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ــص ــ ــ ــ  ملخـ
 
 
 
 
 
 
 
 

م بديييي  لخيييييال ميةنويييي  ن لمييييي من ن معايييي  بن    اييييي   ع ع  يييي   ييييي  ن ع ييييي  ه       
ت
فييييه ايييييحة نه

 من ايي   م يية لل ديي   ن  ئايي  ن ل مايي  بلايي م  ديي   ن ع يي  ه  
ت
ن اف ضييةا  رايي  ن لاايي  ن .ا  ديي ب لطييين

خ ب ث لا  ليةس بج   ن .ل ن يبةي، ن .ل ن يبةي ن ع جب بنهوائ نة ن ائ ةمه  ة.ل 
ت
ن اف ضةا  ذن  ت 

ن  ئاييي  ن ل ماييي  بن ع ييييبم  ع ييي  ه  تف ضيييةا  راييي  خااييي  دا  دييي  م ويييالينم  فخييي م ن عئةييين ن ع وييي  
دض م- م نو  وةسمه

ت
 ةنو  لل د   ن  ج   بن  دينلا   ة.ة   ن يبةد    ل م را  خايه  ا ت نب دال ن

 لة   لئيم   ع       بفه وا ق احة ن يةنو ب ن .ا  د    ن ع   ه  ن اف ضةا  
ت
 ا ب ا ضا.ننه
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Abstract

In this thesis we study a quantitative and qualitative properties of broad classes of
nonlinear delay di¤erential equations of neutral type. We start by giving some �xed point
theorems and results for delay di¤erential equations. Second we study the existence of
periodic, positive periodic solution and asymptotic stability of the zero solution for a
class of nonlinear di¤erential equations with functional delay of neutral type by using
the concept of large contraction mapping in the �xed point of Krasnoselskii-Burton�s.
A theorems of existence and uniqueness of periodic solutions are given to a wider class
of nonlinear system of di¤erential equations with two functional delay of neutral type.
Examples are also given to illustrate the claims established.
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Résumé

Cette thèse est consacrée à l�étude de propriétés quantitatives et qualitatives de larges
classes d�équations di¤érentielles non linéaires à retard fonctionnel de type neutre. On
commence par donner les théorèmes de point �xe et des résultats sur les équations dif-
férentielles à retard. En utilisant la technique de point �xe on établit un théorème sur
la stabilité asymptotique de la solution zéro pour une équation di¤érentielle non linéaire.
Aussi des résultats d�existence de solutions périodiques et positives sont établis et démon-
trés. L�outil clé ici est théorème de Krasnoselskii-Burton qui utilise la notion de contraction
large. D�autres théorèmes sur l�existence et l�unicité de solutions périodiques relatifs à une
classe plus large d�un système non linéaire d�équations de type neutre avec deux retards
fonctionnels sont donnés. Des exemples sont fournis pour illustrer les travaux établis.
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Introduction

Many real-life phenomena in physics, engineering, biology, medicine, economics, etc.
can be modeled by an initial value problem (IVP), or Cauchy problem, for ordinary dif-
ferential equations (ODEs) of the type�

x0 (t) = f (t; x (t)) ; t � t0;
x (t0) = x0;

(1)

where the function x (t), called the state variable, represents some physical quantity that
evolves over time.

Nevertheless, the biological systems and processes take time delays to complete. The
delays can represent gestation times, incubation periods, or transport delays. In many
cases time delays can be substantial such as gestation, forestation, deforestation and
maturation or can represent little lags such as acceleration and deceleration in physical
processes.

Therefore, in order to make the model more consistent with the real phenomenon, it
becomes natural to include time delay terms into the di¤erential equations that model pop-
ulation dynamics. So, a modi�cation of (1) by including the dependence of the derivative
x0 on past time values of the state variable x is needed. It is then imperative to explicitly
incorporate these process times into mathematical models. Such models are referred as
delay di¤erential equation (DDE) models. Thus, it seems clear that ordinary di¤erential
models can, at best, be approximations of real word problems. That is why, investigators
of all branches �nd in (DDE) the ultimate issue to discuss real world problems. This is due
to their advantage of combining a simple, intuitive derivation with a wide variety of possi-
ble behavior regimes and to the fact that such models operate on an in�nite dimensional
space consisting of continuous functions that accommodate high dimensional dynamics.
In recent years investigators have also given special attentions to the study of equations in
which the delay occurs in the derivative of the state variable as well as in the independent
variable, so called neutral di¤erential equations. It is known that such equations appear
as models of electrical networks which contain lossless transmission lines. Such networks
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arise, for example, in high speed computers where lossless transmission lines are used to
interconnect switching circuits.

Mathematically speaking, DDEs are di¤erential equations in which the derivatives of
some unknown functions at present time are dependent on the values of the functions at
previous times. That is, a general delay di¤erential equation for x(t) 2 Rn takes the form
x0 (t) = f (t; xt), t � t0 where xt(�) = x(t + �), � 2 [�� ; t0] is a function belonging to the
Banach space C ([�� ; t0] ;Rn) of continuous functions mapping the interval [�� ; t0] into
Rn and f : 
 ! Rn is a given function of the set 
 � [�� ; t0] � C into Rn. Then the
initial value problem is �

x0 (t) = f (t; xt) ; t � t0
xt0 = x (t0 + �) = � (�) ;

(2)

where � (�) 2 C represents the initial point or the initial data. Equation (2), also called
the Volterra functional di¤erential equation, includes both distributed delay di¤erential
equations, where f depends on x computed on a continuum, possibly unbounded (� =
+1), set of past values, and discrete delay di¤erential equations, where only a �nite
number of past values of the state variable x are involved. Despite the latter being special
cases of the former, they are suitable to describe a wide class of phenomena in many
branches of applied mathematics and we shall con�ne our interest to them.

Delay di¤erential equations, di¤erential integral equations and functional di¤erential
equations have been studied for at least 200 years, the general theory of DDEs is widely
developed and we refer the reader to the classical books by Bellman and Cooke [24], Hale
[62], Driver [54], El�sgol�ts and Norkin [55] and to the more recent books by Hale and
Verduyn Lunel [63], Kolmanovskii and Myshkis [73], Kolmanovskii and Nosov [74], Diek-
mann, van Gils, Verduyn-Lunel and Walter [52] and Kuang [78], which also include many
real-life examples of DDEs and more general retarded functional di¤erential equations.
The subject gained much momentum (especially in the Soviet Union) after 1940 due to
the consideration of meaningful models of engineering systems and control. It is proba-
bly true that most engineers were well aware of the fact that hereditary e¤ects occur in
physical systems, but this e¤ect was often ignored because there was insu¢ cient theory
to discuss such models in detail.

Delay di¤erential equations have attracted a rapidly growing attention in the �eld of
nonlinear dynamics and have become a powerful tool for investigating the complexities of
the real-world problems such as infectious diseases, biotic population, physics, population
dynamics, industrial robotics, neuronal networks, and even economics and �nance. Due
to their importance in numerous applications, many authors are studying the existence,
uniqueness, stability and positivity of solutions for delay di¤erential equations (see [1],
[3]-[22], [26]-[43], [45], [47], [48], [49], [50], [51], [53], [57]-[59], [60], [61], [63], [65], [66]-[68],
[72], [74], [79], [82], [83]-[93], [94]-[97], [99], [109], [110], [111] and [114]).

More than 100 years, the world famous mathematician Lyapunov initiated what is we
call the Lyapunov direct method to study stability and the existence of periodic solutions
of di¤erential and functional di¤erential equations. But the expressions of Lyapunov
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functionals are very complicated and hard to construct in so many problems. May be
this is due to their pointwise character. Moreover, in the study of di¤erential equations
with functional delays by using Lyapunov functionals, many di¢ culties arise if the delay
is unbounded or if the di¤erential equation in question has unbounded terms, (see [31],
[32], [38], [64], [102]). In recent years, several investigators have tried stability by using
a new technique. Particularly, Burton, Furumochi, Zhang and others began a study in
which they noticed that some of these di¢ culties vanish or might be overcome by means
of �xed point theory (see [3]�[22], [26]�[44], [66]�[68], [83]�[93], [94]�[97], [56], [113], [114]).
The most striking object is that the �xed point method does not only solve the problem
but has a signi�cant advantage over Liapunov�s direct method. The conditions of former
are always average while those of the latter are pointwise. Further, while it remains an
art to construct a Liapunov�s functional when it exists, a �xed point method, in one step,
yields existence (sometimes uniqueness) and stability. All we need, to use the �xed point
method, is a complete metric space, a suitable �xed point theorem and an elementary
integral methods to solve problems that have frustrated investigators for decades.

This thesis is, what we hope, a signi�cant contribution to this �eld of investigation.
It contains a discussion of the existence and stability for a class of functional di¤erential
equations with delay using �xed point technique. It was motivated by a series of results
obtained during the past years which bring into a single perspective the qualitative theory
of ordinary di¤erential equations, and functional di¤erential equations with functional
delay.

The particular contents of each chapter are as follows.
The �rst chapter was devoted to point out the tools which are needed in this project.

The �xed theorem of Banach and Krasnoselkii, the functional di¤erential equations with
delay and of neutral type belong to this recall. Signi�cant and interesting models of
equations with delay emanating from biology, epidemiology and the economy are given in
this part of the thesis.

The second chapter exposes results published in [84] and relates to study the asymptotic
stability of the zero solution for nonlinear di¤erential equation with functional delay of
neutral type

d

dt
x (t) = �a (t)h (x (t� � (t))) +

d

dt
Q (t; x (t� � (t))) +G (t; x (t) ; x (t� � (t))) ;

with an assumed initial function

x (t) =  (t) ; t 2 [m0; 0] :

Our purpose here is to use a modi�cation of Krasnoselskii�s �xed point theorem due Burton
(see [26], Theorem 3) to show the stability and asymptotic stability of the zero solution.

In the chapter three, we investigate the existence of periodic or nonnegative periodic
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solutions of the nonlinear neutral di¤erential equations

d

dt
[x (t)�Q (t; x (t� � (t)))]

= �a (t)h (x (t� � (t))) +G (t; x (t) ; x (t� � (t))) ;

where x (t) = x (t+ T ) and a is a positive continuous real-valued function. The function
h : R ! R is continuous, Q : R � R ! R and G : R � R � R ! R satisfying the
Caratheodory condition. The main tool here is a modi�cation of Krasnoselskii�s �xed
point theorem due Burton (see [26], Theorem 3) which we use to establish the existence
of periodic and nonnegative periodic solutions for this equation.

Finally, we study the existence and uniqueness of periodic solutions for the system of
nonlinear di¤erential equations with two functional delays

d

dt
x (t) = A (t)x (t� � (t)) +

d

dt
Q (t; x (t� g (t))) +G (t; x (t) ; x (t� g (t))) ;

where A (�) is a nonsingular n � n matrix with continuous real-valued functions as its
elements. The functions Q : R � Rn ! Rn and G : R � Rn � Rn ! Rn are continuous
in their respective arguments. In the analysis we use the fundamental matrix solution
of x0 (t) = A (t)x (t) coupled with Floquet theory to invert the system into an integral
system. Then we employ the Krasnoselskii�s �xed point theorem to show the existence of
periodic solutions and show the uniqueness of the periodic solution by appealing to the
contraction mapping principle.

Mathematics Subject Classi�cation: 35B09, 35B10, 45D05, 45J05, 47H10, 34K13,
34K20, 34K30, 34K40.
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CHAPTER 1

Functional setting and delay di¤erential equations with
applications

The aim of this chapter is to introduce the basic concepts, notations, and elementary
results that are used throughout the thesis. Moreover, the results in this chapter may be
found in most standard books on functional analysis, for example [2, 25, 30, 31, 62, 75,
76, 77, 78, 81, 100, 101, 112].

1.1 Notation and preliminaries

1.1.1 Normed and Banach space

Let X be a nonempty set and d : X �X ! R+ := [0;1) a function. Then d is called
a metric on X if the following properties hold.

(d1) d(x; y) = 0 if and only if x = y for some x; y 2 X;

(d2) d(x; y) = d(y; x) for all x; y 2 X;

(d2) d(x; y) � d(x; z) + d(z; y) for all x; y; z 2 X.

The value of metric d at (x; y) is called distance between x and y, and the ordered pair
(X; d) is called metric space.

Example 1.1.1 The real line R with d(x; y) = jx� yj is a metric space. The metric d is
called the usual metric for R.

Let X be a linear space over �eld K (R or C) and N : X ! R+ a function. Then, N
is said to be a norm if the following properties hold

(N1) N(x) = 0 if and only if x = 0;
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Chapter 1. Functional setting and delay di¤erential equations with applications

(N2) N(�x) = j�jN(x) for all x 2 X and � 2 K;

(N3) N(x+ y) � N(x) +N(y) for all x; y 2 X.

The ordered pair (X;N) is called a normed space.
We use the notation k�k for norm. Then every normed space (X; k�k) is a metric space

(X; d) with induced metric d(x; y) = kx� yk.

Example 1.1.2 Let X = Rn; n > 1 be a linear space. Then Rn is a normed space with
the following norms:

kxk1 =

nX
i=1

jxij for all x = (x1; x2; :::; xn) 2 Rn;

kxkp =

 
nX
i=1

jxijp
! 1

p

for all x = (x1; x2; :::; xn) 2 Rn and p 2 (1;1) ;

kxk1 = max
1�i�n

jxij for all x = (x1; x2; :::; xn) 2 Rn:

De�nition 1.1.3 A sequence fxng in a normed space X is said to be Cauchy if
limm;n!1 kxm � xnk = 0, i.e., for � > 0, there exists an integer n0 2 N such that
kxm � xnk < � for all m;n � no.

De�nition 1.1.4 A normed space (X; k�k) is said to be complete if it is complete as a
metric space (X; d), i.e., every Cauchy sequence is convergent in X.

De�nition 1.1.5 A complete normed space is called a Banach space.

Example 1.1.6 The linear space C ([a; b]) of continuous functions on the closed and
bounded interval [a; b] is a Banach space with the uniform convergence norm kfk1 =
supt2[a;b] jf(t)j.

Theorem 1.1.7 Every �nite-dimensional normed space is a Banach space.

Theorem 1.1.8 A closed subspace of a Banach space is a Banach space.

1.1.2 Compactness and continuity of mappings

Let (X; d) be a metric space. Recall that a subset M of X is called compact if every
open cover of M has a �nite subcover. Equivalently, a subset M of X is compact if every
sequence in M contains a convergent subsequence with a limit in M.
A subset M of X is said to be totally bounded if for each � > 0, there exists a �nite

number of elements x1; x2; :::; xn in X such that M � [ni=1B�(xi).

Remark 1.1.9 1) Every subset of a totally bounded set is totally bounded.
2) Every totally bounded set is bounded, but a bounded set need not be totally bounded.
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Chapter 1. Functional setting and delay di¤erential equations with applications

Proposition 1.1.10 Let X be a metric space. Then the following are equivalent
i) X is compact.
ii) Every sequence in X has a convergent subsequence.
iii) X is complete and totally bounded.

