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 الملخص
 

 
هذه تُدرس المتنقّلة. الروبوتات تطبیقات من العدید في جوهریّة مشكلة الآمنة الذاتیة القیادة ضمان                یُعتبر

الاصطدام. تجنّب على بطبیعته یقتصر الذي (ICS) الحتمیة الاصطدام حالة إطار في عادةً               المسألة

كبدیل (Viability Theory) البقاء بنظریّة تعرف عموما أكثر نظریّة استعمال الأطروحة هذه              تنحرّى

ما هناك البقاء، نظریّة قلب في التصادم. تفادي مجرّد ولیس متعدّدة بقیود الآمنة القیادة تتعلّق                 عندما

ینطلق أن یمكن التي الروبوتي النظام حالات مجموع وهو ،(Viability Kernel) البقاء بنواة               یعرف

تقوم خوارزمیة الأطروحة هذه تقدّم الأبد. إلى الحركة قیود لجمیع یخضع الأقل على واحد مسار                 منها

الأوساط مع التعامل على قادرا وكذلك متحفظّا بكونه یتمیز البقاء لنواة تقریبي بحساب مسبق                بشكل

یتعلّق ما في مسبقا، المحسوبة البقاء نواة فائدة مدى لتبیین متحركة. عوائق تحوي التي كتلك                 المتغیّرة

الروبوتي النظام قیادة على قدرتها أثبتت تفاعلیة ملاحة خطة ضمن استعمالها تمّ الآمنة، القیادة                بضمان

القیود خرق بدون السرعة) الرؤیة، التصادم، (تفادي للحركة قیود بعدة تتعلق مختلفة سیناریوهات               في

 الخاصة بالحركة على الإطلاق.

 

 الكلمات المفتاحیة:  القیادة الذاتیة، السلامة المضمونة، تجنب الاصطدام، نظریة البقاء

 
 
 
 
 
 
 
 
 
 



ABSTRACT

Guaranteed motion safety is a substantial issue in many mobile robotics applications. This issue

is usually tackled in the Inevitable Collision State (ICS) framework which is inherently limited

to collision avoidance. This thesis explores the use of the more general Viability theory as an

alternative when safe motion involves multiple motion constraints and not just collision avoidance.

Central to Viability is the so-called viability kernel, i.e. the set of states of the robotic system

for which there is at least one trajectory that satisfies the motion constraints forever. This thesis

presents an algorithm that computes off-line an approximation of the viability kernel that is both

conservative and able to handle time-varying constraints such as moving obstacles. To demonstrate

the usefulness of the computed viability kernel with regard to motion safety, it has been used inside

a basic on-line reactive navigation scheme that proved able to control the robot in several different

scenarios involving multiple motion constraints (collision avoidance, visibility, velocity) without

ever violating the motion safety constraints at hand.

Keywords: Autonomous Navigation, Provable Safety, Collision Avoidance, Viability Theory



RÉSUMÉ

La garantie de sûreté de mouvement est un problème important dans de nombreuses appli-

cations de robotique mobile. Ce problème est généralement abordé dans le cadre des États de

Collision Inévitable ce qui est intrinsèquement limité à l’évitement des collisions. Cette thèse ex-

plore l’utilisation de la théorie plus générale de la Viabilité comme alternative lorsque la sûreté de

mouvement implique des contraintes autres que l’évitement de collision. Le noyau de viabilité,

i.e. l’ensemble des états du système robotique pour lesquels il existe au moins une trajectoire qui

satisfait les contraintes de mouvement indéfiniment, est un élément central de la théorie de la vi-

abilité. Cette thèse présente un algorithme qui calcule hors ligne une approximation du noyau de

viabilité qui est à la fois conservative et capable de gérer des contraintes dynamiques telles que des

obstacles mobiles. Pour démontrer l’utilité du noyau de viabilité quand à la garantie de sûreté de

mouvement, il a été utilisé dans un schéma de navigation réactive en ligne qui s’est avéré capable

de piloter le système robotique dans de différents scénarios impliquant plusieurs contraintes de

mouvement (évitement de collision, visibilité, vitesse) sans jamais violer les contraintes de mou-

vement en vigueur.

Mots-clés: Navigation Autonome, Sûreté Garantie, Évitement de Collision, Théorie de Via-

bilité
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Chapter 1

INTRODUCTION

1.1 Context and Motivation

Mobile robotic systems are increasingly leaving the research laboratories to take part in our every-

day lives. They come in a variety of types and can carry out so many different tasks. But before we

can have them around, it is essential to assert that these robotic systems can safely navigate among

the persons and objects that may populate their operational environment. Safe navigation refers

to the ability of the mobile robotic system to go from one location to another while avoiding dan-

gerous situations, such as collisions. Safe navigation grows more and more critical in applications

where the size and dynamics of the mobile robotic system make it potentially harmful for itself

and its environment.

One of the trending applications where motion safety plays a major role is the self-driving

vehicles i.e. cars or trucks in which human drivers are not required to take control in order to

safely operate the vehicle (e.g. Fig. 1.1). The amount of hype around self-driving vehicles is

rightfully justified when we look at the numerous potential benefits that these machines can bring.

First and foremost, they would substantially reduce the traffic accidents. According to the World

Health Organization [38], every 24 seconds someone dies on the road, and by some estimates [50],

more than 90% of all accidents are attributed to the driver’s error such as inattention and poor
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(a) Waymo (b) Cruise AV

Figure 1.1: Self-driving cars.

decision making. In addition to that, self-driving vehicles would improve access to mobility for the

elderly and disabled, and also increase the efficiency of how people move about by reducing traffic

congestion and allowing more free time during commuting. For several years, many manufacturers

have been developing and testing their self-driving vehicles in public roads. These self-driving

vehicles were reported to have driven an impressive number of kilometers1. On the not-so-bright

side though, these tests have known several incidents of self-driving vehicle crashes over the past

few years. The most notable incident is the Uber crash that led to a pedestrian fatality (Fig. 1.2).

These incidents put in evidence a couple of important facts. First, despite the progress made in

self-driving vehicles development, motion safety remains an open problem. Second, motion safety

is a fundamental problem that, in many applications, can be life critical.

1In October 2018, Google self-driving cars (now Waymo) were reported to have logged over 16 million kilometers
on public roads in the United States.
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Figure 1.2: (Left) Location of the Uber crash, showing the paths of the pedestrian in orange and of

the Uber test vehicle in green. (Right) Post-crash view of the Uber test vehicle, showing damage

to the right front side.

1.2 Guaranteed Motion Safety

It is now clear that before we can deploy mobile robotic systems in different real-world applica-

tions, it is essential to assess their motion safety in a rigorous manner. The levels of motion safety

that a robotic system can achieve must be explicitly stated as well as the operational conditions

under which they can be guaranteed [20].

When studying motion safety, it is important to first distinguish between the various reasons

that could potentially lead to an accident. The source of a crash can be mechanical, such as an

incorrect assembly of a brake system, or electrical such as faulty internal wiring. It could be a

failure of computing hardware chips, or due to errors or bugs in the autonomy software. Accidents

might as well be caused by bad or noisy sensor data or inaccurate perception. And they can also

happen due to incorrect planning or decision-making, inadvertently selecting hazardous actions.



4

In this thesis, we restrict ourselves to the latter case and look at the motion safety problem solely

from a decision-making point of view.

Even if we do assume the robotic system is working perfectly from a hardware and software

point of view, and has an accurate perception of its surrounding at all times, the problem of guar-

anteed motion safety remains quite challenging. This challenge stems from the fact that in most

applications, mobile robotic systems are designed to operate in dynamic environments i.e. among

moving objects such as human beings, vehicles or other robotic systems. In dynamic environments,

the robotic system is required to account for the future behavior of the moving objects when de-

ciding its course of action. Failure to do so yields navigation strategies whose motion safety is not

guaranteed.

