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 الملخص:

للفحص  التدفق العالي نذكر على سبيل الدثال لوحظ تطور سريع في التكنولوجيا الحيوية والكيميائية  ،خلال العشر سنوات الأخيرة
الأخيرة تستلزم استحداث ودمج طرق تحليلية جديدة ووسائل ىذه  حيث أن نتج عنو كم ىائل من الدعطيات ،التسلسليوالتركيب 

-QSARفعالية ) – فعالية – بنيةمن العلاقة الكمية  آلينموذج ممرر  تنفيذىو الدنجز  العملالذدف الأساسي من  .الآليالتعلم 
PP ) عن طريق امتداد العلاقة بين قيم بيانات السمية لك ذو من الدركبات العضوية  كبيرة  أجل التنبؤ الدباشر بسمية لرموعةمن

 ىي الجزيئية. قمنا بالتحري لعدد ىائل من الدعطيات الدتعلقة بالسمية الحادة لخمسة كائنات مائيةالدؤشرات لعدة كائنات و 

و   VEGA-Hubمأخوذة من الدنصة ( Algae) الطحالب ،(Daphnia magna)الداء  برغوث، (Fish) السمك 
 فيو اقترحنا العمل الدنجز الثاني منم سالق .Tetrahymenapyriformis,Vibriofischeri رباعية الغشاءكذلك 

الدبسط  الإدخالىو تحويل نضام  الذدف من ىده الطريقة حيث كان باستعمال الشبكة العصبونية الدتضمنة مقاربة اللغة الطبيعية 
تغدي خوارزميات التعلم الآلي الخاضعة  الأشعةه ذى عمود من الحروف الدتضمنة من اجل تمثيل معنى الدركبات. إلىالجزيئي 

و الشجرة العشوائية لبناء   Support Vector Machineللإشراف مثل الشبكة العصبية للذاكرة طويلة الددى التلافيفية،
 Tetrahymenaالنتائج الدتحصل عليها من بيانات سمية  على سمية لرموعات البيانات. فعالية-بنيةالعلاقة الكمية نموذج 

pyriformis (IGC50)  و بيانات السمية الحادة للفئران معبرة بمتوسط الجرعة الدميتة للفئران الدعالجة(LD50)  أن بينت
 .عالية بنشاطية الدركبات الكيميائية بكفاءةطريقتنا يمكن استعمالذا من أجل التنبؤ 

 :مفتاحية كلمة

، الدائية السمية، الأنواع بين الارتباط، الفعالية-والفعالية البنية بين الكمية العلاقة نماذج، والفعالية البنية بين الكمية العلاقة نماذج
 .الطبيعية اللغة معالجة ،الالي التعلم، عميق تعلم
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Abstract 

Over the past decade, rapid development in biological and chemical technologies such 

as high-throughput screening and parallel synthesis has been significantly increased the 

amount of data, which requires the creation and the integration of new analytical methods and 

machine learning techniques. The main aim of the first part of this thesis was to develop an 

Auto Pass-Pass Quantitative Structure-Activity-Activity Relationship (PP QSAAR) model for 

direct prediction of the toxicity of a larger set of compounds, applying the extrapolation of the 

obtained model combing the toxicity values of different species and molecular descriptors. 

We have investigated a large acute toxicity data set of five aquatic organisms including: fish, 

Daphnia magna and algae from the VEGA-Hub, as well as Tetrahymenapyriformis and 

Vibrio fischeri. In the second part of our work, we have proposed a natural language 

processing approach, based on embedding deep neural networks. Our method aims to 

transform the Simplified Molecular Input Line Entry System format into word embedding 

vectors to represent the semantics of compounds. These vectors are fed into supervised 

machine learning algorithms such as convolutional long short-term memory neural network, 

support vector machine and random forest to build up quantitative structure–activity 

relationship models on toxicity data sets. The obtained results on toxicity data to the ciliate 

Tetrahymenapyriformis, and acute toxicity rat data (LD50) show that our approach can 

eventually be used to predict the activities of chemical compounds efficiently. 

Keywords: QSAR, QSAAR, inter-species correlation, aquatic toxicity, Deep Learning, 

machine learning, natural language processing. 
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Résumé 

Au cours de la dernière décennie, le développement rapide des techniques biologiques 

et chimiques tel que le criblage à haut débit et la synthèse parallèle a considérablement 

augmenté la quantité des données, ce qui nécessite la création et l'intégration de nouvelles 

méthodes analytiques et techniques d'apprentissage automatique. L'objectif principal de la 

première partie de cette thèse était de développer un modèle Auto Pass-Pass de quantification 

de la relation structure-activité-activité (PP-QSAAR) pour la prédiction directe de la toxicité 

de grand ensemble de composés. Le modèle développé s‟extrapole par la combinaison des 

valeurs de toxicité des espèces et les descripteurs moléculaires. Nous avons étudié un vaste 

ensemble de données sur la toxicité aiguë de cinq organismes aquatiques y compris des 

poissons, des Algues, d‟un crustacé, ainsi que Tetrahymenapyriformis et Vibriofischeri. Dans 

la deuxième partie de notre travail, nous avons proposé une approche de traitement de langage 

naturel basée sur l'intégration de réseaux de neurones profonds. Notre méthode vise à 

transformer le format Simplified Molecular Input Line Entry System en vecteurs 

d'embarquement de mots pour représenter la sémantique des composés. Ces vecteurs sont 

introduits dans des algorithmes d'apprentissage automatique supervisé tels que le réseau 

neuronal convolutif à mémoire de long-court terme, la machine à support vecteur et les forêts 

aléatoires pour construire des modèles QSAR sur des ensembles de données de la toxicité. Les 

résultats obtenus des IGC50 chez Tetrahymenapyriformis et les données aiguës chez le rat 

exprimées en (DL50) montrent que notre approche peut être utilisée pour prédire efficacement 

les activités de composés chimiques. 

Mot clés: QSAR, QSAAR, Correlation Inter-espèces, Toxicité aquatique, Deep Learning, 

Machine Learning, Traitement du langage naturel. 
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GENERAL INTRODUCTION  

The Quantitative Structure Activity Relationship (QSAR) approach is one of the most 

commonly used methods for the prediction of biological properties to aid the drug discovery 

process and for hazard and risk assessment of the chemical compounds. It is an adequate 

alternative way for animal expensive tests and time-consuming experiments. Since the mid-

1960s, the QSAR paradigm („similar compounds have similar activities‟) remains the 

foundation of all QSAR models developed so far [1]. The relationships established in the 

models allow the prediction of the activities for novel compounds based on structural features, 

which are encoded in a numerical notation called molecular descriptors.  

In this thesis, the in silico method (QSAR) modeling was applied to fill data gaps of 

substances lacking experimental data. The first part of this study focuses on the analysis of the 

acute toxicity of chemicals towards five species of aquatic organisms, namely fish, Daphnia 

magna, and algae from the VEGA-Hub, as well as Tetrahymena pyriformis and Vibrio 

fischeri. The developed models underwent thorough validations according to regulatory 

recommendations [2], this work was based on inter-species  extrapolation, which aims to 

predict one species from an endpoint in another species when the data is missing [3–10], or to 

predict the toxicity of compounds for large size (i.e fish) from lower organisms (i.e. ciliate) 

[11]. The hybrid method, known as Quantitative Structure Activity-Activity Relationships 

(QSAARs), which uses molecular descriptors in addition to the toxicity data and it is 

considered as a promising approach for predicting toxicity have been introduced [12,13]. This 

later merges the inter-species  and QSAR approaches, based on the relationship between two 

different biological endpoints [14–16]. 

In the second part, we propose a novel integrative Deep Learning DL-QSAR, Random 

Forest-QSAR, and SVM-QSAR approaches based on embedding deep learning for predicting 

high-quality toxicity models through natural language processing of SMILES notation. The 

recent rise in popularity of Deep Learning (DL) brought several inventions in QSAR 

modeling and ideas from various fields of data science. It is appropriate for finding the best 

statistical model for predicting biological activity. In 2012, when Dahl‟s team won at the 

Merck Molecular Activity Challenge public interest was in using DL in QSAR [17]. After 

that, numerous research groups have used DL models to predict many parameters, including 

activity, toxicity, solubility, and various other proprieties [18–20]. 
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This thesis was structured into three parts, first, we have begun in the first part with an 

overview of the European REACH (Registration, Evaluation, Authorisation and Restriction of 

Chemicals) regulation and OECD (Organisation for Economic Co-operation and 

Development) validation. Next, in the second part, the mean steps of QSAR starting from data 

and source, algorithms (Machine learning, Deep Learning), and validation were introduced.  

The third part contains the application of two projects with the results and discussion section, 

in which the first one is dedicated to the inter-species extrapolation QSAAR/QAAR, while the 

second one is an application of Machine Learning and Deep Learning in QSAR modeling. 
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PART I.STATE OF THE ART 

I.1. Toxicity 

Toxicology science is the study of the adverse effects of chemicals on living organisms, 

and the biological properties of any chemical are the effects of its structural characteristics. 

The toxic dose differs according to the considered specific chemical. “All things are poison 

and nothing is without poison; only the dose makes a thing not a poison” (Paracelsus, 1493). 

This means that some substances induce death by the concentration of few micrograms per 

kilo, while others may be quite toxic even if their concentrations are much higher [21]. 

The increasing number of different chemical compounds may pose a high risk to the 

environment and can cause adverse humans health effects, chemicals can pass in the body 

through inhalation, ingestion, or dermal exposure. Assessment of chemical hazards is 

necessary to ensure human safety. There are three different kinds of experiments to assess the 

biological activity of the compound, animal testing is in vivo experiments, tissue culture cells 

testing is in vitro experiments, and computer simulation is in silico experiments. 

Toxicological tests should be performed in order to evaluate which of these chemicals are 

safe and which can potentially contaminate the environment and cause toxicity. Traditional 

toxicity testing like in vivo and in vitro have been used for a long time, however, both are 

expensive and time-consuming. As consequence, they are not sufficient for toxicology to 

thrive in the era of information. Thus, as a complement to the in vitro and in vivo methods, 

computational toxicology is a powerful risk assessment tool for testing the chemicals toxicity; 

it aims at facilitating efficient simulation and prediction of environmental exposure, hazard, 

and risk of chemicals through various in silico models. 

There are multiple in silico methodologies that are commonly integrated into the risk 

assessment process, such as QSAR modeling, which is one of such techniques that allows the 

development of mathematical correlation (usually statistically) between the chemical features 

(descriptors) and  similar compounds. 
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I.1.1 Quantify Toxicity  

Toxicity is one of the most difficult properties to modeling due for different reasons, 

for example, toxic effects are depend on multi parameters, such as species, organ, and time. In 

general, there is two way of experimental tests, in vitro test in which mostly they use single 

cells, and in vivo test by using an organisms, such as fish, Daphnia, etc. Aquatic acute toxicity 

tests are performed by exposing test organisms to the toxicant and observing their behavior 

for certain duration, at a predefined time. Every substance has the potential to become a lethal 

toxicant above certain doses or concentrations.  

The common toxicity values predicted in QSAR modeling are expressed as a 

concentration at which 50% of the test species are killed by the toxic effect of the compound 

at a given time (e.g. IC50, LC50, EC50, etc.) which can be obtained experimentally using the 

concentration-response curve as illustrated in Figure 1.   

 

 

Figure 1.Example of to define EC50 from concentration response curve. 

I.2. QSAR and the regulation of chemicals 

The assessment of acute toxicity is an important component in the safety evaluation of 

substances and represents a standard information requirement within several legislative texts 

on chemicals.  
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There are many national and international efforts that have been peformed to assess the 

toxicity of the industrial organic compounds to humans and the environment. The first step in 

the assessment process is to offer the necessary information of each endpoint to be evaluated. 

In fact, in vivo testing is listed as the option of last resort in the European Union‟s 

Registration, Evaluation, Authorisation and restriction of Chemicals (REACH) legislation. 

I.2.1. REACH regulation 

REACH legislation is an European community regulation for ensure the safe of chemicals 

regarding the human health and the environment starting from June 2007 [22]. This 

legislation engaged for controlling of any substances imported or manufactured in the 

European market larger than 1 ton/year. However, over a decade REACH legislation and 

Organization for Economic Co-operation Development (OECD) have been encouraged the 

alternative ways of chemicals testing that do not use laboratory animals for ethical point of 

view and economic reasons [23]. Several molecular modeling methods that have been 

developed over the last years for predicting the toxic effects of industrial chemicals [24]. 

According to REACH requirements, the use of molecular modeling approaches such as 

quantitative structure-activity relationships (QSARs) are prioritized, to avoid unnecessary 

testing and reduce animal tests. QSAR can greatly help in early risk assessment as a data gap 

filling method. The main objectives of QSAR modeling in ecotoxicology are the classification 

of chemicals data based on mechanism of action and predict the messing data or design of a 

safe chemical before synthetized “a priori” [25]. 

I.2.2. OECD validation of QSARs (Five principles) 

To assessing the validity of QSARs some guidelines were proposed in 2002 at the 

international workshop in Set bal, Portugal as “Set bal principles”[26]. However, those 

principles were adjusted in 2004 by the famous Five principles which were approved through 

the OECD in November 2004 by the OECD member countries at the 37th Joint Meeting of 

the Chemicals Committee and Working Party on Chemicals, Pesticides, and 

Biotechnology[27]. 

As given in OECD Guidance Document [28], the validation term is defined as follows: 
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‘’. . . the process by which the reliability and relevance of a particular approach, method, 

process or assessment is established for a defined purpose’’. 