Proposition 1.1.11 Let X be a subset of a complete metric space X. Then we have the
following
a) M is compact if and only if M is closed and totally bounded.
b) M is compact if and only if M is totally bounded.

A subset M of a topological space is said to be relatively compact if its closure is
compact, i.e., M is compact. In particular, we have an interesting result.

Proposition 1.1.12 Let M be a closed subset of a complete metric space. Then M is
compact if and only if it is relatively compact.

De�nition 1.1.13 Let ffng be a sequence of real valued functions with fn : [a; b]! R.
a) ffng is uniformly bounded on [a; b] if there exists M > 0 such that jfn (t)j �M for

all n and all t 2 [a; b].
b) ffng is equicontinuous if for any � > 0 there exists � > 0 such that t1; t2 2 [a; b] and

jt1 � t2j < � imply jfn(t1)� fn(t2)j < � for all n.

The following results gives the main method of proving compactness in the spaces in
which we are interested.

Theorem 1.1.14 (Ascoli-Arzela) If ffng is a uniformly bounded and equicontinuous
sequence of real functions on an interval [a; b], then there is a subsequence which converges
uniformly on [a; b] to a continuous function.

But here we manipulate function spaces de�ned on in�nite t-intervals. So, for com-
pactness we need an extension of the Arzelà-Ascoli theorem. This extension is taken from
([31], Theorem 1.2.2 p. 20) and is as follows.

Theorem 1.1.15 Let q : R+ ! R be a continuous function such that q (t)! 0 as t!1.
If ffng is an equicontinuous sequence of Rm-valued functions on R+ with jfn (t)j � q (t)
for t 2 R+, then there is a subsequence that converges uniformly on R+ to a continuous
function f (t) with jf (t)j � q (t) for t 2 R+, where j�j denotes the Euclidean norm on Rm.

Let P be a mapping from a metric space (X; d) into another metric space (Y; �). Then
P is said to satisfy Lipschitz condition on X if there exists a constant L > 0 such that

�(Px;Py) � Ld(x; y) for all x; y 2 X:

If L is the least number for which Lipschitz condition holds, then L is called Lipschitz
constant. In this case, we say that P is an L-Lipschitz mapping or simply a Lipschitzian
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Chapter 1. Functional setting and delay di¤erential equations with applications

mapping with Lipschitz constant L. Otherwise, it is called non-Lipschitzian mapping. An
L-Lipschitz mapping P is said to be contraction if L < 1 and nonexpansive if L = 1. The
mapping P is said to be contractive if

�(Px;Py) < d(x; y) for all x; y 2 X; x 6= y:

De�nition 1.1.16 Let (X; d) be a metric space and assume that P : X ! X. P is said
to be a large contraction, if for x; y 2 X, with x 6= y, we have d (Px;Py) < d (x; y), and
if 8� > 0, 9� < 1 such that

[x; y 2 X; d (x; y) � �] =) d (Px;Py) < �d (x; y) :

Now, we state an important result implying that the mapping H given by

H (x) = x� h (x) ; (1.1)

is a large contraction on the set

M := f' 2 X, j' (t)j � R; t 2 Rg :

This result was already obtained in [1, Theorem 3.4] and we present below its proof. We
shall assume that

(H1) h : R! R is continuous on [�R;R] and di¤erentiable on (�R;R),

(H2) The function h is strictly increasing on [�R;R],

(H3) supt2(�R;R) h
0 (t) � 1.

Theorem 1.1.17 Let h : R ! R be a function satisfying (H1)�(H3). Then the mapping
H in (1.1) is a large contraction on the set M.

Proof. Let '; � 2 M with ' 6= �. Then '(t) 6= �(t) for some t 2 R. Let us denote the
set of all such t by D('; �), i.e.,

D('; �) = ft 2 R : '(t) 6= �(t)g :

For all t 2 D('; �), we have

j(H') (t)� (H�) (t)j � j'(t)� �(t)� h ('(t)) + h (�(t))j

� j'(t)� �(t)j
����1� h ('(t))� h (�(t))

'(t)� �(t)

���� : (1.2)

Since h is a strictly increasing function we have

h ('(t))� h (�(t))

'(t)� �(t)
> 0 for all t 2 D('; �): (1.3)
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Chapter 1. Functional setting and delay di¤erential equations with applications

For each �xed t 2 D('; �) de�ne the interval It � [�R;R] by

It =

�
(' (t) ; � (t)) if ' (t) < � (t) ;
(� (t) ; ' (t)) if � (t) < ' (t) :

The Mean Value Theorem implies that for each �xed t 2 D('; �) there exists a real number
ct 2 It such that

h ('(t))� h (�(t))

'(t)� �(t)
= h0 (ct) :

By (H2), (H3) we have

0 � inf
s2(�R;R)

h0 (s) � inf
s2It

h0 (s) � h0 (ct) � sup
s2It

h0 (s) � sup
s2(�R;R)

h0 (s) � 1: (1.4)

Hence, by (1.2)�(1.4) we obtain

j(H') (t)� (H�) (t)j � j'(t)� �(t)j
����1� inf

s2(�R;R)
h0 (s)

���� ; (1.5)

for all t 2 D('; �). This implies a large contraction in the supremum norm. To see this,
choose a �xed � 2 (0; 1) and assume that ' and � are two functions in M satisfying

� � sup
t2(�R;R)

j'(t)� �(t)j = k'� �k :

If j'(t)� �(t)j � �
2
for some t 2 D('; �), then we get by (1.4) and (1.5) that

j(H') (t)� (H�) (t)j � 1

2
j'(t)� �(t)j � 1

2
k'� �k : (1.6)

Since h is continuous and strictly increasing, the function h
�
s+ �

2

�
� h (s) attains its

minimum on the closed and bounded interval [�R;R]. Thus, if �
2
� j'(t)� �(t)j for some

t 2 D('; �), then by (H2) and (H3) we conclude that

1 � h ('(t))� h (�(t))

'(t)� �(t)
> �;

where
� :=

1

2R
min

n
h
�
s+

�

2

�
� h(s) : s 2 [�R;R]

o
> 0:

Hence, (1.2) implies

j(H') (t)� (H�) (t)j � (1� �) k'� �k : (1.7)

Consequently, combining (1.6) and (1.7) we obtain

j(H') (t)� (H�) (t)j � � k'� �k ; (1.8)

where

� = max

�
1

2
; 1� �

�
:

The proof is complete.
The following example illustrates the theorem.

11



Chapter 1. Functional setting and delay di¤erential equations with applications

Example 1.1.18 If k�k is the supremum norm, if M =
�
'; ' : R! C; k'k �

p
3=3
	
and

if (H')(t) = '(t)� '3(t), then H is a large contraction of the set M.

The following proposition guarantees the existence of Lipschitzian mappings.

Proposition 1.1.19 Let P : [a; b] � R ! R be a di¤erentiable function on (a; b). Sup-
pose P is continuous on [a; b]. Then, P is a Lipschitz continuous function (and hence is
uniformly continuous).

Now, let X and Y be two Banach spaces and let P be a mapping from X into Y . Then
the mapping P is said to be

1. bounded if M is bounded in X implies P(M) is bounded;

2. locally bounded if each point in X has a bounded neighborhood V such that P(V )
is bounded;

3. closed if xn ! x in X and Pxn ! y in Y imply Px = y;

4. compact if M is bounded implies P(M) is relatively compact (P(M) is compact),
i.e., for every bounded sequence fxng in X, fPxng has convergent subsequence in
Y ;

5. completely continuous if it is continuous and compact.

In the case of linear mappings, the concepts of continuity and boundedness are equiv-
alent, but it is not true in general.

1.2 Fixed point theorems

In this section we state some �xed point theorems that we employ to help us in proving
existence and stability of solutions. We refer to the nice and concise book of Smart ([100])
or ([31]).

1.2.1 Banach �xed point

The �xed point theorem, generally known as the Banach Contraction Principle, ap-
peared in explicit form in Banach�s thesis in 1922 where it was used to establish the
existence of a solution for an integral equation. Since then, because of its simplicity
and usefulness, it has become a very popular tool in solving existence problems in many
branches of mathematical analysis and forms an attractive tool which facilitates the study
of stability for the di¤erential equations with or without delay.

De�nition 1.2.1 Let f be a mapping in the set M. we call �xed point of f any point
x satisfying f(x) = x. If there exists such x, we say that f has a �xed point, which is
equivalent to saying that the equation f(x)� x = 0 has a null solution.

12



Chapter 1. Functional setting and delay di¤erential equations with applications

Theorem 1.2.2 (Contraction Mapping Principle) [30]Let (X; �) a complete metric
space and let P : X ! X a contraction mapping. Then there is one and only one point
z 2 X with Pz = z. Moreover z = lim zn where zn+1 = Pzn and z1 chosen arbitrarily in
X.

We give the classical Cauchy problem on existence and uniqueness of the solution to a
di¤erential equation satisfying a given initial condition.

Example 1.2.3 Let f(t; x) be a continuous real-valued function de�ned for t in the in-
terval [0; T ], and x in R. The Cauchy initial value problem is the problem of �nding a
continuously di¤erentiable function x on [0; T ] satisfying the di¤erential equation�

x0 = f (t; x (t)) ; t 2 [0; T ] ;
x (0) = �:

(1.9)

Consider the space C ([0; T ]) of continuous real-valued functions with standard supremum
norm and f is L-lipschitzian with respect to x. Integrating both sides of (1.9) we obtain

x (t) = � +

Z t

0

f (s; x (s)) ds:

We denote the function de�ned by the right side of the above by Px. Precisely,

(Px) (t) = � +

Z t

0

f (s; x (s)) ds:

Thus P : C ([0; T ]) ! C ([0; T ]), and a solution to (1.9) corresponds to a �xed point x of
P. Observe that for any x; y 2 [0; T ],

j(Px) (t)� (Py) (t)j =
����Z t

0

f (s; x (s)) ds�
Z t

0

f (s; y (s)) ds

����
�

Z t

0

jf (s; x (s))� f (s; y (s))j ds

� L

Z t

0

jx (s)� y (s)j ds

= Lt kx� yk :

It follows that
kPx� Pyk � LT kx� yk :

If LT < 1 then the result is immediate via the Banach Contraction Principle.

The generalized Banach �xed point theorem for Pn is given below, when Pn is the n
composed mapping of P with itself.

13
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Theorem 1.2.4 Let the operator P :M � X !M be given on a closed nonempty set M
in a complete metric space (X; �). If

� (Pnx;Pny) � �� (x; y) ; for x; y 2M,

is satis�ed for some �xed � 2 [0; 1[ and some �xed n 2 N, then P has a �xed point.

Proof. By Theorem 1.2.2, there exists exactly one x 2 M such that Pnx = x. This
implies that

Pn (Px) = Pn+1x = P (Pnx) = Px:
Since the �xed point x of Pn is unique, Px = x.
The term "contraction" is used in several di¤erent ways in the literature. Our use is

sometimes denoted by "strict contraction." The property � (Px;Py) � � (x; y) is some-
times called "contraction" but it has limited use in �xed-point theory. A concept in
between these two which is frequently useful is portrayed in the next result.

Theorem 1.2.5 [30]Let (X; �) a compact nonempty metric space and let P : X ! X. If

� (Px;Py) < � (x; y) ; for x 6= y:

Then P has a �xed point.

Proof. We have

� (x;Px) � � (x; y) + � (y;Px) + � (y;Py) + � (Py;Px) ;

and since � (Px;Py) � � (x; y) we conclude

� (x;Px)� � (y;Px) � 2� (x; y) :

Interchanging x and y yields

j� (x;Px)� � (y;Px)j � 2� (x; y) :

Thus the function B : X ! [0;+1) de�ned by B (x) = � (x;Px) is continuous on X. The
compactness of X yields z 2 X with � (z;Pz) = � (Pz; z) = infx2X � (x;Px)
If � (Pz; z) 6= 0 then 0 � � (P (Px) ;Px) � � (x;Px) contradicting the in�mum prop-

erty. Thus � (Pz; z) = 0 and Pz = z. If there is another distinct �xed point, say Pz� = z�,
then � (z; z�) = � (Pz;Pz�) < � (z; z�) a contradiction for z 6= z�. This completes the proof.

Theorem 1.2.6 [30]If (X; �) is a complete metric space and P : X ! X is a �-
contraction operator with �xed point x, then for any y 2 X we have
(a) � (x; y) � � (y;Py) = (1� �) :
(b) � (Pny; x) � �n� (y;Py) = (1� �) :

14
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Proof. To prove (a) we note that

� (x; y) � � (y;Py) + � (Py;Px) � � (y;Py) + �� (x; y) ;

so that
� (x; y) (1� �) � � (y;Py) :

For (b), recall that
� (Pny;Pmy) � �n� (y;Py) = (1� �) ;

as m! +1, Pmy ! x so that we have (b).

1.2.2 Krasnoselskii �xed point

The �xed point theorem of Krasnoselskii is an hybrid result and is based on Banach
and Schauder theorems. Firstly, we recall the theorem of Schauder.

De�nition 1.2.7 A topological space X has the �xed-point property if, whenever P : X !
X is continuous, then P has a �xed point.

Theorem 1.2.8 (Schauder�s �rst �xed point theorem) [100] Any compact convex
nonempty subset M of a Banach space X has the �xed point property.

It is interesting to note that this has not been the preferred form of Schauder�s �xed
point theorem for investigators in the area of di¤erential equations. Most of these have
used the next form, and a survey of the literature will reveal that it has caused a good bit
of grief.

De�nition 1.2.9 Let M be a subset of a Banach space X and P : M ! X. If P is
continuous and P(M) is contained in a compact subset of X, then P is a compact mapping.

Theorem 1.2.10 (Schauder�s second �xed point theorem) [100] Let M be a non-
empty closed convex bounded subset of a Banach space (X; k�k). Then every continuous
compact mapping P :M!M has a �xed point.

