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 ص:ــملخال

 ةمحددال صراعنلااستخدام ب رقيقةال ا للصدفياتهندسي خطي غيرو خطي ديناميكيو ل ستاتيكيتحليقمنا في هذا العمل بتطوير 

 من مسطحةية الر الصدفالعناص على الحصول تم. يومستال فيدورانية  حرية درجة مع الأضلع رباعيةو ةثلاثي المسطحة

 رالحف دوران مع ئيةغشا عناصرو المتقطعةف كيرشونظرية في  "DKQ" و "DKT" الانحناء صفائح عناصرن بي الجمع خلال

"drilling rotation". ة المعدل نتبايال صياغة أساس على الحفر دوران مع رباعي عنصر هي قدمةالم ائيةغشالعناصرال

 .EAS نالمحس التشوه صياغة أساس على الحفر دوران مع ثلاثيوعنصر  "Brezzi"و  "Hughes"لـ

 لىع يعتمد الخطي غير التحليل أن حين في ،مباشرال زمنال كامللت نيومارك طريقة باستخدام عابرال الديناميكي التحليل يتم

طورنا صيغة  ،الغرض هذا لأجل. "updated co-rotational Lagrangian description" المحدث غران لا وصف

"co-rotational formulation" ئيةالغشا عناصرجل اللأ يمستوال في الحفر دوران ي تأخذ في الحسبانالتو يمستوال في 

 في دورانيةال عطالةال تأخذ في الحسبان يمستوال في وفعالة بسيطة ة كتلةمصفوف اعتماد تم ،ذلك على علاوة .الرباعيةو يةالثلاث

 محددة عناصر على راتيالتطو هذه ادخال تم وأخيرا، .يمستوال فيالاهتزاز  لأنماط الحقيقي التمثيلب تسمح والتي ،يمستوال

 دقة من للتحقق دةالمحد العناصرمبني على  تحليل برنام  تطوير أيضا تم. حرية درجات ست مع ية الأبعادثلاث مسطحةصدفية 

 .قدمةالم العناصر

 الصدفيات سائلمفي  اختبارها تمثم  من ،ةكيوديناميستاتيكية  مستو إجهاد سائلم تحليلفي  ةالمطور العناصر اختبار تم أولا

 بينما الصدفية هياكللل غير الخطية لاستجابة الديناميكيةل في التنبؤ ،العددية الأمثلة من ةضحالمو هذه العناصر فعالية العامة.

لمسائل  خطيالكي غير الديناميالستاتيكي و تحليلالفي  أداء جيدا تقدم أن هذه العناصر للتأكد منكافية تعتبر  ،اقتصادية بقىت

 العامة. الصدفيات

 



      ABSTRACT 

   Linear and geometrically nonlinear static and dynamic finite element analysis of thin shells using 

triangular and quadrilateral flat shell elements with in-plane drilling rotational degree of freedom 

is presented. The flat shell elements are obtained by combining the “DKT” and “DKQ” Discrete 

Kirchhoff Theory plate bending elements and membrane elements with drilling rotation. The 

membrane elements developed are a quadrilateral element with drilling rotation based on the 

modified HUGHES and BREZZI variational formulation and a triangular element with drilling 

rotation based on the Enhanced Strain formulation. 

   The transient dynamic analysis is carried out using Newmark direct time integration method, 

while the nonlinear analysis adopts the updated co-rotational Lagrangian description. In this 

purpose, in-plane co-rotational formulation that considers the in-plane drilling rotation is 

developed and presented for triangular and quadrilateral membrane elements. Furthermore, a 

simple and effective in-plane mass matrix that takes into account the in-plane rotational inertia, 

which permit true representation of in-plane vibrational modes is adopted. Finally, these 

developments are implemented into three dimensional flat shell finite elements with six degrees 

of freedom. A finite element analysis program is also developed to check the accuracy of the 

developed elements. 

   The developed elements are first thoroughly tested for static and dynamic analysis of plane stress 

problems, then, they are tested for general shell problems. The effectiveness of these elements 

shown by the selected numerical examples to predict the nonlinear dynamic response of shell 

structures while remains economic, is adequate to ascertain that these elements would perform 

well in the case of nonlinear static and dynamic analysis of general shells. 



      RESUME 

   Dans ce travail, une analyse linéaire et non-linéaire géométrique statique et dynamique, des 

coques minces en utilisant des éléments finis de coques à facette plane triangulaires et 

quadrangulaires avec le degré de liberté de rotation dans le plan dit "drilling rotation" est présenté. 

Les éléments de coque plane sont obtenus en combinant les éléments de plaque de flexion “DKT” 

et “DKQ” de la théorie Kirchhoff discrète et des éléments de membrane avec "drilling rotation". 

Les éléments de membrane développés sont un quadrilatéral avec 'drilling rotation' basé sur la 

formulation variationnelle modifié de HUGHES et BREZZI et un élément triangulaire avec 'drilling 

rotation' basé sur la formulation "Enhanced Assumed Strain". 

   L'analyse dynamique transitoire est accomplie à l'aide de la méthode d'intégration directe de 

Newmark, tandis que l'analyse non linéaire adopte la description Lagrangienne actualisée co-

rotationnelle. Dans ce but, une formulation Co-rotationnelle dans le plan qui considère le degré de 

liberté rotationnel dans le plan 'drilling rotation' est élaborée et présenté pour les éléments de 

membrane triangulaires et quadrangulaires. En outre, une matrice de masse simple et efficace qui 

prend en compte l'inertie de rotation dans le plan, ce qui permet une représentation vrai de modes 

de vibration dans le plan, est adoptée. Enfin, ces développements sont implémentés dans des 

éléments finis de coques à facette plane avec six degrés de liberté. Un programme d'analyse par 

éléments finis est également établit pour vérifier la conformité des éléments développés. 

   Les éléments développés sont d'abord testés pour l'analyse statique et dynamique des problèmes 

de contraintes planes, puis, ils sont testés pour des problèmes de coques générales. L'efficacité de 

ces éléments, représentés par les exemples numériques sélectionnés, pour prédire la réponse 

dynamique non-linéaire de structures coques tout en restant économique, est adéquat pour assurer 

que ces éléments seraient de bons précision dans le cas de l'analyse non-linéaire statique et 

dynamique des coques de formes générales. 



i 

 

      TABLE OF CONTENTS 

 

TABLE OF CONTENTS           i 

LIST OF FIGURES                    vii 

INTRODUCTION           x 

CHAPTER I: STATE OF THE ART        1 

      I- INTRODUCTION ………………………………………………………………………      2 

      II- HISTORICAL REVIEW ………………………………………………………………      3 

II-1. Thin Shell Finite Elements for Linear Analysis …………………………………………..       3 

II-1.1. Bi-Dimensional Curved Elements Derived From Classical Shell Theories …………….       5 

II-1-2. Shells Degenerated From Three-Dimensional Solid Elements ………………………...       8 

II-1.3. Flat shell Elements ……………………………………………………………………..     10 

II-2. Flat Shell Elements in Non-Linear Updated Lagrangian Co-rotational Formulation …….     15 

II-3. Thin Plate Bending Elements …………………………………………………………….     18 

II-3.1. Triangular plate bending elements …………………………………………………….     18 

II-3-2. Quadrilateral plate bending elements …………………………………………………     20 

II-4. Membrane elements ……………………………………………………………………...     22 

II-5. Flat Shell Elements with drilling rotational degree of freedom …………………………..     28 

II-5.1. Flat Shells with Drilling Rotation for Nonlinear Analysis ……………………………...     33 

II-5.2. Flat Shells with Drilling Rotation for Dynamic Analysis ………………………………     37 

      III- OBJECTIVES AND SCOOPS ………………………………………………………..     39 

      IV- THESIS OVERVIEW ………………………………………………………………...     42 

CHAPTER II: SHELL THEORIES AND MODELS               43 

      I- INTRODUCTION ……………………………………………………………………...     44 

      II- GEOMETRY OF A SHELL …………………………………………………………...     45 

      III- SHELL THEORIES …………………………………………………………………..     46 

      IV- SHELL MODELS …………………………………………………………………….     48 

IV-1. Kirchhoff-Love Models ………………………………………………………………....     48 

IV-2. Reissner-Mindlin Models ……………………………………………………………….     49 

IV-3. Higher Order Models ……………………………………………………………………     50 

      V- PLATE BENDING IN KIRCHHOFF THEORY ………………………………………     52 

V-1. Discrete Kirchhoff Assumptions …………………………………………………………     52 

      VI- PLANE-STRESS MEMBRANE THEORY …………………………………………..     56 

 



ii 

 

CHAPTER III: FLAT SHELL FINITE ELEMENTS               57 

      I- INTRODUCTION ……………………………………………………………………...     58 

      II- APPROXIMATION OF SHELLS WITH FLAT ELEMENTS ………………………..     58 

II-1. Fictitious Stiffness ……………………………………………………………………….     60 

II-2. The Sixth Degree-of-Freedom …………………………………………………………...     63 

II-3. Drilling Rotation …………………………………………………………………………     64 

II-4. Vertex Rotational Degree of Freedom ……………………………………………………     65 

II-5. Drilling Rotation Locking of Flat Shell Finite Elements …………………………………     67 

      III- LINEAR FLAT SHELL FINITE ELEMENTS ……………………………………….     68 

III-1. Membrane Elements …………………………………………………………………….     70 

III-1.1. Conventional Membrane Elements ……………………………………………………     70 

1- CST: 6 degrees of freedom …………………………………………………………….     70 

2- Q4: 8 degrees of freedom ……………………………………………………………...     71 

III-1.2. Membrane Elements with Drilling Rotation …………………………………………..     72 

1- Allman Triangular Element …………………………………………………………...     73 

2- Quadrilateral Element with Drilling Rotation ………………………………………...     75 

3- The New EAS Triangle with Rotational Degree of Freedom …………………………..     78 

III-2. Plate Bending Elements …………………………………………………………………     82 

1- DKT: 9 degrees of freedom ……………………………………………………………     82 

2- DKQ: 12 degrees of freedom ………………………………………………………….     83 

III-3. Construction of Flat Shell Elements …………………………………………………….     83 

II-3.1. Triangular Flat Shell Elements ………………………………………………………...     83 

II-3.1. Quadrilateral Flat Shell Elements ……………………………………………………..     84 

CHAPTER IV: DYNAMIC ANALYSIS                 86 

      I- INTRODUCTION ……………………………………………………………………...     87 

      II- DYNAMIC EQUILIBRIUM …………………………………………………………..     88 

      III- METHODS OF INTEGRATION ……………………………………………………..     89 

III-1. Mode Superposition Analysis …………………………………………………………...     89 

III-2. Response Spectra Analysis ……………………………………………………………...     90 

III-3. Direct Time Integration Analysis ………………………………………………………..     90 

      IV- TRANSIENT DYNAMIC ANALYSIS ………………………………………………     91 

IV-1. Direct Time Integration Methods ………………………………………………………..     91 

IV-2. Newmark Method ……………………………………………………………………….     93 

IV-3. Mass matrix ……………………………………………………………………………..     95 



iii 

 

IV-3-1. Conventional Membrane Elements ……………………………………………………     97 

1- CST mass matrix ………………………………………………………………………     97 

2- Bi-linear quadrilateral mass matrix …………………………………………………..     98 

IV-3-2. Elements with Drilling Rotation ………………………………………………………     99 

1- Triangle with drilling rotation ………………………………………………………...   100 

2- Quadrilateral with drilling rotation …………………………………………………..   101 

CHAPTER V: GEOMETRICALLY NONLINEAR STATIC AND DYNAMIC ANALYSIS  102 

      I- INTRODUCTION ……………………………………………………………………...   103 

      II- GEOMETRICAL NONLINEARITIES ……………………………………………….   105 

      III- DISCRIPTION OF MOVEMENT ……………………………………………………   105 

      IV- LAGRANGIAN DESCRIPTION …………………………………………………….   107 

IV-1. Different Configurations of a Solid Body in Movement ………………………………...   107 

IV-1.1. the Total Lagrangian Description …………………………………………………….   109 

IV-1.2. the Updated Lagrangian Description …………………………………………………   110 

IV-1.3. the Co-rotational Lagrangian Description ……………………………………………   110 

IV-1.4. Element -Based Lagrangian Formulation …………………………………………….   110 

IV-2. Strain and Stress Measures ……………………………………………………………...   110 

IV-2.1. Strain Measures ………………………………………………………………………   111 

1- Cauchy strain (ε):  Linear strain tensor ……………………………………….……..   112 

2- Green-Lagrange strain (e):  Quadratic Lagrangian strain tensor …………….……..   112 

3- Euler-Almansi strain (E):  Quadratic Eulerian strain tensor ………………………..   113 

IV-2.2. Stress Measures ……………………………………………………………………….   113 

1- Cauchy stress (T) ……………………………………………………………………...   114 

2- First Piola-Kirchhoff stress (σ) ……………………………………………………….   114 

3- Second Piola-Kirchhoff stress (S) …………………………………………………….   114 

      V- LARGE DISPLACEMENT STATIC AND DYNAMIC ANALYSIS ………………...   115 

V-1. The Updated Lagrangian Formulation …………………………………………………...   117 

V-2. Finite Elements Discretization …………………………………………………………...   117 

V-3. Incremental Expression of the Virtual Displacement Principle in the “U.L.D” ………….   118 

V-3.1. Stiffness Matrix for Small Displacements in the "U.L.D" ………………………………   120 

V-3.2. Geometric Stiffness Matrix (initial stress matrix) in the "U.L.D" ………………………   120 

V-3.3. External Forces in the "U.L.D" ………………………………………………………...   121 

V-3.4. Internal Forces in the "U.L.D" …………………………………………………………   121 



iv 

 

V-3.5. Residual Forces in the "U.L.D" ………………………………………………………..   121 

V-3.6. Incremental Expression of Equilibrium in the "U.L.D" ………………………………..   121 

V-4. Tangent Stiffness Matrix for Flat Shell Elements with Drilling Rotation ………………...   123 

V-4.1. Plate bending geometric stiffness ……………………………………………………...   123 

V-4.2. Membrane geometric stiffness …………………………………………………………   124 

      VI- THE CO-ROTATIONAL APPROACH ……………………………………………...   126 

VI-1. Handling Large Rotations ………………………………………………………………   128 

VI-2. Co-rotational Formulation for Triangular and Quadrilateral Flat Shell Elements with Drilling 

Rotational Degree of Freedom ………………………………………………………………..   129 

VI-2.1. Reference System of Axes ……………………………………………………………...   130 

VI-2.2. Co-rotational Formulation fore Plate Bending Elements ……………………………..   131 

VI-2.3. Co-rotational formulation fore membrane elements ………………………………….   132 

1- In-plane translations ………………………………………………………………….   133 

2- In-plane nodal rotations ………………………………………………………………   134 

CHAPTER VI: NUMERICAL METHODS FOR NON-LINEAR ANALYSIS          136 

      I- INTRODUCTION ……………………………………………………………………...   137 

      II- THE LOAD-DISPLACEMENT EQUILIBRIUM PATH ……………………………..   138 

II-1. Purely Incremental Method ……………………………………………………………...   138 

II-2. Incremental-Iterative Methods …………………………………………………………..   139 

II-2.1. Newton-Raphson Method ……………………………………………………………...   139 

II.2.2. Modified Newton-Raphson Method ……………………………………………………   139 

II.2.3. Secant Method …………………………………………………………………………   139 

      III- INCREMENTAL-ITERATIVE PROCEDURE ……………………………………...   141 

III-1. Prediction ……………………………………………………………………………….   141 

III-2. Correction of Equilibrium ………………………………………………………………   142 

III-3. Parametrization …………………………………………………………………………   143 

III-4. Convergence Criterion ………………………………………………………………….   144 

IV- PATH FOLLOWING METHODS ……………………………………………………….   145 

IV-1. Critical Points …………………………………………………………………………...   146 

IV-1.1. Limit point …………………………………………………………………………….   146 

IV-1.2. Turning Point …………………………………………………………………………   146 

IV-1.3. Bifurcation Point ……………………………………………………………………...   146 

IV-2. Control Function ………………………………………………………………………..   148 



v 

 

IV-2.1. Load Control Method …………………………………………………………………   149 

IV-2.2. Displacement Control Method ………………………………………………………..   149 

IV-2.3. Arc-Length Control Method …………………………………………………………..   150 

IV-2.4. Constant Work Control Method ……………………………………………………….   153 

IV-2.5. Generalized Displacement Control Method …………………………………………..   153 

IV-2.6. Minimum Residual Displacement Control Method ……………………………………   154 

IV-2.7. Orthogonal Residual Control Method ………………………………………………...   154 

      V- THE LOAD CONTROL METHOD …………………………………………………...   155 

V-1.1. Parameterization ………………………………………………………………………   155 

V-1.2. Prediction ……………………………………………………………………………...   156 

V-1.3. Correction ……………………………………………………………………………..   156 

      VI- THE ARC-LENGTH METHOD ……………………………………………………...   157 

VI-1.1. Parameterization ……………………………………………………………………...   157 

1- The Elliptical Arc-Length Method …………………………………………………….   157 

2- The Spherical Arc-Length Method ……………………………………………………   158 

3- The Cylindrical Arc-Length Method ………………………………………………….   158 

4- The Linearized Arc-Length Method …………………………………………………...   159 

VI-1.2. Prediction ……………………………………………………………………………..   159 

1- The Sign of the Current Tangent Stiffness Matrix Determinant ……………………….   160 

2- The sign of the predictor work increment ……………………………………………..   161 

3- The sign of the internal product of the displacements …………………………………   161 

VI-1.3. Correction …………………………………………………………………………….   161 

1- Real roots ……………………………………………………………………………..   163 

a- Positive External work criterion …………………………………………………………...   163 

b- Angle Criterion …………………………………………………………………………….   163 

2- Complex roots ………………………………………………………………………...   164 

VI-1.4. Step-Length Control …………………………………………………………………..   164  

CHAPTER VII: NUMERICAL EXAMPLES              165 

      I- INTRODUCTION ……………………………………………………………………...   166 

      II- IN-PLANE TESTS …………………………………………………………………….   168 

II-1. Linear Analysis ………………………………………………………………………….   168 

II-1.1. Cantilever beam under a tip load ………………………………………………………   168 

II-1.2. Cook’s problem ………………………………………………………………………..   169 



vi 

 

II-1.3. Clamped arch ………………………………………………………………………….   170 

II-2. Dynamic and Nonlinear analysis ………………………………………………………...   171 

II-2.1. Cantilever beam under distributed step loading ……………………………………….   171 

II-2.2. Clamped arch ………………………………………………………………………….   173 

II-2.3. Cantilever beam under a concentrated end moment …………………………………...   176 

II-2.4. Lee’s Frame ……………………………………………………………………………   178 

      III- SHELL PROBLEMS …………………………………………………………………   180 

III-1. Geometrically Non-Linear Static Analysis ……………………………………………..   180 

III-1.1. Cantilever beam under a concentrated moment at the free end ……………………….   180 

III-1.2. Cylindrical shell under concentrated loading ………………………………………...   182 

III-1.3. Spherical shell under concentrated loading …………………………………………..   185 

III-2. Linear and Geometrically Non-Linear Dynamic Analysis ……………………………...   187 

III-2.1. Cantilever beam under concentrated load ……………………………………………   187 

III-2.2. Simply-supported rectangular plate under concentrated step load …………………...   188 

III-2.3. Simply-supported square plate under uniform step pressure …………………………   190 

III-2.4. Hinged cylindrical panel under concentrated load …………………………………...   192 

III-2.5. Thin cylindrical shell under uniformly distributed half sin wave loading ……………..   197 

      IV- DISCUSSION ………………………………………………………………………...   200 

CONCLUSION                  201 

BIBLIOGRAPHY                  204 

APPENDICES                  239  

 

 

 

 

 

 

 

 

 

 



vii 

 

      LIST OF FIGURES 

 

Fig. II.1. Geometry of a shell …………………………………………………………………………...      45 

Fig. II.2. Kirchhoff-Love theory kinematic …………………………………………………………….      48 

Fig. II.3. Reissner-Mindlin theory kinematic …………………………………………………………...     49 

Fig. II.4. Higher-order theory kinematic ……………………………………………………………….      50 

Fig. II.5. Thin plate kinematic in Kirchhoff theory …………………………………………………......     53 

Fig. II.6. Thin plate stress resultant …………………………………………………………………......     54 

Fig. II.7. Plane stress: a- Kinematic; b- Stress resultant ………………………………………………...     56 

Fig. III.1. Four-node shell element with “Drilling Rotation” ………………………………………......     63 

Fig. III.2. Drilling rotation interpretation ……………………………………………………………….     64 

Fig. III.3. Higher order in-plane displacement interpolation ……………………………………………     65 

Fig. III.4. Incompatible rotations …………………………………………………………………….....     66 

Fig. III.5. Inter-element bending-membrane coupling ……………………………………………….....     67 

Fig. III.6. CST triangular element ………………………………………………………………………     70 

Fig. III.7. Q4 quadrilateral element …………………………………………………………………......     71 

Fig. III.8. In-plane displacement due corner nodes rotations ……………………………………………     72 

Fig. III.9. Triangular element with drilling rotations ……………………………………………………     73 

Fig. III.10. Quadrilateral element with drilling rotations ……………………………………………….     75 

Fig. III.11. Higher order in-plane lateral and tangential displacements ……………………….………..     79 

Fig. III.12. DKT element …………………………………………………………………………………………     82 

Fig. III.13. DKQ element ……………………………………………………………………………………..…     83 

Fig. III.14. 3-Node triangular flat shell element with five d.o.f …………………………………………     84 

Fig. III.15. 3-Node triangular flat shell element with six d.o.f …………………………………………..     84 

Fig. III.16. 4-Node quadrilateral flat shell element with five d.o.f ………………………………………     85 

Fig. III.17. 4-Node quadrilateral flat shell element with six d.o.f ……………………………………….     85 

Fig. V.1. Eulerian and Lagrangian descriptions of movement ………………………………………….   106 

Fig. V.2. Linear elastic body in movement …………………………………………………………......   107 

Fig. V.3. Different configurations of a solid body in movement ……………………………………......   108 

Fig. V.4. Elastic solid body deformation process ……………………………………………………….   111 

Fig. V.5. Internal forces configurations ………………………………………………………………...   115 

Fig. V.6. Cinematic of the Co-rotational description …………………………………………………...   128 

Fig. V.7. Local system of axes ………………………………………………………………………….   130 

Fig. V.8. Reference plane of the quadrilateral element …………………………………………………   131 

Fig. V.9. Out-of-plane rigid body rotations …………………………………………………………......   132 

Fig. V.10. Local deformational translations ………………………………………………………….....   134 

Fig. V.11. In-plane rotations and their relations for a quadrilateral element …………………………….   134 



viii 

 

Fig. V.12. In-plane rotations and their relations for a triangular element ……………………………….   135 

Fig. VI.1. Purely incremental method …………………………………………………………………..   138 

Fig. VI.2. Newton-Raphson method ……………………………………………………………………   140 

Fig. VI.3. Modified Newton-Raphson method …………………………………………………………   140 

Fig. VI.4. Secant method ……………………………………………………………………………….   141 

Fig. VI.5. Load control method in vicinity of limit point ………………………………………………..   147 

Fig. VI.6. Displacement control method in vicinity of turning point ……………………………………   147 

Fig. VI.7. Arc-length method “pass all critical points” …………………………………………………   147 

Fig. VI.8. Load control method ………………………………………………………………………....   151 

Fig. VI.9. Displacement control method ………………………………………………………………..   152 

Fig. VI.10. Arc-length control method ………………………………………………………………….   152 

Fig. VI.11. Minimum residual method ………………………………………………………………….   155 

Fig. VI.12. Cylindrical Arc-Length method …………………………………………………………….   155 

Fig. VI.13. Linearized Arc-Length: a. Normal plane; b. Updated normal plane ………………………...   158 

Fig. VI.14. Arc-Length method ………………………………………………………………………...   160 

Fig. VII.1. Cantilever beam: geometry and loading …………………………………………………….   168 

Fig. VII.2. Cook’s cantilever beam: geometry, mesh, and loading ……………………………………..   169 

Fig. VII.3. Clamped arch: geometry, mesh, and loading ………………………………………………..   170 

Fig. VII.4. Cantilever beam: geometry and mesh ……………………………………………………….   171 

Fig. VII.5. Step load …………………………………………………………………………………….   171 

Fig. VII.6. Load-displacement curve of the cantilever beam …………………………………………...   172 

Fig. VII.7. Linear dynamic response of the cantilever beam ……………………………………………   172 

Fig. VII.8. Nonlinear dynamic response of the cantilever beam ………………………………………..   173 

Fig. VII.9. Clamped arch: (a) geometry, (b) load, (c) mesh ……………………………………………..   174 

Fig. VII.10. Nonlinear response of the clamped arch …………………………………………………...   174 

Fig. VII.11. Dynamic response of the clamped arch using “Qdrill” element …………………………...   175 

Fig. VII.12. Dynamic response of the clamped arch using “Tdrill” element ……………………………   175 

Fig. VII.13. Cantilever beam subjected to pure bending: geometry and mesh ………………………….   176 

Fig. VII.14. Cantilever beam load-displacement curve …………………………………………………   177 

Fig. VII.15. Cantilever beam vertical displacement time history curve ………………………………...   177 

Fig. VII.16. Cantilever beam end rotation time history curve …………………………………………..   178 

Fig. VII.17. Lee’s frame: geometry and mesh …………………………………………………………..   179 

Fig. VII.18. Lee’s frame load-displacement curves using “Qdrill” element ……………………………   179 

Fig. VII.19. Lee’s frame load-displacement curves using “Tdrill” element …………………………….   180 

Fig. VII.20. Geometry of the cantilever beam …………………………………………………………..  180 

Fig. VII.21. Cantilever beam load-displacement curve …………………………………………………   181 

Fig. VII.22. Cantilever beam: deformed configurations ………………………………………………..   181 



ix 

 

Fig. VII.23. Geometry of the cylindrical shell …………………………………………………………..   182 

Fig. VII.24. Mesh of one quarter of the cylindrical shell ………………………………………………..   182 

Fig. VII.25. Load-displacement curve using quadrilateral elements (h=12,7 mm) ……………………..   183 

Fig. VII.26. Load-displacement curve using triangular elements (h=12,7 mm) ………………………...   184 

Fig. VII.27. load-displacement curve using quadrilateral elements (h=6,35 mm) ……………………...   184 

Fig. VII.28. load-displacement curve using triangular elements (h=6,35 mm) …………………………   185 

Fig. VII.29. Geometry of the spherical shell ……………………………………………………………   186 

Fig. VII.30. Load-displacement curve of the spherical shell using the quadrilateral elements ………….   186 

Fig. VII.31. Load-displacement curve of the spherical shell using the triangular elements …………….   187 

Fig. VII.32. Geometry and mesh of the cantilever beam ………………………………………………..   187 

Fig. VII.33. Constant applied load ……………………………………………………………………...   188 

Fig. VII.34. Free end vertical displacement time history of the cantilever beam ………………………..   188 

Fig. VII.35. Geometry of the rectangular plate …………………………………………………………   189 

Fig. VII.36. Time-dependent concentrated load ………………………………………………………..   189 

Fig. VII.37. Vertical displacement time history of the rectangular plate at the central point …………...   190 

Fig. VII.38. Square plate: geometry and loading ………………………………………………………..   190 

Fig. VII.39. Step load …………………………………………………………………………………...   191 

Fig. VII.40. Linear and nonlinear vertical displacement time history using the quadrilateral elements ...   191 

Fig. VII.41. Linear and nonlinear vertical displacement time history using the triangular elements …...   192 

Fig. VII.42. Geometry of the cylindrical shell …………………………………………………………..   193 

Fig. VII.43. Dynamic response of the cylindrical shell using 8×8 “Quad” elements …………………...   193 

Fig. VII.44. Dynamic response of the cylindrical shell using 8×8 “Trian” elements …………………...   194 

Fig. VII.45. Dynamic response of the cylindrical shell using 4×4 “Quad” elements …………………...   194 

Fig. VII.46. Dynamic response of the cylindrical shell using 4×4 “Trian” elements …………………...   195 

Fig. VII.47. Dynamic response of the cylindrical shell using Quadrilateral elements …………………..   195 

Fig. VII.48. Dynamic response of the cylindrical shell using triangular elements ……………………...   196 

Fig. VII.49. Cylindrical shell supported on rigid diaphragms …………………………………………..   197 

Fig. VII.50. Half sinusoidal wave loading ……………………………………………………………...   197 

Fig. VII.51. Linear vertical displacement time history using the quadrilateral elements ………………..   198 

Fig. VII.52. Nonlinear vertical displacement time history using the quadrilateral elements ……………   198 

Fig. VII.53. Linear vertical displacement time history using the triangular elements …………………   199 

Fig. VII.54. Nonlinear vertical displacement time history using the triangular elements ……………….   199 

 

 

 

 



x 

 

      INTRODUCTION 

   Shell structures represent a particular type of structural systems characterized by their geometry, 

being a three-dimensional solid whose thickness is much smaller than the other two dimensions. 

These elements are light weight constructions enclosing space using one or more curved surfaces. 

One basic property with shells, is that they are characterized by the stress resultants in the middle 

surface presenting in-plane components due to membrane behaviour and normal to the surface 

components due to bending behaviour. Even with shells of small thickness, heavy loads can be 

sustained efficiently due to the membrane effect. Therefore, thin shell structures, with their 

excellent mechanical performance, have been widely used in various fields of structural 

engineering as: constructions that offer large internal space, cooling towers, mechanics, industrial, 

automobiles, marine, aerospace …etc. Thus, analysis and design of these structures, with accurate 

evaluations of the maximum load carried by the structure, are of major importance. 

   The capability of a design for all engineering structures is being pushed to find more efficient 

solutions for economic and environmental issues. As it is of crucial interest to increase their 

performances, shell structures are becoming thinner, lighter, and more flexible, so their deflections 

may have an important order of magnitude under either static or dynamic loads, which makes their 

behaviour often characterised as geometrically nonlinear. The importance of studying the dynamic 

behaviour of shell structures, is so because often such structures are subjected to time varying 

loadings such as impact, explosion or seismic effects. 

   The computational mechanics has now reached a level of maturity enabling complex 

simulations. However, one of the difficulties of nonlinear calculations is the fact that they are based 

on incremental iterative algorithms. Nevertheless, recent developments in computer technology 

and in computational mechanics, allow us to formulate computational models capable of 

delivering accurate results especially by means of the Finite Elements Method. 

   The objective of this thesis is to formulate an accurate model delivering close approximations of 

nonlinear and dynamic behaviour of shells. Such a model provides valuable information about the 

behaviour of shell structures, which enables us to control some important aspects of the design as: 

the maximum load carried by the structure, the maximum displacement, as well as the equilibrium 

path in both linear and geometrically nonlinear static and dynamic analysis with large 

displacements but small strains.  

   Time-dependent nonlinear problems however, involved high computational cost in the 

simulations especially when using higher order finite elements. For this reason, flat shell finite 
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elements theory is highly desirable due to simplicity and numerical efficiency. These elements can 

be constructed by a simple combination of a plate bending element with a membrane element. 

However, when conventional flat shell finite elements are used, an ill-conditioned stiffness may 

arise because there is a missing rotational degree-of-freedom. To avoid this difficulty, the facet-

shell formulation must provide a complete description of the nodal translation and rotation fields 

allowing the definition of six degrees-of-freedom for each node. This problem can be handled by 

combining a plate bending element with a membrane element which includes the in-plane 

rotational drilling degrees of freedom. Moreover, the membrane formulation with drilling rotation 

performs significantly better compared to the formulation without the drilling rotation. This 

feature, may provide a solution to overcome the in-plane locking of conventional flat shell finite 

elements, and enhance their performances with both regular and distorted meshes. 

   The extension of flat shells with drilling rotation to dynamic regime, require a mass matrix 

formulation that takes into account the in-plane rotational inertia related to the drilling rotational 

d.o.f. Also, to analyse the large deflection nonlinear behaviour of shells, a nonlinear theory that 

handles efficiently the problem of large rotations is required. The co-rotational formulation has 

been considered as an effective solution to handle large rotations problem, in which, the main 

challenge is how to describe the deformed reference plane and how to derive deformational strains 

from the global displacements and rotations that contain both deformational and rigid-body 

movements. In this regard, flat shells with drilling rotation need a particular handling of the in-

plane rigid body rotations. Furthermore, a geometric stiffness matrix that accounts for the effect 

of initial stresses has to be included taking into account the effect of the in-plane rotational drilling 

degree of freedom.  

   In this work, an efficient handling of the above mentioned issues for triangular and quadrilateral 

flat shell elements with drilling rotational d.o.f are presented. A large displacements and large 

rotations geometrically nonlinear static and dynamic analysis of flat shells is formulated in the 

framework of the updated Lagrangian co-rotational formulation, in which, the implicit Newmark 

direct time integration method is adopted for dynamic analysis. 
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      I- INTRODUCTION 

   The first general two-dimensional theory of thin shells was developed in 1888 by [LOVE 1888]. 

Numerous contributions to this subject have been made since then. However, analytical solutions 

to thin shell structural problems are not applicable to arbitrary shapes, load conditions, and 

irregular boundary conditions. Nevertheless, these limitations are overcome by the development 

of the finite elements method. The computational implementation of shell elements has been 

challenging finite elements researchers to develop elements that were simple and efficient. 

Numerous theoretical models have been developed and applied. No single theory has proven to be 

general and comprehensive enough for the entire range of applications. Consequently, the field of 

finite elements analysis of shell structures has been very widely researched, therefore enormous 

literature is available regarding creating new and improving existing analysis theories and 

formulations. 
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      II- HISTORICAL REVIEW 

   Since the early 1960’s, the published literature on modelling of shells and plates in linear and 

nonlinear analysis and their application to dynamic regime of structures has grown extensively. It 

is almost impossible to make a review of the developments have been made in computational shell 

mechanics. In this section, we attempt to summarize the important developments achieved by the 

finite element community in the area of shell finite elements. It would be impossible to cover all 

such publications, therefore some selected segments of the literature are presented. We gave just 

an overview of the major approaches that have been used to develop shell finite elements, 

focussing on the shortcomings and difficulties that have faced the development of early shell finite 

elements. Early developments concerning triangular and quadrilateral thin plate bending elements 

as well as membrane elements are also presented. A special attention is focussed on membrane 

elements with rotational degree of freedom as well as flat shell elements with drilling rotation. We 

concluded by presenting the developments that have been made for flat shell elements with drilling 

rotation in dynamic and nonlinear analysis. 

II-1. Thin Shell Finite Elements for Linear Analysis 

   Before the early applications of shell finite elements, one should mention the direct application 

of three-dimensional solids to model a shell problem as a three-dimensional one using the so-called 

Iso-parametric elements by [ERGATOUDIS et al 1966, 1968]. This procedure, which is essentially 

used in arch dam problems, is primarily reserved for the relatively thick shells. With the advent of 

the high speed digital computers, and the subsequent development of the finite element method, 

full three-dimensional treatment of any structure is a rather simple matter. The advantage of this 

approach, besides taking into account thickness changes throughout deformation and using 3D 

material laws, is that there are no theoretical limitations and, no assumptions other than those used 

in elasticity are needed. However, constraints of economy and efficiency prohibit the use of three-

dimensional analysis except when it is absolutely necessary. 

   Solid elements are preferred in nonlinear structural mechanics in a wide range of applications 

due their low computational cost. However, in bending problems, the low-order solid element 

exhibits a low-precision results due to stiffening effects known as locking. Moreover the use of 

several nodes towards thickness of the shell using solid three-dimensional elements, leads to a 

large number of degrees of freedom along the thickness. As the shell becomes thinner, it becomes 

ill-conditioned since the thickness is too small relative to other dimensions. 
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   The so-called “solid-like” or solid-shell elements is an alternative approach aims to overcome 

these disadvantages of the standard solid elements. The solid-shell is a solid element that has 

incorporated features from shell elements. So, besides having the same d.o.f of solid element, and 

integration over a 3D domain, these elements use the assumption of “normal to the mid-surface 

remains straight” and other shell elements features in order to remove transverse shear locking. 

Hence, Solid-like shell elements can be applied not only for moderately thick but also for thin shell 

structures. 

   Many efforts has been oriented toward ameliorating the performances of solid-like shell 

elements. [WILSON et al 1973-a] proposed an Iso-parametric 8-node hexahedric with nodal 

translational d.o.f. However, this element was very sensible to locking problems especially when 

bending is dominant. In the same work, they presented the incompatible modes method and used 

it to ameliorate the hexahedric element’s behaviour. Later, [TAYLOR et al 1976] presented a 

modified versions of the 8-node hexahedric, in which the element pass the path test. 

   To overcome the over stiffness, and locking problems, Solid-shell elements usually adopt the 

Enhanced Assumed Strain technique by [DVORKIN & BATHE 1984] for the in-plane shear strains 

and normal strains, while adopt the Assumed Natural Strain technique by [SIMO & RIFAI 1990] 

for the transverse shear and normal strains. Also, reduced and selective integrations technics with 

stabilisation of hourglass modes are also widely used in solid-shell elements. 

   The solid-shell elements are attractive ones. Currently, there is a trend to use solid-shell elements 

to treat plates and shells as a 3D continuum. A class of solid-like shell elements using the above 

mentioned technics has been investigated by many researchers: [WANG & BELYTSCHKO 1987; 

BELYTSCHKO & BINDEMAN 1993; FREISCHLÄGER & SCHWEIZERHOF 1996; ZHU & 

CESCOTTO 1996; KLINKEL & WAGNER 1997; CHO et al 1998; HAUPTMANN & SCHWEIZERHOF 

1998; MIEHE 1998; KLINKEL et al 1999; DOLL et al 2000; PUSO 2000; REESE et al 2000; SZE & YAO 

2000; WALL et al 2000; HAUPTMANN et al 2000, 2001; HARNAU & SCHWEIZERHOF 2002; SZE et 

al 2002; VU-QUOC & TAN 2003-a, 2003-b; CHEN & WU 2004; KIM et al 2005; TAN & VU-QUOC 

2005; KLINKEL et al 2006; REESE 2007; CARDOSO et al 2007; KIM & BATHE 2008; LI et al 2011-a, 

2011-b; RAH et al 2011; HAJLAOUI & JARRAYA 2012; COCCHETTI et al 2013; EDEM & GOSLING 

2013; KWON 2013; NACEUR et al 2013; RAH et al 2013-a, 2013-b; AHMED & SLUYS 2014]. 

   The specific geometric properties of shells have been exploited to create numerous bi-

dimensional models, which, in general, have provided significant simplifications compared to the 

3-D continuum mechanics solution approach. In fact, any two-dimensional theory of shells, 

approximates the real three dimensional problem. Hence, researchers have been seeking better 
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approximations for the exact three-dimensional elasticity solutions for shells. Intensive works have 

been conducted towards the development of simple and efficient shell finite elements of 

quadrilateral and triangular shapes through three major approaches:  

 The bi-dimensional curved shell elements derived from classical shell theory; 

 The degenerated shell elements derived from three-dimensional solid elements; 

 The flat shell elements, obtained by the combination of the membrane and bending 

behaviours of flat elements. 

   Each element type has its deficiencies and its benefits, and it is still difficult to identify which 

approach is the most advantageous, especially, when incremental iterative nonlinear analysis is 

involved. Several comparisons studies between shell elements of deferent theories, and other 

classifications and reviews can be found in many references: [BATHE & HO 1981; IDELSOHN 1981; 

MEEK & TAN 1986-a; YANG et al 1990; BUECHTER & RAMM 1992; HO 1992; CHROSCIELEWSKI 

et al 1997; YANG et al 2000]. 

   Among these approaches, flat shell elements, are regarded to be the most attractive as they can 

be built by combining existing plate and membrane elements. They have been used extensively 

because of the simplicity in their formulation, the effectiveness in performing computation, and 

the flexibility in applications to both deep and shallow shells and folded plate structures. However 

the use of “higher order” shell elements still present a necessity for a large class of engineering 

applications. By the sixties, flat shells, manly constructed by triangular elements, were the first 

shell elements available for computational mechanics of shell structures. They were followed by 

higher-order curved shell elements and degenerated shell elements. Due to mathematical 

complexities of curved classical shell theory, curved elements have not been widely adopted. 

Furthermore, they usually use higher order displacement’s derivatives, resulting in a large number 

of d.o.f per node. The Iso-parametric degenerated shell elements, particularly dominated research 

activities in the following decades despite their numerical difficulties referred to as shear and 

membrane locking. 

II-1.1. Bi-Dimensional Curved Elements Derived From Classical Shell Theories 

   These types of elements which are divided into singly and doubly curved shell elements, are very 

efficient in modelling structures with curved geometry. However, because of the complexities 

involved, the development of acceptable curved shell element was obstructed by many difficulties, 

such as: 
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 The choice of an appropriate shell theory. 

 Description of the shell element geometry. 

 Satisfaction of continuity and compatibility requirements. 

 Correct representation of the rigid body modes. 

   Before the advent of the patch test by [IRONS 1966; IRONS & RAZZAQUE 1972], satisfaction of 

completeness in the form of continuity, compatibility, and correct representation of rigid body and 

constant curvature modes, was identified as fundamental for convergence to the analytical 

solution. Many elements were developed which had some of these difficulties, and were used with 

different degrees of success. 

   Earlier development of two dimensional linear theories of thin shells include important 

contributions of [SANDERS 1959; FLUGGE 1960] in which, the initial curvature effect is taken into 

consideration, and the deformation is based on the Love-Kirchhoff assumption. 

   The singly curved elements were first developed in the axisymmetric form for the analysis of 

shells of revolution. [GRAFTON & STROME 1963] developed a method based on the direct stiffness 

method for the structural analysis of shells of revolution, composed of materials with orthotropic 

properties. In the following years, various improvements have been done by various researchers: 

[POPOV et al 1964; PERCY et al 1965; DONG 1966; NAVARATNA 1966; FULTON et al 1966; BEITCH 

1966; CANTIN & CLOUGH 1968]. 

[CONNOR & BREBBIA 1967] developed a rectangular cylindrical shallow shell element with 20 

d.o.f. They used a polynomial expression to express the radial displacement by 12 terms, and a 

linear expression for the membrane displacements. For this element, the rigid body modes are not 

included nor is the compatibility satisfied. [BOGNER et al 1967] developed a 4-node cylindrical 

shell element with 12 d.o.f per node based on “Novozhilov” shell theory. They used 16 term 

polynomial for all three displacement components. Rigid body modes are not included in this 

element. Compatibility requirements are however satisfied. [CANTIN & CLOUGH 1968] developed 

a curved cylindrical shell element including rigid body motion. They added the six rigid body 

modes explicitly by introducing the appropriate trigonometrical terms into the displacement 

functions. [POPOV & SHARIFI 1971] described an axisymmetric curved finite element for shells of 

revolution by using cubic polynomials in terms of local Cartesian coordinates. 

