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Abstract

In this thesis, we study qualitative properties of broad classes of nonlinear delay dynamic
and delay integro-dynamic equations. We start by giving some fixed point theorems,
results for delay differential equations and elements of calculus on time scales. Second,
by using the Schauder and Krasnoselskii’s fixed point theorems, we study the periodic-
ity and positivity of solutions for a class of nonlinear delay dynamic equations, neutral
dynamic equations, delay integro-dynamic equations and difference equations with sum-
mation boundary conditions. Finally, by applying the contraction mapping principle, we
show the existence of a unique periodic solution and the asymptotic stability of the zero
solution.

Keywords: Delay dynamic equations, Delay integro-dynamic equations, Fixed point
theory, Existence, Periodicity, Positivity, Stability.

Mathematics Subject Classification: 34K13, 34K20, 34K30, 34K40, 45D05, 45J05,
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Résumé

Dans cette these, nous étudions les propriétés qualitatives de larges classes d’équations
dynamiques non linéaires a retard et d’équations intégro-dynamiques a retard. Nous com-
mencons par donner quelques théoremes de points fixes, des résultats pour des équations
différentielles a retard et des éléments de calcul sur des échelles de temps. Deuxiemement,
en utilisant les théoremes des points fixes de Schauder et Krasnoselskii, nous étudions la
périodicité et la positivité des solutions pour une classe d’équations dynamiques a re-
tard non linéaire, les équations dynamiques neutrales, les équations intégro-dynamiques
a retard et les équations de différence avec conditions aux limites de sommations. En-
fin, en appliquant le principe de la contraction, nous montrons I’existence d’une solution
périodique unique et la stabilité asymptotique de la solution zéro.

Mots-clés: Equations différentielles a retard, Equations intégro-différentielles a retard,

Théoremes des points fixes, Existence, Périodicité, Positivité, Stabilité.

Mathematics Subject Classification: 34K13, 34K20, 34K30, 34K40, 45D05, 45J05,
47H10.
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Chapter

Introduction

The theory of fixed points is a promising area in mathematics especially in nonlinear
functional analysis because it has wide applicability in various fields of pure and applied
mathematics as well as in other fields like physical science, life science and economics.
Classical and major results in these areas are Banach’s fixed point theorem, Schauder’s

fixed point theorem and Krasnoselskii’s fixed point theorem.

Banach in 1922 states that a contraction mapping on a complete metric space has a
unique fixed point. However, on historical point of view, the major classical result in
fixed point theory is due to Brouwer given in 1912, which states that a continuous map
on a closed unit ball in R™ has a fixed point. An extension of this result is the Schauder’s
fixed point theorem in 1930 which states that a continuous map on a convex compact
subspace of a Banach space has a fixed point. Thereafter, Krasnoselskii in 1955 studied a
paper of Schauder on partial differential equations and formulated the working hypothesis
principle: the inversion of a perturbed differential operator yields the sum of a contraction
and a compact map. Accordingly, he formulated an hybrid theorem known under its name
(see [17], [28], [30], [33], [71], [98]).

Time scales calculus was initiated in 1988 by Stefan Hilger. It bridges the gap between
continuous and discrete analysis and expands on both theories. Differential equations are
defined on an interval of the set of real numbers while difference equations are defined
on discrete sets. However, some physical systems are modeled by what is called dynamic

equations because they are either differential equations, difference equations or a combi-
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nation of both. This means that dynamic equations are defined on connected, discrete or
combination of both types of sets. Hence, time scales calculus provides a generalization

of differential and difference analysis (see [19], [20], [63], [74]).

Delay dynamic and delay integro-dynamic equations arise from a variety of applications
including in various fields of science and engineering such as applied sciences, practical
problems concerning mechanics, the engineering technique fields, economy, control sys-
tems, physics, chemistry, biology, medicine, atomic energy, information theory, harmonic
oscillator, nonlinear oscillations, conservative systems, stability and instability of geodesic
on Riemannian manifolds, dynamics in Hamiltonian systems, etc. In particular, problems
concerning qualitative analysis of delay dynamic and delay integro-dynamic equations
have received the attention of many authors (see [1]-[16], [18]-[27], [29]-][45], [47]-[69],
[72]-[97], [99]-[108], [110]).

One of the most important qualitative aspects of delay dynamic and delay integro-
dynamic equations is determining the stability of a given model. Stability results by
using the fixed point theory can sometimes provide better conditions for convergence to
zero of solutions, than Lyapunov methods. The advantages of this particular fixed point
method have been achieved thanks to fixed point methods requiring averaging conditions
of the vector field, by using appropriately chosen variation of parameters type formulas
to invert the delay dynamic equation into an integral form. As is known in dynamic
equations theory, a common method for proving existence of solutions is through fixed
point methods. However, in fairly recently times, the fixed point theory have been used
to obtain further properties of the solution, namely attractively of solutions to an equi-
librium, and not merely the existence of these solution curves, as is normally done in
classical dynamic equations theory. The aforementioned method for stability of dynamic
equations has been applied successfully for delay dynamic equations and delay integro-
dynamic equations (see [11], [22], [23], [29]-[31], [33], [36], [47], [49], [87], [108]).

We have been interested in the use of fixed point theory to problem of periodicity
and positivity and stability for delay dynamic and delay integro-dynamic equations. We
have studied and contributed to it and have obtained interesting results. In this thesis

we present a collection of results to some problems of delay dynamic and delay integro-
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dynamic equations by using fixed point theory (see [21]-[26]).

This thesis contains eight chapters which are briefly presented below. Chapter two is
essentially an introduction to the fixed point theory, delay differential equations, elements
of calculus on time scales, where we fix notations, terminology to be used. It is a survey
aimed at recalling some basic definitions and theory. While some of the classical and recent
results about fixed point theory, delay differential equations and elements of calculus on
time scales are also presented in this chapter. Fixed point theorems frequently call for
compact sets in Banach spaces which may be subsets of continuous functions. For that

purpose, we give topologies which will provide many of those compact sets.

In chapter 3, we study the existence of positive periodic solutions for the dynamic

equations on time scales

AW +p)a” () +qt)z(T(t) =0, t >t (E)

The main tool employed here is the Schauder’s fixed point theorem. Two examples are
also given to illustrate this work (see [24]).

In chapter 4, we study the existence and stability of positive periodic solutions for the

delay nonlinear dynamic equation on time scales

2 () +p (1) Zqz iz (7 (1)) =0, t > to.

An examples is also given to illustrate this work (see [23]).

In chapter 5, we study the existence of positive solutions for (E). The asymptotic
properties of solutions are also treated. Three examples are also given to illustrate this
work (see [25]).

In chapter 6, we study the existence of positive periodic and positive solutions for the

integro-dynamic equations on time scales

A (t)+/: p(t — s)g(x(s))As, £ > T.

The main tool employed here is the Schauder’s fixed point theorem. The exponential

stability of positive solutions is also treated (see [21]).
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In chapter 7, the nonlinear neutral dynamic equation with periodic coefficients

[u(t) — g(u(t — r(£))]°
= p(t) — a(H)u”(t) — a()g(u®(t = 7())) = hu(t), u(t — 7(1))),

is considered in this work. By using Krasnoselskii’s fixed point theorem we obtain the
existence of periodic and positive periodic solutions and by contraction mapping principle

we obtain the uniqueness. Stability results of this equation are analyzed (see [22]).

In chapter 8, we study the existence of positive solutions for the second-order difference

equation with summation boundary conditions

Alu(t—1)+alt)f(ut)=0, te{1,2,... T},

Au(0)=0, u(T+1) =« i u(s).

s=1

The main tool employed here is the Krasnoselskii’s fixed point theorem in a cone (see

[26]).




Chapter 2

Preliminaries

2.1 Functional analysis

In this section we discus compact sets. The following elements have been gathered from
several analysis and some specialized books on the functional analysis and the most is in

the following bibliography ([33], [70], [109]).

Definition 2.1 (Metric) Let X be a nonempty set and d : X x X — [0,00) a function.

Then d is called a metric on X if the following properties hold

i) d(xz,y) >0, d(z,y) = 0 if and only if x =y, for all z,y € X,
ii) d(z,y) = d(y,x) for all z,y € X,
iii) d(z,y) < d(z,z) +d(z,y) for all x,y,z € X.
The value of metric d at (z,y) is called distance between x and y, and the ordered pair

(X, d) is called metric space.

Definition 2.2 (Norm) Let (X, +,.) be a linear space over field K (R or C) and N :

X — [0,00) a function. Then, N is said to be a norm if the following properties hold

i) N(x) =0 if and only if z = 0,

ii) N(A\z) = |A\| N(z) for all z € X and A € K,

iii) N(z +vy) < N(z) + N(y) for all z,y € X.
The ordered pair(X, N) is called a normed space.
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We use the notation ||.|| for norm. Then every normed space (X, ||.||) is a vector space
and it is a metric space (X, d) with induced metric d(x,y) = ||z — y||. But a vector space

with a metric is not always a normed space.

Definition 2.3 Let X be a nonempty set and d is a metric on X, a sequence {x,} C X
is a Cauchy sequence if for each € > 0 there exists ng € N such that d(x,, z,) < € for all

n,m > ng, i.e lim d(z,,z,)=0.
n,Mm—00

Definition 2.4 The metric space (X, d) is complete if every Cauchy sequence in (X, d)

has a limit in that space.

Definition 2.5 A Banach space is a complete normed space.

We often say a Banach space is a complete normed vector space.
Theorem 2.1 A closed subspace of a Banach space is a Banach space.

Example 2.1 The linear space C([a,b]) of continuous functions on the closed and

bounded interval [a,b] is a Banach space with the uniform convergence norm ||f||_ =

sup |f(t)].

te[a,b]
Definition 2.6 Let (X, d) be a metric space. Recall that a subset 2 of X is called
compact if every open cover of €2 has a finite subcover. Equivalently, a subset 2 of X is

compact if every sequence in () contains a convergent subsequence with a limit in €2.

Example 2.2 Let ¢ : [a,b] — R"™ be continuous and let X de the set of continuous
functions f : [a,¢] — R™ with ¢ > b and f(t) = ¢(t) for a < t < b. Define d(f,g) =
SUP,<i<c | f(t) — g(t)| for f,g € X. Then (X, d) is complete metric space but not a Banach

space because f + ¢ is not in X.

Definition 2.7 Let (X,d) be a metric space. A subset Q of X is said to be totally
bounded if for each € > 0, there exists a finite number of elements x1, xs, ..., x,, in X such

that Q C U™, B.(z;).

2.1. Functional analysis
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Proposition 2.1 Let (X, d) be a metric space. Then the following are equivalent
i) X is compact.
i1) Every sequence in X has a convergent subsequence.

i1i) X is complete and totally bounded.

Definition 2.8 A set ) in a metric space (X, d) is relatively compact if its closure is

compact, i.e., £ is compact.

Proposition 2.2 Let 2 be a closed subset of a complete metric space (X,d). Then € is

compact if and only if it is relatively compact.

Definition 2.9 Let X be a compact metric space and 2 be a subset of C'(X).

a)  is uniformly bounded if there exists M > 0 such that ||u|| < M for all u € Q.

b) Q is equicontinuous if for any & > 0 there exists § > 0 such that t1,¢, € X and
d(t1,t2) < ¢ imply |u(ty) — u(ty)] < € for all u € Q.

The following result gives the main method of proving compactness in the spaces in

which we are interested.

Theorem 2.2 (Ascoli-Arzela [109]) Let X be a compact metric space. If Q is an

equicontinuous, uniformly bounded subset of C(X), then Q is relatively compact.

Definition 2.10 Let S be a mapping from a metric space (X,d) into another metric
space (Y,d’). Then S is said to satisfy Lipschitz condition on X if there existe a constant
L > 0 such that

d'(Sz,Sy) < Ld(z,y) for all z,y € X.

If L is the least number for which Lipschitz condition holds, then L is called Lipschitz
constant. In this case, we say that S is an L-Lipschitz mapping or simply a Lipschitzian
mapping with Lipschitz constant L. Otherwise, it is called non-Lipschitzian mapping. An
L-Lipschitz mapping S is said to be contraction if L < 1 and nonexpansive if L = 1.

The mapping S is said to be contractive if

d'(Sxz,Sy) < d(x,y) for all z,y € X, = # y.

2.1. Functional analysis
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The following proposition guarantees the existence of Lipschitzian mappings.

Proposition 2.3 Let S : [a,b] C R — R be a differentiable function on (a,b). Suppose S
is continuous on |a,b]. Then, S is a Lipschitz continuous function (and hence is uniformly

continuous).

Definition 2.11 Let X and Y be two Banach spaces and let the mapping S : X — X.
Then

1) S is said to be bounded if 2 is bounded in X implies S(€2) is bounded.

2) S is said to be closed if x,, — z in X and Sz, — y in Y imply Sz = y.

3) S is said to be compact if  is bounded in X implies S(€2) is relatively compact
(S(Q) is compact), i.e., for every bounded sequence {x,} in X, {Sz,} has convergent
subsequence in Y.

4) S is said to be completely continuous if it is continuous and compact.

In the case of linear mappings, the concepts of continuity and boundedness are equiv-

alent, but it is not true in general.

2.2 Fixed point theory

In this section we state some fixed point theorems that we employ to help us in proving

existence and stability of solutions (see [17], [28], [30], [33], [71], [98]).

Definition 2.12 Let S be a mapping in the set (2. we call fixed point of S any point
x satisfying S(z) = z. If there exists such z, we say that S has a fixed point, which is

equivalent to saying that the equation S(x) — 2 = 0 has a null solution.

Fixed point theorems guarantee the existence of a fixed point under appropriate con-

ditions on the map S and the set .

2.2. Fixed point theory
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2.2.1 Banach fixed point theorem

Let the classical Cauchy problem on existence and uniqueness of the solution to the

differential equation satisfying a given initial condition,
¥ = f(t, ),
LL’(t()) = Xy,

can be expressed as an integral equation

x(t) = o —i—/t f(s,z(s))ds, (2.2)

from which a sequence of functions {x,} may be inductively defined by

xo(t) = xo, x1(t) = 29 +/ f(s,x)ds,

and, in general
t
Toir(t) = 70 + / F(5,20(s))ds. (2.3)
to

This is called Picard method of successive approximations and, under liberal conditions
on f, one can show that {x,} converges uniformly on some interval |t — to| < k to some
continuous function, say x. Taking the limit in the equation defining x, 1, we pass the

limit through the integral and have

£(t) = 70 + / £(s,2(s))ds,

so that z(ty) = zo and, upon differentiation, we obtain /() = f(¢t,z(t)). Thus, z is a
solution of the initial value problem.

Banach realized that this was actually a fixed-point theorem with wide application. For
if we define an operator S on a complete metric space C([tg, to+ k], R) with the supremum

norm ||.|| by z € C implies

(Sx)(t) = o —l—/t f(s,z(s))ds, (2.4)

then a fixed point of S, say S¢ = ¢, is a solution of the initial value problem.
The idea had two outstanding features. First, it had application to problems in every

area of mathematics which used complete metric spaces. And it was clean. For example,

2.2. Fixed point theory
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the standard muddy and shaky proofs of implicit function theorems became clear and
solid using the fixed-point theory. We will use it here to prove existence of solutions of

various kinds of differential equations.

Theorem 2.3 (Contraction mapping principle [98]) Let (X,d) be a complete met-
ric space and S : X — X a contraction operator. Then there is a unique point x € X
with Sz = x.

Furthermore, if y € X and if {y,} is defined inductively by y; = Sy and yn+1 = Syn,
then vy, — x, the unique fived point. In particular, the equation Sx = x has one and only

one solution.

In applying this result to (2.1), a distressing event occurred which we now briefly

describe. Assume that f is continuous and satisfies a global Lipschitz condition in x, say

’f(taxl) - f(ta$2)| <« ’371 - 5132\ )

for t € R and x1, 29 € R™. Then by (2.4) we obtain (for t > t)

[ s = fs,ma(s)) s

to

Sy (1) — Sz ()] =

< [ aleits) —mao)lds

to

so that if ||.]| is the sup norm on continuous functions on [tg, tg + k|, then
HSZEl — S!EQH S ak ||(L’1 — IQH .

This is a contraction if ak = A < 1. Now « is fixed and we take k£ small enough that

ak < 1. This gives a fixed point which is a solution of (2.1) on [to, to + k.

2.2.2 Schauder’s theorem

Denote the unit ball in R™ by B" := B(0,1) = {z € R": |x| < 1} and the unit sphere
(the boundary of the unit ball) by D" := {x € R": |z| = 1} = dB.

Definition 2.13 Let A be a subset of a topological space X. A retraction is a map
r: X — A such that r(z) =z for all z € A . If there exists a retraction from X to A, we

say A is a retract of X.

2.2. Fixed point theory
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Lemma 2.1 (No-retraction theorem [98]) There is no continuous retraction r
B" — D" 1.
Theorem 2.4 (Brouwer’s fixed point theorem [28]) Every continuous map S

B"™ — B"™ has a fized point.

Corollary 2.1 ([98]) Let Q be a nonempty, compact and convex subset of R™. FEvery

continuous map S : Q — Q has a fized point.

Definition 2.14 Let X be a normed vector space and F' = {z1,zs, ..., x,} a finite subset

of X. Then conv(F), the convex hull of F, is defined by

conv(F) = {thxj : th =1t 2 0}-
=1 =1

For future applications, we will need a more general definition to handle the case in which

F is infinite.

Definition 2.15 Let X be a normed vector space and F' a subset of X. The convex hull

conv(F) is the intersection of all convex sets H C X such that FF C H.
Proposition 2.4 ([98]) Definitions 2.14 and 2.15 are equivalent for finite sets.

Lemma 2.2 (Schauder projection lemma [98]) Let Q be a compact subset of a
normed vector space X, with metric d induced by the norm |.||. Given € > 0, there
exists a finite subset F C X and a map P : Q — conv(F') such that d (P(z),z) < € for

all x € Q). This map is called the Schauder projection.

Theorem 2.5 (Schauder’s fixed point theorem [98]) Let (2 be a closed, conver and
nonempty subset of a Banach space X. Let S : {2 — Q) be a continuous mapping such that
S is a relatively compact subset of X. Then S has at least one fixed point in 2. That is

there exists an x € ) such that Sx = .

2.2.3 Krasnoselskii’s fixed point theorem

Definition 2.16 A topological space X has the fixed-point property if, whenever S :

X — X is continuous, then S has a fixed point.

