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Abstract

In this thesis, local and nonlocal boundary value problems for third order partial differ-
ential equations in arbitrary Hilbert space with a self-adjoint positive definite operator are
studied. It is well-known that local and nonlocal boundary value problems for third order
partial differential equations can be solved analytically by Fourier series, Laplace transform
and Fourier transform methods. Applying all these analytical methods, exact solutions of
several problems in the case when the differential equation has constant coefficients are
presented. Operator approach permit us to study local and nonlocal boundary value problems
for third order partial differential equations in arbitrary Hilbert space with a self-adjoint
positive definite operator. Theorems on stability estimates for the solution of these boundary
value problems are established. In practice, stability estimates for the solution of several
problems for third order partial differential equations are obtained. The difference schemes
for the numerical solution of one-dimensional third order partial differential equations are
presented. Numerical results are given.

keywords: Well-posedness, Boundary value problems, Third order partial differential equa-
tion, Self-adjoint positive definite operator, Hilbert space.
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Résumé

Plusieurs méthodes sont apparus pour I’étude des problémes aux limites du troisiéme
ordre, ils peuvent étre résolues analytiquement par des méthodes classiques a savoir les séries
de Fourier, la transformée de Laplace ainsi que la transformée de Fourier. Des résultats sont
présentés dans le cas ou I'équation différentielle est a coefficients constants.

Dans le cas général, il est difficile de trouver la solution de ce genre de problémes,
néanmoins, I’approche par les opérateurs donne un autre moyen pour I’étude.

Dans ce travail de thése, on s’intéresse a I’étude de deux problémes aux limites locale et
non locale engendrés par des équations différentielles aux dérivés partielles de troisiéme
ordre dans un espace de Hilbert dont I’opérateur est défini positif et auto-adjoint. Des
théorémes de stabilité des solutions sont ainsi établis.

Dans I’application, les estimations de stabilité ainsi que les schémas de différence de la
solution de plusieurs problémes aux limites de troisiéme ordre sont obtenues.

Mots clés : Probléme bien posé, Probleme aux limites, Equations aux dérivés partielles
d’ordre trois, Opérateur défini positif auto-adjoint, Espace de Hilbert.
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Chapter 1
Introduction

Nonlocal boundary value problems (BVP) for partial differential equations have been a
major research area in many branches of science and engineering particularly in applied
mathematics when it is impossible to determine the boundary values of the unknown function.
In the last century, interest towards to the subject of local and nonlocal boundary value
problems for partial differential equations with time and space variables has been substantial
and growing tendency because of science and industry. For these reasons, we have worked
on these issues in this thesis.

Local and nonlocal boundary value problems for third order ordinary differential equa-
tions and system of ordinary differential equations have been considered in the field of
science and engineering such as modern physics, mathematical biology, chemical diffusions
and fluid mechanics. Additionally, this type of boundary value problems has been studied
widely in the literature (for instance, see [60], [84], [103], [104]).

The authors (MR Grossinho, FM Minhos, and Al Santos) [59] studied existence and
location result for the boundary value problem for third-order nonlinear ordinary differential
equation. In the papers [60], [62], [63], [105], nonlocal boundary value problem for third-
order nonlinear ordinary differential equations was considered. Existence of the problems
were established by using the Leggett-Williams fixed point theorem [63] and Leray Schauder
nonlinear alternative [60]. Additionally, some sufficient conditions for the existence of the
problem in Banach spaces were obtained by using fixed point index theory [105]. Moreover,
the authors (Z.Liu and S.Kang) [81], (A.Palamides and A.Veloni) [86], (P.Palamides and
K.Palamides) [87], (S.Smirnov) [99], [100], investigated local boundary value problem
for third-order nonlinear ordinary differential equations. Existence of the problems was
established by using the Krasnoselskii’s fixed-point theorem of cone (A.Palamides and
A.Veloni) [86],(P.Palamides and K.Palamides) [87], and (Z.Liu, S.Kang, and J.Sheok) [81]
also established existence of the problem. Similarly, the author (S.Smirnov) [99], [100]
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also established existence of the problem. Finally, local boundary value problem for system
of third-order nonlinear ordinary differential equation was studied in the paper [94]. The
multiplicity and existence of the problem was also established by using the Krasnoselskii’s
fixed-point theorem of cone.

In [17], the problem for a third order ordinary differential equation

O 4 () L0 4 b(1) LD 4 (1) y(r) = £(1),0<t <T,
(1.1)

is investigated. Here, it is assumed that a(7), b(t), ¢ (), and f (1) to be such that problem
(1.1) has a unique smooth solution on [0, 7']. Three-step difference schemes are generated
for the numerical solutions of problem (1.1). The construction of the three-step difference
schemes is based on Taylor’s decomposition on four points. The results are shown to be well
applicable for the numerical solution of nonlocal boundary-value problems by an example
involving periodically time-varying parameters.

Local and nonlocal boundary value problems for third order partial differential equations
have been studied widely in the literature (for instance, see [6], [14], [52], [80]).

In the paper [6], the local boundary value problem

30 2,0y
aal.l(;) - a({ig\) =fxy), 0<x<p, 0<y<l,

u,\“(xvo) = (-x)*, u)‘(x’l) = (Pz(x)’ p=> 0,1 >0,
u(0,y) = yi(y), u(p,y) = v2(y), ux(p,y) = y3(y)

for third-order partial differential equations in a rectangular domain was studied. The
investigation of authors of this paper is based on the fundamental solutions of corresponding
non-homogeneous equation the green function of analyzed problem.

In [14], the boundary value problem for a third order partial differential equation

du(r) 3
dr3

Ault)=[{), 0Lt <1,
(1.2)

u(0) = @,u (0) = yuy (1) =&
in a Hilbert space H with a self-adjoint positive definite operator A was investigated. The

main theorem on the stability estimates for the solution of problem (1.2), in a Hilbert space

was established. Two applications of the main theorem were given. Theorems on the



stability estimates for the solutions of these applications were obtained. A first and high
order of accuracy difference schemes were constructed for the approximate solution of (1.2).
Numerical results were given.

In [33], the nonlocal boundary value problem for a third order partial differential equation

d3u(t)
dr

+Au(t)=f(t),0<t <1,
(1.3)

u(0) =u(1)+,u'(0) =u'(1)+y,u"(0) =&
in a Hilbert space H with a self-adjoint positive definite operator A was investigated. The
main theorem on the stability estimates for the solution of problem (1.3) in a Hilbert space
was established. Two applications of the main theorem were given. Theorems on the
stability estimates for the solutions of these applications were obtained. A first and high
order of accuracy difference schemes were constructed for the approximate solution of (1.3).
Numerical results were given.

In this thesis, we study local boundary value problem

d>u(t
dig ) +Au(t) =f(t), 0<t<l1,
(1.4)
u@©) =0, u(l)=y, (1)=¢
and nonlocal boundary value problem
dPu(t)  du(t)
A = 1
prE + I flir), 02r<l;
(1.5)

u0) =yu(d)+o, w(0)=au'(A)+y,|y <1,
W'(0) =Bu" (A)+&, [1+Ba|>|a+B,0<A <1

for third order partial differential equations in a Hilbert space H with a self-adjoint positive
definite operator A.

A function u(?) is a solution of problem (1.4) if the following conditions are satisfied:

i) u(r) is three times continuously differentiable on the interval (0, 1) and continuously
differentiable on the segment [0, 1]. The derivatives at the endpoints of the segment are
understood as the appropriate unilateral derivatives.

ii) The element u(z) belongs to D(A) for all r € (0,1), and function Au(z) is continuous
on the segment [0, 1].

iii) u(r) satisfies the equation and boundary conditions (1.4).
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A function u(?) is a solution of problem (1.5) if the following conditions are satisfied:

i) u(z) is three times continuously differentiable on the interval (0, 1) and twice continu-
ously differentiable on the segment [0, 1]. The derivatives at the endpoints of the segment are
understood as the appropriate unilateral derivatives.

ii) The element d#;,(—'l belongs to D(A) for all # € (0, 1), and function A‘%(t'—) is continuous

on the segment [0, 1]. t

iii) u(r) satisfies the equation and nonlocal boundary conditions (1.5).

It is known that local and nonlocal boundary value problems for third order partial
differential equations can be solved analytically by Fourier series, Laplace transform and
Fourier transform methods. Now, let us illustrate these three different analytical methods by
examples.

First, we consider Fourier series method for solution of local and nonlocal boundary

value problems for third order partial differential equations.

Example 1.0.1 Obtain the Fourier series solution of the boundary value problem

( J3u(t,x) B d%u(t,x)
o dx?

+u(t,x) =e'sinx,0<r < 1,0<x < ,

1 (1.6)

u(0,x) = sinx,u(1,x) = e 'sinx,u,(1,x) = —e 'sinx,0 <x < 7,

( u(t,0) =u(t,r)=0,0<t <1
for a third-order partial differential equation.
Solution. In order to solve the problem, first we consider the Sturm-Liouville problem

X"(x) = AX(x),0 < x < 7,X(0) = 0,X (1) = 0

generated by the space operator of problem (1.6). It is easy to see that the solution of this
Sturm-Liouville problem is

A = —k? X (x) = sinkx,k = 1,2, ...

Therefore, we will seek solution u(z,x) using by the Fourier series

u(t,x) = i Ay (1) sinkx.
k=1



Here A (t),k = 1,2,... are unknown functions. Putting u(z,x) into the equation and using

given boundary conditions, we obtain

A3u(t,x) B d%u(t,x)

o S Fu(tx) = k; [A};’(t) F R+ I)Ak(t)] sinkx = e~ sinx,
and -
u(0,x) = )" A(0)sinkx = sinx,
k=1
u(l,x) = Z Ar(1)sinkx = e~ !sinx,
k=1
ur(1,x) = Y Aj(1)sinkx = —e™ ' sinx.
k=1
So, we get

Z [A: (6) + (kK> + I)Ak(t)} sinkx = e sinx,
k=1
Z A (0)sinkx = sinx,
k=1
Y Ac(1)sinkx = e 'sinx,
k=1

Y A (1)sinkx = —e ™' sinux.
k=1
Equating coefficients of sinkx,k > 1 to zero, we get

AV () +2A1(1) = e LAY () + (P +1)A(1) =0,k > 2,0 <t < 1,

A1(0) = 1,A/(1)=¢e141(1)= -1,
A (0) = 0,4;(1)=0,A,(0) =0,k >2.

First, we obtain A;(r). It is clear that A; () be solution of the following boundary value
problem
AT (t)+2A4,t)=e",0<2 <1,

A1(0) =1,A,(1) = e 1,41(0) = —e!
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for a third order ordinary differential equation. We will seek the general solution of this
equation by the formula
Ai(1) =Ac(t) + A, (1),

where A, (¢) is the solution of homogeneous equation
Al'(t)+2A,(t) =0
and A, (1) is the particular solution of non-homogeneous equation
Al'(t)+2A,(t) =e".

For obtaining A. (¢) , we will consider the auxiliary equation

m+2=0.
We have three roots:
3 3
3 V2 V3 Vi 3
— eV 2 = — —— = — 1.
my \/-,mz 5 +z\3/§,m3 5 1\3/E
Therefore,
3 el \/§ \/?;
A1) =C|e_‘/§’-1—eT Cycos (——t +GCssin | ==t | | .
For obtain A, () , we assume that
Ap(t)=Be™.

Putting into the equation, we get
—Be™' —2Be™! = -3¢,

From that it follows B =1 and A, (1) = e~". Therefore, the general solution is
V3 V3
Cycos | —=t | +Cszsin | —=t

All ([) = —Cl \3/56_ é/it +C2e—3\éi l? Ccos <\V£;t> = ésin <£1>]

Yo
2

Al(t)=C1e_%’+e +e .

Then,



2 \? )T’ N\

Using given boundary conditions A;(0) = 1,A;(1) =e~!, and A} (1) = —e !,
following system of equations

+C3e@ l\y—i sin (£t> -+ ﬁcos (£t>] g,

( Ci+C+1=1,

-}—Cze‘zf‘ [? sin <£> + Y3 cos <¢>

or
Ci1+C =0,

Cie ‘/_-f—eTf [Czcos (ﬁ) + C3sin (ﬁ>

-0 ot [ () - o ()]

{ +C3e$ [? sin (ﬁ) + 3—‘/§cos (ﬂ)} =0.

We have that

where o = v/2,8 = \/i_ From that it follows that

Ci=C=CG=0.

Therefore, A (1) = e".

we get the

1 1
= —Otﬁe%"C - ﬁe‘ae%acosﬁ - iae_“e%asinﬁ - i(xze_asinﬁ #0,
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Second, we obtain Ay(t),k # 1. Itis clear that Ay () be solution of the following boundary
value problem

A (1) + (R + 1)Ak(1) =0,0 <t < 1,
Ai(0) = 0,A,(1) =0,4;(0) =0
for a third order ordinary differential equation. For obtaining A (¢), we will consider the
auxiliary equation
m+k+1=0.

We have three roots:

3 +. =3
— V1+k2—ivV3vV1+k?

Therefore, we will seek the general solution of this equation by the formula

30— 3T 3
Ap(t) = Cle_’3]+k2+e T {Cgcos<§\3/1+k2t)

+Cssin (? V1 +k2t)

Taking the derivative, we get

AY() = SVRTFT (—2C1e VEH 1 o VST (cos LAV T — V3sin Jv3ViE+ 1)
+C3e%’ Vid+1 (\/ge%’ WP g0 %\/§t\/3 K2+1+ sin%\/gt\3/k2 + l)) .

Using these formulas, given boundary conditions, we can write the following system of
equations

( CI+C2=07

Cle*W-i-Czcos (@\VH-—IQ) +C3sin (—‘4—5\3/1 +k2) =0,

[ AVEZ+1(=2C1 +C +C3V3) =0.

We have that



1 1 0
eV (o (‘/Ti JT+k2) sin (L33 1+k2)
—Ver1 e VAR

1 1 1 32
= E\/§<cos§\/§3 k2+1> \“/k2+1—5\/§e—@‘ H/K2 41

3 1
=5 sinix/g\3/k2+l)\3/k2+17é0.

From that it follows
Ci=C=0C;=0.

Then, Ax(r) = 0 and the exact solution of the problem (1.6) is
u(t,x) = e 'sinx.

Note that using similar procedure one can obtain the solution of the following boundary
value problem

3 83 t, ' 2u(t x raY
L(;(,3 %) X a,a ai’ ) = Flt;%); 2= Xiseidn) €Q; 0 <t T,
{ w(0,x) = @(x),u(T,x) = ¥ (x) ,u(T,x) = E(x), x€Q, (1.7)

u(t,x) =0,0<tr<T,xeS

for the multidimensional a third order partial differential equation. Assume that ¢ >
a>0and f(t,x),(r€(0,7),x€Q),0(x),y(x),&(x), (x€Q) are given smooth func-
tions. Here and in future Q is the unit open cube in the n—dimensional Euclidean space
R" (0 < xx < 1,1 < k < n) with the boundary S,

Q=QuUS.

However Fourier series method described in solving (1.7) can be used only in the case when
(1.7) has constant coefficients.
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Example 1.0.2 Obtain the Fourier series solution of the nonlocal boundary value problem

( Pu(t,x) u(t,x) du(t,x)
F P + Y =4tcosx,0<t<1,0<x<m,

u(0,x) = cosx,us (0,x) = 2u,(lx) cosx,0 <x<m,
(1.8)

uy (0,x) = %u,,(l,x) +cosx,0<x <,

| ux(1,0) =ux(t,m) =0,0<t < 1
for a third-order partial differential equation.
Solution. In order to solve the problem, first we consider the Sturm-Liouville problem

X (%) =AX(x), 0 <x<mX(0)=0.X{(n)=

generated by the space operator of problem (1.8). It is easy to see that the solution of this
Sturm-Liouville problem is

A = —k* Xp(x) = coskx,k=0,1,....
Therefore, we will seek solution u(z,x) using by the Fourier series

(%) = i Ai(t) coskx.

Here A(t),k =0, 1,... are unknown functions. Putting u(z,x) into the equation and using
given boundary conditions, we obtain

Au(t,x) Au(t,x) du(t,x) Sr[.m 5 ;
S8 DD + o —I;)[Ak(t)+(k +1)A, (1) | coskx = 4t cosx,

and

u(0,x) = Z Ay (0) coskx = cosx,
k=0

l oo
u; (0,x) — u,(l x) ZAk cosx— > Y Aj(1)coskx = —cosx
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1 I &
ur (0,x) — u,, (1,%)= ZA )coskx — = Y AY(1)coskx = cosx.

So, we get
) [AZ(’) + (kK + 1)A;((t)] coskx = 4t cosx,

k=0

Z Ay (0) coskx = cosx,

i (Ak(o Ak(1)> coskx = —cosx,

— 1

Z (AZ(O) — EAZ(I)) coskx = cosx.
k=0

Equating coefficients of coskx,k > 0 to zero, we get

A (1) + 241 (1) = 41, AY (1) + (K + DAL(1) = 0,k # 1,0 <1 < 1,

1 1
A1(0) = 1,A41(0) - 541(1) = —1A7(0) — 5A47(1) = 1,
o / 1, o " 1, o
A(0) = 0,4(0)— EAkU) =0,4;(0) - EAk“) =0,k#1.
First, we obtain A (¢). It is clear that A;(¢) is solution of the following nonlocal boundary
value problem

Al'(t)+2A41(t) =4,0<1 < 1,

—2A1(1) = —1,A7(0) - 3A7(1) =1
for a third order ordinary differential equation. We will seek the general solution of this

equation by the formula
Ai(1) =Ac (1) +A, (1),

where A, () is the solution of homogeneous equation

Al'(t) +241(t) =0
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and A, (1) is the particular solution of nonhomogeneous equation
Al'(t) + 241 (1) = 4.
For obtaining A, (¢) , we will consider the auxiliary equation

m?+2m=0.

We have three roots: m; = 0,mp3 = ii\/f, Therefore,
A.(t) =C1+Cycos (\/Et) + C3sin (\/Et) .
For obtaining A, (¢) , we assume that
Ap(t) =t(at+b).

Putting into the equation, we get
4at +2b = 4t.

Equating coefficients 1”,m = 0, 1 to zero, we geta = 1,b =0and A, (1) = 1%. Therefore, the
general solution is

Aq(t) =C1+Cacos (\@t) + C3sin (\/it) Ew ]
Then,
A\(t) = —V2Casin V2t + V2C3cos V2t + 2t

AY(t) = —2Ccos V2t — 2C3sin V2t +2

Using nonlocal boundary conditions A1 (0) = 1,A}(0) — $A} (1) = —1, and A} (0) — JA{(1) =
1, we get the following system of equations

( C+C =1,

Czcosﬁ+C3 (\/§+ sin \/5) =0,

C (—2+cos \/§> +C3 siny/2 =0.
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We have that
1 0

1
0 cos /2 (\f2+ sin \/5)
0 (—2+cos \/§> sinv/2

=2sinv2 —v2cos V2 +2v2 #£0.

From that it follows
Ci=1,C=C;3=0.

Therefore,
Aq (t) = +12.

Second, we obtain Ag(r) for all k # 1. It is clear that Ai(r) is solution of the following
nonlocal boundary value problem

A;{"(t)—i—(kz‘f' I)AZ(t) =0,0<r<1,

Ar(0) = 0,4,(0) = 14, (1),A7(0) = 1A7(1).

The auxiliary equation is

m® 4 (k> +1)m = 0.

We have three roots: m; = 0,my 3 = +ivk*>+ 1, Therefore,

Ai(t) = Crcos VKk? + 1t + Cysin VK2 + 1t + C3.
Taking derivatives, we obtain

A1) = ViE+ 1 (—C1 sintv/k2+ 1 +Cycostv/R2 + 1) :

Al(r) = (B +1) (—cl costV/k2+ 1 — Cysint /K2 + 1).
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Using given boundary conditions, the following system of equations are obtained

([ C1+C3=0,

VEFT (G- (—Cisin VIZ+T+Cocos VAZH1) ) =0,

\

(+1) (~Creos v +T - Cysin V2 +1) =0.

We have that
0 1

1
%sin\/kz—i-l 1—%cosx/k2+l 0
cosVk?+1 sinvk?+1 0

1
:E—cosvk2+1#0.

From that it follows
Ci=C=0C3=0.

Therefore,
Ak(t ) =0.

Then, the exact solution of the problem (1.8) is

u(t,x) = (t2+ 1) cos.x.
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Note that using similar procedure one can obtain the solution of the following nonlocal-
boundary value problem

( Pu(t,x) n ult,x)
a3 I % oga 0

r

=B85 e, 0<t<T,
u(0,x) = yu(Ad,x)+@(x), |Y|<1,0<A<T,x€Q,
u(0,x) = oy (A, x) + y (x) ,x € Q, (1.9)

1 (0,x) = Buy (A, x) +&(x),

1+aB|>|a|+|B],0<A<T,xe€Q,

u(t,x) =0,0<t<T, x€S§

\

for the multidimensional a third order partial differential equation. Here @, > o > 0 and
ft,x),(t€(0,7T),x€Q),p(x),y(x),&(x), (x € Q) are given smooth functions.
However Fourier series method described in solving (1.9) can be used only in the case
when (1.9) has constant coefficients.
Second, we consider the Laplace transform method for solution of local and nonlocal
boundary value problems for third order partial differential equations.