Accounting for the future behavior of the moving objects entails two issues. The first one

concerns the determination of a model of their future behavior. In certain cases, this model may be

available beforehand. In most cases however, it will be necessary to estimate this future behavior

based on the information provided by its sensors. This thesis will suppose that this first issue is

already solved, i.e. it is assumed that a model of the future has been determined. Thus the work

will concentrate only in the second issue necessary to account for the moving objects. This second

issue has to do with how to arrive to a decision that guarantees the motion safety of the system with

respect to a given model of the future. This key question to guaranteed motion safety is usually

tackled using the Inevitable Collision States (ICS) Framework [16].

1.2.1 Motion Safety from an ICS Perspective

An Inevitable Collision State for a given robotic system is a state for which, no matter what the

future trajectory followed by the system is, a collision with an object eventually occurs. Imagine
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the state of a robotic system with limited deceleration capabilities heading towards a nearby wall

at a very high speed. Although not in collision at the present state, it has nothing to do in this case

but to crash into the wall. For obvious safety reasons, the robotic system should never ever find

itself in an ICS. The concept of ICS is well suited to address the issue of safe motion in dynamic

environments since it takes into account both the dynamics of the robotic system and the future

behavior of the moving objects. However, employing ICS presents its own challenges. First, the

intrinsic complexity of their characterization must be worked out to determine if a state is an ICS or

not. Once the safety verification of a given state can be performed, the next move is to employ that

information in a collision avoidance scheme to keep the robotic system at hand safe from falling in

an ICS.

1.2.2 Viability Theory as an Alternative

Although the perspective given by ICS provides an answer to the issue of guaranteed motion safety

when it comes to avoiding collisions, there is often more to motion safety than mere collision

avoidance. In many cases, the motion of the robotic system must satisfy various types of constraints

in order to be considered safe. For instance, a legged robot should maintain its balance, the speed

of an airplane should never go beyond its stalling speed, or a spy robot should stay out of sight

of a patrol. No matter what the set of constraints that the robotic system ought to satisfy, they

yield a set of forbidden states that the robot should avoid. The tenet of this thesis is that motion

safety in general should receive an ICS-like treatment. In other words, the robotic system should of

course avoid the states that violate the constraints, but more importantly, it should avoid the states

inevitably leading to them.

To address this key question, this thesis considers the Viability framework which is more gen-
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eral than the ICS framework. Viability theory [2] addresses the following question: how to control

dynamical systems subject to viability constraints? Viability constraints define a subset of the state

space of the system within which the system should remain. A viable state is guaranteed to have

at least one sequence of controls which will keep the system within the viability constraint set

indefinitely. Conversely, nonviable states are those where failure is no longer avoidable. Note that

when collision avoidance is the only viability constraint, the nonviable states are Inevitable Colli-

sion States. The viability kernel of the viability constraints is the set of all its viable states. In this

framework, the ability to design a control system for a robot that is able to compute its viability

kernel and remain inside it at all times is also the key to guaranteed motion safety.

1.3 Contribution and Thesis Organization

The primary contribution of this thesis is the Conservative Viability Algorithm (CVA). It consists

of an adaptation of the viability kernel approximation algorithm presented in [44]. Our adaptation

is designed to make the algorithm: (i) conservative, and (ii) able to handle time-varying viability

constraints such as moving obstacles. These two features are essential to address the issue of

guaranteed safe motion in dynamic environments. To showcase its versatility and its ability to

address different kinds of viability problems, the algorithm proposed has been implemented and

used to compute the viability kernel for the case of a double integrator robot in seven scenarios

with mixed combinations of workspace (static, moving obstacles) and viability constraint types

(collision avoidance, visibility, velocity). To demonstrate the usefulness of the viability kernel

computed off-line by the Conservative Viability Algorithm, it is used on-line inside a basic and

purely reactive navigation scheme that proved able to control the robot in the different scenarios

without ever violating the viability constraints at hand. The viability kernel could just as well be

used inside a motion planner in order to compute safe motions.
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The rest of the thesis is organized as follows: Chapter 2 reviews the relevant literature con-

cerning ICS characterization methods, with a discussion of their advantages and disadvantages

as opposed to the proposed approach. Chapter 3 recalls the key concepts of the Viability theory,

reviews the various viability kernel approximation methods, and finally presents in details the al-

gorithm of [44]. Then, in Chapter 4 we give a discussion about the limitations of the original

algorithm with regard to guaranteed motion safety, and describe how to transform it into a con-

servative one able to handle time-varying viability constraints. In Chapter 5, we present how to

formulate robotics-related case studies with various motion safety constraints as a viability prob-

lem. The simulation results of the robotic scenarios demonstrating guaranteed safe navigation in

different situations are presented and discussed in Chapter 6. Finally, Chapter 7 gives a summary

of the thesis contribution and states the different research directions that can be pursued based on

the results obtained in this thesis.
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Chapter 2

STATE OF THE ART

2.1 Introduction

When it comes to avoiding collision, it is now understood that designing a control system for a

mobile robot that is able to compute its inevitable collision states and stay away from them at

all time is the key to guaranteed motion safety. The difficulty of this approach though lies in

the very computation of the set of inevitable collision states. Basically, to determine whether or

not a given state is an ICS, it is required to check for collision every possible future trajectory of

infinite duration the robot might follow from said state. Problematically enough, the number of

those trajectories is virtually infinite, which renders the task of computing the exact set of ICS

intractable. This has led many research efforts to settle for computing approximations of the ICS

set.

Although the details may vary, most of the proposed ICS approximation methods rely in

essence on the same principle: among all the possible future trajectories of the robotic system,

a subset of so called evasive trajectories is selected, and then a state is deemed ICS if none the eva-

sive trajectories starting from it is collision-free. This results in an over-approximation of the ICS

set which is conservative, but whose quality depends essentially on the choice of evasive trajecto-

ries. In some cases, those evasive trajectories are easily identifiable, and provide a reasonably good

approximation of the ICS set. But when it is not the case, the approximation may get excessively

conservative to the point where most to all states are labeled as ICS.
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Below we give an overview of the different ICS approximation methods reported in the liter-

ature both in static and dynamic environments. Based on the choice of evasive trajectories, we

present the levels of motion safety these methods can provide and the conditions under which it

can be guaranteed. We also briefly mention, in the last section of this chapter, some related works

that treat the problem of guaranteed motion safety using theoretical frameworks other than ICS.

2.2 Static Environments

In the case of static environments i.e. with no moving objects, the choice of the appropriate evasive

trajectories is relatively easy. Braking trajectories, which drive the robotic system to stop moving

as shortly as possible have been the go-to choice in several works [5, 32, 47]. In these works, a state

from which the robotic system is able to completely stop before it collides with its surrounding is

considered a safe state, otherwise it is labeled an ICS and thus should be avoided. This strategy

has proved able to provide a reasonable conservative approximation of the ICS set (reasonable in

the sense that it guarantees the motion safety of the robotic system but at the same time it does not

prevent it from effectively navigating its environment).

Nevertheless, an issue naturally arises with this strategy whenever the robotic system at hand is

not able to stop at all e.g. it is a plane. This issue has been addressed in [46, 6] using loiter circles

instead of braking trajectories. This indeed represents an answer to this issue but so long as the

robotic system is not operating in a workspace that features narrow corridors. In fact, the limited

turning radius of the robotic system may prevent it from performing loiter circles if the corridor is

too narrow. In that case, all the states inside the corridor would be labeled as ICS and thus make it

impossible for the robotic system to navigate through them.
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2.3 Dynamic Environments

With the presence of moving objects, guaranteed motion safety becomes even more complicated.

First, it is required that the future behavior of the moving objects is fully known, which is hardly

the case. Then even if we assume that the future model of the moving objects is available, it is not

clear in general how to select the appropriate set of evasive trajectories so as to obtain a reasonable

approximation of the ICS set. Based on the choice of evasive trajectories, we can distinguish three

different approaches in the literature that address this issue. The first one strives to guarantee

absolute motion safety i.e. no collision will ever take place, by putting some assumptions on the

future behavior of the moving objects. The second one settles to guarantee a weaker form of motion

safety i.e. some collisions might be allowed. While the third one aims to maximize the chance of

surviving collisions but with no guarantees whatsoever.