It is possible to prove existence and uniqueness theorems for most nonlinear problems
using contraction mappings if the functions satisfy a local Lipschitz condition. But the
Schauder theorem yields existence from continuity alone. Moreover, once existence is
proved it is sometimes possible to prove uniqueness with something less than a Lipschitz
condition. In addition, the study of existence using Schauder�s theorem can produce
some interesting side results. Generally, Schauder theorem relates to nonlinear di¤erential
equations.
The �xed point theorem of Krasnoselskii is a combination of Banach theorem and that

of Schauder. It was the object of several studies these last years and one meets it in several
forms. In particular, the theorem of Krasnoselskii gives the existence and the stability of
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the solutions of the functional di¤erential equations and the nonlinear integral equations
with delay of mixed type.
In 1955 Krasnoselskii (see [99], [100]) observed that in a good number of problems, the

integration of a perturbed di¤erential operator gives rise to a sum of two applications, a
contraction and a compact application. It declares then,
Principle: the integration of a perturbed di¤erential operator can produce a sum of two
applications, a contraction and a compact operator.
For better understanding this observation of Krasnoselskii, consider the following dif-

ferential equation.
x0 (t) = �a (t)x (t)� g (t; x) : (1.10)

We can transform this equation in another form while writing, formally

x0 (t) e�
R t
0 a(s)ds = �a (t) e�

R t
0 a(s)dsx (t)� g (t; x) e�

R t
0 a(s)ds;

thus
x0 (t) e�

R t
0 a(s)ds + a (t) e�

R t
0 a(s)dsx (t) = �g (t; x) e�

R t
0 a(s)ds;

or �
x (t) e�

R t
0 a(s)ds

�0
= �g (t; x) e�

R t
0 a(s)ds;

then integrating from t� T to t, we obtainZ t

t�T

�
x (u) e�

R u
0 a(s)ds

�0
du = �

Z t

t�T
g (u; x) e�

R u
0 a(s)dsdu;

what gives

x (t) e�
R t
0 a(s)ds � x (T � t) e�

R T�t
0 a(s)ds = �

Z t

t�T
g (u; x) e�

R u
0 a(s)dsdu;

or

x (t) = x (T � t) e�
R t
T�t a(s)ds �

Z t

t�T
g (u; x) e�

R u
t a(s)dsdu: (1.11)

If we suppose that e�
R t
T�t a(s)ds := � and if (X; k�k) is the Banach space of functions

' : R! X continuous and T -periodic, then the equation (1.11) can be written as

' (t) = (B') (t) + (A') (t) := (P') (t) :

where B is contraction provides that the constant � < 1 and A is compact mapping.
This example shows the birth of the mapping P' := B' +A' who is identi�ed with

a sum of a contraction and a compact mapping.
Thus, the search of the solution for (1.11) requires an adequate theorem which applies

to this hybrid operator P and who can conclude the existence for a �xed point which will
be, in his turn, solution of the initial equation (1.10). Krasnoselskii found the solution by
combining the two theorems of Banach and that of Schauder in one hybrid theorem which
bears its name. In light, it establishes the following result ([31], [100]).

16



Chapter 1. Functional setting and delay di¤erential equations with applications

Theorem 1.2.11 (Krasnoselskii) [31] LetM be a closed bounded convex nonempty sub-
set of a Banach space (X; k�k). Suppose that A and B map M into X such that
(i) A is compact and continuous,
(ii) B is a contraction mapping with constant �,
(iii) x; y 2M, implies Ax+ By 2M,

Then there exists z 2M with z = Az + Bz.

Note that if A = 0, the theorem become the theorem of Banach. If B = 0, then the
theorem is not other than the theorem of Schauder.
Proof. According to the condition (iii) we have

k(I � B)x� (I � B) yk = k(x� y)� (Bx� By)k
� kx� yk+ kBx� Byk
� kx� yk+ � kx� yk
= (1 + �) kx� yk ;

and

k(I � B)x� (I � B) yk = k(x� y)� (Bx� By)k
� kx� yk � kBx� Byk
� kx� yk � � kx� yk
= (1� �) kx� yk :

In short
(1� �) kx� yk � k(I � B)x� (I � B) yk � (1 + �) kx� yk :

This inequality shows that (I � B) :M! (I � B)M is continuous and one to one. Thus,
(I � B)�1 exist and is continuous. Let us pose U := (I � B)�1A. It is clear that U is
compact mapping, because U is a composition of a continuous mapping with a compact.
Under the theorem of Schauder, U has a �xed point, i.e.

9z 2M such that (I � B)�1Az = z:

This is equivalent to z = Az + Bz.
T.A. Burton studied the theorem of Krasnoselskii (see [31], [100]) and observed (see

[26]) that Krasnoselskii�s result can be more interesting in applications with certain changes
and formulated the Theorem 1.2.14 below (see [26] for the proof).
Burton ([26]) remarked that in certain problems the situation does not arise in con-

traction form. For example, if we consider the equation x0 = �x3 = �x+ (x� x3).
It is proved in [26] that a large contraction de�ned on a bounded and complete metric

space has a unique �xed point.

Theorem 1.2.12 [26] Let (X; d) be a complete metric space and P be a large contraction.
Suppose there is an x 2 X and an L > 0, such that d(x;Pnx) � L for all n � 1. Then P
has a unique �xed point in X.
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Proof. Suppose there exist x 2 X, consider fPnxg. If this is a Cauchy sequence then by
the triangle inequality we have for m � n

d (Pnx;Pmx) � d
�
Pnx;Pn+1x

�
+ d

�
Pn+1x;Pn+2x

�
+ :::+ d

�
Pm�1x;Pmx

�
�

�
�n + �n+1 + :::+ �m�1

�
d (x;Px)

� �n

1� �
d (x;Px) :

Thus d (Pnx;Pmx)! 0 if n;m!1, since (X; d) is a complete metric space the sequence
fPnxg has a limit y in X. This �xed point is unique since Pz = z and Pw = w we have

d (z; w) = d (Pz;Pw) � �d (z; w) ;

so that d (z; w) = 0, that is z = w.
Suppose now the contradiction, if fPnxg is not a Cauchy sequence, then there exist

� > 0, Nk " 1, nk > Nk, mk > nk,

with d (Pmkx;Pnkx) � �. Thus

� � d (Pmkx;Pnkx) � d
�
Pmk�1x;Pnk�1x

�
� d

�
Pmk�2x;Pnk�2x

�
� ::: � d

�
Pmk�nk+1x;Px

�
� d

�
Pmk�nkx; x

�
:

Since P is large contraction, for this � > 0 there is a � < 1 such that

� � d (Pmkx;Pnkx) � d
�
Pmk�1x;Pnk�1x

�
� ::: � �nkd

�
Pmk�nkx; x

�
;

which contradict the fact that � > 0 and � < 1 for nk ! 1. Then P has a unique �xed
point in X.

Lemma 1.2.13 [26] If (X; k�k) is a normed space, if M � B, if B : M ! X is a large
contraction, then (I � B) is a homeomorphism of M onto (I � B).

Proof. Clearly, I � B is continuous. To see that if x 6= y, then

k(I � B)x� (I � B) yk = k(x� y)� (Bx� By)k
� kx� yk � kBx� Byk
� kx� yk � kx� yk
= 0:

Hence, I � B is one to one and (I � B)�1 exists.
Suppose that (I �B)�1 is not continuous. Then 9(I �B)y and (I �B)xn ! (I �B)y

but xn ! y. Now for each � > 0 9N such that n � N )

� � k(I � B)xn � (I � B) yk � kxn � yk � kBxn � Byk : (1.12)
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Since xn  y, 9�0 > 0 and fxnkg with ky � xnkk � �0; as B is a large contraction there is
a � < 1 with kBy � Bxnkk � �. Thus, from (1.12) we have

� � k(I � B)xn � (I � B) yk
� kxn � yk � � kxn � yk
= (1� �) kxn � yk
� (1� �) �0:

But �0 is �xed, � < 1, and a contradiction occurs as � ! 0; that is, as � ! 0, nk ! 1,
but �0 remains �xed. This completes the proof.

Theorem 1.2.14 [26] Let M be a closed bounded convex nonempty subset of a Banach
space (X; k:k). Suppose that A and B map M into M such that
(i) A is continuous and AM is contained in a compact subset of M,
(ii) B is large contraction,
(iii) x; y 2M, implies Ax+ By 2M,

Then there exists z 2M with z = Az + Bz.

Proof. For each �xed y 2 M the mapping Pz = Bz + Ay is a large contraction on M
with unique �xed point z (since M is bounded the L is assured in Theorem 1.2.12) so
that z = Bz + Ay has a unique solution z. Thus, (I � B)z = Ay and by the lemma
1.2.13 Hy := (I � B)�1Ay is a continuous mapping of M into M. Now AM is contained
in a compact subset of M and (I � B)�1 is a continuous mapping of AM into M; it is
then well-known (cf. Kreyszig [77, p. 412 and 656]) that (I � B)�1AM is contained in a
compact subset of M. By Schauder�s second theorem (cf. Smart [100, p. 25]) there is a
�xed point y = (I � B)�1Ay or y = Ay + By, as required.

1.3 Some general results and remarks on delay dif-
ferential equations

In applications, the future behavior of many phenomena are assumed to be described
by the solutions of an ordinary di¤erential equation. Implicit in this assumption is that
the future behavior is uniquely determined by the present and independent of the past.
In di¤erential di¤erence equations, or more generally functional di¤erential equations, the
past exerts its in�uence in a signi�cant manner upon the future. Many models are better
represented by functional di¤erential equations, than by ordinary di¤erential equations.

1.3.1 A general initial value problem

Given r > 0, denote C([a; b];Rn), the Banach space of continuous functions mapping
the interval [a; b] intoRn with the topology of uniform convergence. If [a; b] = [�r; 0], we let
C = C([�r; 0];Rn) and designate the norm of an element ' in C by j'j = sup�r���0 j' (�)j.
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Let � 2 R, A > 0 and x 2 C([�� r; �+A];Rn), then for any t 2 [�; �+A], we let xt 2 C,
be de�ned by

xt(�) = x(t+ �), for � r � � � 0:
Let f : R�C ! Rn be a given function. A functional di¤erential equation is given by

the following relation �
x0 (t) = f (t; xt) ; t � �;
x� = ';

(1.13)

De�nition 1.3.1 x is said to be a solution of (1.13) if there are � 2 R, A > 0 such that
x 2 C([� � r; � + A];Rn) and x satis�es (1.13) for t 2 [�; � + A]. In such a case we say
that x is a solution of (1.13) on [� � r; � + A] for a given � 2 R and a given ' 2 C we
say that x = x (�; '), is a solution of (1.13) with initial value at � or simply a solution
of (1.13) through (�; ') if there is an A > 0 such that x (�; ') is a solution of (1.13) on
[� � r; � + A] and x� (�; ') = '.

Equation (1.13) is a very general type of equation and includes di¤erential-di¤erence
equations of the type

x0 (t) = f (t; x (t) ; x (t� r (t))) ;

as well as

x0 (t) =

Z 0

�r
g (t; �; x (t+ �)) d�:

If
f (t; ') = L (t; ') + h (t) ;

in which L is linear in ' and (t; ') ! L (t; '), we say that the equation is a linear delay
di¤erential equation, it is called homogeneous if h � 0. If f (t; ') = g ('), equation (1.13)
is an autonomous one.

Lemma 1.3.2 ([63]) Let � 2 R and ' 2 C be given and f be continuous on the product
R� C. Then, �nding a solution of equation (1.13) through (�; ') is equivalent to solving

x (t) = ' (0) +

Z t

�

f (s; xs) ds; t � � and x� = ':

Lemma 1.3.3 ([63]) If x 2 C([� � r; � + A];Rn), then, xt is a continuous function of t
for t 2 [�; � + A].

Proof. Since x is continuous on [�� r; �+A], it is uniformly continuous and thus 8" > 0,
9� > 0, such that jx(t)� x(s)j < " if jt� sj < �. Consequently for t; s in [�; � + A],
jt� sj < �, we have jx(t+ �)� x(s+ �)j < ", 8� 2 [�r; 0].

Theorem 1.3.4 (Existence, [63]) LetM be an open subset of R�C and f :M! Rn be
continuous. For any (�; ') 2M, there exists a solution of equation (1.13) through (�; ').
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Proposition 1.3.5 ([23]) If f is at most a¢ ne i.e. jf (t; ')j � a j'j + b with a; b > 0,
then there exists a global solution i.e. 8', the solution x (�; ') is de�ned on [A;+1).

Corollary 1.3.6 ([23]) If f is lipschitzian with respect to the second variable, then it
satis�es the property in the proposition below.

Theorem 1.3.7 (Existence and uniqueness, [63]) Let M be an open subset of R�C
and suppose that f : M ! Rn be continuous and f (t; ') be lipschitzian with respect to '
in every compact subset of M. If (�; ') 2 M, then equation (1.13) has a unique solution
passing through (�; ').

1.3.2 Method of Steps

One way of solving DDEs is using the so-called Method of Steps. The idea is to start
with the initial history on the interval [�� ; 0] and then use the di¤erential equation to
obtain a piece of solution on the next interval [�� ; 0]. This process can then be repeated
to generate the solution on succeeding intervals. We illustrate this method by using the
following DDE [104], �

x0 (t) = �x (t� 1) ;
x (t) = 1, for t 2 [�1; 0] : (1.14)

For t 2 [0; 1], we integrate both sides of equation (1.14) to obtain

x (t)� x (0) = �
R t
0
x (s� 1) ds:

Now using the initial history x (t) = 1, for t 2 [�1; 0], we get

x (t) = x (0)�
R t
0
x (s� 1) ds

= x (0)�
R t�1
�1 x (s) ds

= 1�
R t�1
�1 1ds

= 1� t+ 1 + 1

= 1� t:

Thus, x(t) = 1� t on [0; 1]. We repeat this process now for t 2 [1; 2],

x (t) = x (1)�
R t
1
x (s� 1) ds

= x (1)�
R t�1
0

x (s) ds

= 0�
R t�1
0

(1� s) ds

=
1

2
t2 � 2t+ 3

2
:
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So x (t) = 1
2
t2 � 2t+ 3

2
on [1; 2]. Continuing, for t 2 [2; 3], we have

x (t) = x (2)�
R t
2
x (s� 1) ds

= x (2)�
R t�1
0

x (s) ds

= �1
2
�
R t�2
1

�
1

2
s2 � 2s+ 3

2

�
ds

= �1
6
(t� 1)3 + (t� 1)2 � 3

2
(t� 1)3 + 1

6
:

Similarly, we obtain

x (t) =
1

24
(t� 2)4 � 1

3
(t� 2)2 + 3

4
(t� 2)2 � 1

6
(t� 2) + 11

24
:

for t 2 [3; 4], and

x (t) = � 1

120
(t� 3)5 + 1

12
(t� 3)4 � 1

4
(t� 3)2 + 1

12
(t� 3)2 + 11

24
(t� 3)� 19

120
:

for t 2 [4; 5]. We can still continue further to see how the solution behaves in time but the
computations could become more cumbersome.
Observe that the solution is continuous on the whole interval [�1; 10]. Moreover, we

expect the solution to be smooth except on the interval [�1; 0] since the only assumption
on the initial history is continuity. To see this, denote by xj(t) the piece of the solution
on the interval [j � 1; j], and notice that

xj (t) = xj�1 (j � 1)�
R t�1
j�2 xj�1 (s) ds: (1.15)

The initial history x0 (t) is continuous, and in the example it is given by x0 (t) = 1. Using
the recurrence relation (1.15), and the fact that x0 (t) is continuous, we see that x1 (t)
is C1. Similarly, since x1 (t) is C1, (1.15) implies that x2 (t) is C2, and as we compute
succeeding pieces they are one degree smoother than the previous piece. This smoothness
property applies to DDE (1.13) since �nding a solution to (1.13) is equivalent to solving
the integral equation

x (t) =  (t)�
R t
0
f (s; xs) ds: (1.16)

with  (t) = x0 (t).