[SABIR & LOCK 1972; ASHWELL & SABIR 1972] used a strain based formulation, in which certain 

terms were omitted from the displacement function of [CANTIN & CLOUGH 1968] to derive a 

nonconforming strain-based rectangular cylindrical element. The element has 12 d.o.f, and it 
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includes correct representation of rigid body displacements, and satisfies the constant strain 

condition. Many other quadrilateral and triangular, singly and doubly curved shell elements, based 

on the same approach was developed by Sabir and co-workers: [SABIR & CHARCHAFCHI 1982; 

SABIR 1983; SABIR & RAMADANHI 1985; SABIR 1987; MOUSA & SABIR 1994]. 

[FONDER & CLOUGH 1973] explicitly added four missing rigid body modes in a cylindrical shell 

element with 24 d.o.f, and they found significant improvement over the performances of the same 

element without this addition. [GALLAGHER 1975] presented a 24 d.o.f conforming element using 

the complete bi-cubic hermit interpolation functions. 

   Early doubly curved axisymmetric shell elements was constructed by [JONES & STROME 1966; 

STRICKLAND & LODEN 1968]. They used curved meridional elements rather than conical 

segments. They do not however, assure the continuity of displacements, along the sides of elements 

and do not represent the rigid-body motion correctly. 

[UTKU 1967; GREENE et al 1968; STRICKLAND & LODEN 1968; ARGYRIS & SCHARPF 1968-a, 

1968-b] presented curved finite elements based on two-dimensional shell theory. [UTKU 1967] 

achieved a relatively simple algebraic representation for curved triangular elements by using linear 

variations for the three displacement and two angular displacement components. However, the 

element experienced considerable strain under rigid body rotation. [STRICKLAND & LODEN 1968] 

developed a triangular element based on shallow shell theory, in which, the normal displacement 

was incompatible, and it was deficient in the representation of rigid body modes. [ARGYRIS & 

SCHARPF 1968-a, 1968-b] proposed a higher order polynomial for all three displacement fields. 

[YANG 1973] developed a high order 48 d.o.f shallow shell finite element with two principal radii 

of curvature and a twist radius. 

   The Discrete Kirchhoff Theory, was successfully used to develop a number of singly and doubly 

curved shear-locking-free shell elements. Among the first ones, was a rectangular cylindrical 

element presented by [WEMPNER et al 1968]. [DHATT 1969] presented a number of DKT based 

triangular curved shallow shell elements. [MURTHY & GALLAGHER 1983] presented a three-node 

triangular cylindrical shell element based on the DKT assumptions using 27 d.o.f, with 

displacement components based on the triangular natural area coordinates. 

   Another developed family of shell elements, which imposes certain constraints on the shear 

stress to satisfy the discrete Kirchhoff assumption is the Semi-Loof shell elements by [IRONS 1974; 

IRONS & RAZZAQUE 1976]. These elements are general curved triangles and quadrilaterals, with 

three degrees of freedom (u, v, and w) at each corner and mid-side node, and with normal and 
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parallel rotations at the so-called “Loof” nodes along each side. These thin shell elements have 

proved to be very efficient for engineering shell applications, however, it is difficult to implement 

in a finite element program. Therefore, it is not much used. 

   Most of the presented quadrilateral elements were limited to regular shapes. [BATHE & 

DVORKIN 1986] presented the tensor mathematics that has been used in the formulation of skewed 

curved quadrilateral shell elements. 

[DUPUIS & GOEL 1996] presented a curved triangular finite shell element based on the Koiter-

Sanders model, in which the shell surface is described in a curvilinear coordinate system. The 

element correctly represents rigid-body motions and assures convergence in energy. 

   Applications of curved shell elements to large displacement analysis of shells have been reported 

by many authors, see for instance: [HARBORD 1973; SABIR & LOCK 1973; THOMAS & 

GALLAGHER 1975; GALLAGHER 1976; WOOD & ZIENKIEWICZ 1977; HORRIGMOE 1978; 

JAVAHERIAN et al 1980; CHROSCIELEWSKI et al 1992; KEULEN et al 1993; BUCHTER et al 1994; 

KEULEN & BOOIJ 1996; CAMPELLO et al 2003; PIMENTA et al 2004; LI et al 2008]. However, 

excellent accuracy of curved elements is obtained at the cost of a time-consuming element. This 

fact leads to expansive nonlinear analysis. 

II-1-2. Shells Degenerated From Three-Dimensional Solid Elements 

   The appearance of the Iso-parametric finite element by [ERGATOUDIS et al 1966, 1968], has 

motivated many attempts to improve the basic accuracy of this three dimensional element in order 

to make it possible to be used for shell analysis. The motivation for development of a shell element, 

which would be based on three-dimensional continuum mechanics, is mainly due the 

computational difficulties associated with a full three-dimensional model for a thin shell or plate 

structure. Complex mathematical expressions and assumptions of shell theories, particularly for 

nonlinear shells, could be avoided using the Iso-parametric elements. 

   Since the pioneering work modifying a three-dimensional Iso-parametric element to ordinary bi-

dimensional shell element by [AHMAD 1969; AHMAD et al 1970], the analysis of shell elements by 

the so-called degenerated solid approach or “degenerated shell elements” has been widespread. It 

is mainly because of their relative efficiency, and versatility of treating variable thickness and 

composite laminated structures beside their extensibility to nonlinear analysis. 

   In this theory, a three-dimensional solid element is degenerated (reduced) to a shell element 

having only mid-surface nodal variables. The procedure of creating degenerated shell elements, 
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consists to eliminate nodes by enforcing different constraints on the behaviour of the element, see 

[BATHE 1982] for more details: 

1. The line connects bottom node with top node called “fibre”, remain straight and inextensible; 

2. The elongation of fibers is governed by conservation of mass and/or the constitutive equation; 

3. Plane stress state; 

4. The elastic modulus in normal direction is assumed to be zero. 

   Degenerated shell elements are capable of representing the coupled effects between membrane 

and bending actions. Moreover, the measure of the transverse shear deformation, is permitted since 

the mid-surface normal are not necessarily to be kept normal during deformation. Therefore, 

degenerated shell elements give good results for thick shells. Unfortunately, fully integrated 

stiffness matrix overestimates the stiffness of the shell as its thickness decreases “the shear-locking 

problem”. In the case of moderately thick and thin shells, the results were found to be departed 

considerably from analytical solutions, and the elements were found to be too stiff with a very 

slow rate of convergence. The results was worsened as the shell become thinner, see 

[ZIENKIEWICZ et al 1971; PARISCH 1979]. The reduced integration technique by Too and Irons 

applied by [ZIENKIEWICZ et al 1971] and [PAWSEY & CLOUGH 1971] gave remarkably improved 

results for moderate to thin shells. Nevertheless, below a certain thinness the element behaviour 

was unreliable. [HUGHES et al 1978] introduced the selective reduced integration technique, in 

which, a reduced order of integration is used for membrane and shear energy terms to 

underestimate their effects in thin situations, see also: [BELYTSCHKO et al 1984-a; STANLEY et al 

1986; BELYTSCHKO et al 1989]. The Assumed Strain method has also been used successfully to 

resolve the problem of locking phenomenon in degenerated shell elements, so they can be applied 

to thin, thick, and laminated composite shells. [MACNEAL 1982] used an assumed-strain field 

related to nodal displacements by line integration along straight line segments between pairs of 

nodal points, resulting with a high accuracy shell element for both thick and thin shell problems. 

   Several researchers had modified and extended the original degenerated shell element to improve 

its behaviour for both thick and thin shells and overcome drawbacks associated with earlier 

degenerated shell elements: [ONÃTE et al 1978; STOLARSKI & BELYTSCHKO 1983; BUCALEM & 

BATHE 1993]. The addition of nonconforming displacement modes method by [WILSON et al 

1971], substitute shear strain fields by [DVORKIN & BATHE 1984; HUANG & HINTON 1986-a], 

and stress projection technic [BELYTSCHKO et al 1985] have been used successfully to overcome 

shear locking problem. Thus, degenerated elements originated as a tool for analysing thick shells, 

have been successfully applied to thin shell situations as well. 
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   Applications of degenerated shell elements to large displacement analysis have been reported by 

[WOOD 1973; KRAKELAND 1977; PARISCH 1978]. Further development for nonlinear analysis 

using total or updated Lagrangian formulations have been made by [BATHE & BOLOURCHI 1980; 

HUGHES & LIU 1981; PARISCH 1981; SURANA 1983; DVORKIN & BATHE 1984; OLIVER & 

ONÃTE 1984; MILFORD & SCHNOBRICH 1986; HUANG & HINTON 1986-b]. Also, the co-

rotational formulation was used by: [HUGHES & LIU 1981; BELYTSCHKO et al 1984-b; STANLEY 

et al 1986; JIANG et al 1994; JIANG & CHERNUKA 1994; VALENTE et al 2003]. 

II-1.3. Flat shell Elements 

   Because of the difficulties involved by the tow former approaches, they have several formulation 

complexities. Consequently, they are generally expensive in computation and, therefore, their 

application to non-linear problems, in particular, can be limited. 

   Modelling shell structures with series of flat elements, which is simpler and easier to implement, 

became more popular. In this approach the shell’s surface is approximated by an assemblage of 

flat elements constructed by combining the uncoupled membrane and plate bending behaviours. 

The major limitations of flat elements is the discontinuity in geometry, caused by these elements 

in representing a curved surface due the flatness of the elements. Moreover, the absence of 

coupling between membrane and bending within the element, and the lack of inter-element 

compatibility, represent the crucial shortcomings of these elements. 

   Several studies are available concerning convergence and error estimation of approximation of 

shell problems by flat shell elements, see for instance: [KIKUCHI 1984; TAYLOR & SIMO 1985; 

BERNADOU et al 1988; BERNADOU & TROUVE 1989; BERNADOU et al 1989; DESTUYNDER & 

SALAÜN 1998]. Many authors suggested that, the flat shells approach is more cost effective, and 

very attractive for the analysis of shell structures than higher order shells because of the simplicity 

of development. Also, higher order elements take three times more solution effort than lower order 

elements. Another drawback of higher order elements is the use of high order numerical integration 

schemes to avoid spurious zero energy modes. Moreover flat shells approach does not present 

membrane locking at the individual element level. Coupling between membrane and bending 

strains occur only on the inter-element boundary, which makes this approach very proper to study 

membrane locking. Some of the major attractive features of this modelling as cited by [COOK 

1974-a; ZIENKIEWICZ 1971-a] are: 

 Simplicity of formulation; 

 Capability of modelling rigid body motion without including strains; 
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 The use of these elements would still less expensive than using elements based on three 

dimensional continuum mechanics. 

   More importantly, good results were obtained when sufficiently fine meshes were used. This is 

one of the reasons for the continued use of flat elements in shell analysis. 

Since the 60’s, studies have been conducted using flat shell elements comprising any 

triangular/quadrilateral membrane element and a triangular/quadrilateral plate bending element. 

Various authors [ZIENKIEWICZ 1971-a; HORRIGMOE 1977; BERNADOU et al 1989, 1994; HO 1992] 

have studied the advantages and disadvantages of the various types of these elements. 

   They were [GREENE et al 1961; ARGYRIS 1965-a; MELOSH 1965] who first suggested the concept 

of using a built up element by combining membrane and plate bending elements to develop 'faceted 

form’ flat elements to model arbitrary shaped shell structures. Early efforts in the analysis of shells 

by flat shell elements were of triangular shaped elements, see: [UTKU & MELOSH 1967; CLOUGH 

& JOHNSON 1968; HERRMANN & CAMPBELL 1968; ZIENKIEWICZ et al 1968; ARGYRIS et al 

1977-a, 1980]. These elements, used the CST membrane element to model the membrane action 

since the CST element could be easily matched with the available three-noded plate bending 

elements. Most of theme, were with 5 d.o.f (two in-plane translations, transverse displacement and 

two slopes). [ARGYRIS et al 1977-a] used the mixed second-order derivative of the lateral 

displacement as nodal parameters, together with the usual 5 d.o.f to get and 18 d.o.f triangular 

element. Note that, early elements did not work well in some problems because of poor response 

and locking of membrane elements. 

   Triangular shaped elements, have been the most used shell elements, for the simple reason that 

the subdivision of an arbitrary shell geometry into flat elements, can be well-approximated with 

triangles. However, the cardinal problem at the time was the lack of efficient plate elements 

capable of performing sufficiently. Hence, the success of such analysis, was delayed until 

formulations of plate bending elements became well grounded. When good plate elements were 

developed. It was a simple matter to extend their use to shell type structures.  

   Among earlier successful developments, we could mention, the triangular elements by: [DHATT 

1970; BATOZ & DHATT 1972; CHU & SCHNOBRICH 1972; DAWE 1972]. Among them, the 

Triangular element presented by [DAWE 1972] might be the simplest flat shell element. It is 

obtained by superposing the “constant moment” triangular bending element by [MORLEY 1971] 

and the constant strain triangle “CST” by [TURNER et al 1956]. It involves a total of only twelve 

d.o.f “three translations at each corner node and one rotation at the mid-side”, which correspond 
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to linear and quadratic interpolating polynomials for the in-plane and transverse displacements. 

[BATOZ & DHATT 1972] used the discrete Kirchhoff assumption to present the formulation of a 

triangular shell element with 15 d.o.f, and a quadrilateral shell element with 20 d.o.f, by combining 

four triangular elements with mid-side nodes. Actually, only shells with regular curved surfaces 

can be well-modelled using rectangular or quadrilateral flat shell elements. 

   [DHATT 1970; BATOZ et al 1976] presented triangular flat shell elements, based on the DKT 

bending element and a quadratic strain triangular membrane element. These elements performed 

better than those used the CST membrane element. 

[MACNEAL 1978] presented a four-node Iso-parametric quadrilateral shell element with reduced 

integration of shear strain for the standard membrane element. To deal with the deficiency in the 

bending strain energy, he used and additional residual bending flexibility in the transverse shear 

terms of the plate element. He also discussed the enforcement of curvature compatibility and 

coupling between bending and stretching.   

[BATOZ et al 1980; BATOZ & BENTAHAR 1982] developed the famous successful DKT triangular 

and the DKQ quadrilateral plate bending elements, which have been applied for shell analysis 

successfully. There is a rich literature regarding shell elements that are built from a flat membrane 

element and the DKT plate bending element: [GARNET & PIFKO 1983;   BATHE & DVORKIN 

1983-a; CARPENTER et al 1986; FAFARD et al 1989; CHEN 1992; ERTAS et al 1992; SAMANTA & 

MUKHOPADHYAY 1999; KIM & KIM 2002]. 

[DHATT et al 1986] presented a six node triangular shell element based on a discrete Kirchhoff 

plate element called DKTP and the LST membrane element. [SYDENSTRICKER & LANDAU 2000] 

used some discrete triangular plate elements to form flat shells in order to study the behaviour of 

triangular discrete plate and shell elements, also, membrane and shear locking are studied. 

[STOLARSKI et al 1984; CARPENTER et al 1986] formulated flat shell elements with a membrane 

bending coupling device. [CARPENTER et al 1986] formulated four flat triangular shell elements 

based on the Merguerre shallow shell theory. The four elements combines the DKT plate element, 

with different membrane stiffness: the CST membrane element, the membrane element by [OLSON 

& BEARDEN 1979], and two versions of their own formulation. 

[BATHE & HO 1981] showed the use of the DKT element in combination with the CST membrane 

element for the analysis of general shell structures. They studied shell problems using higher order 

shell elements versus the use of lower order flat shells. They introduced a fictitious stiffness for 

the in-plan rotational degrees of freedom. 
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   A family of flat shell elements based on the semi-Loof shell elements by [IRONS 1974; IRONS 

& RAZZAQUE 1976] was developed. These elements have normal and parallel rotations at the so-

called “Loof” nodes along each side. [MEEK & TAN 1986-a] developed a triangular flat element 

with “Loof” nodes comprising the LST membrane element and a plate bending element that has 

six nodes with three degrees of freedom (u, v, and w), and six Loof nodes with one rotation, along 

the edge. Also, [POULSEN & DAMKILDE 1996] presented a flat triangular shell element with Loof 

nods by a combination of a plate element of their own formulation and the LST membrane element. 

   Argyris and co-workers developed a series of triangular shear-deformable flat shell elements 

based on the patch test: the “TRUMP element” by [ARGYRIS et al 1977-a], “TRUNC element” by 

[ARGYRIS et al 1977-b; ARGYRIS et al 1986], “LACOT element” by [ARGYRIS & TENEK 1994] 

and the “TRIC element” by [ARGYRIS et al 1997; 1998, 1999], for the analysis of thin and 

moderately thick isotropic and composite plate and shell structures. Its formulation is based on the 

natural mode finite element method by [ARGYRIS et al 1979], a method that separates the pure 

deformational modes from the rigid body movements of the element. 

   [IDELSOHN 1981] studied and summarized the different thin shell theories. He presented a 

comparison of the deep shell theory against flat shell and shallow shell theories. The shallow shell 

theory is a very simple and effective way to build thin curved shell elements. “Donelle” shallow 

shell theory is expressed in curvilinear coordinates, while “Marguerre” shallow shell theory is 

expressed in Cartesian coordinates. In the shallow shell theory of Marguerre [MARGUERRE 1950], 

a curved surface is considered as a deformed configuration of a flat shell element. In this theory a 

point on the curved surface is represented by projection on the reference plane. Consequently 

resulting shell element is constructed by superposing membrane, bending, and coupling matrices 

as flat shell element. This theory takes into account bending coupling between membrane and 

bending strains via the coupling matrix, see also: [DEBONGNIE 1979; JETTEUR & FREY 1986; EL-

KHALDI 1987, DJEGHABA 1990]. 

   [MORLEY & MOULD 1987] studied the effect of the bending part of flat shells using a triangular 

flat shell element, in which, the plate bending element by [MORLEY 1971] has the three 

displacement d.o.f at the vertices, and the rotational degrees-of-freedom at mid-side. [KNIGHT 

1997] compared the results of various flat shell elements including the DKT element, with inherent 

coupling between three modes of deformation: bending, extension and twist. 

[BATOZ et al 1998-b; BATOZ et al 2000] presented a new quadrilateral discrete Kirchhoff flat shell 

element with 16 degrees of freedom (three displacements u, v, w at each corner, and a rotation at 

each mid-side node). The purpose of their work is to present a quadrilateral shell element with 
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relative balance of precision between the membrane and bending energies by combination of the 

rational quadrilateral membrane element by [ZHONG & ZENG 1996] and a quadrilateral discrete 

Kirchhoff plate bending element by [BATOZ et al 1998-a]. 

[SABOURIN & BRUNET 1995; ONÃTE & ZARATE 2000; GUO et al 2002] proposed a new family 

of rotation-free triangular plate/shell elements with translational d.o.f only, based on Kirchhoff 

thin plate theory. [CRISFIELD & TAN 2001] proposed a triangular and a quadrilateral shell elements 

with only out-of-plane bending rotation d.o.f at mid-side of element. 

   When the plate elements are based on the Kirchhoff theory, there is the problem of consistency 

between the displacements of the two adjacent non-coplanar elements, because the membrane field 

is often linearly interpolated while the bending field is cubic. If the Reissner-Mindlin plate theory 

is used, the continuity of displacements between adjacent flat shell elements no longer exists, 

because only C0 continuity is required. In which, displacements and rotations are described 

independently and functions of the same order are used. Many flat shell elements with Reissner-

Mindlin plate elements was presented: [MACNEAL 1978; NUKULCHAI 1979; BELYTSCHKO et al 

1992; ONÃTE 1994; TENEK & HAGIWARA 1994; GROENWOLD & STANDER 1995; 

SYDENSTRICKER & LANDAU 1996]. 

   Flat shell elements have been extended to solve nonlinear large displacement shell problems by: 

[ARGYRIS & DUNNE 1975; HORRIGMOE 1976, 1977; ARGYRIS et al 1977-a; HORRIGMOE & 

BERGAN 1978]. This subject has been developed by many authors: [CHEN 1979; MEEK & TAN 

1986-b; RANKIN & BROGAN 1986; SCHOOP 1986-a, 1986-b; HSIAO 1987; TALBOT & DHATT 

1987; FAFARD et al 1989; SCHOOP 1989; PERIC & OWEN 1991; PENG & CRISFIELD 1992; BOUT 

1993; LIU & TO 1995; TO & LIU 1995; MEEK & RISTIC 1997; TO & WANG 1998-a; PROVIDAS & 

KATTIS 1999; SAMANTA & MUKHOPADHYAY 1999]. The wide range of numerical examples 

studied in these references indicate that flat finite elements may be very useful in the analysis of 

nonlinear shell problems. 

   Up to now, flat shell elements are used extensively in engineering practice. Many flat shell 

triangular elements have been presented for static, nonlinear, and dynamic analysis, such as: 

[HAMMERAND & KAPANIA 2000; GUO et al 2002; BATTINI & PACOSTE 2004; IZZUDDIN 2005; 

FELIPPA & HAUGEN 2005; BATTINI & PACOSTE 2006; LOMBOY et al 2009; AREIAS et al 2011; 

WU 2013; NGUYEN-VAN et al 2014; WANG & SUN 2014]. 
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II-2. Flat Shell Elements in Non-Linear Updated Lagrangian Co-rotational Formulation  

   The simplicity and low cost of flat shell elements, make them suitable for nonlinear analysis of 

thin shell structures. Hence, it has been of considerable interest to investigate the geometric 

nonlinear behaviour of flat shell finite elements undergoing large displacements and large 

rotations. Large displacement geometrically nonlinear analysis formulations of flat shell finite 

elements were developed by [ARGYRIS & DUNNE 1975; ARGYRIS et al 1977-a; HORRIGMOE 

1976, 1977]. Usually, geometrically nonlinear analysis implies large rotations. Since the nodal 

rotations are not vectorial quantities, an extension to the analysis of large rotations is not 

straightforward. Several large rotation formulations based on the total Lagrangian formulation 

have been presented, in which the large rotations of the shell director are described by using the 

large rotation matrix or by using nonlinear trigonometric functions [SURANA 1983; SIMO & FOX 

1989; PARISCH 1991; IBRAHIMBEGOVIC 1994; BRANK et al 1995]. 

   Nevertheless, if the rigid-body motion can be eliminated from the total displacements of the 

element, the deformational part of the element will always be small relative to the local element 

axis. This will then allow the use of the small displacement theory and thus circumvent the large 

rotation problem. Thus, the updated Lagrangian formulation has been predominantly used in the 

non-linear flat shell formulations available in the existing literature. 

[ARGYRIS et al 1977-a] developed a three-node flat triangular shell element for nonlinear elastic 

stability. He presented a formulation denoted as the “natural mode technique”, it is based on 

decomposing the displacements into rigid body and straining modes. [HORRIGMOE & BERGAN 

1978] presented a large displacement analysis formulation of free-form shell structures using 

triangular and quadrilateral flat shell elements, based on the updated Lagrangian description with 

co-rotational coordinate system. Large rotations were handled by distinguishing between rigid 

body rotations and deformational rotations. 

   There exist a large literature concerning the geometrically nonlinear analysis of flat shells where 

a co-rotational reference configuration is used to eliminate large body translations and rotations. 

The majority of published works was dealing with triangular elements, in which, the membrane 

behaviour was represented by the CST or LST membrane elements. Thus, the resulting shell 

element has three displacements and two out of plane rotational degrees-of-freedoms at corner 

nodes, therefore only five degrees of freedom are needed at each node.  

[CHEN 1979] presented a flat shell element by combination of the CST element and the plate 

element by [MORLEY 1971]. The shell element was extended for updated Lagrangian formulation 
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with a local coordinate system which rotates with the element. [BATHE & HO 1981] used a flat 

triangular shell by combining the CST and the DKT elements to present the updated Lagrangian 

description of shells using a co-rotational formulation to remove the rigid body rotations. 

[BELYTSCHKO et al 1984-b] presented a finite element formulation for the nonlinear large 

deflection and materially nonlinear response of impulsively loaded shells using a four-node 

quadrilateral element with single-point quadrature and a simple hourglass control. The geometric 

nonlinearities are treated by using a co-rotational description wherein a coordinate system that 

rotates with the material is embedded at the integration point. 

[RANKIN & BROGAN 1986] presented a co-rotational procedure which is independent of the finite 

element employed. Their formulation is adequate for quadrilateral and triangular shell elements. 

They implemented their formulation for shells using two types of flat quadrilateral plate elements. 

[HSIAO 1987] presented a flat triangular shell element comprising the CST and the DKT elements 

for geometrically nonlinear analysis of general shell structures by flat triangular shell elements. 

The Nonlinear formulation is based on the updated Lagrangian description. In order to remove the 

restriction of small rotation between two successive increments, he used a coordinate system that 

rotates and translates with the element’s movement to eliminate rigid body motions. 

[FAFARD et al 1989] presented two updated Lagrangian formulations for a six-node triangular flat 

shell element. The element results from combining the LST element and the 6-node plate element 

by [DHATT et al 1986]. In the first formulation, all nonlinearities are considered in the computation 

of stresses and the tangent stiffness matrix. However, in the second formulation, a linearized 

incremental formulation is calculated using co-rotational formulation. 

   The co-rotational framework for triangular shell elements has also been presented by [NOOR-

OMID & RANKIN 1991], who presented the flat triangle shell element by [ARGYRIS et al 1979] for 

geometrically nonlinear analysis by removing the rigid body displacements from the total 

displacements. [PENG & CRISFIELD 1992] used a flat triangular element, which is a combination 

of the CST membrane element and the plate element by [HERRMANN 1967]. They used a co-

rotational updated Lagrangian formulations for the geometric nonlinear analysis. 

[MEEK & RISTIC 1997] presented the flat shell triangle with “Loof” nodes “DKL+LST" by [MEEK 

& TAN 1986-b] for geometrically nonlinear analysis using the updated Lagrangian co-rotational 

formulation. The element under consideration has six nodes with three degrees of freedom (u, v, 

and w) and six “Loof” nodes with one rotation, along the edge. 
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[PACOSTE 1998; ERIKSSON & PACOSTE 2002] introduced a different parameterisation of the 

finite global rotations based on the incremental rotation and rotation vectors. 

In [YANG et al 1999] the rigid body rule for an initially stressed body undergoing rigid body 

rotations is applied to derive an approximate geometric stiffness matrix for a three-node triangular 

flat shell element. 

[BATTINI & PACOSTE 2004] presented an investigation concerning the essentiality of choosing a 

co-rotational local frame invariant to the node ordering for triangular shell elements. A detailed 

description of co-rotational formulation was presented by [FELIPPA & HAUGEN 2005]. 

   Specific issues concerning the choices of the local frame and the linear elements has been 

addressed in [BATTINI & PACOSTE 2006]. They investigated three-node triangular shell elements 

comprising one of the three following elements: the DKT plate element, the TRIC plate element 

by [ARGYRIS et al 1997], or the AQR Kirchhoff element by [MILITELLO & FELIPPA 1991], which 

is based on the assumed natural deviatoric strain (ANDES) formulation. The membrane element 

was one of the following: the CST element, Allman’s triangle by [ALLMAN 1988-a], or the element 

by [FELIPPA 2003]. [BATTINI 2007] proposed the introduction of three modifications in the co-

rotational framework for triangular shell elements. The first one is a simplified definition of the 

local rotations. The second one is a reduction of the number of local degrees of freedom from 18 

to 15. The third and principal one concerns the parameterisation of the global finite rotations. 

   [WANG & SUN 2014] presented a 4-node “quadrilateral area coordinate method based” 

quadrilateral flat shell element for geometrically nonlinear analyses of thin and moderately thick 

laminated shell structures using the co-rotational formulation. 

[IZZUDDIN 2005] presented a 4-node co-rotational quadrilateral flat shell element with hierarchic 

freedoms, where the two bisectors of the element diagonals and their cross-product were employed 

to define the co-rotational framework.  

[LOMBOY et al 2009] presented a four-node shell element based on the quasi-conforming technique 

for geometric and material nonlinearity. The formulation was presented using an updated 

Lagrangian stress resultant co-rotational approach. 

   The wide range of numerical examples studied in the above mentioned works, indicate that flat 

shell finite elements when extended to geometrically nonlinear large displacements and rotations 

analysis using the updated Lagrangian co-rotational formulation, can be a very useful approach in 

the analysis of nonlinear shell problems. 
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II-3. Thin Plate Bending Elements 

   There has been considerable interest in the development of plate bending elements ever since 

their use became popular for representing the bending behaviour of shell elements. The first 

successful applications of the finite elements method to plate bending problems were published in 

1960 by [ADINI & CLOUGH 1960; MELOSH 1961]. They were obtained using rectangular elements, 

none of which satisfied the requirements of compatibility and completeness. Until 1965 only 

rectangular elements gave satisfactory results. The major source of difficulties in plates is due to 

continuity requirements, where attaining normal rotations inter-element compatibility posed 

serious problems. 

II-3.1. Triangular plate bending elements 

   Triangular plate bending elements are popular for discretizing irregular plates. They are most 

efficient for discretizing arbitrary shell geometries, so they have been attracting lots of interest. In 

the early sixties, [CLOUGH & TOCHER 1965] used the out of plane displacement and rotations to 

create a triangular element which satisfied the displacement compatibility conditions by dividing 

the main triangle into three sub-triangles. This procedure involved the use of three ten-term 

polynomials within each triangular region. The resulting plate element produced excellent results 

and was named the HCT element, after Hsieh, Clough and Tocher.  

   Area coordinates are used instead of Cartesian coordinates by [BAZELEY et al 1966; CHU & 

SCHNOBRICH 1970] to develop the first successful non-conforming elements. [BAZELEY et al 

1966] element’s has nine d.o.f with cubic displacement functions in terms of the nodal displacement 

and rotations. They found that this non-conforming element does not pass the patch test and does 

not converge toward the exact solution for some mesh configurations. 

   The constant bending moment triangle was reported by [HERRMANN 1967] based on the 

Reissner mixed-variational principle, and by [HELLAN 1967] in a similar work resulting in a 

positive non-definite stiffness matrix. [MORLEY 1971] presented a non-conforming but convergent 

constant bending moment triangle based on the Kirchhoff plate theory, with a quadratic 

displacement functions, using an equivalent displacement-based formulation. Thus, some authors 

tried to achieve full inter-element compatibility by using higher order polynomials. Conforming 

triangular plate element with 21 d.o.f “normal displacement, and its first and second derivatives at 

each vertex, and angular displacement at each mid-side point” was independently developed by 

several authors [ARGYRIS et al 1968; BOSSHARD 1968; BELL 1969]. 
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   The first application of mixed formulation was actually to the plate bending problem by 

[HERRMANN 1967] to derive a "mixed model" triangular element, involving simultaneous 

assumptions on displacements and stresses. Its formulation is based on Reisner's variational 

principle, which includes both the moments and the displacements as primary variables. [VISSER 

1969] showed some improvements in the solution over the [HERRMANN 1967] element by 

adopting higher order polynomials. 

[BERGAN 1980-a; BERGAN & NYGARD 1981] followed a non-traditional line of approach based 

on the so called “individual element test” to derive triangular plate bending elements based on the 

so called “free formulation”. 

   The so-called discrete Kirchhoff technique (DKT) was successfully used to construct shear-

locking-free plate bending finite elements by many authors: [DHATT 1970; FRIED 1973; FRIED & 

YANG 1973; FRIED 1974; BATOZ et al 1980; BATOZ 1982; GARNET & PIFKO 1983]. A successful 

(DKT) three-nodded triangular plate bending element with nine d.o.f (two rotations and a 

perpendicular displacement per node) which could be utilized for shell analysis, was developed in 

1980 by [BATOZ et al 1980]. They developed three plate elements: the “DKT” element, based on 

the Discrete Kirchhoff Theory, the “HSM” element based on the Hybrid Stress Method, and the 

“SRI” element that includes transverse shear deformation based on Selective Reduced Integration 

scheme. The HSM element is based on the hybrid stress method. It has a linear distribution of 

bending moment in the interior, a cubic displacement variation along the edges, and a linear normal 

slope variation along the edges. The DKT element’s formulation includes shear deformations 

based on the Mindlin theory. They considered transverse shear strain to be present in the element 

in the initial development and then removed the transverse shear strain terms by applying discrete 

Kirchhoff constraints in a discrete manner on the corner and mid-side nodes. The numerical 

behaviour of DKT elements was also studied and discussed, by [BATOZ 1982; BATOZ & 

LARDEUR 1989; BATOZ et al 2001]. The Kirchhoff assumptions are also introduced at the centroid 

of the element in addition to corner and mid-side nodes by [JEYACHANDRABOSE et al 1985] to 

get an efficient triangular plate element. [MEEK & TAN 1985] presented a six-node discrete 

Kirchhoff triangular plate bending element with “Loof nodes”, in which, the transverse 

displacement is expressed in terms of the corner and mid-side nodal displacements, and “Loof” 

nodal rotations. The rotations of the shell normal about the local Cartesian coordinates, are 

interpolated in terms of the values at the “Loof” nodes. Then, they are eliminated in terms of the 

rotations of the shell normal about the edges at the “Loof” nodes by imposing Kirchhoff 

assumptions at discrete points. 
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   [TESSLER & HUGHES 1985] presented a three-nodded non-conforming shear deformable 

element based on the Reissner-Mindlin theory in which the transverse displacements are expressed 

in terms of the standard quadratic basis in area coordinates. The use of a suitable shear correction 

factor results in an element that is applicable for both thick and thin plates. 

   [DHATT et al 1986] presented a six node discrete Kirchhoff element called DKTP with one order 

higher interpolations of the transverse displacement and normal rotations, than those used in the 

DKT element. However, this element present no remarkable improvement than the DKT element. 

[FELIPPA & BERGAN 1987] presented a successful triangular plate bending element based on the 

free formulation. They modified the cubic terms of the nine-term polynomial in area coordinates 

given by [BAZELEY et al 1966]. A simple successful modification of the element by [BAZELEY et 

al 1966] was introduced by [SPECHT 1988], in which, fourth order terms are used in place of the 

originally used cubic terms. 

II-3-2. Quadrilateral plate bending elements 

   Quadrilateral plate bending elements are popular in analysing regular plates and regular shaped 

shell structures. They are usually used owing to their better performance with respect to 

convergence rates than that of triangular elements. 

   Early attempts to solve plate bending problems using finite elements method, was made by 

[ADINI & CLOUGH 1960] using a rectangular C0 continuity non-conforming element. The 

rectangular element has 12 degrees of freedom and uses a complete third order polynomial aligned 

with the rectangle sides, plus two additional x3y and xy3 terms. The element satisfies completeness, 

but normal slope continuity is only maintained at corner nodes. This pioneering work, showed the 

difficulties in constructing C1 conforming thin plate elements. 

   A rectangular plate element constructed with beam-like edge functions was proposed by 

[MELOSH 1961; ZIENKIEWICZ & CHEUNG 1964] using 12 term polynomials to represent 

compatible normal displacement. Again C0 continuity was achieved but not C1 except at corners. 

   Among the first successful conforming fully compatible plate elements, was the rectangular 

element having 16 d.o.f "four for each node" by [BOGNER et al 1965] through complete third order 

bi-cubic Hermitian interpolation functions. Numerical results indicate that in addition to exhibiting 

monotonic convergence, a good approximation of the displacement behaviour was achieved.          

A higher order conforming rectangular plate bending element with “Loof” nodes was presented 

and discussed by [GOPALACHARYULU 1973; IRONS 1973]. 
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   First arbitrary quadrilateral plate bending elements involved combining two or four triangular 

plate bending elements, and eliminating internal d.o.f by static condensation. [CLOUGH & 

FELIPPA 1968] presented a quadrilateral element built up from four triangles. They derived a 

compatible quadrilateral element having four corner nodes, only with three d.o.f each.                   

[DE-VEUBEKE 1968] derived a compatible arbitrary quadrilateral finite element with 16 d.o.f. The 

quadrilateral is formed by a macro-assembly of four triangles by the two diagonals, condensing 

out the interior degrees of freedom and assuming a complete cubic polynomial displacement field 

within each triangle. The two diagonals are selected as a skew Cartesian coordinate system to 

develop the finite element fields.  

   [MACNEAL 1978] developed a four-node quadrilateral shell element using Iso-parametric shape 

functions. This element gives very good results for plate bending. 

   [ROBINSON & HAGGENMACHER 1979] developed a quadrilateral plate bending element based 

on stress parameters rather than displacement fields. This element gives very good results for plate 

bending. [BERGAN et al 1982; BERGAN & NYGARD 1984; BERGAN & WANG 1984] used the 

“individual element test” approach to derive rectangular and general quadrilateral plate bending 

elements with 12 d.o.f based on the so called “free formulation”. [BATOZ & BEN-TAHAR 1982] 

developed a four node quadrilateral element based on the Discrete Kirchhoff theory. A quadratic 

approximations of the rotations are used to establish a new quadrilateral 8-d.o.f discrete Kirchhoff 

plate bending element by [BATOZ et al 1998-a], in which, the shear strain energy is neglected and 

the Kirchhoff hypothesis are introduced in a discrete manner on the corner and mid-side nodes. 

   The numerical behaviour of the Discrete Kirchhoff Theory elements of various shapes was 

studied and discussed by [BATOZ & BEN-TAHAR 1982; BATOZ & LARDEUR 1989; BATOZ et al 

2001]. Other successful quadrilateral C0 elements have been developed by [HUGHES et al 1977; 

PUGH et al 1978; CRISFIELD 1983-a; DVORKIN & BATHE 1984; PRATHAP 1984;                             

BOOT & MOORE 1984]. 
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II-4. Membrane elements 

   Membrane elements usually require only two degrees of freedom at each node, in which the state 

of strain is uniquely described in terms of the u and v in-plane translations at each node. This type 

of elements is simple to derive and has been widely used. Several formulations of triangular and 

quadrilateral membrane elements have been developed since the early stages of the finite element 

method. With the introduction of Iso-parametric elements, membrane elements received special 

attention and they were extensively used in the analysis of plane problems. The simplest form of 

plane membrane elements is the tree-noded constant-strain triangle “CST” that was first introduced 

by [TURNER et al 1956], and the four-noded bilinear quadrilateral element. [TAIG 1961] presented 

the first Iso-parametric version of the bilinear quadrilateral element. Unfortunately, these tow 

simple elements, were discovered to suffer from serious drawbacks of locking under a variety of 

situations. The “CST” does not perform well under bending load due to the presence of spurious 

shear strain, and it has a slow convergence rate. The four-noded quadrilateral also suffer from 

locking of elements of trapezoidal shape subjected to in-plane bending [PRATHAP 1985; 

MACNEAL 1987]. These difficulties, become much more severe with distorted mesh, see [LEE & 

BATHE 1993], or when studying incompressible or nearly incompressible materials. 

   Higher order elements were developed involving the mid-side nodes, the most famous is the six-

node “LST” triangular element developed by [DE-VEUBEKE 1965]. A quadrilateral eight-node 

element was also developed. However, this class of elements is more computationally expensive 

compared to those with only corner nodes.   

   The problem of locking and other shortcomings of low order membrane elements with corner 

nodes, particularly parasitic shear in quadrilateral elements, has been the topic of many 

investigations using several approaches. Among the first works to formulate good finite elements 

for elasticity problems was by [WILSON et al 1973-a] to improve the performance of [TAIG & KERR 

1964] quadrilateral element by introducing incompatible displacement modes. Subsequently, 

several contributions has been introduced by using different concepts:  

 Reduced integration [ZIENKIEWICZ et al 1971; MALKUS & HUGHES 1978; FLANAGAN & 

BELYTSCHKO 1981; MURTHY 1994]; 

 Incompatible modes [WILSON et al 1973-a; TAYLOR et al 1976]; 

 Strain based approach [SABIR & SALHI 1986; SABIR & SFENDJI 1995; BELARBI & 

MAALAM 2005]; 
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 Mixed/assumed stress methods [PIAN 1964; HERRMANN 1965; PIAN & SUMIHARA 1984; 

BELYTSCHKO et al 1984-a, 1985; YEO & LEE 1997]; 

 Assumed strain method [MACNEAL 1982; SIMO & HUGHES 1986; SIMO & RIFAI 1990; 

STOLARSKI & CHEN 1995-a; PILTNER & TAYLOR 1995]; 

 Hybrid finite elements [COOK & AL-ABDULLA 1969; COOK 1974-b, 1975; CHEN & 

CHEUNG 1987; JIN et al 1990; JIROUSEK & VENKATESH 1992; YEO & LEE 1997]; 

 Hu-Washizu principle and stabilization matrix [BELYTSCHKO & BACHRACH 1985]; 

 Energy orthogonal functions “FF”  [BERGAN 1980-a; BERGAN & NYGÅRD 1984]; 

 Drilling degree of freedom [ALLMAN 1984; BERGAN & FELIPPA 1985]. 

   We can also mention other contribution made by several researchers with different approaches, 

such as the individual element test [BERGAN & HANSSEN 1976], the quasi-conforming element 

[CHEN & TANG 1981; TANG et al 1984], the assumed natural strain [PARK & STANLEY 1986], the 

approach by [ZHONG & ZENG 1996], and the quadrilateral area coordinate method by [LONG et al 

1999-a, 1999-b]. 

   Note that, the enrichment of membrane elements using all above mentioned methods, and 

extension for nonlinear analysis, have been an active research area till now days, see for instance: 

[PILTNER & TAYLOR 1999; SZE & GHALI 2000; DOHRMANN et al 2000; XIAO-MING et al 2004; 

PILTNER & TAYLOR 2005; DU & CEN 2008; FELIPPA 2006; CAYLAK & MAHNKEN 2011; 

MOSTAFA et al 2013; YANG et al 2014]. 

   The drilling d.o.f approach, improves the performances of membrane elements, through 

increasing the order of displacement polynomials by using nodal in-plane rotations as additional 

degrees of freedom. This will also provide a desirable membrane component that provides the 

sixth d.o.f in a flat shell element. This approach, leads to a class of finite elements that performs 

better than those above mentioned elements without increasing the number of element nodes. 

   The idea of including in-plane normal-rotation degree of freedom at corner nodes of membrane 

elements is an old one. However, early attempts [BERGAN 1967; TOCHER & HARTZ 1967; 

HOLAND & BERGAN 1968; DUNGAR & SEVERN 1969; MACLEOD 1969; LYONS 1970; 

ROBINSON 1980; MOHR 1982; BERGAN & NYGÅRD 1984] were unsuccessful. Successful 

progress in this direction was first made by [ALLMAN 1984], who introduced the concept of the 

vertex rotation, and [BERGAN & FELIPPA 1985] using the so-called free formulation, also by 

[COOK 1986] who gave a geometrical interpolation of mid-side transverse displacement of 

quadratic elements in relation to vertex rotations. 
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   [ALLMAN 1984], in a pioneering work, introduced the in-plane rotational d.o.f in the constant 

strain triangle (CST) by choosing the normal and tangential displacement components defined in 

terms of triangular area co-ordinates to be quadratic and linear functions respectively. This simple 

formulation radically improved the in-plane behaviour of this element. However, the element 

suffer from a zero energy mode. This shortcoming is removed in a later work [ALLMAN 1988-a] 

using a cubic polynomial displacement field. [BERGAN & FELIPPA 1985] in an independent work 

introduced the in-plane rotational d.o.f in the constant strain triangle using the free formulation of 

[BERGAN & NYGÅRD 1984]. 