The OECD principles identify the types of information that are considered useful for the 

assessment of QSARs in the regulatory purposes. They constitute the basis of a conceptual 

framework, but they do not in themselves provide criteria for the regulatory acceptance of 

QSARs. For the validation of QSARs under the REACH directives, the assessment of QSAR 

model validity should be performed by reference to the OECD principles, which is associated 

with the following information: 

 A defined endpoint: it is necessary to confirm the transparency of the predicted 

endpoint and the modeled experimental system. A defined endpoint referring to a 

specific effect on a specific organ under precise conditions. 

 An unambiguous algorithm: to ensure transparency in the description of the model‟s 

algorithm 

 A defined domain of applicability: this principle expresses the need to justify that a 

given model is being used within the boundary of its limitations when making a given 

prediction. 

 Appropriate measures of goodness-of-fit, robustness, and predictivity: those measures 

are provided in the two steps of the QSAR model development, internal validation to 

avoid the over-fitting and external validation for check the predictive ability. 

 A mechanistic interpretation, if possible: that means it is not mandatory to provide a 

mechanistic interpretation of a given model. However, it can add a strong point to the 

confidence in the model already established on the previous principles. 

The QSAR Model Reporting Format (QMRF) and the QSAR Prediction Reporting Format 

(QPRF) are the appropriate format for documenting the characteristics and validity of the 

model, and may be used to justify the adequacy of the QSAR prediction. 

I.3. Toxicity  Data Source 

Biological experimental data provide the basis for the development of the quantitative 

structure activity relationships (QSARs). In the literature, there are several attempts devoted 

to develop models on the basis of a larger data set named “global QSARs”. However, high 

quality and reliable toxicity data are required to develop a good QSAR model. This is possible 

only if the data will be obtained from a consistent and reliable protocol performed to the same 
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standards, and undertaken in the same laboratory and even by the same technicians [29]. In 

addition, the data obtained from multiple sources and generated by different methods was the 

subject of large debate and research, in which the problem is how to optimize the integration 

of data [7–9]. 

I.3.1. In-house Data 

The In-house toxicity data that obtained from direct measurement is very helpful for 

developing in silico models, particularly in order to developing datasets for QSAR models. 

Thus, the traceability and the quality assurance can be checked, and the possibility of asking 

for an information and an experiment protocol from the generating data. Therefore, the use of 

this kind of data is very credible.  

I.3.2. Books and Journal articles 

Book and Journal articles are the traditional sources of the chemical and properties data 

since many decades. There is a variety of book sources that provide listings of data of 

environmental significance. For example, more than 10000 substances were listed in 

“Handbook on Physical Properties of Organic Chemicals” [30], with experimental and 

estimated physicochemical properties.  On the other hand, many other books that can be 

found with toxicological information include the Handbooks of Ecotoxicological Data 

[31,32]. In addition, Supplementary information in journal articles is commonly being 

available from the publisher or authors as a source of toxicity information that can provide 

ready data sets for modeling. 

I.3.3. Web Database 

With the developments in the throughput screening and virtual screening, the amount of 

both the experimental bioassay data and computational physical and chemical data are 

increasing. Therefore, the storing and publishing this vast amount of data in a well organized 

way is becomes necessary. Thus, several computational algorithms are actively developed to 

organize and store this huge volume of available information, in the form of databases [33]. In 

addition, numerous publicly available compound databases that contain a large number of 

assay results which provide both active and inactive compound records are also available. The 

ChEMBL[34] and the PubChem[35] are the largest-scale compound and bioactivity databases 

obtained from the literature. The PubChem is an NIH funded effort that was initiated in 2004 
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to provide chemically annotated information for free to the scientific community. This 

database contains more than 157 million chemical records, with more than 1million 

compounds have been tested in about 3000 bioassays, and more than 500000 active 

compounds. The ChEMBL contains more than 1.5 million chemicals and nearly 14 million 

activity measurements for over 11000 targets.  

Recently, several modern toxicological databases go much elsewhere simple data retrieval. 

They including the possibilities to modeling and make the predictive models, for instance: 

a. QSAR Toolbox 

One of the most important tools for QSAR data toxicity modeling software is OECD 

QSAR Toolbox that contains many databases and other data which given by various 

collaborative partners (Organisation for Economic Co-operation and Development (OECD), 

and the Laboratory of Mathematical Chemistry at the Bourgas University, Bulgaria and the 

European Chemicals Agency (ECHA). The OECD-QSAR Toolbox is a free software 

designed to make practical qualitative and quantitative structure–activity relationship based 

on predictions of toxicity. The Toolbox, provides information of chemicals based on 

“chemical category” concept in form of structure-searchable, [36,37].  

b. OCHEM 

The Online Chemical Database (OCHEM) [38] is a platform that consists of 2858801 

chemical and biological records for 636 properties, collected from 13098 sources. The 

platform includes two main systems, namely, the database of properties measured 

experimentally and  the modeling structure [39]. 

c. VEGA 

The VEGA (Virtual models for Evaluating the properties of chemicals within a Global 

Architecture) platform [40], is a free platform that offers tens of models addressing 

physicochemical, environmental and ecotoxicological properties. In the VEGA-HUB 

platform, there are multiple tools, which are dedicated to the exploration and analysis of the 

properties of chemical substances [41]. The most commonly used ecotoxicity databases 

developed over several years are summarized in Table 1, in which more descriptions are given 

in reference[42]. 
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Table 1.List of the most commonly used toxicity and Ecotoxicity Databases. 

 

 

 

 

 

 

Databases Web Accessibility 

Danish (Q)SAR Database http://qsar.food.dtu.dk/ 

Developmental Toxicity (DevTox) http://www.devtox.org 

Distributed Structure-Searchable Toxicity Database 

(DSSTox) 
http://www.epa.gov/ncct/dsstox/index.html 

ECOTOXicology Knowledgebase (ECOTOX) http://cfpub.epa.gov/ecotox/ 

European Chemical Substances Information 

System (ESIS) 
https://old.datahub.io/dataset/esis 

Extension TOXicologyNETwork (EXTOXNET) http://extoxnet.orst.edu/ghindex.html 

eTox www.etoxproject.eu/ 

FraunhoferRepDose http://www.fraunhofer-repdose.de/ 

Gene-Tox 
http://toxnet.nlm.nih.gov/cgi-bin/sis/ 

htmlgen?GENETOX 

Hazard Evaluation Support System (HESS) 

Attached Database (HESS DB) 
https://www.nite.go.jp/en/chem/qsar/hess-e.html 

Hazardous Substances Data Bank (HSDB) https://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB 

Integrated Risk Information System (IRIS) https://www.epa.gov/iris 

Japan Existing Chemical Database (JECDB) http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPageENG.jsp 

MDL 
http://www.iop.vast.ac.vn/theor/ 

conferences/smp/1st/kaminuma/ChemDraw/toxicity.html 

National Toxicology Program (NTP) http://ntp.niehs.nih.gov/ 

Organization for Economic Cooperation and  

evelopment (OECD) 

http://www.oecd.org/chemicalsafety/riskassessment/ 

echemportalglobalportaltoinformationonchemicalsubstanc

es.htm 

Optimized Strategies for Risk 

Assessment of Industrial Chemicals Through 

Integration of Non-test and Test Information 

(OSIRIS) 

www.osiris.ufz.de 

Risk Assessment Information System (RAIS) http://rais.ornl.gov/ 

Toxicology Testing in the 21st 

Century (Tox21) 
http://www.epa.gov/ncct/Tox21/ 

ToxCast https://www.epa.gov/chemical-research/toxcast-ashboard 

Toxicology Data Network (TOXNET) http://toxnet.nlm.nih.gov/ 

Toxicity Reference Database (ToxRefDB) http://www.epa.gov/comptox/toxrefdb/ 

Toxic Substances Control Act Test Submissions 

(TSCATS) 

https://catalog.data.gov/dataset/toxicsubstances- 

control-act-test-submissions-2-0-tscats-2-0/resource/ 

fbe133b5-d0bd-4c2c-a290-fd4deec4a5b9 

US FDA Chemical Evaluation and Risk Estimation 

System (CERES) 

https://www.accessdata.fda.gov/scripts/fdatrack/view/trac

k_project.cfm?program¼cfsan&id¼CFSANOFAS-

Chemical-Evaluation-and-Risk-Estimation-System 

VITIC http://www.lhasalimited.org/products/vitic-nexus.htm 

WikiPharma www.wikipharma.org 

http://www.devtox.org/
http://www.etoxproject.eu/
http://www.fraunhofer-repdose.de/
http://www.epa.gov/comptox/toxrefdb/
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I.4. Inter-species hybrid QSARs 

I.4.1. Inter-species Quantitative Activity–Activity Relationships (QAARs) 

In toxicology, alternative species in the risk assessment of chemicals is one of the 

most used methods. This is for two reasons; the first one is for realize the REACH 

recommendation, which is for reducing the in vivo (animal) test. The second one is consists an 

alternative of the experimental determination of some species properties that is a more costly 

and time intensive process, compared to other species. Therefore, inter-species  quantitative 

correlation (QAAR) is a promising field that has received little attention which aims to predict 

one species from an endpoint in another species when the data is missing. The possible 

reasons relate to the limitations of the technic in the quality of the used data [6,43–48]. 

Generally, regression analysis is the simplest method for developing the linear inter-species 

relationship. The model of this method has the form: 

 

C1 = aC2 + c       Equation 1 

Where, 

C1 is the endpoint of the species to be replaced.  

C2 is the endpoint of the alternative species. 

a is the regression coefficient. 

c is  a constant.   

I.4.2. Quantitative Structure–Activity–Activity Relationships (QSAARs) 

Quantitative structure-activity-activity relationships (QSAARs) is another extrapolating 

technique that has been used occasionally, that may be to the complexity of their model which 

is based on a hybrid approach, merges the inter-species  and QSAR approaches and based on 

the relationship between two different biological endpoints [49–52]. QSAARs attempt to 

improve inter-species relationships (QAARs) by the addition of molecular descriptors that are 

commonly applied in QSAR analysis. The general form of QSAAR is: 

C1 = aC2 + Descriptor (n) … + c    Equation 2 

Where, 

As in the case of QSAR, it should be cautioned not to add too many descriptors to avoid the 

bias of the equation [52]. Both techniques (QAAR and QSAAR) are used to extrapolate from 

toxicity data for one endpoint a predicted toxicity at another data, especially for chemicals in 

which there is a limited toxicity. 
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II. PART II.TOOLS AND METHODS 

II.1.  QSAR Methodologies 

Quantitative Structure-Activity Relationships (QSAR) is an intersection between 

bioinformatics and cheminformatics providing an effective means for exploring and 

exploiting the relationship between chemical structure and its biological action towards the 

development of the models [53]. 

The fundamentally of QSAR methodology is to establish a mathematical equation relationship 

between the variance in molecular structures encoded by molecular descriptors and the 

particular activity or property associated with them[54]. The equation relationship (QSAR 

models Eq.03)  can be used to predict data for untested compounds with a lack of 

experimental data [55].  

Response = f (Descriptors/ Features)   Equation 3 

The main objective of QSAR modeling is the development of predictive models based on the 

data set of compounds, in which this model can be used for the prediction of activities or 

properties of new compounds, that not involved in the building up of this model[56]. 

However, prior to using sash model, and in order to make a reliable and predictive model, this 

last should be checked by internal validation, and assessed in terms of predictive power, 

according to recently stated OECD principles [57]. 

Historically, QSAR dates back to 1863 in the thesis of Cros [58], entitled “Action de l'alcool 

amylique sur l‟organisme” which noted a relationship between toxicity of primary aliphatic 

alcohols and their water solubility. However, the pioneering contributions of Corwin Hansch 

and his collaborators in the 1960s [59] related to QSAR analysis marked the official borne of 

this field. After that, the attention in QSARs has increased progressively. 

II.1.1. Development of QSAR 

In general, the development of any QSAR model is mainly divided into five steps: 

i. Dataset collection, structures, and endpoint activity or property. 

ii. Descriptors calculation. 

iii.  Data splitting into training and test set. 

iv. Model building (modeling algorithms).  

v. A statistical validation. 
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 The pathway of QSAR model development are illustrated in Figure 2 [60,61]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The collection of the molecules with the known experimental biological activity is the first 

step of any QSAR modeling. This step may be the most delicate part because some conditions 

needs to be fulfilled, such as, the similarity of the compounds, the same experimental 

protocol. The data set of structures is considered as the input of molecular descriptors 

calculation. In some cases, geometric optimization is more important before descriptors 

calculation.  

The next step is the splitting of data into training and test sets using different approaches 

(clustering, sphere exclusion, and activity ranking). However, random splitting is the most 

used technique which may be performed several times in order to get an average 

Interpretation and design 

In silico activity prediction of new 
series of untested compounds. 

Dataset selection 

Molecular structure 

Descriptor selection 

Training and test set selection 

Training set 

for 
Test set 

for 

Model generation 

Internal model validation & Y-

randomization: 

Q
2
> 0.5, rm

2
(LOO)> 0.5 

c
Rp

2
> 0.5 

 

External validation parameters: 

R
2

pred> 0.5, rm
2
(test) > 0.5, 

rm
2
(overall) > 0.5 

External model validation 

Figure 2. An illustration of workflow concept used in QSAR modeling. 
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representation. The use of a suitable training set is very important since the chemical space 

and the size of data will affect on the following steps. In the modeling part, the correlation 

between the biological activity values and descriptors values of the training set is realized 

using several machine learning include, for example, Random forest, SVM, and neural 

network. 

