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Abstract

This thesis deals with the study of a resonance problem generated by a second

order nonlinear di¤erential equation with multipoint integral boundary conditions.

In fact we propose to establish the existence of the solution of a di¤erential equation

whose nonlinear term depends on the �rst derivative with nonlocal conditions of

integral type by means of the concept of the theory of the degree of coincidence of

Mawhin.

Keywords: Multipoint boundary value problem, Fredholm operator, Resonance,
Mawhin coincidence degree theory, Existence of solution.
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Résumé

On s�intéresse dans cette thése à l�étude d�un problème en résonance engendré par

une équation di¤érentielle non linéaire du second ordre avec des conditions aux limites

de type multipoints et intégrales. Au fait nous nous proposons d�établir l�existence

de la solution d�une équation di¤érentielle dont le terme non linéaire dépend de

la première dérivée avec des conditions non locales de type intégrale moyennant le

concept de la théorie du degré de coincidence de Mawhin.

Mots clés: multipoint problème aux limites, Opérateur de Fredholm, Résonance,

Théorie du degré de coincidence de Mawhin, Existence de la solution.
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Notation

k:k the norm.

dist the distance associated with this norm.


 : an open bounded set.


 the closure of 
 and @
 its boundary.

B (x0; r) the open ball of center x0 and radius r.

u0 (t) the derivative with respect to t.

� direct sum.
h; i scalar product.
R the set of real numbers.

(M;d) metric space.

d (:; :): distance maps.

C ([a:b]): the space of continuous functions.

max: maximum.

B: the closed unit ball.

(E; kk) Banach space.
A: operator.

D(L) : domaine of de�nition of L

kerL : kernel of L.

ImL : image of L:

dim(F ) : dimension of F .

codim(F ) : codimension of F:

deg : Brouwer degree.

degLS : Leray-Schuder degree.



CHAPTER 1

Introduction

Boundary value problems model many phenomena in applied sciences and engin-

eering, that�s why their study is an important research area despite it�s di¢ cult as

long as there is no general method to apply, and then to discuss the qualitative

and quantitative properties of solutions for a given boundary value problem, di¤er-

ent methods are used such the upper and lower solutions method, Mawhin theory,

numerical methods... [25],

The objective of this thesis is the study of the existence of solutions of boundary

value problems generated by a class of second order nonlinear di¤erential equations

with boundary conditions of integral and multipoint type, by applying the degree of

coincidence of Mawhin.

The Mawhin theory permits the use of an approach of topological degree type

to problems which can be written as an abstract operator equation of the form

Lx = Nx, where L is a linear noninvertible operator and N is a nonlinear operator

acting on a given Banach space.

In 1972, Mawhin has developed a method to solve this equation in his famous

paper �Topological degree and boundary value problems for nonlinear di¤erential

equations�[40], he assumed that L is a Fredholm operator of index zero. Hence he

has developed a new theory of topological degree known as the degree of coincidence

8



9

for (L;N); that is also known as Mahwin�s coincidence degree theory in honor of

him.

A boundary value problem is said to be at resonance if the corresponding linear

homogenous problem has nontrivial solution, otherwise it�s said to be at resonance.

Many authors studied ordinary boundary value problems at resonance using

Mawhin coincidence degree theory, we can cite Feng and Webb [11], Guezane-Lakoud

and Frioui [14], Mahin and Ward [42], Infante [26], and the references [4,10,12,15,18-

20,30-34,40,42,46].

Let us consider the following second order di¤erential equation:

u00(t) = f(t; u(t); u0(t)) + e(t); t 2 (0; 1); (1.1)

jointly with the multipoint boundary conditions of type

u(0) = 0; u(1) = �u(�); (1.2)

or

u0(0) = 0; u(1) = �u(�) (1.3)

where f : [0; 1] � R2 ! R is a continuous function and e 2 L1 (0; 1) ; � 2 (0; 1),
� 2 R.

In [24], Gupta, Ntouyas and Tsamatos used the Leray-Schauder continuation

theorem to prove the existence of solutions of problem (1.1),(1.2) in the case � 6= 1
and for the problem (1.1),(1.3), under the assumption � < 1

�
, in both cases the

problems are at nonresonance.

Later Feng andWebb in [11], considered the problems (1.1),(1.2) and (1.1),(1.3) in

the resonance case that is when � = 1 for problem (1.1),(1.2) and � = 1
�
for problem

(1.1),(1.3). The authors proved by using Mawhin coincidence degree theory, that

these problems have at least one solution.

In [26], Infante and Zima studied the existence of positive solutions for the fol-
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lowing boundary value problem at resonance

u00(t) = f(t; u(t)); t 2 (0; 1);

u0(0) = 0; u(1) =

m�2X
i=1

�iu(�i);

where f : [0; 1]�R! R be a function satisfying Caratheodory�s conditions, �i > 0,

i = 1; 2; :::;m� 2, 0 < �1 � �2 � ::: � �m�2 < 1,
m�2P
i=1

�i = 1: Their approach is based

on the Leggett-Williams norm-type theorem for coincidences obtained by O�Regan

and Zima, see [47].

Recently in [14], by the help of Mawhin coincidence degree, Guezane-Lakoud and

Frioui, proved the existence of solutions for a third order multipoint boundary value

problem at resonance of the form

u000(t) = f(t; u(t); u0(t)); t 2 (0; 1);

u(0) = u00(0) = 0; u(1) =
2

�2

�Z
0

u(t)dt;

where f is Caratheodory�s function and 0 < � < 1:

Ordinary di¤erential equations with multipoint boundary conditions occur natur-

ally arise in some applications such in population dynamics model, in semiconductor

problems, thermal conduction problems, hydrodynamic problems..., see [7, 8, 27, 50].

For example, if a dynamic system has m degrees of freedom, then we have exactly m

states observed at m di¤erent times, and consequently we obtain an m-point bound-

ary value problem. The discretization of some boundary value problems for partial

di¤erential equations on irregular domains with the line method leads to multipoint

boundary value problems.

The aim of this thesis is the study of a resonance boundary value problem gener-

ated by a second order nonlinear di¤erential equation with multipoint and integral
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boundary conditions:

u00(t) = f(t; u(t); u0(t)); t 2 (0; 1);

u(0) = 0; u(1) =

mX
k=1

�k

�kZ
0

u(t)dt

where f is a Caratheodory�s function, 0 < �k < 1; �k > 0; k = 0; :::;m;
Pm

k=1 �k�
2
k =

2: We apply the Mawhin coincidence degree to prove the existence of at least one

solution in a Banach space that we will de�ne later.

Di¤erential equations with nonlocal conditions, especially integral conditions,

plays an important role in both theory and applications. The study of these problems

is motivated by various applications, including thermoelasticity, chemical engineer-

ing, plasma physics.....

Let us give a brief outline of each chapter of the thesis.

The �rst chapter presents a review of some �xed point theorems, notably the

Banach contraction principle, Leray-Schauder�s nonlinear alternative, notion of ho-

motopy, Fredholm�s operators of zero index, the concept of the topological degree

and its properties is discussed; two degrees are de�ned: the degree of Brouwer in

�nite dimension then the degree of Leray-Schauder in in�nite dimension. We cite

the theorem of Mawhin coincidence degree and its proof.

In the second chapter, we collect interesting results for some classes of second-

order boundary value problems at resonance. For this purpose we will summarize

the basic results in the literature and present the main ideas of some research on

these problems.

The third chapter is devoted to the study of a second order boundary value

problem at resonance. In fact we propose to establish the existence of the solution

of a di¤erential equation with multipoint conditions of integral type. The proofs are

based on Mahwin�s theory of coincidence. The results of this chapter are published:

R. Khaldi, M. Kouidri, Solvability of multipoint value problems with integral

condition at resonance, International Journal of Analysis and Applications, Vol 16,
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Number 3 (2018), 306�316.

The thesis is clotured by some interesting references.



CHAPTER 2

Preliminaries

In this chapter we provide the basic notions and results that will be used in the sequel.

We will cite some �xed point theorems, such the Banach contraction principle, Leray-

Schauder�s nonlinear alternative. The notion of the topological degree is also treated

in both cases the degree of Brouwer in �nite dimension and the degree of Leray-

Schauder in in�nite dimension, then we will expose their properties. Finally, we give

the theorem of Mawhin coincidence degree with the proof.