[CARPENTER et al 1985] presented a triangular element with nodal in-plane rotations introduced 

by the use of a cubic constraint functions along each side of the triangle. The stiffness matrix was 

evaluated using a reduced integration scheme. This under integrated element gave better results 

compared to the fully integrated element, but the reduced order integration resulted in spurious 

zero energy modes. The three "spurious modes" of [CARPENTER et al 1985] element’s were 

eliminated later by [FISH & BELYTSCHKO 1992] using a stabilization scheme. 

   Incorporating the in-plane rotation as an additional degree of freedom has also extended to 

quadrilateral membrane elements. [COOK 1986; ALLMAN 1988-b] independently presented 

quadrilateral elements with drilling d.o.f derived from the Allman’s triangle. Since then, many 

similar methods have been proposed for triangular and quadrilateral elements: [COOK 1987; 

MACNEAL & HARDER 1988; JAAMEI 1988; FREY 1989; MACNEAL 1989; COOK 1990, 1991; 

ALLMAN 1993].  

   The concept proposed by Allman represents, even today, the theoretical support for the 

development of several triangular and quadrangular finite elements. This type of elements, 

however, suffers from two major drawbacks. The first one is the rank deficiency, this problem 

could be controlled by applying a stabilization mechanism based on the inclusion of an additional 

energy penalty stiffness matrix obtained by introducing a relation between the finite element global 

rotation and the nodal rotations, see: [MACNEAL & HARDER 1988; COOK 1993, 1994]. The second 

shortcoming, is the use of the vertex rotation, which does not represent the true in-plane rotation.  

   The work on membrane elements with drilling rotation has been pursued seeking for two 

objectives: having elements with true drilling rotation, or having looking free with high 

convergence rate elements even with vertex rotation.   

   In an attempt to interpolate the true drilling rotation, [SABIR 1985] using strain based approach, 

derived rectangular and triangular non-conforming elements incorporating the in-plane rotation 
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calculated through continuum mechanics. Recently [BELARBI & BOUREZANE 2005; HAMADI & 

BELARBI 2006; REBIAI & BELOUNAR 20013, 2014] used the same method in their works. 

However, numerical resets show that only rectangular elements provide good results.  

   The problem of true drilling rotation has also treated by Ibrahimbegovic and co-workers 

[IBRAHIMBEGOVIC et al 1990; IBRAHIMBEGOVIC & WILSON 1991-a] presenting a class of 

membrane elements with drilling d.o.f based on a variational formulation initially suggested by 

[HUGHES & BREZZI 1989; HUGHES et al 1989], in which, The kinematic variables of displacement 

and rotation are separated by introducing both symmetric field for displacement and skew-

symmetric field for drilling rotation. This approach employs an independent rotation field and 

Allman-type shape functions to achieve quadrilateral membrane elements incorporating drilling 

rotation, with a high order of accuracy. The relation between drilling d.o.f and translational 

displacement is established through a penalty function term, which will modify drilling d.o.f to 

close true rotation, see also [SIMO et al 1992-a; IURA & ATLURI 1992; CAZZANI & ATLURI 1993; 

IBRAHIMBEGOVIC 1993]. On the same basis, a class of finite elements with drilling d.o.f is 

developed using the incompatible modes method [IBRAHIMBEGOVIC 1990; WILSON & 

IBRAHIMBEGOVIC 1990; IBRAHIMBEGOVIC & FREY 1992, 1993]. Also, Following the works by 

Hughes and by Allman, triangular three node elements has derived by [FISH & BELYTSCHKO 

1992; CHINOSI et al 1997]. 

   Using the context of the assumed natural deviatoric strain (ANDES), [FELIPPA 2003] studied the 

formulation of triangular membrane elements with the drilling degrees of freedom, using the 

earlier work on the extended free formulation (EFF) by [ALVIN et al 1992; MILITELLO & FELIPPA 

1991; FELIPPA & MILITELLO 1992; FELIPPA & ALEXANDER 1992]. These elements require extra-

free parameters to be chosen to optimize the element performances.  

   Due the absence of an explicit methodology of incorporating the true drilling rotation, almost, 

all existing membrane elements with in-plane rotational d.o.f are formulated using the vertex 

rotation. Even though they does not represent the true drilling rotational d.o.f, elements with vertex 

rotation are widely used to avoid shear locking, and due their high convergences rate. Thus, 

triangular and quadrilateral membrane element with corner rotational d.o.f has been formulated in 

a widely varying manners, for linear analysis. 

[YUQIU & YIN 1994-a] presented two generalized conforming triangular membrane elements with 

rigid vertex rotations, and in [YUQIU & YIN 1994-b] they suggested a new definition of vertex rigid 

rotation and developed corresponding two new generalized conforming quadrilateral membrane 

elements. The elements’ formulation is based on displacement superposition, in which, the in-
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plane displacements are decomposed into a regular low-order components, and a higher-order 

incomplete polynomials components due the nodal in-plane rotations. 

   An effective way to eliminate locking and develop high-performance finite elements, is the 

Mixed, Hellinger-Reissner functional, and assumed stress method. This class of elements generally 

shows a good behaviour in terms of displacements and stresses and found to be less sensitivity to 

mesh distortion. [PIAN & SUMIHARA 1984] presented a quadrilateral element with four nodes and 

five stress parameters. [COOK 1987] presented a plane triangular element with rotational d.o.f, 

formulated using the assumed-stress hybrid method based on independent descriptions of stresses 

by three hybrid constant stress sub-elements, and the drilling d.o.f are incorporated in the 

interpolation of displacements defined on the boundary. [SZE et al 1992] proposed a mixed 

quadrilateral element with drilling d.o.f using orthogonal stress modes and by using Allman’s 

interpolation scheme. [CAZZANI & ATLURI 1993] presented a family of new four-noded 

membrane elements with drilling degrees of freedom using unsymmetric assumed stresses derived 

from a mixed variational principle originally formulated for finite strain analysis. 

   [TO & LIU 1994] presented three variations of triangular plane stress elements that are built on 

the basis of Allman Triangle, while effort has been directed to include the drilling d.o.f and couple 

them with in-plane displacements based on the Hellinger-Reissner hybrid strain formulation. 

[CANNAROZZI & CANNAROZZI 1995] proposed the use of self-equilibrated stress fields based on 

Airy solutions in Cartesian coordinates. He derived a mixed four-node element with nine stress 

parameters, and compatible displacements interpolation. Other Mixed/Hybrid membrane elements 

using the Allman-type shape functions have also presented with different degrees of success 

[YUNUS 1988; YUNUS et al 1989; AMINPOUR 1992-a, 1992-b; SZE & GHALI 1993; DI & RAMM 

1994; RENGARAJAN et al 1995; GEYER & GROENWOLD 2002; BILOTTA & CASCIARO 2002; 

GROENWOLD et al 2004]. 

[GROENWOLD & STANDER 1995] presented the development of “five point quadrature” 

quadrilateral shell element, through the introduction of a ‘soft’ higher-order deformation mode. 

[ZHU & ZACHARIA 1996] presented the development of “one point quadrature” quadrilateral shell 

element with drilling degrees of freedom. 

   Hu-Washizu variational principle and Enhanced Strain method are used resulting with good class 

of elements. [PIMPINELLI 2004] studied a four-node quadrilateral membrane with drilling degrees 

of freedom, in which the enhanced strain and enhanced rotation fields are included.  [PILTNER & 

TAYLOR 2000] used three sets of enhanced strain functions for the improvement of the three-node 

Allman’s triangle. 
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   Many other works on drilling degree of freedom have been presented, for a summary, see 

references: [CARPENTER et al 1985; LEE & YOO 1988; HARRIS & BARTHOLOMEW 1989; LIN et 

al 1990; PIANCASTELLI 1992; YEH & CHEN 1993; SUN et al 1997; LI & ZHAN 2000; XUE-ZHANG 

et al 2002; ZHANXIN & ZHONGQI 2002; YANG & ZHANG 2002].  

   In more recent works, presented in the last decade: [LONG et al 2006] presented a numerical 

investigation into the effect of penalty parameters in elements with drilling degrees of freedom 

and penalized equilibrium. They investigated the penalty parameter relates the in-plane 

translations to drilling rotations, and the penalty parameter results due to enforcement of stress 

equilibrium in assumed stress elements with drilling rotations. [WISNIEWSKI & TURSKA 2006] 

presented the formulation of a four-node quadrilateral element based on Allman shape functions 

via the Enhanced Assumed Displacement Gradient (EADG) method. [TIAN & YAGAWA 2007] 

presented triangular elements, in which, the Allman’s rotations are presented in the partition of 

unity form. [CHOO et al 2006, CHOI et al 2006] introduced drilling d.o.f to the hybrid Trefftz 

quadrilateral and triangular plane elements by using Allman’s quadratic displacement. 

[CHEN et al 2004; PRATHAP & SENTHILKUMAR 2008] presented quadrilateral elements based on 

area coordinates in order to reduce the sensitivity to mesh distortion. See also [RAJENDRAN 2010]. 

[KUGLER et al 2010] presented a new quadrilateral membrane element with drilling rotation. They 

derived a variational principle employing an independent rotational field similar to that obtained 

by Hughes and Brezzi. [HUANG et al 2010] presented a modified version of the original Allman 

triangle in an attempt to involve the true drilling rotation instead of vertex rotation. [CEN et al 2011] 

derived a 4-node hybrid stress-function (HS-F) membrane element with drilling d.o.f. stress fields 

are derived from the first seven fundamental analytical solutions of Airy stress function, and the 

assumed displacements along element boundaries employ compatible mode of Allman functions.  

[MOREIRA & RODRIGUES 2011] presented a quadrilateral membrane finite element with nodal 

drilling rotations based on a displacement field formulation, using a conforming interpolation 

operator, and contains an independent rotational field that is enhanced through the application of 

an incompatible interpolation operator. 

[MADEO et al 2012] Presented a mixed quadrilateral four node membrane finite element based on 

Allman interpolation, in which, displacement and stress interpolations are defined by 12 

kinematical d.o.f and 9 stress parameters. [PAJAND & KARKON 2013] Derived a four-node hybrid 

stress membrane element with drilling degrees of freedom based on hybrid variational principle 

and analytical solution. The stress fields of the element are found from analytical solution of bi-

harmonic compatibility equation. 
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II-5. Flat Shell Elements with drilling rotational degree of freedom 

   In the formulation of a flat shell element, the relative balance of precision between the membrane 

and bending energies is an advantage. This is not the case with flat shell elements with 

conventional membrane elements, where the bending part is relatively better than the membrane 

one. [KNOWLES et al 1976] observed that in general, adequate performance can be obtained when 

either membrane predominant or bending predominant. However, when the membrane and 

bending stiffness are strongly coupled, the performance is extremely poor. 

   Conventional shell elements have three translational and two rotational degrees of freedom at a 

node. This results in many difficulties of model construction and numerical ill-conditioning when 

it is used to represent a three-dimensional geometry, because there is a missing rotation degree-of-

freedom. Moreover, due to the absence of in-plane drilling rotations, an artificial stiffness needs 

to be added in order to ensure numerical stability in shell analysis. Hence for, the flat-shell 

formulation must provide a complete description of the nodal translation and rotation fields, which 

necessitate the introduction of an additional degree of freedom in the two dimensional plane 

element, allowing the definition of the six spatial degrees-of-freedom for each node of the finite 

element. That additional degree of freedom can be presented by the in-plane rotation or “drilling 

rotation” of the plane membrane element. 

   For a flat shell element, the inclusion of drilling degrees of freedom is much simpler than the 

case of curved shell elements. Thus, earlier developments of membrane elements with in-plane 

rotational d.o.f were followed by several contributions to introduce them to be a part of both 

triangular and quadrilateral flat shell elements [OLSON & BEARDEN 1979; BATHE & HO 1981; 

BERGAN & NYGARD 1986; BERNADOU & TROUVÉ 1989; CARPENTER et al 1985, 1986; 

ALLMAN 1988-c; ALLMAN 1991; COOK 1993, 1994]. 

[BATHE & HO 1981] presented a flat shell element based on the DKT plate element in combination 

with the CST element for linear and nonlinear analysis of general shell structures. They used a 

fictitious rotational stiffness in order to remove the singularity of the assembled stiffness matrix. 

[CARPENTER et al 1985] developed an 18 d.o.f triangular flat shell element formulated using the 

DKT bending element and a new membrane stress formulation with nodal in-plane rotations, 

introduced by the use of a cubic constraint function along each side of the triangle with one point 

integration method. This under integrated element gave better results compared to the fully 

integrated element, but the reduced order integration resulted in spurious zero energy modes. 

[TAYLOR & SIMO 1985] applied the same basic approach as presented in [CARPENTER et al 1985] 

to develop a DKQ based quadrilateral element. However, for many shell geometries, the flat 
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quadrilateral element does not give accurate results. [BERGAN & NYGARD 1986] developed a 

triangular flat thin shell element with in-plane rotational d.o.f based on the free-formulation theory. 

[JETTEUR 1986; JETTEUR 1987; JAAMEI 1988; JAAMEI et al 1988; FREY 1989] developed and 

studied some quadrilateral flat shell elements based on Marguerre’s shallow shell theory. The 

bending behaviour was the DKQ discrete Kirchhoff element, and the membrane behaviour was a 

biquadratic incomplete quadrilateral Allman-type element with in-plane rotational d.o.f.  

[ORAL & BARUT 1991] combined the membrane element by [ALLMAN 1988-a] and the plate 

bending element by [TESSLER & HUGHES 1985], to produce a three-node flat shell element.  

[CHEN 1992] presented a numerical assessment of the triangular membrane element with cubic 

interpolation functions of [ALLMAN 1988-a] by examining the performance of the element when 

combined with a triangular plate bending element in a general shell analyses. He also compared 

its performances with a shell element comprising the CST element by combining them with the 

DKT element. He also compared the performance of the reduced order (4 integration points) and 

the fully integrated (6 integration points) elements. He presented several benchmark problems to 

demonstrate that the shell element with Allman’s triangle was more efficient.  

[ERTAS et al 1992] presented a triangular flat shell element for the static analysis of anisotropic 

shells. The element is a combination of the DKT and a membrane similar to the Allman triangle. 

Membrane-bending coupling is brought about as a result of anisotropic material properties. 

[FISH & BELYTSCHKO 1992] presented the stabilized, one-point integrated triangular element 

with drilling rotation by [CARPENTER et al 1985] for linear and buckling analysis. They found that 

in some cases, the under integrated element gave better results than the fully integrated element 

even for coarse meshes, but the element was too soft for finer meshes. 

[AMINPOUR 1992-a, 1992-b] presented the formulation of some 4-node assumed-stress hybrid        

4-node shell elements with drilling degrees of freedom. [ALLMAN 1988-c, 1994; COOK 1993] 

presented triangular flat shell finite elements for the analysis of general thin shells with in-plane 

rotational d.o.f. In addition, they discusses rather comprehensively the ability of flat elements to 

represent curved shells. 

[TO & LIU 1994] Presented and studied series of three-node flat triangular shell elements with in-

plane rotations. The elements are based on the Hellinger-Reissner hybrid strain formulation. Each 

of these elements is considered as a combination of a degenerated triangular bending element. The 

plane stress elements are built on the basis of Allman Triangle using the Hellinger-Reissner hybrid 

strain formulation. Comparing the performance of the three Allman-based elements and the three 
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CST-based elements, Allman-based elements play a crucial role in achieving satisfactory accuracy 

and convergence of shell elements. Later [TO & WANG 1998-b] developed the Hybrid strain-based 

element by [TO & LIU 1994] for laminated plates and shells. 

[CHINOSI 1994; CHINOSI et al 1997] discussed the combination of membrane element with drilling 

rotation with plate bending element resulting in a shell elements with six degrees of freedom each 

node. They also constructed and tested a new shell element with drilling d.o.f. 

[ZHU & ZACHARIA 1996] discussed the development of “one point quadrature” quadrilateral shell 

element with drilling degrees of freedom. They presented a four-node element based on the 

degenerated continuum approach. All locking phenomena (such as transverse shear, in-plane shear 

and membrane locking) are controlled by an assumed strain method. Also, a physical stabilization 

approach for control of spurious zero-energy modes is proposed. 

[ZHANG et al 1998] developed a generalized conforming three-node flat shell element with drilling 

d.o.f. [YANG et al 1999] presented a triangular flat shell element, which is a combination of    

[COOK 1991] triangular membrane element and [BATOZ et al 1980] triangular plate element. 

   These works show that the introduction of drilling rotational d.o.f in flat shell elements have 

lessened the difficulty of ridge-like intersections. However, the presence of the drilling d.o.f may 

also cause undesirable locking phenomena in the shell analysis, see [COOK 1993]. 

   Several works on flat triangular shell elements with drilling rotations, which use Allman-type 

displacement field, has shown over-stiffness when dealing with problems where the pure bending 

is the main deformation mode due membrane locking. [COOK 1993; PROVIDAS & KATTIS 2000] 

states that flat shell finite elements with drilling rotation connectors when used as components in 

flat shell elements exhibits membrane locking in certain deformation modes, especially in linear 

stress situation. [PROVIDAS & KATTIS 2000] presented and compared tow flat shell finite 

elements. The First element is a combination of the CST which includes artificial rotational 

stiffness with a three-node bending element by [ALLMAN 1970]. The second one is the 

incompatible cubic triangle of Allman with rotational d.o.f by [ALLMAN 1988-a] which is also 

combined with the same bending element. They stated that the artificial rotational d.o.f is found to 

be very effective when the artificial rotational stiffness multiplier is a small value (10-8). 

[ALLMAN & MORLEY 2000] presented a three-noded flat triangle comprising a plate bending 

element with constant approximation of the bending moment and the CST membrane element. 

[SYDENSTRICKER & LANDAU 2000] used some discrete triangular plate elements to form flat 

shells with and without drilling rotation. They studied both membrane and shear locking in flat 
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shells with drilling rotation. [TESSLER 2000; TESSLER & MOHR 2000] studied interdependent 

interpolations for membrane and bending kinematics of three-node triangular element with drilling 

rotation for a higher-order plate theory. [ZENGJIE & WANJI 2003] proposed flat shell elements that 

were formed through assembling refined triangular discrete Mindlin plate elements [WANJI & 

CHEUNG 2001] and the CST with a fictitious stiffness for the first element, or the Allman's triangle 

for the second element. They studied the singularity of the stiffness matrix and membrane locking 

for the presented elements. 

   Also, 4-node flat shell elements with drilling rotation which use the Allman-type displacement 

show a tendency toward membrane locking especially when coarse meshes are used despite their 

general good performance [COOK 1994; GROENWOLD & STANDER 1995; CHOI et al 1999]. 

[COOK 1994] presented a four-node quadrilateral shell element with 24 d.o.f including the drilling 

degrees of freedom with a device for membrane-bending coupling. The author stated that 

numerical results are good but the element is not the best available four-node shell element. 

   Many technics have been proposed to alleviate membrane drilling rotation locking. [CHOI & LEE 

2003] Studied the membrane locking of flat shells with drilling rotation and presented an efficient 

scheme to remove the membrane locking of four-node quadrilateral flat shell elements by adding 

of hierarchical non-conforming modes to the displacement fields of membrane component of the 

flat shell element. A series of flat shell elements are established by combination of non-conforming 

membrane and plate-bending elements which show no signs of membrane locking even though 

the coarse meshes are used. [CHEN & CEN 2003] proposed a triangular flat shell element based on 

a thin-thick plate bending element with semi-Loof constraint and a generalised conforming 

membrane element with rotational d.o.f. One point quadrature with stabilisation is used for both 

elements to avoid membrane locking. Also, [GEYER & GROENWOLD 2003] used a modified 

reduced integration to overcome undesirable locking actions in flat shell finite elements based on 

assumed stress membrane finite elements with drilling degrees of freedom. 

[KIM et al 2003] presented two Quasi-conforming four-node stress-resultant shell elements based 

on the assumed strain method. The rotational degree of freedom about the shell normal is included 

using the quasi-conforming formulation. [ZHANG & KIM 2005-a] presented a refined non-

conforming triangular shell element comprising a conforming triangle membrane element with 

drilling degrees of freedom in Cartesian coordinates by [YANG & ZHANG 2002] and the refined 

non-conforming triangular plate-bending element by [CHEUNG & CHEN 1995], in which Kirchhoff 

kinematic assumption was adopted. Membrane locking is avoided in the proposed element due to 

the application of stabilization scheme. They employed a coupled displacement constraint method 
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proposed by [CHEN & CHEUNG 1999] to ensure convergence and improve accuracy of the present 

element for thin shell analysis. 

[NGUYEN-VAN et al 2009] presented a novel smoothed quadrilateral flat element with drilling 

rotations for composite plate/shell structures. The element is developed by incorporating a strain 

smoothing technique into a flat shell element comprising the membrane element by 

[IBRAHIMBEGOVIC et al 1990] and a four-node Mindlin–Reissner type plate element.  

[LONG et al 2009] Investigated the effects of selected membrane, plate and flat shell finite element 

formulations on optimal topologies. Two membrane components are considered. The first is a 

standard four-node bilinear quadrilateral, and the other is a four-node element with in-plane 

rotations. The plate elements include the discrete Kirchhoff quadrilateral (DKQ) element and two 

Mindlin–Reissner-based elements, one employing selective reduced integration (SRI), and the 

other an assumed natural strain (ANS) formulation. They found that optimal topologies computed 

with elements with drilling degrees of freedom performs better. [MOREIRA & RODRIGUES 2011] 

presented a non-conforming quadrilateral flat shell finite element with drilling d.o.f. The element 

is a combination of a new nonconforming membrane element with rotational d.o.f and the plate 

finite element Q4γ based on the assumed natural strain by [BATOZ & DHATT 1990].  

[ZHANG et al 2011] developed a flat shell element through combining the (ANDES) element with 

optimal parameters by [FELIPPA 2003] and the plate element by [WANJI & CHEUNG 2001], they 

showed that the element worked well in both thin and thick shell problems. 

[WANG & HU 2012] proposed two quasi-conforming triangular flat shell elements using 

Timoshenko's beam function. One element was attached with fictitious stiffness, while an Allman-

type drilling rotation was attached to the second element. The results shows that the drilling 

rotation locking phenomenon occurred on the second element, but not on the first one. 

[SHIN & LEE 2014] proposed a three-node triangular flat shell element based on the assumed 

natural deviatoric strain (ANDES) formulation by [FELIPPA & MILITELLO 1992] for membrane, 

and the discrete Kirchhoff-Mindlin triangle plate element by [KATILI 1993-a] for bending. The 

(ANDES) template must determine the included free parameters. The numerical results 

demonstrate that the optimal parameters proposed by Felippa, provide a behaviour that is too stiff 

for a flat shell element. The strain smoothing technique was used for the basic stiffness of the 

(ANDES) element in order to further enhance the membrane behaviour. The drilling rotation 

locking problem is primarily caused by the higher order stiffness of the membrane element, in 

order to avoid this, the free parameter value that scales the higher order stiffness was modified. 
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II-5.1. Flat Shells with Drilling Rotation for Nonlinear Analysis 

   Many flat shell finite elements with drilling rotation have been applied to non-linear analysis of 

shells. Usually non-linear numerical tests are computed for general shell structures, but values of 

drilling rotations are not reported. 

[BERGAN & NYGARD 1986] developed and presented a triangular flat thin shell element with in-

plane rotational d.o.f based on the free-formulation theory for linear and geometrically nonlinear 

analysis. [JETTEUR & FREY 1986; JETTEUR 1987; JAAMEI et al 1987, 1989] developed and studied 

four-node flat shells with six d.o.f based on the DKQ plate element in Marguerre’s shallow shells 

theory for geometrically nonlinear analysis. The nonlinear kinematics are dealt with through the 

total co-rotational Lagrangian formulation. Rotations are assumed to be small. Only examples of 

curved shell geometries are studied. 

[LEE & YOO 1988] developed a new triangular membrane element with in-plane rotational d.o.f 

and combined it with a plate bending element to formulate a shell element. Large displacement 

analysis based on the updated Lagrangian formulation is presented. 

[SIMO et al 1989; FOX & SIMO 1992] presented a drilling rotation formulation for stress resultant 

geometrically exact shell model. [ORAL & BARUT 1991] combined the membrane element by 

[ALLMAN 1988-a] and the plate bending element by [TESSLER & HUGHES 1985] and applied this 

element for geometrically nonlinear large deflection and instability analysis of shells. 

[FISH & BELYTSCHKO 1992] presented the stabilized, one-point integrated triangular element 

with drilling rotation by [CARPENTER et al 1985] for buckling analysis. They also employed a one-

point integration scheme to compute the geometric stiffness matrix in an attempt to soften the 

element. [GRUTTMANN et al 1992] presented a nonlinear 4-noded quadrilateral shell element with 

drilling degrees of freedom. The membrane element formulation was based on the introduction of 

a mixed functional with independent in-plane rotation field and skew-symmetric part of membrane 

forces. They presented only one in-plane example consists of in-plane bending of a beam under 

tip loading for large displacement analysis. 

[IBRAHIMBEGOVIC 1993; IBRAHIMBEGOVIC & FREY 1993] extended The Hughes-Brezzi mixed 

variational formulation, for plane geometrically non-linear elements with in-plane drilling rotation. 

[IBRAHIMBEGOVIC 1993] Used the mixed finite element method to construct a four-node 

membrane element with drilling rotations for geometrically nonlinear elasticity. He presented in-

plane bending of a cantilever under end moment for nonlinear analysis. The nonlinear behaviour 

of the presented element was a bit stiff even with a fine mesh. 
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[IBRAHIMBEGOVIC 1994; IBRAHIMBEGOVIC & FREY 1994, 1995] presented a consistent 

theoretical framework for a stress resultant geometrically nonlinear shell theory with drilling d.o.f. 

They constructed a quadrilateral membrane element with drilling rotations with incompatible 

modes for geometrically nonlinear analysis. They presented in-plane bending of a roll-up of a 

cantilever with free-end moment, and a cantilever under free-end force. 

[MADENCI & BARUT 1994] presented an updated Lagrangian formulation for geometrically 

nonlinear analysis using a flat triangular shell element. The element is a combination of the 

triangular membrane element with drilling rotation by [BERGAN & FELIPPA 1985] and the plate 

element by [FELIPPA & BERGAN 1987] which are based on the free-formulation.  

[RENGARAJAN et al 1995] developed an assumed-stress hybrid shell element with drilling d.o.f for 

buckling and free vibration analyses. [ZHU & ZACHARIA 1996] presented the development of a 

new quadrilateral shell element with drilling degrees of freedom using one point quadrature, and 

used this element for the analysis of nonlinear geometrical and material problems. Since they used 

a rate formulation for non-linear continuum mechanics, the rate forms of variational formulation 

are linear. Therefore, Hughes-Brezzi variational principle based on linear formulation can be 

directly extended to the non-linear element within the context of rate formulation. The presented 

element was a four-node quadrilateral based on the degenerated continuum approach. They 

presented a cantilever beam subjected to an end moment modelled using (2 x 24) in-plane elements 

mesh for nonlinear analysis.  

Geometrically nonlinear analysis of composite plates and shells based on an updated Lagrangian 

co-rotational formulation using triangular flat shell element is presented by [KAPANIA & MOHAN 

1996] comprising membrane triangle with drilling d.o.f, and the DKT plate bending element. Also 

[MOHAN & KAPANIA 1997, 1998] presented flat triangular shell finite element for geometrically 

nonlinear analysis of composite and laminated shells using the updated Lagrangian formulation. 

   [PACOSTE 1998] formulated and studied three flat triangular shell elements. The elements have 

three nodes combining either the CST element, or Allman’s triangle by [ALLMAN 1988-a] 

membrane elements, with the plate bending element by [ARGYRIS & TENEK 1993]. The co-

rotational approach was used to describe the motion of the structure. In the formulation of the 

membrane stiffness of the membrane element by [ALLMAN 1988-a], reduced integration was used 

to alleviate the effects of membrane locking. The result was an improvement in the accuracy, for 

membrane dominated problems compared to the elements combines the CST element. No details 

handling the drilling rotation were presented. The load-displacement curves for a cantilever beam 

subjected to an in-plane end force was presented. 
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[YANG et al 1999] presented a flat triangular shell element for non-linear analysis. It is a 

combination of [COOK 1991] triangular membrane element and [BATOZ et al 1980] triangular plate 

bending element. A three-node generalized conforming flat shell element with drilling degrees of 

freedom was developed by [ZHANG et al 1998] for geometrically nonlinear analysis. 

   [SAMANTA & MUKHOPADHYAY 1999] conducted geometric nonlinear static analysis of 

shallow and deep stiffened shells on the basis of a combination of Allman's plane stress triangle 

and Discrete Kirchhoff triangle (DKT) plate bending element. The nonlinear formulation is based 

on the total Lagrangian description. The nonlinear membrane stiffness was taken into account. 

[CHEN & CEN 2003] proposed a triangular flat shell element based on a plate element with “semi-

Loof” constraint and a generalised conforming membrane element with rotational d.o.f. One point 

quadrature with stabilisation is used for both elements to avoid membrane locking. The updated 

Lagrangian formulation is used for the geometrically nonlinear analysis of plates and shells. 

[PARK & OH 2004] presented a new four-node quadrilateral shell element with drilling rotation to 

improve accuracy and efficiency of springback simulation base on the rate form equations.  

[LEE & WOOH 2004] studied the analysis of folded structures and box beams by using drilling 

degree of freedom. The obtained results show good agreement with the semi analytical solutions. 

[ZHANG & KIM 2005-a] presented a refined non-conforming triangular shell element for linear and 

geometrically nonlinear analysis of plates and shells. The element is a combination of a 

conforming triangular membrane element with drilling degrees of freedom in Cartesian 

coordinates by [YANG & ZHANG 2002] and the refined non-conforming triangular plate-bending 

element by [CHEUNG & CHEN 1995]. The geometrically nonlinear analysis was based on the 

updated Lagrangian formulation. The presented examples was for plates and shell geometries only. 

[WISNIEWSKI & TURSKA 2006] presented a quadrilateral membrane element based on (EADG) 

with Allman shape functions for finite drilling rotations. They presented two in-plane nonlinear 

examples with fine mesh. 

[BATTINI & PACOSTE 2006] Investigated three-node triangular shell elements, in which, the 

membrane element is one of the following: the CST element, Allman’s triangle by [ALLMAN 

1988-a], or the membrane element with rotational d.o.f by [FELIPPA 2003]. 

[KHOSRAVI et al 2007] developed a triangular flat shell finite element for the geometrically 

nonlinear analysis of thin shell structures using the co-rotational approach. The flat shell element 

is developed by combining the DKT plate bending element by [BATOZ et al 1980] and the optimal 

membrane triangle by [FELIPPA 2003]. Later, [KHOSRAVI et al 2008] developed a triangular flat 
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shell finite element for the geometrically nonlinear analysis of laminated composite structures 

using the co-rotational approach. The flat shell element is developed by combining the discrete 

Kirchhoff-Mindlin plate bending element by [KATILI 1993-a] and the optimal membrane triangle 

by [FELIPPA 2003]. The membrane-bending coupling effect of composite laminates is incorporated 

in the formulation. The in-plane geometric stiffness was evaluated using the LST membrane 

element shape functions. However in-plane co-rotational formulation was not presented. Also no 

in-plane examples were reported. 

[KANG et al 2009] presented a new four-node quadrilateral and three-node triangular flat shell 

elements based on Kirchhoff assumptions and generalized conforming theory for linear and 

geometrically nonlinear analysis using update Lagrangian formulation. However, the study was 

not interested on the in-plane behaviour (no in-plane examples were presented).  

[ALMEIDA & AWRUCH 2011] presented a facet triangular shell element obtained by combining 

the membrane element by [FELIPPA 2003] and a simple plate element developed by [ZHANG & 

KIM 2005-b] to nonlinear transient dynamic analysis of laminated composite structures based on 

the co-rotational formulation. 

[YANG & XIA 2012-a] presented a triangular flat thin shell element with three nodes and 18 d.o.f, 

constructed by combination of the optimal membrane element by [FELIPPA 2003] and the DKT 

plate element. The element was extended to the geometric nonlinear analysis of thin shells with 

large rotation and small strain. [ZAGARI et al 2013] presented a geometrically nonlinear finite 

element analysis of folded-plate and shell structures based on the co-rotational approach. The shell 

element used is the flat shell quadrilateral element with four nodes and 6 d.o.f per node proposed 

by [MADEO et al 2012], which is a mixed element, based on the Reissner–Mindlin plate theory, 

with an Allman-like quadratic interpolation for displacements and an equilibrated isostatic 

interpolation for the stress resultants. 

[BARBERO et al 2014] presented a quadrilateral shell element for static linear and buckling analysis 

of folded laminated composite structures. The shell element was comprising the quadrilateral by 

[ALLMAN 1988-b] and a hybrid mixed formulation plate bending element. 

   In the above mentioned works that presents flat shells with drilling rotation for geometrically 

nonlinear analysis, the formulation of nonlinear behaviour is made by the same manner of 

conventional flat shells, in which the in-plane displacements are considered as infinitesimal. So 

their derivatives are small, and hence their quadratic variations can be neglected. Thus, only the 

second degree terms in the deflection were retained. The contribution of the geometrical or “initial 
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stress” matrix related to the in-plane displacement field is excluded. So, the in-plane stiffness 

matrix is often taken to be just equal to its linear matrix. This treatment could has no effect on the 

accuracy of the finite element solution, as reported by many authors, but will affect the 

convergence rate of the equilibrium-iteration scheme. Moreover, the in-plane nonlinear 

formulation was not presented. As a consequence, only examples handling plates and shell 

geometries are presented for nonlinear analysis, and the nonlinear behaviour of membrane 

elements with drilling rotation was not reported. Only few works reported the in-plane nonlinear 

behaviour. In these works, the nonlinear formulations are either based on the total Lagrangian 

formulation or use the rate-form equations. 

II-5.2. Flat Shells with Drilling Rotation for Dynamic Analysis 

   Many works on dynamic of general shells by flat shell elements has been presented: [CLOUGH 

& WILSON 1971; BELYTSCHKO et al 1984-b; SIMO et al 1992-b; SIMO & TARNOW 1994; KUHL & 

RAMM 1996; SANSOUR et al 1997; BRANK et al 1998; TO & WANG 1998-a; ZHONG & CRISFIELD 

1998; KUHL & RAMM 1999; MOHAMMADI et al 1999; BOTTASSO et al 2002; ONÃTE et al 2002; 

KHARE et al 2004; PARK et al 2006; YANG & XIA 2012-b; WU 2013]. However, due the absence of 

in-plane rotational d.o.f, the in-plane rotational vibrational modes was neglected. 

   There is only few shell elements with drilling rotation that are presented for dynamic analysis: 

[TO & WANG 1998-a; KIM et al 2003; ALMEIDA & AWRUCH 2011; NGUYEN-VAN et al 2011]. 

However, in these elements formulations, no masses corresponding to the in-plane rotational 

degrees of freedom of membrane elements was associated to the shell element’s mass matrix, 

despite that this shells incorporate the drilling rotational d.o.f in the stiffness matrix formulation. 

It is recommended that the mass matrix does not include any coupling to corner rotations in order 

to avoid excitation of spurious modes. Thus, in these elements, no change was made to the mass 

matrix of the flat shell element. 

   [HUGHES et al 1995] addressed the issue of zero masses corresponding to the rotational degree 

of freedom of membrane elements with drilling rotation, and they presented techniques for 

defining consistent and lumped rotational mass matrices. The studied element was a quadrilateral 

element based on the variational principle in which displacements and rotations are interpolated 

independently. They used α method for time integration linear dynamic analysis and they presented 

a plane/stress cantilever beam with a parabolically varying shear applied at the free end. They 

found that the adding of drilling stiffness will increase frequencies. A lumped mass matrix 

corresponding to rotational d.o.f is designed in order to compensate for this effect. 
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   [ALLMAN 1996] derived bending and membrane consistent mass matrices for a triangular flat 

facet finite element for the analysis of general thin shells. He included the effect of the rotatory 

inertia associated with the drilling rotation degree of freedom in the membrane mass matrix. He 

presented a kind of complicated form of the mass matrix using the higher order displacement 

interpolation presented by [Allman 1988-a]. Natural frequencies and normal modes are calculated 

for folded plates only. No in-plane examples were presented. 

[KAPANIA & MOHAN 1996] tested the triangular flat shell element presented by [ERTAS et al 1992] 

for static, thermal, and free vibration analysis of laminated plates and shells. The shell element is 

a combination of the (DKT) plate bending element and Allman triangle derived from the Linear 

Strain Triangular (LST) element. The mass matrix corresponding to the degrees of freedom of the 

membrane element is obtained by applying the transformation given by Cook (1986) to the 12x12 

mass matrix of the LST element. The frequencies of free vibration are obtained by solving the 

eigenvalue problem. Several numerical examples are solved for plates and shell geometries. 

However, no in-plane examples were reported. 

[KARAKÖSE & ASKES 2010] Investigated the linear dynamic performance of the generalized 

conforming four-noded quadrilateral membrane element with rotational d.o.f by [YUQIU & YIN 

1994-b]. Dynamic analysis was conducted using Newmark’s method. One example representing a 

cantilever beam that is subjected to a tip vertical point load is presented. However no reference 

solution is used in order to verify the results of the presented numerical example.  

[NGUYEN-VAN et al 2011] presented buckling and free vibration analysis of composite plate/shell 

structures via a smoothed quadrilateral flat element with drilling rotations [NGUYEN-VAN et al 

2009]. The element is developed by incorporating a strain smoothing technique into a flat shell 

approach. No in plane mass matrix formulation and no geometric stiffness details are presented. 

Numerical tests was on plate and shell geometries. 

[NETO et al 2012] presented a triangular element with drilling rotation for static and dynamic 

analysis of light-weight laminated composite structures. The authors adopted the in-plane mass 

matrix presented by [ALLMAN 1996]. Again, no in-plane examples were presented. 
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      III- OBJECTIVES AND SCOOPS 

   It is clear from the above review of previous works in the subject of linear and nonlinear static 

and dynamic analysis of shells, that a reliable general theory is not yet available. On one hand, 

higher order finite shell elements provide better representation of the shell surface, and the 

bending-membrane coupling is embedded within each element, so they provide better 

performances. Unfortunately, they exhibit serious problems and complexities of formulation. The 

major difficulty of curved elements relies in the choice of displacement functions and the 

representation of the rigid body displacement, their extension to nonlinear analysis is not 

straightforward. Degenerated shell elements, in their original formulation, failed to converge to 

the thin shells solution. Considerable improvements was achieved by means of the 

reduced/selective integration and many other techniques that result with a time-consuming 

element. Both, classical curved, and degenerated shell finite elements, use high number of d.o.f 

and therefore they are computationally very expensive, which makes them less attractive 

especially for nonlinear and dynamic analysis. 

   On the other hand, flat shell elements, besides their computational cost efficiency, they has the 

advantage of being simple to apply for linear and nonlinear analysis. This approach has proved to 

be an attractive alternative for engineering purposes. The extremely simple and efficient 

formulation make them very well suited for dynamic and nonlinear applications, in particular when 

used in the framework of the updated Lagrangian formulation. However, due to the geometric 

approximation of the curved surface and the absence of the flexural-stretching coupling within the 

elements, flat shells may exhibit poor behaviour, especially for problems involving large 

membrane stresses. Nevertheless, these shortcomings, does not induce a major problem as many 

such elements have been proved to be successful and convergent to both shallow and deep shell 

solution. The geometric error and incompatibility, diminish with increasing mesh fineness leading 

to achieve a good approximation even for deep shells. 

   A great number of 3-nodded and 4-nodded flat shell elements formulations with good 

performances have been presented to date. However, there is still room for improvement in 

stability, robustness and accuracy. The major shortcoming of conventional flat shell elements, is 

that the rotation about the normal to the shell middle surface is usually neglected. This introduces 

a problem of stiffness matrix singularity when adjacent elements are coplanar. The common 

solution that implies the introduction of a rotational fictitious stiffness, disturbs the shell 

performances, because an artificial stiffness of the rotation about the normal of one shell restricts 

bending in the other shell. The error introduced in this case can’t be diminished by mesh 



CHAPTER I. STATE OF THE ART 

40 

 

refinement. Moreover, standard Iso-parametric interpolations of low order membrane elements 

result in rather stiff finite elements, both for linear and geometrically nonlinear analysis. 

   To avoid these difficulties, the facet-shell formulation must provide a complete description of 

the nodal translation and rotation fields, allowing the definition of the six spatial degrees-of-

freedom for each node of the finite element by using some special interpolation schemes. However, 

despite the growing interest on this formulation, there is still a lack in accurate and effective 

solutions, especially in nonlinear and dynamic analysis. Publications that describe geometrical 

nonlinearity of the in-plane behaviour of membrane element with rotational d.o.f are few, and often 

they are based on the total Lagrangian formulation or on the rate form. Also, these elements, at the 

author knowledge, have not been extended to nonlinear dynamic analysis. 

   Thus, an appropriate extension of triangular and quadrilateral flat shell elements with drilling 

rotation to nonlinear dynamic analysis is required. A simple and effective possibility to construct 

a geometrically nonlinear shell finite element with six degrees of freedom per node, is to extend 

the original ideas of [ALLMAN 1984], which has proven to be efficient in linear analysis, to be 

applicable for nonlinear and dynamic analysis. The classical formulation of the Allman-type 

displacement field is valid only for small in-plane rotations, because only the lateral component of 

the mid-side higher order displacement is linked with nodal rotations. Hence, the extension to large 

displacement and large rotation, but small strain, nonlinear analysis, can be accomplished by 

means of the co-rotational updated Lagrangian formulation. The co-rotational formulation 

assumes that the linear formulation is set in a local rotating frame, decoupling the rigid part of the 

motion form the elastic response, which allows an easy application of linear finite elements to 

geometrically nonlinear analysis. Nevertheless, the construction of accurate recovery of rotational 

fields is absolutely necessary in this case. 

   In view of the foregoing, the developments presented in this work have been motivated by the 

lack of general locking-free flat shell finite element that is robust and reliable in both bending and 

membrane dominated situations, and give accurate and reliable numerical results, not only for 

linear analysis, but also for geometrically nonlinear static and dynamic analysis. 