II.1.2. KNIME platform for QSAR modeling 

The KNIME [62] (Konstanz Information Miner) is an open-source workflow technology 

with a graphical user interface based on collections of node known as „„extensions‟‟ that 

allow the data process and its transported via connections between those nodes [63]. KNIME 

provides an easy visual assembly workbench that enables scientists to create and visualize 

complex workflows easily[64]. In addition, it not limited to the ability to analyze the results, 

thus, it might comprise several processing and analytical steps, including, statistical analysis 

and data visualization and data mining on experimentally[65]. Also, it supports a wide range 

of functionality and has an active cheminformatics/ bioinformatics community. 

Due to the huge cost and time necessary in manual procedure analysis of the big data, 

the improvement of the workflow like KNIME power on chemical structure curation 

procedures, or for building up workflow models based on several chemistry community 

nodes, to calculate and predict the physicochemical properties and biological activities is 

become necessary. The concept used in QSAR/QSPR modeling is represented in Figure 3.  
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Figure 3.An illustration of the KNIME workflow concept used in QSAR modeling. 
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Data base of compound 

II.1.2.1. Chemical data curation workflow 

In QSAR modeling, the collection of Chemical structures are often gathered from a variety 

of public and private databases, which considered among the most important and delicate 

steps. These databases contain records for thousands of chemicals, biological, and 

physicochemical properties, in which each chemical generated automatically from SMILES, 

2-D, and 3-D structures [66]. There is a possibility that some of the chemical structures were 

not translated correctly or presence of molecules in salts format. So to avoid these problems,  

Tropsha et al, [67], have integrated several protocols into the standardized chemical data 

curation strategy. The workflow implemented on KNIME platform by the buildup of a 

workbench for visual assembly and interactive execution of data pipelines, following the most 

important steps required in curate a chemical data is summarized in Figure. 4. 

 

 

Figure 4.The important steps required to curate a chemical data set on KNIME platform. 

There are different cheminformatics nodes specific for various chemical tasks (reading, 

calculating and writing…etc) are now being added over time, like CDK[68], Indigo [69] 

RDKit,[70] and ErlWood [71].  

By carefully following the instructions of data curation protocols described previously, and 

using chemical community nodes, we can build up a KNIME workflow (Figure 5) as 

following:  

- Exclude some structures with missing experimental log P values,  

- Removing hydrogen atoms,  

Filter molecules 

(Only: C, N, O, P, S, Cl, F, 
Br) 

Romove mixter 

Romove missing 

Remove salts 

Data set 
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- Removed inorganic chemicals and chemical mixtures,  

- Removed chemicals that contained atoms other than C, H, O, N, F, Cl, Br, I, S, P. 

(Because most software can calculate molecular descriptors only for organic structures 

[55] ),  

- Optimizes the geometry of molecules, and aromatized it, if necessary.  

The major node descriptions used in data curation are summarized in Table 2. 

 

Figure 5.A KNIME workflow illustrating the various steps in data curation strategy used in our studies. 

Table 2.Names and descriptions of major nodes used in data curation. 

Node names Node description 

Row filter The node allows row to exclude missing values or to use a range.  

Element filter Keep either molecules that only have types C,H,N,O,P,S, Br, F, I. 

Connectivity This node is used to completely remove the compounds that contain 

unconnected molecules. 

RDKit Salt Stripper This node is used for removing salts. 

RDKit Optimizes geometry Optimizes the geometry of molecules. 

RDKit Add Hs Adds hydrogens to molecule.  

RDKit Aromatizer Aromatized RDKit Molecules 

MarvinView node [72] is an advanced chemical viewer for single and multiple chemical 

structures, 
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II.1.2.2. Model workflow development 

There are four main steps that must be taken during the preparation of workflow; data 

processing (input, output, and converts between various data types), data curation, calculation 

of descriptors and chemometric methods. In our case, multiple linear regression analysis was 

performed using KNIME node for data mining, followed by predictive ability (see Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. KNIME workflow illustrating the data processing in the Automated QSAR process. 
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II.2. Representation of molecules 

The amount of information stored in molecular databases is increasing constantly, there is a 

need to generate simplifications of the molecular representation of compound databases to 

open new approaches for study the chemical space, optimize the storage and enhance the 

speed of computations. Thus, the chemical compounds can be represented by different 

methods using diverse rules and criteria depending on the molecule representation [73]. 

SMILES Notation 

SMILES (Simplified Molecular Input Line System) [74] is a system for chemical 

structure encoding, that is developed in the late 1970s by David Weiniger, which was 

introduced as a simplified format to represent small molecules in two-dimensions; C 

representing a carbon atom, N a nitrogen atom, and so forth. Double and triple bonds are 

immediately apparent by the = and # symbols[75,76]. 

The four simple rules to apply for SMILES string are: 

1. Atoms are represented by atomic symbols. 

2. Double bonds are represented by = and triple bonds are represented by #. 

3. Branching is represented by parentheses. 

4. Ring closures are indicated by pairs of matching numbers. 

File formats 

1- Molfile: Mol was created by MDL, it is the most supported format used in 

chemoinformatics. In this format, the information of the atoms, atomic bond, 

connectivity and the coordination of the molecules are including. 

2- SDF file: SDF is an extension of MDL, in which in this format more information  can 

be added by MDL in the second portion of the files.  

Fingerprints 

The fingerprint format is a bit-wise string, consists of a sequence of ones and zeros where a 

one or zero in a specific position indicates the presence or absence of structural fragments 
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(Figure 7). The advantage of this format is the increasing of calculation speed and reducing 

storage space. Examples of frequently used fingerprints implemented in specific tools are 

MACCS and PubChem keys. 

 MACCS keys, the Molecular ACCess System, are created by Molecular Design Limited. 

This descriptor encodes the atoms types, rings, and bond information, generated in a 166 

key-bits format [77]. 

 The PubChem binary substructure keys are developed to be used by the PubChem 

database in order to perform the searching queries [78]. The length of this string is 881 

bits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.Encoding molecular structures in a bit string 
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II.3.  Molecular descriptors 

Molecular descriptors are numerical representations of chemical features that are encoded 

the information of the chemical structure of a molecule. The numerical values are derived by 

some algorithm describing a specific aspect of a compound. Today, there are more than 5,000 

descriptors, which classified into three categories depending on the method of their 

computation or determination; 1-D encoding chemical composition, 2-D encoding topology 

and 3-D descriptors encoding shape and functionality. 

 One dimensional-Structural Keys: A substructure of a molecule can be considered as a 

1D molecular representation. One-dimensional molecular representation consists of 

molecular fragments such as functional groups, rings, bonds and substituents. If a certain 

fragment is present in a molecule, a particular bit in the string is set to one, otherwise to 

zero. Thus, each bit in this array encodes a particular fragment. 

 Two dimensional-Topological Descriptors: A 2D molecular descriptor contains 

topological information which describes the bonding of atoms in a molecule by 

elucidation the type of bonding and the interaction of particular atoms.  

 Three dimensional-Geometric Descriptor: The 3D descriptors are calculated from a 

geometrical representation of a molecule. Those descriptors are usually provided more 

information than the 2D and 1D descriptors.  

 Other descriptors: Further groups of geometric descriptors widely used in QSAR studies 

are derived from the molecular surface, molecular volume, and other geometrical 

properties.  

Todeschini and Consonni [79] in the textbook Molecular Descriptors gave a comprehensive 

and detailed overview of all kinds of molecular descriptors for Chemoinformatics. In this 

regards, there is various software for calculating the molecular descriptors, namely, 

CODESSA, DRAGON, and many other freely available software like PaDel and CDK.    

Table 3 summaries the most know software used in QSAR modeling. 
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Table 3. Available Software and Web Services used in QSAR modeling. 

 

 

 

 

 

 

 

 

 

Software 

name 

Full name Web Accessibility 

CORALSE

A 

Freeware to build 

quantitative structure–

property/activity 

relationships 

(QSPR/QSAR)  

http://www.insilico.eu/coral/CORALSEA.html 

BlueDesc Open-source descriptor 

calculator 
http://www.ra.cs.uni-tuebingen.de/software/bluedesc/welcome_e.html 

E-

DRAGON 

Online descriptor 

calculator 
http://146.107.217.178/lab/edragon/ 

Mold2 Free descriptors 

generator software 
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/def

ault.htm 

CODESSA 
COmprehensiveDEscript

ors for Structural and 

Statistical Analysis 

http://www.codessa-pro.com 

PaDEL-

Descriptor 
 http://www.moleculardescriptors.eu/resources/resources.htm 

OChEM 
Online Chemical 

Modeling Environment 

is a web-based platform 

for QSAR modeling 

http://www.ochem.eu 

DRAGON  
http://www.talete.mi.it/products/dragon_description.htm 

CDK Chemistry Development 

Kit 
 

MOE  
www.chemcomp.com 

alvaDesc  
https://chm.kode-solutions.net/products_alvadesc.php 

MOLCON

N-Z 

 
www.edusoft-lc.com/molconn 

MOLD2  
www.fda.gov 

http://www.insilico.eu/coral/CORALSEA.html
http://www.fda.gov/
http://www.talete.mi.it/products/dragon_description.htm
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II.4. Statistical and modeling methods in QSAR 

 

II.4.1. Validation and metrics of the model 

In general, there is no role for the number of compounds is required to develop a 

meaningful relationship, however, it is widely accepted that for generating every descriptor in 

a QSAR, a five until ten compounds are required [80]. Technically, much more compounds 

are essential to obtain statistically robust QSARs. On the other hand, with the increasing 

number of computed molecular descriptors using various software and in the case when a lack 

of a sufficient number of dataset, the risk of chance correlations increases considerably with 

the number of tested variables and with the number of variables included in the final model in 

comparison with the number of compounds that used for generating the model [81]. 

Therefore, the validation of the developed models is required. 

The validation approaches seek to check the reliability, the acceptability and the predictivity 

of the developed model [82], which plays a crucial role in defining the applicability of the 

model for the prediction of designed molecules [83]. The validation of different quality 

metrics can be categorized into two classes. The first class is internal validation like leave-

one-out and leave-five-out cross-validation procedures and Y-randomization. The second 

class is external validation based on the test set compounds. Both  techniques have been 

extensively used by diverse groups of researchers for assessing the predictive ability of the 

developed model [60]. 

II.4.1.1. Internal validation 

The internal validation is based on the molecules used in the QSAR model development 

[84,85].The cross-validation technique mainly involves internal validation, where a sample of 

n observations is partitioned into calibration and validation subsets. The calibration subset is 

used to construct a model, while the validation subset is used to test how well the model 

predicts the new data that not used in the calibration procedure. The aim of the internal 

validation is to evaluate the model robustness by perturbing the training set. The models are 

required to be internally cross-validated during the modeling process. 
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a. Cross-Validation 

Cross-validation is the most common technique used for checking the reliability of 

statistical models. In this technique, a certain number of sets are created by eliminating one 

compound from the set LOO (leave-one-out) or a small group LMO (leave-many-out) of 

compounds. For each set, a new QSAR model is then rebuilton the remaining set and the 

compounds that have not been used in model development can be used for evaluation of the 

model predicting based on the resulting equation [86,87].The metrics used for the judgment of 

the LOO and LMO are the predicted residual sum of squares (PRESS) and cross-validated Q
2 

for the model[88]. These metrics are calculating according to the following equations: 

 

PRESS = ∑  obs-Ypred)
 2

    Equation 4 

Q
2
 = 1- 

     

∑              ̅           
   Equation 5 

 

b. Y-Randomization (scrambling)test 

This technique is also known as Y-scrambling and it is considered in an internal validation 

test, which is used for check the robustness of the models[84,85,89].In this test, validation is 

performed by permuting the response values (Y) with respect to the X matrix which it kept 

unaltered. The procedure is repeated several times and the new models are expected to have 

low R
2
 and Q

2
 values. 

c  
  is a parameter used for this purpose witch computed from the 

following equation [90]: 

c  
  = R X√      

      Equation 6 

The degree of variation in the values of the squared mean correlation coefficient of the 

randomized model (  
 ) and squared correlation coefficient of the nonrandom model (R

2
) is 

reflected in the value of the 
c  

 [91]. 

c. Bootstrapping 

Bootstrapping [92] is another validation technique based on the random splitting of the 

data set several times into training and test sets. However, contrary to cross validation, in this 

validation technique, LOO and LMO exclusion of the compounds may be excluded once, or 
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several times, as well as never. The developed model is used to predict the remaining 

excluded compounds and the average Q
2
value is also calculated. 

II.4.1.2. External Validation Set 

The mean aim of internal validation is for verifying internal predictivity, and for check the 

stability of the models, however, this kind of validation cannot achieve true external 

validation[93]. Golbraikh and Tropsha [89] have shown that the predictive power of QSAR 

models can be claimed only if the model was successfully applied for the prediction of the 

external test set compounds (the compounds that not used in the model development). Since 

the past decade, a huge debate has been discussed on the applying of internal or external 

validation to ensure the predictivity of the models [94].  

To reflect the quality of predictions, various metrics based on Golbraikh and Trospsha's 

criteria[84,85] have been proposed [95]like    
 ,   

 ,    
 ,and   

 as detailed by the following 

equations: 
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  proposed by Schuurmann et al. [96] , given by: 

   
  = 1 - 

∑                          

∑             ̅       
   Equation 8 

   
  = 1 - 

∑                                

∑              ̅              
  Equation 9 

  
  = r

2
. (1-√      

      Equation 10 

 

Model Acceptability Golbraikh and Tropsha’s criteria 

In order to check the predictive ability of any QSAR model, Golbraikh and Tropsha 

proposed a set of statistical criteria as follow:   

q
2 
> 0.5 

R
2 
> 0.6 

       
  

   <   0.1 and 0.85 ≤ K ≤ 1.15 
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   <   0.1 and 0.85 ≤ K` ≤ 1.15 

|      
  | <0.3 

R
2 
 : Correlation coefficient between the predicted and observed activities. 

q
2
: External cross validation. 

