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Abstract

It is well known that the theory of selection plays a very important role in solving some math-

n

ematical problems, " in topology, convex geometry, analysis..." such as the study of the fixed

points of multivalued mappings, the existence of soloutions for a differential inclusions...etc.
In this thesis, by the fixed point theory for single and set-valued mapings combined with some

selection theorems we have studied the following two problems:

—u" (t) € F'(t,u(t)), t €(0,1), (PS1)
u'(0) = (1) = au(n), u(0) = Pu(n),
where «, [ and 7 are constants in R and F' : [0,1] x R — P (R) is a multivalued map, and

P (R) is the family of all subsets of R.

and

—u"(t) € F(tu(t), o (), t e (0,1), (T32)

w(0)=u'(0) =0, o (1) = 37" awd/ (1) -

where «;,and 7, are constants in R and F': [0,1] x E x E — P(E) is a closed valued mapping,

with £ a Banach space.

* For the problem (PF1), We have established the existence of class AC? ([0, 1], R)-solutions

theorems when the right hand side has convex or non convex values.

* About the problem (BF2), we proved W31([0, 1], E)-solution set, is compact and is a retract
of C1([0,1], E), when F is convex compact valued and satisfies a Lipschitz condition and

a compactness condition.

Keywords: Selection theorems; Fixed point theory; Multi point boundary values problem,

Third order diferential inclusion.



Resumé

Il est bien connu que la théorie de la sélection joue un roéle trés important dans la résolution de
certains problémes mathématiques " en topologie, géométrie, analyse convexe...." par exemple
I’étude des points fixes des fonctions multivoques, 1'existence de soloutions pour une inclusion
différentielle ... etc.

Dans cette thése, par la théorie du point fixe pour les applications et multiapplications combinée

avec quelques théorémes de sélection, nous avons étudié les deux problémes suivants:

—u" (t) € F(t,u(t)), t €(0,1), (BFL)
au(n), u(0) = Bu(n),

Q\
—
(=}
N~—
I
g\
—
—
~—
I

ol «, 3 et n sont des constantes dans R et F': [0,1] x R — P (R) est une fontion multivoque,
et P (R) est la famille de tous les sous-ensembles de R.

et

—u"(t) € F(tu(t), o (), te(0,1), (T32)

w(0)=u'(0) =0, u (1) = 37" awd (1) -

ol vy, et 7; sont des constantes dans R et F: [0, 1] x E'x E — P(E) est une fontion multivoque

a valeurs dans ’ensemble des fermées de F, avec F un espace de Banach.

* Pour le probléme (BF1), Nous avons établi des théoremes d’existence de solutions de classe

AC?(]0,1],R) lorsque le membre droit a des valeurs convexes ou non convexes.

* Et pour le probléeme (BF2), nous avons prouvé que I'ensemble des solutions W31([0, 1], F),
est compact et est une rétraction pour C1([0,1], E), ou F a des valeurs convexs compacts

et satisfait une condition de Lipschitz et une condition de compacité.

Mots-clés: Théoreme de la sélection; La théorie du point fixe; probléme aux limites, inclusion

différentielle de troisiéme ordre.
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Introduction

The study of selection theory is today one of the important topological problem leading to
the multivalued analysis which treats of the set valued mappings and their properties as upper
and lower semicontinuity which is in its part related to the theory of differential inclusions.
So the theory of differential inclusion can be regarded as a part of mutivalued analysis which
was intensively developped these last years using the recent developements in selection theory
essentially by the authors, Andrzej Lasota, C. Castaing, T.P. Aubin....

Differential inclusions of the form

Ay € F (z,y)

where 2l is a differential operator, are a generalizations of differential equations. So, all prob-
lems considered for differential equations, that is, existence of solutions, continuity of solutions,
dependence on initial conditions and parameters, are present in the theory of differential inclu-
sions. Since a differential inclusion hasnew issues appear, such as investigation of topological
properties of the solutions set, selection of solutions with given properties, etc....

Realistic problems arising from economics, optimal control, stochastic analysis can be modelled
as differential inclusions, see ([4], [50], [19], [5], [54], [14], [2], [3], [10], [26], [31], [33], [50], [43]) ,
and the references therein. So much attention has been paid by many autors to study this kind
of problems, (see Bressan and Colombo [(], [%],Colombo [15],[16], Fryszkowsy and Gorniewicz

[25], Kyritsi et al. [30], etc....[50], [19]) and the references therein.

In this thesis we have combined materials of selection theory and set valued analysis with
results from non linear analysis to obtain some results on solving some problems of differential
inclusions. This thesis contains four chapters which are briefly presented below.

Chapter 1. In this chapter, we introduce and state some necessary materials needed in the
proof of our results, and shortly the basic results concerning the Banach spaces, the L” spaces,
Sobolev spaces and other theorems and existence and uniqueness theorems. The knowledge of

all these notations and results are important for our study.



Chapter 2. we introduce two principal theorems with proof about selection theory, a "Selection
Theorem Due To Bressan and Colombo " and a "Selection Theorem Due To Kuratowki, Ryll,
and Nardzewski "which we need in the proof of our results in next chapters.

Chapter 3. In this chapter we discuss the existence of solutions for a third- order differential
inclusion with three-point boundary conditions involving convex and nonconvex multivalued

maps

—u" (t) € F(t,u(t)), t € (0,1), (BF1)

u'(0) = ' (1) = au(n), u(0) = Bu(n),

where «, 5 and 7 are constants with o € [0, %), O<n<l,B8#1—an, F:[0,1] xR — P(R)
is a multivalued map, and P (R) is the family of all subsets of R.

Our results are based on the nonlinear alternative of Leray-Schauder type and some suitable
theorems of fixed point theory combined with some selection theorems.

Chapter 4. In this chapter, we prove that the W' ([0, 1])-solutions set of the problem

—u" (t) € F(t,u(t),u (), t €(0,1), (B32)
uw(0) = (0) =0, o' (1) = Y27" aw (1)

is compact and a retract in Cg([0,1]), when F is convex compact valued map and satisfies a

Lipschitz condition and a compactness condition.



CHAPTER 1

Preliminaries

In this Preliminary we introduce and state some necessary materials needed in the proof of our
results, and shortly the basic results concerning the Hausdorff topology, the Banach spaces, the
LP spaces, W*P Sobolev spaces and other theorems as existence and uniqueness theorems. The

knowledge of all this notations and results are important for our study.

1.1 Hyperspace topologies - Definitions and properties

Given a topological space X, the spaces obtained by giving a topology 7 (in terms of that on
X) to the collection of subsets of X are called hyperspaces of X.

Hyperspace theory had its beginnings in the early 1900, with the works of Hausdorff and
Vietoris. The study of hyperspaces originated with Hausdorff, who in [Hausdorff 1944]

defined a metric, Hy, on the set of the nonempty closed subsets of a metric space X, called the

Univ-B.M, Annaba Département de mathématique Rezaiguia Ali



1.1 Hyperspace topologies - Definitions and properties 10

Hausdorff metric. We denote

Po(X) = {A€P(X):A£0},
Pu(X) = {Ae€Py(X): Ais closed}
Py(X) = {A€Py(X):Ais bounded},
Peomp(X) = {A€Py(X): Ais compact}
Pu(X) = {A€Py(X): Ais convex}.

Definition 1.1.1 We define A to be bounded in (X,d) if there exists o € X and r > 0 such
that A C B (xg, 7).

In particular the metric space (X, d) is said to be bounded iff
sup d (z,y) < oo.
z,yeX

Let (X, d) be a bounded metric space. For all A C X, we have

U(Ae)=|JBuil(ae).

acA
If A,B € By(X), we define
H, (A, B) = max {supd (a, B) ,supd (b, A)} (1.1)
acA beB

It will now be shown that (P, (X), Hy) forms a metric space called Hausdorff metric space
determined by (X, d).
Show that H, is a distance on P (X)), see [29]. It is clear that, for all A, B in Py (X),

H;(A,B)=0<= A =B,

Hy (A7 B) = Hy (B,A),

Univ-B.M, Annaba Département de mathématique Rezaiguia Ali



1.2 Some functional spaces needed 11

Let’s check the triangle inequality. For every a € A,b € B, c € C' were successively:

N

a,b) < d(a,c)+d(cb)

N

d(
d(a,c)+d(c,B)
d(a,c)+ Hy (C,B)
d(

N

a C’)+Hd((] B)

—~ ~—~ 15 — —~
=553
N

N

Hy(A,C)+Hy(C,B)

Similarly, we have:

supd (A,b) < Hy(A,C) + Hy (C, B)

beB

Hence:

H;(A,B) < H;(A,C)+ Hq(C, B)

So
Hd (Aa B) < Hd (A>C) +Hd <C>B>

Remark 1.1.1 The Hausdorff topology Tr, on Pu(X) is the topology induced by the Hausdorff
metric Hy. However, this topology is not determined by the topology induced by the metric on

X.

T

Ttz 1+y

Example 1.1.1 Let X the set of positive real numbers; let d (x,y) = andd' (x,y) =

min (1, |x — y|) . distances d and d' induce the same topology on X, but (Py(X),TH,) and
(Pcl (X) ,THd/) are different. Indeed, we show the set Py (N)is closed for Ty, but is not for

THd"
Proposition 1.1.1 (X, d) is complete iff (Pu (X),TH,) is also.
Proof. [30]. m

1.2 Some functional spaces needed

Definition 1.2.1 A Banach space is a complete normed linear space E. Its dual space E' is

the linear space of all continuous linear functional f : £ — k.

Univ-B.M, Annaba Département de mathématique Rezaiguia Ali



1.2 Some functional spaces needed 12

Proposition 1.2.1 [/8] E' equipped with the norm ||-|| 5 defined by

11l = sup {[f (@) - fl=]] < 1}, (1.2)

18 also a Banach space.

