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Abstract 

 

In this thesis, we study the nonlinear dispersive wave problems analytically and numerically. 

Our goal to present a powerful tool can be used to find the soliton solutions of these type of 

equations, to establish and discuss some important mathematical aspects related to the 

nonlinear dispersive partial differential equations (PDEs) such as the well-posedness of the 

associated Cauchy problem, behavior of the solitary wave solutions, and to show the suited 

numerical methods used to investigate the blow-up phenomenon of the solutions. 

 

Keywords : Nonlinear dispersive waves equations, Inverse scattering transform, Spectral 

methods, blow-up, Cauchy problem, Soliton and solitary wave solutions. 

 

Résumé 

 

Dans cette thèse, nous étudions analytiquement et numériquement les problèmes d'ondes 

dispersives non linéaires. Notre but est de présenter un outil puissant qui peut être utilisé pour 

trouver les solutions de solitons de ce type d'équations, d'établir et de discuter certains aspects 

mathématiques importants liés aux équations aux dérivées partielles (EDP) dispersives non 

linéaires, tels que le caractère bien posé du problème de Cauchy associé, le comportement des 

solutions d'ondes solitaires, et de montrer les méthodes numériques appropriées utilisées pour 

étudier le phénomène d'explosion des solutions. 

 

Mots-clés : Équations d'ondes dispersives non linéaires, Inverse scattering transform, 

Méthodes spectrales, Explosion, Problème de Cauchy, Solitons et solutions d'ondes solitaires. 

 

 الملخص
 

خطي، تحليلياً حعددياً. يمكن استخدام هدفنا لتقديم أداة قوي، لإيجاد غيوندرس مشاكل الموجات المشتت، ال طروحة، الافي هذه 

لإنشاء حمناقش، بعض الجوانب الوياضي، المهم، المتعلق، بالمعادلات التفاضلي،  المعادلات لهذا النوع من السوليتون ةلول 

حسلوك ةلول  الموتبط، مشكل، كوشي لمعادلات( مثل التواجد الجيد PDEsخطي، )الجزئي، المشتت، غيو الدات الاشتقاقات 

 حبيان الطوق العددي، المناسب، المستخدم، في تقصي ظاهوة تفجيو الحلول. الانفوادي، الموج، 

 

 مشكل، التفجيو  الطيفي، الطوق  العكسي تحويل التشتت  الخطي، معادلات الموجات المشتت، غيو  الوئيسي،:الكلمات 

ة.دالمنفوةلول سوليتون حالموج،  كوشي   
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Introduction

The study of nonlinear evolution equations (NLEEs) is growing rapidly due to their great
interest in many fields of physics as, for example plasma, fluids and optics. Many significant
characteristics of NLEEs have been investigated, especially their integrability issues, Lax pairs,
conservation laws and many other crucial aspects. Remarkable methods have been developed
to find the exact solutions for this type equations, for instance the well known the inverse
scattering method, Darboux and the Bäcklund transformation method, the Hirota bilinear and
its simplified method, lie symmetry method, the generalized unified method, the sine-cosine
method and Pfaffian technique and many other Powerful methods.

Wave phenomena are abundant in life and nature which are mainly include two types of
waves: optical and water waves. Familiar examples are associated with the hydrodynamics
context where the dispersion is a main feature of linear wave phenomena. For instance, if we
consider a dewdrop falling into a lake as in Figure 1 concentric rings of ripples will immedi-
ately appear and spread out and after a little while they will disappear. The corresponding
phenomenon is called dispersion and diffraction in water waves and optics, respectively. It

Figure 1: Dispersive medium

is useful now to give the difference in the notion of dispersive and dissipative PDEs for both
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linear and nonlinear equations. Let us consider the following wave equation:

ut + ux = 0. (1)

If we add a dispersion term, we get

ut + ux + uxxx = 0, (2)

equation (2) admits a solution of the form

u(x, t) = ei(kx−ωt), (3)

where ω and k represent the frequency and the the wave number, respectively. If we substitute
(3) in (2) we obtain the corresponding dispersion relation given by

ω = k − k3. (4)

Hence the wave propagation velocity is written in the form

c =
ω

k
= 1− k2, (5)

On the other hand, adding a dissipative term we find:

ut + ux + uxx = 0, (6)

in this case we have
ω = k(1− ik), (7)

and the corresponding solution is

u(x, t) = e−k
2t+ik(x−t), (8)

that indicates that the wave propagates at a unity speed and decays exponentially, which
means that the wave loses its amplitude, since it losses its energy over time. This kind of wave
called a dissipative wave. It is interesting to note that there are several ways to establish the
dispersion of the linear wave for example: one can define the velocity as follows:

vp =
ω

|k|
k

|k|
(the phase velocity),

vg = Oω (the group velocity).

If vp 6= vg, the PDE is called dispersive (see Figures 2 and 3).
Although the importance of the linear wave in every day life, in 1834 an amazing phe-

nomenon was experimentally discovered in the Union Canal in Scotland by John Scott Russell
but could not be explained by the theory of linear water wave. Below Russell’s quote

8



Figure 2: Non dispersive propagation

“I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped−not so the mass of
water in the channel which it had put in motion; it accumulated round the prow of
the vessel in a state of violent agitation, then suddenly leaving it behind, rolled for-
ward with great velocity, assuming the form of a large solitary elevation, a rounded,
smooth and well-defined heap of water, which continued its course along the channel
apparently without change of form or diminution of speed. I followed it on horse-
back and overtook it still rolling on at a rate of some eight or nine miles an hour
[14km/h], preserving its original figure some thirty feet [9m] long and a foot to a
foot and a half [300− 450mm] in height. Its height gradually diminished, and after
a chase of one or two miles [2−3km], I lost it in the windings of the channel. Such,
in the month of August 1834, was my first chance interview with that singular and
beautiful phenomenon which I have called the Wave of Translation”

Nowadays, the Union Canal has attracted many tourist to get fun when they ride the famous
wave, see Figure 4. This observation inspired physicists to initiate an extensive investigation
of water waves. In 1895, Diederik Korteweg and Gustav de Vries recreated this problem.

They noticed that while dispersion causes a water wave to decay, nonlinear effects can cause
a steepness. When self-steepening balances dispersion, a solitary wave which moves without
change of shape (i.e., the “wave of translation”) can be formed. The researchers Korteweg and
de Vries (1895) derived the following nondimensionalized wave equation which is now called
the Korteweg–de Vries (KdV) equation:

ut + 6uux + uxxx = 0. (9)

Russell’observation was the first description of the so-called solitons as an amazing physical

9



Figure 3: Dispersive propagation

phenomenon. Their original name was ”translation wave”, but later researchers discovered
many new solitons that play an important role in many applications, physics, electronics,
cosmology, biology and life sciences (see Figure 5).

No much progress in the analytical resolution of nonlinear wave and the soliton theory was
made until the 1964s, when Gardner, et al. developed a very powerful tool to determine the
soliton solutions of nonlinear equations. This method is based on the Lax pair corresponding
to the equation and named the inverse scattering transform method. In subsequent years,
several other nonlinear wave equations appeared and could be solved by the inverse scattering
method such as the Benjamin-Ono equation, the Kadomtsev–Petviashvili (KP) equation, the
nonlinear Schrödinger (NLS) equation, which nowdays known by integrable equations.

Even though, integrable equations have significant features, a great part of real features
appear in physics and engineering areas described by nonintegrable wave equations. Thus
the study of this type of equations has grown rapidly and created many exciting theories
for example the wave collapse theory and the criterion of Vakhitov–Kolokolov for the linear
stability of solitary waves. In addition, the investigations of the nonintegrable wave equations
show that the corresponding solution dynamics can be more complex and much richer.

It is a remarkable fact that numerical analysis is a powerful resource in nonlinear waves
study, allowing to illustrate significant theorems and conjectures.

0.1 Notation and definitions

Let us give some notations and definitions that will be used throughout this thesis.
- û or F(u) stand for the Fourier transformation of a function u.

- Dα
x is the derivative with respect to x of order α.

10



Figure 4: Tourists riding Soliton ”Translation Wave” at the place of discovery by John Scott
Russell (Union Canal, Scotland)

- the gradient ∇u = (∂x1u, ..., ∂xdu)T , for u : Rd → R.
- the Laplacian ∆u = ∂2

x1u+ ...+ ∂2
xdu, for u : Rd → R

- A ∼ B to stand for B ≤ A ≤ CB, where C is a positive constant and may vary from line to
line;
- b− and b+ the statement that b− ε and b+ ε respectively.
- χ is as usual used for the characteristic functions.

- Lebesgue spaces

Definition 1. For an open, bounded domain Ω, that simply connected subset of Rd (d ≥ 1).
For 1 ≤ p <∞, Lp(Ω) space includes all Lebesgue measurable functions u : ω → R, such that

‖u‖Lp(Ω) :=

(∫
Ω

|u(x)|pdx
)1/p

<∞. (10)

- Sobolev spaces

• For k ∈ N

Definition 2. The space Hk(Ω) consists of every functions u ∈ L2 such that for an

11



Figure 5: Solitons in nature

integer k; Dαu ∈ L2(ω), for all |α| ≤ k. equipped with the norm

‖u‖Hk(Ω) =

(∑
α≤k

∫
Ω

|Dαu(x)|2dx

)1/2

. (11)

• For s ∈ R

Definition 3. For every s ∈ R; the space Hs is defined by

Hs(Rn) = {v is a tempered distribution, (1 + |η|2)s/2v̂ ∈ L2(Rn)}

equipped with the norm

‖u‖Hs(Rn) =

(∑
α≤s

∫
Rn

(1 + |η|2)|û(η)|sdη

)1/2

. (12)

-Bourgain space

Definition 4. The Bourgain space Xs,b is defined by{
u ∈: ‖u‖Xs,b = ‖〈η〉s〈λ〉pû‖L2

τη(R2) <∞
}
. (13)

12



Its restriction onto the interval time [0, T ] is denoted by XT
s,p, and defined as

‖u‖XT
s,b

= inf
{
‖v‖Xs,b : v ∈ Xs,b, u(t) = v(t) for 0 ≤ t ≤ T

}
, (14)

where < . >= (1 + |.|2)1/2.

0.2 Outline of the thesis

The thesis is structured as follows: in the next chapter, we present some concepts related to
the inverse scattering transform method and then we apply this method for one of integrable
equation. Other important methods are also presented in this chapter.

The second chapter is devoted to the numerical methods that are used in the next chap-
ter. first, we present two types of selected space discretization method, one of them is for
the generation of solitary waves and the other for the evolution simulations. Time integrating
methods of equations and their convergence are also discussed.

In the third chapter, we give a detailed numerical investigation of solutions to the general
Benjamin-Ono equation with critical and supercritical nonlinearity in both one and two di-
mension. We examine the stability of solutions and present some unstable and blow-up features.

In the fourth chapter, the rotational internal dispersive wave equation is studied in detailed.
We give a full description of the corresponding Cauchy problem.

We finish by a general conclusion on this work and set some perspective points.
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Chapter 1

Analytical Methods for Nonlinear
Dispersive Wave Equations

1.1 Introduction

Generally, nonlinear differential equations are said to be integrable systems if they can be
solved analytically; which means that there is a finite number of integrations and algebraic
operations where the solutions can be reduced. In fact this principled definition of integrability
does not always hold for the case of PDEs. Since more than three centuries, the concept of
integrable system range from notion to another. The most intresting one was introduced in the
nineteenth century which is the Liouville integrability′s notion used for Hamiltonian systems.
This notion is defined as follows: If a system of Hamiltonian H with n degrees of freedom admits
n independent commuting integrals of Poisson I1, I2, I3, ..., In which means that all canonical
Poisson bracket vanish i.e., {Ik, Ij} = 0 for n, j = 1..n, then one can integrate explicitly the
flow given by this Hamiltonian H.

Ik(z(t)) = const, 1 ≤ k ≤ n, rank(dI1, ..., dIn) = n, {Ik, Ij} = 0, 1 ≤ j,

k ≤ n⇒ explicit integration.
(1.1)

In 1967 with discovering a new analytical tool to solve the KdV equation by Gardner et al,
the advanced integrable systems theory was introduced. According to this method which is
known as the Inverse Scattering Transform. If a system of equation admits the so-called Lax
pairs representation, then this system can be of explicit solvability. However these ideas and
discussion do not give a precise answer of what it means an integrable system since they lead to
other complicated questions, as for example the converse of the Liouville integrability notion.
Therefore, we can say that the existence unified concept of the integrable systems still an open
problem.

1.2 Inverse scattering transform

In recent years, due to their completely integrable feature, the KdV, Intermediate Long Wave
(ILW), Benjamin-Ono (BO), Non Linear Schrodinger (NLS) and Kadomtsev-Petviashvilli (KP)
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equation have been widely studied. The completely integrable terminology is used for each of
these equations because they can be solved by the inverse scattering method. The later was
discovered by Gardner, Greene, Kruskal and Miura in 1967 [89] to solve the KdV equation for
decay sufficiently rapidly initial data. The generalizations is now called by the Inverse Scat-
tering Transform (IST), where the main idea involves associating the solution of the nonlinear
equation to a linear eigenvalue one whose eigenvalues are constants of the motion for the orig-
inal equation.

The IST formalism for BO equation in one dimension has been established in [2, 4] and its
extensions to a larger family of potentials can also be found in [54, 114]. Let us first recall
some important definitions and significant properties related to the IST context.

1.2.1 Soliton

Definition 5. Although there is no exact definition of a soliton, we can say that a soliton
is a solitary wave that asymptotically retains the velocity and shape upon nonlinear strong
interaction with other localized disturbance or even with another solitary waves. Additionally
a soliton exhibits the two following properties:

• It is localized i.e., it either approaches a constant or decays at infinity.

• It is made by a delicate state of equilibrium between dispersive and nonlinear conse-
quences.

1.2.2 Conservation laws

Definition 6. In one dimension on both time and space, a conservation law related to a
differential equation is relation may be expressed as

At +Bx = 0, (1.2)

where A and B are dependent functions on x, t, the function u and its derivatives. In (1.2),
A represents the conserved density while B is the flux of A.

For the BO equation, by L2 norm the hamiltonian, we can easily find the two standard
invariants of this equation I1 and I2, namely

I1 =
1

2

∫
R
u2dx

I2 =

∫
R
(
1

2
|D|12u|2 − 1

6
u3)dx.

In [19, 20], K.M. Case discovered the existence of an infinite conserved quantities number and
calculated the first three non trivial. In fact the existence of an infinite number of invariant
quantities leads to the complete integrability conjecture of BO equation.
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1.2.3 Lax approach

Definition 7. In 1968, Lax discovered a way to make the introductory inverse scattering tech-
nique for only solving KdV equation as a general method for solving other PDEs [89]. This way
based on associating the nonlinear equations with a linear eigenvalue operator whose eigenval-
ues are constants of the original equation motion.
Let L and B two operators represent the spectral problem operator and the governing operator
for the related time evolution of the corresponding eigenfunctions, respectively

Lv = λv . (1.3)

vt = Bv . (1.4)

By differentiating (1.3) with respect to t

Ltv + Lvt = λtv + λvt,

from
Ltv + LBv = λtv +BLv ,

Thus, we have that
[Lt + (LB −BL)]v = λtv ,

then, to find the nontrivial eigenfunctions v when λt = 0, we finally have

Lt + [L,B] = 0, [L,B] = LB −BL. (1.5)

Equation (1.5) is the so−called Lax’s equation, so an evolution equation is said to have a Lax
representation if it can be developed as the compatibility condition of two operators L and B,
known as Lax pair.

1.2.4 Riemann-Hilbert problems

Riemann−Hilbert problems (RHB) have played a significant role in both IST and soliton
theory. We try here to review briefly some their basic elements. Let t ∈ C = C + {∞}, Γ
is a closed contour in C. and let Γ+ and Γ− be the inside an the outside of the contour Γ,
respectively. Particularly, the later contour can be regarded as a real line considered as a circle
in C moving through ∞.

Definition 8. The Riemann−Hilbert problem of a matrix valued function ϕ(t) on Γ is the act
of constructing two holomorphic matrix of functions valued ϕ+(t) and ϕ−(t) inside and outside
Γ, respectively such that

ϕ(t) = ϕ+(t)ϕ−(t) (1.6)

If Γ is the real axis, then ϕ+(t) and ϕ−(t) should to be holomorphic, respectively in the upper and
lower half−plane. In the case when (ϕ+(t), ϕ−(t)) is a solution of RHB, then for a invertible
matrix g of constant elements, we obtain that

∼
ϕ+ = ϕ+g

−1,
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and
∼
ϕ− = gϕ−.

are also solutions of the problem. One can avoid this ambiguity by fixing ϕ+ or ϕ− values at
some point in their region. However this normalisation ensures the uniqueness of the solution
to (1.6) when ϕ+ and ϕ− are everywhere invertible. Looking for solutions of the RHB falls into
an integral equation. By choosing a normalisation for some t0 ∈ C, ϕ+(t) = I and ϕ−(t) = g
and by assuming that a solution of RHB has the following form

(ϕ+)−1 = h+

∮
Γ

Ψ(ζ)

ζ − t
dζ,

in Γ+

ϕ− = h+

∮
Γ

Ψ(ζ)

ζ − t
dζ,

in Γ− with h is determined as follows

h = g −
∮

Γ

Ψ(ζ)

ζ − t0
dζ.