  
 : Coefficient of determination (determined the predicted versus observed activities). 

   
 : Coefficient of determination: observed versus predicted activities. 

k = slope: predicted versus observed activities regression lines through the origin. 

k‟ = slope: observed versus predicted activities regression lines through the origin. 

The model is acceptable if the leave-one-out cross-validated R
2 
(q

2
) values were greater than 

0.5 for the training sets and the correlation coefficient R
2
 values were greater than 0.6 for the 

test sets. 

II.4.2. Applicability domain of models (AD) 

According to the OECD principle 3 “The applicability domain (AD) is a theoretical region 

in chemical space, defined by the model descriptors and modeled response, and thus by the 

nature of the chemicals in the training set, as represented in each model by specific molecular 

descriptors”, the application of the developed model is for making possible the prediction of 

the new compounds within a specific domain. As a result, if a test set is found outside AD for 

a particular model, then that model is excluded [97]. The AD can be defined as either a priori 

regardless of model descriptors or it can be assessed a posteriori on the basis of the molecular 

descriptors of the training set. In the literature, a variety of approaches was proposed, in 

which a part of them are based on the interpolation space used by model descriptor space, 

while the other part are based on the response space of the training set molecules [98–100]. 

The most important of those approaches are the followings:  

1. Ranges in the descriptor space 

2. Geometrical methods 

3. Distance-based methods 

4. Probability density distribution 

5. Range of the response variable 
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The most AD technique used in QSAR modeling based on the distance-based method is the 

leverage. It determined by two cut-offs, in which the first is the diagonal values hat matrix (h). 

If the compounds in the training set have h greater than the critical hat values h* (h*= 3p‟ /n, 

where p‟ is the number of the model variables plus one, and n is the number for training 

compounds), this means that these are structurally very influential in determining model 

parameters [94]. The second one considers outliers detected based on standardized residuals 

of compounds when the cross-validated standardized residuals are more than 2.5 standard 

deviation units. The Williams plot is the easy common graph for visualizing of the leverage 

methodology.  

The leverage approach has also been applied to investigate the degree of inter species 

extrapolation for the predictions of compounds. The Insubria graph can visualize the 

interpolated and the extrapolated predictions from species to species [101]. The Enalos Nodes 

can be used to define the applicability domain [102–104]. The Enalos Domain-Similarity 

node is based on the Euclidean distances [93] and the Enalos Domain-Leverages node is 

based on the leverages [105]. The applicability domain KNIME workflow is available also in 

our previous work [106].   

II.4.3. Feature Selection 

Currently, there are over 5000 molecular descriptors can be calculated by means of 

dedicated software within few seconds. However, only a certain number of descriptors are 

correlated to the response. As a result, there are a limited number of descriptors that could be 

used in QSAR model generation. Hence, to avoid over fitting and allow the model 

interpretation, the feature selection techniques is the best answer for those problems. Thereby, 

a different algorithms for variable selection have been proposed in literature, such as Genetic 

Algorithms (GAs) [107–109], Ant Colony Optimization (ACO), All Subset Models (ASM) 

and Sequential Search (SS). 

a. Genetic Algorithms (GAs) 

GAs are widely used in QSAR modeling to find the optimal subsets of descriptors [110], 

in which the idea behind this algorithm is based on the natural inspiration evolutionary to 

optimize the searching methods [111]. Thus, the gene is corresponding to a descriptor and a 

sequence of genes or the chromosome is corresponding to a model. First, the absence and 
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presence of the variable are represented as a binary victor and the chromosomes population is 

randomly initialized. Then, the second step is the building of the model according to the 

predefined fitness function (for example Q
2
 or R

2
). The next step is the reproduction stem for 

the creation of the child population from the parent‟s witch are randomly selected. After, 

basing on their scaled fitness scores, the crossover children are produced from the parents by 

crossover and mutation children through the mutation. These two operations crossover and 

mutation processes are repeated until a stop criterion is satisfied. Figure 8 provides a scheme 

for the algorithm of Gas [112]. 

 

 

 

 

 

 

 

 

 

 

b. Stepwise methods (SW) 

Stepwise regression method is another feature selection, which is considered among 

the most known subset selection methods used in QSAR. Stepwise regression is based on two 

different strategies, namely, Forward Selection (FS) and Backward Elimination (BE). 

 

 

Figure 8. Genetic function workflow 
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c. All Subset Models (ASM) 

The All Subset Models (ASM) is the simplest method of selection, however, this 

technique is very computationally expensive. It consists of the generation of all the possible 

combinations of the p variables in the size from 1 to p. The best subset can be reached in a 

reasonable time, but, for a large numbers of variables, it takes a long unknown time.  

d. Sequential Search (SS) 

Sequential Search (SS) [113] is another simple method aimed to find the optimal 

subsets of variables for a specified model size. In this method, each variable is replaced at a 

same time with all the remaining variables until the best model is obtained.    

e. Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO) [114,115] was inspired from the colonies of ants, who 

look for the shortest path connecting their nest and the source of food by pheromone 

deposition, in which they deposit pheromone from the home to a food source. Subsequent ants 

will generally choose paths with more pheromone and after many trials, they will converge on 

an optimal path. 

II.5.  Machine Learning methods 

Computational modeling including ML techniques play an increasingly important role 

in chemoinformatics, especially QSAR modeling. Modern QSAR analysis takes advantage of 

a number of advanced Machine ML. The role of ML usually is the extraction of the most 

important feature selection by exploring the descriptors combinations.  Several ML methods 

are already used in various aspects of QSAR modeling including Random Forest, SVM and 

Deep Learning [116]. 

II.5.1. Support Vector Machines (SVM) 

SVM is a machine learning technique that was originally designed to solve classification 

problems by using nonlinear kernel functions to map data into high-dimensional space 

through finding an optimally separating hyperplane [117]. After that, SVM has been 

generalized for application to continuous values. In QSAR modeling, several works based on 



28 

 

SVM have been published [118]. This method is used to compare between deep learning and 

SVM approaches. 

II.5.2. Random Forest (RF) 

The Random Forest technique is one of the best methods used in QSAR in terms of 

accuracy of prediction in comparison with the other ensemble learning models [119]. In 

random forest methodology, each recursive partitioning “tree” trained on subsampled subsets 

of compounds characterizes a consensus nonlinear model derived from a large number of 

single models. The major advantages of this method are quite resistant to over fitting and 

time-consuming [120].  

II.5.3. Deep Learning (DL) 

Deep learning algorithms become the most exciting research area in machine learning. It is 

an automatic general-purpose learning procedure, which has been commonly adopted in many 

fields [121]. Currently, an increasingly number of approaches are applied in QSAR, based on 

deep architecture, form molecular feature extraction. Some of these approaches are based on 

images of molecules, another some on traditional molecular descriptors and less commonly on 

their SMILES strings.  For instance, Panteleev et al. reviewed the recent developments in 

machine learning application in drug discovery notably, new deep learning-based [122]. 

Uesawa, et al used a deep learning approach by incorporating 360° images of molecular 

conformations for extracting the feature representation learning in QSAR analysis [123]. Heo 

et al. have used deep-learning-based QSAR models basing on molecular descriptors to predict 

the qualitative and the quantitative effects of endocrine disrupting chemicals (EDCs), in 

which their results were compared with MLR and SVM methods [124]. Ghasemi et al. 

performed a study, in which a deep belief network were used to investigate the model 

performance on the Kaggle data set [125]. Fernandez et al. have developed a new deep 

learning tool that can automatically extract and learn toxicity-related structural features of 

chemical compounds from their graphic images for predicting 12 biological endpoints 

described in the Tox21 challenge [126]. Zhang et al. compared the performance of the 

predictive of DNN algorithms models and random forest model for Human ether-a-go-go 

related gene (hERG) activity, in which the structural and physicochemical properties were 

used in this study. [127]. Benfenati et al. used deep learning algorithms to find a good 

accuracy of the Ames test for mutagenicity, only from the SMILES notation of the chemicals 
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[128]. Hirohara et al. used a convolutional neural network for TOX 21 dataset based on 

SMILES representation of compounds [129]. 

The public attention to the use of deep learning in QSAR was in 2012 when Dahl‟s team won 

the Merck Molecular Activity Challenge by applying a deep learning approach on the Kaggle 

dataset (www.kaggle.com) using a large number of 2D topological descriptors to capture 

complex statistical patterns [17]. In 2014, another deep learning models were also developed 

to win the entry in NIH Tox21 Data Challenge. Those DL models showed a best predictive 

performance [130]. Since that time, numerous research groups have used with success the 

deep learning models to predict many parameters, including activity, toxicity, solubility, and 

various other proprieties[18–20].  

The ANN and DL that use larger numbers of hidden layers of nonlinear processing units, in 

which each layer is used to predict the biological activity of compounds. Typically, we can 

find four popular NN architectures which used in DL, deep neural network (DNN) [131], 

convolution CNN [132], recurrent neural network (RNN) [133], and autoencoder (AE) [134]. 
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III. PART III.APPLICATIONS 

III.1. QSAAR and QAAR Modeling: application in aquatic 

toxicity 
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III.1.1. Introduction 

In the environmental risk assessment, there are several processes for determining the 

potential benefits and the side effects of exposure to chemicals. However, the development of 

the toxicological concept, such as high throughput screening has lead to a growth in the 

number of assays. These assays have provided an explosion in the number of pathway-related 

data available, which could be used to develop new computational models. In silico 

approaches, the toxicity prediction from structure have been used for many decades because 

they provide a faster alternative to otherwise time-consuming laboratory testing methods. 

QSAR is the most successful technique that can be used for chemical risk assessment for the 

protection of human and environmental health, which makes them interesting to regulators, 

especially, in the absence of experimental data.  

The Inter-species  Quantitative Structure–Activity Relationships[52,135] is a particular QSAR 

technique based on the extrapolation of data toxicity against spices to those for another 

species. 

When the toxicity values of defined chemicals for one endpoint correlate well with the values 

for another endpoint, the chemicals can be expected to have similar modes of action with 

respect to both endpoints. In contrast, if the toxicity values of defined chemicals for one 

endpoint are not correlated with the values for another endpoint, the chemicals can be 

expected to be different mechanistic categories with respect to the two endpoints. Thereby, 

these chemicals may show species-specific toxicities. 

In this work, huge datasets have been used to evaluate the aquatic toxicity against four 

species, namely, fish, D. magna, Algae T. pyriformis and V.fischeri. The models were 

developed based on QSAR modeling using two approaches, which are QSAAR (Quantitative 

Structure-Activity-Activity Relationship) and QAAR (Quantitative Activity-Activity 

Relationship). A new workflow named auto-pass-pass has been proposed as a tool to fill data 

gaps in environmental risk assessment using the KNIME platform under the REACH 

regulation. 

III.1.2. Data and Curation 

Duplicate starting molecules were identified by canonical SMILES and merged into a 

single example with all observed values. The open-source KNIME platform 
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(www.knime.com) [136] was used for checking and plotting data and pattern matching 

between different resources using CAS code like, the Enalos + CIR node [137] (Figure 09).  

 

Figure 9.KNIME workflow used for data collection and curation. 

We have collected a total of 5881compounds that present good coverage of a wide range of 

the chemical space. The datasets are cleaned in order to retain only measurements taken under 

similar experimental conditions as required by the OECD guideline of the given endpoint. 

Tetrahymenapyriformis IGC50 (TP) 

Several previous studies have used T. pyriformisto develop QSAR linear models for 

toxicity evaluation. The ciliate T. pyriformis remains an excellent primary source of 

information, in terms of size, molecular diversity, and quality because it was developed in a 

single laboratory [138]. Toxicity data [log (1/IGC50)] were compiled from the literature 

[139][138,140–147], in which the dataset containing experimental acute toxicity data of 2038 

compounds for T. pyriformis.  The toxicity is expressed as the concentration that causes 50% 

growth inhibition (IGC50) after very short times 40 h or 48 h. 

Fish 50% lethal concentration 

The data set contains fish aquatic toxicity of 1212 compounds were taken from the 

VEGA online platform (http://www.vegahub.eu/) [148]. The lethal concentration for a 50% 

http://www.knime.com/
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kill of the sample was determined statistically as LC50 (mol/l, 96 h). The data refer to fresh 

water, obtained according to OECD 203 on these species, fathead minnow 

(Pimephalespromelas) (most abundant values), guppy (Poeciliareticulata), rainbow trout 

(Oncorhynchusmykiss) and medaka (Oryziaslatipes), from these sources: ECOTOX (US 

EPA) [149], the Ministry of Environment in Japan [150], papers of Su et al. [151] Gomez-

Ganau et al. [152]. 

50% effective concentration (EC50) to Daphnia magna (DM) 

The D. magna are freshwater organisms that have been used intensively for the last 

three decades for assessing the effects of chemicals in regulatory testing or for measuring the 

toxicity of water samples. The toxicity data for 1035 compounds in D. magna were taken 

from the VEGA-hub online platform (http://www.vegahub.eu/) [148] (830 compounds) and 

from paper of Li et al. [139,153] (205 compounds). Note that these data are expressed as 

EC50, which is the toxicity reported as the 50% effective concentration in 48 h and merged 

these with the lethal concentration (LC50).  

