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Abstract: This paper is concerned with the maximum likelihood estimators of the Beta-Pareto
distribution introduced in Akinsete et al. (2008), which comes from the mixing of two probability
distributions, Beta and Pareto. Since these estimators cannot be obtained explicitly, we use nonlinear
optimization methods that numerically provide these estimators. The methods we investigate are the
method of Newton-Raphson, the gradient method and the conjugate gradient method. Note that for
the conjugate gradient method we use the model of Fletcher-Reeves. The corresponding algorithms
are developed and the performances of the methods used are confirmed by an important simulation
study. In order to compare between several concurrent models, namely generalized Beta-Pareto, Beta,
Pareto, Gamma and Beta-Pareto, model criteria selection are used. We firstly consider completely
observed data and, secondly, the observations are assumed to be right censored and we derive the
same type of results.

Keywords: maximum likelihood estimators; nonlinear optimization methods; Beta-Pareto distribution;
Beta distribution; Pareto distribution; model selection; right-censored data

1. Introduction

In this work we are interested in the four-parameter distribution called Beta-Pareto (BP)
distribution, introduced recently by Akinsete et al. (2008) [1]. This distribution is a generalization
of several models like Pareto, logbeta, exponential, arcsine distributions, in the sense that these
distributions can be considered as special cases of the BP distribution, by making transformation of
the variable or by setting special values of the parameters (cf. Reference [1]).

It is well known that the family of Pareto distribution and the corresponding generalizations have
been extensively used in various fields of applications, like income data [2], environmental studies [3]
or economical-social studies [4]. Concerning the generalizations of the Pareto distribution, we can cite
the Burr distribution [5], the power function [6] and the logistic distribution. It is important also to
stress that heavy tailed phenomena can be successfully modelled by means of (generalized) Pareto
distributions [7]. Note that this BP model is based on Pareto distribution which is known to be heavy
tailed, as it was shown in Reference [1] using some theoretical and application arguments. We would
like to stress that this is important in practice because it can be used to describe skewed data better
than other distributions proposed in the statistical literature. A classical example of this kind is given
by the exceedances of Wheaton River flood data which are highly skewed to the right.
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All these reasons show the great importance of statistically investigating any generalization of
Pareto distributions. Thus the purpose of our work is to provide algorithmic methods for practically
computing the maximum likelihood estimators (MLEs) of the parameters of the BP distribution,
to carry out intensive simulation studies in order to investigate the quality of the proposed estimators,
to consider model selection criteria in order to choose among candidate models and also to take into
account right-censored data, not only completely observed data. Note that right-censored data are
often observed in reliability studies and survival analysis, where experiments are generally conducted
over a fixed time period. At the end of the study, generally we cannot observe the failure times of all
the products or death (remission) of all patients due to loss to follow-up, competing risks (death from
other causes) or any combination of these. In such cases, we do not always have the opportunity
of observing these survival times, observing only the censoring times. Consequently, it is of crucial
importance for this type of data and applications to develop a methodology that allows the estimation
in the presence of right censoring.

Generally, numerical methods are required when the MLEs of the unknown parameters of
any model cannot be obtained. For the BP distribution, we propose the use of several nonlinear
optimization methods: Newton-Raphson’ method, the gradient and the conjugate gradient methods.
For the Newton-Raphson’s method, the evaluation of the approximation of the Hessian matrix
is widely studied in the literature. In this work, we are interested in the BFGS method (from
Broyden-Fletcher-Goldfarb-Shanno), the DFP method (from Davidon-Fletcher-Powell) and the SR1
method (Symmetric Rank 1). For the conjugate gradient method we use the model of Fletcher-Reeves.

It is well known that the gradient and conjugate gradient methods are better than the
Newton-Raphson’s method. Nonetheless, most statistical studies use the Newton-Raphson’s method
instead of the gradient or conjugate gradient methods, maybe because it is much more easier to put
in practice. Our interest is to put in practice the gradient method and the conjugate gradient method
in our framework of BP estimation and also present the Newton-Raphson method for comparison
purposes only.

The structure of the article is as follows. In the next section we introduce the BP distribution and
we give some elements of MLE for such a model. Section 3 is devoted to the numerical optimization
methods used for obtaining the MLEs for the parameters of interest. Firstly, we briefly recall the
numerical methods that we use (Newton-Raphson, gradient and conjugate gradient). Secondly,
we present the corresponding algorithm for the method of conjugate gradient, which is the most
complex one. We end this section by investigating through simulations the accuracy of these three
methods. In Section 4 we use model selection criteria (AIC, BIC, AICc) in order to chose between several
concurrent models, namely between the Generalized Beta-Pareto, Beta, Pareto, Gamma, BP models
respectively. In Section 5 we assume that we have at our disposal right-censored observations and we
derive the same type of results as we did for complete observations.

2. BP Distribution and MLEs of the Parameters

A random variable X has a BP distribution with parameters α, β, θ, k > 0, if its probability density
function is

f (x; α, β, k, θ) :=
k

θB(α, β)

[
1−

( x
θ

)−k
]α−1 ( x

θ

)−kβ−1
, x ≥ θ,

with B(α, β) = Γ(α)Γ(β)
Γ(α+β)

, Γ(x), x > 0, being the Gamma function. Consequently, the support of X is
[θ,+∞). The corresponding cumulative distribution function can be written as

F(x; α, β, k, θ) = 1−
( x

θ

)−kβ

βB(α, β)
−
( x

θ

)−kβ

B(α, β)

∞

∑
n=1

∏n
i=1(i− α)

n!(β + n)

( x
θ

)−kn
, x ≥ θ, α, β, θ, k > 0.

In Figures 1–5, the pdf, survival, cdf, hazard and cumulative hazard functions are presented for
several values of the parameters.
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Figure 1. Density of the BP distribution.
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Figure 2. Survival function of the BP distribution.
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Figure 3. Cumulative distribution function of the BP distribution.
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Figure 4. Hazard rate of the BP distribution.
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Figure 5. Cumulative hazard rate of the BP distribution.

Let us now consider an i.i.d. (independent and identically distributed) sample (x1, x2, x3, ..., xn)

of a random variable X following a BP distribution with density f (x; α, β, k, θ). The corresponding
log-likelihood function can be written as

l(α, β, k, θ | x1, x2, x3, . . . , xn) = n ln k− n ln θ + n(ln Γ(α + β)− ln Γ(α)− ln Γ(β))

+(α− 1)
n

∑
i=1

ln
[

1−
( xi

θ

)−k
]
− (kβ + 1)∑n

i=1 ln
( xi

θ

)
.

(1)

As usual, when we need to see the log-likelihood function as a function of the parameters α, β,
k, θ only, we shall write l(α, β, k, θ) instead of l(α, β, k, θ | x1, x2, . . . , xn). The score equations are thus
given by

∂l(α, β, k, θ)

∂α
= n [Ψ(α + β)−Ψ(α)] +

n

∑
i=1

ln
(

1−
( xi

θ

)−k
)
= 0, (2)

∂l(α, β, k, θ)

∂β
= n[Ψ(α + β)−Ψ(β)]− k

n

∑
i=1

ln
( xi

θ

)
= 0, (3)

∂l(α, β, k, θ)

∂k
=

n
k
−

n

∑
i=1

[
β + (α− 1)

(
1−

( xi
θ

)k
)−1

]
ln
( xi

θ

)
= 0, (4)

where the function Ψ is defined by Ψ(x) := Γ′(x)
Γ(x) , x > 0.

