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Abstract
The aim of this thesis is to create a new families which are a special cases of Two

Parameters Distribution under censored case; the �rst one is a general class of continuous

lifetime distribution called "Generalized Size biased distribution " and the second is " The

XLindley distribution "

Further, it can be generated a new lifetime distribution from GSB distribution such as

Size biased Zeghdoudi distribution that we have presented it in the third chapter. The

parameter of the new probability distribution function are estimated by the maximum likelihood

method under type II censored data. In other hand, several mathematical properties have been

studied such as: probability density function, moments, quantile and lambert W function...ect.

The maximum likelihood function and Method of moment procedure has been provided to

obtain the estimate of the model parameter of the two distribution in two cases: complete and

censored.

Finally, Real data sets have been analyzed to illustrate the �exibility of the both new

families.

Keywords: Size biased, moments, simulation, application, type II censored, Size biased

Zeghdoudi distribution, XLindley distribution, LamberW function, quantile function
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Résumé en Français
Dans cette thèse, nous introduisons des nouvelles distributions nommées: Size Baised et

XLindley. Diverses propriétés statistiques ont été données à savoir: la méthode du moment,

l�estimation du maximum de vraisemblance. Une simulation de biais et l�erreur quadratique

moyenne des estimateurs sont obtenues par la méthode du maximum de vraisemblance. On

a étudié l�estimateur de paramètre de la distribution size biased dans le cas censuré type II.

En�n, une étude comparative entre les distributions déjà connues à été discutée.

Mot-clés: Size biased, les moments, simulation, application, censuré de type II, Size biased

Zeghdoudi distribtuion, distribution de XLindley, la fonction de LamberW, fonction de quantile.
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 الملخص 
 

 
تلعب التوزيعات الإحصائية دورا هاما في تفسير البيانات الحقيقية أو الظواهر الحياتية لأي مجتمع 

  توازيع معروفةعلى  استناداتهدف هذه الدراسة إلى تقديم عائلات جديدة . لذلك خصائصه  ةو دراس

ذات المعلمين و دراسة الخصائص الإحصائية و التطبيقية  أي بالأحرى حالات خاصة من التوازيع

 لهاته التوازيع و تقديم معالمهم .

 

إيجاد صيغ  و   (Size biased on General distribution)سميت    ةجديدعائلة  تم تقديم    

ا انطلاقا منها خاص قدمنا توزيعا كذلك   لها لكل من التوزيع الإحتمالي و دالة المخاطرة ، مبسطة 

و تطبيق التوزيع الجديد ، تم دراسة الخصائص الإحصائية  ( Size biased Zeghdoudiيسمى 

الحياة تشمل اختبار الحياة  خطط ونظرا لأن معاينة على مجموعة بيانات حقيقة كاملة و مراقبة .

، لذلك فان خطة المراقبة  توظف عادة لتقليل  هو عبارة عن وقت مستهلك فى معظم الاحيان والذي

كذلك  ، (censored data)العينات المراقبة وأوذلك من خلال البيانات و التكاليف وقت الاختبار 

الذي   XLindley distributionتطرقنا إلى توزيع جديد مستنبط من توزيع زغدودي يسمى 

ذات   Two parameter lindleyيعتمد على معلم )وسيط ( و هو حالة خاصة من توزيع 

 المعلمين ، حيث تم تحديد خوائصه الإحصائية المختلفة  

 

و أخيرا  في نهاية كل جزء أجرينا  دراسة محاكاة و تحليل للبيانات الحقيقة و مقارنة مع توازيع     

 أخرى لتوضيح كفاءة ومرونة كل توزيع بالتطبيق العملي على البيانات الحقيقة .

 

 



Introduction en Français
La distribution de Lindley a été introduite par Lindley (1958) en tant que nouvelle distrib-

ution utile pour analyser les données sur la durée de vie mais, malgré le peu d�attention dans la

littérature statistique, elle est importante pour étudier la modélisation de la �abilité de la résis-

tance aux contraintes. Ghitany et al (2008) ont discuté diverses propriétés de cette distribution

et ont montré qu�à bien des égards, elle fournit un meilleur modèle pour certaines applications

que la distribution exponentielle. Aussi, ils ont montré dans un exemple numérique que la

distribution de Lindley donne une meilleure modélisation que la distribution exponentielle pour

des données sur les temps d�attente et les temps de survie.

Par ailleurs, certains chercheurs ont proposé de nouvelles classes de distributions basées sur

des modi�cations de la distribution Lindley.

Dans ce travail, nous nous proposons deux nouvelles généralisations de la distribution de

Lindley. Nous nous référons à cette nouvelle généralisation à savoir la Size biased zeghdoudi

distribution (SBZD) et la distribution XLindley distribution (XLD). Elles o¤rent plus de �exi-

bilité pour analyser des ensembles de données réels complexes. De plus, nous étudions certaines

propriétés statistiques de la nouvelle distribution. Les objectifs de ce travail sont:

- Construire une nouvelle classe de distributions (SBZD) de type Lindley;

- Établir les propriétés mathématiques de cette nouvelle classe (SBZD);

- L�étude de la �abilité résistance-résistance de cette nouvelle classe (SBZD);

- Introduire et étudier les propriétés mathématiques de la distribution XLindley à un

paramètre;

- Donner quelques exemples d�ensemble de données sur la durée de vie provenant de di¤érents

domaines de connaissances ont été pris en considération;

- Étudier la qualité de l�ajustement de ces distributions pour voir la supériorité sur les autres

distributions.

Sankaran (1970) a introduit la distribution discrète de Poisson-Lindley en combinant les

distributions de Poisson et Lindley. Ghitany et al.(2008) ont e¤ectué une recherche sur les

propriétés statistiques de la distribution de Lindley, et ils ont montré que la distribution peut

fournir un meilleur ajustement que la distribution exponentielle. Mahmoudi et Zakerzadeh
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(2010) ont proposé une version étendue de la distribution de Poisson composée obtenue en

combinant la distribution de Poisson avec la distribution de Lindley généralisée et analysé par

Zakerzadeh et Dolati (2010). Récemment, une nouvelle extension de la distribution Lindley,

appelée distribution de Zeghdoudi (ZD), qui o¤re un modèle �exible pour les données de durée

de vie, est introduite par Zeghdoudi et Messaadia(2018). Nedjar et Zeghdoudi (2016, 2016a) ont

introduit une distribution de durée de vie à deux paramètres avec un taux d�échec décroissant

en combinant des distributions gamma et Lindley, appelées la distribution de gamma Lindley

(GaL). De la même manière, Zeghdoudi et Nedjar (2016, 2017) et Lazri et al.(2016, 2018),

Grine et Zeghdoudi (2017) ont introduit les distributions de pseudo Lindley (PsL), Poisson

pseudo Lindley (PPsL) et Lindley Pareto(PL), Poisson Quasi-Lindley (PQL) respectivement.

Bouchahed et Zeghdoudi (2018) ont présenté une méthode pour introduire une famille à un

paramètre avec application aux familles exponentielles. Récemment, Benatmane et al.(2020) ont

introduit une classe de distributions, nommée distributions Rayleigh-Pareto composée (CRP),

où la procédure de composition suit la même démarche que précédemment réalisé par Lazri et

al.(2017).

Des extensions de la distribution de Lindley ont été obtenues par Nedjar et Zeghdoudi

(2016, 2020), Bouchahed et Zeghdoudi (2018), Seghier et al.(2020,2020a). Cette nouvelle classe

de distribution a été a reçu une attention considérable par les chercheurs dans ce domaine.

Le but de notre travail est de présenter des nouvelles distributions à un paramètre qui

apportera un plus à la littérature existante sur la modélisation des données de survie, dans les

sciences biologiques et les sciences actuarielles. Nous avons structuré cette thèse autour de cinq

chapitres.

Le chapitre I est une introduction contient le contexte historique, des motivations et les

objectives principales de cette thèse. Le chapitre II se focalise sur quelques dé�nitions et

concepts de base qui sont nécessaires pour les chapitres suivants.

Le chapitre III consiste en une synthèse sur les nouvelles distributions à deux paramètres à

savoir :

La distribution de Lindley à deux paramètres;

La distribution Sujatha à deux paramètres;

La distribution de gamma Lindley.
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Au chapitre IV, nous avons introduit la première distribution à un paramètre nommée la

distribution Zeghdoudi biaisée et étudié ses propriétés mathématiques.

En�n, le chapitre V étudier la deuxième nouvelle distribution de type Lindley nommée

distribution XLindley. Ses propriétés mathématiques et statistiques sont discutées, y compris

la fonction quantile, les moments, l�ordre stochastique et l�estimation des paramètres. De plus,

des études de simulation et des exemples illustratifs sur les deux nouvels modèles sont e¤ectués

en utilisant des données réelles.

10



Chapter 1

Introduction

(1.1)Preliminaries

Recently, Many authors has been interested in introducing and de�ning new families of

probability distribution or generalized class of continuous distribution by : mixture of two

known distribution also by size biasing known distributions or by transformation, at the some

time they have to provide more �exibility for modeling lifetime data. The �exibility of such

new families of distributions come in terms of one or more failure rate which may be decreasing

or increasing or bathtub shaped.

The researchers used many distributions in survival analysis for analyzing data involving

the duration between two events in various �elds, the aims of survival analysis is to estimate

"survivorship, density, and hazard" functions. The key characteristic that distinguishes survival

analysis from other areas in statistics is that survival data are usually censored or incomplete

in some way.

The censored data is a key issue for the analysis of survival data, censoring occurs when

incomplete information is available about the survival time of some individuals. In this thesis,

we present a number of concrete examples extracted from the literature in various �elds of

public health. The purpose is to use real-life situations to illustrate types of censoring and to

motivate the discussion presented in the �rst chapter.

According to Miller(1998) and Hougaard(2000) data are said to be censored if the

observation time censored survival is only partial, not until the failure event. One major reason

for this is that the person studied is alive when the data are evaluated, and thus the complete
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lifetime is not known at that time. There are many other reasons for censoring. For examples,

the patients can be lost to follow-up, patients still alive at the end of the study or patients

drop out of the study. There are also several types of censoring, including right censoring, left

censoring, interval censoring, random censoring, Type I censoring and Type II censoring (Collet

1994; Hosmer and Lemeshow 1999; Kalb�eisch and Prentice 2002; Kleinbaum and

Klein 2005).

(1.2) Motivation and Objectives

In the past few years, researchers use the censored data in modeling data in practice to help

them �nish the study early. So the work objectives are:

- Building a new generating families of distributions on the basis of it obtaining the results

of this thesis.

- Some mathematical properties of the new family and estimation of the unknown parameters

are derived also the behavior of the hazard rate function of some special cases from this family

are explored.

- Study several properties of the new distributions .

- Estimate the unknown parameter of each distributions under complete data & censored

data for SBZD.

- In the last contribution, a new distribution has been introduced which is called XLindley

distribution.

- Application to real data set ( examples of lifetimes data-sets) is given to show the �exibility

and potentiality of the new families.

- Study the goodness of �t for each distribution to see the superiority of one over the other

known distributions

(1.3) Organization of the Thesis

The thesis is organized as follows. Chapter I is an introduction to the current thesis. Also,

historical background of the preceding researchers is reviewed. Chapter II contains some basic

de�nitions and concepts that are needed in the next chapters

In Chapter III, we have introduce already known distributions of two parameters, and we

have noticed that we can get our new distributions as special cases from some of them .

In Chapter IV, the Size biased zeghdoudi distribution is introduced as a new member from

12



Size biased general-one parameter distribution. Closed-form expressions for the density, cumu-

lative distribution, survival and failure rate functions are obtained. The rth moment of the

new distribution and lorenz curve are obtained. Estimation of the unknown parameters using

the method of moment and maximum likelihood method under censored data is obtained. In

addition an application to a real data set demonstrates the usefulness of the new model.