2.1 Fixed point theorems

The Banach contraction principle, established in 1922 by the Polish mathematician

Stefan Banach, is one of the most signi�cant results in analysis and is considered

the main source of the metric �xed point theory. The important part of Banach�s

contraction is to stretch the existence, the uniqueness and the sequence of the suc-

cessive approximation that converges to a solution of the problem. For more results

we refer to [1, 3, 5, 6, 28, 30, 51].

De�nition 1 Let (X; d) be a metric space and let f : X ! X be a mapping. A

point x 2 X is called a �xed point of f if x = f(x):

13
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De�nition 2 f is called contraction if there exists a �xed constant k < 1 such that

d(f(x); f(y)) � kd(x; y); for all x; y 2 X:

Theorem 3 (Banach Contraction Principle) Let (X; d) be a complete metric space,
then each contraction map f : X ! X has a unique �xed point.

Proof. Let x and y be �xed points of f , then d(x; y) = d(f(x); f(y)) � kd(x; y):
Since k < 1, we get x = y; that the uniqueness holds.

Now, we will construct explicitly a sequence converging to the �xed point. Let x0 be

an arbitrary but �xed element in X. De�ne a sequence of iterates (xn)n2N in X by

xn = f(xn�1) = f
n(x0); for all n � 1:

Since f is a contraction, we get

d(xn; xn+1) = d(f(xn�1); f(xn)) � kd(xn�1; xn); for any n � 1:

Thus, we obtain

d(xn; xn+1) � knd(x0; x1); for all n � 1:

Hence, for any m > n, we have

d(xn; xm) �
�
kn + kn+1 + ���+ km�1

�
d(x0; x1) �

kn

1� kd(x0; x1):

We deduce that (xn)n2N is a Cauchy sequence in the complete space X; denote by

x 2 X its limit. Since f is continuous, we have

x = lim
n!1

xn = lim
n!1

f(xn�1) = f(x):

Theorem 4 (Brouwer Fixed Point Theorem) Let B be a closed ball in Rn. Then,
any continuous mapping T : B ! B has at least one �xed point.
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Brouwer �xed point theorem is not true in in�nite dimensional spaces. The �rst

�xed point theorem in an in�nite dimensional Banach space was given by Schauder

in 1930.

Theorem 5 (Leary-schauder Fixed Point Theorem) Let B be the closed unit ball of

a Banach E and f : B ! B compact, then f has a �xed point.

Let X and Y be two normed vector spaces, 
 an open set of X. Let give the

de�nitions of compact map and completely continuous map.

De�nition 6 A continuous mapping T : 
 � X ! Y is called compact if T (
) is

relatively compact.

Lemma 7 A continuous mapping T : 
 � X ! Y is said to be completely continu-

ous, if the image of any bounded subset B of 
 is relatively compact.

Theorem 8 (Ascoli-Arzela) Let E = C([a; b]) denotes the space of the continuous

functions and M � E such that

1. M is equicontinuous,

2.M is uniformly bounded,

then M is relatively compact in E.

Proposition 9 Any mapping bounded and of �nite rank is completely continuous.

Remark 10 Any compact mapping is completely continuous (because for any bounded
B � 
 we have T (B) � T (
)). The converse is true if 
 is bounded.

Lemma 11 If T : X ! Y is a linear mapping, with X and Y Banach spaces, for T

to be compact it su¢ ces that T (B(0; 1)) is precompact. If at least one spaces X or

Y is of �nite dimension, so T is compact if and only if T is too.

The principle of continuation is to deform one map into an other simpler one for

which we know the existence of a �xed point. This deformation known as homotopy

verify certain conditions.
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De�nition 12 Let X and Y be two topological spaces. We say that the two continu-

ous applications f; g : X ! Y , are homotopic if there exists

H : X � [0; 1]! X

such that

H(x; 0) = f(x) and H(x; 1) = g(x):

Example 13 Let X = Y = Rn; we consider c : Rn ! Rn the constant map c(x) = 0,
and i : Rn ! Rn the application i(x) = x: Let us show that c and i are homotopes.
Let H : Rn � [0,1]! Rn such that: H(x; t) = (1� t)c(x) + ti(x); we have

H(x; 0) = (1� 0)� 0 + 0� x = 0

and

H(x; 1) = (1� 1)� 0 + 1� x = x

then

H(x; t) = tx, H(x; 0) = c(x), H(x; 1) = i(x):

Example 14 Let X = Y = Rn � f0g, let p(x) = x
kxk , and i(x) = x. We see that p

and i are homotopes by taking:

H : Rn � f0g � [0; 1]! Rn � f0g

such that:

H(x; t) = (1� t)i(x) + tp(x);

we have

H(x; 0) = (1� 0)� x+ 0� x x

kxk
= xH(x; 1) = (1� 1)� x+ 1� x

kxk =
x

kxk
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then

H(x; t) = (1� t)x+ t xkxk ,

H(x; 0) = i(x) and H(x; 1) = p(x):

Let (X; d) be a complete metric space, and U be an open subset of X.

De�nition 15 Let F : U ! X and G : U ! X be two contractions; here U

denotes the closure of U in X. We say that F and G are homotopic if there exists

H : U � [0; 1]! X with the following properties:

(a) H(�; 0) = g and H(�; 1) = f ;
(b) x = H(x; t) for every x 2 @U and t 2 [0; 1] (here @U denotes the boundary

of U in X);

(c) there exists �, 0 � � < 1, such that d(H(x; t); H(y; t)) � �d(x; y) for every
x; y 2 u and t 2 [0; 1],
(d) there exists M;M � 0; such that d(H(x; t); H(x; s)) � M jt � sj for every

x 2 u and t; s 2 [0; 1]:

Theorem 16 Let (X; d)be a complete metric space and U an open subset of X.

Suppose that F : U ! Xand G : U ! X are two homotopic contractive maps and G

has a �xed point in U . Then F has a �xed point in U .

Proof. Consider the set

A = f� 2 [0; 1] : x = H(x; �) for some x 2 Ug;

where H is a homotopy between F and G as described in De�nition15. Notice A is

nonempty since G has a �xed point, that is, 0 2 A. We will show that A is both
open and closed in [0; 1] and hence by connectedness we have that A = [0; 1]: As a

result, F has a �xed point in U: A is closed in [0; 1]; in fact let

f�ng1n=1 � A with �n ! � 2 [0; 1] as n!1:
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Since �n 2 A for n = 1; 2; :::; there exists xn 2 U with xn = H(xn; �n): Also for

n;m 2 f1; 2; :::g; we have

d(xn; xm) = d(H(xn; �n); H(xm; �m))

� d(H(xn; �n); H(xn;�m)) + d(H(xn;�m); H(xm; �m))
�M j�n � �mj+ �d(xn; xm);

that is,

d(xn; xm) �
�
M

1� �

�
j�n � �mj:

Since f�ng is a Cauchy sequence then fxngis also a Cauchy sequence, and since X
is complete there exists x 2 U with limn!1 xn = x. In addition, x = H(x; �); since

d(xn; H(x; �)) = d(H(xn; �n); H(x; �))

�M j�n � �j+ �d(xn; x):

Thus � 2 A and A is closed in [0; 1]:

Now, we show that A is open in [0; 1]: Let �0 2 A; then there exists x0 2 U with
x0 = H(x0; �0): Fix " > 0 such that

" � (1� �)r
M

where r < dist(x0; @U);

and where

dist(x0; @U) = inffd(x0; x) : x 2 @Ug:

Fix � 2 (�0 � "; �0 + "). Then for

x 2 B(x0; r) = fx : d(x; x0) � rg; d(x0; H(x; �))
� d(H(x0; �0); H(x; �0)) + d(H(x; �0); H(x; �))
� �d(x0; x) +M j�� �0j � �r + (1� �)r = r:
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Thus for each �xed � 2 (�0 � "; �0 + "), H(�; �) : B(x0; r) ! B(x0; r). Then we

deduce that H( �; �) has a �xed point in U . Hence � 2 A for any � 2 (�0� "; �0+ ")
and therefore A is open in [0; 1].

2.2 Topological degree

Let 
 be a bounded open of RN , f : 
 ! RN a continuous function and b 2 RN

such that

f(x) = b (2.1)

We want to obtain a quantity that give us the number of zeros for the equation

(2.1), this quantity should give us the exact number of zeros and should be invariant

by small deformations of f . So that we prevent the zeros of f to leave the domain

we will impose that b =2 f(@
).