2.3.1 Guaranteed Absolute Safety

The most notable work in this category is [32]. It proposes to use evasive trajectories that maintain

zero relative velocity with the moving object aka imitating trajectories. This idea was implemented

in a very efficient ICS checker that would tell whether a state is an ICS based on collision testing of

the different imitating trajectories corresponding to the different moving objects. However, since

the environment would contain multiple moving objects, one imitating trajectory for one object

is not guaranteed to remain collision-free with respect to the other objects forever. So in order to

guarantee absolute motion safety, it was necessary therein to assume that the workspace is bounded

and each moving obstacle eventually leave the workspace. These two assumptions allow to limit

the lookahead with which the collision checking is done, since at some point in the future the

workspace becomes and remains either empty or constant.
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2.3.2 Guaranteed Weaker Safety

Some methods acknowledged the difficulty to find evasive trajectories of infinite duration in dy-

namic environments, and settled to weaker guarantees. In [10], passive safety is introduced; it

guarantees that if a collision would ever occur, the robot will be at rest. In this work, a state is

considered passively safe if there is a braking trajectory that starts from it and is collision-free until

the robotic system has stopped. An even stronger form of motion safety is the friendly passive

safety [30]. It ensures that if a collision ever happens the robot will be at rest, and the obsta-

cles could have avoided the collision if they wanted to. These forms of weaker motion safety are

interesting and could be a reasonable goal to strive for whenever the moving objects are consid-

ered friendly and non oblivious such as moving people, animals or other robotic systems. In fact,

passive safety has become a de facto safety level and has been incorporated in numerous works

involving various robotics applications ranging from cars [41, 30] to helicopter [14], and from

service robots [28] to bipeds [7] .

2.3.3 Non Guaranteed Safety

Other methods settle to even less, they aim to improve the chance of surviving collisions with no

strict guarantees however. For instance, the authors in [21, 22] resolve to evasive trajectories that

are guaranteed to be collision-free only up to a finite time, whereas in [12, 49] the authors suggest

to use evasive trajectories which are collision-free with respect to one obstacle at a time, instead

of considering them all at once. Doing so is supposed to enhance the overall safety of the robotic

system, but it does not provide any guarantees.
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2.4 Methods based on other frameworks

It is worth to mention that the problem of guaranteed motion safety of robotic systems has also been

addressed using formal verification instead of the ICS framework. For instance, in [1] an approach

for formally verifying the safety of automated vehicles is proposed. The verification is performed

online by predicting the set of all possible occupancies of the automated vehicle and other traffic

participants on the road using reachability analysis. Then, the safety is guaranteed with respect

to the modeled uncertainties and behaviors if the occupancy of the automated vehicle does not

intersect that of other traffic participants for all times. In [36], the authors use formal verification

to address the problem of obstacle avoidance for ground robots. For instance, they analyse and

formally verify safety with respect to static obstacles, and passive and friendly passive safety with

respect to moving obstacles. In addition to that, they provide liveness properties which means that

provable safety is flexible enough to let the robot navigate its environment. These results have

been achieved by developing the corresponding hybrid system models and then using differential

dynamic logic theorem-proving techniques to formally verify their correctness.
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Chapter 3

VIABILITY THEORY

3.1 Introduction

Viability theory [2] is a mathematical framework featuring a set of techniques designed to ad-

dress the problem of controlling dynamical systems whose state must evolve while satisfying a

number of constraints at all times. Such systems can be found in many domains from biology

to economics, from environmental sciences to financial markets, from control theory and robotics

to cognitive sciences. It is, for instance, the case in economics when the system has to adapt to

scarcity constraints, balances between supply and demand, and many other constraints. It is also

the case in biology as with the concepts of “constance du milieu intérieur” and “homeostasis”. And

it is equally the case in control theory and, in particular, in robotics, when the state of the system

must evolve while avoiding dangerous situations such as collision with obstacles.

The inputs of a typical viability problem consist of a dynamical system which is controlled by

means of state-dependent controls, and the viability constraints set which is defined by a subset of

the state space of the system within which the system should remain. Accordingly, a viable state is

guaranteed to have at least one sequence of controls which, when applied from said state, will keep

the system from failure, i.e. keep it within the viability constraint set indefinitely (Fig. 3.1). Con-

versely, nonviable states are those where failure is no longer avoidable. Note that when collision

avoidance is the viability constraint then nonviable states are Inevitable Collision States [18]. The

viability kernel of the constraint set is the set of all its viable states. The aim of viability theory is to
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first, compute the viability kernel of the dynamical system and then, to define the regulation map

(feedbacks, closed-loop controls, etc) which provides to the controlled system, at each state, the

subset of controls that will keep the system inside this viability kernel indefinitely. These concepts

will be formalized in the following section.

Figure 3.1: Main viability concepts: s1 is viable, s2 is nonviable.

3.2 Definitions and Notations

Let A denote a continuous-time dynamical system whose dynamics is described by differential

equations of the form:

ṡ(t) = f(s(t), u(t)) (3.1)

where s(t) ∈ S is the state of A at time t. The state of A is influenced by a control u(t) ∈ U that

can be state-dependent. S and U respectively denote the state space and the control space of A.

Viability constraints are characterized by the compact subset K ∈ S within which the system must

be kept.

Let ũ : [0, tf ] −→ U denote a control trajectory, i.e a time-sequence of controls, tf is the

duration of ũ. The set of all possible control trajectories is denoted Ũ . Starting from an initial state
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s(t0) at time t0, a state trajectory s̃(s(t0), ũ) is derived from a control trajectory ũ by integrating

(3.1). s̃(s(t0), ũ, t) denotes the state reached at time t. A state trajectory s̃(s(t0), ũ) is said to be

viable in K on an interval [0, tf ], tf ≤ +∞, if ∀t ∈ [0, tf ], s̃(s(t0), ũ, t) ∈ K. Viable states are

those for which there exists at least one control trajectory ũ yielding a state trajectory viable in K

at all times i.e. on the interval [0,+∞).

The basic problem in the viability theory is to find the viability kernel of K, i.e. the set of all its

viable states:

Definition 1 (Viability Kernel)

Viabf (K) = {s(t0) ∈ K | ∃ ũ ∈ Ũ : ∀t ≥ 0, s̃(s(t0), ũ, t) ∈ K} (3.2)

The viability kernel may be equal to the viability constraint set K, in which case the viability

constraint set K is called viable under the dynamical system f . The viability kernel may also be

equal to the empty set, in which case the viability constraint set K is called a repellor, because all

state trajectories starting from it eventually violate the constraints.

Once the viability kernel is determined, the next step is to compute the regulation map associ-

ated with it. The regulation map of the system is the set-valued map s ∈ Viabf (K)  R(s) ⊂ U

that indicates at each state the set of viable controls that, when applied, will maintain the system

inside the viability kernel.

Definition 2 (Regulation Map)

R(s0) = {u0 ∈ U | ∃ ũ ∈ Ũ : ũ(0) = u0 and ∀t ≥ 0, s̃(s(t0), ũ, t) ∈ K} (3.3)

The regulation map represents a look-up table that serves as a guidance when controlling the system

so as it never violates the viability constraints. If more than one viable control is available at
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a certain state s(t), the size of the subset R(s(t)) measures the redundancy which represents a

guarantee of robustness for the system. Depending on the application at hand, the control selection

would be made according to a certain optimization criterion.

The computation of the exact viability kernel of a dynamical system under viability constraints

is in fact as challenging as computing the exact set of inevitable collision states, which led many

research efforts to resolve to approximations as well. In the following section will we give an

overview of the different viability kernel approximation methods reported in the literature, and

we also provide examples of research works that have utilized the viability theory in the field of

robotics.