Finally, in Chapter V, we introduce a new Lindley type distribution named XLindley distri-

bution. The properties of it are discussed, including quantile function, moments and stochastic

ordering. The estimation of the model parameter is performed by using two methods including

the maximum likelihood method. In particular, some mathematical properties of the new dis-

tributions are discussed. Simulation studies of the two models are performed. The potentially

of them is illustrated based on a real data set.
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Chapter 2

Basic concepts and models

2.1 Analyse of Survival data

In a survival analysis, we usually refer to the time variable as survival time, because it gives

the time that an individual has �survived�over some follow-up period. We also typically refer

to the event as a failure, because the event of interest usually is �death, disease incidence�, or

some other negative individual experience. However, survival time may be �time to return

to work after an elective surgical procedure,�in which case failure is a positive event.

2.1.1 Introduction

Lifetime distribution methodology is widely used in biomedical and engineering sciences, how-

ever, and most of examples in the thesis come from those areas.

Sometimes the events are actual deaths of individuals and "lifetime" is the length of life

measured from some particular starting point. In other instances "lifetime" and the words

"death" or "failure", which denote the event of interest, are used in a �gurative sense. In dis-

cussing applications, other terms such as "survival time" and "failure time" are also frequently

used.

In the survival analysis data, we want to use all available data sets, which sometimes are

incomplete or include uncertainty as to when a failure occurred. Life data can therefore be

separated into two types: complete data (all information is available) or information is missing

so we called (censored or trucation data). Each type is explained next.
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2.1.2 The Goals of survival analysis

Goal 1. To estimate and interpret survivor function, and/or hazard function from survival

data

� The graph is smooth curve, decreasing from S(t) = 1 at time t = 0 to S(t) = 0 at t =1

Goal 2.To compare survivor and/or hazard functions.
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Goal 3.To assess the relationship of explanatory variables to survival time

Age at diagnonis(years)

2.2 Examples of Survival Data

The following examples illustrate some ways in which lifetime data arise.

2.2.1 Time to First Use of Marijuana

Turnbull and Weiss (1978) report part of a study conducted at the Stanford-Palo Alto Peer

Counseling Program. In this study, 191 California high school boys were asked:�When did

you �rst use marijuana?�. The answers were the exact ages (uncensored observations); �I

never used it,�which are right-censored observations at the boys�current ages; or �I have used

it but can not recall just when the �rst time was,�which is a left-censored observation. Notice

that a left-censored observation tells us only that the event has occurred prior to the boy�s

current age. The data is in Table1.1
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Age Number of Number of who Number of who have

exact observations have not yet smoking it started smoking at earlier age

10 4 0 0

11 12 0 0

12 19 2 0

13 24 15 1

14 20 24 2

15 13 18 3

16 3 14 2

17 1 6 3

18 0 0 1

� 18 4 0 0

Table1.1.Marijuana use it in high school boys

Another illustrate table to the answers of the boys :

The Answers Recorded Value

a:I used it but I cannot recall a: T�: age at interview as exact age was

when it was my �rst time earlier but unknown (L.C)

b:I used it when I was.... b:T : exact age since it is known(uncensored)

c:I never used it c:T+:age at interview since exact age occurs

sometime in the future (R.C)

2.2.2 Times to Death for a Breast-Cancer Trial

In the study of (Sedmak et al., 1989) designed to determine if female breast cancer patients,

originally classi�ed as lymph node negative by standard light microscopy (SLM), could be

more accurately classi�ed by immunohistochemical (IH) examination of their lymph nodes

with an anticytokeratin monoclonal antibody cocktail, identical sections of lymph nodes were

sequentially examined by SLM and IH. The signi�cance of this study is that 16% of patients

with negative axillary lymph nodes, by standard pathological examination, develop recurrent

disease within 10 years. From the Ohio State University Hospital Cancer Hospital registry,
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have been selected 45 females breast-cancer patients with negative axillary lymph nodes and

a minimum 10 year follow-up. Of the 45 patients, 9 were immunoperoxidase positive, and the

remaining 36 remained negative. Survival times (in months) for both groups of patients are

given in Table1.2 ( denotes a censored observation).

immunoperoxidase positive: 22; 23; 38; 42; 73

77; 89; 115; 144+

immunoperoxidase negative: 19; 25; 30; 34; 37

46; 47; 51; 56; 57; 61; 66; 67; 74; 78; 86; 122+; 123+; 130+; 130+; 133+

134+; 136+; 141+; 143+; 148+; 151+; 152+; 153+; 154+; 156+; 162+; 164+;

165+; 182+; 189+

+:Censored observation

8>>><>>>:
�! In remission at the end of study

�! Lost to follow-up

�!Withdraws
Table 1.2.Times to death (in months) for breast cancer patients

with di¤erent immunohistochemical responses

2.2.3 Death Times of Psychiatric Patients

Woolson (1981) has reported survival data on 26 psychiatric inpatients admitted to the Uni-

versity of Iowa hospitals during the years 1935�1948. This sample is part of a larger study of

psychiatric inpatients discussed by Tsuang and Woolson (1977). Data for each patient consists

of age at �rst admission to the hospital, sex, number of years of follow-up (years) from admis-

sion to death or censoring, and patient status at the follow-up time. Here, a comparison of the

survival experience of these 26 patients is made to the standard mortality of residents of Iowa

to determine if psychiatric patients tend to have shorter lifetimes(see Table1.3)
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Gender Age at admission Time of following-up

Female 51 1

Female 58 1

Female 55 2

Female 28 22

Male 21 30+

Male 19 28

Female 25 32

Female 48 11

Female 47 14

Female 25 36+

Female 31 31+

Male 24 33+

Male 25 33+

Female 30 37+

Female 33 35+

Male 36 25

Male 30 31+

Male 41 22

Female 43 26

Female 45 24

Female 35 35+

Male 29 34+

Male 35 30+

Male 32 35

Female 36 40

Male 32 39+

+Censored observation

Table1.3.Survival data for psychiatric inpatients
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2.3 Censoring and Truncation

Time-to-event data present them selves in di¤erent ways which create special problems in

analyzing such data, there is two features may be present in some survival studies

The first one often presented in survival data is known as: Censoring. There are various

categories of censoring will be discussed in this section. Many several types of censoring schemes

within both left and right lead to a di¤erent likelihood function as we shall see in this section.

The second one often presented in survival data is known as: Truncation

2.3.1 Truncated data

Were �rst encountered quite early in the development of modem statistics by Sir Francis Galton

(1897) in connection with an analysis of registered speeds of American trotting horses.Truncated

samples are classi�ed according to whether terminals points of truncation are known or un-

known. When these points are unknown, they become additional parameters to be estimated

from sample data. Truncation of survival data occurs when only those individuals whose event

time lies within a certain observational window (YL; YR) are observed

Right truncated data

When YL = 0, the right truncation occurs. That is, we observe the survival time X only when

X � YR.

Some time right truncation arises:

- In estimating the distribution of stars from the earth in that stars too far away are not

visible and are right truncated.

- When it�s a mortality study based on death records.

Left truncated data

Here we only observe those individuals whose event time X exceeds the truncation time YL only

if YR is in�nite. In this type of truncation any subjects who experience the event of interest

prior to the truncation time are not observed. The truncation time is often called a delayed

entry time since we only observe subjects from this time until they die or are censored.
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2.3.2 Censored data

There are three reasons why censoring may occur:

1. A person doesn�t experience the event before "the study end"

2. A person is"lost to follow-up" during the study period

3. A person withdrawsd from the study

The graph below illustrate the experience of several persons followed over time.

X: Events occurs

For :

- Person A: He was followed from the beging of the study until the the 5th week when the

event occur, so his survival time is 5 weeks and isn�t consored

- Person B : Also was followed from the start of the study until the end for 12th week without

getting the event, we can say that the survival time here is censored only at least for 12 weeks

- Person C: This one enters the study between the second and third week and was followed

until he withdraws at the 6th week, he�s survival timle is censored after 3.5 weeks

- Person D: Enters the study at the 4th week and was followed for the remainder time of

the study with out getting the event, so this person�s censored time is 8 weeks
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- Person E: Enters the study at week 3 and is followed until 9thy week, when he is lost to

follow-up without reached to the failure time; his censored time is 6 weeks.

- Person F: Enters at the 8th week and was followed until getting the event at week 11:5:

As with person A, there is no censoring here; the survival time is 3.5 weeks.

The table(1.4) of the survival time data for the six persons in the graph is now presented

for each person. We have indicated whether each time was censored or not with event occurs:

(1 denoting failed and 0 denoting censored). This table is a simpli�ed illustration of the type

of data to be analyzed in a survival analysis.

Person Survival time Event occurs

A 5 1

B 12 0

C 3.5 0

D 8 0

E 6 0

F 3.5 1
Table1.4. The type of data analyzed .

Types of censored data:

There are many types of censored data :

Right-censored: Notice that for the 4 persons censored (B, C, D, E ), we know that the per-

son�s true survival time becomes incomplete at the right side of the follow-up period, occurring

when the study ends or when the person is lost to follow-up or is withdrawn. We denote this

kind of data: right-censored data; this is the common survival data .

For these data, the complete survival time interval, which we don�t really know, has been

cut o¤ ( censored) at the right side of the observed survival time interval.

Left-censored : Time to First Use of Marijuana. See Table1:1

If we are following persons until they become HIV positive, we may record a failure when

a subject �rst tests positive for the virus. However, we may not know the exact time of �rst
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exposure to this virus, and therefore do not know exactly when the failure occurred(event

occurs). Thus, the survival time is censored on the left side since the true survival time, which

ends at exposure, is shorter than the follow-up time, which ends when the subject�s test is

positive.

In other words, if a person is left-censored at time t, we know that they had an event

between time 0 and t, but we don�t know the exact time of event. The graph below explain

this type.

Fig1.The time of exposure the virus of HIV

Interval-censored: Survival analysis data can also be interval censored, which can occur

if a subject�s true (but unobserved) survival time is within a certain known speci�ed time

interval. As an example, again considering HIV surveillance, a subject may have had two HIV

tests, where he/she was HIV negative at the time (say, t1) of the �rst test and HIV positive at

the time (t2) of the second test. In such a case, the subject�s true survival time occurred after

time t1 and before time t2, i.e, the subject is interval censored in the time interval [t1, t2].The

Figure below illustrate it :

Fig.2.Time of exposure to HIV
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This type of censored data incorporates both right-censoring and left-censoring as special

cases. Left-censored data occur whenever the value of t1 is 0 and t2 is a known upper bound

on the true survival time. In contrast, right censored data occurs whenever the value of t2 is

in�nity, and t1 is a known lower bound on the true survival time.

Left cesoring ) t1 = 0; t2 = upper bound

Right cesoring ) t1 = Lower bound; t2 = 0

Singly censored data

Type I : we will consider Type I censoring where the event is observed only if it occurs

prior to some pre-speci�ed time. These censoring times may vary from individual to individual.

In typical experiment on animals or clinical trial starts with a �xed number of animals or

patients to which a treatment (or treatments) is (are) applied.

The investigator will terminate this study or report the results before all subjects realize their

events because of time or cost considerations. In this instance, if there are no accidental

losses or subject withdrawals, all censored observations have times equal to the length of the

study period.