2.2.1 Topological degree of Brouwer

De�nition 17 Let 
 be an open bounded RN , f 2 C(
;RN) and b a regular value
of f such that b =2 f(@
): Then the degree deg(f;
; b) is de�ned by

deg(f;
; b) =
X

x2f�1(b)

Si gnJf (x)

where Jf (x) is the Jacobi matrix of f in b:

Properties of Brouwer degree

The degree satis�es the following properties:

1) If deg(f;
; b) = 0, then the equation f(x) = b has at least one solution in 
:

2) Normalisation: deg(id;
; b) = 1; for all b 2 
, and deg(id;
; b) = 0; for all

b 2 RN=
; where I is the identity on 
:
3) Additivity deg(f;
; b) = deg(f;
1; b) + deg(f;
2; b);if 
1; 
2 are disjoint in


 = 
1 [ 
2;and b =2 f(
= (
1 [ 
2)):
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4) Homotopy invariance: If f and g are homotopy equivalent via a homotopy

H (t; :) such that H(t; 0) = f , H(t; 1) = g, b =2 H (t; @
) then deg(f;
; b) =

deg(g;
; b).

Proposition 18 Let 
 be a bounded open set of RNand two functions f; g 2 C(
;RN),
Assume that f = g on @
 and that b =2 f(@
), So we have

deg(f;
; b) = deg(g;
; b):

Proof. Just use homotopy invariance of the topological degree, considering the
homotopy H(x; t) = tf(x) + (1� t)g(x). for all t 2 [0; 1] we have that

deg(H(:; t);
; b) = deg(H(:; 0);
; b):

and the result follows. For t = 1

deg(f;
; b) = deg(g;
; b)

Lemma 19 (Sard) Let�
 be a bounded open and f 2 C1(RN)and

S = fx 2 
; Jf (x) = 0g ;

the set of singular points of f . Then f(S) is of zero measure.

2.2.2 Topological degree of Leray-Schauder

We will now present a degree having the same role as the degree of Brouwer, but in

in�nite dimension, ie a tool which makes it possible to ensure that an equation of

the form f(x) = y, where f is continuous of a Banach E in itself, have at least one

solution x. The degree of Leray-Schauder, is built on the mapping which di¤er from

the identity by a compact mapping, ie. the degree of Leray-Schauder is de�ned for
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applications that are compact perturbations of the identity of the type I � T where
T is compact and I.

Lemma 20 Let 
 an open bounded set of a Banach spaceX. If T : 
 ! X is a

compact operator then for any " > 0 there exist E" a subspace of �nite dimension

and a continuous application T" : 
! E such kT"u� Tuk < "; for all u 2 
:

De�nition 21 Let X be a Banach space, 
 a bounded open set of X, T : 
 ! X

a compact operator such that z =2 (I � T ) @
: We de�ne the topological degree of
Leray-Schauder by

degLS(I � T;
; z) = deg(I � T";
 \ E"; z):

Remark 22 In the previous de�nition degLS(I � T;
; z) depends only on T and 
.

The Leray�Schauder degree conserves the basic properties of Brouwer degree.

Theorem 23 The Leray-Schauder degree has the following properties
1) Additivity: degLS(I�T;
; z) = degLS(I�T;
1; z)+degLS(I�T;
2; z);if 
1;


2 are disjoint in 
 = 
1 [ 
2;and z =2 (I � T ) (@
1) [ (I � T ) (@
2)
2)Existence: If degLS(I � T;
; z) 6= 0, then z 2 (I � T ) (
) :
3) Homotopy invariance: Let H (t; :) such that H : [0; 1]�
 a compact homotopy

such that z =2 (I �H (t; :)) (@
);then degLS(I �H (t; :) ;
; z) is independent of t:

2.3 Mahwin�s coincidence degree theory

In 1970, Gaines and Mawhin introduced the theory of the degree of coincidence in the

analysis of functional and di¤erential equations. Mawhin has made important contri-

butions since then, and this theory is also known as Mahwin�s theory of coincidence.

Coincidence theory is considered to be the very powerful technique, especially with

regard to questions about the existence of solutions in nonlinear di¤erential equa-

tions. Furthermore, many researchers have used it to solve boundary value problems

at resonance, see [37, 38, 39, 40, 41, 43, 47].
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Let us de�ne the direct sums, projections and topological complement.

De�nition 24 Let E and F be two closed subspaces of a normed vector R�spaceX.
We say that E is a topological complement of F if X is the direct sum of F and E

(i.e. X = F � E).

De�nition 25 Let X be a vector space. We say that a linear operator P : X ! X

is a projection if for all x 2 X; we have P (P (x)) = P 2x = P (x)

Proposition 26 Let X be a vector space. A linear operator P : X ! Xis a projec-

tion if and only if (I � P ) is a projection. Moreover, if the space X is normed, then

P is continuous if and only if (I � P ) is continuous.

Proof. Let P be a projection. So for all x 2 X

(I � P )2 (x) = (I � P ) ((I � P ) (x))
= I(I � P ) (x)� P (I � P ) (x)
= I(x� Px)� P (x� Px)
= x� p(x)� p(x) + p2(x)
= x� 2p(x) + p2(x)
= x� p(x) = (I � P )(x)

Reciprocally, if (I � P )is a projection,(I � (I � P )) = P is too. For the topological
framework, as the identity is a continuous mapping and the sum of two continuous

mappings is also continuous, then P is continuous if and only if (I � P )is.

Proposition 27 If P is a projection in X, then kerP = Im(I � P ) and ImP =

ker(I � P ).

Proof. We prove that kerP = Im(I � P ): If x 2 kerP =) P (x) = 0 then

(I � P )(x) = x� P (x) = x =) x 2 Im(I � P )
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which implies

KerP � Im(I � P )

Next, if x 2 Im(I � P ); then

P ((I � P )(x)) = P (x)� P 2(x)
= P (x)� P (x) = 0 =) (I � P )x 2 Ker(P )

hence Im(I � P ) � kerP and then

KerP = Im(I � P )

Remark 28 A topological space X is separated (or Hausdor¤ ) if 8x; y 2 X : x 6= y;
9V x; V y open as V x \ V y = �.

Lemma 29 The image of any continuous projection in a Hausdor¤ space is closed.
In particular, the images of continuous projections of the Banach spaces are closed.

Theorem 30 If P is a continuous projection in a topological vector space of Haus-
dor¤ X, then X is the direct sum of ImP and kerP , (ie X = ImP � kerP ).

De�nition 31 If the quotient space X=F is of �nite dimension, we say that the

subspace closed vector Fof X is of �nite codimension in X and we write

co dim(F ) = dim(X=F ):

Proposition 32 co dim(F ) = n <1 if, and only if there is a vector subspace closed

E of X, as

X = F � E and dim(E) = n
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2.3.1 Fredholm operators

De�nition 33 Let X and Y be two normed vector spaces; we say that a linear

mapping L : D(L) � X ! Y , is from Fredholm if it satis�es the following conditions

1. ker(L) = L�1(0) is of �nite dimension.

2. Im(L) = L(D(L))is closed and of �nite codimension.

De�nition 34 The index of a Fredholm operator L is the integer

ind(L) = dim(ker(L))� dim co(Im(L)):

Examples.

1. If X and Y are of �nite dimensions, then any linear mapping L : X ! Y is

from Fredholm with

ind(L) = dim(X)� dim(Y ):

If X and Y are Banach spaces and L : X ! Y is a linear mapping bijective, then L

is a Fredholm operator of index 0, in fact

dim(ker(L)) = dim co(Im(L) = 0:

2. The identity is a Fredholm operator of index 0.

Lemma 35 If L is a Fredholm operator, u is a compact linear application; so L+ u

is from Fredholm and

ind(L+ u) = ind(L):

In particular, any perturbation compact identity is a Fredholm index operator 0.

Proposition 36 If L is a Fredholm operator of zero index, so L is surjective if and

only if L is injective.