3.3 Literature Review

Several methods have been proposed for the approximation of the viability kernel. For low di-

mensional systems with non linear dynamics, we can distinguish three types of methods. First, we

have methods based on the discretization of the system such as the viability algorithm [44]. Sec-

ond, there are the methods based on the viscosity solutions for Hamilton-Jacobi partial differential

equations such as [34, 29]. Third and most recently, we can find methods based on interval analysis

such as [37]. Now for systems whose dynamics can be described as polynomials, more efficient

methods based on invariance sets have been proposed as in [48, 26]. For linear systems with higher

dimensions however, Lagrangian techniques can be exploited as it has been done in [31].

Viability Theory has seen applications in several fields, including mobile robotics. In [7], the

problem of a biped robot that has to maintain its balance while also ensuring passive safety has been

addressed using Model Predictive Control. Closer to the work proposed in this thesis, a discrete

method based on [44] was developed in [27] for the purpose of safe autonomous racing, i.e. to drive
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as fast as possible around a predefined track. In [23] and [24], machine learning has been deployed

to approximate the viability kernel for mobile robots. The purpose in [24] was to filter out unsafe

states from the search space, to speed up motion planners, while in [23], it was to help augmenting

systems’ safety by preventing them from entering failure regions. A learning approach is prone to

misclassification, which may not be a problem in the first case, but would void safety guarantees

in the latter one.

In the next section, we present in details the original viability algorithm from [44] upon which

we build our proposed method.

3.4 Viability Algorithm

The viability algorithm from [44] operates in two stages. First, it approximates the original con-

tinuous problem by discretizating it in time and space. Then, it computes the exact viability kernel

for the discretized problem in a recursive way.

3.4.1 Discretization

The first step is to discretize the system in time. There exist different methods to transform a

continuous-time model into its discrete counterpart. For the sake of clarity, we consider the Euler

explicit discrete scheme which is the most straightforward. Under this scheme, the discrete-time

version of the dynamical system (3.1) is:
sn+1 = g(sn, un) = sn + ρf(sn, un)

un ∈ U
(3.4)

where ρ is the discrete time step. Afterwards, the state space of the system is discretized into a grid

(regular or not). For clarity purposes, let us consider a regular grid of step d, denoted Sd. Note
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however that the discrete system (3.4) cannot be defined on the grid Sd because nothing guarantees

that, for all s ∈ Sd, the image g(s, u) belongs to Sd. To address this issue, gr is introduced, it is

the extension of g with an hyperball of radius r:

gr = g + V(r) (3.5)

where V(r) is the hyperball of radius r. r is chosen such that:

∀s ∈ Sd , gr(s, u) ∩ Sd 6= ∅ (3.6)

An obvious choice is r = d. Finally, the control space must also be reduced to a finite subset

denoted Ud. As such, the following discrete and finite dynamical system is obtained:
sn+1 ∈ gr(sn, un) = sn + ρf(sn, un) + V(d)

un ∈ Ud
(3.7)

3.4.2 Computing the Discrete and Finite Viability Kernel

In the second step, the viability kernel of Kd = K ∩ Sd for the discrete and finite system (3.7) is

computed as follows: K0 is initialized to Kd, and the sequence of subsets K1,K2,K3, ...,Kn, ... is

recursively defined such that:

Kn+1 = {s ∈ Kn | ∃u ∈ Ud : gr(s, u) ∩ Kn 6= ∅} (3.8)

This will incrementally refine the grid Kd by discarding at each iteration the states from which

the system will inevitably leave the grid in the next step. Let K∞ =
∞⋂
n=0

Kn, it has been established

in [44] that K∞ is the largest subset of Kd such that:

{∀s ∈ K∞ , ∃u ∈ Ud : gr(s, u) ∈ K∞} (3.9)
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or equivalently:

K∞ = Viabgr(Kd) (3.10)

and, since Kd is finite, there exists a finite integer p such that:

∀n ≥ p : Kn = Kp (3.11)

which guarantees the convergence of the recursion. Thus the viability kernel of Kd for the dis-

crete and finite system (3.7) can easily be computed in a finite number of steps using (3.8) (see

Algorithm 1).

Algorithm 1: Viability Algorithm [44]
Input: Discrete-time dynamical system gr; Discrete state space Sd; Discrete control space

Ud; Viability constraint set K

Output: Viability kernel Viabgr(Kd)

1 Kd ← Sd ∩ K;

2 n← 0;

3 K0 ← Kd;

4 repeat

5 Kn+1 ← {s ∈ Kn | ∃u ∈ Ud(s) : gr(s, u) ∈ Kn}

6 n← n+ 1

7 until Kn = Kn+1;

8 return Kn

Once the viability kernel Viabgr(Kd) has been computed, it is straightforward to retrieve the

discrete regulation map Rd which is defined for every state in Viabgr(Kd) as:

Rd(s) = {u ∈ Ud | gr(s, u) ∈ Viabgr(Kd)} (3.12)
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This regulation map provides all the viable controls that are available at each state. Choosing

controls belonging to Rd ensures that the system will remain in Kd at all times. It is important to

note that, although the viability kernel Viabgr(Kd) is only an approximation of the viability kernel

for the continuous problem Viabf (K), the authors in [44] proved and gave the conditions for which,

the approximated kernel Viabgr(Kd) converges to the actual kernel Viabf (K) as d and ρ go to zero:

lim
d,ρ→0

Viabgr(Kd) = Viabf (K) (3.13)

The reader is referred to [44] for more details on the convergence issue, as well as the proof of the

result stated in (3.10).

Over the following chapter, we discuss the limitations of the viability algorithm as presented

in this chapter when it comes to guaranteed motion safety in dynamic environments. Based on this

discussion, we present the necessary modifications that we propose in order to make the algorithm

conservative and able to handle dynamic environments.
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Chapter 4

PROPOSED METHOD

4.1 Conservative Viability Algorithm

Despite the convergence results mentioned in section 3.4, the fact remains that the viability kernel

Viabgr(Kd) is only an approximation of the exact viability kernel Viabf (K). The main issue is

that this approximation is not conservative, i.e. certain states will be labeled by Algorithm 1 as

belonging to Viabgr(Kd) when, in truth, they do not belong to Viabf (K). The non conservative

nature of Viabgr(Kd) is due to the various discretization assumptions, both in time and space, that

have been made in order to obtain the finite and discrete dynamical system (3.7). From a viability

point of view, it is critical to address these issues in order to obtain a conservative viability kernel

Viabgr(Kd). Below, we propose three design principles that address the various problematic aspects

of the time and space discretization and thus aim to guarantee a conservative approximation of the

viability kernel.

4.1.1 Exact Time Discretization

To begin with, the time discretization of the continuous dynamical system (3.1) into (3.4) using

an approximate method such as the Euler explicit scheme yields discrepancies between s̃(s0, u, ρ)

and g(s0, u) for a starting state s0. Such discrepancies directly affect the resulting viability kernel

in many ways. For instance, it may happen that the successor state s̃(s0, u, ρ) computed using the
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approximate system (3.4) is inside the viability kernel while the actual successor g(s0, u) is not. In

this case, the starting state s0 will not be discarded by Algorithm 1 although it is clearly non viable.

To avoid this issue, one must always resort to an exact time discretization of the system whenever

possible.

4.1.2 In-between States Checking

Figure 4.1: sn and sn+1 are in K but the state trajectory in between is not.

The second issue also has to do with the time discretization of the system. It may happen

that both sn and its successor sn+1 belong to Kd, but the state trajectory between them leaves K

(Fig. 4.1). This would usually happen around small or narrow forbidden areas and when the time

discretization step ρ is not small enough. Addressing this issue is relatively easy, it suffices to

also check whether the state trajectory between sn and sn+1 satisfies the viability constraints. This
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would of course entails an additional computational burden but justifiably so since it will enforce

the guaranteed motion safety that we strive for. Moreover, as we will discuss later, this should not

be an issue since this computation is usually done off-line and only once.