2.2. Fixed point theory
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Definition 2.17 Let Q) be a subset of a Banach space X and S : 2 — X application. If
S is continuous and S (£2) is contained in a compact set in X, then we say that S is a

compact application ”"we also say that S is completely continuous”.

In 1955 Krasnoselskii’s [33, 98] observed that in a good number of problems, the in-
tegration of a perturbed differential operator gives rise to a sum of two applications, a
contraction and a compact application. It declares then,

Principle: the integration of a perturbed differential operator can produce a
sum of two applications, a contraction and a compact operator.

For better understanding this observation of Krasnoselskii’s, consider the following

differential equation.
7 () =—a()z(t) —g(t o). (2.5)
We can transform this equation in another form while writing, formally
o (t) ef(f a(s)ds — _ (t) efg a(s)ds ;. (t) —g (t, :E) efot a(s)ds’
thus
2 (t) efg a(s)ds +a (t) efot a(s)ds . (t) =g (Zf, 33) ef(f a(s)ds’

or

<$ (t) ol a(s)ds>/ _ _g(t2) o a(s)ds.

then integrating from ¢t — T" to t, we obtain

t

¢ , .
/ (x (u) elo “(S)ds> du = —/ g (u, z(u)) elo gy,
=T =T

that gives
t
o () efoaeMs _ gt — Ty ekt elds — / g (u, z(w)) ko 2@y,
=T
or
t
z(t) =a(t—T)e Jeral)ds _ / g (u, z(u)) e fu ol gy, (2.6)
=T

a(s)ds

If we suppose that e~ Jier = A < 1and (X,].]|) is the Banach space of functions

¢ : R — R continuous, then the Equation (2.6) can be written as

(1) = (Ap) () + (By) (1) == (S¢) (1)

2.2. Fixed point theory
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where A is contraction provides that the constant A < 1 and B is compact mapping.

This example shows the birth of the mapping S¢ := Ap + By which is identified with

a sum of a contraction and a compact mapping.

Thus, the search of the solution for Equation (2.6) requires an adequate theorem which
applies to this hybrid operator S and which can conclude the existence for a fixed point
which will be, in its turn, solution of the initial Equation (2.5). Krasnoselskii’s found the
solution by combining the two theorems of Banach and that of Schauder in one hybrid

theorem which bears its name. In light, it establishes the following result [98].

Theorem 2.6 (Krasnoselskii’s fixed point theorem [98]) Let Q) be a closed bounded
conver nonempty subset of a Banach space (X, ||.||). Suppose that A and B map 2 into
X such that

(1) A is a contraction mapping,

(17) B is compact and continuous,

(1ii) x,y € Q, implies Ax + By € Q,
Then there ezists z € Q) with z = Az + Bz.

Remark 2.1 Note that if B = 0, the theorem becomes the theorem of Banach. If A =0,

then the theorem is not other than the theorem of Schauder.

Theorem 2.7 (Krasnoselskii’s cone fixed point theorem [71]) Let X be a Banach
space, and let K C X be a cone. Assume )y, Qo are open subsets of X with 0 € €y,
Qy C Qs and let

A KN (@) = K,

be a completely continuous operator such that
(1) |Au|| < [|ul], v € K NOQy, and ||Aul| > |jul|, u € K N0OQy, or
(1) ||Aul| > ||lu||, v € K NOQy, and ||Au|| < ||ul|, v € K N OQs.
Then A has a fixed point in K N (52\91).

2.2. Fixed point theory
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2.3 Retarded functional differential equations

Delayed problems are innumerable in literature. Some of these problems have been of
particular interest. We have chosen in this thesis some models intervening in different

real world domains (see [52, 58, 59, 72]).

2.3.1 Delay differential equations

Suppose 7 > 0 is a given real number, R = (—o00,00), R" is an n-dimensional linear
vector space over the reals with norm |.|, C'([a, b], R™) is the Banach space of continuous
functions mapping in the interval [a, b] into R™ with the topology of uniform convergence.
If [a,b] = [—7,0] we let C = C([—7,0],R") and designate the norm of an element 1 in
C by [|[¥|| = sup_,s<0|?¥(s)]. Even though single bars are used for norms in different
spaces, no confusion should arise. If t, € R, A >0 and = € C ([ty — 7,to + A] ,R™), then
for any ¢ € [to, to + A], we let 2, € C be defined by x,(s) = z(t + s), —7 < s < 0.

Definition 2.18 If ) is a subset of R x C, f : 2 — R" is a given function and represents

the right-hand derivative, we say that the relation

2(t) = f(t, ), (2.7)

where

z(s) =z(t+s), —17<s<0,

is a retarded functional differential equation on {2 and will denote this equation by RFDE.
If we wish to emphasize that the equation is defined by f, we write the RFDE(f).

A function x is said to be a solution of Equation (2.7) on [ty — 7,t9 + A) if there are
to € R and A > 0 such that x € C ([ty — 7,to + A] ,R"), (t,z;) € Q and x(t) satisfies
Equation (2.7) for ¢ € [ty,to+ A). For given ty € R, ¢ € C, we say x(t, to, ) is a solution
of Equation(2.7) with initial value 1) at ¢y or simply a solution through (t¢,%) if there
is an A > 0 such that z(¢,p,%) is a solution of Equation (2.7) on [ty — 7,t9 + A) and
Xy, (L, to, V) = 1.

If 7 = 0, Equation (2.7) is a very general type of equation and includes ordinary

differential equations.

2.3. Retarded functional differential equations
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If f(t,v) = L(t,v) + h(t) where L(t,) is linear in ¢, we say Equation (2.7) is linear
and is homogeneous if h = 0 and nonhomogeneous if i # 0.

If f(t,%) = g(v) where g does not depend on ¢, we claim Equation (2.7) is autonomous.

Example 2.3 The following equations are delay differential equations
2'(t) = 3x(t) + 2z(t — 5), (2.8)

2'(t) = a(t)z(t) + b(t)2'(t — 7(¢)) + h(t), (2.9)

2 (t) = /0 z(t + s)ds, (2.10)

—T
where a, b, 7 are continuous functions.

Equation (2.8) is an linear autonomous delay differential equation with constant 7 = 5.
Equation (2.9) is nonhomogeneous, linear nonautonomous delay functional differential

equations and Equation (2.10) is a delay linear integro-differential equation.

Ifty € R, ¢ € C are given and f(t,1)) is continuous, then finding a solution of Equation

(2.7) through (to,%) is equivalent to solving the integral equation

T, = U, (2.11)
x(t) = ¢(O)—|—/ f(s,z5)ds, t > to.

We define Sz by

(S2) (1) = (0)+ / f(s,2)ds, t> o,
Ty, = .

To prove the existence of the solution through a point (¢y,7) € R x C, we consider an
n > 0 and all functions x on [ty — T, ty + A] which are continuous and coincide with 1 on
[to— T, to], that is, z;, = 1b. The values of these functions on [ty, to+1)| are restricted to the
class of = such that |z(t)—(0)| < 0 for t € [ty, to+n]. The usual mapping S obtained from
the corresponding integral equation is defined and it is then shown that 7 and § can be so
chosen that S maps this class into itself and is completely continuous. Thus, Schauder’s

fixed-point theorem implies existence (for examples details see the books [58, 59, 72]).
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Theorem 2.8 (Existence [59]) In (2.7), suppose S is an open subset in R x C and f
is continuous on . If (to, ) € §Q, then there is a solution of (2.7) passing through (ty, ).

Definition 2.19 We say f(¢,) is Lipschitz in ¢ in a compact set X of R x C'if there is
a constant k > 0 such that, for any (¢,1;) € K,i=1,2,

|f(t, 1) = f(t,2)| < k| —aho]. (2.12)

Theorem 2.9 (Uniqueness [59]) Suppose 2 is an open set in R x C, f: Q — R™ is
continuous, and f(t,1) is Lipschitz in 1 in each compact set in Q. If (to,v) € §, then
there is a unique solution of (2.7) through (to, ).

2.3.2 Neutral differential equations

In order to define a general class of neutral delay differential equations NDDEs (or neutral

functional differential equations NFDEs), we need the definition of atomic.

Definition 2.20 Suppose @ C Rx (' is open with elements (¢,1). A function ¥ : Q — R”
is said to be atomic at § on 2 if ¥ is continuous together with its first and second Fréchet

derivatives with respect to ¥ and W1, the derivative with respect to 1, is atomic at S on

Q.

Definition 2.21 Suppose 2 C R x C' is open, f : Q@ — R", ¥ : QO — R” are given

continuous functions with ¥ atomic at zero. The equation

d
%\If(t, x) = f(t, ), (2.13)

is called the neutral delay differential equation NDDE(W, f).

Definition 2.22 A function z is said to be a solution of the NDDE(¥, f) or Equation
(2.13), if there are t, € R, A > 0, such that z € C([to — 7,t0 + A),R"), (t,2) € Q,
t € [to,to + A), Y(t,z;) is continuously differentiable and satisfies (2.13) on [to, o + A).
For a given ¢ty € R, ¢ € C, and (to,v) € Q, we say x(ty, 1) is a solution of (2.13) with
initial value v at tg, or simply a solution through (¢o, ) ,if there is an A > 0 such that
x(to, 1), is a solution of (2.13) on [ty — 7,to + A) and x4, (to, ¥) = 1.
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Theorem 2.10 (Existence [59]) If Q is an open set in R x C and (tg,v) € €, then
there exists a solution of the NDDE(W, f) through (tg, ).

Theorem 2.11 (Uniqueness [59]) IfQ C R x C is open and f: Q — R™ as Lipschitz
in Y on compact sets of ), then, for any (to, 1) € U, there exists a unique solution of the

NDDE(Y, f) through (ty, ).
Example 2.4 The equations

() = 32'(t—5),
2(t) = —a(t)+ [t —4)+ 1),

2(t) = a(t)+a(t—2) - (t—T),

are neutral differential equations.

2.3.3 Method of Steps

The method of steps is an elementary method that can be used to solve some DDFE's
analytically. This method is usually discarded as being too tedious, but in some cases

the tedium can be removed by using computer algebra (see [61]). Consider the following

general DDFE
' (t) = apx(t) + arz(t —wy) + ... + apz(t — wy,), (2.14)

where z(t) = ¢(t) on the initial interval — max(w;) <t < 0. Let b = min(w;). Then it is
clear that the values of z(t — w,,) are known in the interval 0 < ¢ < b. These values are

(t — wy,). Thus, for the interval 0 < ¢ < b we have
() = apx(t) + ar(t — wy) + ... + ap(t — wy,),

and so
() = /O (a62(0) + (v — 1) + oo + amt(v — W) do + (0).

Now that we know x(t) on [0, b] we can repeat this procedure to obtain x(t) on the interval

b <t < 2b. This is given by

x(t) = /b (apx(v) + a1 (v — wy) + ... + @ (v — wy,)) dv + x(b). (2.15)
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This process can be continued indefinitely, so long as the integrals that occur can be
evaluated without too much effort. It is this last restriction that usually causes people to
give up on this method, because the tedium and length of the method quickly overwhelms
a human computer. However, it turns out that for certain classes of problems, where the
phenomenon of ”expression swell” is not too serious, we can take the method quite far,

with a computer algebra system to automate the solution of the tedious sub-problems.
Example 2.5 Consider the following delay differential equation
2'(t) = 3x(t —5), t > to. (2.16)

For example, assume that t; = 0. If we want to solve the system on time ¢ = 0, it is
clear that we will need to know the value of the system at time t = —5. To know the
system at time ¢ = 5, it is essential to know its value at time ¢ = 0.

Therefore, to have a complete solution of t = 0 to t = 5, we are obliged to know a
whole initial solution of t ¢ = —5 to ¢ = 0. So, we must have an initial function defined
on [—5,0]. Let ¢ be an initial datum and assume that ¢ (t) = 2, t € [—5,0]. Now, we
have enough information to find a solution, z(¢,0,%), on [0,5]. Now 0 < ¢ < 5 implies
—5 <t —>5 <0 and therefore z(t —5) = ¢(t — 5) = 2.

For 0 < ¢ <5 the (2.16) becomes 2/(t) = 6 and the general solution will be

x(t) =6t +¢, c= constant.
By replacing t by zero in this last equation, we find that ¢ = 2. Thus, we will have
x(t)=6t+2,0<t<5.

Now, we can use this information to progress and solve (2.16) for future times, for example

for ¢t € [5,10]. Here we see that

2'(t) = 3(6(t—5)+2)

= 18t — 84.
She has the general solution

x(t) = 9t* — 84t +d, d = constant.

2.3. Retarded functional differential equations



Chapter 2. Preliminaries 22

Using the solution we found for ¢ € [0, 5], and exactly in ¢t = 5 we get the value d = 227.
Therefore

x(t) = 9t* — 84t + 227, 5 < t < 10.

We can progress in this direction and solve the delay equation as an infinite series of

EDO. This method can be programmed in Maple using a simple for loop.

2.3.4 Problems with a delay

In this section we give two examples of physical and biological systems in which the
present rate of change of some unknown function depends upon past values of the same

function.

Epidemics (Cooke and Yorke)

In the work of Cooke and Yorke (1973) the Lotka assumption is changed so that the
number of births per unit time is a function only of the population size, not of the age
distribution (see [33]). Under this assumption, we let x(t) be the population size and let
the number of births be B(t) = g(x(t)). Assume each individual has life span L so that
the number of deaths per unit time is g(z(t — L)). Then the population size is described
by
a'(t) = g(x(t)) — g(x(t — L)), (2.17)

where g is some differentiable function. We note that every constant function is a solution
of (2.17).

The following model for the spread of gonorrhea is considered by Cooke and Yorke
(1973). The population is divided into two classes:

(a) S(t) the number of susceptible, and

(b) z(t) the number of infectious.

The rate of new infection depends only on contacts between susceptible and infectious
individuals. Since S(t) equals the constant total population minus z(t), the rate is some
function g(z(t)). Assume that an exposed individual is immediately infectious and stays

infectious for a period L (the time for treatment and cure). Then z also satisfies (2.17)
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holds. Now, at any time ¢, () equals the sum of capital produced over the period [t — L, t]

plus a constant ¢ denoting the value of nondepreciating assets. Thus,
L
() = / P(s)g (a(t — 5))ds + ¢
0
t
= / P(t —u)g (z(u)) du+ c. (2.18)
t—L

Controlling a ship

Minorsky (1962) designed an automatic steering device for the battleship New Mexico.
The following is a sketch of the problem (see [33]). Let the rudder of the ship have angular
position z(t) and suppose there is a friction force proportional to the velocity, say —cz/(t).
There is a direction indicating instrument which points in the actual direction of motion
and there is an instrument pointing in the desired direction. These two are connected by
a device which activates an electric motor producing a certain force to move the rudder so
as to bring the ship onto the desired course. There is a time lag of amount h > 0 between
the time the ship gets off course and the time the electric motor activates the restoring

force. The equation for z(t) is
2" (t) + ex'(t) + g(x(t — h)) =0, (2.19)

where xg(z) > 0 if  # 0 and ¢ is a positive constant. The object is to give conditions

ensuring that x(¢) will stay near zero so that the ship closely follows its proper course.

2.4 Stability of delay differential equations

The theory of stability was created by the Russian mathematician Lyapunov (1857-1918).
This theory has found wide application in various fields of physics and mathematical sci-
ences. From a mathematical point of view, the theory of stability presents a particular case
of the qualitative theory of differential equations. Lyapunov’s method was the ultimate
object for studying stability for differential equations and partial differential equations.
Nevertheless, this method has encountered serious obstacles and there are still a lot of

problems that resist this technique.
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The simplest notion of stability is the one related to stability of equilibrium points.

Definition 2.23 A point x(f) = z. in the state space is said to be an equilibrium point
of the autonomous system z’ = f(z) if and only if it has the property that whenever the

state of the system starts at z., it remains at z. for all future time.

According to the definition, the equilibrium points are the real roots of the equation
f(ze) = 0. This is made clear by noting that if 2/ = f(x.) = 0, then it follows that z. is
constant and, by definition, an equilibrium point. Without loss of generality, we assume
that 0 is an equilibrium point of the system. If the equilibrium point under study, z., is
not at zero we may define a new (shifted) coordinate system x4(t) = z(t) — z. and note

that
wy(t) = 2'(t) = f(x(t) = flas(t) +2) = folxs(t)), 25(0) = 2(0) — ..

The claim follows by noting that fs(0) = f(z.) = 0. In summary, the study of the zero
equilibrium point of 2/, (t) = fs(zs(t)) is equivalent to the study of the nonzero equilibrium
point z, of 2'(t) = f(x(t)).

We consider the system

' = f(t,zy) for all t > t, (2.20)

x(t) = P(t) for all tg — 7 < t < 1y, (2.21)

where f : (—o00,+00) x C — R", with C = C([—7,0],R") the Banach space of con-
tinuous functions ¢ : [ty — 7,to] — R™, 7 > 0 equipped with the supremum norm
[¥]] = sup_,<;<o | (t)]. We suppose that f is continuous and is supposed to satisfy all
the conditions which guarantee a solution x(t, ¢, 1) through of the problem (2.20)-(2.21)
and to be continuous in (¢, o, 1) of the definition domain of f (see Hale [58]).

Definition 2.24 Suppose that f(¢,0) =0 for all t € R.
1) The trivial solution z(¢) = 0 of (2.20) is Stable in ty (tp € R), if for every € > 0

there exists a § = d (€, o) > 0 such that if ||¢|| < 4, the solution of (2.20)-(2.21) exists on
[to — 7,00) and |z (¢,tg, )| < € for all t > t. Otherwise we will say that the solution is

unstable in ;.
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2) The solution x = 0 of (2.20) is said to be uniformly stable if the number § = § (¢) is
independent of .

3) The trivial solution z(t) = 0 of (2.20) is Asymptotically stable in ¢, if it is stable in
to and if there exists d; = 07 (¢y) > 0 such that whenever all ||¢|| < d1, the solution of the
problem (2.20)-(2.21) satisfies

|z (t,t1,9)] — 0 as t — oo.

4) The trivial solution z(¢) = 0 of (2.20) is Asymptotically uniformly stable in ¢, if it is
uniformly stable and if there exist §; > 0 (independent of ¢() as for all ¢y and ||[¢|| < d; the
solution z of the problem (2.20)-(2.21) satisfies the condition z (¢, to, 1) — 0 when ¢ — oo,
in the following way: for all n > 0 there is a 7" = T'(n) > 0 such that |z (¢,to,v)| < n for
allt>to+T.