Now, if t ∈ Γ, one can use the Plemelj formula [3] to compute ϕ+)−1 and ϕ−) as follows

(ϕ+)−1(t) = h+

∮
Γ

Ψ(ζ)

ζ − t
dζ + πiΨ(t),

and

ϕ−(t) = h+

∮
Γ

Ψ(ζ)

ζ − t
dζ − πiΨ(t),

with the assumption that principal value integrals are whenever needed. If the normalisation is
canonical which means that h = g = 1 and from these expressions and (1.6), we finally obtain
the integral equation.

1

πi

(∮
Γ

Ψ(ζ)

ζ − t
dζ + I

)
Ψ(t)(ϕ+ I)(ϕ− I)−1 = 0,

for Ψ = Ψ(t). In the simplest case of the RHB, which is the scalar RHB, where ϕ, ϕ+ and ϕ−
are only ordinary functions. the solution in this simple case is given by

ϕ+ = exp

(
−
(

1

2πi

∫ +∞

−∞

logϕ(ζ)

ζ − t
dζ

))
, Im(t) > 0

ϕ− = exp

(
1

2πi

∫ +∞

−∞

logϕ(ζ)

ζ − t
dζ

)
. Im(t) < 0

This can be verified if we take the logarithm of (1.6) and use the Cauchy integral formulae

logϕ = log(ϕ−)− log(ϕ+)−1.
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Figure 1.1: Main steps of inverse scattering transform method

Now, we are in position to present the I.S.T method. In fact, this method is not a direct
tool, it can be represented by the diagram 1.1. Now, we apply the IST on BO equation that
written as follows

ut + (u2 −Hux)x = 0, t ∈ R, x ∈ R, (1.7)

where u(t, x) is a real-valued function and H denotes the Hilbert transform, defined by

Hf(x) =
1

π
P.V.

∫
R.

f(y)

x− y
dy,

P.V. stands for the principal value. This equation was introduced by Benjamin [10] and later
by Ono [93] and has been intensively studied both numerically and mathematically as a model
in internal-wave theory.

The Scattering Data

More precisely, following [2, 4] the Lax pair for the BO equation is defined by

iω+
x + k(ω+ − ω−) = −uω+, (1.8)

iω±t − 2ikω±x + ω±xx − 2i[u]±x ω
± = −αω±, (1.9)

where the spectral parameter here is the constant k, ρ is an arbitrary constant, [u]− and [u]+

are analytic functions in the lower and upper half complex z−planes, respectively. Similarly
for ω± which is considered as the boundary values of functions, that is ω± = lim

y→0
ω(x± iy) and

[u]± = ±1

2
u− 1

2
iHu. (1.10)

The linear spectral problem defined by equation (1.8) represents a RHB in the complex
z−plane. By imposing some suitable boundary conditions when z →∞, (1.8) leads to unique
solutions for both ψ+ and ψ−. following [2], the choice as z →∞ would be either ψ+ → 0 or 1.
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One may only interest in the positive eigenfunctions, thus from now on, the superscript + can
be dropped. Let N , N and M , M denote the right and the left eigenfunctions, respectively.
These eigenfunctions are specified by the asymptotic behavior:

N(x; k) ∼ eikx N(x; k) ∼ 1 asx→∞, (1.11)

M(x; k) ∼ 1 M(x; k) ∼ eikx asx→ −∞, (1.12)

They also satisfy the following integral representation(
N(x; k)
N(x; k)

)
=

(
eikx

1

)
+

∫ +∞

−∞
ϕ−(x, y; k)u(y)

(
N(y; k)
N(y; k)

)
, (1.13)

(
M(x; k)
M(x; k)

)
=

(
1
eikx

)
+

∫ +∞

−∞
ϕ+(x, y; k)u(y)

(
M(y; k)
M(y; k)

)
, (1.14)

that are called Fredholm integral equations, with ϕ−, ϕ+ represent respectively the (−) and
(+) regions of the following holomorphic function

ϕ(x, y; k) =
1

2π

∫ ∞
0

ei(x−y)ζ

ζ − τ
dζ, (1.15)

with τ is the complex extension of k. This yields

ϕ∓(x, y; k) =
1

2π

∫ ∞
0

ei(x−y)ζ

ζ − (k ∓ i0)
dζ. (1.16)

As mentioned in the previous part, we can use the Plemelj formulae to get

ϕ+(x, y; k)− ϕ−(x, y; k) = iθ(k)ei(x−y)k, (1.17)

where θ(k) denotes the Heaviside function (θ(k) = 1 if k > 0 or 0 if k < 0). Then, one can
focuses on the following scattering equation

M(x, k) = N(x, k) + α(k)N(x, k), (1.18)

with

α(k) = iθ(k)

∫ +∞

−∞
u(y)M(y, k)eikydy. (1.19)

To derive the later equation, we need to define

∆(x; k) = M(x; k)−N(x; k). (1.20)

then, by (1.13) and (1.14), we find that

∆(x; k) =
∫ +∞
−∞ ϕ+(x, y; k)u(y)M(y, k)dy −

∫ +∞
−∞ ϕ−(x, y; k)u(y)N(y, k)dy

=
∫ +∞
−∞ ϕ−(x, y; k)u(y)∆(y, k)dy

−
∫ +∞
−∞ [ϕ+(x, y; k)− ϕ−(x, y; k)]u(y)M(y, k)dy.

(1.21)
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Thus from (1.17) ,(1.18) and (1.19)

∆(x; k) =
∫ +∞
−∞ ϕ−(x, y; k)u(y)∆(y, k)dy + ieikx

∫ +∞
−∞ eikyu(y)M(y; k)dy, (1.22)

and this implies that
∆(x; k) = α(k)N(x; k). (1.23)

1.2.5 Inverse scattering data

The solitons of the BO equation arise as poles of the left and right eigenfunctions M and N .
The integral equations (1.13) and (1.14) have ψj(x) as nontrivial solutions, for some negative
kj.

ψj(x) =

∫ ∞
−∞

ϕ(x, y; kj)u(y)ψj(y)dy, as kj < 0 (1.24)

where

ϕ(x, y; kj) =
1

2π

∫ ∞
0

ei(x−y)ζ

ζ − kj
dζ. (1.25)

Since the kernels of (1.13) and (1.14) are (+) and (−) function in k for M and N , respectively
then

M(x, k) = 1 +
n∑
j+1

Cjψj(x)

k − kj
+m+(x, k), (1.26)

and

N(x, k) = 1 + i
n∑
j+1

Cjψj(x)

k − kj
+ n−(x, k), (1.27)

where the constants Cj will be equal to −i after some normalization for j = 1, 2, ..., n. The
next step is to make equations (1.18) and (1.19) be a RHB in k−plane. To do so we have to
investigate an existent symmetry relation between N and N and establish appropriate analytic
characteristics of the eigenfunctions. By differentiating equations (1.15) with (1.16) and then
integrating them by parts with respect to k and ζ, respectively, we write

∂

∂k
(ϕ±(x, y, k) = − 1

2πk
+ i(x− y)ϕ±(x, y; k). (1.28)

By differentiating equation (1.13) with respect to k, we find that

∂
∂k

(N(x, k)eikx) =
∫∞
−∞

∂
∂k

(ϕ−(x, y; k)eik(x−y))u(y)N(y; k)eikydy

+
∫∞
−∞(ϕ−(x, y; k)eik(x−y)u(y) ∂

∂k
(N(x, k)eiky)dy.

(1.29)

Therefore

∂
∂k

(N(x, k)eikx) = eikx)f(k) +
∫∞
−∞

∂
∂k

(ϕ−(x, y; k)eik(x−y))u(y)N(y; k)eikydy

+
∫∞
−∞(ϕ−(x, y; k)eik(x−y)u(y) ∂

∂k
(N(x, k)eiky)dy,

(1.30)
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with

f(k) = − 1

2πk

∫ ∞
−∞

u(y)N(y; k)dy. (1.31)

Now, we can obtain the symmetry relation by comparing the three equations (1.13), (1.30) and
(1.31).

∂

∂k
(N(x, k)eikx) = f(k)N(x; k)eikx. (1.32)

Thus (1.18), (1.19) and (1.33) imply that

M(x; k) = N + α(k)eikx

∫ k

0

f(λ)eixλN(x, λ)dλ. (1.33)

For negative k, equation (1.13) gives

N
j
(x; k)−

∫∞
−∞ ϕ(x, y; k)u(y)N

j
(y; k)dy

= 1 + 1
k−kj [ψj(x)−

∫∞
−∞ ϕ(x, y; k)u(y)ψj(y)dy],

(1.34)

where

N
j
(x; k) = N(x; k) +

iψj(x)

k − kj
. (1.35)

By using (1.28) and letting the negative k tends to kj we get

N
j
(x; kj)−

∫∞
−∞ ϕ(x, y; kj)u(y)N

j
(y; kj)dy

= δj +
∫∞
−∞(x− y)ϕ(x, y; kj)u(y)ψj(y)dy,

(1.36)

where

δj = 1 +
i

2πkj

∫ ∞
−∞

ψj(y)u(y)dy, (1.37)

Letting x→ 0 in (1.15) gives

ϕ(x, y; k) =
1

2iπkj
+O(x−2) (1.38)

where

i
∂ψ+

j

∂x
+ kj(ψ

+
j − ψ−j ) = −u(x)ψ+

j (1.39)

Moreover as x→∞, ψ±j ∼ 1, then we have that

−
∫∞
−∞ u(y)ψ+

j (y)dy = kj[
∫∞
−∞(ψ+

j (y)− 1
y+i

)dy

−
∫∞
−∞(ψ−j (y)− 1

y−i
)dy −

∫∞
−∞( 1

y+i
− 1

y+i
)dy]

(1.40)

By integrating, it follows that∫ ∞
−∞

(ψ+
j (y)− 1

y + i
)dy = 0 =

∫ ∞
−∞

(ψ−j (y)− 1

y − i
)dy (1.41)
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and

kj =
1

2πi

∫ ∞
−∞

u(y)ψ+
j (y)dy (1.42)

Thus δj vanish for j = 1, 2, ... and N
j
(x; kj) = xψj(x) represents a special solution. By using

the Fredholm′s alternative theorem, we get

lim
k→kj

[N(x; k) +
iψj(x)

(k − kj)
] = [x+ γj(t)]ψj(x). (1.43)

The following integral equation is equivalent to RHB

N(x, t; k)− 1
2π

∫∞
0
ω(x, t; k, λ)α(λ, t)N(x, t; k)dλ+

∑n
j=1 ψj(x, t)ω(x, t; k, kj)

= v(x, t, k)
(1.44)

with

[x+ γj]ψj(x, t)−
1

2πi

∫ ∞
0

δ(λ, t)N(x, t, λ

λ− kj
dλ+ i

n∑
l = 1
l 6= j

ψl(x, t)

(kj − kl)
= 1 (1.45)

where

vt(x, t; k) =

∫ k

0

[f(λ, t)eix(k−λ + g(λ)eiλx]dy, (1.46)

and

g(λ) =
1

λlnλ
, (1.47)

as well as

ω(x, t, k, λ) = ei(k−λ)x

∫ x

−∞
v(δ, k)e−i(k−λ)sds, λ > 0. (1.48)

ω(x, t, k, λ) = ei(k−λ)x
∫ x
δ
v(δ, k)e−i(k−kj)sds+ e−i(k−kj)(x−δ)

∫ k
0

(f(λ,t)e−iδ(k−λ)

kj−λ + g(λ)
kj

)dλ
(1.49)

Equation (1.44)−(1.49) can be integrated by substituting (1.26)−(1.27) into (1.18)−(1.19) and
then deal with (−) part, so that

N(x, t; k)− 1

2iπ

∫ ∞
0

α(λ, t)N(x, t, λ)

λ− (k − i0)
dλ+ i

n∑
j=1

ψj(x, t)

k − kj
= 1. (1.50)

By using the following formula

eix(λ−k)

λ− (k − i0)
= i

∫ x

−∞
eis(λ−k)ds, (1.51)
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and letting k = 0 in (1.50) with equation (1.33), equation (1.44), we find that.

eix(λ−k)

λ− k
= i

∫ x

δ

eis(λ−k)ds+
eiδ(λ−k)

λ− k
. (1.52)

It follows from (1.13) that

N ∼ 1− u+

k
, as k →∞. (1.53)

Thus from (1.53) and by using the asymptotics of (1.50) when k tends to ∞, we find that

u+(x, t) =
1

2iπ

∫ ∞
0

α(k; t)N(x, t; k)dk + i
n∑
j=1

ψj(x, t). (1.54)

Eventually, if we assume that u is real, then the potential will be given by

u(x, t) = u+(x, t) + u+(x, t) (1.55)

Therefore, the potential u(x, t) is defined by equations (1.44)−(1.49) and (1.54)−(1.55) in
terms of α(k, t), f(k, t), γj and kj. The time evolution of these scattering data is shown below.

1.2.6 The Time Dependence

From equation (1.9) and M(x, t; k), the time dependence of the scattering data can be deter-
mined as follows

iMt − 2iMx +Mxx − 2i[u]+xM + αM = 0. (1.56)

Since |u| tends to zero as |x| tends to infinity, then

iMt − 2iMx +Mxx ∼ 0, (1.57)

as |x| tends infinity. Substituting (1.18) in equation (1.57) with the use of (1.11), gives

αt(k; t) = ik2α(k; t). (1.58)

Thus
α(k; t) = α(k; 0)eik2t. (1.59)

Substituting eqution (1.33) in (1.57), yields

ft(k; t) = −ik2f(k, t), (1.60)

then
f(k; t) = f(k; 0)e−ik2t, (1.61)

eventually, from (1.43), we find that γj,t(t) = 2kj and γj(t) = 2kjt+ iγj,0 for j = 0, 1, ..., n.
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1.3 Others methods

It is impotrant to point out that there is no available technique for all types of PDEs. As shown
previously IST is used to compute single soliton solutions, however there are various others
well-known methods that have also been used to derive this type of solutions. Among others,
we can cite: tanh-coth method, the sine-cosine method and Hirota’s bilinear method. Here,
one presents the main features of these three later methods, which are proved to be effective
and useful techniques for many number of nonlinear evolution equations.

1.3.1 The tanh-coth technique

By wave variable ϕ = x− ct, some PDE,

P (u, ut, ux, uxx, uxxx, ...) = 0, (1.62)

can be converted to an ODE
R(u, u′, u′′, u′′′, ...) = 0, (1.63)

then rather than integrate equation (1.62), one deals with equation (1.63) as long as every
term includes derivatives with making the constants of integration to be zeros. The standard
tanh-coth technique was introduced by Malfliet [82] and based on introducing tanh as a new
variable and representing all derivatives by this new variable as in the following example

Example 9. When we set T = tanh(ϕ), ϕ = x− ct, this gives

T = tanh(ϕ),

T ′ = 1− T 2,

T ′′ = −2T + 2T 3,

T ′′′ = −2 + 8T 2 − 6T 4,

T 4 = 16T − 40T 3 + 24T 6,

(1.64)

more precisely, regarding a new independent variable

X = tanh(kϕ), ϕ = x− ct, (1.65)

with the wave number k, due to this step, all derivatives will also change as follows
d
dϕ

= k(1−X2) d
dX
,

d2

dϕ2 = −2k2X(1−X2) d
dX

+ k2(1−X2)2 d2

dX2 ,

d3

dϕ3 = 2k3(1−X2)(3X2 − 1) d
dX
− 6k3X(1−X2)2 d2

dX2 + k3(1−X2)3 d3

dX3 ,

d4

dϕ4 = −8k4X(1−X2)(3X2 − 2) d
dX

+ 4k4(1−X2)2(9X2 − 2) d2

dX2

−12k4X(1−X2)3 d3

dX3 + k4(1−X2) d4

dX4 ,

(1.66)
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As was shown in [112] that the solution in the tanh-coth method can be expressed by the finite
expansion

u(kϕ) = S(X) =
N∑
j=0

ajX
j +

N∑
j=1

bjX
−j, (1.67)

N can be either a positive integer or noninteger and should be determined. if bj = 0, 1 ≤
k ≤ N , then Expansion (1.67) turn to the standard tanh technique. In order to accomplish
the balance method, we can observe from (1.66) and (1.67) that the highest order for u and
its derivatives are

u→ N

un → nN
(1.68)

u′ → N + 1

u′′ → N + 2

us → N + s

(1.69)

we need to balance the linear and the nonlinear highest order terms to determine the parameter
N .

1.3.2 The sine-cosine technique

The same procedure is followed for equation (1.63) as in the previous method. In this technique,
the following forms of solutions are useful and written in the form

u(x, t) = λcosα(kϕ), |ϕ| ≤ π

2k
, (1.70)

and
u(x, t) = λsinα(kϕ), |ϕ| ≤ π

k
, (1.71)

where λ, k and α are parameters that will be determined. From (1.70) and (1.71), one gets

(un)′(kϕ) = −nαkλncosnα−1(kϕ)sin(kϕ)

(un)′′(kϕ) = −n2α2k2λncosnα(kϕ) + nk2λnα(nα− 1)cosnα−2(kϕ),
(1.72)

and
(un)′(kϕ) = nαkλnsinnα−1(kϕ)cos(kϕ)

(un)′′(kϕ) = −n2α2k2λnsinnα(kϕ) + nk2λnα(nα− 1)sinnα−2(kϕ).
(1.73)

We obtain a trigonometric equation by substituting (1.72) or (1.73) in (1.63) and the param-
eters can then be determined by applying first the balance method on each pair powers of
cosine or sine. the next step is to collect all the same exponent coefficients in cosine or sine,
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where these coefficients should be vanish. after these two steps, one gets a system of algebraic
equations with the unknowns parameters α, λ and k that should be determined. Then the
solutions will follow immediately. As we notice that these two methods ( the tanh−coth and
the sine−cosine technique ) require less computational work than some well−known methods
as truncated Painlev′e expansion, IST and Hirota′s bilinear method.