50% bioluminescence inhibiting concentration to Vibrio fischeri (VF) 

The dataset for this activity contained 1247 compounds causing 50% inhibition of 

bioluminescence after 15 or 30 min exposure to V. fischeri. All compounds were taken from 

papers of Li et al. [139,153]. 

72-hours algae growth inhibition (algae) with Pseudokirchneriellasubcapitata 

The Algae have an important role in the aquatic ecosystem. It is a major food source 

for higher plankton feeding organisms. The objective of the growth inhibition test on Algae is 

to determine the effect of a substance or a sample on the growth parameters of freshwater 

microalgae. The toxicity data for 359 compounds in algae were taken from the VEGA-hub 

and the toxicity was reported as EC50 (50% effective concentration in 72 h). 

Assignments Modes of action (MOA) 

Various structure-based classification schemes have been developed for classification of 

chemicals based on the mode of toxic action (MOA) [154]. We have used the OECD QSAR 

Toolbox (https://www.qsartoolbox.org/home) to group the chemicals based on Verhaar 

classification. The MOAs of 3661 compounds were classified according to this software into 
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class 1 (narcosis or baseline toxicity), class 2 (less inert toxicity), class 3 (unspecific reactivity 

mechanism), class 4 (specific reactivity mechanism) and class 5 (not possible to classify).  

III.1.3. Explorative analysis 

The inter-species correlation was investigated in order to check the relation between 

the species. The available pair interspaces correlation with the colored compounds according 

to the corresponding mode of action are illustrated in Figure10. We notice that nearly 50% of 

compounds for each species have shared some mode of action which is the unspecific 

reactivity. Table 04 recapitulates the number of available compounds in each MOA class. 

 

Table 4. The number of compounds distributed in each mode of action class. 

Mode of action Class 

 Number of available compounds  

TP-DM TP-Fish DM-Fish VF-TP VF-Fish VF-DM 

Class 1 054 (17%) 095 (18%) 136 (22%) 088 (16%) 080 (23%) 071 (17%) 

Class 2 025 (08%) 039 (08%) 028 (05%) 038 (07%) 031 (09%) 029 (07%) 

Class 3 160 (52%) 281 (54%) 241 (40%) 314 (57%) 159 (45%) 137 (32%) 

Class 4 007 (02%) 013 (03%) 049 (08%) 010 (02%) 018 (05%) 125 (29%) 

Class 5 064 (21%) 090 (17%) 154 (25%) 104 (19%) 067 (19%) 067 (16%) 
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Figure 10.Graphs of the interspecies correlation according to their MOA classes. (A) Plot of DM against Fish toxicity 

for 608 organic chemicals. (B) Plot of TP against Fish toxicity for 518 organic chemicals. (C) Plot of TP against DM 

toxicity for 310 organic chemicals. (D) Plot of TP against VF toxicity for 570 organic chemicals. (F) Plot of Fish 

against VF toxicity for 355 organic chemicals. 

(A)     (B) 

 

(C) (D) 

 (E) (F) 
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Molecular descriptor calculation 

A total set of 3839 molecular descriptors was calculated using DRAGON software 

(version 7.0) to describe each compound chemical diversity using SMILES strings output files 

from the KNIME node. These descriptors include various quantum chemical, constitutional, 

topological, geometric and electrostatic descriptors. Constant, near constant, and highly 

correlated descriptors were treated.  The meaning of these molecular descriptors and the 

calculation procedure are summarized in the DRAGON software and explained in detail, with 

related literature references, in the Handbook of Molecular Descriptors by Todeschini and 

Consonni [155]. 

III.1.4. Results and discussion 

III.1.4.1. Inter-species  correlation of toxicity 

In this part, we explore the inter-species correlation of the four species. Table 5 reports the 

inter-species correlations between toxicities with the number of compounds.  

Table 5.Inter-species correlation measures of toxicity for four species for all common compounds. 

Species (A) – Species(B) Number of common compounds r R
2
 

TP-DM 310 0.77 0.60 

fish-DM 608 0.77 0.59 

VF-DM 329 0.63 0.40 

Alg-DM 299 0.67 0.45 

TP-fish 518 0.85 0.72 

VF-fish 355 0.71 0.50 

Alg-fish 269 0.75 0.56 

TP-Alg 144 0.74 0.55 

VF-Alg 125 0.56 0.31 

TP-VF 552 0.79 0.63 

r: Pearson correlation coefficient, R
2
: coefficients of determination 

Form Table 5, we can notice that for the common compounds, there is a good relationships 

for toxicity between the pair TP-DM, fish-DM and TP-fish with coefficients of determination 

values, that are from 0.6 to 0.7. However, there is a weak relation between algae and the other 

species with, coefficients of determination less than 0.56 although all species toxicity 

positively contributed to each other. Similar patterns were found for relationships in the 
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literature [156][3]. With the Pearson correlation coefficient r, some species gave higher mean 

values (see Table 6). 

Table 6. The Pearson correlation coefficient r for the different species. 

 TP Fish DM Algae VF 

TP  0.85 0.77 0.74 0.79 

Fish 0.85  0,77 0.75 0.71 

DM 0.77 0.77  0.67 0.63 

Algae 0.74 0.75 0.67  0.56 

VF 0.79 0.71 0.63 0.56  

Mean 0.79 0.77 0.71 0.68 0.67 

We most notably remark is the high value of TP species (0.79), that may be probably related 

to the fact that these data are much more homogeneous than the other data collection because 

they mostly come from a single laboratory. This is a clear indication that the noise in the data 

makes the statistical analysis evaluation less robust. Also, the fish is the species with the 

second highest values, that may be related to the fact that the average number of compounds 

for the correlations with fish is 437, which is the largest number. Thus, the larger number of 

observations may reduce the influence of noise.  

We also examined the regression for the subset of compounds with data for three and four 

species. Tables 7 and 8 reports the results for these subsets, with data of three and four 

species, respectively. We notice that the regression values are higher than those reported in 

Table 5. This could be due to the fact that the substances in these tests are more common than 

the others and have more experiments. Therefore, this is another factor that could reduce the 

uncertainty. 

Table 7. Correlation of available three-fold activities with some common compounds. 

Number of common compounds  Species (A) – Species(B) 

251 

TP-fish TP-DM DM-fish 

r 0.84 0.78 0.81 

R
2
 0.69 0.60 0.66 

r: Pearson correlation coefficient R
2
: coefficients of determination 
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Table 8. Correlation of available four-fold activities with the common some compounds. 

Number of common compounds Species TP DM fish TP DM Fish 

r R
2
 

174 

DM 0.77 1  0.59 1  

Fish 0.85 0.79 1 0.72 0.62 1 

VF 0.84 0.74 0.74 0.71 0.55 0.54 

r: Pearson correlation coefficient, R2: coefficients of determination 

Furthermore, we have studied the possibility of improvement of the statistical performance by 

the greater homogeneity of the substances population. For doing this, we have considered the 

substances with the same MOA. Table 9 recapitulates the number of available compounds in 

each MOA class, in which Class 3 of Verhaar is the only class characterized by the largest 

unspecific reactivity. The Coefficients of determination the number of compounds for each 

MOA class are given in Table 10. 

Table 9. Numbers of compounds in each MOA class. 

Mode of action 

Class 

Number of compounds 

TP-DM TP-fish DM-fish VF-TP VF-fish VF-DM 

Class 1 054 (17%) 095 (18%) 136 (22%) 088(16%) 080 (23%) 071 (17%) 

Class 2 025 (08%) 039 (08%) 028 (05%) 038(07%) 031 (09%) 029 (07%) 

Class 3 160 (52%) 281 (54%) 241 (40%) 314(57%) 159 (45%) 137 (32%) 

Class 4 007 (02%) 013 (03%) 049 (08%) 010(02%) 018 (05%) 125 (29%) 

Class 5 064 (21%) 090 (17%) 154 (25%) 104(19%) 067 (19%) 067 (16%) 

As indicated in Tables 9 and 10, there are a good inter-species  correlation between the two 

species TP and fish for all MOAs except class 3; that may be due to the large number of 

compounds in this class (45%). In addition, Class 1 has the best correlation for all inter-

species  pairs.  
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Table 10. Coefficients of determination the number of compounds for each MOA class. 

Mode of action Class 
R

2 
of compounds 

TP-DM TP-fish DM-fish VF-TP VF-fish VF-DM 

Class 1 0.73 0.86 0.83 0.70 0.62 0.51 

Class 2 0.34 0.88 0.32 0.42 0.34 0.12 

Class 3 0.53 0.55 0.60 0.50 0.23 0.38 

Class 4 0.22 0.89 0.03 0.60 0.40 0.07 

Class 5 0.69 0.70 0.61 0.75 0.02 0.43 

Global classes 0.60 0.72 0.60 0.63 0.50 0.40 

III.1.4.2. QSAAR and QSAR analyses 

i. Results on T.pyriformis IGC50 (TP) 

In this part, we attempted to build a QSAR model for TP using only theoretical descriptors. 

Thus, the molecular descriptors were selected by means of the genetic algorithm implemented 

in QSARINS software and the calibrated models were then validated using the test set. The 

statistical qualities of the three best models are reported in Tables 11. 

Table 11. Best models obtained for IGC50 towards T.periformis. 

Number of 

compounds 

Dependent 

variable 
Descriptors R

2
 Q

2
 Q

2
ext 

ΔKxy ΔKx 

2038 TP 

nDB  ATSC5p  

MATS2e  MATS1i  

GATS1p  Hy  ALOGP 

0.68 0.68 0.66 9 % 37.23% 

nDB  PW4  ATSC5p  

MATS2e  GATS3m  

GATS1v  ALOGP   

0.67 0.67 0.64 36.74% 32.44% 

nDB  MATS2e  

MATS1i  GATS1p  

P_VSA_m_4  Hy  

ALOGP   

0.67 0.67 0.66 38.65% 34.39% 

The performance of the calibrated TP models is generally satisfactory and the performance in 

fitting, cross-validation and on the external test set is comparable. The relatively high number 

of descriptors in these models can be due to the fact that such a big dataset may cover a wide 

range of structurally diverse chemicals. Thus, a high number of descriptors are required to 

explain the most part of the variance. 
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Then, we have developed models using the linear regression with the addition of the other 

species toxicity as independent variables, together with molecular descriptors. Note that Algae 

were excluded from the Structure-Activity-Activity study, because of the weak inter-species 

relationships between this species and the other ones. Increasing the number of descriptors in 

QSAAR models is not very effective to improve their statistical quality, so we have used only 

three descriptors in the TP model, in which Table 12 shows their statistical parameters. 

Table 12.Statistical parameters of T. pyriformis QSAAR, QSAR and inter-species models for 

the common endpoint. 

Dependent 

variable 

Model 

code 

Number of 

compounds 
Descriptors R

2
 Q

2
 Q

2
ext 

pIGC50-

TP 

 

310 

pIC50-DM       SM1_B(m)        

MLOGP   
0.80 0.79 0.73 

MLOGP   0.63 0.62 0.51 

pIC50-DM   0.56 0.55 0.61 

a pIGC50-TP = -1.04 + (0.36) pIC50-DM + (0.93) SM1_B (m) + (0.26) 

MLOGP 

 

 

518 

pLC50-fish       SM1_B(m)        

MLOGP   
0.84 0.84 0.78 

pLC50-Fish   0.74 0.74 0.67 

ALOGP   0.60 0.59 0.68 

b pIGC50-TP = -1.13 + (0.46) pLC50-fish + (0.91) SM1_B (m) + (0.17) 

MLOGP 

 

 

552 

pIBC50 –VF      SM1_Dz(e)   ALOGP 0.76 0.75 0.75 

pIBC50 –VF      ALOGP   0.71 0.70 0.69 

pIBC50 -VF   0.63 0.63 0.68 

c pIGC50-TP = 0.58 + (0.42) pIBC50 -VF + (1.06) SM1_Dz(e) + (0.33) 

ALOGP 

The results in Table 12 show that the inclusion of molecular descriptors in the inter-species 

relationships can significantly improve the inter-species relationships. 

All TP QSAAR models gave a good statistical performance in both internal and external 

validation (see Table 12). We can improve the prediction of the substance of interest using 

experimental data from a second species and chemical descriptors. This method gives values 

higher than that in the case of models with only molecular descriptors. This integrated 
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strategy uses both the experimental values from another test related to the endpoint of interest 

and the molecular descriptors. 

The TP QSAR models with chemical descriptors have moderate statistical quality, with r
2
 

values of about 0–66-0.68 in all sets of compounds (Table 12). Conversely, the statistical 

quality becomes good when the activity-activity relationship is also added, with values 

ranging from 0.73 to 0.84 (see Table 12). 

For the TP species in models (a) and (e), both descriptors (SM1_B(m)), which is the spectral 

moment of order 1 from the Burden matrix weighted by mass and (MLOGP), involved in the 

equations, gave the best models. However, the results from the equation with fish values (b) 

are quite higher than with the model using DM values (a), considering the r
2
 (0.84 and 0.80, 

respectively). 

ii. Results on fish (LC50%) lethal 

For the first step, the QSAR models of fish have been built using only theoretical descriptors, 

in which, the molecular descriptors were selected employing a genetic algorithm implemented 

in QSAINS software and the calibrated models were then validated using the test set. The 

statistical qualities of the three best models are reported in Table 13. 

Table 13. The statistical qualities of the three best QSAR models obtained for fish. 