Example 1.0.3 Obtain the solution of the boundary value problem

( 3u(t,x) B d%u(t,x)

o013 G2 +u(t,x) =—e'e*,0<t < 1,0<x < oo,

u(0,x) = e*,u(l,x) = e e *,u(1,x) = —e e *,0 < x < oo,

u(t,0) =e " u(t,0)=—e"0<t<1
for a third-order partial differential equation by the Laplace transform method.

Solution. Here and in future, we will denote

L{u(t,x)} = u(t,s).
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Using formula

1
Lie™} =

{e } 1+s

and taking the Laplace transform of both sides of the differential equation, we can write

(1.10)

L{utyrs(£,%)} — L{ute(£,%)} + L{u(t,x)} = —L {e—(’“)} 0<i<l,

meﬁn:—Lmﬁmﬁnzfgé?Lmanz—f'1

I+s° 145
Applying definition of Laplace transform and conditions u(z,0) = e, u,(1,0) = —e™, we
can write )
t, 14+52)u(t,s)=[s—1— N S
s (2,8) + (1+57)u(t,s) <s 1+s>e <
1 1 1
u(O,s)zl—ﬂ,u(l,s):e ll—_'_s,ur(l,S):—e ll——{—s'

Now, we obtain u(t,s). It is clear that u(z,s) is solution of the following boundary value

problem
e (,8) + (1 +5)u(t,s) = 51:826_’,0 <t<l,
u(0,s) : u(l,s)=e! (L,s) e! L
= —_— = —.Uu = —
’ S—f—l’ ) S—|—17 t ) S+1

for a third order ordinary differential equation. We will seek the general solution of this
equation by the formula
u(t,s) =ue(t,s)+up(t,s),

where u.(t,s) is the solution of homogeneous equation
gt (2,5) + (1 +5Hu(t,s) =0
and u,(t,s) is the particular solution of nonhomogeneous equation

§s2—2
e
1+s

=]

e (2,8) + (1+5%)u(t,s) =

For obtain u.(t,s), we will consider the auxiliary equation

m+1+s>=0.
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We have three roots:

+
V1+52—iv3V1+s2

3
mp = — 1+s2,m2.3: 3

Therefore, we will seek the general solution of this equation by the formula

czt
uc(t,s) = Cie™’ Vi \/T lCz cos <? V1 +52t)
+Cssin (? V1+ s2t>

We seek the particular solution u,(t,s) of the nonhomogeneous equation by the following
formula

up(t,s) =A(s)e™".

Putting into the equation, we get

Then
Als) =

1+s
Therefore, the general solution of this equation is

37T \/ 52t
u(I,S)ZCle_r%]H2 E lczcos(?v 1+521>
+Cssin (? V1 +s2t)

e—t
= ’
1+s

Taking the derivative, we can write

u(t,s) = —C1v/1+s2e! Vs

+C2e@m[cos(‘[ 1+s t) \/§sm<%\/1—+s_)}

+Cse 1/12?, 3/';”—‘2 [\/§cos (?\}/l—k—sz ) + sin (ém )} 1+

S
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Using boundary conditions «(0,s) =
the system of equations

([ C1+C =0,

Cie Vits? —I-e\/_Czcos(—g\/H-s)

7

—C1V1+s% Y -I-Cze 5

We denote that

%,u(l,s)z

3 [cos (\/T§ V1+s2

—1_1
s+

—-1_1

=1.We obtain

u(l,s) = —e

2

2/_'XC3 sin (@ \3/1+—s2) =0,

59

+ 52

V/3sin (%

+C3e\/2_ \/— [\/gcos (%JK) +sin (@ 3 1+s2)}

a=+v1+s2.

We have that

1 1

—Q

a
e2 Ccos (?G)

?a) - \/§sin (?

e
—Qe @ e%%<cos(
1 a 1 —a la
—5\/§ae —Ex/goce e?

Therefore,
C=G

and

u(t,s) =

a)) ef

1
cos §\f3a — éae‘ e2

=G5

0
e sin (‘?a)

(\/§cos (?a + sin (@

?))

1
5 % 1“sin5\/§a7&0.

=0

—t

1+s

Taking the inverse Laplace transform, we can obtain

u(t,x)

=e

—(H—x)‘



19

Note that using similar procedure one can obtain the solution of the following boundary
value problem

( 83u(t,x)_ n 9%u(t,x)

53 a2 = f(t,x), x=(x1,... %) €Q ", 0<t<T,
= r

u(0,x) = @(x),u(T,x) = ¥ (x),u,(T,x) =&(x), x€ §+, (L1L)

u(t,x)=oa(t,x), ug(t,x)=px),1<r<n0<t<TxeS*

\

for the multidimensional a third order partial differential equation. Assume that a, > a > 0
and £ (1,x), (z €(0,T),x¢€ §+) Lo(x), v (x),E(x), (x = ﬁ*) Lo (1,x), B (t,%) (t € [0,T],x € ST)
are given smooth functions. Here and in future Q™ is the open cube in the n-dimensional
Euclidean space R" (0 < x; < 0,1 < k < n) with the boundary S,

a =grust

However Laplace transform method described in solving (1.11) can be used only in the case
when (1.11) has constant coefficients.

Example 1.0.4 Obtain the solution of the nonlocal boundary value problem

( Qu(t,x) B Au(t,x)  du(t,x)

— X 1 [o%e]
oy PR Y 6e7,0<tr<1,0<x< 00,

u(0,x) = e=*,u;(0,x) = 1 (1,x) — 37,0 < x < oo,
(1.12)

uy (0,x) = %u,,(l,x) -3, 0<x < oo,

L u(t,0) =+ Lu(t,00=— (£ +1),0<r <1
for a third-order partial differential equation by the Laplace transform method.

Solution. Using formula (1.10) and taking the Laplace transform of both sides of the
differential equation, we can write

L {wss (t,%)} — L{urxx(t,%)} + L{us(t,x)} =6L{e™*},0<t < 1,
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L{u(0,x)} = IL_H,L{L{,(O,x)}:%L{Lt,(l,x)}—%l+s,
L{u,(0,x)} = %L{u,,(l,x)}—liﬂ.

Applying definition of Laplace transform and conditions u(t,0) = 1>+ 1,u,(¢,0) = — (t3 +1),
we can write

6
U (2,8) + (1 — D) u(2,5) = R +(1-5)320<t<1,

1 1 3
M(O,S) = 1+s,u,(0,s)—§u,(l,x) — —5 1 T

1 3
u,,(O,x)—Eu,,(l,s) = T

Now, we obtain u(z,s). It is clear that u(z, s) is solution of the following nonlocal boundary
value problem

(e (£,8) + (1 — D (t,8) = &+ (1—-5)32,0<r < 1,

T+s
(Os)———1 u(0,5) — Lo (1,x) = -2 :
<u7_l+s7f7 2%\ 1y _21+S7
3
|
| u,,(O,x)—zu,,(l,s):—l+s

for a third order ordinary differential equation. We will seek the general solution of this
equation by the formula
u(t,s) =uc(t,s) +up(t,s),

where u,(1,s) is the solution of homogeneous equation
Ut (2,5) + (1 — 2w (¢,5) =0

and u(t,s) is the particular solution of nonhomogeneous equation

U (t,8) 4 (1 — H)uy(2,5) = <1L+s +(1 —s)3t2> .

For obtaining u,(z,s), we will consider the auxiliary equation
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m3+(1—s2)m:0.

We have three roots:

my =0,mp3 = iim.
Therefore, we will seek the general solution of this equation by the formula
uc(t,s) = Cy+Cycos (ﬂt)
+Cj5sin <Mt) '

We seek the particular solution u,(z,s) of the nonhomogeneous equation by the following
formula

up(t,s) :t(at2+bt+c).

Putting into the equation, we get

6a+(1 —Sz) [3at2+2bt+c] =3(1 —s)t2+ ] f_s.

Equating coefficients t"',m = 0, 1,2 to zero, we get a = %ﬂ,b =0,c=0.Then

t,5)=—.
Up(t,) 1+s
Therefore, the general solution of this equation is
u(t,s) =Cy+ [Czcos (\/ 1 —s2t>
3
+C3sin (\/ 1 —Szl):| + 1_+S

Taking the derivatives, we can write

2

u(t,s) =Ca [—\/1 + 5% sin (\/1 +s2t>} +Cs [\/H—TCOS (Wz)] +3_7

1+s

uy(t,s) =G, [— (1 +s2) (cos VAl —|—s2t>] -G [(1 +s2) sin (\/ 1 +s2t>] +

1+s
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1

u,(O,s)—%u,(l,x) = —% 1 +s,u,,(0,x)——

Using nonlocal boundary conditions u(0,s) = 7

1
suy(1,s) = —31—+s,we obtain the system of equations

( 1
Ci+C=——
1+C2 1+s’

)> +C22\/l+s251n <\/1 —f—sZ) 0,

) sin (\/H——s2> =0.

—TCOS<

/\

(%(cos 1+s) 1) lC3(1

We denote that
a=+1+s2.
We have that
1 1 0
0 Tasin(a) o (1—3cos(a))
0 a?(i(cosa)—1) Ta%sin(a)
5
_Za —oa’cosa #0
Therefore, 1
Ci=—,0=0C3=0
L 1+s’ Sl

and

t ’
e T
Taking the inverse Laplace transform, we can obtain

u(t,x) = (2 +1)e™
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Note that using similar procedure one can obtain the solution of the following nonlocal
boundary value problem

Au(t,x) n  u(t,x)

553 lar TR = fltx); o= (Kisas¥y) E §+, 0<t<T,
r= r

u(0,x) = yu(A,x) + @(x),u: (0,x) = au (A, x) w(x),|y| <1,0< A <T, (L13)

U (0,%) = Bug (0,x) + E(x), |1+ aB| > || +|B],0< AT xeQ,

| u(t,x)=x(t,x), u(t,x)=0(,x),1<r<n0<t<TxeSt

for the multidimensional a third order partial differential equation. Assume that a, > a >0
and f (1,%), (r €(0,T),x € §+) Lo(x), v (%), & (%), <x € ﬁ*) x (6,%),0(t,%) (1 € [0,T],x € §7)
are given smooth functions. However Laplace transform method described in solving (1.13)
can be used only in the case when (1.13) has constant coefficients.

Third, we consider Fourier transform method for solution of local and nonlocal boundary
value problems for third order partial differential equations.

Example 1.0.5 Obtain the Fourier transform solution of the following boundary value
problem
Au(t,x) ul(t,x)

_ 2 — (1422
00) QD) ()= (@02 2) () 0 <1 <1, < <on

2 2 2
u(0,x) =™ ,u(l,x) =ele ™ ,u(l,x) = —ele ¥ ,—ncx <o
for a third order partial differential equation.

Solution. Here and in future, we will denote
F {u(t,x)} = u(t,s). (1.14)
Taking the Fourier transform of both sides of the differential equation, we can write

F{ug (t,x)} — F {uxn(t, %)} + F {u(t,x)} = F { (—4x* +2) e‘(’“z)} JO<E<,

F{u(0.0} =F{e™} Flu(lx)} = ' F{e™ L F{u(1,0)} = - 'F {7}
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1

Applying definition of Fourier transform and conditions u (0,x) = e*xz, u(l,x)=e" e u, (1,x)=

ol e -
e e , We can write

U (1,8) + (1 4+ 5H)u(t,s) = s2e'F {e_xz} O0<r<1,

u(0,s) = F{e_xz} {1 8) = e_lF{e_xz} Ju(l,s) = —e_lF{e_xz}.
Now, we obtain u(t,s). It is clear that u(z,s) is solution of the following boundary value

problem

e (,8) + (1 +5D)ult,s) = s2e'F {e_)‘z} 0<t <1,

u(0,s) :F{e_xz},u(l,s) :e_]F{e_xz} Ju(lys) = —e_lF{e_xz}

for a third order ordinary differential equation. We will seek the general solution of this
equation by the formula
u(tys) =uc(t,s) +uplt,s),

where u,(z,s) is the solution of homogeneous equation
gy (2,8) + (14 5H)u(t,s) =0
and u(t,s) is the particular solution of nonhomogeneous equation
Ugse (2,5) + (14 2)u(t,s) = s*¢'F {e_xz} .
For obtaining u,(z,s), we will consider the auxiliary equation

m?+ (1+s%) =0.

We have three roots:

+
V1+52—iv3V1+s2
5 .

3
mp=—V1+s2m3=
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Therefore, we will seek the general solution of this equation by the formula

3
C, cos <§ 1+ szt)
+Cssin (? V1+ s2t>

3
43 ) Vi+s2t
glty) = GV 1g 32

We seek the particular solution u,(t,s) of the nonhomogeneous equation by the following
formula
up(t,s) =A(s)e™".

Putting into the equation, we get
—A(s)e " +A(s) (1 —|—s2) e =e's*F {e_xz} .
From that it follows
A(s)=F {e_xz} g
Then
up(t,s)=e'F {e"‘z} ;

Therefore, the general solution of this equation is

3 Wr 3
u(t,s) =Cre™tVI+ 1o T Cycos (%\3/ 1 +s2t>

Viesh 3
+e 5 Cssin (%— v1+ szt) +e'F {e‘xz} ;
Taking the derivative, we can write

3
u(t,5) = —C1 v/ 1+ s2e™ T

A 52t 1 2 3 3
+Cre 3 B lcos (% V1 +s2t> —/3sin (% V1+ s2t>]

V3 cos (? V1 +s2t> +sin (%5 Vi 1+s2t>
—e'F {efxz}.
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Using boundary conditions «(0,s) = F {e‘xz} Ju(l,s)=e 'F {e‘xz} Ju(1,5)=—e"\F {e"‘z } :
we obtain the system of equations

(¢, +C =0,

ﬁ

Cie™V Vits? +e

\/W)—Fe\/lfjﬁsm(% 1+s>=0

(4

: i 3
CiV1+s2e v LA Ea e v 12“2 [cos (@\1/1+s2> V/3sin (‘/T— 1+52)}

YT
! +Cye T # [\/§COS (@ y 1+52> +sin (§ v 1—1—s2)} =0.

We denote that

We have that

1 1 0
20 % (cos (V3a)) e%sin (v3a)
—2ae™® %o (cos (\/§a) —+/3sin (\/ga)) eca (\/§cos (\/ga) +sin (\/§a))

V30e?® — ae™® ((sin \/506) -3 (COS \/§a>> —-2a (sin \/§a) #0,

Therefore,
Ci=C=0C3=0.

and
u(t,s)=e'F {e"‘z}.

Taking the inverse Fourier transform, we can obtain

u(t,x) = ete ™,
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Note that using the same manner one obtain the solution of the following boundary value
problem

[ 93u(t,x) dlu(t,x)
or’ - [r[=2m - ax? -0 B f(t’X)’

0<t<T,x,reR"|rl=r+..+r,

u(O,x) = (p(x)vu(T’x) — W(x) ,u,(T,x) — g(x%x eR"

\
for a third order in ¢ and 2m —th order in space variables multidimensional partial differential
equation. Assume that &, > @ >0and f (¢,x),(t € [0,T],x € R"), ¢(x), ¥ (x),E(x), (x € R")
are given smooth functions.

Example 1.0.6 Obtain the Fourier transform solution of the following nonlocal boundary
value problem

Au(t,x) B Au(t,x) du(t,x)

_ 3¢ 4.3 - . N
or3 TS R =[6432 (-4 +3)] e ,0<t < 1,—00 <x < o0,

: u(0,x) = e_xz,u,(O,x) = du(1,x) - %e"‘z, —o0 < X < o0,

uy (0,x) = %u,,(l,x) — 3e"‘2, —o0o < x <

\

for a third order ordinary differential equation.

Solution. Using formula (1.14) and taking the Fourier transform of both sides of the
differential equation, we can write

F {u(1,%)} = F {utaa(t,00} + F {12} = F { [6+ 37 (—4x*+3)] e } 0 <r < 1,

Fu©x) = F{e} Flu0.x) = F{%u,(l,x) _ —;-e"z} ,

F{un(0,x)} = F{%u,,(l,x) - 3e—-“2} .

Applying definition of Fourier transform and conditions u (0,x) = e, (0,x) = %u,( 1,x)—
%e‘xz,u,,(O,x) = %u,,( 1,x)— 3e""2, we can write
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theee (2,5) + (1 + 52w (2,5) = (6+3t2 (sz+ 1))F{e_"2},0 LrLl,

2 | 3 2 |
u(0,s5) = F{e_x }7ul(oas) = 5"1(1«,3) - EF {e_x—} s u (0,5) = Euft(las) = JF {e_"‘z}.
Now, we obtain u(t,s). It is clear that u(t,s) is solution of the following nonlocal boundary

value problem

;

e (2,8) + (1 + 52wy (1,5) = (6—!—3t2 (52+ 1))F{e‘"‘2} D=t <l,

u(0,s) =F{e‘x2} ,u (0,5) = %u,(l,s) — %F{e_"z},

uy (0,5) = %u,,(l,s) —3F {e"‘z}
\

for a third order ordinary differential equation. We will seek the general solution of this
equation by the formula
u(t,s) = uc(t,s) +up(t,s),

where u,(z,s) is the solution of homogeneous equation
Ut (2,5) + (1 + 52 us(t,5) =0
and u,(t,s) is the particular solution of nonhomogeneous equation
U (2,8) + (14 52w (2,5) = (6+ 312 (s2 +1))F {e‘xz} )
For obtaining u.(t,s), we will consider the auxiliary equation

m3+(1+sz)m=0.

We have three roots:

my =0,mpy3 = iv/s2+ 1.

Therefore, we will seek the general solution of this equation by the formula

ue(t,5) = Cy +Cycos (\/1 +s21) +Cssin (\/1 +s21) :
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We seek the particular solution u,(z,s) of the nonhomogeneous equation by the following
formula
Up (t,8) =t (at2+bt+c) .

Putting into the equation, we get
3a(1+s) 2 +2b(1+s*)t+ (1+5*) c+2a= (6+3 (s +1)) F{e_xz} :
Equating coefficients t"',m = 0, 1,2 to zero, we get
a= F{e_xz} ,b=0,c=0.

Then
up(t,5) =1°F {e"‘z} :

Therefore, the general solution of this equation is

u(t,s) = Cy+Cycos <\/ 1 +s2t>
+Cjsin <\/ 1 —|—s2t> A i {e_xz}.

Taking the derivatives, we can write

us(t,8) = —v/1+52C; sin (\/ 1 +s2t>
+4/1+52C5cos (\/ 1 +s2t> (323 F {e_xz},

up(t,s) = —(1 +s2) C>cos (\/ 1 +s2t)
-1 +s2) Cssin (\/ 1 +s2t> +6tF{e_xz}.

Using boundary conditions u(0,s) = F {e‘xz} ,ur(0,8) = Sup(1,5) = 3F {e‘xz} Ju (0,8) =

%un( 1,s) —3F {e‘xz} ,we obtain the system of equations
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Ci+GC :F{e_xz},

L (VIF9CsinVT+57) + VI+5°Cs (1 - feos VIF57) =0,

(14+5) €2 (—1+ heos VIF5?) + 4 (1+5) Gysin VI +52 = 0.

\

We denote that

o=11+s2
We have that
1 1 0
0 3 (asine) o (1—Lcosa)
0 az(—H-%cosa) %azsina
5.3 3
Za —o’cosa # 0.
Therefore,
a=F{e*},6=0=0
and

u(t,s) = (t3 + I)F{e_xz}.

Taking the inverse Fourier transform, we can obtain

u(t,x) = (t3 +1) e,

Note that using similar procedure one can obtain the solution of the following nonlocal
boundary value problem

dult,x Alrl+1y (s, x
%)_ “rw(a}/),,:f(t,x),O<t<T,x,re]R",|r|:r1+,_‘+rm
L B

[r|=2m
u(0,x) = yu(A,x) + @(x),u;(0,x) = Qus (A, x) + w(x),|y] < ,L0O<KA LT xeRY

u(0,%) = Buy (A,x) + & (x), |1+ af| > |af+|B],x € R
(1.15)
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for a third order in ¢ and 2m+ 1 —th order in space variables multidimensional partial differen-
tial equation. Assume that &, > & >0and f (¢,x),(t € [0,T],x € R"), o(x), ¥y (x),&(x), (x e R")
are given smooth functions.

However, all analytical methods described above, namely the Fourier series method,
Laplace transform method and the Fourier transform method can be used only in the case
when the differential equation has constant coefficients. It is well-known that the most
general method for solving partial differential equation with dependent in ¢ and in the space
variables is operator method.

Now, let us briefly describe the contents of the various chapters of the thesis. It consists
of four chapters.

First chapter is the introduction.