2.3. MAHWIN�S COINCIDENCE DEGREE THEORY 25

2.3.2 Generalized inverse

Let L : D(L) � X ! Y be a Fredholm operator of index 0. Let P and Q be two

continuous projectors; P : X ! X and Q : Y ! Y such that

Im(P ) = kerL and kerQ = Im(L):

Set

X1 = Im(I � P ) = kerP and Y1 = Im(Q);

so we can write

X = kerL�X1; Y = Im(L)� Y1:

Consider an isomorphism,

J : kerL! Y1

whose existence is ensured by the fact that dimkerL = dimY1 = n: Note that

D(L) = kerL� (D(L) \X1)

and that the restriction of L to D(L) \ X1 is an isomorphism on Im(L). Denote

by Lp this restriction and by L�1p : Im(L) ! D(L) \ X1 the inverse of Lp: So the

operator

J�1 � L�1p : Y = Y1 �R(L)! X = kerL�D(L) \X1;

is an isomorphism whose inverse is the operator,

L+ JP : D(L) \ Im(I � P )� kerL! R(L)� Y1

indeed, for every x 2 D(L) \ Im(I � P ) � kerL; we write it in the form x =

(I � P )x+ Px;so

(L+ JP )((I � P )x+ Px) = L(I � P )x+ JP (Px) = L(I � P )x+ JPx;
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consequently

(J�1 � L�1p )(L(I � P )x+ JPx) = (I � P )x+ Px = x:

On the other hand, for all y 2 Y we have

�
J�1 � L�1p

�
y =

�
J�1 � L�1p

�
(Qy + (I �Q)y) = J�1Qy + L�1p (I �Q)y;

by setting KP;Q = L
�1
p (I �Q);(KP;Q is the inverse on the right of L associated with

P and Q respectively), then we get (L+ JP )�1 = J�1Q+KP;Q:

2.3.3 Perturbations of a Fredholm operator of zero index

L-compact

To solve the equation Lx = y; we can write x = Px+(I�P )x and y = Qy+(I�Q)y
and by substitution of x and y in the previous equation, we obtain

L(Px+ (I � P )x) = Qy + (I �Q)y;

and since Qy = 0 and LPx = 0 (because y 2 Im(L) and Px 2 kerL), then

L(I � P )x = (I �Q)y;

which leads to

x� Px = Lp�1(I �Q)y

and thus

x = Px+ J�1Qy + L�1p (I �Q)y:

Now consider the equation Lx = Nx, where N : G � X ! Y is an operator (usually

nonlinear) according to the above result; this last equation with x 2 D(L) \ G is
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equivalent to

x = Px+ J�1QNx+KP;QP;

QNx = Mx;

which is a �xed point problem.

De�nition 37 Let X and Y be two Banach spaces and and L : D(L) � X ! Y a

Fredholm operator of index 0. Let 
 an open bounded set of X such that D(L)\
 6= 0:
1) The map N : X ! Y is L � compact on 
 if only if the operator QN

�


�
is

bounded and KP;QN
 : 
! X is compact.

2) The degree of coincidence of L and N on is de�ned by

deg[(L;N);
] = degLS(I �M;
; 0)

where M = P + J�1QN +KP;QN:

2.3.4 Mawhin�s theorem

Theorem 38 Let L be a Fredholm operator of index zero and let N be L-compact

on 
. Assume that the following conditions are satis�ed.

Theorem 39 (i) Lx 6= �Nx, for every (x; �) 2 [(D(L)nKerL) \ @
]� (0; 1).
(ii) Nx =2 ImL, for every x 2 KerL \ @
 .
(iii) deg(JQNj kerL; kerL \ @
; 0) 6= 0, where J : ImQ ! kerL is a linear

isomorphism, Q : Y ! Y is a projection as above with ImL = kerQ. Then, the

equation Lx = Nx has at least one solution in D(L) \ 
 .

Proof. For � 2 [0; 1], consider the family of problems

x 2 D(L) \ 
; Lx = �Nx+ (1� �)QNx (2.2)
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Let M : [0; 1]� 
! Y be a homotopy de�ned by

M(�; x) = Px+ J�1QNx+ �KP;QNx

The problem (2.2) is equivalent to a �xed point problem

x = Px+ J�1Q(�N + (1� �)QN)x+KP;Q(�N + (1� �)QN)x
= Px+ �J�1QNx+ (1� �)J�1QNx+ �KP;QNx+ (1� �)KP;QQNx

=M(�; x):

So this last equation is equivalent to a �xed point problem

x =M(�; x); x 2 
; (2.3)

If there exists an x 2 @
 such that Lx = Nx, then the proof is completed. Now

suppose that

Lx 6= Nx for all x 2 D(L) \ 
 (2.4)

and on the other hand

Lx 6= �Nx+ (1� �)QNx (2.5)

for all (�; x) 2]0; 1[�(D(L) \ 
). If

Lx = Nx+ (1� �)QNx

for all (�; x) 2]0; 1[�(D(L) \ 
), we obtain by application of Q to both members of
the previous equality

QNx = 0; Lx = �Nx

The �rst of these equalities and the condition (ii) imply that x =2 KerL \ @
 i.e
x 2 (D(L)nKerL) \ @
 and therefore the second equality contradicts (i). By using
other times (ii), it follows that

Lx 6= QNx; for every x 2 D(L) \ @
: (2.6)
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using (2.4), (2.5) and (2.6), we deduce that

x 6=M(�; x) for all (�; x) 2 [0; 1]� @
 (2.7)

Since N is L-compact thenM(�; x) is compact because. Using the homotopy invari-

ance property of the Leray-Schauder degree, we obtain

degLS(I �M(0; :);
; 0) = degLS(I �M(1; :);
; 0) (2.8)

On the other hand we have

degLS(I �M(0; �);
; 0) = degLS(I � (P + J�1QN);
; 0) (2.9)

Since the image of P + J�1QN is contained in Ker(L), then using the property of

reduction of the Leray-Schauder degree and the fact that P jKerL= I jKerL, (since
Ker(L) = Im(P ) = Ker(I � P )), we obtain

degLS(I � (P + J�1QN);
; 0) = deg(I � (P + J�1QN);
 \KerL; 0) (2.10)

= deg(J�1QN;
 \KerL; 0)

Thanks to (2.8), (2.9) and (2.10), it follows that degLS(I �M(1; :);
; 0) 6= 0, and

so the existence property of the Leray-Schauder degree implies the existence of an

x 2 
 such as x =M(1; x) i.e x 2 D(L) \ 
; Lx = Nx:



CHAPTER 3

On some boundary value problems at resonance

3.1 Introduction

In this chapter we collect some interesting results for various classes of second

boundary value problems at resonance. More precisely, we will summarize basic

results in the literature related, and present the main ideas of some researches in

resonant boundary value problems. we omit the corresponding proofs.

3.2 A Second order m-point boundary value prob-

lem at resonance

Gupta in [25], used Mawhin coincidence degree theory, to investigate the existence

of solutions for the following two boundary value problem at resonance,

(P1)

(
u00(t) = f(t; u(t); u0(t)) + e (t) ; t 2 (0; 1);

u(0) = 0; u0(1) = u0(�)

30
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(P2)

8<: u00(t) = f(t; u(t); u0(t)) + e (t) ; t 2 (0; 1);

u(0) = 0; u0(1) =
m�2P
i=1

�iu
0(�i)

where f : [0; 1] � R2 ! R is a function satisfying Caratheodory�s conditions, 0 <

� < 1; �i > 0, i = 1; 2; :::;m � 2, 0 < �1 � �2 � ::: � �m�2 < 1;
m�2P
i=1

�i = 1;

e (t) 2 L1(0; 1):
Denote by X and Y the Banach spaces C1[0; 1] and L1[0; 1] respectively, with

their usual norms. Let Y2 be the subspace of Y de�ned as

Y2 = fy(t) 2 Y; y(t) = At; t 2 [0; 1]; A 2 Rg

and let Y1 be the subspace of Y such that Y = Y1�Y2: De�ne the canonical projection
operators

Q : Y ! Y2

Qu =
2tPm�2

i=1 �i
�
1� �2i

�
264m�2X
i=1

�i

1Z
�i

u (s) ds

375

P : X ! X

Px = x (t)� 2tPm�2
i=1 �i

�
1� �2i

�
264m�2X
i=1

�i

1Z
�i

u (s) ds

375
De�ne the operator

Lu = u00;

D(L) =

(
u 2 W 2;1 (0; 1) ; u(0) = 0; u0(1) =

m�2X
i=1

�iu
0(�i)

)
:

De�ne N : X ! Y; Nu = f(t; u(t); u0(t)) + e (t) : Then the boundary value problem

(P2) can be written as Lu = Nu:
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Under the condition
m�2P
i=1

�i = 1; the problem (P1) is at resonance, in this case the

operator L is not invertible and then the Leray-Schauder continuation theory cannot

be used. The existence results are proved by means of the coincidence degree theory

of Mawhin under a growth condition on the nonlinear term f .