4.1.3 Building a State Lattice

Figure 4.2: sn+1 = g(sn, u) is outside K but gr(sn, u) ∩ Kd 6= ∅.

Finally, recall from §3.4.1, the introduction of the hyperball V(r) to adapt (3.4) to the finite

grid Sd. This yields two problems: the first one appears when a state sn has a successor state

sn+1 = g(sn, u) that does not belong to K but is such that gr(sn, u) ∩ Kd 6= ∅ (Fig. 4.2). In this

case, although sn is non viable, it will not be discarded by Algorithm 1. This problem is more

prone to happen in proximity to the borders of the forbidden areas. The second problem stems

from the fact that a state sn does not have to reach another viable state sn+1 in order to classify
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as viable, it just has to get close to it. This results in discontinuous state trajectories that might be

viable by the algorithm standards but that the actual system may not be able to follow in practice

(Fig. 4.3).

We address this issue through an appropriate state space discretization in such a way the need

of the hyperball V(r) is relaxed. This is achieved by building a state space lattice based on the

dynamical model of the system. A state space lattice is a prevalent structure in the field of robot

motion planning [15, 40, 42]. It consists of a graph whose vertices represent a regular sampling

of the state space and whose edges correspond to a carefully crafted set of controls (the case study

presented in §5 details how the state space lattice is built for a double integrator system).

Figure 4.3: The state trajectory is viable by the algorithm standards but discontinuous in practice.

Now, when Sd is a state space lattice, it is not necessary to extend g with V(r) since, by

construction, ∀s ∈ Sd, g(s, u) ∈ Sd, and a conservative viability kernel Viabg(Kd) can actually be
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computed using Algorithm 2, a slightly modified version of Algorithm 1.

Algorithm 2: Conservative Viability Algorithm
Input: Exact discrete-time dynamical system g; State space lattice Sd; Discrete control

space Ud; Viability constraint set K

Output: Conservative viability kernel Viabg(Kd)

1 Kd ← Sd ∩ K;

2 n← 0;

3 K0 ← Kd;

4 repeat

5 Kn+1 ← {s ∈ Kn | ∃u ∈ Ud(s) : g(s, u) ∈ Kn and trajectory from s to g(s, u) ⊂ K}

6 n← n+ 1

7 until Kn = Kn+1;

8 return Kn

4.2 Time-Varying Viability Constraints

Recall from 3.2 that the viability constraint set K has been defined as the compact subset of the

state space S within which the dynamical system must remain. What happens now when the

viability constraints are time-dependent i.e. they vary with time? It is the case for instance when

viability is related to the collision avoidance of obstacles that are moving. The viability algorithm

as described in 3.4 was designed and only applied to approximate the viability kernel when the the

viability constraint setK is static. To cope with dynamic environments however, we suggest to cast

the problem into the state-time space framework [16]. The state-time framework is in fact the key

to deal with moving obstacles in robotics.
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4.3 State-time Framework

In the state-time framework, we add the absolute notion of time as an extra dimension to the state

space, and so the dynamical system (3.4) can be rewritten:
(sn+1, τn+1) = h((sn, τn), un) = (g(sn, un), τn + ρ)

un ∈ Ud
(4.1)

where τ denotes time. In this framework, it becomes possible to consider time-dependent viability

constraints by defining K as the set of all the tuples (s, τ) that satisfy the viability constraints.

Adapting Algorithm 2 so that it operates in state-time is straightforward. It suffices to define

viability constraints by definingK as such, and to compute the viability kernel under the dynamical

system (4.1) instead of (3.4).

One problem remains though, K has to be compact (recall that Algorithm 2 relies upon this

assumption to converge). We can of course enforce this condition by upper-bounding the time

dimension with some time horizon Th which allows to obtain a compact viability constraint set K.

However, keeping in mind that a state is viable if it exists at least one sequence of controls that

keeps the dynamical system in the viability constraint set indefinitely, it is obvious that, whatever

the sequence of controls which is applied to the system from a given starting state-time, at some

point in time, as soon as τ becomes greater than Th, the state-time (s, τ) will leave K and the

starting state-time will be considered as nonviable. In this situation, Algorithm 2 would always

return an empty set.

The problem that we stated above would only confirm, yet from the different viability point

of view, that the problem of guaranteeing absolute motion safety in dynamic environments is not

solvable in the general case. Nevertheless, we have identified two interesting classes of situations

where the nature of the time-dependent viability constraints are such that it becomes possible to
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circumvent the problem stated above and to actually compute the viability kernel using Algorithm 2

as normal. These two classes of situations are respectively called freezing and periodic, they are

presented in the next two sections.

4.3.1 Freezing Case

In this class of situation, it is assumed that the viability constraints stop varying at a given time

Tf in the future. It is for instance the case where the moving obstacles will either stand still or

leave the environment altogether after Tf . One feature of this class of situation is that after the time

horizon Tf , all the (state, time) whose first component correspond to the same robotic system state

are practically the same. In other words, the following expression holds:

∀τ > Tf : (s, τ) = (s, Tf ) (4.2)

We can exploit this feature in order to circumvent the problem stated in 4.2 in two steps. The

first step is to define the viability constraint set K as the set of all the tuples (s, τ) for which s

satisfies the viability constraints and τ ≤ Tf , note that K is compact. The next step is to rewrite

the dynamical system (4.1) as follows:

(sn+1, τn+1) = h((sn, τn), un) = (g(sn, un), τn + ρ) if τn < Tf

(sn+1, τn+1) = h((sn, τn), un) = (g(sn, un), τn) if τn ≥ Tf

un ∈ Ud

(4.3)

Under (4.3), it can be noted that, whatever the sequence of controls which is applied to the

system from a given starting state-time, the time component of the state-time of the system will

never be greater than Tf . It therefore becomes possible to compute the viability kernel of K using

Algorithm 2 normally.
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4.3.2 Periodic Case

In this class of situation, it is assumed that the time-dependence of the viability constraints is

periodic with a period Tp. This is the case for instance where the moving obstacles return to their

initial state and repeat the same motion over and over again. This is often observed in practice

where the workspace could consists of moving obstacles having a continuous periodic motion e.g.

revolving doors, sliding doors, and elevators; or having discrete modes, changing from mode to

mode in a periodic manner. We can notice that this class of situations also has an interesting

feature regarding the (state, time) tuples whose first components correspond to the same robotic

system state and the second components are separated by a time duration which is a multiple of

the period Tp. These (state, time) tuples are practically the same. In other words, the following

expression holds:

∀τ > Tp : (s, τ) = (s, τ mod Tp) (4.4)

In this case, we can also exploit this feature to circumvent the problem stated in 4.2. To do so,

the first step is once again to define the viability constraint set K as the set of all the tuples (s, τ)

for which s satisfies the viability constraints and τ ≤ Tp. The next step is to rewrite the dynamical

system (4.1) as follows:
(sn+1, τn+1) = h((sn, τn), un) = (g(sn, un), (τn + ρ) mod Tp)

un ∈ Ud
(4.5)

Under the system (4.5), as in the freezing case, whatever the sequence of controls which is ap-

plied to the system from a given starting state-time, the time component of the state-time of the

system will never be greater than Tp, and it is possible to compute the viability kernel of K using

Algorithm 2 as normal.
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In the next chapter, we will bring our focus on the problem of robotics motion safety. For

instance, we first present the robotic model that we will work with. Then, we give examples of

several constraints that could be related to robotics motion safety, and show how we can express

them as viability constraints.
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Chapter 5

ROBOTICS CASE STUDIES

5.1 Introduction

Viability theory is a general theoretical framework that can be applied in different domains to

tackle different viability problems. From this point on, we bring back our focus on the domain we

are interested in to investigate how viability and the conservative viability algorithm can be used

to solve the problem of guaranteed safe navigation of mobile robotic systems. In this chapter in

particular, we begin by presenting the robotic system model that we will be working with in §5.2.