� If (X � Cr) then we can know the exact lifetime X of an individual

� If (X � Cr), the individual is a survivor, and his or her event time is censored at Cr

The data from this experiment can be conveniently represented by pairs of random variables(T; �),

where indicates whether the lifetime X corresponds to an event ( � = 1) or is censored ( � = 0),

and T is equal to X, if the lifetime is observed, and to Cr if it is censored, i.e:

T = min(X;Cr)

Type II Experiments involving Type II censoring are often used in testing of equipment

life. Here, all items are put on test at the same time, and the test is terminated when r( is

some predetermined integer (r � n)). of the n items have failed. Such an experiment may save

time and money because it could take a very long time for all items to fail. It is also true that
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the statistical treatment of Type II censored data is simpler because the data consists of the r

smallest lifetimes in a random sample of n

Random censoring This is the 3rdtype of censored data. It occur when both the number

of censored observations and the censoring levels are random outcomes, with another meaning

the period of study is �xed and patients enter the study at di¤erent times during that period.

Hence the censored times also are di¤erent. This type of censoring commonly arises in medical

time-to-event studies. A subject who moves away from the study area before the event of

interest occurs has a randomly censored value.

2.4 The Survival Function

For speci�ed time t; the survival function S(t) is :

S(t) = 1� FX(t) = P (X > t) , t � 0

2.5 The Hazard Function

The Hazard function is basic quantity, fundamental in survival analysis. This function is also

known as the conditional failure rate in reliability, the force of mortality in demography, the

intensity function in stochastic processes. The hazard rate is de�ned by:

h(t) = lim
�t!0

P[t � T < t+�tjT � t]
�t

If X is a continuous random variable, then

h(t) =
f(t)

S(t)
= �d ln[S(x)]

dx

A related quantity is the cumulative hazard function H(x), de�ned by:

H(x) =

xZ
0

h(u)du = � ln[S(x)]
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Thus, for continuous lifetimes:

S(x) = exp[�H(x)] =

24� xZ
0

h(u)du

35
2.6 Quantities associated with survival distribution

Let be X a real random variable de�ned on I, with FX cumulative function .

2.6.1 Moments about the origin (raw moments)

The rth moment about the origin of a random variable X, denoted by �pr is the expected value

of Xr:

�pr = E (X
r) =

8><>:
P
x
xrf(x) when X is discreteR +1

�1
xrf (x) dx when X is continuous

9>=>;
For: r = 0; 1; 2; ::::::

2.6.2 Central moments

The rth moment about the mean of a random variable X, denoted by �r, is the expected value

of (X � �X)rsymbolically:

�r = E ([X � �X ]r) =

8>>>><>>>>:
P
x
[x� �X ]r f(x) when X is discrete

+1Z
�1

[x� �X ]r f (x) dx when X is continuous

9>>>>=>>>>;
For : r = 0; 1; 2; ::::::

the �rst moment is the expected value E[X]. The second central moment is the

V ar(X). Similar to mean and variance, other moments give useful information about random

variables.
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2.6.3 Moment Generating Functions

The moment generating function (MGF) of a random variable X is a function MX(t) de�ned

as:

MX(t) = E
�
eXt
�
; t 2 R:

We say that MGF of X exists, if there exists a positive constant a such that MX(t) is �nite

for all t 2 [�a; a].

This relation makes it possible to calculate very easily the moments of a distribution if the

MGF known. For example:

Mean and variance of X:

E(X) = M
0
X(0)

V ar(X) = E(X2)� E2(X) =M 00
X(0)�

h
M

0
X(0)

i2
Coe¢ cient of variation (
), Skwness

�p
�1
�
and kurtosis (�2) are:


 =

p
V ar(X)

E(X)p
�1 =

E(X3)

(V ar(X))
3
2

�2 =
E(X4)

(V ar(X))2

2.7 Lambert W function

The Lambert W function is a multivalued complex function de�ned as the solution of the

equation:

W (z) exp (W (z)) = z: (1.1)

Where : z is a complex number
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W�1 denoted the negative branch. The real branch taking on values in(�1;�1]

W0 denoted the principale branch.The real branch taking on values in[-1;1)

Both real branches of W are illustrated in Figure above.

Lemma 1 Let a; b and c be a �xed complex numbers. The solution of the equation z+ abz = c

with respect to z 2 C is :

z = c� 1

log (b)
W (abc log (b)) :

Where W denotes the Lambert W function.

By multipliying the both sides of this equation on bc log (b), we get the following resulting

eqation

(c� z) log(b) exp((c� z) log(b)) = abc log(b): (1.2)

According to equation (1.1) and (1.2).We observed that (c � z) log(b) is the Lambert W

function of the complex argument abc log(b). Therefore, we have:

W (abc log(b)) = (c� z) log(b):
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which implies the desired result. This completes the proof of Lemma1

2.8 Quantile Function

The quantile function of random variable X is the inverse of it�s cumulative probability function

(CDF). We denote the quantile function of X by QX , with u 2 [0; 1] :

QX (u) = F
�1
X (u)

QX (u) = inf fx tel que FX (x) � ug 0 < u < 1 (1.3)

2.9 Estimation

Estimator of unkown parameter � of probabilty model depends on the random sample. By

assuming x is a random variable with probability density function f (x; �) ; and if x1; x2; ::::; xn

is a random sample of size n from x, then the statistic is used for estimating the unknown

parameter � is called a point estimator :

�̂ = f (x1; x2; ::::; xn)

There are several methods are used to obtain a point estimates (estimator of �) for the

unknown parameters of a given probability distribution like :

� The Method of Moment

� Maximum Likelihood Estimation

2.9.1 Quanti�ed properties

Bias

The bias of �̂ is de�ned as:

Biais
�
�̂
�
= E

�
�̂
�
� �
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It is the distance between the average of the collection of estimates, and the one-parameter

being estimated.

� The estimator �̂ is an unbiased estimator of � if and only if Biais
�
�̂
�
= 0

� The estimator is positively biased if Biais
�
�̂
�
> 0

Convergence

The estimator �̂n is convergent if it�s converges in probability! �, soit:

�̂n
P! � () lim

n!1
P
�����̂n � ���� < "�! 1;8" > 0

() lim
n!1

P
�����̂n � ���� > "�! 0

Theorem 2 Any unbiased estimator is convergent if it�s variance tends towards 0 :

�
E
�
�̂n

�
= � et V ar

�
�̂n

�
! 0

�
) �̂n

P! �

Mean Squared Error

The mean squared error (Erreur quadratique moyenne in french)of �̂ is de�ned as the expected

value (probability-weighted average, over all samples) of the squared errors; that is,

MSE
�
�̂
�
= E

��
�̂n � �

�2�

2.9.2 Asymptotic normality

Let X1; X2; : : : ; Xn be a random sample of n size that is, a sequence of i.i.d random variables

drawn from a distribution of expected value given by �(mean) and �nite variance given by �2:

Theorem central limite

LetX1; X2; : : : ; Xn be a set of iid random variables with the same distribution asX, E(Xi) =

m and V ar(Xi) = �2with i = 1; ::::n

Zn =
�Xn �m

�p
n

 N (0; 1) :
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The random variable Zn is converges in law (L) to a Normal reduced centered with zero mean

and variance V ar(X).
p
n
�
�Xn �m

� p! N
�
0; �2

�
:

The Delta Method

The delta methods used to obtain the asymptotic distribution of a non-linear function of

a random variable (usually, an estimator). It uses a �rst-order Taylor series expansion and

Slutsky�s theorem.

LetX1; X2; : : : ; Xn be random variables with mean � and standard deviation �. If
p
n (Xn � �)

p!

N
�
0; �2

�
; and g di¤erentiable function such that g

0
(�) 6= 0. In this case the method of delta

is given by:

p
n (g (Xn)� g (�))

p! N
�
0; �2

h
g
0
(�)
i�
:

Let �̂ estimator of � of the law P� of an observed random variable X. We suppose that

there are two sequences of real positive functions strictly positive, a = an (�) and b = bn(�) as:

�̂ � a
b

p! N (0; 1) :

Then, we can say that �̂ is an asymptotically normal estimator.

2.9.3 Construction of estimators

Method of Moments

Therefore, if � = E(X), then the estimator of � with method of moment is :

�̂n = �X =
1

n

nX
i=1

Xi:

More generally, for � 2 �, if E(X) = '(�), with ' is an invertible function, then the estimator

of � with method of moment is:

�̂n = '
�1(�):

31



Similarly, we estimate the variance of the Xi by the empirical variance of the sample S2n =

1
n

nP
i=1

�
Xi � �X

�2
:

Method of Maximum Likelihood

Let Xi be independent random variable and of the same rule. The likelihood function given by:

L(�;x1; :::; xn) =

8>><>>:
nQ
i=1
P (X = xi; �) if Xi are discrete:

nQ
i=1
fX (xi ; �) if Xi is continuous:

The estimator of maximum likelihood of � is �̂n, which maximizes the likelihood function

L(�;x1; :::; xn). The estimator of maximum likelihood (ML)of � is the corresponding random

variable. So generally �̂n will be calculated by maximizing the log-likelihood:

�̂n = argmax logL(�;x1; :::; xn):

When � = (�1; :::; �d) 2 � and that all the partial derivatives below exist, �̂n is the solution of

the system of equations that called likelihood equations:

8j 2 f1; :::; dg; @

@�j
logL(�;x1; :::; xn) = 0:

where
@2

@�2j
logL(�;x1; :::; xn) < 0:

In this case, we solve it by numerical methods, like the Fisher Scoring method.

2.10 Some Measures of Statistical Models

When a number of models are �t to the same data set, we need a method to select the best

�tted model for the data. In the next subsections Akaike information criterion (AIC) and

Bayesian information criterion (BIC) are discussed respectively.

32



2.10.1 Akaike information criterion

AIC is the most widely selection model from a set of models. Akaike (1973) introduced an

information criterion, or Akaike�s information criterion which discerns how chose a �tted model

is to the generating or the true model. The idea of is to select the model that minimizes the

negative likelihood penalized by the number of parameters as speci�ed in the following equation

AIC = 2p� 2LL(x; �̂) (1.4)

where, p is the number of the estimated parameters in the model and LL(x; �̂) is the

maximized value of log likelihood function in the model. The model with the minimum is

chosen as the best to �t the data.

2.10.2 Consistent Akaike information criterion

Bozdogan (1987) proposed a corrected version of AIC in an attempt to overcome the tendency

of the AIC to estimate the complexity of the underlying model. Bozdogan (1987) observed that

the AIC does not directly depend on sample size n and as a result lacks certain properties of

asymptotic consistency. In formulating, the consistent Akaike information criterion (AICc) is

a correction factor based on the sample size and it is de�ned as:

AICc = �2 log(L) + p[(log n) + 1]

Models that minimize the consistent Akaike information criteria are selected.

2.10.3 Bayesian information criterion

Akaike (1978) and Schwarz (1978) suggested another measure to compare between �tted models

called Bayesian information criterion. AIC depends on estimated negative likelihood function

and number of the estimated parameter. While BIC penalizes negative likelihood by adding

the number of estimated parameters multiplied by the log of the sample size (see Jones (2011).

BIC can be obtained by:
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BIC = p log(n)� 2LL(x; �̂) (1.5)

where, p is the number of the estimated parameters in the model, LL(x; �̂) is the maximized

value of log likelihood function in the model and n is the sample size. Models that minimize

the Bayesian information criterion are selected. The relation between BIC and AIC criteria

can be obtained from (1:4) and (1:5) as follows:

BIC = p log(n) + 2p�AIC

.
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Chapter 3

A Two Parameters Distributions

In this chapter, we introduce some distributions of two unknown parameters, wich our new

distributions are extracted from them.

