 d:p+k/(%+w dx—B/ Orp, da — p2/ Vidx

+b/ wd:c—ﬁ/ Gtwda:—/ wz/ z,t — 5)dsdz
ta() / o (1) da.

By using Young’s inequality and Poincaré’s inequality, we obtain for £; > 0,

1

1
I(t) < pl/ prdr — ps wtdx+k/(som+w)2dx+ﬁl/ prdx

/9%1 +( 2b+_ / Ve
4b ; (/0 9(s)x(x, t—s)ds) dx + o (t) /01 o f(p) dr. (4.28)

By using Lemma (4.1) and Poincaré’s inequality, we have

1 1 1 1 1
/ p2dr < 2/ (¢r + ¢)*dx + 2/ Vido < 2/ (¢r +10)?dx + 2/ Vidw,  (4.29)
0 0 0 0 0

1 1 1
Oé(t)/o of(p)dr < %/0 sOle’JrC/O f(r) dz

1 1 1
2 2 2
c/o wxdac%—c/() (pz + 1) dx—i—c/o f () dx,  (4.30)

/01 (/Ooog(S)wx(x,t — S)d$)2 dr < c <g 0 1y (t) + /01 wgdx) . (4.31)

The substitution of (4.29), (4.30) and (4.31) into (4.28) gives (6.36). m

/ wt/ Y(t — s))dsdx

1 1
150 < exc | vdn = (g0 — i) [ v+ elea+ Z)(g0 w0

IN

Lemma 4.4 The functional

satisfies

+ 62k/0 (¢ + ¥)*dz + 52ﬁ2/ 02dx — 4—,( 0 1,)(t), (4.32)

for any ey, > 0.
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Proof. First, we have

5 ([ a0 = vie - as)
——2 ([ o= 9w - vienas)

-5 ([ ate- s - visnas)

~ [ du=w - eends+ [ gte- s

— gotlt) + / G W() — ot — ))ds.

Then, by differentiating I(t) and using (4.1), we find

Iyt —b/z%/‘ /%t—s»me—%m/Fde
—P2/ w/ Y(t — s))dsdx

Tk / (62 +¥) / o(8)((t) — (it — s)) ds da

—ﬂ/ Gt/ Wt —s))dsdz
/ / SYalt — s)ds / ) Welt) — Yult — ) dsdr. (433)

By using Young’s and Poincaré’s inequalities,

/wz/ — (t - 5)) ds da

2

< e[ w%zx+4ﬁ2 ( [ o000~ = s ) e

< e[ deH@(gowx)(t) (439
/@bt/ Y(t — s))dsdx

< o [ i+ f% ( [ 5600 vt - pas)

< & [ i - f@(wwaw, (4.35)
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k / (60 + ) / g () — Wt — s)) ds do

< ek [eroranr = [ [Taww - e - s))ds)2 o

< ek [ (oo vy dx+’§i<gowx><> (436)
ﬁ/ o [t b(t - 5)) dsda

< o / e%m% ( / °°g<s><¢<t>_¢<t_s>>ds>2dx

< o / Ghde+ (g0 0) (), (437)

/ [ ottt = s [ o(6)wat) - e - 9)dsdo

s/ (/ o(s wx(t—s)ds)?czas

+ 1 1 (/Omg(S)(wm(t) — P (t - 8))d8>2d$

462
1 1
< (262 + —) go(g o) + 2€2g0/ Vid. (4.38)
462 0
By substituting (4.34)-(4.38) into (4.33), we obtain (4.32). =

Lemma 4.5 The functional

1 1 1
I3(t) ::gfo 9326dx+p3/0 Htedx+7/0 00 dx

30\ [! v? ! '
Lt) < (cey — = / 02dx + ( ps + — / 07 dx + 63/ Vyde
4 0 253 0 0

,}/2 1 1 c 1
+ —/ Yide + 63/ (02 + 1) dx + —/ f2(6,) dz, (4.39)
o Jo 0 des Jo

satisfies

for any e3 > 0.

Proof. By differentiating I3(¢) and using (4.1), we obtain

1 1 1 1
Ié(t):pg/ thdx—i-’y/ goxﬁtdx—d/ Hidx—”y/ V0 dx
0 0 0 0
1
—a(t)/ f(6;)0dz.
0
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By using Young’s and Poincaré’s inequalities, we obtain for any €3 > 0

1 1 1 2l
fy/ OLdr < 63/ (P + w)Qda: + 53/ wgdx + L/ thdx,
0 0 0 2e3 Jo

1 1 2 1
~ | owbde < %/ egdx+'y—/ W2z, (fore=g>,
0

—oz(t)/olﬁf(@t)dx < 53/ 0*dx + 53/ 2(0,) dx

C83/ 92da:+4€ / f2(6,)d
3

Using these last inequalities completes the proof. m

IN

Lemma 4.6 The functional

1
Ii(t) == 2p1/ TP da (4.40)
0

satisfies

1 1
I(t) < ,01/ dx—(k—ce4)/(g0x+¢) dr + 524/ 02 dx

(c€4—|— >/ 1/J2dx+—/ f* () de, (4.41)

Proof. by differentiating I4(¢) and using (4.1), we find that

for any €4 > 0.

1

10 = 2 [ Beat )= 50— ) (@] (o) do+ 201 [ aZctdo

1 1 1
= 2k/ (g&x+¢)zx<pmd:ﬁ—2ﬁ/ O dr — 2a (t)/ f (@) zppda
0 1 0 0
—2P1/ pida
0

1 1 1
= k:/o x[(gpm+¢)2}$dx—2k/o x(gpx—i—@/})@bdx—ZB/O Oirxp dx
1 1
=2a(t) [ f(pr) zpedr —2py / pida
0 0
1 1 1
[ ot wde 2k [ aton + wnde + 26 [ o+ v)uds

1 1 1
—26/ Orprp dr — 20 (t) / f (@) zppdr — 2py / go?dx,
0 0 0
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then
1 1
2k - Ldr < ke - 2d
/Ofv(soﬂb)wx /(soﬂb /ww

1 1 52
—25/ Oprp,dr < 254/ 9%"’2_/ QQxdx,
0 €4

1 2
4e /(cpx—l—w +054/ Vidr + — b / 62 dz,
264 0

—2a (1 /f on wxdx<2€4/ sox+ /f @ )d

The substitution of these last inequalities gives (4.41). =

IN

and

As in [37], we introduce the multiplier w which is the solution of
—Wyp = Yy, w(0) =w(1)=0. (4.42)

Lemma 4.7 The solution of (4.42) satisfies

/ 2d$</ ¢2d:c</ Vidu,
/0 tdxﬁ/wda:</wtdx

Lemma 4.8 The functional

1
[5(t) ZI/O (pl(ptw —l—pz%"lb)dx

satisfies
1
I’()g(c55——>/w t)dz —|——/ 07 (t d:z:+55/ idx
p2+— / Vido —|—— o1, (t +—/ P (p)d (4.43)

for any e5,e5 > 0.

Proof. By a simple differentiation of I5(¢) and using (4.1), we get

1 1 1
IL(t Qth dr + k/ w2dz + py / orwpdr + B/ 041 dx
0 0 0

—b/ wgdx—k/ deac+p2/Olwfdx—a(t)/olf(got)wda:
/ / 2.t — 5)dsiby(t)da
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where we have used integration by parts, (4.42) and the boundary conditions (4.2). By
using Young’s, Poincaré’s inequalities, Lemma 4.1 and Lemma 4.7, we have

5/ Oyw, dr < = /1/12d +3—ﬂ2/ 02dx
P1 / gotwtdx<55/ dw—l— /wtdx
352
B/ O) dr < — /¢ dr + —— /HQfx7
wﬁﬂmwmm%y%m+gﬁﬂmm

and

$)g(x,t — s)dsih,(t)dx

[

/ / —8) = Ua(t) + Yu(t))dsibe (t)dx
[

<

6

\

—@—%@W%@M+[§@@A¢%ME
w<wm+% ([ swntot =)~ vatonas) as

+/g@w/wmmE
<& [ i+ Lgovan +m [ w0

By using these last inequalities, we get (4.43). m
Now, we prove our stability result. First, we define a Lyapunov functional L by

L(t) = NE(t) + Li(t) + NiLo(t) + Is(t) + NoIy(t) + NyIs(2), (4.44)

where Ny, Ny, N3 and N are positive real numbers to be chosen appropriately later. One

sees that, for N sufficiently large we have
L(t) ~ E(t). (4.45)

Theorem 4.1 Let (g, ¢1,%0,01,00)T € H be given. Assume that A;- Ay are satisfied,
then there exist cy,co > 0 for which the solution of problem (4.1)-(4.2) satisfies

E(t) < e H! (02 /0 (o) (s) ds) vt 0, (4.46)

where the functions Hy and Hy are defined by:
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foreg >0
t fh" =0 0,1
Ho(t) := v on 0,1, (4.47)
th'(eot) if K'(0) =0 and " >0 on (0,],

and

H2 (4.48)

Proof. By combining (4.23), (4.27), (4.32), (4. 39) (4.41) and (4.43), and letting ; = 1

and g9 = we arrive at

L
N1’

L) < {Nmz(&’g —go) — p2+ (p2 + 4’)—) Ny + = }/ Y2da
+{=p (N2 +1)+ 55N3}/ pidr + {663 — —} / 02dx
0

14
+{N3(cag—§>+€3—|—30+N2<c<€4—|— )—l—c}/iﬁdx

1
+{ N, (054—k)+20+5+2]€+53}/ (¢r + ¢)*dx
0

1 3 !
{ <6+p3+l+6 (N2—+ N3+1))—Nk:6}/ 02, dx
25 24 14 0

+{c(Nf+2) + 2L go () - { Ml - w2 g oo

/fQQtdx+C{_+_+1}/f2Q0t
454 2e4

—Na(t) {7/ oif (1) dx + 5/0 0.f (6;) daz} ) (4.49)

0

for all ¢t > t,.
Now, we have to choose our constants very carefully. First, let us take €3, €4, €, and
et small enough such that

30 l
C€3—Z<O,C€4—k’<0, ey — go < 0, 05’5—§<O.

After that, we pick N, large enough so that
No(cey — k) +2c+ B+ 2k +e5 <0,

then, we choose N3 large enough such that

14
Ns (06'5 — —) + &3+ 3¢+ Ny (054 +

<O.
- C

€4
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Now, we select 5 sufficiently small so that
—pP1 (NQ —+ 1) + €5N3 < 0,

next, we take Ny large enough such that

2 ?
Nipa(ey —go) = p2+ | p2+ 1 | Ns+ = < 0.
485 )
Finally, we choose N large enough (even larger so that (4.45) remains valid) and

2 1 3
c(B+ps+ 2+ 82 No—— + 2Ny +1) ) — NkB <0,
263 254 12

Ny — N3 <0,
Therefore, (4.49) becomes

1
L) < —c / (02 + 02+ 02 + (0 + )% + 62+ 02] di + cg o () + cg 0 (1)
0

ve [ st e [ Plavde—c [ (ot (e + 0 0)de

By using the estimate (4.9) then lead to

1
0

L'(t) < —cE(t) +cgo.(t) + c/ (f2(6) + f* (1)) da, Yt > to. (4.50)
Let us define the following sets

Yo, = {xe€(0,1): | (x,t)]>1}, Epo =(0,1)\ Xy, ,
Yo, = {ze€(0,1):0;(z,t)| > 1}, By =(0,1)\ Xo, .

+

We work now for estimate the last term in the right-hand side of (4.50). First, note that

/o (f* (o) + f2(6) dz = 12 (1) dz + f2(6,) dx

Yoy Yo,

[ Pesss [ pew.

w_ 29,

Using A; and (4.23), we easily show that

a(t) [ g f? (@) dz + 17 (6y) dI] < kl/z a(t)ouf (o) derk/l/z a(t)0:f (0;) dv

Yoy o+ 04

< K / a(O)pf (o) dr+ K, / a(D)0,f (6,) du
< (M) E ()
< —¢E'(t), (4.51)
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for Ay, Ay > 0.