This system model represents the first element that defines the viability problem. In the same

context, we present the exact time discretization along with the state space lattice construction

(which is essentially a state space discretization) of the system at hand. Recall from §4.1 that

the exact time discretization and the state space lattice are required by the conservative viability

algorithm in order to produce a conservative viability kernel that guarantees the safety of the robotic

system. In §5.3, we present in detail various safety-related robotic motion constraints and how they

can be expressed as viability constraints. These viability constraints represent the second element

that defines a viability problem.
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5.2 Robotic System Model

5.2.1 Robotic System

Let A denote a disk-shaped robotic system operating in a two-dimensional workspace W . The

dynamics ofA correspond to a double integrator system whose acceleration a is directly controlled.

A state s ofA is represented by a tuple (p, v), where p is a 2D position, and v a Cartesian velocity.

The motion of A is governed by the following differential equations:
ṗ = v

v̇ = a

(5.1)

with |v| ≤ vmax and |u| ≤ amax.

We consider this system model an interesting choice because of two reasons. First, it is a sim-

ple model for which it is possible to obtain an exact time-discretization and there exist a clean state

space lattice solution. This simplicity serves the purpose of illustrating the application of the con-

servative viability algorithm fairly well. At the same time, this system model is realistic enough to

validate the results obtained with the conservative viability algorithm. In fact, it is a second-order

acceleration-controlled system which is more realistic than the first-order velocity-controlled sys-

tems that are sometimes used, e.g. the notorious “Dubins airplane” [13, 39]. However, keep in mind

that the conservative viability algorithm remains applicable to any dynamical system provided that

an exact time discretization is obtained and a solution to the state space lattice is found.
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5.2.2 Exact Time Discretization

The first step of the conservative viability algorithm is to discretize the system in time and space.

For a time step ρ, the following discrete state-transition equations are easily derived:
pn+1 = pn + vρ+ 1

2
aρ2

vn+1 = vn + aρ

(5.2)

Eq. (5.2) is the exact discrete-time version of the dynamical system (5.1), the equivalent of

(3.4), that the conservative version of the viability algorithm requires.

5.2.3 State Space Lattice

Figure 5.1: State space lattice for a 1D double integrator.

Recall from §4.1.3 that in order to obtain a conservative viability kernel that guarantees the

motion safety of the robotic system, we suggested that we discretize the state space of the system
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in such a way the need of the hyperball V(r) is relaxed. This is in effect achieved by constructing

a state space lattice based on the dynamical model of the system.

For a fully-actuated system such as (5.2), a state space lattice can be built according to the

method described in [15] which is outlined as follows. Let the set of possible controls Ud be

restricted to {−amax, 0, amax}, and the time step ρ be chosen such that vmax is a multiple of amaxρ.

The term (u, ρ)-bang refers to applying a control u ∈ Ud for a duration ρ. Let s0 = (p0, v0) denote

the origin state. The state space lattice Sd is the set of all states si = (pi, vi) reachable from s0 by

a sequence of (u, ρ)-bangs. It is straightforward to establish that:
pi = p0 +

1
2
miamaxρ

2

vi = v0 + niamaxρ

(5.3)

wheremi, ni ∈ N. Thus, the state space lattice Sd is a regular grid which has a spacing of amaxρ2 in

position and amaxρ in velocity. Note that the grid positions pi for odd multiples of amaxρ are offset

by 1
2
amaxρ

2 from the grid positions for even multiples of amaxρ (see Fig. 5.1 for a one-dimensional

system example). Note also that, in a space×time perspective, the lattice Sd has a constant spacing

ρ in the time dimension.

The method outlined above can be applied to construct a state space lattice for arbitrary fully-

actuated robotic systems. The case of under-actuated robotic systems such as car-like vehicles is

trickier to handle, however a number of solutions that could be used have been proposed, e.g. [33,

40, 42, 43, 51]. As soon as the state-lattice had been defined, Algorithm 2 can be applied.

5.3 Robotic Viability Constraints

The controlled dynamical system constitutes one of the inputs of a viability problems. The other

input that defines a viability problem is the viability constraints set. One of the advantages of Via-
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bility is its versatility and ability to handle different types of viability constraints. To demonstrate

this versatility, various kinds of safety-related robotic motion constraints are considered. The first

kind is standard collision avoidance (§5.3.1). The second kind has to do with visibility, it becomes

relevant as soon as the robotic system at hand is engaged in pursuit-evasion missions (§5.3.2).

The third and last kind arises when the robotic system is subject to certain restrictions on its ve-

locity, e.g. an airplane robot whose speed is lower-bounded (§5.3.3). All of these robotic motion

constraints are formally defined and expressed as viability constraints.

5.3.1 Collision Avoidance

Let us assume that the workspaceW contains a set of b fixed and moving objects. Let Bi denote

such an object, Bi(t) denotes the closed subset ofW occupied by Bi at time t. Likewise, Bi([t1, t2])

denotes the space×time region occupied by Bi during the time interval [t1, t2]. Note that Bi =

Bi([0,∞)). Let B denote the union of the workspace objects (both in space and time):

B =
b⋃
i=1

Bi =
b⋃
i=1

Bi([0,∞)) =
b⋃
i=1

⋃
t∈[0,∞)

Bi(t) (5.4)

In viability terms, the viability constraint set Kc within which the system A must be kept at all

times is the set of states where the robotic system A is not in collision with any of the workspace

obstacles:

Kc = {(s(t) ∈ S | A(s(t)) ∩ B(t) = ∅} (5.5)

with A(s(t)) denotes the closed subset of the workspaceW occupied by A when it is in the state

s(t).
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5.3.2 Visibility

observer

Figure 5.2: Field of view (gray area) for an observer among obstacles (black areas).

Constraints related to Visibility do arise whenever the robotic system at hand is engaged in

pursuit-evasion missions. Such missions generally feature at least an observer and a target. The

observer is equipped with sensors allowing it to acquire information about a limited region of the

workspaceW . The region ofW that is known by the observer at a given state s(t) is called its field

of view and is denoted FOV(s(t)). The shape this field of view FOV(s(t)) depends on the type of

equipped sensors. The unknown regions of the workspaceW are either out of the sensors’ range

or occluded by other workspace objects (Fig. 5.2).

The robotic systemA can either endorse the role of the observer or the target. When the robotic

systemA is the observer, it means that it should always maintain one or more workspace targets Bti

within its field of view at all times. The viability constraint set Kv corresponding to this scenario
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is defined as follows:

Kv = {s(t) ∈ S |
∧
i

FOV(s(t)) ∩ Bti(t) 6= ∅} (5.6)

Now, when the robotic system A is the target, that means it should always stay out of the field

of view of one or more workspace observers Boi at all times. The corresponding viability constraint

set Kv is defined in this case as:

Kv = {s(t) ∈ S |
∧
i

A(s(t)) ∩ FOV(Boi (t)) = ∅} (5.7)

Other variants of visibility-related viability problems could similarly be defined, e.g. the case

where the robot is a target and should always stay inside the field of view of the workspace ob-

servers at all times.