Second chapter the boundary value problem (1.4) for a third order partial differential
equation is investigated. The main theorem on the stability estimates for the solution of
problem (1.4) in a Hilbert space is established. Three applications of the main theorem
are given. Theorems on the stability estimates for the solutions of these applications
are obtained. A first and high order of accuracy difference schemes are constructed for
the approximate solution of (1.4). Numerical results are given.

Third chapter consists the nonlocal boundary value problem (1.5) for a third order partial
differential equation. The main theorem on the stability estimates for the solution of
problem (1.5) in a Hilbert space is established. Three applications of the main theorem
are given. Theorems on the stability estimates for the solutions of these applications
are obtained. A first and high order of accuracy difference schemes are constructed for
the approximate solution of (1.5). Numerical results are given.

Fourth chapter contains conclusions.






Chapter 2

Stability of a BVP for the Third Order
Partial Differential Equation

2.1 Introduction

In chapter 2 we consider the boundary value problem for the third order partial differential
equation
du(r)
dar

+Au(t) =f(1), 0<t<l1,
2.1)

u@0)=9, u(l)=vy, (1)=&
in a Hilbert space H with a self-adjoint positive definite operator A > 81,where 6 > 0.
We are interested in studying the stability of solutions of problem (2.1). A function u(z)
is a solution of problem (2.1) if the following conditions are satisfied:

(i) u(z) is thrice continuously differentiable on the interval (0, 1) and continuously dif-
ferentiable on the segment [0, 1]. The derivatives at the end points of the segment are
understood as the appropriate unilateral derivatives.

(ii) The element u(t) belongs to D (A) for all 7 € [0, 1], and function Au(t) is continuous
on the segment [0, 1].

(iii) u(t) satisfies the equation and boundary conditions (2.1).

Applying operator approach, stability estimates for solution of boundary value problem
(2.1) are obtained. In practice, boundary value problems for a third order in ¢ partial

differential equations are studied. Theorems on the stability estimates for the solutions
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of these problems are obtained. A first and high order of accuracy difference schemes are
constructed for the approximate solution of the one dimensional partial differential equations.
Numerical results are given.

The outline of Chapter 2 is as follows. The first section is introduction. In the section 2
main theorem on stability of problem (2.1) is established. Section 3 establishes the stability
estimates for the solution of three problems for partial differential equations of third order in
t. Section 4 numerical analysis.

2.2 Main theorem on stability
Let us prove some lemmas needed in the sequel.

Lemma 2.2.1 /53], Fort > 0 the following estimate holds

Hexp{iim%}HH AL 2.2)
H

Proof. Applying the spectral representation of unit self-adjoint positive definite operator A,
we get
1 1
i'tA?}H < ’ {i'r)ui}lzl.
Hexp{ i o o sup |expq *i

<A<

Lemma 2.2.2 Assume that § > (% ln4)3. Then, the operator A defined by the following

formula
. 1{1_ (ae‘('+")3+&e‘“+‘7)3)}

has a bounded inverse T = A~" and the following estimate holds

3
ITgoy < ——— (2.3)
1 —2e—(3/2)83

— i3 B=AS.

)

_ 1 :V3 -
Herea=5+i%,a=

B —

Proof. Using estimate (2.2) and triangle inequality, we can write

Hae—(1+a)s+de-(|+a)BH
H—H

< Hae—(1+a)BH +Hae—(lm)BH

H—H H—H
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< |a|He—(l+a)BH +|d|”e_(l+ﬁ)BH

H—H H—H

< e U2 2]

H—H H—)H]

<2070/

Therefore,
”A”H—)H = H% {I— (ae_(l+")3+a—e—(l+&)8)}

H—H

}>1 1—2e-6/28%| S
H—Hl — 3

- [1 _ “ae—(l+a)8+de—(l+d)3|‘
3

From that it follows estimate (2.3). Lemma 2.2.2 proved. m

Lemma 2.2.3 Suppose that § > (%1n4)3, oeD(A),yeD(A),Ee€D (A%) and f(t) is
continuously differentiable on [0, 1. Then there is unique solution of problem (2.1) and the
following formula holds

u(t) = e Bu(0)+ —B~! (e_(l_’)B —e_(”+')3) (u' (1) +Bu(1))

14+a

+ g2] 1 (e—(l—t)aB B e—(a+t)B) 1 (e—(l—r)aB _e—(ﬁ-H)B)
a—a l1+a 1+a

1 { 1 (azl_e—(a+1)8) = 1 (azl_e—(ﬁH)B)} (dBu’(l)—aBzu(l))

o 1 1 -
B—l —(H—a)B_ —(l+a)B__ ( —((H—I)B_I) o S —((1-‘1—1)8_1 1
- [e e T e +1 (e ) f( )
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e [ (=) = o (=)

Q
m
Q|

1
1 =
—(1—=s)B _ —(sa+1)BY\ _ —(1—s)B _ ,—(sa+1)B
0/[1+a e ) 7 <e e )] f(s)ds
(2.5)

Proof. Obviously, we can write

(% —dB) (C% —aB) (% +B> u(t) = f(t)

for all u(t) € D(A). Therefore, problem (2.1) can be written as the equivalent boundary
value problem

( du(t) _ _ _
5 T Bu) =v(t),u(0) = ,u(l) =y,
dv(t) _ PP
— - —aBv(t) =w(n),u' (1) =&, (2.6)
dw(t) _
o —aBw(t) = f(r), 0<t<1

for the system of first order differential equations. Integrating these equations, we can write
_ 1 _
w(t) = e=(1=0aBy(1) — [~ (s=NaB £ (5) ds

1
v(t) = e 1=0%By(1) — [ e~ P~y (p)dp, 2.7)

Applying equations (2.6), we get

v(1) =u'(1)+ Bu(l),
w(1) =V (1) —aBv(1) = u" (1) +aBu'(1) — aB?u(1).

Then, we have that

1

W(t) :e—(l—t)ﬁB /e s— taB ds

t
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1
e~ U0 [y"(1) +aBu (1) — aB*u(1)] —/e_(“_')dBf(s)ds (2.8)
t
Using formulas (2.7), (2.8), we get
1
V(t) :e—(l—t)an(l)_/e—(p—t)an(p)dp
t
1
— e—(l—t)an(l) _/e—(p—t)aB (e—(l—s)dB [u”(l) +ﬁBu'(l) —aBzu(l)]
t
1
—/e_(s_p)‘wf(s)ds) dp = ¢~ (171)aB (u'(1)+ Bu(1))
P
1
—/e_(”_')aBe_(l_p)ﬁde [u”(l)+dBu'(1)—aBzu(l)]
t
11
+//e ptaB (1- 9)an( )a’sdp
tp
Applying formulas
1
/ef(pfr)aBef(l~p)dde _ B! <e~(lft)aB_ef(Ifr)a'B)
a—a ’
/4
11 1 s
//e—(p—f)aBe—(l—p)ﬁBf(s)dsdp://e—(p—t)aBe—(l—p)ﬁdef(s)ds
t p t ot
1
B l/ —(s t)a e—(s—r)ﬁl?)f(s)ds7
t
we obtain
() = aiéB" (e—('—’W’ —e—(‘—’)‘”’) ('(1)+aBu' (1) —aB*u(1))  (2.9)
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o005 (4/(1) 4 Bu(1)) — B [ (&0 o608 £(5) s

z

Applying formulas (2.9) and (2.7), we get

ilr) = e_B’u(0)+/e_('_”)Bv(p)dp
0

t
1 _
= 3B —(t—p)B -1 (,-(1-p)aB _ ,—(1—p)aB
e u(0)+/e [a—— dB (e e )
0

x (" (1) +aBu (1) — aB*u(1)) +e~ =P8 (4 (1) + Bu(1))

1

_ 1 -1 —(s—p)aB _ ,—(s—p)aB
—dB /(e e )f(s)ds dp

p

= ¢ Pu(0) + (" (1) +aBu' (1) — aBu(1)) + ¢ =P (u/ (1) + Bu(1))

t

L B_l/e—(t—p)B (e—(l—p)aB_e—(l—p)ﬁB) dp

a—

Q)
o

n
1 _B—l//e—(t—p)B (e—(s—p)aB_e—(S—P)&B)f(s)a’sa’p.
B

Making the change of the order of double integral, we can write

// —(t—p (s—p)aB _ e—(s—p)z?B)f(s)dsdp

§

t
/ / ~(-p (s-P)“B—e"(S“")"’B> dpf (s)ds
0

t
-5 [ { (O ) (e-(’—”B—e‘(’“"’)B)]f(s)ds. 2.10)
0

Q

l+a +
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Applying formulas (2.10) and

1
/e—(t—p)B (e—(l—p)aB__e—(l—p)EB) dp
0

- B (e—(l—r)aB _e—(H-a)B) _ B_l_ (e—(l—t)c'zB _e—(H-H)B)
l1+a 1+a

we obtain formula (2.4). Taking the second order derivative and putting t = 1, we get the

s

following operator equation with respect to u”(1).

u"(1) = BPe Bu(0) + ﬁB (1 - e—(““)B) (u' (1) +Bu(1))

2 1 ] 1 (a21_e—(a+l)8> B 1_ <a21_e—(ﬁ+l)8>
a—a |l+a 1+a

X (u”(l) +aBu'(1) —aBzu(l)) g =

_ 1 1 _
—(1+a)B _ ,—(14a)B __ —(a+1)B _ —(@+1)B _
X [e e l+a<e I)+ (e I)]f(l)

1 1 1 L
_ B2 (1_ —(a+l)B)_ (1_ ~(a+l)B) /(1
a—a [H—a ¢ 1+a\ ¢ £

|
—
o
L
—
GRS
o
|
|
)
v+ ]
(8N
|
™
S
-
=
~—
|
—
—
Y R
(]
|
|
N
>+]
|
|
@
S|
+
®
L
—_—
)
—~~
[
S—r
U
7
~~
>
—
—
N

= > {I— (ae_(l+“)3+ﬁe_(l+‘7)3>}

has a bounded inverse T = A~!, using lemma 2.2.2, we get formula (2.5). Lemma 2.2.3.
is proved. m
Now, we will establish the following main theorem.

Theorem 2.2.4 Assume that 8 > (1n4)’, 9 € D(A), y € D(A), & €D (A2/3) and f(t)
is continuously differentiable on (0, 1. Then there is a unique solution of problem (2.1) and
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the following inequalities hold

max {|u(t)| 5

0<t<1
SM{||¢||H+||¢||H+||f'<1>||H+||w||H+ng<xl ||f(z>||H}, 2.12)
d3u(t)
8% ||, omax MAu e

<M { WAl + vl + |45, 1O+ s lr O} @13

where M does not depend on f(t), ¢, v, &.

Proof. First, we estimate ||u(t)||, for ¢ € [0,1]. Applying (2.4), (2.2) and triangle inequality,
we get

1
l1+a

e Blu(0) +

o)y < B! (o777 — e (u/ (1) 4 Bu(1))

H

1 o of 1 e @B _ 1 ( —(-naB_ —@+)B
S {a i e e (@00)

x (u"(1)+aBu' (1) — aB*u(1))|| , + H_#B_z

N

5
1 1 -
—(t—s)B _ —(t+sa)B\ _ —(t—s)B _ ,—(t+sa)B
X/[1+a <e e ) = <e e )] f(s)ds
0

a
H
Bt 1 (-8B —(a+1)B) (p-1
<lle (p+l+a(e e )(B E+vy) ;
L g2 f_1 (,~0-naB_ ~@tnB) _ 1 (,~(-nas_ ~@+n)B
g ‘B {l—i-a(e ¢ ) 1+a<e ¢ )
X (u(1) +aBu (1) — aB2u(1)) |, + ﬁ

t
" / L (9B _ ~(sat)B + 1 o (=5)B _ y—(sa+0)B
J l+a 1+a

1B21(5)]| ;s
H—H
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Z ||e_B,||H—>H”(p||H H ~(1-1)B _ ,~(a+1)B

|1+a| ‘H—>H

| 1
><||B lé-l-l//HH-l-F

al
{|1+a| H —(1-1)aB _ ,—(a+1)B

x ([[B72" ()| +1al [[BE |+ lal ll9ll)
=

£ H : j_ (ef(tfs)B _ ef(sﬁﬂ)B)

—(1—t)aB _e—(a+t)B

‘H—)H}

oo TN
H-H  |1+4

—(z 5)B (sa+t)B>

‘1+a H—H

i las

Ql

<M {lolly +1 0+ v+ s 17O+ 8200, b @19

for any ¢ € [0, 1]. Applying formula (2.5), we get

B~"(1) =BT {Bze_Bu(O) + JlraB (1 - e-<“+‘>3) (' (1) +Bu(1))

n 1 B2 b (azl_e—(a+1)3> _ (Ezl—e‘(‘”l)")
a—a I+a 1+a

x (aBu (1) —aB*u(1)) — B B!

@ |:e—(1+a)B _ e~ (1Ha)B _ L (e—(a—i-l)B —I)
l+a

+m (e—(a+1)B_I>] £(1)
[ (o) L (e

a—a l+a
—$5)B _ e—(sa+1)B> ]

_2. H1j_a (e—(l
(et )

0
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1
. _ —(a+1)B -1
_T{ <p+—1+ (1 e )(B E+vy)

1 g2 1 (azl_e—(a+1)3) 1 _ (a21_e—(d+1)3)
a—a 1+a 1+a

g L .3
x (aB& —aB u/)+—a_dB

—(1+a)B _ —(1+a (a+1)B _
X [e l—l—a (e 1>

+

_+_ 1 — a+l)B I

1+a

f
{<> g ) o
1

B 2/[ )B_e—(sa+1)B)
1+a

0

B 1 _ (e—(]—s)B_e—(sa+l)B):| f(s)ds} )

1+a

Applying the triangle inequality and estimate (2.3), we get

1

72 0l < T { e W+ 1y

o

+# #Hazl_e—(aﬂ)BH 4 1 Hazl_e—(aﬂ)BH
la—a| | |1+4] H-H  |14a] H—H

=i [ 1
x (|al|[B~E]|, + lal ||(P||H)+M
1
x/ H (1-5)B _, (sa+l)BH
|1+al H—H
0
1 ~(1-5)B _ —(sa+1)B 2
e MR I
1 He—(a+l)B__e—(l+H)B” H,_e—(a+1)3H
la—al H-H  |1+a4] H—H
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(7 i 1
(a+l |B 3f(1)||H}+M

1
ME=] e P
|1+a] H—H

1 1 _
7 ~(a+I)B” HI_ ~(a+l)BH B4f(1
><{|l+a| H ¢ HaH+|l+E| ¢ H—H 1B~ Wl

<M { ol + 1l + 1+ 7D+ guas 17O . 219

<t<1

From estimates (2.14) and (2.15) it follows estimate (2.12).
Second, we estimate ||Au(r)||,, for ¢t € [0,1]. Applying formulas (2.5) and

/e—(r—s)Bf(s)ds . B“lf(t) —B_le_th(t)
0

1
_B—l /e—(f—S)Bf/(s)ds’
0

t
/e—(H-sa)Bf(s)ds — _lB—le—r(lH-l)Bf(t)
0

a

t
1 1 ,
+=B L B 4B / e~ tHsaB £l (5\ds,
a a
0

t
o=t 1 —
/e—([+sa)Bf(s)ds s _EB_le_t(a+l)Bf(t)
0

t

1 1 .

+5B"1e_’3f(t) + 53“1 /e_(’“”)Bf’(s)ds,
0

we get

u(t) = e Bu(0) +

1+aB—l (e—(l~t)3_e—(a+t)3) (u/(l) +BM(1))

1 -2 1 —(1—t)aB —(a+1)B
% 75 { 14+a (e ¢ )

a—a

: j_ (e—(l—t)ﬁB _e—(z'H-t)B)}

Ql



44 Stability of a BVP for the Third Order Partial Differential Equation

1

a—a

X (u"(l)—}—dBu'(l)—aBzu(l)) - B

1 (e—(t—s)B+ae—(r+sﬁ)B>}f/(s)ds] ' (2.16)

+
Q

In the similary manner, applying formula (2.16), we get

Au(t) = e B Au(0) +

—1( —(-1)B _ —(a+1)B
1+aAB (e e )

x (i (1) + Bu(1))

n 1 AB~2 1 (ef(lfr)aB_ef(aJrr)B)
a—a 1+a
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! (e_(’_‘Y)B%—ae_('“a)B) }f’(s)ds] .

1+a
= e B Au(0) + e (ef(l")B—ef(““)B) (B%/ (1) +Au(1))
4 1 (1 (e—(l—r)aB_e—(a+t)B)
a—a l+a

1+a l+a
I+a 1+4a| _;
. = 0
[l—l-a 1+ﬁ]e 1)

t
1
N —(t—s)B | = ,—(t+sa)B
0/[1 Ta (e +ae )

1
1+a

(e_(’_s)B-l-ae_(’““)B)] f,(s)ds] .

Applying the triangle inequality and estimate (2.2), we get

1

Au() g < |le || 5 1Au(0) || + T+al

e 78— e_(aH)BHH—»H (187 (D)5 + () L)

1 -2 1 —(1=t)aB _ ,—(a+t)B\ _ 1 —(1-1)aB _ ,—(a+t)B
- {1+a(€ ¢ ) 1+a<e ¢ )

H—H

1

< (1B () 12 [B (1) + el (D 1) + 1=
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+ ‘I—i—ae_(”a)’B

H—>H]

52 H# H1+ae—(l+a)tB
[1+a]

1
‘H—>H [1+a| |

l+a 1+4a
l+a 1+4+a

||e-lB||H*>H “f(O) “H

Ol +\

t
. /[ 1 He_u_s)g +ae_<f+m)BH
4 H—H

[1+a|

1
|1+a|

He_(’_S)B + ae_(’“a)BH

v 176 gas) |

H—H
<M {||A@|ly+|B* |, + IAVIy
LA+ guss 176) |+ 8 1), 1)

for any ¢ € [0, 1]. Applying formula (2.5) we get

Bl'(1)=T {B3e-3u(0) 3 :

+a32 (l_e—(a-i-])B)

x (u'(1) + Bu(1)) +é

[l eo)- g (o)

X (c’leu’(l) —aB3u(1)) —

s 1 1 _
—(14a)B —(14+a)B —(a+1)B —(a+1)B
X [e —e == (e —1>+ (e —I)]f(l)

1 g [Hl_a (I_e—(a+l)3> _

I
1 1 . 1 =
_ (1-5)B__ (i)l (1B _ L T)E
a—&Bo/[l—t-a <e . ) 1+a (e ¢ )]f(s)ds}.
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Applying formulas

/l<e—(l—x)B_e—(sa+l)B>f(s)ds:B—l [<I+%e'(“+l)3)f(l)— (1+é) -B (0)]
0

1

_B—l/(e—(l—s)3+ée—(sa+l)8> F(s)ds,

0

1
~(1-5)B _ ,~(sa O\ds =B~ le‘ 2 B 1 -
O/<e (1-5)B ( +1)B)f( )ds — B 1[<I+a (“)B)f(l) (1+5> Bf(O)]

1
_B~l/ e7(1~s)3+1e—(sa+1)3 Pl
a b
0
we get

1
Bu'(1)=T {B3e_3(p + 1—+a32 (1 - e—("+'>3) (E+By)

1 1 5 @B _ 1 (2. @B\ | (an2e 03
+ _{1 (al e ) 1+a(al e ) (aB°E —aB’y)

1 = 1
|:€ e 1 (e 1)

J a
X [<1+ %e_(“H)B) f()— <1+ %) e‘Bf(O)]
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|
1 —1 —(1-s)B l —(sa+1)B \ ¢/
1+’dB O/<e +=# f(s)ds

Applying the triangle inequality and estimate (2.3), we get

B 1
186 )y < 1T { i 1B+

1
|a—al

A=) 1

w1 <a21_e—(a+l)3) b (aZI_e—((7+1)B>

l+a a

I+a H—H

1

x || (aB*E — aB>y) ||, + a—al 1MW)l

X

_ i 1 _
—(1+a)B _ ,—(14+a)B _ —(a+1)B _ —(@+1)B _
[e ¢ 1+a (e I)+1+a(e 1)}

H—H

1 g [ ! (1_e—(a+1)3) _Hl——a (I—e_(a’Ll)aB)]f,(l)

+a
KH ée(““)B) Pl <1+ é) er(O)]

(e—(l—s)B_l_le—(m+1)B) fI(S) ds)
@ H

(1+ %e—m”‘*) f(1)- <1+ %) e Pf(0)

M

+11£(0)]| 5 + max Ilf’(t)||H}- (2.18)

—

H

N 1 ( 1
la—a| \ [1+d|
1
il
[1+al
0
I 1 ( 1
la—al \ |1 +a]

|
2 /
|1+a|
0

<M{||Ag|,+|B*¢ g+ 1AW g

H

—

H

(e—(l—s)B i % e-(sa+1)3) £5)

0<r<1
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Applying estimates (2.17) and (2.18), we get

max [[Au(t) | < M { Al +[|BE] |, + 1AV

+ 17O+ max Hf’(f)HH}-

From that and equation (2.1) and triangle inequality it follows that

d3u(r)
dr3

< Au(t t
< max | Au( )”H+or2,ag"n £ )l

max
0<t<1
<M { l4@1 + 1B ||y + AWl + 1 (0] + max ||f’(t)||H} -
Theorem 2.2.4 is proved. m
Moreover, we have the following theorem on stability.
Theorem 2.2.5 Assume that 8 > (1n4)’, 9 € D(A), w € D(A), E €D (A2/3) and f(t)
is continuous on [0,1] and there exists f'(1) and f(t) € D (A‘/3) . Then there is a unique

solution of problem (2.1) and the following inequalities hold

d>u(t)
dr?