1.3.3 Hirota’s bilinear technique

This method was introduced by Hirota in [44], where his bilinear operators was defined by

Dn
tD

m
x (E,F ) =

(
∂

∂t
− ∂

∂t′

)n(
∂

∂x
− ∂

∂x′

)m
E(x, t)F (x′, t′)|x′ = x, t′ = t. (1.74)

In what follows, the main steps of this technque is shown. One begins by presenting some
differentials of the bilinear D−operators

Dx(E,F ) = ExF − EFx,

D2
x(E,F ) = E2xF − 2ExFx + EF2x,

DxDt(E,F ) = Dx(EtF − EFt) = ExtF − EtFx − ExFt + EFxt,

DxDt(E,E) = 2(EExt − ExEt),

D4
x(E,F ) = E4xF − 4E3xFx + 6E2xF2x − 4ExF3x + EF4x,

Dn(E,E) = 0, ifn is odd.

(1.75)

and their properties

D2
t (g,g)

g2
=
∫∫

uttdxdx,
DtD3

x(g,g)
g2

= uxt + 3u
∫
xutdx

′,

D2
x(g,g)
g2

= u, D4
x(g,g)
g2

= u2x + 3u2,

DtD2
x(g,g)
g2

= ln(f 2)xt,
D6
x(g,g)
g2

= u4x + 15uu2x + 15u3,

D2
t (g,g)

g2
=
∫∫

uttdxdx,
DtD3

x(g,g)
g2

= uxt + 3u
∫
utdx

′,

(1.76)

where
u(x, t) = 2(lng(x, t))xx. (1.77)

For the KdV equation,
ut + 6uux + uxxx = 0. (1.78)

The solution is expressed by

u(x, t) = 2
∂2

∂x2
logg, (1.79)
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with g(x, t) can be expanded as

g(x, t) = 1 +
∞∑
n=1

εngn(x, t), (1.80)

where ε indicates a formal expansion parameter. If we look for the one−soliton solution, then
we set

g(x, t) = 1 + εg1, (1.81)

while for the two-soliton solution, we set

g(x, t) = 1 + εg1 + ε2g2, (1.82)

and so on. the next step is to determine these functions g1, g2, g3...by the use of Hirota′s
bilinear formalism. The N−soliton solution is found from

g1 =
N∑
j=1

exp(θj), θj = kjx− cjt, (1.83)

where kj is the wave number. Analytical study of nonlinear dispersive equations gives rig-
orous solutions and deep understanding of such waves phenomena. However such analytical
treatments are not always practical, that why numerical methods play a significant role in
understanding these complicated phenomena via numerical solutions.
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Chapter 2

Numerical Methods

2.1 Introduction

The numerical results give conjectures and motivations for more analytical investigations. In-
deed a lot of crucial waves phenomena discovered first numerically such as finite time blows
up, fractal scattering and elastic collision of solitary waves. For the space discretization, the
typical numerical techniques used are finite differences, finite elements and recently spectral
methods and finite volumes. In the next two sections, we describe some numerical techniques
used for the two aspects of nonlinear dispersive PDEs computations, namely Generation of
solitary wave solutions and Evolution simulations.

2.2 Generation of solitary waves

The study of special type localized solutions play significant role in the nonlinear wave phe-
nomena areas. Among these types of solutions, we are interested in the so-called solitary wave
solutions ( Solitons ) that preserve their shapes during propagation. If these types of waves
are stable as for example solitons in either the KdV or NLS equations, then they can be main-
tained for long-time solutions; but they keep their importance even in the instable case, such
as the 2D NLS ground-state solitary waves in the collapse theory. For the last decades, many
papers with developments of much more easy and efficient methods for the computation of
these types of nonlinear waves solutions. in this part, we present some efficient methods that
do not require much effort, o lot of memory and time to implement even in higher dimensions.

2.2.1 Petviashvili technique

This numerical approach was introduced in 1976 by Petviashvili for power−law nonlinearity
equations of constant coefficients. The basic idea in this technique is the well known fixed-
point iteration with the key of stability which is called a stabilizing factor. In [94] results on
the convergence conditions of the first problem solved by this method were developed. It was
then extended to other wave equations, see for exemple [5, 74, 86]. Solitary wave solutions
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u(x, t) = ϕ(x− ct) of (2.38) can be characterized by the following stationary equation

Lϕ = N (ϕ), (2.1)

which can be rewritten as
ϕ = L−1N (ϕ). (2.2)

Unfortunately, if one directly iterates (2.2) to compute the solitary waves solution then this
iteration will diverge. To overcome this divergence problem, Petviashvili method idea uses the
stabilizing factor. The introduction of this factor is for suppress the iteration function if it
grows or pump up it if it decays. Equation (2.2) becomes

ϕn+1 = M γ
nL−1N (ϕn). (2.3)

with the stabilizing factor

M γ
n =

〈ϕn,N (ϕn)〉
〈ϕn, ϕn〉

, (2.4)

where γ is a constant has to be chosen according to the next theorem

Theorem 10. For the solitary waves of equation (2.2), the Petviashvili approach converges
when 1 < γ < p+1

p−1
and the fastest convergence appears if γ = γopt = p

p−1
for an initial condition

close enough to the exact solution u(x). Here p is the degree of nonlinearity.

For the proof of this Theorem, see [94, 108].

2.2.2 Accelerated imaginary-time evolution technique (AITEM)

The second numerical technique presented here to determine the grond state is the imaginary-
time evolution technique.The idea of this approach has been available for both linear and
nonlinear equations (see [70, 26]). It is based on the fact that the ground state is turned into
diffusive type equation of fictitious time evolution and it requires that after each step of time
integration the solution has to be normalized. To keep a fixed power, a ground state would be
obtained when the solution develops into a steady state. More recently, this method has been
developed into a new one called ”accelerated imaginary-time evolution” approach in order to
make it more faster. If the solitary wave is sign definite, then the convergence of this technique
is directly connected to the linear stability of the later wave and this is the most significant
feature in this technique, see [110]. To describe this method, we need to consider a wave
equation as an example, we choose here the general multidimensional NLS equation as in [108]

iUt +∇2U + F (|U |2,x)U = 0, (2.5)

with a real-valued function F . This equation admits a solitary wave of the form

U(x, t) = u(x)eiωt, (2.6)

where ω is the propagation constant, u(x) is a localized function of real-valued which satisfies

Lu = ωu, (2.7)
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with the operator L defined by
L ≡ ∇2 + F (u2,x). (2.8)

From the dispersive equation (2.5) and by replacing t with −it, we can obtain the following
diffusive equation

ut = Lu. (2.9)

Then to preserve a fixed power, we need to normalize the solution after any time integration
step. the easiest way to integrate equation (2.9) is the use of Euler approach, so the scheme of
ITEM is defined as

un+1 =
[

P
〈ûn+1,ûn+1〉

] 1
2
ûn+1;

ûn+1 = un + [Lu]u=un
∆t,

(2.10)

where the propagation constant ω becomes

ω =
1

p
〈u, Lu〉 .

Since the time integration by using the Euler method for the diffusive equation suffers stringent
stability restrictions on the time step, the ITEM method would be very slow. Fortunately, there
are schemes that can be used to fix this difficulty such as the implicit time-stepping techniques
or a preconditioning operator. The later strategy is the known as accelerated ITEM (AITEM),
in this technique one deals with the preconditioned imaginary-time equation (2.11) defined
below; rather, equation (2.9).

ut = M−1[Lu− ωu] (2.11)

where M define acceleration operator. using again the Euler approach, the AITEM is

un+1 =

[
P

〈ûn+1, ûn+1〉

] 1
2

ûn+1; (2.12)

ûn+1 = un +M−1(Lu− ωu)u=un,ω=ωn∆t, (2.13)

ωn =
〈M−1u, Lu〉
〈M−1u, u〉

|u=un .

For the case of multidimensional NLS equation, the solitary wave linearization operator is
defined as

L′ = ∇2 − ω + F (u2,x) + 2u2Fu2(u
2,x). (2.14)

2.2.3 Squared-operator iteration technique

Solitary waves in arbitrary spatial dimensions can be written by

Lu(x) = 0, (2.15)
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where u is a solitary wave of real-valued vector and x represents a multidimensional space
variable. In this equation, the solitary wave propagation constant is lumped into L. Let L′ be
the linearized operator around the solution u for equation (2.15), this means

L(u+ u′) = L′u′ +O(u′2), u′ � 1. (2.16)

To apply the squared-operator iteration tool ( SOM method); first, one needs to integrate
numerically the following squared-operator evolution equation

ut = −M−1L′
∗
M−1Lu. (2.17)

Here, ∗ indicates the Hermitian, M is a Hermitian operator and positive-definite in order
to ensure and accelerate the convergence. Choosing a simplest time-stepping approach for
equation (2.17) as for instance the forward Euler method, gives the following scheme

un+1 = un − [M−1L′
∗
M−1Lu]u=un∆t, (2.18)

where the time-step parameter is denoted by ∆t. It is worth pointing out here some remarks,
(see [109]for more details).

Remark 11. The remarks that we have on SOM method are:

1. In the SOM method, we do not need to normalize the power.

2. Unlike the AITEM method the propagation constant in the SOM technique is prefixed.

3. Squared-operator equations expressed by (2.17) is not the only available one. for example,
the following equation

ut = −M−2L′
∗
Lu, (2.19)

can also be used.

4. The forward Euler approach is not the only time-stepping scheme that can be used to deal
with equation (2.17), but it is the most efficient one.

5. The SOM scheme represented in (2.18) converges for all ∆t less then a certain threshold.

2.3 Evolution simulations

2.3.1 Space discretization: spectral method

In recent years, due to theirs advantages, Spectral Methods have great advances and develop-
ments. The main idea of spectral Methods is to approximate the function of solution by a finite
series of a known basis. The deferent types of the approaches are from which function class
of the sum must be selected and the technique should be applied to determine the expansion
coefficients. There are three main types: Tau, Galerkin and pseudospectral (known also by
collocation) technique. Here, we just concern with the later one. For theoretical review on
spectral methods, we recommend [49, 50, 17, 18, 16] and for more practical applications of
pseudospectral methods, see [37, 103]. Pseudospectral approaches are mostly well-suited with
periodic boundary conditions, so that we consider Fourier collocation method in a periodic
setting of one space dimension for simplicity.
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Why spectral methods

In contrast to both finite difference methods and finite element methods, spectral schemes are
global, which means they necessary invoke many function values far away from the interesting
points. In spectral Methods, the function that we want to differentiate is approximated as the
following finite sum of basis functions:

u(x) ≈
N∑
k=0

αkφk(x), (2.20)

with φ(x) can be for instance trigonometric functions, Legendre or Chebyshev polynomials, this
approach allows us to obtain an exact differentiation for these functions. Spectral methods have
the following benefits in solving time dependent PDEs:

• Spectral methods give extremely accurate numerical results of exponential convergence.

• The methods are almost free of both dispersive or dissipative errors.

• Spectral methods are of high performance even in many cases that suffer from nons-
moothness or discontinuities and variable coefficients.

• Up to now, spectral methods have appeared to be the highly successful approches in
various fields as for instance weather prediction, turbulence modeling, seismic modeling,
nonlinear waves. In fact the list of the areas is still growing (see [16, 37] and references
therein).

• Nearly all types of spectral methods can be implemented without much efforts, partic-
ularly Fourier spectral methods because of Cooley and Tukey algorithm for the Fast
Fourier transform (FFT) [28] (see Appendix A).

• The common features of all types of these methods is the requirement of less time and
less memory with respect to finite volume (FV), finite element (FE) or finite difference
(FD) techniques, since they need low grid points number to achieve high accuracy. This
benefit is crucial especially in two or more dimensions.

Different approaches for spectral methods

According to the selected way to determine the expansion coefficients αk, there are three main
used techniques. A common requirement in all of them is to keep the residual as low as
possible in the whole domain while making the boundary conditions hold. These approaches
are resumed in the following

• Galerkin make a new set of the combined original basis functions so that all these new
functions satisfy the boundary conditions. Then the residual should be orthogonal to as
many of the basis functions of the new set as possible.

• Tau the requirement of this technique is that the residual should be orthogonal to as
many of the basis functions as possible and αk has to be chosen such that the boundary
conditions are satisfied.
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• Collocation similar to Galerkin technique, the requirement is that ak should be chosen
so that the boundary conditions are satisfied, but in this case the residual has to be zero
at all chosen spatial points (called collocation nodes).

2.3.2 Fourier collocation method

Spectral methods involve a way of translating a continuous space and time equation into a
discrete setting when we can solve it numerically. In this part, we give a description of Fourier
spectral method in space discretization.

Fourier transform

Let us denote by û the Fourier transform of a function u ∈ L2(R), that is defined by

F [u](k) = û(k) =

∫ +∞

−∞
u(x)e−ikxdx, k ∈ R (2.21)

where the corresponding inverse transform is written as

F−1[u](x) = u(x) =
1

2π

∫ +∞

−∞
F [u](k)eikxdk, x ∈ R (2.22)

with k is the wave number. The next theorem shows the connection between the function
smoothness and its Fourier transform

Theorem 12. For u ∈ L2(R) and û associated Fourier transform, we have the following
statements

1. For r ≥ 0, if u has an rth derivative of bounded variation and r−1 continuous derivatives
in L2, we have

û = O(|k|−r−1) as |k| → ∞.

2. For any m ≥ 0, if
û = O(|k|−m) as |k| → ∞,

then the function u has infinitly many continuous derivatives in L2(R). The converse
also holds.

3. For two postive constants α and β, such that we can extend u to an analytic function in
the complex strip |Imz| < α and for every y ∈ (−α, α), ‖u(. + iy)‖ ≤ β uniformly, with
‖u(.+ iy)‖ ≤ β is the L2 norm along the horizontal line Imz = y, then

uα = eα|k|û(k) ∈ L2(R).

The converse also holds.

4. For a strict positive α such that |u(z)| = o(eα|z|) as |z| tends to infinity for every z ∈ C, if
we can extend u to entire function, then û has compact support in [−α, α], which means

û(k) = 0, for every |k| > α.

The converse also holds.

For the proof of these results, see [103] and references therein.
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Discrete Fourier expansion

In practical applications, we use the discrete Fourier transform instead of the Continuous
Fourier transform. Consider the set of nodes

xj =
2πj

N
, j = 0, ..., N − 1, (2.23)

for each integer N > 0. The corresponding discrete Fourier coefficients are given by

ũ =
1

N

N−1∑
j=0

u(xj)e
−ikxj , k = −N

2
, ...,

N

2
− 1, (2.24)

for a function u ∈ [0, 2π], using the orthogonality property

1

N

N−1∑
j=0

u(xj)e
−ipxj =


1 if p = Nm, m = 0 ± 1, ±2, ...,

0 otherwise

 . (2.25)

The inverse formula is given by

u(xj) =

N/2∑
k=−N/2−1

ũke
ikxj , j = 0, ..., N − 1. (2.26)

Thus, the trigonometric interpolant of u is

INu(x) =

N/2∑
k=−N/2−1

ũke
ikx, (2.27)

which means that INu(xj) = u(xj) for j = 0, 1, ..., N − 1. The polynomial (2.27) is called the
discrete Fourier series of u. Hence the discrete Fourier transform (DFT) can be defined as the
mapping between u(xj) and ũk, for j = 0, 1, ..., N − 1 and k = −N/2, ..., N/2 − 1. The DFT
can be implemented by the algorithm of Fast Fourier Transform (FFT) (see Appendix A, for
details).
In the the following, we find discrete version of theorem (12)

Theorem 13. For a function u that has a bounded variation first derivative in L2(R), v is
the discrete function defined by vj = u(xj) on the interval I, then for k ∈ [π

h
, π
h
] or for any

constant L such that k ∈ [−L,L], the next estimates hold uniformly

1. If u has a rth bounded variation derivative in L2(R) for some positive r and r − 1 con-
tinuous derivatives, then

|v̂(k)− û(k)| = O(hr+1) as h→ 0

2. If u has many infinitely continuous derivatives in L2(R), then

|v̂(k)− û(k)| = O(hp) as h→ 0

for any p ≥ 0
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3. If u can be extended to an analytic function for two strict positive numbers α and β, such
that |Imz| < α and for any y ∈ (−α, α), ‖u(.+ iy)‖ ≤ β uniformly, Then

|v̂(k)− û(k)| = O(e−π(α−ε)/h) as h→ 0

for any ε > 0.

4. If |u(z)| = o(eα(z)) as |z| → ∞ for a strict positive α and for every complex value z ∈ C
and if one can extend it to an entire function, then, provided h ≤ π

α

v̂(k) = û(k)

For more details on these results, see [53, 100, 103].

Differentiation

In a spectral method there are two manners to accomplishe differentiation:
1- In transform space, differentiation consists only multiplying any Fourier coefficient by

ik, with k represents the corresponding wavenumber, i.e., Let

Su =
∞∑

k=−∞

ûkφk

be the Fourier series of u, its truncated Fourier series is defined for an integer m by

PNu(x) =
m∑

k=−m

ûke
ikx, (2.28)

so the Fourier series of u′ is given by

Su′ =
∞∑

k=−∞

ikûkφk, (2.29)

Consequently, we find that there is commute between truncation and differentiation, i.e.,

(PNu)′ = PNu
′, (2.30)

2-In physical space, differentiation is based on the values of u at the the grid points (2.23).
To compute u′j at the Fourier nodes xj, first we need to evaluate the DFT according to
(2.24) and then perform the differentiation in transform space as explained before; and finally,
according to (2.26) transform back to the former space.
The approximate derivative values (DNu)j at the grid points xj are hence given by

(DNu)j =

N/2−1∑
k=−N/2

ũ
(1)
k e2ikjπ/N , j = 0, 1, ..., N − 1, (2.31)
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with

ũ
(1)
k = ikũk =

ik

N

N−1∑
l=0

u(xl)e
−2iklπ/N , k = −N/2, ..., N/2− 1. (2.32)

The above procedure allows to compute the first derivative of (INu), i.e.,

DNu = (INu)′,

where DNu is known as the Fourier interpolation derivative to the function u. In the same way,
we can compute the mth derivative, but (ik) should be replaced by (ik)m. It is worth noticing
that

DNu 6= PNu
′.