If h” = 0 on [0,]: This implies that there exist ky > 0 such that |f (s)| < &, |s| for all
s € Ry, and then (4.51) is also satisfied for |¢; (z,t)| <1 and |6; (z,t)| <1, then on all
(0,1). From (4.50), (4.51) and the fact that o/ < 0, we arrive at

(a(t)L(t) + B (1) < —calt)Hy (E (1) +cg o vu(t), ¥t > to, (4.52)

where H, is defined in (4.47).

If #'(0) = 0 and A" > 0 on (0,]: Since h is convex and increasing, h~' is concave and
increasing, by using A;, the reversed Jensen’s inequality for concave function (see [37], p.
61), and (4.23), we obtain,

a(t) [/Ew f2 (1) dz + /29_ f2(6,) d:c]

IN

a(t) / W (ouf (1)) da

P

Tat) /Z W (0,f (6,)) da

Ca(t)h! ( /E

+Ca(t)h™ ( 0.f (6;) d:c)

caton ([ et (s
Dh- ( / 0,f (6) dx>

Ca(t {h_l AE () +hH(—c,E (t))}
20a(t)h™! (—cE' (t))
ca(t)h™ (—cE' (1)),

IN

o_

oif (o) dx)

IN

+Cof
)

IN A

IN

where ¢ = max{d}, ¢, }.
Therefore, from (4.50), (6.45), (6.47) and the fact that o/ <0, we find that

(a(t)L(t) +cE (1) < ca(t)h ™ (—cE' (t)) — ca(t)E (t) + cgob(t), Vt > to.
By using Young’s inequality (2.8) and the fact that

R*(p) < p[h]'(p), E' <0, B >0,
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we obtain for ¢y > 0 small enough and ¢y > 0 large enough,

(1 (20 B (1)) [a(t)L(t) + cE ()] + coE (1))
= el () h" (e (1)) [w(t)L(t) + cE ()] + coE (1)
+h (o E (1)) [a(t) L' (t) + o' (1) L(t) + cE (t)]
—ca(t)h (eoE (t)) E (t) + ca(t)h' (eoE (1)) h™H(—cE' (1))
+coE' (t) + ch' (eoE (1)) g 0 ¥, (t)
—ca(t)h' (eoFE (1)) E (t) + ca(t)h* (R (eoE (t))) — cE' ()
+coE' (t) + ch' (g0 E (0)) g 0 1, (t)
—ca(t)h' (eoFE (1)) E (t) + cega(t)h (eoE (1)) E (t) + cg o P, (t)
—ca(t)h' (eoFE (1)) E (t) 4+ cg o ¥, (t) = —ca(t)Hy (E (t)) 4+ cg o 1 (t). (4.53)

IN

IN

(
(
(
(
(
(

IN A

Now, let us define the following functional:

Ft) = a(t)L(t) + cE (1) if (4.10) holds,
| W (2B @) [a(t)L(t) + cE (t)] + oo E (t) if (4.11) holds.

Using (4.45), we have
F~ L,

and exploiting (4.52) and (4.53), we easily deduce that
F'(t) < —ca(t)Hy (E (t)) + cgoh(t), Vit >to.
By using (4.23) and Ajz, we obtain

(n(t) F (t))

I
3\
—~

~
~
kl‘]
—~
~
~
+
f
—~
~
~
hl
~
~—

+cn(t)go,(t)
+ c(ng) o (1)
—cg' o Y, (t)
—cE'(t).

IAN AN IA TN

Next, let
R(t) =en(t)F(t)+cE()),

where 0 < € < € and € is a positive constant satisfying

(LT

n(t)F(t)+cE(t) < =E(t), Vt>D0.

We also have
R~ FE, (4.54)
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and for t > ¢y
R (t) < —cea(t)n (t) Hy (R (t)). (4.55)

Noting that H; = —1/H, (see (4.48)), we get from (4.55)
R'(t) Hy (R () = cea(t)n (t), Vi > to,

A simple integration over (tg,t) then yields

Hy (R (t)) > Hi (R (ty)) + ca/o a(t)n (s)ds — ce/o 0 a(t)n (s)ds.

On the other hand, since lim H; (t) = +o00 and

t—0+
€ €
0<R(ty) < =Ef(ty) < =-E(0),
3 3
we obtain for ¢ small enough

Hy (R (to) — ce /0 "ot (s)ds > 0.

Then, thanks to the fact that H; ' is decreasing , we infer
t to
R(t) < H{! (H1 (R (to)) + ca/ a(t)n(s)ds — ce/ a(t)n (s) ds)
0 0

i (e [ fan ).

From this end inequality and (4.54) we get easily (4.46). Then the proof is completed. =

IN

Remark 4.1 We can obtain the same result by using a similar techniques even in the

absence of the second nonlinear term f (6;).
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CHAPTER b

LEXPONENTIAL DECAY FOR A THERMO-VISCOELASTIC BRESSE SYSTEM

WITH SECOND SOUND AND DELAY TERMS

5.1 Introduction

In the present chapter, we consider the following thermo-viscoelastic Bresse system

with second sound and delay terms

;

prow —k (pr + 0 +lw), — kol (wy — L) + ppr + popr (z,t — 1) =0

Pt — s + K (00 + 1 + 1) + 0 [ g (t — 8) Yo (2, 5) ds + 70, =0

prwy — ko (We — 1), + Kl (e + P + W) + A\w; + Aow; (2, —72) =0 (5.1)
P30 + Gz + Y = 0

age + g+ 6, =0,

\

with the initial data and boundary conditions

(2,0) = @o (x), @i (2,0) = @1 (z), ¢ (2,0) = b (), ¢ (z,0) = (2),
w(z,0) =w (x),w (x,0) =w (x),0(x,0) =0 (z), 0, (x,0) =0, (),

q(z,0)=q (x), ¢ (z,0) =q (v).

@(Ovﬂzd)x(oat):wx(oat):e(ovt):w(Lvt):q/J(Lvt):‘px(Lvt)
=q(L,t) =0, t € (0,400).

(pt($,t—T1):f£)($,t—Tl), (x,t) € (0,L) x (0,71),

wi (m,t — 1) = fo(x,t — 1), (x,t) € (0,L) x (0,72).

(5.2)

where (x,t) € (0, L) xR, p1, pa2, p3, o, B, k, ko, 1, b, 6,7, p11, Ay are positive constants, s and
A9 are real numbers, 71, 75 > 0 represent the time delays, 6 is the difference temperature,
q is the heat flux and ¢ is a positive function satisfying some conditions to be determined

later.

25
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Originally, the Bresse system consists of three wave equations where the main vari-
ables describing the longitudinal, vertical and shear angle displacements, which can be

represented as (see [23]):

p1pw = Qp +IN + F
Py = My — Q + F, (5.3)
prwy = Ny — 1Q + F5,

where in our work

M = b@/}x—é/g(t—s)ww(.,s)ds,N:k;o(wx—lgo),sz’((pm—f—zﬁ—i—lw),
0

Fi = —pee— o (Lt —m1), Fo =0, and F3 = —A\jw; — Aowy (1, T — 7).

N, @Q and M denote the axial force, the shear force and the bending moment. By w, ¢,
and 1, we are denoting the longitudinal, vertical and shear angle displacements. Here
p1 = pA, po=pl,b=FEI kg = EA, k= kyGA and | = R~!. For material properties, we
use p for density, F for the modulus of elasticity, G for the shear modulus, k for the shear
factor, A for the cross-sectional area, I for the second moment of area of the cross-section
and R for the radius of curvature and we assume that all this quantities are positives. Also
by F; we are denote external forces. The Bresse system ( 5.3), is more general than the
well-known Timoshenko system where the longitudinal displacement w is not considered
(I =0).

The issue of existence and stability of Bresse system has attracted a great deal of
attention in the last decades (e.g. [0, 7, 16, 23, 38, 39]). In the absence of viscoelastic
damping (g = 0), frictional damping p; = A\; = 0 and delay terms pus = Ay = 0, Keddi et
al. [59] studied the following one-dimensional thermoelastic Bresse system

(1o — k(9o + 0+ 1w), — kol (W, — lp) =0

P2y — bbyy + k (@r + 0 + lw) + 740, =0

prwg — ko (wy — o), + Kl (g + 9 +lw) =0 (5.4)
P30 + qu + Y =0

Tq: + Bq+ 0, =0,

\
where the heat conduction is given by Cattaneo’s law effective in the shear angle displace-
ment. They established the well-posedness of the system and proved, under a condition
on the parameters ¢, k and kg, which is

L Tkps p1r P2 7"72_ .
g._(1 p1)<k b) L= 0and k = ko,

that the system was exponentially stable depending on the stable number of the system,

and showed that in general, the system was polynomially stable if ( # 0 and k = kq. Li

5.1. Introduction
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et al. [01] extended this last result to the following Bresse system with delay

;

prow — k (r + 10 +lw), — kol (we — o) + pepy (2,0 — 70) = 0

P2y — bpe + k (pr + 0 + lw) + 40, =0

prwi — ko (we — 1), + Kl (02 + ¢ +1lw) =0 (5.5)
p30: + G + Ve = 0

Tq + Bq+ 0, =0,

\

They proved that the system is well-posed by using the semigroups method, and under a

similar condition on the precedent parameters, that is

2
N (@_&)_77,01:0 dk =k
o (T kp:a) b k bkps o v

they showed that the dissipation induced by the heat is strong enough to exponentially

stabilize the system in the presence of a "small” delay when the stable number is zero.
Motivated by the works mentioned above, we investigate system (5.1) under suitable

assumptions and show that even in the presence of the viscoelastic term (g # 0), the
frictional damping (A1, 1 # 0) and the second delay term (Ay # 0), we can establish an
exponential decay result regardless of the stable number (. We prove our result by using
the energy method together with some hypotheses on the weights of the delays and the

frictional damping as well the relaxation function g.

5.2 Preliminaries

In this section, we present some materials needed in the proof of our results. We also state,
without proof, a local existence result for problem (5.1). The proof can be established by

using Faedo—Galerkin method [29].
We shall use the following assumptions:
(A1) ¢g:R; — R, is a differentiable function such that

g(0)>0, b— 5/Oog(s)ds =b—90g1=1>0, (5.6)
0
(A2) There exists a non-increasing differentiable function n : Ry — R, such that
7)< —n(t)g(t), t>0 and /Ooo n(t)dt = +oo. (5.7)
We introduce the new variable as in [75]

za@,p,t) = @lw,t—mnp),  x€(0,L),pe(0,1),t>0, (5-8)
2o(z, pyt) = wi(x, t —T2p), ze (0,L),pe(0,1),t>0. (5.9)

5.2. Preliminaries
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Then, we have

Tz11(x, p, t) + 21,(z, pot) = 0, x € (0,L),pe(0,1),t>0,
T2(, p,t) + 2p(z,pt) = 0,  2€(0,L),p€(0,1),t>0.

Hence, problem (5.1)-(5.2) is equivalent to the following system, where (z, p,t) € (0, L) X
(0,1) x (0, +00)

pripw = k (0o + ¥ + lw), — kol (o — 1) + pr1pr + poza (2, 1,8) = 0

21, (2, p,t) + 21, (2, p,t) =0

potles — Ws + K (0r + 0 +1w) + 6 [ g (t — 8) thuy (2, 8) ds + 70, =0

prwy — ko (wy — 1), + Kkl (@ + 9 + lw) + Mwr + Aoza(2,1,1) =0 (5.10)
Ta29, (T, p,t) + 22, (7, p,t) =0

p30; + gz + Y1 =0

aq+ Bqg+ 0, = 0.