As x ≥ θ, the MLE of the parameter θ is the first order statistic x(1) and the MLEs of α, β and k
are obtained by solving the system (2)–(4).

Using Equations (2)–(4) we compute the elements of the Fisher information matrix as follows [1]:

∂2l(α, β, k, θ)

∂α2 = n[Ψ′(α + β)−Ψ′(α)],

∂2l(α, β, k, θ)

∂α∂β
= nΨ′(α + β),

∂2l(α, β, k, θ)

∂k∂β
= −

n

∑
i=1

ln
( xi

θ

)
,

∂2(l(α, β, k, θ))

∂k∂α
=

n

∑
i=1

ln
( xi

θ

) [( xi
θ

)k
− 1
]−1

,

∂2(l(α, β, k, θ))

∂k2 = − n
k2 − (α− 1)

n

∑
i=1

( xi
θ

)k
[

ln
( xi

θ

)
1−

( xi
θ

)k

]2

,

∂2(l(α, β, k, θ))

∂β2 = n[Ψ′(α + β)−Ψ′(β)].
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There are no closed formulas for solving these equations, so numerical methods are required.

3. Numerical Optimization for Solving the Score Equations

In this section we are interested in proposing numerical methods for solving the score equations
of the MLEs of the BP parameters. We will consider three methods: the Newton-Raphson’s method,
the gradient method and the conjugate gradient method. Firstly, we will recall the general lines of
these optimization methods. Secondly, we will give a detailed description of the application of the
most complex method, namely of the conjugate gradient one, for computing the MLEs of the BP
distribution. We close the section by presenting numerical results of the implementation of these
methods in our BP framework.

3.1. General Description of Optimization Methods

Les us first recall the main lines of the three numerical methods that we have considered.
The objectives of these methods will be to minimize/maximize a function l : Rp → R; in our case,
p = 3 (the three parameters of the BP distribution to be estimated, α, β, k). As it was mentioned in the
previous section, although the number of parameters of the BP distribution is 4 (the parameters are α,
β, k and θ), the MLE of the forth parameter θ can be immediately obtained as the first order statistics,
θ̂ = x(1). For this reason, although the function l has 4 arguments, in the optimization methods only 3
will be in fact involved.

3.1.1. Newton-Raphson’s Method

Newton’s method: Let us denote by V := (α, β, k, θ) a current point of the function l, let ∇l(Vk) be
the gradient and HK be the Hessian function at an iteration Vk of the current point V. Newton’s method
consists in taking the descent direction

dk = −H−1
k ∇l(Vk).

Near-Newton method: Often in practice, the inverse of the Hessian, H−1
K , is very difficult to

evaluate when the function l is not analytic. The gradient is always more or less accessible (by inverse
methods). As the Hessian cannot be computed exactly, we try to evaluate an approximation.
Among the methods that approximate the Hessian, three are retained here: the method BFGS
(for Broyden-Fletcher-Goldfarb-Shanno), the method DFP (for Davidon-Fletcher-Powell) and the
method SR1 (for Symmetric Rank 1 method) [8].

We introduce the notation sk = Vk+1 − Vk and yk = ∇l(Vk+1) −∇l(Vk) and we choose H0 a
definite positive matrix; for convexity reasons the identity matrix is usually chosen.

Update of the Hessian by the method BFGS: In this approach, the approximation of the Hessian is
given by

Hk+1 = Hk +
ykyT

k
yT

k sk
−

HksksT
k Hk

sT
k Hksk

.

3.1.2. Gradient Method

This algorithm is based on the fact that, in the vicinity of a point V, the function l decreases most
strongly in the opposed direction of the gradient of l,

d = −∇l(V).

Let us fix an arbitrary ε > 0. The algorithm can be described as follows:

1. Step 0 (Initialization): V0 = (α0, β0, k0, θ0) that satisfies the conditions for the parameters of the BP
distribution; set k = 0 and go to Step 1

2. Step 1: Computation of dk = −∇l(Vk); if ‖ ∇l(Vk) ‖≤ ε, then STOP; If not, go to Step 2.
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3. Step 2: Compute λk the solution of the problem

min
λ∈R+

l(Vk + λdk)

and Vk+1,
Vk+1 = Vk − λk∇l(Vk).

Set k = k + 1 and go to Step 1.

The algorithm that uses this direction of descent is called the gradient algorithm or the deepest
descent algorithm. The algorithm generally requires a finite number of iterations, depending on the
regularity of the function l. In practice, we often observe that ∇l(V) is a good direction of descent,
but the convergence to the solution is generally slow. Despite its poor numerical performance,
this algorithm is worth studying.

3.1.3. Conjugate Gradient Method

The conjugate gradient method is one of the most famous and widely used methods for solving
minimization problems. It is mostly used for big size problems. This method was proposed in 1952 by
Hestenes and Steifel for the minimization of strictly convex quadratic functions [9].

Many mathematicians have used this method for the nonlinear (non-quadratic) case. This was
done for the first time in 1964 by Fletcher and Reeves [10], then in 1969 by Polak and Ribiere [11];
another variant was studied in 1987 by Fletcher [12]. The strategy adopted was to use a
recursive sequence

Vk+1 = Vk + λkdk,

where λk is a properly chosen positive real constant called “step” and dk is a non-zero real vector called
“direction”. As the conjugate gradient algorithm is used to solve nonlinear functions, we should note
that nonlinear conjugate gradient methods are not unique.

Algorithm for the conjugate gradient method:
The Algorithm is initialized by the step 0 of the simple gradient.
0. We have d0 = −∇l(V0) as long as a convergence criterion is not verified.
1. Determination of a step λk by some linear search method. Computation of a new iteration

Vk+1 = Vk + λkdk.

2. Evaluation of a new gradient

∇l(Vk+1).

3. Computation of the real ωk+1 by some methods, for example Fletcher and Reeves (see below),

ωk+1 =
∇l(Vk+1)

T∇l(Vk+1)

∇l(Vk)T∇l(Vk)
. (5)

4. Construction of a new descent direction:

dk+1 = −∇l(Vk+1) + ωk+1dk.

5. Increment
k = k + 1.

Several methods exist for computing the term ωk+1; we will be concerned in the sequel by the
methods of Fletcher-Reeves, of Polack-Ribiere, and of Hesteness-Stiefel (a variant of the method of
Fletcher-Reeves). It should be noted that this last method is particularly effective in the case when the
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function is quadratic and when the linear search is carried out exactly. The corresponding ωk+1 for
these methods is given by:

Fletcher-Reeves

ωk+1 =
∇l(Vk+1)

T∇l(Vk+1)

∇l(Vk)T∇l(Vk)
;

Polack-Ribiere

ωk+1 =
∇l(Vk+1)

T(∇l(Vk+1)−∇l(Vk))

∇l(Vk)T∇l(Vk)
;

Hestenes-Stiefel

ωk+1 =
∇l(Vk+1)

T(∇l(Vk+1)−∇l(Vk))

(∇l(Vk+1)−∇l(Vk))T∇l(Vk)
.