   The objective of this study is to present and investigate the capability of flat shell finite elements 

with drilling rotational degree of freedom, to represent geometric nonlinearity with effective 

handling of large in-plane displacements and rotations, and to simulate the in-plane rotational 

dynamic response.  

 



CHAPTER I. STATE OF THE ART 

41 

 

In view of the aforementioned shortcomings: 

- A new triangular membrane element with rotational d.o.f is developed based on the 

Enhanced Assumed Strain formulation. The developed element is drilling-rotation-locking 

free. This development was motivated by the poor behaviour and locking of existing 

triangular membrane elements with rotational d.o.f.  

- A co-rotational formulation with some new aspects, for triangular and quadrilateral plate 

elements and membrane elements with drilling rotation is developed. 

- The geometric stiffness matrix of flat shell elements is enlarged to take into account the 

second order terms of the in-plane displacement field due the in-plane drilling rotational 

degree of freedom. 

- The in-plane mass matrix is enlarged to take into account, three degree of freedom 

including the rotational one. This development will overcome the problem of zero mass 

associated to the in-plane rotational d.o.f of flat shell finite elements. 

   When these new developments concerning membrane elements with rotational d.o.f are 

incorporated in triangular and quadrilateral flat shell elements for nonlinear dynamic analysis, they 

will provide more accuracy and stability and give true physical signification to the dynamic 

response of shell structures. However, we should mention that this study is limited to elastic, 

isotropic, and homogenous materials. 
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      IV- THESIS OVERVIEW 

   This thesis consists of six chapters. After having an overview of the subject and the state of the 

art of shell finite elements in chapter I, shell theories and models from thin to thick first order and 

higher order plate/shell are presented in chapter II. Chapter III presents an overview of the 

construction of flat shell finite elements with drilling rotation. An important established triangular 

membrane finite elements with drilling rotation is presented in this chapter. 

In chapter IV transient dynamic analysis of flat shell elements using Newmark method is 

presented. Chapter V presents the extension of triangular and quadrilateral flat shell elements with 

drilling rotation, to large displacement and large rotation geometrically nonlinear static and 

dynamic analysis, using the updated Lagrangian co-rotational formulation. 

Chapter VI presents the path following technics, which are used to truck the equilibrium path and 

trace the load-displacement curve of geometrically nonlinear problems. 

The chapter VII conclude the thesis with the application and tests of the contributions have been 

made in this work by the treatment of selected benchmarks and test cases, each one illustrates a 

different aspects of shell modelling. 
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      I- INTRODUCTION 

   A shell is defined as a solid material enclosed between two curved surfaces. The specific 

geometry of this oriented structures promote the use of particular kinematic instead of general 

kinematic of solid bodies. Shell theory is concerned with reducing the three dimensional stress 

problem of elasticity to two dimensions for that particular class of structures. For this purpose, 

governing equations are reduced, via imposing some hypothesis on the displacement field, to a set 

of bi-dimensional equations related to a reference surface commonly situated at mid-thickness so-

called the mid-surface. 

   Thus, three-dimensional theory is employed as the point of departure, and subsequently, certain 

simplifying assumptions are introduced to reduce the three-dimensional problem to be applicable 

for bi-dimensional shells. This objective may be realized if the deformations of any point in the 

shell can be uniquely described in terms of the displacements of the middle surface. 

   The reduction of the three dimensional problem requires the use of some kinematic assumptions, 

when employed together with the standard variational procedure lead to the two dimensional shell 

equations, which provide the basis for the finite element discretization. 

   In this chapter we will form kinematic and mechanic relations of Discrete Kirchhoff thin flat 

shell elements. These ones are established related to the mid-plane’s displacement and rotations. 

Strain-displacement, stress-strain, and internal forces relations are presented for plate bending 

elements and also for membrane elements.   
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      II- GEOMETRY OF A SHELL 

   A shell is a three-dimensional body enclosed between two curved surfaces, for which one of its 

dimensions (thickness) is much smaller than any other of its dimensions (lengths) is. 

The surface which bisects the thickness is known as the middle surface. By specifying the form of 

the middle surface, and the thickness at each point the shell is geometrically defined. 

   Let us consider a fixed orthogonal Cartesian system (O, x1, x2, x3). 

Let Ω ∈ R3 be a three-dimensional domain bounded by two surfaces S+∈ R2, S−∈ R2 and the lateral 

surface S×∈ R2, so that ∂Ω = S± ∪ S×. 

The surfaces S+ and S− are called the upper and lower surfaces. They are symmetrically situated 

with respect to the reference mid-surface S0 ∈ R2. S0 is called the mid-surface of the shell, and ℓ0 

defines its boundary line. 

 

 

 

 

 

 

Fig. II.1. Geometry of a shell 

   Any point in the shell can be located by its global orthogonal Cartesian coordinates. Besides, a 

curvilinear set of coordinates (ξ1, ξ2, ξ3), called shell coordinates, can be established to locate points 

within the shell. Let ξ1, ξ2, and ξ3 refer to the curvilinear coordinates on the shell mid-surface S0, 

where ξ1 and ξ2 are tangent to the middle surface, and ξ3 normal to it, Fig. II.1. Furthermore, it is 

assumed that the thickness h does not change and the coordinate line ξ3 remains rectilinear and 

normal to S0. Thus, the undeformed configuration of the shell is defined by: 










2

,| 30 h
Sm                 [II-1] 

The boundary of Ω, denoted by S, consists of the upper and lower surfaces: 
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and, the lateral surface: 
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i.e., ∂Ω → S = S± ∪ S×. 

The boundary curves of the top and bottom surfaces S± are defined by: 
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   There are two different classes of shells: thick shells and thin shells. If the thickness of the shell 

is small compared to its minimum radius of curvature of the middle surface, the shell is considered 

thin, otherwise it is thick. For engineering applications, a value of 20
h

R
is usually considered as 

the lower limit for thin shell theory [VENTSEL & KRAUTHAMMER 2001]. In reality, the boundary 

between thin and thick shells depends also upon the boundary conditions, smoothness of variation 

of external loads, and other geometrical parameters of shells. 

      III- SHELL THEORIES 

   The analysis of shell structures often involves two distinct theories: The First one, is when it is 

subjected to uniform pressures, shells can usually resist the loads by membrane (in-plane stress). 

It is the most desirable situation in which a shell is subjected to a uniform load causing tensile 

stresses, because the material can be used to its full strength. Concentrated loads on the other hand, 

introduce local bending stresses, which are much more likely to cause failure of the shell. 

Subsequently, the earliest effort toward the analysis of shells was based on the assumption of 

membrane behaviour of shells, where the bending resistance of the shell is neglected. This theory 

is found in the works of [BELTRAMI 1881; LAME & CLAPEYRON 1833]. 

   These theories were simple, and in certain cases “of geometry and loading” gave a completely 

correct results. However, one needs a general theory to account for the bending of the shell, also 

for changes in thickness, boundary conditions, arbitrary geometry, and concentrated loadings. 

These effects cannot be approximated by means of the membrane theory only. 

   Several theories have been proposed and each one has its application areas and limitations. In 

general, there are two groups of basic assumptions on which the shell theories are based. The often 

used classical shell model is the Koiter-model [KOITER 1960-a] which is based on the Kirchhoff-

Love hypothesis [KIRCHHOFF 1850; LOVE 1888]. This model implies restrictions on the 
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deformation of the normal to the shell mid-surface, which represents assumptions for theories of 

thin shells such as theories of Koiter [KOITER 1960-b], Love [LOVE 1944], and Novozhilov 

[NOVOZHILOV 1959]. The development of these theories was motivated by the successful 

development of plate theory by [KIRCHHOFF 1876]. This theory was based on the assumption that 

a normal to the undeformed mid-surface remains unstretched and normal to the deformed mid-

surface. They are also limited by the assumption of the thickness of the shell mast be small when 

compared to the minimum radius of curvature of the middle surface. 

   Using these assumptions, [ARON 1874] made the first attempt to develop a general theory of thin 

shells from the general equations of elasticity. This was followed by the successful development 

of such a theory in 1888 by [LOVE 1888], known as Love's first approximation. However, the 

strain-displacement relations of Love's first approximation do not give zero strains under rigid 

body rotations. The work of [KOITER 1960-a] was very significant in establishing the nature of 

Love's first approximation. Several variants of this theories were developed by [FLUGGE 1934; 

VLASOV 1944; SANDERS 1959; NOVOZHILOV 1961], but the differences in these formulations 

seem to be rather insignificant. 

[KOITER 1960-a] established that, Love's expression for strain energy for a thin shell as the sum of 

stretching and bending energies, is indeed a consistent first approximation, and the relative error 

in this approximation does not exceed the proportion between thickness and the minimum radius 

of curvature of the shell. 

   All previous assumptions applied in thin shells are commonly named KIRCHHOFF-LOVE 

theory. These theories, however, neglect the transverse shear deformation effects, so they differ 

significantly from the elasticity solution with the increase of plate thickness. 

   The other group of assumptions relates to the theories of moderately thick shells. It’s based on 

the lowest-order well-known Naghdi-model [NAGHDI 1963]. It contains the necessary 

assumptions of moderately thick plate’s theory including the effect of transverse shear 

deformation. This theory assumes that the displacement components are linear functions of the 

thickness coordinate, except the constant transverse deflection. In this group, the shear deformable 

theory due to [REISSNER 1945] or [MINDLIN 1951] is the most commonly used among several 

formulations. REISSNER-MINDLIN theory provides a useful and economical alternative 

approach to expensive three-dimensional stress analysis without significant loss of accuracy. 
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      IV- SHELL MODELS 

   Since the early works in 19th century on thin plates, especially the first order models of 

Kirchhoff-Love and Reissner-Mindlin, many theories have been developed from kinematic field 

or even from stress field, in which certain simplifying assumptions are introduced to reduce the 

three dimensional problem to be applicable for bi-dimensional shells. The resulting shell theory as 

well as the finite element formulation depend on the nature of the assumed kinematic constraints. 

Basically, three groups can be distinguished: 

1. Kirchhoff-Love type models; 

2. Mindlin-Reissner type models; 

3. Higher order models. 

   The choice, which type of theory one intends to use, depends on several factors; among them 

are: The simplicity factor, the smoothness and continuity factor, the accuracy factor, and the cost 

factor. We interest, in what follows, of the main models derived from the kinematic field, limiting 

our discussion here to the small displacements theory. 

IV-1. Kirchhoff-Love Models 

   Kirchhoff-Love models are based on a linear distribution of displacements in the thickness 

[REISSNER & STAVSKY 1961; YANG et al 1966]. The assumption made is that of Kirchhoff-Love 

[KIRCHHOFF 1850] in which:  

- Through the thickness, shell fibers remain straight and inextensible during the deformation; 

- Deformations due to transverse shear are neglected; 

- The normal keep straight and perpendicular to the mid-surface after having deformed; 

- Normal strains and stresses in the out-of plane direction are also considered negligible. 

 

 

 

 

 

 

 

Fig. II.2. Kirchhoff-Love theory kinematic 
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The displacement field of Kirchhoff- Love is then written as: 
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With: 

0

iu : the mid-surface’s in-plane displacement (membrane displacement) in the direction xi; 

ui : the in-plane displacement in the direction xi; 

w : the out of plane displacement due to bending (deflection of the plate),  

ix

w




: the out of plane rotation due to bending (slope) when transvers shear is neglected.  

IV-2. Reissner-Mindlin Models 

   In order to consider the effect of transverse shear, kinematic hypothesis of Mindlin is adopted 

[MINDLIN 1951], in which, assumptions on the vanishing of the transverse shear strain and on the 

preservation of the normal was abandoned. Due to the transverse shear effect, normal remains 

straight but not perpendicular to the mid-surface after having deformed Fig. II.3. 

 

 

 

 

 

 

 

 

Fig. II.3. Reissner-Mindlin theory kinematic 

The displacement field of Reissner-Mindlin is written as: 

2,1),(),(),,( 2121
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321  ixxzxxuzxxxu xiii             [II-7] 

),(),,( 213213 xxwzxxxu                [II-8] 
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With: )( xi

i

xi
x

w
 




 is the rotation of the normal to the mid-surface around xi axe, and xi is the 

transverse shear strain. 

   Basing on this choice of displacement field shape, the transverse deformations and shear stress 

are constant along z (the thickness). This poor description of shear strain and stress requires 

introducing coefficients to better take into account the effects of transverse shear in the energy 

expression: [WHITNEY 1973]. In addition, in laminated shells/plates, shear stresses are uniform in 

each layer and discontinuous between the layers and, the study of thick composites remains 

uncertain by such cinematic approach. 

   Actually, the basic assumptions employed in the Mindlin-Reissner shell theory exclude the 

transverse normal deformation and thus they are restricted to small strain problems. From the 

computational point of view the main advantage compared with the Kirchhoff-Love type shell 

theory is the fact that only C° inter element continuity is required, which simplifies considerably 

the construction of finite elements. 

IV-3. Higher Order Models 

   Higher-order approximation theories were appeared in order to overcome the limitations of first-

order shell/plate theories. Several authors have proposed and used higher order theories: 

[LIBERSCU 1967; WHITNEY 1973; NELSON & LORCH 1974; LO & CHRISTENSEN 1977-a,        

1977-b; REDDY 1984; TOURATIER 1991; IDLBI et al 1997; KANT & SWAMINATHAN 2002; 

SWAMINATHAN & RAGOUNADIN 2004]. These higher-order models are more accurate than the 

first order models. They are based on a non-linear distribution through the thickness trying to 

represent the warping of transversal section in the deformed configuration, Fig. II.4. 

 

 

 

 

 

 

 

Fig. II.4. Higher-order theory kinematic 
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   Most of the existing higher order models employ Taylor series development of the displacement 

fields that are written as: 

....),(),(),(),(),,( 21

)3(03

21

)2(02

21

)1(0

21

0

321  xxzxxzxxzxxuxxxu iiiii        [II-9] 

With:  3,2,1i . 

   Using this expression, accuracy is increased with the order of development, i.e. the number of 

independent variables of displacement that exceeds that of former models (three in the Love- 

Kirchhoff model and five for Reissner-Mindlin model). 

   In the particular case of the first-order theories of Reissner-Mindlin we get: 

0,0 )1(0

3

)(0   andj

i
. 

   [HILDEBRAND et al 1949] were the first to introduce these refinements with: 0)3(0)4(0  ii  . 

[NELSON & LORCH 1974] use the same development by introducing correction coefficients.       

[LO & CHRISTENSEN 1977-b] proposed a model that takes into account the effect of normal 

deformation: 0,0 )3(0

3

)4(0   andi
. 

   In several works, in order to reduce the number of parameters of displacement, various 

simplifications are used. Often the conditions of nullity of transverse shear stresses at the upper 

and lower surfaces of the plate is imposed. 

   [TOURATIER 1991; IDLBI et al 1997] proposes the "sine" model that is different from other higher 

order models since it does not use polynomial function for displacement fields. A sinusoidal 

trigonometric function is introduced to model the distribution of shear stress through the thickness. 

The function of the transverse shear is written as below: 
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    [II-10] 

   Depending on the chosen truncation, one obtains the Love-Kirchhoff theory, Reissner-Mindlin 

theory or higher-order model. The transverse shear stresses determined by the "sine" take a 

"cosine" shape model in the thickness of the plate.  The accuracy of this model compared to the 

exact solution is better than the theory of [REDDY 1984]. 

Recently, [AFAQ et al 2003] proposed an exponential model with a richer cinematic. The function 

of transverse shear is of the following form: 

2
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zezf              [II-11] 
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   While that the "sine" function [TOURATIER 1991] allows only impairs powers development, the 

choice of the exponential function is used in a development of pairs and impairs power of the 

variable z (thickness).  

      V- PLATE BENDING IN KIRCHHOFF THEORY  

   In the Kirchhoff-Love theory, the displacement field of the reference surface is the only 

independent kinematical variable. It is a thin shell theory, in which transverse shear is neglected. 

This theory requires continuity of the normal slope across the inter-element boundaries                   

(C1 continuity). The requirement to ensure the C1 inter-element continuity leads to a high order 

interpolation polynomials. 

Kirchhoff-Love theory is based on the following three hypotheses: 

• straight-normals assumption: any normal to the mid-plane of an undeformed plate will remain 

rectilinear, will keep its length, and will remain orthogonal to the mid-surface that the mid-plane 

becomes after the plate is deformed; 

• no-pressure assumption: all surfaces which are parallel to the mid-surface do not interact in their 

normal direction, which led to consider, σzz = 0; 

• no-shear assumption: the shear stresses τxz and τyz, are neglected in the expression of energy in 

comparison to the work of σxx, σyy, and τxy. Thus, strains and stresses related to “z” axis are 

considered null: εzz = 0, γxz = 0, γyz = 0, τxz = 0, and τyz =0. 

V-1. Discrete Kirchhoff Assumptions 

   The aforementioned limitations and difficulties led to the development of the discrete Kirchhoff 

theory (DKT), for which the requirement of C1 continuity is relaxed, but additional techniques are 

used to incorporate the Kirchhoff assumptions at a discrete number of points. Within this approach 

the formulation starts with the Mindlin-Reissner plate or shell theory. Subsequently, Kirchhoff 

hypothesis are enforced at some discrete points (usually, corner nodes, or mid-side nodes). 

   However, relaxation of the Kirchhoff assumptions is not without problems. It has been found 

that the convergence rate is slow for some finite elements of this class. The slow rate of 

convergence is due to the fact that the transverse shear energy, which is a very small part of the 

total strain energy, contributes more than its fair share to the total strain energy of the element. 

This led to an over stiffening in the plate/shell element. 
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   Let us consider the plate element of Fig. II.5. The displacement of any material point “P” 

following (xi) axis is:  ii zu tan . In small displacement we can write:   ii  tan , so: 

ii zu                [II-12] 

 In the thin plate Kirchhoff model, the transverse shear strains are negligible, so: 
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Fig. II.5. Thin plate kinematic in Kirchhoff theory 

   This relates the mid-plane deflection with out-of-plane rotations as: 
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Using Eq. [II-12], Eq. [II-14] and Eq. [II-15], the displacement field is expressed using the 

deflection w only:  
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 Curvatures  Txyyyxx    at the plate mid-plane point are defined as: 
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Using Eq. [II-12], the vector of curvatures for Kirchhoff plate model is: 
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 Transverse strain quantities
yzxz  , are neglected. Strain-displacement relation becomes: 
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This leads to the following expressions for nonzero in-plane strains  Txyyyxx v   : 

xxxx z   ; 
yyyy z   ; 

xyxy z  2           [II-20] 

 Assuming the plate is made of isotropic  elastic  material  characterized  by  elastic  modulus 

E and Poisson’s ratio ν, the elastic behaviour is described well by the plane stress Hook’s law: 
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Fig. II.6. Thin plate stress resultant 
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 In order to form a bi-dimensional theory, we must integrate stress through thickness to get 

stress resultant internal forces. Integration through the plate thickness leads to the plate 

bending moments  Txyyyxx MMMM   with the dimension of moment per unit length 

defined as: 
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With:
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Also, we gets the following shear forces: 
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 Total potential energy is: 
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      VI- PLANE-STRESS MEMBRANE THEORY 

 

 

 

 

 

 

Fig. II.7. Plane stress: a- Kinematic; b- Stress resultant  
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 For this element, loads are in-plane forces affecting in the mid-plane. For a plane stress 

problem, integration through the plate thickness leads to the strain resultant in-plane forces 

 Txyyyxx NNNN   with dimension of force per unit length. 

Normal forces: Nx, Ny are: 
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Tangential forces: Nxy, Nyx are: 
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Plane stress constitutive equation: 
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Total potential energy is: 
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      I- INTRODUCTION 

   In the early stages of finite elements analysis, plane stress elements were the first developed 

finite elements. Then, several efficient plate elements were developed. It was a simple matter then, 

to extend their use to the discretization of shell structures, according to which, a shell finite element 

is obtained from the superposition of membrane and bending behaviours. Generally good results 

are obtained with sufficiently fine meshes. Beside their simplicity in use, these are the reasons for 

the continued use of flat elements in shell analysis even when good curved shell elements were 

developed. Nevertheless, this approach has its drawbacks, and limitations beside their advantages. 

   Flat shell elements still attract much attention in the literature, and the research to represent the 

shell behaviour by flat elements and to overcome the associated difficulties continues to attract 

much attention. In this section, the formulations of the various shell finite elements used in the 

numerical experiments, are briefly outlined. Detailed formulation is presented only for the new 

AES triangular plane stress element with rotational degree of freedom developed in this work.  

      II- APPROXIMATION OF SHELLS WITH FLAT ELEMENTS 

   The simplest and the most used approximation of the finite element method to the analysis of 

shells involved the replacement of the curved shape of shell structures by a juxtaposition 

(assemblage) of flat triangular or quadrilateral elements, obtained by superposition of membrane 

and flexural behaviour. By superposing the independent membrane element (plane stress element) 

and plate bending element together with the appropriate spatial transformation, the desired shell 

element will be developed. Among the major attractive features of this modelling approach of 

shells, see [COOK 1974-a; YANG et al 1990] are: 

1. They are simple to formulate; 

2. It is easy to mix with other types of elements; 

3. They are capable of modelling rigid body motions without inducing strains; 

4. They exclude at the element level the coupling of membrane and bending behaviour so they 

avoid membrane locking; 

5. Input data describing the geometry is much easier; 

6. Convergence is assured and good results are obtained with refine meshes; 

7. The requirement of using a relatively large number of elements provides the advantage of a 

convenient incorporation of complex loading and boundary conditions. 

   Nevertheless, the use of flat finite elements to solve shell problems has several drawbacks, see 

[ORAL & BARUT 1991; CHEN 1992; ALLMAN 1994]: 
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1. The geometry of a curved shell surface is replaced by a faceted, folded structure. Nevertheless, 

the error introduced by this approximation tends to decrease with mesh refinement; 

2. The restriction to triangular shapes when general shells are to be treated; 

3. The coupling of bending and membrane behaviours at the element level which is present in 

curved structures, is absent in flat shells; 

4. Compatibility is lost when flat elements are used to represent curved structures; 

5. They give rise to the presence of "discontinuous" bending moments, which do not appear in 

continuously-curved shells; 

6. They lead to ill-conditioned or even singular stiffness matrices, whenever elements are coplanar 

or nearly so. 

   That last one deficiency, arise from the fact that conventional plane stress elements make use 

only of the nodal translational degrees of freedom (2 d.o.f), while the in-plane rotation about the 

normal to the shell middle surface is usually neglected. The superposition of such element with a 

plate element having (3 d.o.f), produces a shell element with only (5 d.o.f) at each node. The sixth 

d.o.f which represents in plane rotation θz about the normal axis at corner node, is not necessary 

for the elementary formulation. Therefore, it is not taken as a nodal parameter. Consequently, 

rigidity corresponding to this d.o.f is null at the local stiffness matrix. 
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   The elementary stiffness matrix for a flat shell element is first assembled by superposing the 

membrane stiffness and bending stiffness at each node in the local coordinate system, then it will 

be transformed from the local to the global coordinate system where the shell element have to deal 

with six d.o.f at each corner node. However, the rigidity corresponding to the sixth d.o.f is null at 

the shell stiffness matrix level. That means that the sixth row and column of the elementary 

stiffness matrix contain only zeros. Remember that there was no stiffness associated with the local 

in-plane rotational degrees of freedom. Therefore, the global stiffness matrix will be rank deficient 

if all elements are coplanar. 

   As a consequence, a difficulty arises if all the elements meeting at a node are co-planar, because 

that formulation does not produce equations associated with this rotational parameter. In this case 

the global stiffness matrix contains rows and columns contain only zeros, and hence, numerical 

problems due to singularity of the stiffness matrix arise at the numerical level.  

Add a small stiffness 
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   Many solutions have been used to avoid this problem [CLOUGH & WILSON 1971; ZIENKIEWICZ 

1977; GOTSIS 1994]. They were based on various artificial means such as a fictitious beam along 

the edges of an element or a fictitious springs; we can mention among these methods:  

- Eliminate the null term rows and columns from the stiffness matrix associated with the drilling 

rotation d.o.f to obtain a non-singular stiffness matrix. However, this method has many limitations, 

See [CLOUGH & WILSON 1971; LEE & LEE 2001] for further details; 

- The addition of fictitious in-plane beams along the edges of the element; 

- The addition of a fictitious torsional-spring elements normal to the shell surface. That solution 

implies the insertion of a fictitious small torsional rigidity, it’s an arbitrary stiffness associated 

with the sixth degree of freedom at each one of the corner nodes [ZIENKIEWICZ et al 1965]. This 

technic is the simplest, the most cost-effective and the most common method; 

- Or, interpolate the sixth degree of freedom in order to build a shell element which handles with 

six d.o.f at corner nodes. This in-plane rotational degree of freedom associated with the shell 

normal rotation is commonly referred to as drilling degree-of-freedom. This method is relatively 

recent and coming to be more adopted. 

   Till now days, the most common method is to associate to the sixth d.o.f a fictitious torsional 

rigidity at each node [ZIENKIEWICZ 1977]. It is placed at its position within the elementary 

stiffness matrix to avoid system singularity. However, the additional stiffness, does not improve 

the in-plane bending behaviour but rather makes it even stiffer. Moreover, such artificial solution 

introduces a problem at shell intersections because, neglecting the rotation about the normal and 

the use of an artificial stiffness of one shell restricts bending in the other shell. The error introduced 

in this case does not vanish by mesh refinement. As a result, this approach can lead to critical 

errors [JETTEUR 1986; GOTSIS 1994] in linear analysis especially for warped geometry [ZHU & 

ZACHARIA 1996]. These deficiencies become particularly severe (numerical instabilities and 

divergence) in nonlinear and post-buckling analysis. Furthermore, solution could converge, and 

these errors become more severe in dynamic analysis either linear or non-linear as we will show 

in the numerical simulation chapter in this work. 

II-1. Fictitious Stiffness 

   Among those technics cited above, a method which is commonly used to account for the in-plane 

rotation is simply by add a small fictitious stiffness to each drilling d.o.f. [ZIENKIEWICZ et al 1965; 

ZIENKIEWICZ 1977; BATHE & HO 1981] proposed to use a fictitious stiffness in the direction of 

this degree of freedom i.e. associate a fictitious small stiffness at the sixth d.o.f of each node. It is 
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a constant inserted at appropriate places within the elementary stiffness matrix to avoid system 

singularity when all the elements meeting at one node are co-planar. 

   This fictitious stiffness may be injected at the principal diagonals alone (6x6), (12x12) and 

(18x18) …etc., or at off-diagonal of the element stiffness matrix too (6x12), (6x18) …etc., see: 

[ZIENKIEWICZ 1977; COOK 1993; GOTSIS 1994; BELYTSCHKO & LEVIATHAN 1994]. 

   Based on the assumption that a nodal rotation θzj about the z local axis of any element's node is 

responsible only for the development of resisting couples Mzi, The sum of resisting couples is 

always taken to be zero to ensure static equilibrium, where: 

 


n

i ziM
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0               [III-1] 

Where n represents the number of nodes of one element. 

   The fictitious rotation is defined in the way that it does not perturb the local equilibrium of the 

finite element. This could be achieved by adding the following term in the potential energy of each 

element: 
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With, α is an undetermined fictitious elastic parameter, E is the elasticity modulus, A is the air, and 

z  is the mean rotation of each element. 

[ZIENKIEWICZ & TAYLOR 2000] have observed that if n=3, which mean that the additive 

fictitious stiffness is related to h3, numerical results are less sensitive to the choice of the value of 

the parameter "α". He suggested the following overall form approximation of the moment-rotation 

relationship for triangular elements: 
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Some authors used the following relationship: 
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[COOK 1993] Introduces an elastic restraining term between the three drilling rotations and the 

mean drilling rotation value of a triangular element, as: 
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Where id  are: 1121 d , 1212 d , and 2113 d   

The fictitious stiffness matrix can be written as: 
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   According to [COOK et al 2002] the additional stiffness provides each drilling d.o.f with a 

fictitious stiffness, but offers no resistance to the mode i

zzzz   321 , or any other rigid mode. 

   We should note that, this technic led to an additional fictitious in-plane shear deformation as a 

consequence of the addition of a fictitious in-plane rotation. Nevertheless, this does not influence 

the resultant stress. In addition, the sum of all additional terms is null. Then, rigid rotations 

condition is always guaranteed. 

[NUKULCHAI 1979; PROVIDAS & KATTIS 2000] presented another variant of fictitious stiffness, 

using an additional constraint to link the nodal rotations to the average in-plane rotation of the 

mid-surface. 

[CHANG et al 2003] proposed a practical approach to account for the sixth d.o.f for flat shell 

elements, in which, the in-plane rotation θz is incorporated into the shell element formulation based 

on the mixed variational principle, see also [WANG & SUN 2014]. 

   The “drilling rotation locking” effect provided by the fictitious in-plane rotational stiffness 

values over the bending stiffness terms, could be alleviated by assuming a cubic exponent for the 

thickness parameter as in [ZIENKIEWICZ & TAYLOR 2000]. Moreover, some experimentation is 

usually necessary in order to select a suitable value of the scaling parameter "α", but for precision, 

usually extra small values of "α" are recommended in order to reduce the effect of the additional 

fictitious stiffness, [ZIENKIEWICZ et al 1965]. Usually a value between 10-3 and 10-6 is 

recommended. 

   Even if the use of artificial stiffness can solve the problem of stiffness matrix singularity; it 

doesn’t represent the real in plane behaviour because of the fact that a fictitious stiffness has been 

added. Furthermore, some research works on the effect of varying the scaling parameter "α" 

determined that a displacement error of about 10% in linear analysis is caused by introducing "α" 

value as large as 1.0, see [JETTEUR 1986; GOTSIS 1994], in addition to errors determined in natural 
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frequencies analysis, see [SESHU & RAMAMURTI 1989]. In conclusion, satisfactory results are 

obtained as "α" is the smallest admissible value, in order to produce only small perturbations of 

the strain energy of the shell, [BERNADOU & TROUVE 1989]. This is not always possible 

especially in nonlinear analysis. A high level of risk exists when using this method which includes 

remarkably errors and instabilities in both geometrically and materially nonlinear analysis. 

II-2. The Sixth Degree-of-Freedom 

   In order to avoid the use of artificial solution to the sixth d.o.f problem, which does not give 

satisfactory results, an alternative method requires extending the number of in-plane nodal 

parameters from two to three. This approach, aims to interpolate the in plane rotations of corner 

nodes about the normal axis called “drilling rotation” or “in-plane drilling rotational d.o.f”. The 

superposition of such an element with a plate element having (3 d.o.f) per node produces a flat 

shell element having (6 d.o.f) each node [CHINOSI 1994], as presented in Fig. III.1. 

 

 

 

 

Fig. III.1. Four-node shell element with “Drilling Rotation” 

   This d.o.f is particularly advantageous for analysis of shells with the aim of extending the range 

of applicability of shell elements. Moreover, in many finite element formulations, the absence of 

the rotation about the shell normal as a degree of freedom can lead to serious errors and spurious 

modes. Hence, as the technic of fictitious stiffness can lead to incorrect results, much works has 

been directed toward including the in-plane rotation as an effective d.o.f [ALLMAN 1984; BERGAN 

& FELIPA 1985; COOK 1986; ALLMAN 1988-a, 1988-b; HUGHES & BREZZI 1989; 

IBRAHIMBEGOVIC et al 1990; COOK 1991; IURA & ATLURI 1992]. 

   The main objectives behind including normal in-plane rotational degrees of freedom at corner 

nodes of plane-stress finite elements are: 

 To improve the in-plane behaviour of plane strain/stress elements because a higher order 

membrane element could be formulated. This improvement can also improve the shell 

element performances; 

 To overcome stiffness matrix singularity and avoid using artificial solutions; 
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 To impose nodal kinematic compatibility at branching points and provide reliable 

modelling of connections between plates, shells, beams and Stiffeners, using a complete 

set of degrees-of-freedom. 

   A significant progress in including the in-plane rotational degrees of freedom began with the 

independent works by [ALLMAN 1984] who used a non-conventional interpolation, and by 

[BERGAN & FELIPA 1985] using the free formulation. Extensive attempts to develop plane stress 

finite elements with drilling rotation have shown that the sixth d.o.f can be formulated and built 

into the element in a widely varying manner. Basically, two cases can be distinguished: 

-  The drilling rotation; 

-  The vertex rotation. 

II-3. Drilling Rotation 

   According to continuum mechanics, in two-dimensional linear elasticity, the true physical 

drilling rotation is interpreted as: 
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Where u, v are the in-plane components of displacement through the in-plane coordinates x, y 

respectively. This definition is invariant and it is independent of coordinate system. 

   In-plane drilling degree of freedom may be physically interpreted as the rotation of the vertex 

bisecting the angle between adjacent edges of an element. A schematic of the angle bisector and 

its associated partial derivatives is shown in Fig. III.2. 

 

 

 

 

 

 

 

Fig. III.2. Drilling rotation interpretation 
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   The idea of including the drilling rotation as a nodal parameter in the formulation of membrane 

finite elements go back to 1960s however, no successful application could be made despite the 

advantage in using the drilling rotation for shell analysis. This was due the absence of 

understanding how to relate φ with the in-plane displacement. 

   The present trend is to relate the in-plane rotational degrees of freedom to the average in-plane 

rotation of the shell reference surface as a constraint by the penalty function method based on the 

Hughes’s variational formulation, which could lead to a close definition of drilling rotation 

[HUGHES & BREZZI 1989; FOX & SIMO 1992]. However, strong enforcement of such a constraint 

can lead to strong in-plane locking. 

II-4. Vertex Rotational Degree of Freedom 

   First progress in this direction was made by Allman in 1984, who introduced the concept of the 

"vertex rotation" [ALLMAN 1984]. Allman have included the “vertex rotations” into the “Constant 

Strain Triangular” element to improve its performances. In this approach, for each element’s side, 

the tangential displacement is taken to be linear, whereas, the normal displacement is quadratic. 

The vertex rotations “rotation of element’s side” is geometrically interpolated in relation to the in-

plane transverse displacement of the mid-side between two nodes (i) and (j) of a quadratic element 

as presented in Fig. III.3. 

 

 

 

 

 

 

Fig. III.3. Higher order in-plane displacement interpolation 

   For any given side of length l, in the local system (s, n), the side-tangent displacement tu  is 

interpolated linearly, as: 
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The side-normal displacement nu is interpolated as a quadratic function, as: 
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Vertex rotations are then defined by: 
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Where: ω1 and ω2 are the vertex rotations at nodes (1) and (2) respectively. 

Thus, vertex rotations are related to the derivatives of the displacements computed at the nodes of 

the element. Nevertheless, it is obvious that this rotation ω is different from the true drilling 

rotation φ. 

nu  is interpolated in function of vertex rotations 2  and 1 as: 
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   This interpolation assure inter elements continuity, and improve in-plane behaviour. However, 

such a d.o.f is not the true in-plane drilling rotation. In shell elements case, when element is 

involved to deal with plates and other structural elements, vertex rotation d.o.f could not assure 

displacement compatibility as shown in Fig. III.4. 

 

 

 

 

 

 

Fig. III.4. Incompatible rotations 

   It became clear that the vertex rotation does not represent the true drilling rotation. Therefore, 

special care must be taken when using elements based on this concept. Nevertheless, vertex 

rotation d.o.f is still widely used, just in order to improve the convergence rate of plane stress/strain 

and shell elements. 
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II-5. Drilling Rotation Locking of Flat Shell Finite Elements 

   By adding the drilling rotational d.o.f to the shell element, we can enhance the shell element’s 

behaviour and compatibility, and we can avoid connectivity and singularity problems that occur 

in conventional shell elements. However, the presence of the drilling rotational d.o.f may cause 

undesirable locking when flat shell elements are used for modelling curved shells. This observation 

was reported by [COOK 1993]. 

   Let us consider a curved shell structure represented by flat shell elements E1, E2… En. As 

represented by Fig. III.5, the out-of-plane nodal rotation θb due bending of element E3, when 

decomposed in the local system of element E2, it has a rotational component about the normal axis 

of element E2 (i.e., θb×sin(α)) to be added to the membrane rotation θm of element E2. Thus, a 

bending rotation of element E3 is in part resisted by membrane stiffness of element E2. When the 

shell becomes thinner, the bending stiffness, which is proportional to (h3), decreases more rapidly 

than the membrane stiffness, which is proportional to (h). Thus, in the thin shell limit, the large 

membrane stiffness of element E2 would tend to lock the bending rotational d.o.f of element E3 

and vis-versa. Thus, the drilling rotation locking becomes more pronounced in thin shells.  

   This effect, was also designated as membrane locking by many authors: [CARPENTER et al 1985; 

MACNEAL & HARDER 1988; FISH & BELYTSCHKO 1992; ZHU & ZACHARIA 1996; CHOI & LEE 

2003]. Nevertheless, drilling rotation locking vanishes as elements become coplanar. 

 

 

 

 

 

 

Fig. III.5. Inter-element bending-membrane coupling 

   In order to alleviate the drilling rotation locking, [COOK 1993] multiplied the stabilization matrix 

by a factor that is related to the ‘amount of non-coplaneness’. The reduced integration was also 

used to alleviate the drilling rotation locking, which was considered as membrane locking problem, 

see: [CARPENTER et al 1985; FISH & BELYTSCHKO 1992]. Many other works on the problems 

related to the drilling rotation locking of flat shell elements have presented by: [CARPENTER et al 

1985; FISH & BELYTSCHKO 1992; COOK 1994; GROENWOLD & STANDER 1995; 
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SYDENSTRICKER & LANDAU 2000; CHOI & LEE 2003; KUGLER et al 2011]. However, the 

solution for complete removal of membrane locking of flat shell elements has not yet been found. 

   This locking effect is common for flat shell elements that incorporates drilling rotation 

interpolation or those with fictitious rotational stiffness. Also, this locking tend to vanish when the 

adjacent finite elements tend to be coplanar. So it could be alleviated, simply by increasing the 

finite element mesh, as the mesh is refined, flat elements tend to be coplanar, and the inter-element 

bending-membrane coupling tend to vanish. 

   As common locking phenomenon does not vanish by refining mesh, the author believe that the 

“the drilling rotation locking” is due locking of some membrane elements under in-plane bending 

or other situations when membrane is dominated. Therefore, even if most of the deformation 

energy results from bending deformation, the over stiffness of membrane component from the 

adjacent elements will prevail over the bending stiffness leading to incorrect results. For example, 

the Triangular element with rotational d.o.f by [ALLMAN 1984] exhibits membrane locking. As 

can be seen from the numerical tests presented in Chapter VI, Allman’s triangle lock and cannot 

achieve the true solution of a hinged arch even with refined mesh. In this example Allman’s 

triangle converges toward a stiffer solution. So, the author believe that the best cure of this  

problem is by using locking free membrane elements. For this purpose, a locking removal technic 

mast be used. 

   The EAS method has proven to be an efficient solution to overcome all kinds of locking 

problems. So it is adopted in this work to develop a new locking free triangular membrane element 

with rotational d.o.f. Formulation and details are presented in § III-1.2. 

      III- LINEAR FLAT SHELL FINITE ELEMENTS 

   In this section, the linear formulations of the various shell finite elements used in the numerical 

experiments during this work are outlined. 

   Each shell finite element, with associated elemental displacements and rotations, can be 

decomposed as: 
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   Where  mk and  bk are: the membrane and plate stiffness matrices respectively. 
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 k : represents the stiffness matrix in a locally defined coordinate system, with related local nodal 

displacements and rotations vector q . There will be no coupling stiffness between membrane and 

plate actions at the element level. 

   The associated local nodal displacements  q  are decomposed into terms associated with 

membrane displacements mq , and terms associated with the bending plate displacements bq . 

Specifically,    Tm vuq  , when the in-plane rotational drilling d.o.f is considered, else 

   Tm vuq  ; where u, and v represent the in-plane nodal translations, and φ denotes the in-plane 

nodal rotation at each node. The bending plate out of plane nodal displacement and rotations are 

denoted by:    Tyxb wq  . 

   The thin plate bending elements used in this study are the famous DKT triangle, and the DKQ 

quadrilateral Discrete-Kirchhoff Theory elements. 

   The membrane elements used in this study for the formulation of triangular and quadrilateral flat 

shell elements are: 

- The constant strain triangle (CST); 

- Allman triangle with rotational d.o.f by [ALLMAN 1984]; 

- The standard bilinear four nodes quadrilateral element; 

- The mixed quadrilateral element with rotational d.o.f by [IBRAHIMBIGIVICH et al 1990]; 

   These elements are Iso-parametric elements formulated in the natural coordinate system. [IRONS 

1966], introduced the concept of Iso-parametric elements in stiffness methods, that maps the 

element geometry in terms of natural coordinates regardless of the orientation of an element in the 

global coordinate system. However, the relationship between the two systems must be used in the 

element formulation [COOK 1974-a]. 

- Finally, we contributed in this work by the development of a new triangular element with 

rotational d.o.f based on the Enhanced Assumed Strain method. This element is based on 

the Allman triangle formulation using area coordinates. This contribution was motivated 

by the poor behaviour of the existing library of triangular elements even with drilling 

rotational degree of freedom. 
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III-1. Membrane Elements 

   These elements are used for analysing structures subjected to in-plane forces. Assuming that the 

structure is in the x-y plane, the displacement field can be expressed using two d.o.f each node      

(u and v which are, the translation according to x direction and, y direction respectively). The 

stresses of interest are the in-plane normal stresses σxx, σyy, and the in-plane shear stress τxy. 

Membrane elements are mainly used to model the membrane action in shells. 

III-1.1. Conventional Membrane Elements 

   In the classical “standard” formulations, membrane elements usually has only the translational 

nodal values of displacement components u and v as d.o.f at each corner node. 

The formulation of these elements is very simple, and it is directly inspired from the bi-

dimensional continuum mechanics. However, the performance is very poor. 

1- CST: 6 degrees of freedom 

   Constant strain triangle [TURNER et al 1956]: This is the simplest of all plane-stress/strain 

elements. The CST element is so-named because the strains within the element are independent of 

the coordinates and hence are constant over the element. It has 6 degrees of freedom (the nodal 

translational values u and v at each of the three corner nodes). Each displacement component is 

interpolated between the nodal values. The implementation uses standard Iso-parametric 

procedures, and numerical integration is carried out by Hamer scheme (3 integration points). 

   The element is conforming (displacement continuity is preserved along all sides) and satisfies 

all requirements for convergence. However, good accuracy, requires fine mesh. 

The CST’s formulation, neglects the in-plane rotational field , and possesses only two degrees 

of freedom per node:    Tm vuq  , where u, v represent the in-plane nodal displacements. 

 

 

 

 

 

 

Fig. III.6. CST triangular element 
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   The element’s shape functions are expressed in terms of the local coordinates , . Cartesian 

coordinates can be expressed in terms of the shape functions and nodal coordinates by: 
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For the triangular element, the Iso-parametric shape functions are: 

 1),(1N ;  ),(2N ;  ),(3N . 