\

With the following initial data and boundary conditions

;

p (2,0) = o (), i (2,0) =1 (z), z € (0,1L),
U (2,0) =t (2), ¢ (2,0) = 1 (2), z € (0,1L),
w(z,0) =w (x), w(2,0) =w; (x) z € (0,L),
q(,0) =qo(z), g (z,0) = q (z) z € (0,L),

0 (z,0) =00 (x), 0, (x,0) =0, () z € (0,L), (5.11)
a(x,p,0) = folw,—pm), 2(z,p,0) = folz,—pr2) (x,p) € (0,L) x (0,1)
21(2,0,t) = @i, t), 29(x,0,t) = wy(x,t) (x,t) € (0, L) x (0,400),
0 (0,t) =1, (0,t) =w, (0,t) =0(0,t) =0, t € (0,+00),

| w (L, t) = (L, t) = @, (L,t) = q(L,t) =0, t € (0,+00)
Along this section, we use the following notations
(fouv)(t)= [o f(t—s)(v(t) —v(s))ds, Yve L*0,L),

(fow) fo f(t—s)(v(s) —v(t))3ds.

The energy functional associated to (5.10)-(5.11), is
1 L t
Et) = 5 / {plgof + pathy + prw; + p3f® + ag® + (b - 5/ g(s)ds) wi} dx
0 0
1 L 1 1
5/ {f/ Aap.p+ & [ A ptldp+ k(o b+ W} da
0

/ {ko lga )"+ 0(goy) }dx (5.12)
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we denote g(t) = g(t7 ¢7¢JW7GJQJ Z1722) and 5(0> = g (07 <P07¢07W07907(107f07ﬁ)> for

simplicity of notations.

For state a local existence result, we introduce the vector function:
O = (p,u, Y, v,w,w,0,q,21,2)T, where u = ¢y, v = 1y and w = w;, using the standard
Lebesgue space L?(0, L) and the Sobolev space H}(0, L) with their usual scalar products

and norms for define the space H as follows

H = HY0,L) x L*(0, L) x |H(0,L) x LQ(O,L)F x [L2(0,L)]% x [L*((0, L) x (0,1))]*,

where
H(0,L)={f € H'(0,L), f(0) =0},
HL(0, L) = {f € H'(0,L), f(L) =0},
Hf(O,L) = (O,L)ﬂHl( L),
H (0,L) = H? (O,L)ﬂHl( ,L).

Proposition 5.1 Let &5 = ((po,301,1/10,2/11,w0,w1,80,q0,fo,%)T € H be given. Assume
that (Ay), (As2), p1 > |ue| and Ay > |Xao| are satisfied. Then Problem (5.10)-(5.11) pos-

sesses a unique global (weak) solution satisfying

¢ = (%Ual/),%%w,@,qa Zla22>T € C(]R—HH) .

5.3 Exponential stability result

In this section, we state and prove our exponential decay result for the energy of the
solution of system (5.1)-(5.2), using the Lyapunov functional which is equivalent to the

energy functional. To achieve our goal, we need the following technical lemmas.
The two inequalities in the following lemma are introduced in [33] and [18] respectively.

Lemma 5.1 For any function g € C([0,+00),R;) and any v € L*(0, L) we have

g ov(t)]? do < (/Otg(s)ds) gou(t), Vt>0, (5.13)

/OL (/0 gt - 8>vx(s>ds)

Lemma 5.2 [78] There exists a positive constant ¢ such that the following inequality holds
for every (p,,w) € [H}(0, L))

2 L L
dr < 2q¢, / g o v.dxr + 2g; / vidz. (5.14)
0 0

L L
/ (02 + 2 + w?)de < c/ (002 + k(ps + ¥ + wy)? + ko(ws — lp)?] da. (5.15)
0 0
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Lemma 5.3 Let (p,9,w,0,q,21,29) be the solution of (5.10)-(5.11). Then the energy

. . i
functional satisfies, for some ng, ny > 0,

! L 5 L ! (5 L
Et) < —5/0 q2dx+§/0 (g owx)dx—§g(t)/0 Vidw

L L L L
—ng </ pidx +/ 23 (x, 1,t)da:) —n (/ widx +/ 23 (x, 1,t)dx) <0
0 0 0 0

1 |,u2\ < 51 < T1(2/L1 — |M2D and To |)\2| < 52 < 7'2(2)\1 — |)\2|) (516)

Proof. Multiplying Equation (5.10)y by @y , (5.10)3 by ¥y, (5.10)4 by wy, (5.10)s by 6,
and (5.10)7 by q, then integrating over (0, L). Next, multiplying (5.10)s by (§&1/71)z1 and

where

(5.10)5 by (52/72)22 and integrating over (0, L) x (0,1) with respect to p and x, we get
2 7 / {p1ef + P2t + prwi + p30® + b } da (5.17)

2dt/ {E (o + 9 + lw)” + Ko (w, l90)2—|—ozq2}dx

L L L
= _,Ul/ ©; — )\1/ wy — M2/ Zl($a1>t)80td$—5
0

—)\2/ 2o(x, 1, )wedr — § / wt/ $)ga(s)dsdz,
5 L 1
—1/ /zlzlp(:v,p,t)dpdx = / / 21 x, p,t)dpdx
1 Jo Jo 71

_ 271/0 2(2,1,1) — 22z, 0,1)|dx

51 / 51 / 2
= = x, 1, t)de — =— dz,
27_1 0 ( ) 2 T 0 Spt

& (P! _ 52
= Zo29p(x, p, t)dpdr = 2 (x, p,t)dpd
T2 Jo Jo 2d

= 272/ [22(x,1,t) — 23(2,0,t)]dx

= é/ 3z, 1,t)dw — 5—2/ widz.
27-2 27_2 0

Now, we estimate the last term on the left-hand side of (5.17).

5d [* 5 g
5 [ty [ o= pnatorisae = 54 [“go v+ Sato) [ 2oas

! 5 [t
—§£( ds/o wi(t)dx) —5/0 (g oy)d.

and
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We have also

- |2 g
_/'LQ/ Zl(x7 17t>§0tdx < = (/ de +/ ZE, ]-7t )
0 2 0
b o
—)\2/ Zz(l’, l,t)wtdx < T (/ Wtd$+/ l’,l,t )
0 0

So, we conclude

/ 5 L ’ 6 L él |M2| L
< 9 _9 27 _ St |H2] 2
R R AR - (TR
L L
& _ [Nl /L 2
<27'2 5 i z5(x, 1, t)dz.

Using (5.16), we have, for some ng, ny > 0,

: 5 (" ) g r r
E() < —/ (g owx)da:——g(t)/ V2dr — ng </ gofd:c—l—/ zf(az,l,t)dx)
2 Jo 2 0 0 0
L L
—nyg </ wfdx+/ z%(x,l,t)dx) <0.
0 0

Lemma 5.4 Let (,v,w,0,q, 21, 22) be a solution of (5.10)-(5.11). Then the functional

20 = s [ vr ([ ot = 90000 w15 ) s (518

satisfies for any 8 > 0

L L
I(t) < —po <g0—§/> / i + (b* + 6%g7 — 2b3gy) & / Vidx
0 0

L L
+/<;5’/ (o + 0 + lw)? dw — 222 (,0) / (¢ o1,) da
0 0

46
N [F I
+C (5) / goY.dr + —/ 0*dz. (5.19)
0 2 Jo
Proof. Taking the derivative of I, using the third equation in (5.10), we obtain
, L t L
L) = [ wldonde—p( [ atas) [ ota (5.20)
0 0

(b—é/ ds)/ (gowmmdﬂk/;(%+w+lw)<g<>w>d:c
+5/0 (g0 1n)° da:—/ongowx)dx
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By using Young’s inequality, and (5.13), we get, for any § > 0

L L
5/0 (g<>¢x)2dx§591/0 (go,)dx (5.21)

k / " pQg(O) k /
- [uend<d [ w22 [Cgovya G2

L L k[
k/o (pe + 0+ 1lw) (got)d §k:5/0 (gpz+¢+lw) dx+46/ (got,)dr (5.23)

L
<b — 5/ ds) / (g0 ty)hedx < (b* + 6°g; — 2bdgo) 5//0 V2dx

91 L
L 1 L ) G L
—/0 6(g<>wx)dx§§/0 0d:c+5/0 (g0 1) dz (5.25)

Combining (5.20)-(5.25), the result follows. =

Lemma 5.5 Let (o, ¢, w,0,q, 21, z2) be the solution of (5.10)-(5.11), then for €, €3, €3 >

0, the functional
- png/ /m \dydz (5.26)

, oo [F L ) 1 1 1 L
() < —= @/J?dx+61/ (pz + U + lw) d:z:—l—c(—+——|——+1>/ 0%dx
0 0

Y Jo €, € €3

satisfies the estimate

L L L
+ (€2 + 2g1€3) / Vidr + c/ ¢*dx + 2g1€3 / g odr. (5.27)
0 0 0

Proof. A simple differentiation of Z,, then exploiting the third and sixth equations in
(5.10), leads to

, bps [*
Z,(t) = / Vidx + pg/ 0?dx — qwtdm — ﬁ 01, dx
0

—% (gox+¢+lw)/ O(y dyd:v—l——/ / (t — s)pdsdx
0

Estimate (5.27) follows by using Cauchy—Schwarz and Young’s inequalities. m

Lemma 5.6 Let (,v¢,w,0,q, 21, 22) be the solution of (5.10)-(5.11), then for e4 > 0, the

functional
= apg/ / y)dydx (5.28)
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satisfies the estimate

, 1 L
Is(t)g—% 92d:c+5/ wtdx+c(1+45)/ ¢’dx. (5.29)
0

Proof. A simple differentiation of Z3, then exploiting the last two equations in (5.10),

leads to

L
Ty(t) = —pg/ 0*dx + a/ ¢*dx + ory/ qudr — ﬁpg/ / y)dydz
0 0

Estimate (5.29) follows by using Cauchy—Schwarz and Young’s inequalities. m

Lemma 5.7 Let (@,¢,w,0,q, 21, 2) be the solution of (5.10)-(5.11), then for § > 0, the

functional

L x
L= [ (90 -/ ¢<y>dy) dr (5.30)
0 0
satisfies the estimate
, k[t ) lky [* ) P
I4<t) S _5 (ng—{—@D—}—lw) dZL‘—7 (wx_lgp) d{E—I-(;C ¢tdm
0 1 . ; 0 0
+ (c + B) / ©2dr + c/ 2 (z,1,t)dx. (5.31)
0

Proof. A simple differentiation of Z,, then exploiting the first equation in (5.10), leads

p1 /OL i /Om Ui(y)dydr — pis /OL <<p+/0x1/}(y)dy) z1(, 1, t)dx

L L L
_k/ (¢ + 1 + lw)* dz + py / Ordr — lko/ (we — lp)* dx
0 0

0

— i /OL Pt (Wr /Oziﬁ(y)dy) dz.

Using Cauchy—Schwarz, Poincaré’s and Young’s inequalities gives (5.31). m

to

Lemma 5.8 Let (p,1,w,0,q,21,22) be the solution of (5.10)-(5.11), then for &', e, > 0,

the functional
L
:pg/ PYipyda (5.32)
0

satisfies the estimate

) b 6
Z(t) < <——+E+—+2g15>/ dex+2g15/ (got,)d

+p2/ Vidr + ?/ (9o + 0 + lw)* do + 64/ 0*dz. (5.33)
0 0 0
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=

Proof. A simple differentiation of 75, then exploiting the first equation in (5.10), leads

to
, b L L L
L) = —5 [ videip [ vidosy [ ovds
0 0 0

L L t
—k/o (pzr + ¥ + lw) pdx + 5/0 1/1:,6/0 g(t — ), dsdx.

=

Using (5.13), (5.14), Cauchy—-Schwarz, Poincaré’s and Young’s inequalities gives (5.33).
|

Lemma 5.9 Let (p,9,w,0,q, 21, 29) be the solution of (5.10)-(5.11) and for k = ko and
§ >0, the functional

L L
Ts(t) = —p1/0 i (wy — L) da — pl/o wi (¢ + ¢ + lw) dx (5.34)

satisfies the estimate
/ / L “ L
() < (25 —kol) / (wo — )2 do + (p1l+4—51,) / P2z (5.35)
0 0

, L ) P2 )\2 L
+<k1+25)/0 (00 + 1 + L) dx+(4§,+4—51,—p1l>/0 W2da

, L ,U2 L )\2 L
+d / Yide 4+ 22 / 222, 1,t)dx + 22 / 22(z,1,t)dz.