Noting that

l(Vk+1) = l(Vk) + (Vk+1 −Vk)
dl

dVk
(Vk) + Rest(Vk+1 −Vk), (6)

we have the recurrence
Vk+1 = Vk + λkdk,

where the step of descent λk is obtained with an exact or inaccurate linear search. The descent vector
dk is obtained by using a conjugate gradient algorithm based on the recurrence formula

dk = −∇l(Vk)−ωkdk−1,

where

ωk =
‖∇l(Vk)‖2

‖∇l(Vk−1)‖2 .

3.2. Optimization Methods for Computing the MLEs of the BP Distribution

At this stage, we are interested in describing the application of the three optimization methods
for computing the MLEs of the BP distribution. In the sequel we will present in details only the most
complex one, namely the conjugate gradient method. Following the same line, the other two methods
can also be adapted for computing the MLEs of the BP distribution. Note also that we will give in the
next section numerical results for all three methods.

So, our purpose is to numerically determine the MLEs of the BP parameters by calculating the
maximum of the log-likelihood function l(α, β, k, θ) given in (1).

As we have previously mentioned, the MLE of the parameter θ is the first order statistic, so, in the
sequel, the iterates θ0 = θ1 = . . . = x(1) are fixed.

To compute the MLEs of the parameters, we proceed as follows:
1. Step 0: Initialization V0 = (α0, β0, k0, θ0).
2. Step 1: Computation of the gradient
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∇l(α, β, k, θ) =


∂l(α,β,k,θ)

∂α
∂l(α,β,k,θ)

∂β
∂l(α,β,k,θ)

∂k



=


n [Ψ(α + β)−Ψ(α)] + ∑n

i=1 ln
(

1−
( xi

θ

)−k
)

n [Ψ(α + β)−Ψ(β)]− k ∑n
i=1 ln

( xi
θ

)
n
k −∑n

i=1

[
β + (α− 1)

(
1−

( xi
θ

)k
)−1

]
ln
( xi

θ

)
 .

If ∇l(α, β, k, θ) ≤ ε, then stop, V0 = (α0, β0, k0, θ0) is the optimal vector.
Else: go to the next step.

3. Step 2: Computation of the direction of descent

If i = 0 :

d0 = −∇l(α0, β0, k0, θ0) = −


n [Ψ(α0 + β0)−Ψ(α0)] + ∑n

i=1 ln
(

1−
(

xi
θ0

)−k0
)

n[Ψ(α0 + β0)−Ψ(β0)]− k0 ∑n
i=1 ln

(
xi
θ0

)
n
k0
−∑n

i=1

[
β0 + (α0 − 1)

(
1−

(
xi
θ0

)k0
)−1

]
ln
(

xi
θ0

)

 .

If i > 0 : di+1 = −∇l(αi, βi, ki, θi) + ωidi; when we use the method of Fletcher-Reeves (5), we will
have the result

ωFR
i =

‖∇l(αi+1, βi+1, ki+1, θi+1)‖2

‖∇l(αi, βi, ki, θi)‖2 .

4. Step 3: Computation of V1 = (α1, β1, k1, θ1)

V1 = V0 + λ0d0 such as d0 = −∇l(α0, β0, k0, θ0).

Determination of a step λ0

We can find λ0 with exact and inaccurate linear search methods. In our case, the use of the
exact linear search helps us to have a fast convergence. The exact linear search method is to solve
the problem

min
λ0∈R+

l(V0 + λ0d0). (7)

For this, we will look for the value of λ0 which cancels the first derivative of the function
l(V0 + λ0d0),
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α0 − λ0

{
n [Ψ(α0 + β0)−Ψ(α0)] +

n

∑
i=1

ln

(
1−

(
xi
θ0

)−k0
)}

= 0,

β0 − λ0

{
n [Ψ(α0 + β0)−Ψ(β0)]− k0

n

∑
i=1

ln
(

xi
θ0

)}
= 0,

k0 − λ0

 n
k0
−

n

∑
i=1

β0 + (α0 − 1)

(
1−

(
xi
θ0

)k0
)−1

 ln
(

xi
θ0

) = 0.

Thus we can deduce the exact value of λ0

λ0 = (α0 + β0 + k0)/

[
2nΨ(α0 + β0)− nΨ(α0)− nΨ(β0)− k0

n

∑
i=1

ln
(

xi
θ0

)

+
n

∑
i=1

ln

(
1−

(
xi
θ0

)−k0
)
+

n
k0
−

n

∑
i=1

β0 + (α0 − 1)

(
1−

(
xi
θ0

)k0
)−1

 ln
(

xi
θ0

) .

If λ0 is positive, we accept it and we go to next step. If not, we use inexact methods of linear
search to have an approximation of the optimal value λ0 and we go to next step. The main inexact
methods are the so-called inaccurate linear search methods of Armijo [13], of Goldstein [14], of
Wolfe [15] and of Wolfe strong [16].

Construction of the vector V1

V1 = V0 + λ0d0 =


α0 + λ0

[
−n{Ψ(α0 + β0)−Ψ(α0)} −∑n

i=1 ln(1− ( xi
θ0
)−k0)

]
β0 + λ0

[
−n{Ψ(α0 + β0)−Ψ(β0)}+ k0 ∑n

i=1 ln( xi
θ0
)
]

k0 + λ0

[
− n

k0
+ ∑n

i=1

[
β0 + (α0 − 1)

(
1− ( xi

θ0
)k0
)−1

ln( xi
θ0
)

]]
 ,

where λ0 was previously obtained.
Set i = i + 1 and go to Step 1.

Based on Zoutendijk’s theorem [17] and globally convergent Riemannian conjugate gradient
method [18], the convergence of the algorithm is ensured.

3.3. Numerical Results

We carried out an important simulation study using the programming software R. In the sequel
we present the results obtained by means of the three optimization methods.

In Tables 1–3, the MLEs of the parameters α, β and k of the BP distribution are presented,
together with the standard deviations (SDs), considering the three optimization methods. Note the
convergence of the estimators obtained with the gradient and conjugate gradient methods and note
also that the Newton’s method does not converge with a non-quadratic or nonlinear function.

The Tables 4–6 present the MLEs of the parameters for the conjugate gradient method and gradient
methods, as well as the bias and the mean square errors (MSEs) of the estimators. Note that the MSEs
of the estimators have very small values, smaller than 10−4.
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Table 1. Results of simulation with conjugate gradient method for m = 10,000 iterations, with α = 23,
β = 34, k = 19, θ = 0.15.

n α̂ β̂ k̂ SD(α̂) SD(β̂) SD(k̂)