X max ||[Au(t
o ||+ g o

< {1l + vl + |42, + () + goa

}A'”f(z)”H}, (2.19)
where M does not depend on f(t), ¢, v, &.

Proof. We will estimate ||Au(t)||, fort € [0,1]. Applying formula (2.4), we get

Au(t) = e BrAp+ L (e~(l—t)B__e~(a+t)B) (B2 +Av)

+;{;(e—(l—1)a3_e—(a+t)8)_%(e—(l—t)ﬁB_e—(ﬁ—H)B)}

a—a | 14+a

x (Bu"(1) +aB*E — aAy)

.
a—a

[L (e_(,_;)g _ e—(H—sa)B) el <e—(t—S)B ot e—('+ﬁ)3)] Bf(s)ds.

I+a
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Applying the triangle inequality and estimate (2.2), we get

lAu(®) g < lle™ || 4 ||A(P||H+‘ He_(l_t)B—e_("J”)BH

l1+a H—H

x (|B%]l, + lAw i)
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for any 7 € [0,1]. Applying formula (2.5), we get
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Applying the triangle inequality and estimate (2.3), we get
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Applying estimates (2.20) and (2.21), we get

max [[Au(t)lly <M { AQl, +||B*E ||, + 1AW, +|1F (D], + max IIBf(t)IIH} ;

0 <
From that and equation (2.1) and triangle inequality it follows that

d3u(r)

max ||——==—
3
e’ iy

0<r<1

< Au(t (t
< max [|Au(®)lly + max |I£(0)]n

<M { 1Al + 8%+ 1AVl + 7D+ gus 1870 |-
Theorem 2.2.5 is proved. m

From Theorem 2.2.4 and Theorem 2.2.5 it follows the following theorem on stability.

Theorem 2.2.6 Assume that & > (_%ln4)3, oeD(A),yeD(A),EeD (A2/3) and f(1)

is continuously differentiable on (0, 1] and f(t) € D (A'/ 3 ) . Then there is a unique solution
of problem (2.1) and the following inequalities hold

d3u(t)
dr3

+ max [|Au(f)||, < M{||A<pIIH + [|Ay]| + HA2/35 HH

max
0<r<1 0<r<1

min IO+ guas 170 |7 Ol + s, 4250 } -

where M does not depend on f(t), ¢, v, &.

2.3 Applications

In this section we will consider three applications of the main Theorem 2.2.4. First, for the
application of the Theorem 2.2.4 we consider the boundary value problem for a third order
partial differential equation

3u(t,x)

ot
u(va):(P(x)7 u(l,X)ZW(X), ut(lax)zé(x)v Dxx<1,
u(t,0) =u(t,1), wu(r,0)=uc(r,1), 0<r<1

- (a(x)ux(t,x))x—i- Su(tvx) = f(T,X), 0< ,x < 1,
(2.22)
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Problem (2.22) has a unique smooth solution u(z,x) for smooth a(x) >a > 0,x € (0,1),

5> (1n4)’, a(1) = a(0), @(x), W(x), E(x) (x € [0,1]) and f(t,x) (t € (0,1),x € (0,1))
functions. This allows us to reduce problem (2.1) in a Hilbert space H = L [0, 1] with a

self-adjoint positive definite operator A* defined by (2.22). Let us give a number of corollaries
of abstract Theorem 2.2.4.

Theorem 2.3.1 For the solution of the problem (2.22), the stability inequalities

[max ll(t, )l 0,11

<M [org?gxn £ M 0,17+ 1AL ) 0,1+ 1@ 0,17 + 1W g0,y + ||§||L2[0,1]] , (2.23)

3

u
max [[u(t,.)llyz(o,1 + max ﬁ(t"

0<t<1 0<t<1

L,[0.1]

<M [on;flgxl 171Ct, M zyg0.17 + 17O My j0.0) + 1@ llwzio.1 + W llwzo. + ||5||w§[0.1]]
(2.24)
hold where M does not depend on f(t,x) and @(x), y(x), &(x).

Proof. Problem (2.22) can be written in abstract form

du(t) B
PP +Au(t)=f(t), 0<t <1, (2.25)
u@)=9, u(l)=y, u(1)=8&

in Hilbert space L, [0, 1] for all square integrable functions defined on [0, 1] with self-
adjoint positive definite operator A = A* defined by the formula

A'u(x) = — (a(x)uy), + du(x) (2.26)
with domain
D(AY) = {u(x) s uy Uy, (a(x)uy), € L2 [0,1],u(0) = u(1),4'(0) = u'(])} :

here f(t) = f(t,x) and u(t) = u(t,x) are respectively known and unknown abstract
functions defined on [0, 1] with the values H = L, [0, 1]. Therefore, estimates (2.23)-(2.24)
follow from estimates (2.12)-(2.13). Thus, Theorem 2.3.1 is proved. m

Second, let Q C R" be a bounded open domain with smooth boundary S, Q=QuUS.
In [0, 1] x Q, we consider the boundary value problem for a third order partial differential
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equation

( J3u 7
TU00) 3 (@l (.90, = 1109,

r=1

{ X = (X|,...,xn) € Q, O<t< 1, (227)

u(O,x) = (P(X), u(lvx) = W(x)v ut(lax) = é(x)! X € Qa
L u(t,x)=0, xe€8,0<r<];

where a,(x), x € Q, @(x), w(x), £(x), x € Qand f(t,x) (x € [0,1]), x € Q are given smooth
functions and a,(x) > 0. We introduce the Hilbert space L,(Q), the space of integrable
functions defined on Q equipped with norm

1/2
R ey BRI T

Theorem 2.3.2 For the solution of the problem (2.27) the stability inequalities

g Nt M)

SMz[maX 1 Myy + 1ALl ey + 191, )+||w||LZ(Q)+||5||L2(Q)],

0<t<1
(2.28)
3Ll

£, ) |2
0o leeCe, )||Wz7{0-‘]+or2?gx1

7l
<M [Orgfi}] 175 My @) + 15Oy @) + 1@ llwz (@) +1Wiwza) + ||5||w22(g)}
(2.29)
hold where M, does not depend on f(t,x) and ¢(x), y(x), &(x).

Proof. Problem (2.27) can be written in abstract form (2.25) in Hilbert space L, (Q) with
self-adjoint positive definite operator A = A* defined by the formula

i (ar(x)uy,), (2.30)

r=1
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with domain
D(A) = {u(x) : u(x),uy, (x), (ar(x)uy,),, € Lo (Q),1<r<nu(x)=0,x€S}

here f(¢) = f(t,x) and u(t) = u(t,x) are known and unknown respectively abstract functions
defined on Q with the value in H = L, (Q) So estimates (2.28)-(2.29) follow from estimates
(2.12)-(2.13) and from the following theorem on the coercivity inequality for the solution of
the elliptic differential problem in L, (Q) ]

Theorem 2.3.3 For the solution of the elliptic differential problem

- i (ar(x)ux,)x, = w(x),x € Qu(x) =0, x€ S

r=1

the following coercivity inequalities

n
Zl ””x,-x,-”Lz(ﬁ) = M[|w||L2(§)
r—

are valid. Here M does not depend on w(x).

Third, we consider the boundary value problem for a third order partial differential
equation

( Pu(t,x) »n
o’ r=1

(@r(X)uy, (2,%)),, +Oult,x) = f(1,%),

X = (x|,...,x,,) EQa 0<r< 11
(2.31)

u(O,x) :(P(x)a “(lvx)ZW(x)v u,(l,x)z&(x), era

du
t =0 S.0<r<1
| FFH =0, xE§ 0=e4],

where a,(x), x € Q, @(x), y(x), (x), x € Qand f(t,x) (¢t € [0,1]), x € Q are given smooth
functions and a,(x) >0, § > 0, 7 is the normal vector to S.
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Theorem 2.3.4 For the solution of the problem (2.31), the stability inequalities

max |[[u(z,.

0<t<1 ”Lz(ﬁ)
< | 100l ) + 112 ) + 10l + Wiy + 181
(2.32)
u
g e,z + gma | 50| o)

<t | max 1) gy + 1700 ey + Dol + ¥l + 1z
(2.33)
hold where M3 does not depend on f(t,x) and @(x), y(x), &(x).

Proof. Problem (2.31) can be written in abstract form (2.25) in Hilbert space L, (Q) with
self-adjoint positive definite operator A = A* defined by the formula

A'u(x) = — i (ar(x)uy,),, + 6u(x) (2.34)

r=1

with domain
D(A¥) = {u(x) (), (1), (ar (Vu, ), € Lo (Q) 1 <r<m, % Bk S} |

Here f(1) = f(t,x) and u(t) = u(t,x) are respectively known and unknown abstract functions
defined on Q with the value in H = L, (Q) So estimates (2.32)-(2.33) follow from estimates
(2.12)-(2.13) and from the following theorem on the coercivity inequality for the solution of
the elliptic differential problem in L, (Q). m

Theorem 2.3.5 For the solution of the elliptic differential problem

=

(ar(x)uy, )x, + Ou(x) = w(x),x € Q, % (x)=0,x€S

=1

the following coercivity inequalities [69]

Z s, 1, @y < MWL, @)

are valid. Here M does not depend on w(x).
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2.4 Numerical Experiments

When the analytical methods do not work properly, the numerical methods for obtaining
approximate solutions of partial differential equations play an important role in applied
mathematics. We can say that there are many considerable works in the literature (for
instance, see [11], [12], [37], [40], [30]).

In the present chapter for the approximate solutions of a problem, we will use the first and
high orders of accuracy difference schemes. The high order of accuracy for the approximate
solution of the problem will be constructed in order to get more accurate result. We will
apply a procedure of modified Gauss elimination method to solve the problem. Finally, the
error analysis of first and high orders of accuracy difference schemes will be given.

2.4.1 The First Order of Accuracy Difference Scheme

We consider the local boundary value problem

( Pu(t,x)  %u(t,x)
813 - axz = f(tvx)a

ft,x)=(1—1)%sinx,0<t <1, 0<x< T,

1 (2.35)

u(0,x) = 2sinx, u(l,x) =e™ ' sin x,

w(1,x) =—e lsinx, 0<x< 7,

u(t,0)=u(t,m)=0,0<r<1

\

for a third order partial differential equation. The exact solution of problem (2.35) is
u(t,x) = (e_’ +(1 —r)z) sin.x.
For the approximate solutions of boundary value problem (2.35), applying the formulas

u(tii2) — 3u(fk+11:‘ Bu(te) —ulte—1) W"(1) = O(x),

u(l)—u(1—1)

=D dy =),
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u(Xn+1) — 2u(xn) +u(xn—1)
h2
we get three-step difference scheme the first order of accuracy in ¢ and the second order of

—u"(x,) = O(h?), (2.36)

accuracy in x

( k _

. k
gt = 3upt £ 3uf — !y — 20 tu
(i h?

k

o]
= :f(tkvxn)y

Flte,xn) = (1 — 1) sinxy, tx =kT,1 <k<N—-2,1<n<M-—1,

Nt=1,x,=nh, 1 <n<M-1, Mh=m,

(2.37)
ug = 2sinx,, unN =e lsinx,, 1<n<M-1,
ul — V1= —te~lsinx,, 1 <n<M—1,
k
| uf=uly=0,0<k<N.

It is the system of algebraic equations and it can be written in the matrix form
A”n%»l)‘*‘Bun"‘_C)unfl =D@,, 1<n<M-1, (2.38)
up=20, uy=20.

Here, i )

0 0O - 000
0 000
00 - 000

L 4 (N+1)x(N+1)
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(10 0 0 O 0 0 0 0]
b ¢ 3b =b 0 0O 0 0 O
0b ¢ 3 —b 0O 0 0 0
00 c 3b 0O 0 0 0
B— . : : : : : : 7
00 0 O O 3 —b 0 O
00 0 O O c 3 —b 0
00 0 O O b ¢ 3b —b
00 0 0 O 0O 0 -1 1
oo o o o -~ 0 0 0 1 | (N+1)x(N+1)
where
1 1 3 2
a=—17 b:_ﬁ’ C:§+ﬁ’
( (P;ch = f(tr,xa) = (1 _tk)ZSinxn» )
0 th=kt,1<k<N-2,1<n<M-1,
P
On = ) 0 :
v ¢, =2sinx,,0<n <M,
Po dvanyr | @V = e Tsinx,, 0<n < M,
4 (p,l,\’:e“lsinx,,,OSnSM, J

and D = Iy, is the identity matrix,

0

U

Us'= : , s=n—1,n,n+1.
N
U (N+1)x1

This type of system was used by Samarskii and Nikolaev [82] for difference equations. For
the solution of the matrix equation (2.38), we will use the modified Gauss elimination method.
We seek a solution of the matrix equation by the following form:

un:an+lun+l+ﬁn+la n:M—l,...Z,l, (239)

_)
where uyy = 0, ; (j=1,---,M—1) are (N+1) x (N + 1) square matrices, B; (j =
l,...M—1)are (N+1)x 1 column matrices, &, f; are zero matrices, and
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U1 = — (Bu+Caln) ' Ap, (2.40)
Bis =Byt Cuon) ™ (Pt —Guf) o= 1,2 M- L.
The errors are computed by

ElY (2.41)

k
= max ulty, x,) —u
03k§N.1§n§M—1’ (1) =ty

of the numerical solutions, where u(f;,x,) represents the exact solution and uX represents

the numerical solution at (#,x,) and the results are given in the following table

Difference schemes/N,M 20,20 40,40 80,80
(2.42)

Difference scheme (2.37) 1.5602¢ — 02 7.6036¢ — 03 3.7547¢ — 03

As it is seen in Table 2.42, we get some numerical results. If N and M are doubled, the
value of errors decrease by a factor of approximately 1/2 for first order of accuracy in ¢
difference scheme (2.37).

2.4.2 The High Order of Accuracy Difference Schemes

Now, we will consider the high order of accuracy difference schemes for the approximate
solution of the problem.
First, using formulas (2.36),

u(t —3u(t + 3u(ty) — u(ty— 3 1
(tk+2) (k+113 () —u(t—1) Z“W(tk) B Zu,/,(tk+2) — 0(dY),

Bu(l) —4u(1—17)+u(l—21)
27

=i (1) +0(7%), (2.43)
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we get three-step difference scheme the second order of accuracy in ¢ and x
[ FF2 gt vk k] uk ok 4k
Uy Uy is Up — Uy n+1 n n—1
3 =4 2

k+2 S i

_un+l _zun +u, ]
4h?

3f(t, tiet2, .
i x")+4f( £ x"),f(tk,xn) = (1—1)*sinux,,
th=k7,1<k<N-2,Nt=1,
Xp=nh, 1<n<M-1, Mh=rm, (2.44)

ug = ZSinx,l,ufqV =e lsinx,,0<n <M,

3“nN—4MnN_1 +u,,N_2 = —27¢ 'sinx,,0<n < M,

i =il =0,0 < k< N.

This system can be written in the matrix form (2.38). Here,

000O0O--000

o
o
()
o

0000 a 00 )
0000 a a 0
0000 0 a a
0000 000
0000 000

s d (V+1)x(N+1)
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100 O O ---0 O 0 0]
b cd —-b 0 0 0 0 0
0bc d —b 0 0 0 0
00b ¢ d 0 0 0 0
B= 3 5 5 5 5 : 7
000 0 0 d —b 0 0
000 O 0 c d —-b 0
000 0 O b ¢ d —b
000 O O 0 3 -4 3
000 0O 0 ---0 0 0 _1-(N+l)><(N+l)
where
1 1 1
a=-—mb=—me=—md=gmtaa
oY
(Pnz )
N
P (N+1)x1

(pil’lc = %(3f(tk,xn) + f(tkr25%n)) 5 f (b Xn) = (1 _tk)ZSinxm i
t=kt,1<k<N-2,1<n<M-1,
@0 = 2sinx,, oV~ = —27e lsinx,,0<n< M,

qo,l,v =e lsinx,,0<n <M.

Second, using formulas (2.36),

u(ti2) — 3u(tk+l~);3+ 3u(te) —u(te—1) %u’"(tk) B %M,”(tk+]) — o(th), (2.45)

11u(1) — 18u(1 —7) +9u(1 —27) —2u(1 — 37)
67

=u/(1)+0(7%),
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we get three-step difference scheme the third order of accuracy in ¢ and the second order

of accuracy in x

k+2 k+1 k k—1 k k k
un+ _3un+ —}-311,, — Uy . Wpi1 _2un+un—l
3 2
T 2h
k+1 _ ~ k+1 k+1
_ un+l 2“” T Up_1
2h?

_ f(’k’x”)+2f(tk+1’x")7f(tk,x,,) = (1—1)*sinxy,

thh=kt,1<k<N-2,Nt=1,

Xy =nh, 1<n<M—1, Mh=m, (2.46)

0 — o N _ —1
u, = 2sinx,,u, =e sinx,,0<n <M,

110 — 181 +9ul =2 — 243 = —67¢ Lsinx,,0<n < M,

i =iy, =0,0< <.

This system can be written in the matrix form (2.38), too. Here,

0000000
000
0

o
[N
o
o

S O O Q
S O Q 8 O
S O Q o O ke

L J(N+1)x(N+1)
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100 O O ---0 O 0 0]
b cd —-b 0 0 0 0 0
0 b c d —b 0 0 0 0
00b ¢ d 0 0 0 0
B= 3 5 5 5 5 : 7
000 0 0 d -b 0 0
000 0 0 c d —-b 0
000 0 O b ¢ d —b
000 0 O 0 3 —4 3
000 0O 0 ---0 0 0 _1—(N+l)><(N+l)
where
1 1 1 3 31
=g T Tt T Tate
oY
(Pn: )
N
Pn (N+1)x1

(P;I; = %(f(tk,x,,) + f(ter1,%n)) 5 f (tr,xn) = (1 _tk)25inxm i

h=kt,1<k<N-2,1<n<M-1,

@0 = 2sinx,, oV ! = —67e " !sinx,,0 <n < M,

(p,’,v =e lsinx,,0<n< M.

\

Third, using formulas (2.36), (2.45) and

25u(1) — 48u(1 — 7) +36u(1 — 27) — 16u(1 — 37) + 3u(1 — 47)

o =u'(1)+0(z%),

we get three-step difference scheme the fourth order of accuracy in ¢ and the second order of

accuracy in x
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N

0 _9gi —
U, = 2sinx,,u, =

0<n<M,

\

e‘lsinxn,OSn <M,

u§ =15, =0,0 k£ N.

65
i wt Gkl gk g1 B u’,‘lH —2uﬁ+uﬁ_l
k+1 kT+31 k+1 2h2
_un+l —2un +u,
2h?
1, 1,

_ Stk +2f( kb1, n) st 30 )= (1 —tk)2 sinx,,

th=kt,1<k<N-2,Nt=1,

Xp=nh, 1 <n<M-1, Mh=m, (2.47)

25ul — 48uN—1 4 361N 2 — 1613 + 3ul 4 = —127¢ ! sinx,,

This system can be written in the matrix form (2.38), too. Here,

0

S

00

Q

(=

S O O Q

(=N ]

S O Q8 Q O .-

0
0
0

S O Q © O .-

1 (N+1)x(N+1)
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100 O O ---0 O 0 0]
b cd —-b 0 0 0 0 0
0 b c d —b 0 0 0 0
00b ¢ d 0 0 0 0
B= 3 5 5 5 5 : 7
000 0 0 d -b 0 0
000 0 0 c d —-b 0
000 0 O b ¢ d —b
000 0 O 0 3 —4 3
000 0O 0 ---0 0 0 ”—WHMWH)
where
1 1 301 31
=g T Tt T Tate
oY
(Pn: )
N
Pn (N+1)x1

\

or = %(f(fk,xn) + f(ter1,%0)) 5 f (b Xn) = (1 _tk)ZSinxm
=kt 1<k<N-2,1<n<M-—1,

00 = 2sinx,, @) 1 = —12te L sinx,, 0 < n < M,

(p,l,v =e ! sinx,,0 <n <M.

\
Therefore, for the solution of the matrix equation (2.38), we will use the same formulas
(2.39), (2.40) and the errors are computed by formula (2.41). Numerical results are given in

following tables

Difference schemes/N,M 20,20 40,40 80,80
(2.48)

Difference scheme (2.44) 1.0369¢ — 04 2.5593e¢ — 05 6.3519¢ — 06
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Difference schemes/N,M 4,30 8,80 16,200
Difference scheme (2.37) 9.9788e — 02 4.2520e — 02 1.9804¢ — 02
Difference scheme (2.44) 2.1838¢—03 4.8124e — 04 1.1332¢ — 04 (2.49)
Difference scheme (2.46) 4.6503¢ — 04 4.9467¢ — 05 5.6483¢ — 06
Difference scheme (2.47) 1.2135¢ — 04 7.4630e — 06 6.6517¢ —07

As it is seen in Table 2.48, we get some numerical results for difference scheme (2.44).