Theorem 40 Let f : [0; 1]�R2 ! R be a function satisfying Caratheodory�s condi-
tions. Assume that there exist functions p(t); q(t); r(t) 2 L1(0; 1) such that

jf(t; x1; x2)j < p(t) jx1j+ q(t) jx2j+ r(t)

for a.e. t 2 [0; 1] and all (x1; x2) 2 R2. Assume that for every x 2 X

(Qx)(t):(QNx)(t) � 0; for t 2 [0; 1];

then for e 2 Y1, i.e e 2 L1(0; 1) and
Pm�2

i=1 �i
R 1
�i
e (s) ds = 0; the boundary value

problem (P2) has at least one solution in C1[0; 1] provided

kpk1 + kqk1 < 1:

Remark 41 Theorem 40 remains valid if the condition

(Qx)(t):(QNx)(t) � 0; for t 2 [0; 1];

is replaced by

(Qx)(t):(QNx)(t) � 0; for t 2 [0; 1];

or by

f(t; x1; x2)x1 > 0; for almost all t 2 (�1; 1) and all (x1; x2) 2 R2:

The existence of solution for problem (P1) is given in the following theorem.

Theorem 42 Let f be a function as in Theorem 40, then for e (t) 2 L2(0; 1) andR 1
�
e (s) ds = 0; the boundary value problem (P1) has at least one solution in C1[0; 1]
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provided

kpk1 + kqk1 < 1:

3.3 Existence results for a multipoint boundary

value problem at resonance

In [48], Przeradzki and Stanczy, applied coincidence degree theory of Mawhin, to

prove the existence results for the following boundary value problem at resonance,

(P3)

8<: u00(t) = f(t; u(t); u0(t)); t 2 (0; 1);

u(0) = 0; u(1) =
mP
i=1

�iu(�i)

where f : [0; 1]� R2 ! R be a continuous function, �i > 0, i = 1; 2; :::;m, 0 < �1 �

�2 � ::: � �m < 1,
m�2P
i=1

�i�i = 1:

Denote X and Y the Banach spaces X = C1[0; 1] and Y = L1[0; 1] with their

usual norms. De�ne the operator

Lu = u00;

D(L) =

(
u 2 C2[0; 1]; u(0) = 0; u(1) =

mX
i=1

�iu(�i)

)
:

Under the condition
m�2P
i=1

�i�i = 1; the problem (P1) is at resonance, and the operator

L is not invertible. The authors proved that L : D(L) � X ! Y is a Fredholm oper-

ator of index 0, and KerL = fat; a 2 Rg : De�ne N : X ! Z; Nu = f(t; u(t); u0(t));

then the boundary value problem (P2) can be written as Lu = Nu: The linear

projection Q is

Qy = t

0@ �iZ
0

(1� r) y (r) dr �
mX
i=1

�i

�iZ
0

(�i � r) y (r) dr

1A ; y 2 Y
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For problem (P3), some conditions are imposed on the nonlinear term f to ensure

the existence of solution.

Theorem 43 Suppose that there exist two continuous functions c; d : R! R, such
that

jf(t; x; y)j � c (x) + d (x) y2;

for any t 2 [0; 1] and x; y 2 R and there exists a positive number a0 such that

af (t; at; sgn (a) y) � 0

for any t 2 [0; 1] and jaj � y � a0: Then the multipoint boundary value problem (P3)
has at least one solution in C2 [0; 1] :

In the second part, the authors investigated the multidimensional case, that is

f : [0; 1]�R2n ! Rn, and proved by Mawhin coincidence degree theory the following
results

Theorem 44 Assume that f is continuous and the conditions

jfi(t; x; y)j � bi (x) + ci (x) y2i + di (x; y1; :::yi�1)

are satis�ed for i = 1; :::n; t 2 [0; 1] ; x; y 2 Rn; where bi; ci; di are continuous
nonnegative functions and there exists a positive number a0 such that

aifi (t; at; y) � 0; i = 1; :::n

for any t 2 [0; 1] ; where y = (y1; :::; yn) ; a = (a1; :::; an) is such that jaij = maxj jajj
and jaij � sgn (ai) yi � a0: Then the multipoint boundary value problem (P3) has at

least one solution.

Remark 45 The assumption imposed on the nonlinear term f is weaker, since the

authors allow quadratic growth of the derivative of f and no growth condition is

imposed with respect to the function f:
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3.4 On multipoint boundary value problem at res-

onance

In [34], Liu and Yu considered the following second-order ordinary di¤erential equa-

tion

u00(t) = f(t; u(t); u0(t)) + e (t) ; t 2 (0; 1); (3.1)

subject to one of the following boundary value conditions:

u(0) =
m�2X
i=1

�iu(�i); u(1) = �u (�) ; (3.2)

u(0) =
m�2X
i=1

�iu(�i); u0(1) = �u0 (�) ; (3.3)

u0(0) =
m�2X
i=1

�iu
0(�i); u(1) = �u (�) ; (3.4)

u0(0) =
m�2X
i=1

�iu
0(�i); u0(1) = �u0 (�) ; (3.5)

�i; � 2 R, i = 1; 2; :::;m� 2, 0 < �1 � �2 � ::: � �m�2 < 1, 0 < � < 1:
Denote X; Y be the Banach spaces X = C1[0; 1] and Y = L1[0; 1] with their

usual norms. De�ne the operator

Lu = u00;

D(L) =

(
u 2 W 2;1 (0; 1) ; u(0) =

m�2X
i=1

�iu(�i); u(1) = �u (�)

)
:

De�ne N : X ! Z; Nu = f(t; u(t); u0(t)) + e (t) ; Then the boundary value problem

(3.1)-(3.2) can be written as Lu = Nu:

The authors proved that if � = 1;
Pm�2

i=1 �i = 1;
Pm�2

i=1 �i�i = 0;
Pm�2

i=1 �i�
2
i 6= 0,

then the problem (3.1)-(3.2) is at resonance, and the operator L is not invertible,
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moreover the operator L : D(L) � X ! Y is a Fredholm operator of index 0 and

KerL = fx 2 D (L) ; x = d 2 Rg ;

ImL =

8<:y 2 Y;
m�2X
i=1

�i

�iZ
0

sZ
0

y (r) drds = 0

9=; :
The linear projections Q and P are

Qy =
2Pm�2

i=1 �i�
2
i

m�2X
i=1

�i

�iZ
0

sZ
0

y (r) drds; y 2 Y

Px = x (0) ; x 2 X

the generalized inverse of L; is KP;Q : ImL! D(L) \KerP

KPy =
t

1� �

1Z
�

sZ
0

y (r) drds+

tZ
0

sZ
0

y (r) drds

The authors studied the existence of solution for boundary value problems (3.1)-

(3.2), (3.1)-(3.3), (3.1)-(3.4) and (3.1)-(3.5) at resonance cases, and established some

existence theorems under nonlinear growth restriction on f , by the help of the coin-

cidence degree theory of Mawhin

Theorem 46 Let f : [0; 1]� R2 ! R be a continuous function. Assume that
(A1) There exist functions a; b; c; r in L1(0; 1) and a constant � 2 [0; 1) such that

for all x; y 2 R, t 2 [0; 1], either

jf(t; x; y)j < a(t) jxj+ b(t) jyj+ c(t) jyj� + d (t)

or else

jf(t; x; y)j < a(t) jxj+ b(t) jyj+ c(t) jxj� + d (t) :

(A2) There exists constant M > 0 such that, for x 2 D(L), if jx (t)j > M for all
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t 2 [0; 1], then

m�2X
i=1

�i

�iZ
0

24 sZ
0

f (r; x (r) ; x0 (r)) + e (r) dr

35 ds 6= 0
(A3) There exists constant M� > 0 such that for any d 2 R, if jdj > M�, then

either

d:
m�2X
i=1

�i

�iZ
0

24 sZ
0

f (r; d; 0) + e (r) dr

35 ds < 0;
or else

d:
m�2X
i=1

�i

�iZ
0

24 sZ
0

f (r; d; 0) + e (r) dr

35 ds > 0:
Then, for every e (t) 2 L1(0; 1); � = 1;

Pm�2
i=1 �i = 1;

Pm�2
i=1 �i�i = 0;

Pm�2
i=1 �i�

2
i 6= 0;

the boundary value problem (3.1)-(3.2) has at least one solution in C1[0; 1] provided

kak1 + kbk1 <
1

3
:

Remark 47 The authors imposed some assumptions on the nonlinear term f to

prove the existence of solution for problems (3.1)-(3.3), (3.1)-(3.4) and (3.1)-(3.5),

we refer to the paper [34] for further existence results.