1.3.3 Neutral delay di¤erential equations

Now we are ready to de�ne an other class of delay di¤erential equations so-called the
neutral delay di¤erential equation.

De�nition 1.3.8 ([63]) Suppose 
 � R � C is open with elements (t; '). A function
D : 
! Rn is said to be atomic at � on 
. if D is continuous together with its �rst and
second Fréchet derivatives with respect to ' and D', the derivative with respect to ', is
atomic at � on 
.
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De�nition 1.3.9 ([63]) Suppose 
 � R�C is open, f : 
! Rn, D : 
! Rn are given
continuous functions with D atomic at zero. The equation

d

dt
D(t; xt) = f (t; xt) (1.17)

is called the neutral delay di¤erential equation NDDE(D; f). The function D is called the
di¤erence operator for NDDE(D; f).

For a given NDDE(D; f), a function x is said to be a solution of the NDDE(D; f) if
there are a � 2 R, A > 0, such that

x 2 C ([� � r; � + A);Rn) ; (t; xt) 2 
; t 2 [�; � + A);

D(t; xt) is continuously di¤erentiable and satis�es Eq. (1.17) on [�; � + A). For a given
� 2 R, ' 2 C, and (�; ') 2 
, we say (�; ') is a solution of Eq. (1.17) with initial value
' at �, or simply a solution through (�; '), if there is an A > 0 such that x (�; '), is a
solution of (1.17) on � � r; � + A) and x� (�; ') = '.

Remark 1.3.10 If D(t; ') = D0(t; ')� g(t), f(t; ') = L(t; ')+ h(t), where D0(t; ') and
L(t; ') are linear in ', then NDDE(D; f) is called linear. It is called linear homogeneous
if g � 0, h � 0, and linear nonhomogeneous if otherwise. If both D(t; ') and f(t; ') do not
depend upon t, we call NDDE(D; f) autonomous; otherwise, we call it nonautonomous.

The following are some examples of NDDEs

Example 1.3.11 ([63]) If r > 0, B is an n�n constant matrix, D(') = '(0)�B (�r),
and f : 
! Rn is continuous, then the pair (D; f) de�nes an NDDE,

d

dt
[x (t)�Bx (t� r)] = f (t; xt) : (1.18)

Example 1.3.12 ([63]) If r > 0, x is a scalar, D(') = '(0)� sin (�r), and f : 
! Rn
is continuous, then the pair (D; f) de�nes an NDDE,

d

dt
[x (t)� sin x (t� r)] = f (t; xt) : (1.19)

Remark 1.3.13 Note that when x is continuously di¤erentiable, (1.19) is equivalent to

x0 (t)� (cosx (t� r))x0 (t� r) = f (t; xt) :

This shows that our de�nition of NDDE requires that the derivative of x enters the equation
in a linear fashion. In fact, the terms involving x that multiply x0 must occur with the
same delay.

Now, we consider the questions of existence, uniqueness of solutions of neutral delay
di¤erential equations.

Theorem 1.3.14 ([63]) Let 
 be an open subset of R�C and f : 
! Rn be continuous.
For any (�; ') 2 
, there exists a solution of equation (1.17) through (�; ').
Theorem 1.3.15 ([63]) Let 
 be an open subset of R�C and suppose that f : 
! Rn
be continuous and f (t; ') be lipschitzian with respect to ' in every compact subset of 
.
If (�; ') 2 
, then equation (1.17) has a unique solution passing through (�; ').
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1.3.4 Real examples of delay di¤erential equations

In this section we give two examples of physical and biological systems in which the
present rate of change of some unknown function depends upon past values of the same
function.

Mixing of Liquids

Consider a tank containing B gallons of salt water brine. Fresh water �ows in at
the top of the tank at a rate of q gallons per minute (see [54]). The brine in the tank is
continually stirred, and the mixed solution �ows out through a hole at the bottom, also
at the rate of q gallons per minute.
Let x(t) be the amount (in pounds) of salt in the brine in the tank at time t. If

we assume continual, instantaneous, perfect mixing throughout the tank, then the brine
leaving the tank contains x(t)=B lbs. of salt per gallon, and hence

x0 (t) = �qx (t) =B:

But, more realistically, let us agree that mixing cannot occur instantaneously through-
out the tank. Thus the concentration of the brine leaving the tank at time t will equal
the average concentration at some earlier instant, say t � r. We shall assume that r is a
positive constant, although this assumption may also be subject to improvement. The dif-
ferential equation for x then becomes a delay di¤erential equation, x0 (t) = �qx (t� r) =B
or, setting c = q=B,

x0 (t) = �cx (t� r) ;

where r is the "delay" or "time lag".

Population Growth

If N(t) is the population at time t of an isolated colony of animals, the most naive
model for the growth of the population is

N 0 (t) = kN (t) ;

where k is a positive constant. This implies exponential growth, N(t) = N0e
kt where

N0 = N(0).
A somewhat more realistic model is obtained if we admit that the growth rate coe¢ cient

k will not be constant but will diminish as N(t) grows, because of overcrowding and
shortage of food. This leads to the di¤erential equation

N 0 (t) = k [1�N (t) =P ]N (t) ; (1.20)

where k and P are both positive constants. This equation with N0 = N(0) can be solved
by separation of variables.
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Now suppose that the biological self-regulatory reaction represented by the factor
[1�N (t) =P ] in (1.20) is not instantaneous, but responds only after some time lag r > 0.
Then instead of (1.20) we have the delay di¤erential (or di¤erence di¤erential) equation

N 0 (t) = k [1�N (t� r) =P ]N (t) : (1.21)

This equation has been studied extensively by Wright [107], [108], Kakutani and Markus
[70], Jones [69], Kaplan and Yorke [71], and others.
Many other models of population growth have been proposed both with and without

time lags. For example Cooke and Yorke [46] have studied the equation

N 0(t) = g(N(t))� g(N(t� L)); (1.22)

where g is a given continuous, positive function and L is the lifetime of members of
the species.

1.4 Stability of delay di¤erential equations

In 1892 the Russian mathematician Lyapunov (1857-1918) published a major work
on stability of ordinary di¤erential equations based on positive de�nite functions and the
chain rule. It was the foundation of stability theory as we know it today for ordinary, func-
tional, and partial di¤erential equations, as well as overlap into control theory and integral
equations. The simplest notion of stability is the one related to stability of equilibrium
points.

De�nition 1.4.1 A point x(t) = xe in the state space is said to be an equilibrium point
of the autonomous system x0 = f(x) if and only if it has the property that whenever the
state of the system starts at xe, it remains at xe for all future time.

According to the de�nition, the equilibrium points are the real roots of the equation
f(xe) = 0. This is made clear by noting that if x0e = f(xe) = 0, then it follows that xe is
constant and, by de�nition, an equilibrium point. Without loss of generality, we assume
that 0 is an equilibrium point of the system. If the equilibrium point under study, xe, is
not at zero we may de�ne a new (shifted) coordinate system xs(t) = x(t) � xe and note
that

x0s(t) = x0 (t) = f (x(t)) = f(xs(t) + xe) =: fs(xs(t)); xs(0) = x0 � xe:

The claim follows by noting that fs(0) = f(xe) = 0. In summary, the study of the zero
equilibrium point of x0s(t) = fs(xs(t)) is equivalent to the study of the nonzero equilibrium
point xe of x0 (t) = f (x(t)).
We now look at the basic de�nition of stability, for this consider the system

x0 (t) = f (t; xt(t)) ; f (t; 0) = 0; (1.23)

where f : (�1;+1) � C ! Rn, with C = C ([�r; 0] ;Rn) the Banach space of
continuous functions  : [�r; 0] ! Rn, r > 0 equipped with the supremum norm
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k k = sup�r�t�0 j (t)j. We suppose that f is continuous and is supposed to satisfy
all the conditions which guarantee a solution and we de�ne

E (t) = f : [t� r; t]! Rn,  is continuousg :

De�nition 1.4.2 [31]The solution x (t) = 0 of (1.23) is
1. Stable, if for every � > 0 and t0 � 0 there exists a � = �(�) > 0 such that

[ 2 E (t0) ; k k < � and t � t0]) jx (t; t0;  )j < �;

2. Uniformly stable if � of (1) is independent of t0;
3. Asymptotically stable if it is stable and if, 8t1 � t0, 9� > 0 such that

[ 2 E (t1) ; k k < � and t � t1]) jx (t; t1;  )j ! 0 as t! +1;

4. Asymptotically uniformly stable if it is uniformly stable and if there exist � > 0 and
for  > 0, 9T > 0 such that

[t1 � t0;  2 E (t1) ; k k < � and t � t1 + T ]) jx (t; t1;  )j < 0:

Remark 1.4.3 If all the solutions tend to zero, then x = 0 is globally asymptotically
stable.

1.4.1 The Method of Liapunov Functionals

In the following, we present the method of Liapunov functional in the context of
(1.23).

De�nition 1.4.4 A continuous function V : [0;+1)�M! [0;+1) locally Lipschitzian
in x and checks

V 0 (t; x) = lim
h!0

sup
V (t+ h; x+ hf (t; x))� V (t; x)

h
� 0;

on [0;+1)�M, is called a function of Liapounov for (1.23).

De�nition 1.4.5 A wedge is a continuous and strictly increasing functionW : [0;+1)!
W : [0;+1) with W (0) = 0.

The next theorem contains general stability results of the method of Liapunov func-
tional.

Theorem 1.4.6 Let M an open bounded subset of Rn containing the zero, V : R�M!
[0;+1) a di¤erentiable function and let Wi; i = 1; 4 be wedges. Suppose also V (t; 0) = 0
and that W1 (kx (t)k) � V (t; xt), then the following statements are true
1. If V 0 (t; xt) � 0, then the zero solution of (1.23) is stable.
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2. If in addition to (1), V (t; xt) � W2 (kx (t)k), then the zero solution of (1.23) is
uniformly stable.
3. If f (t; xt) is bounded and V 0 (t; xt) � �W3 (kx (t)k), then the zero solution of (1.23)

is asymptotically stable.
4. If W1 (kx (t)k) � V (t; xt) � W2 (kx (t)k) +W3

�R t
t�r kx (s)k ds

�
and if V 0 (t; xt) �

�W4 (kx (t)k), then the zero solution of (1.23) is uniformly asymptotically stable.

In the following, we illustrate the preceding results by example (see [78]). Consider
the scalar equation

x0 (t) = �a(t)x(t)� b(t)x(t� r(t)); (1.24)

where a(t), b(t), and r(t) are bounded continuous functions, a(t) > 0, r(t) > 0, r0(t) < 1.
If b(t) = 0, then (1.24) becomes an ordinary di¤erential equation; a trivial Liapunov

function is V1(x(t)) = x2(t)=2. In order to �nd a Liapunov functional V , we want to
generate a term like �x2(t� r(t)) in the V(1:24). We try

V (t; ') =
1

2
'2 (0) + �

Z 0

�r(t)
'2 (�) d�;

where � is constant, or, equivalently,

V (xt) = V (t; xt) =
1

2
x2 (t) + �

Z 0

�r(t)
x2 (t+ �) d�;

We have

V 0 (xt) = �(a (t)� �)x2(t)� b(t)x(t)x(t� r(t))

�a(1� r0(t))x(t� r(t)):

Clearly, if
b2 (t) < 4(a(t)� �)(1� r0(t)))�; (1.25)

then V 0 (xt) < 0. Let r(t) < r, where r is a positive constant; W1(s) = s2=2, W2(s) =
((1=2) + �r)s2. Then,

W1 (kx (t)k) � V (t; xt) � W2 (kx (t)k) :

If � > 0 satis�es (1.25), then there may be a positive constant � > 0 such that

V (t; xt) � ��x2(t):

Thus, we may take W3(s) = ��s2. By Theorem 1.4.6, we know x = 0 is uniformly
asymptotically stable. Indeed, since (1.24) is linear, we see that all solutions of (1.24)
tend to x = 0 if (1.25) is true for some positive constant �.
When a, b and r are constants, (1.25) reduces to

b2 < 4(a� �)� � a2;

which implies that if jbj < a, then x = 0 is globally asymptotically stable; i.e.,
limt!+1 xt (') = 0 for ' 2 C. Note that the length of delay r is not restricted.
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1.4.2 A comparison between �xed point and Liapunov theory

The paper of Burton [32] is one for a series of investigations in which you have,
probably, looked at problems which were especially challenging for stability analysis using
Liapunov�s direct method. Burton proved that many of these problems can be solved
using �xed point theory.
Let a : [0;+1)! R be bounded and continuous function, let r be a positive constant,

and let
x0 (t) = �a (t)x (t� r) : (1.26)

Although we can treat solutions with any initial time, we will always look at a solu-
tion x (t) := x (t; 0;  ) where  : [�r; 0] ! R is a given continuous initial function and
x (t; 0;  ) =  (t) on [�r; 0]. It is then known that there is a unique continuous solution
x(t) satisfying (1.26) for t > 0 and with x(t) =  (t) on [�r; 0].
With such  in mind, we can write (1.26) as

x0 (t) = �a (t)x (t+ r) +
d

dt

Z t

t�r
a (s+ r)x (s) ds; (1.27)

so that by the variation of parameters formula, followed by integration by parts, we obtain

x (t) = x (0) e�
R t
0 a(s+r)ds +

Z t

t�r
a (u+ r)x (u) du� e�

R t
0 a(u+r)ds

Z 0

�r
a (u+ r)x (u) du

�
Z t

0

a (s+ r) e�
R t
s a(u+r)du

Z s

s�r
a (u+ r)x (u) duds; (1.28)

In a space to be de�ned and with a mapping de�ned from (1.28) we will �nd that we have
a contraction mapping just in case there is a constant � < 1 withZ t

t�r
ja (u+ r)j du+

Z t

0

ja (s+ r)j e�
R t
s a(u+r)du

Z s

s�r
ja (u+ r)j duds � �; (1.29)

As we are interested in asymptotic stability we will needZ t

t�r
a (u+ r) du! +1 as t!1: (1.30)

Burton, in his paper, compared results from a certain application of �xed point theory
with a certain common Liapunov functional. In theory, there is no comparison at all. It is
known that if we have a strong type of stability, then there exists a Liapunov functional
of a certain type. The fact that we can not �nd that Liapunov functional gives validity
to this type of comparison. With that in mind, from (1.29) it is easy to see one of the
advantages of �xed point theory over Liapunov theory. The latter requires a(t + r) > 0.
If a(t+ r) � 0, then a very good bound is obtained in (1.29) with little e¤ort. If a(t+ r)
changes sign then (1.29) can still hold, although a good bound on the second integral is
more di¢ cult.
Burton proved in [32] the following result but were unable to do so and he left the

principle di¢ culty as a hypothesis.
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Theorem 1.4.7 Let (1.29) and (1.30) hold. Then for every continuous initial function
 : [�r; 0]! R the solution x (t; 0;  ) is bounded and tends to zero as t!1.