Remark 2.2 If all the solutions tend to zero, then x = 0 is globally asymptotically stable.

Example 2.6 Consider, for t > 1, the differential delay equation

, 1 2t L [t+2
S ¥x(t)_(t+2)3x < 3 )
1 27t
= ;l’(t)— (t+2)3x (t_T(t))7

with 7(¢) = 2 (t — 1), with the initial condition (1) = zo. We ecasily check that the

unique solution of this problem is
x(t) = motexp (—zg(t — 1)), for all t > 1.
Thus, lim; ., z(t) = 0, for all 5. Suppose that |zg| = 0, then
14 1 1 5+ 1 S 2
v 2 ) e 5) ~ e

2 1
Therefore, for all § the solution is outside the ball |z| < —, in times ¢t = 1 + 5 and the
e

solution is unstable.
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2.4.1 The method of Lyapunov functionals
If V:R x C — R is continuous and x(t, tg, 1) is the solution of Equation (2.20) through
(to,v), we define

V() =l sup [V (64 b zpsa(t,0) = V (6,9)].

h—0t

The function V' (t,1) is the upper right-hand derivative of V' (¢,1) along the solution of
Equation (2.20).

Theorem 2.12 ([58]) Suppose f : R x C — R takes Rx (bounded sets of C') of R x C
into bounded sets of R™, and u,v,w : [0,4+00) — [0,400) are continuous nondecreasing
functions, u(s) and v(s) are positive for s > 0, and w(0) = v(0) = 0. If there is a

continuous function V : R x C' — R such that

u([p(0))) < V(£ ¥) <o(l¢]),
Vit y) < —w((v(0)]),

then the solution x = 0 of Equation (2.20) is uniformly stable. If w(s) > 0 for s > 0,

then x = 0 is uniformly asymptotically stable.

Definition 2.25 (Exponentially stable [36]) The trivial solution of (2.20) is said to
be exponentially stable if it is stable and there exists a positive constant A such that
for any ¢ € C = C(]—7,0],R") there exists K (which may depend on ) such that
|z(t, o, 9)] < Ke ™ for t > 0.

2.4.2 The method of fixed point theory

When one wants to study the stability of the trivial solution of a differential equation

with delay by the method of fixed point one will have to proceed as follows

1) A delay differential equation requires primarily a an initial function defined on an
appropriate initial interval I, i.e. ¢ : I, = R". We must fall immediately after a suitable
space C' of functions ¢ : I;, U [tg, +00) — R™ which coincide on I, with ¢. According to

the case of needs we can always add other restrictions to the functions ¢ of C' such as the
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boundary or the condition ¢(t) — 0o when ¢t — co. This last condition is necessary if we
wish to study asymptotic stability.

2) Then we have to invert the differential equation to define what we call a fixed point
application i.e., a mapping S : C' — C whose fixed point is the solution of the given
delay equation (the original equation).Nevertheless, this inversion can be a delicate task
in many cases. For example if the equation does not have a linear term in its structure
we will not be able to use the variation of the parameters. It is therefore essential to act

differently and to try if a transformation of this equation is possible.

3) A fixed point theorem must be chosen allowing the equation S(z) = z to have a
solution. Especially if S is a contraction we can apply the Banach fixed point theorem,
if S is compact then we will apply the theorem of Schauder or Schaeffer and if S is puts
in the form of a sum of a contraction and a compact application then the Krasnoselskii
hybrid theorem can give satisfaction. It thus becomes clear that the stability method by
the fixed point method relies on three essential things, the variation of the parameters,
a complete space and a fixed point theorem.n one stage we can conclude the existence
(or even uniqueness) and stability.n addition, it will be seen that this method always
requires conditions on average however the conditions of the Lyapunov method are always

punctual.

2.4.3 A comparison between fixed point and Lyapunov theory

Burton has proved that many of these problems can be solved using fixed point theory.
we will recall some examples of comparison methods from the paper of Burton [31].
Let a : [0,+00) — R be bounded and continuous function, let 7 be a positive constant,

and let
'(t) = —a(t)x(t — 7). (2.22)

Although we can treat solutions with any initial time, we will always look at a solu-
tion x(t) := x(t,0,) where ¢ : [—7,0] — R is a given continuous initial function and
x(t,0,v) = (t) on [—7,0]. It is then known that there is a unique continuous solution

x(t) satisfying (2.22) for ¢ > 0 and with x(t) = ¥(¢) on [—7,0]. With such v in mind, we
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can write (2.22) as

' (t) = —a(t)x(t +7) + % /t_ a(s+ 7)z(s)ds, (2.23)

so that by the variation of parameters formula, followed by integration by parts, we obtain

t 0
z(t) = x(0)e Joals+nds / a(u + 7)z(u)du — e~ Jo alurmdu / a(u+ 7)x(u)du
t—T1

t s
— / a(s + 7)e™ Js alutmidu / a(u+ 7)x(u)duds. (2.24)
0 s—T

In a space to be defined and with a mapping defined from (2.24) we will find that we have

a contraction mapping just in case there is a constant o < 1 with

t t s
/ la(u+ 7)| du + / la(s +7)| e s “(“”)d“/ la(u + 7)| duds < a. (2.25)
t—1 0 s—T

As we are interested in asymptotic stability we will need
t
/ a(u+7)du — 0 as t — . (2.26)
t—T

Burton, in his paper, compared results from a certain application of fixed point theory
with a certain common Lyapunov functional. In theory, there is no comparison at all. It
is known that if we have a strong type of stability, then there exists a Lyapunov functional
of a certain type. The fact that we can not find that Lyapunov functional gives validity
to this type of comparison. With that in mind, from (2.25) it is easy to see one of the
advantages of fixed point theory over Lyapunov theory. The latter requires a(t + 7) > 0.
If a(t +7) > 0, then a very good bound is obtained in (2.25) with little effort. If a(t + 7)
changes the sign then (2.25) can still hold, although a good bound on the second integral
is more difficult.

Burton proved in [31] the following result but were unable to do so and he left the

principle difficulty as a hypothesis.

Theorem 2.13 ([31]) Let (2.25) and (2.26) hold. Then for every continuous initial

function ¢ : [—7,0] — R, the solution x(t,0,1) is bounded and tends to zero as t — oo.

Proof. Let (B,|.||) be the Banach space of bounded and continuous functions ¢ :

[—7,0] — R with the supremum norm. Let (X, ||.||) be the complete metric space with
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supremum norm consisting of functions ¢ € X such that ¢ (t) = ¢ (t) on [—7,0] and

¢ (t) = 0ast— oo. Define S: X — X by

(Sp) () = (1), t € [-7,0],

and

t t t 0
(S) (t) = 1 (0) e~ fiolo+7)ds / alu+ 7)p(u)du — ¢~ ol / alu + ) (u)du

t s
- / a(s + 1)e” Js alutn)du / a(u + 7)p(u)duds,
0 s—T

Clearly, S is continuous, (S¢) (0) = v (0), and from (2.25) it follows that S is bounded.

Also, S is a contraction by (2.25).
We can show that the last term tends to zero by using the classical proof that the

convolution of an L;-function with a function tending to zero, does also tend to zero.

Here are the details. Let ¢ € X be fixed and let 0 < T" < ¢t. Denote the supremum

of || by [|¢[| and the supremum of |¢| on [T',400) by [|¢[|7 o, Consider (2.25) and
(2.26).We have

t S
/ la(s +7)|e” J alutr)du / la(u + 7)p(u)| duds
0 S—T

T S
< / Ja(s + 7)| e Ja atwtns / la(u + 7)(w)| duds ||| e~ Jrewtm)de
0 S—T

t T s
+/ \a(3+7)]€—fs “(“+T)du/ la(u + 7)| duds Hg0||[TfT7+OO)
T or
— ta’u T)au
<afelle It ool g

For a given e > 0 take T' so large that o ||f|;_, ) < §. For that fixed T take ¢* so

large that o |[¢||7_, ;o) < 5 for all £ > ¢*. We then have that last term smaller € than

for all t > ¢*. Thus, S : X — X is a contraction with unique fixed point in X. =
Example 2.7 ([31]) In (2.22) let

a(t) = 1.1+ sint.
The conditions of Theorem 2.13 are satisfied if

2(1.17 + 2sin (g)) <1
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This is approximated by 0 < 7 < 0.2. We obtain the conclusion of Theorem 2.13, i.e the

zero solution of (2.22) is asymptotically stable.
Example 2.8 ([31]) In (2.22), let
a(t) =1+sint.
The conditions of Theorem 2.13 are satisfied if
2(T + 2sin(7/2)) < 1.

This is approximated by 0 < 7 < 0.25, i.e the zero solution of (2.22) is asymptotically
stable.

Example 2.9 ([31]) In (2.22), let
a(t) =1+ 2sint,
with 0 < 7 < 1. Then the conditions of Theorem 2.13 are satisfied if
(T + 4sin(7/2))(2 + 2¢2) < 1. (2.27)

This is approximated by 0 < 7 < 0.02, i.e the zero solution of (2.22) is asymptotically
stable.

Equation (2.22) can be written in the form
t
() = —a(t + 1)z(t) + — / a(s+ 7)x(s)ds. (2.28)
t—1

Then Equation (2.22) is equivalent to

!/

<:c(t)— /tha(s—FT)x(s)ds) — a(t+ ) (t).

Let’s choose the functional Lyapunov V (¢, x;) = Vi (¢, z;) + Va(t, x;), where
2

Vi(t, @) = <x(t> — /t;a(s + T)J:(s)ds)
-/

Va(t,zp) = A {xQ(t) + /ttT a(s + T)xZ(s)ds} .

/t "t 7’)1‘2(u)du> ds,

—+7
and A >0
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Theorem 2.14 ([31]) Suppose that
a(t+7) >0, forallt >0 and /00 a(s)ds = oo, (2.29)
0
and there exist € > 0 with
a(t+7)/t a(s+7)ds —2+71 <e¢e forallt >0, (2.30)
t—r
and there exist A > 0 where

Ma(t)+a(t+ 7)) < za(t+7) for all t > 0, (2.31)

DO ™

then the zero solution of (2.22) is asymptotically stable.

Example 2.10 ([31]) In (2.22), let
a(t) =1.1+sint.
then the equation (2.22) becomes
'(t) = — (1.1 +sint) z(t — 7).

Theorem 2.14 remains valid if there exist € > 0 checking

2.1(1.1 + zsm(%)) —247<e

T T
Taking si .(_):_,
aKing sin Sin B 5

7 < 0.37 the zero solution of (2.22) is asymptotically stable.

we get from the last inequality the estimate 7 < 0.37. So, if

Remark 2.3 In Example 2.7 we saw that the solution of equation (2.22) with a(t) =
1.1+4sint is asymptotically stable if 7 < 0.2 with the fixed point method.However, the same
conclusion is obtained with 7 < 0.37 by the method of Lyapunov according to Example
2.10. with have 1+2sin ¢ changes sign for ¢ > 0 and consequently Theorem 2.14 relating to
the Lyapunov method is not applicable under these conditions for this example.However,
according to Example 2.9 one obtains by the method of fixed point the asymptotic stability
of the trivial solution of the equation (2.22) if (7 + 4sin(7/2))(2 + 2¢%) < 1.

On top of that we also know that the construction of functional Lyapounov is not an
easy thing.There is not a general method valid for all differential equations. For more

information and examples of this comparison, see Burton’s book ([30]).
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2.5 Elements of calculus on time scales

A time scale is an arbitrary nonempty closed subset of real numbers. The study of
dynamic equations on time scales is a fairly new subject, and research in this area is
rapidly growing. The theory of dynamic equations unifies the theories of differential
equations and difference equations. We suppose that the reader is familiar with the basic
concepts concerning the calculus on time scales for dynamic equations. Otherwise one
can find in Bohner and Peterson books [19], [20], [74] most of the material needed to read
this work. We start by giving some definitions necessary for our work. All the definitions,

theorem, notations, and basic results that are used in this section can be found in [20].

2.5.1 Description of time scales

Definition 2.26 A time scale is an arbitrary nonempty closed subset of the set of real

numbers R is denoted by T.

Example 2.11 The reals R, the integers Z, the positive integers N, and the nonnegative
integers Ny are a time scales . The most common time scales are T = R for continuous
calculus, T = Z for discrete calculus, and T = ¢ = {¢" : n € Ny}, where ¢ > 1, for

quantum calculus.

Example 2.12 The rational numbers Q, the irrational numbers R\ Q, the complex num-
bers C, and the open interval (0, 1), are not time scales.
We Assume throughout that a time scale T has the topology that it inherits from the

real numbers with the standard topology.

Definition 2.27 The forward and backward jump operators o,p : T — T are defined,
respectively, by

o(t) = inf{seT:s>t},
p(t) = sup{seT:s<t}.

A point t € T is called right-dense if ¢t < sup T and o(t) = t, right-scattered if o(t) > ¢,
left-dense if ¢ > inf T and p(t) = ¢, and left-scattered if p(t) < t.
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Here it is assumed that inf ) = sup T (i.e., o(t) =t if T contains the maximal element

t) and sup ) = inf T (i.e., p(t) = ¢ if T contains the minimal element ).

Points that are right-scattered and left-scattered at the same time are called isolated.

Points that are right-dense and left-dense at the same time are called dense.
In addition to the set T, the set T* is defined as follows. If T contains the left scattered

maximum m, then T% = T\{m}, and T* = T in the other cases. Therefore,

T — T\{p(sup T),sup T} if supT < oo,
T if supT = oo.
The difference from an arbitrary element ¢ € T to its forward is called the graininess of

the time scale T and is given by the formula

pu(t) =o(t) —t.

Example 2.13 1) If T=R, o(t) =t, p(t) =t and p(t) = 0 for all ¢t € T. Hence every
point ¢ € R is dense.

2)If T=hZ (h#0),0(t) =t+h, p(t) =t —h and pu(t) = h for all t € T. Hence if
h > 0 every point t € Z is isolated.

3)UT=q" ={¢":n €N} U{0} (h#0), 0(t) = qt, plt) = %t and pu(t) = q(t—1)
for all t € T. Hence if ¢ > 1 every point t € ¢™° is isolated.

HUT={L:neNU{0},off) = %_t o(t) = tjl and pft) = ——
teT—{1}.

5)IET = N> = {n2:n e No}, o(t) = (Vi+1)", p(t) = (VI—1)" and pu(t) = 2V + 1
forallt € T.

2

for all

Definition 2.28 If f : T — R we define the function f?: T — R by
fo(t) = f(o(t)) for all t € T,

ie., f7=foo.

The notion of periodic time scales is introduced in Kaufmann and Raffoul [69]. The

following definitions are borrowed from [69].
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Definition 2.29 We say that a time scale T is periodic if there exist a p > 0 such that if
t € Tthent+peT. For T # R, the smallest positive p is called the period of the time

scale.

Example 2.14 ([69]) The following time scales are periodic.
1) T=U;2 _[2(i — 1)h,2ih], h > 0 has period p = 2h.

2) T = hZ has period p = h.

3) T

4) T = {t k—q™:keZ meNy} where, 0 < ¢ <1 has period p = 1.

Remark 2.4 ([69]) All periodic time scales are unbounded above and below.

Definition 2.30 Let T # R be a periodic time scale with period p. We say that the
function f : T — R is periodic with period w if there exists a natural number n such

that w = np, f(t £ w) = f(t) for all £ € T and w is the smallest number such that

ft+w) = f(t).
If T = R, we say that f is periodic with period w > 0 if w is the smallest positive

number such that f(t £ w) = f(¢) for all t € T.

Remark 2.5 ([69]) If T is a periodic time scale with period p, then o(t+np) = o(t)+np.
Consequently, the graininess function p satisfies pu(t+np) = o(t+np)—(t£np) = o(t)—t =

w(t) and so, is a periodic function with period p.

2.5.2 Differentiation

The theory of dynamic equations at time scales was introduced in 1988 by Stefan Hilger

in his doctoral dissertation where he defined the A-derivated as follows.

Definition 2.31 ([20]) For f : T — R, we define f2(t) to be the number (if it exists)

with the property that for any given € > 0, there exists a neighborhood U of ¢ such that

‘(f(a(t)) — f(8)) = f2(t) (o(t) — s)| <elo(t) —s| forall s € U.

If f is derivative for all t € T, then the function f2 : T — R is called the delta (or

Hilger) derivative of f on T*.
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Example 2.15 (1) If f : T — R is defined by f(t) = a for all ¢ € T, where a € R is

constant, then f2(¢) = 0. This is clear because for any & > 0,
|(f(a(t) — f(s))=0(a(t)—s)|=]a—a|=0<c¢e|o(t)—s| foral seU.

(2) If f: T — R is defined by f(t) =t for all t € T, then f2(t) = 1. This is clear

because for any ¢ > 0,
(f(a(t)) = f(s)) = 1(o(t) = s)| =0 <elo(t) —s| forall s € U.

Theorem 2.15 ([20]) Assume f : T — R is a function and let t € T*. Then we have

the following
(1) If f is differentiable at t, then f is continuous at t.
(13) If f is continuous at t and t is right-scattered, then f is differentiable at t with

Ay Jlo@) = f(t)
PO=""u0

(131) If t is right-dense, then f is differentiable at t with
) — i L0 =S

() If f is differentiable at t, then

flo(t)) = p@&) f2(1) + f(1).

Example 2.16 1) If T = R, then f2(t) = f/(z) for all t € R.
2) If T = hZ, then f2(t) = fltth) = J{t = Af for all t € R.

h
3) If T = ¢"°o and f(t) = t2, then f2(t) =qt +t forallt € T.
1
4) I T =q¢" (¢ > 1), and f(t) = log(t), then fA(t) = i qul) forallt € T.
q_
1 t—1
5) If T = {E ‘n € N} U {0}, and f(t) = log(t), then f2(t) = v log(1 — t) for all

teT—{1}.

Theorem 2.16 ([20]) Assume f,g: T — R are differentiable at t € T. Then
(1) The sum f+ g: T — R is differentiable at t with

(f+9)% (8) = f2(8) + g°(8).
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(12) For any constant a, af : T — R is differentiable at t with

(af)® (t) = af>(t).

(731) The product fg: T — R is differentiable at t with

(f9)™ (8) = (gl () + f(£)g*(1)
= A9t + f (o (1) g2 (2).