CHAPTER 4

Nonlocal Boundary Value Problems at Resonance

In this chapter, we study a boundary value problem at resonance with a multi integral

boundary conditions. By constructing suitable operators, we establish an existence

theorem upon the coincidence degree theory of Mawhin. The results of this chapter

are published:

R. Khaldi, M. Kouidri, Solvability of multipoint value problems with integral

condition at resonance, International Journal of Analysis and Applications, V16,

Number 3 (2018), 306�316.

4.1 Introduction

Boundary value problem involves ordinary di¤erential equation with non local con-

dition appears in physical science and applied mathematics. Moreover the theory of

boundary value problems with integral condition is found in di¤erent areas like ap-

plied mathematics and applied physics for example plasma physics, heat conduction,

themo-elasticity, underground water �ew. In recent years, the boundary value prob-

lem at resonance for ordinary di¤erential equations have been extensively studied

and many results have been obtained, we refer to [4,10,12,15,18-20,30-34,40,42,46]

and the references therein. Moreover, lots of works on multipoint boundary value

38
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problems have appeared, for examples, see [10, 20, 22, 24, 26, 29, 33, 35, 45, 48].

The goal of this chapter is to provide su¢ cient conditions that ensure the existence

of solutions for the following multipoint boundary value problem:

x00(t) = f(t; x(t); x0); t 2 (0; 1) (4.1)

x(0) = 0; x(1) =
mX
k=1

�k

�kZ
0

x(t)dt; �k 2 (0; 1);
mX
k=1

�k�
2
k = 2 (4.2)

where f : [0; 1]� R2 ! R is caratheodary function, and �k 2 (0; 1):
In the present work, if

mP
k=1

�k�
2
k = 2, then, BVP (4.1)-(4.2) is at resonance, since

equation

x00(t) = 0; t 2 (0; 1)

with boundary condition (4.2) has nontrivial solutions x = ct; c 2 R; t 2 [0; 1].
We recall the Mawhin theorem of coincidence degree:

Theorem 48 Let L be a Fredholm operator of index zero and let N be L-compact

on 
. Assume that the following conditions are satis�ed.

(i) Lx 6= �Nx, for every (x; �) 2 [(D(L)nKerL) \ @
]� (0; 1).
(ii) Nx =2 ImL, for every x 2 KerL \ @
 .
(iii) deg(JQNj kerL; kerL\@
; 0) 6= 0, where J : ImQ! kerL is a linear isomorph-

ism, Q : Y ! Y is a projection as above with ImL = kerQ. Then, the equation

Lx = Nx has at least one solution in D(L) \ 
 .

In the following, we shall use the classical spaces X = C[0; 1] and Y = L1[0; 1]

equipped respectively withe the norm kxk = max fkxk1 ; kx0k1g ; kxk1 = max
t2[0;1]

jx(t)j,

and kyk1 =
1Z
0

jy(t)j dt .

We will use the space AC2[a; b] = fx 2 C1[a; b]; x0 2 AC[a; b]g;where AC[a; b]is
the space of absolutely continuous functions on [a; b]:
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4.2 Existence of Solutions

De�ne the operator L : D(L) � X ! Y by Lx = x00, where X = C1[0; 1], Y =

L1[0; 1],

D(L) = fx 2 W 2;1(0; 1) : x(0) = 0;

x(1) =

mX
k=1

�k

�kZ
0

x(t)dt; �k 2 (0; 1);
mX
k=1

�k�
2
k = 2g:

Let N : X ! Y be the operator

Nx = f(t; x(t); x0(t)); t 2 (0; 1):

Then, the boundary value problem (4.1),(4.2) can be written as Lx = Nx.

We need the following Lemma.

Lemma 49 (i) kerL = fx 2 D(L) : x = ct; c 2 R; t 2 [0; 1]g,

(ii) ImL = fy 2 Y :
R 1
0
(1� s)y(s)ds� 1

2

mP
k=1

�k
R �
0
(�k � s)2y(s)ds = 0g,

(iii) L : D(L) � X ! Y is a Fredholm operator of index zero, and the linear

continuous projector operator Q : Y ! Y can be de�ned as Qy = k:(Ry):t such that

k0 = 6

�
mP
i=1

�i�
4
i

��1
:

Ry =

1Z
0

(1� s)y(s)ds� 1
2

mX
i=1

�i

�iZ
0

(�i � s)2y(s)ds

(iv) The linear operator Kp : ImL! D(L) \ kerP can be written as

Kpy =

tZ
0

(t� s)y(s)ds
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(v) for all y 2 ImL, we have

kKpyk < kyk1 : (4.3)

Proof. (i) For 8x 2 kerL, we have x00 = 0. Then, we obtain

x(t) = a+ bt

where a; b 2 R. From x(0) = 0, we have a = 0. Again, from

x(1) =
mX
i=1

�i

�iZ
0

x(t)dt;

one has

kerL = fx 2 D(L) : x = ct; c 2 R; t 2 [0; 1]g

(ii) to prove that

ImL = fy 2 Y :
1Z
0

(1� s)y(s)ds� 1
2

mX
i=1

�i

�iZ
0

(�i � s)2y(s)ds = 0g (4.4)

we show that, the linear equation

x00 = y (4.5)

has a solution x(t) satis�ed

x(0) = 0; x(1) =
mX
i=1

�i

�iZ
0

x(t)dt; �i 2 (0; 1);
mX
i=1

�i�
2
i = 2

if and only if
1Z
0

(1� s)y(s)ds� 1
2

mX
i=1

�i

�iZ
0

(�i � s)2y(s)ds = 0 (4.6)
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In fact, by integrating equation (4.5) and taking into account that x(0) = 0, we get

x(t) = x(0) + x0(0)t+

tZ
0

(t� s)y(s)ds

again from

x(1) =
mX
k=1

�k

�kZ
0

x(t)dt;

we obtain

x(1) = x0(0) +

1Z
0

(1� s)y(s)ds =
mX
k=1

�k

�kZ
0

24x0(0)t+ tZ
0

(t� s)y(s)ds

35 dt
=

mX
k=1

�k

�kZ
0

24x0(0)t+ tZ
0

(t� s)y(s)ds

35 dt
=

mX
k=1

�k

24 �kZ
0

x0(0)tdt+

�kZ
0

tZ
0

(t� s)y(s)dsdt

35
=

mX
k=1

�k

24 �kZ
0

x0(0)tdt

35+
24 �kZ
0

tZ
0

(t� s)y(s)dsdt

35
=

mX
k=1

�k

24x0(0) �kZ
0

tdt

35+ mX
k=1

�k

24 �kZ
0

tZ
0

(t� s)y(s)dsdt

35

=

mX
k=1

�kx
0(0)

�
1

2
t2
��k
0

+

mX
k=1

�k

24 �kZ
0

tZ
0

(t� s)y(s)dsdt

35
=
1

2
x0(0)

 
mX
k=1

�k�
2
k

!
+

mX
k=1

�k

24 �kZ
0

tZ
0

(t� s)y(s)dsdt

35
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=
1

2
(2) x0(0) +

mX
k=1

�k

24 �kZ
0

tZ
0

(t� s)y(s)dsdt

35
= x0(0) +

mX
k=1

�k

24 �kZ
0

tZ
0

(t� s)y(s)dsdt

35
by change of order of integration, it yields

x(1) = x0(0) +
1

2

mX
k=1

�k

24 �kZ
0

(�k � s)2y(s)ds

35
which implies

1Z
0

(1� s)y(s)ds� 1
2

mX
k=1

�k

24 �kZ
0

(�k � s)2y(s)ds

35 = 0
(iii) For y 2 Y , we take the projector Qy as

Qy = k0:

0@ 1Z
0

(1� s)y(s)ds� 1
2

mX
k=1

�k

24 �kZ
0

(�k � s)2y(s)ds

351A :t
Let y1 = y �Qy, we obtain

1Z
0

(1� s)y1(s)ds�
1

2

mX
k=1

�k

24 �kZ
0

(�k � s)y1(s)ds

35

=

1Z
0

(1� s) (y �Qy) (s)ds� 1
2

mX
k=1

�k

24 �kZ
0

(�k � s) (y �Qy) ds

35
= 0

then, y1 2 ImL. Hence, Y = ImL+R, since ImL\R = f0g, we have Y = ImL�R,
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thus, dim kerL = dimR = co dimL = 1. Hence, L is a Fredholm operator of index

zero.