10 22.7873 33.7865 19.9800 1.06 × 10−4 1.06 × 10−4 9.44 × 10−6

15 22.7910 33.7902 19.9802 1.04 × 10−4 1.04 × 10−4 9.47 × 10−6

20 22.7947 33.7939 19.9804 1.02 × 10−4 1.04 × 10−4 1.11 × 10−5

30 22.8020 33.8012 19.9808 9.89 × 10−5 9.97 × 10−5 1.01 × 10−5

40 22.8094 33.8086 19.9812 9.52 × 10−5 9.62 × 10−5 1.02 × 10−5

50 22.8168 33.8160 19.9906 9.15 × 10−5 9.17 × 10−5 4.26 × 10−6

100 22.8536 33.8528 19.9926 7.31 × 10−5 7.35 × 10−5 3.72 × 10−6

150 22.8904 33.8896 19.9946 5.47 × 10−5 5.52 × 10−5 2.83 × 10−6

200 22.9273 33.9265 19.9966 3.63 × 10−5 3.65 × 10−5 1.45 × 10−6

300 23.0009 34.0001 20.0006 4.78 × 10−7 4.01 × 10−7 8.09 × 10−7

Table 2. Results of simulation with gradient method for m = 10,000 iterations, with α = 23, β = 34,
k = 19, θ = 0.15.

n α̂ β̂ k̂ SD(α̂) SD(β̂) SD(k̂)

10 22.7873 33.7865 19.7790 2.12 × 10−5 2.12 × 10−5 2.20 × 10−5

15 22.7910 33.7902 19.7992 2.08 × 10−5 2.09 × 10−5 1.99 × 10−5

20 22.7947 33.7939 19.7994 2.05 × 10−5 2.06 × 10−5 2.00 × 10−5

30 22.8020 33.8012 19.7998 1.97 × 10−5 1.97 × 10−5 1.99 × 10−5

40 22.8094 33.8086 19.8002 1.90 × 10−5 1.90 × 10−5 1.98 × 10−5

50 22.8168 33.8160 19.8126 1.83 × 10−5 1.83 × 10−5 1.86 × 10−5

100 22.8536 33.8528 19.9026 1.46 × 10−5 1.47 × 10−5 9.76 × 10−6

150 22.8904 33.8896 19.9046 1.09 × 10−5 1.11 × 10−5 9.69 × 10−6

200 22.9273 33.9265 19.9066 7.26 × 10−6 7.32 × 10−6 9.30 × 10−6

300 23.0009 34.0001 19.9106 9.56 × 10−8 8.21 × 10−8 8.83 × 10−6

Table 3. Results of simulation with Newton’s method for m =10,000 iterations, with α = 23, β = 34,
k = 19, θ = 0.15.

n α̂ β̂ k̂ SD(α̂) SD(β̂) SD(k̂)

10 22.5508 33.4207 19.6611 2.01 × 10−2 3.35 × 10−2 1.14 × 10−2

15 22.5508 33.4207 19.6611 1.34 × 10−2 2.23 × 10−2 7.65 × 10−3

20 22.5508 33.420 19.6684 1.01 × 10−2 1.67 × 10−2 5.49 × 10−3

30 22.7707 33.8507 19.8198 6.72 × 10−3 7.42 × 10−4 1.08 × 10−3

40 22.7707 33.8507 19.8243 5.04 × 10−3 5.56 × 10−4 7.71 × 10−4

50 22.7707 33.8507 19.8239 4.03 × 10−3 4.45 × 10−4 1.03 × 10−4

100 22.7707 33.8507 19.8198 2.01 × 10−3 2.22 × 10−4 1.03 × 10−4

150 22.7707 33.8507 19.8197 1.34 × 10−3 1.48 × 10−4 2.16 × 10−4

200 22.7707 33.8507 19.8197 2.62 × 10−4 1.11 × 10−4 1.62 × 10−4

300 22.7707 33.8507 19.8197 1.75 × 10−4 7.42 × 10−5 1.08 × 10−4
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Table 4. MLEs of α with the conjugate gradient method and gradient method.

α

α̂ (bias) MSE

n α̂GC (bias) α̂G (bias) MSEGC MSEG

10 22.787 (0.220) 23.009786028 (−0.0097860) 1.36 × 10−9 3.58 × 10−7

20 22.794 (0.205) 23.009786227 (−0.0097862) 5.44 × 10−9 3.58 × 10−9

30 22.802 (0.197) 23.009786057 (−0.0097860) 1.22 × 10−8 3.58 × 10−7

40 22.802 (0.197) 23.009786022 (−0.0097860) 1.22 × 10−8 3.58 × 10−7

50 22.809 (0.190) 23.009786225 (−0.0097862) 9.89× 10−11 3.58 × 10−7

100 22.809 (3.4 × 10−8) 23.009786237 (−0.009786) 9.89× 10−11 3.58 × 10−7

150 22.816 (0.109) 23.009786240 (−0.009786) 3.06 × 10−7 3.58 × 10−7

200 22.890 (0.072) 23.009786240 (−0.009786) 5.44 × 10−7 3.58 × 10−7

300 23.001 (−0.001) 23.009786241 (−0.009786) 1.22 × 10−6 3.58 × 10−7

1000 23.002 (−0.002) 23.009786241 (−0.009786) 1.37 × 10−5 3.58 × 10−7

Table 5. MLEs of β with the conjugate gradient method and gradient method.

β

β̂ (bias) MSE

n β̂GC (bias) β̂G (bias) MSEGC MSEG

10 33.786 (0.006) 33.9995 (0.000409) 1.27 × 10−9 3.57 × 10−7

20 33.793 (0.206) 33.9997 (0.000225) 5.04 × 10−9 3.58 × 10−9

30 33.801 (0.198) 33.9996 (0.000348) 8.76 × 10−9 3.57 × 10−7

40 33.801 (0.198) 33.9996 (0.000364) 1.22 × 10−8 3.57 × 10−7

50 33.808 (0.191) 33.9997 (0.000229) 2.13 × 10−8 3.58 × 10−7

100 33.816 (0.183) 33.9997 (0.00022) 1.65× 10−10 3.58 × 10−7

150 33.889 (0.110) 33.9997 (0.000217) 3.06 × 10−7 3.58 × 10−7

200 33.926 (0.073) 33.9997 (0.000218) 5.41 × 10−7 3.58 × 10−7

300 34.000 (−0.0006) 33.9997 (0.000217) 1.21 × 10−6 3.58 × 10−7

1000 34.001 (0.001) 33.9997 (0.000217) 1.37 × 10−5 3.58 × 10−7

Table 6. MLEs of k with the conjugate gradient method and gradient method.

k

k̂ (bias) MSE

n k̂GC (bias) k̂G (bias) MSEGC MSEG

10 19.989 (0.0001) 20.046 (−0.046) 1.98× 10−11 4.40 × 10−8

20 19.989 (0.0105) 20.037 (−0.037) 1.48× 10−11 3.50 × 10−9

30 19.989 (0.0101) 20.042 (−0.042) 1.74× 10−10 3.82 × 10−7

40 19.989 (0.0102) 20.041 (−0.041) 1.43× 10−10 3.77 × 10−7

50 19.990 ( 0.0096) 20.037 (0.037) 1.00× 10−10 3.52 × 10−7

100 19.990 (0.0094) 20.037 (0.037) 9.89× 10−11 3.53 × 10−7

150 19.994 (0.0054) 20.037 (0.037) 1.65× 10−10 3.53 × 10−7

200 19.996 (0.0032) 20.037 (0.037) 1.16 × 10−9 3.53 × 10−7

300 23.001 (−0.0014) 20.037 (−0.037) 1.67 × 10−9 3.58 × 10−7

1000 20.000 (−0.0006) 20.037 (−0.037) 3.10 × 10−9 3.53 × 10−7

The interest of the method of conjugated gradient comes from the fact that it converges quickly
towards the minimum; we can show that in N dimensions it only needs maximum N calculation
steps, if the function is exactly quadratic. The inconvenient of the Newton’s method is that it requires
to know the Hessian of the function in order to determine the descent step. We have seen that the
conjugate gradient algorithm chooses optimally the descent directions through V(α, β, k, θ).
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In Figures 6–8 we also present the evolution of the MSEs of the computed estimators. The three
numerical methods are carried out for m = 10,000 iterations.