Number
 
 of 

compounds 

Dependent 

variable 
Descriptors R

2
 Q

2
 Q

2
ext 

ΔKxy ΔKx 

1212 Fish 

ARR  SM1_B(p)  EE_B(i)  

SM3_B(s)  ATS2v  GATS1i  

MLOGP 

0.59 0.58 0.59 55.44 54.87 

ARR  SM1_B(p)  SM3_B(i)  

SM4_B(s)  ATS2v  GATS1i  

MLOGP 

0.59 0.58 0.59 55.03 54.42 

ARR  SM1_B(p)  EE_B(i)  

SM3_B(s)  ATS2v  GATS1i  

BLTA96 

0.59 0.58 0.59 55.44 54.87 

To investigate the differences between toxicities in different aquatic organisms and to select a 

significant descriptor to improve the inter-species relationships, a genetic algorithm was 

performed among the toxicity and the calculated descriptors. 
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We have added some descriptors to the inter-species models in order to develop QSAARs 

models. The Statistical parameters of fish QSAAR and QSAR together with the inter-species 

models are reported in Table 14. We can see in Table 14 that the improvement of the QSAAR 

models of the fish has a good statistical performance in internal and external validation. 

Table 14.Statistical parameters of fish QSAAR and QSAR together with the inter-species models. 

Dependent 

variable 

Model 

code 

Number of 

compounds 
Descriptors R

2
 Q

2
 Q

2
ext 

pLC50-fish 

 

518 

pIGC50-TP       SM14_AEA(ri)        

SAdon 
0.77 0.76 0.61 

pIGC50-TP   0.75 0.75 0.60 

ALOGP   0.51 0.51 0.59 

g pLC50-fish = pIGC50-TP 

 

 

608 

pIC50-DMMATS1s     ALOGP   0.68 0.67 0.74 

pIC50-DM                   ALOGP   0.67 0.66 0.74 

pIC50-DM   0.58 0.57 0.65 

h pLC50-fish = 1.39 + (0.50)    pIC50-DM + 0.29 

 

 

355 

pIBC50 –VF  IDETSp 

PosA_B(p)   
0.66 0.65 0.61 

pIBC50 -VF   0.50 0.49 0.60 

i pLC50-fish = -3.98 + (0.46) pIBC50 -VF + (4.62) SpPosA_B(p) + (0.01) 

IDET 

The D. magna and V. fischeri toxicities were less correlated with fish toxicity (R
2
 = 0.68 and 

0.66, respectively), compared to T. pyriformis. In addition, the best model of fish toxicity 

prediction is that by using the QSAAR model of equation (g). 

iii. Results on D. magna (DM) 

The best three results obtained with the different regression methods for D.magna using only 

theoretical descriptors are collated in Table 15.  The descriptors were selected through a 

genetic algorithm implemented in QSAINS software and the calibrated models were then 

validated using the test set. 
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Table 15. Best QSAR models obtained for D. magnas. 

Number of 

compounds 

Dependent 

variable 
Descriptors R

2
 Q

2
 Q

2
ext 

ΔKx ΔKxy 

1035 DM 

ATSC1p  P_VSA_v_3  

P_VSA_s_2  O-058  SsOH  

CATS2D_08_LL  MLOGP2 

0.60 0.59 0.49 40.33% 41.81% 

ATSC1p    P_VSA_v_3  

P_VSA_s_2    O-058  

CATS2      D_00_DA  

CATS2D_08_LL   

MLOGP2   

0.60 0.58 0.49 40.53% 41.99% 

ATSC8m      ATSC1p  

P_VSA_v_3    P_VSA_i_3  

CATS2D_08_LL    

MLOGP2  LLS_01 

0.59 58.51 0.49 47.04% 47.53% 

We have added some descriptors to the inter-species models in order to develop QSAARs 

models. The statistical parameters of D. magna QSAAR and QSAR together with the inter-

species models are collected in Table 16. From Table 16, we can notice that the improvement 

of the QSAAR on the fish models leads to a good statistical performance in both internal and 

external validations. 

Table 16. Statistical parameters of D. magna QSAAR and QSAR together with the inter-species models. 

Dependent 

variable 

Model 

code 

Number of 

compounds 
Descriptors R

2
 Q

2
 Q

2
ext 

pIC50-DM 

 

608 

pLC50-fishX3vMATS1s   0.70 0.69 0.70 

pLC50-fishX3v   0.67 0.66 0.50 

pLC50-fish 0.61 0.61 0.37 

ALOGP 0.32 0.31 0.26 

d pIC50-DM = 0.63 + (0.73) pLC50-fish + (0.28) X3v + (-1.68) MATS1s 

 

 

310 

pIGC50-TP       X0A       

MATS1s   
0.67 0.66 0.63 

pIGC50-TP 0.61 0.60 0.54 

e pIC50-DM = 4.56 + (0.84) pIGC50-TP + (-5.00) X0A + (-1.82) MATS1s 

 

 329 pIBC50 -VFSpPosA_B(p) 

ATSC8e   

0.61 0.60 0.34 

f pIC50-DM = -3.19 + (0.58) pIBC50 -VF + (4.00) SpPosA_B(p) + (5.61) 

ATSC8e 



44 

 

The fish and T. pyriformis toxicities were correlated with D, magna toxicity (R
2
 = 0.70 and 

0.67, respectively), however, V. fischeriwas less correlated with R
2
 equal to 0.66. For the 

toxicity against D.magna the equation (d) is the best choice for predicting the missing values.  

iv. Results on V. fischeri (VF) 

The best three results obtained with the different regression methods for QSAAR model 

against VF using only theoretical descriptors are collated in Table 17.  The descriptors were 

selected through a genetic algorithm implemented in QSAINS software and the calibrated 

models were then validated using the test set. 

Table 17. The three best QSAAR models obtained for V. fischeri. 

Number of 

compounds 

Dependent 

variable 
Descriptors R

2
 Q

2
 Q

2
ext ΔKxy ΔKx 

1247 VF 

MpnDB     X2A     ATSC4p  

JGI3      Eig09_AEA(ri)  

MLOGP   

0.56 0.50 0.46 30.92 34.16 

nDB     X2A    JGI3  

Eta_alpha_A    Eig09_EA  

VvdwZAZ       BLTF96   

0.51 0.50 0.44 26.49 30.6 

nDB  X2A    JGI3  

Eta_alpha_A  

SM03_AEA(dm)      

VvdwZAZ  BLTF96   

0.51 0.50 0.44 26.49 30.6 

As in the previous cases, we have added some descriptors to the inter-species models to 

develop QSAARs models. The obtained Statistical parameters of V. fischeri QSAAR and 

QSAR together with the inter-species models are given in Table 18. We can notice from Table 

18 that the improvement of the QSAAR of the V.fischeri models gave a good statistical 

performance in both internal and external validations. 

Table 18. Statistical parameters of V. fischeri QSAAR and QSAR together with the inter-species models. 

pIBC50-VF 
 570 

pIGC50-TP  Mp  SpMax4_Bh(p)   0.73 0.73 0.75 

pIGC50-TPATS2p   0.70 0.70 0.69 

pIGC50-TP   0.63 0.63 0.60 

j pIBC50-VF = -1.75 + pIGC50TP (0.66)  + (2.27) MP + (0.85) SpMax4_Bh(p) 

The toxicity against TP is in a good correlation with V. fischeri toxicity (R
2
 = 0.73), and 

thereby equation (j) can be used for predicting the missing values of V. fischeri toxicity. 
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III.1.4.3. Comparison with literature models 

Many studies have focused on the relationship between the toxicities of common organic 

compounds and two or three species. The study by Cronin et al. (1991) [11] is one of the 

earliest works that highlighted the possibility of using inter-species relationships in aquatic 

toxicity. Since then many studies on QAAR have reported a good relationship between 

different aquatic species like T.pyriformis, D.magna, V.fischeri  and fish. Table 19 summarize 

some relevant papers on inter-species relationships.  

Kahn et al. (2007) [27] attempted to use inter-species data as an independents variable 

together with molecular descriptors in QSAARs model for improving the QAAR. From the 

list of existing work, the number of compounds used in all QSAAR models was limited 

compared to our study. This may be because of a lack of data at that time, or the limitations of 

MOA. The only work with a large number of compounds was by in Furuhama et al. (2016) 

[157], who used the chronic D. magna for predicting acute D. magna.  

Li et al. (2015, 2018) [139,153] used a large pool of data on the acute toxicity of organic 

pollutants to investigate the species-specific thresholds, but not for QSAARs modeling. In our 

study, drawing on the existing data, especially in VEGAHUB and that of Li et al. (2015, 

2018), we were able to modeled several QSAR, QAAR, and QSAAR. The best models were 

implemented in one global Auto Pass-Pass workflow in order to predict the toxicity of the 

new compounds against the four aquatic species and to fill some of the data gaps for 

chemicals with no experimental data. 

Table 19.Quantitative Activity-Activity Relationships (QAARs) and Quantitative Structure Activity-Activity 

Relationships (QSAARs) models in the literature. 

Species No. QAAR QSAAR  

dependent variable-independent 

variable) 

Descriptors R
2
 Reference 

fish-D.magna 

fish-T.pyriformis 

46 

74 

R² = 0.75 

R² = 0.96 

  Cronin et al. 

(1991) [11] 

fish (p.romelas)-T.pyriformis 

fish(p.romelas)-algae (C.vulgraris) 

fish(p.romelas)-V-fischeri 

91 r = 0.93 

r = 0.76 

r = 0.89 

  Cronin et al. 

(2004) [158] 

fish (Oryziaslatipes)-DM 

algae 

(Pseudokirchneriellasubcapitata)-

DM 

366 

339 

R² = 066 

R² = 0.54 

  Furuhamaet al. 

(2015) [159] 
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fish (P.promelas)-T.pyriformis 

fish (P.promelas)-D.magna 

fish (P.promelas)- V.fischeri 

fish (P.promelas)- algae 

(Scenedesmusobliquue) 

38 

53 

56 

19 

r =  0.75 

r =  0.87 

r =  0.91 

r =  0.72 

  Zhang et al. 

(2010) [3] 

fish(Onchorynchusmykiss)-DM 40 R² = 87   Cassaniet al. 

(2013) [160] 

algae (C.vulgraris)-T.pyriformis 31 R² = 0.75   Tugcuet al. 

(2017) [7] 

fish-fish 

Guppy-Rainbow trout 

Guppy- Fathead minnow 

Guppy- Medaka 

Fathead minnow- Rainbow trout 

Medaka- Fathead minnow 

 

40 

133 

43 

39 

58 

 

R² = 0.97 

R² = 0.99 

R² = 188 

R² = 0.96 

R² = 0.92 

  Su et al. (2014) 

[161] 

fish-T.pyriformis 364 R² = 0.75 P
C

avg, #Nrel, 

HACA2 

0.82 Kahn et al. (2007) 

[12] 

DM-fish(P.promelas) 

DM- fish (O.mykiss) 

fish-fish (P.promelas-O.mykiss) 

44 

51 

36 

R² = 0.80 

R² = 0.83 

R² = 0.85 

ATS4s 

GATS1e 

AATS7p 

0.88 

0.88 

0.95 

Sangion and 

Gramatica (2016) 

[15] 

fish-DM 55 R² = 0.47 log S0, 

smom3 

0.69 Furuhamaet al. 

(2019) [14] 

ChronicD.magna-Acute D.magna 299 R² = 0.54 log Dph8 0.81 Furuhamaet al. 

(2016) [157] 

fish (Pimephalespromelas)-

D.magna 

77 R
2

adj = 

0.54 

MW 0.61
* 

Furuhamaet al. 

(2018) [16] 

DM- fish 77 R²=0.62 S_dO 0.70 Kar and Roy 

(2010) [162] 

fish-DM 

fish-T.pyriformis 

fish-V.fischeri 

DM-T.pyriformis 

DM-V.fischeri 

TP-V.fischeri 

50 

10 

26 

5 

18 

5  

R² = 0.38 

R² = 0.72 

R² = 0.18 

R² = 0.82 

R² = 0.26 

R² = 0.94 

  Ling  et al. (2019) 

[163] 

DM-fish 

T. pyriformis-fish 

T. pyriformis-D.magna 

V. fischeri-fish 

V. fischeri-DM 

467 

288 

182 

304 

294 

r= 0.84 

r= 0.85 

r= 0.77 

r= 0.73 

r= 0.67 

  Li et al. (2015) 

[139] 

fish-D.magna 

fish-T.pyriformis 

467  

478  

R² = 0.72 

R² = 0.72 

  Li et al. (2018) 

[153] 
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fish-V.fischeri 

DM-T.pyriformis 

DM-V.fischeri 

TP-V.fischeri 

304  

287  

294  

556  

R² = 0.54 

R² = 0.63 

R² = 0.45 

R² = 0.63 

*r: Pearson correlation coefficient, R
2
: coefficients of determination, *R

2
adjusted, No.: Number of compounds.  

III.1.4.4. Auto-pass-pass, a new approach to fill data gaps in environmental risk 

assessment 

The QSAAR models for aquatic toxicity have good statistical parameters, internally robust 

and stable, with higher quality than the inter-species -based and descriptor-based models. The 

algorithms in Tables 20 and 21 were used to predict 6637 missing toxicity data, as follows: 

- Fish-based in the model (b) was the best for predicting toxicity data against TP 

species. 

- If the fish data are not available, then DM-based in model the (a) can be used for 

predicting the TP missing values.  

- The VF species is the third model, which can be used for predicting the TP species 

values with the equation of model (c).  