3.1 Two parameter Lindley distribution(TPLD)

This distribution introduced by [33]. A two-parameter Lindley distribution with parameters �

and � is de�ned by its probability density function (p.d.f)

f(x;�; �) =
�2(�+ x)e��x

�� + 1
; x > 0; � > 0; �� > �1 (1.6)

It can easily be seen that at � = �, the distribution (1:6)reduces to the Lindley distribution

and at � = 0, it reduces to the gamma distribution with parameters (2; �), The p.d.f. (1:6) can

be shown as a mixture of exponential(�)and gamma (2; �)distributions as follows:

f(x;�; �) = pf1(x) + (1� p) f2(x)

Where p = ��
��+1 ; f1(x) = �e

��x et f2(x) = �2xe��x

The cumulative distribution function of the distribution is given by:

F (x) = 1� 1 + �� + �x
�� + 1

e��x;x > 0; � > 0; �� > �1: (1.7)
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The rth moment about origin of the two-parameter Lindley distribution has been obtained as:

�pr = E (X
r) =

� (r + 1) (�+ r + 1)

�r (�+ 1)
; r = 1; 2; :::

By taking r = 1; 2; 3, we obtain :

�p1 =
(�� + 2)

� (�� + 1)
; �p2 =

2 (�� + 3)

�2 (�� + 1)
; �p3 =

6 (�� + 4)

�3 (�� + 1)
; �p4 =

24 (�� + 5)

�4 (�� + 1)
:

The log likelihood function of two-parameter Lindley distribution is:

logL(x;�; �) = n log �2 � n log (1 + ��) +
nX
log

i=0

(�� + xi)� n� �X:

3.1.1 Estimates from moments

Using the �rst two moments about origin, we have

�p2
�p1
= k =

2 (�� + 3) (�� + 1)

(�� + 2)2
:

Taking b = ��, we get

�p2
�p1
=
2 (b+ 3) (b+ 1)

(b+ 2)2
:

This gives a quadratic equation in b. Replacing the �rst and the second moments �p1 and

�p2by the respective sample moments �X and m20 an estimate of k can be obtained. Substituting

this estimate of b in the expression for the mean of the two-parameter LD, an estimate of � can

be obtained as :

�̂ =

�
b+ 2

b+ 1

�
1

X
; �X > 0 (1.8)

�̂ =
b

�̂
(1.9)

Later, we observed if we remplace � = 2+ �, we can obtain XLindley distribution(see last

section)
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3.2 Two parameter Sujatha distribution

The two parameter Sujatha distribution (TPSD) having parameters � et � de�ned by its pdf :

f(x;�; �) =
�3

��2 + � + 2
(�+ x+ x2)e��x; x; � > 0; � � 0 (2)

It can be easily veri�ed that (2) reduces to Zeghdoudi distribution for � = 0 .

The p.d.f (2) can be shown as a mixture of exponential(�); gamma (2; �)and gamma

(3; �)distributions as follows:

f(x;�; �) = p1f1(x) + p2f2(x) + (1� p1 � p2)f3(x):

Where p1 =
��2

��2+�+2
; p2 =

�
��2+�+2

, f1(x) = �e��x , f2(x) = �2

�(2)x
2�1�e��x and f3(x) =

�3

�(3)x
2e��x(for more details [34] ):

The cumulative distribution function of the distribution can be obtiend as :

FTPSD(x) = 1�
�
1 +

�x(� + �x+ 2)

��2 + � + 2

�
e��x;x > 0; � > 0; � � 0: (2.1)

The moment generating function of TPSD (2) is :

M (t) =
�3

��2 + � + 2

1Z
0

�
�+ x+ x2

�
dx: (2.2)

Thus, the rth moment about origin of the two-parameter Sujatha distribution has been

obtained as the coe¢ cient of t
r

r! in MX (t) ; and by taking r = 1; 2; 3, we obtain :

�p1 =
��2 + 2� + 6

�
�
��2 + � + 2

� ; �p2 = 2
�
��2 + 3� + 12

�
�2
�
��2 + � + 2

�
�p3 =

6
�
��2 + 4� + 20

�
�3
�
��2 + � + 2

� ; �p4 = 24
�
��2 + 5� + 30

�
�4
�
��2 + � + 2

�
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3.2.1 Estimation

Method of moment estimator (MoM)

Given a random sample X1; :::; Xn, the two-parameters sujatha distribution (2), by equating

the �rst two moments about origin with the sample mean and moment respectively, we have:

�p1 =
�X =

��2 + 2� + 6

�
�
��2 + � + 2

� ; �p2 = m0
2 =

2
�
��2 + 3� + 12

�
�2
�
��2 + � + 2

� (2.3)

��2 + � + 2 =
� + 4

� �X � 1
=
4 (� + 5)

�2m
0
2 � 2

(2.4)

We get the following cubic equation in �:

m
0
2�
3 + 4

�
m

0
2 � �X

�
�2 � 2

�
10 �X � 1

�
� + 12 = 0 (2.5)

Solving the equation (2:5) using iterative method such as Newton-Raphson method. It can

obtained the �̂MoM and substituting the value of �̂ in equation(2:4): The �̂MoM obtained as:

�̂MoM =
��x�̂2 � 2(�x� 1)�̂ + 6

�̂
2
(�̂�x� 1)

(2.6)

Maximum likelihood estimates (MLE)

Let Xi � TPSD(�; �); i = 1; n , n random variables.The log-likelihood function is:

logL(x;�; �) = n
�
3 log � � log

�
��2 + � + 2

��
+

nX
log

i=0

�
�+ xi + x

2
i

�
� n� �X

The MLE�s (�̂; �̂) of (�; �) are the solutions of the following non-linear equations:

@ log l(xi; �; �)

@�
=
3n

�
� n(2�� + 1)

��2 + � + 2
� n �X (2.7)

@ log l(xi;�; �)

@�
=

n�2

��2 + � + 2
+

nX
i=1

(
1

�+ xi + x2i
) (2.8)
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Chapter 4

New distributions under censored

data

In this chapter, we introduce some news distributions by size biasing known distributions.

The size-biased distributions arise when the observations generated from a random process

do not have equal probability of being recorded and are recorded according to some weight func-

tion. When the sampling mechanism is such that the sample units are selected with probability

proportional to some measure of the unit size, the resulting distribution is called "size-biased

distribution". Fisher (1934) �rst introduced such distributions to model ascertainment bias.

Let X be a random variable with probability density function (PDF) f(x; �) with unknown

parameter, then the corresponding weighted distribution function is given by:

f�(x; �) =
w(x):f(x; �)

E[w(x)]
(2.8)

where w(x) is a non-negative weight function such that E[w(x)] exists. A special case of the

weighted distributions, size-biased distributions is proposed by Rao (1965) when the weighted

function has the form w(x) = x� which is called as size-biased distributions of order �, when

� = 1 or � = 2, which are called length-biased and area-biased, respectively. Therefore, the

PDF of the length biased distribution is de�ned by

fL(x; �) =
x�:f0(x; �)

�0�
�1 < x < +1 (2.9)
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where �
0
� = E(X�) =

1Z
0

x�:f0(x; �)dx; for � = 1 and � = 2 we get the size-biased and

area-biased distributions and is applicable for area-biased sampling. In many statistical sam-

pling situations care must be taken so that one does not inadvertently sample from size-biased

distribution in place of the one intended.

Patil and Ord (1975) studied the size-biased sampling and the related form-invariant weighted

distribution whereas Van Deusen (1986) arrived at size - biased distribution theory indepen-

dently and applied it to �tting distributions of diameter at breast height (DBH) data arising

from horizontal point sampling (HPS). Later, Lappi and Bailey (1987) analyzed HPS diameter

increment data using size- biased distribution. Patil and Rao (1977; 1978) examined some gen-

eral models leading to size - biased distributions. The results were applied to the analysis of

data relating to human populations and wild life management. Gove (2003) reviewed some of

the recent results on size- biased distributions pertaining to parameter estimation in forestry

with special emphasis on Weibull distribution. Simoj and Maya (2006) introduced some funda-

mental relationships between weighted and unique variables in the context of maintainability

function and inverted repair rate. Mir and Ahmad (2009), Das and Roy (2011) and Ducey and

Gove (2015) have also studied the various aspects of size�biased distributions.

Zeghdoudi and Bouchahed (2018) introduced the Zeghdoudi Generated distribution (for

more details see [20]) with probability mass function:

f�GZD (x; �) =

Pn
k=0 akx

k exp (��x)Pn
k=0 ak

k!

�k+1

; �; x > 0 (3)

In the next sections we propose new size-biased general distribution which is obtained by

compounding the size-biased distribution with general distribution without considering its size-

biased form and special case of it.
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4.1 Size baised General one-parameter distribution and some

properties

The probability density function of Size biased Generalized Zeghdoudi Distribution X is:

fSbGZD (x; �) =

Pn
k=0 akx

k+1 exp (��x)Pn
k=0 ak

(k + 1)!

�k+2

; �; x > 0 (3.1)

The �rst and second derivatives of fSbGD;�(x)

d

dx
fSbGD(x; �) =

�
a0 + (2a1 � �a0) + :::+ ((n+ 1)an � �an�1)xn � �anxn+1

�
exp (��x)Pn

k=0 ak
(k + 1)!

�k+2

= 0

gives x1; x2;:::;xn solutions.

We can �nd easily the cumulative distribution function (c.d.f) of the size biased general

one-parameter distribution:

FSbGD(x) = 1�

Pn
k=0

ak� (k + 2; x�)

�k+2Pn
k=0 ak

(k + 1)!

�k+2

;x; � > 0 (3.2)

4.1.1 Survival and hazard rate function

Let:

SSbGD(x) = 1� FSbGD(x) =

Pn
k=0

ak� (k + 2; x�)

�k+2Pn
k=0 ak

(k + 1)!

�k+2

;x; � > 0 (3.3)

and:

hSbGD(x) =
fSbGD(x)

1� FSbGD(x)
=

Pn
k=0 akx

k+1 exp (��x)Pn
k=0

ak� (k + 2; x�)

�k+2

(3.4)

be the survival and hazard rate function, respectively.

41



Proposition 3 Let h�(x) be the hazard rate function of X: Then h�(x) is increasing for

mX
0

(k + 1)(m� 2k)am�kak+1 � 0; m = 0; :::; 2n� 1

Proof. According to Glaser (1980) and from the density function (3:1) we have

�(x) = �f
0
SbGD(x; �)

fSbGD(x; �)
= �

Pn
k=0(k + 1)akx

kPn
k=0 akx

k+1
+ �

After simple computations we obtain

�
0
(x) =

P2n
m=0

Pm
k=0(k + 1)(m� 2k)am�kak+1xm

(
Pn
k=0 akx

k+1)
2 :

Which implies that h�(x) is increasing for
Pm
k=0(k+1)(m�2k)am�kak+1 � 0; m = 0; :::; 2n�1

4.1.2 Moments and related measures

The kth moment about the origin of the SbGD is:

the Lindley�s distribution with applications

E(Xi) =

Pn
k=0

ak
�k+i+2

(k + i+ 1)!Pn
k=0 ak

(k + 1)!

�k+2

; i = 1; 2; :::

Remark 4 The kth moment about the origin of the Lindley distribution is:

E(Xi) =
i! (� + i+ 1)

�i (� + 1)

Corollary 5 Let X � SbGD(�); the mean of X is:

E(X) =
Pn
k=0

ak
�k+3

(k + 2)!Pn
k=0 ak

(k + 1)!

�k+2

: (3.5)

Theorem 6 Let X � SbGD(�), me =median(X) and � = E(X). Then me < �
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Proof. According to the increasingness of F (x) for all x and �,

FSbGD(me) =
1

2

and

FSbGD(�) = 1� h (�)
nX
k=0

ak�
�
k + 2; �h (�)

Pn
k=0

ak
�k+3

(k + 2)!
�

�k+2

Note that 12 < F (�) < 1. It is easy to check that F (me) < F (�). To this end, we have me < �.