Differentiation and Interpolation do not commute, i.e.,

(INu)′ 6= INu
′.

2.3.3 Aliasing error

Let u be a continuous function, the Fourier expansion is typically defined by

u(x) =
∞∑

k=−∞

û(x)eiπkx.

Every Fourier mode eiπ(k+wN)x in a distinct set of N - equi-distant points in [−1, 1] for w =
... − 1, 0, 1, ..., appears identical, see Figure 2.1. The function u is sampled by a DFT at
such grid point and these modes become indistinguishable. Let us assume that N is odd, i.e.,
N = 2m+ 1, for k ∈ [−m,m],

ũ =
∞∑

k=−∞

û(k + wN),

the trigonometric interpolating that defined as in (2.27)

INu(x) =
m∑

k=−m

ũ(k)eiπkx,

does not take the exact values between grid point, but not at these points. The difference
between the interpolating and the truncation (that defined as in (2.28)) is called the aliasing
error, i.e.,

RNu(x) = INu(x)− PNu(x) =
m∑

k=−m

∞∑
w = −∞
w 6= 0

û(k + wN)eiπkx.

The next theorem shows the accuracy of Fourier spectral differentiation
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Figure 2.1: Example of Aliasing effect for sinπx and sin9πx.

Theorem 14. For a function u that has a mth bounded variation derivative with m ≥ 1, and
for a mth spectral derivative w of u on the grid hZ. The next estimates hold uniformly for
every x ∈ hZ

1. If u has a rth bounded variation derivative in L2(R) for some positive r such that r ≥ m+1
and r − 1 continuous derivatives, then

|wj − um(xj)| = O(hr−m) as h→ 0

2. If u has many infinitely continuous derivatives in L2(R), then

|wj − um(xj)| = O(hp) as h→ 0

for all p ≥ 0

3. If u can be extended to an analytic function for two strict positive numbers α and β, such
that |Imz| < α and for any y ∈ (−α, α), ‖u(.+ iy)‖ ≤ β uniformly, Then

|wj − um(xj)| = O(e−π(α−ε)/h) as h→ 0

for all ε > 0

4. If |u(z)| = o(eα(z) as |z| → ∞ for a strict positive α and for every complex value z ∈ C
and if one can extend it to an entire function, then, provided h ≤ π

α

wj = um(xj)

.

This Theorem has been also illustrated and discussed in [103].
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2.3.4 Gibbs phenomenon

To understand this phenomenon, let us discuss the following Example

Example 15. Consider the periodically extended function

u(x) =


x 0 ≤ x ≤ π,

x− 2π π < x ≤ 2π,

 (2.33)

The Fourier series expansion coefficients are given by

ûn =

 i(−1)|n|/n n 6= 0,

0 n = 0.

 (2.34)

In Figure 2.2, we can notice the strong oscillations that appear around the discontinuity and
they do not decay even for an increasing resolution, but we observe also the slow convergence
of the approximation away from the discontinuity see Figure 2.2 (right). At the most, this
convergence is linear, accompanying to the expansion coefficients decay. In Figure 2.2, we see
that the error of the discontinuity does not disappear for an increasing resolution. So, inspite
of the convergence of the approximation in the mean, this convergence is not uniform. To see
the convergence of the approximation in the mean, we can use Parseval’s identity to estimate
the L2−error.

‖u− PNu‖L2[0,2π] = 2π

∑
|n|>N

1

n2

1/2

' 1√
N
.

Although the smoothness and periodicity of the function away from the discontinuity, the
presence of the discontinuity dominates the global rate of convergence. Therefore, in this
example we find two main aspects of the problem: the non uniform convergence close to
the discontinuity, and the slow convergence far from the discontinuity. These two aspects
characterize the so-called Gibbs phenomenon. For more details see also [43]

2.4 Time discretization methods

In this section, we present some well known standard time discretization methods for stiff
systems and discuss their stability conditions.

2.4.1 Runge-Kutta methods

Runge-Kutta techniques are multistep time discretizations with single-step. Their three ver-
sions are

• A second−order Runge-Kutta (RK2) technique can be written as follows

un+1 = un +
1

2
∆t[f(un, tn) + f(un + ∆tf(un, tn), tn + ∆t)] (2.35)
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Figure 2.2: On the left, the Gibbs phenomenon is illustrated from the approximation of a
discontinuous function by the continuous Fourier series. On the right, we show the pointwise
error of this approximation for an increasing resolution.

• A famous third−order Runge-Kutta (RK3) is of the form

R1 = f(un, tn),

R2 = f(un + 1
2
∆tR1, t

n + 1
2
∆t),

R3 = f(un + 3
4
∆tR2, t

n + 3
4
∆t),

un+1 = un + 1
9
∆t[2R1 + 3R2 + 4R3].

(2.36)

• The standard fourth-order Runge-Kutta (RK4) technique is

R1 = f(un, tn),

R2 = f(un + 1
2
∆tR1, t

n + 1
2
∆t),

R3 = f(un + 1
2
∆tR2, t

n + 1
2
∆t),

R4 = f(un + ∆tR3, t
n + ∆t),

un+1 = un + 1
6
∆t[R1 + 2R2 + 2R3 +R4].

(2.37)
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2.4.2 Integrating factor methods

In the theory of ODEs, multiply both sides of an equation by an integrating factor and use
some change of variables are a first basic idea, see for instance [72]. A similar idea has been
developed in PDEs theory. the method involves to use a change of variable to help us to get
the exact solution of the linear part and then choose a suitable numerical scheme to solve the
transformed, nonlinear part. This method was introduced by Lawson [75] in 1967 and then
it has been used for PDEs by Milewski and Tabak [85], Fornberg and Driscoll [38], Cox and
Matthews [29]... Now we apply this method on the following semi-linear problems

ut = Lu+N(u, t), (2.38)

we start by defining the following transformation

v = e−Ltu, (2.39)

here e−Lt is called the integrating factor. By differentiating (2.39), we have

vt = −e−LtLu+ e−Ltut. (2.40)

From (2.38), we get that

e−Ltut − e−LtLu = vt = e−LtN(u). (2.41)

Then,
vt = e−LtN(eLtv) (2.42)

Equation (2.42) can be solved by choosing a time-stepping method, for example RK4.

2.4.3 Sliders methods

We can say that sliders schemes idea is an extension of implicit-explicit methods idea (that
is an explicit multistep scheme to integrate the nonlinear part and an implicit formula to
deal with the linear part of the problem, see [22] for the application of these methods on KdV
equation) because sliders techniques consist to split the problem into linear and nonlinear part.
But in addition to that split, the linear equation is also divided into three regions in Fourier
space: high, medium, and low wavenumbers, and we use a convenient numerical scheme in
each part. Unfortunately, these methods are not stable when not purely dispersive equations
are considered. to generalize the conception, Driscoll introduced a very similar principle by
making different schemes to deal with the fast and slow modes.

2.4.4 Exponential time-differencing methods

We focus here only in one formula of these methods based on Runge−Kutta scheme which is
the exponential time-differencing fourth order Runge–Kutta ETDRK4 scheme, since unlike the
others formula of the ETD, ETDRK4 work successfully even if the matrix L is not diagonal.
related ideas of the ETD scheme in the ODE context were developed in 1928 ( see [35]) and
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then they have been used in many reviews ( see for example [11, 21, 29]). In their paper, Cox
and Matthews gave the ETDRK4 scheme which is based on ETD methods in combination with
the fourth-order Runge–Kutta time-stepping. Since the basic idea in the ETD is to integrate
(2.38) exactly over a time step of length h, with respect to t.

un+1 = eLhun +

∫ h

0

eL(h−σ)N(u(tn + σ), tn + σ)dσ.

Then, the ETDRK4 schemes are given as follows: if we set

an = unE2 + (E2 − I)N(un, tn)L−1,

bn = unE2 + (E2 − I)N(an, tn + h/2)L−1,

cn = anE2 + (E2 − I)(2N(bn, tn + h
2
)−N(un, tn))L−1,

φ1 = (L2h2 − 3Lh+ 4)E1 − Lh− 4,

φ2 = (Lh− 2)E1 + Lh+ 2,

φ3 = (−Lh+ 4)E1 − L2h2 − 3Lh− 4;

(2.43)

we get
un+1 = unE1 + h−pL−p−1[φ1N(un, tn) + 2φ2(N(an, tn + h/2)

+ N(bn, tn + h/2)) + φ3N(cn, tn + h)],
(2.44)

with E1 = ehL, E2 = ehL/2.

2.4.5 Convergence

Here, we present some convergence theoretical results of the used methods

∂u(x,t)
∂t

= L(x, t)u(x, t) + f(x, t), x ∈ D, t ≥ 0,

B(x)u(x, t) = 0 x ∈ ∂D, t > 0,

u(x, 0) = g(x) x ∈ D,

(2.45)

with D and ∂D are spatial domain and its boundary, respectively. L is a linear differential
operator and B is a boundary operator. The semi−discrete approximations of this initial-
boundary value problems is of the form

∂uN(x, t)

∂t
= LN(x, t)uN(x, t) + fN(x, t) (2.46)

Definition 16. The spectral approximations (2.46) will be stable if

‖eLN t‖ ≤ K(t), (2.47)

where ‖eLN t‖ = max
u∈H

‖eLNt−u‖
‖u‖ and K is a finite function.
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we say that a spectral approximation is convergent if

‖u(t)− uN(t)‖ → 0 asN →∞, (2.48)

Definition 17. A spectral approximation can be consistent if

‖Lu− LNu‖ → 0

‖Lu− PNu‖ → 0
(2.49)

here PN is the truncated Fourier series of u, for every u in a dense subspace of H and N →∞.

The following Theorem is called Lax-Richtmyer theorem, which make a connection between
consistency, stability and convergence.

Theorem 18. a consistent approximation of a linear well-posed initial-value problem is stable
if and only if it is convergent.

Definition 19. Let L be a linear operator and L∗ is its adjoint. L is a normal operator if

LL∗ = L∗L

and the same for the finite dimensional approximation of L, i.e,

LNL
∗
N = L∗NLN .

The next theorem show one of the stability condition according to Von Neumann

Theorem 20. A sufficient condition for a normal operator L to be stable is

Re(λN) < C,

where C is a N−independent finite constant and λN is an eigenvalue of LN .

In the case when the operators LN are not normal, the Von Neumann stability condition
would be not sufficient but still necessary to ensure stability.

Theorem 21. Let A be any family of m × m matrices, the following arguments imply each
other

1. There are S(w) symmetric matrices such that S(w)A(w)+A∗(w)S(w) ≤ 0 and I ≤ S(w),
‖S(w)‖ ≤ C for a constant C.

2. ‖exp[A(w)t]‖ ≤ C for every t ≥ 0.

3. |Re(λ)|‖(λI − A(w))−1‖ ≤ C ′, for some constant C ′ and every λ such that Re(λ) > 0.

4. There are matrices S(w) such that 1. is satisfied with ‖S(w)‖ ≤ K(w)C ′, where C ′ is
the same constant in 3. and K(w)depends only on the number m and not the matrices
family A(w)

Theorem 22. If a family of matrices A(w) satisfy the conditions of Kreiss matrix theorem,
then all the eigenvalues of A(w) have negative real parts.
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2.4.6 Stability regions

Definition 23. Numerical approximation is said to be A-stable if it is only stable for every λ
in the nonpositive half-plane.

Due to Dahlquist[31], we have the next proposition

Proposition 24. For linear multi-step approaches, we have the following properties

• There is no explicit A-stable method.

• An A-stable implicit method can be at best second-order accurate.

Remark 25. Let us present two remarkable properties of the stability of methods

• In many cases of applications, weaker requirements than A-stability are sufficient

• Most methods such as Runge-Kutta or all linear explicit multi-step methods have stability
regions that are bounded away from the origin in every directions.

43



Chapter 3

Numerical Study for Blow-up in
Solutions of the Generalized 1-D and
2-D Benjamin-Ono Equation

3.1 Introduction

In this chapter, we give a full description to the solutions dynamics of the generalized of a
dispersive wave equation in the presence of perturbations. Let us first consider the following
well-known dispersive wave equations

utt = uxx − u (KG), ut = uxxx (KDV), ut = H(uxxx) (BO),

ut = iuxx (S), ut − ux = uxxt (RLW). (*)

These PDEs are respectively the Klein-Gordon (KG), KDV, BO, Shrödinger (S) and the regu-
larised long wave (RLW) equations, If we write u(x, t) = exp(i(kx− wt)), their corresponding
dispersion relations are respectively given by

w2 = k2 + 1, w = k3, w = sign(k)k2, w = k2, w = k/(1 + k2)

and they enable one to solve these PDEs, analytically involving Fourier integrals, and nu-
merically by computing them with the discrete fast Fourier transform FFT. Note that these
dispersion relations, and particularly dw

dk
give a complete description of the evolution of each

wave equation.
For the numerical Fourier spectral-based approximations, one proceeds as follows: a given
initial condition is converted to Fourier space via the FFT to give the coefficients a(k, 0).
Then the solution is advanced in Fourier space with respect to the time variable t to get
a(k, t) = a(k, 0) exp(−iw(k)t. An inverse FFT brings us back to u(x, t). The errors incurred
here are those in approximating the Fourier integrals with the FFT. These errors can be ren-
dered small by taking many points in the FFT and choosing a sufficiently large space interval so
that the waves do not touch the boundaries, particularly for a problem with a strong dispersion.

Here we plot the solution of the five PDEs with the same initial condition, on the same space
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interval. The solutions are plotted at different times t, for example for a PDE with a strong
dispersion, such as the KDV, we could go only to about t = 1 before the waves reached the
edge of the computational domain; while for weak dispersion cases such as the KG and RLW,
we could go up to t = 10 or t = 20 for u(x, 0) = cos(x), x ∈ [−20, 20]; and to t = 20 or t = 25
for u(x, 0) = sech(x), x ∈ [−40, 40] (see Figure 3.1).

Figure 3.1: Numerical wave evolution of equations (*): Top for u(x, 0) = sech(x), and bottom
for u(x, 0) = cos(x).

Inspired by these results, we are interested to study the dispersive decay of long time
solutions for small localized data and explore the blow-up phenomenon of the generalized BO
equation with different types of nonlinearities in both one and two dimension.
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3.2 Generalized 1-D Benjamin-Ono equations

This section is concerned with a detailed numerical study to the dynamics of solutions of
generalized Benjamin-Ono equations (gBO) in one dimension with critical and supercritical
nonlinearity. Three numerical procedures are presented, the first two methods use the Fourier
collocation scheme for the spatial discretization with an efficient time integration of high ac-
curacy in order to integrate the direct gBO equations and their rescaled equations, while the
third one is a fixed point algorithm to construct the approximate solitary wave solutions of the
equations.

The Benjamin-Ono eqution defined by (1.7) has the following explicit known soliton solutions

QBO =
4c

1 + (cx)2
, c ∈ R∗ (3.1)

where c is the wave speed. A natural generalization of (1.7) equation is

ut + unux −Huxx = 0. t ∈ R, x ∈ R (3.2)

Equations (3.2) appear in many applications specially for n = 2 (the modified Benjamin-Ono
equation (mBO)), see for instance [14]. This generalized equations show the important fact that
the dispersive effect is identified by a nonlocal operator and it is weaker than that presented
by the celebrated generalized KdV equations.
The following quantities are formally invariant under the flow associated to gBO

M(u) =

∫
R
u2dx. (3.3)

E(u) =
2

(n+ 1)(n+ 2)

∫
un+2dx−

∫
uHuxdx. (3.4)

The introduction of a stronger nonlinearity in BO has the effect that solutions to gBO equations
may blow-up in a finite time for n ≥ 2. Recall that the Cauchy problem for (3.2) with n = 2 is

locally well-posed in the energy space H
1
2 (R) by the work of Kenig and Takaoka [68]. See also

[102, 87, 88, 66], for previous related works on the Benjamin-Ono equation, and the modified
Benjamin-Ono equation. For such solutions, the quantities M(u(t)) and E(u(t)) are conserved.