(iv) Taking P : X ! X as follows,

Px = x0(0)t

then, the generalized inverse Kp : ImL! D(L) \KerP of L can be written as

Kpy =

1Z
0

(1� s)y(s)ds

In fact, for y 2 ImL, we have

(LKp)y(t) = [(Kpy)(t)]00 = y(t)

and, for x 2 D(L) \KerP , we know

(KpL)x(t) = (Kp)x00(t) =

tZ
0

sx00(s)ds = x(t)

This shows that KP = (LjD(L)\kerP )
�1.

(v) kKpyk < kyk1, for all y 2 ImL: In fact from the de�nition of KP , we have

kKPyk1 �
1Z
0

(1� s) jy(s)j ds �
1Z
0

jy(s)j ds = kyk1

then

kKpyk < kyk1 :

Now, we give the result on the existence of a solution for the problem (4.1)-(4.2).

Theorem 50 Assume that
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(H1) There exist nonnegative functions �; �; 
 2 L1[0; 1], such that, for all (x; y) 2
R2; t 2 [0; 1],
satisfying the following inequalities:

jf(t; x; y)j � �(t) jxj+ �(t) jyj+ 
(t): (4.7)

(H2) There exists a constant M > 0, such that, for x 2 D(L), if jx0(t)j > M , for
all t 2 [0; 1], then,

1Z
0

(1� s)y(s)ds� 1
2

mX
k=1

�k

�kZ
0

(�k � s)2y(s)ds 6= 0: (4.8)

(H3) There exists a constant M � > 0, such that, for c 2 R, if jcj > M �, then,

either

c� k0 �

24 1Z
0

(1� s)f(s; x(s); c)ds� 1
2

mX
k=1

�k

�kZ
0

(�k � s)2f(s; x(s); c)ds

35 < 0; (4.9)
or else

c� k0�

24 1Z
0

(1� s)f(s; x(s); c)ds� 1
2

mX
k=1

�k

�kZ
0

(�k � s)2f(s; x(s); c)ds

35 > 0; (4.10)
then BVP (4.1)-(4.2) has at least one solution in C1 [0; 1] ; provided k�k+ k�k � 1

2
:

Next, in order to prove Theorem 50, we need the following Lemma.

Lemma 51 Suppose that 
 is an open bounded subset of X such that D(L)\
 6= ;:
Then N is L-compact on 
:

Proof. Suppose that 
 � X is a bounded set. Without loss of generality, we

may assume that 
 = B(0; r), then for any x 2 
; kxk � r, For x 2 
; and by
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condition (4.7), we obtain

jQNxj � k0

1Z
0

jf(s; x(s); x0(s))j ds+ k0
2

mX
k=1

�k

�kZ
0

jf(s; x(s); x0(s))j ds

� k0

1Z
0

j�(s)j jx(s)j+ j�(s)j jy(s)j+ j
(s)j ds

+
k0
2

mX
k=1

�k

�kZ
0

j�(s)j jx(s)j+ j�(s)j jy(s)j+ j
(s)j ds

� (k0 +
k0
2

mX
k=1

�k) [r (k�k1 + k�k1) + k
k1]

thus,

kQNxk � (k0 +
k0
2

mX
k=1

�k) [r k�k1 + k�k1 + k
k1] ; (4.11)

which implies that QN
�


�
is bounded. Next, we show that KP (I � Q)N

�


�
is

compact. For x 2 
 by condition (4.7) we have

kNxk1 =
1Z
0

jf(t; x(s); x0(s))j ds � r (k�k1 + k�k1) + k
k1 ; (4.12)

On the other hand, from the de�nition of KP and together with (4.3),(4.11) and

(4.12) one gets

kKP (I �Q)Nxk � k(I �Q)Nxk � kNxk1 + kQNxk1

� (1 + k0 +
k0
2

mX
k=1

�k) [r k�k1 + k�k1 + k
k1] ;

It follows that KP (I �Q)N
�


�
is uniformly bounded.

Let us prove that KP (I �Q)N
�


�
is equicontinuous. For any x 2

�


�
, and any
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t1; t2 2 [0; 1], t1 < t2, we have

(KP (I �Q)Nx)(t1)� (KP (I �Q)Nx)(t2) =������
t1Z
0

(t1 � s)(I �Q)Nx(s)ds�
t2Z
0

(t2 � s)(I �Q)Nx(s)ds

������ �

t1Z
0

(t2 � t1)(I �Q)Nx(s)ds�
t2Z
0

(t2 � s)(I �Q)Nx(s)ds ! 0

as t1 ! t2. So (KP (I �Q)Nx)(
) is equicontinuous. so, the Ascoli-Arzela theorem
ensure that KP (I �Q)N : 
! X is compact. The proof is completed.

Now we give the proof of Theorem 50

Proof. of Theorem 50. We need to construct the set 
 satisfying all the condi-

tions in Theorem 48, which is separated into the following four steps.

Step 1. Let


1 = fx 2 D(L)n kerL : Lx = �Nx; for some � 2 [0; 1]g;

then, 
1 is bounded. Suppose that x 2 
1, and Lx = �Nx, thus, � 6= 0; QNx = 0;
so it yields

1Z
0

(1� s)f(s; x(s); x0(s))ds� 1
2

mX
k=1

�k

�kZ
0

(�k � s)2f(s; x(s); x0(s))ds = 0;

thus, from hypothesis (H2), there exists t0 2 [0; 1], such that jx0(t0)j � M . In view
of

x(0) = x(t0)�
t0Z
0

x0(t)dt;

then,

kPxk = jx0(0)j < M + kx00k1 =M + kNxk1 : (4.13)

Again for x 2 
1, x 2 D(L)n kerL, then (I � P )x 2 D(L) \KerP , Px = 0, thus
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from Lemma 49, we know

k(I � P )xk = kKpL(I � P )xk � kL(I � P )xk1 = kxk1 � kNxk1 : (4.14)

From (4.13) and (4.14), we have

kxk � kPxk+ k(I � P )xk = kx0(0)k+ k(I � P )xk � 2 kNxk+M: (4.15)

If (4.7) holds, then from (4.15), we obtain

kxk � 2
�
k�k1 kxk1 + k�k1 kx0k1 + k
k1 +

M

2

�
: (4.16)

From kxk1 � kxk, (4.16) we have

kxk1 �
2

1� 2 k�k1

�
k�k1 kx0k1 + k
k1 +

M

2

�
: (4.17)

Taking into account kx0k1 � kxk, (4.16) and (4.17) it yields

kx0k1
�
1� 2 k�k1

1� 2 k�k1

�
� 2

1� 2 k�k1

�
k
k1 +

M

2

�
;

therefore,

kx0k1
�
1� 2 k�k1 � 2 k�k1

1� 2 k�k1

�
� 1

1� 2 k�k1
[2 k
k1 +M ] ;

thus

kx0k1 �
2
�
k
k1 + M

2

�
1� 2 k�k1 � 2 k�k1

; (4.18)

from (4.18) there exists M1 =
2[k
k1+M

2 ]
1�2k�k1�2k�k1

> 0; such that

kx0k1 �M1; (4.19)
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hence, from (4.17), there exist M2 > 0, such that

kxk1 �M2; (4.20)

so,kxk = max fkxk1 ; kx0k1g � max fM1;M2g ; that implies that 
1 is bounded.