Note that if N and M are doubled, the value of errors decrease by a factor of approximately

1/4 for second order of accuracy in ¢ difference scheme (2.44). Moreover, as it is seen in
Table 2.49, if N is doubled and M > N+/10N, the value of errors decrease by a factor of
approximately 1/2™ for the m-th of accuracy in ¢ difference schemes (2.37), (2.44),(2.46)

and (2.47), respectively.

The errors presented in these tables indicates the accuracy of difference schemes. We

conclude that, the accuracy increases with the higher order approximation.

2.5 Appendix Matlab Programing

2.5.1 Matlab Implementation of Difference Schemes

function RR(N,M)
if nargin <1; end;
close;close;
Yofirst order
tau=1/N;
h=pi/M;
a=-1/(h"2);
b =-1/(tau’3);
¢ =-2%a-3%b;
A=zeros(N+1,N+1);
for i=2:N-1;
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A(i,i)=a;

end;

Aj

C=A;

B=zeros(N+1,N+1);

for i=2:N-1 ;

B(,i-1)=b;

B(i,i)=c;

B(i,i+1)=3*b;

B(i,i+2)=-b ;

end;

B(1,1)=1;

B(N+1,N+1)=1;

B(N,N+1)=1;

B(N,N)=-1;

B;

D=eye(N+1,N+1);

for j=1:M+1;

for k=2:N-1;

fii(k,j) =((1-(k-1)*tau)*2)*sin((j-1)*h);
end;

fii(1,j) =2*sin((j-1)*h);

fii(N,j) =(-tau)*exp(-1)*sin((j-1)*h);
fii(N+1,j) =exp(-1)*sin((j-1)*h);
end;

alpha{1}=zeros(N+1,N+1);
betha{1}=zeros(N+1,1);

for j=2:M;
Q=inv(B+C*alpha{j-1});
alpha(j)=-Q*A;
betha{j}=Q*(D*(fii(:,j))-C*betha{j-1});
end;

U=zeros(N+1,M+1);

for j=M:-1:1
U(:,j)=alpha{j}*U(:,j+1)+betha{j};
end
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"EXACT SOLUTION OF THIS PROBLEM’;
for j=1:M+1 ;

for k=1:N+1 ;

es(k,j) =((1-(k-1)*tau) 2+exp((-k+1)*tau))*sin((j-1)*h);
end;

end;

figure ;
m(1,1)=min(min(U))-0.01;
m(2,2)=nan;

surf(m);

hold;

surf(es) ; rotate3d ;axis tight;
titleCEXACT SOLUTION’);
figure ;

surf(m);

hold;

surf(U) ; rotate3d ;axis tight;
titleCFIRST ORDER”);

% ERROR ANALYSIS.;
maxes=max(max(es)) ;
maxerror=max(max(abs(es-U)));
relativeerror=maxerror/maxes;
cevapl = [maxerror,relativeerror] ;
9%Second order

a =(3/(tau”"3))+(3/(2*(h"2)));

b =-1/(tau’3);

¢ = (-3/(tau”3));
d=(1/(tau”3))+(1/(2*(h"2)));
A=zeros(N+1,N+1);
B=zeros(N+1,N+1);

for i=2:N-1;

A(,1)=-3/(4*(h"2));
A(1,i+2)=-1/(4*(h"2));

end;

% A(N,N)=(tau2)/(4*(h"2));
%A(N,N+1)=(tau2)/(12*(h"2));
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A;

C=A;

for i=2:N-1;

B(i,i-1)=b;

B(i,i)=a;

B(,i+1)=c;

B(1,i+2)=d;

end;

B(1,1)=1;
B(N,N+1)=3%((3*tau-1)/2)-(2*(tau2)/12*(h"2));
B(N,N)=-4%-2%*(tau"-1)-(2*(tau”2)/4*(h"2));
B(N,N-1)=1%(tau”-1)/2;
B(N+1,N+1)=1;

for j=1:M+1;

for k=2:N-1;

fii(k,j) =(3/4)*((1-(k-1)*tau)*2)*sin((G-1)*h)+(1/4)*((1-(k+1)*tau)*2)*sin((j-1)*h);
end;

fii(1,j) =2*sin((j-1)*h);

fii(N,j) =-2*tau*exp(-1)*sin((j-1)*h);
fii(N+1,j) =exp(-1)*sin((j-1)*h);

end;

alpha{1}=zeros(N+1,N+1);
betha{1}=zeros(N+1,1);

for j=2:M;

Q=inv(B+C*alpha{j-1});
alpha(j)=-Q*A;
betha{j}=Q*(D*(fii(:,j))-C*betha{j-1});
end;

U=zeros(N+1,M+1);

for j=M:-1:1
U(:,j)=alpha{j}*U(:,j+1)+betha{j};

end

figure ;

surf(m);

hold;

surf(U) ; rotate3d ;axis tight;
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titleCSECOND ORDER’);

% ERROR ANALYSIS.;
maxes=max(max(es)) ;
maxerror=max(max(abs(es-U)));
relativeerror=maxerror/maxes;
cevap2 = [maxerror,relativeerror] ;
%Third order

a=-1/(2*(h"2));

b =-1/(tau”3);

¢ =-2%(-1/(2*(h"2)))-3*(-1/(tau”3));
d=3*(-1/(tau”3))-2*(-1/(2*(h"2)));
A=zeros(N+1,N+1);
B=zeros(N+1,N+1);

for i=2:N-1;

A(i,i)=a;

AQ,i+1)=a;

end;

% A(N,N)=(tau3)/(2*(h"2));

% A(N,N+1)=(tau3)/(6*(h"2));
A

C=A;

for i=2:N-1;

B(i,i-1)=b;

B(i,i)=c;

B(i,i+1)=d;

B(1,i+2)=-b;

end;

B(1,1)=1;
B(N,N+1)=11%-(2*(tau”3)/6*(h"2));
B(N,N)=-18%-(2*(tau”3)/2*(h"2));
B(N,N-1)=9;

B(N,N-2)=-2;

B(N+1,N+1)=1;

B;

for i=1:N+1;

D@,i)=1;
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end ;

D;

for j=1:M+1;

for k=2:N-1;

fii(k,j:j) =(1/2)*((1-(k-1)*tau)*2)*sin((j-1)*h)+(1/2)*((1-(k)*tau)*2)*sin((j-1)*h);
end;

fii(1,j) =2*sin((-1)*h);

fii(N,j) =-(exp(-1))*6*tau*sin((j-1)*h);
fii(N+1,j) =(exp(-1))*sin((G-1)*h);
end;

alpha{1}=zeros(N+1,N+1);
betha{1}=zeros(N+1,1);

for j=2:M;
Q=inv(B+C*alpha{j-1});
alpha{j}=-Q*A;
betha{j}=Q*(D*(fii(:,j))-C*betha{j-1});
end;

U=zeros(N+1,M+1);

for j=M:-1:1
U(:,j)=alpha{j}*U(:,j+1)+betha{j};
end

figure ;

m(1,1)=min(min(U))-0.01;
m(2,2)=nan;

surf(m);

hold;

surf(U) ; rotate3d ;axis tight;
titleCTHIRD ORDER”);

% ERROR ANALYSIS.;
maxes=max(max(es)) ;
maxerror=max(max(abs(es-U)));
relativeerror=maxerror/maxes;
cevap3 = [maxerror,relativeerror] ;
%FOURTH order

a=-1/(2*(h"2));

b =-1/(tau”3);
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¢ =-2%(-1/(2*(h"2)))-3*(-1/(tau”3));
d=3*(-1/(tau”3))-2*(-1/(2*(h"2)));
A=zeros(N+1,N+1);
B=zeros(N+1,N+1);

for i=2:N-1;

A(i,i)=a;

AQ,i+1)=a;

end;

% A(N,N)=(tau3)/(2*#(h"2));

% A(N,N+1)=(tau”3)/(6*(h"2));

A;

C=A;

for i=2:N-1;

B(,i-1)=b;

B(i,i)=c;

B(i,i+1)=d;

B(1,i+2)=-b;

end;

B(1,1)=1;
B(N,N+1)=25%-(2*(tau”3)/6*(h"2));
B(N,N)=-48%-(2*(tau”3)/2*(h"2));
B(N,N-1)=36;

B(N,N-2)=-16;

B(N,N-3)=3;

B(N+1,N+1)=1;

B;

for i=1:N+1;

D(i,i)=1;

end ;

D;

for j=1:M+1;

for k=2:N-1;

fii(k,j:j) =(1/2)*((1-(k-1)*tau)*2)*sin((j-1)*h)+(1/2)*((1-(k)*tau)2)*sin((j-1)*h);
end;

fii(1,j) =2*sin((-1)*h);

fii(N,j) =-(exp(-1))*12*tau*sin((j-1)*h);
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fii(N+1,j) =(exp(-1))*sin((j-1)*h);

end;

alpha{1}=zeros(N+1,N+1);
betha{l}=zeros(N+1,1);

for j=2:M;

Q=inv(B+C*alpha{j-1});
alpha{j}=-Q*A;
betha{j}=Q*(D*(fii(:,j))-C*betha{j-1});

end;

U=zeros(N+1,M+1);

for j=M:-1:1
U(:,j)=alpha{j}*U(:,j+1)+betha{j};
end

figure ;

m(1,1)=min(min(U))-0.01;
m(2,2)=nan;

surf(m);

hold;

surf(U) ; rotate3d ;axis tight;
titleCFOURTH ORDER’);

% ERROR ANALYSIS.;
maxes=max(max(es)) ;
maxerror=max(max(abs(es-U)));
relativeerror=maxerror/maxes;

cevap4 = [maxerror,relativeerror] ;
format short e;
cevap=[cevap1,cevap2,cevap3,cevap4]

2.5.2 Figures Presented by Numerical Experiences of Difference Schemes
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FIRST ORDER

Figure 1 Solution of difference scheme
(2.37)for N = 16, M = 200.

SECOND ORDER

Figure 2 Solution of difference scheme
(2.44)for N = 16,M = 200.

THIRD ORDER

Figure 3 Solution of difference scheme
(2.46)for N = 16,M = 200.
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FOURTH ORDER

Figure 4 Solution of difference scheme
(2.47)for N = 16, M = 200.

EXACT SOLUTION

Figure 5 Exact solution of problem (2.35)for
N =16,M = 200.



Chapter 3

Stability of Nonlocal BVP for a Third
Order Partial Differential Equation

3.1 Introduction

In Chapter 3 we consider the nonlocal boundary value problem for the third order partial
differential equation

d3u(r)

5 +A%0 — r(r), 0<1<1,

u0)=yu(A)+o, u(0)=ou'(A)+w,|y]<1, 3.1)

W'(0) = Bu’ (A)+&, |1+Bal>|a+Bl,0<A <1

in a Hilbert space H with a self-adjoint positive definite operator A > &1, where 6 > 0.
We are interested in studying the stability of solutions of nonlocal boundary value problem
(3.1). A function u(t) is a solution of problem (3.1) if the following conditions are satisfied:

(i) u(r) is thrice continuously differentiable on the interval (0, 1) and twice continuously
differentiable on the segment [0, 1]. The derivatives at the end points of the segment
are understood as the appropriate unilateral derivatives.

(i) The element «’(z) belongs to D (A), Vr € [0,1], and the function Au/'(¢) is continuous
on [0, 1].

(iii) u(r) satisfies the equation and boundary nonlocal conditions (3.1).
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Throughout this chapter, {C(r),7 > 0} is an operator function, C(f) = cos(tA%) defined
by the formula
eitA% kit e—itAi"

then from the following of operator function S(¢) = e sin(rA%),S(t) = [4C(p)dp, is

follow that | |

. eitAi _e—irA’Z

S(t)=A"2 ——M8M8M8M—
® 2i

for the theory of cosine operator function, we refer to [53], [88].

(3.3)

Applying operator approach, stability estimates for solution of the nonlocal boundary
value problem (3.1) are obtained. In practice, nonlocal boundary value problems for a third
order in ¢ partial differential equations are studied. Theorems on the stability estimates
for the solutions of these problems are obtained. A first and second order of accuracy
difference schemes are constructed for the approximate solution of the one dimensional
partial differential equations. Numerical results are given.

The outline of Chapter 3 is as follows. The first section is introduction. In the section 2
main theorem on stability of problem (3.1) is established. Section 3 establishes the stability
estimates for the solution of three problems for partial differential equations of third order in
t. Section 4 numerical analysis.

3.2 Main theorem on stability
Let us give some lemmas that will be needed bellow

Lemma 3.2.1 , Fort > 0 the following estimate holds

A2S(1)

<1 34

H—H

Hexp{:l:itA%}HH_)H <t, lcol,., <1,

Proof. Applying the spectral representation of unit self-adjoint positive definite operator A,
we get
Hexp{:l:itA%}H < sup ‘exp{:l:itl%}‘ =1. (3.5)
H—=H  §<)<oo
The proof of estimates ||C (¢)||
(3.5), formulas (3.2) and (3.3). m

< 1 is based on the estimate

H—H
i H—H

Er HA%S(r)
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Lemma 3.2.2 [12] Assume that |1+ Ba| > |a+ B|. Then the operator A defined by the

following formula
A=(14+aB)I—(a+B)C(A), 0<ALI.

has a bounded inverse T = A~ and the following estimates holds

1

1Tl am < Tl a T Bl (3.6)

Proof. Using estimate (3.4) and triangle inequality, we can write

11+ aB)I—(a+B)C(M)lun

2 [0+ aB)gon = I(@+B)C (M) an

> [1+ap|=[e+BlIC(A)gn = 1 +aB| —[a+B].

Therefore,
Al = 1+ af|+|a+B| > 0.

From that it follows estimate (3.6). Lemma 3.2.2 proved. m

Lemma 3.2.3 Suppose that ¢ € D(A), y € D (A%) ,E€D (A%) and f(t) is continuously
differentiable on [0,1]. Then there is unique solution of problem (3.1) and the following
formulas hold

u(t)=yu(A)+@+S(t) [w+au ()] +A" 1 I-C(1)) [€+Bu" ()]
+/1A_I(I—C(t—s))f(s)ds, (3.7)
0
u(h) = 7 {0+ () [ @)+ ] +47 1=C(A)
A
x[§+[3u”()t)]+/0 A—‘(I—C(,l-s))f(s)ds}, (3.8)
W (A)=T{I-BCA)[CA)y+S(A)&

+/0/IS(A—s)f(s)ds} +BS(1)
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A
% [—AS(A)y/+C(/l)§+/O C(}{—s)f(s)ds]}, (3.9)
W' (A)=T{(I-aC(A))[-AS(A)y+C(1)§

_|_/OAC(A—s)f(s)dsJ —0AS(A)

% [C(A)l//—kS(?L)é-I—/O)LS(/I—s)f(s)ds]}. (3.10)

Proof. Obviously, we can write

for all u(r) € D(A). Therefore, problem (3.1) can be obviously rewritten as the equivalent
nonlocal boundary value problem

d‘;_([’) =v(t),0<t < 1,u(0)=yu(d)+o,
G.11)
d*v(t)

dr?

+Av(t) = f(t), v(0) =av(A)+y,V(0) =BV (A)+¢
for the system of linear differential equations. Integrating these equations, we can write

u(t) = u(0) + [y v(s)ds,
(3.12)
v(t) =C(t)v(0)+S(t)V (0)+ f3 S (t —s) £ (s)ds.

Applying (3.2) and (3.3) we can write

/0 ' Sl)din= —A~ G ~Da

du(t
From that and equation L;(t ) =v(t) it follows v (0) = «’ (0),/ (0) = &” (0) and

u(t) =u(0)+S(1)u’ (0)—A~(C(r) —I)u”(O)+/0tA_1 (I-C(t—s))f(s)ds. (3.13)
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Applying (3.13), nonlocal conditions u (0) = yu(A) + @,u’' (0) = o (1) + v, and
u” (0) = Bu" (L) + &,we get formula (3.7). Puttingz = A in (3.7), we get

uA)=yu(A)+@+SA) [od (A)+y] —A"H(CA)—1) [Bu" (A) +E&]

A
+/0 AL —ei—a) Flsas

From that it follows (3.8) for u (A1) .Therefore, we will obtain «’ (1) and u” (1) . Taking first
and second order derivatives from (3.7) and putting r = A, we get

A
W/(A) =C(A) [l (A) +y] +S(A) [Bu” (A) +€] +/0 §—5) £ ()ds,

A
u' (L) =-AS(A) [au' (A)+ l[l] +C(A) [Bu" (1) —H:] +/0 C(A—s)f(s)ds.

Therefore, for obtaining u' (1) and «” (1), we have the following system of two equations

A
[I—aC@A)]u (2)=BS(A)u" (A) =C(A)y+S(1)& +/O S(A—s)f(s)ds,

A
aAS(A)u' (A)+(I—BC(A))u" (A) = —AS(A) y+C(A) & +/0 C(A—s) f(s)ds.

It is clear that
(I—OCC()L))(1—[3C(/1))+Ot[3AS2 A)=(1+aB)I—(a+B)C(A).

By lemma 3.2.2 the operator A = (1 +af)I — (a+ B)C () has bounded inverse T = A~
Therefore, we can get formulas (3.9) and (3.10). Lemma 3.2.3 is proved. m
Now we will formulate the main theorem

Theorem 3.2.4 Suppose that ¢ € Hyy € D(A), & € D (Al/ 2) and f(t) is continuously
differentiable on (0,1]. Then there is a unique solution of problem (3.1) and the following
inequalities hold

{
P [lu(t) ]|

0<r<1

<M(y) {||(p||H +atv], +lla="E], + max HA“f(t)HH}, (3.14)

du
A=
dt

d3u(t)
dr3

+ max
H 0<t<1

max
0<r<1

H
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A2

&[], + 1, @l + max ||/ IIH} (3.15)

0<r<1

<m{laviy+
where M,M () do not depend on f(t), @, v, &.

Proof. First, we estimate ||u()||, for z € [0,1]. Applying the triangle inequality, formula
(3.7), and estimates (3.4), we get

lu@llg < [P 1lw )5+ @lla

”H—)H

<[flatv], +1atat o]
=@l [IATE |l +1BIA™ " ()] ] + / 11 =C (e =5)ll s |7 £5) |y ds

<)+ ol + a2 w]|, +lel 4=t )|, +2[la7¢],,
+2(B|||A™"u" ( l)HH+2max A=t r @)l (3.16)

forany ¢ € [0, 1]. Applying the triangle inequality, formula (3.8), and estimates (3.4), we
get

el < 5= (bt + fats ], (o], + o ot ],

=)l [ATE N+ 1BI]A " )] ]

O M }
0

1

£ =Y {||‘P||H+HA‘%WHH+|05|HA—%u’(l)HHJrznA—lé“H
+2|B| ||A~ " ( ||H+20r2ra<xIHA ft)HH} (3.17)

Using estimates (3.16) and (3.17), we get

lu(t)lly < % {II(pIIH+ HA*%WHH +|af HA*%L/ (A)HH+2 lA7'Ell,  (3.18)

0<r<1

2B 47" (W) +2.max, 14~ £ HH}
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+lolly+ [a~bu]| +lad[a=de )| +2[a'E]l,

+2|ﬁ|“A L /1)||H+2max HA Lrte) HH

0<r<1

< [|1|Y|}’|+1] [||(P“H+HA H +|a|HA g )HH]

2] (1A 1811710 )+ s, 4™ 70

|1 | 0<r<l1

for any 7 € [0, 1]. Therefore, the proof of estimate (3.14) is based on following estimates

e,
SM.(a,ﬁ,w{||<p||H+HA—%wH +[A7E] + max, 4G nH} (3.19)
la™ " )l
<M B {lely-+ [atv], + 1478l + s a0l . G20

Applying formula (3.9), we get
ATt ) =T{a 3 1-Bc)[CR) w+S(A)E
1 A 1
+A‘7/O S(A —s)f(s)ds] +FATEBS(A)

A
x [—AS(A) y+CA)E +/0 olt) —s)f(s)ds] } .
Using the triangle inequality and estimates (3.4) and (3.6) , we get

|44 )|, < 1T {10~ BE DN [IC Al A2

A”S

*|

D175t sG], b0 o las] 101 fals )]

|

H—H

3 (A) ”HHHHA ’WH +IC )l ||A~ léHH

G /0 ICA =)l [A7F ],y d ]}
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< ||T||M{<1 +181) [HA-%wH +llAgl+ | A ||A“f<s>||Hds]

#1681 [atul], e+ [l rola] |
From that it follows estimate (3.19). Applying formula (3.10), we get

AN (M) =T {(I— aC(A)) [-S(A) y +C(A) A~
+/OAC(/I—S)A”1f(s)ds] —as(d)

x [C(l)w+S(l)r§+/OlS(l—s)f(s)ds]}.