Now, we show a careful numerical investigation of solutions stability in the critical and su-
percritical cases. To do so we follow the dual approach applied in [59]: a direct integration
for both the gBO equations (3.2) and their rescaled equations (3.9). In all cases, we employ
Fourier collocation method for the spatial dependence but for the time dependence we use a
different fourth order schemes: a Runge-Kutta method to deal with gBO equations (3.2) and
ETD (exponential time differencing) scheme for the dynamically rescaled gBO equation (3.9).
The rescaling code is used to test the other one.
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3.2.1 Numerical discretisation

In the studies of nonlinear dispersive wave equations in a bounded domain, a smooth, localized
initial data play an important role in the decomposition into solitary waves and an expected
blow-up in finite time. So an initial localized condition with a number of numerical tools
that have been developed in this thesis provide a precise illustration of several aspects of the
gBO equations’s dynamics. The main approache will be a Petviashvili-type methods in order
to compute numerically the approximate solitary wave solutions to the equations, a direct
integration and a dynamical rescaling for the gBO equations with a spatial Fourier transform
method for the spatial dependence and fourth order methods for the time integration, taking
into account the well known soliton solutions (3.1)

Direct numerical integration

For the direct integration of (3.2), we use Fourier spectral methods, which have excellent
approximation properties for smooth, localized functions as the ones considered here. Thanks to
the finite numerical precision and a large enough computational domain, the rapidly decreasing
initial data can be seen as periodic functions. For gBO there is an additional reason to use
Fourier spectral methods, that is the conveniences of define the term Huxx in Fourier space
where the gBO equations have the following form

ût = N(u) + L(û), (3.5)

where N(u) = − iK
n+1

ûn+1 and L = i|K|K (K is the wave number). Equation (3.5) allow us to
apply many efficient high-order schemes for the time integration, see for instance [55, 45, 29]. As
in [59], we use an implicit Runge-Kutta of fourth order (IRK4) scheme and solve its nonlinear
equations by a simplified Newton scheme.
Motivated by ([59, 60]), we compute the time dependent quantity

∆ =

∣∣∣∣E(t)

E(0)
− 1

∣∣∣∣ (3.6)

to control the numerical accuracy of the solution, it was indicated in [58, 61] that this quantity
more accurate than the L∞ norm of the difference between exact and numerical solution. We
basically choose large enough computational domain, x ∈ L[−π, π] to guarantee the periodicity
of the used initial data with a sufficient number of Fourier modes as well as a small enough
time step to ensure that the solution is considered with machine precision before the blow-up
time.

Dynamic rescaling

For the critical case n = 2, the results in [83] indicate that an expected blow-up of solutions
for initial data with minimal mass blow-up (the mass of the unique ground state solution of
DQ + Q = Q3). In addition it is more convenient to treat the fact that the maximum which
eventually develops into the blow-up is moving as the case of gKdV (for the information of the
method and the results in the gKdV case, we refer the reader to [59]and references therein).
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Thus we also shift by the location of the maximum xm(t) the x coordinate. In the case n ≥ 2,
we expecte that the quantity xm tends to infinity at blow-up. The transformed coordinates

η =
x− xm
L

,
dτ

dt
=

1

L2
, U = L

1
nu. (3.7)

That give

u = UL
1
n ,

un = (UL−
1
n )n = UnL−1,

ux = (UL−
1
n )x = (UL−

1
n )η

dη
dx

= UηL
− 1
n

1
L
,

uxx = (UηL
− 1
n

1
L

)x = (UηL
− 1
n

1
L

)η
dη
dx

= UηηL
− 1
n

1
L2 ,

ut = (UL−
1
n )t = (UL−

1
n )τ

dτ
dt

+ (UL−
1
n )η

dη
dt

= UτL
− 1
n

1
L2 − 1

n
UL−

1
n
−1Lτ

L2 − L−
1
nUη

1
L2

Lτ
L2 (x− xm)− UηL−

1
n

1
L2

xm,τ
L
,

(3.8)

which keep the gBO invariant for constant L and xm, from (3.2) we have

Uτ − α(
1

n
U + ηUη)− vUη + UnUη −HUηη = 0, (3.9)

where
α = (lnL)τ , v =

xm,τ
L

. (3.10)

Note that, we have to choose L and v in a convenient way. We also choose η such that the
maximum of |U |is located at η = 0 this means Uη(η0, τ) = 0. By differentiating with respect
to η, we find that

Uτη − α(
1

n
Uη + Uη + ηUηη)− vUηη + nUn−1U2

η + UnUηη −HUηηη, (3.11)

which implies

v = −αη0 + U(η0,τ)n − HUηηη(η0,τ)

Uηη(η0,τ)
. (3.12)

On the other hand, The scaling function L may be chosen to keep each norm constant, for
example the L∞ norm

L
1
n =
‖U‖∞
‖u‖∞

. (3.13)

Thus, we get from (3.7)

α = −nHUηη(η0,τ)

U(η0,τ)
. (3.14)

We can also choose L as

L
1
n
− 1

2 =
‖U‖2

‖u‖2

, (3.15)
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since

‖u‖2
2 =

∫
u2dx =

∫
(UL−

1
n )2Ldη = ‖U‖2

2L
− 2
n

+1. (3.16)

Another way is to choose L such that the L2 norm of Uη being constant, namely

L
1
n

+ 1
2 =
‖Uη‖2

‖ux‖2

, (3.17)

since

‖ux‖2
2 =

∫
u2
xdx =

∫
(UL−

1
n )2
xdx =

∫
(UL−

1
n )2
η(
dη
dx

)2Ldη =
∫
U2
ηL
− 2
n

1
L2Ldη

=
∫
U2
ηL
− 2
n
−1dη = ‖Uη‖2L−

1
n
− 1

2 .

(3.18)

We obtain from (3.9) in this case

a =
2n

(2 + n)(1 + n) ‖Uη‖

∫
R
Un+1Uηηηdη. (3.19)

As in the case of NLS and KdV equation, this approach showed to be numerically much more
stable than setting the L∞ norm to be constant, see [99, 59] and references therein.
Under the coordinate transformation (3.7) and from the conserved energy of gBO equation
(3.4), we have that

E[U ] = 2
(n+1)(n+2)

∫
R(UL−

1
n )n+2Ldη −

∫
R UL

− 1
nHUηL

− 1
n

1
L
Ldη

= 1

L
2
n

∫
R

2
(n+1)(n+2)

(Un+2 − UHUη)dη.
(3.20)

3.2.2 Numerical tests

In contrast to the gKdV equations case, the gBO equations for n ≥ 2 do not have explicitly
known solutions, the reason is that the later equations are not completely integrable. Thus
we use the soliton (3.1) of the BO equation (the case n = 1) as initial data with c = 2 to
numerically test the propagation of the solution. The test is executed for x ∈ 50[−π, π] with
N = 214 Fourier modes and Nt = 1000 time steps for t ≤ 10 and find that The relative com-
puted energy is in this case of order 10−14 ,i.e., machine precision. Unfortunately, due to a
Gibbs phenomenon, the Fourier coefficients do not decrease. The reason is that the soliton of
BO decreases algebraically as x−2 for |x| → ∞. This numerical problematic has a consequence
that the numerical precision will be limited and it cannot be addressed even with a large com-
putational domain.
We also use the initial data (3.1) to test the code with dynamical rescaling, the code is im-
plemented until τ = t = 10 with N t = 105, whereas all other parameters are as before. The
relative computed energy is in this case around the order of 10−8. The consistency of results
with both codes provides an additional test of the accuracy (see Figure 3.2).
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Figure 3.2: Solution to the gBO equation (3.2) for n = 2 and the initial data (3.1) in red, and
the solution to the rescaled gBO equation (3.9) in blue on the left; on the right we show the
difference between both solutions.

3.2.3 Numerical construction of solitons

solitary waves play a crucial role in the study of nonlinear wave phenomena. For the compu-
tation of this kind of waves, various analytical and numerical methods have been developed.
Among them, we find the Newton’s method, the shooting method, Accelerated Imaginary-time
Evolution Methods,..., etc. In this subsection one of the most efficient and simple methods to
implement the approximate soliton is presented. Recall that a solitary-wave solutions of (3.2)
are solutions u of the form u(x, t) = Qc(x− ct), which satisfy

DQc + cQc −
1

n+ 1
Qn+1
c = 0, (3.21)

for some profile Q and speed c where D = H∂x. We numerically solve the above equation for
c = 1 (see Figure 3.3) by the use of a spectral method due to Petviashvili. equation(3.33) can
be written

HQx +Q = Qn+1, (3.22)

or
MQ = Qn+1, (3.23)

where M = H∂x + 1. This equation may be rewritten as

Q = M−1Qn+1. (3.24)

Hence a natural iterative scheme is

Qp+1 = M−1Qn+1
p . (3.25)

Unfortunately, if we directly iterate equation (3.24), this iteration solution will usually diverge.
However, the following iterative scheme with stabilizing factor

Sp =
〈Qp,MQp〉〈
Qp, Qn+1

p

〉 ,
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(here 〈., .〉 is the standard inner product in the space of square-integrable functions) defined
by:

Qp+1 = SλpM
−1Qn+1

p , λ = const (3.26)

possesses much better convergence properties.
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Figure 3.3: Solitary waves (3.21) for c = 1 and different values of n on the left; on the right
approximate soliton of the gBO equation for c = 1, n = 1 in red and the corresponding BO
soliton in blue.

Throughout the rest of this section, we consider as initial data a perturbations of the
Gaussian of the form

u(x, 0) = λ exp(−x2/0.5), λ ≥ 0. (3.27)

3.2.4 L2 critical case n = 2

For n = 2, we first run the code for direct integration of modified Benjamin-Ono equation until
t = 5 for λ = 2, L = 50 and 214 Fourier modes with Nt = 104 time steps. The solution mass
in this case is smaller than the corresponding approximate soliton mass. As can be seen in
Figure 3.4, the solution is radiated away due to the propagation of the dispersive oscillations
and it appears that the L∞ decreases monotonically. The relative energy is conserved to the
order of 10−14. So in this case there is no indication of blow-up.

The situation is totally different for initial data with λ = 3. This time the code is carried
out with L = 20, N = 214 and Nt = 25 time steps for t ≤ 12. In this case, we have positive
initial energy and the solution mass is larger than the corresponding approximate soliton mass.
It can be seen from Figure 3.5, that there are some dispersive oscillations spreading to the left
and the solution gets more and more peaked and finally looks to blow up in a given time.
As shown in Figure3.6, the blow-up can be also indicated from both the L∞ norm of the
solution and its Fourier coefficients. We stop the code at t = 10.32 when the relative energy
conservation drops below 10−3 since there are no more reliable results. In this case although
the initial energy is positive, we have a blow-up.

3.2.5 L2 supercritical case n = 3

For n = 3, as in the critical case we perturb the Gaussian (3.27) with λ = 1.5 for which the
initial energy is positive, we execute the code with N13 Fourier modes and Nt = 2 time steps

51



−20 0 20

0

1

2

x

t = 0.000

−20 0 20

−0.5

0

0.5

1

1.5

x

u

t = 1.250

−20 0 20

−0.5

0

0.5

1

x

u

t = 2.500

−20 0 20

−0.5

0

0.5

x

u

t = 5.000

Figure 3.4: Solution to the modified BO equation (3.2) for n = 2 and the perturbed initial
data (3.27) with λ = 2 for several values of time.

on a large computational domain x ∈ [−π,+π] for t ≤ 2. Here the mass of the solution is
smaller than the corresponding approximate soliton mass. As presented in Figure3.7, a tail
of dispersive oscillations is developed towards −∞. the ∆ is conserved to the order of 10−14.
There is basically no indication of blow-up.

The situation is completely different if we run the code for λ = 2.9, 215 Fourier modes and
Nt = 20000 on x ∈ 10[−π,+π] until the code breaks at t = 0.039 because there is no more
convergent iteration. Here the mass of the solution is larger than the corresponding approx-
imate soliton mass and the initial energy is negative. At t = 0.037 the energy conservation
drops below 10−3 which indicates the appearance of blow-up (see Figure 3.8 and Figure 3.9).

3.3 Generalized 2-D Benjamin-Ono equation

In this section, we present a numerical study of the blow-up phenomenon for the BO-generalized
KP version with different types of nonlinearities. A dynamic rescaling can be used to identify
the type of the singularity and explore the investigation of observed blow-ups. For the nu-
merical experimentations, an exponential time-differencing fourth-order Runge-Kutta method
combined with a space-scheme based on the Fourier spectral method is used.

Recently, the study of the generalization of the BO equation for weak transverse perturba-
tions has become more meaningful for researchers in many fields. To our Knowledge, there is
no class of (1 + 2)-dimensional BO equations known to be integrable. However, there are some
interesting results concerning a larger class of these equations, see [41], [79] and [95] for a
more recent review. The KP-BO equations describe the motion of long, weakly nonlinear inter-
nal waves in a deep stratified fluid with weak transverse effects (see [42] for more details). By
using different techniques, these equations have been studied by several authors, for example:

• In [52], the authors have developed a proof for the solution’s local well-posedness by the
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use of a method due to Kato [56], and investigated its blows-up in finite time, for suitable
conditions as in [97].

• Esfahani has claimed in [33] the existence of solitary waves, by a suitable application of
the anisotropic Sobolev embedding theorem.

• More recently, by the use of the so-called minimax theory techniques and the Lizorkin’s
theorem. The existence, regularity and analyticity properties of their solitary waves, were
established in [95] .

• For the case when n = 1, some interesting results were shown, for example analytical
stability issues for (3.28) can be found in [42], the existence of global solutions and
scattering was proved for small, smooth and localized initial data (see [41]) and the local
Cauchy problem of the gKP-BO was studied in [79].
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Figure 3.7: Solution to the modified BO equation (3.2) for n = 3 and the perturbed initial
data (3.27) with λ = 1.5 for several values of time.

In the following of this section we consider a class of the two dimensional generalized BO
equations (shortly denoted by GKP-BO) written as:

(ut − Huxx + unux)x = λuyy, λ = ±1. (3.28)

with n = n1

n2
, n1, n2 ∈ N∗, or in the integrated form as

ut − Huxx + unux = λ∂−1
x uyy, λ = ±1. (3.29)

λ = 1 for (GKPI-BO) while λ = −1 for (GKPII-BO).
Here ∂−1

x is determined via the Fourier transform as

∂̂−1
x f(kx, ky) =

1

ikx
f̂(kx, ky). (3.30)

Equations (3.29) satisfy the following conservation quantities

M [u] = ‖u‖2. (3.31)

and

E[u] =

∫
R2

[−1

2
uxHu−

1

(n+ 1)(n+ 2)
un+2 +

λ

2
(∂−1
x uy)

2] dxdy. (3.32)

In addition GKP-BO also have localized travelling wave solutions in the x-direction that take
the form u(x; y; t) = Q(x− ct; y), where the nontrivial Q(z; y) satisfies

−cQzz +
1

n+ 1
Qn+1
zz −HQzzz − λQyy = 0. (3.33)

Due to the antiderivative term in (3.29), ∀t > 0 the solutions satisfy the constraint∫
R
uyydx = 0. (3.34)
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Figure 3.8: Solution to the modified BO equation (3.2) for n = 3 and the perturbed initial
data (3.27) with λ = 2.9 for several values of time.
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Figure 3.9: L∞ norm of the solution to the gBO equation (3.2) for n = 3 and the perturbed
initial data (3.27) with λ = 2.9 on the left, and the modulus of the Fourier coefficients of the
solution for t = 0.039 on the right.

Furthermore a singularity at the x frequency kx = 0 delimits the achievable precision in the
solutions of the GKP-BO equations. It was proved that the solutions to a Cauchy problem will
not be smooth in time for t = 0 if they do not satisfy the constraint (3.34). Numerically, these
solutions develop an infnite trench as was reported in [62]. This nonregularity represented
numerically when t→ 0, presents a problem as it delimits the manageable accuracy. To avoid
such problems, we consider initial data that are x-derivatives of rapidly decreasing functions
satisfying (3.34). In this section, we consider the following initial data

u0(x, y) = β exp (−(x2 + y2)), β is a constant. (3.35)
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3.3.1 Dynamic rescaling

Equation (3.29) is symmetric under the following rescaling

ξ =
x− xm
L

, η =
y − ym
L

3
2

,
dτ

dt
=

1

L2
, U = L

1
nu. (3.36)

with a dynamic rescaling L = L(t). Thus we write (3.29) as

Uτ − a
(

1

n
U + ξUξ +

3

2
ηUη

)
− vξUξ − vηUη + UnUξ −HUξξ = λ

∫ ξ

−∞
Uηηdz, (3.37)

with

a =
Lτ
L
, vξ =

xm,τ
L

, vη =
ym,τ
L

, (3.38)

where xm, ym are the maximum or the minimum location and the index τ denotes the τ -
derivative. Equations (3.37) and (3.38) are obtained from the following equations

u = UL−
1
n ,

un = (UL−
1
n )n = UnL−1,

ux = (UL−
1
n )x = (UL−

1
n )ξ

dξ
dx

= UηL
− 1
n

1
L
,

uxx = (UξL
− 1
n

1
L

)x = (UξL
− 1
n

1
L

)ξ
dξ
dx

= UξξL
− 1
n

1
L2 ,

uy = (UL−
1
n )y = (UL−

1
n )η

dη
dy

= UηL
− 1
n

1
L3/2 ,

uyy = (UηL
− 1
n

1
L3/2 )y = (UηL

− 1
n

1
L3/2 )η

dη
dy

= UηηL
− 1
n

1
L3 ,

∂−1
x uyy = ∂−1

ξ UηηL
− 1
n

1
L3L = ∂−1

ξ UηηL
− 1
n

1
L2 ,

(3.39)

ut = (UL−
1
n )t = (UL−

1
n )τ

dτ
dt

+ (UL−
1
n )ξ

dξ
dt

+ (UL−
1
n )η

dη
dt

= UτL
− 1
n

1
L2 − 1

n
UL−

1
n
−1Lτ

L2 − L−
1
nUξ

1
L2

Lτ
L2 (x− xm)− UξL−

1
n

1
L2

xm,τ
L

−3
2
L−

1
nUη

1
L2

Lτ
L5/2 (y − ym)− UηL−

1
n

1
L2

ym,τ
L3/2 ,

(3.40)

An asymptotic blow-up can be described by equation (3.37). It is expected that if τ → ∞,
the functions U , vη, vξ and a will be independent of τ ( that are denoted by a superscript ∞),
hence (3.37) becomes

U∞τ − a∞
(

1
n
U∞ + ξUξ

∞ + 3
2
ηUη

∞)− v∞ξ U∞ξ −
v∞η U

∞
η + (U∞)nUξ

∞ −HU∞ξξ = λ

∫ ξ

−∞
U∞ηηdz. (3.41)
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For the numerical implementation, L, vξ and vη have to be chosen in a convenient way. A
possible choice is to assume that the single global minimum of U to be U0

η = U0
ξ = 0, for

ξ = η = 0. This implies U0
ξξ U0

ξη

U0
ξη U0

ηη

 vξ

vη

 =

 (U0)nU0
ξξ −HU0

ξξ + λU0
ηη

(U0)nU0
ξη −HU0

ξξη + λU0
ηηη

 . (3.42)

From the coordinate transformation (3.36), we have that

‖ u ‖2
2=

∫
u2dxdy =

∫
(UL−

1
n )2LL3/2dξdη =

∫
U2L−

2
nL5/2dξdη. (3.43)

this yields

‖ u ‖2
2= L

−2
n

+ 5
2 ‖ U ‖2

2 . (3.44)

Hence the L2 critical case is n = 4
5
. We have also that

‖ ux ‖2
2=

∫
u2
xdxdy =

∫ (
(UL−

1
n )ξ

dξ

dx

)2

LL3/2dξdη = U2
ξL
− 2
n

1

L2
LL3/2 = L

1
2
− 2
n ‖ Uξ ‖2

2,

(3.45)
this implies the invariance under (3.36) when n = 4/5. Since the blow-ups phenomenon in [52]
are established for ‖ uy ‖2

2, so we consider

‖ uy ‖2
2=

∫
u2
ydxdy =

∫ (
(UL−

1
n )η

dη

dy

)2

LL3/2dξdη = U2
ξL
− 2
n

1

L3
LL3/2 = L−( 1

2
+ 2
n

) ‖ Uη ‖2
2 .