5.3.3 Velocity

The aforementioned collision avoidance and visibility constraints have to do with the configuration

of the robotic system A i.e. position and orientation. It is possible to have other robotic motion

constraints that involve other components of the robotic system’s state, such as the velocity. Ex-

amples of velocity-related constraints are numerous. One example is if the velocity of the robotic

system A is lower bounded i.e. unstoppable, such as an airplane, or if the workspace W com-

prises regions that require upper-bounded speed, e.g. the roadway. Another interesting example

of velocity-related constraints that also involve visibility is when a workspace observer can only

sense moving targets. So if the robotic system is the target, standing still within the observer’s field

of view would be considered OK. All such constraints can readily be expressed via the definition

of the corresponding viability constraint set.
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5.3.4 Conclusion

The viability framework is most useful whenever the system is subject to various viability con-

straints since they can all be treated in a unified manner as a single viability problem. No matter

how different in nature the various robotic motion constraints the robotic A is subject to, they can

all be expressed under the form of different viability constraint sets Ki. These viability constraints

sets can then all be merged to form the final viability constraint set K that will feed Algorithm 2:

K =
⋂
i

Ki (5.8)
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Chapter 6

RESULTS AND ANALYSIS

6.1 Introduction

In this chapter, we evaluate the performance of our proposed method with regard to guaranteed

motion safety in practice. We consider the robotic system modelA that we presented in §5.2. This

robotic system will have to undergo several safe navigation tests involving different workspace

types (static, freezing, periodic), and different viability constraints (collision avoidance, visibility

,velocity). It led to the definition of seven scenarios with mixed combinations of workspace and vi-

ability constraint types. The seven scenarios are described in the subsequent sections where details

about the workspace and the viability constraints are given. For each scenario, the Conservative

Viability Algorithm 2 has been implemented to compute off-line the viability kernel (VK) and the

regulation map (RM) for the robotic system. In a second stage, the computed viability kernel and

the regulation map have been used within an on-line reactive navigation scheme that can drive the

robotic system without ever violating the motion constraints at hand.

6.1.1 Computing VK and RM

To demonstrate its versatility and its ability to address different kinds of viability problems, the

conservative viability algorithm 2 has been implemented for the case of the double integrator sys-

tem and tailored to handle different scenarios. For each scenario, Algorithm 2 has been used to
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compute the conservative and discrete viability kernel Viabg(Kd) and the corresponding regula-

tion map Rd. The computed regulation map Rd will then serve as a look-up table that indicates at

each state the available controls that, when applied, will ensure that the system remains inside the

viability kernel.

A straightforward analysis of Algorithm 2 shows that its time complexity depends on the size

of the discrete set of states and the discrete set of controls (line 5). In other words, it grows

exponentially with the dimensions of the state and the control spaces. In the current implementation

(in Python on an average laptop), the running times for the different scenarios range from 6 to 20

minutes. It is not really a problem though since it should be kept in mind that the computation of

Viabg(Kd) and Rd is done off-line and only once for each scenario.

6.1.2 Safe Reactive Navigation

To demonstrate the usefulness of the computed Viabg(Kd) and Rd, they have been used within

an efficient on-line navigation scheme that is able to drive the system A around its workspace

W while always respecting the different viability constraints at hand. The navigation scheme is

rather simple and purely reactive: starting from an arbitrary state belonging to the viability ker-

nel Viabg(Kd), the navigation scheme selects, at each time step, the control to apply to A among

the viable controls that are available at the current state. The set of viable controls is determined

according to the regulation map Rd. The choice of the control depends on the task at hand and

could be chosen randomly or so as to minimize a given cost function C, e.g. distance to a goal. The

control selection algorithm is outlined in Algorithm 3.
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Simulations showing the navigation scheme at work have been carried out using ROS1 and

GAZEBO2. For illustration purposes, three snapshots at different times of a typical simulation run3

are given. Each snapshot depicts the workspace (black regions are obstacles), the system’s current

position and the trail of its trajectory. The two-dimensional slice of the viability kernel correspond-

ing to the current velocity ofA is overlaid on the workspace: the viability kernel is shown in green

and its complement in red. In the visibility-related scenarios, the gray areas correspond to the

states where the visibility constraints do not hold because of the field of views. In all cases, the

scenarios illustrate the ability of a purely reactive viability-based navigation scheme to control A

forever without ever violating any of the viability constraints at hand.

Algorithm 3: Safe Reactive Navigation
Input: Current state s0; Discrete regulation map Rd ; Cost function C

Output: Next control u∗

1 u∗ ← argminu∈Rd(s0)
C(g(s0, u));

2 return u∗

6.2 Static Workspace

For this scenario, the workspaceW contains static obstacles only (Fig. 6.1). To emulate an airplane,

the velocity of A is lower bounded: v > vmin. Besides, the upper bound on A’s acceleration |a| ≤

amax and the width ofW’s corridors are such that it prevents A from flying in circles at any given

position inW . Thus, the viability constraints in this scenario are collision avoidance and velocity.

1http://www.ros.org

2http://gazebosim.org

3Full videos available at http://thierry.fraichard.free.fr/research

http://www.ros.org
http://gazebosim.org
http://thierry.fraichard.free.fr/research
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Figure 6.1: Test workspace for the plane scenario

This scenario represents an interesting case where neither the typical braking trajectories [5, 32, 47]

nor the circling trajectories [46] are available.

The robotic system starts at the bottom left of the workspace and at full speed. The control

selection strategy for this scenario aims, at each time step, to minimize the change in the robot’s

velocity. This way the robotic system will try to keep moving in the same direction and the same

speed as much as possible. The snapshots of Fig. 6.2 illustrate a typical simulation run. Although

the reactive navigation scheme selects one action at a time, thanks to the underlying pre-computed

VK and RM, the robot is able to perform farsighted maneuvers in order to preserve its long term

viability. For example, it can be shown in Fig. 6.2a that it started to steer left well before reaching

the dead-end at the bottom right.
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(a) τ = 16, vx = 6, vy = 6. (b) τ = 39, vx = −6, vy = −6.

(c) τ = 59, vx = 8, vy = 0.

Figure 6.2: 2D viability kernel slices of the airplane scenario at different times.
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Figure 6.3: Test workspace for the compactor scenario

6.3 Freezing Workspace

For this scenario, the workspace W contains one static obstacle region and one moving obstacle

that moves downward until it makes contact with the static obstacle, a behavior resembling a trash

compactor (Fig. 6.3). The viability constraints here are collision avoidance only. However, A has

a goal now: it starts on the left side of the compactor and has to reach the right side. In this case,

the choice of the control is goal-oriented, the navigation scheme selects the control that will drive

A closer to its goal. This scenario is not as simple as it appears, it is similar to the one discussed

in [19]. It is a case where the ICS-based approaches have a hard time finding the right set of evasive

trajectories. For example, imitating trajectories [32] would have resulted in the whole region inside

the compactor to be marked as ICS, which would have prevented the robot from passing it. Thanks

to the pre-computed VK and RM, the robot was able to reach the goal safely using the viability-

based reactive navigation strategy. The snapshots of Fig. 6.4 illustrate a typical simulation run.
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(a) τ = 8, vx = 8, vy = −4. (b) τ = 14, vx = 8, vy = −6.

(c) τ = 23, vx = 0, vy = 8.

Figure 6.4: 2D viability kernel slices of the compactor scenario at different times.
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6.4 Periodic Workspace

6.4.1 Collision Avoidance

Figure 6.5: Test workspace for the revolving door scenario

For this scenario, the workspace W contains both static and moving obstacles, it comprises

two “rooms” and the only way to pass from one room to the other is to use a revolving door

(Fig. 6.5). The revolving door has constant angular velocity and its behavior is periodic. The

viability constraints here are collision avoidance only. Now,A has a task to accomplish which is to

repeatedly pass from one room to the other. To that end, two goal positions are respectively defined

in both rooms: when the current goal is reached, the other goal becomes the current goal and so

forth. Using to the viability-based reactive navigation scheme, and a control selection strategy as

simple as to minimize the distance to the goal, the robotic system was able to go back and forth

many times without ever colliding with any of the workspace obstacles. In fact, it can provably

continue doing so indefinitely. The snapshots of Fig. 6.6 illustrate a typical simulation run.
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(a) τ = 10, vx = 2, vy = 6. (b) τ = 29, vx = −4, vy = 6.

(c) τ = 59, vx = 2, vy = −6.