() If f(t)f(o(t)) # 0, then 1 is differentiable at t with

f
I ()
(f) 0= =5 o)

(v) If g(t).g(o(t)) # 0, then g is differentiable at t with

N 09 - F0g2 ()
(5) o=
Example 2.17 1) Let a € R and m € N, f: T — R defined by f(¢) = (t — a)™ we have

A=Y (o) —a)*(t—a)™ "1

2) Let a € Rand m € N, g : T—{a} — R defined by g(t) =
(t —a)(o(t) —a) # 0 we have

provided

1
(t —a)™

m—1

1
= L G-

Remark 2.6 Assume f,g:Z — Z are defined by f(t) = t? and g¢(t) = 2¢, then

(fog)™ (t) = A(fog) () = 4t +1)* — 4t* = 8t + 4,
and
FAg()g™ (1) = (29(t) + 1)(2(t +1) — 2t) = 8t + 2.

Thus

(fog)™ (1) # 2 (9(1))g™(2).
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Theorem 2.17 ([20]) Suppose f : T — R is differentiable at to € T\{maxT}. If
f2(tg) > 0, then f is right-increasing. If f>(to) < 0, then f is right-decreasing.

Let f: T — R be a strictly increasing function such that T = f (T) is also a time scale.
By o we denote the jump function on T and by A we denote the derivative on T. then

foo=0oof.

Theorem 2.18 ([20]) Assume that f: T — R is strictly increasing, T = f(T) is a time
scale and g : T — R. If fA(t) and gg(f(t)) exist for t € T®, then

(go f)> = (gZ o f) 2.

2.5.3 Integration

Definition 2.32 A function f: T — R is called regulated provided its right-sided limits
exist (finite) at all right-dense points in T and its left-sided limits exist (finite) at all

left-dense points in T.

Definition 2.33 A function f : T — R is called rd-continuous provided it is continuous
at every right-dense point ¢ € T and its left-sided limits exist, and is finite at every

left-dense point ¢t € T. The set of rd-continuous functions f : T — R will be denoted by
Crd = Crd<T) = Crd(T7 R)

The set of functions f : T — R that are differentiable and whose derivative is rd-

continuous is denoted by

de = Oﬁd(T) = C’id(’ﬂ‘, R).

Theorem 2.19 (Existence of pre-antiderivatives [20]) Let f be regulated. Then
there exists a function F which is re-differentiable with region of differentiation D such
that

FA(t) = f(t) holds for all t € D.
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Definition 2.34 Assume f : T — R is a regulated function. Any function F' is called a
pre-antiderivative of f. We define the indefinite integral of a regulated function f by

/fA(t)At = F(t) +c,

where c is an arbitrary constant and F' is a pre-antiderivative of f. For all a,b € T, the

/ FOAL = F(b) — Fla).

A function F': T — R is called an antiderivative of f : T — R provided

Cauchy integral is defined by

F2(t) = f(t) holds for all t € T.

Theorem 2.20 (Existence of antiderivatives [20]) Every rd-continuous function

has an antiderivative. In particular if to € T, then an antiderivative of f is ' defined by

= /tf(r)Ar forallt € T.

The following theorem gives several elementary properties of the delta integral.

Theorem 2.21 ([20]) Ifa,b,ce T, a €R, and f,g € C,q, then
(@) [ 1f(r) +g(r)] Ar = fbf JAT + [} g(r)Ar
i) [ o < Ar—af f
f(r - fb
£ >Ar = fc f(r)Ar + 0 fr)Ar
F(o (M)g* (1) Ar = (fg) (b) = (fg) (@) + [} FA(r)g(r)Ar,
F(r)g®(r)Ar = (fg) (b) — (fg) (a) + [ FA(r)g(o (r)Ar,

(

(141) f
(iv) Jy
(v) [,

(vi) Jy
(vii
(
(i

vit) [ f(r)Ar =0,
viii) if f(t) >0 for alla <t <b, then [ f(r)Ar >0,
ix) if f(t) < g(t) on |a,b), then ‘fab f(r)Ar‘ < f:g(r)Ar.

Definition 2.35 Infinite integrals are defined as

/OO f(r)Ar = tlgilo tf(r)Ar.
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Theorem 2.22 ([20]) If f: T — R is an arbitrary function and t € T, then

o(t)
[ rmar=uwso.
¢
Theorem 2.23 ([20]) Let a,b € T* and assume f : T x T"— R is continuous at (t,t),
where t € T* with t > a. Also assume that f2(t,.) is rd-continuous on |a,c(t)]. Suppose

that for each € > 0 there exists a neighborhood U of t, independent of v € [a,o(t)], such

that
|flo(t),r) = f(s,7) — At r)(o(t) — s)| <elo(t)—s| foralls €U,

where 2 denotes the derivative of f with respect to the first variable. Then
(i) g(t) : = / ft,r)Ar implies g°(t) == / FR(E A + f(o(1), 1),
o "
(i) B(t) : = / £t 1) Ar implies hA(t) — / FAE )AL — F(o(t),1).

Theorem 2.24 ([20]) Let a,b € T and f € C,q.

(i) If T = R, then b b
/a Fr)Ar = / F(r)dr.

(17) If [a,b] consists of only isolated points, then

(S ) ifa<b,
b r€la,b)
/ f(r)Ar=¢ 0 if a = b,
— 2. u(r)f(r) if a >b.
L reb,a)
(i43) If T = hZ (h > 0), then
(i
S hf(kh) ifa < b,
b =%
/ f(r)Ar =4 0 if a = b,
- El hf(kh) ifa>b.
\ k:TbL
(w) If T =7, then
S i) ifa<y
b k=a
/ f(r)Ar=<¢ 0 ifa =0,
— ail f(r) if a >b.
\ k=b
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Example 2.18 1) For a,b € T, ffozlog kAt = ozlogk;ff At =t aloghk = (b — a) alog.

2) Fort € T = hZ (h > 0), f:+h cosTAr = {t;(t) cosTAr = hcost.
3) Let f:T — R (u(t) £ 0), f(t) = Sm(”(;(t)_ sinf
f fr fb sin(o(r)) —sinr

Ar = sinr|’ = sinb — sin a.
p(r) ‘

, then for a,b € T,

2.5.4 The regressive group

Definition 2.36 A function p: T — R is called regressive provided 1 + pu(t)p(t) # 0 for

all t € T.

The set of all regressive and rd-continuous functions p : T — R will be denoted by

R =R(T,R).
We define the set Rt of all positively regressive elements of R by

RY=RYT,R)={peR:1+ut)pt) >0, VteT}

Definition 2.37 If p,g € R, then we defined the the function p & g by

(p @ q) (t) == p(t) + q(t) + u(t)p(t)q(t) for all t € T,
and the function &p defined by
t
(©p) (t) = O for all t € TF.

L+ pu(t)p(t)

Lemma 2.3 ([20]) the functions are also elements of R.

Definition 2.38 We define the ”circle minus” subtraction & on R by

(pSq)(t) :=(p®(Sq))(t) for all t € T

Lemma 2.4 ([20]) Suppose p,q € R. Show directly from the definition that
(i) pop=0,
it) & (Sp) =

(
(zzz)p@pER

_ p—gq
PO T
(v) ©(peq) =qOp,

(

vi) ©(p®q) = (Sp) & (S9).
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Lemma 2.5 ([20]) 1) (R,®) is an Abelian group. This group is called the regressive
group.

2) (R*,@®) is a subgroup of the regressive group.
Definition 2.39 Let p € R, then the generalized exponential function e, is defined as

the unique solution of the initial value problem
z2(t) = p(t)x(t), x(s) =1, where s € T.
An explicit formula for e,(¢, s) is given by

ep(t,s) = exp (/t C“(T)(p(T))AT) , for all s,;t € T, (2.32)

with
10g(1h+hr) if B > 07

Cu(r) = _
r if h =0,

where log is the principal logarithm function. (,,(r) we called the cylinder transformation.

Lemma 2.6 ([20]) Let p € R, then
(i) eo(t,s) =1 and e,(t,t) =1,
(ii) [ep(- 8)]% = p(t)ep (., 8),
(1) ep(o (1), 8) = (14 p(t)p(t)) ep(t, s),

(iv) ey(t, ) = ep(i 5 = eoslant)
(v) ep(t, s)ep(s,r) = ep(t,r),
(vi) ey(t, Sl)eq(tvg) = ep@q((t)’ s),
g __pit
(vii) (ep(. s N eg(.,s)’

(iz) [ep(c, .S]A = —p(t) [ep(c,.)]” where c € T.

Example 2.19 ([20]) Let t, =0, p(t) = 1, then,
1) if T=TR, eyt ty) = ¢,
2) it T=7Z, e,)(t, to) =27,
3)if T = hZ, ey(t, to) = (1 + h)n.

Lemma 2.7 ([1]) Ifp € RT, then

0 < epy(t,s) <exp (/tp(r)Ar> , forallt € [s,00)g. (2.33)
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Corollary 2.2 ([1]) Ifp € R" and p(t) < 0 for allt € T, then for all s € T with s <t

we have

t
0 < epy(t,s) <exp (/ p(r)Ar) <1 for allt € [5,00)y.

In terms of the exponential function (2.32), there are two variation of constants formulas

that read as follows.

Theorem 2.25 (Variation of constants [20]) Let f € Cq, to € T, p € R, and zy €

R. Then the unique solution of the initial value problem

v = —p(t)a(o(t) + f(t), = (to) = w,

s given by

£ (t) = eop(t, to)zo + / ecp(t.8)f (5) As,

to

and the unique solution of the initial value problem

z® = p)x(t)+ f (), x(to) = o,

15 given by

z (t) = ey(t, to)zo + / ep(t,o(s))f (s) As.

to
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Existence of positive periodic solutions for

delay dynamic equations

Keywords. Positive periodic solutions, Schauder’s fixed point theorem, dynamic equa-

tions, time scales.
The goal of this chapter is to present a very recent work published in [24], namely,

F. Bouchelaghem, A. Ardjouni and A. Djoudi, Ezistence of positive periodic solutions for

delay dynamic equations, Proyecciones Journal of Mathematics, 36(3) (2017), 449-460.

In this chapter, we study the existence of positive periodic solutions for a dynamic
equations on time scales. The main tool employed here is the Schauder’s fixed point

theorem.

3.1 Introduction

Let T be a periodic time scale such that ¢y € T. In this chapter, we consider the following

delay dynamic equation
22 (1) +p() a7 (1) +q(B)z (7 () =0, t > to. (3.1)

Throughout this chapter we assume that p,q : [tp,00) N T — R are rd-continuous, 7 :
T — T is increasing so that the function x (7 (¢)) is well defined over T. We also assume

that 7 : [tg,00) N T — [0,00) N T is rd-continuous, 7(t) < ¢ and lim;_,, 7(t) = co. To

43
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reach our desired end we have to transform (3.1) into an integral equation and then use

Schauder’s fixed point theorem to show the existence of positive periodic solutions.

The organization of this chapter is as follows. In Section 2, we establish our main
results for positive periodic solutions by applying the Schauder’s fixed point theorem. In
Section 3, we present two examples to illustrate our results. The results presented in this

chapter extend the main results in [90].

3.2 The existence of periodic solutions

In this the section we will study existence of positive w-periodic solution of (3.1). In the

next lemma and theorem we choose T' € T sufficiently large that 7(t) > ¢, for t > T

Lemma 3.1 Suppose that there exists a rd-continuous function k : [T,00) N'T — (0, 00)
such that
p+aqk ¢ R,

/t wfu(s) [© (p(s) +q(s)k(s))]As =0, t > T. (3.2)

Then the function

0= e ([ 0 B0 + a5 ¢,
is w-periodic.
Proof. For t > T we obtain
e+ )
— e ([ g [B1005) + als)h))) 55
~en ([ i [20(5) + a(R(5)] as)ess ([ T 0 [2005) + a(s)k(s)] 2s)
_ i

Thus the function f is w-periodic. =

3.2. The existence of periodic solutions



Chapter 3. Existence of positive periodic solutions for delay dynamic equations 45

Theorem 3.1 Suppose that there ezists a rd-continuous function k : [T, 00)N'T — (0, 00)

such that (3.2) holds and

7(t)
/(t) Eu(s) [O(p(s) + q(s)k(s))] As = log(k(t)), (t) > T. (3.3)

Then (3.1) has a positive w-periodic solution.

Proof. Let X = C.4([to,00) N T,R) be the Banach space with the norm |z| =

SUp;>y, |2(t)|. With regard to Lemma 3.1 we define

M= s Lo ([ 60 B0 +amen)as) .
m = ITn;Oan{exp (/ €uis) [© ()’f(S))]AS)}- (3.4)

We now define a closed, bounded and convex subset €2 of X as follows

Define the operator S : 2 — X as follows

exp (th Euu(s) {@ (p(S) + Q(S)xggzi )ﬂ A8> , > T,
1

(Sz)(t) =

to<t<T.

Y

We will show that for any = € €2 we have Sx € Q2. For every z € Q2 and t > T we get

0= o (s a8 )
= exp ( /T t Eus) [B(p(s) + a(s)k(s))] As) < M.

Furthermore for x € Q and ¢t > T we obtain

(S2)(t) = exp ( [ 6 0060 + k(5] As) > m.

For t € [ty,T]N'T we have (Sz)(t) = 1, that is (Sz)(t) € Q.

3.2. The existence of periodic solutions
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Further for every z €  and 7(t) > T we get

(52 (0) = exp ( [ s [o (w0 + a2 As)

- <Sx>"<t>exp< e E (p<s>+q<s>"”“<8”)]m). (3.5)

o(t) 27 (s)

With regard to (3.3) and (3.5) for 7(¢) > T it follows that

()
(S2)((t)) = (52)7(t) exp (/(t) Euts) [©(p(5) + q(s)k(s))] AS) = k(t)(52)7(1).

Finally we will show that for z € €, ¢ > T the function Sx is w-periodic. For x € (,

t > T and according to (3.2) we have
(Sx)(t + w)

~en ([ " 0 [2005) + a()k()] as)

—e / G [00(5) + a(5h(5)] s
< exp ( () + a(5)1(s))] 25

= (Sx)(¢).

So Sz is w-periodic on [T, 00) N'T. Thus we have proved that Sz € Q for any x € Q.
We now show that S is completely continuous. Let z; € €2 be such that z; — x € Q

as 1 — o0o. For t > T, we have

(S2)(0) - (S2)(0)
oo ([ 6o [o () + a9 25 | )
~ep ([ 6o [ (o9 + a0 2 ) | as) .

By applying the Lebesgue dominated convergence theorem we obtain that

lim || Sz; — Sz|| = 0.
1—> 00

For t € [ty,T] NT the relation above is also valid. This means that S is continuous.

3.2. The existence of periodic solutions
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We now show that S is relatively compact. It is sufficient to show by the Arzela-Ascoli
theorem that the family of function {Sz : z € Q} is uniformly bounded and equicontinuous
on [tg,00) N'T. The uniform boundedness follows from the definition of Q2. With regard
to (34) for t > T, x € Q we get

|(S2)2(1)]

< Ml, M1 > 0.
For t € [to,T]NT, = € Q, we have
‘(Sx)A(t)‘ =0.

This shows the equicontinuity of the family SQ. Hence S is relatively compact and
therefore S is completely continuous. By Theorem 2.5 there is an xg € €2 such that
Sxg = xo. We see that ¢ is a positive w-periodic solution of (3.1). The proof is complete.

3.3 Two examples
In this section, we give two examples to illustrate the applications of Theorem 3.1.

Example 3.1 Consider the delay dynamic equation on T with pu(t) # 0,

1 6(cos o(t)—cos(t))

o) x(o(t)—2m) =0, t>0. (3.6)

3.3. Two examples
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We take k(t) = 1. Then for conditions (3.2), (3.3) and w = 27 we obtain

/t " [0 (0(s) + a(s)k(s))] As

= [ 1oslE 06) + a(Iks) ) 1)

t+27 1 1
:/t e log[Hu(s) OET O

_ / ” s L (D) ((s) +a(s)) As
B t+2m B (cosa(s) — cos(s)) .

-/ e

= —coss [[T"= 0,

and
7(t)
/ ., G [900(6) + als)k(9))] 5
o(t)—2m

-/ L G [0 ke 8 =0, 120

All conditions of Theorem 3.1 are satisfied. Thus Eq. (3.6) has a positive w = 27-periodic

solution

o(0)— o ( / ) <cosa<sl3(;) cos(s)) AS) _ oot 457,

Example 3.2 Consider the delay differential equation on T = R,
1
x'(t) — (5 sint+e Na(t) +e Sy (t—7) =0, t > 0. (3.7)

We choose k(t) = e“st. Then for conditions (3.2), (3.3) and w = 27 we have

1

tHw t+om
/t [p(s) + q(s)k(s)] ds = _E/t sin(s)ds = 0,

/T(t) [p(s) + q(s)k(s)] As = —% /t7r sin(s)ds = cost, t > 0.

All conditions of Theorem 3.1 are satisfied. Thus (3.7) has a positive w = 2m-periodic

"1
l‘(t) = exp (/ (_ sin S) dS) — e%(COS(T)—COS(t))7
7 \ 2

solution

fort>T.

3.3. Two examples



Chapter I

Existence and stability of positive periodic

solutions for delay nonlinear dynamic

equations

Keywords. Positive periodic solutions, Schauder’s fixed point theorem, dynamic equa-
tions, time scales

The goal of this chapter is to present a very recent work published in [23], namely,
F. Bouchelaghem, A. Ardjouni and A. Djoudi, Existence and stability of positive periodic
solutions for delay nonlinear dynamic equations, Nonlinear Studies, 25(1) (2018), 191-202.

In this chapter, we study the existence and stability of positive periodic solutions for

a delay nonlinear dynamic equation on time scales.

4.1 Introduction

Let T be a periodic time scale such that ¢y € T. In this chapter, we consider the following

delay nonlinear dynamic equation

n

22 () +p ()2 () =Y a4 () fi (@ (7 (1) =0, ¢ = to, (4.1)

i=1
Throughout this chapter we assume that p, g; : [to, 00)NT — R are rd-continuous, f; : R —

R is differentiable with f; (x) > 0 for z > 0, 7; : T — T is increasing so that the function

49
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x (7; (t)) is well defined over T, i = 1, ..., n. We also assume that 7; : [tg, 00)NT — [0, 00)NT
is rd-continuous, 7;(t) < t and lim; ., 7;(t) = 00, i = 1,...,n. To reach our desired end
we have to transform (4.1) into an integral equation and then use Schauder’s fixed point
theorem to show the existence of positive periodic solutions. The sufficient conditions for

the exponential stability of positive periodic solutions are also considered.