Theorem 1.2.1 [/5] Let E be a Banach space. Then, E is reflexive, if and only if,
Bg={r € E: |zl <1},

is compact with the weak topology o (E, E').

Definition 1.2.2 Let E be a Banach space, and let (u,,) be a sequence in E. Then u,

neN

converges strongly to u in E if and only if
i, =0,
and this is denoted by u, — u, or nll_{lgoun = u.
In what follows, by E we will denote a Banach space over the field of real numbers R and let

r be positive real number and by 7" a closed interval.

Notation 1.2.1 The space C (T, E) is the space of all continuous E-valued functions defined
onT,
C(T,E)=A{u:T — E, u is continuous} .

We consider the Tchebyshev norm

defined by
|ull, = max{|u(t)|, forall t € T}, (1.3)

where || stands for the norm in E. Then (C(T, E), ||.||,) is a Banach space.

Notation 1.2.2 Let AC'([a,b], E) denote the space of i—times differentiable functions f :

(a,b) — E, whose i derivative, f% , is absolutely continuous.

Univ-B.M, Annaba Département de mathématique Rezaiguia Ali



1.2 Some functional spaces needed 13

Definition 1.2.3 Let N : E — E be a linear map. N said to be bounded provided there exists
r > 0 such that

|N (z)| < 7lz|, for every x € E.

The following result is classical.
Proposition 1.2.2 A linear map N : E — FE is continuous if and only if N is bounded.

Definition 1.2.4 The space B(E), is the space of all linear bounded E-valued functions defined
on E,
B(E)={N:E — E| N is linear bounded}

and for N € B(FE), we define the norm operator as
IN|gg) = inf{r >0 | Vo € E|N(z)| <rlz[}, (1.4)

Then (B(E), ||| p(g) is a Banach space.

We also have

NIy = sup{[N(z)[, [z =1} (1.5)

Definition 1.2.5 A function f : T — E is said to be measurable provided that for every open
UCE,
the set

fU)={teT| f(t) eU}.

1s Lebesque measurable.

Proposition 1.2.3 We say that a measurable function f : T — FE is Bochner integrable pro-
vided that the function |f|: T — [0,00) is a Lebesque integrable function ( For properties of the

Bochner integral, see for instance, Yosida, see [57]).
Definition 1.2.6 We define the space L (T, E), by

LYT,E)={f:T — E | f is Bochner integrable} .

Univ-B.M, Annaba Département de mathématique Rezaiguia Ali



1.3 Definitions and results from multivalued analysis 14

Let us add that two functions fi, fo : T — FE such that the set {fi(t) # f2(t)|t € T'} has

Lebesgue measure equal to zero are considered as equal. Then we are able to define

Il = [ 170 dt, for T = [o,3] (16)

It is well known that (L'(7T, E), ||.]|;:) is a Banach space.

Definition 1.2.7 Let W31([0,1], E). be the space of all continuous functions in C ([0,1], E)
such that their first derivatives are continuous and their second and third weak derivatives belong

to LN(T, E), W3([0,1], E) is a Banach space with its usual norm
1w o,y = I + 1 N+ I N pn + 17N g, for all f € LT, E). (L.7)

1.3 Definitions and results from multivalued analysis

In this section, we introduce notations, definitions, and preliminary facts from multivalued
analysis, which are used throughout this thesis.

Let (X, ||.||) be a Banach space and Y is.

Definition 1.3.1 A multivalued function (or a multivalued operator, multivalued map ) from
X into P (Y) is a correspondence that associates to each element x € X a subset F'(z) of Y.

We denote this correspondence by the symbol F' : X — P (Y'). We define:

e the effective domain DomF = {x € X : F (x) # 0}.

the graph: GraF = {(z,y) € X XY : 2 € DomF,y € F (z)}.

the range F (X) = Uzex F ().

the image of the set A € P(X) : F(A) = UgeaF (z).

the inverse image of the set BE€ P(Y): F~ (B)={rxe€ X : F(z)NB#0}.

the strict inverse image of the set B€ P(Y): F*(B)={zv € X : F(z) C B}.

Univ-B.M, Annaba Département de mathématique Rezaiguia Ali



1.3 Definitions and results from multivalued analysis 15

e the inverse multivalued operator, denoted by F~':Y — P(X), is defined by

Fly)={re X :yc F(x)}

The set F~Y(y) is called the fiber of F at the point y.

o A multivalued map G : X — P(Y) has convex (closed, compact) values if G(x) is convex

(closed, compact) for all x € X.

We say that G is bounded on bounded sets if G(B) is bounded in'Y for each bounded set B
of X, that is,

sup {sup {lyl| : y € G (2)}} < oo

The map G is called upper semi continuous (u.s.c.), if for each closed set C CY, G~ (C) =
{xr e X :G(x)NC # 0} is closed in X.

The map G is called lower semi continuous (l.s.c.), if for each open set O C 'Y, G~ (0) =
{r € X:G(x)NO # 0} is open in X.

Also, G is said to be completely continuous if G(B) is relatively compact for every bounded

subset B C X.

If the multivalued map G is completely continuous with nonempty compact values, then G is
w.s.c. if and only if G has a closed graph (i.e., T, — Tu,Yn — Yu, Yn € G(x,,) imply that
ys € G(x4)).

A multivalued map G : T — Py(X) is said to be measurable iff for every open U C X the set
G~ (U) measurable set.

Finally, we say that G has a fized point if there exists x € X such that x € G(x).

Let A be a subset of T' x B. A is £ ® B measurable if A belongs to the c—algebra generated
by all sets of the form N x D, where N is Lebesgue measurable in 7" and D is Borel measurable

in B.

Univ-B.M, Annaba Département de mathématique Rezaiguia Ali



1.3 Definitions and results from multivalued analysis 16

Definition 1.3.2 A subset K of L*(T, E) is decomposable if for all u,v € K and N C T

measurable, the function uxy +vx;_y € K, where x stands for the characteristic function.

Definition 1.3.3 Let Y be a separable metric space and let N : 'Y — Po(L' (T, E)) be a

multivalued operator. Say N has the property (BC') if

1) N is lower semi-continuous (I.s.c),

2) N has nonempty closed and decomposable values.

Definition 1.3.4 Let F : T'x E — Py(E) be a multivalued map with nonempty compact values.

Assign to F' the multivalued operator
F:C(T,E) — Po(L* (T, E))

by letting
F(y) ={ve L' (T,E) : v(t) € F(t,y(t)) for a.e. t € T}. (1.8)

The operator F 1s called the Niemytzki operator associated to F.

Definition 1.3.5 Let F : T x E — P(E) be a multivalued function with nonempty compact
values. Say that F is of lower semicontinuous type (l.s.c.type) if its associated Niemytzki

operator F is lower semicontinuous and has nonempty closed and decomposable values.

Definition 1.3.6 The multivalued map F : T x E — P(E) is said to be L'— Caratheodory if
(1) t — F(t,u) is measurable for each u € E;
(17) u — F(t,u) is upper semicontinuous on E for almost all t € T;

(#11) for each p >0, there exists ¢, € L'(T,Ry) such that

IF (t,0)l| gy = sup {Jo] < v € F(t,u)} < 9, (1)

for all ||u|| < r and for a.e. t €T.
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1.4 Fixed point theorems 17

Lemma 1.3.1 [75] Let X be a Banach space. Let F : TXX — Piymp.eo(X) be an L'— Caratheodory

multivalued map with
Spy={9€L"(T,X):g(t) € F(t,y(t) forae teT}+#0 (1.9)
and let T be a linear continuous mapping from L' (T, X) to C (T, X) . Then the operator
Do Sp: C(T,X) = Pampen (C(T, X)), y— (T Se)(5) =T (Sp,)  (L10)
is a closed graph operator in C (T, X) x C (T, X).

Lemma 1.3.2 (see [27]). Assume that

H1) F: T x E — P(FE) is a nonempty, compact-valued, multivalued map such that
(a) (t,u) — F(t,u) is L ® B measurable,

(b) u — F(t,u) is lower semicontinuous for a.e. t € T';

H2) for each r > 0, there exists a function h, € L*(T,R,) such that

|F (t,u)||p =sup{|v| : v € F(t,u)} < h(t) for each (t,u) € T x E withu <r.
Then F' is of l.s.c.type.

For more details on multivalued maps, we refer to the books of Deimling [18], Gorniewicz [20],

Hu and Papageorgiou [31], and Tolstonogov [51].

1.4 Fixed point theorems

Fixed point theorems play a major role in our existence results. Therefore we state a number

of fixed point theorems. We start with Schaefer’s fixed point theorem.

Definition 1.4.1 A function f : X — X is said to have a fized point if xo = f(xy) for some

xo € X.

Theorem 1.4.1 (Schaefer’s fixred point theorem, see also [20],page 29). Let X be a Ba-

nach space and let N : X — X be a completely continuous map. If the set
¢ ={xr e X :\x =Nz for some A > 1}

1s bounded, then N has a fixed point.
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1.4 Fixed point theorems 18

The second fixed point theorem concerns multivalued mappings.

Definition 1.4.2 A multifunction F': X — P (X) is said to have fized point if vo € F (o) for

some xg € X.

The next fixed point theorems are the well-known Nonlinear alternative of Leray Schauder
type and Covitz and Nadler’s fixed point theorem for multivalued contractions [17] [27]
(see also Deimling [18], Theorem 11.1).

Next, we state a well-known result often referred to as the nonlinear alternative. By U and 0U,

we denote the closure of U and the boundary of U, respectively.

Theorem 1.4.2 (Nonlinear alternative of Leray Schauder type [27]). Let X be a Banach
space and C' a nonempty convex subset of X. Let U a nonempty open subset of C with 0 € U

and T : U — P (C) an upper semicontinuous and compact multivalued operator. Then either,
1. T has a fived point in U; or
2. There is a point u € OU and X\ € (0,1) with uw = \T'(u).