Proof. Let (S; k�k) be the Banach space of bounded and continuous functions  : [�r; 0]!
R with the supremum norm. Let (B; k�k) be the complete metric space with supremum
norm consisting of functions ' 2 B such that '(t) =  (t) on [�r; 0] and '(t) ! 0 as
t!1.
De�ne P : B! B by

(P') (t) =  (t) on [�r; 0];
and

(P') (t) =  (0) e�
R t
0 a(s+r)ds +

Z t

t�r
a (u+ r)' (u) du� e�

R t
0 a(u+r)ds

Z 0

�r
a (u+ r) (u) du

�
Z t

0

a (s+ r) e�
R t
s a(u+r)du

Z s

s�r
a (u+ r)' (u) duds;

Clearly, P is continuous, (P')(0) =  (0), and from (1.29) it follows that P is bounded.
Also, P is a contraction by (1.29).
We can show that the last term tends to zero by using the classical proof that the

convolution of an L1-function with a function tending to zero, does also tend to zero.
Here are the details. Let ' 2 B be �xed and let 0 < T < t. Denote the supremum of j'j
by k'k and the supremum of j'j on [T;+1) by k'k[T;+1). Consider (1.29) and (1.30).
We have Z t

0

ja (s+ r)j e�
R t
s a(u+r)du

Z s

s�r
ja (u+ r)' (u)j duds

�
Z T

0

ja (s+ r)j e�
R T
s a(u+r)du

Z s

s�r
ja (u+ r)j' (u) duds k'k e�

R t
T a(u+r)du

+

Z t

T

ja (s+ r)j e�
R t
s a(u+r)du

Z s

s�r
ja (u+ r)j duds k'k[T�r;+1)

� � k'k e�
R t
T a(u+r)du + � k'k[T�r;+1) :

For a given � > 0 take T so large that � k'k[T�r;+1) < �=2. For that �xed T , take t� so

large that � k'k e�
R t
T a(u+r)du < �=2 for all t > t�. We then have that last term smaller �

than for all t > t�. Thus, P : B! B is a contraction with unique �xed point in B.

Example 1.4.8 In (1.26), let a(t) = 1:1 + sin t. The conditions of Theorem 1.4.7 are
satis�ed if 2(1:1r + 2 sin(r=2)) < 1. This is approximated by 0 < r < 0:2.

We will see that this can be compared to a result using a Liapunov functional and, in
this case, the Liapunov functional yields a signi�cantly better result. But the next two
examples reveal something equally interesting. In a later example the �xed point result is
better than that of the Liapunov functional.
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1. If a(t) � 0, then the Liapunov functional fails to address the problem, while the
�xed point theorem yields a result fully consistent with that of Example 1.4.8. Again, it
is a good result, obtained with little e¤ort.
2. If a(t) becomes negative, then the Liapunov functional fails, while the �xed point

theorem yields a stability result which is signi�cantly poorer than in the �rst two cases
because of inherent di¢ culties in estimating the integrals in (1.29).

Example 1.4.9 In (1.26), let a(t) = 1 + sin t. The conditions of Theorem 1.4.7 are
satis�ed if 2(r + 2 sin(r=2)) < 1. This is approximated by 0 < r < 0:25.

Remark 1.4.10 Intuitively, Example 1.4.8 should be more strongly stable than Example
1.4.9. Yet, a look at (1.29) readily reveals why our results state the opposite. Burton
conjectures that a di¤erent �xed point mapping might reverse the relation.

We return now to study the equation (1.26) by Liapunov method.

Theorem 1.4.11 If there is a � > 0 with

a (t+ r) � �, for all t � 0; (1.31)

an � > 0 with

a (t+ r)

Z t

t�r
a (s+ r) ds� 2 + r � ��, for all t � 0; (1.32)

and if there is a  > 0 with

 [a (t) + a (t+ r)] � (�=2) a (t+ r) , for all t � 0; (1.33)

then the zero solution of (1.26) is uniformly asymptotically stable.

Proof. From (1.27) we have

d

dt

�
x (t)�

Z t

t�r
a (s+ r)x (s) ds

�
= �a (t)x (t+ r) ;

and we select a �rst Liapunov functional as

V1 (t; xt) =

�
x (t)�

Z t

t�r
a (s+ r)x (s) ds

�2
+

Z 0

�r

Z t

t+s

a (u+ r)x2 (u) duds;

so that the derivative along a solution of (1.27) satis�es

V 0
1 (t; xt) � ���x2:

Now, we need to de�ne a second Liapunov functional and add them together to make a
positive de�nite Liapunov functional. De�ne

V2 (t; xt) = x2 (t) +

Z t

t�r
a (s+ r)x2 (s) du;
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so that the derivative along a solution of (1.26) satis�es

V 0
2 (t; xt) � (�=2) �x2:

If we de�ne
V1 (t; xt) + V2 (t; xt) := V (t; xt) ;

then we have
V 0 (t; xt) � (��=2) �x2:

We can now �nd wedges with

W1 (jx (t)j) � V (t; xt) � W2 (kxtk)

and, since (1.31) and (1.32) imply that x(t) is bounded, conclude that the zero solution is
uniformly asymptotically stable.

Example 1.4.12 In (1.26), let a(t) = 1:1 + sin t. Theorem 1.4.11 holds if there is an
� > 0 with

2:1(1:1r + 2 sin(r=2))� 2 + r < ��:
We make another very rough estimate by taking sin(r=2) = r=2 and say that we need
r < 0:37. Then the zero solution of (1.26) is asymptotically stable.

It seems (see [1, 3, 5, 13], [37, 39], [41, 42, 43, 47, 48, 51, 49]) that the �xed point method
�ts better to study stability in real world problems like those equation with delays. May
be this is due to the fact that the these problems needs average conditions while the
Lyapunov method deals with conditions that are pointwise.
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CHAPTER 2

Study of the stability in nonlinear neutral di¤erential equations
with functional delay

Keywords. Fixed point, stability, delay, nonlinear neutral equation, large contraction
mapping, integral equation.
The goal of this chapter is to present a very recent work published in [84], namely,

Mesmouli M. B., Ardjouni A. and A. Djoudi., Study of the stability in nonlinear neu-
tral di¤erential equations with functional delay using Krasnoselskii�Burton�s �xed-point,
Applied Mathematics and Computation 243 (2014) 492�502.
We use, in this chapter, a modi�cation of Krasnoselskii�s �xed point theorem introduced

by Burton (see [26] Theorem 3) to obtain stability results of the zero solution of a totally
nonlinear neutral di¤erential equations with functional delay.

2.1 Preliminaries and inversion of the equation

As discussed above, Lyapunov�s direct method was widely used to study the stability
of solutions of ordinary di¤erential equations and functional di¤erential equations, see
e.g. [26, 28, 31, 32, 38, 39], [40, 64, 114] and the references therein. Nevertheless, the
expressions of Lyapunov functional are very complicated and hard to construct.
Recently, many authors have realized that the �xed points theory can be used to

study the stability of the solution. Becker, Furumochi, Zhang and Burton considered the
di¤erential equation (see [1, 3, 5, 13], [37, 39], [41, 42, 43, 47, 48, 51, 49] and [94]). The
most striking object is that the �xed point method does not only solve the problem on
stability but has a signi�cant advantage over Liapunov�s direct method. The conditions of
the former are often averages but those of the latter are usually pointwise (see [31]). While
it remains an art to construct a Liapunov�s functional when it exists, a �xed point method,
in one step, yields existence, uniqueness and stability. All we need, to use the �xed point
method, is a complete metric space, a suitable �xed point theorem and an elementary
integral methods to solve problems that have frustrated investigators for decades.
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Consider now, the nonlinear neutral di¤erential equation with functional delay ex-
pressed as follows

d

dt
x (t) = �a (t)h (x (t� � (t))) +

d

dt
Q (t; x (t� � (t))) +G (t; x (t) ; x (t� � (t))) ; (2.1)

with an assumed initial function

x (t) =  (t) ; t 2 [m0; 0] ;

where  2 C ([m0; 0] ;R), m0 = inf ft� �(t) : t � 0g. Throughout this chapter we assume
that a 2 C (R+;R), � 2 C1 (R+;R) is bounded and h : R! R is continuous, Q : R�R!
R and G : R� R� R! R satisfying the Caratheodory condition with h (0) = Q (t; 0) =
G (t; 0; 0) = 0. Our purpose here is to use a modi�cation of Krasnoselskii�s �xed point
theorem due Burton (see [28], Theorem 3) to show the stability and asymptotic stability
of the zero solution of equation (2.1). Clearly, the present problem is totally nonlinear so
that the variation of parameters can not be applied directly. Then, we resort to the idea of
adding and subtracting a linear term. As noted by Burton in [26], the added term destroys
a contraction already present in part of the equation but it replaces it with the so called a
large contraction mapping which is suitable for �xed point theory. During the process we
have to transform (2.1) into an integral equation written as a sum of two mappings, one
is a large contraction and the other is completely continuous. After that, we use a variant
of Krasnoselskii�s �xed point theorem, to show the stability and asymptotic stability of
the zero solution.
We present the inversion of the equation (2.1) in the following Lemma.

Lemma 2.1.1 Let v : [m0;1)! R+ be an arbitrary bounded continuous function. Then
x is a solution of (2.1) if and only if

x (t)

=

�
 (0)�Q (0;  (�� (0)))�

Z 0

��(0)
v (s)h ( (s)) ds

�
e�

R t
0 v(u)du

+

Z t

0

v (s) e�
R t
s v(u)duH (x (s)) ds+Q (t; x (t� � (t)))

+

Z t

t��(t)
v (s)h (x (s)) ds�

Z t

0

v (s) e�
R t
s v(u)du

�Z s

s��(s)
v (u)h (x (u)) du

�
ds

+

Z t

0

e�
R t
s v(u)du [b (s)h (x (s� � (s)))� v (s)Q (s; x (s� � (s)))

+ G (s; x (s) ; x (s� � (s)))] ds; (2.2)

where
H (x) = x� h (x) ; (2.3)

and
b (s) = (1� � 0 (s)) v (s� � (s))� a (s) : (2.4)
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Proof. Let x be a solution of (2.1). Rewrite the equation (2.1) as

d

dt
[x (t)�Q (t; x (t� � (t)))] + v (t) [x (t)�Q (t; x (t� � (t)))]

= v (t) [x (t)�Q (t; x (t� � (t)))]� v (t)h (x (t)) + v (t)h (x (t))

� a (t)h (x (t� � (t))) +G (t; x (t) ; x(t� � (t))

= v (t) [x (t)� h (x (t))] +
d

dt

Z t

t��(t)
v (u)h (x (u)) du

+ [(1� � 0 (t)) v (t� � (t))� a (t)]h (x (t� � (t)))

+G (t; x (t) ; x (t� � (t)))� v (t)Q (t; x (t� � (t))) :

Multiply both sides of the above equation by exp
�R t

0
v (u) du

�
and then integrate from 0

to t, we obtain Z t

0

h
[x (t)�Q (t; x (t� � (t)))] e

R s
0 v(u)du

i0
ds

=

Z t

0

v (s) [x (s)� h (x (s))] e
R s
0 v(u)duds

+

Z t

0

�
d

ds

Z s

s��(s)
v (u)h (x (u)) du

�
e
R s
0 v(u)duds

+

Z t

0

[b (s)h (x (s� � (s)))� v (s)Q (s; x (s� � (s)))

+ G (s; x (s) ; x (s� � (s)))] e
R s
0 v(u)duds;

where b (s) = (1� � 0 (s)) v (s� � (s))� a (s). As a consequence, we arrive at

[x (t)�Q (t; x (t� � (t)))] e
R t
0 v(u)du �  (0) +Q (0;  (�� (0)))

=

Z t

0

v (s) [x (s)� h (x (s))] e
R s
0 v(u)duds

+

Z t

0

�
d

ds

Z s

s��(s)
v (u)h (x (u)) du

�
e
R s
0 v(u)duds

+

Z t

0

[b (s)h (x (s� � (s)))� v (s)Q (s; x (s� � (s)))

+ G (s; x (s) ; x (s� � (s)))] e
R s
0 v(u)duds:
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By dividing both sides of the above equation by exp
�R t

0
v(u)du

�
we obtain

x (t)�Q (t; x (t� � (t)))� [ (0)�Q (0; x (�� (0)))] e�
R t
0 v(u)du

=

Z t

0

v (s) [x (s)� h (x (s))] e�
R t
s v(u)duds

+

Z t

0

�
d

ds

Z s

s��(s)
v (u)h (x (u)) du

�
e�

R t
s v(u)duds

+

Z t

0

[b (s)h (x (s� � (s)))� v (s)Q (s; x (s� � (s)))

+ G (s; x (s) ; x (s� � (s)))] e�
R t
s v(u)duds: (2.5)

Integration by partsZ t

0

�
d

ds

Z s

s��(s)
v (u)h (x (u)) du

�
e�

R t
s v(u)duds

=

�Z s

s��(s)
v (u)h (x (u)) due�

R t
s v(u)du

�t
0

�
Z t

0

�Z s

s��(s)
v (u)h (x (u)) du

�
v (s) e�

R t
s v(u)duds

=

Z t

t��(t)
v (s)h (x (s)) ds�

Z 0

��(0)
v (s)h ( (s)) dse�

R t
0 v(u)du

�
Z t

0

�Z t

t��(t)
v (u)h (x (u)) du

�
v (s) e�

R t
s v(u)duds: (2.6)

Then substituting (2.6) into (2.5) we obtain (2.2). The converse implication is easily
obtained and the proof is complete.
Now, we de�ne Carathéodory function which its to use in following it.

De�nition 2.1.2 The map f : [0;1)�Rn ! R is said to satisfy Carathéodory conditions
with respect to L1 [0;1) if the following conditions hold.
(i) For each z 2 Rn, the mapping t 7! f (t; z) is Lebesgue measurable.
(ii) For almost all t 2 [0;1), the mapping z 7! f (t; z) is continuous on Rn.
(iii) For each r > 0, there exists �r 2 L1 ([0;1) ;R+) such that for almost all t 2 [0;1)

and for all z such that jzj < r, we have jf (t; z)j � �r (t).