The coe¢ cients of variation 
, skewness and kurtosis of the SbGD have been obtained as


 =

p
V ar(X)

E(X)

skewness =
E(X3)

(V ar(X))
3
2

kurtosis =
E(X4)

(V ar(X))2

4.1.3 Estimation of parameter

Let X1; :::; Xn be a random sample of SbGD. The ln-likelihood function, ln l(xi; �) is given by:

ln l(xi; �) = n lnh (�) +
nX
i=1

ln

 
mX
k=0

akx
k+1
i

!
� �

nX
i=1

xi: (3.6)

The derivative of ln l(xi; �) with respect to � is:

d ln l(xi; �)

d�
=
n _h (�)

h (�)
�

nX
i=1

xi

From the application of Size biased Zeghdoudi distribution in the next section, the method

of moments (MoM) and the maximum likelihood (ML) estimators of the parameter � are the
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same and it can be obtained by solving the following non-linear equation

_h (�)

h (�)
� �x = 0; where _h (�) = dh (�)

d�
(3.7)

The equation to be solved is:

mX
k=0

ak(k + 1)!

�k
((k + 2)� �x�) = 0 (3.8)

Note that we can solve the equation (3:8) exactly for m � 4 and for m � 5; this equation

it can be solved numerically.

Special cases

For m = 0; we have �̂MV =
1
2�x

For m = 1; we have �̂MV =
1
xa0

�
a0 � �xa1 +

p
�x2a21 + a

2
0 + 4�xa0a1

�
For m = 2; �̂MV is one of the two solutions:

8<:
1
2�xa1

�
a1
p
9�x2a21a

3
2 + 3�xa

3
1a
2
2 + 27�xa

2
1a
2
2 + 9a

3
1a2 + a0a2 � 3�xa2 + 3a1a2

�
;

� 1
2�xa1

�
a1
p
9�x2a21a

3
2 + 3�xa

3
1a
2
2 + 27�xa

2
1a
2
2 + 9a

3
1a2 + a0a2 � 3�xa2 + 3a1a2

�
For m = 3 and m = 4, we can solve exactly equation(3:8) using methods such as Cardan

and Ferrari method

Form � 5; according to Galois theorem, there is no general method to solve exactly equation

(3:8)

4.1.4 Stochastic orders

De�nition 7 Consider two random variables X and Y . Then X is said to be smaller than Y

in the:

a ) Stochastic order (X <s Y ), if FX(t) � FY (t), 8t:

b) Convex order (X �cx Y ), if for all convex functions � and provided expectation exist,

E[�(X)] � E[�(Y )]:

c) Hazard rate order (X <hr Y ), if hX(t) � hY (t), 8t:

d) Likelihood ratio order (X <lr Y ), if
fX(t)
fY (t)

is decreasing in t:
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Remark 8 Likelihood ratio order)Hazard rate order)Stochastic order.

If E[X] = E[Y ]; then Convex order,Stochastic order.

Theorem 9 Let Xi � SbGD(�i); i = 1; 2 be two random variables. If �1 � �2, then X1 <lr X2;

X1 <hr X2; X1 <s X2 and X1 �cx X2

Proof. We have

fX1(t)

fX2(t)
=

Pn
k=0 ak

(k + 1)!

�k+22Pn
k=0 ak

(k + 1)!

�k+21

e�(�1��2)t:

For simpli�cation, we use ln
�
fX1 (t)

fX2 (t)

�
. Now, we can �nd

d

dt
ln

�
fX1(t)

fX2(t)

�
= � (�1 � �2)

To this end, if �1 � �2 , we have d
dt ln

�
fX1 (t)

fX2 (t)

�
� 0. This means that X1 �lr X2: Also, according

to remark above the theorem is proved.

4.1.5 Mean Deviations

These are two mean deviation: about the mean and about the median, de�ned asMD1 =
R1
0 jx� �j f (x) dx

and MD2 =
R1
0 jx�mej f (x) dx respectively, where � = E(X) and me =Median(X): The

measures MD1 and MD2 can be computed using the following simpli�ed formulas

MD1 = 2�F (�)� 2
Z �

0
xf (x) dx

MD2 = �� 2
Z me

0
xf (x) dx

4.1.6 Extreme domain of attraction

As to the extreme value stability, the cdf FSbGZD is in the Gumbel extreme value domain of

attraction, that is, there exist two sequences (an)n�0 and (bn)n�0 of real numbers such that for
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any x 2 R, we have

lim
n!+1

P
�
Mn � bn
an

� x
�
= lim
n!+1

FSbGZD (anx+ bn)
n = exp(� exp(�x)):

This follows from Formula 1:2:4 in theorem 1:2:1 (De Haan and Ferreira (2006)) since we have

lim
t!1

1� FSbGD(t+ xf(t))
1� FSbGD(t)

= lim
t!1

fSbGZD(t+ xf(t))

fSbGZD(t)

= lim
t!1

Pn
k=0 ak (xf(t) + t)

k+1 e(��(xf(t)+t))Pn
k=0 akt

k+1e(��t)
= exp(�x);

(such formula is called �-variation). Then, FSbGD lies in the Gumbel extreme domain of at-

traction. In his case, f(t) = 1
� .

So, for (as in the invoked theorem) an = f(F�1SBGZD(1 � 1=n)) =
1
� and bn = F

�1
SBGZD(1 �

1=n), we have

lim
n!+1

FSbGZD (anx+ bn)
n = exp(� exp(�x))

4.1.7 Estimation of the Stress-Strength Parameter

The stress-strength parameter (R) plays an important role in the reliability analysis as it mea-

sures the system performance. Moreover, R provides the probability of a system failure, the

system fails whenever the applied stress is greater than its strength, i.e. R = P (X > Y ). Here

X � SbGD(�1) denotes the strength of a system subject to stress Y , and Y � SbGD(�2), X

and Y are independent of each other. In our case, the stress-strength parameter R is given by

R = P (X > Y ) =

Z 1

0
SX (y) fY (y) dy (3.9)

=

R1
0

Pn
k=0

ak� (k + 2; y�1)

�k+21

Pn
k=0 aky

k+1 exp (��2y) dy Pn
k=0 ak

(k + 1)!

�k+21

! Pn
k=0 ak

(k + 1)!

�k+22

!
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4.1.8 Lorenz curve

The Lorenz curve is often used to characterize income and wealth distributions. The Lorenz

curve for a positive random variable X is de�ned as the graph of the ratio

L(F (x)) =
E(XjX � x)F (x)

E(X)

against F (x) with the properties L(p) � p; L(0) = 0 and L(1) = 1. If X represents annual

income, L(p) is the proportion of total income that accrues to individuals having the 100 p%

lowest incomes. If all individuals earn the same income then L(p) = p for all p. The area

between the line L(p) = p and the Lorenz curve may be regarded as a measure of inequality of

income, or more generally, of the variability of X. For the exponential distribution, it is well

known that the Lorenz curve is given by:

L(p) = pfp+ (1� p)log(1� p)g

For the SbGZ distribution in(3:1);

E(XjX � x)FSbGD(x) =
Pn
k=0

ak
�k+3

(k + 2)!Pn
k=0 ak

(k + 1)!

�k+2

0B@1� Pn
k=0

ak� (k + 2; x�)

�k+2Pn
k=0 ak

(k + 1)!

�k+2

1CA (3.10)

4.2 Size Biased Zeghdoudi distribution (SBZGD) and some pro-

preties :

Recently, see [16] introduced a new distribution, named Zeghdoudi distribution (ZD) based on

mixture of gamma(2; �) and gamma(3; �), where the density function of random variable X is

given by :

fZGD(x; �) =

8<: �3

�+2x(1 + x)e
��x x; � � 0

0 otherwise
(4)

In this section, we give the size biased Zeghdoudi distribution and study its propreties:
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Let X be a random variable with PDF and CDF :

fSBZGD =
x:fZGD(x; �)

EZGD(x)

Where: E(x)=2(�+3)
�(�+2)

We have:

fSBZGD(x; �) =

8<:
�4x2(1+x)e��x

2(�+3) x; � > 0

0 otherwise
(4.1)

And the cumulative distribution function of SBZD is:

FSBZGD(x) =

xZ
0

fSBZD(x; �)dx =

xZ
0

�4x2(1 + x)e��x

2(� + 3)
dx

FSBZGD(x) =
�4

2(� + 3)

xZ
0

x2(1 + x)e��x dx

This gives:

FSBZGD(x) = 1� x
3�3 + x2(�3 + 3�2) + 2x(�2 + 3�) + 2� + 6

2(� + 3)
e��x ; x > 0 ; � > 0

(4.2)

The �rst derivative of fSBZGD(x) is:

dfSBZGD(x)

dx
= �x�4 e

�x�

2� + 6

�
x2� + x(� � 3)� 2

�
= 0

gives:

x = � 1

2�

�
� +

p
2� + �2 + 9� 3

�
< 0;

1

2�

�
�� +

p
2� + �2 + 9 + 3

�
and the second derivative is:
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d2fSBZGD (x)

dx2
= �4

e�x�

2� + 6

�
x3�2 + x2�2 � 6x2� � 4x� + 6x+ 2

�
and

d2fSBZGD (x)

dx2
< 0

Fig.3: Plots of the density function for some parameter values of �

Fig.4: Plots of the cumulative function for some parameter values of

�
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Therefore, the mode of SBZGD is given by:

Mode(x) =

8<:
1
2�

�
�� +

p
2� + �2 + 9 + 3

�
for � � 0

0 otherwise
(4.3)

4.2.1 Survival and hazard rate function

The survival function and failure rate(hazard rate)functions for a continuous distribution are

de�ned as :

Let:

SSBZGD(x) = 1� FSBZGD(x)

SSBZGD(x) =
x3�3 + x2(�3 + 3�2) + 2x(�2 + 3�) + 2� + 6

2(� + 3)
e��x ; x; � > 0 (4.4)

and:

HSBZGD(x) =
fSBZGD(x)

1� FSBZGD(x)

HSBZGD(x) =
�4x2(1 + x)

x3�3 + x2(�3 + 3�2) + 2x(�2 + 3�) + 2� + 6
(4.5)

be the survival and hazard rate function, respectively.

Proposition 10 Let HSBZGD(x) be the hazard rate function of X: Then HSBZGD(x) is in-

creasing.