Applying the triangle inequality and estimates (3.4) and (3.6), we get

lA=" W)l < 1Tl {1 = @C Al [ a2 R

H—H H

A
HICWlm a8+ | ||c<A—s>||MHA“f(s>IIHds]

+aats@)|,_, [HIC@ln 42w, + [a2s@)],, lIA7"E]

-9, ||A"f(s)||Hds] }
< ITlmsr {11+ Ll |20+l + /(f HA“f(s)HHds}

lal [t gl + I @l

From that it follows estimate (3.20). Combining estimates (3.18), (3.19), and (3.20), we
obtain estimate (3.4).

H—H [ H—H

du(t
Second, we estimate A% forr € [0,1]. Applying (3.7) and taking the derivative,
we get "
du(t) / " .
A— =AC(r) [w+ou' (A)] +AS (1) [+ Bu" (A)] + ASt 5)
Applying formula

/’AS(: —8) F(s)ds = —C(£) £(0) — /'C(r A, 321)
0 0
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we get

Adu(t)

S0 — AC() [y+ e ()] +AS (1) [E+Bu” (A)] - /Ct 5)

Using the triangle inequality and estimates (3.4), we get

du(t)
W . 71
&

L5 [IC Ol gy (1AW L + o] ||Ad’ (4)]|;] (3.22)

A,

+HICOlp—p ||f(0)||H+/||C(t—s)”H—+H £/ (5)]] ds
0

A

sol

|, +18

H—H [

<Ayl + el |[ad D],

+1BI

AR )|+ 1O+ max [1£0)]

for any ¢ € [0,1]. Now, we will estimate ||Au’ (1)||;; and ”A’i‘u”(l)HH .Applying formulas
(3.9), (3.21), and

=—f(A)+C(A)f(0)+ A c(A —S)f’ (s)ds, (3.23)
A A
/()C(A—s)f(s)ds=5(z)f(0)+/0 S0 =) (s, (3.24)

we get
A (A) =T{(I—-BC(A))[C(A)Ay +AS(A)&

A
—FA)+CA) £(0) +/O Cl = (s)ds] +BAS(A)
A
% [—AS(A)VH-C(/I)é +S(/1)f(0)+/ S(A —s)f’(s)ds] }
0

Using the triangle inequality and estimates (3.4) and (3.6) , we get

A2E

s

148 Q)| IT Nty {1 = BE AN [IC A s AW + .,

H—H
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A
I ) g—m + 1€ Al gy 1f (0)]] +/0 ICA=$)lg_n ”f/ (S)HH]

+1gl[[ads )|, [|lats@a H IAW Iy + 1€ W)l 426,

+ [ fatsa-9), 17 @l }

<INy {IBi [”A‘V”H+ %],

H—H

HIFO I+ 1 O+ [ 176l
+1BI [lawll; + |a%e]| +/l ||f'(s)||Hds}

SM{||Aw||H+HA%éHHHIf(o 1y + max |1 (s ||H}- (3.25)

0<r<1

Applying formulas (3.10), (3.21), (3.23), and (3.24), we get

AT (A) = AT {(I— aC(A)) [-AS(A) y +C (L) €
+/s AP ds]—aAS(A)

X[C(A>w+s< )E-AT'F(A)+ATIC(a +/ S G ]}

Using the triangle inequality and estimates (3.4) and (3.6) , we get

W), 14wy

a2 )|, < Tl || {1 = €€ Wl AT,

HIC®lalake], + [ Jatsa-9], I 6]

+lal

as ],

lc @by, +lats @), |

H%H[
A
IS Dl + 1€ A s 1 OVl + | ||c<a—s)HH%HHf’(s)HHds]}
<IT s | { 1+ 1)) [Nyl + a2

v L @l + Lo 1w+ [ate]
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A
+uﬂamﬂ+nfmmﬂ+[;nf&HMdﬂ}

SM@mwm

Combining estimates (3.22), (3.25), and (3.26), we obtain estimate

SO+ 7O} 629

0<t<1

du(t)

A
dt

max
0<1<1

<o {lavil,
H

+ £l + max || f'(c HH}-

0<r<1

From that and equation (3.1) and triangle inequality it follows that

d3u(t)
dr’

du(t)

< max
dt

g 0=i<l

max A

0<r<1

0<r<1

+ max [|£(1)]|
H

<mr{ il + [ate], + 1Ol + s 10, }-

0<r<1

The proof of Theorem 3.2.4 is finished. m
Moreover, we have the following theorem on stability.

Theorem 3.2.5 Suppose that y € D(A), & € D (A'/ 2) and f(t) is continuous on [0, 1] and

f(t)eD <Al/ 2) . Then there is a unique solution of problem (3.1) and the following estimate
holds
d3u(t)

max |(|——=—
dr

0<r<1

+ max
H 0<r<1

A—
dt ||y

0<r<1

<M {]|AV’||H+HA%§HH+ max HA%f(l)HH},

where M does not depend on f(t), v, &.

Proof. We will estimate ||A‘“’||H for t € [0,1]. Applying formula (3.7), and taking the
derivative, we get

)

= =AC(r) [w+ou' (A)] +AS (1) [+ Bu" (A +/ASt—s s)ds.

Applying the triangle inequality and estimates (3.4), we get

<ICO - 14V +lal 4 D))+ [ats o], [Jade],

H—H ”
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A%S(t—s)HH_)H/O’ A%f(s)”Hds

AZE

+18|

b))+

< lawll+lod 4w’ ()], + |

.

+181|

A%u"(/l)H + max ‘
H 0<i<1

AL f(r) H (3.27)

H

for any ¢ € [0,1]. Now, we will estimate ||Au’ (1)||;; . Applying formula (3.9), we get

Au' (M) =T{(I-BC(A))[C(A)Ay+AS(A)§
A
+/0 AS(/l—s)f(s)ds] +BAS(A)

A
. [—AS(A) w+C(A)E +/O c(A —s)f(s)ds] } .
Applying the triangle inequality and estimates (3.4), we get

AZE

4 Oy < T {1+ 180) 1w+
A

-|-/0 ‘ Hds]

+181 vl +[aig |, + [ [atr 0] 0o}

A%f(r)HH}. (3.28)

’

AR (s)

AZE

+max’

<M{|A ‘
<m{laviy+ At + max,

Now, we will estimate l

A2 (A) HH Applying formula (3.10), we get

AN (A) = T{(I—aC()L)) [—A%S(A)AWC(A)A%g
+/OAC(/'L—S)A%f(s)ds] _aAlS(A)

1 1 A 1 1 I
X [C(A)Aw+A?S(A)Af§+/O A2S(A —s)ALf (s)ds }

Using the triangle inequality and estimates (3.4), we get

A%E

At W), < 1Tl {0+l | [l + 43¢,
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A
A
0

Hal [lavil +[atg], + [ [atr )] a5}

o]

A%éH + max ‘
H

0<r<1

§M{||Au/[|H+’ A%f(r)HH}. (3.29)

Combining estimates (3.27), (3.28), and (3.29), we obtain estimate

o

max
dt

0<r<1

A%éH —|—max’
H 0<r<1

) <m{laviy+ s} e

From that and equation (3.1) and triangle inequality it follows that

du(t) du
22 ||, S 84|, T & Ol
1 1
<y {4yl +ae] latre) L.
<o {lavily + Jade], + s Jat 0],

Theorem 3.2.5 is proved. m

From Theorem 3.2.4 and Theorem 3.2.5 it follows the following theorem on stability.

Theorem 3.2.6 Assume that y € D(A), & € D <A1/ 2) and f(t) is continuously differen-

tiable on [0,1] and f(t) € D (Al/z) . Then there is a unique solution of problem (3.1) and
the following inequalities hold

d3u(t) du
max ||——=—|| -+ max |[|[A—
oe<t|| dr? ||y o<t dt|y
1 1
<ml|A ‘Ai “ ’Ai IH ,
<m{avily+ ke, + max Jats)],

\A‘”f(r)HH}},

min U0+ o, 170 g

where M does not depend on f(t), v, &.
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3.3 Applications

In this section we will consider three applications of main theorem 3.2.4. First, for the
application of the theorem 3.2.4 we consider the nonlocal boundary value problem for a third
order partial differential equation

( Au(t,x)

T—(a(x)u,x)x—f—Su,(t,x) =f(t,x), 0<t<1,0<x<,

u(0,x) =yu(A,x)+ ¢ (x), wu(0,x) = (A,x)+y(x),0<x<I,
(3.31)

U (0,x) = Bup (A, x)+E(x), 0<x<I,0<A<]1,

u(t,0) =u(t,l), wu(t,0)=uc(t,l), 0<r<1.

\

Problem (3.31) has a unique smooth solution u(z,x) for smooth a(x) >a > 0, x € (0,1),
8 >0,a(l) =a(0), o(x), y(x), &E(x) (x € [0,1]) and f(,x) (r € (0,1), x € (0,])) functions.
This allows us to reduce problem (3.1) in a Hilbert space H = L, [0,/] with a self-adjoint
positive definite operator A* defined by (3.31 ). Let us give a number of corollaries of abstract
theorem 3.2.4

Theorem 3.3.1 For the solution of the problem (3.31), the stability inequalities

max ”“(la')HLg[O.l]

0<r<1
<M, [0‘2,5‘;‘, 1 Mo, + 1€l y0.0) + 1WliLy0, + ||§||Lz[0.]]] , (3.32)
o< %(t")‘ WS[O-I]+°r2?5x‘ 3—2(“') L,[0,1]
<M, [0‘2?5‘1 1ot Mo,y + 1L ©5 g0,y + 1 Wllw2po,y + ||é||wzl[0‘1]] (3.33)

hold, where My does not depend on f(t,x) and @(x), y(x), &(x).
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Proof. Problem (3.31) can be written in abstract form

d>u(t) Adu(t)
dr3 dt

=f(), 0<r<1,

(3.34)
u(0)=&u(A)+¢, u(0)=ou(A)+vy,
Uy (0) :Bun(l)'i‘é

in Hilbert space L, [0,/] for all square integrable functions defined on [0, /] with self-adjoint
positive definite operator A = A* defined by the formula

A'u(x) = — (a(x)uy) , + Ou(x) (3.35)
with domain
D(AY) = {u(x) s Uy Uy, (a(X)uy), € Lo [0,1],u(0) = u(l),u’(0) = u'(l)}.

Here f (1) = f(t,x) and u(z) = u(t,x) are respectively known and unknown abstract functions
defined on [0, /] with the values H = L [0,1]. Therefore, estimates (3.32)-(3.33) follow from
estimates (3.14)-(3.15). Thus, theorem 3.3.1 is proved. m

Second, let Q C R” be a bounded open domain with smooth boundary S, Q=QuUS.
In [0,1] x Q, we consider the boundary value problem for a third order partial differential
equation
( Pu(t,x) »n

3G ):I (ar(X)ur,),, = f(t,X), x=(x1,...,%) €Q, 0<1 <1,

u(0,x) = yu(A,x) + @(x), wu(0,x) = oy (A,x) + y(x),x € Q, (3.36)

Uy (0,x) = Buy(A,x) +&(x), x€Q,0<A <1,

\u(t,x)=0, XES,OSISI,

where a,(x), (x € Q), @(x), y(x), &(x), (x€ Q) and f(r,x) (x € [0,1]), x € Q are given

smooth functions and a,(x) > 0. We introduce the Hilbert space L, (), the space of integrable
functions defined on Q equipped with norm

1/2
I liacey = {J -+ ea lF )P i }
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Theorem 3.3.2 For the solution of the problem (3.36) the stability inequalities

max Hu(ta')“Lz(Q)

0<t<
<M [Ongfgl £ )y (@) + 1901l ) + WLy @) + ||5||L2(Q)] -, (3.37)
83
Jnax [lu(t, )llwzpo,) + max y?(t,-) £aft)
<M, [Orgtagl 17 My (@) + 15O,y @) + 1Wllwp ) + 16wy (Q)] (3.38)

hold where M, does not depend on f(t,x) and ¢(x), y(x), &(x).

Proof. Problem (3.36) can be written in abstract form (3.34) in Hilbert space L, (Q) with
self-adjoint positive definite operator A = A* defined by the formula

A*u(x) = —Y7_1 (ar(x)us,) % (3.39)

r=

with domain
D(AY) = {u(x) : u(x),ux, (x), (ar(x)ux,) € Ly (Q) ,1 <r <n,u(x) =0,x € S}.

Here f(t) = f(t,x) and u(t) = u(t,x) are known and unknown respectively abstract functions
defined on Q with the value in H = L, (©). So, estimates (3.37)-(3.38) follow from estimates
(3.14)-(3.15) and from the Theorem 2.3.3 on coercivity inequality for the solution of the
elliptic differential problem in L, (Q). Thus, theorem 3.3.2 is proved. m

Third, we consider the nonlocal boundary value problem for a third order partial differen-
tial equation
( u(t,x) m

TR Y. (6w )+ B8t 2) = F(Bx);, &= [Hyunliy) €0, O € T,
r=1

u(0,x) = yu(A,x) + @(x), u(0,x) = our(A,x)+ y(x),x € Q,
u(1,x) = Bup (A, x)+E(x), x€Q, 0< A < 1,

P)
\ a—’%(o,x)zo, x€S,0<r<1,

(3.40)
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where a,(x), x € Q, @(x), w(x), £(x), x € Qand f(t,x) (x € [0,1]), x € Q are given smooth
functions and a,(x) > 0, 7 is the normal vector to S .

Theorem 3.3.3 For the solution of the problem (3.40), the stability inequalities

max ||M(f7')||1,2((2)

0<r<l1
< M; [Orgg;] £, @) + 101l 0) + WL @) + 118 ||L2(Q)} (3.41)
e e M) +g3m |85
<M [0’2?5"1 128, (@) + 100, I, (@) + Wz (a) + 115w, (Q)] (3.42)

hold where M3 does not depend on f(t,x) and ¢(x), y(x), &(x).

Proof. Problem (3.40) can be written in abstract form (3.34) in Hilbert space L, (Q) with
self-adjoint positive definite operator A = A* defined by the formula

Atu(x) = — Z'r":l (ar(x)uy,) xr + Ou(x) (3.43)

with domain
D(AY) = {u(x) u(x), ux, (x), (ar(X)uy, ), € Lo (Q),1<r<m, aa’u =0,x€ S} .

Here f(t) = f(t,x) and u(t) = u(t,x) are respectively known and unknown abstract functions
defined on Q with the value in H = L, (Q) So, estimates (3.41)-(3.42) follow from estimates
(3.14)-(3.15) and from the Theorem 2.3.5 on coercivity inequality for the solution of the
elliptic differential problem in L; (S_Z) .Thus, theorem 3.3.3 is proved. m

3.4 Numerical Experiments

When the analytical methods do not work properly, the numerical methods for obtaining
approximate solutions of partial differential equations play an important role in applied
mathematics. We can say that there are many considerable works in the literature (for
instance, see [11], [12], [37], [40], [30]).

In the present chapter for the approximate solutions of a nonlocal boundary value problem,

we will use the first and second order of accuracy difference schemes. Numerically we show
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that the second order of accuracy for the approximate solution of the problem are more
accurate than the first order of accuracy difference scheme. We apply a procedure of modified
Gauss elimination method to solve the problem. Results of numerical experiences are given.

3.4.1 The First Order of Accuracy Difference Scheme

We consider the nonlocal boundary value problem

[ Qu(t,x) u(t,x)
81‘3 - 0102 =f(t,X),

flt,x) =2 "'sinx,0<t<1,0<x<m,
1 LY
u(0,x) = zu(l,x)+ | 1— 2 ) S0 0<x<m,
e
(3.44)

1
ur(0,x) = %u,(l,x) - (l - 4—) sinx, 0 <x <,
e

1
uy (0,x) = Alfu,,(l,x) + (1 - @> sinx, 0 <x <,

u(t,0)=u(t,r)=0,0<r<1
for a third order partial differential equation. The exact solution of problem (3.44) is
u(t,%) =e " sinz.

For the approximate solutions of boundary value problem (3.44), applying formulas (2.36)
and
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\

( (trg1) — 20 (1) + 4 (1)

2 - um(tk+l) = O(T)7

) =u0) _ 10y o), D =41 =)

_ 0wy = o),

u(27) —2u(7) +u(0)
72

—u"(0) = 0(7),

=20 D229y = o(a),

we get the first order of accuracy in ¢ difference scheme

/

ult? — 3kl 3k — k-1
T3

2

k+1 k+2 k+1 k+2 k+1
wt—=2(uyc —u +u T —utT
_ ntl n+1 ( n n ) n—1 n—1 :f(tkaxn)a

Th?

fte,xn) = —2e sinx,, tp =kt, | <k<N-2,
1<n<M-1,

Nt=1,x,=nh, 1<n<M-1, Mh=rm,

1
—) sinx,, 0<n<M,
4e

Il
FN-
=§2

+

e
|

2 1 0 N N—1 N-2
us—2u, +u u, —2u +u 1 .
n n n 1%, n n 1 sinx,,

(3.45)
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It is the system of algebraic equations and it can be written in the matrix form

{ Aupi1+Bup+Cuypy =D@,, 1<n<M-1,
- -

up=0, uyy=0.

Here, i i
00 0 00 O
00a —a -~ 00 O
000 a - 00 O
A=@=| : ,
000 O -0 a —a
000 O - 00 O
L0000 =00 0 |pmympren
10 0 0 0 0 0 0 —
b -3b 3b—c b-c 0 0 0 0 0
0 b -3b 3b—c c—b 0 0 0 0
0 0 b -3b 3b-—c 0 0 0 0
B— : i : : : :
0 0 0 0 0 3b—c c¢c—b 0 0
0 0 0 0 0 -3b 3b—c c—b 0
0 0 0 0 0 b —3b 3b—c c—b
1 1 1 1
L B T
- S 0 0 0 -2 2@ —
where
| b 1 2
ad—= —x= — —_— _—
Th?’ 7 T
( (P}]I( = f(tkvxﬂ) = —2e % SiIan, )
h=kt,1<k<N-2,1<n<M-1,
(pl(‘l) 1
Oy 3 (p,(,) = <1 —4—) sinx,,0<n<M,
. b e
oy !
nod(N+1)x1 (p,/,‘"lz—(l—4—>sinx,,,0§n§M,
e
1
(p,],V: <1 ——) sinx,,0<n<M
4e

(3.46)

(N+1)x (N+1)
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and D = Iy is the identity matrix,

Us = : , s=n,ntl.

wz

(N+1)x1

Therefore, for the solution of the matrix equation (3.46), we will use the modified Gauss
elimination method. We seek a solution of the matrix equation by the following form:

u}l:all+1ull+l+ﬁn+]7 n=M-1,..,1, (347)
_) .
where uy = 0, @; (j=1,...M—1) are (N+1) x (N + 1) square matrices, f; (j =

l,...M—1)are (N+1)x 1 column matrices, &, B are zero matrices and

Opi1 = —(B+Coy) ' Ay, (3.48)
Brs1 = (B+Coy)~ (D@, —CBy),n=1,...M—1.

As the Chapter 2, the errors are computed by

EY = max ‘u(tk,xn) —uk (3.49)

0<k<N,1<n<M-1

of the numerical solutions, where u(t,x,) represents the exact solution and uX represents
the numerical solution at (#,x,) and the results are given in the following table

Difference schemes/N,M 20,20 40,40 80,80

(3.50)
Difference scheme (3.45) 1.3634¢—02 6.9241¢—03 3.4853¢ —03

As it is seen in Table 3.50 , we get some numerical results. If N and M are doubled, the
value of errors decrease by a factor of approximately 1/2 for first order difference scheme.

3.4.2 The Second Order of Accuracy Difference Schemes
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Now, we will consider the high order of accuracy difference schemes for the approximate
solution of the problem.

First, for the approximate solution of boundary value problem (3.44), applying formulas
(2.36),(2.43) and

([ utir1) — 2ur(ztk) e % [ (tr1) +u” (t-1)] = O(7%),

W) Z2000) +01) 2 - L )+ )] = 0(2),

—u(27) +4u(t) — 3u(0)
27

—u'(0) = 0(?),

3u(1) —4u(1—1)+u(l—21)
2T

—M/(l) — O(Tz)a

—3u(37) +4u(27) — Su(t) + 2u(0)
T2

- u”(O) = 0(12)7

—3u(1) +4u(1 — 1) —5u(1 —27) 4+ 2u(1 — 37)
\ 72

- “”(1) = 0(1‘-2)7

we get the second order of accuracy in ¢ difference schemes
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and

t=kt,2<k<N-2,1<n<M-—1,

Nt=1,x,=nh, 1<n<M-1, Mh=rm,
1
ugzéuf}'%—(l—@)sinxn,OgnSM,

—12 +4ul —3u0 _ l3uf¥—4unN_l +ulV 2
27 4 27

1
— (1 ——> sinx,,0<n<M,
4e

—u3 + 41 — 5ul + 210
12
0<n<M,

=1
— 3

2ul —Sul) = - 4ull =2 —ulV 3 n
Tz

1Y .
1— @) sinx,,

ub=uk, =0,0<k<N

99
(0 — 32+ 3uy — u) =20 g —2up Uy
73 47h?
Ly =20 ) (g — 2+
4th?
1 t
= f( l’x”);f( 2,x,,) — —(e“'l +e"2)sinxn,
1<n<M-1,
ubt2 oyt gkl k=2
2173
k42 k+2 k—2 : k—2
unj_—l - 2uﬁ+2 +unt1 - <un+l _2”4; 2 +un—l>
4th?
= Fltimn)y [ lBetn) = —2 sing,, (3.51)
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u3 —3L42—|—3ul —uO

n+l_2u +u 1+ul21+l 2uf +un 1
4th?