Before stating our next fixed point theorem, we need some preliminaries.

Definition 1.4.3 A multivalued operator G : X — P (X) is called

a) ~y-Lipschitz if there exists v > 0 such that
Hq(G(x),G(y)) < yd(z,y), for each z,y € X,
b) a contraction if it is y-Lipschitz with v < 1.

Theorem 1.4.3 (Covitz and Nadler [17]). Let (X,d) be a complete metric space. If G :
X — Py(X) is a contraction, then FizG # ().
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1.5 Some additional theorems and definitions 19

1.5 Some additional theorems and definitions

Let (E,%,u) be a measure space and let F ={u,}, ., be a family of measurable functions

aeJ

Uy : E — R. A measurable function uy : E — R is said to be the essential infimum of the

famely F if
Definition 1.5.1
1- For every a € J and for pn a.e.x € E| there is uq € F : ug (x) < uy (),

2- Ifu: E — R is measurable function such that u < u, for every o € J and for ji a.e.x € E,

then u (x) < ug (x) for p a.ex € E.

Definition 1.5.2 Suppose X is a topological space and U is an open cover of X. A cover V
is a refinement of U if and only if

YWWeVv.3Ueld,V CU.

Definition 1.5.3 Suppose X is a topological space. A collection {A;,i € I} of subsets of X is
locally finite, if and only if for each x € X there is an open U 3 x with card{i € I, UN A; # 0}
finite.

Definition 1.5.4 (Paracompact spaces) A topological space X is called a paracompact space if

X is a Hausdorff space and every open cover of X has a locally finite open refinement.
Theorem 1.5.1 [21] Every compact space is paracompact.

Definition 1.5.5 A nonempty partially ordered set A is said to be directed downward set, if

for any x1, x5 € A there exists y € A such that y < x1 and y < xs.

Definition 1.5.6 A nonempty subset A C C(X), where X is a metric space, is said to be
bounded if there exists a M > 0 such that for allu € A, ||u|| < M.

Definition 1.5.7 A nonempty subset A C C(X),where X is a metric space is said to be rela-

tively compact if A is compact.
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Definition 1.5.8 Let A a nonempty subset in C(X), then we say that A is equicontinuous at
x € X if for each € > 0, there exists a 6 = § (¢, ) such that for somey € X, d(y,z) < § =

(u(y) —u(z)| < e forallu € A.

Theorem 1.5.2 ([9] Ascoli-Arzela Theorem). Let X be a compact metric space. If A is an

equicontinuous, bounded subset of C(X), then A is relatively compact.

Theorem 1.5.3 ([/] Dominated convergence theorem). Let (f,),~, be a sequence of strongly

measurable functions and let f: X — E be a function. Suppose that
e lim f, = f everywhere on X,
o There exists g € LP (X) such that, for everyn > 1, ||full < g everywhere,

then,
fo— fin P (X, E).

In particular, in the case p =1,

lim fndp = / lim f,dp = / fdu.
Definition 1.5.9 A subspace A of E is called a retract of E if there is a continuous map
f: E — E (called a retraction) such that for all x € E and all a € A :

f(z) € A, and f(a) = a.

Equivalently, a subspace A of E is called a retract of E if there is a continuous map f: E — E

(called a retraction) such that for all a € A :

f(a) = a.
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CHAPTER 2

Selection Theory

In this chapter, we shall introduce two prancipal theorems with proof about selection theory,

needed in the proof of our results in next chapters.

2.1 Continuous Selection Theorems

Before stating the continuous selection theorems Due To Bressan and Colombo, we bringing

some theorems and lemma needed in the sequel.

Theorem 2.1.1 ([19), Theorem 2.2;p.127) Egorov’s theorem) Let (f,,) be a sequence of measur-
able functions defined on a measurable set E of finite measure and with values in R*. Assume
that the sequence converges a.e. in E to a function f : E — R*, which is finite a.e. in E. Then
for every n > 0, there exists a measurable set E, C E such that p(E —E,) <n and f, — f

uniformly in E,).

Theorem 2.1.2 ([7], p.84) approzimate selection, Cellina) Let X be a metric space and Z a
Bnach space. Let F': X — Py (Z) be an upper semicontinous map with convexr values. Then

for every e > 0, F' admits a continuous e—approximate selection, i.e. a continuous function
fe : X — Z such that
Graf. C B(GraFe)
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2.1 Continuous Selection Theorems 22

Here B (V,¢) denotes the e—neighborhood of a set V.

Theorem 2.1.3 [/(], Theorem 3.2, Michal’s selection theorem) Let X be a paracompact topo-
logical space and Z be a Banach space, and F' : X — Py (Z) a lower semicontinuous multivalued

map with nonempty convex closed values. Then there exists a continuous selection f : X — Z

of F.

Lemma 2.1.1 Let (T, A, ) be a measre space with c—algebra A of subsets of T and let X be

a separable metric space, and let

¢, : X — LYT,R),

hy, : X —10,1]

Vn > 1 be two sequences of continuous functions, with ¢, (z)(t) > 0,V € X,Vt € T and such
that
{supp (h,);n > 1} is locally finite (closed) covering of X.

Then for every € > 0 and every continuous strictly positive function | : X — R™T, there existe

a continuous function 7 : X — R and a map ® : RT x [0, 1] — A wich satisfy conditions
(@) @(7,A1) C P (7,A2) if A\ < A,
(0) 1 (P (11, A1) AP (72, A2)) < [A1 = Ao| + |71 — 7o,

(¢) if hy (x) =1 then

3

[ e fo.@ad <o @z

4l ()
P(7(x),\) T

forallx € X, and A\, M\, A2 € [0,1] and 7,71, 72 > 0.

Proof. (see [7],p73). m
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2.1.1 Selection Theorem Due To Bressan and Colombo

In what follows, the main arguments are taken from [24]. We list first some preliminary results.
Proposition 2.1.1 Let K be a family defined by
K= {f; f: T — R a nonegative measurable functions}

Then there exists a measurable functions g : T — R such that
(I) g< [ p-ae fordlfek,
(II) if h is a measurable function such that h < f p-a.e. for all f € K, then h < g p-a.e

Furthermore, there exists a sequence (f,) in KC such that
g(t)=inf{f,(t);n>1} forae. tinT. (2.1)

The sequence (f,) can be chosen to be decreasing, if the family KC is directed downwards.

Proof. see ([11],p.121).
By (IT) , the function g is unique up to p-eqivalence. it is the greatest lower bound of K in the
sense of p-a.e. inequality, and denoted by ess inf {f; f € K}. m

Proposition 2.1.2 Let C be a nonempty closed decomposable subset of L* (T, E) and let ¢ (t) =
essinf{||f|z; f € F}, then, for every go € L* (T, R) such that go (t) > ¢ (t) p-a.e., there exists

an element fo € C' such that

1fo Dz < g0 (t) p-a.e. (2.2)

Proof. The set K ={|fo (.)|lz; [ € C} is decomposable subset of L' (T,R). Therefore, it is
directed downwards.

By Proposition 2.1.1, take a sequence (f,),,~,in C such that

[fm Ol = /o (Olp VM <n, t €T, (2.3)
¢ () = lim |[fo (Dl p-ae. (2.4)
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Let now gy be given, with go (t) > ¢ (t) p-a.e., and define the increasing sequense of sets

T, = 0, (2.5)
T, = {teT5lfuWlp <o)} .n>1

Observe that (7' U5 Tn) = 0.
Define the sequense (h,) by setting

B — { fnfkif;féeTT\k Gk::,;_%kk =1,.,n—1, (26)
Since C' is decomposable, each h,, belongs to C. Moreover, the sequence h, (t) is eventually
constant for a.e. t € T, and ||k, ()| 5 < ||f1 ()| z p-a.e.; hence, by the Dominated convergence
theorem, h,, converges in L' (T, E) to some function fy. Clearly, fo € C because C is closed.

Finally, if t € T,, \. T,,_1 for some n, then

1o @llg = 1fa @l < 90 (2)- (2.7)

Therefore, fy satisfies (2.2) m

Proposition 2.1.3 Let X be a metric space and let F : X — D(L'(T, E)) be a l.s.c multifunc-
tion with closed decomposable values. For all x € X, let ¢, (t) = ess inf {||f (¢)||z; f € F(x)}.
Then the multivalued map P : X — L'(T,R) defined as

P(z)={ge L"T,R);g(t) > ¢, (t) p-ae. z€ X} (2.8)
1s lower semicontinuous.

Proof. Let C be an arbitrary closed subset of L'(T,R) it suffices to show that, if P (x,) C C
for some sequence (z,),., converging to xo , then also P (z9) € C. To this purpose, fix any
go € P (z0) and take, by Proposition 2.1.2 , a function fo € F'(z) such that || fo (t)| 5 < go (¢)
p~a.e. Because of the lower semicontinuity of F', there exists a sequence f,, € F' (x,) such that
fn — foin LY(T, E) . Then , for every n > 1, the function g, = || f,llx + g0 — || foll ; belongs to
P (z,) wich is contained in C.

Since the sequence (g,) converges to gy in the norm of L'(T,R) and C is closed, this implies

gel. nm
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Proposition 2.1.4 Let X be a metric space, and let G : X — D(LY(T, E)) be a l.s.c map with
closed decomposable values. Assume that there exist continuous mappings g : X — LY(T, E)

andr : X — LYT,R) such that, For every x € X, the set

P(x)={feG@);|f@)—g(x) Dl <r(z)(t) p-ae} (2.9)
is nonempty, then the map P : X — D(LY(T, E)) is Ls.c with decomposable values.

Proof. Clearly, for every x € X, P (z) is a decomposable set, because it is the intersection of
two decomposable sets.

To check the lower semicontinuity of P, let C' be any closed subset of L'(T, E). Tt suffices to
show that, for any sequence (x,) in X converging to a point xo, if P(z,) C C for all n > 1,
then P (z9) C C.