- Fish-based model (d) was the best model for predicting toxicity against DM species. 

-  If the DM toxicity data is not available, TP-based model (e) is the best alternative for 

calculating fish data.  

- In case of missing toxicity data against fish, model (g) which is based on TP species is 

the best for doing this, if this not possible, MD-based from the model (h) can be used 

to predict missing values.  

- For the VF species, the TP model (j) is the best for predicting missing values.  

For this Pass-Pass proposed new idea, we designed a KNIME workflow of inter-species  

QAAR and QSAAR, to automate the predictions of all activities, as indicated in Figure 11.  
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Figure 11. KNIME workflow of Auto interspecies QAAR Pass-Pass and QSAAR Pass-Pass for 

predicting all activities. 
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Table 20.Auto inter-species Pass-Pass algorithms in rule engine nodes for predicting of all 

activities. 

 

Table 21.Auto QSAAR Pass-Pass algorithms used for prediction of all activities. 

fish-prediction 

MISSING $pFish$=>$ pIGC50-TP $ 

TRUE =>$pLC50-Fish$ 

--- Append Column: fish-pred 

MISSING$pFish-pred$ =>pTP-pred $ 

TRUE =>$pFish-pred$ 

--- Replace Column: fish-pred 

VF-prediction 

MISSING $pIBC50-VF$=>-1.75 + 0.66 * $pTP$   + 

2.27*$MP$ + 0.85*$SpMax4_Bh(p)$ 

TRUE=>$ pVF$ 

--- Append Column:VF-pred 

MISSING$VF-pred$=>$TP-pred$ 

TRUE =>$VF-pred$ 

--- Replace Column: VF-pred 

TP-prediction 

MISSING$pTP$=>-1.13 + 0.46 * $pfish$ + 0.91* 

$SM1_B (m)$ + 0.17* $MLOGP$ 

TRUE=>$pTP$ 

DM-prediction 

MISSING $pDM$=> 0.63 + 0.73* $pfish$ + 0.28* 

$X3v$ + -1.68* $MATS1s$ 

TRUE=>$pDM$ 

fish-prediction 

MISSING $pLC50-fish$ =>$ pIGC50-TP $ 

TRUE =>$pLC50-fish$ 

--- Append Column: fish-prediction 

MISSING$fish-pred$ =>$TP-pred$ 

TRUE =>$fish-pred$ 

--- Replace Column: fish-pred 

VF-prediction 

MISSING $pIBC50-VF$=>$ pIGC50-TP $ 

TRUE=>$ pIBC50-VF$ 

--- Append Column:VF-prediction 

MISSING $VF-pred$ =>$TP-pred$ 

TRUE =>$VF-pred$ 

--- Replace Column: VF-pred 

TP-prediction 

MISSING $pIGC50-TP$ => $pLC50-fish$ 

TRUE=>$pIGC50-TP$ 

--- Append Column: TP-pred 

MISSING$TP-pred$ =>$pIC50-DM$ 

TRUE=>$TP-pred$ 

--- Replace Column: TP-pred 

MISSING $TP-prediction$ =>$pVF$ 

TRUE =>$TP-pred$ 

--- Replace Column: TP-pred 

DM-prediction 

MISSING$pIC50-DM$=>$pLC50-fish$ 

TRUE=>$pIC50-DM$ 

--- Append Column: DM-pred 

MISSING $DM-prediction$ => $ pIGC50-TP$ 

TRUE =>$DM-pred$ 

--- Replace Column: DM-pred 

MISSING $DM-prediction$ =>$TP-pred$ 

TRUE =>$DM-pred$ 

--- Replace Column: DM-pred 
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--- Append Column: TP-pred 

MISSING$pTP-pred$=>-1.04 + (0.36) 

*$pDM$ + 0.93*$SM1_B (m)$ + 0.26 *$MLOGP$ 

TRUE=>$pTP-pred$ 

--- Replace Column: pTP-pred 

MISSING$TP-pred$=> 0.58 + 0.42 * $pVF$ + 1.06 * 

$SM1_Dz(e)$ + 0.33 * $ALOGP$ 

TRUE =>$TP-pred$ 

--- Replace Column: TP-pred 

--- Append Column: DM-pred 

MISSING$DM-pred$ =>4.56 + 0.84 $pTP$ + -5.00* 

$X0A$ -1.82*$MATS1s$ 

TRUE =>$DM-pred$ 

--- Replace Column: pDM-pred 

 

MISSING $DM-pred$ =>$TP-pred$ 

TRUE =>$DM-pred$ 

--- Replace Column: DM-pred 

The Auto-Pass-Pass KNIME workflow is available at the VEGAHUB web site [164]                           
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III.1.5. Conclusion 

Our aim was to propose the models based on Quantitative Structure-Activity-Activity 

Relationships (QSAAR), which allows the extrapolation of toxicity between TP, fish, VF and 

DM. The current study provides a fills some data gaps for 1603 compounds against TP 

species, 2605 compounds for DM species, 2429 for fish and 2396 for VF species.  

These models have been developed and validated based on OECD principles. There is 

observed a poor inter-species relationship between algae and the other species possibly due to 

the different toxic mechanisms of action between the aquatic organisms. The proposed aquatic 

Auto Pass-Pass models can also be useful for predicting large amounts of chemicals without 

experimental values, employing the experimental values from a second species. 
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III.2. Application of Machine Learning and Deep Learning in 

QSAR modeling 
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III.2.1. Introduction 

Quantitative structure activity relationship (QSAR) approach is one of the most 

commonly used methods for the prediction of biological properties in order to facilitate the 

drug discovery process. It is an adequate alternative way for expensive and time-consuming 

ecotoxicological experiments. 

Over the past few decades, several statistical model algorithms such as multiple linear 

regression (MLR) and partial least (PLS) have been widely used in QSAR modeling. 

Commonly, the number of selected descriptors should be low in comparison to the number of 

data points to avoid over fitting. For this reason, numerous feature selection methods have 

been used to reduce the number of molecular descriptors [165–167]. There are many feature 

selection methods, in which the most used ones are stepwise regression and genetic 

algorithms[168–170]. However, with the amount increasing of biological data, these statistical 

model algorithms can helped only by feature selection, considering that they were not 

designed for such problems. 

During the last years, more sophisticated machine learning algorithms such as support vector 

machine (SVM) and random forest (RF) have been proposed to deal with this problem. 

However, these methods also need pre-processing filter feature selection techniques for 

selecting subsets of molecular descriptors [171]. Since the amount of biological experimental 

data (The number of endpoints) is increasing ever, a huge number of descriptor subsets 

combinations have been explored by feature selection methods which require high 

computational effort. 

Deep learning algorithms become the most exciting research area in machine learning. It is an 

automatic general-purpose learning procedure, which has been commonly adopted in many 

fields [121].  

In this part, we propose a novel integrative DL-QSAR, RF-QSAR and SVM-QSAR 

approaches based on embedding deep learning for predicting high-quality toxicity models 

through natural language processing of SMILES notation. Our approach comprises two steps; 

the first is the data preprocessing phase, where, we build a corpus of compound substructures 

with n-length to transform these compounds in word embedding representation. The second is 

the training model, in which we integrated multiple machine learning algorithms namely, 
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random forest, support vector machine and convolutional long short-term memory network in 

order to predict the proprieties or activities of several datasets. 

This work is divided into three major sections. Firstly, we describe the proposed approach 

with the aforementioned datasets. Secondly, we discuss and compare the results obtained by 

the use of machine learning algorithms based on benchmark datasets. Finally, we extract the 

main conclusions of this work and draw the future work. 

Data sets 

To evaluate the performance of our approach two toxicity data sets were used in this work 

which are: 

• Rat LD50 data: acute oral toxicity, which is expressed as median lethal dose LD50 that 

is one of the most important toxicological endpoints to be assessed in drug discovery. 

LD50 is the dose of a chemical that kills half of the treated rats, in which the values 

were expressed as (pLD50mol/kg). The data set used in this study containing 7314 

compounds reported by several works [172–174]. 

• TetrahymenapyriformisIGC50 database: this endpoint is one of the most commonly 

used data set in QSAR modeling, for the evaluation of the compounds aqueous 

toxicity. According to (Svetnik et al., 2003), the IGC50 is the largest amount of 

aqueous toxicity information, which is tested in a single laboratory by a single reliable 

and robust method (Cronin et al. 2002). The toxicity is expressed as the 50% growth 

inhibitory concentration (pIGC50mol/L) of the T. pyriformis organism after 40 hours. 

The data was obtained from QSAR Toolbox software (http://oasis-lmc.org) and the 

Wu and Wei work [175]. 

 

 

 

 

 

http://oasis-lmc.org/
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III.2.2. The proposed approach 

Natural language processing is a computational algorithm for the automatic analysis and 

representation of human language. NLP-based systems have been successfully applied in 

many fields of applications such as Google's powerful search engine and Amazon's voice 

assistant (Alexa). The recent development of deep learning architectures has given NLP 

algorithms a renaissance. In chemo-informatics, the SMILES format is a single-line text-

based molecular notation format, in which it is wildly used for chemical descriptor 

calculation, because it is particularly suitable for high-speed machine processing. In chemo-

informatics, SMILES-based is similar to the natural language since it was introduced as a 

single-line text representation of a unique molecule in the form of strings over a fixed 

alphabet (Bjerrum, 2017). 

In this work, a novel approach for QSAR modeling is proposed, in which we adopt the word 

embedding approach to predict the activity or the propriety of compounds by using: 

a) Data Processing 

The data processing step consists of three main steps. The first one is the build of a 

corpus containing all substructures possibilities of molecules compounds. In the second one, 

using the generated corpus, we train a Word2vec model on this corpus. Finally, in the last 

step, we integrate the generated word2vec model to predict the numerical representation of 

smiles compounds. Therefore, the neural network modules are trained on an input of SMILES 

for extracting the maximum important features (encoder module). Then, the extracted features 

are encoded into a vector format which can be operated as a continuous representation. A 

graphical representation of all those steps is depicted in Figure 12.  
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Figure 12.The proposed model for building the vectors representation of SMILES fragments starting 

from building the corpus to the SMILES fragments embeddings representation. 

 

The proposed method for SMILES molecule data processing is performed as the following 

steps: 

1. Build the corpus of dataset 

 In this step, we try to construct the corpus that contains all substructures possibilities of 

molecules for a given SMILES dataset. The corpus is defined as follows: 

                                       Equation 11 

Where, C and n are the substructures and the number of atoms concatenation possibilities, 

respectively. The high complexity dataset which contains around 700000 compounds has 

been taken from EPA (Environmental Protection Agency) CompTox Dashboard 

(https://comptox.epa.gov/dashboard/), which was used to build the corpus. The diversity 

compounds allow the building of a very large corpus which includes all words combinations 

from the three datasets. This generated corpus will assess the word2vec model to predict the 
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optimum vector representation of chemical compounds. Indeed, the generated model will 

distinct between the embedding representations of molecules with a high precision. 

2. Train the embedding model 

 We have trained a word2vec model to transform the molecules SMILES to vectors 

representation. This word embedding algorithm is one of the best algorithms for natural 

language processing so far. The word2vec model is a two-layer neural networks that aims to 

deal with words for predicting the vector representations. In this subject, words that share 

similar contexts are represented by close numerical vectors. We have used the generated 

corpus from the previous step to train the embedding model in order to obtain a trained 

transformer noted Vec(x), where, X is the generated corpus. This transformer maps a word x 

of Corpus into a continuous vector space of size d. 

                    Equation 12 

           

3. Transform SMILES into numerical vector using trained embedding model 

In this step, we predict the numerical representation vector of SMILES using the trained 

proposed embedding model. Thus, in order to be able to predict the vectorization of the 

SMILES molecule, the latter is split into substructures of compounds. Then, we use equation 

(1) to calculate the numerical representation vector of the whole SMILES according to the 

following equation: 

 

                    ∑                                    Equation 13 

 

Where, SMILES molecule = concatenation (X1, X2....Xi) and i is the number of 

concatenations of length L in the SMILES molecule. The whole data preprocessing is 

depicted in Figure 12. 
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b) Training the Convolutional LSTM Model 

The collected data over successive periods of time such as molecule compounds are 

characterized as a time series. In this case, LSTM is an interesting approach to deal with this 

type of data. In this kind of deep learning architecture, the model passes from the previous 

hidden state to the next step of the sequence, in which, the data order is extremely important. 

On the other side, convolutional neural networks are the best deep learning models to extract 

the feature pattern from data which are represented as matrices such as images. In this subject, 

the convolutional layer aims to extract the features map from the vector representation of 

compounds. 

To predict the toxicity or the propriety of compounds, a convolutional long short-term 

memory model (ConvLSTM) was used. This last is an extension of the popular long short-

term memory (LSTM) RNN. In this model, the fully-connected nodes of the LSTM module 

are replaced by convolutional gates and thereby making it capable of encoding spatio-

temporal features of the SMILES vector representation. The proposed architecture of the 

model is illustrated in Figure 13. 

 

 

Figure 13. The proposed deep learning model to predict the activity of molecules. 
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Convolution steps 

The extraction of the features pattern from the predicted numerical vectors representation of 

SMILES fragments is performed using convolutional layers, which contains a set of filters 

whose parameters need to be learned from the input vectors to obtain a features map. 