(3.46)
Fixing ||Uη|| to be constant gives

a =
2n

(2 + n)(1 + n) ‖Uη‖

∫
R2

Un+1Uηηξdξdη. (3.47)

This can be taken for the numerical implementation. The physical time t and scaling factor
L(τ) can be computed by using the trapezoidal rule. The numerical computation accuracy can
be controlled by (3.44) or by

E[U ] =
∫
R2 [−1

2
(UξL

− 1
n

1
L

)H(UL−
1
n )− 1

(n+1)(n+2)
(UL−

1
n )n+2 + λ

2
(∂−1
ξ LUηL

− 1
nL−3/2)2]LL3/2dξdη

= 1

L
2
n−

3
2

∫
R2 [−1

2
UξHU − 1

(n+1)(n+2)
Un+2 + λ

2
(∂−1
ξ Uη)

2]dξdη.

(3.48)
Note that the energy is invariant under the rescaling (3.36) and the case n = 4

3
is energy critical.
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3.3.2 Numerical discretisation

Due to the periodicity, the Fourier spectral methods are the most convenient approaches for
space variable approximations. For the integration of the resulting semi discrete stiff systems,
a fourth order exponential time differencing (ETD) scheme is applied.
The 2d Fourier transform is defined by:

û(kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

e−i(kxx+kyy)u(x, y)dxdy. (3.49)

In Fourier space, equation (3.29) is equivalent to

ût = N(û) + Mû. (3.50)

where N(û) = −ikx
ûn+1

n+1
, and M = −i sgn(kx)k

2
x + λ

ik2y
kx

. In the numerical approximation of
the above equation, we apply a discrete Fourier transform which can be computed by a FFT,
while for the time integration, as was shown in [61, 92] the ETD schemes are most efficient
methods for this type of equations (see also [55]) but we use here a modified version of these
approaches, called by the exponential time-differencing fourth order Runge Kutta (ETDRK4)
scheme, which is also convenient for the stiff systems. This explicit method is very appropriate
as it can avoid a pollution of the Fourier coefficients and allows us to use small time steps to
maintain the numerical stability.
The ETDRK4 schemes are based on ETD methods combined with the fourth-order Runge–Kutta
time-stepping. The basic idea in the ETD is to integrate (3.50) exactly over a time step of
length h with respect to t. If we write û(tp) = ûp, and û(tp+1) = ûp+1, then we get

ûp+1 = eMhûp +

∫ h

0

eM(h−σ)N(û(tp + σ), tp + σ)dσ. (3.51)

Now, we use the ETDRK4 schemes that illustrated in (2.43) and (2.44).

The following computations are carried out with the number of Fourier modes Nx and Ny,
that should be high enough in order to achieve a good precision, and a space computational
domain large enough, to ensure periodicity of the solution. Note that the number of Fourier
modes depends on the size of the domain, and will increase for the high wave numbers when a
blow-up occurs.

3.3.3 Numerical experimentations

As in the case of one dimension, we use the following ∆ in order to control the accuracy of the
computations,

∆ =

∣∣∣∣E(t)

E(o)
− 1

∣∣∣∣ . (3.52)

The Fourier coefficients can be also used as reliable indicator for the accuracy tests.
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1- L2-critical case: in this part, we study the solutions of equation (3.29) with λ = 1
for n = 4

5
. This nonlinearity is not very relevant for applications, but it is mathematically

interesting. Here we consider the problem with different initial data.
We first study the GKPI-BO using initial data (3.35) with β = 1 such that the inital energy
is positive. The calculation is performed on [−5, 5]2 with Nx = Ny = 29 and a time step
∆t = 0.0005. The relative computed energy is conserved up to 10−8 after 1000 iterations.
From the results shown in Figure 3.10 there is no ascertainment of a blow-up, and this is even
more obvious from the norms shown in Figure 3.10 (bottom), both ‖u‖∞ and ‖uy‖2 appear
to be monotonically decreasing. The situation is not different for initial data with negative
energy, i.e. if we set u0(x, y) = 12exp(−(x2 + y2)), use the same computation domain and
Nx = 210, Ny = 210 and a smaller time step for numerical stability reason, ∆t = 0.00001.
As can be seen in 3.11, ‖u‖∞ decreases monotonically and after a some time it increases then
decreases, whereas the ‖uy‖2 appears to increase without showing any blow-up and the relative
computed energy reached 10−6 after 10000 iterations. Note that in this case even the corre-
sponding Fourier coefficients tend to increase (see 3.11 top right).

2- L2 supercritical case: we seek solutions of (3.29) with λ = 1 considering two cases:
case 1: we take n = 1 with positive energy. More exactly, with the initial data u0(x, y) =
3exp(−(x2 + y2)). The calculation is performed with [−20, 20] × [−5, 5], Nx = Ny = 210 and
∆t = 0.0001. The relative computed energy is conserved up to 10−11 and in this situation there
is no blow-up (see Figure 3.12). The norms for this solution shown in Figure 3.12 (bottom)
indicate that ‖u‖∞ decreases monotonically and after a some time it increases then starts to
decrease again, whereas ‖uy‖2 appears to increase. These results are qualitatively the same as
the ones for the critical case (Figure 3.11 bottom).
However if we take u0(x, y) = 12exp(−(x2 + y2)) i.e. subject to a negative energy, on [−5, 5]2

and Nx = 212, Ny = 210 and a very small time step ∆t = 0.000001, we get a blow-up (see
Figure 3.13). The relative computed energy reaches a value arround 10−2.

case 2: for n = 2 and initial data (3.35) with β = 1, Nx = Ny = 210, ∆t = 0.0001, Lx = 10,
Ly = 4, after 1000 iterations, we get a ∆ of an order better than 10−9, i.e. there is no blow-up,
as can be seen in Figure 3.14 that the initial hump has been completely radiated away.
The situation is completely different if β = 6, when the initial energy becomes negative. The
calculation is performed for Lx = Ly = 5, Nx = 211, Ny = 212 with 5000 iterations. As can be
seen in Figure 3.15, that the initial minimum appears to blow-up in a point after getting more
and more peaks, the code breaks down when ∆ > 10−3.
We have point out that the numerical experimentations were explored for both λ = 1 and
λ = −1. Here we present the results for λ = 1 (see Figure 3.10- Figure 3.15) and λ = −1
(3.16-3.19). Note that the obtained results are qualitatively similar for both λ = 1 and λ = −1.
The results of this section were published in [12].
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Figure 3.10: From top to bottom and left to right, the solution, its Fourier coefficients, ‖u‖∞
and ‖uy‖2 for (3.28), λ = 1 with n = 4

5
and u0(x, y) = exp(−(x2 + y2)).

Figure 3.11: From top to bottom and left to right, the solution, its Fourier coefficients, ‖u‖∞
and ‖uy‖2 for (3.28), λ = 1 with n = 4

5
and u0(x, y) = 12exp(−(x2 + y2)).
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Figure 3.12: From top to bottom and left to right, the solution, its Fourier coefficients, ‖u‖∞
and ‖uy‖2 for (3.28), λ = 1 with n = 1 and u0(x, y) = 3exp(−(x2 + y2)).

Figure 3.13: From top to bottom and left to right, the solution, its Fourier coefficients, ‖u‖∞
and ‖uy‖2 for (3.28), λ = 1 with n = 1 and u0(x, y) = 12exp(−(x2 + y2)).
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Figure 3.14: From top to bottom and left to right, the solution, its Fourier coefficients, ‖u‖∞
and ‖uy‖2 for (3.28), λ = 1 with n = 2 and u0(x, y) = exp(−(x2 + y2)).

Figure 3.15: From top to bottom and left to right, the solution, its Fourier coefficients, ‖u‖∞
and ‖uy‖2 for (3.28),λ = 1 with n = 2 and u0(x, y) = 6exp(−(x2 + y2)).
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Figure 3.16: From top to bottom and left to right, the solution, its Fourier coefficients, ‖u‖∞
and ‖uy‖2 for (3.28),λ = −1 with n = 4

5
and u0(x, y) = exp(−(x2 + y2)).

Figure 3.17: From top to bottom and left to right, the solution, its Fourier coefficients, ‖u‖∞
and ‖uy‖2 for (3.28), λ = −1 with n = 4

5
and u0(x, y) = 12exp(−(x2 + y2)).
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Figure 3.18: From top to bottom and left to right, the solution, its Fourier coefficients, ‖u‖∞
and ‖uy‖2 for (3.28), λ = −1 with n = 1 and u0(x, y) = 3exp(−(x2 + y2)).

Figure 3.19: From top to bottom and left to right, the solution, its Fourier coefficients, ‖u‖∞
and ‖uy‖2 for (3.28), λ = −1 with n = 1 and u0(x, y) = 12exp(−(x2 + y2)).

3.4 Conclusion

In this chapter we have two sections, in the first one, we investigated the behavior of the
solutions to gBO equations in one dimension for n = 2 and n = 3, and we conclude that:
1-If n = 2,

• Localized smooth initial data with mass smaller than the mass of the approximate soliton
are radiated away for positive initial energy.

• Localized smooth initial data with a mass larger than the mass of the approximate soliton
present blow-up for both positive and negative initial energy.
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2- If n = 3

• Localized smooth initial data with mass smaller than the mass of the approximate soliton
are radiated away for positive initial energy.

• Localized smooth initial data with a mass larger than the mass of the approximate soliton
present blow-up for negative initial energy.

In the second section, we studied the GKP-BO equations’s solutions for n = 4
5
, n = 1 and

n = 2. The numerical results are resumed in the Figures 3.10-3.15, for λ = 1. where we plot
the solution, its corresponding Fourier coefficients, ‖u‖∞ and ‖uy‖2 to visualise the blowing up
behavior according to each case. We remarque that the two cases λ = 1 and λ = −1 lead to
similar qualitative results but with a slight difference in the plotted curves and conclude that:
1- If n = 4

5
, no blow-up occurs. This is shown in Figure 3.10. and Figure 3.11 for λ = 1 and

in Figure 3.16. and Figure 3.17 for λ = −1 and by ‖u‖∞ which increases monotonically and
after a some time it increases.
2- For n = 1 and n = 2, if we take initial data with positive energy, we get almost the same
situation as for the critical case (see Figure 3.12 & Figure 3.14 for λ = 1 and Figure ?? for
λ = −1). However for a negative initial energy we can exhibit a blow-up and this can be seen
in Figure 3.13 and Figure 3.15 for λ = 1 and in Figure 3.19 for λ = −1. Hence the blow-up
phenomenon’s behaviour depends on both an initial data satisfying the constraint (3.34) and
the energy’s sign (> 0 or < 0), and this is quite relevant so that when the energy is positive
we get no blow-up, whereas for the negative case a blow-up occurs.
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Chapter 4

Rotation-Modified Benjamin Equation

4.1 Introduction

In this chapter, we are concerned with the so-called Rotation-Modified Benjamin equation
(RMBenjamin). Physically, this equation was introduced by Durán [32] as a model of internal
wave propagation in rotating two-fluids. The vertical displacement of the interface between
two-layer can be characterized by the RMBenjamin equation, where the lower and upper layers
are respectively bounded below and above by a rigid horizontal plane (see Figure 4.1). The

Figure 4.1: Model for propagation of internal wave in a two-layer interface, where di, i = 1, 2 is
the depths, ρi, i = 1, 2 is the densities and ζ is the vertical displacement of the interface from
a level of rest.

RMBenjamin equation takes the following form

(ut + αux + uux − βHuxx − δuxxx)x = γu, t ≥ 0, x ∈ R, (4.1)

where u = u(x, t), x ∈ R and t ≥ 0. α and δ are positive while β 6= 0. γ is a positive real
parameter, measures the rotation effect, β and δ are used to control the effects of the general
dispersive whereas α depends on the fluids’s densities. Here H is the Hilbert operator defined
by (1.2.4).
There is several well-know related equations to the RMBenjamin equation, like the Ostrovsky
equation

(ut + uux − δuxxx)x = γu, (4.2)
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that describes the propagation of nonlinear dispersive shallow long water waves in a fluid with
rotation force. The associated Cauchy problem has been investigated by many authors, see
for example [47, 104, 107]. Isaza and Mej́ıa showed in their paper [48] the sharp local well-
posedness for the corresponding initial value problem in the Sobolev space Hs for s > −3/4
if δ < 0. By using the Fourier restriction norm method, Tsugawa [104] proved the local well-
posedness of the Cauchy problem for (4.2) in the anisotropic Sobolev space Ha,s for s > −a

2
− 3

4

and 0 ≤ a ≤ 1. Recently, Wang and Yan [106] used the Strichartz estimates rather than the
Cauchy Schwarz inequalities to investigate the local well-posedness of (4.2) with negative dis-
persion. Almost following the same method, Yan et al [107] established the proof of the local
well-posedness in the case of positive dispersion in Hs for s = −3/4.

Setting α = 0 and δ = 0, one obtains the rotation-modified Benjamin-Ono(RMBO) equa-
tion

(ut + uux − βHuxx)x = γu, (4.3)

which models the internal long wave propagation in a deep fluid subject to rotation effects.
The well-posedness of the related Cauchy problem has been proved by Linares and Milanes [77]
in the space

Xs = {u ∈ Hs(R); ∂ 1
x u ∈ Hs(R)},

with the associated norm
‖u‖Xs = ‖u‖Hs(R) + ‖∂ 1

x u‖Hs(R),

for s > 3/2.
In the absence of a Coriolis forces, equation (4.1) reduces to the Benjamin equation [10]

ut + αux + uux − βHuxx − δuxxx = 0, (4.4)

that was modeled to describe the intermediate wave propagation in the stratified fluid with the
existence of a considerable capillarity on the surface. For this equation, a sharp well posedness
results were established in [25] and [24], they showed that the corresponding Cauchy problem
is global and local well-posed when s ≥ −3/4, whereasit is ill-posed for s < −3/4.

In the case α = 0, for the study of Cauchy problem see for example [52] and [71]. See
also [8, 78, 7, 23] for more explications on the study of existence, nonexistence results, stabil-
ity and asymptotics investigations of the corresponding solitary waves. In fact (4.1) can be
regarded as a perturbation of (4.4) by a nonlocal term. Two more things are also worth noting
in this case (α = 0).
1- The case β = 0 induces the well known Korteweg-de Vries equation (KdV) which has been
investigated in great detail, the associated Cauchy problem has been widely studied, the reader
can see for example [69], [27] and [67]. By using the Bourgain spaces Kenig et al [67] proved
the local well-posedness in Hs(R) if s > −3/4; this local result provided successfully the proof
of a global one in [27, 69].
2- The case δ = 0 and β 6= 0 generates the celebrated Benjamin-Ono equation, see [36], [46],
[57] and [63], where much was shown about its mathematical aspects concerning complete in-
tegrability, conserved quantities, local and global well-posedness, existence and asymptotics of
the solitary wave solutions.
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4.2 Well-posedness of the RMBenjamin equation

In this section, we mainly investigate the Cauchy problem for the RMBenjamin equation. By
using a sharp bilinear estimate, we prove the well-posedness of the problem in Hs for s > −3

4
.

Let us define some used functions for this section

m(η) =
γ

η
+ αη − βη|η|+ δη3, m(ηj) =

γ

ηj
+ αηj − βηj|ηj|+ δη3

j , (4.5)

λ = τ −m(η), λj = τj −m(ηj), for j = 1, 2. (4.6)

Throughout the rest of this section, we may assume that γ, δ > 0, β < 0 or 0 < β < 4δ3/4γ1/4.

Let a = max
{

1, 2|β|
3|δ|

}
, τ = τ1 + τ2, η = η1 + η2, ηmax = max{η, η1, η2} and ηmed =

med{η, η1, η2} as well as ηmin = min{η, η1, η2}. Also, ϕ stands for a C∞0 function supported in
[−2,+2] and equals to 1 over the interval [−1,+1], where ϕρ = ϕ( t

ρ
),

Let us now formulate our main results for this section.