+( n+1 — i, +un l)+( n+l_2un+un 1)
47h?

= f(tlaxn) +f(t25xn) i _(e—fl +e_'2)sinx,,

2
1<n<M-1,
ukt2 — gkl 4 ppk—1 y k-2
273

e LY P (”n+1 2uk2 4+ uf )

n+1 n—1
8Th?

k+1 k+1 k+l k—1 k 1
un+1 2u +u (un-H 2u +un l)

47h?

(3.52)

= fltes®n)s Fltpsmn) = —2e % sinxy,
t=kt,2<k<N-2,1<n<M-1,

Nt=1,x,=nh, 1<n<M—-1, Mh=m,

1
uS:%uQ’%—(l—@)sinxn,OgngM,

e

u 1 n — I—_ S1 ns
0 < n < M?

—uﬁ+4u%—5u}1+2u2 _ l2unN—-5unN_] +4ufy_2—u,’y_3
72 ! P

1
+ (1 — @) sinx,,

0<n<M,

=uk, =0,0<k<N

Ve
<
o=
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This system can be written in the matrix form (3.46), too. Here,

00 0 0 0 00 0 0
a —a —a 0 00 0 O
a0 0 0 -a 00 0 0
A=C=|00 0 0 0 00 —a 0
00 0 0 0 00 0 —-a
00 0 0 0 a0 0 0
00 0 0 0 00 0 0
(00 0 0 0 00 0 0
X z
B=| : : :
w Y (N+1)x (N+1)
where
1 0 0 0
—2b—2a 6b—2a —6b+2a 2b+2a
X=| —b-c 2b 0 —2b
0 —b—c 2b 0
0 0 —b—c 2b
0000 —1]
0000 O
Z=|0000 0 |,
0000 O
(0000 0
[0 0o 0 0 0]
0 0 0 0 0
wW=|0 0 0 0 0],
= % m U 0
| 2 -2 % Z 0]

d (N+1)x(N+1)

0

0
b+c |,
—2b

0
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0 —2b b+c 0 0
2b 0O -2b b+c O
Y= -b—c 2b 0 —2b b+c |,
1 1 3
0 0 -5 2 —&
0 P | I |
L 412 72 472 272
1 b 1 1
= ——— = — = ——
4th?’ 273’ 2Th?’

( OF = Flty, %) = —2e % sinx,
t=k1,1<k<N-2,1<n<M-1,

f(tl ,xn) +f(t27xn)

@° Oy = > = —(e " 4+ e ") sinx,,
o= : , 1§n§M—11,
N 0_ [1_2\a
@n 1 (vi1yxa 0, = (1 4e> sinx,,0<n<M,
1
‘P,’,V—l = — <1 — £> sinx,;,0 <n <M,

1
Y = <1 — @) sinx,,0<n<M

for difference scheme (3.51) and

o000 0 0 -~ 0 0 0 0 O
a a —a —a 0 - 0 0 0 0
jaa 0 —a —3a -~ 0 0 0 0
A=C=10 0 0 0 0 0 —a —4a 0 0 :
000 0 0 —a —1a 0
000 0 O la a 0 -a -la
00 0 0 0 00 0 0 0
000 0 0 =~ 0 0 0 0 0 [,

(N+1)x(N+1)
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where

—b—2a

X = —b—a -2b—2a

0
—2b—2a
Y= —b—a
0
0

S O O O O
S O © O O
S O © O O
S O o O O

|
S o o o

s~ © © ©
.o o oo

UYL © © ©

0 0
2b+2a 0
—2b+2a b+c

0 —2b+2a
—2b—2a 0
.

&

0

01,

0

O .

0 0

b+c 0

—2b+2a b+c

AL _3
27 87
5 1

)

4t

T 222
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(prl; = f(tkvxn) = —2e 'ksinxy,,
t=kt,1 <kSN-2,1<n<M-1,

1 _ Sf(t1,30) + £(82,%)

o o 2 = —(e7" +e™?)sinxy,
On = : 5/S
N 1<n<M-1,
Pn (N+1)x1 |
(p,? — (1 = 5) sinx,,0<n <M,
1
N1 = — (l — 4—e-) sinx,,0<n <M,

1 ;
(p,’,V: <1_4_e> sinx,,0<n<M

\ 7

for difference scheme (3.52). Therefore, for the solution of the matrix equation (3.46), we

will use the same formulas (3.47), (3.48) and the errors are computed by formula (3.49).
Numerical results are given in following tables

Difference schemes/N,M 20,20 40,40 80,80

Difference scheme (3.51) 1.1098e — 03 3.0032¢ — 04 7.8051e —05
(3.53)

Difference scheme (3.52) 9.0486e — 04 2.4530e — 04 6.3796e — 05

As it is seen in Table 3.53, we get some numerical results for difference schemes (3.51),(3.52).
Note that if N and M are doubled, the value of errors decrease by a factor of approximately
1/4 for second order of accuracy in 7 difference schemes (3.51),(3.52).

Note that difference schemes (3.45), (3.51) and (3.52) are generated by the operator A.
Second, we consider the difference scheme generated by the operator A and A2. For the
approximate solution of boundary value problem (3.44), applying formulas (2.36),(2.43) and
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(u(tperr) —2u(te) +ut—1)
72

u”(tk) = 0(1‘.2)7

—3u(3h) +4u(2h) — 5u(h) + 2u(0)
h2

—u'(0) = 0(R2),

—3u(1) +4u(1 — k) — 5u(1 — 2h) + 2u(1 — 3h)
h2

- Ll”(l) = 0(h2)7

u(xp12) —du(xy41) +6u(x,) — du(xp—1) + u(x,—2)
\ ht

—u® () = 0(n?),
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we get the second order of accuracy in ¢ difference scheme

(

ui_3u%+3urll_u2 _ un+1 —2u +u -1 +un+1 _2u +un 1
73 41h?

+( n+l_2u +un 1)+( n+1_2u0+un I)

4th?
t b, - _ .
= f l’x");f(z Xn) =—(e""4+e2)sinx,, 1 <n<M-1,
ubt2 — gkt k=1 _ k=2
273

uk+1—2uf§+l+uﬁfll—(n+l 2uk=1 +uk- )

n+1
27Th?
13— 6 —aak
+T
8tht
k

i Uy o — Al | 6y —dul |+l

8tht

= f(tkvxn)a f(tern) = _2e_rk Sil’lxn,
=kt 2<k<N—2,

Nt=1,x,=nh,2<n<M-2, Mh=m,

1
MBZ%L{N—F(]—@) sinx,, 0<n<M,

—u+dul —3ud | 3ul —dul T ul 2 ( 1),
1 — | 1—— ) sinx,,

27 A 2T de
0<n<M,
—u,3, +4u,2, —5u,‘1 +2un 1 2u N 5uN 4 +4uN 2 unN_3
2 =17 2

4
S

1
l——) sinx,, 0 <n<M,
4e

(3.54)
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It is the system of algebraic equations and it can be written in the matrix form

Fup2+Auyiy+Buy+Cupy+Euy 2 =D¢@,, 2<n<M-2,
(3.55)

— — — —
up=0, upyy=0,—us+4uy) —S5u; = 0,—Sup;_1 +4up—» —upy—3=0.

Here,
(00 0 00 0 0 0 0 0]
00 0 00 0 0 0 00
00 —b 0 b 0 0 0 00
F=E=[00 0 00 b 0 b 00 ;
00 0 00 0 —b 0 b O
00 0 00 a 0 —b 0 b
00 0 00 0 0 0 00
00 8 00w @ 0 0 O8]y
i 0 0 0 0 0 0 0 |
—a —-a 0 0O 0 0 0 0
0 2a 4b —2a —4b 0O 0 0 0 0
A=C=|0 0 0 0 0 4b —2a —4b 0 0 ;
00 0 0 0 2a 4b —2a —4b 0
00 0 0 0 0 2a 4b —2a —4b
00 0 0 0 0O 0 0 0 0
(00 0 0 0 -0 0 0 0 0 [, o
X Z
B= : . s 3

(N+1)x (N+1)

where
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1 0 0
—2c—2a 6c—2a —6¢+2a
—c 2c—4a —6b
0 —c 2c—4a
0 0 —c
0000
0000
T
0000
0000
[0 0 o
0 0 0
W=1] 0 0 0
=5 2 _1
2T ] 27
2 _5 A4
L 12 72 72
—6b —2c+4a c+6b
2c—4a —6b —2c+4a
—c 2c—4a —6b
1
s 4 i
0 pr ~
1 72
P b_
T’ T su®

0
2c+2a
—2c+4a
—6b
2c—4a

1

]
0
O b
0

S O O O O

0
0
c+6b
—2c+4a
—6b

c+6b

87

T2
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(PrI; = f(tx,xn) = —2e ksinx,,
h=kt,2<k<N-2,1<n<M-1,

1 _ f(tlaxn) +f(t2,xn)
(Pn - 9

0
@n 1<n<M-1,

= —(e™" 4+ e72)sinxy,

On

oY 0 1Y
(N+1)x1 0, = 1—4— sinx,,0<n<M,
e

1
oMl =— (1 —@> sinx,,0<n<M

1
ol = (1 —@> sinx,,0 <n <M.

By using the modified Gauss elimination method, we can reach to the solution of uX,0 <
k<N, 0<n<M. Actually, we seek a solution of the matrix equation (3.55) by the
following form

(

Up = Oyt 1Up+1 +ﬁn+]un+2+}/n+lv n=M-2,---,2,1,

uy =0,

up—1 = [(Bu—2+5I) — (4 — og—2) ayr—1] " [(4 — 0pr—2) -1 — Yu—2) ,

\

where «;,8; and y;, j =1,---M — 1 are calculated as

Oyt = _(B+Can +Eﬁn—l +Ean—lan)_] (A+Cﬁn +Ean—lﬁn)7
ﬁn-i—l = _(B+Can +EBn—l +Ean—lan)_1 (F),

Yh+1 = (B+Can +EBn—l +Ean—lan)_1 (D(Pn _C'Yn _Ean—l'Yn _E’Yn—l)

with o and By are (N+1) x (N+1) and 3 and 7, are (N + 1) x 1 zero matrices and



110 Stability of Nonlocal BVP for a Third Order Partial Differential Equation

4 1
4 g) 0 -1 0l 0
0% ....0 0 —z 0
* = : S % : B2 = : i
9 1
00 5 1 (N+1)x(N+1) 0 0 - -3 (N+1)x (N+1)

Numerical results are given in following table

Difference schemes/N, M 20,20 40,40 80,80
(3.56)
Difference scheme (3.54) 9.0743¢ — 04 2.4432¢ —04 6.3629¢ — 05

As it is seen in Table 3.56, we get some numerical results for difference scheme (3.54).
Note that if N and M are doubled, the value of errors decrease by a factor of approximately
1/4 for second order of accuracy in ¢ difference scheme (3.54).

The errors presented in these tables indicates the accuracy of difference schemes. We
conclude that, the accuracy increases with the second order approximation.

3.5 Appendix Matlab Programming

3.5.1 Matlab Implementation of Difference Schemes (3.45), (3.51) and
3.52)

function TT(N,M)
if nargin < 1; end;
close;close;
Yofirst order
tau=1/N;
h=pi/M;
a=-1/(h"2);
b =-1/(tau”3);
c =-2*a-3%b;
A=zeros(N+1,N+1);
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for i=2:N-1;
A(i,i+1)=1/(tau*(h"2));
A(1,i+2)=-1/(tau*(h"2));
end;

A;

C=A;

B=zeros(N+1,N+1);

for i=2:N-1 ;

B(1,i-1)= -1/(tau”3);
B(i,1)=3/(tau"3);
B(1,i+1)=(-3/(tau”3))-2/(tau*(h"2));
B(i,i+2)=(1/(tau”3))+2/(tau*(h"2)) ;
end;

B(1,1)=1;

B(1,N+1)=-1/4;
B(N,1)=-1/tau;
B(N,2)=1/tau;
B(N,N)=1/(4*tau);
B(N,N+1)=-1/(4*tau);
B(N+1,1)=1/(tau”2);
B(N+1,2)=-2/(tau"2);
B(N+1,3)=1/(tau"\2);
B(N+1,N+1)=-1/(4*tau”2);
B(N+1,N)=2/(4*(tau2));
B(N+1,N-1)=-1/(4*tau"2);
B;

D=eye(N+1,N+1);

for j=1:M+1;

for k=2:N-1;

fii(k,j) =-2*exp(-tau*(k-1))*sin((j-1)*h);

end;

fii(1,5) =(1-(1/(4*exp(1))))*sin((-1)*h);
fii(Nj) =-(1-(1/(4*exp(1))))*sin((-1)*h);
fil(N+1,j)=(1-(1/(4*exp(1))))*sin((j-1)*h)

end;
alpha{1}=zeros(N+1,N+1);
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betha{1}=zeros(N+1,1);

for j=2:M;

Q=inv(B+C*alpha{j-1});
alpha(j)=-Q*A;
betha{j}=Q*(D*(fii(:,j))-C*betha{j-1});
end;

U=zeros(N+1,M+1);

for j=M:-1:1
U(:,j)=alpha{j}*U(:,j+1)+betha{j};
end

"EXACT SOLUTION OF THIS PROBLEM’;
for j=1:M+1 ;

for k=1:N+1 ;

es(k,j) =(exp((-k+1)*tau))*sin((-1)*h);
end;

end;

figure ;

m(1,1)=min(min(U))-0.01;
m(2,2)=nan;

surf(m);

hold;

surf(es) ; rotate3d ;axis tight;
titleCEXACT SOLUTION”);

figure ;

surf(m);

hold;

surf(U) ; rotate3d ;axis tight;
titleCFIRST ORDER’);

% ERROR ANALYSIS.;
maxes=max(max(es)) ;
maxerror=max(max(abs(es-U)));
relativeerror=maxerror/maxes;
cevapl = [maxerror,relativeerror] ;

% Difference scheme 1 Second order
a =(1/4)*(1/tau)*(1/(h"2));

b =(1/2)*(1/(tau”3));
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¢ =(1/2)*(1/tau)*(1/(h"2));
A=zeros(N+1,N+1);
B=zeros(N+1,N+1);

for i=3:N-1;

A(i,i-2)=a;

A(1,i+2)=-a;

end;

A(2,1)=a;

A(2,2)=a;

A(2,3)=-a;

A2,4)=-a;

A;

C=A;

for i=3:N-1;

B(i,i-2)=-b-c;
B(i,i-1)=2%Db;
B(1,i+1)=-2%b;
B(i,i+2)=b+c;

end;

B(1,1)=1;

B(1,N+1)=-1/4;
B(2,1)=(-1/(tau"3))-(2*a);
B(2,2)=(3/(tau”"3))-(2*a);
B(2,3)=(-3/(tau”"3))+(2*a);
B(2,4)=(1/(tau3))+(2*a);
B(N,3)=-(1/2)*(1/tau);
B(N,2)=2/tau;
B(N,1)=-3/(2*tau);
B(N,N-1)=-1/(8*tau);
B(N,N)=1/(2*tau);
B(N,N+1)=-3/(8*tau);
B(N+1,1)=2/(tau”"2);
B(N+1,2)=-5/(tau"2);
B(N+1,3)=4/(tau”2);
B(N+1,4)=-1/(tau"2);
B(N+1,N+1)=(-1/2)*(1/(tau”2));
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B(N+1,N)=(5/4)*(1/(tau2));
B(N+1,N-1)=-1/(tau"2);
B(N+1,N-2)=(1/4)*(1/(tau”2));

B;

for j=1:M+1;

for k=3:N-1;

fii(2,j) =-(exp(-tau)+exp(-tau*2))*sin((j-1)*h);
fii(k,j) =-2*exp(-tau*(k-1))*sin((j-1)*h);
end;

fii(1,j) =(1-(1/(4*exp(1))))*sin((j-1)*h);
fii(N,j) =-(1-(1/(4*exp(1))))*sin((j-1)*h);
fii(N+1,j)=(1-(1/(4*exp(1))))*sin((j-1)*h);
end;

alpha{l}=zeros(N+1,N+1);
betha{1}=zeros(N+1,1);

for j=2:M;

Q=inv(B+C*alpha{j-1});
alpha(j)=-Q*A;
betha{j}=Q*(D*(fii(:,j))-C*betha{j-1});
end;

U=zeros(N+1,M+1);

for j=M:-1:1
U(:,j)=alpha{j}*U(:,j+1)+betha{j};

end

figure

surf(m);

hold;

surf(U) ; rotate3d ;axis tight;

title(’1 SECOND ORDER”);

% ERROR ANALYSIS.;
maxes=max(max(es)) ;
maxerror=max(max(abs(es-U)));
relativeerror=maxerror/maxes;

cevap2 = [maxerror,relativeerror] ;

% Difference scheme 2 Second order

a =(1/4)*(1/tau)*(1/(h"2));
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b =(1/2)*(1/(tau”3));
A=zeros(N+1,N+1);
B=zeros(N+1,N+1);
for i=3:N-1;
A@1,i-2)=(1/2)*a;
A(,i-1)=a;
A(,i+1)=-a;
A(,1+2)=-(1/2)*a;
end;
A(2,1)=a;
A(2,2)=a;
A(2,3)=-a;
A(2,4)=-a;
e

=A;
for i=3:N-1;
B(i,i-2)=-b-a;
B(1,i-1)=(2*b)-(2*a);
B(1,i+1)=(-2*b)+(2*a);
B(i,i+2)=b+a;
end;
B(1,1)=1;
B(1,N+1)=-1/4;
B(2,1)=-(2%b)-(2*a);
B(2,2)=(6*b)-(2*a);
B(2,3)=(-6*b)+(2*a);
B(2,4)=(2*b)+(2*a);
B(N,3)=-(1/2)*(1/tau);
B(N,2)=2/tau;
B(N,1)=-3/(2*tau);
B(N,N-1)=-1/(8*tau);
B(N,N)=1/(2*tau);
B(N,N+1)=-3/(8*tau);
B(N+1,1)=2/(tau”2);
B(N+1,2)=-5/(tau"2);
B(N+1,3)=4/(tau”2);
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B(N+1,4)=-1/(tau"2);
B(N+1,N+1)=(-1/2)*(1/(tau”2));
B(N+1,N)=(5/4)*(1/(tau2));
B(N+1,N-1)=-1/(tau"2);
B(N+1,N-2)=(1/4)*(1/(tau”2));

B;

for j=1:M+1;

for k=3:N-1;

fii(2,j) =-(exp(-tau)+exp(-tau*2))*sin((j-1)*h);
fii(k,j) =-2*exp(-tau*(k-1))*sin((j-1)*h);
end;

fii(1,j) =(1-(1/(4*exp(1))))*sin((j-1)*h);
fii(N,j) =-(1-(1/(4*exp(1))))*sin((j-1)*h);
fii(N+1,)=(1-(1/(4*exp(1))))*sin((-1)*h);
end;

alpha{1}=zeros(N+1,N+1);
betha{1}=zeros(N+1,1);

for j=2:M;

Q=inv(B+C*alpha{j-1});
alpha(j)=-Q*A;
betha{j}=Q*(D*(fii(:,j))-C*betha{j-1});
end;

U=zeros(N+1,M+1);

for j=M:-1:1
U(:,j)=alpha{j}*U(:,j+1)+betha{j};

end

figure

surf(m);

hold;

surf(U) ; rotate3d ;axis tight;

title("’2 SECOND ORDER’);

% .ERROR ANALYSIS.;
maxes=max(max(es)) ;
maxerror=max(max(abs(es-U)));
relativeerror=maxerror/maxes;

cevap3 = [maxerror,relativeerror] ;
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format short e :
cevap=[cevapl,cevap2,cevap3]

3.5.2 Matlab Implementation of Difference Schemes (3.54)

function FF(N,M)
if nargin < 1; end;
close;close;
Yofirst order
tau=1/N;
h=pi/M;
a=-1/(h"2);
b =-1/(tau”3);
c =-2*%a-3*D;
A=zeros(N+1,N+1);
for i=2:N-1;
A(i,i+1)=1/(tau*(h"2));
A(,i+2)=-1/(tau*(h"2));
end;
A;
C=A;
B=zeros(N+1,N+1);
for i=2:N-1 ;
B(i,i-1)= -1/(tau3);
B(i,1)=3/(tau”3);
B(1,i+1)=(-3/(tau”3))-2/(tau*(h"2));
B(1,i+2)=(1/(tau”3))+2/(tau*(h"2)) ;
end;
B(1,1)=1;
B(1,N+1)=-1/4;
B(N,1)=-1/tau;
B(N,2)=1/tau;
B(N,N)=1/(4*tau);
B(N,N+1)=-1/(4*tau);
B(N+1,1)=1/(tau”2);
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B(N+1,2)=-2/(tau”2);
B(N+1,3)=1/(tau’2);
B(N+1,N+1)=-1/(4*tau”2);
B(N+1,N)=2/(4*(tau”2));
B(N+1,N-1)=-1/(4*tau"2);