The nodal internal forces are: 

    



ddJhNNff

A
yyxy

xyxx

yixi

i

y

i

x 







  ,,

         [III-14] 

2- Q4: 8 degrees of freedom 

   This is the standard quadrilateral element with bilinear displacement field. It has 8 d.o.f, which 

are the nodal values of translational components u and v at each of the four corner nodes. Each 

displacement component is interpolated between the nodal values. The implementation uses the 

standard Iso-parametric procedure. Numerical integration is carried out by gauss quadrature (2x2 

integration points). [TAIG 1961; ERGATOUDIS et al 1968] developed the shape functions used to 

formulate the element stiffness matrix for the four nodes Iso-parametric quadrilateral element. 

The element is conforming (displacement continuity is preserved along all sides) and satisfies all 

requirements for convergence. Good accuracy however, requires a fine mesh. 

This element formulation neglects the in-plane rotational field , and possesses only two degrees 

of freedom per node:    Tm vuq  , where u, v represent the in-plane nodal displacements. 

 

 

 

 

 

 

Fig. III.7. Q4 quadrilateral element 

   The element’s shape functions are expressed in terms of the local coordinates , . Cartesian 

coordinates can be expressed in terms of the shape functions and nodal coordinates by: 
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For the quadrilateral element, the Iso-parametric shape functions are: 
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III-1.2. Membrane Elements with Drilling Rotation 

   In this formulation, plane stress elements are having (3 d.o.f) at each node. An Allman type 

displacement field which incorporates the in-plane rotation is used [COOK 1986]. The main feature 

of this formulation is that the in plane displacement field become quadratic due to the in plane 

rotations effect, Fig. III.8. Furthermore, for quadrilateral elements, Hughes’s simplified variational 

formulation by [HUGHES & BREZZI 1989; IBRAHIMBEGOVIĆ et al 1990] is used to enforce the 

vertex rotation to be close to the true drilling rotation. 

 

 

 

 

 

 

Fig. III.8. In-plane displacement due corner nodes rotations 
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Then, the quadratic Allman-type interpolation of the in-plane displacement is written: 
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Where, Ni are the Triangular/quadrilateral shape functions of linear interpolation, and NSk are the 

Triangular/quadrilateral quadratic serendipity shape functions. 
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1- Allman Triangular Element 

   The 3-nodded membrane element with in-plane rotational d.o.f presented in Fig. III.9. is derived 

by combining the standard CST and a higher order in-plane displacements using Allman-type 

interpolation functions [ALLMAN 1984]. Only a brief review is presented here. 

   [ALLMAN 1984] presented the first successful triangular membrane element with in-plane 

rotational degrees of freedom. The formulation of this element, popularly known as the Allman 

triangle is simple, but it suffers from zero energy mode (singularity) which occurs when all the 

nodal rotations are identical. Practically, this singularity is automatically removed by the 

application of kinematic boundary conditions. [ALLMAN 1988-a] removed that rank deficiency in 

a revised version of the element. 

 

 

 

 

 

 

Fig. III.9. Triangular element with drilling rotations  

   [COOK 1986] showed that Allman’s triangle can be derived from the LST element using a simple 

transformation which relates the mid-side displacements in terms of the corner displacements and 

rotations. Allman type displacement field interpolation for a three-node triangle is: 
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With:  
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U  is the nodal displacements vector. 
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NL: represent the shape functions of a 6-node triangle: 

   

 

   



















14,

4,

14,

6

5

4

NL

NL

NL

          [III-21] 

 

 

(0, 1) 

3 

J(,η) 

1 
(0, 0) (1, 0) 

2 Parent element 

(½, 0) 

(0, ½) (½, ½) 



CHAPTER III. FLAT SHELL FINITE ELEMENTS 

74 
 

Strain vector is: 
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Which is written in matrix notation as: 
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Whit: i  are the nodal in-plane rotations. 

The strain matrix  


B  is written as:  
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We get the stiffness matrix as: 

       






 dBDBK
T

           [III-27] 

 


B  is written as: 

      iii GBB ,


           [III-28] 

With:      fqK  , and   333111 ,,;;.........,,  vuvuq
T
 . 

Numerical integration is carried out by 3 integration points. 
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2- Quadrilateral Element with Drilling Rotation [IBRAHIMBEGOVIĆ et al 1990] 

   The 4-noddee membrane element with drilling rotational d.o.f presented in Fig. III.10. is derived 

by combining the standard bilinear quadrilateral and a higher order in-plane displacements using 

Allman-type interpolation functions. This element uses an independent standard bilinear rotational 

interpolation, then they are related to the in-plane displacements employing the variational 

formulation presented by [HUGHES & BREZZI 1989]. 

Details of the formulation can be found in [IBRAHIMBEGOVIĆ et al 1990]. Only a brief review is 

presented here. 

Allman type displacement field interpolation for a four-node quadrilateral is: 
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The independent in plane rotation is taken to be: 
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NS: represent Serendipity shape functions for the 8-node quadrilateral element: 
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Fig. III.10. Quadrilateral element with drilling rotations 
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   Following the same steps above we get: 
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The stiffness matrix is calculated using: 

       






 dBDBK
T

          [III-35] 

With:       iii GBB ,


,      fqk  , and   444111 ,,;;.........,,  vuvuq
T
 . 

The Variational Formulation:  

   Considering the problem of determining the equilibrium state of an elastic solid body, the 

solution consists of determining the unknown variables (u, φ, S), in which, u is the displacement 

field, ϕ is the rotation field, and S represents the stress field. The equilibrium state is described by: 

The equilibrium equation: 0)(  fdiv  ; 

The stress symmetry condition: 0)( skew ; 

The In-plane rotation-displacement relation: )( uskew  ; 

The constitutive relation: )()( usymCsym  ; 

With: )()(  skewsym  . 

 Tsym  
2

1
)( , the symmetric part of stress tensor . 

 Tskew  
2

1
)( , the anti-symmetric part of stress tensor . 
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   In order to simplify the problem and make it applicable [HUGHES & BREZZI 1989] established 

a modified variant of Reissner’s variational formulation in a weak form. It is written in the 

following form:   

 

1
 ( )  ( )

2
sym u C sym u d



     
        [III-36] 

                    
   ntisym( ) ntisym( )a u a u d u f d    

 

           
    

With: )( usym  . 

   In this variational formulation, a penalty term is introduced, which is the second term of the left 

side of Eq. [III-36].  

Hence, According to this formulation, the stiffness matrix is penalised by a penalty matrix [P].  

Finally, we get the stiffness matrix in its final form as: 

     PKK m             [III-37] 

   The penalty stiffness matrix [P] relates the in-plane rotation field and the in-plane displacement 

field, it is calculated as follows: 
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   Then, we get:   

 iii gbb ,
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           [III-41] 

   
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            [III-42] 

   For isotropic materials, the penalization parameter  is taken to be the shear modulus, G  . 
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   It is noticed that in-plane behaviour dose not exhibit sensibility to the value of   while G , 

[LIU et al 2000; LONG et al 2006]. However, when this in-plane element is used within a flat shell 

element, many researchers propose the value: 23 1010  
G


, see [GEYER & GROENWOLD 

2003; WISNIEWSKI & TURSKA 2006]. 

We have used: G05.0 , as suggested by [PIMPINELLI 2004].  

   The finite element implementation uses standard Iso-parametric procedure, and numerical 

integration is carried out by gauss quadrature scheme. 

   This membrane element is free from parasitic shear locking and also from trapezoidal locking 

due to mesh distortion. It performs satisfactory in pure bending situations, so it is selected as the 

membrane part of the quadrilateral flat shell element with drilling rotation. 

3- The New EAS Triangle with Rotational Degree of Freedom 

   The enhanced assumed strain (EAS) formulation, is widely used in many element formulation 

to prevent over-stiffness of finite elements response. The main idea behind this formulations that 

is based mainly on [SIMO & RIFAI 1990; SIMO & ARMERO 1992; ANDELFINGER & RAMM 1993] 

works, is the enhancement of the variational principle into a 3–field functional well known as    

Hu–Washizu variational formulation, which can be written as: 
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By introducing the enhanced strains εh in addition to the original strains we get: 

  huB               [III-44] 

In this formulation, the enhanced strains is written as: 

  
hh B             [III-45] 

Where α denotes the additional degrees of freedom. This additional strain may not cause any 

energy within the element formulation: 

 
ev

ehT dv 0             [III-46] 

   In the Allman's displacement field interpolation of Eq. [III-19], the lateral displacement along 

each side is taken to be quadratic due corner node rotations. However, tangential displacement 

remain linear, while in the LST higher order element interpolation, both lateral and tangential 
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displacements are quadratic. So, our methodology consists of adding the missing quadratic 

tangential components along each side in Allman's interpolation comparing to the LST triangle 

interpolation by using additional incompatible displacements.  

   Let us assume that k  will be the tangential mid-side displacement of a side (ij) as presented in 

Fig. III.11-c. Thus, the enhanced displacement due mid-side tangential displacement d.o.f k could 

be written as: 
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 Using 
2
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The total displacement field is taken to be 
hc uuu  , thus: 
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Where 
cu represents the original compatible Allman’s-type displacement. 

 

Fig. III.11. Higher order in-plane lateral and tangential displacements 

   The three parameters 1 , 2 and 3 associated with the incompatible enhanced strain terms can 

be eliminated by static condensation so that the nine degrees of freedom are left for the enhanced 

element, see [SIMO & RIFAI 1990]. 

   The obtained numerical results of the present elements are found to be identical to that of the 

EAS triangular element by [PILTNER & TAYLOR 2000] called TE4 with three parameters 2 , 3 , 

and 4 , in which, the enhanced displacement is written in area coordinates as:  
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This enhanced displacement could be written in natural coordinates as: 
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The difference between the present element and the TE4 element is obvious. However, as the 

parameters i  are independent, the terms 
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  used in our formulation if we set
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[PILTNER & TAYLOR 2000] introduced another incompatible mode in order to avoid the spurious 

zero energy mode as: 
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   We get the same mode by considering additional incompatible displacements that represent 

lateral mid-side displacements using the same approach used with tangential mid-side 

displacement as: 
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However, this displacement does not meet the requirement of that a set of incompatible modes 

should be independent of the compatible strain field. This problem can be avoided by using one 

incompatible parameter for the three modes as: 
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Thus, the total enhanced displacement uh is written as 
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   In fact the addition of the first three incompatible displacements overcome the problem of 

spurious zero energy mode related to Allman's interpolation. However, the element still be 
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insensitive to the nodal rotation average, which can be avoided, as suggested by [MACNEAL & 

HARDER 1989]. 

   The obtained element is equivalent to the TE4 element by [PILTNER & TAYLOR 2000]. It 

represents a rational approach of the TE4 EAS triangular element formulation. 

Finally, we get the following enhanced strain matrix  eB : 
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III-2. Plate Bending Elements 

   Among various thin plate bending elements, discrete Kirchhoff elements appear most attractive. 

They are widely accepted due to their efficiency and simplicity. One of the reasons for their 

popularity, is also the fact that they involves a direct interpolation of the transverse displacement 

w and the rotations θx and θy as the nodal degrees of freedom. 

   Due to the independent interpolations, the continuity requirement is only C0. The interpolations 

are constructed such that the Kirchhoff constrain is satisfied only in discrete points, in which, 

normal rotations are approximated within the element, and independent description is used for 

transverse displacement on the element boundary. This concept was applied early by [WEMPNER 

et al 1968; STRICKLIN et al 1969; DHATT 1970]. More developments and applications with DKT 

elements have been established: [BATOZ et al 1980; BATOZ 1982; JEYACHANDRABOSE et al 1985; 

JEYACHANDRABOSE & KIRKHOPE 1986; BATOZ & LARDEUR 1989; KATILI 1993-a]. 

   The concept of the discrete Kirchhoff constraint has also been applied successfully to 

quadrilateral elements by [BATOZ & BEN-TAHAR 1982; JEYACHANDRABOSE et al 1987; KATILI 

1993-b]. The triangular “DKT” and quadrilateral “DKQ” elements has been considered as the most 

efficient elements among the class of thin plate bending elements with 3-dof at corner nodes. 

1- DKT: 9 degrees of freedom 

   The Discrete Kirchhoff Triangular plate bending 

element, is one of the most popular thin plate 

triangular elements. It is a triangular thin plate 

element having (3 d.o.f) at each node. 

Since transverse shear deformation is not 

permitted, results are available for deflection, 

rotations, moments and transverse forces, but no 

transverse shear stress. The formulation of the DKT 

element is well known [BATOZ et al 1980], and will 

therefore not be presented in details here. The stiffness matrix of the DKT element is defined in 

the standard manner for displacement models. This simple plate bending element satisfies all 

convergence criteria, and it is very effective and reliable for thin plate bending analysis, besides, 

it has a good behaviour with respect to element distortions. 
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Fig. III.12. DKT element 
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2- DKQ: 12 degrees of freedom 

   The Discrete Kirchhoff Quadrilateral plate element 

formulated by [BATOZ & BEN-TAHAR 1982], is a 

quadrilateral thin plate element having (3 d.o.f) at 

each node. It is commonly used in the analysis of thin 

plate problems. Since transverse shear deformation is 

not permitted, results are available for deflection, 

rotations, moments and transverse forces, but no 

transverse shear stress. The formulation of the DKQ 

element is well known, and will therefore not be 

presented in detail here. The stiffness matrix of the 

DKQ element is defined in the standard manner for displacement models. As for the DKT element, 

the DKQ satisfies all convergence criteria, and it is very effective and reliable for thin plate 

bending analysis, besides, it has a good behaviour with respect to element distortions. 

III-3. Construction of Flat Shell Elements 

   The membrane and plate bending elements formulations presented in the above sections can be 

combined to form quadrilateral and triangular shell elements. By considering all nodes of a flat 

shell element are placed at mid-plane, the stiffness matrix can be formed by combining the 

membrane stiffness and the plate stiffness obtained independently as follows: 

 
 

 b

m

shell
k

k
k

0

0
            [III-54] 

   By combining the DKT and the DKQ plate bending elements with plane membrane elements, 

various thin shell elements can be constructed. In the framework of this investigation, we have 

constructed four flat shell finite elements that will be tested for linear and geometrically non-linear 

static and dynamic analysis. 

III-3.1. Triangular Flat Shell Elements 

   Triangular elements are preferred for modelling arbitrary shaped geometry and hence are used 

quite extensively for the analysis of planar and curved spatial structures due the fact that they could 

reproduce any geometry batter then quadrilateral elements. 

   1) The first triangular flat shell element implemented in order to be tested for dynamic non-linear 

analysis is denoted “Trian”. It is a combination of the DKT triangular plate bending element by 
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Fig. III.13. DKQ element 
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[BATOZ et al 1980], and the CST triangular standard plane-stress element. The solution of fictitious 

stiffness is adopted to avoid stiffness matrix singularity. The following approximation of the 

moment-rotation relationship is adopted: 
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The obtained Flat shell element cinematic is shown in Fig. III.14. 

 

 

 

 

 

Fig. III.14. 3-Node triangular flat shell element with five d.o.f 

   2) The second triangular flat shell element denoted “Tdrill”, is a combination of the DKT 

triangular plate bending element by [BATOZ et al 1980], and the new EAS triangular plane-stress 

element with drilling rotational d.o.f presented in § III-1.2.3. In this case the rotational θz degree 

of freedom is included in the plane-stress theory formulation as a parameter in the in-plane 

displacement field interpolation. The obtained flat shell element cinematic is shown in Fig. III.15. 

 

 

 

 

 

Fig. III.15. 3-Node triangular flat shell element with six d.o.f 

 

III-3.2. Quadrilateral Flat Shell Elements 

   Quadrilateral elements are more convenient when regular mesh is possible than triangular 

elements since they are of higher order. Nevertheless, they have some limitations with irregular 

mesh and warped geometries. In these cases triangular elements are preferred. 
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   1) The first quadrilateral shell denoted “Quad” is a four node quadrilateral flat shell element 

results from the combination of the DKQ quadrilateral plate bending element by [BATOZ & BEN-

TAHAR 1982], and the standard bilinear quadrilateral plane-stress element. The solution of 

fictitious stiffness is adopted to avoid stiffness matrix singularity. The following approximation of 

the moment-rotation relationship is adopted: 
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The obtained flat shell element cinematic is shown in Fig. III.16. 

 

 

 

 

 

Fig. III.16. 4-Node quadrilateral flat shell element with five d.o.f 

   2) The second quadrilateral shell element denoted “Qdrill” is a four-node quadrilateral flat shell 

element. It is a combination of the DKQ quadrilateral plate bending element by [BATOZ & BEN-

TAHAR 1982], and the mixed quadrilateral plane-stress element with drilling rotation by 

[IBRAHIMBEGOVIC et al 1990]. In this case the rotational θz d.o.f is considered in the displacement 

field interpolation. The obtained flat shell element cinematic is represented in Fig. III.17. 

 

 

 

 

 

Fig. III.17. 4-Node quadrilateral flat shell element with six d.o.f 
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      I- INTRODUCTION 

   Dynamic analysis is the most general case that can be studied as it takes into account all the 

forces acting on it. Dynamic loads can be caused due to impact, explosions and earthquakes, which 

are of considerable importance in the safety studies. 

   When the external loads and displacements are applied very slowly, the inertia forces can be 

neglected and a static analysis which is a simplified approach of the problem can be justified. 

However, if a body is in motion, the inertia forces, from Newton’s second law, are equal to the 

mass times the acceleration, then at any instant of time (t), Newton’s law of motion implies that 

the sum of all forces must be equal to the inertial force. Therefore, the governing equations lead 

to a dynamical problem. 

   In numerical integration of dynamic problems the equations of motion are first discretised in 

space. This procedure is called semi-discretisation and yields a set of ordinary differential 

equations in time.  Furthermore, the development of an implicit time-step algorithm, considering 

finite rotations as degrees of freedom is a challenging task due to the more complicated nature of 

such a problem.  
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      II- DYNAMIC EQUILIBRIUM  

   In dynamic analysis, it is assumed that a known equilibrium configuration exists at time (t) and 

the solution at time (t+Δt) has to be determined. 

The force equilibrium of a single-degree-of-freedom as a function of time can be expressed by the 

following relationship: 

)()()()( tptFtFtF EDI                         [IV-1] 

In which, the time dependent variables: 

FI(t) is the inertia forces at time (t); 

FD(t) is the viscous damping forces at time (t); 

FE(t) is the internal forces at time (t); 

p(t) is the externally applied loads at time (t). 

   Eq. [IV-1] is valid for both linear and nonlinear systems if equilibrium is formulated with respect 

to the deformed geometry of the structure. 

In the case of a system with multi degrees of freedom, acting forces on the system with several 

degrees of freedom are the inertia forces, the elastic forces, the damping forces and externally 

applied loads. Once these forces have been identified and calculated, the formulation of the 

equations of motion reduces to a problem of writing of the equilibrium equations. 

   In order to obtain the finite element formulation of the equilibrium, the behaviour of the structure 

is assumed to be elastic linear. Hence, the equation of equilibrium governing the dynamic response 

of a structure at time (t+Δt) is approximated to the following set of second-order, linear, 

differential equations, written on matrix form as: 

)()()()( tPtKutuCtuM                          [IV-2] 

In which: The time-dependent vectors: )(tu , )(tu , )(tu  and )(tP  are respectively the nodal 

displacements, velocities, accelerations and the applied load vector. 

M : Overall structural mass matrix 

C : Structural damping matrix 

K : Structural stiffness matrix 
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   As dynamic analysis is a direct extension of static analysis, the elastic stiffness matrices are the 

same for both dynamic and static analysis. The addition of inertia forces and energy dissipation 

forces will satisfy dynamic equilibrium. 

   There are many different mathematical methods that can be used to obtain the solution of           

Eq. [IV-2]. However, the majority of both linear and nonlinear systems can be solved with 

numerical methods. 

      III- METHODS OF INTEGRATION 

   Eq. [IV-2] represents a system of linear differential equations of second order. The standard 

procedures for the solution of differential equations can be very expensive. Therefore, there exist 

several different methods of integration to solve the dynamic equilibrium problem. Each method 

has advantages and disadvantages that depend on the type of structure and loading. To provide a 

general background, the different numerical solution methods are summarized below: 

III-1. Mode Superposition Analysis 

   The most common and effective approach for dynamic analysis of linear structural systems is 

the mode superposition method. This method transforms the equilibrium equations into a more 

effective form, in which, the equations of motion are projected onto the modal basis hence they 

integrated. The objective of the transformation is to obtain new system matrices, which have a 

smaller bandwidth than the original system matrices. Thus, after a set of orthogonal vectors have 

been evaluated, this method reduces the large set of global equilibrium equations to a relatively 

small number of uncoupled second order differential equations.  

   Modal superposition has the advantage of significantly reducing the number of equations 

limiting the response of the structure to the first Eigen-modes. It has been shown that seismic 

motions excite only the lower frequencies of the structure. Hence, neglecting the higher 

frequencies and mode shapes of the system normally does not introduce errors. However, this 

method is not well suited to complex excitations shock type. 

   In view of the high computational cost of direct integration methods, the application of mode 

superposition method to material and geometrical nonlinear analysis become an active research 

area [NICKELL 1976; BATHE & GRACEWSKI 1981; CHANG & MOHRAZ 1990; VILLAVERDE & 

HANNA 1992; KHUDADA & GESCHWINDNER 1997; VALIPOUR 2011]. It is based on the 

incremental approach, and can be classified in two groups: 
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The first group, can provide a history of the changes in the modal properties of the system. It 

consists of updating the eigenvalues and eigenvectors as well as the transformation to modal 

coordinates at every time step [NICKELL 1976; MORRIS 1977; IDELSOHN & CARDONA 1985; 

MOHRAZ et al 1991]. Whereas in the second group, recalculation of the eigenvalue/eigenvectors is 

not required, because, the nonlinear terms appear in the right-hand side of the equations of motion 

as “pseudo-forces”, therefore the eigenvalues/eigenvectors of the linear system are used during the 

entire nonlinear analysis [BATHE & GRACEWSKI 1981; GESCHWINDNER 1981]. 

III-2. Response Spectra Analysis 

   The basic mode superposition method, which is restricted to linearly elastic analysis, has two 

major disadvantages. First, the method produces a large amount of output information that can 

require an enormous amount of computational effort. The second one, is that the analysis must be 

repeated for several different earthquake motions to ensure that all the significant modes are 

excited. 

   There are significant computational advantages in using the response spectra method of seismic 

analysis for prediction of displacements and forces in structural systems. The method involves the 

calculation of only the maximum values of the displacements and forces in each mode using 

smooth design spectra that are the average of several earthquake motions. (combination methods; 

CQC, SRSS and CQC3) 

III-3. Direct Time Integration Analysis  

   Direct time integration is a more general method for dynamic analysis, which treats the entire 

frequency content of the load imposed on the structure. It nevertheless remains very time 

consuming calculation. It is an incremental method performs a step by step integration of the 

equations of motion Eq. [IV-2]. This involves, after the solution is defined at time zero, the attempt 

to satisfy dynamic equilibrium at discrete points in time. Most methods use equal time intervals 

(t+Δt), (t+2Δt)…, (t+nΔt). There are a large number of different incremental solution methods. In 

general, they involve a solution of the complete set of equilibrium equations at each time 

increment. 

   For very large structural systems, a combination of mode superposition and incremental methods 

has been found to be very efficient. 
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      IV- TRANSIENT DYNAMIC ANALYSIS 

   The procedure used in this work to solve the above transitory system is the step-by-step direct 

integration method, in which, we solve dynamic system of equations using numerical direct time 

integration to obtain direct transient response since the solution and the excitation are time varying. 

In this family of methods, it is assumed to satisfy Eq. [IV-2] only at discrete time intervals. 

Accordingly, dynamic equations are discretized in time and the problem is solved step-by-step by 

using numerical integration algorithm. It is apparent that all solution techniques employed in static 

analysis can also be used effectively in direct integration. 

IV-1. Direct Time Integration Methods 

   In these methods, the term “direct” means that, no transformation of the equations into a different 

form is carried out prior to the numerical integration. There exist a large number of numerical 

integration methods where they differ by the manner used to express the relationship between 

displacement, velocity and acceleration: [HOUBOLT 1950; NEWMARK 1959; WILSON et al 1973-

b; HILBER et al 1977; HILBER & HUGHES 1978; WOOD et al 1980; ZIENKIEWICZ et al 1980; BAZZI 

& ANDERHEGGEN 1982; SENJANOVIC 1984]. 

   Structural nonlinear dynamic analysis using direct time integration methods could be a time-

demanding task. Therefore, researchers continue trying to enhance the accuracy, efficiency and 

stability of finite element formulations and solution schemes, see: [BATHE & WILSON 1973, 

BELYTSCHKO 1976; FELIPPA & PARK 1979; KLEIN & TRUJILLO 1983; WILSON 1985; BERT & 

STRICKLIN 1988; HOFF & PAHL 1988; KUAN-JUNG & WILSON 1988; DOKAINISH & SUBBARAJ 

1989; SUBBARAJ & DOKAINISH 1989; JINTAI & GREGORY 1994; FAN et al 1997; XIAOQIN et al 

1995; MENGFU & AU 2006; LEONTYEV 2010]. 

   Basically, all methods can fundamentally be classified as either explicit or implicit integration 

methods. Generally, implicit algorithms are most effective for structural dynamic problems (low 

frequency modes), while explicit algorithms are very efficient for wave propagation problems 

(high frequency modes). 

   The method is implicit if the solution at time (t+Δt) requires to satisfy the differential equation 

of equilibrium at time (t) and the method requires the solution of a set of simultaneous equations 

at each time step. Implicit integration methods directly solve for the displacements at each time 

step. For these reasons implicit methods require greater time per step as compared with explicit 

methods. They could be conditionally or unconditionally stable, and thus allow the use of larger 

time step, which is restricted only by the accuracy requirements. Typical most used implicit 
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methods include: Newmark method [NEWMARK 1959], Houbolt method [HOUBOLT 1950], and 

θ-Wilson method [WILSON et al 1973-b]. 

   Explicit methods are basically based on first finding accelerations at each time step, and hence 

proceed to the computation of displacements, these methods use the differential equation of 

equilibrium at time (t) to predict the solution at time (t+Δt). Very small time step is required in 

order to obtain a stable solution. Therefore, all explicit methods are conditionally stable.        

Typical most used explicit methods include: central differences method, Runge-Kutta method 

[RUNGE 1895; KUTTA 1901], and the Newmark method with (=0, γ=1/2), see § IV-2. 

   In order to circumvent the limitations of implicit and explicit methods, mixed methods have been 

developed in which features of both methods are attributed. [BELYTSCHKO & MULLEN 1976] 

have presented a formulation in which the elements are partitioned into: implicit, explicit and 

interface groups of elements; and the nodes are partitioned into: implicit and explicit nodes. 

[HUGHES & LIU 1978-a, 1978-b; HUGHES et al 1979] introduced the implicit-explicit concept, in 

which the elements are partitioned into implicit group and explicit group. 

   The choice of which integration method to use in a practical analysis is governed by the cost of 

solution, which in turn is determined by the number of time steps required in the integration. 

Generally, when a single-step scheme is used for the direct time integration, the variation of the 

acceleration in each time step is assumed to be either constant or linear. This approximation yields 

a discontinuous distribution for the acceleration in time. 

   Furthermore, there exist a large number of multi-step (higher-order) methods which assume that 

the acceleration is a smooth function, and a large number of single step methods which assume 

that the acceleration is not smooth function (because of some phenomenon in real structures like: 

buckling of elements, nonlinear hysteresis behaviour of material, and contacts between parts of 

structure). In this work, we adopted the single step Newmark method, which is the most widely 

used family of implicit methods for solving discrete equations of motion that represent dynamic 

analysis of structural problems. 

   Note that, it has been shown in many works that the Newmark method, fails to produce stable 

and accurate solutions in severe nonlinear problems, especially when nonlinear problems must be 

integrated for a long time: [CRISFIELD & SHI 1994; SIMO & TARNOW 1994]. This problem 

motivated the development of many algorithms, based on the idea of conserving or decaying the 

system energy: [CHUNG & HULBERT 1993; KUHL & RAMM 1996; KUHL & CRISFIELD 1999; 

IBRAHIMBEGOVIC & MAMOURI 2002; BATHE & BAIG 2005]. 
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IV-2. Newmark Method 

   [NEWMARK 1959] presented a family of single-step integration methods for the solution of 

structural dynamic problems for both blast and seismic loadings. Since then, Newmark’s method 

has been modified and improved by many other researchers.  

This method is the most widely used implicit method of direct time integration for solving semi-

discrete equations of motion, it has been applied to the dynamic analysis of many practical 

engineering structures.  

   Let us assume that a known solution of dynamic equilibrium equations exists at time (t).The 

solution of this linear dynamic equilibrium equations at time (t+Δt) is to be calculated, in this 

subject, Eq. [IV-2] is considered at time (t+Δt), as: 

tttttttt FKuuCuM                          [IV-3] 

Where ttu  , ttu 
 , and ttu 

 are respectively, the )( ttu  , )( ttu  , and )( ttu  approximations 

at time (t+Δt). 

   Two variants exists: The first one calculates the acceleration 1nu  first, while the other one 

calculates the displacement 1nu  first. 

   In Newmark acceleration method, to begin the iterative process, we must first calculate 0u , 

where: 0000 KuuCFuM   . 

Hence, the direct use of Taylor’s series provides a rigorous approach to obtain the following two 

additional equations: 
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Newmark, truncated these equations and expressed them in the following form: 


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3
2

2




                     [IV-5] 

Assuming the acceleration to be linear within the time step, the term u  could be written in the 

following form: 
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                         [IV-6] 

The substitution of Eq. [IV-6] into Eq. [IV-5] produces Newmark’s equations in standard form: 
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                    [IV-7] 

   Newmark used Eq. [IV-7] and Eq. [IV-3] iteratively, for each time step, for each displacement 

d.o.f of the structural system. Later, Wilson formulated Newmark’s method in matrix notation, 

added stiffness and mass proportional damping, and eliminated the need for iteration by 

introducing the direct solution of equations at each time step. This requires that Eq. [IV-7] be 

rewritten in the following form: 












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

654

321

)(

)(
                      [IV-8] 

   The substitution of Eq. [IV-8] into Eq. [IV-3] allows the dynamic equilibrium of the system at 

time (t+Δt) to be written in terms of the unknown node displacements ttu  as: 

)()()( 65432141 tttttttttt ubububCubububMFuKCbMb                    [IV-9] 

Where the constants b1 to b6 are defined as: 

21

1

t
b





 
t

b






1
2

 )
2

1
1(3


b  14 btb    25 1 btb    )1( 36   btb . 

β and γ are parameters that control the stability and accuracy of the algorithm. Newmark, had 

originally proposed an unconditionally stable scheme with constant acceleration over the time step, 

in this case: γ = 1/2 and β = 1/4. 

Note that the constants bi need to be calculated only once for both linear and nonlinear analysis.  

   The matrix CbMbKK 41   is usually considered as the effective stiffness matrix. It is 

formed and triangularized only once for linear analysis, where M, C and K are time invariant 

masse, damping and stiffness matrices. 

In the other side, the effective load vector is taken to be: 

)()( 654321 tttttttttt ubububCubububMFF   
                 [IV-10] 
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   Common forms of the Newmark’s method are: Newmark average acceleration: =1/4, γ=1/2; 

Newmark linear acceleration: =1/6, γ=1/2; Newmark central difference (explicit): =0, γ=1/2. 

The average acceleration form appears to be the most popular one and it is used exclusively in this 

investigation. 

   Damping matrix is taken as a linear combination of the stiffness and mass matrices as Rayleigh 

suggested, see: [BATHE 1982]: 

KbMaC                        [IV-11] 

Where a and b are Rayleigh’s constants. They are determined experimentally. 

   The recurrence scheme of Newmark method is presented in appendix A.  

IV-3. Mass matrix 

   The extension of a finite element from static analysis to dynamic analysis implies the 

construction of mass matrix. To consider the effect of rotary inertia, the formulation and use of the 

consistent mass matrix is required. In order to make possible for plane stress elements with drilling 

rotation to represent true in-plane dynamic behaviour, we formulated simple in-plane consistent 

mass matrices for triangular and quadrilateral membrane elements with drilling rotation, taking 

into account the in-plane rotational inertia. Therefore, in-plane frequencies are no more neglected 

and they represent true modes, and we will see that membrane elements with drilling rotational 

degrees of freedom can give very good representation of in-plane frequencies. 

   The developments presented here are based on the Allman-type displacement field. We aim in 

this work to present a unified formulation for both triangular and quadrilateral elements with in-

plane rotational d.o.f. So, mass matrices developed in this work could be used for all elements with 

in-plane rotational d.o.f that are based on Allman-type displacement field. 

   Generally, the elementary consistent mass matrix is derived from the kinetic energy expression 

using the virtual work principle. It is given by: 

       dvSPSM
T

v

                        [IV-12] 

Where, [P] is the inertia matrix, and [S] is the shape function matrix that can be the same shape 

function adopted for the displacement field interpolation. 

The mass matrix derived from the above equation, is called the consistent mass matrix, and it is 

symmetric positive-definite and non-diagonal. 
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   When fictitious stiffness is used to overcome singularity of static linear stiffness matrix, the in- 

plane rotational inertia is also a fictitious mass associated to the in-plane rotational degree of 

freedom, and it's injected in the mass matrix to avoid numerical instability in non-linear analysis 

(as we’ll see later). In this case, it is apparent that frequencies associated with the in-plane normal 

rotations are wrong and have no physical significance. 

   In this work, we made a step toward mitigating this problem by proposing a unified form of in-

plane mass matrix for triangular and quadrilateral membrane elements with in-plane rotational 

d.o.f, in order to make it possible for the shell finite element to represent true in-plane dynamic 

behaviour. 

   The mass matrixes used in this work for membrane elements with rotational d.o.f, is derived 

from the Eq. [IV-12] by adopting Allman-type interpolation for the in-plane displacement field. 

Thus, these masse matrices adopted herein for “Qdrill” and "Tdrill" elements, are natural and have 

no fictitious mass associated to the in-plane rotational degrees of freedom. Therefore, in-plane 

frequencies are no more neglected and they represent true modes. As we will see in chapter VII. 

The shell element with drilling rotational degrees of freedom gives very good representation of the 

in plane frequencies. 

   Let us denote the mass density of the material by ρ, and elementary mass matrix by eM . 

For a Lagrangian mesh, the mass matrix is time independent. So it needs to be evaluated only at 

the beginning of either linear or non-linear dynamic analysis in the resting configuration. 

If the shape functions are expressed in terms of parent element coordinates, then: 

 


JdSShdASShdvSSM T

A

T

v

Te                   [IV-13] 

Since J and ρ are time dependent, masse matrix eM appears to be time dependent too. 

To show that the mass matrix is in fact time independent, let us consider the total mass in the 

indeformed configuration, which is: 000 vm   . 

In the undeformed configuration, from mass conservation, we get: 
st

t Cmm  0)( . 

Since shape functions are time independent, eM must be time independent. The mass matrix in 

Eq. [IV-13] can be called total Lagrangian since it is evaluated in the reference (undeformed) 

configuration.  

   During assembly, elementary mass matrices are assembled to form a global mass matrix in 

exactly the same manner as the stiffness matrix. 
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IV-3-1. Conventional Membrane Elements 

1- CST mass matrix 

   For the in-plane mass matrix, we must consider both displacements u and v along x and y 

directions, since motion along both axes generates the inertia forces. 

With constant thickness h and mass density ρ, using the interpolation functions and the virtual 

work principle, the mass matrix can be written as follows: 

 
A

T

v

Te dASShdvSSM                      [IV-14] 

 CSTM : Masse matrix of the CST element is calculated by substituting the following  S matrix in 

the Eq. [IV-14], with: 

   21 NNS                        [IV-15] 

  T
NNNN 000 3211                      [IV-16] 

  T
NNNN 3212 000                     [IV-17] 

Where: 

 11N , 2N , 3N  

Putting this in matrix form gives: 

 ddJ

N

NSym

NNN

NNN

NNNNN

NNNNN

hM e 



























 

2

3

2

3

32

2

2

32

2

2

3121

2

1

3121

2

1

0

0

00

00

000

 

With:  ddJhdv   

),( ii NN   

   The mass matrix for an iso-parametric element may be computed by numerical integrations.     

So, for two-dimensional Triangular element the mass matrix is given by: 

ii

TTe wJNNhddJNNhM ..
3

1 
                   [IV-18] 
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   The order of quadrature used for standard integration will be sufficient for accurately compute 

the mass matrix. 

   The element’s Jacobian determinant for the initial configuration of the triangular element is 

given by J 2A, where A is the area of the considered element. Carrying out matrix multiplication 

and integrating over the triangle, the consistent mass matrix is: 






























201010

020101

102010

010201

101020

010102

12

hA
M e 

 

2- Bi-linear quadrilateral Q4 mass matrix 

   The mass matrix of the standard Iso-parametric bi-linear quadrilateral element can be written as 

follows: 

   ddJSShM T

SBQ
                    [IV-19] 

The shape functions matrix    21 NNS  , is constructed using: 

1 1 2 3 40 0 0 0
T

N N N N N                      [IV-20]

1 1 2 3 40 0 0 0
T

N N N N N                       [IV-21] 

Where: 

1
(1 )(1 )

4
i i iN      

 

   By substituting  S matrix in the Eq. [IV-19], the mass matrix is evaluated by numerical 

integration. 

By considering: ),( ii NN   

),( J : is the determinant of the Jacobian of the transformation of the parent element to the initial 

configuration. 

h: is the thickness of the undeformed element.  

Putting this in matrix form gives: 
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 ddJ
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IV-3-2. Elements with Drilling Rotation 

   As we have seen in the construction of the conventional membrane elements mass matrices, only 

translations u and v are involved. So, in-plane rotational inertia about the z axis is omitted.            

Since in-plane rotational motion around z axis generates inertia forces, mass matrix must takes 

into account for the in-plane rotational inertia effect. 

   In this purpose the in-plane mass matrix is enlarged to take account inertias corresponding to the 

three in-plane degrees of freedom including the rotational one. 

Thus, we defined herein two mass matrices derived from Eq. [IV-12] as follow: 

 TdM : The mass matrix for the triangular element with drilling d.o.f. 

 QdM : The mass matrix for the quadrilateral element with drilling d.o.f. 

   Consistent mass matrices used in this work for “Qdrill” and "Tdrill" elements with drilling 

rotations, are derived from the Eq. [IV-12] using quadratic interpolation of translations (u, and v) 

which involves the rotational degree of freedom φ in the formulation, resulting with a mass matrix 

that contains in-plane rotational inertia using the following form of shape functions in Eq. [IV-12]: 

   21 NNS                        [IV-22] 

With:  

 q
N

N

v

u


















2

1
                      [IV-23] 

Shape functions 1N , and 2N  for the triangular and quadrilateral geometries are presented in what 

follows: 
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1- Triangle with drilling rotation 

   Expressing the in-plane displacement field that is used to calculate initial mass matrix, we limited 

to the original Allman-type displacement field terms even if the element used a complimentary 

terms to describe the displacement field. In fact, these neglected additional terms have no 

considerable effect. 

 TdM : is calculated by using: 

     ddJSShM T

Td
                    [IV-24] 

Where:  S is a matrix that takes into account the three in-plane d.o.f including the rotational one. 

  333222111  vuvuvuq
T
                     [IV-25] 

Using natural coordinates, Allman-type displacement field is written as: 
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For a triangular element, it could be written as: 
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        [IV-27] 

Where: kNL are shape functions for the LST element. 

Using Eq. [IV-22], we write: 

 

  T

T

PxNPxNPxNN

PyNPyNPyNN

3322112

3322111

000

000




                 [IV-28] 

With: 

 
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 
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







 

Where:  11N , 2N , 3N . 

   144NL  

45 NL  
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   146NL  

2- Quadrilateral with drilling rotation 

 QdM : is calculated by similar way using Eq. [IV-22] with: 

  444333222111  vuvuvuvuq
T
                   [IV-29] 

For a quadrilateral element with drilling rotation, in-plane displacement field is: 

     

   

     

   





























14843744373263

32621522151481

4

1

13843744373263

32621522151481

4

1

),(

),(

xNSxNSxNSxNS

xNSxNSxNSxNSvNv

yNSyNSyNSyNS

yNSyNSyNSyNSuNu

i

i

i

i

i

i









               [IV-30] 

Where: kNS are the shape functions for serendipity element. 

Using Eq. [IV-22], u and v are expressed using the following shape functions: 
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               [IV-31] 
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      I- INTRODUCTION 

   In linear analysis, we assume that displacements are infinitesimally small and materials are 

linearly elastic. However, in many engineering problems, the structural behaviour can be 

nonlinear. Materials behave nonlinearly if stress level exceeds some limit value. Moreover, 

displacements may be so large that they can change the structure’s shape, which can significantly 

change the stiffness and orientation of the structure. Besides, boundary conditions may change 

during loading. Consequently, structure behaves nonlinearly if one or more of this phenomena 

revealed. Thus, Structural nonlinearities can be in general classified in three categories: 

1. Geometrical nonlinearities: Due the effect of large displacements and large rotations on the 

overall geometric configuration of the structure. In this case, the strain-displacement relation 

becomes nonlinear. 

2. Material nonlinearities: Material behaviour is nonlinear i.e. it depends on current deformation 

state and possibly past history of the deformation. In this case, constitutive equation relates stresses 

and strains becomes nonlinear. Several factors can cause the material behaviour to be nonlinear 

as: the dependency of the material rheology on the load history (nonlinear elastic, elasto-plastic, 

viscoelastic, visco-plastic…), load duration (creep), and temperature (thermo-plasticity). 

3. Boundary nonlinearities: in this case, all or some boundary conditions are displacement 

dependent. The most frequent boundary nonlinearities are encountered in contact problems, fluid 

structure interaction, forming process… etc.  

   Structures that exhibit nonlinear behaviour are of special importance, and require special 

treatment. For instance, the initial state of stress commonly known as “residual stresses” (from 

heat treatment, welding, cold forming …etc.) is important and requires special handling. Also, the 

structural behaviour is remarkably non-proportional to the applied load and hence, the principle of 

superposition cannot be applied. Therefore, the sequence of application of loads (loading history) 

may be important. This is a reason for dividing loads into small increments in nonlinear FE 

analysis. As a consequence, nonlinear analysis is generally carried out using a method of 

incremental resolution. It is based upon the progressive increase of the applied forces, to obtain in 

an incremental way, the nonlinear response of the structure satisfying the equilibrium equations in 

successive discrete time increments. During each time step between time (t) and (t+Δt), the 

configuration C(t+Δt) to be calculated, is obtained starting from the configuration C(t) considered as 

known. Often, the analysis introduces a reference configuration, which is a particular known state 

of the structure at a time (t0). This known configuration is used as reference when describing the 
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geometrical transformations undergone by the structure as it moves between two successive 

configurations. 