Rectification 

Rectified linear units (ReLu) function was used in the input vectors due to its unsaturation and 

the high gradient if the nodes of layers are activated.  The ReLu function is defined as 

follows: 

                        Equation 14 

LSTM  

LSTM layer has a chain structure, with a different structure of repeating module. Instead of 

having a single neural network layer, there are many interactions in a very special way. After 

extracting the features map from the vector representation of compounds using a 

convolutional layer, we have integrated a LSTM layer to deal with this features map as a 

chain. After this step, LSTM can add information or remove any useless information to 

predict the activity of these compounds.   

Dropout 

Dropout layers randomly zeroes the inputs to the next vertex layer during the training with a 

determining probability of 0.5. This regularizes the network and prevents the over-fitting. 

Loss Function 

We have used the MSE function to measure the divergence between the probabilities 

distributions corresponding to the assignment of SMILES fragment to a toxicity value. The 

loss function is given as the following equation: 

     
 

 
∑    

 
             Equation 15 

Where, yᵢ is the experimentally observed response and ŷᵢ is the theoretically predicted one, i 

until n is the number of output nodes. 
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Learning Optimization Policy 

 To improve the learning of the proposed model, we integrated the ADAM (adaptive moment 

estimation) optimization algorithm for its computational performances [176]. It aims mainly 

to adjust the learning settings during the training of the neural network (Figure 14). All 

processes of the training model are given in Table 22. 

Table 22. Configuration details of the proposed deep learning model. 

Layer (type)  Output Shape Param #    

conv_lst_m2d_2 (ConvLSTM2D) (None, 31, 7, 128) 264704 

max_pooling2d_2 (MaxPooling2) (None, 15, 3, 128) 0 

dropout_2 (Dropout) (None, 15, 3, 128) 0 

flatten_2 (Flatten) (None, 5760) 0 

dense_1 (Dense) (None, 16) 92176 

dropout_3 (Dropout) (None, 16) 0 

dense_2 (Dense) (None, 1) 17 

Total params: 356,897 

Trainableparams: 356,897 

Non-trainableparams: 0 
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Figure 14.Workflow of Training model steps. 
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III.2.3. Results and discussion 

With the IGC50 database of 1792 compounds and rat LD50 data of 7314 compounds, 

the predictive performance of three machine learning models was evaluated by using 80% of 

the data as a training set and 20% of the data as a test set. The derived compound vectors 

resulted from the trained embedding model were used as features in order to predict the 

toxicity values in the three machine learning models. 

Word embedding deep learning is one of the most used methods in the NLP field, due to its 

efficacy to predict numerical vectors that represent word features. In our approach, we have 

applied a word embedding processing using word2vec to predict SMILES features using a 

generated corpus that contains all the concatenation possibilities of 1–4 substructures from 

data set including over 700000 compounds. Training the word2vec model with this corpus 

was able to generate a prediction function in a continuous space due to the huge number of 

words in the corpus. While using a small corpus size, the generated word2vec model will 

predict a word embedding representation in a discrete space, which will influence the 

performances of machine learning regressors. Indeed, the obtained results showed that by 

using our approach, we have got a better performance of our machine learning models. 

a) Results on T. pyriformis (TP) 

First, in order to define the length L of SMILES substructures, several trials of 

ConvLSTM modeling were to be examined using different values in order to establish the 

configuration that gives the best performances in terms of evaluation criteria. Table 23 shows 

how the change in statistical quality with respect to the changes of word size from 01 to 04. 

Table 23.Statistical quality parameters of ConvLSTM model for different L values. 

Metric 

Length of sub structures (L) 

L = 01 L = 02 L = 03 L = 04 

R
2

training 0.76 0.85 0.97 / 

R
2

test 0.62 0.54 0.84 0.00 

MAE test 0.43 0.49 0.30 0.78 

RMSE test 0.60 0.66 0.49 0.98 
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From Table 23, we can notice that the length of words that give the best performance is L 

equal to 03, which was selected from the development of the other machine learning models 

(RF and SVM).  

The performance parameters of our approach models are shown in Table 24. In QSAR 

modeling the external validation is the effective way of quantifying the true predictability of a 

model performance [177]. Consequently, we have checked the model‟s quality according to 

good predictive potency. The ConvLSTM model has R
2
 test and mean absolute errors (MAE) 

values of 0.84 and, 0.3, respectively. Those values are considerably higher than the 

corresponding values of the RF model (0.63 and 0.42, respectively) and SVM model (0.63, 

and 0.42, respectively). Consequently, the last two models are almost the same in terms of 

overall predictions. 

The obtained results highlight the potential of the ConvLSTM model for the prediction of 

IGC50. In contrast, deep network convolutions are very effective for extracting the relevant 

input features, contrary to SVM, which, depend to the big representation of compounds in the 

model and to tree based in RF mode.  

Table 24.Statistical quality parameters of RF, SVM and ConvLSTM models on T. pyriformis 

IGC50 training, and test sets using our approach. 

Machine learningtechnique Training set Test set 

 R
2
 R

2
 RMSE MAE 

ConvLSTM 0.97 0.84 0.49 0.30 

RF 0.95 0.63 0.60 0.42 

SVM 0.86 0.66 0.61 0.38 

Comparison with literature models 

In the past decades, different QSAR models, descriptors and machine learning have 

been used for modeling the toxicity of diverse organic compounds to Tetrahymenapyriformis. 

In general, for huge or heterogeneous data sets, it is almost impossible to develop a universal 

linear model or even nonlinear between descriptors and the target property. For that purpose, 

numerous efforts have been tried to develop a regression models based on the mechanism of 

toxicity, which can find witch more detail at QSAR Toolbox web site (http://oasis-lmc.org). 

For instance, Roy and Ghosh have built a QSTR models taking the toxicity IGC50 of a set of 

384 aromatic compounds to T. pyriformis with extended topochemical atom (ETA) indices. 
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The authors showed that the best model was obtained from PLS analysis [178]. Another study 

by Toropov et al. have applied a correlations balance  of SMILES-based optimal descriptors 

of 250 phenols to Tetrahymenapyriformis, where, they proposed to develop a specific model 

for different mechanisms of toxicity to Tetrahymenapyriformis [179]. To date, there are only a 

few studies that use a huge amount of heterogeneous data set for modeling the toxicity 

compounds to Tetrahymenapyriformis. With the help of new application of deep learning in 

drug discovery, two studies [175,180] have been used to approve our approach in the same 

huge data sets of IGC50 (1792 compounds) which are shown in Table 25. 

Table 25. Comparison between the prediction results for the T. Pyriformis IGC50 test set. 

 R
2
 RMSE MAE 

TEST [174] 

Hierarchical 0.719 0.539 0.358 

FDA 0.747 0.489 0.337 

Group contribution 0.682 0.575 0.411 

Nearest neighbor 0.600 0.638 0.451 

TEST consensus 0.764 0.475 0.332 

ESTDs 

RF  0.625 0.603 0.428 

GBDT 0.705 0.538 0.374 

ST-DNN 0.708 0.537 0.374 

MT-DNN  0.723 0.517 0.378 

Consensus  0.745 0.496 0.356 

TopTox (Wu & Wei) 

RF  0.736 0.510 0.368 

GBDT  0.787 0.455 0.316 

ST-DNN 0.749 0.506 0.339 

MT-DNN 0.770 0.472 0.331 

Consensus 0.802 0.438 0.305 

ST-hybrid (Abdul) 

ST-hybrid  0.810 / / 

Our approach 

ConvLSTM 0.84 0.49 0.30 

RF 0.63 0.60 0.42 

SVM 0.66 0.61 0.38 

Toxicity Estimation Software Tool (TEST) 

Element Specific Topological Descriptor (ESTD) 

Gradient Boosting Decision Tree (GBDT) 

Single-Task DNN (ST-DNN) 

Multi-Task DNN (ST-DNN) 
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The results of Table 25 remarkably indicate that our model using ConvLSTM has good 

statistical performances in external validation than the other models. 

b) Results on Rat LD50 data 

Using a similar methodology and length of words for IGC50 and the ConvLSTM, the 

performance of our approach models in RatLD50 is given in Table 26. The R
2
 for test and 

training sets are 0.91 and 0.69, respectively. On the other hand, the root mean squared errors 

(RMSE) and mean absolute errors (MAE) are 0.59 and 0.43, respectively. 

Table 26.Statistical quality parameters of RF, SVM and ConvLSTM models on Rat LD50 

data, training and test sets using our approach. 

Machine learningtechnique Training set Test set 

 R
2
 R

2
 MAE RMSE 

ConvLSTM 0.91 0.69 0.43 0.59 

Comparison with literature models 

Recently, several QSAR models have been developed to predict acute oral toxicity using 

multiple machine learning techniques. However, similar to IGC50 for this endpoint, it is quite 

difficult to develop a general model with reliable prediction accuracy for the overall data set. 

For instance, Zhu et al. built a combinatorial QSAR models for predicting Rat LD50 of 7385 

compounds, in order to allow the comparison between their results and the commercial 

TOPKAT (Toxicity Prediction by Komputer Assisted Technology) [181]. 

Hou et al. applied the relevance vector machine (RVM) technique for building the regression 

models in order to predict the oral acute toxicity in rate of 7314 diverse chemicals. The 

obtained models were compared with those built using other six machine learning approaches, 

which are, counting k-nearest-neighbor regression, RF, SVM, local approximate Gaussian 

process, multilayer perceptron ensemble and eXtreme gradient boosting. The best model 

achieved R
2
ext ranged from 0.57 to 0.66 [182]. 

Wu and Wei constructed a prediction models using the element-specific topological descriptor 

(ESTD) integrated with a variety of advanced machine learning algorithms including two 

deep neural networks (DNNs), two ensemble methods random forest (RF) and gradient 

boosting decision tree (GBDT). The main purpose was to construct topological learning 

strategies for quantitative toxicity analysis and prediction [183]. Table 27 summarizes the 
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results obtained in that paper together with our results using the same data set. From an 

analysis of the results mentioned in Table 27, we can conclude that our approach with 

ConvLSTM gives the best predictive performance than the other approaches (R
2
 = 0.69) for 

the test set.   

Table 27. Comparison between the prediction parameters for the Rat LD50 test set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 R
2
 RMSE MAE 

TEST [174] 

Hierarchical 0.58 0.65 0.46 

FDA 0.56 0.66  0.48 

Group contribution 0.56 0.66 0.48 

TEST consensus 0.63 0.59  0.43 

ESTDs 

RF  0.59 0.62 0.47 

GBDT 0.60 0.61 0.45 

ST-DNN 0.60 0.61 0.45 

MT-DNN  0.61 0.60 0.44 

Consensus  0.63 0.59 0.43 

TopTox(Wu & Wei) 

RF  0.62 0.60 0.45 

GBDT  0.63 0.59 0.44 

ST-DNN 0.61 0.60  0.44 

MT-DNN 0.63 0.59 0.43 

Consensus 0.65 0.57 0.42 

Our approach 

ConvLSTM 0.69 0.59 0.43 

Toxicity Estimation Software Tool (TEST) 

Element Specific Topological Descriptor (ESTD) 

Gradient Boosting Decision Tree (GBDT) 

Single-Task DNN (ST-DNN) 

Multi-Task DNN (ST-DNN) 
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III.2.4. Conclusion 

In this study, we have developed QSAR models using SMILES notations based only on 

textual representation without computing any of the molecule descriptors. 

The following points are the advantages of our models: 

i. The descriptor-based in QSAR modeling is generally costly in time especially when we 

use massive data. 

ii.  Our proposed approaches are an alternative method that can be fit in any machine 

learning algorithms.  

iii. Two toxicity data sets were used in the present study.  

iv. Experimental results show that the application of ConvLSTM in word embedding vectors 

of SMILES compounds improves the best predictive performance for IGC50 and RatLD50 

set, not only better than SVM and RF but better than literature approaches.  

v. These promising results suggest that our approach can be applicable for predicting any 

physicochemical, biological, or pharmacological properties of interest. 

vi.  Because this significantly speeds up the training and lowers the memory requirements, 

irrespective of the size of the data. 
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GENERAL CONCLUSION 

In order to protect both human health and environment, the European regulation on 

chemicals (REACH) places emphasis on the decrease of controlled toxicity testing, thus 

fostering the development of alternative methods, such as statistical methods based on 

existing data. Most of the time, these tests are carried out according to the Organization for 

Economic Cooperation and Development (OECD) test guidelines. In this context, several 

quantitative structure- activity relationships (QSAR) methods that relate the molecular 

descriptors of chemicals with their toxicity have been developed.  

In the first part of this thesis, the state related to QSAR analysis for toxicity was 

presented together with the theories that support the proposed approach. 

The first aim of this work was to build models based on Quantitative Structure-Activity-

Activity Relationships (QSAAR), which allows the extrapolation of toxicity between different 

species.  

These models have been developed and validated based on OECD principles. The proposed 

aquatic Auto Pass-Pass models can also be useful for predicting large amounts of chemicals 

without experimental values, employing the experimental values from a second species. 

In the second application of this thesis, we have developed QSAR models using SMILES 

notations based only on the textual representation without computing any of the molecule 

descriptors.  

The descriptor-based in QSAR modeling is generally costly in time especially when we use 

massive data. Our proposed approaches are an alternative method that can be fit in any 

machine learning algorithms.  

Tow toxicity data sets were used in the present study. The experimental results show that the 

application of ConvLSTM in word embedding vectors of SMILES compounds improves the 

best predictive performance for IGC50and RatLD50 set, not only better than SVM and RF but 

better than that of the literature approaches.  

These promising results suggest that our approach can be applicable for predicting any 

physicochemical, biological, or pharmacological properties of interest, because this 

significantly speeds up the training and lowers the memory requirements, wherever the size of 

the data. 
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