B;

D=eye(N+1,N+1);

for j=1:M+1;

for k=2:N-1;

fii(k,j) =-2*exp(-tau*(k-1))*sin((j-1)*h);
end;
fii(1.,§)=(1-(1/(4*exp(1))))*sin((j-1)*h);
fii(N,j)=-(1-(1/(4*exp(1))))*sin((j-1)*h);
fii(N+1,))=(1-(1/(@*exp(1))))*sin((j-1)*h);
end;

alpha{1}=zeros(N+1,N+1);
betha{1}=zeros(N+1,1);

for j=2:M;

Q=inv(B+C*alpha{j-1});
alpha(j)=-Q*A;
betha{j}=Q*(D*(fii(:,j))-C*betha{j-1});

end;

U=zeros(N+1,M+1);

for j=M:-1:1
U(:,j)=alpha{j}*U(:,j+1)+betha{j};
end

"EXACT SOLUTION OF THIS PROBLEM’;
for j=1:M+1 ;

for k=1:N+1 ;

es(k,j) =(exp((-k+1)*tau))*sin((G-1)*h);
end;

end;

figure ;

m(1,1)=min(min(U))-0.01;
m(2,2)=nan;
surf(m);
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hold;

surf(es) ; rotate3d ;axis tight;
titleCEXACT SOLUTION’);
figure ;

surf(m);

hold;

surf(U) ; rotate3d ;axis tight;
titleCFIRST ORDER’);

% .ERROR ANALYSIS.;
maxes=max(max(es)) ;
maxerror=max(max(abs(es-U)));
relativeerror=maxerror/maxes;
cevapl = [maxerror,relativeerror] ;
% Difference scheme 3 Second order
a =(1/4)*(1/tau)*(1/(h"2));

b =(tau"2)*(1/8)*(1/tau)*(1/(h"4));
¢ =(1/2)*(1/(tau”3));
A=zeros(N+1,N+1);
B=zeros(N+1,N+1);
F=zeros(N+1,N+1);

for i=3:N-1;

A(i,i-1)=(2*a);

A(,1)=4*b

A(,i+1)=-(2%a);
A(,i+2)=-(4%b);

end;

A(2,1)=a;

A(2,2)=a;

A(2,3)=-a;

A(2,4)=-a;

n

C=A;

for i=3:N-1;

F(i,i)=-b;

F(i,i+2)=b;

end;
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F;

E=F;

for i=3:N-1;
B(1,i-2)=-c;

B(i,i-1)=(2*%c)-(4*a);
B(1,i)=-(6*b);
B(1,i+1)=(-2*c)+(4*a);
B(1,i+2)=c+(6*b);

end;

B(1,1)=1;

B(1,N+1)=-1/4;
B(2,1)=-(2*a)-(2%c);
B(2,2)=(6*c)-(2*a);
B(2,3)=(-6*c)+(2*a);
B(2,4)=(2*c)+(2*a);
B(N,3)=-(1/2)*(1/tau);
B(N,2)=2/tau;
B(N,1)=-3/(2*tau);
B(N,N-1)=-1/(8*tau);
B(N,N)=1/(2*tau);
B(N,N+1)=-3/(8*tau);
B(N+1,1)=2/(tau"\2);
B(N+1,2)=-5/(tau2);
B(N+1,3)=4/(tau”"2);
B(N+1,4)=-1/(tau"2);
B(N+1,N+1)=(-1/2)*(1/(tau”2));
B(N+1,N)=(5/4)*(1/(tau2));
B(N+1,N-1)=-1/(tau"2);
B(N+1,N-2)=(1/4)*(1/(tau”2));
B;

for j=1:M+1;

for k=3:N-1;

fii(k,j) =-2*exp(-tau*(k-1))*sin((j-1)*h);
end;
fii(1,)=(1-(1/(4*exp(1))))*sin((j-1)*h);
fii(2,j) =-(exp(-tau)+exp(-tau*2))*sin((j-1)*h);
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fii(N.j)=-(1-(1/(4*¥exp(1))))*sin((j-1)*h);

fiil(N+1,j)=(1-(1/(4*exp(1))))*sin((j-1)*h);

end;

alpha{l}=zeros(N+1,N+1);

betha{1}=zeros(N+1,N+1);

gammaf 1 }=zeros(N+1,1);

gamma(?2}=zeros(N+1,1);

alpha{2}=(4/5)*D;

betha{2}=(-1/5)*D;

for j=3:M-1;

Q=inv(B+(C*alpha{j-1})+(E*betha{j-2})+(E*alpha{j-2}*alpha{j-1}));

alpha{j}=-Q*(A+(C*betha{j-1})+(E*alpha{j-2}*betha{j-1}));

betha{j}=-Q*F;

gamma{j }=Q*(D*(fii(:,j))-(C*gamma(j-1})-(E*alpha{j-2} *gamma{j-1})-(E*gammaf{j-
2}));

end;

T=inv((betha{M-2}+(5*D))-(((4*D)-alpha{M-2})*alpha{M-1}));

U=zeros(N+1,M+1);

U(:M)=T*((((4*D)-alpha{M-2})*gamma{M-1})-gamma{M-2});

for j=M-1:-1:1

U(:,j)=alpha{j}*U(:,j+1)+(betha{j}*U(:,j+2))+gamma{j};

end

figure

surf(m);

hold;

surf(U) ; rotate3d ;axis tight;

title(’3 SECOND ORDER’);

% .ERROR ANALYSIS.;

maxes=max(max(es)) ;

maxerror=max(max(abs(es-U)));

relativeerror=maxerror/maxes;

cevap2 = [maxerror,relativeerror]

3.5.3 Figures Presented by Numerical Experiences of Difference Schemes
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FIRST ORDER

/ 80
e 60
4

Figure 1-3 Solution of difference scheme
(3.45)for N = 80,M = 80.

1 SECOND ORDER

Figure 2-3 Solution of difference scheme
(3.51)for N = 80,M = 80.

2 SECOND ORDER

Figure 3-3 Solution of difference scheme
(3.52)for N = 80,M = 80.
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3 SECOND ORDER

Figure 4-3 Solution of difference scheme
(3.54)for N = 80,M = 80.

EXACT SOLUTION

Figure 5-3 Exact solution of problem (3.44) for
N =80,M = 80.






Chapter 4
Conclusion

In the present thesis, well-posedness of a local boundary value problem

Cul) 1 Au(e) = f(1), 0<t<1,

4.1)
u@©) =9, u(l)=y, (1)=¢
and a nonlocal boundary value problem
3
) A% — £(r), 0<t<1,
4.2)

u0) =yu(d)+o, u'(0)=oau'(A)+y.ly <1,
"(0)=Bu"(A)+&, [1+Ba|>|a+B],0<A <1

for third order partial differential equations in a Hilbert space H with a self-adjoint positive
definite operator A is investigated. It is well-known that various boundary value problems for
partial differential equations can be solved analytically by Fourier series, Laplace transform
and Fourier transform methods. Applying all these analytical methods, exact solutions of
several problems for third order partial differential equations with constant coefficients are
presented. Moreover, operator approach permit us to study local and nonlocal boundary
value problems for third order partial differential equations in arbitrary Hilbert space with
a self-adjoint positive definite operator. Theorems on stability estimates for the solution of
these boundary value problems are established. In practice, stability estimates for the solution
of several problems for third order partial differential equations are obtained. The differ-
ence schemes for the numerical solution of one-dimensional third order partial differential
equations are presented. Numerical results are given.



126 Conclusion

Thesis consists of four chapters. Chapter 1 consists of introduction and application of
Fourier series, Laplace transform and Fourier transform methods to getting analytically
exact solution of six problems for third order partial differential equations with constant
coefficients.

In Chapter 2 boundary value problem (4.1) for a third order partial differential equations
in an arbitrary Hilbert space with a self-adjoint positive definite operator A is investigated.
The following main theorems are proved.

Theorem 4.0.1 Assume that § > (%1n4)3 ,0eD(A),yeD(A),EeD (A2/3) and f(t)
is continuously differentiable on [0, 1]. Then there is a unique solution of problem (4.1) and
the following inequalities hold

t
Joax [lu(e) 1

SM@WM#W“H+WKMM+”WM+mM”ﬂMM}

0<r<l1

d3u(r)
dr3

Aut
i +£%HMUM

SM{||A¢||H+ vl + 472, +1£ @+ max ||f'<r)||H}7

where M does not depend on f(t), ¢, v, &.
Theorem 4.0.2 Assume that § > (%1n4)3 ,@eD(A),yeD(A),EeD <A2/3) and f(t)

is continuous on [0,1] and there exists f'(1) and f(t) € D (A'/ 3) . Then there is a unique
solution of problem (4.1) and the following inequalities hold

d3u(t)

max
dr3

0<r<l1

max |[Au(t
| g ()

SM{||A¢||H+||Aw||H+ [42¢]| + 17l + max HA'/-‘meH},

0<r<I
where M does not depend on f(t), @, v, &.
From Theorem 4.0.1 and Theorem 4.0.2 it follows the following theorem on stability.
Theorem 4.0.3 Assume that § > (_%1n4)3 ,0eD(A),yeD(A),EeD <A2/3) and f(t)

is continuously differentiable on [0, 1] and f(t) € D (A'/ 2 ) . Then there is a unique solution
of problem (4.1) and the following inequalities hold

d3u(t)

max
dr’

0<r<1

\H + max [lAu (o) 1y < M {lAglly + |awlly + |47
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i { 7O+ o 170l 7Dl + gua, 4270, b

0<t<l1

where M does not depend on f(t), @, v, &.

Three applications of main theorems are given. First, for the application of the theorem
4.0.1 we consider the boundary value problem for a third order partial differential equation

311
E a(tts,x) — (a(x)ux(t,x)), + Ou(t,x) = f(t,x), 0<t,x<1,
u(0,x) = @(x), u(1,x) = y(x), u(t,0) =&(x), 0<x<1, (4.3)

w(t,0) =t 1), 2(2,0)=u(x1), 0<Ei<].

Problem (4.3) has a unique smooth solution u(t,x) for smooth a(x) > a > 0,x € (0,1),
6 >0,a(1)=a(0), (x), y(x), &(x) (x€[0,1]) and f(¢,x) (r € (0,1),x € (0,1)) functions.
This allows us to reduce problem (4.1) in a Hilbert space H = L, [0, 1] with a self-adjoint
positive definite operator A* defined by (4.3). Let us give a number of corollaries of abstract
theorem 4.0.1.

Theorem 4.0.4 For the solution of the problem (4.3), the stability inequalities

[nax llut, Ml 0,11

<M [Orgflg] 1 Mo,y + 1L g0,y + 1€ o,y + Wl g0, + ||§HL2[0,1]] ;
33

u
o

(oax, [|u(t, )llwzo,y) + fmax il

=M [max £ (@5 Mo+ 17O Miyg0,1 + @ llwzio, 0 + W lwzion + 116 ||w22[0.1]]

0<t<1

hold where M does not depend on f(t,x) and @(x), y(x), &(x).

Second, let Q C R” be a bounded open domain with smooth boundary S, Q = QUS.
In [0,1] x Q, we consider the boundary value problem for a third order partial differential
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equation

( 3ll X L
P~ ¥ (a0 (1) % = (1.2,

=k, ... 5 EQ, 0<2<]]1, 4.4)

M(O,X) = (P(x)v u(lvx) = W(x)a ut(lvx) == é(x)v

u(t,x) =0, x€8§,0<t<1,

where a,(x), x € Q, @(x), y(x), £(x), x € Qand f(t,x) (x € [0,1]), x € Q are given smooth
functions and a,(x) > 0.

Theorem 4.0.5 For the solution of the problem (4.4) the stability inequalities

D [|ua(t, -)||L2(Q)

ly(@) + (L)l 0) Hl0llLy @) + WL, @) + ||§||L2(Q)] :

& .
<M | max 17,

Oy — P
ooax, ks, -Jllwzio, ™ 22X |1 53\

L(Q)

<M [Orgfg] 1225 My (@) + 1505 )l () + 1@llwz @) + Wiz a) + ||§||w22(g)}

hold where M, does not depend on f(t,x) and ¢(x), y(x), &(x).

Third, we consider the boundary value problem for a third order partial differential

equation

( du n
85’3’)‘) X (ar(X)uy, (t,)),, + Su(t,x) = f(t,x),

x= (X1, 0%0) EQ; 0<E< 1,
4.5)

u(O,x) :(P(x)7 u(lvx)ZW(x)a u,(l,x):’g'(x), x €Q,

%(r,x):o, xe8,0<r<1,
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where a,(x), x € Q, @(x), w(x), £(x), x € Qand f(t,x) (x € [0,1]), x € Q are given smooth
functions and a,(x) > 0, 7 is the normal vector to S.

Theorem 4.0.6 For the solution of the problem (4.5), the stability inequalities

Joax ([u(e, )iz, (a) <Ms [On;fgl £y (@) + 1), @) + 191, @) WL, @)+ 18 ||L2(Q)i| ;

3
)

max ||u(t,.)||W22(Q) + max ‘

0<r<l1 0<r<l1 ()

<M; [Orgflgl 12 (s ) (@) + 170 ), ) +llwz (@) + 1Wllwg (o) + ||§||w22(g)]
hold where M3 does not depend on f(t,x) and @(x), y(x), &(x).

When the analytical methods do not work properly, the numerical methods for obtaining
approximate solutions of partial differential equations play an important role in applied
mathematics. For the numerical experience we consider the local boundary value problem

( Du(tx)  ultx
353 ) siz ) = f(t,x),

ft,x)=(1—1)?sinx,0<t<1,0<x< T,
u(0,x) = 2sinx, u(1,x) = e 'sin x, (4.6)

u(1,x) = —e lsinx, 0<x < m,

u(t,0)=u(t,r)=0,0<r<1

\

for one-dimensional a third order partial differential equation. The first and high orders of
accuracy difference schemes for numerical solution of problem (4.6) are presented. We apply
a procedure of modified Gauss elimination method to solve the problem. Finally, the error
analysis of first and high orders of accuracy difference schemes are given.

In Chapter 3 nonlocal boundary value problem (4.2) for a third order partial differential
equations in an arbitrary Hilbert space with a self-adjoint positive definite operator A is
investigated. The following main theorems are proved.

Theorem 4.0.7 Suppose that yw € D(A), & € D <Al/ 2) and f(t) is continuously differen-
tiable on [0, 1]. Then there is a unique solution of problem (4.2) and the following inequalities
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hold

4
Jfoax [lu(e)

3M<y>{||<pnﬂ+ [a=2v|, +lla="¢]l, + max ||A—'f<z>||H},

0<t<1
3
max a’u(t) max Ad—u
0<i<1|| dP? ||y oe<i| dt ||y
1
_un |A7 ” 0 ‘Ol b
<m{lavily+ |A], + 1O + o 70

where M, M (7y) do not depend on f (1), @, y, &.

Theorem 4.0.8 Suppose that w € D(A), & € D (A'/ 2) and f(t) is continuous on [0, 1] and

f(t)eD (A'/ 2) . Then there is a unique solution of problem (4.2) and the following estimate
holds

d3u(t) du

max max |[A—

o<i<1|| dP? ||y oe<i| dt ||y

1 1
<], - g s}
<m{laviy+ A, + o [atr0,

where M does not depend on f(t), y, &.

From Theorem 4.0.7 and Theorem 4.0.8 it follows the following theorem on stability.

Theorem 4.0.9 Assume that yw € D(A), £ € D (A'/ 2) and f(t) is continuously differen-

tiable on [0,1] and f(t) € D (A'/z) . Then there is a unique solution of problem (4.2) and
the following inequalities hold

d3u(t)

du
dr3 A

dr

max
H 0<r<1

X
0<t<1 H

A%f(r>HH},

1
<wt{ vl +ade], o,
emin 5O+ s 10 o 2250 }
where M does not depend on f(t), v, &.

Three applications of main theorems are given. First, for the application of the theorem
4.0.7 we consider the nonlocal boundary value problem for a third order partial differential
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equationation

( J3u(t,x)

33 — (a(x)ug), + Ou(t,x) = f(t,x), 0<t<1,0<x<1,

u(0,x) = yu(A,x)+ @ (x), u(0,x) = o (A,x)+y(x),0<x<I,
{ 4.7

u (0,x) = Bup (A, x)+&(x), 0<x<[,0<A<]1

\u(t,O)zu(t,l), ue(1,0) = uy(t,1), 0<r<I1.

Problem (4.7) has a unique smooth solution u(z,x) for smooth a(x) >a >0, x € (0,/),
0 >0, a(l) =a(0), ¢(x), y(x), &E(x) (x € [0,1]) and f(t,x) (t € (0,1), x € (0,1)) functions.
This allows us to reduce problem (4.2) in a Hilbert space H = L, [0,/] with a self-adjoint
positive definite operator A* defined by (4.7 ). Let us give a number of corollaries of abstract
theorem 3.2.4

Theorem 4.0.10 For the solution of the problem (4.7), the stability inequalities

q0ax [lut, Mo,

<M, [max 1£(z, )||L2[o,1]+||‘P||L2[o,|]+||V’||L2[0.1]+||§||L2[0,1]] ,

0<t<1
3u
Frad )

du
ar( ’

+
O<t<| sz[()l] O<I<l

L,[0,1]
<M, [o@?gxl e (@5 ) 0,1 + 15O Mo,y + W llwzgo, + |[§||w21[0.1]]
hold, where M does not depend on f(t,x) and @(x), y(x), &(x).

Second, let Q C R" be a bounded open domain with smooth boundary S, Q=QuUS.
In [0, 1] x Q, we consider the boundary value problem for a third order partial differential
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equation

( 3 n
g g(tg’x) -Y (ar(x)“fxr)x, =f(t,x), x=(x1,..,20) €EQ, 0<t < 1,
r=1

u(0,x) = yu(A,x)+ @(x), u(0,x) = au(A,x)+ y(x),x € Q, m

U (0,x) = Buy(A,x)+&E(x), x€Q,0<A <1,

L u(t,x)=0, x€85,0<1<1],

where a,(x), (x € Q), @(x), y(x), (x), (x€ Q) and f(r,x) (x € [0,1]), x € Q are given
smooth functions and a,(x) > 0.

Theorem 4.0.11 For the solution of the problem (4.8) the stability inequalities

Joan [|ua(t, -)Ile(g)

<My [max 1oy + 191y + ¥y + uéan(Q)] ,

0<t<1
23u
qoax lu(t, Vliwzpo + max || 55 (t.) 12(8)

<2 | max 1) o) + 170 ey + ¥z + Uy o |
hold where M, does not depend on f(t,x) and @(x), y(x), &(x).

Third, we consider the nonlocal boundary value problem for a third order partial differen-

tial equation

( 3 m
: l(;(tg’X) - Z (ar(x)uzxr)xr+6u;(t,x) =f(t,x), X = (xlv“'7x") €Q,0<1< L
r=1

u(0,x) = yu(A,x) + @(x), u(0,x) = otuy (A, x) + y(x),x € Q,
U (1,x) = Bup(A,x)+€(x), x€Q,0< A < 1,

2i(00)=0, xS 0<r<1,

4.9)
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where a,(x), x € Q, @(x), w(x), £(x), x € Qand f(t,x) (x € [0,1]), x € Q are given smooth
functions and a,(x) > 0, / is the normal vector to S .

Theorem 4.0.12 For the solution of the problem (4.9), the stability inequalities

i (a2, -)||L2(Q)

< | o 100l 2+ 19y + ¥y + 1€

3
max ||u(t,.)||wzg(ﬂ) + max ’ %—I’T‘(t)

0<r<1 0<i<l

LZ(Q)
<Ms [On;flgl 122 My (@) + £ ), @) + 1Wllwp ) + 16 1wy (Q)]
hold where M3 does not depend on f(t,x) and ¢(x), y(x), &(x).

For the numerical experience we consider the boundary value problem

( u(t,x) u’(t,x)
8[3 - ataxz = f(t‘,x)ﬁ

flt,x)=—2"s5in%,0<t <1, 0< %<,

1
u(0,x) = %u(l,x) - (l — @> sinx, 0 <x <,
(4.10)
|
u (0,x) = %u,(l,x) — <1 - 4—) sinx, 0 <x <,

€

1
uy (0,x) = %u,,(l,x) + (1 - @) sinx, 0 <x<m,

u(t,0) =u(t,r)=0,0<r<1

\

for one-dimensional a third order partial differential equation. The first and second order of
accuracy difference schemes for numerical solution of problem (4.10) are presented. We
apply a procedure of modified Gauss elimination method to solve the problem. Finally, the
error analysis of first and second order of accuracy difference schemes are given.
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