   Note that, for static nonlinear analysis, the “time” variable represents a pseudo time, which 

denotes the intensity of the applied loads at certain step. Whereas, for nonlinear dynamic analysis 

and nonlinear static analysis with time-dependent material properties (e.g., creep), “time” 

represents the real time associated with the loads application. 

   Geometrical nonlinearity is considered in this chapter. Large displacements and large rotations 

are taken into account but not large strains. The Updated Lagrangian Co-rotational Description of 

motion is adopted, in which, large displacements and large rotations are decomposed into large 

rigid and relatively small translations and rotations. 

   Tangent stiffness matrices of the triangular and quadrilateral flat shell elements presented in 

Chapter III, are developed in the framework of the updated Lagrangian co-rotational formulation. 

The co-rotational formulation for triangular and quadrilateral plate bending elements is presented. 

Also, the co-rotational formulation for membrane elements with drilling rotation is developed and 

presented for both triangular and quadrilateral elements, in which, the finite rotations of the co-

rotational reference frame, including the drilling degrees of freedom, are simply determined from 

the finite displacement vectors of the nodes of the element in the global reference frame. 
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      II- GEOMETRICAL NONLINEARITIES 

   In small displacement analysis, the change in geometry and spatial orientation of structures, are 

assumed small enough that the change in its stiffness can be ignored. However, in large 

displacement analysis, the displacement induced deformations, could be a major source of 

nonlinearities. Structures undergoing large displacements due to load-induced deformations, can 

have significant changes in their overall configuration (geometry and/or orientation), which can 

cause the structure to respond nonlinearly in a stiffening and/or a softening manner. 

   In finite element analysis, the overall stiffness of a structure depends on the stiffness contribution 

of each of its finite elements. During large displacements, the nodal coordinates will change 

causing the elements to deform and to change their spatial orientations. Subsequently, the element 

stiffness contribution in the overall stiffness will also change. Thus, large displacement analysis 

can be classified as: 

a- Finite Strain Analysis: 

   In this formulation, as the structure deflects, the localized deformations are large such that the 

local element stiffness will change as a result of the element shape change. The deformation of 

rubber-like materials is a typical analysis in which finite strains are experienced. 

b- Large Deflection Analysis: 

   In this formulation, the change in the spatial orientation of elements can be finite but the induced 

strains must remain small. The overall stiffness of the structure will change as a result of the change 

of the global stiffness contribution of its elements due to the change in their spatial orientation. 

      III- DISCRIPTION OF MOVEMENT 

   The representation of kinematic and mechanical variables of material point is called description. 

That one is completely defined by the knowledge of the initial and the final state of the material 

point. There are generally two main conventional approaches used to describe the movement in 

the context of deformable continuum mechanics. They are Eulerian description (representation 

related to a geometric point) or Lagrangian description (representation related to a material point). 

   The differences between Lagrangian and Eulerian descriptions are most clearly seen in terms of 

the behaviour of the nodes. If the mesh is Lagrangian, the nodes are coincident with material 

points. If the mesh is Eulerian, the nodes are coincident (fixed) with spatial points. This is 

illustrated in Fig. V.1. 
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Fig. V.1. Eulerian and Lagrangian descriptions of movement 

   At any given time (t), let us consider the continuum domain noted C(t), in which a particle was 

initially at position 0x


 is now at the position tx


. 

   Lagrangian description is then, to identify each particle configuration by its position in the 

reference configuration. Any physical quantity can then be expressed as a function of the particle 

to which it is attached and time. We can therefore define a vector function which describes the 

spatial correspondence between the initial and current configurations as: ),( 0 txx


 . Therefore, 

it is clear that nodal trajectories are coincident with material point trajectories, and no material 

passes between elements, Fig. V.2. 

For solid mechanics problems, the Lagrangian description is often preferred, since this description 

is used to follow the motion of the same particle over time. 

   As opposed to the Lagrangian description, the Eulerian description does not attempt to identify 

particles over time in relation to an initial configuration, but is instead to define at every moment 

and at every point of coordinates x

 of the current configuration, the velocity ),( txv


 of the particle 

located at point of coordinates x

. This means, taking at every moment, the current configuration as 

reference configuration. It should also take into account the conservation of material, which is, the 

case in fluid mechanics and aero-acoustics, for which the Eulerian description is often more 

appropriate. In Eulerian meshes, the material point at a given quadrature point changes with time, 

which complicates the treatment of materials in which the stress is history-dependent. 

   Also, in Eulerian meshes, the element dimensions are constant in time, and they are unchanged 

by the deformation of the material, so no degradation in accuracy occurs because of material 

deformation. Note that there are some particular class of problems whose choice is not clear (fluid 

structure interaction, forming process ...), in these cases, the combination of both descriptions is 

more advantageous. 

 

 

Eulerian  ===>  

Initial Configuration Deformed Configuration 

       Lagrangian  ===> 

Nodes Material points 
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      IV- LAGRANGIAN DESCRIPTION 

   In Lagrangian description, the nodes and elements move with the material. Boundaries and 

interfaces remain coincident with element edges, so that their treatment is simplified. Element 

quadrature points remain coincident with material points, so constitutive equations are always 

evaluated at the same material points, which is advantageous for history dependent materials. For 

these reasons, Lagrangian meshes are widely used for solid mechanics. However, in Lagrangian 

description, element lengths change with time, mesh can become severely distorted, and 

magnitude of deformation that can be simulated with a Lagrangian mesh is limited. 

   In Lagrangian description, we do not focus on the description of the motion during deformation, 

but only the final state of the body when the solid has reached its equilibrium configuration. 

Lagrangian description is the most common formulation used for describing the passage between 

two adjacent configurations. It consists to express the principle of virtual work between a reference 

configuration C(r) (which is not necessarily coincident with the initial configuration C(0)), and the 

current configuration C(t). 

 

 

 

 

 

 

 

Fig. V.2. Linear elastic body in movement 

IV-1. Different Configurations of a Solid Body in Movement 

   Let us consider an elastic solid body at time (t), occupying the volume V and bounded by a 

boundary S. The state in which the solid is at this moment, defines what is called the current 

configuration of the solid. This configuration is denoted C(t), and characterized by a combination 

of mechanic and kinematic variables, such as the geometrical positions of material particles, 

constraints, strain, and stress. Generally, a known configuration implies that all kinematic and 

mechanical quantities characterizing the configuration are known. 
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Fig. V.3. Different configurations of a solid body in movement 

   Let us now, consider the deformed process of the solid body and divide the loading path into a 

number of equilibrium states: 0 , 1 ,... 1n , n …. Fig. V.3. 

   Conventionally, three typical positions (configurations) that a solid body can occupies during its 

movement are used to describe the deformation of the solid body under applied loadings: the initial 

configuration 0 , the last known configuration 1n , and the current configuration n . 

Where: 0  is the initial undeformed configuration of the solid body, it is the resting state of the 

body. It corresponds to time (t0). The coordinates of a material point in this configuration will be 

noted ix0
; 

1n : is an intermediate state (intermediate configuration); 

n : is the current configuration to be calculated, unknown a priori. The coordinates of the same 

material point in this configuration will be noted 
i

t x ; 

We could define also a fourth position denoted 
1n , which is a configuration very close to 1n  

obtained after a rigid body movement of 0 . 

   The problem under discussion is the definition of the kinematic and mechanical quantities in the 

n state. 

   In order to avoid any confusion between different quantities, additional superscript and subscript 

are used for variables notation Vt

t

2

1
as follows: 

t1: is the date of the reference position; t2: the date at which the variable is considered. 

 
 

 

 

X 
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Accordingly, the displacement of a material point is defined as follows: 










ii

tt

i

tt

ii

t

i

t

xxu

xxu
0

0

0

0                [V-1] 

The displacement increment between 1n  and n  is written as: 

i

t

i

tt

t uuu                  [V-2] 

   When describing the motion of the body, we need a configuration to which various kinematic 

and mechanical quantities are referred; this is called the reference configuration. The importance 

of the reference configuration arise from the fact that motion is defined with respect to this 

configuration. Obviously, the initial configuration is used as the reference configuration. However, 

other intermediate configurations can be used as the reference configuration.  

   There are two common formulations for the description of structural behaviour, [BATHE 1982; 

WASHIZU 1982]. A description (or formulation) of the solid body movement is called: 

 Total Lagrangian Description (TLD): If the initial undeformed configuration is taken as a 

reference configuration; 

 Updated Lagrangian Description (ULD): If the current (deformed) configuration is taken 

as a reference configuration; 

 Co-rotational Lagrangian Description (CLD): If the reference configuration is replaced by 

a very close undeformed configuration. This co-rotational undeformed configuration is 

much easier to handle because it is known and not distorted. 

   The formulations that are used in this chapter for the nonlinear analysis, are detailed in many 

references, for more details, see: [BATHE et al 1975; ZIENKIEWICZ 1977; BATHE & BOLOURCHI 

1980; BATHE 1982; DJEGHABA 1990; CHIN et al 1994; BONET & WOOD 1997; FELIPPA 2007]. 

IV-1.1. the Total Lagrangian Description 

   The “TLD" uses the initial undeformed configuration as a reference. In this formulation, all 

quantities (displacements, strains, stresses and integrals) that describe the response of the structure 

are expressed with respect to the initial undeformed configuration. So, to obtain the exact nonlinear 

solution, the nonlinear Green-Lagrange strain tensor must be complete (no terms neglected). The 

Green-Lagrange second order terms are very complicated and imply second derivatives of all the 

components of the displacement vector. 
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IV-1.2. the Updated Lagrangian Description 

   The "ULD" uses a deformed configuration as a reference. Taking advantage of the fact that 1n  

is known and that we want to obtain a subsequent configuration n  not too far from 1n . Hence, 

in this formulation, an intermediate configuration 1n  is used as a reference configuration to 

obtain the current configuration. The response of the structure is described with respect to its 

previous configuration supposed to be known, and this is continually updated as the calculation 

proceeds. Therefore, we can consider approximate nonlinear strain displacement relations instead 

of the complicated exact ones. 

IV-1.3. the Co-rotational Lagrangian Description 

   [WEMPNER 1969; BELYTSCHKO & HSIEH 1973, 1974; BATHE et al 1975] established the co-

rotational approach, which enables to simplify the “TLD” and the “ULD” using a co-rotational 

reference system of axes which translates and rotates with the finite element. In this formulation, 

the motion of an element is decomposed into rigid body motion and a relatively small 

displacement, so that the geometrical nonlinearities are attributed to the finite rigid body rotations, 

while the relative small deformational displacements are associates with the constitutive equations 

of the element. In this formulation, the configuration 1n  is used as a reference configuration. 

IV-1.4. Element -Based Lagrangian Formulation 

   A new variant of the Lagrangian description was established by [NUKULCHAI & WONG 1988] 

and referred to as the "Element-Based Lagrangian Formulation", see also [LEE & NUKULCHAI 

1998; HAN et al 2008]. In this formulation all of the equations governing a deformed body, can be 

expressed in the natural system in terms of the natural coordinates. So it appears simpler than those 

of the two traditional Lagrangian descriptions. 

IV-2. Strain and Stress Measures 

   Unlike linear continuum mechanics, in nonlinear mechanics, the method of measuring strain and 

stress becomes a more complex problem. Many measures of strain and stress can be defined 

[BATHE 1982; CHEVALIER 1996; FOREST et al 2006]. A stress definition must be energetically 

conjugate to the strain adopted, i.e. the integral of the product of the stress and the strain for a 

volume would correctly represent the deformation energy in the same volume. In geometrically 

nonlinear analysis, (Green-Lagrange and Cauchy strain tensors) with their conjugate stress          

(2nd
 Piola-Kirchhoff and Cauchy stress tensors) must be introduced. We will consider the following 

measures of strain and stress, which are the most widely used in the finite elements method: 
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IV-2.1. Strain Measures 

   Let us consider the deformed process of an elastic solid body occupied the configuration C(0) at 

time (t0) and occupying the configuration C(t) at time (t) Fig. V.4. 

The problem under discussion is the definition of the stress tensor in the configuration C(t). 

In a Cartesian coordinates system, a material point ‘M’ has the coordinates “X” at time (t0), and 

the coordinates “x” at time (t). 

 

 

 

 

 

 

 

Fig. V.4. Elastic solid body deformation process 

The movement of a material point could be described as: 

( , )x u X t X                 [V-3]  

With u(X, t): is the displacement vector. 

   Let us consider an infinitesimal vector dX  around the point ‘M’. During movement the vector 

dX transforms via F


 to the vector dx  around the point ‘M’. The deformation is completely 

defined by knowing the deformation gradient vector F


 defined as: 

X

x
F







                [V-4] 

   The deformation gradient, contains all information about the local deformation in the solid, and 

can be used to form many strain quantities offered by the continuum mechanics (Biot strain, 

Almansi strain, Green-Lagrange strain, Hill strain, Hencky strain) which are used for large 

displacement problems. However, any reasonable representation of strains must be able to 

represent rigid body motion without producing any strain. If a strain measure fails to meet this 

requirement (as the engineering strain), it will reveal the development of non-zero strains and 

C(0) 

 
 

 
  

 

 

C(t) 
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stresses in an undeformed body due to rigid body translations and rotations. Three strain measures 

are considered here: 

1- Cauchy strain (ε):  Linear strain tensor 

   When the displacement gradient is small, we may linearize the strain to obtain Cauchy strain 

tensor. Cauchy strain is calculated with respect to the original undeformed configuration, so it is 

an Eulerian tensor. It is written using the first spatial derivatives of the displacement vector U


 as: 

 TUUUsym



2

1
)(              [V-5] 

With represents the Hamilton operator. In a Cartesian coordinate system: 

k
z

j
y

i
x


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
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







               [V-6] 

So,  could be written as: 
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2

1
                [V-7]  

   Cauchy strain tensor is a symmetric tensor, also called the symmetric part of the deformation 

gradient. 

2- Green-Lagrange strain (e):  Quadratic Lagrangian strain tensor 

   Green-Lagrange strain, contains derivatives of the displacements with respect to the original 

configuration C(0). Their values therefore represent strains in material directions. The Green’s 

strain tensor is exact and present a nonlinear measure of shape changes. 

This definition results from studying the variation of the square quantity of the distance between 

two adjacent points before and after deformation, i.e. ( 22 )()( Xdxd


 ).    

Let us consider the following vectorial product: 

XdXdxdFxdFXdXdxdxd TTTT


 )(            [V-8] 

Green-Lagrange strain tensor e  is defined as follows: 

XdeXdXdXdxdxd TTT


 2             [V-9] 

It can be seen that e  is defined at the initial configuration C(0), it is written as: 
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 ItXFtXFtXe T  ),(),(
2

1
),(                       [V-10] 

Green-Lagrange is expressed in a Cartesian coordinate system as: 
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With
j

i
ij

X

X




 : is Kronnecker delta quantity defined as: 
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By substituting Eq. [V-3] in Eq. [V-11], Green-Lagrange strain is written related to the 

displacement as: 
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
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Green-Lagrange strain tensor could also be expressed as: 
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3- Euler-Almansi strain (E):  Quadratic Eulerian strain tensor 

   When expressing strain at the current configuration C(t): 

)()( 11 xdFxdFxdxdXdXdxdxd TTTT 
                     [V-14] 

Euler-Almansi strain tensor E  is defined as follows: 

xdExdXdXdxdxd TTT 
 2                       [V-15] 

 FFIE
T


2

1
                        [V-16] 

    Euler-Almansi strain tensor is Eulerian, because it is relative to the current configuration. 

IV-2.2. Stress Measures 

   We will consider three measures of stress: 

1. The Cauchy stress tensor T; 

2. The First Piola-Kirchhoff stress tensor σ; 

3. The second Piola-Kirchhoff stress tensor S. 



CHAPTER V. GEOMETRICALLY NONLINEAR STATIC AND DYNAMIC ANALYSIS 
 

114 
 

1- Cauchy stress (T) 

   Cauchy stress, also known as the true stress is the most fundamental and commonly used stress 

quantity. Cauchy stress tensor, which is an Eulerian stress tensor, is defined by resolving an 

internal force at the configuration C(t) in the directions of the stationary reference system. Both, 

the force components and the normal to the area have fixed directions in space. The forces are 

calculated per unit area at the configuration C(t). 

Cauchy stress tensorT  is defined as: 

dsnTfd 


                         [V-17] 

Stress vector ),( nMP


of normal n


, is related to Cauchy stress tensor T  by the following relation: 

nTnMP

),(                         [V-18] 

In a Cartesian coordinates system: 
jiji nTP  . 

2- First Piola-Kirchhoff stress (σ) 

   It is a multi-axial generalization of the engineering stress (nominal stress). This stress is defined 

as the force in the current configuration acting on the original area, i.e. it is defined by resolving 

an internal force at the configuration C(t) in the directions of the stationary reference system. 

However, the forces are calculated per unit area at the initial configuration C(0). 

   First Piola-Kirchhoff stress is an unsymmetric tensor, and is for that reason less attractive to 

work with. The transpose of the first Piola-Kirchhoff stress is called the nominal stress. The 

definition of the nominal stress “P” is similar to that of the Cauchy stress, except that it is expressed 

in terms of the area and normal of the underformed reference surface. When expressing fd


 on the 

initial configuration C(0), first Piola-Kirchhoff stress tensor   is defined as: 

00 dsnfd 


                         [V-19] 

With: 
T

FTF


 det  

3- Second Piola-Kirchhoff stress (S) 

   The second Piola-Kirchhoff stress tensor is defined along the material directions (Lagrangian). 

It is defined by resolving an internal force along the material directions, and by calculating the 

force per unit area at the configuration C(t). 
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   Cauchy stress tensor and second Piola-Kirchhoff stress tensor are symmetric. We get second 

Piola-Kirchhoff stress tensor S by transporting fd


in the initial configuration C(0) with:  

fdFfd



1

0                          [V-20] 

000 sdnSfd


                         [V-21] 

Where: 
T

FFFS


 
1
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Fig. V.5. Internal forces configurations 

 

      V- LARGE DISPLACEMENT STATIC AND DYNAMIC ANALYSIS 

   Several large displacement formulations of geometrically nonlinear finite elements analysis have 

been used to derive the stiffness matrix in nonlinear analysis. The main differences arise from the 

simplifications and assumptions imposed on the kinematic relations and the form of stress. The 

use of the most general large displacement formulation will render “correct” solutions, however, 

in many cases the use of a more restrictive formulation could be attractive because of its 

computational efficiency. 

   The first applications of the finite elements method to nonlinear structural analysis, was proposed 

in 1960 by [TURNER et al 1960] for a geometrically nonlinear analysis using the incremental 

approach, and in 1968 by [SCHMIT et al 1968] using the direct method. However, the direct method 

was quickly abandoned in favour of the incremental approach. 

   Subsequently, the incremental approach has improved and applied successfully by many authors, 

mainly for the elastic instability analysis: [TURNER et al 1964; FELIPPA 1966; MALLET & BERLEE 

1966; ODEN 1966; GALLAGHER et al 1967; BREBBIA & CONNOR 1969; HOLAND & MOAN 1969; 

MARCAL 1969; DUPIUS et al 1971; WOOD 1977] and many others. It was [ARGYRIS 1965-b] who 

used the geometric stiffness matrix in conjunction with the updating of coordinates and an initial 

C(t) 

df 

 
ds 
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displacement matrix. Later, the equations of general formulation of the geometric nonlinear 

analysis are established, where the principle of virtual work is used in incremental form after 

discretization of the displacement field in terms of nodal unknowns: [YAGHMAI 1968;            

HIBBIT et al 1970].  

   At this time, only the Total Lagrangian Formulation has been used successfully. Nevertheless, 

its use was limited to moderate rotations problems only: [KAWAI & YOSHIMURA 1969; ROBERTS 

& ASHWELL 1971; GALLAGHER 1973; BATHE et al 1975; BATOZ et al 1976]. It was not until the 

works of [SIMO 1985; SIMO & VU-QUOC 1986], to extend the TLF for the analysis of large 

rotations problems. Subsequently, several investigation and application of the TLF are presented: 

[CARDONA & GERADIN 1988; BUECHTER & RAMM 1992; LO 1992; SANSOUR & BUFLER 1992; 

IBRAHIMBEGOVIC 1995]. 

   Considering the formulation of incremental nonlinear finite element analysis, the choice lies 

between using the initial configuration or the last calculated configuration as reference. The “TLF” 

presents some serious difficulties of formulation, especially with shell elements, because it 

requires an exact description of the finite element cinematic beside the firm representation of large 

rotations. In the other hand, the “ULF” was more attractive due its simplicity and effectiveness. It 

setback the “TLF” in many applications. The ULF handles large displacements and large rotations 

in a simple manner, by admitting the assumption of small displacements and rotations between 

successive configurations, and use the conventional linear theory for calculating deformations. 

The “ULF” was presented in the works of: [MURRAY & WILSON 1969; HOFMEISTER et al 1971; 

SHARIFI & POPOV 1971; YAGHMAI & POPOV 1971; BATHE & OZDEMIK 1975].  

   Subsequently, the “ULF” was extended by many authors: [BAZANT & NIMEIRI 1973; 

HORRIGMOE & BERGAN 1978; RAMM & OSTERRIEDER 1983; GADALA el al 1984; DVORKIN et 

al 1988; KEBARI & CASSELL 1992; JIANG et al 1994]. Despite simplicity and effectiveness of the 

Updated Lagrangian Formulation in many areas, it contains approximations that can introduce 

errors playing a significant role on the performance and convergence, especially with structures 

that exhibits highly nonlinear behaviour. A mesh fine enough and small load step must be adopted 

to meet the assumption of small displacements and rotations. 

   At the same period, dynamic nonlinear analysis was established and evolved with static 

nonlinear analysis based on both “TLF” and “ULF” by many authors: [ARCHER & LANGE 1965; 

STRICKLIN 1970; HARTZMAN & HUTCHINSON 1972; WILSON et al 1973-b; BATHE et al 1974, 

1975; WU & WIRMER 1974; FELIPPA & PARK 1979; NATH 1979; BATHE & BOLOURCHI 1980; 

SAIGAL & YANG 1985; SIMO et al 1990]. 
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V-1. The Updated Lagrangian Formulation 

   The updated Lagrangian description of motion has proven to be a very effective method in the 

treatment of geometric nonlinearities: [BATHE 1982]. In this formulation, the element local 

coordinates and local system of axes are continuously updated during movement, all static and 

kinematic variables are referred to the last calculated configuration. We consider large rotations 

and large translations here, but small strains. Rotations and displacements from two consecutive 

configurations may be considered small. Consequently, the quadratic terms of the derivatives of 

displacement are negligible. We therefore have a nonlinear analysis with large displacements and 

large rotations, but small strains. This approach has been considered by many authors for the 

nonlinear analysis of shells: [WUNDERLICH et al 1981; BATHE et al 1983]. Therefore, the linearized 

incremental form of the principle of virtual displacements based on the updated Lagrangian 

description is adopted in this work. 

V-2. Finite Elements Discretization 

   The considered approach in this work, for the finite element approximation, is the displacement 

approach, in which, the displacement field is the main unknown variable. Other variables are 

treated as secondary quantities. Thus, the solution of algebraic equations expressing the 

equilibrium of a solid body by the finite element method, requires the discretization of that 

expression of equilibrium. This approach leads to express the displacement field over the shell 

finite element as a function of nodal displacements variable. Using shape functions, the 

displacement field is expressed in the “ULF” by: 

    i

t

tj

t

ii

t

t qxNU                        [V-22] 

   We also must express the strain tensor as a function of discrete displacement field, which is a 

function of the variation of the derivative of the displacement field. 

The variation of the displacement at time (t) inside the finite element is given by: 

      
  i

t

tj

t

ii

t

t qxNU                       [V-23] 

The derivation related to the current configuration is written: 

 
jit

j

t

it u
x

u
,







                        [V-24] 

The derivation of displacement within the finite element is given by: 

    i

t

tj

t

kiki

t

t qxNU ,,                        [V-25] 
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V-3. Incremental Expression of the Virtual Displacement Principle in the “U.L.D” 

   Let us consider the motion of a solid body in a Cartesian co-ordinate system, Fig. V.3. In static 

nonlinear and implicit time integration dynamic analysis, the equilibrium of the body at time (t+Δt) 

is expressed and used to solve for the static and kinematic variables corresponding to time (t+Δt). 

The equilibrium state is characterized by a minimum of energy expressed in standard form as: 

0int  extWW                         [V-26] 

    The discretized expression of this equation of equilibrium allows the solution of a matrix 

system, where the nodal displacements are the (n) unknowns to be determined. It is written: 

    n

t

n

t

n

t
FuK                          [V-27] 

   If a nonlinear behaviour is included in a FE Analysis, the set of equilibrium equations becomes 

nonlinear and instead of a set of linear equations, we obtain a set of nonlinear algebraic equations. 

In the Updated Lagrangian Formulation, all quantities are referred to the last known configuration 

n at time (t). Considering the equilibrium of the body at time (t+Δt), the principle of virtual 

displacements is written related to the reference configuration n  in the following form: 

ext

ttt

v
ij

tt

tij

tt

t Wvde
t

                         [V-28] 

Where: t+ΔtWext is the total external virtual work.  

ij

tt

te
 : is a "virtual" variation in the Cartesian components of the Green-Lagrange strain tensor 

in the configuration at time (t+Δt) referred to the configuration n  at time (t). 

ij

tt

t
 : The Cartesian components of the 2nd Piola-Kirchhoff stress tensor in the configuration at 

time (t+Δt) referred to the configuration n  at time (t). 

   The incremental total external virtual work due to surface forces 
k

tt

t t
  and body forces 

k

tt

t f  

expression is: 

vdufAdutW t

v
kk

tt

t

t

A
kk

tt

text

tt

tt
 

                      [V-29] 

The term 
k

tt

t f  arise from dynamic analysis, in which the body force components are related the 

mass inertia  and acceleration ku . 
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   Since the stresses ij

tt

t
 and strains ij

tt

t e
 are unknown, the following incremental decompositions 

of quantities that are expressed at time (t+Δt) are used: 

ijtij

t

ij

tt

t T                           [V-30] 

With: ij

t

ij

t

t T  and ijtij

tt

t   . 

ij

tT  : is Cauchy stress tensor. 

   The strain increment components between times (t) and (t+Δt) can be separated into linear and 

nonlinear parts: 
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
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                       [V-31] 

Using Eq. [V-31] in Eq. [V-28] yields: 

   ext

tt

v

tNL

ijtijtijtij

t WvdT
t

                       [V-32]  

The constitutive relations with the linear elasticity Matrix 
ijklC can be used to relate incremental 

2nd Piola-Kirchhoff stresses to incremental Green-Lagrange strains: 

kltijklijt C                           [V-33]  

   By using Eq. [V-33] in Eq. [V-32], and linearizing the expression of equilibrium by neglecting 

the product of the two incremental nonlinear strains, we finally obtain the following expression of 

equilibrium related to the updated configuration C(t): 

    

v

t

ijtij

t

ext

tt

v

t

ijtkltijkl

NL

ijtij

t

tt
vdTWvdCT                    [V-34] 

This incremental equation “Eq. [V-34]” is employed to describe equilibrium in either, static 

analysis or implicit time integration dynamic analysis. 

   Let us decompose this incremental expression of equilibrium into several parts, and find their 

discretized expressions: 

  

v

t

ijtij

t

ext

tt

v

tNL

ijtij

t

v

t

ijtkltijkl ttt
vdTWvdTvdC                   [V-35] 

      ( )A        ( )B         ( )C         ( )D  
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V-3.1. Stiffness Matrix for Small Displacements in the "U.L.D"  

vdCA t

ijtklt
v

ijklt
  )(                        [V-36] 

The variation of strain, written in term of nodal displacements vector is: 

  qB tij

t

tijt                          [V-37] 

Then we get: 

vdqqBBCA t

ttij

t

tkl

t

t
v

ijklt
   )(                      [V-38] 

  qqKA tt

t

t )(                         [V-39] 

With: vdBBCK t

ij

t

tkl

t

t
v

ijkl

t

t t
   . 

Kt

t : is the stiffness matrix for small displacements defined at time (t) with respect to the current 

configuration. 

V-3.2. Geometric Stiffness Matrix (initial stress matrix) in the "U.L.D"  

vdTB tNL

ijt
v

ij

t

t
  )(                        [V-40] 

Using the variation of nonlinear strain, we can write: 



  qqKB tt

t

t )(                         [V-41] 

With: 

vdBBTK tNL

ij

t

t

NL

ij

t

t
v

ij

tt

t t
  )( 


                       [V-42] 

Stress tensor ij

tT is defined with respect to time (t), so it represents Cauchy stress. 


Kt

t : is the initial stress matrix defined at time (t) with respect to the current configuration. It is 

known as geometric stiffness matrix because it results from the second order geometric strain-

displacement relation. 
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V-3.3. External Forces in the "U.L.D"  

  qPC t

tt  )(                         [V-43] 

Ptt  : represents the vector of externally applied nodal loads at time (t+Δt). 

V-3.4. Internal Forces in the "U.L.D" 

vdTD t

ijt
v

ij

t

t
  )(                        [V-44] 

Using Eq. [V-37] we get: 

  qFD t

t

t

t )(                         [V-45] 

With: 

vdBTF t

ij

t

t
v

ij

tt

t t
                          [V-46] 

Ft

t : The vector of nodal forces equivalent to the internal stresses at time (t).  

V-3.5. Residual Forces in "U.L.D" 

Residual forces expressed in the current configuration are: 

vdBTPR t

v
ij

t

tij

tt

t

t

t t
                          [V-47] 

With: vdBTQ t

v
ij

t

tij

tt

t t
   . 

Qtt : represents internal forces defined at time (t) with respect to the current configuration. 

V-3.6. Incremental Expression of Equilibrium in the "U.L.D"  

   Finally, the finite element discretization of the linearized incremental form of the principle of 

virtual displacements, gives the incremental expression of equilibrium as: 



 FPqKK t

t

tt

t

t

t

t

t  ).(                       [V-48] 

With: 
 KKK t

t

t

t

Tgt

t  . 

Tgt

t K : represents the tangent stiffness matrix defined at time (t) with respect to the current 

configuration. 

where: 
Kt

t , is the linear strain incremental stiffness matrix; 
Kt

t  is the nonlinear strain 

incremental (geometric) stiffness matrix; Ptt   is the vector of externally applied nodal loads at 
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time (t+Δt); Ft

t
is the vector of nodal internal forces equivalent to the finite element’s elastic 

stresses at time (t), and q  is the vector of incremental nodal displacements. 

   The matrices in Eq. [V-39] and Eq. [V-41] are evaluated using the displacement interpolation 

functions of the flat shell element developed for linear small displacement analysis presented in 

Chapter III. 

   In dynamic analysis using implicit time integration the inertia forces corresponding to time (t+Δt) 

are added to the left-hand sides of Eq. [V-34]. 

   In this work, the dynamic equilibrium equation of motion is solved using the implicit Newmark’s 

step by step integration method. Once the finite element models of geometrically nonlinear 

analysis and linear dynamic analysis has been created, nonlinear dynamic analysis will be obtained 

by combining the adopted dynamic scheme with the nonlinear scheme. The Newton-Raphson 

algorithm associated to the load control technique is employed for iterating within each time step 

increment (Δt) until equilibrium is achieved. The equilibrium equation of motion is written as: 

tttttttt RuNuCuM   )(                       [V-49] 

Where: ttR  , is the nodal residual forces vector at time (t+Δt). 

ttuN )( , is the equivalent internal forces vector at time (t+Δt). 

   We note that, in order to extend the linear dynamic scheme to taking account for geometrically 

nonlinear behaviour, the nodal internal (nonlinear) elastic forces vector of Eq. [V-39] must be 

taken into account, it is written as: 

    dvBuN
v

tt

T

tttt    )()(                        [V-50] 
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V-4. Tangent Stiffness Matrix for Flat Shell Elements with Drilling Rotation 

   As we have seen, geometrically nonlinear analysis is performed iteratively with subsequent 

updating of coordinates and internal stresses. Deriving the geometric stiffness matrix and 

computing the internal stresses constitute the main effort. 

   Geometric stiffness is calculated using Eq. [V-42] using incremental Green’s strain tensor, which 

can be decomposed into linear and nonlinear terms 
ij and NL

ij  respectively. It is calculated in 

relation to the reference plane related to the co-rotational reference system, which is continuously 

updated. Green-Lagrange strain tensor is given by: 
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                       [V-51] 

V-4.1. Plate bending geometric stiffness 

   Initial stress matrix is calculated using stress field resulting from the previous configuration, and 

quadratic terms of the nonlinear Green-Lagrange strain as:  

       dAgCgK
A

T
                         [V-52] 

 C : is the in-plane (membrane) stress tensor. 

  









yyyx

xyxx

NN

NN
C                         [V-53] 

Quadratic terms of the nonlinear Green-Lagrange strain are written as: 

       qggq
TNL

2

1
                        [V-54] 

[g]: represents the slope matrix; it is expressed as a function of bending derivatives: 

   













yw

xw
qg                         [V-55] 

  













yN

xN
g

i

i
                        [V-56] 

Where: iN  represents shape functions of the transverse displacement field (w). 

   It is well known that “DKQ” and “DKT” plate bending elements have no explicit expression for 

the transverse displacement field (w) in the interior of the element. Therefore, the derivatives of 
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the transverse displacement that are required to get the geometric stiffness matrix cannot be 

directly obtained. To overcome this problem, we could adopt a polynomial interpolation 

representing the out of plane displacement field (w). Even though this interpolation does not 

represent the true displacement field of the “DKQ” and “DKT” elements, this approach gives 

satisfying results, see [ELKHALDI 1987].     

Therefore, bi-cubic polynomial interpolation is necessary and sufficient. The adopted polynomials 

and the resulting shape functions are presented in appendices B and C. 

V-4.2. Membrane geometric stiffness 

   Usually, researchers disregard the nonlinear in-plane terms of Green-Lagrange strain tensor. 

They take into account the nonlinear terms of plate bending elements only when deriving the 

geometric stiffness matrix of flat shell finite elements, even when dealing with shell elements with 

drilling rotation. This simplification of the kinematic relationships, assume that the in-plane 

displacement field components are linear, and even when they are nonlinear, they are infinitesimal 

so that their derivatives are small, and therefore their second order terms can be neglected 

according to the “von-Karman assumptions”. 

Hence, it is common to use the following form of the geometric stiffness matrix: 

  









bK
K




0

00
                        [V-57] 

bK : represents plate bending geometric stiffness. 

   However, geometrically nonlinear analysis of thin shell structures, involves not only large out 

of plane displacements, but also large in-plane displacements. The stress resultants due nonlinear 

in-plane strain-displacement relationship, may have a significant influence on the stiffness of the 

structure. In this work, since we used a higher order interpolation for the in-plane displacement 

field due in-plane rotations, strain tensor will contain non-negligible nonlinear terms. For a plane 

stress problem, quadratic terms of the nonlinear Green-Lagrange strain are written as: 
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Let us consider: 
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     VU ggg                          [V-61]  

 [gu], and [gv] Contain shape functions derivatives for displacements u and v respectively. Using 

matrix notation, in-plane displacement field is written as: 
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Where:    iii

T
vuq  . 

Shape functions of the in-plane displacement field and their derivatives are presented in 

appendices D and E.  

   As for plate bending elements, initial stress matrix of membrane elements is calculated using 

stress field resulting from the previous configuration, and quadratic terms of the in-plane nonlinear 

Green-Lagrange strain as: 

       AdGCGk
eA

T 0                         [V-63] 

Finally, tangent stiffness matrix [KT] is written as: 

     KKKT  0                         [V-64] 

Where: [Kσ] represents the geometric stiffness (initial stress stiffness) matrix for the flat shell finite 

element with drilling rotation, it is written as: 
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K
K




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0
                        [V-65] 

[K0]: represents the small displacement matrix. 

   The linear elastic stiffness matrices of the finite elements presented in Chapter III, provides the 

linear part of the elements’ tangent stiffness matrices. 
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      VI- THE CO-ROTATIONAL APPROACH 

   For the conventional “ULF” and “TLF” descriptions, the reference system of axes is kept fixed. 

If one moves the system of reference axes with the movement of the body (translate and rotate but 

do not deform with the body) so as to remove the rigid body motion induced by large displacements 

and rotations, another Lagrangian description of a relatively simple manipulation can be defined. 

This description is called a Co-rotational Lagrangian Description. The new position of the system 

of axes, is obtained after giving the initial system of axes a rigid body displacement and rotation 

in order to have the closest position as possible to the current deformed configuration, Fig .V.6.  

   Indeed this would absorb large rigid body rotations and translations, so the remaining rotations 

can be considered small or moderate. By such a procedure, the “CLD” overcomes the problem of 

treatment of large rotations in classical Lagrangian descriptions. 

   As for the conventional Lagrangian descriptions, we define two specific co-rotational 

descriptions differentiating by choosing the appropriate configuration of reference. The co-

rotational Lagrangian description can be: Total (TLCD) or Updated (ULCD). All expressions 

written in § V-3, are valid for either the “ULD” or the “ULCD”. Only the reference configuration 

changes, where each element has its own independent reference configuration. 

   [WEMPNER 1969] suggested to split the motion into rigid body motion followed by a small 

relative deformation, so that the geometrical nonlinearities are attributed to the rigid body 

rotations. Thus, the co-rotational formulation, fully contains the geometric nonlinearity caused by 

the large rigid body motion, by a consistent transformation from the local co-rotational system to 

the global coordinate system. Therefore, the linear finite element formulation, can be used to 

calculate the stiffness matrix and internal force vector of the finite element in the local co-rotational 

system. The main idea of the co-rotational formulation can be summarized as: 

- on the element level, define a reference system that translates and rotates with the element overall 

rigid-body motion; 

- calculate the nodal variables in this reference system, thus the element overall rigid-body motion 

is excluded; 

- compute the local internal force vector and element tangent stiffness matrix. 

   The traditional Lagrangian formulations, use the nonlinear strain-displacement relationship of a 

specific element to derive the tangent stiffness matrix and internal force vector. So, the geometric 

nonlinearity is included in the element’s formulation from the beginning. However, the co-
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rotational formulation, is independent of the specific local element formulation, which means that 

the transformation between the local and global nodal entities is independent of the assumptions 

made for the local element. Thus, the established process of the co-rotational finite element 

equations is the same for different elements with the same geometry and nodal d.o.f.   

   The co-rotational approach has been viewed as an alternative way of deriving efficient nonlinear 

finite elements. It has known a rapid development since it has initially presented, by: [WEMPNER 

1969; ORAN 1973-a, 1973-b; BELYTSCHKO & HSIEH 1973, 1974; BATHE et al 1975; BELYTSCHKO 

& SCHWER 1977; ARGYRIS et al 1979; BELYTSCHKO & GLAUM 1979]. 

   [RANKIN & BROGAN 1986] presented a concept of an element independent co-rotational 

formulation (EICR). The main advantage of this formulation is the complete separation of co-

rotational filtering of the deformational displacements from the core element formulation. 

[RANKIN & NOUR-OMID 1988; NOUR-OMID & RANKIN 1991] introduced a projector matrix with 

3D paramatrization of the rotation field into the (EICR) formulation in order to improve the process 

of the (EICR). [RANKIN et al 1994] studied the geometrically nonlinear analysis of laminated 

composite structures based on the EICR formulation. [CRISFIELD 1990; CRISFIELD & MOITA 

1996] presented in details a unified approach for geometric nonlinear co-rotational formulation of 

various finite elements. Also, a unification of existing co-rotational approaches was presented by 

[FELIPPA & HAUGEN 2005]. [PACOSTE 1998, BATTINI & PACOSTE 2004, 2006; BATTINI 2007] 

introduced some modifications following the main idea of the (EICR) in order to achieve better 

computational efficiency. They also discussed the choice of the local coordinate system and linear 

triangular shell element. [IZZUDDIN 2005] presented a co-rotational formulation for a 4-node 

quadrilateral flat shell element with hierarchic freedoms. He used the two bisectors of the element 

diagonals and their cross-product to define the co-rotational framework. [KIM & LOMBOY 2006] 

presented a 4-node quasi-conforming stress resultant shell element for nonlinear analysis using the 

co-rotational formulation. He employed the polar decomposition to separate rigid-body motion 

from the pure element deformation. 

   The co-rotational formulation has been widely used in a significant numbers of works dealing 

with shell analysis: [CRISFIELD 1990; LIU & TO 1995; PACOSTE & ERIKSSON 1995, 1997; 

STOLARSKI et al 1995; BOISSE et al 1996; MEEK & RISTIC 1997; KIM et al 1998; KIM & VOYIADJIS 

1999; FELIPPA 2000; HSIAO & LIN 2000; KOLAHI & CRISFIELD 2001; TABIEI & TANOV 2002; 

TAYLOR et al 2003; YAQUN et al 2003; THAM et al 2005; BRUNET & SABOURIN 2006; KIM et al 

2007-a; KIM et al 2007-b; YANG et al 2007; KHOSRAVI et al 2008; CAI et al 2009; GARCEA et al 2009; 

ALMEIDA & AWRUCH 2011; AN & XU 2011; GARCEA et al 2011, 2012; ZAGARI et al 2013]. 
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Fig. V.6. Cinematic of the Co-rotational description 

VI-1. Handling Large Rotations 

   Generally, the nonlinear analysis, exhibits large displacements and large rotations. A severe 

difficulty stems from the fact that finite rotations are not vectorial quantities, and therefore, the 

extension to large rotations is not straightforward. This aspect has been discussed by [WEMPNER 

1969; ARGYRIS & DUNNE 1975]. Alternative approaches to incorporate finite rotations can be 

found in: [BATHE & BOLOURCHI 1979; ARGYRIS 1982; SURANA 1983 ; OLIVER & ONATE 1984; 

BASAR 1987; HSIAO 1987; HSIAO & HUNG 1989; SIMO & FOX 1989; SALEEB et al 1990;        

BASAR & DING 1990, 1992; SANSOUR & BUFLER 1992; LIU & To 1995; IBRAHIMBEGOVIC 1997; 

WANG & THIERAUF 2001]. 

   In this work, the treatment of finite rotations is used following the most known approach, which 

is based on the observation that if one can eliminate the rigid body motion from the total 

displacement, the remaining part of the motion is always a small quantity and only the 

deformational part of the rotations is accumulated. As can be seen from Fig. V.6. that represents 

the displacement of a frame structure from the initial configuration to the deformed configuration. 