Let fo € P (xg). By the lower semicontinuity of G,there exists a sequence f, € G (z,,), n =

1,2, ..., such that f, — fo in L}(T, E). By possible taking a subsequence, we can assume that

Fu (@) g (2n) (£) ;7 (20) (1)
converge to
fo(t) ;g (wo) (1) ;7 (o) (1)

respectively, p — a.e.in T.
Applying Egorov’s theorem we have, for each 7 > 1 the existence of an increasing sequence of

a measurable set T; C T such that
fn, g(z,) and r(x,) converge uniformly on T;

and

1
/ r(zo) .dp < —.
TN\T; L

For each k& > 1, consider the sets

T = {t € Tillfo (0~ 9 e0) Ol <7 (20) (0 - £} (2.10)
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And notice that {T;;};°, form for every i an increasing sequence of measurable sets with

U, T =T
Hence, for every i > 1, there exists an integer k (7) such that
1
/ r (20) dp < ~. (2.11)
TiNT; k(i) v

Therefore, the sets T; ;(; have the following properties

/ r (o) dp < 2 (2.12)
TNT; k(i) L5
and

1o (£) = g (20) ()]l < 7 (z0) - ﬁ

By ( 2.13) and by the uniform convergence on T} i@y, for all @ > 1 there exists a sequence

Yt € Ty ny- (2.13)

{ni};>, such that

1fn (8) = g (20) Dl g <7 (20) (1) V8 € Tigy, 02 ns. (2.14)

We can also assume that the sequence (n;),., is strictly increacing. For each n, choose an

arbitrary h, € P (z,) and set, for n; <n < n;1,

8n = foXr,, 0 T PneXroT, () (2.15)

Since P (z,) is decomposable, g, € P (z,) C C. We claim that g, — fo in L'(7, E), which
implies fy € C.Indeed, for n; < n < n;;1,(2.12) and (2.14) yield

e - sl < |

V= g ()l i+ / 9 (@) — g (20)] i

T\Ti,k(i) T\Ti,k(i)

s e = fllpdat [ W= ol dn

TNTy k(i) T k(i)
S /

r(xn) dp + g (2n) — g (zo)ll; + / r(wo) dp + || .fu — folly
TNTy k(i)

T~ T’L,k(i)

< ||r(xn)—r<xo>||1+||g(xn)_g(x0>\|1+||fn_f0||l+‘;{

As n — 00, we also have i — 0o, hence our claim is proved. m
The next result, concerning the existence of approximate selections, is the core of the whole

proof of theorem 2.1.4.
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Proposition 2.1.5 Let X be a separable metric space and let G : X — D(LYT,FE)) be a
l.s.c map with closed decomposable values. Then, for every e > 0, there exist continuous maps
fe: X = LYT,E) and ¢, : X — LY(T,R), such that f. is an e-approzimate selection of G, in

the sense that, for each x € X, the set

Ge () ={f € G(@);|[f (t) = e (2) D g < ¢ () (£) p-a.e} (2.16)

is nonempty, and |, (z)||; < e. Moreover, the map x — G. () is l.s.c. with decomposable

values.

Proof. Let ¢ > 0 be fixed arbitrary. For every 7 € X and f € G (%), the multivalued map @
defined as

Q(z)={g9e L' (T\R);g(t) > essinf {||f (t) = f ()|| ;; f € G ()} forae. t €T} (2.17)

is l.s.c. with closed convex values.

To see this, define F' (z) = {f — f; f € G (z)} . Then the map F is also L.s.c. with decomposable
values. By Proposition 2.1.3, the multivalued map P defined in (2.8) is l.s.c. Hence @ is l.s.c.,
because () (x) is the closure of P (x), for all z € X.

It is therefore possible to apply Michael’s theorem to () and obtain a continuous selection

such that ¢+ (v) € Q (v), for all z € X and ¢, 7 (%) = 0. The family of sets

{{xex,n%j(x)nl < Z};ieX, ?EG(E)} (2.18)

is an open covering of the separable metric space X, therefore it has a countable nbd-finite
open refinement {V,;n > 1}. Let {p,(.)} be a continuous partition of unity subordinate to
the covering {V,} and Let {h,(.)} be a famely of continuous functions from X into [0, 1]
such that h, = 1 on supp(p,) and supp(h,) C V,. For every n > 1,choose z,, u, such
that V,, C {z,||¢s, u, (x)Hl <e\4} and set ¢, = ¢, . . The function ¢, have the following
properties :

o (1) (1) = essinf {|[f (t) = fu (Dl g; [ € G (@)}, (2.19)

(zeX,n>1). (2.20)

B~ m

Pn (2) [l (2)[ly < pu ()

Univ-B.M, Annaba Département de mathématique Rezaiguia Ali



2.1 Continuous Selection Theorems 28

lemma 2.1.1 applied to the sequences (¢,,) and (h,), and to the function [ : I (z) = >_ -, ha,
yields a continuous function 7 : X — Rtand a family {® (7, \)} of measurable subsets of T
satisfying (a), (b) and (¢) .

It is now possible to construct the function f. and p.. Set Ao =0, A, (v) = >, ., Pm (¥) , and
define

L) =3 e @), e @) =AY e @@, (@21)
where
X (T) = Xa(r(2) 2 (2)\&(r(2) A1 (2)) (2.22)
Clearly , f. and . are continuous, because the above summation are locally finite.

Let G. be define by (2.16). to check that the values of G. are nonempty, fix any = € X. For

every n > 1, use Proposition 2.1.2 and select fI' € G(z) such that

12 () = fnu (Dl g < e/4+ essinf {{|f (1) = fo (Dl g; [ € G (@)} (2.23)

p-a.e. in T. Then
fx = ZnZl fz -Xn (‘T)

lies in G (), because G (x) is decomposable, We claim that f, € G, (z). Indeed, (2.19) and
(2.23) yield

lue () = f (@) D)z < anl 112 (8) = Fu Dl g X (2) ()

< ¢ (x)(t) p-a.ein T.

Hence G. (z) # ). Being the intersection of two decomposable sets G. (z) is also decomposable.
The lower semicontinuity of G. follows from Proposition 2.1.4.
To conclude the proof of Proposition 2.1.5 , it now suffices to show that ||, (z)||, < € for every

x. Set I (x) = {n>1, p,(z) > 0} and notice that 1 <# I (z) < [(x). From (¢) in lemma
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2.1.1 and (2.20) we deduce

le- @l = <4+ 3, [ @) @

< ALY @)l @)l +e/ Q@)

e/4+ la/4+ %] :

€

IN

IN

Theorem 2.1.4 Let X be a separable metric space, and let F : X — D(LY(T, E)) be a l.s.c

multifunction with closed decomposable values. Then F' has continuous selection.

Proof. Let the function F' be given. Construct two sequences of continuous maps f, : X —
LYT,E) and ¢, : X — L*(T,R) and a sequence of l.s.c multifunction G,, with decomposable
values, such that, for all x € X and n > 1,

(i) Gn (z) = {u € F(2);[lu(t) = fu(2) Olp < @, (2) (1) prae} #0,

(i) [[fn (2) (t) = for () D)l g < 5 (2) () + @51 (2) () prae in T (n = 2),

(iii) [l ()], <277

To do this, define f; and ¢, by applying Proposition 2.1.5 with G = F, ¢ = 1/2.

Let now f,, ¢,, and G,, be defined so that (i) — (iii) hold for all m = 1,...,n — 1. To construct
fn and @, apply again Proposition 2.1.5 with , & = 27" defining G (z) to be the closure of
Gn_1(z), for all z. By induction, the maps f,, ¢, and G,, can be defined for all n > 1. By
(i), the sequence (f,),>, is Cauchy in the L'- norm, hence it converges uniformly to some
continuous function f : X — LYT, E). By (i) and (iii) dr: (f, (z), F (z)) < 27" Since F (z)
is closed, this implies that f (x) € F'(x) for all x € X, hence f is selection of F. m

2.2 Mesurable Selection Theorem

Let T be a set of arbitrary elements and X a metric space. Let S be a countably additive
family of subsets of T' [that is, if A, € S forn = 1,2, ... then U°, A, € S]. Then the following

statement is true.
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Lemma 2.2.1 Let g, : T — X forn=1,2,..., and let g(x) = lim g, (z) where the convergence
18 uniform.
Suppose that

g, (U) € S whenever U is open in X. (1,)

Then g~ (U) € S whenever U is open in X.

Proof. (see [13],,p49) m
Let L be a field of subsets of X. [In other words, if A, B are members of L, then so are
AUB,ANB and X — A|.
Denote by S the countably additive family induced by L, that is, the family of countable

unions of members of L.

2.2.1 Selection Theorem Due To Kuratowski, Ryll, and Nardzewski

Theorem 2.2.1 Let (T,%) be a measurable space, (X,d) a separable, complete metric space
and G : T — Py(X) a multivalued map with nonempty closed values. If G is measurable,
then it has a measurable selection. 1i.e. there exists a measurable map g : T — X such that

g(t) € G(t), for every t € T.

Proof. Let A = (ay,a9,...,a;,...) be a countable set dense in X. We may suppose of course
that the diameter
diam (X) =sup{d(z,y):x,y € X} < 1.

we’ll define g as the limit of mappings g, : T — X, (n =0, 1,2, ..) satisfying condition 1, and

the two following conditions.

Agnl), Gl@)) < 5. (2,)
lgn(z) — gn_1(z)] < for n > 0. (3,)

gn—1
Let us proceed by induction. Put go(z) = 7, for each z € T..
Thus 1y and 2( are fulfilled.