Proof. According to Glaser(1980) and from the density function (4:1):

�(x) = �f
0
SBZGD(x)

fSBZGD(x)
=
(x� � 3x+ x2� � 2)

(1 + x)

�(x) =
1

1 + x
(x� � 3x+ x2� � 2)
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It follow that:

�
0
(x) =

1

(x+ 1)2
�
�x2 + 2�x+ � � 1

�
� 0;8x; �

Imply that hSBZGD(x) is increasing

4.2.2 Moments and related measures

The rth moment about the origin of the Size Biased Zeghdoudi Distribution can be obtained

as:

�
0
r = E(Xr) =

1Z
0

x(r)fSBZGD(x)dx

=

1Z
0

x(r)
�4x2(1 + x)e��x

2(� + 3)
dx

=
�4

2(� + 3)

1Z
0

xr+2(1 + x)e��xdx

Using gamma integral and little algebraic simpli�cation, we get �nally a general expression

for the rth factorial moment of SBZGD as:

�
0
r =

�3

2�r+3(� + 3)
[(r + 2)!(� + r + 3] ; r = 1; 2; 3:::: (4.6)

Substituting r = 1; 2; 3 and 4 in (4:6), the �rst four moments can be obtained and then

using the relationship between moments about origin and moment about mean, the �rst four

moment about origin of SBZGD were obtained as:

�
0
1 =

3(� + 4)

�(� + 3)

�
0
2 =

12(� + 5)

�2(� + 3)
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�
0
3 =

60(� + 6)

�3(� + 3)

�
0
4 =

360(� + 7)

�4(� + 3)

Proposition 11 Let X � SBZGD(x); the mean, variance, coe¢ cients of variation, skewness

and kurtosis for X are :

�1 = E(X) =
3(� + 4)

�(� + 3)
(4.7)

E(X2) =
12(� + 5)

�2(� + 3)

E(X3) =
60(� + 6)

�3(� + 3)

E(X4) =
360(� + 7)

�4(� + 3)

�2 = V ar(X) =
3(�2 + 8� + 12)

�2(� + 3)2
(4.8)

Skewness, Kurtosis and Coe¢ cient of variation of Size Biased Zeghdoudi distribution:

Skewness =
p
�1 =

E(X3)

(V ar(X))
3
2

=
60(� + 6)(� + 3)2�
3(�2 + 8� + 12)

� 3
2

Kurtosis = �2 =
E(X4)

(V ar(X))2
=
360(� + 3)3(� + 7)

(3�2 + 24� + 36)2

C:V = 
 =

p
V ar(X)

E(X)
=

q
3(�2 + 8� + 12)

3(� + 4)

Proposition 12 Let X1; X2:::::::; Xn be independant random variables from SBZGD(�) distrib-

ution, Then the moment generating function (mgf)is given by :
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Mx(e
tX) =

�
�

� � t

�4�
1� 2t

2� + 6

�
and

Ms(t) =

�
�

� � t

�4n�
1� 2t

2� + 6

�n
Proof. Let X1; X2; : : : ; Xn be n independent random variables, we have:

Ms(t) = E(e
tS) =Mx(t)

n =

�
�

� � t

�4n�
1� 2t

2� + 6

�n

Remark 13 The moment generating function for X and S exists ( E(etX) <1) only if t < �

Theorem 14 Let X � SBGZD(�), M = mod e(X), me =median(X) and � = E(X). Then

me < �. Then M < me < �

Proof. FSBZGD(M) = 1� P � e
��( 1

2�

�
��+

p
2�+�2+9+3

�
)
; � > 0

With:

P = (
�3(( 1

2�

�
��+

p
2�+�2+9+3

�3
)+
�
1
2�

�
��+

p
2�+�2+9+3

��4
)+�2 (3( 1

2�

�
��+

p
2�+�2+9+3

�2)
2(�+3)

)

+
+2( 1

2�

�
��+

p
2�+�2+9+3

�
))+2�(3( 1

2�

�
��+

p
2�+�2+9+3

�
)+1)+6

2(�+3)

FSBZGD(�) = 1�
(�3((

3(�+4)
�(�+3)

)3+(
3(�+4)
�(�+3)

)4)+�2(3(
3(�+4)
�(�+3)

)2+2(
3(�+4)
�(�+3)

))+2�(3(
3(�+4)
�(�+3)

)+1)+6

2(�+3) e
��( 3(�+4)

�(�+3)
)

4.2.3 Lorenz curve

The Lorenz curve is often used to characterize income and wealth distributions. The Lorenz

curve for a positive random variable X is de�ned as the graph of the ratio:

L(F (x)) =
E(XjX � x)F (x)

E(X)
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For the SBZGD distribution in(4:1),

E(XjX � x)F (x) = 1� e��x

2� + 6
[x3�3 + x2�(�2 + 3) + 2x(�2 + 3�) + 2�(� + 3)]

E(XjX � x)F (x) = 1� e��x

2� + 6
[(1 + x)(x2�3 + 2�2 + 6�) + 3x2�]

Thus, we obtain the Lorenz curve for the Size Biased Zeghdoudi distribution as:

L(p) =
�(� + 3)�

�
x3�3 + x2�(�2 + 3) + 2x(�2 + 3�) + 2�(� + 3)

�
e��x

3(� + 4)
(4.9)

where x = F�1(p) with F (:) given by (4:2).

4.2.4 Stochastic orders

De�nition 15 Consider two random variables X and Y . Then X is said smaller than Y in

the:

a ) Stochastic order (X <s Y ), if FX(t) � FY (t), 8t:

b) Convex order (X �cx Y ), if for all convex functions � and provided expectation exist,

E[�(X)] � E[�(Y )]:

c) Hazard rate order (X <hr Y ), if hX(t) � hY (t), 8t:

d) Likelihood ratio order (X <lr Y ), if
fX(t)
fY (t)

is decreasing in t:

Remark 16 Likelihood ratio order)Hazard rate order)Stochastic order. If E[X] = E[Y ];

then Convex order,Stochastic order.

Theorem 17 Let Xi � SBZD(�i); i = 1; 2 be two random variables. If �1 � �2, then

X1 <lr X2; X1 <hr X2; X1 <s X2 and X1 �cx X2

Proof. We have:
fX(t)

fY (t)
=
�1(�2 + 3)

�2(�1 + 3)
e�(�1��2)t (5)

54



For simpli�cation, we use lnfX(t)fY (t)
Now, we can �nd:

d

dt
ln

�
fX(t)

fY (t)

�
= �(�1 � �2) (5.1)

To this end, if �1 � �2 , we have d
dt ln

�
fX(t)
fY (t)

�
� 0. This means that X1 <lr X2. Also, according

to Remark 22 the theorem is proved.

4.2.5 Estimation of parameter

Method of Moments Estimation(MME)

Let X be the sample mean, equating sample mean and population mean E(x):

nX
i=1

xi
n
= E(x)

Putting the expression of E(x) from equation (4:7) in the equation and solving the equation

for �, We get :

X =
3(� + 4)

�(� + 3)

�̂MoM =
3(1�X) +

q
3(3X

2
+ 10X + 3)

2X
(5.2)

Maximum Likelihood Estimation (MLE)

Let Xi~SBZD(�), i = 1 : : : n be n random variables, The ln-likelihood function, ln l(xi; �) is:

L(�) =

�
�4

2(� + 3)

�n nY
i=1

(x2i + x
3
i )e

��
Pn
i=1 xi
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Logarithm of likelihood function is:

ln l (xi; �) = n ln(�4)� n ln(2� + 6) +
nX
i=1

ln(x2i + x
3
i )� �

nX
i=1

xi

ln l (xi; �) = 4n ln(�)� n ln(2� + 6) +
nX
i=1

ln(x2i + x
3
i )� �

nX
i=1

xi

The derivatives of ln l (xi; �) with respect to � is:

@ ln l(xi; �)

@�
= 0

@ ln l(xi; �)

@�
=

4n

�
� 2n

2� + 6
�

nX
i=1

xi

@ ln l(xi; �)

@�
=

4

�
� 2

2� + 6
�X = 0

From the SBZD (4:1), the method of moments (MoM) and the ML estimators of the para-

meter � are the same and it can be obtained by solving the following non-linear equation:

4

�
� 2

2� + 6
� x = 0

�̂MoM = �̂ML =
3(1�X) +

q
3(3X

2
+ 10X + 3)

2X
(5.3)

The following theorem shows that the estimator of � is positively biased.

Theorem 18 the estimator �̂ of � is positively biased, i.e: E(�̂)� � > 0.

Proof. Let g(x) = �̂, g(t) = 1
2t [3(1� t) +

p
3(3t2 + 10t+ 3)]

d2g(t)

dt2
=

3

t3 (3t2 + 10t+ 3)
3
2

h
15
p
3t+

�
3t2 + 10t+ 3

� 3
2 + 17

p
3t2 + 5

p
3t3 + 3

p
3
i
� 0

g(t) is strictly convex. Thus, by Jensen�s inequality, we have E(g(x)) > g(E(x)):

Finally, since E(g(x)) = g(�) = g
�
3(�+4)
�(�+3)

�
= �; we obtain E

�
�̂MoM

�
> �.
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Theorem 19 The estimator �̂ of � is consistent and asymptotically normal:

p
n
�
�̂ � �

�
P! N

�
0;
1

�2

�
The large-sample 100(1� �)%con�dence interval for � is given by:

�̂ � z�
2

1p
n�̂2

The proof is omitted because it is very similar to the proof of Theorem 4 (Ghitany et

all,2008b)

4.2.6 Simulation I :

We can see that the equation F (x) = u, where u is an observation from the uniform distribution

on (0; 1), cannot be solved explicitly in x (cannot use lambert W function in the case k � 2),

the inversion method for generating random data from the SBZD distribution fails. However,

we can use the fact that the SBZD distribution is a mixture of gamma (3; �) and gamma (4; �)

distributions:

fSBZD(x; �) = p(�)gamma(3; �) + (1� p(�))gamma(4; �) 0 < p(�) < 1

fSBZD(x; �) =

�
�

� + 3

��
x2�3e��x

2

�
+

�
3

� + 3

��
x3�4e��x

6

�
In this subsection, we investigate the behavior of the ML estimators for a �nite sample size

(n). A simulation study consisting of the following steps is being carried out N = 10000 times

for selected values of (�;n), where � = 0:1; 0:5; 1; 3; 6 and n = 20; 40; 100

- Generate Ui Uniform(0; 1), i = 1:::n:

- Generate Y i Gamma(3; �), i = 1:::n

- Generate Zi Gamma(4; �), i = 1:::n

- If Ui � p(�), then set: Xi = Yi, otherwise, set Xi = Zi, i = 1:::n
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average bais =
1

N

NX
i=1

(�̂i � �)

and the average square error:

MSE(�) =
1

N

NX
i=1

(�̂i � �)2

Table1.5. Average bias of the simulated estimates

� = 0:1 � = 0:5 � = 1 � = 3 � = 6

biais(�) biais(�) biais(�) biais(�) biais(�)

n = 20 0:0024030 0:030394 0:084275 0:2664075 0:4028392

n = 40 0:0020183 0:026631 0:076684 0:2509952 0:3547815

n = 100 0:001996 0:026566 0:07183 0:2322845 0:3631023

Table1.6. Average MSE of the simulated estimates

� = 0:1 � = 0:5 � = 1 � = 3 � = 6

MSE(�) MSE(�) MSE(�) MSE(�) MSE(�)

n = 20 0:00014896 0:004964 0:02364 0:228012 0:73059

n = 40 7:2187� 10�5 0:002560 0:0148009 0:139458 0:43883

n = 100 3:2452� 10�5 0:0015007 0:0085434 0:0838815 0:25438

Remark 20 Table1.5 shows that the bias is positive(as shown in the Theorem 18), it also shows

that bias and MSE (in table1.6)decreases as n increases and increases when � increases.

4.2.7 Application and goodness of �t :

Example1:

Table (2:1) and (2:2) represents the data of survival times (in months) of (94; 91)sierra leone and

Liberia individus infected with Ebola virus in 2016, which we compare Lindley distribution(LD),

Zeghdoudi distribution(ZD) and SBZD
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Table2.1: Comparison between LD, ZD and Size biased zeghdoudi distribution

Survival time m = 3:17 s = 2:095 Obs freq LD�=0:522 ZD
�=0:852

SBZD
�=1: 173

[0; 2] 25 38: 262 30: 339 25: 191

[2; 4] 43 28: 164 37: 27 43: 75

[4; 6] 18 15: 075 17: 743 18: 904

[6; 8] 6 7: 118 7 6: 165 8 4: 941 7

[8; 10] 2 3: 142 3 1: 828 1: 004 3

Total 94 94 94 94

�2 � 13: 571 1: 844 9 1:2714

Note: 94 sierra leone individus infected with Ebola virus in 2016.