The rigid body displacements and rotations, constitute the greatest portion of the displacement of 

the frame elements, while the pure deformational displacements and rotations constitute small 

quantities. With mesh refinement, the pure deformational displacements and rotations will become 
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smaller. This, will then, allow the use of the small displacement theory and thus assure the validity 

of vector operations. This simplified approach to circumvent the large rotation problem has also 

been discussed in [WEMPNER 1969; ARGYRIS & DUNNE 1975]. This method has several 

advantages: 

• Effective treatment of large rotations; 

• Easily adapt with finite elements that have rotational d.o.f like beams and shells: 

• Decoupling of material nonlinearity and the geometric nonlinearity; 

• Automatic reorientation of material by removal of the rigid body motion, avoiding the complexity 

of using invariants of the continuum mechanics; 

• And finally, it has the advantages of exploiting the library programs in small displacements. 

VI-2. Co-rotational Formulation for Triangular and Quadrilateral Flat Shell Elements with 

Drilling Rotational Degree of Freedom 

   The co-rotational description is used in order to decompose the motion of an element into small 

(deformational) displacement and (strain free) rigid body motion parts. After extracting rigid body 

displacements and rotations, the small displacement part is dealt using the linear stiffness. Such a 

procedure linearizes the strain-displacement and simplifies the nodal force-stress relations within 

the elements' co-rotational coordinates. In this case, the shell finite elements developed for linear 

analysis in small displacements in chapter III, can be applied to nonlinear dynamic analysis with 

large displacements and large rotations. 

   This is accomplished by considering a local reference system for each element also known as 

co-rotated frame, which is used in order to follow the rigid body motion of the element, so that 

only the deformational displacements and rotations are left when the element displacements are 

referred to this frame. 

   In order to captivate rigid body motion, the co-rotational reference system of axes, makes 

rotations and translations with the element movement. The deformation is always measured on the 

level of the element’s local system since large translations and large rotations are absorbed by the 

co-rotational system of axes, which continuously rotates and translates with the element 

movement. Once local deformational displacements are obtained, the finite elements based on 

small-strain formulation can be used to calculate quantities such as stress, internal forces and 

stiffness matrix in the co-rotational system. 
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   Small deformational displacements 𝑑 are defined by extracting the rigid body motion from the 

global displacements dg. So, small displacements are expressed as function of global and rigid 

body displacements as: 

Rg ddd                           [V-66] 

   The objective of this section, is to present how deformational small displacements and rotations 

are captured from the total ones by eliminating strain-free rigid body displacements and rotations. 

It is important to mention that, deformational small displacements are captured at the level of the 

local reference system of each element after rigid-body motion is absorbed. Therefore, it is 

important to specify the local referential system of axes. The adopted systems for triangular and 

quadrilateral elements are shown in Fig. V.7. 

VI-2.1. Reference System of Axes 

   All coordinates and displacements are measured in the initial local (XY) plane of the considered 

finite element. We attached the middle surface of the quadrilateral shell element to a local 

reference system oxyz, as illustrated in Fig. V.7. in which, the x-axis contains both points a, and b 

located at halfway of lines (1-4, 2-3), and the y-axis is perpendicular to the x-axis; the two axes 

cross at point o located at halfway of the line (a-b). 

We denote by 
oo YX 00 ,  the coordinates of the central point “o” of the quadrilateral element at the 

initial configuration at time (t=0). They are defined as: 

4,4
4
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004

1

00   ioio YYXX                       [V-67] 

 

 

 

 

 

 

 

 

Fig. V.7. Local system of axes 
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VI-2.2. Co-rotational Formulation fore Plate Bending Elements 

   In addition to meshing difficulties of complex shapes, flat quadrilateral shell elements have some 

geometry related limitations even in linear analysis. In a four-node flat shell element case, the         

4 nodes must be coplanar in the local system, so that the theory of flat shell can be validated. 

However, for some shells with double curvature, it may not be possible to have four nodes of the 

flat shell element on the same plane (warped geometries), whereas a mesh that consists of strictly 

flat elements may be impossible. For large deflection nonlinear analysis, this deficiency becomes 

more noticeable, in which, the deformed (warped) configuration C(t) will be used as reference to 

obtain the configuration C(t+Δt) when the “ULD” is used. Furthermore, during large bending 

deformations, folding may occur along the diagonals of the quadrilateral elements and result in 

warping, and leads to deterioration in accuracy. 

   Thus, even if the initial mesh satisfies the flat element restriction, the deformations can become 

so large that warping of the elements can be significant, which may led to some critical errors that 

accumulate with elements assembly. Finding ways of handling warped elements geometry is thus 

of fundamental importance for quadrilateral shell elements. Hence, in purpose to overcome the 

problems related to the probably non-planarity of the quadrilateral’s nodes, we suggest to attach 

the middle surface of quadrilateral elements, to a local reference system oxyz, as illustrated              

in Fig V.8.  

 

 

 

 

 

 

 

Fig. V.8. Reference plane of the quadrilateral element 

   The projection of the deformed geometry on the reference plane (1' 2' 3' 4'), minimizes the error 

of modeling the geometry and in calculating integration over the element area. Consequently, the 

geometry modeled by using this reference plane, is closer to the real deformed geometry. However 

the continuity between elements remains not assured. 
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   Due to this fact, we calculate the flexional rigid rotations of the quadrilateral element, as if we 

had four beam elements, Fig. V.9. This choice is justified due to the fact that from the geometric 

point of view, the quadrilateral finite element is constituted from four rectilinear girders. Because 

rigid body translations and rotations have a geometric context, the suitable way to calculate rigid 

rotations is to consider the quadrilateral as a four beams assembly. 

   In this case, we note that the transverse displacements resulting after elimination of rigid body 

translations and rotations, are generally different to zero, because, the positions of the four corner 

nods are generally not in the same plane. That’s not the case for triangular elements, where the 

three corner nods always make a plane, and elimination of transverse displacements is easy using 

a co-rotational system of axes. 

 

 

 

 

 

 

 

Fig. V.9. Out-of-plane rigid body rotations             

Then rigid body flexional rotations are written as: 
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arcsin                         [V-68] 

   The transverse displacements take the values: '44'223'31'1 w


as represented in Fig. V. 8. 

We can accept that these values are always small quantities after elimination of rigid body 

translations and rotations. 

VI-2.3. Co-rotational formulation fore membrane elements 

   Since the local system of axes is co-rotational i.e. it makes translations and rotations following 

the element movement. It is important to distinguish in what position the system of axes is 

considered. Therefore, we denote by: 
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“OXY” the local system of axes in the initial configuration C(0) at time (t=0). 

“oxy” the local system of axes in the current configuration C(t) at time (t). 

Furthermore, we need to use an additional indication to specify in what time coordinates and 

displacements are expressed. We denote by: 

ii YX 00 , : The coordinates of a node (i) in the initial configuration at time (t=0) calculated with 

respect to the initial reference system, which is expressed with respect to the rotations matrix  R0  

of the initial configuration. 

i

t

i

t YX , : The coordinates of a node (i) in the current configuration at time (t) expressed with respect 

to the initial reference system, which is expressed with respect to the rotations matrix  R0 . 

i

t

i

t yx , : The coordinates of a node (i) in the current configuration at time (t) expressed with respect 

to the updated reference system, which is expressed with respect to the rotations matrix  Rt  of 

the current configuration C(t). 

With,  R is the typical rotation matrix of a flat shell element, it is defined as: 

 


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





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





),cos(),cos(),cos(
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                     [V-70] 

1- In-plane translations 

   For both Triangular and quadrilateral elements, the in-plane deformational small translations are 

taken to be the extensions along each side as presented in Fig. V.10. They are easily obtained by 

taking out the translations of the preceding state from those of the current state C(t) after they are 

placed in the reference system of axes as: 
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Fig. V.10. Local deformational translations 

2-  In-plane nodal rotations 

   Deformational small rotations denoted i , are obtained by taking out the rigid in-plane rotation 

 from the total nodal rotation i  at each node independently as: 

 ii                           [V-72] 

A schematic of in-plane nodal rotations and their relations with in-plane rigid body rotation is 

shown in Fig. V.11, and Fig. V.12. 

   The in-plane rigid rotations   is taken to be the rotation of the “x” axis of the finite element to 

be considered, as could be concluded from Fig. V.11, and Fig. V.12. 

 

 

 

 

 

 

 

 

 

 

  

Fig. V.11. In-plane rotations and their relations for a quadrilateral element 
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We denote by: 

i : The total rotation of node (i). 

i : Small deformational rotation of node (i) 

 : Rigid body in-plane rotation. For four nodded quadrilateral elements, it is calculated as: 

 ))()(())()((arctan 41324132 XXXXYYYY tttttttt                    [V-73] 

For three nodded triangular elements, it is: 

 )()(arctan 1212 XXYY tttt             [V-74] 

With: 
iii

t uXX 0 , and 
iii

t vYY 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. V.12. In-plane rotations and their relations for a triangular element 
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      I- INTRODUCTION 

   The finite element discretization of the equations governing the geometric nonlinear behaviour 

presented in previous chapters, leads to a set of non-linear algebraic equations called: Equations 

of residual forces. The numerical solution of this resulting nonlinear system of equations usually 

counts on incremental algorithms. They have become standard methods for nonlinear structural 

analysis. Most of these algorithms is based on the iterative Newton-Raphson method. The aim of 

the iterative procedure is to minimize the out-of-balance residual forces till equilibrium is 

achieved. For this purpose, several techniques of path-following methods, based on different 

approaches, have been proposed.  

   Apparently an effective path-following solution method should be able to trace the entire static 

load-displacement curve, which may include load limit points, turning points, and possibly 

bifurcation points. Basically, iterative methods add a constraint equation to the original non-linear 

governing equations, and then solve the extended system of equations by incremental-iterative 

procedures such as Newton-Raphson, or modified Newton Raphson to obtain the solution in 

discrete points along the equilibrium path. The additional constraint equation could be linear [RIKS 

1979] or quadratic [CRISFIELD 1981; RAMM 1981]. Also, these algorithms differ in efficiency, and 

ability to handle different types of nonlinear behaviour. 

   To overcome the limitations of the load control and displacement control methods in vicinity of 

limit points and turning points respectively, a technic to switch between load and displacement 

controls was used by [SABIR & LOCK 1973], also a technic based on abandoning the equilibrium 

iterations in vicinity of limit points was used by [BERGAN et al 1978]. However, their Weakness 

incites the Arc-length control type algorithms in its various forms: spherical, cylindrical, and 

linearized versions [WEMPNER 1971; RIKS 1972, 1979; RAMM 1981; CRISFIELD 1981, 1983] to be 

most popular and widely used because, they simultaneously increment on both load and 

displacement variables. However, in some cases, difficulties in tracking equilibrium paths with 

various versions of the Arc-length method have been reported [CARRERA 1994; FENG et al 1996; 

RITTO-CORREA & CAMOTIM 2008]. It is for this reason that several algorithms and solving 

techniques have been developed and improved: [POWELL & SIMONS 1981; CHAN 1988; YANG & 

SHIEH 1990; KRENK 1995; YANG & SHIEH 1990]. 

   In this chapter, we reviewed the existing numerical methods for solving nonlinear equilibrium 

equations. Detailed description will be given only for the load control and the Arc-length control 

methods, which are implemented in the computer programme developed during this work. 
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      II- THE LOAD-DISPLACEMENT EQUILIBRIUM PATH 

   In general, static behaviour of structural systems can be characterized by a load-displacement 

curve, this response is plotted in a two dimensions coordinate system. The curve drawn in the load-

displacement diagram is called the equilibrium path.  

   There exist a wide variety of methods of numerical resolution that are used to get the equilibrium 

path. The most common are iterative methods, they are based on the minimization of a residual 

imbalanced force after constructing a sequence of approximate solutions. Incremental solution 

methods can be divided into two classes: 

II-1. Purely Incremental Method 

   Also called predictor-only method, in which the procedure used to get equilibrium path is by 

extrapolation. This method is the earliest nonlinear solution method. Its basic procedure is to divide 

the total load into a number of small load increments. In each load step, the stiffness of a structure 

that is determined from the last known geometry, is used to predict the displacement increment by 

solving the equilibrium equation relating the tangent stiffness matrix and the load increment. Once 

the displacement increment is obtained, the coordinates and the stiffness matrix of the structure 

are updated, and then the process is repeated until the desired load level is reached, [TURNER et al 

1964]. The disadvantage of this method, is that the balance is not corrected, which may make the 

solution greatly deviated from the true equilibrium path due to accumulation of errors. The only 

method to minimize this error is by using a smaller load step. This could led to a higher numerical 

cost. More importantly, as illustrated in Fig. VI.1, the pure incremental method usually over-

estimates the ultimate capacity of a structure, which is unsafe and undesirable in practical design. 

 

 

 

 

 

 

 

 

Fig. VI.1. Purely incremental method 
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II-2. Incremental-Iterative Methods 

   Also called predictor-corrector methods. Unlike the pure incremental method, in which, no 

equilibrium check is performed, a predictor step is followed by a corrective iterations step. Its 

purpose is to eliminate or reduce the drift-off error also called “residual forces”. The residual forces 

are the differences between the internal forces due existing internal strains, and the externally 

applied loads. By minimising the residual unbalanced forces, the solution is more accurate, and 

the computational time is reduced when compared to the pure incremental method. 

   The incremental-iterative methods consist of two parts: the increment part and the iteration part. 

The increment part will be discussed in the following sections. In this section, the iteration part is 

treated. The iteration part, is based on the minimization of the out of balance residue by the use of 

an iterative process for each load increment. Once convergence is achieved, the next solution step 

is applied. The correction of balance i.e. minimization of a residue, can be done in many iterative 

methods. They differ from each other mainly by the nature of the matrix used for the correction. 

These methods include: 

II-2.1. Newton-Raphson Method 

   It requires the computation of the tangent stiffness matrix at every iteration, and hence, the 

convergence is fast, but the computer time required for each iteration is extensive. This method is 

well suited for analysing highly nonlinear problems, Fig. VI.2. 

II.2.2. Modified Newton-Raphson Method 

   The stiffness matrix calculated at the beginning of each increment is constant for all iterations 

until convergence, [ODEN 1969; GERADIN et al 1980]. This leads to a significant gain in 

computation time, Fig. VI.3. However, this method needs more iterations to achieve convergence 

II.2.3. Secant Method 

   This method uses the secant stiffness matrix within each increment to correct the balance,       

Fig. VI.4. The numerical implementation is easy but the convergence is slow.    

 

 

 

 

 



CHAPTER VI. NUMERICAL METHODS FOR NON-LINEAR ANALYSIS 

741 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. VI.2. Newton-Raphson method 

 

 

 

 

 

 

 

 

 

 

 

Fig. VI.3. Modified Newton-Raphson method 
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Fig. VI.4. Secant method 

      III- INCREMENTAL-ITERATIVE PROCEDURE 

   An incremental iterative method has four essential aspects:  

 Parameterization: the solution path is parameterized using a general scalar equation or an 

auxiliary surface. The aim is to find its intersection with the equation of equilibrium; 

 Prediction: During the prediction phase, a linear estimation for the next point on the 

equilibrium path is established from a known converged solution on the equilibrium path; 

 Corrector: Newton-Raphson iterations are employed during the correction phase to find a 

new point on the equilibrium curve; 

 Convergence criterion. 

III-1. Prediction 

   In the predictor phase, informations determined from the point previously computed (the last 

known geometry) are used to compute a suitable starting value for the corrector phase. In case of 

the updated Lagrangian formulation, it is a linear estimation of the displacement increment. 

   Considering an external forces load increment ΔP, the corresponding elastic solution is     

given by: 

ΔUKΔP                      [VI-1]

U 

F 

Secant 
Fp 

Fp-1 

u1 u2 

Fp-2 

ui 

Iteration (i) 

Increment (p) 



CHAPTER VI. NUMERICAL METHODS FOR NON-LINEAR ANALYSIS 

741 
 

   For each finite element, this solution corresponds to a strain increment such as:  

ΔεBΔu                      [VI-2]

   By assembling the elementary vectors, we define an equivalent nodal force vector 

ΔQcorresponds to the stress state calculated from the constitutive laws. 

Thus, the residue is defined by: 

RΔPΔQ                      [VI-3]

   If the residual is zero, this corresponds to a linear load increment, elsewhere, we must iterate 

seeking for a new solution of the equation ΔUK ΔP, till the residue is sufficiently close 

to zero. This is the purpose of the correction phase. 

III-2. Correction of Equilibrium 

   Newton-Raphson method is based on writing, at each iteration, the residue around the preceding 

iteration: 

      )()()()1( iiii UKRR                       [VI-4] 

Where:      )()1()( iii UUU    presents the correction applied to the solution at the current 

iteration. The correction is then, found by minimising the residue till it falls under a specified value 

determined by the convergence criterion. This is thru solving the following system of linear 

equations: 

       0)()()(  iii UKR                      [VI-5] 

 )(iK : is the considered stiffness matrix. 

   In the conventional Newton-Raphson method, the tangent stiffness matrix is reformed ‘updated’ 

at every iteration, while for the modified Newton-Raphson method, the tangent stiffness matrix is 

only formed in the first iteration, and is kept constant in the subsequent iterations of each load 

increment. It may then be advantageous sometimes to replace the Newton-Raphson method by one 

of its variants, the “Modified Newton-Raphson” or the “Secant Newton-Raphson”. 

   The iterative process stops when satisfies the convergence criterion, which is chosen based on 

residual forces, or other variables (displacement, energy, strain...). 
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III-3. Parametrization 

   The incremental method is based on considering the known equilibrium configuration C(t) 

defined at time (t), and seek for the unknown configuration C(t + Δt) which is in equilibrium with 

the external applied loads at time (t+Δt). A proportional loading with a load factor λ is assumed. 

Thus, the discrete equilibrium equation is        ,qPqQ ext , where the internal forces {Q} are 

a function of the displacements {q}, and  extP  is a function of {q} and λ. 

   If the external and internal forces are not in equilibrium in any deformed configuration, a residual 

vector remains. The equation governing the nonlinear equilibrium of a structure is discretized by 

finite elements to the following form: 

           0,,  qQqPqR ext          [VI-6] 

   In case, when external forces are dependent on the deformed shape of a structure                          

(exp: hydrostatic load), the contribution of the follower forces stiffness matrix is essential.  

In the other case, when external forces do not depend on the deformation of the structure, follower 

forces stiffness matrix is zero (the case of our study), Eq. [VI-6] is written:  

         0,  qQPqR ext                     [VI-7] 

 extP  : is the fixed external loading vector; 

 : loading level parameter that multiplies extP ; 

 q  : nodal displacement vector; 

  qQ  : internal force vector; 

 extP : the applied load level. 

   The iterative Newton-Raphson procedure, constructs a sequence of approximations of the 

equilibrium configuration trying to find a solution that satisfies the Eq. [VI-6]. 

At each incremental step, a series of iterations is performed until convergence is achieved. 

We denote here, the increment by the subscript p, and the iteration by the superscript (i). The 

incremental-iterative procedure is given by: 

      )()1()1()( i

pext

i

p

i

p

i

p RpqK                        [VI-8] 

Where:      )()()()( , i

p

i

p

i

p

i

p qRR  , and  )(i

pK  is the tangent stiffness matrix. 
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The displacements and load factor, are computed through additive contributions from each 

iteration, i.e. 

     )1()()1(   i

p

i

p

i

p qqq                      [VI-9] 

)1()()1(   i

p

i

p

i

p                      [VI-10] 

   In the (ith) iteration of the pth increment, the load factor is incremented by
)1(  i

p , and the resulting 

displacement increment )1(  i

pq  is found. Then, the total displacement and total load factor are 

updated according to Eq. [VI-9] and Eq. [VI-10] respectively. The residual in Eq. [VI-7] is given 

by: 

     )( )()()()( i

p

i

pext

i

p

i

p qQpR                      [VI-11] 

   The displacement vector {q} contains (n) unknown degrees of freedom. Thus, the total number 

of unknowns is (n+1): n degrees of freedom {q}, and a load factor λ. Therefore, in addition to the 

n equilibrium equations of Eq. [VI-7], a scalar constraint equation called the “control” or the 

“parameterization” equation is required. In general, it has the following form: 

   0,  CCqf                      [VI-12] 

This equation is used to set the incremental parameter to be imposed. 

III-4. Convergence Criterion 

   The iterative processes will continues as long as residual forces exists, until they become 

negligible. A convergence criterion is therefore necessary and should be pre-determined to check 

the equilibrium and terminate the iterations process. Thus, the equilibrium is satisfied when the 

norm of the residual is sufficiently small compared to a given tolerance ε. 

• Residual force Criterion: 

1

p

r
i

p

R

R
                      [VI-13] 

1

pR , i

pR  are respectively the residue at the iteration (1), and the residue at the iteration (i). 

• Displacement criterion: 

( )

( )

1

i

p

d
i

p p

q

q q









                    [VI-14] 
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 ( )i

pq : incremental displacement at the considered iteration (i) 

 ( )i

pq : the current displacement (solution to be checked). 

 1pq 
: the last converged solution (at increment p-1). 

• Energy Criterion  

The above two criteria could be combined to give an energy based criteria:  

   The norm to be used for the residue or the displacement criteria can be selected from any one of 

the classic norms (Absolute, Euclidean, or maximum). 

   Also, a maximum number of iterations is usually set. If the convergence criterion is not satisfied 

after this number, the process stops, and the solution is considered as diverged. 

IV- PATH FOLLOWING METHODS 

   The main purpose of path following techniques, is to draw the equilibrium path of a nonlinear 

structural analysis in the framework of a Load-displacement response diagram. 

   Let us consider an elastic structural system under a system of applied loading. The nonlinear 

response is defined by the couple ({q}, λ). Where {q} presents the nodal displacements vector, and 

λ represents the load parameter intensity introduced by external forces. 

The total potential energy of such a system is denoted by: 

  ,qEE                                  [VI-15] 

The equilibrium of this structure is then determined from the stationary of function [VI-15] with 

respect to {q}. It could be expressed by the following equations: 

R(q, λ) = ∂E(q, λ)/∂q= 0                   [VI-16] 

Where: R, presents the residual force vector. 

Eq. [VI-6] represents N+1 relations between N degrees of freedoms and λ. The equilibrium paths 

of the structure is described by {q} and λ together. Also, the tangent stiffness matrix of the 

considered structure is: 

2

2 ),(),(

q

qE

q

qR
K T












                    [VI-17] 
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IV-1. Critical Points 

   Along the load-displacement response curve (the equilibrium path) of certain structures, appears 

several special states of loss of stability called critical points. We could state three different types 

of critical points. They are related to the concept of limit point, turning point, and bifurcation point. 

IV-1.1. Limit Point 

   A limit point, is a point at which the tangent to the equilibrium curve is horizontal, i.e. parallel 

to the displacement axis. In the sense that the tangent stiffness matrix is zero. 

Moreover, it must satisfies the condition that the equilibrium curve at this point is unique. 

The elastic behaviour of a structure after passing a limit point, is associated with loss of stability 

called snapping. No static equilibrium exists nearby, and therefore, the structure dynamically 

“snaps through” into the next post-critical equilibrium position, as shown in Fig. VI.5. 

* Limit points are of special importance in the Load control path following technique,                       

see § IV-2.1. 

IV-1.2. Turning Point 

   At turning point, also called displacement limit point, the tangent to the equilibrium curve is 

vertical, i.e. parallel to the load axis. 

The elastic behaviour of a structure after passing a turning point will dynamically “snaps back” 

into the next post-critical equilibrium position, as shown in Fig. VI.6. 

* Turning points are of special importance in the displacement control method. Besides, these 

points can affect the performance of the arc-length method, see § IV-2.2, and § IV-2.3. 

IV-1.3. Bifurcation Point 

   A bifurcation point is a point in which multiple equilibrium curves intersect, Fig. VI.7. Such an 

equilibrium state is called buckling. 

In this point, the equilibrium loses its uniqueness, because the relation between the loading and 

the associated displacement is not unique.  

* These points are of special importance to the arc-length path following method, see § IV-2.3. 
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Fig. VI.5. Load control method in vicinity of limit point 

 

 

 

 

 

 

 

 

Fig. VI.6. Displacement control method in vicinity of turning point 

 

 

 

 

 

 

 

 

Fig. VI.7. Arc-length method “pass all critical points” 
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IV-2. Control Function 

   In general, to specify a particular point on an equilibrium curve, we must add an extra scalar 

equation to the equilibrium equations of Eq. [VI-7], called the control function. It aims to set the 

imposed incremental parameter. [RIKS 1972] proposed a new solution procedure based on that 

concept for overcoming limit points. He added to the equations of equilibrium an additional 

constraint equation fixing the length of the incremental load step. The applied load level becomes 

now an additional variable. 

   If this additional equation is denoted by   0),( qf , we can find specific equilibrium 

solutions by solving:  

 
 









0),(

0),(
)()(

)()(

i

p

i

p

i

p

i

p

qf

qR




                    [VI-18] 

This set of equations is called the augmented system. 

The constraint equation   ),( qf , also has the following form: 

)()()()()( i

p

i

p

i

p

i

p

i

p cbqa                      [VI-19] 

Hence, the governing system of nonlinear equations to be solved at the (ith) iteration of the pth 

incremental step is: 

     

  

( ) ( ) ( ) ( )

1 1

 
, 0                            

T i i i i

p p p ext p

p p

K q P R

f q



 

         




                 [VI-20] 

The couple incremental solution ({Δq}, Δλ), is obtained after solving the above system. 

   Depending on the expression of the control function   ),( qf , there exist several following path 

control methods. Based on the bibliographic research we have done during this work, we could 

state seven methods as follows: 

- Load control method; 

- Displacement control method; 

- Arc-length control method; 

- Work control method; 

- Generalised Displacement control method; 

- Minimum Residual Displacement method; 

- Orthogonal Residual Displacement method. 



CHAPTER VI. NUMERICAL METHODS FOR NON-LINEAR ANALYSIS 

741 
 

IV-2.1. Load Control Method 

   For Load control technic, the parameterization function is expressed by: 

  ,f q                      [VI-21] 

With   is a constant indicating the charge level. 

   This method is the most simple, and it has been the most popular for solving nonlinear system 

of equations. This can be schematically represented by a constant step load, as in Fig. VI.8. 

The description and convergence of this algorithm are detailed by [MONDKAR & POWELL 1978; 

RANNACHER 1991]. 

   This type of algorithm breaks down in vicinity of limit points, where the tangent stiffness matrix 

[KT] becomes ill-conditioned or even singular (the structure loses its load carrying capacity). Under 

these conditions, the algebraic system of equations becomes harder to solve using Newton-

Raphson procedure. However, the solution could jumps to a distant stable configuration making it 

harder for a numerical method to converge, Fig. VI.5. 

   [BERGAN 1978] proposed to suppress equilibrium iterations until the limit point is passed. 

However, the obtained path drift from equilibrium path. [WRIGHT & GAYLORD 1968; MULLER 

2007; MULLER 2008] Proposed adding a fictitious spring to stabilize the tangent stiffness matrix 

in the vicinity of limit points. 

IV-2.2. Displacement Control Method 

   For the displacement control technic, unlike the load control method previously described, a 

constraint equation for displacement is imposed. 

The associated constraint function f  is defined by: 

     qqqf k ,                    [VI-22]   

Schematically, this is shown in Fig. VI.9. 

This method does not exhibit any difficulty in passing snap-through limit points, but fails to 

converge beyond turning points.  

   [ARGYRIS 1965-c] proposed the use of the characteristic displacement increment as the control 

parameter. The concept of this method is to impose the displacement of a particular node (k) and 

then solve the problem of equilibrium. The disadvantage then, is related to the selection of the 

appropriate displacement variable. Displacement control methods assume that there exists at least 
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one degree of freedom with a monotonic evolution. However, such a degree of freedom may not 

exist, and even if it exists, selection of this displacement may not be obvious in large structures. 

   [MAEWAL & NACHBAR 1977] note the necessity to change the prescribed displacement variable 

following slow convergence or divergence of the iterative solution procedure. 

Another drawback is that the augmented system of equations become non symmetric. Some 

modified approaches are proposed in order to preserve symmetry of the stiffness matrix 

[ZIENKIEWICZ 1971-b; YAMADA et al 1974] However, these approaches involved complicated 

procedures which become inconvenient for general use. 

   [BATOZ & DHATT 1979] defined a simpler technique which preserves symmetry of the stiffness 

matrix when using a displacement control algorithm. 

   Different variations of this method are presented by many authors: [NEMAT-NASSER & 

SHAROFF 1973; HAISLER & STRICKLIN 1977; POWELL & SIMONS 1981; THURSTON et al 1986; 

FUJII et al 1992-a, 1992-b; LORENTZ & BADEL 2004; ZHENG et al 2005]. 

IV-2.3. Arc-Length Control Method 

   In presence of limit points and turning points, control methods previously described fail to follow 

the solution curve. Hence, in order to trace the equilibrium path beyond critical points, a more 

general incremental control strategy is needed. 

   The arc-length method, has been considered to be the most effective control technique available 

for passing limit points. This method was initially proposed by [WEMPNER 1971] and [RIKS 1972, 

1979] by introducing the constraint equation technique, in which, instead of keeping the load         

(or the displacement) fixed during step increment, a combined displacement-load increment called 

the “arc length ΔL” is controlled during equilibrium iterations. Both displacement {Δq} and load 

Δλ increments are controlled simultaneously (they are modified during iterations), Fig. VI.10. 

The associated constraint function f is defined by: 

      
22,  0ext extf q q q b P P L                          [VI-23] 

L : the imposed Arc-length; 

 : incremental load parameter; 

 q : incremental movement; 

b : is a scaling parameter between load and displacement. 
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   Arc-length methods are enhanced to be suitable to a wide range of problems, mainly by     

[RAMM 1981; CRISFIELD 1981, 1983].  

   The arc length control method, is superior to both load control and displacement control methods 

in that it can pass snap-through and snap-back behaviour. However, Arc-length method results in 

unit inconsistency due the dot product of displacement in the constraint equation, because of the 

inclusion of both translational and rotational displacements. 

   Different forms and studies of the arc-length method have been proposed by many authors 

involving different shapes of the constraint equation [PADOVAN & TOVICHAKCHAIKUL 1982; 

PARK 1982; GIERLINSKI & SMITH 1985; ERIKSSON & KOUHIA 1995; QI & TIANQI 1995; DUTTA 

& WHITE 1997]. Further developments are presented in: [PAPADRAKAKIS 1981; RIKS 1984;  

BELUNI & CHULYA 1987; FELIPPA 1987; WRIGGERS et al 1988; CLARKE & HANCOCK 1990; 

WRIGGERS & SIMO 1990; FAFARD & MASSICOTTE 1993; CARRERA 1994; ZHOU & MURRAY 

1994; ZHAO & TIANQI 1995; KRISHNAMOORTHY et al 1996; CRISFIELD et al 1997; HELLWEG & 

CRISFIELD 1998; NETO & FENG 1999; JORABCHI & SURESH 2011; LEE et al 2014]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. VI.8. Load control method 
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Fig. VI.9. Displacement control method 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. VI.10. Arc-length control method 
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IV-2.4. Constant Work Control Method 

   The constant work method, has the same basic idea of imposing a constraint equation to guide 

the incremental load, it iterates neither at a constant load nor constant displacement. This method 

uses a constant work increment δW, kept constant through the iterations of an incremental step 

(the increment of internal energy during iterations equals the amount of work done by the external 

loading). The concept of constant work control has been reported by many researchers including 

[KARAMANLIDIS et al 1981; POWELL & SIMONS 1981; BATHE & DVORKIN 1983-b; YANG & 

MCGUIRE 1984, 1985; CHEN & BLANDFORD 1993; LIN et al 1993; KOUHIA 2008]. 

     WqPqf ext  ,                   [VI-24] 

Where: W  is the prescribed work increment. 

Imposing   0 qpW ext   yields: 

 
 )(

)(

)(

iT

pext

iR

pexti

p
qP

qP




                      [VI-25] 

For the expressions of  )(iR

pq  and )(iT

pq , see §VI. 

   The convergence rate of the constant work method was reported to be slow compared to that of 

the arc-length method. Moreover, this method fails at turning points over multiple degrees of 

freedom. In this case, a negative work is generated by reducing the load increment and decreasing 

the displacement. 

IV-2.5. Generalized Displacement Control Method 

   To overcome numerical instability near limit points, [YANG & SHIEH 1990] proposed the 

generalized displacement control method. In the original formulation, the constraint equation is 

presented in the following form: 

)()()()()( i

p

i

p

i

p

i

p

i

p cbqa                      [VI-26] 

[YANG & SHIEH 1990] specified:  
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   The generalized displacement control algorithm is very successful at capturing complex 

nonlinear behaviour at both load and displacement limit points. 

[CARDOSO & FONSECA 2007; LEON et al 2011] addressed that the generalized displacement 

method could be expressed as an orthogonal Arc-length. Further developments are presented in 

[YANG et al 2007; THAI & KIM 2009; LEON et al 2014]. 

IV-2.6. Minimum Residual Displacement Control Method 

   The basic idea of this method originally proposed by [CHAN 1988], is instead of using geometric 

or energy restriction, it seek to directly eliminate the residual displacement due to unbalanced 

forces in each iteration. The method controls the load steps by using the load factor, which follows 

the shortest path to obtain the solution point. 

The iterative residual displacement to minimise is: 

       )()()()( iT

p

i

p

iR

p

i

p qqqd                     [VI-28] 

[CHAN 1988] proposed that the condition of least square could be expressed as: 

  
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)()(



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i

p

i
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i

p qq
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                    [VI-29] 

 Then: 
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p
qq

qq




                    [VI-30] 

   The graphical representation of the procedure is demonstrated in Fig. VI.11. It can be seen that 

this constraint condition enforces the iteration path to follow the shortest path to arrive at the 

equilibrium point, which is a path normal to the load-deformation curve. In addition, the 

expressions for this method are simple, and it does not involve the solution of quadratic equations 

as in the arc-length method, see § VI. 

IV-2.7. Orthogonal Residual Control Method 

   [KRENK 1995] presented the orthogonal residual method. In this method, the load is adjusted in 

such a way that the residual force is orthogonal to the current displacement increment. 

Subsequently, the magnitude of the displacement increment is optimal when the orthogonality 

condition is satisfied. Moreover, this approach does not need the block elimination scheme 

[KOUHIA 2008], see § VI. 
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The orthogonality condition is expressed as: 

     0,  i

p

i

p Rqqf                     [VI-31] 

   However, the original formulation can break down at displacement limit points, i.e. at snap-back 

points, especially when the load vector contains a single point load. 

Further studies are presented in: [KRENK & HEDEDAL 1995; POULSEN & DAMKILDE 1996]. 

 

                                                             

 

 

 

 

 

 

 

          Fig. VI.11. Minimum residual method    Fig. VI.12. Cylindrical Arc-Length method 

 

      V- THE LOAD CONTROL METHOD 

   The Load Control method consists of incrementing the entire applied external force {Pext} into 

load levels using the load multiplier λ. for each load level, a displacement is calculated. The 

standard load control approach is based on an equilibrium equation defined as the difference 

between the internal force {Q} and a prescribed external load λ{pext}, such that: 

       0)  qQPqR ext                    [VI-32] 

Let us consider a converged solution at the increment p: 

V-1.1. Parameterization 

   A load increment is imposed at the increment (p+1) as: 
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 : is the prescribed load step. 
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V-1.2. Prediction 

   The predictor step corresponds to the first iteration (i=1). 

At the first iteration (i) = 1. After constructing the tangent stiffness matrix
  1

1

T

pK  , we solve: 

        1 1

1 1

T

p p p extK q P  
      
 

                  [VI-34] 

The predictor solution is: 
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                   [VI-35] 

V-1.3. Correction 

- At an iteration (i) ≥ 2: 

    After updating the tangent stiffness matrix
  iT

pK 1  (Newton-Raphson), the internal forces are 

calculated
   1

11





i

p

i

p qQ . It depends on the formulation of the linear finite element. 

Then the unbalanced residue is calculated as: 

      11   pext

i

p QPR                     [VI-36] 

We solve the following equation for
  i

pq 1  :  

       1 1 1

T i i i

p p pK q R  
    
 

                   [VI-37] 

Thus, at the iteration (i) the solution is: 

       
 



















 i

p

i

p

i

p

i

p qqq

1

1

1

11
                   [VI-38] 

   This result, represented a first approximated solution. If the convergence criterion is not satisfied 

at this solution, we move to the next iteration till convergence is achieved, then we move to the 

next increment. 
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      VI- THE ARC-LENGTH METHOD 

VI-1.1. Parameterization 

   As we have seen, in this step, an additional constraint is added to complete the set of equations 

together with the equilibrium expression Eq. [VI-7]. Therefore, this step consists to define the 

function f so as to link the load and the displacement parameters via an incremental parameter. 

This incremental constraint is noted L  and called "Arc Length". So, f is explicitly defined by the 

following equation:  

      0),(
22  LPPbqqqf extext                            [VI-39] 

L : the prescribed arc length.  

 : incremental load parameter.  

 q : incremental displacement.  

b : is a scaling parameter, it determines the influence of load and displacement control in the 

behaviour of the arc-length method. 

   The arc-length method is then, aims to find the intersection of a given arc length L  with the 

equilibrium equation, such that:  

            0 LqQPLLR ext                  [VI-40] 

   The control function of the Arc-length method can take many forms depending on the author. 

Several forms are suggested to overcome algorithm’s sensitivity to limit points and bifurcation 

points: [DE-BORST 1987; DUAN & MAY 1994; WEMPNER 1971; BERGAN 1980-b; RIKS 1979; 

RHEINBOLDT 1981; RAMM 1981; CRISFIELD 1983-b], which results with several variants of the 

arc-length method. For instance, we could mention: 

1- The Elliptical Arc-Length Method 

   This method has the form of the most general constraint function, it is written as: 

     
22),( LPPbqqqf extext                   [VI-41] 

when b > 0 and b ≠ 1, this equation represents an ellipsoid in three dimensional space. See also: 

[PARK 1982; BERGAN 1980-b; BELUNI & CHULYA 1987]. 
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2- The Spherical Arc-Length Method 

   The spherical arc-length method consists of setting b = 1, the constraint function is written as: 

     
22),( LPPqqqf extext                                          [VI-42] 

This expression enforce the arc-length L to be equal to the norm of the vector   extPq , . 

3- The Cylindrical Arc-Length Method 

   In practice, for highly stiff structures, large forces are required to obtain small displacements. In 

this case, the term  extext PPb  2  would tend to infinite if compared to the displacement term

 qq  . Therefore, the arc-length method would behave similarly to the load control and lose 

the ability to overcome limit points. 

[CRISFIELD 1981] set the parameter b to be zero. This version performs well in capturing sharp 

turns at load limit points. Under these conditions, the stress function is: 

    
2

,f q q q L                        [VI-43] 

See: [DJEGHABA 1990] for further details. 

This constraint equation represents a cylinder in three dimensional space, Fig. VI.12. 

 

 

 

 

 

 

 

 

 

 

Fig. VI.13. Linearized Arc-Length: a. Normal plane; b. Updated normal plane 
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4- The Linearized Arc-Length Method 

   Linearized arc length method, has been introduced to overcome the problem of choosing the 

roots of the equation of spherical and cylindrical constraint. It was investigated by [WEMPNER 

1971; RIKS 1972; RIKS 1979; CRISFIELD 1981; RAMM 1981; SCHWEIZERHOF & WRIGGERS 1986; 

FORDE & STIEMER 1987]. This family of methods has different variants. As example we could 

mention the normal plane, and the update normal plane methods, Fig. VI.13. 

   These methods are also referred to as orthogonal arc-length methods because, an orthogonality 

condition is imposed. The solution procedure is forced to follow a “hyperplane” that is normal to 

the initial or updated tangent  pZ  at a distance L from the previous obtained solution. 

  01  LZZZ p

i

pp
                   [VI-44] 

VI-1.2. Prediction 

   Let   ppq ,  be the previous converged solution at an increment p. 

At the increment p+1 an arc length L is imposed such as: 

      

   














extextp

extextpp

ppbqqL

Lppbqqqf

2
1

22

11 0,




               [VI-45] 

In the following, the symbol (Δ) refers to incremental quantities while (δ) denotes iterative change. 

The predictor step corresponds to the first iteration (i=1). 

A suitable starting value for the corrector phase is using the following equation: 

          extpppp

R

p

T

p PRqqK )1(

1

)1(

1

)1(

1

)1(

1

)1(

1

)1(

1                    [VI-46] 

for i = 1, we have: 
   01

1 pR , and 
   01

1 

R

pq . 

           T

ppext

T

ppext

T

pp qpKpKq 11

1

11

1

11 







                  [VI-47] 

Where:  T

pK 1  is the tangent stiffness matrix at the beginning of the increment p+1. 

 T

pq 1 : the tangential solution. 

 T

pq 1 , and  R

pq 1  are defined as: 
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    
    













ext

T

p

T

p

p

R

p

T

p

PqK

RqK

11

111




                   [VI-48] 

Substituting Eq. [VI-45] into Eq. [VI-47], and solving for Δλ, yields: 

 

   extext

TT

p

p

ppbqq

L













11

1                             [VI-49] 

 

 

 

 

 

 

 

 

 

 

 

Fig. VI.14. Arc-Length method 

   Hence, two predictors with different signs are possible. The choice of the sign of the incremental 

load factor in the prediction phase of arc-length methods is crucial. If the wrong sign is predicted, 

the solution “doubles back” on the original load-deflection curve and the arc-length method fails 

to trace the complete path. 

   There exist several criterions to predict the direction of the equilibrium path (to decide if  
1

1
 p  

is positive or negative), see [CRISFIELD 1982, 1986; KWOK et al 1985]. The most popular criterions 

are: 

1- The Sign of the Current Tangent Stiffness Matrix Determinant 

   This is the most popular criterion, which was originally introduced by [CRISFIELD 1981], and 

it works well in the presence of limit points. However, in the presence of bifurcation, instead of 
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following the current path, the solution will oscillate about the bifurcation point and fails to get 

equilibrium because the sign of det[KT] cannot distinguish between limit point and bifurcation 

point, [FENG et al 1997]. This criterion is defined by: 

  TKsignsign det)(                     [VI-50] 

2- The sign of the predictor work increment 

   This criterion is insensitive to bifurcation points. However, it is ineffective in the descending 

branch of the load-deflection curve in ‘snap-back’ problems. This criterion is defined by: 

    ext

T Pqsignsign                      [VI-51] 

3- The sign of the internal product of the displacements 

   [FENG et al 1995, 1996] proposed a criterion based on the sign of the internal product between 

the previous converged incremental displacement  q  and the current tangential solution  Tq  

    Tqqsignsign                      [VI-52] 

   This criterion is insensitive to limit points, turning points and bifurcation points. Its key point is 

the fact that  q carries with it information about the history of the current equilibrium path. 

VI-1.3. Correction 

   In the correction phase, Arc-length methods solve the augmented system of equations by 

applying Newton-Raphson to Eq. [VI-20]. This idea was first proposed by [RIKS 1972, 1979] and 

[WEMPNER 1979], with a different constraint equation. 