Now let us assume, for a given n > 0, that g, _; satisfies conditions 1,,_; and 2,,_;.
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Put
1
Cin = {x cd(a;, G(z)) < 2—n} ,
1
Dzn - { &€ |ai _gn—1<x)| < 277,—1}’
and

Ai,n - Oi,n N Di,n-

We have, X = Ay, U Az, U... . For, z being a given point of T, there is by 2,_;, y € G(z)

such that
1

2n71

|y_gn—1($)| < :

Since (a1, ag, ..., a;, ...) is dense, we can find a a; such that

o — 3] <
a; — )
) on

and

a; — gn1(7)] < o1
Hence, z € A;,,.

Denote by B;,, the open ball
1
Bin = Y —ai < o0
, {y ly — aif 2”}

C@n = {CL' . G(Ilf) N Bi,n 7é @} and Di,n = 9;_11(31‘,71—1)-

it follows that

Hence it follows that
Cin € Sand D, ,, € S and consequently A4;, € S.

Consequently, A" = U, Y where E?; € L.

Arrange the double sequence (7, j) in a simple sequence (ks, ms) where s = 1,2, ..., and put

We have, T'= E] UEJU...UE" U ...
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This identity allows us to define a mapping g, : T — A as follows:
gn(2) = ay,, z € E}\ (E} UE;U...UE] ).

We shall show that g, satisfies 1,,2,, and 3,,.
By definition g, (ay,) = E7\ (B} UEY U ...UE™ ). As L is a field, it follows that

9" (ar,) € L and as g, (a;) = Up,—jg,," (ax,)

we have

g, (a;) € S for each i.

Consequently g, ' (Z) € S.for each Z € A (since A is countable and S countably additive).

Thus 1,, is satisfied. For a given x let s satisty,
veEN(E}UEYU..UE!,).

Put k = 7. Hence we have v € E C A;, = C;,, N D;,, and it is clear that g,’s satisfy 2,, and
3,,. Thus the sequence gg, g1, ..., gn... has been defined according to the conditions 1,,,2, and
3,.

By 3,, and by the completeness of the space X, this sequence converges uniformly to a mapping
g:T— X.

By lemma 2.2.1, it follows g~ '(U) € S whenever U is open in X. Finally g(z) € G(z)

according to 2,, . therefore the proof of Theorem 2.2.1 is complete. m
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CHAPTER 3

Solvability Of a Three-Point Boundary Value
Problem For a Third-Order Differential

Inclusion

In this chapter we discuss the existence of solutions for a third- order differential inclusion with
three-point boundary conditions involving convex and nonconvex multivalued maps. Our results
are based on the nonlinear alternative of Leray-Schauder type and some suitable theorems of

fixed point theory combined with some selection theorems, (see [10]).

3.1 Exposure of the problem

In [15], By using Krasnoselskii’s fixed point theorem and the fixed point index theory, the

authors discussed the existence of positive solutions for the problem

u" () +a(t) f(tu(t) =0, te(0,1), (o)
u' (0) = ' (1) = au(n), u(0) = fu(n),

where «, 8 and 7 are constants with o € [O, %) ,and 0 <n < 1land f€0,1—an).

In this chapter we investigate the solutions for a third-order differential inclusion with three-
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point boundary value problem , see[1(].

—u"” (t> cF (tvu (t» ;te (07 1) ) (‘Bgl)
u'(0) = (1) = au(n), u(0) = fu(n),

where a, f and 7 are constants with o € [0, %), O<n<l,8#1—an, F:[0,1] xR — P(R)
is a multivalued map, and P (R) is the family of all subsets of R. The present chapter is
motivated by a recent paper of Ali Rezaiguia and Smail Kelaiaia [15], where it is considered
problem (PBfo) with F(.,.) single valued and several existence results are obtained by using

fixed point techniques and index theory.

3.2 Study and Discussion of Problematic

Here C ([0,1],R) denotes the Banach space of all continuous functions from [0, 1] into R with
the norm

||lu|| = sup {|u (¢)|, for all t € [0,1]},

L' ([0,1],R), the Banach space of measurable functions w : [0,1] — R which are Lebesgue
integrable, normed by .

fully = [ o) ar
and AC'([0,1],R) the space of i—times differentiable functions u : [0,1] — R, whose i'" deriv-
ative, u("is absolutely continuous.
Let A be a subset of [0,1] xR. A is £ ® B measurable if A belongs to the o —algebra generated
by all sets of the form Z x D where 7 is Lebesgue measurable in [0, 1] and D is Borel measurable
in R.
Let a subset A of L' ([0,1],R) be a decomposable set.
Let F:[0,1] X R — Peomp(R) be a multivalued map. Assign to F' the multivalued operator

F:C([0,1],R) — Po(L* ([0, 1] ,R))

and

F(u) ={w e L*([0,1],R) : w(t) € F(t,u(t)) for a.e. t € [0,1]}.

Univ-B.M, Annaba Département de mathématique Rezaiguia Ali



3.2 Study and Discussion of Problematic 35

The operator F is the Niemytzki operator associated with F. (F is of the lower semi-continuous

type (l.s.c type)).

Next we state a selection theorem due to Bressan and Colombo.

Lemma 3.2.1 [7] Let Y be separable metric space and let N : Y — Po(L'([0,1],R)) be a
multivalued operator which has the property (BC'). Then N has a continuous selection, i.e
there exists a continuous function (single-valued) g : Y — L' ([0,1],R) such that g(u) € N(u)

for everyu €Y.

Lemma 3.2.2 [7] Let E be a Banach space, let F : [0, T] X — Peomp.ev (E) be an L*— Caratheodory
multivalued map and let © be a linear continuous mapping from L* ([0,1], E) to C ([0,1], E) .
Then the operator

60k C(10,1], B) = Prampen (€ (10,1], E)) ,u— (60 Sr) () = © (Si)
is a closed graph operator in C'(0,1],E) x C ([0,1], E).
Lemma 3.2.3 [/)] Assume + an # 1, then for y € C ([0,1], R) the problem
u" (t)+y(t) =0, t€(0,1), (3.1)

u'(0) = (1) = au(n), u(0) = Pu(n), (3-2)

has a unique solution

wt) = =3 [ Pyase g e [ as gy as-

2 2 l—an—p
1 Oét‘i‘ﬂ K 2
—5—(1_%_5)/0 (- 5)2y () ds.

The proof of Lemma 3.2.3, is given by integrating three times u" (t)+y (t) = 0 over the interval
0, ¢], we obtain

1 t
u(t) = —3 / (t — )2y (s)ds + Ayt? + Agt + Ag where Ay, Ay, A3 € R. (3.3)
0

The constants A, Ay and Az are given by the three-point boundary conditions (3.1) and (3.2)

respectively.
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Lemma 3.2.4 [/7] Let (X, d) be a complete metric space. If N : X — Py(X) is a contraction,
then FizN # ().

3.2.1 The nonconvex case

By the help of Schaefer’s theorem combined with the selection theorem of Bressan and Colombo
for lower semicontinuous maps with decomposable values, we shall present first an existence
result for the problem (PF1). Before this, let us introduce the following hypotheses which are

assumed hereafter:
(Hy) F:]0,1] X R = Peomp(R) be a multivalued map verifying :

a) (t,u) — F (t,u) is £ ® B measurable.

b) u — F(t,u) is lower semicontinuous for a.e. ¢t € [0, 1] .
(H,) F is integrably bounded, that is, there exists a function m € L' ([0, 1], R ) such that
|F (t,u)|| = sup{||v] : v € F (t,u)} < m(t) for almost all t € [0,1].

(H3) F :[0,1] X R — Peomp (R) is such that F (-, u)[0,1] X R — Peom,p (R) is measurable for
each ¢t € [0, 1].

(Hy) Hq(F (t,u),F (t,u)) < p(t)|u — | for almost all ¢ € [0,1] and u,u € R with p €
L' ([0,1],R*) and d (0, F (¢,0)) < p(t) for almost all ¢ € [0, 1].

(Hs) F:[0,1] x R — P, (R) is Carathéodory,

(Hg) there exists a continuous nondecreasing function ¢ : [0,00) — (0,00) and a function

pe L' ([0,1],R") such that
1E (¢, u)llp = sup {|w| : w € F (t,u)} < p(t) 4 (lu]]) for each (¢,u) € [0,1] X R,

(H7) there exists a number M > 0 such that

a+ |f]

1+ ————
1 —an—p|

(M) lpll e < M.
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Lemma 3.2.5 [27] Let F' : [0,1] X R — Peomp(R) be a multivalued map. Assume (Hy) and
(Hy) hold. Then F is of the l.s.c. type.

Definition 3.2.1 A function u € AC?([0,1],R) s called a solution to the BVP (BF1) if u

satisfies the differential inclusion
—u"(t) € F(t,u(t)), t €(0,1),

and the condition
u' (0) =u' (1) = au(n), u(0)=pu(n).

In first result, we study the case when F' is not necessarily convex valued. Our strategy to
deal with this problem is based on Schaefer’s fixed point theorem with the selection theorem

of Bressan and Colombo [7] for lower semicontinuous maps with decomposable values.

Theorem 3.2.1 Suppose that hypothesis (Hy) and (Hs) hold. Then the problem (PF1) has at

least one solution.

Proof. (H,) and (H;) imply by Lemma 3.2.5 that F' is of the lower semi-continuous type.
Then from Lemma 3.2.1 there exists a continuous function ¢ : C ([0,1],R) — L' ([0,1],R)
such that g (u) € F (u) for all u € C (]0,1],R) .