As we see in these figures, the MLEs of the parameters α, β, and k obtained by Newton’s,
gradient and conjugate gradient methods are

√
n-consistent. And we can say that the conjugate

gradient method gives the best results. In this way, we have numerically checked the well known
properties of MLEs, namely the consistency and asymptotic normality, by verifying that the values of
the mean square errors obtained are

√
n-consistent, which confirm the theory of the method used.
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Figure 6. The MSE of α̂ computed with Newton’s, gradient and conjugate gradient methods.
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Figure 7. The MSE of β̂ computed with Newton’s, gradient and conjugate gradient methods.
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Figure 8. The MSE of k̂ computed with Newton’s, gradient and conjugate gradient methods.

4. Model Selection

We want also to take into account model selection criteria in order to choose among several
candidate models, BP, Beta, Pareto, Gamma and Generalized Beta-Pareto distributions. The
Generalized BP (GBP) distribution is a 5-parameter distribution introduced in Reference [19], with a
different form given in Reference [20]. The density of this distribution is defined by

g(x; α, β, k, θ, c) :=
c

B(α, β)

[
1−

(
θ

x

)k
]cθ−1 [

1−
(

1−
(

θ

x

)k
)c]β−1

k
θ

(
θ

x

)k+1
, x ≥ θ > 0, (8)

with the parameters α, β, θ, c, k > 0.
For the model selection problem, we considered the general information criterion (GIC)

GIC(K) = −2 ln L + I × K,

where: L is the likelihood, K is the number of parameters of the model, I is an index for the penalty of
the model. The following well-known criteria are obtained for different values of I:

AIC(K) = −2 ln L + 2K

BIC(K) = −2 ln L + ln(n)K

and

AICc(K) = AIC(K) +
2K(K + 1)
n− K− 1

,

where n is the sample size.
We have simulated data according to BP distribution, Pareto (P) distribution, Gamma (G)

distribution and GBP distribution. We have computed the three criteria AIC, BIC and AICc and
recorded in Tables 7–10 the number of times in 1000 iterations that each of the models is selected
(minimum value of the corresponding criteria).

Several remarks need to be done. First, since the support of a BP distribution is [θ,+∞), it makes
sense to compare data from BP distribution with data from Gamma, Pareto and GBP distributions.
For example, when θ is close to 0, the support of the BP distribution is close to the support of Gamma
distribution. BP distribution reduces to Pareto distribution in the case where α = β = 1, and the
support is the same.
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Second, note that we have added the Beta (B) distribution as one of the candidate distributions
to be chosen by the information criteria. Although this is not a “real” candidate (since the support is
(0, 1)), we wanted to check also the model selection criteria in the presence of an “unusual” model.
Clearly, it does not make sense to compare data from BP, GBP, Gamma or Pareto distribution, on the
one side, with data from Beta distribution, on the other side. Nonetheless, it is important to have an
idea about how the model criteria behave in this case.

We can notice that all criteria choose the correct model in all the 4 situations, for moderate or even
small values of the sample size.

We can also remark that, when the underlying model is the GBP, for small values of the sample
size n (less than 50), the criteria fail in choosing the correct model; nonetheless, starting from reasonable
values of the sample size n (around 50 or 100), the correct model is chosen by all criteria in most of
the cases. This phenomenon could be generated by the fact that the number of parameters in the GBP
model is the highest one, 5, which has an influence on the information criteria.

We have also noticed a strange phenomenon: also when the underlying model is the GBP, for
small values of the sample size n, the model preferred by the criteria is the Beta model instead of the
GBP, that is to say the“unusual” model, as previously explained. The fact is more accentuated for the
BIC criteria, so surely it is related to the penalization due to the number of parameters.

Another remark related to the difference between BP and GBP models needs to be done.
When comparing Tables 7 and 10, we can notice an asymmetry between the model selection criteria
when the underlying true models are the BP, respectively the GBP model. On the one side, when the
underlying model is the GBP (Table 7), the BP model is chosen by all criteria in 15–20% of cases for
small values of the sample size. On the other side, when the underlying model is the BP (Table 10),
the GBP model is never chosen. Although we think that this phenomenon could be related to the
number of parameters of each model, to the presence of the other models investigated by the criteria
as candidate models (Pareto, Beta, Gamma), or to the particular case that we considered in simulations,
we do not have a complete explanation for this phenomenon.

Table 7. Smaller AIC/BIC/AICc scores in 1000 simulations from a GBP distribution GBP(α, β, k, θ, c)
with α = 2.7, β = 1.2, k = 5.5, θ = 0.15, c = 0.825.

AIC BIC AICc

n BP B P G GBP BP B P G GBP BP B P G GBP

10 222 712 21 19 26 229 719 13 17 22 227 753 5 3 12

20 156 784 13 17 30 179 710 7 13 91 176 784 2 3 30

30 145 567 10 15 263 155 603 4 11 227 151 784 1 7 57

50 96 278 8 12 606 106 307 3 7 577 111 604 0 5 244

100 43 48 0 0 909 43 60 0 0 897 43 230 0 0 727

200 38 0 0 0 962 38 0 0 0 962 38 0 0 0 959

300 20 0 0 0 980 20 0 0 0 980 20 0 0 0 980

500 5 0 0 0 995 5 0 0 0 995 5 0 0 0 995

1000 0 0 0 0 1000 0 0 0 0 1000 0 0 0 0 1000
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Table 8. Smaller AIC/BIC/AICc scores in 1000 simulations from a Pareto distribution P(k, θ) with
k = 0.075, θ = 0.15.

AIC BIC AICc

n BP B P G GBP BP B P G GBP BP B P G GBP

70 26 7 783 3 181 21 11 915 5 48 23 10 964 2 1

80 12 3 786 0 199 19 2 909 1 69 13 4 976 1 6

90 4 0 780 0 216 7 0 912 0 81 3 0 997 0 10

100 0 0 970 0 30 0 0 995 0 5 0 0 992 0 8

150 0 0 974 0 24 0 0 996 0 4 0 0 997 0 3

200 0 0 980 0 20 0 0 996 0 4 0 0 998 0 2

300 0 0 984 0 16 0 0 997 0 3 0 0 998 0 2

500 0 0 992 0 8 0 0 995 0 5 0 0 998 0 2

1000 0 0 1000 0 0 0 0 1000 0 0 0 0 1000 0 0

Table 9. Smaller AIC/BIC/AICc scores in 1000 simulations from a Gamma distribution G(α, β)

with α = 0.5, β = 0.9.