The organization of this chapter is as follows. In Section 2, we establish our main
results for positive periodic solutions by applying the Schauder’s fixed point theorem.
The exponential stability of the positive periodic solutions is the topic of Section 3. The
model for the survival of red blood cells is treated in Section 4. An examples is also given
to illustrate our results. The results presented in this chapter extend the main results in

[49].

4.2 Existence of periodic solutions

In this the section we will study existence of positive w-periodic solution of (4.1). In the
next lemma and theorem we choose T' € T sufficiently large that ;(t) > o for t > T,

1=1,..,n.

Lemma 4.1 Suppose that there exist rd-continuous functions k; : [T,00) N'T — (0, 00),

1=1,...,n such that

p—Y aki € RT,

i=1

t+w n
/ gu(s) S (p(s) - Z%(S)kz(s)) As = 07 3 > T (4 2)
t i=1
Then the function
W(t) = exp </T Eus) |©((s) — Zqi(s)ki(s) As) L, t>T,
i=1

18 w-periodic.

4.2. Existence of periodic solutions
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Proof. For t > T we obtain

Thus the function ¢ is w-periodic. =

Theorem 4.1 Suppose that there exist rd-continuous functions k; : [T, 00)N'T — (0, 00),

i=1,...,n such that (4.2) holds and
s (p(s) - Zqi(s)ki(s)As> ))

73 (t)
fi <exp </T gu(s)
X exp (/U(t) Euis) |© <P(S) - ;%(S)ki(s)ﬁs) )

=k;i(t), ;(t) > T, j=1,...,n. (4.3)

Then (4.1) has a positive w-periodic solution.

Proof. Let X = C,4([to,00) N T,R) be the Banach space with the norm ||z| =
Sup;sy, |2(t)]. With regard to Lemma 4.1 we define

M = te[ITn?oer{eXp (/ Eu(s) @(p(S)—Zqi(S)ki(S) As

m = te[gl;onm {exp (/ Eus) |©((s) — Z qi(s)ki(s) As) } : (4.4)

4.2. Existence of periodic solutions
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We now define a closed, bounded and convex subset €2 of X as follows

AQ={reX: z(t+w) =), t>T,
m<zx(t) <M, t>T,

ki()a?(t) = fi(x(n(t)), t 2T, i=1,...,n,
w(t) =1, ty <t <T}.

Define the operator S : 2 — X as follows

exp (th Euu(s) [@ (P(S) - f) %(5)M)} AS) , t>T,

i=1 27 (s)
1, to<t<T.

(Sz)(t) =

We will show that for any = € €2 we have Sx € Q2. For every z € 2 and t > T we get

(Sz)(t) = exp ( /T Euts) ( Zqz xazi;))))
= exp (/T Eus) O (P(S) - Zqz-( )

Furthermore for x € Q and ¢t > T we obtain

(S2)(t) = exp </Tt Suts) |© ( Zqz )

For t € [ty,T] N'T we have (Sz)(t) = 1, that is (Sz)(t) €

Further for every z € Q and 7;(t) > T, j =1, ...,n, we get

7;(t) i
fi (Sz)(7;(8)) = f; (eXp (/ Eus) |© As

T

As

I

)
/N

@

>

o]

\

a

mv

=

O]
/?A
=

|
|‘M: I

R

©

=

4|3
A:‘

» [~
\_/\0-3/
N~
~
N~
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With regard to (4.3) and (4.5) for 7;(t) > T, j =1, ..., n, it follows that

75 (1) n
[ (Sz)(7;())) = f (exp (/T Eus) |© <p(s) + Zqi(s)kl(s)> As))
75 (t) n
X exp (/(t) Su(s) |© (p(S) + Zqi(«?)’%(S)) AS) S(x)7(t)

= k;(£)(S2) (), j=1,....n.

Finally we will show that for x € Q, ¢t > T the function Sz is w-periodic. For = € €,
t > T and according to (4.2) we have

(S2)(t + w) = exp ( / N

T

= oXp (/T Suts) |© (p(S) - ;Qi(s)%(;(;)))> As>
X eXp (/t wfms) S (p(S) - ;%(@%) As)

=<Sxxwemo(l’mgmg

So Sz is w-periodic on [T, 00) N'T. Thus we have proved that Sz € Q for any x € Q.

AS) = (Sz)(1).

O(p(s) — Z i(s)ki(s))

We now show that S is completely continuous. Let z; = z(t) € Q be such that

xp(t) — x(t) € Q as k — oo. For t > T, we have

exp (/T Suts) |© (p(S) - ZqAS)M)
_m«émge@@—waﬂ§§m)

Since f; (xr(1:(s))) /x5 (s) = fi(x(m(s))) /27 (s) as k — oo for i = 1,2,...,n,by applying

|(Sze)(1) — (S2) ()] =

the Lebesgue dominated convergence theorem we obtain that
Jim ([(Sz) (1) = (Sz2) (8)]| = 0.
—00

For t € [ty,T] NT the relation above is also valid. This means that S is continuous.
We now show that S0 is relatively compact. It is sufficient to show by the Arzela-Ascoli

theorem that the family of function {Sz : z € Q} is uniformly bounded and equicontinuous

4.2. Existence of periodic solutions
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on [tg,00) N'T. The uniform boundedness follows from the definition of Q2. With regard
o0(44) fort >T, z € Q we get

A(t

@<p qu )>>>>‘
/T (p<s>+zqi<s>—fi<;;j;>>>)

=1
Z gi(£)ki(t)| exp (

o(t)
/ Eus)
T
< M17 M; > 0.
For t € [ty, T]NT, = € Q, we have

|(S2)2(t)] = 0.

This shows the equicontinuity of the family SQ. Hence S is relatively compact and
therefore S is completely continuous. By Theorem 2.5 there is an xq € €2 such that
Sxg = xo. We see that ¢ is a positive w-periodic solution of (4.1). The proof is complete.

4.3 Stability of positive periodic solutions

In this section, we consider the exponential stability of the positive periodic solu-
tion of (4.1). Let r = minj<j<, {infi>r7(t)}. We denote x (t,T,¢), t > r, ¢ €
Cra ([r, T) 0T, (0,00)) for a solution of (4.1) satisfying the initial condition z (¢,7,1) =
W(t), t € [r,T]N'T, where T is the initial point. Let z (t) =z (¢,T,v), T (t) =« <t, T, {Dv)
and y(t) =z (t) —z(t),t € [r,o0)NT. By (4.1), we get

y® () + Zqz filz (r @) — fi (@ ()] =0, t > T.

4.3. Stability of positive periodic solutions
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By the mean value theorem, we obtain

v 0 +p (0 ()~ a0 5 ) e (7 0) ~ 7 (r 1)) =0, f () = T,
P O+pO Y O =S a ) @)y (@) =0, t>T. (4.6)
Lemma 4.2 Assume that x € (0,00), |fl(x)| <a, t—77 () <b,t>T,i=1,....,n and
sup {—p(t) + GZQE’(t)} <0

Then there ezists A € (0, 1] such that
A — p(t) + aex(b,0) qu(t) <0 fort>T.

Proof. Define a continuous function H(u) by

H(u) = sup {u — p(t) + aey(b,0) qu(t)} , uelf0,1].

t>T

By hypothesis, we get

H(0) =Sup{—p(t) +GZQE’(t)} <0

>T
According to the continuity of H(u) and H(0) < 0, there exists A € (0,1] such that
H(\) <0, that is

A —p(t) + aex(b,0) qu(t) <O0fort>T.

We have achieved the desired result. =

Next we will assume that the function
F(taxaxlw“axn) +qu fz -Tz t2T7
satisfies Lipschitz-type condition with respect to z,x; > 0,7 =1,....n

Definition 4.1 Let T be a positive solution of (4.1). If there exist constants Ty z, Ky 3
and A > 0 such that for every solution z (t, 7, ) of (4.1)

|z (t,T,¢) — 2 ()] < Kypzesa(t,0) for all t > T 5.

Then z is said to be exponentially stable.

4.3. Stability of positive periodic solutions
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In the next lemma, we establish sufficient conditions for the exponential stability of

the positive solution 7 (t) = z (t, T, {/;) of (4.1).

Lemma 4.3 Assume that x € (0,00), |fl(x)| <a,t—77 () <b,t>T,i=1,...n and
sup § —p(t) +a 7(t) p <O.
t>¥{ p(?) ;q ()}

Then there ezists A € (0, 1] such that
x(t,T,Y) —x (t, T, bev)‘ < Ky zeoa(t,0) for allt > T 5.

where

Kyz = tel[n%f;?w(T ,0) [y(8)| + 1.

Proof. We consider the Lyapunov function
L(t) = |y(t)|ex(t,0), t >r, A€ (0,1].

We claim that L(t) < Kyz for ¢ > T. In order to prove it, suppose that there exists
t. > T such that L(t,) = Ky7 and L(t) < Kyz for t € [r,0(t.)) N T. Calculating the
upper left derivative of L along the solution y of (4.6), we obtain

(L) < =p() 1y (D exlt,0) + ex(t,0) Z q; @) 1f; @)y (77 ()] + My (@)l ea(t, 0)

= Dy =2 () ly” (O] ex(t, 0) +ex(t,0) Y a7 () |f @)y (77 (1))

i=1

< = p@]ly®)] ex(t, 0) +aex(t,0) Y a7 () [y (7 ()], ¢ = T.

i=1

For t = t, and applying Lemma 4.2, we get

0< (L(1)® <A =p(t)]ly(t.)] ex(ts, 0) + aex(t., 0) qu )|y (77 ()]

=1

= A =p )] ly(t)] et 0) +azqz )y (77 )l ea(r (t.) , 0)ea(t. — 77 (£.) , 0)

=1

=A=p )] Ky + azqz ) L(777 (t))ea(te — 77 (), 0)

=1

A —p(ts +aeAbOqu )| Ky <0,

4.3. Stability of positive periodic solutions
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which is a contradiction. Therefore we obtain
L(t) = |y(t)| ex(t,0) < Kz for t > T, and for some A € (0,1].
The proof is complete. =

Theorem 4.2 Assume that x € (0,00), |fl(x)| <a,t—77(t) <b,t>T,i=1,...,n and

(2

sup {—p(t) +a Z Q?(t)} <0,

t>T

and there exist functions k; € Crq ([T, 00)N'T,(0,00)), ¢ = 1,...,n such that (4.2) and
(4.3) hold. Then (4.1) has a positive w-periodic solution which is exponentially stable.
Proof. The proof follows from the Theorem 4.1 and Lemma 4.5. m

4.4 Model for the survival of red blood cells

In this section, we consider the existence of positive w-periodic solutions for the nonlinear

delay dynamic equation of the form
2 () +p (t) 27 (t) — g (t) eay (2 (7 (1)) ,0) = 0, t > 1o, (4.7)

which is a special case of (4.1), where ¢;(t) = q(t), ¢;(t) =0,i=2,....,n, fi(x (7 (1)) =
ey (2 (7(1)),0), fi(x)=0and 7 (t) =0,i=2,...,n, v € R". We will also establish the
sufficient conditions for the exponential stability of the positive periodic solution.

Rewriting the Theorem 4.2 to the equation (4.7) we obtain the next result.

Theorem 4.3 Suppose that v > 0,t —717(t) < b, t > T,

sup {—p(t) +~¢°(t)} <0, (4.8)

t>T
and there exists function k : Cpq ([T, 00) N'T, (0,00)) such that
p—aqk e R,

t+w
/t Eu) [0 (0(s) — a()k(s))] As — 0, ¢ > T. (4.9)

4.4. Model for the survival of red blood cells
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and

()
f (eXp (/T Eu(s) [© (P(s) — a(s)k(s))] A8>>

<o ([ G006~ Ar) = k0, 7) 2 . (410
Then (4.7) has a positive w-periodic solution which is exponentially stable.
Example 4.1 Consider the nonlinear delay dynamic equation on T with pu(t) # 0,
2 () +p )27 (t) — q(t) esy (z (7 (1)),0) =0, t > ¢, (4.11)
where y € RT, 7(t) =t — 7,
plcosa(t)—cost) _ |

p(t) =1+ o) ,

q(t) _ e(cosT—coscr(t))e’y (e(cosT—COST(t))7 0) )

We choose

kf(t) _ 6<COSU(t)_COST)€97 (e(COST—COST(t))’ 0) )

Then for conditions (4.9), (4.10) and w = 27, we get

elcoso(t)—cost) _
1+u(t)(p(t)—Q(t)’f<t>):H”(t)( u(t) 1)

_ e(cosa(t)—cost) > 07 Vt € T,

then p — gk € R", and

/t u}fu(s) [© (p(s) — q(s)k(s))] As = _/t ™ cos (0(81323; cos(s) As

= —cos(s)[\T*"
=0.

Therefore
(t) T
f (exp (/T Euis) [© (p(s) — a(s)k(s))] AS)) exp (/am Euis) [© (p(s) — a(s)k(s))] AS)

= ey (exp (cos (T') — cos (7 (t))),0) exp(cos(a(t)) — cos(T))
= k(t).

4.4. Model for the survival of red blood cells
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The conditions (4.9) and (4.10) of Theorem 4.3 are satisfied and (4.11) has a positive

w = 27 periodic solution

o= ([ o [0 (0(5) — a(5)(s))] as). iz
. <_ /t cos (o(s)) — cos(s) AS)

T ()
= exp(cos(T') — cos(t)).

If we put v =0.04, T' = 7, p(t) > 1710._0;4;;04, we get

—p(t) + 0.04¢° (¢)

e(cos o(t)—cost) __ 1

— _(1 + (t) ) + ")/6(COST_COSU(U(t)))€,Y (e(cosT—coso(T(t)))’ 0)
1
(coso(t)—cost) __ 1
_ _(1 I e (t) ) + 0.04e~ COSU(U(t)))€0.04 (8_ cos O’(T(t)))’ O)
1
<—(14¢ ) + 0.04e" %
u(t)

<0.

Then, the condition (4.8) is satisfied and solution z is exponentially stable.

4.4. Model for the survival of red blood cells



Chapter

Existence of positive solutions of delay

dynamic equations

Keywords. Positive solutions, asymptotic properties, Schauder’s fixed point theorem,

dynamic equations, time scales.
The goal of this chapter is to present a very recent work published in [25], namely,

F. Bouchelaghem, A. Ardjouni and A. Djoudi, Existence of positive solutions of delay
dynamic equations, Positivity, 21(4) (2017), 1483-1493.

In this Chapter, we study the existence of positive solutions for a dynamic equations
on time scales. The main tool employed here is the Schauder’s fixed point theorem. The

asymptotic properties of solutions are also treated.

5.1 Introduction

Let T be a time scale such that ¢y € T. In this chapter, we consider the following delay

dynamic equation
22 () +pt)x” (1) +q )z (1 (1) =0, t >t (5.1)

Throughout this chapter we assume that p : [tg,00) NT — R and ¢ : [tg,00) N T — (0, 00)
are rd-continuous, 7 : T — T is increasing so that the function x (7 (¢)) is well defined

over T. We also assume that 7 : [ty,00) N T — [0,00) N T is rd-continuous, 7(¢) < t and
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lim; ., 7(t) = oo. To reach our desired end we have to transform (5.1) into an integral
equation and then use Schauder’s fixed point theorem to show the existence of solutions
which are bounded by positive functions. The asymptotic properties of solutions are also
treated.

The organization of this chapter is as follows. In Section 2, we establish our main
results for positive solutions by applying the Schauder’s fixed point theorem. In Section
3, we present the asymptotic properties of solutions. In Section 4, we give three examples

to illustrate our results. The results presented in this chapter extend the main results in

[49).

5.2 Existence of positive solutions

In this section we shall investigate the existence of positive solutions for equation (5.1).

The main result is in the following theorem.
Theorem 5.1 Suppose that fort > tg
1< kl S k?v p(t) + le(t> Z Oa

and

0
o us) [© (p(s) + kiq(s))] As > log ki,

(1)
| Euis) [© (p(s) + kaq(s))] As < log ka. (5.2)

o(t
Then equation (5.1) has a solution which is bounded by positive functions.

Proof. We choose T' > to+ 7(T) and set
utt) = exp ([ 60 (5 (015) + ()] ).
01 =e0 ([ 6B 0 +hat)] as) . 12T
Let Cyq ([to, 00) ,R) be the set of all bounded rd-continuous functions with the norm

]l = sup |z(t)] < oo,
t>to

5.2. Existence of positive solutions
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Then Cyq ([to,00) ,R) is a Banach space. We define a close, bounded and convezr subset

Q of Crq ([to,0),R) as follows

Q= {u(t) <z(t) <o(t), t>T,
2(r(t)) < koz°(t),  t>T,
2(7(t)) > k2 (t), t>T,
x(t) =1, T(T)<t<T}

Define the map S : Q — Crq ([to, 00) ,R) as follows

(S)(t) = { oxp (Jr6uo [0 (p05) +a0)Z5F) | 85) . o2,

L
We shall show that for any x €  we have Sx € ). For every x € Q) andt > T we get

(s2)0) < exp [ 600 [0066) + ha(9)] a5) = (0,
Furthermore for t > T we have

(S2)(t) > exp ( [ o 16 065) + () As) — u(t).

Fort € [r(T),T] we obtain (Sz)(t) = 1. Further for every x € Q and 7(t) > T we get

7(t)) = exp < /T " Eus) {@ (p(s) + q(s)xi:((g))} As)
o(t)) exp < /U ::) Euts) {@ (p(s) + q(s)”ijg;‘?;))] As) . (53)

With regard to (5.2) and (5.3) we have

(Sz)(7(t)) < ) exp (/ Eu(s) ) + kaq(s))] AS)
< kao(Sz)(o (1)), > T,
and
(Sz)(7(t)) > ) exp </ Euis) [© (p(s) + kag(s))] AS)

> ki(Sz)(o()), () =T.

5.2. Existence of positive solutions
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For 7(T) < 7(t) < T we obtain (Sz)(7(t)) = 1. Thus we have proved that Sz € Q for
any x € Q.
We now show that S is continuous. Let x; € § be such that x; — x as i — co. Because

Q is closed, z € Q. Fort > T we have

|(Sz)(t) — (5)(t)]
o[ o))
o ([ o) o).

So we conclude that

lim ||Sz; — Sz|| = 0.
i—00
This means that S is continuous.