Proof. A simple differentiation of Zs, using the first and fourth equations in (5.10), leads

to
, L L L
Ty(t) = —kol/ (wx—lgo)de—i—pll/ apfdqukl/ (¢ + 1 + lw)* dx
0
0L L ° L
—pll/ wfdfr—pl/ wtwtdx+u1/ o1 (wz — lp) da
0 0 0
L L
Y / W (pr + 00+ L) da + i / 21(2,1,1) (w — lg) da
0
OL
—l-)\g/ 2o(x, 1,t) (pr + ¢ + lw) dx
0

Using Young’s inequality for the last five terms in the right-hand side gives (5.35) under

the condition k = ky. =
Lemma 5.10 Let (¢,v,w,0,q, 21, 22) be a solution of (5.10)-(5.11). Then the functional
DR

L L
Iz (1) = —Pl/ (ppr + wwy) do — &/ plde — S | widz
0 2 Jo 2 Jo
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satisfies, for ¢ > 0, the estimate

L L L
T.(t) < —p / ©2dx — py / widx + c/ (00 + 0 + ) da (5.36)
0 0 0
L L u2 [t
—l—c/ (we — lo)* da + c/ Yidr + 72/ 23 (z,1,t)dx
0 0 0
A,
—1—7 z5(x, 1, t)dx (5.37)
0

Proof. Taking the derivative of Z7, by using equations in (5.10), we get

/

L L L
Z.(t) = —pm; / widr — p / widx + k/ (00 + 0 + ) da (5.38)
0 0 0
L L
+k0/ (wy — l(,p)z dx — k/ (pe + 0+ lw) Pdx
0 0

L L
+,U2/ pz1(x, 1,t)dx + )\2/ wzo(z, 1,t)dx, (5.39)
0 0

according to (5.15), we have the following relation where c is a positive constant

L L
/ (02 + 2 +w?] do < c/ [(po + ¥ + 1w)? + (wy — lp)* + V2] de. (5.40)
0 0
We obtain the result by using (5.40) and Young’s inequality. m

Lemma 5.11 Let (¢, v, w,0,q, 21, 22) be the solution of (5.10)-(5.11). Then the func-
tional Zg defined by

L 1
Zg(t):ﬁ/ / e 223 (x, p, t)dpdx (5.41)
o Jo
satisfies
/ L L
T/(t) < —2(t) — O / 2(e 1, t)dr + / Sdz (5.42)
0 0

Proof. By differentiating g, then by using (5.10)y and (5.10)s, and integrating by parts,

we get
, L gl
Zy(t) = —2/ /e‘QTlpzlzlp(x,p,t)dpdx
o Jo
L gl L orloy
- —27'1/ /e_ZTlpz%(a:,p,t)dpda:— /—(e_%pzf(x,p,t)) dpdx
0o Jo o Jo dp
L L
- —2]8(t)—/ e_Qlef(m,l,t)d:p—i—/ ldx.
0 0

L L
20 -G [ Hwrodes [ G
0 0

forCy>0. m
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Lemma 5.12 Let (p,¢,w,0,q,z1,22) be the solution of (5.10)-(5.11). Then the func-
tional Zg defined by

L 1
Ig(t):’rg/ / e 2P 22 (x, p, t)dpdx (5.43)
o Jo
satisfies
/ L L
Zy(t) < —219(t)—02/ z§(x,1,t)dx+/ widzx (5.44)
0 0

Proof. By differentiating g, then by using (5.10)y and (5.10)s, and integrating by parts,
we get

L gl
Ty(t) = —2/ /€2T2p2222p(x,p,t)dpd:1:
"L n L o1y
— —272/ /6_272’)z§(:n,p,t)dpdx— /—(e‘zTszg(a:,p,t)) dpdz
0o Jo o Jo dp
L L
= —2[g(t)—/ 6_2TQZ§(£E,1,t)d$—|—/ widz.
0 0

L L
= —2ly(t) — Cg/ 22(z,1,t)dx +/ widz.
0 0

forCy>0. m

Now, we are ready to state and prove the main result of this section. First, we define

a Lyapunov functional £ as follows

L(t)=NE(t)+ Y NIi(t) (5.45)

i=1
satisfies, for N;, i« = 1,2,...,9 are positive constants to be properly chosen later, with
sufficiently large N, one can easily prove that

a1E(t) < L(t) < awé(t), Vt>0 (5.46)
where a; and ay are positive constants.

Theorem 5.1 Let (p,¢,w,0,q,z1,29) be the solution of (5.10)-(5.11) and assume that
(A1), (A2), k = ko, p1 > |pa| and Ay > |Xa| hold. Then, the energy functional (5.12)
satisfies,

E(t) <cre”® Jig n(s)ds, YVt >0

where ¢; and co are positive constants.
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Proof. From the estimates of the previous lemmas we have
L
L (t) S {—noN + CN4 + lplNG — p1N7 + Ng}/ ngde
0

L
+ {—P290N1 - %Nz + Pst} / Yidx
0

L L
+ { —1p1Ng — p1 N7 + Ng} / widr + {—BN + cNy + CNg}/ ¢*dx
0 0
b ,}/2 L
—|—{ €2+291€3) N2+ ( 5 —) N5+CN7}/ wzdl’
€4
N 1 1
+{_1+CN2( +—+— +1>——N3+€4N5}/ 0dx
2 €9 €3
Ik g 2
+ ——N4 - lk?oNG + CN7 (wx - l(p) dx
0
k> L 2
+ {elNQ — —N4 + b — Ny + lkNg + cN7} / (pe + 0+ lw)" dx
0
L
+ { —noN + cN, + 22 5 N7 ClNg} / 22(x,1,t)dx
0

% L
—ngN + ]V7 — C| Ny 25(x, 1,t)dx
0
L
+{—mNg} / 22(z, p,t)dr + {—mNy} / 22(z, p,t)dx
0 0

+ {6(5/]\71 + 29163N2)} /OL (go,)dr + Ng /OL (g/ o ¢$> dx

L
+5 / [(N3 + paN1 + eNy + No) U7 + (2Ng + kN1) (¢ + ¥ + (w)?
0

2

4 4

Ns 52 2\
— {mg Nl( o 1y) + cq —|— — 51&2 (& + —1) N@df} dx

W Ny i A2
—1—5/0 [(ZING + I) @f + fNGZ%(J?, 1,t)+ fNGZg(J:, 1, t)] dx

+ {—mNg} (/OL 22(x, p,t)de + /OL 2 (z, p, t)dm)

—i—{(c((Sl)—i—Zgl) Nl}/OL(gowx)d:U—i—Ng/OL (g/owx) dx

/ 1 /
6 C1 (N1, N, N E(t) = 5 Ca(Ny, Ny, NOE (8).
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By taking e = e3 = €4 = N5 = Ng = N; =1, Ny = Ny and Ny = Ny, we arrive at

L L
L) < {—n0N+CN4+lP1—Pl+N8}/ @?Ch“‘{(—mgo—%) N1+P2}/ bidz
0 0

L L
-|_{—n;)N—lp1—p1+N8}/ wfdx+{—BN+cN2+cN3}/ ¢*dx
0

0

5 —b L

+ {—N§g(t) + (1 +2g1) N1+ 5 7+ C} / Yidz
0
1 1 L
+<(=+¢c({—+3 Nl—@N3+1 / 0%dx
Lko g 2
+ —7N4 —lko+c (we = lp)~dx
0
k ]{32 L )
+ 61N1—§N4+?+lk:+c (pr + 1+ lw)” dx
0
12 L
+ {—nON +cNy + ?2 — ClNg} / 22(x,1,t)dx
0

, A L,

+<—nyN + 5 C, Ng z5(x, 1, t)dz
0
Let us choose Ny large enough such that
Lk,
—701\74 —lko+c<0,

Picking Ny and choose Ny large enough so that

(—Pzgo - %) N1+ p2 <0,

choose €, small enough so that

2

k k
€1N1—§N4+?+H€+C<O

Next, we select N3 large enough such that

1 1
She(=4+3) )M =BN 1<,
2 €1 2

Finally, we choose N sufficiently large to satisfy

—noN + Ny + Ns+p1 (I—1) <0, —nyN — C\ Ny + 22

—npN + Ny —pr (I4+1) <0, —noN +eN, — Cy Ny + 4

(5.47)

< 0.

<0,

—BN +cNy +cNy <0, —NSg(t)+ (1+2g) N1+ 2 +72+c<0.
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Therefor, (5.47) takes the form

L

gl(t) —1—03/ (g oty )dx

0

02 (N17N37 N4)
5/

L)< — [00 — Gy (N1, Ny, Ny) 5’} £(t) —

for some positive constants Cy, Cy, Cy, Cs. At this point, we take § < g—?, then for some

mgo > 0, we obtain

L) < —mo(t) + Cy /0 (g0 )z — %5’(15). (5.48)
Multiplying (5.48) by n(t) gives
DOL0) < —man@E() + Can() [ (g0 va)de = Za @) (5.9

The second term can be estimated, using (Asz), as follows

Can(t) / (govn)de = Cyn(t) / / g(t — 3) (n(t) — va(s))? dsdz

2C5
——¢
S 773 (2),
so for some Cy >0, (5.49) becomes as follows
/ / C /
n(t)L () < —mon(t)E(t) — CLE(t) — 5—/277@)5 (t). (5.50)

We have o
Fi)=nto) (£ + Ge0)) ~ €60

Therefore, using (5.50) and the fact that 1 (t) < 0, we arrive at,

Gy

F o =rit0) (2 + e ) +nto (2 G

0+ FEw) <no (C0+ FE).

/

/

F (1) < —mon(t)E(t) — CLE().

Now, we set

G(t) = F(t) + Ca&(t) ~ (1),

gives
’

G'(t) = F (t) + Ci&' (t) < —mon(t)E(t). (5.51)
A simple integration of (5.51) over (to,t) leads to
G(t) < Glty)e ™ Jig 1%, (5.52)

Recalling (5.46) and the estimate (5.52) completes the proof. m
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CHAPTER 6

LGLOBAL EXISTENCE AND GENERAL DECAY FOR A DELAYED FLEXIBLE
STRUCTURE WITH SECOND SOUND SUBJECTED TO WEAKLY NONLINEAR

DAMPING

6.1 Introduction

In this chapter, we aim to study the following inhomogeneous delayed flexible structure

system of second sound with weakly nonlinear damping

m(z)uy — (p(x)uy + 28(2)ug) e + 10 + f(ug) + f:f p(s)uy (t—s)ds =0
7¢: + Bq + k0, =0,

where u(z,t) is the displacement of a particle at position x € (0,L) and time t > 0.
n > 0 is the coupling constant, that accounts for the heating effect, and 5,k > 0. 0 is
the temperature of the body, ¢ = ¢(z,t) is the heat flux and the parameter 7 > 0 is
the relaxation time describing the time lag in the response for the temperature. s > 0
is a real number represents the time delay. m(z), 6(x) and p(z) are responsible for the
non-uniform structure of the body, and, respectively, denote mass per unit length of
structure, coefficient of internal material damping and a positive function related to the
stress acting on the body at a point =, and for 7y, 75 two real numbers satisfying 0 < 7
< Ty, i : [11;72] — R is a bounded function. f is specific function satisfying some
conditions to be determined later. Here, f (u;) is the nonlinear dissipative term. The

model of heat condition, originally due to Cattaneo, is of hyperbolic type.

71
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We consider the following initial and boundary conditions:
u(,0)=wug(z), w (.,0)=uy(x), 0(.,0) =6y (x),q(.,0) =q (z),
uw(0,t) =u(L,t) =0(0,t) =0 (L,t) =0, YVt >0, Vzxe€]l0,L],
Uy (xa _t) = gO(l‘7t)a 0<t S T2,

(6.2)

where gq is the history function.