Step 2. The set 
2 = fx 2 kerL : Nx 2 ImLg is bounded. In fact, let x 2 
2;
then,

x 2 kerL = fx 2 D(L) : x = ct; c 2 R; t 2 [0; 1]g

and QNx = 0, thus,

1Z
0

(1� s)f(s; x(s); x0(s))ds� 1
2

mX
k=1

�k

�kZ
0

(�k � s)2f(s; x(s); x0(s))ds = 0:

From (H2), there exists t0 2 [0; 1], such that jx0(t0)j � M ie jbj � M: Then, kxk =
max fkxk1 ; kx0k1g = jbj �M; so the set 
2 is bounded.

Step 3. If the �rst part of (H1) holds, that is, there exists M� > 0, such that for

any c 2 R, if jcj > M�, then,

c� k0�

24 1Z
0

(1� s)f(s; x(s); c)ds� 1
2

mX
k=1

�k

�kZ
0

(�k � s)2f(s; x(s); c)ds

35 < 0: (4.21)
Indeed, let


3 = fx 2 kerL : ��x+ (1� �)JQNx = 0; � 2 [0; 1]g;

here, J : ImQ! kerL is the linear isomorphism given by J(c) = ct;8c 2 R; t 2 [0; 1].
Then, 
3 is bounded. Since, for x = c0t, then, for t 2 [0; 1], we obtain

�c0 = (1��)k0�

24 1Z
0

(1� s)f(s; x(s); c)ds� 1
2

mX
k=1

�k

�kZ
0

(�k � s)2f(s; x(s); c)ds

35 < 0;



50CHAPTER 4. NONLOCALBOUNDARYVALUEPROBLEMSATRESONANCE

if � = 1, then c0 = 0. otherwise, if jc0j > M�, then in view of (17) one has

�c20 = (1��)k0�

24 1Z
0

(1� s)f(s; x(s); c)ds� 1
2

mX
k=1

�k

�kZ
0

(�k � s)2f(s; x(s); c)ds

35 < 0;
which contradicts �c20 � 0. Thus, 
3 � fx 2 KerL : kxk �M�g is bounded.

Step 4. If the second part of (H3) holds, that is, there exists M� > 0 , such that,

for any c 2 R, if jcj > M�, then,

c(1� �)k0 �

24 1Z
0

(1� s)f(s; x(s); c)ds� 1
2

mX
k=1

�k

�kZ
0

(�k � s)2f(s; x(s); c)ds

35 > 0:
Let


3 = fx 2 kerL : ��x+ (1� �)JQNx = 0; � 2 [0; 1]g;

here, J as in Step 3. Similar to the argument in Step 3, we can verify 
3 is bounded.

Now, we shall prove that all the conditions of Theorem 48 are satis�ed. Let 
 be

a bounded open subset of X, such that [i=3i=1
 � 
. By the Ascoli-Arzela theorem,
we can show that Kp(I � Q)N : 
 ! Y is compact, thus, N is L-compact on 
.

Then, by the above argument, we have

(i) Lx 6= �Nx, for every (x; �) 2 [(D(L)n kerL) \ @
]]x(0; 1),

(ii) Nx =2 ImL, for every x 2 kerL \ @
,

(iii) If the �rst part of (H3) holds, then, let

H(x; �) = ��x+ (1� �)JQNx:

According to the above argument, we know H(x; �) 6= 0, for x 2 kerL \ @
, by the
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homotopy property of degree, we get

deg(JQNj kerL;
 \ kerL; 0) = deg(H(:; 0);
 \ kerL; 0)
= deg(H(:; 1);
 \ kerL; 0)
= deg(�I;
 \ kerL; 0):

According to de�nition of degree on a space which is isomorphic to R, and


 \KerL = fct : jcj < dg:

We have

deg(�I;
 \ kerL; 0) = deg(�J�1IJ; J�1(
 \ kerL); J�lf0g)
= deg(�I; (�d; d); 0) = �1 6= 0:

If the second part of condition (3) of Theorem 48 holds, let

H(x; �) = �x+ (1� �)JQNx:

Similar to the above argument, we have

deg(JQNj kerL;
 \ kerL; 0) = deg(H(:; 0);
 \ kerL; 0) =
deg(H(:; 1);
 \ kerL; 0) = deg(I;
 \ kerL; 0) = 1:

Then, we obtain

deg(JQNj kerL;
 \ kerL; 0) 6= 0:

Then by, Theorem 48, Lx = Nx has at least one solution in D(L) \ 
 , so that the
boundary value problem (4.1)(-(4.2) has at least one solution in C1[0; 1]. The proof

is completed.
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4.3 An illustrative Example

In this section we give an example to illustrate the usefulness of our main results.

Consider the multipoint boundary value problem

(P )

8><>:
x00(t) = f(t; x(t); x0(t)); t 2 (0; 1)

x(0) = 0; x(1) = 4

1
2R
0

x(t)dt+ 16
9

2
3R
0

x(t)dt

with

f(t; x; y) =
t

4
x+

�
1� t2
4

�
y + t:

Since
2X
k=1

�k�
2
k = 4(

1

2
)2 +

16

9
(
3

4
)2 = 2;

the problem (P) is at resonance. We have

jf(t; x; y)j � �(t) jxj+ �(t) jyj+ 
(t);

where the functions

�(t) =
t

4
; �(t) =

�
1� t2
4

�
; 
(t) = t;

are nonnegative and belong to L1[0; 1], so, hypothesis (H1) of Theorem 50 is satis�ed.

We claim that condition (H2) of Theorem 50 is satis�ed, indeed, forM = 1:8214 >



4.3. AN ILLUSTRATIVE EXAMPLE 53

0 and x 2 D(L), x(t) = ct, if jx0(t)j > M , for all t 2 [0; 1], then,

1Z
0

(1� s)f(s; x(s); x0(s))ds

� 1
2

2X
k=1

�k

�kZ
0

(�k � s)2f(s; x(s); x0(s))ds

=

1Z
0

(1� s)
� c
4
+ s
�
ds�

1

2

0B@4
1
2Z
0

(�k � s)2
� c
4
+ s
�
ds+

16

9

3
4Z
0

(�k � s)2
� c
4
+ s
�
ds

1CA
=
7

96
c+

17

128
6= 0:

Now, for M� = 2 > 0 and any x(t) = ct 2 kerL with jcj > M , we have

c

24 1Z
0

(1� s)f(s; x(s); x0(s))ds� 1
2

2X
k=1

�k

�kZ
0

(�k � s)2f(s; x(s); x0(s))ds

35
=
7

96
c2 +

17

128
c > 0;

consequently, condition (H3) of Theorem 50 is satis�ed. Finally, a simple calculus

gives

k�k1 + k�k1 =
1

8
+
1

6
� 1

2
:

We conclude from Theorem 50 that the problem (P) has at least one solution in

C1[0; 1].
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Conclusion. In this thesis, we investigated the existence of a solution of a bound-
ary value problem at resonance generated by a second order di¤erential equation and

multipoint integral conditions. by Mawhin�s coincidence theorem, and under some

conditions on the nonlinear term, we proved the existence of solution, then we gave

an example to illustrat the main results. This study can be extended to higher order

boundary value problem.

Since di¤erential equations of fractional order have recently been shown to be

valuable tools for modeling many phenomena in various �elds of science and engin-

eering, this study can be done for multipoint fractional boundary value problems at

resonance. Articles on this subject can be found in the literature, for examples, see

[52, 53, 54, 55, 56, 57, 58, 59]..
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Résumé 
On s’intéresse dans cette thèse à l’étude d’un problème en résonance 
engendré par une équation différentielle non linéaire du second ordre 
avec des conditions aux limites de type multi-points et intégrales. Au fait 
nous nous proposons d’établir l’existence de la solution d.une équation 
différentielle dont le terme non linéaire dépend de la première dérivée 
avec des conditions non locales de type intégrale moyennant le concept 
de la théorie du degré de coïncidence de Mawhin. 
 
Mots clés: Multi-point problème aux limites, Opérateur de Fredholm, 
Résonance, Théorie du degré de coïncidence de Mawhin, Existence de la 
solution. 
 
 
 

Abstract 
This thesis deals with the study of a resonance problem generated by a 
second order nonlinear differential equation with multi-point integral 
boundary conditions. In fact we propose to establish the existence of the 
solution of a differential equation whose nonlinear term depends on the 
first derivative with non-local conditions of integral type by means of the 
concept of the theory of the degree of coincidence of Mawhin. 
 
Keywords: Multi-point boundary value problem, Fredholm operator, 
Resonance, Mawhin coincidence degree theory, Existence of solution. 