2.2 Stability of the zero solution

From the existence theory, which can be found in [31] or [62], we conclude that for each
continuous initial function  2 C ([m0; 0] ;R), there exists a continuous solution x (t; 0;  )
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which satis�es (2.1) on an interval [0; �) for some � > 0 and x (t; 0;  ) =  (t), t 2 [m0; 0].
We refer the reader to [31] for the stability de�nitions.
To apply Theorem 1.2.14, we need to de�ne a Banach space X, a closed bounded

convex subsetM of X and construct two mappings; one large contraction and the other is
compact operator. So, let w : [m0;1)! [1;1) be any strictly increasing and continuous
function with w (m0) = 1, w (t) ! 1 as t ! 1. Let (B; j�jw) be the Banach space of
continuous ' : [m0;1)! R for which

j'jw = sup
t2[m0;1)

����' (t)w (t)

���� <1:

Let R 2 (0; 1] and de�ne the set

M := f' 2 B : ' is Lipschitzian, j' (t; 0;  )j � R; t 2 [m0;1)g : (2.7)

Clearly, if f'ng is a sequence of l1-Lipschitzian functions converging to some function ',
then

j' (t)� ' (s)j = j' (t)� 'n (t) + 'n (t)� 'n (s) + 'n (s)� ' (s)j
� j' (t)� 'n (t)j+ j'n (t)� 'n (s)j+ j'n (s)� ' (s)j
� l1 jt� sj ;

as n ! 1, which implies ' is l1-Lipschitzian. It is clear that M is closed convex and
bounded. For ' 2M and t � 0, we de�ne by (2.2) the mapping P :M! B as follows

(P') (t)

=

�
 (0)�Q (0;  (�� (0)))�

Z 0

��(0)
v (s)h ( (s)) ds

�
e�

R t
0 v(u)du

+

Z t

0

v (s) e�
R t
s v(u)duH (' (s)) ds+Q (t; ' (t� � (t)))

+

Z t

t��(t)
v (s)h (' (s)) ds�

Z t

0

v (s) e�
R t
s v(u)du

�Z s

s��(s)
v (u)h (' (u)) du

�
ds

+

Z t

0

e�
R t
s v(u)du [b (s)h (' (s� � (s)))� v (s)Q (s; ' (s� � (s)))

+ G (s; ' (s) ; ' (s� � (s)))] ds: (2.8)

We express the equation (2.8) as

P' = A'+ B';
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where A;B :M! B are given by

(A') (t) = Q (t; ' (t� � (t))) +

Z t

t��(t)
v (s)h (' (s)) du

�
Z t

0

v (s) e�
R t
s v(u)du

�Z s

s��(s)
v (u)h (' (u)) du

�
ds

+

Z t

0

e�
R t
s v(u)du [b (s)h (' (s� � (s)))� v (s)Q (s; ' (s� � (s)))

+ G (s; ' (s) ; ' (s� � (s)))] ds; (2.9)

and

(B') (t) =
�
 (0)�Q (0;  (�� (0)))�

Z 0

��(0)
v (s)h ( (s)) ds

�
e�

R t
0 v(u)du

+

Z t

0

v (s) e�
R t
s v(u)duH (' (s)) ds: (2.10)

By applying Theorem 1.2.14, we need to prove that P has a �xed point ' on the set
M, where ' (t) = x (t; 0;  ) for t � 0 and x (t; 0;  ) =  (t) on [m0; 0], x (t; 0;  ) satis�es
(2.1) and j' (t; 0;  )j � R with R 2 (0; 1]. For t � 0, we will assume that the following
conditions hold.
The functions h, Q are locally Lipschitz continuous, then for t � 0 and x, y 2 M there
exist a constants Eh; EQ > 0, such that

jQ (t; x)�Q (t; y)j � EQ kx� yk ; (2.11)

jh (x)� h (y)j � Eh kx� yk ; (2.12)

The functions Q, G satisfy Carathéodory conditions with respect to L1 [0;1), such that

jQ (t; ' (t� � (t)))j � qR (t) �
�1
2
R; (2.13)

jG (t; ' (t) ; ' (t� � (t)))j � gp2R (t) � �2v (t)R; (2.14)

�1�2Eh �
�3
2
; (2.15)

where �1 = supt2[0;1) j� (t)j, �2 = supt2[0;1) fv (t)g,

jb (t)jEh � �4v (t) ; (2.16)

J [�1 + �2 + �3 + �4] � 1; (2.17)

where �i, 1 � i � 4 are positive constants and J > 3. Now, assume that there are
constants l2; l3 > 0 such that for 0 � t1 < t2

j� (t2)� � (t1)j � l2 jt2 � t1j ; (2.18)����Z t2

t1

v (u) du

���� � l3 jt2 � t1j : (2.19)

By a series of steps we will prove the ful�llment of (i), (ii) and (iii) in Theorem 1.2.14.

37



Chapter 2. Study of the stability in nonlinear neutral di¤erential equations with
functional delay

Lemma 2.2.1 For A de�ned in (2.9), suppose that (2.11)�(2.19) hold. Then, A : M !
M and A is continuous and AM is contained in a compact subset of M.

Proof. Let A be de�ned by (2.9). Observe that in view of (2.12) we have

jh (x)j = jh (x)� h (0) + h (0)j
� jh (x)� h (0)j+ jh (0)j
� Eh kxk :

So, for any ' 2M, we have

jA'(t)j � jQ (t; ' (t� � (t)))j+
Z t

t��(t)
v (u) jh (' (u))j du

+

Z t

0

v(s)e�
R t
s v(u)du

�Z s

s��(s)
v(u) jh ('(u))j du

�
ds

+

Z t

0

e�
R t
s v(u)du [jb (s)j jh (' (s� � (s)))j+ v (s) jQ (s; '(s� � (s)))j

+ jG (s; ' (s) ; ' (s� � (s)))j] ds

� qR (t) +R

Z t

t��(t)
v (u)Ehdu

+R

Z t

0

v (s) e�
R t
s v(u)du

�Z s

s��(s)
v (u)Ehdu

�
ds

+R

Z t

0

e�
R t
s v(u)du jb (s)jEhds

+R

Z t

0

e�
R t
s v(u)du

�
v (s) qR (s) +

gp2R (s)

R

�
ds

� �1
2
R +

�1
2
R + �2R +

�3
2
R +

�3
2
R + �4R �

R

J
< R:

That is kA'k < R. Second we show that, for any ' 2M the function A' is Lipschitzian.
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Let ' 2M, and let 0 � t1 < t2, then

jA' (t2)�A' (t1)j
� jQ (t2; ' (t2 � � (t2)))�Q (t1; ' (t1 � � (t1)))j

+

����Z t2

t2��(t2)
v (s)h (' (s)) du�

Z t1

t1��(t1)
v (s)h (' (s)) ds

����
+

����Z t2

0

v (s) e�
R t2
s v(u)du

�Z s

s��(s)
v (u)h (' (u)) du

�
ds

�
Z t1

0

v (s) e�
R t1
s v(u)du

�Z s

s��(s)
v (u)h (' (u)) du

�
ds

����
+

����Z t2

0

e�
R t2
s v(u)dub (s)h (' (s� � (s))) ds

�
Z t1

0

e�
R t1
s v(u)dub (s)h (' (s� � (s))) ds

����
+

����Z t2

0

e�
R t2
s v(u)du [�v (s)Q (s; ' (s� � (s))) +G (s; ' (s) ; ' (s� � (s)))] ds

�
Z t1

0

e�
R t1
s v(u)du [�v (s)Q (s; ' (s� � (s))) +G (s; ' (s) ; ' (s� � (s)))] ds

���� : (2.20)

By hypotheses (2.11), (2.12), (2.18) and (2.19), we have����Z t2

t2��(t2)
v (s)h (' (s)) ds�

Z t1

t1��(t1)
v (s)h (' (s)) ds

����
� EhR

 Z t2

t1

v (s) ds+

Z t2��(t2)

t1��(t1)
v (s) ds

!

� EhR

 Z t2

t1

v (s) ds+

Z t2��(t2)

t1��(t1)
v (s) ds

!
� EhRl3 jt2 � t1j+ EhRl3 (1 + l2) jt2 � t1j
= (2EhRl3 + EhRl3l2) jt2 � t1j ; (2.21)

and

jQ (t2; ' (t2 � � (t2)))�Q (t1; ' (t1 � � (t1)))j
� EQl1 j(t2 � t1)� (� (t2)� � (t1))j
� (EQl1 + EQl1l2) jt2 � t1j ; (2.22)

where l1 is the Lipschitz constant of '. By the hypotheses (2.12), (2.16) and (2.19), we
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have ����Z t2

0

e�
R t2
s v(u)dub (s)h (' (s� � (s))) ds

�
Z t1

0

e�
R t1
s v(u)dub (s)h (' (s� � (s))) ds

����
�
����Z t1

0

b (s)h (' (s� � (s))) e�
R t1
s v(u)du

�
e�

R t2
t1
v(u)du � 1

�
ds

����
+

����Z t2

t1

e�
R t2
s v(u)dub (s)h (' (s� � (s))) ds

����
� �4R

���e� R t2t1 v(u)du � 1��� Z t1

0

v (s) e�
R t1
s v(u)duds

+ EhR

Z t2

t1

e�
R t2
s v(u)du jb (s)j ds:

Consequently,����Z t2

0

e�
R t2
s v(u)dub (s)h (' (s� � (s))) ds

�
Z t1

0

e�
R t1
s v(u)dub (s)h (' (s� � (s))) ds

����
� �4R

Z t2

t1

v (u) du+ EhR

Z t2

t1

e�
R t2
s v(u)dud

�Z s

t1

jb (r)j dr
�
ds

= �4R

Z t2

t1

v (u) du+ EhR

�
e�

R t2
s v(u)du

Z s

t1

jb (r)j dr
�t2
t1

+ EhR

Z t2

t1

v (s) e�
R t2
s v(u)du

Z s

t1

jb (r)j drds

� �4R

Z t2

t1

v (u) du+ EhR

Z t2

t1

jb (s)j ds
�
1 +

Z t2

t1

v (s) e�
R t2
s v(u)duds

�
� �4R

Z t2

t1

v (u) du+ 2EhR

Z t2

t1

jb (s)j ds

� �4R

Z t2

t1

v (u) du+ 2�4R

Z t2

t1

v (u) du � 3�4Rl3 jt2 � t1j : (2.23)

In the same way, by (2.13)�(2.15) and (2.19), we have����Z t2

0

e�
R t2
s v(u)du [�v (s)Q (s; ' (s� � (s))) +G (s; ' (s) ; ' (s� � (s)))] ds

�
Z t1

0

e�
R t1
s v(u)du [�v (s)Q (s; ' (s� � (s))) +G (s; ' (s) ; ' (s� � (s)))] ds

����
� 3R

��1
2
+ �2

�
l3 jt2 � t1j ; (2.24)
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and

+

����Z t2

0

v (s) e�
R t2
s v(u)du

�Z s

s��(s)
v (u)h (' (u)) du

�
ds

�
Z t1

0

v (s) e�
R t1
s v(u)du

�Z s

s��(s)
v (u)h (' (u)) du

�
ds

����
� 3

2
R�3l3 jt2 � t1j : (2.25)

Thus, by substituting (2.21)�(2.25) in (2.20), we obtain

jA' (t2)�A' (t1)j � (EQl1 + EQl1l2) jt2 � t1j+ (2EhRl3 + EhRl3l2) jt2 � t1j

+ 3R
��1
2
+ �2 +

�3
2
+ �4

�
l3 jt2 � t1j

= K jt2 � t1j ;

for some constant K > 0. This shows that A' is Lipschitzian if ' is. This complete to
prove A :M!M.
Since A' is Lipschitzian, then AM is equicontinuous, which implies that the set AM

resides in a compact set in the space (B; j�jw).
Now, we show that A is continuous in the weighted norm, let 'n 2 M where n is a

positive integer such that 'n ! ' as n!1. Then����A'n (t)�A' (t)w (t)

����
� jQ (t; 'n (t� � (t)))�Q (t; ' (t� � (t)))jw

+

Z t

t��(t)
v (s) jh ('n (s))� h (' (s))jw ds

+

Z t

0

v (s) e�
R t
s v(u)du

Z s

s��(s)
v (s) jh ('n (u))� h (' (u))jw duds

+

Z t

0

e�
R t
s v(u)du jb (s)j jh ('n (s� � (s)))� h (' (s� � (s)))jw ds

+

Z t

0

v (s) e�
R t
s v(u)du jQ (s; 'n (s� � (s)))�Q (s; ' (s� � (s)))jw ds

+

Z t

0

e�
R t
s v(u)du jG (s; 'n(s); 'n (s� � (s)))�G (s; ' (s) ; ' (s� � (s)))jw ds:

By the Dominated Convergence Theorem, limn!1 j(A'n) (t)� (A') (t)j = 0. Then A is
continuous. This complete to prove A : M ! M is continuous and AM is contained in a
compact subset of M.
The next result shows the relationship between the mappings H and B in the sense of

large contractions, for this assume that

max fjH (�R)j ; jH (R)jg � 2R

J
: (2.26)
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Choose  > 0 small enough such that�
1 + EQ + Eh

Z 0

��(0)
v (u) du

�
e�

R t
0 v(u)du +

R

J
+
2R

J
� R: (2.27)

The chosen in the relation (2.27) will be used below in Lemma 2.2.2 and Theorem 2.2.3
to show that if � = R and if k k < , then the solutions satis�es jx (t; 0;  )j < �.

Lemma 2.2.2 Let B be de�ned by (2.10), suppose (2.18), (2.19), (2.26), (2.27) and the
condition of theorem 1.1.17 hold. Then B :M!M and B is a large contraction.

Proof. Let B be de�ned by (2.10). Obviously, B' is continuous with the weighted norm.
Let ' 2M

jB'(t)j �
���� (0)�Q (0;  (�� (0)))�

Z 0

��(0)
v(s)h ( (s)) ds

���� e� R t0 v(u)du
+

Z t

0

v(s)e�
R t
s v(u)du jH ('(s))j ds

�
�
1 + EQ + Eh

Z 0

��(0)
v (u) du

�
e�

R t
0 v(u)du

+

Z t

0

v(s)e�
R t
s v(u)dumax fjH (�R)j ; jH (R)jg ds < R;

and we use a method like in Lemma 2.2.1, we deduce that, for any ' 2 M the function
B' is Lipschitzian, which implies B :M!M.
By Theorem 1.1.17, H is large contraction on M, then for any '; � 2 M, with ' 6= �

and for any � > 0, from the proof of that Theorem, we have found a � < 1, such that����B' (t)� B� (t)w (t)

���� � Z t

0

v(s)e�
R t
s v(u)du jH (' (u))�H (� (u))jw du

� � j'� �jw :

The proof is complete.

Theorem 2.2.3 Assume the hypothesis of Lemmas 2.2.1 and 2.2.2. Let M de�ned by
(2.7). Then the equation (2.1) has a solution in M.