We consider the problem

—u" =g (u), ae teo1], (3.4)

u' (0) = v (1) = au(n), u(0) = Pu(n). (3.5)
If we C([0,1],R) is a solution to the problem (3.4) and (3.5), then u is a solution to the

problem (PF1).
Transform problem (3.4) and (3.5) into a fixed point problem. Consider the operator T :

C([0,1],R) — C([0,1],R), defined by

T)(t) = —%/Ot@—s)?g(u)m%{mnzﬂ} /01<1_3>g<u>d3_

l—an—-p
1 Oét‘i‘ﬁ g 2
2 1—an—5J, (n—5)"g(u)ds.
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We shall show that T is a compact operator.
Step 1: T is continuous.
Let {u,} be a sequence such that u, — u in C (]0,1],R). Then
1 t
) (- T@ O < 5 [ €99 ) —g(w]ds

0

R e~ RIS RO

2 l—an—p
1 n
s [ =9 () = g s

Since g is continuous, then
T (u,) — T (u)]| — 0 as n — oo.

Step 2: T is bounded on bounded sets of C'([0,1],R).
Indeed, it is enough to show that there exists a positive constant ¢ such that for each h €

T(u),u € B, = {u € C([0,1],R) : ||u]| < r} one has ||h| < ¢. By (Hz) we have for each

t € [0, 1] that
2 2
n a+ a+p /
ht) < |14+ — s)d —
|(”_[ i 1 —an— 6} m S+ 1 —an— 6‘ m
Then ||h]| < c.

Step 3: T sends bounded sets of C'([0,1],R) into equicontinuous sets.
Let t1,ty € [0,1] ,¢; < t3 and B, be a bounded set of C ([0,1],R). Then we obtain
I 1 a(ty —t !
L A O T e R et  CEBITOIE
0

2 t1 |1_0577_6‘

1 a(t, —t) ! 2 I 9 9
ikl AUED |g<u>|ds+§/0 ((t1 = 5)° = (s — 5)°) g ()] ds.

3 [ s mias s [AT R B

2 Ju 2[1 —an —p|

1M ! — V2 m(s)ds 1 " _ 52 — 92 () ds
21 —an—p| O<77 ) ()d+2/0 <(t1 )" = (2 )) (s)ds.

As ty — t; the right-hand side of the above inequality tends to zero.

IN

As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem we can onclude that

T is completely continuous.
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In order to apply Schaefer’s theorem, it remains to show that
Step 4: The set
Q={ueC(0,1],R): Au=T(u) for some A > 1}

is bounded.
Let u € Q. Then A\u = T'(u) for some A > 1 and
A t !
u(t) = ——/ (t—s)* g (u)ds + =—— 5 {t2+n2%]/0(1—3)g(u)ds
AL
at + 3 K 2
- — d

this implies by (H») that for each t € [0, 1] we have

t 1
()| < %/0 (t—s)2m(s)ds+%[t2+n2 %}/ﬂ (1= s)m(s)ds
byt ] [ o as,
0

thus

< 5 [ emspmase g [t ] [ gmis o

an — 3
%'—OH_B n(n—s)Qm(s)dSZK.

This shows that 2 is bounded.

As a consequence of Schaefer’s theorem (see [20] p. 29) we deduce that T" has a fixed point
which is a solution to (3.4) and (3.5) and hence from Remark 2.1 a solution to the problem
(PF1).

Now, by applying a fixed point theorem for multivalued map due to Covitz and Nadler [17].we
prove the existence of solutions for the problem (PF1) with a non convex valued right-hand

side. m

Theorem 3.2.2 Assume that (Hs) and (Hy) hold. Then the problem (PF1) has at least one
solution on [0, 1] if

a+pf
l—an—p

1+n?
1
1

H ol < 1.
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Proof. For each u € C ([0, 1] x R), define the set of selections of F' by
Spy = {w € L' ([0,1],R) : w(t) € F(t,u(t)) for a.e. t € [0,1]}.

and the multi-valued operator © : C' ([0, 1] x R) — P, (C'([0,1] x R)) by

1

Q(u):{hEC([O,l] XR):h(t):_ﬁ/o (t—s)? f (u)ds

1 at + B3 !
— P4 1— d
Afperr ) s

1 at + ﬂ N 2
- — ds, t € |0,1].
for f € Spu. Observe that the set Sg, is nonempty for each v € C([0,1] x R), by the as-
sumption Hj, so F' has a measurable selection (see Theorem II1.6 [13]). Now we show that the
operator € satisfies the assumptions of Lemma 3.2.4. To show that Q (u) € P,C ([0,1] x R),
for each v € C'([0,1] x R), let {v, }n>0 € © (u) be such that v, — v (n — o0) in C' ([0, 1] x R).
Then v € C ([0, 1] x R), and there exists w,, € Sr,, such that, for each ¢t € [0, 1],

1 [ 1 t !
v () = —5/0 (t—s)w, (s)ds—|—§ {tZ—f—nQ%] /0 (1 —s)w,(s)ds

1 Oét"’ﬁ " 2
3 T—an—3J, (n— )" wn (s)ds,

As F' has compact values, we pass onto a subsequence to obtain that w, converges to w in

L' ([0,1] x R). Thus, w € Sk, and, for each ¢ € [0,1],

o1 ) 1 at + f3 !
v, (1) — U(t)__§/0<t_8) w(s)d8+§{t2+n2m}/o (1 —s)w(s)ds
1 "
E Ter UEDRIOLS

Hence, v € Q (u).

Next we show that there exists v < 1 such that

Hy (Qu,Qu) < ~v||lu—1| for each u,u € C (]0,1] x R).
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Let u,uw € C([0,1] x R), and hy € Q(u). Then there exists vy (t) € Sg, such that, for each
t €10,1],

hy(t) = —%/Ot(t—s)%l(s)ds%—%{t2+7721ft—+5} /01(1—5)111(5)013

an — 3
1 at+f K

—§m ; (77 — 8)2 (%1 (S) dS,

By H,, we have
Hy (F (t,u), F(t,m) < p(t) Ju(t) —u ()]
So, there exists w € Spz such that
o1 —w| <p(t) Ju—T7a], t €0,1].
Define U : [0,1] — P (R) by
Ut) ={w e R:foy —w| <p(t)|u(t) —u(t)]}.

Since the multivalued operator V (t) = U (t) N F' (¢,u (t)) is measurable (Proposition I11.4 [13]),
there exists a function v, (t) which is a measurable selection for V. So v (t) € Sz, and for

each t € [0,1], we have |vy (t) —ve (t) | < p(t)|u(t) —u(t)|. Foreacht € [0, 1], let us define

hy () = —%/Ot(t—s)zvg(s)dSvL%[t2+n2%] /01(1—3)02(3)@

]_ O[t"’ﬁ N 9
31— an—3 ), (n—s)"v2(s)ds,
I 1 !
hi(t) = —5/0 (t—s)QUl(s)ds+§[t2+n2%}/o (1 —3s)v1(s)ds
1 n
—5% ; (n— )" v () ds,

Thus,

[y () = ha (B)] < 1/0 (t =) |or (s) = va (5)] ds

2
1 t
+5 t* + 21féa—;ﬂﬁ‘/ (1 —5) vy (s) —va(s)|ds
1 n
t5 [t ] [ 9P () - o] s
1 1
< [ B |2 [ - elas
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Hence,
1+ 7n?
2

a+p
l—an—p

Analogously, interchanging the roles of u and u, we obtain

Iy = hol| < {1+

} ol llu -]

Hil@w),0@) < 7lu—1|
1+7*] a+p _

< 1 1 - 9

e e | [ TR

Since 2 is a contraction, it follows by Therem 3.2.4, that €} has a fixed point v which is a
solution of the problem (PF1). This completes the proof. m

3.2.2 The convex case

Our results are based on the nonlinear alternative of Leray-Schauder type.

Theorem 3.2.3 Assume that (Hs),(Hg) and (H7) hold. Then the boundary value problem
(BF1) has at least one solution on [0,1].

Proof. Define the operator T': C' ([0,1] ,R) — P (C'[0,1] ,R) by

T () = {hecqo,u,R):h(t):—l/o (t— ) f (u) ds+

2
1 at + B3 !
+§|:t2+772m:|/0 (1—s)f(u)d$—

1 Oét"—ﬁ K 2
2 1—an—5, (n—s) f(u)ds},

for f € Spu, we will show that T' satisfies the assumptions of the nonlinear alternative of
Leray-Schauder type. The proof consists of several steps.
Step 1: we show that 7" is convex for each u € C ([0, 1], R).

Let hy, hy € Tu. Then there exist wy,wy € S, such that, for each t € [0, 1], we have

t 1
he(t) — —%/0 (t—s)2wi(s)ds+%{t2+n2%]/o (1— s)ws (s)ds — i—1,2
1 n
_5%/0 (0 — 5)%wi () ds,
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Let 0 < pu < 1. So, for each t € [0, 1], we have

1

pha(t) + (1 —p)ha (t) = §A%ﬁ—@7mm@%+ﬂ—uﬁwﬁhﬁ+

—i—% {t2+n2%}/0 (1—35) (pwq (s) + (1 — p)ws (s))ds —
1 at+p

—§at;gjgy4(n—@waM$+%1—MNW@Dd&

Since Sg,, is convex, it follows that phy + (1 — p) he € Tu.

Step 2: we show that 7" maps bounded sets into bounded sets in C ([0, 1], R).

For a positive number r, let B, = {u € C([0,1],R) : |ju|| < r} be a bounded ball in
C([0,1],R) .So, for each h € Tu, u € B,, there exists w € Sg,, such that

h) = —%AQt—@%u@d&+§PW+%T§%§§E]A71—ww@ww—

1 at+p

—§m/o (n—s)"w(s)ds,

h ()] < g%ﬂlP+2—ﬁiﬂﬂ_LA}@ﬁk+

T =an—g]
O(ul) 5 a+[8 [
T T—an—g J, P

Thus,

W ([lull) a+|f| '
Al < 9 [2+7]2m}/0 p(s)ds+

@b(IIUII)nQ a+ |f] !
2 [1—an =5l Jo

+ p(s)ds.