Figure:6. Comparison of SBZD and other models with real data
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Table2.2: Comparison between LD, ZD and Size biased zeghdoudi distribution

Survival time m = 3 s = 2:095 Obs freq LD
�=0:548

ZD
�=0:896

SBZD
�=1: 236 1

[0; 2] 27 39:100 31:851 27: 161

[2; 4] 43 27:390 36:361 42: 810

[4; 6] 16 13:92 15:902 16: 428

[6; 8] 4 6:2475 5:0682 3: 797 8

[8; 10] 1 2:6189 1:3771 0:681 59

Total 91 91 91 91

�2 � 14: 761 2: 28 0:17246

Note: 91 Liberia individus infected with Ebola virus

Example2:

In this section, a real data represents the lifetime data relating to relief times (in minutes) of 20

patients receiving an analgesic and reported by Gross and Clark (1975; P:105). The data are as

follows: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0

According to Table 2:3, we can observe that size-biased Zeghdoudi distribution provide

smallest AIC, AICc and BIC values as compared to Exponeniel, Zeghdoudi, Shanker, Xgamma

distributions, and hence best �ts the data among all the models considered.

Table 2.3. The log-likelihood, AIC, AICc, BIC for 20 patients

Distribution � log-likelihood AIC AICc BIC

Exponential 0:5263 �32:83708 66:72676 67:89638 68:66989

Zeghdoudi 1:365411 �24:85939 52:4496 51:941 52:71451

SBZD 1:091109 �22:10433 46:39088 46:43088 47:20439

Shanker 0:838668 �29:89166 61:46066 62:00554 62:77905

Xgamma 1:107468 �31:50824 65:23142 65:2387 66:01221
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4.3 Maximun likelihood estimation based on censored data type

II :

Consider a n-sample (X1; X2:::::::::::Xn)Generated from (4:1)

We have (X(1); X(2)::::::X(m)); the �rst m order statistics. The maximum likelihood estima-

tion for type II censored data is:

L(�;x) =
n!

m!(n�m)!

mY
i=1

f(xi) [1� F (xm)]n�m (5.4)

Where: x1 � x2:::::: � xm
The MLE function can be written:

L(�;x) /
mY
i=1

h
�4x2i (1+xi)e

��xi

2(�+3)

i h
x3m�

3+x2m(�
3+3�2)+2xm(�

2+3�)+2�+6
2(�+3) e��xm

in�m
L(�;x) / �4m

(2�+6)m e
��

Pm
i=1 xi

"
mY
i=1

(x2i + x
3
i )

# h
x3m�

3+x2m(�
3+3�2)+2xm(�

2+3�)+2�+6
2�+6 e��xm

in�m
L(�;x) / �4m

(2�+6)m e
��Tm

"
mY
i=1

(x2i + x
3
i )

# h
x3m�

3+x2m(�
3+3�2)+2xm(�

2+3�)+2�+6
2�+6

in�m
We pose :

Tm =
mX
i=1

xi + (n�m)xm; LnL(�;x) = l(�nx¯ )

And the logarithm of M.likelihood is:

l(�nx
¯
) = 4m ln ��m ln(2�+6)+

Pm
i=1 ln

�
x2i + x

3
i

�
��Tm+(n�m) ln

h
x3m�

3+x2m(�
3+3�2)+2xm(�

2+3�)+2�+6
2�+6

i
l(�nx

¯
) = 4m ln ��n ln(2�+6)+

Pm
i=1 ln

�
x2i (1 + xi)

�
��Tm+(n�m) ln

�
x3m�

3 + x2m(�
3 + 3�2) + 2xm(�

2 + 3�) + 2� + 6
�

ML estimator of parameter � is �̂ML, and when equality to zero, we obtain :

dl(�nx
¯
)

d�
=
4m

�
� Tm �

2n

2� + 6
+ (n�m) 3x3m�

2 + 3x2m(�
2 + 2�) + 2xm(2� + 3) + 2

x3m�
3 + x2m(�

3 + 3�2) + 2xm(�
2 + 3�) + 2� + 6

= 0
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It is clear that the normal equations do not have explicit solutions. We need some numerical

techniques to solve the equations. As part of this work, we will use the R software; who has high

abilities to solve a system of nonlinear equations with his BB solve(Varadhan and Gilbert,

2009)

4.3.1 Simulation II :

In this section, a simulation is performed to �nd the parameter estimator of SBZD (�). The

distribution will be generated for � = 1 and N = 1000

Table2.4:Average estimates of parameter and MSE for � = 1 for varying m

n m �̂MLE MSE(�)

20 20 1:157917 0:04738771

15 1:040943 0:03955424

10 0:9337355 0:07708183

40 20 0:9275997 0:06249707

15 0:8753844 0:09010665

10 0:8313163 0:1609532

100 20 0:7925651 0:1635382

15 0:7458257 0:2374716

10 0:7349401 0:343093

Remark 21 Table 2.4 shows that �̂MLE decreases as n increases andm decreases, alsoMSE(�)

increases as n increases and m decreases.
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4.4 The XLindley Distribution (XLD): Properties and Appli-

cation

In this section, we introduce the XLidley distribution and study it�s properties. A mixture of

two known distributions used to give this new distribution that called XLindley distribution

(XLD).

Let X be a random variable following mixture distribution, it�s density function (pdf) f(x)

given in this form:

f(x) =
kX
i=1

pi:fi(x)

With:

fi(x) probability density function for each i:

pi, i = 1::::k denote mixing proportions that are no-negative, and
Pk
i=1 pi = 1

We consider: f1(x) � Exp(�) and f2(x) � Lindley(�) two independent random variables

with p1 = �
�+1 and p2 = 1�

�
�+1 respectively. Now the density function of XL is given by:

fXL(x; �) =

8<:
�2(2+�+x)
(1+�)2

e��x x; � � 0

0 otherwise
(5.5)

The �rst derivative of fXL(x) is:

dfXL(x)

dx
=
��2

�
�2 + �(2 + x)� 1

�
(1 + �)2

e�x� = 0

gives:

x = �
�
�2 + 2� � 1

�
�

For:

1) 0 � � �
p
2� 1: x̂ = �(�

2+2��1)
� is critical point which fXL(x̂; �) is maximun.

2) � �
p
2� 1: d

dxfXL(x; �) � 0 , then the density function fXL(x; �) is decreasing in x.
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And second derivative is:

d2f(x)

dx2
=
�3
�
�2 + �(2 + x)� 2

�
(1 + �)2

e�x�

and
d2fSBZGD (x)

dx2
< 0

Therefore, the mode of XL is given by:

mode(X) =

8<: �(�
2+2��1)
� for 0 < � <

p
2� 1

0 otherwise
(5.6)

We can �nd easily the cumulative distribution function(cdf) of the XL distribution :

FXL(x; �) = 1�
�
1 +

�x

(1 + �)2

�
e��x x > 0; � > 0 (5.7)

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

f(x)

Fig7. Plots of f(x) for some parameter

values:bleu(1)red(0:5)green(0:25)black(3)
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0.8

1.0

1.2

x

F(x)

Fig8. Plots of CDF for some parameter values:brown(0.1); green(0.25);red(0.5); blue(1);black(3)

4.4.1 Survival and hazard rate function

The survival function and failure rate(hazard rate) function for a continuous distribution are

de�ned as :

Let:

SXL(x) = 1� FXL(x)

SXL(x) = 1�
�
1�

�
1 +

�x

(1 + �)2

�
e��x

�
SXL(x) =

�
1 +

�x

(1 + �)2

�
e��x x � 0 ; � � 0 (5.8)
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and:

HXL(x) =
fXL(x)

1� FXL(x)

HXL(x) =
�2 (x+ � + 2)

(1 + �)2
�
x �
(1+�)2

+ 1
�

HXL(x) =
�2 (x+ � + 2)

(1 + �)2 + x�
(5.9)

be the survival and hazard rate function, respectively.

Proposition 22 Let HXL(x) be the hazard rate function of X: Then HXL(x) is increasing

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

x

H(x)

Fig9. Plots of hazard function for some parameter values: blue(0.25);pink(0.5);red(3);black(4)

Proof. According to Glaser(1980) and from the density function(5:5):

�(x) = �f
0
XL(x)

fXL(x)
=
x� + �2 + 2� � 1

x+ � + 2

�(x) =
1

x+ � + 2

�
x� + �2 + 2� � 1

�
It follow that:

�
0
(x) =

1

(x+ � + 2)2
(6)
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Imply that hXL(x) is increasing

4.4.2 Moments and related measures

The rth moment about the origin of the XLindey distribution can be obtained as:

�
0
r = E(Xr) =

1Z
0

x(r)fXL(x)dx

=

1Z
0

x(r)
�2(2 + � + x)

(1 + �)2
e��xdx

=
�2

(1 + �)2

1Z
0

xr(2 + � + x)e��xdx

Using gamma integral and little algebraic simpli�cation, we get �nally a general expression

for the rth factoriel moment of XL distribution as:

�
0
r =

�
�2 + 2� + r + 1

�
r!

(1 + �)2�r
(6.1)

Substituting r = 1; 2; 3 and 4 in (6:1), the �rst four moments can be obtained and then

using the relationship between moments about origin and moment about mean, the �rst four

moment about origin of XL distrbution were obtained as:

�
0
1 =

�2 + 2� + 2

(1 + �)2 �
=
(1 + �)2 + 1

(1 + �)2 �
=
1

�
+

1

(1 + �)2 �

�
0
2 =

2(�2 + 2� + 3)

(1 + �)2 �2

�
0
3 =

6(�2 + 2� + 4)

(1 + �)2 �3

�
0
4 =

24(�2 + 2� + 5)

(1 + �)2 �4
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Proposition 23 Let X � XL(x); The mean, variance, coe¢ cients of variation, skewness and

kurtosis for X are:

�1 = E(X) =
(1 + �)2 + 1

(1 + �)2 �
(6.2)

E(X2) =
2(�2 + 2� + 3)

(1 + �)2 �2

�2 = V ar(X) =
�4 + 4�3 + 10�2 + 10� + 2

(1 + �)4 �2
=
(1 + �)4 + 4�2 + 6� + 1

(1 + �)4 �2

Skewness, Kurtosis and Coe¢ cient of variation of XL distribution :

Skewness =
p
�1 =

E(X3)

(V ar(X))
3
2

=
6(�2 + 2� + 4) (1 + �)4h
(1 + �)4 + 4�2 + 6� + 1

i 3
2

Kurtosis = �2 =
E(X4)

(V ar(X))2
=

24(�2 + 2� + 5) (1 + �)6h
(1 + �)4 + 4�2 + 6� + 1

i2

C:V = 
 =

p
V ar(X)

E(X)
=

q
(1 + �)4 + 4�2 + 6� + 1

(1 + �)2 + 1

The coe¢ cients are increasing functions in � (see next �gure for the graphe of C.V (
) and

Skewness(
p
�1) for varying �)

0 1 2 3 4 5
0

2

4

6

theta

y

Fig10. Coe¢ cients for variation (red)

and skewness(black)
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4.4.3 Stochastics Ordering

De�nition 24 Consider two random variables X and Y . Then X is said smaller than Y in

the :

a) Stochastic order (X <s Y ), if FX(t) � FY (t), 8t:

b)Convex order (X �cx Y ), if for all convex functions � and provided expectation exist,

E[�(X)] � E[�(Y )]

c)Hazard rate order (X <hr Y ), if hX(t) � hY (t), 8t

d) Likelihood ratio order (X <lr Y ), if
fX(t)
fY (t)

is decreasing in t

Remark 25 Likelihood ratio order)Hazard rate order)Stochastic order. If E[X] = E[Y ];

then Convex order,Stochastic order.