The family of functions {Sxz : x € Q} is uniformly bounded on [7(T),00). It follows
from the definition of Q2. This family is also equicontinuous on [T(T),00). Then by Arsela-
Ascoli theorem the SQ is relatively compact subset of Crq([tg,00),R). By Theorem 2.5
there is an xo € €2 such that Sxyg = xg. We see that xq is a positive solution of the equation

(5.1). The proof is complete. ®

Corollary 5.1 Suppose that k > 1, p(t) + kq(t) > 0 and

7(t)
o Suts) [© ((s) + kq(s))] As =logk, ¢ > to.
o(t

Then equation (5.1) has a solution

o) = e ([ 6o B 06) + hate] as) o2

5.3 Asymptotic properties
In this section some asymptotic properties of positive solutions of (5.1) are treated.
Theorem 5.2 Suppose that 0 < o < 1, p(t) + aq(t) > 0, t >ty and

lim
t—o0 —

o(t)
/(t) Eus) [(k — a)q(s)] As > max log k . (5.4)

>1 k — «
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Then equation (5.1) has not a positive solution x with the property
x(7T(t)) > ka(t), t >T > to, k€ (1,00).

Proof. Assume to the contrary that (5.1) has a positive solution x with the property
x(1(t)) > ka?(t), t > T >ty for some k € (1,00). Then

x2(t) + q(t) [~z (t) + z(7(t))] <0,
z(7(t))
2 (t) + q(t) [— +— (t)} 7(t) <0,

z2(t) + q(t) [k — a] 27(t) <0,

2 (t)eqr-a)(t, 8) + 27 ()q(t) [k — o] egr_ay(t,8) <0, t>T. (5.5)
Integrating the last inequality we get

o(t) A
/ (z(v)ege—ay(v,5))” Av < 0,

> €q(k—a) (a(t), (1)),

o(t)
> exp ( | e [(k—a)q(s)]As>, [>T

(1)

With regard to condition (5.4) there exists a constant ¢ > 0 such that

/U(t)g (k= )g(s)] As > ¢ > max 8% 4> > (5.6)
s — $ > ¢ > max , >t >T. i
k—a T(t) M() k>1 k_af !
Then we obtain
x(7(t
:E“’Eti) >exp((k—a)e)=c, t>1y,
where ¢; > k. Repeating this process by using (5.5) we get
x(7(t
;Uéts) > exp ((¢; — @)c) = w1, €2 tiga, (5.7)
where ciy1 > ¢, 1 = 1,2, ..., since (¢; — a)c > loge;. We see that ¢; — o0 asi — oo. On

the other hand for given € > 0 and sufficiently large i we have

log(c¢;
cir1 <cite, (¢—a)c=logcy <log(c;+¢€), c¢< M,
C;, —

5.3. Asymptotic properties



Chapter 5. Existence of positive solutions of delay dynamic equations 65

which is a contradiction with (5.6) far small € > 0.

According to (5.6) for arbitrary t > t; we can choose t* >t such that

o(t) o(t*) c
/ Sues) [(k — a)q(s)] As > %—a)md/‘ Euto) [(k — a)g(s)] As > S (k — ).

(t*)

N O

For Lemma 2.7 we have

[ awasz o [ - oz
q(s)As > / Euts) L(B —a)q(s $2> -,
T(t*) k - Oé T(t*) #( ) 2
and
[ aonsz i [ b 10— atato as 2
q(s)As > / Eus) (B —a)q(s)] As > —.
o(t) k— a o0 w(s) 5
Then

—22(t) > —aq(t)2” () + q(t)z(7(t)),

Integrating the inequality from 7(t*) to o(t) and then from o(t) to o(t*) and using the non

increasing character of x we obtain

o(t) o(t)

q(s)x(1(s))As — a/ q(s)z?(s)As

T(t*)

2(r(t) a7 (t) > /

7(t*)

t o(t)
> /T(t*) q(s)x(1(s))As — a/T(t*) q(s)z(s)As

> Sa(r(t) — S a(r(t),
2(7(t") 2 g—a(r(t), 21

> s)x(7(s))As — « s)x(s)As
> [ 0)a0o) /U(t) a(s)a(s)
> Sa(r(t) = Fa7 (1),
x%QZQfm;uw»,t>h
It follows that
z7(t) > 5 fc&x(T(t*)) and z(7(t*)) > 5 —:cax(T(t))’ t>t
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Hence we have

(1) _ (2—1—604)2’ st

xo(t) — c
This is contradiction with (5.7). The proof of Theorem 5.2 is complete. ®

5.4 Examples

Example 5.1 Consider the delay dynamic equation on T =hZ = {hk, k € Z} where

h>1,

3 1
A o _ e > h. .
2 (t) + T0n° (t) + 6hx(t h)=0, t>h (5.8)
If we take ki = % and ko = 6, we get

t—h
) gu(s) [@ (p(S) + le(S))] As

t+h 3 31

o(t

and

t-‘rhl 3 1
—1 1+hA—+6— || A
o Og{ ’ (mh+ 6h)} ’

t+h 1 2
—log 2 As
. b2\ 10

23
2log (1—()) < log k.

Then all conditions of Theorem 5.1 are satisfied and equation (5.8) has a solution which

is bounded by functions
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Example 5.2 Consider the delay dynamic equation on T = Z,

log 2
22(t) + (1 — log 2)a% (1) + %x(zﬁ _3)=0, t>3. (5.9)
If we take k = 16, we have

t—3

600 [0 () + Ra(e))] s

t+1 1 9
:/ log |14 (1—1log2 + 16227 ) | As
t—3 16

=4log2 =logk, t2>3.

Then all conditions of Corollary 5.1 are satisfied and equation (5.9) has a solution
z(t) = exp(—log2(t — 3)), t>3.

Example 5.3 Consider the delay dynamic equation on T = R,

1 2 2
A — —x | =t) = > 1. 1
x=(t) + 7z€:zs(t) + =% (3t> 0, t> (5.10)

If we take k1 = g and ky = 3 we obtain

7(t)

/(1 62
. k As= [ (=422 )ds>logh,
[ o) sk as= [ (55457 ) ds 2 ess

T(t) t 1 2
€t [0 (p(5) + kag(s))] As = / (7—+3_) ds < log k.
o(t) 24 S 7s

3

Then all conditions of theorem 5.1 are satisfied and equation (5.10) has a positive solution.

5.4. Examples
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solutions for nonlinear delay integro-dynamic

equations

Keywords. Positive periodic solutions, Stability, Schauder’s fixed point theorem,
integro-dynamic equations, time scales.

The goal of this chapter is to present a very recent work [21], namely,
F. Bouchelaghem, A. Ardjouni and A. Djoudi, Fxistence and stability of positive periodic

solutions for nonlinear delay integro-dynamic equations, Submitted.

In this chapter, we study the existence of positive periodic and positive solutions for a
integro-dynamic equations on time scales. The main tool employed here is the Schauder’s

fixed point theorem. The exponential stability of positive solutions is also treated.

6.1 Introduction

Let T be a periodic time scale such that 0 € T. In this chapter, we consider the following

nonlinear delay integro-dynamic equation

(1) + /tj p(t — s)g(z(s))As, t > T. (6.1)

68
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Throughout this chapter we assume that p € C,4([0,7),R), g € C ((0,00), (0,00)), 7,T €
T are positive constants. To reach our desired end we have to transform (6.1) into an
integral equation and then use Schauder’s fixed point theorem to show the existence of
positive periodic and positive solutions. The sufficient conditions for the exponential
stability of positive solutions are also considered.

The organization of this chapter is as follows. In Section 2 and 3, we establish our
main results for positive periodic and positive solutions by applying the Schauder’s fixed
point theorem. The exponential stability of the positive periodic solutions is the topic of

Section 4. The results presented in this chapter extend the main results in [50].

6.2 Existence of periodic solutions

In this section we will study the existence of positive w-periodic solutions of (6.1). In the

next lemma and theorems we choose T' > 7 > 0.

Lemma 6.1 Suppose that there exists a positive continuous function k(t,s), t—7 < s <t,

such that

/ p(u—v)k(u,v)Av € R,

—T

/ e [@ / " U)k(u,v)Av} Au=0,t>T (6.2)
Then the functiont o
f(t) =exp (/Tt ) {6 /u p(u — U)/C(U,U)AU} Au> L t>T,
18 w-periodic. o

Proof. For t > T we obtain

v =on( [ gun e [ ato-onu o] an)

T

~ exp ( /T e [@ / _ p(u — v)k(u, U)Av] Au)
X exp ( /t e {e / i plu— v)k(u, U)AU] Au)

= f(1).

6.2. Existence of periodic solutions
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Thus the function f is w-periodic. =

Theorem 6.1 Suppose that there exists a positive continuous function k(t,s), t — 7 <

s <'t, such that (6.2) holds and

oo ([ o [ - onns] )
X g (exp (/T Euu) {@ /uqu(u—v)k(u,v)Av} Au)) — k(t,s) t > T. (6.3)

Then (6.1) has a positive w-periodic solution.

Proof. Let X = C.q([T —7,00),R) be the Banach space with the norm |z| =

sup;sp_, |z(t)]. We set

ﬂﬂ:eW(A?MMLalipm_UMWWMwyNO’tZT

With regard to Lemma 6.1 we have m < f(t) < M, where

= i Lo ([ [o [ samvstu s au)
M= max {exp ( /T t € {@ / UT p(u — v)k(u, U)Av} Au) } . (6.4)

We now define a closed, bounded and convex subset €2 of X as follows

Q={reX z(t+w) =z(), t>T,

m < x(t) < M,

v
S

k(t,s)x?(t) =g (x(s)), t >T, t—7 < s<t,

w(t)=1, T—7<t<T}.
Define the operator S : 2 — X as follows

exp (f;, &) [@ 5—7 plu —v) gﬂgfgz))) Av] Au) L t>T,
1, T-7<t<T.

(Sz)(t) =

We will show that for any x € {2 we have Sx € ). For every x € Q and t > T we get

(Sz)(t) = exp (/Tt Eulu) {@ /u:p(u - v)gg—g;)Avl Au>
— oxp ( /T » {e / i plu— v)k(u, ’U)AU] Au) <M,
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and (Sx)(t) > m. For t € [T — 7,T] we have (Sx)(t) = 1, that is (Sz)(t) € Q.
Further for every z € Q and t > T, T — 7 < s < t, according to (6.3) it follows

(5910 =0 (o0 ([ 6o [o [ pu— 02 an] au))
— exp ( To(t) £t {@ /u i plu— U)gif <(Z)>> AU} Au>
o ([ ua [ [ sto- o] o)
o[ nfo | e )
o(t) u
— exp ( G [ /u  plu— )k U)Av] Au)
X g (exp ( /T ' {@ / _ p(u — 0)k(u, U)AU} Au)) (Sz)° (1)

= k(t, s)(Sz)7 (t).

Finally we will show that for z € €, t > T the function Sx is w-periodic. For x € (,
t > T and with regard to (6. 2) we get

o v = [ [0 u:p@_mgg{;’;m} )
= exp </ Eu(u) [ p<u_v)g:§:f—((;})))Av} AU>
<o ([ Tgwo [ -0 an] a)

= (Sz)(t) exp ( / w €t {@ / uT plu — v)k(u, U)Av} Au) = (Sz)(t).

So Sz is w-periodic on [T, 00). Thus we have proved that Sx € Q for any = € Q.
We now show that S is completely continuous. First we will show that S is continuous.

Let x; € Q be such that x; — z € Q as i — 0o. For t > T we have

|(S2)(t) — (Sz)(t)]
exp ( / TE / p(u gg?((;;))m} Au)
—exp ( / €t [e / p(u ggj ((;’)))Av] Au) .

6.2. Existence of periodic solutions
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By applying the Lebesgue dominated convergence theorem we obtain that
lim ||Sz; — Sz|| = 0.
1—00

For t € [T'— 7,7}, the relation above is also valid. This means that S is continuous.

We now show that S is relatively compact. It is sufficient to show by the Arzela—Ascoli
theorem that the family of functions {Sz : x € Q} is uniformly bounded and equicontinu-
ous on [T' — 7,00). The uniform boundedness follows from the definition of 2. According

to (6.4) for t > T, x € Q2 we get

|(Sz) (1) = ‘@/ﬁip(t - v)gi";g)))m‘

X exp ( / t &) [@ u p(u - v)gg(j—((s)))m] Au)

‘@/ p(t —v)k(t,v)Av

X exp ( / Eutw) [ (= o)k( U)Av] Au)

< M,, M; > 0.

Fort e [T —7,T], x €  we have

|(Sz)2(t)| = 0.

This shows the equicontinuity of the family SQ. Hence S is relatively compact and
therefore S is completely continuous. By Theorem 2.5 there is an xq € €2 such that
Sxg = xo. We see that ¢ is a positive w-periodic solution of (6.1). The proof is complete.

Corollary 6.1 Suppose that there ezists a positive continuous function k(t,s), t — 7 <

s < t, such that (6.2) holds and

exp < / 7 Eutw) { / _ plu — v)l{:(u,v)Av} Au> = k(t,s), t>T. (6.5)

Then the equation
t
z® (t) + / p(t —s)z(s)As, t > T, (6.6)
t—1

6.2. Existence of periodic solutions
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has a positive w-periodic solution

x(t) = exp (/Tt ) {@ /Jqu(u - v)k(u,v)Av} Au) , t>T.

6.3 Existence of positive solutions

In this section we will investigate the existence of positive solutions of nonlinear integro-

dynamic equation (6.1).

Theorem 6.2 Suppose that there exists a positive continuous function k(t,s), t — 17 <

s < t, such that (6.3) holds and
¢
/ p(t — s)k(t,s)As >0, t > T. (6.7)
t—1
Then (6.1) has a positive solution

() = exp ( /T » [@ / _ Pl — )k (u, mm} Au> > T

Proof. Let X; =x € C.q ([T — 7,00),R) be the set of all rd-continuous bounded func-

tions. Then X is a Banach space with the norm [|z|| = sup;sp_, |z(t)[. We set

o) — e </To(t) - {@ /uqu(u _ U)k(u,v)m} Au) ,t>T.

We define a closed, bounded and convex subset €2; of X; as follows
G ={reX:wlt)<zlt) <1, t>T,
k(t,s)x?(t) =g (z(s)), t>T, t—7 < s <t,

x(t)=1, T—7<t<T}.

Define the operator S; : 2; — X as follows

exp ([} 6 [© 1, plu— )20 A0] Au) 1 > 1T,
1, T—7r<t<T.

(Siz)(t) =
For every x € €2, and t > T we obtain

(S12)(t) = exp ( /T t Eatw) [@ / :p(u - v)k(u,v)Av} Au) <1,

6.3. Existence of positive solutions
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and (S1x)(t) > w(t). Fort € [T — 1,T] we get (Six)(t) = 1, that is (S12)(t) € Q. Now
we can proceed by the similar way as in the proof of Theorem 6.1. We omit the rest of

the proof. m

Corollary 6.2 Assume that there exists a positive and continuous function k(t, s), t—71 <

s <t, such that (6.5) and (6.7) hold. Then (6.6) has a positive solution

2(t) = exp (/Tt Eatw) {@ /:Tp(u — v)k(u, mm} Au) Jt>T.

Corollary 6.3 Assume that there exists a positive continuous function k(t,s), t — 7 <

s < t, such that (6.3) and (6.7) hold and

lim /Tt Eat) {/i p(u — v)k(u, U)AU} Au = oo0.

t—o00

Then (6.1) has a positive solution which tends to zero.

Corollary 6.4 Assume that there exists a positive continuous function k(t,s), t — 7 <

s <t, such that (6.3) and (6.7) hold and

t u
tlim / ) [/ p(u — v)k(u, U)AU:| Au = a.
oo Jr u—T

Then (6.1) has a positive solution which tends to constant eg,.

6.4 Stability of positive solutions

In this section we consider the exponential stability of positive solution of (6.1). We denote
x(t,T,v), t > T — 7, for a solution of (6.1) satisfying the initial condition x(s,T,v) =
P(s) > 0for s € [T —71,T]. Let a(t) = z(t,T,v), x1(t) = z(¢t,T,v1) and y(t) = z(t) —
x1(t), t € [T — 7,00). Then we get

By the mean value theorem we obtain

P+ [ ple= )@ le®) -] As =0, ga) = G,

Y2 (t) + /ti p(t —s)g (z.)y(s)As =0, t > T. (6.8)

6.4. Stability of positive solutions
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Definition 6.1 Let z; be a positive solution of (6.1) and there exist constants Ty ,,,

Ky, and A > 0 such that for every solution x(t, 7', 1) of (6.1)
|x(t7T7 77Z)> - x1<t>| < K¢7$16@>\(t7 0)7 t=> Tdhﬂll'

Then x; is said to be exponentially stable.

We assume that the function

F(t,x) = /t_ p(t —s)g(x(s))As, t > T,

is Lipschitzian in second argument.

In the next theorem we establish sufficient conditions for the exponential stability of

positive solution z;(t) = z(¢,7,1) of (6.1).
Theorem 6.3 Suppose that (6.3) and (6.7) hold and
p € Cra([0,7],(0,00)), g€ C*((0,00),(0,00)), ¢'(x)>c>0.

Then (6.1) has a positive solution which is exponentially stable.

Proof. We will show that there exists a positive A such that
lz(t, T, ) — 21(t)] < Ky ean(t,0), t >T) =T + 27,
where Ky ., = maxeir—r1y) [y(t)] ex(T1,0) 4+ 1. Consider the Lyapunov function
L(t) = ly(t)]ex(t,0), t > T1.

We claim that L(t) < Ky, for t > T;. On the other hand there exists ¢, > 7} such that
L(t,) < Ky4,. Calculating the upper left derivative of L(t) along the solution y of (6.8)

we obtain

(L) = —ex(t,0) / Pt — )9'(@.) ly(s)| As + Aex(t, 0) |y (8)], ¢ > T1.

For t =t, t we get

ty

0<(L(t)" = —cex(t*,o)/ p(te = 5) [y(s)| As + Aex(ts, 0) [y7 (t:)] -

tsx—T
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If y(t) > 0, ¢t > T then from (6.8) it follows that for ¢ > 7'+ 7 the function y is decreasing
and if y(t) < 0,¢ > T then y is increasing for ¢ > T+7. We conclude that |y(t)|,t > T+
has decreasing character. Then we obtain

t*

0 < (L(t)S < —cly(t)] ealt., 0)/ Pty — s)As + Aex(ts, 0) |y7 ()]

- (—c y(t.)] / " plu) A+ A yf’(t:j ex(t.,0)
< (—c/oTp(u)Au n /\) ly(£.)] ex(t, 0).