Figure 6.6: 2D viability kernel slices of the revolving door scenario at different times.
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6.4.2 Pursuit

target

Figure 6.7: Test workspace for the pursuit scenario

For this scenario, the workspace W contains both static and moving obstacles. All moving

obstacles are assumed to have a periodic behavior (Fig. 6.7). The system A is equipped with an

omni-directional sensor and its task now is to keep one of the moving obstacles, the target, within

its field of view at all times while avoiding collisions of course. The viability constraints here are

collision avoidance and visibility. In this case, the navigation scheme was set to select the viable

control maximizing the distance to the target. In a way, the robotic system is trying to be as less

intrusive to the escorted target as possible. The snapshots of Fig. 6.8 illustrate a typical simulation

run. It can be seen in Fig. 6.8b that the set of viable states can get very tight at times. This shows

how challenging this scenario is and that there is so little room to error.

For an extra challenge, we have considered an additional constraint in the form of a lower-

bound on the system’s velocity. The corresponding results are depicted in Fig. 6.9.
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(a) τ = 5, vx = 8, vy = 2. (b) τ = 12, vx = 2, vy = 2.

(c) τ = 20, vx = 8, vy = 2.

Figure 6.8: 2D viability kernel slices of the pursuit scenario at different times.
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(a) τ = 7, vx = 8, vy = −2. (b) τ = 14, vx = −2, vy = −8.

(c) τ = 23, vx = −4, vy = 4.

Figure 6.9: 2D viability kernel slices of the unstoppable pursuit scenario at different times.
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6.4.3 Evasion

B

A

Figure 6.10: Test workspace for the evasion scenario

For this scenario, the workspaceW contains both static and moving obstacles. The moving ob-

stacles have a periodic behavior, they are assumed to be sentinels on patrol duty, they are equipped

with omni-directional sensors with a limited field of view (Fig. 6.10). To make things more in-

teresting, it is further assumed that the sensors can only detect moving objects. The system A is

tasked to navigate from point A to point B and back without colliding with the workspace obstacles

or being detected by the sentinels. The viability constraints in this case are collision avoidance,

visibility, and velocity. The regulation map corresponding to this scenario allowed A to complete

the task with success, even with a navigation policy as simple as choosing at each step the control

that minimizes the distance to the goal. The snapshots of Fig. 6.11 illustrate a typical simulation

run. Interestingly, note in 6.11b that the robot is taking advantage of the inability of the sentinel to

detect moving objects by stopping until the path is clear.

As with the pursuit scenario, the case where the velocity of A is lower-bounded has also been

considered, the corresponding results are depicted in Fig. 6.12.
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(a) τ = 6, vx = −6, vy = 8. (b) τ = 30, vx = 0, vy = 0.

(c) τ = 63, vx = 6, vy = −6.

Figure 6.11: 2D viability kernel slices of the evasion scenario at different times.
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(a) τ = 2, vx = 0, vy = 8. (b) τ = 17, vx = −8, vy = 8.

(c) τ = 39, vx = 8, vy = −6.

Figure 6.12: 2D viability kernel slices of the unstoppable evasion scenario at different times.
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6.5 Discussion

We have seen, through the different scenarios presented above, the ability of a viability-based nav-

igation scheme to achieve guaranteed motion safety for a robotic system under several constraints.

These scenarios puts in evidence that viability framework is definitely an interesting alternative to

ICS framework. In fact, they highlight the two key advantages of the conservative viability algo-

rithm. The first one is its ability to handle different kinds of safety constraints in a unified manner

(collision avoidance, visibility, velocity). The second one is that, unlike ICS-based methods, the

quality of the conservative approximation is in no way dependent on the choice of an appropri-

ate set of evasive trajectories. However, this feature comes at the cost of a greater computational

complexity that prevents the on-line computation of the viability kernel and the regulation map.

Depending on the task at hand, this may or may not be an issue. Note however that a more efficient

implementation of the algorithm proposed could be obtained through parallel computing [11].
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Chapter 7

CONCLUSIONS

7.1 Summary of the Contribution

Guaranteed motion safety is a substantial issue in many mobile robotics applications. This issue

is usually tackled in the Inevitable Collision States (ICS) framework. In this framework, the key

to guaranteed motion safety is to identify and avoid inevitable collision states at all times. In

addition to the intricate identification of these states, the ICS framework is inherently limited to

collision avoidance whereas the robot motion safety may often involve dealing with other types

of constraints as well. This thesis has explored the use of the Viability framework to address the

more general problem of guaranteed safe robot motion when it involves more than mere collision

avoidance. The primary contribution of this thesis is the Conservative Viability Algorithm (CVA).

It consists of an adaptation of the viability kernel approximation algorithm presented in [44]. This

adaptation is designed to make the algorithm: (i) conservative, and (ii) able to handle time-varying

viability constraints such as moving obstacles. These two features are essential to address the issue

of guaranteed safe motion in dynamic environments.

The purpose of the CVA is to compute the Viability Kernel (VK) and the corresponding Reg-

ulation Map (RM) for a robot in a given scenario. CVA pre-processes the state space of the robot

in order to compute VK+RM. Computing VK+RM is the key to the design of control schemes for

which motion safety can be guaranteed. To that end, the robot must always remain within VK and

this is easily achieved by selecting controls from RM so as to always remain inside VK and there-
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fore always satisfy the motion safety constraints. Because of its complexity, CVA operates off-line

but it is important to note that it is run only once. To demonstrate the usefulness of the VK+RM

computed off-line by CVA, they are used inside a basic on-line reactive navigation scheme that

proved able to control the robot in several different scenarios without ever violating the motion

safety constraints at hand (collision, visibility, velocity). Note that the computed VK+RM could

just as well be used inside more advanced navigation methods, e.g. with goal-reaching abilities.

7.2 Discussion

The Viability framework is definitely an interesting alternative to the ICS framework. The proposed

conservative viability algorithm presents several advantages. First, it is able to handle different

motion safety constraints in a unified manner. It has been shown for instance how a spy robot with

a lower bound on its velocity can reach its goal while avoiding collision and staying out of the sight

of a patrol at the same time. Second, unlike ICS-based methods, the quality of the viability kernel

approximation is no way dependent on the choice of a set of evasive trajectories. This has enabled

to obtain a practical solution to several safe motion cases where the set of appropriate evasive

trajectories is not available. Third, the proposed algorithm is able to handle time-varying motion

constraints such as moving obstacles. Although it is in general impossible to compute a non-empty

viability kernel in the presence of moving obstacles, two classes of dynamic environments have

been identified, freezing and periodic, for which it is possible to compute a valid viability kernel.

Accordingly, it becomes possible to guarantee motion safety in the presence of moving obstacles

for these two classes of environments. Although guaranteed collision avoidance has already been

demonstrated for freezing environments using Inevitable Collision States, it is the first time that a

similar result is achieved for periodic environments.

The above-mentioned features come at a cost though. The computational complexity of the
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conservative viability algorithm is exponential in the size of the state and control spaces of the

system. Depending on the task at hand, this may or may not be an issue. It should be kept in

mind however that the computation of the viability kernel and the regulation map is done off-line

and only once. They could then be used on-line within a reactive navigation scheme as well as

a motion planner. Nevertheless, there is still room for improvement when it comes to efficient

implementation of the algorithm especially through parallel computing [11].

7.3 Future Works

Based on the results obtained in this thesis, different research directions can be pursued. The

efficiency issue might be worked out to obtain a faster implementation of the algorithm namely

through parallel computing. One could also explore how the Conservative Viability Algorithm

whose formulation is general can handle alternative robotic systems other than the fully-actuated

double integrator. At a more fundamental level, further investigation into non-freezing and non-

periodic environments should be carried out in order to determine whether viability can nonetheless

be useful when it comes to guaranteed motion safety in arbitrary dynamic environments. Then, it

would be of interest to investigate other potential connections between the viability theory and

robots motion safety. For instance, the concepts of invariance kernel and restoring viability were

subject to study in the viability theory, and it could be possible to benefit from the results obtained

therein.
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