The issue of existence and stability of flexible structure system has attracted a great
deal of attention in the last years (e.g. [20, 13]). S. Misra et al. [73] considered the
vibrations of a cantilever structure modeled by the standard linear flexible model of vis-

coelasticity coupled to an expectedly dissipative effect through heat conduction

m(z)uy — (p(x)ug + 20(2)ugt)r — kO, = f
et - 9m — kum =0.

The distributed force f : (0,L)x R — R is the uncertain disturbance appearing in the
model which is assumed to be continuously differentiable for all ¢ > 0. By using semi-
groups theory and multiplier technique, they established the well-posedness and an expo-
nential stability of the system when the disturbing force is insignificant. In the absence

of both delay and nonlinear damping terms, Alves et al. [8] concerned with the system

Tq; + Bq + kO, = 0.

They established the well-posedness of the system and proved its stability exponential
and polynomial under suitable boundary conditions.

The original motivation of this type of problem was first introduced by Datko et al.
[32] in 1986 when they showed that the presence of the delay may not only destabilize
a system which is asymptotically stable in the absence of the delay but may also lead
to ill-posedness (see also [78] and [31]). On the other hand, it has been established that
voluntary introduction of delay can benefit the control (see [2]). We refer the interested
readers to [9, 10, 18, 20, 41, 12] for details discussion on the subject. In the context of
asymptotic stabilization with nonlinear feedback damping, first results are given in [!]
(in 2002) where the author studies the asymptotic behaviour of the system governing the

nonlinear vibrations of a Timoshenko beam,

U — af (um_U)x_7||u:c”2uzz+g<ut) =0 (6 4)
évtt — VUgy — Oéﬁ (um - U) + g (vt) = 07

where g : R — R is a Cl-class, non-increasing function with ¢(0) = 0 and satisfying

o lz]” < g(z) < eo|z|M" for |z <1,
eslz) < g(x) <eqlz]®  for |z|>1.

6.1. Introduction
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Munoz Rivera and Racke [70] treated a system of the form

pripw — 0 (Po, V), =0
)03915 - Kexz + rYw:rt = 0.

where ¢, ¥ and 6 are functions of (z,¢) model transverse displacement of the beam,
the rotation angle of the filament and the difference temperature, respectively. Under
appropriate conditions of o, p;, b, K and ~, they proved several exponential decay results
for the linearized system and nonexponential stability result for the case of different
wave speeds of propagation. Also, Munoz Rivera and Racke [77] considered the following

nonlinear Timoshenko system

pathis = bibaw + k (00 + 1) + dihy = 0, (6.6)

with homogeneous boundary conditions and proved that the system is exponentially stable

{ p1ow — 0 (0a, 1), =0

if and only if p;/k = p2/b and a polynomial stability otherwise. Alabau-Boussouira [/]
extended these last results of Munoz Rivera and Racke to the case of nonlinear feedback

a (1), instead of dip. He considered the following nonlinear Timoshenko system

{ pipr — k(9 +¢), =0 (6.7)

where « is a globally Lipchitz function satisfying some growth conditions at the origin, and
established a general semi-explicit formula for the decay rate of the energy at infinity in the
case of the same speed of propagation in the two equations of the system <i.e. p—kl = p%) :

Our purpose here is to obtain a general decay rate estimates of the energy, for this end
we consider (6.3) with an internal distributed delay term subjected to non-linear damping
in the first equation, under a suitable assumption on the weights of the delay, heating
effect, material damping and the function f, we establish a well-posed result of the system
using semigroups theory and a general stability using the multiplier method with some

properties of convex functions and no growth assumption on f at the origin.

6.2 Well-posedness of the problem

In this section, we present some assumptions and give the existence and uniqueness result

of system (6.1)-(6.2) using the semigroups theory. Taking the following new variable

z2(x, p,s,t) = ug (x,t — ps), in (0,L) x (0,1) x (11, 7) x (0,00).

6.2. Well-posedness of the problem
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Then we obtain
sz(x, p, s, t) + zp(x, p, s, t) =0,
2(x,0,s,t) = w(x, t).

Consequently, problem (6.1)-(6.2) is equivalent to

m(z)uy — (p(x)ug + 20(2)ugt)r + 10 + f(ug) + f:f p(s)z(z,1,s)ds =0
0 + kqy + g, =0

¢ + 8q + kb, =0

szi(z, pys,t) + z,(z, p, s, t) =0,

1lm (6.8)

where (z, p, s,t) € (0, L) x(0,1)x (71, 72) % (0, 00) , with the following initial and boundary
conditions:
u(,0) =wo (@), u(,0)=@i(x), 0(,0) =0 (x),q(.,0) = q(z),
uw(0,t) =u(L,t) =60(0,t) =0 (L,t) =0, YVt >0, Yz € [0, L]. (6.9)
Z($7p7870) = 90<m7p8> in O7L> X (07 ) X (7—177_2> :

We shall use the following assumptions:

(H1) p : [11;72] — R is a bounded function satisfying

/72 a(s)] ds < n. (6.10)

T1

(H2) The functions m(x), d(z) and p(x) will be supposed such that:

m,8,p € WH*(0, L), m(z), p(z) > 0,28(zx) > In, Yo € [0, L], | = L*/x>. (6.11)

(H3) f : R — Ris a Lipschitz continuous and non-decreasing function such that there exist
positive constants k; and A and a convex, continuous and increasing function h : Ry — R
of class C* (Ry) N C? (]0, +o0[) satisfying: h (0) = 0 and

K" =0 on [0, A], (6.12)

or
h'(0) =0 and A" > 0 on (0, A], (6.13)
such that
h(f?(s)) < f(s)s for |s| <A,
If (s)] < Ky s for |s| > A.
The aim of this section is to prove that system (6.8) is well-posed. From Equation
(6.8)3 and the boundary conditions (6.9), we have that
d [t

6L
— t)d — t)dx = 0.
G [ anaE [Canae—o

6.2. Well-posedness of the problem
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q(z,t)=q(z,t)— % (/OL 0 (x) dw) exp (—g) :

then, (u,u,,0,q) satisfies Equation (6.1), and

So, if we set

L
/ q(z,t)dx =0, Vt > 0.
0

Therefore, the use of Poincaré’s inequality for ¢ is justified. In the sequel, we shall work
with ¢ but we write ¢ for simplicity.

Let us introducing the vector function U = (u,v,60,q,2)T, where v = w;, using the
standard Lebesgue space L?(0, L) and the Sobolev space H} (0, L) with their usual scalar

products and norms for define the spaces:
H = H}(0,L) x [L*(0,L)]” x L2(0, L) x L*((0, L) x (0,1) x (11, 72)),

and
HY(0,L) = H'(0, L) A L(0, L),
where

L2(0,L) = {w € L*(0,L) : /OLw(s) ds = o}.

We equip ‘H with the inner product

L L L
(U, U)y = / p(x )umuxdm—i—/ m ( vvdm—i—/ %dm—i—T/ qqdz
0 0

/ / / s|u(s)| z(z, p, )z(z, p, s)dsdpdz.

Next, the system (6.8)-(6.9) can be reduced to the following abstract Cauchy problem:

Ut)+ (A+B)U(t) =0, t>0 (6.14)
U(O) =U = (Uo,ul,eoy(Jo,go)T,

where the operators A and B are defined by: A: D(A) - H

—v
o) (—(p(m)ux +26(x)ve —10)a + [ p(s)2(1, s)ds +v [ | |d3>
AU = ks + 10q ,
1 (k0. + Bq)
RACH )

6.2. Well-posedness of the problem



Chapter 6. Global existence and general decay for a delayed flexible structure
with second sound subjected to weakly nonlinear damping 76

and B: D(B)=H —H

0
| eIz ) ds + )
BU = 0
() .
0

The domain of A is then

UeH|ue H20,L)NHH0,L),v,0 € H(0,L),q € H(0, L) }

A= { 2,2, € L*((0,L) x (0,1) x (71, 7)), 2(2,0,5) =

Clearly, D(A) is dense in H.
Before state an existence and uniqueness result, we refer the reader to [01] (from page
90), [81] and the references therein, for more details discussion about solutions of (6.14),

then we have

Proposition 6.1 Let Uy € H be given. Assume that (H1)—(H3) are satisfied, Problem
(6.14) possesses then a unique solution satisfying U € C (RT;H). If Uy € D(A), then
UeCHRTH)NC(RT; D(A)).

Proof. We use the semigroups approach to prove that A is a maximal monotone operator
and that B is a Lipschitz continuous operator. In what follows, we prove that A is

monotone. For any U € D(A), we have

(AU U)y = — /0 (@) vy / b () . vz + / C bods

—2/ [0 () vy vdx—i—/ / z(x, 1, s,t)dsdx
0
L
+k:/ 9qzd$+/ n@vxdas+k/ qua:—l—/ BPdx
2 1 T2 ° ° T2 L
+/ / / |u(s)|zzpdsdpd$—l—/ |u(s)|ds/ vidx.
0 0 1 1 0
Integration by parts and using the fact that
L 1 T2 1 L T2 1 8
/ / / \p(s)| zzpdsdpdr = —/ / / |u(s)|—22dpdsd:v
0 0 T 2
= / / 22(x,1, 5,t)dsdx
——/ |,u(s)\d$/ vid,
2 1 0

6.2. Well-posedness of the problem
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L T2 L
(AU, U)y / d(x 2dx+/ BquJ:—i-%/ |,u(5)|ds/ vidx
T 0
/ / z(x, 1, s)dsdz
/ / *(x,1, s)dsdx. (6.15)

By using Young’s inequality, the fourth term on the right-hand side of Equation (6.15)

/ / 2(z,1, )dsdz
< 5(/71 | ()]ds)/o vide 4 = / / 2*(x,1, s)dsdx, (6.16)

which implies that

/ / V(@ 1, 8)dsda
> (/ P ()|ds)/0 de_-/ / 2(2,1, 5)dsda,

from this last, the Equation (6.15) yields

we get

gives

L L
(AU, U)y > 2/ § (z) vidx +/ Bq*dx > 0.
0 0

Hence, A is monotone. Next, we prove that the operator I + A is surjective.
Given G = (g1, g2, 93, 94, 95)T € H, we prove that there exists U € D(A) satisfying

Z+A)U=aG, (6.17)
which gives
—v+u=g,
—(p(w)utg +28()0, = 16), + [T pu(s)2(1, $)ds + ([ u(s)| ds + m (2)) v = m () g,
kqe + nue + 0 = g3,
kO, + (B+T7)q =Ty,
Zp + 82 = 8¢s.
(6.18)

Suppose that u, ¢ are given with the appropriate regularity. Then, Equations (6.18); and
v=u—g, € Hy(0,L), (6.19)
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99@ = %94 - B—Z;_Tq S Lz<oa L)a (62())

by using (6.20), we get

0 = %/0 94(y)dy — 6;:7/0 q(y)dy,

0(0,t) = 0(L,t) = 0.

and then

The last equation in Equation (6.18) together with Equation (6.19) and the fact z(z,0) =
v(x) =u— gi(x) yield

P
z2(x,p,s) =ue *F —e g + se_s”/ e*’gs(z, v, s)dv. (6.21)
0

From equation (6.19)-(6.21), we can easily show that u and ¢ satisfy

—(p(x)ty + 20(x)vy), — L2 g+ u [ p(s)e*ds + yu(z) = fi,
_kQQx 6 +T7 fO dy /W]Ux f27 (622>
— Uy + Uy = f3a

where

v=m(z)+ [ |u(s)] ds,

2o(x,8) = e 5¢gi(x) — se™® fol eV gs(x, v, s)dv,

fr =vg1(2) +m(x) g2(2) — Fgalx) + [77 pp(s)z0(x, s)ds € L*(0, L),
fo=—kngi(x) +7 [ 94(y)dy — kgs € L*(0, L),

f3 = glr( ) € L2(07L>'

The variational formulation corresponding to Equation (6.22) takes the form

B((u, ), (w,q)) = F(u,q), (6.23)

where B : [HL(0, L) x L(0, L)]* = R is the bilinear form defined by

Bl @) = [ )+ 20 winde - "CED [ e

L L
+(B+T7) / qqdx + 7/ uudz
0 0

e ;T)Q /OL (/x (y )dy/x (y)dy) dx
—1—77(&%/ uqd.ﬂ:+/ uu/ e “dsdx,
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and F : H}(0, L) x L?(0,L) — R is the linear functional defined by

rap = [ s CED (i)

+ /0 2f30(z)u,dx.