For 0 < A < ¢ [y p(u)Au we have a contradiction. Thus |y(t)|ex(t,0) < Ky, for t > Ty

and 0 < XA < ¢ [ p(u)Au. The proof is complete. m

6.4. Stability of positive solutions
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The goal of this chapter is to present a very recent work [22], namely,

F. Bouchelaghem, A. Ardjouni and A. Djoudi, Existence, uniqueness and stability of
periodic solutions for nonlinear neutral dynamic equations, Kragujevac Journal of Math-

ematics, Accepted.

In this chapter, a nonlinear neutral dynamic equation with periodic coefficients is
considered. By using Krasnoselskii’s fixed point theorem we obtain the existence of peri-
odic and positive periodic solutions and by contraction mapping principle we obtain the

uniqueness. Stability results of this equation are analyzed.
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7.1 Introduction

Let T be a periodic time scale such that 0 € T. In this chapter, we consider the following

nonlinear neutral dynamic equation

[u(t) = g(u(t = 7(1)))]*
= p(t) —a(®)u’(t) — a)g(u’(t — (1)) = h(u(t), u(t — 7(t))). (7.1)

Throughout this chapter we assume that a, p and 7 are real valued rd-continuous functions
with @ and 7 are positive functions, id — 7 : T — T is increasing so that the function
u (t — 7 (t)) is well defined over T. The functions g and h are continuous in their respective
arguments. To reach our desired end we have to transform (7.1) into an integral equation
written as a sum of two mapping, one is a contraction and the other is continuous and
compact. After that, we use Krasnoselskii’s fixed point theorem, to show the existence of
periodic and positive periodic solutions. We also obtain the existence of a unique periodic
solution by employing the contraction mapping principle. In addition to the study of
existence and uniqueness, in this research we obtain sufficient conditions for the stability
of the periodic solution by using the contraction mapping principle.

The organization of this chapter is as follows. In Section 2, we establish the existence
and uniqueness of periodic solutions. In Section 3, we give sufficient conditions to ensure
the existence of positive periodic solutions. The stability of the periodic solution is the

topic of Section 4. The results presented in this chapter extend the main results in [87].

7.2 Existence and uniqueness of periodic solutions

Let T >0, T € T be fixed and if T # R, T' = nw for some n € N. By the notation [a, ]
we mean

[a, 0] ={t €T, a<t<b},

unless otherwise specified. The intervals [a, b), (a,b] and (a, b) are defined similarly.
Define Cpr = {p € C(T,R) : p(t +T) = ¢(t)} where C(T,R) is the space of all real-

valued rd-continuous functions. Then (C7, ||.||) is a Banach space when it is endowed with
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the supremum norm

ol = max lp(t)] -

We will need the following lemma whose proof can be found in [69].
Lemma 7.1 Let x € Cp. Then ||27]| = ||z o o|| exists and ||x7|| = ||=]|.
In this chapter we assume that a € R*, a (t) > 0 for all ¢t € T and
a(t+T)=a(t), pt+T)=pt), (id—7)(t+T)=(id—71)(t), (7.2)

with 7(¢) > 7* > 0 and
eq(T,0) > 1. (7.3)

The functions g(z), h(x,y) are also globally Lipschitz continuous in z and in z and y,

respectively. That, there are positive constants kq, ko and k3 such that
9(z) = g(y)| < ka [l =yl and by <1, (7.4)

and

|7 (2, y) = h(z,w)| < kol — 2l + ks [y — wl].- (7.5)

Lemma 7.2 Suppose (7.2) and (7.3) hold. If uw € Cr, then u is a solution of (7.1) if and

only if
u(t) =g (u(t—7()))
+ 7/ —2a(s)g(u’(s — 7(s))) = h(u(s),u(s —7(s)))] esa(t, s)As, (7.6)
where

7= (ea(T,0) =17
Proof. Let u € Cr be a solution of (7.1). Multiply both sides of (7.1) by e,(t,0) and
then integrate from ¢ to ¢ + 7', to obtain

t+T
| o) =g uts =7 () el 0)] As
= —/t a(s) [u?(s) — g (u(s —7(s))] ea(s,0)As
t+T
[ ) = 20(5)g (s = 7 (5) = B (u(s)uls = (5] eo(s,0) s
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Performing an integration by part, we obtain

1) — glult = ()] €alt,0) (ea(T, 0) — 1

[ )~ o s = a5, 05

= [ a6~ g s~ a5, 0

b [ o) — 200600 0 s 76~ )05 — 7] e, 00,

By dividing both sides of the above equation by e,(t,0) (e,(T,0) — 1), we arrive at

u(t) = glu(t = 7(1))) + (ea(T,0) = 1)~

X /t [p(s) = 2a(s)g(u” (s = 7(s))) = h(u(s), u(t = 7(s)))] ecalt, s)As.

The converse implication is easily obtained and the proof is complete. m

By applying Theorems 2.3 and 2.6, we obtain in this Section the existence and the

uniqueness of periodic solution of (7.1). So, let a Banach space (Cr, ||.||), a closed bounded

convex subset of Cr,

Q={peCr, |loll <L}

with L > 0, and by the Lemma 7.2, we define the mapping S given by

(S¢) (1)
=9t =7(@)
+7 [p(s) = 2a(s) g (¢ (s =7 (s5))) = h(p(s), (s =7 (s)))] ecalt, ) As.

Therefore, we express (7.8) as

Sy = Ap + By,
where A and B are given by
(Ap) (t)

= /t [p(s) = 2a(s) g (¥7 (s =7 (s))) = h(p(s), (s =7 (s)))] ecall, ) As,

(7.7)

(7.8)

(7.9)
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and
(Be) (1) =g(p(t—7())). (7.10)

Since ¢ € Cr and (7.2) holds, we have for any ¢ € Q

(Ap) (t+T)

gl [p(s) = 2a(s) g (¢ (s =7 (5))) = h(p(s), (s —7(s)))]€calt + T,5)As

t+T

t+T
V/t p(s+T)—=2a(s+T)g(¢° (s+T—7(s+T)))

(o (s+T),p(s+T —7(s+T)) ecalt + T, s +T)As
= (Ap) (1),
and
(Be)(t+T)=g(pt+T—-71+T)) =gt —7(t))) = (Be)(t).
Then

AQ, BQ C Cr. (7.11)

Theorem 7.1 Assume that (7.2)—(7.5) hold. Let a constant L > 0 defined in 2 such
that

k1L +|g(0)| +~BT (i + 2k L + |g(0)| + koL + k3L + |1(0,0)]) < L, (7.12)

where

B =eaT,0), A= sup {a(t)}, p= sup |p(t)].
te[0,7T] te[0,7]
Then (7.1) has a T-periodic solution.

Proof. First, let A defined by (7.9), we show that A is continuous in the supremum norm
and the image of A is contained in a compact set. Let ¢, € Q where n is a positive integer

such that ¢, — ¢ as n — oco. Then
|(An) (1) = (Aw) (1)]

t+T
<29 [ a9l (e (s =7 (6) =9 (&7 (5 = 7 (o)) calt. )5

t+T
+ v/t 7 (on (8) o (s =7 (s))) = h(p(s), (s =7 (s)))| ecall, 5)As.
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Since g and h are continuous, the dominated convergence theorem implies,

lim |(Ag,) (1) — (Ap) (1)] =0,

n—o0

then A is continuous. Now, by (7.4) and (7.5), we obtain

l9(y)| < K1 lyl + [g(0)],

(2, y)| < ko la] + ks ly| + (0, 0)]

Then, let ¢,, € Q where n is a positive integer, we have

(Apy) (t
< 7/ ()] +2a(s)[g (o] (s =7 ()] + [~ (0n (5),n (s — 7 (5)))[] ecalt, s)As
< ’Y/ ) +2a(s) (k1 @0l + 19(0)]) + &2 [[onll + ks lenll + [(0,0)[] eca(t, s)As
VBT (p+ 2A (k1 L + [g(0)]) + k2L + ks L + [1(0,0)]) < L,

by (7.12). Next, we calculate (Ag,)*(t) and show that it is uniformly bounded. By

making use of (7.2) we obtain by taking the derivative in (7.9) that
(Apn)2(t) = —a(t) (Apa)” () + p(t) = 2a()g (7 (t = 7(t))) = h(a(t), 0ult = T(1))).
Then, by (7.5) and (7.12) we have
[(Apn)2(t)] < AL+ 42X (k1L + |g(0)]) + ko L + ks L + [R(0,0)| = @,

Thus the sequence (Ay,) is uniformly bounded and equicontinuous. Hence by Ascoli-

Arzela’s theorem AQ) is compact.

Second, let B be defined by (7.10). Then for o1, s €  we have by (7.4)

[(Be1)(t) — (Bea2)(t)| = [g (o1 (t = 7(1))) — g (w2 (t = 7 (1)))]

< ki ller — @2l

Hence B is contraction because k; < 1.
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Finally, we show that if ¢, ¢ € Q, then||Ap + B¢|| < L. Let ¢, ¢ € Q with |||, ||¢]] <
L, then

[ Ae + B||

< k¢l +19(0)|

t+T
+ ”Y/t [p(s) + 2a (s) (k|7 + [9(0)]) + k2 [[ll + Es lloll + [2(0, 0)[] ecalt, 5)As
< kLA [g(O)] + BT (42X (k1L + [9(0)]) + ko L + ks L + |1(0,0)]) < L,

by (7.12). Clearly, all the hypotheses of the Krasnoselskii’s theorem are satisfied. Thus
there exists a fixed point z € € such that z = Az + Bz. By Lemma 7.2 this fixed point

is a solution of (7.1). Hence (7.1) has a T-periodic solution. m
Theorem 7.2 Suppose (7.2)-(7.5) hold. If

ki + BT (2Nky + ko + k3) < 1, (7.13)
then (7.1) has a unique T-periodic solution.

Proof. Let the mapping S be given by (7.8). For any 1, ¢y € Cp, we have

|(S1) (1) = (Sp2) (2)]

<lg (e (t—=7(1)) — g (g2 (t =7 (1)))]
t+T

+ 27/ a(s)lg(e7 (s —7(s))) — g (g3 (s = 7(s)))| ecalt, s)As

t

t+T
+ 7/ |h (@1 (s),¢1(s = 7(5))) = h(p2(s),p2(s —7(s)))|ecalt, s)As

t
t+T
<hllor=all+7 [ @Vt ot k) s = gl ccalt, )As
t
S [/{31 + ’YBT(Q)\]Q + ]{?2 + k?g)] ||<,01 — QOQH .
Since (7.13) hold, the contraction mapping principle completes the proof. m

Corollary 7.1 Suppose (7.2)-(7.5) hold and let B, X and p be constants defined in The-
orem 7.1. Let Q defined by (7.7). Suppose there are positive constants ki, ki and k} such
that for any x,y, z,w € ), we have

l9(z) —g()| <K ||z =yl and kT <1, (7.14)
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|z, y) = bz, w)| <k ||z — 2] + ks lly —wll, (7.15)

and
EYL + [g(0)| +~vBT (g + 2X (k] L 4 |g(0)]) + k5L + k3L + |h(0,0)]) < L. (7.16)

Then (7.1) has a T-periodic solution in 2. Moreover, if
ki + BT (2K + k5 + k3) < 1, (7.17)

then (7.1) has a unique T-periodic solution in €.

Proof. Let the mapping S defined by (7.8). Then the proof follow immediately from

Theorem 7.1 and Theorem 7.2. =
Notice that the constants k7, k5 and k5 may depend on L.

7.3 Existence of positive periodic solutions

It is for sure that existence of positive solutions is important for many applied prob-
lems. In this Section, by applying the Krasnoselskii’s fixed point theorem and some
techniques, to establish a set of sufficient conditions which guarantee the existence of
positive periodic solutions of (7.1). So, we let (X,|.]]) = (Cr,|.]]) and Q(E,K) =
{peCr: E<p(t) <K forallte[0,T]}, for any 0 < F < K. We assume that, there
exist constants a;, a, g1 and g, such that for all (¢, (x,y, 2)) € [0,T] x [E, K]* we have

0<g1, 0< <1, —giy < g(v) < g2y, (7.18)
0<a <a(t) < as, (7.19)
(E+qK)ay <p(t)—2a(t)g(z) —h(z,y) < (1 - g) Ka. (7.20)

Theorem 7.3 Assume that (7.2)-(7.5) and (7.18)-(7.20) hold. Then (7.1) has at least

one positive T-periodic solution in Q(E, K).

Proof. By Lemma 7.2, it is obvious that (7.1) has a solution ¢ if and only if Sp = ¢
has a solution . Let A, B defined by (7.9), (7.10) respectively. A change of variable
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t—t+ T in (7.9) and (7.10) show that for any ¢ € Q(E, K) and t € R
AQ(E,K)) CCr, B(Q(E,K))CCr. (7.21)

Arguing as in the Theorem 7.1, the operator A is continuous. Next, we claim that A is
compact. It is sufficient to show that A (2 (E, K)) is uniformly bounded and equicontin-
uous in [0, 7). Notice that (7.19) and (7.20) ensure that

| Al

t+T
< ti}éf}] v/t [p(s) —2a(s) g(¢? (s =7(s))) —h(p(s),p(s—7(s)))]ecalt,s)As
< (1—g2) Kyay t:}é%/tJr eoalt, s)As

<(1-g) K for all ¢ € [E, K],
and
(40)* (1)
< a(t) [(Ag) (O] + Ip() = 20 (8) g (¢° (t =7 (1)) = h (2 (£) ;¢ (s = 7 (1)
<aa(1l—g)K+(1—-—g1) K
= (ag 4 a1) (1 — g1) k for all (¢, ) € [0,T] x [E, K],

which give that A(Q(FE, K)) is uniformly bounded and equicontinuous in [0,7]. Hence
by Ascoli-Arzela’s theorem A is compact. Next, let B defined by (7.10), for all ¢y, ¢y €
Q(FE,K) and t € R, we obtain by (7.4)

|Bor — Bpa|l < ki |lor — wof| -

Thus B is a contraction. Moreover, by (7.18)-(7.20), we infer that for all p, ¢ € Q(E, K)
and t € R

(Awp) (8) + (Bo) (1)
=g(¢(t—=7(1)))

T
+ v/t [p(s) = 2a(s) g (¥7 (s =7 (s))) = h(p(s), (s =7 ()] ecalt, 5)As

T
< @K+ (1—g9) Kv/ a(s)esa(t,s)As = K,
¢
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on the other hand,

(Ap) (t) + (Bo) (1)

> g(@(t—7(t)))

t+T
+ v/t [p(s) —2a(s) g (¢7 (s =7 (s))) —h(p(s), (s —7(s)))]ecalt, s)As
t+T

> —g1K+(E+gl)K7/t a(s)esq(t,s)As = E,

which imply that
Ap+ Bo € Q(E,K) for all p,¢ € Q(E,K) and t € R. (7.22)

Clearly, all the hypotheses of the Krasnoselskii’s theorem are satisfied. Thus there exists
a fixed point z € Q(F, K) such that z = Az + Bz. By Lemma 7.2 this fixed point is
a solution of (7.1). Hence (7.1) has a positive T-periodic solution. This completes the

proof. m

Theorem 7.4 Assume that (7.2)-(7.5) hold. Suppose that there exist constants E, K,
ai, az, g1, go and ty € [0,T] satisfying (7.18)—(7.20) with

0<E<K, (7.23)
and either
(E+ g K)as <plty) —2a(te) g(z) —h(x,y) foralx,y, z€[E K], (7.24)
or
a(to) < as. (7.25)

Then (7.1) has at least one positive T-periodic solution in QE, K) with E < u < K for
each t € [0, 7.

Proof. Asin the proof of Theorem 7.3, we conclude similarly that (7.1) has an T-periodic
solution v € Q(E, K). Now we assert that u(t) > E for all ¢t € [0,7]. Otherwise, there
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exists t* € [0, T satisfying u(t*) = E. In view of (7.6), (7.8), (7.18) and (7.23), we have

E=gu —7())
t*+T
+7 /t [p(s) = 2a(s)g(u(s = 7(s))) = h(u(s),u(s =7 ()] ecalt’, s)As

> V/t* [p(s) — 2a(s)g(u’(s —7(s))) — h(u(s),u(s—7(s))) eca(t’, s)As

— 01 K7
which implies that

0> 7/,:* [p(s) = 2a(s)g(u®(s = 7(s))) = h(u(s),u(s —7(s)))] eealt”, s)As

—(E+ g1K)
t*+T
= V/t* [p(s) —2a(s)g(u’(s —7(s))) — h(u(s),u(s—7(s)))
—(E+ giK)a(s)] eca(t”, s)As. (7.26)

Assume that (7.24) holds. By means of (7.19), (7.20), (7.24) and the continuity of h, g,

a, p, T and u, we get that
v/t* cea(t’, s) [p(s) — 2a(s)g(u” (s — 7(s))) = h(u(s), u(s —7(s)))
—(E + g1 K)a(s)] As
> /t eca(t”, s) [p(s) — 2a(s)g(u” (s — 7(s))) = h (u(s) u(s —7(s)))

—(E 4+ g1K)as] As

> 0,

which contradicts (7.26).
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Assume that (7.25) holds. In light of (7.19), (7.20), (7.25) and the continuity of A, g,

a, p, T and u, we get that

v/t [p(s) = 2a(s)g(u” (s — 7(s))) = h(u(s),u(s —7(s)))

—(E+ g1 K)a(s)] ecq(t™, s)As

t*+T t*+T
> [ el as [ eaaltr ) (o) 2a(s)g(a (s = 7(3)
—h(u(s),u(s—7(s))) — (E+ g1 K)as] As

> 0,

which contradicts (7.26). This completes the proof. m

Example 7.1 Consider (7.1), where

sint cost

T =R, p(t):3+T, a(t):1+T, 7(t) = 2cos’t,
g(x):—le(r)lx for all x € R,

h(z,y) =1+ sin®z + cosy for all (x,y) € R%

LetT:27r,Kle,E:Lgl:gg:z—lO,al:%, agzg, klz%. It is easy to see that
(7.4), (7.5) hold. Notice that

15 195 1 1\ 1
Et+gR)as=—<-2=3-_42(1->)= +2
(E+giK)a =5 <5 5 < 4)20+

<p(t)—2a(t)g(z) —h(x,y)

1 5., 1 253

<34 =499 (=~ _ 222

<3+ 42055 +3= 5
285 ,
< E:(l—gg)Kal for all (t,z,y,z) € R

That is, (7.20) is satisfied. Thus Theorem 7.3 yields that (7.1) has a positive 27-periodic
solution in €2(1, 10).
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7.4 Stability of periodic solutions

This Section concerned with the stability of a T-periodic solution u* of (7.1). Let v = u—u*

then (7.1) is transformed as

(v (t) =G (v(t—7 1)
= —a(t) v’ (t) —a(t) G (t—T(t)—H@{t),v(t—T()), (7.27)

where
Gt—7)=g@ t=—7@)+vt—-7())—g(t—7(),
and

H (v (t),v(t—=7(1))
=hW (t)+v (), u (t—7 ) +vt—7)—h@ (), u (t—7().