Theorem 26 Let Xi � XL(�i); i = 1; 2 be two random variables. If �1 � �2, then X1 <lr X2;

X1 <hr X2; X1 <s X2 and X1 �cx X2

Proof. We have

fX(t)

fY (t)
=
�21(2 + �1 + t)(1 + �2)

2

�22(2 + �2 + t)(1 + �1)
2
e�(�1��2)t (6.3)

For simpli�cation, we use lnfX(t)fY (t)
Now, we can �nd

d

dt
ln

�
fX(t)

fY (t)

�
= � �1 � �2

(t+ �1 + 2) (t+ �2 + 2)
� (�1 � �2) (6.4)

To this end, if �1 � �2 , we have d
dt ln

�
fX(t)
fY (t)

�
� 0 . This means that X1 �lr X2: Also, according

to Remark 25 the theorem is proved.
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4.4.4 Estimation of parameter

Method of Moments Estimation(MME)

Let X be the sample mean, equating sample mean and population mean E(x):

nX
i=1

xi
n
= E(x)

Putting the expression of E(x) from equation (6:2) in the equation and solving the equation

for �, We get:

X =
(1 + �)2 + 1

(1 + �)2 �
=
�2 + 2� + 2

�3 + 2�2 + �

We obtain equation of 3rd degree: X�3 + �2(2X � 1) + �(X � 2)� 2 = 0, We take the real

part for the solution:

�̂MoM = � 1
3X

�
2X � 1

�
+

2
9X
+ 1

9X
2+

1
9

3

rq
1

27X
+ 13

36X
2+

1

9X
3+

1

27X
4+

11
18X

+ 1

9X
2+

1

27X
3+

1
27

+ 3

rq
1
27X

+ 13

36X
2 +

1

9X
3 +

1

27X
4

+ 3

q
+ 11
18X

+ 1

9X
2 +

1

27X
3 +

1
X7

Maximum Likelihood Estimation (MLE)

Let Xi~XLD(�), i = 1 : : : n be n random variables, The ln-likelihood function, ln l(xi; �) is:

L(�) =

�
�2

(1 + �)2

�n nY
i=1

(2 + � + xi)e
��

Pn
i=1 xi (6.5)

Logarithm of likelihood function is:

ln l (xi; �) = 2n log � � 2n log(1 + �) +
nX
i=1

log(2 + � + xi)� �
nX
i=1

xi

ln l (xi; �) = 2n [log � � log(1 + �)] +
nX
i=1

log(2 + � + xi)� �
nX
i=1

xi
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The derivatives of ln l (xi; �) with respect to � is:

@ ln l(xi; �)

@�
= 0

@ ln l(xi; �)

@�
=

2n

�
� 2n

1 + �
+

nX
i=1

�
1

2 + � + xi

�
�

nX
i=1

xi

@ ln l(xi; �)

@�
=

2

�
� 2

1 + �
+
1

n

nX
i=1

�
1

2 + � + xi

�
� �X

@ ln l(xi; �)

@�
=

2

�(1 + �)
+
1

n

nX
i=1

�
1

2 + � + xi

�
� �X (6.6)

To obtain the MLE of �: �̂MLE , we can maximize equation(6:6) directly with respect to �, or

we can solve the non-linear equation @ ln l(xi;�)
@� = 0: Note that �̂MLE cannot solved analytically;

so we have to use numerical itération techniques, such as the Newton-Raphson algorithm, are

thus adopted to solve the logarithm of likelihood equation for which(6:6) is maximized.

The following theorem shows that the estimator of � is positively biased.

Theorem 27 the estimator �̂ of � is positively biased, i.e: E(�̂)� � > 0.

Proof. Let g(x) = �̂;

g(t) = � 1
3t (2t� 1) +

2
9t
+ 1
9t2
+ 1
9

3

rq
1
27t
+ 13
36t2

+ 1
9t3
+ 1
27t4

+ 11
18t
+ 1
9t2
+ 1
27t3

+ 1
27

+ 3

rq
1
27t +

13
36t2

+ 1
9t3
+ 1

27t4

+ 3

q
+ 11
18t +

1
9t2
+ 1

27t3
+ 1

7t

Proof. d2g(t)
dt2

� 0; g(t) is strictly convex. Thus, by Jensen�s inequality, we have E(g(x)) �

g(E(x)):

Finally, since E(g(x)) = g(�) = g
�
(1+�)2+1

(1+�)2�

�
= �; we obtain E

�
�̂MoM

�
> �

Theorem 28 The estimator �̂ of � is consistent and asymptotically normal:

p
n
�
�̂ � �

�
P! N

�
0;
1

�2

�

The large-sample 100(1� �)%con�dence interval for � is given by:

�̂ � z�
2

1p
n�̂2
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Proof. The proof is omitted because it is very similar to the proof of Theorem 4 (Ghitany

et al,2008b).

4.4.5 The quantile function of XL distribution

It may be noted that FX(x) in equ(5:7) is continuos and strictly increasing, so for the quantile

function of X is de�ned :

QX(u) = xu = F
�1
X (u) u� [0:1] (6.7)

For u = FXL(x), we give an explicit expression for QX(u) in terms of the Lambert W fuction

in the following thorem and results.

Theorem 29 For any � > 0, the QX(u) of the XLindley distribution X is

QX(u) = xu = �
(1 + �)2

�
� 1
�
W�1

"
(1 + �)2

exp (1 + �)2
(u� 1)

#
; u� [0:1] (6.8)

Where W�1 is the negative branch .

Proof. For any � > 0 let 0 < u < 1:From equ(6:7) we will solve the equation u = FXL(x)

with respect to x, by following the steps bellow:

�
1 +

�x

(1 + �)2

�
e��x = (1� u)

h
(1 + �)2 + �x

i
e��x = (1� u) (1 + �)2 (6.9)

We multipling the both sides by
�
� exp (�1� �)2

�
of the equ(6:9), we get:

�
�
(1 + �)2 + �x

�
e�[(1+�)

2+�x] = (1 + �)2 (u� 1)e�(1+�)
2

(7)

By using the de�nition of Lambert W function (W (z) exp(W (z)) = z) [32], we observe that

�
h
(1 + �)2 + �x

i
is the Lambert W function of the real argument (1 + �)2 (u� 1)e�(1+�)2 :
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So, we have:

W
�
(1 + �)2 (u� 1)e�(1+�)

2
�
= �

h
(1 + �)2 + �x

i
W

 
(1 + �)2

e(1+�)
2 (u� 1)

!
= �

h
(1 + �)2 + �x

i
(7.1)

In addition to that , for any � > 0 and x > 0 it�s obviously that (1 + �)2 + �x > 0 and it also

checked that (1 + �)2 (u� 1)e�(1+�)2�
�
1
e ; 0
�
since 0 < u < 1. Thus, by taking into account the

properties of the negative branch W�1 of the Lamber W function, so the equation(7:1) become:

W�1

 
(1 + �)2

e(1+�)
2 (u� 1)

!
= �

h
(1 + �)2 + �x

i
(7.2)

Which in turn means the result that given before in Theorem 29 is complete.

Fig11 : The empirical quantiles & theoretical quantiles of XLD

It is clear in Fig11 of QQ-Plot that the �tted theoretical quantiles of XL distribution is

closer to the empirical quantiles, it�s appears as roughly a straight line (although the ends of

the Q-Q plot often start to deviate from the straight line).
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4.4.6 Simulation

We can see that the equation F (x) = u, where u is an observation from the uniform distribution

on (0; 1), can be solved explicitly in x ( we�re going to use lambert W function, because in

this case k = 1)

In this subsection, we investigate the behaviour of the ML estimators for a �nite sample

size (n). A simulation study consisting of the following steps is being carried out N = 10000

times for selected values of (�;n), where � = 0:1; 0:5; 1; 3; 5 and n = 20; 40; 100

- Generate Ui Uniform(0; 1), i = 1:::n:

- Generate Y i exponentiel(�), i = 1:::n

- Generate Zi lindley(�), i = 1:::n

- If Ui � p(�), then set Xi = Yi, otherwise, set Xi = Zi, i = 1:::n

average bais =
1

N

NX
i=1

(�̂i � �)

and the average square error:

MSE(�) =
1

N

NX
i=1

(�̂i � �)2

Bias � = 0:1 � = 0:5 � = 1:5 � = 3 � = 6

n = 20 0:0032 0:01067 0:0485 0:276 0:785

n = 40 0:00183 0:0150 0:0135 0:126 0:1770

n = 100 0:000321 0:00404 0:0147 0:0452 0:0598

Table2.5.Average bias of the estimator �̂
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MSE � = 0:1 � = 0:5 � = 1 � = 3 � = 5

n = 20 1; 0854:10�5 0:000113 0:00236 0:0765 0:6177

n = 40 3; 357:10�6 0:000225 0:000183 0:01599 0:03135

n = 100 1; 0334:10�7 1:640:10�5 0:000217 0:00204 0:00358

Table2.6.The average square error of the estimator �̂

The result of the simulation are presented in (Tab.2.5) and (Tab.2.6). The following obser-

vations are made from the simulation study:

� For some given value of �, the average of: bias of �̂ and mean square error of �̂ are

decreases as sample size n increases

� The mean square error(MSE) gets higher and following a similair ways for larger value of

� as we mentioned before.

4.4.7 Application and godness of �t

Now we have used data of survival times (in months) of 94 sierra leone individus infected with

Ebola virus showing in table.3, which we compare Lindley distribution(LD), ZD, Exponentiel,

Xgamma and XL distributions.

.

Survival timem = 3:17 s = 2:095 Obs freq LD �̂=0:522 Xgamma �̂=0:689 ZD �̂=0:852 Exp �̂=0:315 XL �̂=0:467

[0 ,2 ] 45 38: 262 37: 652 30: 339 43: 937 41: 028

[2; 4] 22 28: 164 27: 197 37: 27 23: 4 25: 855

[4; 6] 17 15: 075 16: 342 17: 743 12: 463 13: 984

[6; 8] 7 7: 118 7 7: 776 9 6: 165 8 6: 637 5 6: 998 6

[8; 10] 3 3: 142 3 3: 201 5 1: 828 3: 535 1 3: 340 9

Total 94 94 94 94 94 94

�2 � 2: 789 9 3: 204 0 14: 236 1: 861 9 1: 644 6

Table3: Comparison between LD, XG, ZD, Exp and XL distributions
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Fig12: GoF of Real data with de¤erent distributions

The Figure:12 shows that the XLindley distribution �t the real data better then the other

distributions

Figure13: The pdf and QQ plots of the models for the data set
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Figure14: The CDF and P-P plots of the models for the data set

A density plot compare the �tted densities of the models with the empirical histogram of the

data set showing in figure:13; it�s clear that the �tted probability density and the quantile of

XL model are closer to the empirical histogram & quantiles than the Exponential and Lindley.

Also in figure:14 the �tted cdf for XL model is closer to the empirical cdf of the data set than

the other models.
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Chapter 5

General conclusion & Perspectives

This study introduces several mathematical properties of two new distributions that are spe-

cial cases of two parameters distributions: Lorenz curve, moments, quantile and Lambert W

functions, methods of point estimate...

Also, the MLE procedure of SBZD was employed to estimate the parameter under two cases:

complete & censored data.

In other hand, a simulation studies are carried out to examine the bias and MSE of ML

estimators of the unkown parameters of the new models, the e¢ ciency and importance of the

SBZ and XL distributions are obtained through a real data sets that showed as the hight

�exibility and potentiality for the both N-distributions.

So, according to the pratical part the new distributions are good for modeling in several

areas: epidemiology, medical and biochemistry...

Perspectives:

- The Inverse XLindley: Statistical properties with application to COVID-19

- The N-Generalized XLindley families (with coe¢ cient ak depend on �)
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