For V = H}(0, L) x L?(0, L) equipped with the norm

2 2 2 2
1w, @)y = [lully + lluell; + llallz

where ||.||, is the usual norm.
One can easily see that B and F' are bounded. Also, we get

Bl o wa) = [ 025 i+ @) [ dd
—l—’y/L wldr + ﬁI;T/OL (/qu(y)dy)de
[ [

> cll(u,q)lly -

Then, B is coercive. Consequently, by the Lax—Milgram lemma, system (6.22) has a
unique solution
we HY0,L), q€IL2(0,L).

Moreover, if ¢ =0 € L2(0, L), then Equation (6.23) reduces to
L L L
—/ (p(z)uy + 20(x)u,), udx —|—’y/ uudx — @/ qudzx
0

0
/ uU / e *dsdx

/ frudx — / (2f30(x)), udz, Vu € Hy(0,L) .
0

0
That is
~ (e + 230, + 0= LD [ penas = 1 - g,

then, we have

(e +20(0ur), =t [ pls)emds - XDy g i, e 20,0

T1
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Consequently, by the regularity theory for the linear elliptic equations, it follows that
u € Hy(0,L)N H*0,L).
Similarly, if w = 0 € H}(0, L), we obtain
q€ HX0,L).
Moreover, from (6.19) and (6.20) we deduce that
v,0 € Hy(0, L).

Hence, there exists a unique U € D(A) such that Equation (6.17) is satisfied. Conse-
quently, A is a maximal monotone operator. Then, D(A) is dense in H (see Proposition

7.11in [24] ).
On the other hand, we show that operator B is Lipschitz continuous. In fact, if

U= (u,v,0,q,2)" and U = (@,7,0,, %) belong to H, we have
|BU = BD|| < cllo =l + 1) = F@)2 (6.24)

Using the embedding of H'(0, L) into L*°(0, L) (see [24] Theorem 8.8, p. 212) and (H3),
one sees that
el = vllz < T = ll oy < € HU - UHH . (6.25)

1f () = F@)ll= < ello =Tl < | U = Ulln (6.26)

Combining (6.24), (6.25) and (6.26), we infer that B is Lipschitz continuous in H ( see
[18]). Consequently, A + B is the infinitesimal generator of a linear contraction Cg-
semigroup on H. Hence, the result of Proposition 6.1 follows (see [61], [¢3]) and the

references therein. m
To state our decay result, we introduce the energy functional associated to (6.8)-(6.9),

namely,
1 (L
Et,p,1,0,q,2) = 5 / {p(x)ui +m(z)u? + 6% + Tq2} dx
0
1 L 1 To
+§/ / / slu(s)| 2%(x, p, s, t)dsdpdz, (6.27)
0 0 T

we denote E(t) = E(t,p,1,0,q,2) and E(0) = E (0, o, Yo, b, q0, go) for simplicity of

notations.
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6.3 General decay result

In this section, we introduce some lemmas allow us to achieve our goal, which is the proof

of the stability result. The first one will benefit us in the next chapter too.

Lemma 6.1 [5] Let (u,ut, 6, q) be the solution to system (6.1)-(6.2), with an initial datum
in D(A). Then, for any t > 0, there exists a sequence of real numbers (depending on t),
denoted by & € [0, L](i = 1,...,6), such that:

/Lp( Yuider = p(&) / uZda, / m (x) uidr = (&)/OLufdx,
/ m () ulde = m(fg)/o dx, /0 § (z) uidr = 6(&) /OLu2dx,
/0 §(v)uidr = 6(&) /OL uldz, /OL(S(:K) u?,dr = (&) /OL u?,dx.

Lemma 6.2 Let (u,v,0,q,2) be the solution of (6.8)-(6.9), then the energy E is non-

increasing function and satisfies, for all t > 0,

£ — —z/La(@ugtdx—ﬁ/ 2dx—/ ut/ V(o 1, 5, 1) dsda
_-// (1,5, 8)dsdz + - /ut/ 9)| dsdz
—/0 F(u)urde
< —5/0Lq2dx— /u d:z:—/ f(ur)ueda < 0. (6.28)

where ¢ > 0 is constant.

Proof. Multiplying the equations in (6.8)1,(6.8)2, and (6.8)3 by u,0 and g, respectively,

and integrate over (0, L), we obtain

2dt/ {p(x) r)ul +m(z)u; + 0° +7¢°} dx

= —5/ q2d93—2/ § () uZ,dx
/ fuy utdx—/ ut/ 2(x,1,s,t)dsdx. (6.29)

Multiplying the last equation in (6 8) by |u(s)| z, integrating the product over (0, L) x
(0,1) x (71, 72), and recall that z(z,0,s,t) = u;, yield

2dt/// s|u(s)| 22(z, p, s, t)dsdpdx
— _—// \1(s)| 22(z, 1, s, t)dsdx + = /ut/ s)| dsdx. (6.30)
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Now, a combination of (6.29) and (6.30) gives

£t = —2/ )2 dx—ﬁ/ de—/ Fud)udz
/ ut/ 21, 5,t)dsdz
/ 2 / (s)| dsd. (6.31)

Meanwhile, using Young and Cauchy—Schwarz inequalities, we have

/ Ut/ z(x,1,s,t)dsdx

< E/ﬁ P ()|ds/0 P+ = / / 21,5, Odsde. (6.32)
o

Substitution of (6.32) into (6.31), using (6.10), Lemma 6.1 and (2.4) gives

L L L
E't) = —2/ § () uitdaz—ﬁ/ q2d1:—/ [ (u)wdz
/ ut/ 2(x, 1, s,t)dsdz + = / ut/ s)| dsdx
——/ / 22(x,1, s, t)dsdz
L L
< —5/ qzda:—Q/ Jd(x) uitda:+n/ u?dm—/ f (ug)updz
OL ’ L
< —5/ q2d$—25(§6)/ uitdx+l77/ uy dx—/ f(ug)updz

< —B/ ¢dr — (26 (&) — ln/ u? dr — /fut Jugdx

< —B/ q2da:—c/ u, d:c—/ f(ug)udz <0,
0

which concludes the proof. m

Lemma 6.3 The functional

L) =~ /O " ( /0 wq(t,y)dy) iz, (6.33)
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satisfies

L L
L < —(k-— 651)/ 0*dx + 627'77/ urdw
0 0

L
+ (7’ + 0 lﬁ> / ¢’dz, (6.34)
€2 €1 0

Proof. Taking the derivative of (6.33) and using (6.8)2, (6.8)3, (2.4), integration by parts
and Young’s inequality, we obtain (6.34). =

for €1, e0 >0

Lemma 6.4 Then the functional

L
I (t) ::/ (6(x)uZ + m(z)uu) du, (6.35)
0
satisfies
L L
B < (&)~ (et / wdam() [ udds
0
_|_Q 92d _|_4_€3/ / 22(x,1, 5,t)dsdx

463 / () (6.36)

for any e3 > 0.

Proof. Differentiating Equation (6.35) with respect to ¢ and using Equations (6.8); and
(6.9), we get

L) = / 2dx—|—/ m(x)uids — /Gudx
/ f (g udx—/ / )z(x, 1, s, t)dsdz.

Using Young’s inequality, we have for e3 > 0

L L L n [t
—n/ O, udr = n/ ufdr < 7763/ udr + —/ 6?dux,
0 0 €3 Jo

from Young’s inequality, (6.10) and (2.4), we find

/ / 2(x,1,s,t)dsdx
< 63/ & )\ds/ 2d:c+E/ / 2*(z,1,s,t)dsdx
L,_/

< lne;;/ u dx—i——/ / 22(x,1, s, t)dsdz,
463
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L
—/ uf(ug)de < 63/ 2d:1:—|——/ A (w)
0 463
< 063/ 2d:)3+—/ 12 ()
463

application of Lemma 6.1 and the recent inequalities completes the proof. =

and

Lemma 6.5 The functional

L 1 T2
= / / / se”* |u(s)| 2%(x, p, s, t)dsdpdz, (6.37)
0 0 T1

I (t / / / s|u(s)| 2%(z, p, s, t)dsdpdx
L
/ / 2(z,1, s, t)dsd:z:+77/ uide. (6.38)
0

Proof. Differentiating (6.37) and using the last equation in (6.8), we obtain

L(t) = —2/ // TP lu(s)| z(x, p, s, t)2p(x, p, s, t)dsdpde

= /// e 2% (x, p, s,t)|dsdpdx
- / / [ s n(s)| e pos. tdsdpds
0 0 T1

L T2
= [ [ 10 = 20,5, 0ldsi
0 1

L 1 To
- / / / se= ()] 22, p. 5, ) dsdpdr,

using the fact that z(z,0,s,t) = u; and e™* < e * < 1, we get for p € [0, 1]

T2 L
/ / % u(s) (x,l,s,t)dsdx+/ |,u(s)|d3/ uldz
;/—/ ‘

<n

L 1 To
—/ / / se” |u(s)| 2*(z, p, s, t)dsdpdz.
0 0 T

Because —e™® is an increasing function, we have —e™* < —e™™ for all s € [y, 7»]. Finally,

satisfies

formy > 0.

setting 17 = —e~™ and recalling (6.10), we obtain (6.38). m
Next, we define a Lyapunov functional L and show that it is equivalent to the energy

functional F.
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Lemma 6.6 For N sufficiently large, the functional defined by
L(t):= NE (t) + N1, (t) + Io(t) + NoIs(t). (6.39)
where N1 and Ny are positive real numbers to be chosen appropriately later, satisfies
AE(t) < L(t) < GE(), Vt>0. (6.40)

where ¢| and ¢ are positive constants.

Proof. Let
S(t) = Nlll(t) + [2(t) + Ng]g(t)

then, exploiting Young’s, Poincaré’s, Cauchy-Schwarz inequalities, (6.27), and the fact

that e=” < 1, we obtain
L T
80| < Nlr/ 9(/ oty ) daz+/ 5(a udx—l—/ m(z) uu| d

/// ’e Pu(s)| 22(z, p, s, t)dsdpdz

L
< /(5(95)1@0—1——/ m(m)ude—l——/ m(z)ulds
—|—N1Tl/ |¢9q]dx+N2/ // s |u(s)| 2%(x, p, s, t)dsdpdx
1 10(2) | 2, Tl 2
< = d 0°d
< 3 [ i L)L /Op(fv)UﬁQ/o .
l L Nyl [*
+ Hm( )Hoo/ p(x)ui—l— 17 / qux
2 Jo
+N2/// s|u(s)| 22(z, p, s, t)dsdpdx
<

where A\ = inf,cpo, 1) {p(¢)}, and ¢ > 0. Consequently,

|L(t) — NE(t)| < c&(2),

which yields
(N = ¢)E(t) < L(t) < (N +¢) E(1).