Step 3: Now we show that 7" maps bounded sets into equicontinuous sets of C ([0, 1], R).
Let t1,t5 € [0, 1] ,with ¢; < t3 and B, be a bounded set of C (]0,1],R). So we obtain, for each

h € Tu, we obtain sends bounded sets of C' ([0, 1], R) into equicontinuous sets.
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it~ b)) < 5 [P w(e)lds +
1 2 42 o a(ta— 1) ' — ) lw(s)] ds
ry @@+ s g las
el t) [T ()] ds +

IA
<
=

s

—
|

S—
[\

iS

=
Q.
V2

+

w3 @) e gl [ - spods+

a(ty —t) Y (Jull) (7 >
+ 21— an— 7] /U(n—s)p(s)ds~|—

L O T

Obviously the right-hand side of the above inequality tends to zero independently of u € B,
as to —t; — 0. As T satisfies the above three assumptions, it follows by the Ascoli-Arzela’s
theorem that 7': C'([0,1] ,R) — P (C'[0,1],R) is completely continuous.

Step 4: we show that 7" has a closed graph.

Let w, — u, hy, € T (u,) and h,, — h,. Then we need to show that h, € Tu,.

Associated with h, € T (uy,), there exists w,, € Sg,,, such that, for each ¢ € [0, 1],

ha (1) = —%/Ot(t—s)2wn(s)ds+%[t2+n2%} /01(1—3)wn(s)d8—

1 at+pB ("
21—an—p3J,

Thus we have to show that there exists w. € Sg,,. such that, for each ¢ € [0, 1],

(1= 5)" wn () ds,

he(t) = —%/Ot(t—s)Qw*(S)ds+%{t2+n2%} /01(1—8)w*(8)ds—

1 at+p K

2
_5—1—007—5 i (n — 8) w, (s) ds,
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Let us consider the continuous linear operator © : L! ([0,1],R) — C ([0, 1] ,R) given by

¢ 1
w o — @w(t)——%/o(t—sfw(s)ds—i—% t2+n2%1/0 (1—s)w(s)ds—
1 at+p K

_51—0”7—5 0

Observe that

(n—s)"w(s)ds,

1

It =m0l = |5 [ (= 5 (n () — s (5)) dst

e[t 2R [ ) ) — e ) s -

2 l—an—p
1 n
e [N 9 ()~ v (9)ds |

then ||h, (t) — hy ()| — 0 as n — oc.
Thus, it follows by Lemma 3.2.2 that © o F is a closed graph operator.

Further, we have h,, (t) € © (Sg,, ). Since u,, — u., therefore, we have

ho() = —%/Ot(t—sfw*(s)ds—kl{t2+772at—+6} /Ol(l—s)w*(s)ds—

2 l—an—p
_%% 0” (n — 5) w, (s) ds.
for some wy € Sp,,, .
Step 5: we discuss a priori bounds on solutions.

Let u be a solution of (PF1). So there exists w € L ([0,1],R) with w € Sk, such that, for

t € [0, 1], we have

t 1
u(t) = —%/0(t—s)Qw(s)ds—l—%[thLﬁ%}/o (1—s)w(s)ds—
1 at+p K

_il—an—ﬁ 0

In view of (Hg), for each t € [0, 1], we obtain

(n—s)*w(s)ds,

ol <o () [+ ] o as
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Consequently, we have
Il

< 1.
o () |1+ 72225

In view of (H7), there exists M such that ||u|| # M. Let us set
U={ueC(0,1],R): |ul]| < M+ 1}.

Note that the operator T': U — PC ([0, 1], R) is upper semicontinuous and completely contin-
uous. From the choice of U, there is no v € U such that v € AT’z for some A € (0,1).
Consequently, by the nonlinear alternative of Leray-Schauder type [27], we deduce that T" has
a fixed point v € U which is a solution of the problem (8F1). This completes the proof. m

3.3 Examples

The case, when F' is convex valued:

Example 3.3.1 Consider the boundary value problem given by

—u" (t) € F(t,u(t)), t€(0,1), (3.6)

o (0) =/ (1) = u (%) u(0) = }lu G) | (3.7)

where F': [0,1] x R — P (R) is a multivalued map given by

lul+1 1, 3 u?
— F(tou)= |/t + st + = —t)—1
U (t,u) [ ]u\—|—2+2 +2,u2+1—|—exp( )

For f € F, we have

|f] < max (\/IZI%—% st2+ 3, ué‘il + exp (—t) — 1) <3, ucER,
Thus,

I (tu)llp = sup {Jw] : w € F(t,u)} <3 =p (e (lul), ue R
with p(t) = 1,4 (||u]|) = 3. Further,using the condition

o at|Bl
P* a5

we find that M > 3. By Theorem 3.2.3, the the boundary value problem (3.6) and (3.7) has

LMMMMU<AL

at least one solution on [0,1].
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The case, when F' is not necessarily convex valued:

Example 3.3.2 If F' (t,u) = [2exp(”) At 2}, then the condition of Theorem 3.2.1 hold,

3+exp(u)
with m (t) = 3+t + 2.

Example 3.3.3 If F (t,u) = [lf‘lm 1t, i:yﬂ U{';j:'il + exp (t)}, then the condition of The-

orem 3.2.1 hold, with m (t) = e + 1.
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CHAPTER 4

The Topological Structure Of The Solutions
Set For (PF2)

In this chapter, we prove that the W31(|0, 1], E)-solution set of (fF2) is compact and is retract

in C"(/0,1]), where F is closed valued mapping.

4.1 The equation

This chapter is motivated by a recent paper [28], where it is considered problem (PF2) with
F(.,.) single valued and several existence results are obtained by using fixed point techniques.
It is a continuation of the work in [28]. Here we deal with some topological properties of the
solution set for a m—point (m > 3) third order boundary value problem (F2) in a separable

Banach space E of the form

—u"(t) € F(t,u(t),u (1)), t€(0,1), (BF2)

w(0)=u'(0) =0, u (1) = 37"/ (1) -

with the following assumption

Assumption (A) Let m > 3 be an integer number, 0 < 7, < 7y < ... < 1,,_5 < 1 and
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a; € R, (i =1,2,...,m — 2) satisfying the condition

m—2
1— Z a;n; # 0,
i=1

and F'is a closed valued mapping.

Under suitable compactness conditions on F' we prove the compactness of the solution set of
(PF2) in C([0,1]) when F is convex compact valued and satisfies a Lipschitz condition and a
compactness condition. Using a result due to Ricceri [17] on contractive multivalued mapping
in a Banach space and these conditions on F', we also show that the solution set of problem

(PF2) is a retract in C1([0,1], F).

4.2 Notations and Preliminaries

Let E is a Banach space and E’ its dual space, By is the closed unit ball of £, £(]0,1]) is the

o—algebra of Lebesgue measurable sets on [0, 1]. A = dt is the Lebesgue measure on [0, 1], B(E)

is the o—algebra of Borel subsets of FE.

Let L'([0,1], E), the space of all Lebesgue-Bochner integrable E—valued functions defined
n [0,1], and let C([0,1], £) be the Banach space of all continuous functions u from [0, 1]

into F endowed with the sup-norm and let C*(]0, 1], E') be the Banach space of all functions

u € C([0,1], E) with continuous derivative, equipped with the norm

s = o ana ], a1}

We also denote the space of all continuous functions in C([0, 1], E') such that their first deriva-
tives are continuous and their second weak derivatives belong to L*([0, 1], E) by W?([0,1], E).
By Po(E), Peomp(E) and Pp(E) , we denote the collection of all nonempty closed subsets,
nonempty compact subsets and nonempty bounded closed subsets of E, respectively. If A is
a subset of E then |A| = sup{||z|| : v € A} and d(z,A) = inf{||lx —y| : vy € A}, is the
distance of a point x € E to A. The Hausdorff distance between two subsets A and B of E is
dy(A, B) = max {supd(a, B), supd(b, A)}
acA beB
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We recall here some results which are directly applicable in the next sections. We begin with
a lemma that summarize some properties of the Green function associated with the m—points

boundary conditions.

Lemma 4.2.1 Let the Assumption (A) hold. Let E be a separable Banach space and let G :
[0,1] x [0,1] — R be the function defined by

G(ts)—l (1 —38)t% + p 30, (s), t<s
T (s H 2t — 1) s+ prt? (1 — 1) Uy (s), s<t
where
m—2 m—2
Uy (s) = Z a; (1 —3s) and Vy(s) = ZO%S
=1 1=1
and
. 1
8 1 - 221_12 Q;T);

Then the following assertions hold

(i) For every fized s € [0,1] , the function G(.,s) is right derivable on [0,1] and left derivable

on 10,1] . Its derivative is given by

(8G)+(t’8):{ ((1—s)t+gu*t2qfl(s), t<s

ot 1—t)s — p*t (3t — 2) Wy (), s<t
oG (1) = (1—s)t+ 3p 20, (s), t<s
ot ) VT A —t) s — (3t —2) Uy (), s<t

This implies that G(., s)is derivable on the intervals [0, s] and [s,1].

(if) G(.,.) and%< (.,.) satisfies

oG

|G (t,s)] < Mg and ' 5 (t,s)| < Mg V(t,s) €[0,1] x [0,1]

where
m—2

3.
MG=1+§|M|Z’%|

=1
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(iii) If w € W31(]0,1], E) with u (0) = o/ (0) = 0, and o' (1) = 377% a;u/ (1;) , then
u(t) = /01 G(t,s)u" (s)ds, Vte[0,1].
(iv) Let f € L'([0,1], E) and let u; : [0,1] — E be the function defined by
wp (t) = /01 G(t, s)f (s)ds, Wt e [0,1].
Then we have L
u, (0) =/ (0) =0, and v (1) = Z au’ (n;)
Further the function u, is derivable on [0, 1] and its derival:i\lfe u; is defined by

;
u, (t+h)—u, (t) [10G

o (1) = i S = R ) £ (5) ds

(v) If f € L'([0,1], E) , the function u’f is scalarly derivable, that is, for every z* € E’, the

scalar function <:c*, u ()> is derivable and

—u (t) = f(t) ae te[0,1].