A truncated Taylor series of Eq. [VI-20] yields: 
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
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             [VI-53] 

Where: TK is the tangent stiffness matrix. The aim is to have Ri+1(q, λ) = 0 and f i+1 = 0. 

   For the solution of this system, there exist three phase block elimination method, which are: 

« The Block elimination method », « The Exterior product form algorithm », and « The Newton’s 

method to the augmented system », see [KELLER 1983; KOUHIA 2008]. The last one is presented 

in what follows: 
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The system [VI-53] can be written in the following matrix form: 
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


                [VI-54] 

- at an iteration i  ≥ 2 :  

After updating the stiffness matrix  )(

1

iT

pK  , and evaluating internal forces
    1

11





i

p

i

p qQ , the residue 

is obtained by: 

         1 1 1

i i i

p p ext pR P Q                        [VI-55] 

We solve the following equation for 
  i

pq 1 :  
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                   [VI-56] 

Then, the resulting iterative displacement is: 
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iT

p

i

p
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p qqq                      [VI-57] 

After obtaining {δqi}, the total and incremental displacements are updated: 
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i
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i

p qqq 
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The Arc-length is written: 
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1                               [VI-60] 

   By combining Eq. [VI-36], Eq. [VI-37] and Eq. [VI-38], we get a second order equation                

of 
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p                     [VI-61] 
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Where: 

 
     















p

i

p

i

p

p

i

p

i

p qqq

 )(

1

)(

1

)(

1

)(

1
                   [VI-62] 

The quadratic equation can be solved for δλ: 
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Finally, the load level is updated using: 
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                       [VI-63] 

The solution for δλ can be characterized as:  

- Real roots of opposite sign: Solution process converges normally;  

- Real roots of equal sign opposite to that of Δλ(i-1): in vicinity of a limit points;  

- Real roots of equal sign same as that of Δλ(i-1): in vicinity of a turning points; 

- Complex roots: signal a sharp turning point, a bifurcation point ==> divergent iterates. 

1- Real roots 

   For the case of real roots with opposite sign, the correct sign of δλ can be chosen according to 

the following criterions: 

a- Positive External work criterion 

   0 ext

T

ext PKPW                    [VI-64] 

This criterion, fails at turning points and bifurcation points because ΔW=0 at these points.  

b- Angle Criterion  

   In this criterion the selected root is the one that corresponds to the smallest change in the 

direction of the iterative displacement vector compared to the previous displacement vector. That 

implies the calculation of {Δqi} for both δλ1 and δλ2, and the closest to the old incremental step 

direction is selected. This prevent the solution from doubling back on its track. 
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2- Complex roots 

   The presence of complex solutions may occur in vicinity of bifurcation points (the arc-length ΔL 

is too large). A common solution [CRISFIELD 1983-b], is by reducing the arc-length ΔL by means 

of the so-called automatic increment cutting, in which the process is cut and re-performed starting 

from the last converged solution with oldnew LL  5.0 .  

[LAM & MORLEY 1992] have presented a methodology for treating the complex roots that can 

arise in the above mentioned quadratic equation. 

   Further contributions on root selection rules can be found in : [BATHE & DVORKIN 1983-b; 

BELUNI & CHULYA 1987; YANG & SHIEH 1990; KWEON & HONG 1994; CARRERA 1994; KUO 

& YANG 1995; FENG et al 1995; HELLWEG & CRISFIELD 1998]. 

VI-1.4. Step-Length Control 

   In the Arc-Length method, automatic incremental arc-length L  is used for controlling the step 

length size. According to [CRISFIELD 1981], the new incremental length is found by applying: 

p

d
pp

I

I
LL  1                      [VI-65] 

pI : Number of iterations required to achieve equilibrium for the previous increment P; 

dI  : The desired number of iterations. 
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      I- INTRODUCTION 

   In this chapter, the assessment of the proposed: flat shell finite elements with drilling rotation, 

co-rotational formulation, geometric stiffness, and mass matrices, for geometrically nonlinear 

static and dynamic analysis, is performed by comparing the numerical results from a set of usually 

applied benchmark problems, with similar conventional finite elements without the in-plane 

drilling rotational d.o.f, and with available reference solutions.  

   In the frame of this research work, the data-processing developments enabled us to have a finite 

elements program developed in MATLAB platform, which runs on a personal computer, devoted 

to the geometrically nonlinear static and dynamic analysis of shell structures. The presented flat 

shell finite elements were implemented in the above mentioned MATLAB program. 

   Using this program, analyses may carried out using one of the following finite elements: 

“Quad”: quadrilateral flat shell finite element with fictitious stiffness (DKQ + Standard Bi-linear 

Quadrilateral membrane element + fictitious rigidity); 

“Qdrill”: quadrilateral flat shell finite element with drilling rotation (DKQ + Quadrilateral 

membrane element with in-plane drilling rotational d.o.f presented in chapter III, § III-1.2.3); 

“Trian”: Triangular flat shell finite element with fictitious stiffness (DKT + CST membrane 

element + fictitious rigidity); 

“Tdrill”: Triangular flat shell finite element with drilling rotation (DKT + Triangular membrane 

element with in-plane rotational degrees of freedom developed in chapter III, § III-1.2.3). 

   In all tested examples herein, the material behaviour is taken to be isotropic linearly elastic, and 

the damping ratio is taken to be null. For the geometrically nonlinear analysis, a displacement 

convergence criteria is used where the precision criteria is taken to be: ε = 0.001. 

Numerical comparisons are drawn between the developed elements and the existing solutions 

available in literature. These comparisons demonstrate the validity and reliability of the proposed 

approach, and the ability of the proposed shell elements with drilling rotation to describe the 

complete displacement field and to model planar and non-planar structures. 

   The first set of examples illustrates the ability of membrane elements with drilling rotation 

proposed herein for nonlinear dynamic analysis to handle large displacements and large rotations, 

and buckling problems in addition to the good representation of in plane dynamic quantities.  
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The second set of examples, is devoted to arbitrary plate and shell problems. These examples 

illustrates the ability of the proposed shell elements with drilling rotation  to handle a large class 

of shell problems in both static and dynamic nonlinear regime. Some of those examples can be 

solved by the conventional shell elements, while for some others the conventional shell elements 

would face some modelling problems. For all presented examples, the presented shell elements 

with drilling rotation faces no difficulties in modelling those problems. 

   Note that, both shell finite elements with drilling rotation and conventional shell elements are 

built at the same program in the same subroutines, and work by the same way, for this reason, the 

comparison between these elements, has a justifiable value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER VII. NUMERICAL EXAMPLES 

 

168 

 

      II- IN-PLANE TESTS 

II-1. Linear Analysis 

II-1.1. Cantilever beam under a tip load 

   In this example, a cantilever beam of rectangular cross-section shown in Fig. VII.1. is studied. 

The left end of the beam is fixed while the right end is subjected to a parabolic shear distribution. 

The dimensions and elastic properties of the beam are: L=48, h=12, b=1, E = 3×104 and υ=0.25. 

   To compare the accuracy of the present EAS element, the results are presented in Tab. VII.1 

against the original Allman’s element, the element presented in [PILTNER & TAYLOR 2000] 

named "TE4” and the reference solution presented in many references [BERGAN & FELIPPA 1985; 

FELIPPA 2003; CEN et al 2011]. 

 

 

 

 

 

 

Fig. VII.1. Cantilever beam: geometry and loading 

 

Tab. VII.1. Results of the cantilever beam. 

Vertical displacement at x=48, y=0 

Mesh CST Allman TE4 Present 

1×4 0.0907 0.2696 0.3037 0.3034 

2×8 0.1984 0.3260 0.3382 0.3379 

4×16 0.3056 0.3472 0.3506 0.3500 

8×32 0.3421 0.3539 0.3548 0.3540 

16×64 0.3531 0.3555 0.3562 0.3554 

Analytic 0.3558 
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II-1.2. Cook’s problem 

   A tapered cantilever beam of unit thickness shown in Fig. VII.2. is clumped on one end and 

subjected to a distributed shear load on the other end. The elastic proprieties are: E = 1, υ = 0.25. 

The results are compared to the best known solution which is: 23.96, presented in many references 

[COOK 1974-b; LONG & XU 1994; STOLARSKI & CHEN 1995-b; FELIPPA 2003; CEN et al 2011]. 

The reference solution is obtained using a fine mesh of “64×64” elements, which can be considered 

accurate enough. The obtained results are compared to the reference solution in Tab. VII.1. 

 

 

 

 

 

 

 

 

Fig. VII.2. Cook’s cantilever beam: geometry, mesh, and loading 

 

Tab. VII.2. Results of Cook’s membrane problem. 

 Vertical displacement at point A 

Mesh 2×2 4×4 8×8 16×16 

CST 11.99 18.28 22.02 23.41 

Allman 19.67 22.41 23.45 23.81 

TE4 20.27 22.49 23.46 23.81 

Present 20.29 22.49 23.46 23.81 

Reference 23.96 
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II-1.3. Clamped arch  

   In this example, the clamped arch depicted in Fig. VII.3. is subjected to a concentrated load 

P=7500 located at its mid-span. The arch is modelled as a plane stress problem presented in          

Fig. VII.3. Geometrical characteristics are taken to be: R=100, θ=0.707 rad, h=2, and b=1. 

The material properties are E=107, ν=0.25. 

 

 

 

 

 

 

 

 

 

 

 

Fig. VII.3. Clamped arch: geometry, mesh, and loading 

 

Tab. VII.3. Results of a clamped arch. 

Vertical displacement at mid-span 

Mesh CST Allman Present Qdrill 

10×2 0.01238 0.02829 0.1076 0.1278 

20×2 0.02091 0.06363 0.1212 0.1467 

40×2 0.040020 0.1102 0.1287 0.1519 

40×4 0.042245 0.1121 0.1450 0.1536 

40×8 0.042962 0.1125 0.1516 0.1542 
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II-2. Dynamic and Nonlinear analysis 

   In this section, linear and nonlinear static and dynamic responses of rectilinear and curved beams, 

under different loads conditions are studied in order to test the performances of the proposed 

developments when simulating bending by using the in-plane behaviour in both nonlinear, static 

and dynamic regimes. 

II-2.1. Cantilever beam under distributed step loading 

   In this example, static and dynamic responses of a cantilever beam under distributed step load is 

studied. We simulated bending by using the in-plane behaviour with a mesh of “12×2” (length × 

thickness) quadrilateral elements, and with “32×8×2” triangular elements as presented in             

Fig. VII.4. First we tested the nonlinear response of the cantilever beam with the following 

geometry and material properties: L =10 in; b =1 in; h =0.1 in; E = 12×106 lb/in2 and υ =0.2.       

The results shown in Fig. VII.6. exhibit good agreement compared to the reference solution 

presented in [MASSIN & AL-MIKDAD 2002].  

   For dynamic analysis, and in order to match the reference example presented in [KIM et al 2003], 

geometry and material properties are assumed to be: L =10 in; b =1 in; h =1 in; E = 12×103 lb/in2,   

υ =0.2 and ρ =1 lbm/in. The Applied load is a step load of intensity q0 = 2.85 lb/in as presented in 

Fig. VII.5. The time interval used for Newmark’s integration method is 0.13512×10-3 s. 

   The results shown in Fig. VII.7. and Fig. VII.8. are compared to the reference solution for linear 

dynamic analysis presented in [KIM et al 2003]. For the nonlinear dynamic response, the reference 

solution is taken from the reference [KANT & KOMMINENI 1994].  

 

 

 

Fig. VII.4. Cantilever beam: geometry and mesh 

 

 

 

 

Fig. VII.5. Step load 
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Fig. VII.6. Load-displacement curve of the cantilever beam 

 

 

 

Fig. VII.7. Linear dynamic response of the cantilever beam 
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Fig. VII.8. Nonlinear dynamic response of the cantilever beam 

   As the results show, the responses obtained by using the "Tdrill" and "Qdrill" elements 

associated with the proposed mass matrices for the triangular and quadrilateral elements with 

drilling rotation, present a good convergence compared to the reference solution. It is clear then, 

that the presented elements with drilling rotation exhibit true and accurate dynamic in-plane 

response when associated to convenient mass matrices. 

II-2.2. Clamped arch  

   In this example, the clamped arch of Example II-1.3 depicted in Fig. VII.9. is studied for 

nonlinear static and dynamic analysis when subjected to a concentrated step load P located at its 

mid-span. The arch is modelled as a plane stress problem with “40×2” (length × thickness) 

quadrilateral elements through the thickness as presented in Fig. VII.9-c. For the triangular 

element, the arch is modelled with “40×8×2” through thickness triangular elements. 

   Geometrical characteristics are taken to be: R=100, θ=0.707rad, h=2, b=1, and P=7500.         

The material properties are E=107, ν=0.25, and mass density ρ=2.45×10−4. 

A constant time step is used for time integration: Δt = 0.2×10−3 s. 

   The static geometrically nonlinear response of the clamped arch is depicted in Fig. VII.10. 

against nonlinear beam solution. 
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Fig. VII.9. Clamped arch: (a) geometry, (b) load, (c) mesh 

   The dynamic responses obtained by the triangular and quadrilateral membrane elements with 

drilling rotation representing the displacement history at the respective load point is plotted in   

Fig. VII.11. and Fig. VII.12. Comparing the results with numerical results of reference [DUARTE-

FILHO & AWRUCH 2004] using (40×4 hexahedral elements), a very good agreement can be 

observed for both “Qdrill” and “Tdrill” elements.  

 

 

Fig. VII.10. Nonlinear response of the clamped arch 
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Fig. VII.11. Dynamic response of the clamped arch using “Qdrill” element 

 

 

 

Fig. VII.12. Dynamic response of the clamped arch using “Tdrill” element 
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II-2.3. Cantilever beam under a concentrated end moment 

   In this example, a cantilever beam is subjected to a concentrated moment applied at the free end 

as shown in Fig. VII.13. The beam has a rectangular cross section with dimensions (b×h) and 

length L. geometry and material properties are: L = 12; b = 1; h = 0.1; E = 12.105; and ν = 0. 

Mmax = 50π/3. The beam was discretized into “20×2” (length × thickness) quadrilateral elements. 

   The obtained moment-displacement curves for nonlinear static analysis are given in Fig. VII.14. 

The results show that an excellent agreement with the analytical solution taken from the reference 

[KUZNETSOV & LEVYAKOV 2007] was obtained. 

The analytical solution corresponds to a beam rolled-up into a circular arc of radius r with               

1/r = M/EI, where M is the applied end moment. A complete circle is achieved at M = 2πEI/L. 

   In order to perform linear and nonlinear dynamic analysis we assume the mass density to be 

ρ=2×10−6. The beam is subjected to a concentrated step moment M=7, applied at the free end.        

A constant time step Δt = 0.2×10−3s is used. In this case, the time-history curves show a great 

convergence compared to the beam solution which is taken as the reference solution. 

Unfortunately, triangular elements fail to perform this example because they return wrong answer 

to moment loading type. 

 

 

 

 

 

 

 

 

 

Fig. VII.13. Cantilever beam subjected to pure bending: geometry and mesh 
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Fig. VII.14. Cantilever beam load-displacement curve 

 

    

 

Fig. VII.15. Cantilever beam vertical displacement time history curve 
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Fig. VII.16. Cantilever beam end rotation time history curve 

   The moment-displacement curves obtained using “Qdrill” element given in Fig. VII.14. show 

that an excellent agreement with the analytical solution is obtained using “20×2” quadrilateral 

elements. These results illustrate that we have a powerful algorithm based on the updated 

Lagrangian co-rotational formulation for both large displacements and large rotations. 

II-2.4. Lee’s Frame 

   A hinged right angle frame with two members of uniform rectangular cross-section, is subjected 

to a vertical concentrated load, located on the horizontal member with a distance from the 

intersection point of 24 cm as shown in Fig. VII.17. Both beam and column have a unified length 

of 120 cm, cross section of dimensions (20×30 cm2), and linear elastic modulus of 7.2×106 KN/m2. 

Both beam and column is discretized with “20×2” quadrilateral elements, and “20×4×2” triangular 

elements. This is a well-known geometric non-linear benchmark problem for its particular snap 

through post-buckling behaviour. 

   The displacements plotted against load, are the vertical and horizontal displacements of the node 

under the point load. An excellent agreement was found between our calculated results and the 

results of the reference: [NUKALA & WHITE 2004] obtained using fine mesh beam elements. 
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Fig. VII.17. Lee’s frame: geometry and mesh 

 

 

 

Fig. VII.18. Lee’s frame load-displacement curves using “Qdrill” element 
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Fig. VII.19. Lee’s frame load-displacement curves using “Tdrill” element 

      III- SHELL PROBLEMS 

III-1. Geometrically Non-Linear Static Analysis 

III-1.1. Cantilever beam under a concentrated moment at the free end 

   In this example, we studied a cantilever beam subjected to a pair of concentrated moments 

applied at the free end as shown in Fig. VII.20. This example is used as benchmark problem for 

large displacements and large rotations analysis. The beam was discretized here into four 

quadrilateral elements, and the characteristics used are as follows: L = 12, b = 1, h = 0.1, ν = 0, 

and E = 12x105. 

Fig. VII.20. Geometry of the cantilever beam 
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   The obtained moment-displacement curves given in Fig. VII.21. show that an excellent 

agreement with the analytical solution was easily obtained using both triangular and quadrilateral 

elements. Several deformed configurations until the beam formed a circle are depicted in              

Fig. VII.22. 

 

Fig. VII.21. Cantilever beam load-displacement curve 

 

 

Fig. VII.22. Cantilever beam: deformed configurations 
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III-1.2. Cylindrical shell under concentrated loading  

   This example is the most used to validate shell finite elements in geometrically nonlinear 

analysis. Fig. VII.23. shows a thin cylindrical shell subjected to a concentrated load applied in its 

center. Its curved edges are free while the straight edges are hinged. Because of the double 

symmetry of geometry, loading, and boundary conditions, only one quarter of the shell is modelled 

using “3×3” quadrilateral elements and “3×3×2” triangular elements as presented in Fig. VII.24. 

   The geometrical and mechanical characteristics are as follows: R = 2540 mm, L = 254 mm,            

θ = 0.1 rad, υ = 0.30, and E = 3.10275 kN/mm2. 

 

 

 

 

 

 

 

 

Fig. VII.23. Geometry of the cylindrical shell 

 

 

 

 

 

 

 

 

Fig. VII.24. Mesh of one quarter of the cylindrical shell 
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   The analysis carried out in this work, shows the numerical difficulties that faces conventional 

shell elements with fictitious rigidity to undergo the unstable branch of the load-displacement 

curve of this example. We observed a very large number of iterations and sometimes divergence 

with conventional shell elements. 

This analysis was carried out for two thicknesses: 

* for h=12.7 mm: curves presented in Fig. VII.25. and Fig. VII.26. 

   The results obtained using the “Qdrill” and “Tdrill” elements present a precise convergence 

towards the reference solution by [SURANA 1983]. The total number of iterations which requires 

the elements with drilling rotation to plot the curve presented in Fig. VII.25. and Fig. VII.26. is 28 

iterations, while the triangular element “Trian” and the quadrilateral “Quad” element require 

more than 30 iterations. 

 

Fig. VII.25. Load-displacement curve using quadrilateral elements (h=12,7 mm) 

* for h=6.35 mm: curve presented in Fig. VII.27. and Fig. VII.28. 

   The thickness is reduced to the half. In this case the shell presents a very sensible behaviour, and 

a very marked snap-through is noted. For testing our results, we refer to the load-displacement 

curve by [RAMM 1982]. The necessary total iteration number to plot the curve Fig. VII.27. and  

Fig. VII.28. is 46 iterations using "Qdrill" element, while the “Quad” and “Trian” shell elements 

with fictitious stiffness require more than 60 iterations. 
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Fig. VII.26. Load-displacement curve using triangular elements (h=12,7 mm) 

 

 

Fig. VII.27. load-displacement curve using quadrilateral elements (h=6,35 mm) 
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Fig. VII.28. load-displacement curve using triangular elements (h=6,35 mm) 

III-1.3. Spherical shell under concentrated loading 

   The presence of the double curvature is interesting for the validation of shell elements. Therefore, 

the example considered here is a thin spherical shell whose edges are articulated. It is subjected to 

a concentrated load applied at its center, Fig. VII.29. Because of the double symmetry of geometry, 

loading, and boundary conditions, only one quarter of the shell is modelled using “4×4” 

quadrilateral elements and “4×4×2” triangular elements. The shell characteristics are as follows:      

R = 2540 mm; 2a = 784.90 mm; h = 99.45 mm; E = 68.95 KN/mm2; and υ = 0.3. 

   The nonlinear response of the spherical shell is illustrated by the load-displacement curve of the 

central point represented in Fig. VII.30. and Fig. VII.31. We refer to the analytical solution 

presented in the reference: [MEEK & RISTIC 1997]. The solutions obtained by using the “Qdrill” 

and “Tdrill” elements are in good agreement with the analytical solution for shallow shells. This 

can be explained by the fact that the flat shell elements with drilling rotation behaves better in the 

case of the double curvature. 

   The total number of iterations which requires “Qdrill” and “Tdrill” elements to plot the curve 

presented in Fig. VII.30. and Fig. VII.31. is 30 and 43 iterations respectively, while the triangular 

“Trian” and the quadrilateral “Quad” elements require about 60 iterations. 
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Fig. VII.29. Geometry of the spherical shell 

 

 

 

Fig. VII.30. Load-displacement curve of the spherical shell using the quadrilateral elements 
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Fig. VII.31. load-displacement curve of the spherical shell using the triangular elements 

III-2. Linear and Geometrically Non-Linear Dynamic Analysis 

III-2.1. Cantilever beam under concentrated load 

   Fig. VII.32. represents a cantilever beam of dimensions (6"×6"×120") with a constant 

concentrated load applied at the free end, Fig. VII.33. The following material properties are used 

in the analysis: E = 30x106 psi, Poisson’s ratio υ = 0.3, and mass m = 0.000733 lbm/in. The 

reference solution is taken from: [OZKUL 2004]. The beam is analysed by using 6 equally sized 

elements with a time step of Δt = 0.004s as used for the reference solution.  

 

 

 

 

 

 

Fig. VII.32. Geometry and mesh of the cantilever beam 
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Fig. VII.33. Constant applied load 

   The normalized vertical displacement time history of the beam tip illustrated in Fig. VII.34. 

obtained by triangular and quadrilateral elements is compared to the reference solutions given in 

[OZKUL 2004]. The obtained vertical displacement time history curves of the free end at the middle 

line show an excellent agreement with the reference solution. 

  

 

Fig. VII.34. Free end vertical displacement time history of the cantilever beam 

III-2.2. Simply-supported rectangular plate under concentrated step load 

   This example considers the linear and geometrically nonlinear dynamic analysis of a rectangular 

plate of dimensions: a =1524 mm long and w=1016 mm wide, with simply supported edges, as 

presented in Fig. VII.35. The plate is subject to the time-dependent concentrated load shown in 

Fig. VII.36. which is applied at the center of the plate, with P0 = 44.54 N, and t0 = 0.006 s. 

   Because of the double symmetry of geometry, loading, and boundary conditions, only one 

quarter of the plate is required to perform the example using “8×8” elements as for the reference 

solution taken from: [MEEK & WANG 1998]. The thickness is taken to be h = 25.4 mm, Young’s 
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modulus of elasticity is E = 2.0955×l08 N/m2, the specific weight is ρ = 3210.05 kg/m3, and the 

Poisson’s ratio is υ = 0.25. For direct time integration of this example, the time step size was taken 

to be Δt = 0.004 s. 

 

 

 

 

 

 

Fig. VII.35. Geometry of the rectangular plate 

 

 

 

 

 

 

Fig. VII.36. Time-dependent concentrated load 

   The computed displacement time history of the central point, by using the two shell elements 

with drilling rotation “Qdrill” and “Tdrill” elements, and by using the two conventional shell 

elements “Quad” and “Trian” elements is shown in Fig. VII.37. The first observation we made is 

that the presented shell elements give exactly the same results in linear dynamic analyses, and a 

close results in geometrically nonlinear analyses. Also, it is observed that the presented shell 

elements give a very good accurate results accordingly to the results of [MEEK & WANG 1998] in 

both, linear and geometrically nonlinear dynamic analysis. 
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Fig. VII.37. Vertical displacement time history of the rectangular plate at the central point 

III-2.3. Simply-supported square plate under uniform step pressure 

   This example considers the square plate shown in Fig. VII.38. The plate is simply supported at 

the four edges, and subjected to a suddenly applied uniform pressure shown in Fig. VII.39.  

The plate dimensions are: a = 254 mm, h = 12.7 mm, and it has the following material properties: 

modulus of elasticity E = 68950 MPa, Poisson’s ratio υ = 0.3 and mass density ρ = 2765.8 kg/m3. 

   Using double symmetry, only “4×4” shell elements are used to model one quarter of the plate. 

 

 

 

 

 

 

 

 

Fig. VII.38. Square plate: geometry and loading 
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Fig. VII.39. Step load 

      The linear and nonlinear vertical displacement time history of the central point of the plate are 

presented in Fig. VII.40. and Fig. VII.41. In order to check our results, we referred to the solution 

of [ALI & AL-NOURY 1986], where they solved the problem by finite difference method. We 

noticed that a close agreement was found with the results of [ALI & AL-NOURY 1986]. 

   In this example, which is a plate structure (bending only). “Quad” and “Trian” elements with 

fictitious stiffness needed some extra iterations to achieve equilibrium immediately when the 

structure exhibits moderate nonlinearity, whereas “Qdrill” and “Tdrill” shell elements with drilling 

rotational d.o.f elements was more effective even in case when the in-plane behaviour is dominated 

by bending behaviour. 

 

 

Fig. VII.40. Linear and nonlinear vertical displacement time history using the quadrilateral 

elements  
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Fig. VII.41. Linear and nonlinear vertical displacement time history using the triangular elements 

III-2.4. Hinged cylindrical panel under concentrated load 

   In this example, the thin cylindrical shell of radius of curvature R, longitudinal length L, 

thickness h, and opening angle θ of the Example III-1.2 is studied in linear dynamic regime. The 

cylindrical shell is subjected to a concentrated load applied at its center. Using double symmetry 

of the shell structure, only one quarter of the shell is modelled using “4×4” and “8×8” rectangular 

elements. The geometrical and mechanical characteristics are as follows: R=2540 mm, L=2540 mm; 

θ=0.1 rad, h = 12.7 mm, υ= 0.3, E = 0.310275 kN/mm2, and ρ = 3210.05 Kg/m3. 

   The time-dependent concentrated load function is shown in Fig. VII.42. with P0 = 400 N,            

and t0 = 0.01s. For dynamic integration, the time step size is taken to be: Δt = 0.001s. 

   The obtained vertical displacement time history curves are compared to the reference solution 

presented in: [MEEK & WANG 1998]. 

   The displacement time history curves obtained using the “Quad” and “Trian” shell elements 

with fictitious stiffness given in (Fig. VII.43. Fig. VII.44. Fig. VII.45. and Fig. VII.46.) show that 

a considerable attention must be accorded to the value of the elastic constant of the fictitious 

stiffness (α) when using conventional shell elements. 

   In this example, several varieties of the value of the elastic constant of the fictitious stiffness (α) 

are used starting from 10-10 to 1.0 using both “Quad” and “Trian” elements. 
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Fig. VII.42. Geometry of the cylindrical shell 

   From displacement time history curves obtained using “8×8” ‘Quad’ elements given in Fig. 

VII.43. and using “8×8×2” ‘Trian’ elements given in Fig. VII.44. one can deduce that there is a 

range between α=10-2 to α=10-5 where the solutions are very close, we conclude that the value of 

the fictitious stiffness constant (α) must be chosen among the values of this range because values 

less than 10-5 give wrong response, and values greater than 10-3 also give wrong response.  

   When a mesh of “4×4” elements is used, the range limits are changed for the values from       

α=10-3 to α=10-6. The intersection of these tow ranges constitute the acceptable values of the (α) 

constant, which are vary from α=10-3 to 10-5. 

 

 

Fig. VII.43. Dynamic response of the cylindrical shell using 8×8 “Quad” elements 
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   It can be seen from Fig. VII.47. and Fig. VII.48. that a good convergence rate was obtained by 

both “Trian” and “Quad” elements using α=10-3. On the other hand, nonlinear analyses requisites 

the use of a bigger value of the elastic constant (α) of the fictitious stiffness to unsure numerical 

equilibrium and to perform the analyses with the least numerical coast. 

 

Fig. VII.44. Dynamic response of the cylindrical shell using 8×8 “Trian” elements 

 

 

Fig. VII.45. Dynamic response of the cylindrical shell using 4×4 “Quad” elements 
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Fig. VII.46. Dynamic response of the cylindrical shell using 4×4 “Trian” elements 

   In this example, the thin cylindrical shell subjected to a concentrated load applied at its center is 

studied in linear and geometrically nonlinear dynamic regime. The time step size is: Δt = 0.002 s. 

   The time history curves of vertical displacement of point A obtained using a mesh of “8×8” 

quadrilateral elements is given in Fig. VII.47. for “Qdrill” shell element, and in Fig. VII.48. for 

“Tdrill” element. The obtained results show that an excellent agreement with the solution in the 

reference [MEEK & WANG 1998] is obtained using “8×8” quadrilateral meshing. 

 

Fig. VII.47. Dynamic response of the cylindrical shell using Quadrilateral elements 
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Fig. VII.48. Dynamic response of the cylindrical shell using triangular elements 

   An important factor in this example, is the number of iterations required by each one of the shell 

elements presented herein to perform the example. To make a comparison, the total number of 

iterations required to perform this example using “Qdrill” element is 522 iteration, while the 

“Quad” element requires 625 iteration. It is easy to see that the solution obtained using “Qdrill” 

element was very faster than the solution obtained by using “Quad” element. In this example it is 

1.2 time faster. Also, “Qdrill” and “Tdrill” shell elements ensure more numerical stability 

comparison to “Quad” and “Trian” elements. As we could see, for example “Quad” element 

needed 12 iterations within time step when highly nonlinear behaviour is exhibited, which mean 

that, this element suffers for numerical instability, especially in regions of large nonlinearity. These 

numerical issues, could led the numerical solution to diverge from the exact solution. 

Consequently, smaller time step must be used using “Quad” and “Trian” conventional shell 

elements. On, the other hand, larger time step could be used safely using “Qdrill” and “Tdrill” 

shell elements with drilling rotation. 

   These results, illustrate that the presented “Qdrill” and “Tdrill” flat shell elements with drilling 

rotational d.o.f, are powerful and reliable shell elements that could be used for geometrically 

nonlinear dynamic analysis by direct time integration, especially when the structure response 

involves highly nonlinear behaviour. 
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III-2.4. Thin cylindrical shell under uniformly distributed half sin wave loading 

   A thin cylindrical shell structure having the geometry shown in Fig. VII.49. is studied in this 

example. Vertical displacement of the central point is drawn when the shell is subjected to a 

uniformly distributed half sinusoidal wave loading with a peak intensity of 4309.2 N/m2 shown in 

Fig. VII.50. The two straight edges of the shell are free, while the curved edges are supported on 

rigid diaphragms against the in-plane degrees of freedom (u, w, θy). The shell geometrical, 

mechanical and physical characteristics are taken as follows: Radius of curvature R = 15240 mm, 

longitudinal length L = 15240 mm, thickness h = 76.2 mm, opening angle θ=20°, poison’s ratio 

υ=0.3, modulus of elasticity E=20685 MPa, and weight density ρ = 1.795 KPa. 

 

 

 

 

 

 

 

Fig. VII.49. Cylindrical shell supported on rigid diaphragms 

 

 

 

 

 

 

Fig. VII.50. Half sinusoidal wave loading 

   In this example, a complete study has been done. The predominance of nonlinearity has been 

shown over linear response. The vertical deflection time-history curves of the midpoint of the free 

edge (point A) are shown in Fig. VII.51. and Fig. VII.52. The results show that there is good 

agreement between the present solutions using “4×4” quadrilateral shell elements and the solution 

presented in [CLOUGH & WILSON 1971]. 
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Fig. VII.51. Linear vertical displacement time history using the quadrilateral elements 

 

 

Fig. VII.52. Nonlinear vertical displacement time history using the quadrilateral elements 
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Fig. VII.53. Linear vertical displacement time history using the triangular elements 

 

 

 

Fig. VII.54. Nonlinear vertical displacement time history using the triangular elements 
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      IV- DISCUSSION 

   As we have seen, the co-rotational Lagrangian discerption of motion has proven to be a simple 

and efficient formulation to handle large in-plane rotations. When this formulation is extended to 

formulate a flat shell finite element with six d.o.f, we get a powerful shell finite element for linear 

and geometrically nonlinear static and dynamic analysis. 

   When fictitious stiffness is used, a small rotational rigidity specified by the user is added into 

the stiffness matrix. It's a simple solution but it has some serious disadvantages. The more 

important one, is that the value of that fictitious stiffness that gives accurate results is dependent 

on the analysis to be performed. In linear analysis, this value must be as small as possible to obtain 

accurate results, but big enough to avoid ill-conditioned stiffness matrix when all the elements 

meeting at a node are co-planar. A value of the constant α=10-3 seems to be the optimum. Also, in 

linear dynamic analysis, the optimum value that gives acceptable results is in order of α=10-3, 

which is convenient for accurate linear analysis. Unluckily, in geometrically nonlinear analysis, 

small values of the fictitious stiffness cannot be used safely, because in highly nonlinear problems, 

small value will cause serious convergence difficulties, so the fictitious stiffness value have to be 

increased to unsure convergence and numerical stability. A value of 10-3 or greater must be adopted 

for the constant α to perform the examples of nonlinear analysis. However, too large value may 

also cause the solution to diverge, or even worse, the solution may succeed, but the answers may 

be inaccurate. 

   By analysing the results obtained by “Tdrill” and “Qdrill” shell elements with drilling rotation, 

and those of “Trian” and “Quad” shell elements with fictitious stiffness, we can easily see that 

elements with drilling rotation, require less number of iterations in nonlinear static or dynamic 

analysis compared to the very large number of iterations and numerical instabilities that shell 

elements with fictitious rigidity exhibit. We think that in case of shell elements with fictitious 

stiffness, in-plane rotations result from the artificial stiffness can’t be used in the process of 

correction of equilibrium by minimization of residual unbalanced forces, because in-plane stress 

and internal forces are related to in-plane translations only. Contrary, the natural interpolation of 

the in-plane rotational degree of freedom, makes it possible to calculate strain and stress due in-

plane rotation, to be used in the equilibrium correction process. Thus, on one hand, shell elements 

with drilling rotation show a great numerical stability and less numerical cost in critical situations, 

even when the response involves large nonlinear behaviour. Also, they do finite in-plane rotations 

and they can represent true in plane dynamic response. On the other hand, one can see that the 

conventional membrane elements, decline the performances and capacities of convergence of the 

resulting flat shell finite element because of the absence of natural rotational in-plane rigidity. 
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      CONCLUSION 

   This thesis, presents an investigation and contribution in linear and geometrically nonlinear 

static and dynamic analysis of three-noded triangular and four-noded quadrilateral membrane 

elements with drilling rotational degree of freedom. First, we presented the development and 

interpolation of a new triangular membrane element with rotational degree of freedom based 

on the EAS formulation. This method provides a valuable enrichment to the displacement field 

of the presented triangular membrane element leading to a locking free triangular element with 

in-plane rotation with improved behaviour. This in-plane rotational degree of freedom, 

however, does not represent the true drilling rotation. 

   The presented triangular and quadrilateral membrane elements for linear analysis have 

extended to perform: 

- Geometrically nonlinear large displacements and large rotations analysis, by means of 

the co-rotational updated Lagrangian formulation. In this purpose, a new co-rotational 

formulation is developed and presented for both triangular and quadrilateral membrane 

elements with drilling rotation, also, geometric stiffness matrix that takes into account 

the effect of the in-plane rotational drilling degree of freedom is included.   

- Linear transient dynamic analysis using the Newmark direct time integration method. 

In this section we developed in-plane mass matrices taking into account the in-plane 

rotational inertia for triangular and quadrilateral elements with drilling rotation.  

- Geometrically nonlinear dynamic analysis by combining the above mentioned methods.  

   The proposed numerical tests for both triangular and quadrilateral membrane elements with 

in-plane rotational d.o.f, show that these elements exhibit very good performances and could 

return true in-plane rotational vibrational modes when using a convenient mass matrix that takes 

into account the in-plane rotational inertia corresponds to the drilling rotation. Furthermore, 

when using a well-chosen co-rotational formulation, these elements can efficiently handle finite 

in-plane rotations, and exhibit good performances for both nonlinear static and nonlinear 

dynamic analysis. The co-rotational updated Lagrangian formulation has confirmed to be very 

efficient for nonlinear large displacements analysis, and it has proven to be an effective 

formulation to handle not only moderate but also large rotations problems. 

   The presented membrane elements, have extended to be a part of flat shell finite elements by 

combining hem with the well-known “DKT” and “DKQ” thin plate bending elements. The 

obtained shell elements are implemented into geometrically nonlinear static and dynamic 
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analysis. A complete analysis of the usual strategies to introduce the in-plane rotations into the 

shell element’s displacement field is presented, including the drilling rotation and the artificial 

fictitious stiffness strategy applied onto translation-only membrane formulations. The resulting 

shell elements providing a complete degrees-of-freedom field, which are the “Qdrill” and 

“Tdrill” flat shell elements with drilling rotation, and the “Quad” and “Trian” flat shell elements 

with fictitious stiffness, are implemented and assessed. 

   Several numerical examples were solved to demonstrate the accuracy of the formulation for 

both static and dynamic, small and large displacements and rotations analysis of plates and 

shells. The results were compared with those available in the existing literature.  

   As evidenced by the obtained results, shell elements based on the membrane formulation with 

drilling rotations perform significantly better relatively to the formulation without the drilling 

rotation component. The efficiency of the “Qdrill” and “Tdrill” flat shell elements for 

geometrically nonlinear analysis using the co-rotational updated Lagrangian formulation, and 

for linear and nonlinear transient dynamic analyses using the Newmark implicit direct time 

integration method has been shown. 

   When a flat shell element with fictitious stiffness is used for the analysis of general shells, 

especially in the case of problems involving large rotations, a finer mesh, large number of load 

steps, and small time intervals are mandatory in order to obtain a closer approximation towards 

the exact solution or finite element solution available in the existing literature. This is no longer 

required when using shell elements with drilling rotation, which leads to a computationally 

more efficient and economic analysis, mainly due to the extreme simplicity of the flat shell 

elements formulation. 

   Several examples have been solved with various types of geometry and loading, the obtained 

results show that the “Qdrill” and “Tdrill” flat shell elements exhibit very good performances 

in comparison to the other shell elements with fictitious stiffness. They also show a great 

numerical stability and less numerical cost in critical situations when the structure response 

involves large nonlinear behaviour, and thus, we can conclude that these elements are very 

powerful and much efficient for geometrically nonlinear static and dynamic analysis of general 

shell structures. We can see that the interpolation of the in-plane rotational d.o.f has a major 

advantage on the flat shell element response, and such flat shell element could be a good 

candidate for general shell structural analysis in engineering practice. 
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      Appendix A: Nonlinear dynamic analysis recurrence scheme 

The various steps to be taken into account for the developed nonlinear dynamic incremental 

approach using the co-rotational updated Lagrangian formulation are as follows: 

1-INITIAL CALCULATIONS 

 Select time step Δt and calculate bi constants 

 Form the matrices K, M and C 

 Initialize 𝑢(0) = 𝑢0 , 𝑢̇(0) = 𝑣0 and solve for the initial acceleration: 

 𝑀𝑢̈0 = 𝐹0  − 𝐶𝑢̇0 − 𝐾𝑢0  

2-FOR EACH TIME STEP 

 calculate tangent stiffness matrix 𝐾𝑡 = ∫ 𝐵𝑡
𝑇𝐷𝐵𝑡𝑣

𝑑𝑣                        

 form and triangularize the effective stiffness matrix    𝐾̅ = 𝐾 + 𝑏1𝑀 + 𝑏4𝐶 

 form the effective load vector 𝐹̅𝑡+∆𝑡 

 

3-FOR EACH ITERATION 

 solve for displacements at (t+Δt) :   𝐾̅ ∆𝑢𝑡+∆𝑡 = 𝑅𝑡+∆𝑡  

- update the new system of axis on the preceding position of the element nodes before 

evaluation of the tangential stiffness and internal forces 

- the internal strains and stresses are calculated in the new reference system of the 

precedent step 

- the new solution is obtained after linearization of the problem by calculating the internal 

strains and stresses in the new reference system of the precedent step 

- the solution is used to proceed to the next step. 

 check for convergence of the iteration process  (if OK continue, else go to 3) 

 Calculate velocities and accelerations at (t+Δt) : 

 {
𝑢̈𝑡+∆𝑡 = 𝑏1(𝑢𝑡+∆ − 𝑢𝑡) + 𝑏2𝑢̇𝑡 + 𝑏3𝑢̈𝑡

𝑢̇𝑡+∆𝑡 = 𝑏4(𝑢𝑡+∆ − 𝑢𝑡) + 𝑏5𝑢̇𝑡 + 𝑏6𝑢̈𝑡
 

 t = t+Δt 

 go to 2 
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      Appendix B. Triangular plate bending polynomial shape functions 

   We used the following cubic polynomial interpolation in order to formulate geometric stiffness 

and mass matrix for the “DKT” plate bending element: 

3322221),(  P  

Using static condensation, we obtained the following shape functions: 
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      Appendix C. Quadrilateral plate bending polynomial shape functions 

   We used the following cubic polynomial interpolation in order to formulate geometric stiffness 

and mass matrix for the “DKQ” plate bending element: 
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We obtained the following shape functions: 
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      Appendix D. Triangular membrane element with rotational d.o.f shape functions 

   In this work, we aim to present a unified formulation that could be generalized for all triangular 

and quadrilateral elements that are based on the Allman-type in-plane displacement field. So, when 

expressing the in-plane displacement field that is used for calculating initial stress matrix and mass 

matrix, we limited to the original Allman-type displacement field terms even if the element uses a 

complimentary terms to describe the displacement field. In fact, these neglected additional terms, 

have no considerable effect on the initial stress and mass matrices, and make them need less time 

for integration. 

   Using natural coordinates, Allman-type displacement field is written as: 
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   For a triangular element, it could be written as: 
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Where: kNS are shape functions for serendipity element. 

   We can express u and v using the following shape functions: 
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Where:  11N , 2N , 3N  
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      Appendix E. Quadrilateral membrane element with rotational d.o.f shape functions 

   For a quadrilateral element with drilling rotation, in-plane displacement field is: 
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Where: kNS are shape functions for serendipity element. 

   We can express u and v using the following shape functions: 
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