Theorem 26 ([13]). Let s ≥ −3
4

+ 3ε, then there is b ∈ (1
2
, 1), such that we have

‖∂x(uv)‖Xs,b−1
≤ C‖u‖Xs,b‖v‖Xs,b (4.7)

Theorem 27 ([13]). Let s ≥ −3
4

+ 3ε, b ∈ (1
2
, 1), then the problem (4.1) is locally well-posed

in Hs(R). i.e., for u0 ∈ Hs(R) there exists T = T (‖u‖Hs > 0), such that the problem has a
unique solution u ∈ C([0, T ], Hs)∩Xs,b. In addition the solution map T : u0 → u is an analytic
map from Hs(R) to C([0, T ];Hs(R)).

To prove these results, we need some preliminaries.

4.2.1 Preliminary estimates

For convenience, we write

PNF =

∫
|η|≥N

eixηF̂ dη, PNF =

∫
|η|≤N

eixηF̂ dη, ∀N > 0

and

f = F−1F, Ffσ(η, τ) =
F (η, τ)

〈λ〉σ

The solution of (4.1) is formally written in the following form

u(x, t) = S(t)u0(x) =
1

2π

∫ −∞
∞

ei(ηx−m(η))tu0dη. (4.8)

Now, Let us give some useful lemmas that will be used later
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Lemma 28. Let m(.) is given by 4.5 with α = 0 (a change of variable allows us to assume
α = 0) as well as m(0) = 0, then

|m′′(η)| ≥ −2β + 8γ
1
4 δ

3
4 , η 6= 0.

Lemma 29. Let f ∈ L2, we get

‖S(t)f‖LqtLpx ≤ ‖f‖L2 , (4.9)

for q = 4
θ
, p = 2

1−θ , θ ∈ [0, 1].

Proof. For the proof of these two lemmas; 29 and 28, see lemma 1 and theorem 2 in [32].

Lemma 30. Let ρ ∈ [0, 1], −1
2
< b′ ≤ 0 ≤ b ≤ b′ + 1 and s ∈ R, then the following two

inequalities hold

‖ϕ(
t

ρ
)S(t)u0‖Xs,b(R2) ≤ Cρ

1
2
−b‖u0‖Hs(R), (4.10)∥∥∥∥ϕ(

t

ρ
)

∫ t

0

S(t− τ)F (τ)dτ

∥∥∥∥
Xs,b(R2)

≤ Cρ1+b′−b‖F‖Xs,b′ (R2). (4.11)

Proof. For the proof of this lemma, see [65].

Lemma 31. Let θ ∈ [0, 1], N ≥ 2, if r > θ
2
, then

‖Dθ
xP

Nfr‖
L

2
1−θ
x L2

t

≤ C‖F‖L2
ηL

2
τ
.

Lemma 32. Let r > 1
3
, N ≥ 2 and 0 < c < +∞, then it holds that

‖fr‖L4
xL

4
t
≤ C‖F‖L2

ηL
2
τ
. (4.12)

If r > 1
2
, then we get

‖Pcfr‖L2
xL
∞
t
≤ C‖F‖L2

ηL
2
τ
. (4.13)

Lemma 33. For b > 1
2
, N ≥ 2, then

‖f‖L2
xL

2
t
≤ C‖F‖X0,0 , (4.14)

‖f‖L2
xL

4
t
≤ C‖F‖X

0, 12 b
, (4.15)

‖D
1
4
xP

Nf‖L∞x L4
t
≤ C‖F‖X0,b

, (4.16)

‖D
1
8
xP

Nf‖L4
xL

4
t
≤ C‖F‖X

0, 34 b
. (4.17)
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Proof. For the proof of lemmas 31; 32 and 33, the reader can be referred to [105] and [52]

Lemma 34. Let α, β, γ, δ and m(.) be as in 4.5. If |ηmin| ≥ 1 or |ηmin|2|ηmax||ηmed| ≥ 1 and
|ηmax| ∼ |ηmed| ≥ 2a, so one of the following three possibilities must hold,

|λ| := max {|λ|, |λ1|, |λ2|} ≥ |η1η2η|, (4.18)

|λ2| := max {|λ|, |λ1|, |λ2|} ≥ |η1η2η|, (4.19)

|λ1| := max {|λ|, |λ1|, |λ2|} ≥ |η1η2η|. (4.20)

Proof. From equation (4.6), we find that

L(η) = −λ+ λ1 + λ2

= −τ +m(η) + τ1 −m(η1) + τ2 −m(η2)
= m(η)−m(η1)−m(η2)

= 3δηη1η2 − β(|η|η − |η1|η1 − |η2|η2)− γ(
η21+η22+η1η2

ηη1η2
),

(4.21)

using the symmetry property, we may assume that |η1| < |η2|. Hence we can simplify (4.21)
according to the following four regions:

D1 = {(τ1, η1, τ2, η2) ∈ R4; η1 < 0, η2 < 0},

D2 = {(τ1, η1, τ2, η2) ∈ R4; η1 > 0, η2 > 0},

D3 = {(τ1, η1, τ2, η2) ∈ R4; η1 > 0, η2 < 0},

D4 = {(τ1, η1, τ2, η2) ∈ R4; η1 < 0, η2 > 0}.

Then, we have that

LD1(η) = 3δη1η2η − β(−(η1 + η2)2 + η2
1 + η2

2)− γ η
2
1+η22+η1η2
η1η2η

= 3δη1η2(η + 2β
3δ

)− γ η
2
1+η22+η1η2
η1η2η

.

LD2(η) = 3δη1η2η − β((η1 + η2)2 − η2
1 − η2

2)− γ η
2
1+η22+η1η2
η1η2η

= 3δη1η2(η − 2β
3δ

)− γ η
2
1+η22+η1η2
η1η2η

.

LD3(η) = 3δη1η2η − β(−(η1 + η2)2 − η2
1 + η2

2)− γ η
2
1+η22+η1η2
η1η2η

= 3δηη1(η2 + 2β
3δ

)− γ η
2
1+η22+η1η2
η1η2η

.

LD4(η) = 3δη1η2η − β((η1 + η2)2 + η2
1 − η2

2)− γ η
2
1+η22+η1η2
η1η2η

= 3δηη1(η2 − 2β
3δ

)− γ η
2
1+η22+η1η2
η1η2η

.
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We only treat with the restriction of L on D1, the proof of the others three cases can be
obtained by a similar argument . From (4.21), we find that

|L| = | − λ+ λ1 + λ2|

≤ |λ|+ |λ1|+ |λ2|

≤ 3max{|λ|, |λ1|, |λ2|}.

If the maximum of (λ, λi) is denoted by λmax for i = 1, 2, we get

|λmax| ≥
1

3
|L|.

On the other hand, we have

|L| ≥ 3δ|η1||η2|
∣∣∣∣(η +

2β

3δ

)∣∣∣∣− γ|η1||η2||η|
(
|η2

1 + η2
2 + η1η2|

(η1η2η)2

)
, (4.22)

∣∣∣∣(η +
2β

3δ

)∣∣∣∣ ≥ |η| − a ≥ |η| − 1

2
|η| ≥ 1

2
|η|, (4.23)

and

|η2
1 + η2

2 + η1η2|
(η1η2η)2

≤ 1

(η2η)2
+

1

(η1η)2
+

1

η1η2η2
≤ 3

η2
minηmaxηmed

≤ 3

η4
min

≤ C. (4.24)

Equations (4.22), (4.23) and (4.24) yield

|L| ≥ C|η1||η2||η|,

then the proof of lemma (34) is completed

Lemma 35. For η 6= 0, let m(η) = 1
η

+ η|η|+ η3 and 0 ≤ s ≤ 1
2

as well as

F (Ks(u, v)(η, τ)) =

∫
ητ

|m′(η − η1)−m′(η1)|sFu(η, τ)Fv(η1, τ1)dη1dτ1.

Then, we have that
‖Ks(u, v)‖L2

xt
≤ C‖u‖X

0, 2+2s
3 (b+)

‖v‖X
0, 2+2s

3 (b+)
.

Proof. The proof of this lemma can be reached by the use of a similar argument as in the proof
of lemma 2.9 in [107].
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4.2.2 Proof of the bilinear estimate

Let us discuss a bilinear estimate associated to the nonlinear term in (4.1), that is the crucial
step to prove the well-posedness by the use of Picard iteration.

Proof. By the use of duality and the identity of Plancheral, (4.7) follows if we show∫
R2

w∂x(uv)dxdt ≤ C[‖u‖Xs,b+‖v‖Xs,b+ ]‖w‖X−s,(1−b)− , (4.25)

with b = 1
2
. If we define

F (η, τ) = 〈η〉−s〈λ〉(1−b)−ŵ(η, τ),

F1(η1, τ1) = 〈η1〉s〈λ1〉b+û(η1, τ1),

F2(η2, τ2) = 〈η2〉s〈λ2〉b+v̂(η2, τ2),

thus (4.25) is equivalent to

∫
R2

∫
ητ

|η1 + η2|〈η〉sF (η, τ)
2∏
j=1

Fj(ηj, τj)

〈λj〉(1−b)−
2∏
j=1

〈ηj〉s〈λj〉b+
dη1dτ1dηdτ ≤ C‖F‖L2

ητ

(
2∏
j=1

‖Fj‖L2
ητ

)
. (4.26)

By symmetry property, we may assume that |η1| ≤ |η2| and F (η, τ) ≥ 0, Fj(ηj, τj) ≥ 0.
j = 1, 2. Let us define

M(η1, τ1, η, τ) :=
|η|〈η〉s

〈λ〉(1−b)−
2∏
j=1

〈ηj〉s〈λj〉b+
, (4.27)

and

I =

∫
R2

∫
ητ

M(η1, τ1, η, τ)F (η, τ)
2∏
j=1

Fj(ηj, τj)dη1dτ1dηdτ. (4.28)

Also define

Λ := {(η1, τ1, η, τ) ∈ R4 : η = η1 + η2, τ = τ1 + τ2, |η1| ≤ |η − η1|},

and
Λ1 := {(η1, τ1, η, τ) ∈ Λ : |η − η1| ≤ 2a},
Λ2 := {(η1, τ1, η, τ) ∈ Λ : |η1| ≥ 2a, 2|η1| ≤ |η − η1|},
Λ3 := {(η1, τ1, η, τ) ∈ Λ : |η1| ≤ 2a, |η − η1| ≥ 4a, 2|η1| ≤ |η − η1|},
Λ4 := {(η1, τ1, η, τ) ∈ Λ : |η| ≥ 1

2
|η − η1|, |η − η1| ≥ 4a, |η − η1| ≤ 2|η1|},

Λ5 := {(η1, τ1, η, τ) ∈ Λ : |η| ≤ 2a, |η − η1| ≥ 4a, |η − η1| ≤ 2|η1|}.
Let Ij be the restriction of I on the regions Λj, for j = 1, 2, 3, 4, 5.
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• in region Λ1, we have that |η1| ≤ |η − η1| ≤ 2a and |η| ≤ 2|η − η1| ≤ 4a, so we obtain

M(η, τ, η1, τ1) ≤ C

〈λ〉(1−b)−
2∏
j=1

〈λj〉b+
. (4.29)

In view of the Hölder and Cauchy–Schwarz inequality, lemma 32 as well as the Plancherel
identity, we get

I1 ≤ C
∫
R2

∫
ητ

F (η,τ)F1(η1,τ1)F2(η−η1,τ−τ1)

〈λ〉(1−b)−〈λ1〉b+〈λ2〉b+
dη1dτ1dηdτ

≤
∥∥∥ F (η,τ)

〈λ〉(1−b)−

∥∥∥
L2
ητ

∥∥∥∫ητ F1(η1,τ1)F2(η−η1,τ−τ1)
〈λ1〉b+〈λ2〉b+ dη1dτ1

∥∥∥
L2
ητ

≤ ‖F (η, τ)‖L2
ητ

∥∥∥F−1 F1(η1,τ1)
〈λ1〉b+

∥∥∥
L4
xt

∥∥∥F−1 F2(η−η1,τ−τ1)
〈λ2〉b+

∥∥∥
L4
xt

≤ ‖F‖L2
ητ
‖F1‖L2

ητ
‖F2‖L2

ητ
.

• in region Λ2, since 2|η1| ≤ |η− η1|, we find that 1
2
|η− η1| ≤ |η| ≤ 3

2
|η− η1|, which means

that |η| ∼ |η − η1|. Next, we study the three cases (4.18)-(4.20), respectively.
1- If (4.18) is valid, so that |λ| ≥ |η − η1|2|η1|. Since s ≥ −3

4
+ 3ε, we obtain

M(η, τ, η1, τ1) ≤ C |η||η1|−s

〈λ〉(1−b)−
2∏
j=1
〈λj〉b+

≤ C |η|
2ε|η1|−s+(b−1)+

2∏
j=1
〈λj〉b+

≤ C |η|
2ε|η1|−s+(b−1)+

2∏
j=1
〈λj〉b+

≤ C |η|
1
4

2∏
j=1
〈λj〉b+

≤ C |η−η1|
1
4

2∏
j=1
〈λj〉b+

.

(4.30)

By similar argument as before (by using Plancherel, Cauchy–Schwarz and Hölder) with
lemma 33, we get,

I2 ≤ C
∫
R2

∫
ητ

F1(η1,τ1)X|η−η1|≥4a|η−η1|
1
4 F2(η−η1,τ−τ1)

〈λ1〉b+〈λ2〉b+ F (η, τ)dη1dτ1dηdτ

≤ ‖F (η, τ)‖L2
ητ

∥∥∥F−1 F1(η1,τ1)
〈λ1〉b+

∥∥∥
L2
xL

4
t

∥∥∥P 4aD
1
4
xF−1 F2(η−η1,τ−τ1)

〈λ2〉b+

∥∥∥
L4
tL
∞
x

≤ ‖F‖L2
ητ
‖F1‖L2

ητ
‖F2‖L2

ητ
.

2- If (4.19) is valid and since s ≥ −3
4

+ 3ε and 〈λ〉(b−1)+〈λ2〉(−b)− ≤ 〈λ2〉(b−1)+〈λ〉(−b)− as
well as
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|m′(η)−m′(η1)| =
∣∣∣− 1

η2
+ 1

η21
+ |η| − |η1|+ 3(η2 − η2

1)
∣∣∣

= 3|η2 − η2
1|
∣∣∣1 + 1

3η2η21
+ 1

3(|η|+|η1|)

∣∣∣
≥ C|η2 − η2

1|

≥ C|η|2,

then, we deduce that

M(η, τ, η1, τ1) ≤ C |η||η1|−s
〈λ2〉(1−b)−〈λ〉b+〈λ1〉b+

≤ C |η|
2ε||η1|−s+(b−1)+

〈λ〉b+〈λ1〉b+

≤ C |η|
1
4

〈λ〉b+〈λ1〉b+ ≤ C |m
′(η)−m′(η1)|

1
2

〈λ〉b+〈λ1〉b+ .

(4.31)

By utilizing the following transformed variables

η′ = η − η1, τ ′ = τ − τ1, η′1 = −η1, τ ′1 = −τ1, η′ − η′1 = η, τ − τ ′1 = τ,

λ′ = τ ′ −m(η′) = λ2, λ′1 = τ ′1 −m(η′1) = −λ1, λ′2 = τ ′ − τ ′1 −m(η − η′1) = λ,

F ′(η′, τ ′) = F2(η − η1, τ − τ1), F ′1(η′1, τ
′
1) = F1(−η1,−τ1), F ′2(η′ − η′1, τ ′ − τ ′1) = F (η, τ),

, we obtain

M(η, τ, η1, τ1) ≤ C
|m′(η′ − η′1)−m′(η′1)| 12

〈λ′2〉b+〈λ′1〉b+
.

Again, by using Plancherel identity, Cauchy-Schwarz and Hölder inequalities together
with (4.31) as well as lemma 35, we infer that

I2 ≤ C
∫
R2

∫
ητ

|m′(η′−η′1)−m′(η′1)|
1
2 F ′(η′,τ ′)F ′1(η′1,τ

′
1)F2(η′−η′1,τ ′−τ ′1)

〈λ′2〉b+〈λ′1〉b+
dη1dτ1dηdτ

≤ ‖F−1F (η′, τ ′)‖L2
xt

∥∥∥K 1
2

(
F−1

(
F ′2(η′−η′1,τ ′−τ ′1)

〈λ′2〉b+

)
,F−1

(
F ′1(η′1,τ

′
1)

〈λ′1〉b+

))∥∥∥
L2
xt

≤ C‖F ′‖L2
η,τ
‖F ′1‖L2

η,τ
‖F ′2‖L2

η,τ
.

3- If (4.20) is valid, this case can be established as the previous one.

• for region Λ3. we also have |η| ∼ |η − η1|. but, we only deal with the most interesting
case −3

4
+ 3ε ≤ s < 0, so we conclude that

M(η, τ, η1, τ1) ≤ C|η|

〈λ〉(1−b)−
2∏
j=1

〈λj〉b+
. (4.32)
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Consider the two cases |η1| < 1 and |η1| ≥ 1.
The case |η1| ≥ 1 is handled like the one in the previous region.
For the case when |η1| < 1, by using lemmas 31 and 32 it follows that

I3 ≤ C
∫
R2

∫
ητ

F (η,τ)F1(η1,τ1)|η−η1|F2(η−η1,τ−τ1)

〈λ〉(1−b)−〈λ1〉b+〈λ2〉b+
dη1dτ1dηdτ

≤
∥∥∥ F (η,τ)

〈λ〉(1−b)−

∥∥∥
L2
ητ

∥∥∥∫ητ F1(η1,τ1)F2(η−η1,τ−τ1)
〈λ1〉b+〈λ2〉b+ dη1dτ1

∥∥∥
L2
ητ

≤
∥∥∥F−1 F (η,τ)

〈λ〉(1−b)−

∥∥∥
L2
xt

∥∥∥P1F−1 F1(η1,τ1)
〈λ1〉b+

∥∥∥
L2
xL
∞
t

∥∥∥P 4aDxF−1 F2(η−η1,τ−τ1)
〈λ2〉b+

∥∥∥
L2
tL
∞
x

≤ ‖F‖L2
ητ
‖F1‖L2

ητ
‖F2‖L2

ητ
.