Lemma 4.2.2 Let the Assumption (A) hold and let f € C([0,1], E) (resp. f € L'([0,1], E)).
Then the m—point boundary problem
—u"(t) = f(t), t€(0,1), (4.1)
w(0) = (0) =0, o (1) = 27", % e () . (4.2)
has a unique C3([0, 1], E)-solution (resp. W31(|0, 1], E)-solution) defined by
1
w(t) = / G(t, s)f (s)ds, Vte0,1].
0
Theorem 4.2.1 Let E be a Banach space, let X be a nonempty convex closed subset of E, and
let v be a contractive multivalued map with convex closed values from X into itself. Then the

set

Fiz(p) ={r € X :x € p(x)}

is an absolute retract.

Proof. See Ricceri [17]. =
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4.3 Topological Properties of the Solutions Set
4.3.1 Compactness of the solutions set in C1(]0, 1], E)

Theorem 4.3.1 Let (A) hold. Let T : [0,1] — P(FE) be a convex compact valued, measurable
and integrably bounded multifunction. Let F : [0,1] x E x E — Py(E) be a conver compact

valued multifunction satisfying the following conditions:

(A1) Fis £([0.1]) ® B(E) ® B(E)— measurable.

(A2) There exist positive functions ly,lo € L'([0,1],R) with Mg||ly + lo||zr < 1 such that

|d (21, F(t,21,y1)) — d(29, F(t, 2, 92))| < ||z1 — 22| + L (t)||z1 — 22|

+a(8)[[y1 — v2|]
for all (t,x1,y1,21), (t, 22,92, 22) € [0,1] x E X E X E.
(A3) F(t,z,y) CT'(t), forall (t,z,y) € [0,1] x E x E.

Then the W31(]0, 1], E)-solution set,(&PF2), of the problem (PF2) is compact in C*([0,1], E).

Proof. Step 1. Clearly 7 — G(t,7)['(7) is a convex compact valued, measurable multi-

function. Since I is integrably bounded we have
G(t,7)I'(t) Cc G(t,7)|T(t)| Bg,

that is, 7 — G(t,7)I'(7) is also integrably bounded. By Proposition 6.2.3 in [11] we deduce
that the multivalued integral fol G(t, s)['(s)ds is norm compact in E. Similarly, it’s not difficult
to check that fol % (¢, 5)I'(s)ds is norm compact in E.

Step 2. Let (u,)nen be a sequence of W31([0, 1], E)-solutions in (&BF2), so

(1) = /O G(t, s)u!” (s) ds, (4.3)
ul, (t) = i aa—f(t, s)ul (s)ds (4.4)
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and

ul (t) € F (t,u, (t),u, (t)) C T(t),a.et € [0,1]. (4.5)
It’s easy to see that (u!”),cn is uniformly integrable using the estimates

Hu///H < sup{HZH 1z E F(t)} < |F(t>’>

/ aG "
[ur, O] < 5 (63)] l[u (s)ll ds

< MG/ IT(s)] ds < 0.
0
Let t,7 € [0, 1]. It follows from (4.3) that

[[un (£) = un (7)]] :/0 G(t,s) = G(7, 8)| [|uy ()| ds

/ |G(t,s) — G(T,s)||T'(s)| ds. (4.6)

On the other hand, by the definition of the Green function G we have

_ _ L A=) (@ =)+ (8 = 7%) Uy (s), t<s
Gl 5)=Glr,5) = G {t:5) = 5{ —s((t—T) (T = 2) + [(2— 88) + (7* = 72) " Wa (5), s <t
(4.7)

Combining (4.6) and (4.7), it is not difficult to check that {u, : n € N} is equicontinuous in
C([0,1], E). Further, for each t € [0, 1], the set {u,, : n € N} is relatively compact in E because
it is included in the norm compact set fol G(t,s)I'(s)ds. So by Ascoli’s theorem, {u, : n € N}
is relatively compact in C([0,1], F).

Similarly, by using the properties of 80 tand the relations
1
oG oG
w0 -0 = [ (G- s s as

_ — 3 * <
a—G(t,S)—a—G(T,S)Z (=) (L=s+5 (7)) p \Pl*(s)’ se
ot ot (T—8)s+({t—7)B({t+7)+2)u*Uy(s), s<t
we deduce that {u], : n € N} is equicontinuous in Cg([0,1]). In addition, for each ¢ € [0, 1],
the set {u!, : n € N} is included in fl 9G (¢, 5)['(s)ds ds which is a compact subset of E. So

{u, : n € N} is relatively compact in C*(]0, 1], E) using the Ascoli’s theorem.
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From the above results, we deduce that there exists a subsequence of (uy,), . still denoted by

(), Which converges uniformly to us € C'([0,1]) with us (0) = ul, (0) = 0, vl (1) =

n

Z::lz a;ul (n;) . Furthermore, (u]) converges uniformly to u., and (u!”

. ) weakly converges in

LY([0,1], E) to we € L*([0,1], E) . For every 2’ € E’ and for every t € [0, 1], we have

(' use (t)) = lim (2, u, (t))

n—o0

1
= lim <x’,/ G(t, s)u) (s)ds>
n—oo 0

1

= lim (G(t, )z, up (s))ds

n
n—oo 0

— /0 (G(t,5)2, we () ds

_ <x /O Gt s (5) ds>

This implies that uy (t) = fol G(t, $)we (8) ds, for a. e t € [0,1]. Using the Lemma 4.2.1 (v)

we get
—ul (t) = we (t) for a.e t € [0,1]
Using (4.5) and the same arguments as in ([12]; Corollary 5.1), involving the lower semi conti-

nuity of integral functional for strong- weak topology in on L'([0,1], E) x L'([0,1], E) (see [11],

Theorem 8.1.6), we conclude that —u! (t) € F (t,ux(t),u, (t)), a.e. t € [0,1]. The proof of our

o0 ’ o0

theorem is complete. m

4.3.2 Retract of the solutions set in C'([0, 1], F)

Theorem 4.3.2 Let (A) hold. LetT : [0,1] — P.p(E) be a convex compact valued, measurable
and integrably bounded multifunction. Let F : [0,1] X E X E — P..,(E) be a convexr compact
valued satisfying the conditions (A1) — (A2) as in Theorem 4.3.1 and

(B1) F(t,z,y) CT(t), for all (t,x,y) € [0,1] x RBg x Bg. where R = Mg fol IT" (s)] ds.

Then the W31([0,1], E)-solution set of the problem (BF2)is a retract in C([0,1], F).
Proof. In the following we denote the set {y € CY([0,1], B) : lyller o) < R} by D.
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Foru € D, we put

M(y)={f e L' (0,1, E): f(t) € F(t.y(t) .y (1)), a.e.t €[0,1]} C Sy
and
N (y) = {uy: fe M(y)}
where uy (t) = fol G(t,s)f (s)ds, is the unique solution of the problem
—u" (t) = f(t), a.e. t €(0,1),

w(0)=u'(0) =0, v (1) = 37" o’ (1) -

It is easy to see that M (y) a is non-empty, convex closed and bounded subset of L' ([0,1], E) .
Moreover M (y) is weakly compact in L' ([0,1], E) using the weakly compactness of St (the set
of all integrable selections of T').

For f € M (y) , we have

F)€F(ty®),y @) CT(#) ae te(0,1).

/Olf(s)ds

On the other hand it is easy to see that N (y) is a non-empty and convex subset of C1 ([0, 1], F)

So

luy @I = < Mg <R

This implies that N (y) C D .

/0 Gt 9)f (s) ds

. Moreover by Theorem 4.3.1, N (y) is compact in C* ([0,1], E) . So N defines a non-empty,
convex and compact valued multifunction from D into itself. Let y1,yo € D . We need to prove

that there exists o € (0,1) satisfying

Hy= (N (1), N (92)) < allyn = w2llor o1, - (4.8)

where Hg(-,") is the Hausdorff distance on the space of compact subsets of C* ([0,1], E). Let
z1 € N(y1) be arbitrary. Then z; = uy, for some fi € M(y1) . By using a standard measurable

selection theorem, there exists a Lebesque-measureable fs : [0,1] — E such that

f2(t) € F(ty2 (1) 95 (1), vVt el01]
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and
A1 (@) = LoDl =d(fr (&), F(t,y2 (1) 95 (1), VEe[0,1]
As f1 € M(y1) we have

If1(t) = @ = Ha(F(t,y ()55 (1), Ft, 52 (t) 45 (1))

(@) llya (8) = w2 (D1 + L2 (8) llyg (8) — w5 ()]

< (@) + 1)) llyr = velley o, -

IN

This implies that fo € M(ys) . So we have
1

G(t,s) (f1(s) = f2(s))ds

lg () =g, (D]

< Mg / 1£2(5) = fo ()] ds
< Mg [l + ol g 01)||?Jl v2lle o
and
1
Juy, 0=t @ = || [ 509 (1 6) = o
< Mg+l oy o = 2lles o, -
Hence

||uf1 - ufz”cb([o’l}) < Mg ||l + ZZHL%E([OJ}) Iy — yz||c}E([o,1]) )

and consequently

d<uf1aN(y2)) < Mg || + ZQHL}E([U,I]) [y — yz”c}g([o,ﬂ) :

Whence we get

S/‘&]? )d (21, N (92)) < M [l + Lol 1y o)) 191 = 2ll o 0,17 -
21EN (Y1

From this and the analogous inequality obtained by interchanging the roles of y; and y, we obtain
(4.8) with o = Mg ||ly + o]l 1191y, 1) - By Theorem 4.2.1, Fiz (N) is a retract of C([0,1], E)
. On the other hand, it is clear that Fiz (N) is also the solutions set of the problem (PF2).

The proof of the theorem is complete. ®
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