AIC BIC AICc

n BP B P G GBP BP B P G GBP BP B P G GBP

10 0 9 2 988 1 0 9 2 988 1 0 9 2 989 0

20 3 13 9 947 28 4 21 12 972 3 2 7 6 600 385

30 2 12 5 893 85 4 13 9 957 17 1 6 5 793 195

50 1 11 5 823 160 1 8 4 962 25 0 4 2 950 44

100 0 9 3 779 209 0 5 1 955 72 0 1 0 980 19

150 0 0 0 807 193 0 0 0 914 86 0 0 0 977 23

200 0 0 0 776 224 0 0 0 898 102 0 0 0 988 12

500 0 0 0 843 157 0 0 0 906 94 0 0 0 998 2

1000 0 0 0 915 85 0 0 0 949 51 0 0 0 998 2

2000 0 0 0 975 25 0 0 0 982 18 0 0 0 998 2

Table 10. Smaller AIC/BIC/AICc scores in 1000 simulations from a BP distribution BP(α, β, k, θ)

with α = 0.5, β = 0.9, k = 0.8, θ = 0.15.

AIC BIC AICc

n BP B P G GBP BP B P G GBP BP B P G GBP

10 560 19 0 421 0 558 20 0 422 0 525 29 0 446 0

20 648 1 0 351 0 645 1 0 354 0 620 3 0 377 0

30 48 1 0 351 0 645 1 0 354 0 620 3 0 377 0

50 648 1 0 351 0 645 1 0 354 0 620 3 0 377 0

100 873 0 0 127 0 871 0 0 129 0 820 0 0 180 0

150 890 0 0 110 0 888 0 0 112 0 844 0 0 156 0

200 931 0 0 69 0 931 0 0 69 0 892 0 0 108 0

500 962 0 0 38 0 962 0 0 38 0 928 0 0 72 0

1000 999 0 0 1 0 999 0 0 1 0 998 0 0 2 0

2000 1000 0 0 0 0 1000 0 0 0 0 1000 0 0 0 0
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5. MLEs for Right-Censored Data

Let us consider that the random right-censorship C is non-informative. Roughly speaking,
a censorship is non-informative in the sense that the censoring distribution provides no information
about the lifetime distribution. If the censoring mechanism is independent of the survival time,
then we will have non-informative censoring. In fact, in practice we almost always mean independent
censoring by non-informative censoring. It is well known that if the censoring variable C depends on
the lifetime X, we run into the problem of non-identifiability: starting from observations, we cannot
make inference about X or C, because several different distributions for (X, C) could provide the same
distribution for the observation. For these reasons, researchers almost always consider independence
between censoring and lifetime. In most practical examples this makes sense; for instance, if the
lifetime represents the remission time of patients and the censoring mechanism comes from loss to
follow-up (patients change town, for instance), it is natural to consider that we have independence
between censoring and lifetime.

In our case, suppose that the variables X and C have respectively the probability density functions
f and g and survival functions S and G; all the information is contained in the couple (Tj, δj) where
Tj = min(Xj, Cj) is the observed time and δj = 1(Xj≤Cj)

is the censorship indicator. So, the contribution
to the likelihood for the individual j is

Lj =
[

f (tj|V)G(tj)
]δj
[
g(tj)S(tj|V)

]1−δj .

Note that the term
[

f (tj|V)G(tj)
]δj corresponds to the case δj = 1, that is to say to the case when

the lifetime is observed; in this situation, the contribution to the likelihood of the lifetime X is f (tj|V),
while the contribution to the likelihood of the censorship is G(tj). The second term has an analogous
interpretation in the case when δj = 0, that is to say in the case when the censorship is observed.

We also assume that there are no common parameters between the censoring and the lifetime;
consequently, the parameter V does not appear in the distribution of the censorship. The useful part
of the likelihood (for obtaining the MLEs of interest, that is, the MLEs of the BP distribution) is then
reduced to

L =
m

∏
j=1

f (tj|V)δj S(tj|V)1−δj

and the log-likelihood is

l := ln L =
m

∑
j=1

δj ln f (tj|V) +
m

∑
j=1

(1− δj) ln S(tj|V)

=
m

∑
j=1

δj

[
ln
(

k
θB(α, β)

)
+ (α− 1) ln

(
1−

( tj

θ

)−k
)
+ (−kβ− 1) ln

( tj

θ

)]

+
m

∑
j=1

(1− δj) ln


( tj

θ

)−kβ

βB(α, β)
+

( tj
θ

)β

βB(α + β)

∞

∑
n=1

∏n
i=1(i− α)

n!(β + n)

( tj

θ

)−nk
 ,

where x ≥ θ and α, β, k, θ > 0. Consequently we get

l = ln
(

k
θ

) m

∑
j=1

δj −m ln(B(α, β)) +
m

∑
j=1

δj(α− 1) ln

(
1−

( tj

θ

)−k
)
−

m

∑
j=1

δj ln
( tj

θ

)

−kβ
m

∑
j=1

ln
( tj

θ

)
+

m

∑
j=1

(1− δj) ln

[
β−1 +

∞

∑
n=1

∏n
i=1(i− α)

n!(β + n)

( tj

θ

)−nk
]

. (9)
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Setting

z(tj, α, β, k, θ) := β−1 +
∞

∑
n=1

∏n
i=1(i− α)

n!(β + n)

( tj

θ

)−nk

and
zα(tj, α, β, k, θ) :=

∂z
∂α

(tj, α, β, k, θ),

zβ(tj, α, β, k, θ) :=
∂z
∂β

(tj, α, β, k, θ),

zk(tj, α, β, k, θ) :=
∂z
∂k

(tj, α, β, k, θ),

we obtain the score functions

∂l(α, β, k, θ)

∂α
= m [Ψ(α + β)−Ψ(α)] +

m

∑
j=1

δj ln

[
1−

(
tj

θ

)−k
]
+

m

∑
j=1

(1− δj)
zα(tj, α, β, k, θ)

z(tj, α, β, k, θ)

∂l(α, β, k, θ)

∂β
= m [Ψ(β)−Ψ(β + α)]− k

m

∑
j=1

ln
(

tj

θ

)
+

m

∑
j=1

(1− δj)
zβ(tj, α, β, k, θ)

z(tj, α, β, k, θ)

∂l(α, β, k, θ)

∂k
= k−1

m

∑
j=1

δj −
m

∑
j=1

β + δj ln
(

tj

θ

)(
1−

(
tj

θ

)k
)−1

 ln
(

tj

θ

)
+

m

∑
j=1

(1− δj)
zk(tj, α, β, k, θ)

z(tj, α, β, k, θ)
.

5.1. Conjugate Gradient Method for Parameter MLEs of the BP Distribution with Right-Censored Data

As we have already mentioned, the MLE of the parameter θ is the first order statistic. Let us fix an
arbitrary ε > 0. The algorithm based on the conjugate gradient that we propose is as follows.

1. Step 0: Initialization V0 = (α0, β0, k0, θ0).
2. Step 1: Computation of the gradient

∇l(α, β, k, θ) =


∂l(α,β,k,θ)

∂α
∂l(α,β,k,θ)

∂β
∂l(α,β,k,θ)

∂k



=


m [Ψ(α + β)−Ψ(α)] + ∑m

j=1 δj ln
[

1−
( tj

θ

)−k
]
+ ∑m

j=1(1− δj)
zα(tj ,α,β,k,θ)
z(tj ,α,β,k,θ)

m [Ψ(β)−Ψ(β + α)]− k ∑m
j=1 ln

( tj
θ

)
+ ∑m

j=1(1− δj)
zβ(tj ,α,β,k,θ)
z(tj ,α,β,k,θ)

k−1 ∑m
j=1 δj −∑m

j=1

[
β + δj ln

( tj
θ

) [
1−

( tj
θ

)k
]−1

]
ln
( tj

θ

)
+ ∑m

j=1(1− δj)
zk(tj ,α,β,k,θ)
z(tj ,α,β,k,θ)

 .