• in region Λ4, since 1
2
|η− η1| ≤ |η| ≤ 2|η− η1| and |η1| ≤ |η− η1| ≤ 2|η1|, this implies that

|η| ∼ |η1| ∼ |η− η1|. The three scenarios (4.18), (4.19) and (4.20) have to be considered.
1- If (4.18) is valid, then |λ| ≥ |η|3, it follows that

M(η, τ, η1, τ1) ≤ C |η−η1|−s|η|
〈λ〉(1−b)−〈λ1〉b+〈λ2〉b+

≤ C |η−η1|
−s+3(b−1)+3ε+1

〈λ1〉b+〈λ2〉b+

≤ C |η1|
1
8 |η−η1|

1
8

〈λ1〉b+〈λ2〉b+ .

(4.33)

Then

I4 ≤ C
∫
R2

∫
ητ

F (η,τ)X|η1|≥2a|η1|
1
8 F1(η1,τ1)X|η−η1|≥4a|η−η1|

1
8 F2(η−η1,τ−τ1)

〈λ1〉b+〈λ2〉b+ dη1dτ1dηdτ

≤ ‖F (η, τ)‖L2
ητ

∥∥∥∥∫ητ X|η|≥2a|η1|
1
8 F1(η1,τ1)X|η−η1|≥4a|η−η1|

1
8 F2(η−η1,τ−τ1)

〈λ1〉b+〈λ2〉b+ dη1dτ1

∥∥∥∥
L2
ητ

≤ ‖F (η, τ)‖L2
ητ

∥∥∥D 1
8
xP 2aF−1 F1(η1,τ1)

〈λ1〉b+

∥∥∥
L4
tL

4
x

∥∥∥D 1
8
xP 4aF−1 F2(η−η1,τ−τ1)

〈λ2〉b+

∥∥∥
L4
tL

4
x

≤ ‖F‖L2
ητ
‖F1‖L2

ητ
‖F2‖L2

ητ
,

which follows by Cauchy, Plancherel and Hölder as well as lemma 33.
2- If (4.19) is valid, so that 〈λ2〉(−b)− ≤ |η|−3b−3ε which implies

M(η, τ, η1, τ1) ≤ C |η|−s+1−3b−3ε

〈λ〉(1−b)−〈λ1〉b+
≤ C |η|

1
4

〈λ1〉b+〈λ〉(1−b)−

≤ C |η1|
1
8 |η|

1
8

〈λ1〉b+〈λ〉(1−b)−
.

(4.34)

By using the same argument as before, and because (1 − b)− > 3
8
, so we can use (4.17)

in lemma 33. Then we conclude that
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I4 ≤ C
∫
R2

∫
ητ

X|η1|≥2a|η1|
1
8 F1(η1,τ1)X|η|≥2a|η|

1
8 F (η,τ)F2(η−η1,τ−τ1)

〈λ1〉b+〈λ〉(1−b)−
dη1dτ1dηdτ

≤ ‖F2(η − η1, τ − τ1)‖L2
ητ

∥∥∥∥∫ητ X|η1|≥2a|η1|
1
8 F1(η1,τ1)X|η|≥2a|η|

1
8 F (η,τ)

〈λ1〉b+〈λ〉(1−b)−
dη1dτ1

∥∥∥∥
L2
ητ

≤ ‖F2(η − η1, τ − τ1)‖L2
ητ

∥∥∥D 1
8
xP 2aF−1 F1(η1,τ1)

〈λ1〉b+

∥∥∥
L4
tL

4
x

∥∥∥D 1
8
xP 2aF−1 F (η,τ)

〈λ〉(1−b)−

∥∥∥
L4
tL

4
x

≤ ‖F‖L2
ητ
‖F1‖L2

ητ
‖F2‖L2

ητ
.

3- If (4.20) is valid, so this case can be proceeded as the previous one.

• in region Λ5, we consider the two cases: s ≥ 0, −3
4
≤ s < 0, respectively.

1- If s ≥ 0, we have that

M(η, τ, η1, τ1) ≤ C |η|1+s|η1|−2s

〈λ〉(1−b)−〈λ1〉b+〈λ2〉b+

≤ C
〈λ〉(1−b)−〈λ1〉b+〈λ2〉b+

.

(4.35)

This case can be proved in a similar way as (4.29).

2- If −3
4

+ 3ε ≤ s < 0, considering |η| ≥ 1 or |η||η1|
1
2 |η − η1|

1
2 ≥ 1 and |η| < 1 or

|η||η1|
1
2 < 1|η − η1|

1
2 < 1, respectively.

– When |η| ≥ 1, (4.18), (4.19) and (4.20) are needed to deal .

1- If (4.18) is valid, then |λ| ≥ |η||η− η1|2, and because 0 > s ≥ −3
4

+ 3ε, we obtain
that

M(η, τ, η1, τ1) ≤ C |η||η−η1|
3
2−6ε

〈λ〉(1−b)−〈λ1〉b+〈λ2〉b+

≤ C |η|
1
2+ε|η−η1|

1
2−4ε

〈λ1〉b+〈λ2〉b+

≤ C |η|
1
2 |η−η1|

1
2

〈λ1〉b+〈λ2〉b+ .

(4.36)

On the other hand,

|m′(η − η1)−m′(η1)| =
∣∣∣− 1

(η−η1)2
+ 1

η21
+ |η − η1| − |η1|+ 3((η − η1)2 − η2

1)
∣∣∣

= 3|(η − η1)2 − η2
1|
∣∣∣1 + 1

3(η−η1)2η21
+ 1

3((|η−η1)|+|η1|)

∣∣∣
≥ C|(η − η1)2 − η2

1|

≥ C|η − η1||η|.
(4.37)
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From (4.37), (4.36) and by using a similar argument as before (Plancherel, Cauchy
Schwarz and Hölder) with lemma 35, we conclude that

I5 ≤ C
∫
R2

∫
ητ

F (η,τ)|m′(η1)−m′(η−η1)|
1
2 F1(η1,τ1)F2(η−η1,τ−τ1)

〈λ〉(1−b)−〈λ1〉b+〈λ2〉b+
dη1dτ1dηdτ

≤ ‖F (η, τ)‖L2
ητ

∥∥∥∥∫ητ |m′(η1)−m′(η−η1)|
1
2 F1(η1,τ1)F2(η−η1,τ−τ1)

〈λ1〉b+〈λ2〉b+ dη1dτ1

∥∥∥∥
L2
ητ

≤ ‖F (η, τ)‖L2
ητ

∥∥∥K 1
2

(
F−1

(
F1(η1,τ1)
〈λ1〉b+

)
,F−1

(
F2(η−η1,τ−τ1)
〈λ2〉b+

))∥∥∥
L2
xt

≤ C‖F‖L2
η,τ
‖F1‖L2

η,τ
‖F2‖L2

η,τ
.

2- If (4.19) is valid, we obtain |λ2| ≥ |η||η1|2, hence

M(η, τ, η1, τ1) ≤ C |η|
1
2+ε|η1|

1
2−4ε

〈λ〉b+〈λ1〉b+

≤ C |η1|
〈λ〉b+〈λ1〉b+ .

(4.38)

On the other hand,

|m′(η)−m′(η1)| =
∣∣∣− 1

η2
+ 1

η21
+ |η| − |η1|+ 3(η2 − η2

1)
∣∣∣

= 3|η2 − η2
1|
∣∣∣1 + 1

3η2η21
+ 1

3(|η|+|η1|)

∣∣∣
≥ C|η2 − η2

1|

≥ C|η1|2.

(4.39)

Thus from (4.38) and (4.39), we have that

M(η, τ, η1, τ1) ≤ C |m
′(η)−m′(η1)|

1
2

〈λ〉b+〈λ1〉b+
(4.40)

This case can be studied similarly to (4.31).
3- If (4.20) is valid, as the previous one, this case can be proved.
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– When |η||η1|
1
2 |η − η1|

1
2 < 1, we have

M(η, τ, η1, τ1) ≤ C |η|1+s|η1|−s|η−η1|−s
〈λ〉(1−b)−〈λ1〉b+〈λ2〉b+

≤ C |η−η1|−1−2s

〈λ〉(1−b)−〈λ1〉b+〈λ2〉b+

≤ C |η−η1|
1
2

〈λ〉(1−b)−〈λ1〉b+〈λ2〉b+

≤ C |η−η1|
〈λ〉(1−b)−〈λ1〉b+〈λ2〉b+

≤ C |m′(η−η1)−m′(η1)|
1
2

〈λ〉(1−b)−〈λ1〉b+〈λ2〉b+
.

(4.41)

I5 ≤ C
∫
R2

∫
ητ

F (η,τ)|m′(η1)−m′(η−η1)|
1
2 F1(η1,τ1)F2(η−η1,τ−τ1)

〈λ〉(1−b)−〈λ1〉b+〈λ2〉b+
dη1dτ1dηdτ

≤
∥∥∥ F (η,τ)

〈λ〉(1−b)−

∥∥∥
L2
ητ

∥∥∥∥∫ητ |m′(η1)−m′(η−η1)|
1
2 F1(η1,τ1)F2(η−η1,τ−τ1)

〈λ1〉b+〈λ2〉b+ dη1dτ1

∥∥∥∥
L2
ητ

≤
∥∥∥ F (η,τ)

〈λ〉(1−b)−

∥∥∥
L2
ητ

∥∥∥K 1
2

(
F−1

(
F1(η1,τ1)
〈λ1〉b+

)
,F−1

(
F2(η−η1,τ−τ1)
〈λ2〉b+

))∥∥∥
L2
xt

≤ C‖F‖L2
η,τ
‖F1‖L2

η,τ
‖F2‖L2

η,τ
.

Which is treated similarly to (4.36).

This ends the proof.

4.2.3 Proof of Theorem 27

Let us now demonstrate the second result stated in theorem 27.

Proof. For u0 ∈ Hs (s > −3
4
), let us define the following set

S = {u ∈ Xs,b : ‖u‖Xs,b ≤ 2C‖u0‖Hs},

and the operator

Θu0(u) = Θ(u) = ϕ(t)S(t)u0 −
1

2
ϕρ(t)

∫ t

0

S(t− t′)(∂xu2)(t′)dt.

To applying the fixed point theorem, one needs to show that Θ is a contraction mapping on
the set S. First, we prove that Θ(S) ⊂ S. Using theorem 26 and lemma 29 as well as lemma
30, we deduce that

‖Θ(u)‖Xs,b ≤ C‖u0‖Hs + Cρb
′−b‖u‖2

Xs,b
≤ C‖u0‖Hs + Cρb

′−b‖u‖Hs‖u‖Xs,b .
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Hence, when we fix ρ for which Cρb
′−b‖u‖Hs ≤ 1

2
, yields Θ(S) ⊂ S.

On the other hand, for u, v ∈ S, a similar argument as above, gives

‖Θ(u)−Θ(v)‖Xs,b ≤ Cρb
′−b(‖u‖Hs + ‖v‖Hs)‖u− v‖Xs,b ≤

1

2
‖u− v‖Xs,b .

Hence, we can say that Θ is a contraction mapping on S with the constant C = 1
2
. Therefore,

the fixed point theorem can be applied for T < ρ
2

to prove the existence and uniqueness of the
solution to the Cauchy problem (4.1), this completes the proof of theorem 27.

The results of this section exist in [13].

4.3 Conclusion

In this chapter, we are interested in a nonlinear dispersive model for the internal waves propa-
gation in a two-layer system with the presence of rotational, surface tension and gravity forces.
An mathematical aspect of the proposed model is studied in this chapter, which is the local
well-posedness of the related Cauchy problem to this nonlinear dispersive model using a sharp
bilinear estimate. As shown above in Theorem 27 that RMBenjamin equation is locally well-
posed in Hs for s > −3

4
this means that we obtain the same results as the local well-posedness

for the standard Benjamin equation i.e., RMBenjamin without the rotation term. Hence we
can conclude that the addition of rotational forces does not have any effect on the Cauchy
problem of the equation. In fact we expect similar results for s ≤ −3

4
.
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Conclusion and Perspectives

Conclusion
In this thesis, we were mainly interested in the study of some analytical methods for non-

linear dispersive wave equations, together with their numerical approaches. In particular we
studied an integro-differential equation, in both one and two dimensions. By applying a pow-
erful analytical method that is the inverse scattering transform technique, we get the corre-
sponding solitons in one dimension and we present the behavior of the numerical solutions
of the associated generalized integro-differential equation, in a perturbation scenario in both
dimensions where no analytical results exist and we give a description to the appearance of
blow-up phenomena.

When theories fail, numerical simulations stay the only tool for investigation of such problem
solutions. Numerical simulations have been also used in the case of the existence properties,
since in this case they allow us to validate the theoretical results and give conjectures for future
researches. From the obtained results, we conclude that, by using the energy conservation,
fourth order time stepping approaches behave efficiently in the deal of stiff systems where the
stifness caracter is related to the linear part.

On the other hand, we investigated some important mathematical aspects associated to
the considered integro-differential equation with a nonlocal rotational term (RMBenjamin) in
one dimension; such as the well posedness of the corresponding Cauchy problem and geometric
properties. Furthermore the well posedness of the rotational equation was shown in Hs with
s > −3/4, i.e the case where there is no nonlocal rotational term. In addition, we can point out
that the corresponding approximation solitary wave depend on the degree of the nonlinearity.

Perspectives
In view of its importance, the study of nonlinear dispersive wave equations has become a

wide field either analytically or numerically, many open questions arise, we cite the following
points:

• The investigation of the existence, nonexistence, stability and unstability of solitary wave
solutions for RMBenjamin equation.

• The study of the solution behavior of the proposed integro-differential equation in both
dimensions with a small dispersion limit; that is called semiclassical limit.

• Development of other new numerical schemes that can be more effective for the stiff
systems in combination with Fourier spectral method.
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• Seek other cases for the ill posedness of the proposed integro-differential equation with
the existence of nonlocal rotational term
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Appendix A

Fast Fourier Transforms
The recursive algorithm known as Fast Fourier Transform (FFT) is used to evaluate the DFT
and its inverse. Thus the FFT is written in a conventional manner to evaluate the following
formulas

ũk =
N−1∑
j=0

uje
2πijk/N , k = 0, 1, ..., N − 1. (42)

ũk =
N−1∑
j=0

uje
−2πijk/N , k = 0, 1, ..., N − 1. (43)

After its introduction by Cooley and Tukey (1965), the FFT rapidly became a widely used
method. The Cooley-Tukey algorithm allows to implement the sums (43) by 5Nlog2N real
operations rather than 8N2 real operations. Moreover, the error of the calculation with FFT is
less than the straightforward sum due to round-off. up to now, numerous versions of the FFT
are Known, For example Temperton (1983) in his paper introduced a version allows N to be
as

N = 2p3q4r5s6t, (44)

with the operation count

N(5p+ 9(1/3)q + 8(1/2)r + 13(3/5)s+ 13(1/3)t− 6). (45)

In Fourier spectral methods applications, the following two sums must be evaluated

ũk =
1

N

N−1∑
j=0

uje
−2πijk/N , k = −N

2
, ...,

N

2
− 1, (46)

and

uj =

N/2−1∑
k=−N/2

ũke
−2πijk/N , j = 0, 1, ..., N − 1. (47)

It is Clearly from (46) that, for two integers p and k, we have

ũk+pN = ũk

If (u0, u1, ..., uN−1) is fed into FFT in order to evaluate (43), it returns the following array

(Nũ0, Nũ1, ..., Nũ−N/2, ..., Nũ−1). (48)
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Conversely, the array (u0, u1, ..., uN−1) is returned when (48) is fed into FFT. It is worth to
mention that, in many spectral methods applications the direct apply of the complex FFT (42),
eqreffft1 is needlessly expensive. But Orszag (1971) and Brachet et al.(1983) have addressed
these issues in their papers.
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Appendix B

Some used identities and inequalities
Here, we recall by the identities and inequalities that be used in this thesis;

• Plancherel identity

Definition 36. For L2(Rn) function u, we have that û ∈ L2(R). Moreover, the operator
F is unitary from L2(Rn) to L2(Rn) and

‖u‖L2(Rn) = ‖Fu‖L2(Rn).

• Cauchy-Schwarz inequality

Definition 37. Let u and v two vectors u and v of an inner product space, the Cauchy-
Schwarz inequality states that the following is true

| 〈u, v〉 | ≤ 〈u, u〉 〈v, v〉 ,

where is the inner product.

• Hölder inequality

Definition 38. For a measure space (S,Σ, µ) and for two numbers p and q in [1,∞)
such that 1

p
+ 1

q
= 1, we have that

‖uv‖1 ≤ ‖u‖p‖v‖q,

where u and v are measurable functions of real or complex valued.

• Young inequality

Definition 39. Let a and b be two nonnegative real numbers and let p and q be two real
numbers greater than 1 with 1

p
+ 1

q
= 1, then

ab ≤ ap

p
+
bq

q
.
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