Choosing N large enough, we obtain estimate (6.40). m
Now, we are ready to state and prove the main result of this section.
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Theorem 6.1 Let (u,v,0,q,z2) be the solution of (6.8)-(6.9), assume that (H1)-(H3) are
satisfied, then there exist c1,co > 0 for which the energy E satisfies, for allt > 0,

where the functions Hy and Hy are defined by:
foreg >0
t fh" =0 0, A
Hy(t) = i on [0,4], (6.42)
th'(eot) if K'(0) =0 and h" >0 on (0, ],
and

1
1
t) = — ds. 6.43
) /t Hy (s) (643)
Proof. We differentiate (6.39), and recall (2.4), (6.28), (6.36), (6.34), and (6.38), to

obtain
L
L'(t) < N<—ﬁ/ qux—c/ u; dx—/ f(uy utdq:)
0

(&) — (et al)es) / W2dz + m(&) / udz

0 0

L

/ / (2,1, 5,t)dsdr + n 6% dx

463 €3
L
+N, (— (k — ﬁel)/ 0*dx + 62777/ ufdw)
0
HV(+L+£)/ %w—i/ﬁm
€2 0

—Mm/‘/ s|u(s)| 2(x, p, s, t)dsdpda

L
—Ngm/ / ac, 1, s, t)dsdm+N2n/ fdx

Nc L
—{T—Ngn m(&2) — N1€2T77}/ ujde

IN

vt~ et mat [ adder - [

—{NB—N1(¢+E—Z+§11)}/O %zx—N/ F(ue)upda

—{]\ﬁ (m—ﬁel)—ﬂ}/Lmdx
{771]\72—4—63}// 2(z,1, 5, t)dsdx

~im Ny / / / 5|2 ()| 22(x, p, 5, t)dsdpd.
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At this point, we take €5 = 1, then we choose ¢; and €3 small enough such that

p(fl)
k<0 Y AN VA
Ber < U, 63<7}(l+1)+c’

then we choose N; and N, large enough so that

1
Nl(li—elﬂ)—eﬁ>0, 7]1N2—1>0.
3 3

Once Ny and N, are fixed, we then choose N large enough so that

Nc
T — NQU — m(&) — N17'77 > O,

Np — Ny (T+T77+l§) > 0.
1
Thus, using (6.27), we arrive at
L
L(t) < —cE(t) + ¢ / P(u) dz, V> 0. (6.44)
0
Let us define the following sets
Y, ={x€(0,L):|u(z,t)] > A}, £_=(0,L)\ 2.,

We work now for estimate the last term in the right-hand side of (6.44). First, note that

/OLf2 (Ut)dZE:/E /2 (ut)dx+/2_ 2 (uy) da.

Using A; and (6.28), we easily show that

/ S (u)de < /f1/ urf (ug) do
s, >

IN

kl/o ug f (ug) do
< —cE'(t). (6.45)

If =0 on [0, A]: This implies that there exist k; > 0 such that |f (s)| < ky |s| for all
s € Ry, and then (6.45) is also satisfied for |u; (x,t)| < A, then on all (0, L). From (6.44),

(6.45), we arrive at
(L(t)+cE (1)) < —cHy (E (1)), YVt >t (6.46)

where Hy is defined in (6.42).

If 2'(0) = 0 and A’ > 0 on (0, \]: Since h is convex and increasing, h~! is concave and
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increasing, by using (H3), the reversed Jensen’s inequality for concave function (see [37]),
and (6.28), we obtain,

/2 A (uy)de < /2 =t (unf (w)) do
ch! ( /E S (u2) dx)
ch™! (/OL ur f (uy) da:)

< cht(—cE (1)). (6.47)

IN

IA

Therefore, from (6.44), (6.45) and (6.47), we find that
(L(t) +cE (1)) < ch Y (—cE'(t)) —cE(t), Vt>tg.
By using Young’s inequality (2.8) and the fact that
h* (p) < p[h']7'(p), E' <0 and h" >0,
we obtain for g9 > 0 small enough and ¢y > 0 large enough,

(W' (o2 (1)) [L(t) + B (1)] + o B (1))
= B () 1" (2B (1)) [L(1) + cE ()] + o E' (1)

+h' (20 (1)) [L(t) + cE' (1))
< —ch (oE (t)) E(t) + c.h (soE (t)) h ™ (—cE' (t))
+coFE' (t)
< —ch (eoE () E (t) + ch*(h (soE (t))) — cE' (t)
+co B (1)
< —ch' (eoE (1)) E (t) + ceoh’ (soE (1)) E (t)
< —ch(eoE (1)) E(t) = —cHy (E (1)) . (6.48)

Now, let us define the following functional:

F(t) = L(t) +cE (1) if (6.12) holds,
| W (e0E (1) [L(t) 4+ cE ()] 4 coE (t) if (6.13) holds.

Using (6.40), we have
F ~ E,

and exploiting (6.46) and (6.48), we easily deduce that

F'(t) < —cHy (E (1)), VYt >t
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Next, let
R(t) =eF(t),

where 0 < € < € and ¢ is a positive constant satisfying

We also have

R ~ E, (6.49)

and for t > t
R'(t) < —ceHy(E(t)) < —ceHy (EF (1)) (6.50)
< —ceHy(eF (t)) = —ceHy (R (1)) . (6.51)

Noting that H; = —1/H, (see (6.43)), we get from (6.50)
R’ (t) Hy (R (t)) > ce, Yt >t.
A simple integration over (¢y,t) then yields
Hy (R (t)) > Hy (R (to)) + cet — cety.

On the other hand, since lim H; (t) = +o00 and

t—0t+
€ €
0<R(ty) < =Ef(ty) < E‘E 0),
3
we obtain for € small enough
H1 (R (to)) - CEto > 0.

Then, thanks to the fact that H; ' is decreasing , we infer that

IN

R (1) H{' (Hy (R () + cet — csty)

< Hi'(cet).

From this end inequality and (6.49) we get easily (6.41). Then the proof is completed. =
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LON THE EXPONENTIAL STABILITY OF A FLEXIBLE STRUCTURE IN

THERMO-ELASTICITY WITH MICRO-TEMPERATURE EFFECTS

7.1 Introduction

"" e shall study the following inhomogeneous flexible structure system with micro-

temperature effect:

m(z)uy — (p()ug + 26(2)ug)e + dwy + nb, =0,
cty — kO, +nuy, + kyw, =0, (7.1)
TWy — kgwm + ka + klex + dutz = 0,

where u(z,t) is the displacement of a particle at position z € (0, L) and time ¢ > 0, 6 and
w are the temperature of the body and the micro-temperature vector respectively. n > 0
is the coupling constant, that accounts for the heating effect, and k, ky, ks, k3, ¢, d, 7 > 0.
m(z), 6(x) and p(x) are responsible for the non-uniform structure of the body, and,
respectively, denote mass per unit length of structure, coefficient of internal material
damping and a positive function related to the stress acting on the body at a point x.

We consider the following initial and boundary conditions:

u(’o):u()(x)?ut(’o): () ( ) () w(.,O):wO(I), V:L’E[O,L]
u(0,t) =u(L,t) =6(0,t) =0(L, 1) =w

In the presence of second sound, Alves et al. [3] concerned with the system

m(z)uy — (p()ug + 20(2)ugt) . + 0y = 0,
et + ka + Nuty = 07 (7?))
Tq + fq + kb, =0,

90
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They established the well-posedness of the system and proved its stability exponential
and polynomial under suitable boundary conditions. Li et al. [65] considered (7.3) with
a delay term of the form pu, (z,t — 79) in its first equation, they proved that the system
is exponential decay under a "small” condition on time delay. For more details discussion

on the flexible structure systems see [0, 13] and the references therein.

Historically, the linear theory of thermo-elasticity with micro-temperatures for mate-
rials with inner structure whose particles, in addition to the classical displacement and
temperature fields, possess micro-temperatures was constructed by Iesan and Quintanilla
[54, 55]. The work is motivated by increasing use of materials which possess thermal
variation at a microstructure level. The same authors proved an existence theorem and
established the continuous dependence of solutions of the initial data and body loads.
We note that the concept of micro-temperature was just used in the theory of thermo-
dynamics for elastic materials with microstructure. In addition to micro-deformations of
the string, the micro-elements of the continuum possess micro-temperatures which rep-
resent the variation of the temperature within a micro-volume. Originally, Grot [11] was
the first to take into consideration the inner structure of a body in order to develop
a thermodynamic theory for thermo-elastic materials where micro-elements, in addition
to classic micro-deformations, possess micro-temperatures. While, the fundamental so-
lution of the equations of the theory of thermo-elasticity with micro-temperatures was
constructed by Svanadze [39]. Riha [35, 80] developed a further study concerning heat
conduction in thermo-elastic materials with inner structure. It is shown that the ex-
perimental data for the silicone rubber containing spherical aluminum particles and for
human blood are conform closely to the predicted theoretical model of thermo-elasticity
with micro-temperatures. We refer the interested readers to [11, 27, 30, 31, 34, 47] for
details discussion on the theory.

Motivated by works mentioned above, we investigate (7.1)-(7.2) under suitable condi-
tion and establish the well-posedness of the problem using semi-group theory, as well as
the stability result of the solution using the multiplier method. Our purpose here is to
obtain an exponential decay rate estimates of the energy function of (7.1) without any

restriction or relation on the coefficients of the system.

7.2 Existence and uniqueness of solution

In this section, we present some assumptions and give the existence and uniqueness result
of system (7.1)-(7.2) using the semigroups theory. Throughout this section, ¢’ represents

a generic positive constant and is different in various occurrences.
The aim of this section is to prove that system (7.1)-(7.2) is well-posed. From Equation

7.2. Existence and uniqueness of solution
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(7.1)3 and the boundary conditions (7.2), we have
L

dt Jo
L L 4

/ w(x,t)de = </ wod:c) exp (—k@) , Vit >0,
0 0 T

_ 1/ (" —t
w(x,t):w(:c,t)—z (/0 wodx> exp (7]62), t>0, z€l0,L],

k L
w(a:,t)da:+—2/ w(x,t)de =0, Vt > o,
T Jo

thus

So, if we set

then, (u,u,, 0, w) satisfies Equation (7.1), and

L
/ w (x,t)de =0,
0

for all £ > 0. In the sequel, we shall work with w but we write w for simplicity.
The energy functional associated to (7.1)-(7.2), namely,

1 (L
E(t,u,u,0,w) = 3 / {p(x)ul + m(x)w] + b + Tw} d, (7.4)
0

we denote E(t) = E (t,u,u, 0, w) and E(0) = E (0, ug, uy, 0y, wp) for simplicity of nota-

tions. Then the energy E is decreasing function and satisfies, for all ¢ > 0,

L L L L
') = —2/ § () ul,dr — ]{?2/ w?dx — k’g/ w?dr — k/ 02dx
0 0 0 0

L L L L
—c’/ urde — k2/ w?dr — k:3/ w2dr — k‘/ 02dx (7.5)
0 0 0 0

< 0. (7.6)

IN

To obtain precise decay rates of E(t) as t — 400, we assume that

m, 6, p € Wh*(0, L), m(z), p(x), 6(z) >0, Vxc[0,L]. (7.7)

Let us introducing the vector function U = (u,v,0,w)T, where v = w;, using the
standard Lebesgue space L?(0, L) and the Sobolev space H} (0, L) with their usual scalar

products and norms for define the spaces:
H = HY(0, L) x [L*(0, L)]* x L*(0, L),

and
HZ(0,L) = {we H*0,L) : w, (L) = w, (0) = 0},

7.2. Existence and uniqueness of solution
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where 120, 1) = {w € LX(0, L) : /OLw(s) ds = 0}.

We equip ‘H with the inner product

L L L L
(U, U)y = / p () ugudr + / m (z)vodx + c/ 00dx + 7‘/ wwdz.
0 0 0 0

Next, the system (7.1)-(7.2) can be reduced to the following abstract Cauchy problem:

(7.8)

U'(t) + AU(t) = 0, t>0
U(0) = Uy = (ug, u1, 6, wp)”,

where the operator A : D(A) — H is defined by

—v
AU = — e (P(@)ug +20(2)v, — 1 — dw),
% (=kbpe + Mz + k1wy)

%(—kgwm + k’QU} -+ /ﬁ@x -+ dum)

The domain of A is then

DA _{ UeH|ue H20,L)NHL(0,L), ve HY0,L), 6 € HX(0, L), }

w e Lf(O,L) N Hf(O,L)
which is dense in H.

Proposition 7.1 Let Uy € H be given. Problem (7.8) possesses then a unique solution
satisfying U € C(RY;H). If Uy € D(A), then U € C*'(RT; H) N C (RT; D(A)) .