Clearly, (7.27) has trivial solution v = 0, and the conditions (7.4) and (7.5) hold for G
and H respectively. To arrive at the Lemma 7.2, as in the proof of this Lemma, multiply

both sides of (7.27) by e,(t,0) and then integrate from 0 to ¢, to obtain

v(t) = (v(0) = G (v (=7(0)))) eca(t,0) + G (v (t — 7 (1))

— /0 [2a(s)G(v7 (s — 7(s))) + H (v (s),v (s — 7(5)))] ecalt, s)As. (7.28)

Thus, we see that v is a solution of (7.27) if and only if it satisfies (7.28). Assumed initial

function
U<t) = w(t% te [m070] ’
Wlth7/1 S C([m(),O],R), [m070] = {S <0 | S:t_T(t)7 t> 0}
Define the set €2, by

Qp={p€Cr gl <R @(t) = v (1) it € [mo,0], o(t) >0ast— oo}, (7.20)

for some positive constant R. Then, (2, ||.]|) is a complete metric space where ||.|| is the

supremuin norii.
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Theorem 7.5 If (7.2), (7.4), (7.5) and

eca(t,0) — 0 as t — oo, (7.30)

t—71(t) = 00 ast — oo, (7.31)
t

]ﬁl + / (2>\l§71 + ]Cg + k?g) €@a(t, S)AS S a < 1, (732)
0

hold. Then every solution v(t,0,%) of (7.27) with small continuous initial function 1, is

bounded and asymptotically stable.

Proof. Let the mapping S defined by () if t € [my,0] and

(Sp) (1) = (¥(0) = G (¥ (=7(0)))) eealt, 0) + G (@ (t — 7 (1))
- /0 2a(s)G(¢"(s = 7(s))) + H (¢ (5), o (s = 7 (s)))] ecalt, s)As,  (7.33)
if £ > 0. Since G and H are continuous, it is easy to show that Sy is. Let ¢/ be a small

given continuous initial function with ||¢|| < 6 (§ > 0). Then using the condition (7.32)

and the definition of S in (7.33), we have for ¢ € Q,

(Se) (O] < [¢(0) = G (¥ (=7 (0)))] ecalt, 0) + k1 R

t
+ R/ (2Xky + ko + k3) eca(t, s)As
0

t
S (1 —|— k1)5 —|— k‘lR + R/ (2/\]{?1 —|— k’g + ]{?3) Gea(t, S)AS
0

which implies |S¢|| < R, for the right . Next we show that (Sy) (t) — 0 as t — 0.
The first term on the right side of (7.33) tends to zero, by condition (7.30). Also, the
second term on the right side tends to zero, because of (7.31) and the fact that ¢ € €.
Let € > 0 be given, then there exists a ¢; > 0 such that for ¢t > ¢;, o(t — 7(t)) < €. By the
condition (7.30), there exists a ty > t; such that for £ > ¢, implies that

€
ecal(t, t2) < R
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Thus for t > t5, we have

/O 2a(s)G(¢"(s —7(s))) + H (¢ (s), 0 (s = 7 (s)))] ecalt, ) As

t1 t
< R/ (2X\ky + ko + k3) eca(t, s)As + 6/ (2Aky + ko + k3) eca(t, s)As
0 0
¢
< Regq(t, ta) / (2AE1 + ko + k3) ecq(te, ) As + ae
0

< aReq,(t,ta)a + e < ae + €.

Hence, (S¢) (t) — 0 as t — oco. It is natural now to prove that S is contraction under

the supremum norm. Let @1, ¢2 € Q. Then

(Sia) (6) — (Sga) (1)
<16 (o1 (=7 (1)) = G (2 (t = 7 (1)
23 / G (s = 7(s))) = G5 (s = 7(5)))] ecalt, ) A5
/ H (61 (5) 01 (5 — 7 (5)) — H (2 (5) 02 (5 — 7 ()] ccalt, 5)As
<k llpr — all + / @Ak + iz + ko) o1 — @all ecalta, 5)As
< {kl + /Ot (2Xk1 + ko + k3) eca(te, )As| |1 — wa|
<aller = -

Hence, the contraction mapping principle implies, S has a unique fixed point in §2,, which

solves (7.27), bounded and asymptotically stable. m

Theorem 7.6 If (7.2), (7.4), (7.5) and (7.32) hold. Then, the zero solution is stable.

Proof. The stability of the zero solution of (7.27) follows simply by replacing R by € in

the above Theorem. m
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Chapter 8

Positive solutions for a second-order

difference equation with summation

boundary conditions

Keywords. Positive solutions, Krasnoselskii’s fixed point theorem, difference equations,

three-point summation boundary value problems, cones.

The goal of this chapter is to present a very recent work published in [26], namely,
F. Bouchelaghem, A. Ardjouni and A. Djoudi, Positive solutions for a second-order differ-
ence equation with summation boundary conditions, Kragujevac Journal of Mathematics,
41(2) (2017), 166-177.

In this chapter we study the existence of positive solutions for a second-order difference
equation with summation boundary conditions. The main tool employed here is the

Krasnoselskii’s fixed point theorem in a cone.

8.1 Introduction

The study of the existence of solutions of multipoint boundary value problems for linear
second order ordinary differential and difference equations was initiated by Ilin and Moi-
seev [65]. Then Gupta [56] studied three-point boundary value problems for nonlinear

second order ordinary differential equations. Since then, the existence of positive solutions
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for nonlinear second-order three point boundary value problems have also been studied
by many authors by using the fixed point theorems or coincidence degree theory, one may
see the text books [2], [3] and the papers [16], [62], [76], [110].

Liu [84] proved the existence of single and multiple positive solutions for the three-point

boundary value problem

u' (£) +a(t) f(u() =0, te(0,1),
W (0)=0, wu(l)=pu(n),
where 0 <n<land 0 < f < 1.
In [97], Sitthiwirattham and Ratanapun considered the following three-point summa-

tion boundary value problem

A2u(t—1)+a(t) f(u(t) =0, t €{1,2, ... T},
w(0) =0, u(T—I—l):azn:lu(s),

where f is continuous, 7" > 3 is a fixed positive integer, n € {1,2,..., T -1}, 0 < a <
2T + 2

n(n+1)
fixed point theorem in cones.

. They obtained the existence of positive solutions by using the Krasnoselskii’s

In this chapter, we are interested in the analysis of qualitative theory of the problems
of the existence of positive solutions to second-order difference equations. Inspired and
motivated by the works mentioned above and the references therein, we concentrate on
the existence of positive solutions for the following second-order difference equation with

three-point summation boundary value problem

A2u(t=1)+a(t) f(u(t) =0, te{l,2,....T},
Au(0)=0, w(T+1)=a3 uls).

s=1

(8.1)

where f is continuous, T' > 3 is a fixed positive integer, n € {1,2,...,7 — 1}.
The aim of this chapter is to give some results for existence of positive solutions to
1
(8.1), assuming that 0 < o < — and f is either superlinear or sublinear. Set
u
fo= lim il ), foo = lim

u—0t U u—oo U

8.1. Introduction
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Then fy = 0 and f,, = oo correspond to the superlinear case, and fy = oo and f,, = 0
correspond to the sublinear case.

Let N be the non negative integer, we let N;; = {k €e N: ¢ <k < j} and N, = Ny,
By the positive solution of (8.1), we mean that a function v : Ny, — [0, 00) and satisfies

the problem (8.1).
Throughout this chapter, we suppose the following conditions hold.
(A1) f € C(0,59), [0, 0)).
(A2) a € C (Npyq,[0,00)) and there exists ty € N, 741 such that a (o) > 0.

The proof of the main theorem is based upon an application of the following Kras-

noselskii’s fixed point theorem in a cone (Theorem 2.7).

8.2 Preliminaries
We now state and prove several lemmas before stating our main results.

Lemma 8.1 Let an # 1. Then, fory € C (Npyq,[0,00)), the problem

Au(t—1)+y(t) =0, t € Ny,

Ui (8.2)
Au(0)=0, u(T+1) :a;u(s),

has a unique solution

w(t) = 1_1anZ(T—s+1)y(s)
o —an) & m—s)(n—s+1)y(s)

8.2. Preliminaries
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Proof. From (8.2), we get

Au(t)—Au(t—1)=—y(t)
Au(t—1)—Au(t—2)=—y(t—1)

Au (1) = Au(0) = -y (1).

We sum the above equations to obtain

t

Au(t)=Au(0) =Y y(s), t €Ny,

s=1
from Awu (0) = 0, we have

t

Au(t)=—=> y(s), t €Np. (8.3)

s=1

We denote ‘;’:py (s) =0, if p > ¢. Similarly, we sum (8.3) from ¢t = 0 to t = h, we get

h
w(h+1)=u(0) =Y (h+1-s)y(s), h €N,
s=1

by changing the variable from h + 1 to t, we have

t—1

u(t)=u(0)—» (t—s)y(s), t € Npy. (8.4)

s=1

We sum (8.4) from s = 1 to s = 7, we obtain

i“@ 0-E50-om
%Z (—s+1)y(s).
By (8.4) from u (T +1) =a > " u(s), we get
(a0 = 3 (T = s+ D6 - 25 () =5+ Do)

s=1 s=1

8.2. Preliminaries
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Therefore,
1 T
u(0) = 1_0”7;@—3“)?;(3)
n—1
«

“ 30 —an) 1@—6Mn—8+09®)

Vo)
I

Hence, (8.2) has a unique solution

w(t) = 1_1QWZ(T_5+1);/<3)
T30 —an (n—s)(n—s+1)y(s)

s=1

t—

- (t—s)y(s), t € Npg.
1

[y

S

Lemma 8.2 Let 0 < a < %7 If y € C(Npyq,[0,00)) and y (t) > 0 fort € Npyq, then the
unique solution u of (8.2) satisfies u (t) > 0 fort € Npyq.

Proof. From the fact that A?u(t —1) = u(t+1) —2u(t) +u(t —1) = —y (t) <0, we
know that Au(t) is a monotone decreasing sequence. Thus Au(t) < Au(0) = 0 and wu(¢)
is a monotone decreasing sequence, this is w (t) > w (T +1). So, if u(T'+ 1) > 0, then
u(t) >0 for t € Npy.

If u(T+1) <0, then Y7 u(s) < 0. Since Y_7_, u(s) > nu(n), we get

S u(s) = uln),

s=1

u(T+1) :aZu(s) >

I | =

that is
u(T +1) > u(n),

which contradicts the fact that u(t) is a monotone decreasing sequence. ®

Lemma 8.3 Let a > % If y € C (Npgq,[0,00)) and y (t) > 0 for t € Npyq, then (8.2)

has no positive solution.

8.2. Preliminaries
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Proof. Assume (8.2) has a positive solution w.

If u(T'+ 1) > 0, then >.7_, u(s) > 0. It implies

u(T+1) = aZu(s) > u(n),

that is
w(T 4+ 1) > u(n),
which is a contradiction to the fact that u(t) is a monotone decreasing sequence.
If u(T+1) =0, then >.7_ u(s) = 0, this u(t) = 0 for all ¢ € N,. If there exists
to € Ny11.7 such that u (tg) > 0, the v (0) = u (n) < u(ty), a contradiction with the fact

that u(t) is a monotone decreasing sequence. Therefore, no positive solutions exist. m

In the rest of the chapter, we assume that 0 < a < % Moreover, we will work in the

Banach space C' (Np, 1, [0,00)), and only the sup norm is used.

Lemma 8.4 Let 0 < a < % If y € C(Npyq,[0,00)) and y (t) > 0 fort € Npyq, then the

unique solution u of (8.2) satisfies

] t) > 8.5
ain u(t) = ull, (8.5)
where
an(T+1—-n)
= . 8.6
7 T+1—an? (86)

Proof. By Lemma 8.2, we know that
u(T+1) <u(t) <u(0).
So

min u(t) =u (T +1), max u(t) =u(0). (8.7)

te€Np 1 teNT

From the fact that u(t) is monotone decreasing, we get
u(T+1) —&Zu > anu(n). (8.8)

Since A?u (t) < 0 and Au (t) <0 for t € Ny, we have

w(T 4+ 1) —u(n)
(T'+1)—n

uw(0) —u(T + 1)
—(T+1)

>

8.2. Preliminaries
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By (8.8), we get

w(T+ 1) —u(n)
(T+1)—n

<u(T+1) (1 - Tlo“_”??(TJrl))

T+1—an?
an(T+1—-mn)

(T+1)

Combining this with (8.7), we obtain

T+1-
min w (t) > an(T+1-m)

teNp - T + 1-— @7]2 HUH ’

8.3 Positive solutions
Now we are in the position to establish the main results.

Theorem 8.1 Assume (A1) and (A2) hold. Then the problem (8.2) has at least one

positive solution in the case
(i) fo=0 and fs = 00 (superlinear) or

(17) fo =00 and fo =0 (sublinear).

Proof. It is known that 0 < a < % From Lemma 8.1, u is a solution to the boundary

value problem (8.2) if and only if u is a fixed point of operator A, where A is defined by

ut) = - _1a?7 > (T =s+1)a(s) fluls))
_ m;m_s) (n—s+1)a(s)f(u(s))

t—1

=Y (t=s)a(s) flu(s))

s=1

= (Au)(t).

Denote

K = {u | u € C (Npyq,[0,00)), w>0, min u(t) zfyHuH}

teENT
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where 7 is defined in (8.6).

It is obvious that K is a cone in C' (Npq,[0,00)). By Lemma 8.4, A(K) C K. It is
also easy to check that A : K — K is completely continuous.

Superlinear case. fy =0 and f,, = co. Since fy = 0, we may choose L; > 0 so that

f(u) <eu, for 0 < u < Ly, where € > 0 satisfies

c Z(T—s—l—l)a(s)gl.

s=1

1—an

Thus, if we let
O = {u € C(Npgy,[0,00)) | [Jul| < Li},

then for u € K N0y, we get

Au(t) < : _10”7 Z (T'—s+1)a(s) f(u(s))
< 1—8an;(T—5+1)a(5>u(5)
<3 _5007 Z:; (T —s+1)a(s)|lul
< lull-

Thus ||Au(t)]] < ||lu||, v € K N 0OQy.
Further, since f,, = oo, there exists Ly > 0 such that f(u) > pu, for u > Lo, where

p > 0 is chosen so that

T
P

1 —an p

(T—s+1)a(s) > 1.

Let L = max{2L1, %} and Qy = {u € C (Npy1,[0,00)) | lull < L}. Then u € K NIy
implies

min u(t) > 7 Jul| = 7L > Ly,

teNp
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and so

1—an
e Y -9 (1= s+ Da(e) ()
SN (- s)a(s) flu(s)
- D (0= Do) Fule) + — > (= 1) a5 S(0(5)
s SO = 2 5 9a(s) ()
=3 (= s)als) flu(s))
- _10”7 g (T —s+1)a(s) f(u(s))

AT S o+ s =+
* 3=y 2 °(1 7 e S6)

Hence
Aulo) = 7= 30 (T = s+ a(s) f(u(s)
> 1 _pm]Z::(T_SJrl)a(S)u(S)

> PN T s+ a(s) fJull 2 [l

Hence,|| Au|| > [Jul|, v € K N 0Qy. Bay the first part of Theorem 2.7, A has a fixed point
in K N (Q2\Q) such that L; < [jul| < L.
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Sublinear case. fy = oo and f,, = 0. Since fy = oo, we may choose Lz > 0 so that

f(u) > Mu, for 0 < u < Lz, where M > 0 satisfies

Thus, if we let
= {u € C(Nr41,(0,00)) [ [Jull < Ls},

then for u € K N 0S5, we get

Aun) = g 2T 1) a5 F(uls)
i Z (7~ s+ 1)als) f(u(s)
=3 (= 9)a(s) Fu(s)
— > (7= s+ Da(s) fule)
1340”7;(T—3+1)a(3)u(3)
>

1—0”72 —s+Da(s)|lull = full-

Thus, ||Au(t)|| > ||u|l, v € K N 9Qs. Now, since f., = 0, there exists Ly > 0 such that
f(u) < Au, for u > Ly, where A > 0 satisfies

A T

1—an

s=

(T'—s+1)a(s) <1.

Choose L' = max {2L3, %} Let
Q4 = {u € C(Nry,[0,00)) | [Jull < L'}
Then u € K N 0, implies

inf w(t) > =~L > L.
teﬁﬁU(LVllUH YL > Ly
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Therefore,

H
|
o)
e

Au(t) < (T —s+1)a(s) f(u(s))

3

w
Il
-

IN
>
]~

(T'—s+1)a(s)u(s)

l—«

=

©
Il
-

A

l—«

[M] =

< (T'=s+1)a(s)|ul

3

w0
Il
—

< lull -

Thus ||Aul|| < |lul|, v € K N 0§y. By the second part of Theorem 2.7, A has a fixed
point in K N (Q4\Q3) such that Lz < ||ul| < L/. This completes the sublinear part of the

theorem. Therefore, the problem (8.2) has at least one positive solution. m

8.4 Some examples
In this section, in order to illustrate our result, we consider some examples.
Example 8.1 Consider the BVP

AN*u(t—1)+te*(1+sin(u)) =0, t € Nyg,

Set a =2,n=3,T =5, a(t) =te*, f(u) =1+ sin (u).
We can show that

A simple calculation we get fy = 00, foo = 0 and (ii) of Theorem 8.1 holds. Then BVP

(8.9) has at least one positive solution.
Example 8.2 Consider the BVP

Nu(t—1)+ (32 + 2t + 1) (u*In(u+1)) =0, t € Ny,

LD (8.10)
Au(0)=0, u(8) =2 ;u(s)

8.4. Some examples
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Set o = %, n=>5"T="7 a(t)=3t>+2t+1, f(u) = v*In(u+1).
We can show that
O0<a= El < ! = —.
17 5
A simple calculation we get fo = 0, foo = 00 and (i) of Theorem 8.1 holds. Then BVP

(8.10) has at least one positive solution.

8.4. Some examples
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