If ∇l(α, β, θ, k) ≤ ε, then stop, V0 = (α0, β0, k0, θ0) is the optimal vector. If not, go to the next step.

3. Step 2: Computation of the direction of descent

If i = 0, then
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d0 = −∇l(α0, β0, k0, θ0)

=


−m [Ψ(α0 + β0) + Ψ(α0)]−∑m

j=1 δj ln
[

1−
( tj

θ0

)−k0
]
−∑m

j=1(1− δj)
zα(tj ,α0,β0,k0,θ0)

z(tj ,α0,β0,k0,θ0)

−m [Ψ(β0) + Ψ(β0 + α0)]− k0 ∑m
j=1 ln

( tj
θ0

)
−∑m

j=1(1− δj)
zβ(tj ,α0,β0,k0,θ0)

z(tj ,α0,β0,k0,θ0)

−k−1
0 ∑m

j=1 δj + ∑m
j=1

[
β0 − δj ln

( tj
θ0

) [
1−

( tj
θ0

)k0
]−1

]
ln
( tj

θ0

)
−∑m

j=1(1− δj)
zk(tj ,α0,β0,k0,θ0)

z(tj ,α0,β0,k0,θ0)

 .

If i > 0, then di+1 = −∇l(αi, βi, ki, θi) + ωidi; using the Fletcher-Reeves’ method we get

ωFR
i =

‖∇l(αi+1, βi+1, ki+1, θi+1)‖2

‖∇l(αi, βi, ki, θi)‖2 .

4. Step 3: Computation of V1 = (α1, β1, k1, θ1)

V1 = V0 + λ0d0, such that d0 = −∇l(α0, β0, k0, θ0).

Computation of a step λ0: We can find λ0 with exact and inaccurate linear search methods. In this
case, the use of the exact linear search helps us to have a fast convergence. The exact linear search
method is to solve the problem

min
λ0∈R+

l(V0 + λ0d0).

To solve this problem, we must find the value of λ0 such that ∇l(V0 + λ0d0) = 0 :

α0 − λ0 ×[
−m [Ψ(α0 + β0) + Ψ(α0)]−

m

∑
j=1

δj ln

[
1−

(
tj

θ0

)−k0
]
−

m

∑
j=1

(1− δj)
zα(tj, α0, β0, k0, θ0)

z(tj, α0, β0, k0, θ0)

]
= 0,

β0 − λ0

[
−m [Ψ(β0) + Ψ(β0 + α0)]− k0

m

∑
j=1

ln
(

tj

θ0

)
−

m

∑
j=1

(1− δj)
zβ(tj, α0, β0, k0, θ0)

z(tj, α0, β0, k0, θ0)

]
= 0,

k0 − λ0 ×−k−1
0

m

∑
j=1

δj +
m

∑
j=1

β0 − δj ln
(

tj

θ0

)[
1−

(
tj

θ0

)k0
]−1

 ln
(

tj

θ0

)
−

m

∑
j=1

(1− δj)
zk(tj, α0, β0, k0, θ0)

z(tj, α0, β0, k0, θ0)

 = 0.

Consequently

α0 + β0 + k0 + λ0×

[
−m [Ψ(α0 + β0) + Ψ(α0)]−∑m

j=1 δj ln
[

1−
( tj

θ0

)−k0
]
−∑m

j=1(1− δj)
zα(tj ,α0 ,β0 ,k0 ,θ0)

z(tj ,α0 ,β0 ,k0 ,θ0)

]
+

[
−m [Ψ(β0) + Ψ(β0 + α0)]− k0 ∑m

j=1 ln
( tj

θ0

)
−∑m

j=1(1− δj)
zβ(tj ,α0 ,β0 ,k0 ,θ0)

z(tj ,α0 ,β0 ,k0 ,θ0)

]
+

[
−k−1

0 ∑m
j=1 δj + ∑m

j=1

[
β0 − δj ln

( tj
θ0

) [
1−

( tj
θ0

)k0
]−1

]
ln
( tj

θ0

)
−∑m

j=1(1− δj)
zk(tj ,α0 ,β0 ,k0 ,θ0)

z(tj ,α0 ,β0 ,k0 ,θ0)

]
 = 0

and we obtain

λ0 = −(α0 + β0 + k0)/

[
−m[Ψ(α0 + β0) + Ψ(α0)]−

m

∑
j=1

δj ln

[
1−

(
tj

θ0

)−k0
]

−
m

∑
j=1

(1− δj)
zα(tj, α0, β0, k0, θ0)

z(tj, α0, β0, k0, θ0)
−m [Ψ(β0) + Ψ(β0 + α0)]− k0

m

∑
j=1

ln
(

tj

θ0

)

−
m

∑
j=1

(1− δj)
zβ(tj, α0, β0, k0, θ0)

z(tj, α0, β0, k0, θ0)
− k−1

0

m

∑
j=1

δj +
m

∑
j=1

β0 − δj ln
(

tj

θ0

)[
1−

(
tj

θ0

)k0
]−1

 ln
(

tj

θ0

)

−
m

∑
j=1

(1− δj)
zk(tj, α0, β0, k0, θ0)

z(tj, α0, β0, k0, θ0)

]
.
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5.2. Numerical Results for BP Parameter Estimation with Censored Data

To show the efficiency of the MLEs obtained by the gradient and conjugate gradient method when
data are right censored, an important simulation study was realized. The results of the MLEs and their
SDs are summarized in the Tables 11 and 12.

Table 11. Results of simulation with samples of censored data using the conjugate gradient method
with m = 10,000, α = 13, β = 23, k = 18, θ = 0.15.

n α̂ β̂ k̂ SD(α̂) SD(β̂) SD(k̂)

10 12.0111 23.5087 17.7891 1.701444 0.766839 0.036204

15 12.0541 23.8580 17.7891 0.733933 0.659689 0.036204

20 12.0967 23.9454 17.7891 0.183483 0.476273 0.036204

30 12.0106 23.4682 18.0907 0.117429 0.067367 0.036204

40 12.2676 23.5793 18.0907 0.007339 0.137393 0.036204

50 12.3533 23.1487 18.0907 8.39 × 10−5 8.67 × 10−5 4.71 × 10−6

100 12.7817 23.0266 18.0907 8.47 × 10−5 8.83 × 10−5 4.71 × 10−6

150 12.8293 22.9632 18.0907 8.55 × 10−5 9.50 × 10−5 4.71 × 10−6

200 12.8940 22.8416 17.8626 4.78 × 10−7 4.01 × 10−7 8.09 × 10−7

300 12.9777 22.7847 17.8277 1.58 × 10−8 4.66 × 10−8 3.33 × 10−10

500 12.9785 22.8175 17.8626 2.85 × 10−8 9.44 × 10−9 3.35 × 10−10

1000 13.0002 23.0004 17.0073 7.00 × 10−9 1.19 × 10−10 5.69 × 10−9

Table 12. Results of simulation with samples of censored data using the gradient method with
m =10,000, α = 13, β = 23, k = 18, θ = 0.15.