Proof. For any U € D(A), we have

L L L L
(AU, U)y = / § (x) vidw + k/ 02dxw + k‘g/ w?dx + k:g/ w?dx > 0.
0 0 0 0

Hence, A is monotone. Next, we prove that the operator I + A is surjective.
Given G = (g1, g2, 93, 94)7 € H, we prove that there exists U € D(A) satisfying

(Z+A)U =@, (7.9)
which gives

—v+u=g € Hy(0,L),

—(p(z)uy + 20(x)v, — nb — dw), +m (z)v =m(x)gs € L*(0, L),
—kOyy + Ny + kyw, + cf = cg3 € L0, L),

—k3Wep + kow + k10, + dv, + 7w = 794 € L2(0, L).

(7.10)

7.2. Existence and uniqueness of solution
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Inserting u = v + ¢y, in (7.10)9, (7.10)3 and (7.10)4, we obtain

—(p(x)ug + 26(x)uy — b — dw), +m (z)u=m(z) (g1 + g2) — 20(2)g10e = f1 € L*(0, L),
—kOyp + nug + kyw, + 0 = cgs + ng1e = fo € L*(0, L),
—k3Wyy + kow + k10, + du, + Tw = 794 + dg1, = f3 € L2(0, L).

(7.11)

The variational formulation corresponding to Equation (7.11) takes the form
B((v,0,w), (v,6,®)) = F(7,0,), (7.12)

where B : [HE(0, L) x L2(0, L) x L2(0, L)]> = R is the bilinear form defined by

B((v,0,w), (7,0, ®)) = /0 [(p(z) + 20(z)) up —nb — dw] udx + /0 m (z) uudx

L L L L
+k/ 0,0..dx — 77/ ul,dr — k; / wl,dr + c/ 00dx
0 0 0 0

L L L
+k3/ wyWedr + (ky + 7) / wwdz + k; / 0, wdx
0 0 0

L
—d/ uw dx,
0

and F : Hj(0, L) x L*(0, L) x L?(0,L) — R is the linear functional defined by
_ L Lo L
F(@,0.@) = / Fyiidz + / fo0dz + / foida
0 0 0
For V = H}(0, L) x L*(0, L) x L?(0, L) equipped with the norm

2 2 2 2 2
1w, 6, w)lly = Nully + llually + lwlly + 16215,

where ||.||, is the usual norm.
One can easily see that B and F' are bounded. Also, we get

B((u, 8, w), (u,,w)) = /0 (p(m)+25(x))uidx+/0 m (x) u2d:v—|—k:/0 02dx

L L L
c/ 0%dx + kg/ wf;d:v + kg/ widx
0 0 0

> c|l(v. 8, w)ly -

Then, B is coercive. Consequently, by the Lax-Milgram lemma, system (7.11) has a

unique solution
u € Hy(0,L), € L*(0,L), we L*0,L).

From (7.10);, we infer that
v e Hy(0,L).

7.2. Existence and uniqueness of solution
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Moreover, if (5, z]?) = (0,0) € L*(0, L) x L0, L), then Equation (7.12) reduces to

_iALKp@)+2M$Dum_ne_dMI&m41ALmC@uﬂ
[* s

—[(p(x) + 20(x)) uy],, = 9, + dwy — m (x)u+ f € L*(0, L).

That is

Consequently, by the regularity theory for the linear elliptic equations, it follows that
u € Hy(0,L)N H*0,L).

Similarly, if (ﬂ, 5) = (0,0) € H}(0,L) x L*(0, L), then Equation (7.12) reduces to

L L L L
k:3/ WpWedr + (ks —1—7')/ wwdx + kl/ 0, wdx — d/ uw,dx
0

0 0 0
L
/ Fyiida. (7.13)
0

That is
l{:gwm = (k’g + 7') w + k19x + dux — f3 € L2(0, L), (714)

then, it follows that fOL wdx = 0, and we get
w e L*0,L) N H?*(0, L).

Moreover, (7.13) is also true for any ¢ € C*(]0; L]) included in L?(0, L). Hence, we have

L L L L
kg/ Wededr + (ko + 7) / wodx + ky / 0. pdr — d/ uQ,dx
0 0 0

/ faodz,

for all ¢ € C*([0; L]). Thus, using integration by parts and bearing in mind (7.14), we

obtain
w, (L) ¢ (L) —w, (0) ¢ (0) = 0, Yo € C'([0; L)).

Therefore, w, (L) = w, (0) = 0, consequently, we have
w e L*0,L) N HZ(0, L).

Now, if (u,w) = (0,0) € H}(0,L) x L(0, L), then Equation (7.12) reduces to

L L L L L
k;/ 0,0.dr — 77/ ub,dr — k; / wl,dx + c/ A0dx = fobdzx,
0 0 0 0 0

7.2. Existence and uniqueness of solution
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that is
~kbpe = fo — nuy — kyw, — cf € L*(0, L),

then, we get
6 c H*(0,L).

Hence, there exists a unique U € D(A) such that Equation (7.9) is satisfied. Consequently,
A is a maximal monotone operator. Then, D(A) is dense in H (see Proposition 7.1 in

[24] ) and the result of Proposition (7.1) follows from Lumer-Phillips theorem. m

7.3 Stability result

In this section, we introduce some lemmas allow us to achieve our goal, which is the proof
of the stability result.

Lemma 7.1 Let (u,v,0,w) be the solution of (7.1)-(7.2), then the energy E is non-

increasing function and satisfies, for all t > 0,

L L L L
gt = =2 §(x)u? dr — ko wdr — ks widr — k 0%dx
xt x x
0 0 0 0

L L L L
< —c’/ uldr — /@/ w?dx — kzg/ w?dx — k/ 02dr < 0. (7.15)
0 0 0 0

where ¢ = 20(&) /1.

Proof. Multiplying the equations in (7.1)1,(7.1)s, and (7.1)3 by wu;, € and w, respectively,
integrate over (0, L) and using (2.4), we obtain (7.15). m

Lemma 7.2 The functional

L(t) = /0 (6(x)uZ + m(z)uwu) de, (7.16)

satisfies

K0 < ) -0+ de) [ deme) [ wel o

461 0
d L
0
for any 1 > 0.

Proof. Differentiating Equation (7.16) with respect to ¢ and using Equations (7.1);, we

L L L L
I (t) = —/ p(z)u? +/ m(z)u? — 77/ 0, udr — d/ uw,dzx.
0 0 0 0

7.3. Stability result

get




Chapter 7. On the exponential stability of a flexible structure in thermo-elasticity
with micro-temperature effects 97

Using Young’s inequality, we have for ¢; > 0

L L L —
—77/ O udxr = 17/ ufdr < 7761/ uids + —/ 02dzr,
0 0 0 de1 Jo

L L L d [F
—d/ wyudr = d/ uywdr < del/ u;, 2de + — dex,
0 0 0 4ey

application of Lemma 6.1 and the last two inequality completes the proof. m

Lemma 7.3 The functional
L x
L(t) :== TC/ 6 (/ w(y)dy) dx, (7.18)
0 0
satisfies

L) < (—kic+3e) / 0*dx + — da:—i——/ 02dx

2e5

L
1
+(]€17'+2€26/+c/>/0 w2d$+4g2/0 gddi, (719)

for any e > 0.

Proof. Taking the derivative of (7.18) and using (7.1); and (7.1)3 we find

L T L T
L = - (k [ ( / w(y)dy) o= [ ( / w(y)dy) dr
0 0 0 0
L T
—k:l/ Wy (/ w(y)dy) dx)
0 0
L T L T
+c (kg/ 0 (/ wyy(y)dy> dx — k:g/ 0 (/ w(y)dy) dx
0 0 0 0
L T L T
—k‘l/ 0 (/ Qy(y)dy) dr — d/ 0 (/ uty(y)dy) da:) .
0 0 0 0
Integration by parts and the fact that fo x)dx = 0, give us
L L L
Lt = 7 (—k/ Qdex—l—T]/ utwdx—i-kzl/ w2dx>
’ L ’ L T "
+c (k:g/ Qw,dx — k’g/ 0 (/ w(y)dy> dx
0 0 0
L L
—kl/ 0*dx — d/ Hutdx) : (7.20)
0 0

7.3. Stability result
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using Young’s inequality, we get also

—k fOL O, wdx < é fOL 02dx + ey fOL wdx
nfOL wwdxr < é fOL uldr + dey fOL w?dz
L 1 rL 9 L po
ks [, Owydx < Efo wid + €, [, 6*da (7.21)

—ky fo (fy w(y)dy) dz < &, fOL 0%dx + ¢ fOL widz

—d fOL Oupdr < ﬁ fOL uZdz + & fOL 0%dz.

From (7.20) and (7.21) we infer (7.19). m
Next, we define a Lyapunov functional L and show that it is equivalent to the energy

functional.
Lemma 7.4 For N sufficiently large, the functional defined by
L(t) .= NE (t) + 11(t) + N11(t). (7.22)
where N and Ny are positive real numbers to be chosen appropriately later, satisfies
AE(t) < L(t) < GE(), Vt>0. (7.23)

where ¢| and ¢ are positive constants.

Proof. Let

then, exploiting Young’s inequality, (2.4) and (7.4), we obtain

o(t.0) ([ wie.i)an)

L L L
< / Sayd + - / mia)ulds + Nyrel [ Jo(t o)u(t,y)] do
0

/ (@

1£(t)] < NlcT/O d:c—i—/o (6(x)uZ + m(z) |uul) do

l L
e dHH()H [ s+ A 1
0 2A 0
Nitcl Nitcl
—l—i/ 0*dx + 1TC/ w?(t,y)dw
2 Jo 2 Jo
< JE(1),

7.3. Stability result
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where A\ = inf,cp. ) {p(z)}, and ¢ > 0. Consequently,
|L(t) — NE(t)| < &),

which yields
(N—=C)EM) <L) < (N+)E®).

Choosing N large enough, we obtain estimate (7.23). m
Now, we are ready to state and prove the main result of this section.

Theorem 7.1 Let (u,v,0,w) be the solution of (7.1)-(7.2), then the energy E satisfies,

for allt >0,
Et) < cre” !,

where ¢1 and co are positive constants.

Proof. We differentiate (7.22), and recall (7.15), (7.17), and (7.19), we obtain

L L L L
L't < N (—c’/ ulrdr — ]{32/ w?dr — kg/ wdr — k/ 9§dm)
0 0 0 0

L L L L
—(p(&) — (n+d) 61)/0 ul + m(ﬁz)/ ui + aa 0% + 4 widz

0 461 0 461 0

L 1 L 1 L
+Ny ((—klc + 3e2) / 0*dx + . uidr + . / 02dx
0 0

€9 0 €9

L L
1
+ (k17 + 2e9d + ) / wdr + — wfcd:c)
0 482 0

IN

{ones i) [+ {-pie)+ @+ ey [ i

252

d L
+{—Nk2+N1 (/{17+2520'+c')—|—4—}/ widx
€1 0

n L Nl L
+ S Ny (—kic+ 3e2) + — / 0*dx + { —Nk + — / 02dx
der § Jo dea } Jo

N L
482 0

At this point, we choose €; and €5 small enough such that
—p(&)+ (n+d)er <0, —kic+3ey <0,

then we choose N; large enough so that

N1 (—klc + 352) + £ < 0.
461

7.3. Stability result
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Once N; is fixed, we then choose N large enough so that

—Nd + 32 +m(&) <0

—Nky + Ny (k17 4 262 + &) + £~ <0,
—Nk+ 2 <0,

—Nks + 2= < 0.

Thus, using (7.4), we arrive at
L'(t) < —c&(t), Vit>0.
A combination of (7.23) and (7.24) gives
L'(t) < —eL(t), Vt>0.
where ¢y = ¢/}, a simple integration of (7.25) over (0,t) yields
EM) < L(t) < LO0)e ", Vt>0.

Taking ¢; = L(0)/c}, which completes the proof. m

(7.24)

(7.25)

7.3. Stability result
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