n α̂ β̂ k̂ SD(α̂) SD(β̂) SD(k̂)

10 12.8685 22.9473 15.9886 0.000319 0.000527 0.001948

15 12.9168 22.9444 16.8106 7.03 × 10−6 9.83 × 10−5 2.82 × 10−2

20 12.9336 22.9669 16.2010 2.11 × 10−5 1.00 × 10−4 9.67 × 10−3

30 12.9336 23.0119 16.8935 2.11 × 10−5 5.79 × 10−6 3.35 × 10−2

40 12.9336 23.0095 16.8626 2.12 × 10−5 3.88 × 10−6 3.15 × 10−2

50 12.9420 23.0256 17.4303 2.82 × 10−5 1.80 × 10−5 5.93 × 10−2

100 12.9504 22.9386 17.4201 3.52 × 10−5 7.21 × 10−5 4.68 × 10−2

150 12.9588 22.9327 17.7439 4.22 × 10−5 7.24 × 10−5 5.72 × 10−2

200 12.9672 22.9290 18.0424 4.93 × 10−5 6.92 × 10−5 6.61 × 10−2

300 12.9756 22.9404 18.3535 5.63 × 10−5 4.24 × 10−5 7.58 × 10−2

500 12.9756 22.9381 19.7080 5.63 × 10−5 4.08 × 10−5 8.82 × 10−2

1000 12.9840 23.0030 19.7933 6.35 × 10−5 2.29 × 10−7 1.05 × 10−1

To evaluate and compare the performance of the estimators obtained by the proposed methods,
we present in the Tables 13 and 14 the bias and MSEs of the estimators.

5.3. Model Selection for Censored Data

In this section, the censored data are used with the AIC, BIC and AICc criteria to choose the best
statistical model for our statistical population. These results are presented in Tables 15–18. As for the
uncensored data, we can conclude that the information criteria choose the correct model even for small
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or medium values of the sample size n. Note that similar remarks as the ones done in Section 4 for
model selection for complete (uncensored) data hold true also here.

Table 13. Gradient method.

α̂ β̂ k̂

E(V̂) 12.9450 22.9656 17.6040

bias −0.0242 −0.0349 0.3027

MSE 5.66 × 10−5 1.41 × 10−5 7.27 × 10−2

Table 14. Conjugate gradient method.

α̂ β̂ k̂

E(V̂) 13.0029 23.002452 17.9714

bias −0.0790 0.0261 0.0328

MSE 1.82 × 10−7 3.90 × 10−9 3.42 × 10−10

Table 15. Smaller AIC/BIC/AICc scores in 1000 simulations from a censored Pareto distribution P(k, θ)

with k = 7.5, θ = 0.15.

AIC BIC AICc

n BP B P G GBP BP B P G GBP BP B P G GBP

10 7 10 233 745 5 6 9 233 748 4 10 4 233 738 15

20 5 12 417 563 3 3 6 417 570 4 7 6 417 559 11

30 1 7 561 429 2 5 6 561 425 3 2 6 561 428 3

50 0 5 734 261 0 0 1 734 265 0 0 2 734 264 0

100 0 2 912 86 0 0 0 912 88 0 0 1 912 87 0

200 0 0 939 61 0 0 0 939 61 0 0 0 939 61 0

500 0 0 973 27 0 0 0 973 27 0 0 0 973 27 0

1000 0 0 996 4 0 0 0 996 4 0 0 0 996 4 0

Table 16. Smaller AIC/BIC/AICc scores in 1000 simulations from a censored Gamma distribution
G(α, β) with α = 2, β = 1.

AIC BIC AICc

n BP B P G GBP BP B P G GBP BP B P G GBP

10 0 1 52 947 0 0 1 52 947 0 0 1 52 947 0

20 0 0 64 936 0 0 0 64 936 0 0 0 64 936 0

30 0 1 52 947 0 0 1 52 947 0 0 1 52 947 0

50 0 0 63 937 0 0 0 63 937 0 0 0 63 937 0

100 0 1 56 943 0 0 1 56 943 0 0 1 56 943 0

200 0 2 52 946 0 0 2 52 946 0 0 2 52 946 0

500 0 1 53 946 0 0 0 53 947 0 0 1 53 946 0

1000 0 1 61 938 0 0 0 61 939 0 0 1 61 938 0
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Table 17. Smaller AIC/BIC/AICc scores in 1000 simulations from a censored BP distribution
BP(α, β, k, θ) with α = 2.7, β = 1.9, k = 0.48; θ = 0.15.

AIC BIC AICc

n BP B P G GBP BP B P G GBP BP B P G GBP

10 453 11 25 502 9 434 7 24 524 11 421 12 22 579 7

20 600 8 15 370 7 532 6 15 438 9 531 15 10 439 5

30 636 7 9 344 4 598 5 8 382 7 611 12 6 369 2

50 704 3 6 286 1 665 2 7 323 3 688 7 2 302 1

100 711 0 0 289 0 680 0 0 320 0 699 0 0 301 0

200 714 0 0 286 0 682 0 0 318 0 708 0 0 298 0

500 741 0 0 259 0 736 0 0 264 0 741 0 0 259 0

1000 752 0 0 248 0 748 0 0 252 0 752 0 0 248 0

2000 755 0 0 245 0 753 0 0 247 0 755 0 0 245 0

Table 18. Smaller AIC/BIC/AICc scores in 1000 simulations from a censored GBP distribution
GBP(α, β, k, θ, c) with α = 1.5, β = 0.25, k = 0.075, θ = 0.15, c = 0.001125.

AIC BIC AICc

n BP B P G GBP BP B P G GBP BP B P G GBP

10 5 0 1 0 994 5 0 1 0 994 5 0 1 0 994

20 4 0 7 0 989 3 0 7 0 990 5 0 6 0 989

30 11 0 1 0 988 9 0 1 0 990 11 0 1 0 988

50 19 0 1 0 980 19 0 1 0 980 19 0 1 0 980

100 24 0 1 0 975 24 0 1 0 975 24 0 1 0 975

200 33 0 2 0 965 33 0 2 0 965 34 0 2 0 964

300 53 0 4 0 943 51 0 4 0 945 52 0 4 0 944

500 76 0 1 0 923 75 0 1 0 924 76 0 1 0 923

1000 122 0 2 0 876 118 0 2 0 880 123 0 0 0 877

2000 238 0 2 0 760 237 0 2 0 761 237 0 2 0 761

6. Conclusions

In this paper, we have developed different optimization methods to determine the maximum likelihood
estimators of the four parameters of the Beta-Pareto distribution. The results obtained showed that all
the used methods give

√
n-consistent estimators in both complete and right-censored data samples and

particularly the conjugate gradient method gives the best results. Using classical model selection criteria,
our study proves that this new model can be used instead of several alternative models such as Beta,
Pareto, Gamma, and Generalized Beta-Pareto. Another important contribution of our work is the use of
right-censored data as an input for the estimation procedure and model selection techniques.
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