Proof. By Lemmas 2.2.1, 2.3.1, A : M ! M is continuous and A(M) is contained in a
compact set. Also, from Lemma 2.2.2, the mapping B : M ! M is a large contraction.
Next, we show that if '; � 2M, we have kA'+ B�k � R. Let '; � 2M with k'k ; k�k �
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R. By (2.13)�(2.17)

kA'+ B'k �
�
1 + EQ + Eh

Z 0

��(0)
v (u) du

�
e�

R t
0 v(u)du

+ [�1 + �2 + �3 + �4]R +
2R

J

�
�
1 + EQ + Eh

Z 0

��(0)
v (u) du

�
e�

R t
0 v(u)du +

R

J
+
2R

J

� R:

Clearly, all the hypotheses of the Krasnoselskii-Burton�s theorem are satis�ed. Thus there
exists a �xed point z 2 M such that z = Az + Bz. By Lemma 2.1.1 this �xed point is a
solution of (2.1). Hence (2.1) is stable.

2.3 Asymptotic stability

Now, for the asymptotic stability, de�ne M0 by

M0 : = f' 2 B : ' is Lipschitzian, j' (t; 0;  )j � R; t 2 [m0;1) ;
' (t) =  (t) if t 2 [m0; 0] and j' (t)j ! 0 as t!1g : (2.28)

All of the calculations in the proof of Theorem 2.2.3 hold with w (t) = 1 when j�jw is
replaced by the supremum norm k�k. Now, assume that

t� � (t)!1 as t!1 and
Z t

0

v (s) ds!1 as t!1; (2.29)

b (t)

v (t)
! 0 as t!1; (2.30)

qR (t)! 0 as t!1; (2.31)

gp2R (t)

v (t)
! 0 as t!1: (2.32)

Lemma 2.3.1 Let (2.11)�(2.19) and (2.29)�(2.32) hold. Then, the operator A maps M0

into a compact subset of M0.

Proof. First, we deduce by the Lemma 2.2.1 that A (M0) is equicontinuous. Next, we
notice that for arbitrary ' 2M0 we have

jA'(t)j � qR (t) + EhR

Z t

t��(t)
v(s)ds+ EhR

Z t

0

v(s)e�
R t
s v(u)du

Z t

t��(t)
v(u)duds

+

Z t

0

e�
R t
s v(u)duv (s)

����� b (s)v (s)

����Eh +RqR (s) +
gp2R (s)

v (s)

�
ds

:= q (t) :
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We see that q (t)! 0 as t!1, which implies that the set AM0 resides in a compact set
in the space (B; k�k) by Theorem 1.1.15.

Theorem 2.3.2 Assume the hypothesis of Lemmas 2.2.2 and 2.3.1 hold. Let M0 de�ned
by (2.28). Then the equation (2.1) has a solution in M0.

Proof. Note that, all of the steps in the proof of Theorem 2.2.3 hold with w (t) = 1
when j�jw is replaced by the supremum norm k�k. It is su¢ cient to show, for ' 2M0 then
A'! 0 and B'! 0. Let ' 2M0 be �xed, we will prove that jA'(t)j ! 0 as t!1, as
above we have

jA' (t)j � jQ (t; ' (t� � (t)))j+
Z t

t��(t)
v (u) jh (' (u))j du

+

Z t

0

v (s) e�
R t
s v(u)du

�Z s

s��(s)
v (u) jh (' (u))j du

�
ds

+

Z t

0

e�
R t
s v(u)du [jb (s)j jh (' (s� � (s)))j+ v (s) jQ (s; ' (s� � (s)))j

+ jG (s; ' (s) ; ' (s� � (s)))j] ds:

First, we have
jQ (t; ' (t� � (t)))j � qR (t)! 0 as t!1;

and Z t

t��(t)
v(u) jh (' (u))j du � EhR

Z t

t��(t)
v (u) du! 0 as t!1:

Second, let � > 0 be given. Find T such that j' (t� � (t))j ; j' (t)j < �, for t � T . Then
we have Z t

0

v (s) e�
R t
s v(u)du

�Z s

s��(s)
v (u) jh (' (u))j du

�
ds

= e�
R t
T v(u)du

Z T

0

v (s) e�
R T
s v(u)du

�Z s

s��(s)
v (u) jh (' (u))j du

�
ds

+

Z t

T

v (s) e�
R t
s v(u)du

�Z s

s��(s)
v (u) jh (' (u))j du

�
ds

� e�
R t
T v(u)du

�3
2
R +

�3
2
�;
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and Z t

0

e�
R t
s v(u)du (jb (s)j jh (' (s� � (s)))j

+ v (s) jQ (s; ' (s� � (s)))j+ jG (s; ' (s) ; ' (s� � (s)))j) ds

= e�
R t
T v(u)du

Z T

0

e�
R T
s v(u)du (jb (s)j jh (' (s� � (s)))j

+ v (s) jQ (s; ' (s� � (s)))j+ jG (s; ' (s) ; ' (s� � (s)))j) ds

+

Z t

T

e�
R t
s v(u)du (jb (s)j jh (' (s� � (s)))j

+ v (s) jQ (s; ' (s� � (s)))j+ jG (s; ' (s) ; ' (s� � (s)))j) ds

� e�
R t
T v(u)du

��1
2
+ �2 + �4

�
R +

��1
2
+ �2 + �4

�
�:

By (2.29) the terms e�
R t
T v(u)du �3

2
R and e�

R t
T v(u)du

�
�1
2
+ �2 + �4

�
R are, as t ! 1, arbi-

trarily small. In the same way for B'! 0. This end the proof.
We give an example to illustrate the application of Theorems 2.2.3 and 2.3.2.

Example 2.3.3 Consider the following nonlinear neutral di¤erential equation with vari-
able delay

d

dt
x (t) = �a (t)h (x (t� � (t))) +

d

dt
Q (t; x (t� � (t))) +G (t; x (t) ; x (t� � (t))) ; (2.33)

where � (t) = 2:10�2e�t, a (t) = 1+4:10�4e�2t�2:10�2te�t
1+t�2:10�2e�t , Q (t; x) = x

100et
, G (t; x; y) = x2+y2

50et
,

h (x) = x3. Then the zero solution of (2.33) is asymptotically stable.

Proof. We have h : R ! R is continuous on
�
�
p
3=3;

p
3=3
�
, di¤erentiable on�

�
p
3=3;

p
3=3
�
, strictly increasing on

�
�
p
3=3;

p
3=3
�
and supt2(�

p
3=3;

p
3=3) h

0 (t) � 1.

By Theorem 1.1.17, the mapping H (x) = x� x3 is a large contraction on the set

M0 : =
n
' 2 B : ' is Lipschitzian, j' (t; 0;  )j �

p
3=3; t 2

�
�2:10�2;1

�
' (t) =  (t) if t 2

�
�2:10�2; 0

�
and j' (t)j ! 0 as t!1

	
:

Choosing v (t) = 1
1+t
, clearly condition (2.19) holds. Furthermore, we have m0 = �2:10�2,

R =
p
3=3, b (t) = 2:10�2e�t, h (0) = Q (t; 0) = G (t; 0; 0) = 0, Eh = 1, EQ = 1

100
,

qR (t) =
p
3e�t

300
, gp2R (t) =

e�t

75
, �1 = 1

50
, �2 = 1

25
p
3
, �3 = 4:10�2, �4 = 2:10�2, �1 = 2:10

�2,

�2 = 1, l2 = 2:10
�2, l3 = 1, J 2

�
3; 25

p
3

2
p
3+1

i
.

It is easy to see that all the conditions of Theorems 2.2.3 and 2.3.2 hold. Thus, Theorem
2.3.2 implies that the zero solution of (2.33) is asymptotically stable.
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CHAPTER 3

Study of the periodic or nonnegative periodic solutions in
nonlinear neutral di¤erential equations with functional delay

Keywords. Krasnoselskii-Burton�s theorem; large contraction; neutral di¤erential equa-
tion; integral equation; periodic solution; nonnegative solution.
The goal of this chapter is to present a recent work published in [87], namely,

Mesmouli M. B., Ardjouni A. and A. Djoudi., Study of the Periodic or Nonnegative Peri-
odic Solutions of Functional Di¤erential Equations via Krasnoselskii�Burton�s Theorem,
Di¤er Equ Dyn Syst, DOI 10.1007/s12591-014-0235-5.
In this chapter, we try to study the existence of periodic or nonnegative periodic solu-

tions of the nonlinear neutral di¤erential equation. We invert the equation to construct a
sum of a compact map and a large contraction which is suitable for applying the modi�-
cation of Krasnoselskii�s theorem.

3.1 Introduction and preliminaries

The use of ordinary and partial di¤erential equations to model physical or biological
systems and processes has a long history, dating to Lotka and Volterra. But all processes
take time delays to complete. The delays can represent gestation times, incubation periods,
or transport delays. In many cases time delays can be substantial such as gestation and
maturation or can represent little lags such as acceleration and deceleration in physical
processes. Therefore, it become natural to include time delay terms into the di¤erential
equations that model population dynamics. The models that incorporate such delay times
are referred as delay di¤erential equation models.
In the last �fty years, delay models are becoming more common, appearing in many

branches of biological, economical and physical modelling (see [1, 16, 17, 18, 19, 21, 22, 26,
31, 62, 63, 72, 95, 96, 97, 105, 109, 111, 114]). This is due to their advantage of combining
a simple, intuitive derivation with a wide variety of possible behavior regimes and to the
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fact that such models operate on an in�nite dimensional space consisting of continuous
functions that accommodate high dimensional dynamics (see [31], [62] and [63]).
More recently investigators have given special attentions to the study of equations in

which the delay occurs in the derivative of the state variable as well as in the independent
variable, so called neutral di¤erential equations. As known in Hale [62], Hale and Lunel [63]
neutral delay di¤erential equations appear as models of electrical networks which contain
lossless transmission lines. Such networks arise, for example, in high speed computers
where lossless transmission lines are used to interconnect switching circuits.
Existence, uniqueness, stability and positivity of solutions of functional di¤erential

equations are of great interest in mathematics and its applications to the modeling of
various practical problems (see [1, 16, 17, 18, 19, 21, 22, 26, 31, 62, 63, 72, 95, 96, 97, 105,
109, 111, 114]) and references therein. Positivity is one of the most common and most
important characteristics of mathematical models. In problem of economics, the positivity
is quite important for processes that model interest rate dynamics on �nancial market,
because the interest must be positive. Also, in �uid �ow problems, densities, pressures,
and concentrations are always positive.
In this chapter, we study the existence of periodic or nonnegative periodic solutions of

the nonlinear neutral di¤erential equations

d

dt
[x (t)�Q (t; x (t� � (t)))]

= �a (t)h (x (t� � (t))) +G (t; x (t) ; x (t� � (t))) ; (3.1)

where a is a positive continuous real-valued function. The function h : R! R is continu-
ous, Q : R�R! R and G : R�R�R! R satisfying the Caratheodory condition. Our
purpose here is to use a modi�cation of Krasnoselskii�s �xed point theorem due Burton
(see [26], Theorem 3) to show the existence of periodic and nonnegative periodic solutions
for the equation (3.1). Clearly, the present problem is totally nonlinear so that the varia-
tion of parameters cannot be applied directly. Then, we resort to the idea of adding and
subtracting of terms. As noted by Burton in [26], the added term destroys a contraction
already present in part of the equation but it replaces it with the so called a large con-
traction mapping which is suitable for �xed point theory. During the process we use the
variation of parameter formula and the integration by parts to transform (3.1) into an
integral equation written as a sum of two mappings; one is a large contraction and the
other is compact. After that, we use a variant of Krasnoselskii �xed point theorem, to
show the existence of periodic or nonnegative periodic solutions.
For T > 0 de�ne PT = f� : � 2 C (R;R) ; � (t+ T ) = � (t)g where C (R;R) is the

space of all real valued continuous functions. Then PT is a Banach space when it is
endowed with the supremum norm

kxk = max
t2[0;T ]

jx (t) j:

In this paper we assume that

a (t� T ) = a (t) ; � (t� T ) = � (t) ; � (t) � � � > 0; (3.2)
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with � continuously di¤erentiable, � � is constant, a is positive and

1� e�
R t
t�T a(s)ds � 1

�
6= 0: (3.3)

The functions Q (t; x) and G (t; x; y) are periodic in t of period T . That is

Q (t� T; x) = Q (t; x) ; G (t� T; x; y) = G (t; x; y) : (3.4)

The following lemma is fundamental to our results.

Lemma 3.1.1 Suppose (3.2)�(3.4) hold. If x 2 PT , then x is a solution of equation (3.1)
if and only if

x (t)

= �

Z t

t�T
� (t; u) a (u) [x(u)� h (x (u))] du+Q (t; x (t� � (t)))

+

Z t

t��(t)
a (u)h (x (u)) du� �

Z t

t�T
� (t; u) a (u)

Z u

u��(u)
a (s)h (x (s)) dsdu

+ �

Z t

t�T
� (t; u) [(1� � 0 (u)) a (u� � (u))� a (u)]h (x (u� � (u))) du

+ �

Z t

t�T
� (t; u) [�a (u)Q (u; x (u� � (u))) +G (u; x (u) ; x (u� � (u)))] du; (3.5)

where
� (t; u) = e�

R t
u a(s)ds: (3.6)

Proof. Let x 2 PT be a solution of (3.1). Rewrite the equation (3.1) as

d

dt
[x (t)�Q (t; x (t� � (t)))] + a (t) [x (t)�Q (t; x (t� � (t)))]

= a (t) [x (t)�Q (t; x (t� � (t)))]� a (t)h (x (t)) + a (t)h (x (t))

� a (t)h (x (t� � (t))) +G (t; x (t) ; x (t� � (t)))

= a (t) [x (t)� h (x (t))] +
d

dt

Z t

t��(t)
a (s)h (x (s)) ds

+ ((1� � 0 (t)) a (t� � (t))� a (t))h (x (t� � (t)))

� a (t)Q (t; x (t� � (t))) +G (t; x (t) ; x (t� � (t))) :

Multiply both sides of the above equation by e
R t
0 a(s)ds and then integrate from t� T to t
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to obtainZ t

t�T

h
(x (u)�Q (u; x (u� � (u)))) e

R u
0 a(s)ds

i0
du

=

Z t

t�T
a (u) [x (u)� h (x (u))] e

R u
0 a(s)dsdu

+

Z t

t�T

�
d

du

Z u

u��(u)
a (s) (x (s)) ds

�
e
R u
0 a(s)dsdu

+

Z t

t�T
((1� � 0 (u)) a (u� � (u))� a (u))h (x (u� � (u))) e

R u
0 a(s)dsdu

+

Z t

t�T
[�a (u)Q (u; x (u� � (u))) +G (u; x (u) ; x (u� � (u)))] e

R u
0 a(s)dsdu:

As a consequence, we arrive at

(x (t)�Q (t; x (t� � (t)))) e
R t
0 a(s)ds

� (x (t� T )�Q (t� T; x (t� T � � (t� T )))) e
R t�T
0 a(s)ds

=

Z t

t�T
a (u) [x (u)� h (x (u))] e

R u
0 a(s)dsdu

+

Z t

t�T

�
d

du

Z u

u��(u)
a (s)h (x (s)) ds

�
e
R u
0 a(s)dsdu

+

Z t

t�T
[(1� � 0 (u)) a (u� � (u))� a (u)]h (x (u� � (u))) e

R u
0 a(s)dsdu

+

Z t

t�T
[G (u; x (u) ; x (u� � (u)))� a (u)Q (u; x (u� � (u)))] e

R u
0 a(s)dsdu:

By dividing both sides of the above equation by exp(
R t
0
a (s) ds) and using the fact that

x (t) = x (t� T ), we obtain

x (t)�Q (t; x (t� � (t)))

= �

Z t

t�T
a (u) [x (u)� h (x (u))] e�

R t
u a(s)dsdu

+ �

Z t

t�T

�
d

du

Z t

u��(u)
a (s)h (x (s)) ds

�
e�

R t
u a(s)dsdu

+ �

Z t

t�T
[(1� � 0 (u)) a (u� � (u))� a (u)]h (x (u� � (u))) e�

R t
u a(s)dsdu

+ �

Z t

t�T
[G (u; x (u) ; x (u� � (u)))� a (u)Q (u; x (u� � (u)))] e

R u
0 a(s)dsdu: (3.7)
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Integration by parts the second integral in the above expression, we obtainZ t

t�T

�
d

du

Z u

u��(u)
a (s)h (x (s)) ds

�
e�

R t
u a(s)dsdu

=

�Z u

u��(u)
a (s)h (x (s)) dse�

R t
u a(s)ds

�t
t�T

�
Z t

t�T

�Z u

u��(u)
a (s)h (x (s)) ds

�
a (u) e�

R t
u a(s)dsdu

=

�Z t

t��(t)
a (s)h (x (s)) ds�

Z t�T

t�T��(t)
a (s)h (x (s)) dse�

R t
t�T a(s)ds

�
�
Z t

t�T

�Z u

u��(u)
a (s)h (x (s)) ds

�
a (u) e�

R t
u a(s)dsdu

= �
Z t

t�T

�Z u

u��(u)
a (s)h (x (s)) ds

�
a (u) e�

R t
u a(s)dsdu

+
1

�

Z t

t��(t)
a (u)h (x (u)) ds: (3.8)

Then substituting the result of (3.8) into (3.7) to obtain (3.5). The converse implication
is easily obtained and the proof is complete.

3.2 Existence of periodic solutions

To apply Theorem 1.2.14, we need to de�ne a Banach space B, a closed bounded
convex subset M of B and construct two mappings; one is a completely continuous and
the other is large contraction. So, we let (B; k:k) = (PT ; k:k) and

M = f' 2 PT , k'k � Lg ; (3.9)

with L 2 (0; 1]. For x 2M, let the mapping H be de�ned by

H (x) = x� h (x) ; (3.10)

and by (3.5), de�ne the mapping P : PT ! PT by

(P') (t) = �

Z t

t�T
� (t; u) a (u)H (' (u)) du+Q (t; ' (t� � (t)))

+

Z t

t��(t)
a (u)h (' (u)) du� �

Z t

t�T
� (t; u) a (u)

Z u

u��(u)
a (s)h (' (s)) dsdu

+ �

Z t

t�T
� (t; u) [(1� � 0 (u)) a (u� � (u))� a (u)]h (' (u� � (u))) du

+ �

Z t

t�T
� (t; u) [�a (u)Q (u; ' (u� � (u))) +G (u; ' (u) ; ' (u� � (u)))] du:

(3.11)
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Therefore, we express the above equation as

(P') (t) = (A') (t) + (B') (t) ;

where A;B : PT ! PT are given by

(A') (t)

= Q (t; ' (t� � (t))) +

Z t

t��(t)
a (u)h (' (u)) du

� �

Z t

t�T
� (t; u) a (u)

Z u

u��(u)
a (s)h (' (s)) dsdu

+ �

Z t

t�T
� (t; u) [(1� � 0 (u)) a (u� � (u))� a (u)]h (' (u� � (u))) du

+ �

Z t

t�T
� (t; u) [�a (u)Q (u; ' (u� � (u))) +G (u; ' (u) ; ' (u� � (u)))] du; (3.12)

and

(B') (t) = �

Z t

t�T
� (t; u) a (u)H (' (u)) du: (3.13)

We will assume that the following conditions hold.

(H1) a 2 L1 [0; T ] is bounded

(H2) h is locally Lipschitz continuous, then for x, y 2 M there exist a constant E > 0,
such that

jh (x)� h (y)j � E kx� yk :

(H3) Q, G satis�es Carathéodory conditions with respect to L1 [0; T ]

(H4) There exists periodic functions q1; q2 2 L1 [0; T ], with period T , such that

jQ(t; x)j � q1(t)jxj+ q2(t):

(H5) There exists periodic functions g1; g2; g3 2 L1 [0; T ], with period T , such that

jG (t; x; y)j � g1 (t) jxj+ g2 (t) jyj+ g3 (t) :

Now, we need the following assumptions

�1�2 (EL+ jh (0)j) �
1
2
L; (3.14)

where �1 = maxt2[0;T ] j� (t)j and �2 = maxt2[0;T ] fa (t)g

q1 (t)L+ q2 (t) �
2
2
L; (3.15)
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j(1� � 0 (t)) a (t� � (t))� a (t)j (EL+ jh (0)j) � 3La (t) ; (3.16)

g1 (t)L+ g2 (t)L+ g3 (t) � 4La (t) ; (3.17)

J [1 + 2 + 3 + 4] � 1; (3.18)

where 1, 2, 3, 4 and J are positive constants with J � 3.

Lemma 3.2.1 For A de�ned in (3.12), suppose that (3.2)�(3.4), (3.14)�(3.18) and (H1)�
(H5) hold. Then A :M!M.

Proof. Let A be de�ned by (3.12). First by (3.2) and (3.4), a change of variable in (3.12)
shows that (A') (t+ T ) = (A') (t). That is, if ' 2 PT then A' is periodic with period
T . By (H2) we obtain

jh (x)j � E jxj+ jh (0)j :
Then, let ' 2M, by (3.14)�(3.18) and (H1)�(H5) we have

j(A') (t)j

� jQ (t; ' (t� � (t)))j+
Z t

t��(t)
a (u) jh (' (u))j du

+ �

Z t

t�T
� (t; u) a (u)

Z u

u��(u)
a (s) jh (' (s))j dsdu

+ �

Z t

t�T
� (t; u) [(1� � 0 (u)) a (u� � (u)) + a (u)] jh (' (u� � (u)))j du

+ �

Z t

t�T
� (t; u) (a (u) jQ (u; ' (u� � (u)))j+ jG (u; 'u; ' (u� � (u)))j) du

� q1 (t) j' (t� � (t))j+ q2 (t) + �1�2 (EL+ jh (0)j)

+ �

Z t

t�T
� (t; u) a (u) �1�2 (EL+ jh (0)j) du

+ �

Z t

t�T
� (t; u) [(1� � 0 (u)) a (u� � (u)) + a (u)] (EL+ jh (0)j) du

+ �

Z t

t�T
� (t; u) a (u) [q1 (u) j' (u� � (u)) j+ q2 (u)] du

+ �

Z t

t�T
� (t; u) [g1 (u) j' (u) j+ g2 (u) j' (u� � (u)) j+ g3 (u)] du

� 1L+ 2L+ 3L+ 4L �
L

J
� L:

That is A' 2M.

Lemma 3.2.2 For A :M!M de�ned in (3.12), suppose that (3.2)�(3.4), (3.14)�(3.18)
and (H1)�(H5) hold. Then A is completely continuous.
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Proof. We show that A is continuous in the supremum norm, Let 'n 2 M where n is a
positive integer such that 'n ! ' as n!1. Then
j(A'n) (t)� (A') (t)j
� jQ (t; 'n (t� � (t)))�Q (t; ' (t� � (t)))j

+

Z t

t��(t)
a (u) jh ('n (u))� h (' (u))j du

+ �

Z t

t�T
� (t; u) a (u)

Z u

u��(u)
a (s) jh ('n (s))� h (' (s))j dsdu

+ �

Z t

t�T
� (t; u) [(1� � 0 (u)) a (u� � (u))� a (u)] jh ('n (u� � (u)))� h (' (u� � (u)))j du

+ �

Z t

t�T
� (t; u) a (u) jQ (u; 'n (u� � (u)))�Q (u; ' (u� � (u)))j du

+ �

Z t

t�T
� (t; u) jG (u; 'n(u); 'n (u� � (u)))�G (u; 'u; ' (u� � (u)))j du:

By the Dominated Convergence Theorem, limn!1 j(A'n) (t)� (A') (t)j = 0. Then A is
continuous.
We next show that A is completely continuous. Let ' 2M, then, by Lemma 3.2.1, we

see that
kA'k � L:

And so the family of functions A' is uniformly bounded. Again, let ' 2M. Without loss
of generality, we can pick ! < t such that t� ! < T . Then

j(A') (t)� (A') (!)j
� jQ (t; ' (t� � (t)))�Q (!; ' (! � � (!)))j

+

����Z t

t��(t)
a (u)h (' (u)) du�

Z !

!��(!)
a (u)h (' (u)) du

����
+ �

����Z t

t�T
� (t; u) a (u)

Z u

u��(u)
a (s)h (' (s)) dsdu

�
Z !

!�T
� (!; u) a (u)

Z u

u��(u)
a(s)h ('(s)) dsdu

����
+ �

����Z t

t�T
� (t; u) [(1� � 0 (u)) a (u� � (u))� a (u)]h (' (u� � (u))) du

�
Z !

!�T
� (!; u) [(1� � 0 (u)) a (u� � (u))� a (u)]h (' (u� � (u))) du

����
+ �

����Z t

t�T
� (t; u) a (u)Q (u; ' (u� � (u))) du�

Z !

!�T
� (!; u) a (u)Q (u; ' (u� � (u))) du

����
+ �

����Z t

t�T
� (t; u)G (u; ' (u) ; ' (u� � (u))) du�

Z !

!�T
� (!; u)G (u; ' (u) ; ' (u� � (u))) du

���� :
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Since (H1)�(H3) and (3.14)�(3.18) hold, we can rewrite

�

����Z t

t�T
� (t; u) [(1� � 0 (u)) a (u� � (u))� a (u)]h (' (u� � (u))) du

�
Z !

!�T
� (!; u) [(1� � 0 (u)) a (u� � (u))� a (u)]h (' (u� � (u))) du

����
� �

Z t

!

� (t; u) [(1� � 0 (u)) a (u� � (u))� a (u)] jh (' (u� � (u)))j du

+ �

Z !

!�T
j� (t; u)� � (!; u)j [(1� � 0 (u)) a (u� � (u))� a (u)]

� jh (' (u� � (u)))j du

+ �

Z t�T

!�T
� (!; u) [(1� � 0 (u)) a (u� � (u))� a (u)] jh (' (u� � (u)))j du

� 2��3
Z t

!

3La (u) du+ �

Z !

!�T
j� (t; u)� � (!; u)j 3La (u) du

� 2��33L
Z t

!

a (u) du+ �3L

Z T

0

j� (t; u)� � (!; u)j a (u) du;

where �3 = maxu2[t�T;t] f� (t; u)g, and

�

����Z t

t�T
� (t; u) a (u)Q (u; ' (u� � (u))) du

�
Z !

!�T
� (!; u) a (u)Q (u; ' (u� � (u))) du

����
+ �

����Z t

t�T
� (t; u)G (u; ' (u) ; ' (u� � (u))) du

�
Z !

!�T
� (!; u)G (u; ' (u) ; ' (u� � (u))) du

����
� 2��3

Z t

!

�
a (u) qL (u) + gp2L (u)

�
du

+ �

Z T

0

j� (t; u)� � (!; u)j
�
a (u) qL (u) + gp2L (u)

�
du;
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and

�

����Z t

t�T
� (t; u) a (u)

Z u

u��(u)
a (s)h (' (s)) dsdu

�
Z !

!�T
� (!; u) a (u)

Z u

u��(u)
a(s)h (' (s)) dsdu

����
� 2��3

Z t

!

a (u)
1
2
Ldu+ �

Z !

!�T
j� (t; u)� � (!; u)j a (u) 1

2
Ldu

� ��31L

Z t

!

a (u) du+ �
1
2
L

Z T

0

j� (t; u)� � (!; u)j a (u) du;

and ����Z t

t��(t)
a (u)h (' (u)) du�

Z �

!��(!)
a (u)h (' (u)) du

����
=

�����
Z t

!

a (u)h (' (u)) du�
Z t��(t)

!��(!)
a (u)h (' (u)) du

�����
� (EL+ h (0))

 Z t

!

a (u) du+

Z t��(t)

!��(!)
a (u) du

!
;

which implies

j(A') (t)� (A') (!)j

� jQ (t; ' (t� � (t)))�Q (!; ' (! � � (!)))j+ 2��33L
Z t

!

a (u) du

+ �3L

Z T

0

j� (t; u)� � (!; u)j a (u) du

+ 2��3

Z t

!

�
a (u) qL (u) + gp2L (u)

�
du

+ �

Z T

0

j� (t; u)� � (!; u)j
�
a (u) qL (u) + gp2L (u)

�
du

+ ��31L

Z t

!

a (u) du+ �
1
2
L

Z T

0

j� (t; u)� � (!; u)j a (u) du

+ (EL+ h (0))

 Z t

!

a (u) du+

Z t��(t)

!��(!)
a (u) du

!
;

then by the Dominated Convergence Theorem j(A') (t)� (A') (!)j ! 0 as t � ! ! 0
independently of ' 2M. Thus (A') is equicontinuous. Hence by Ascoli-Arzela�s theorem
A is completely continuous.
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The next result shows the relationship between the mappings H and B in the sense of
large contractions. Assume that

max fjH (�L)j ; jH (L)jg � 2L

J
: (3.19)

Lemma 3.2.3 Let B be de�ned by (3.13), suppose (3.19) and the condition of theorem
1.1.17 hold. Then B :M!M is a large contraction.

Proof. Let B be de�ned by (3.13). Obviously, B' is continuous and it is easy to show
that (B')(t+ T ) = (B')(t). Let ' 2M

j(B') (t)j �
Z t

t�T
� (t; u) a (u)max fjH (�L)j ; jH (L)jg du

� 2L

J
< L;

which implies B :M!M.
By Theorem 1.1.17 H is large contraction on M, then for any ';  2 M, with ' 6=  

and for any � > 0, from the proof of that Theorem, we have found a � < 1, such that

j(H') (t)� (H ) (t)j � � k'�  k :

Thus,

j(B') (t)� (B ) (t)j =
����� Z t

t�T
� (t; u) a (u) [H (' (u))�H ( (u))] du

����
� k'�  k �

Z t

t�T
� (t; u) a (u) du � � k'�  k :

The proof is complete.

Theorem 3.2.4 Suppose the hypothesis of Lemmas 3.2.1, 3.2.2 and 3.2.3 hold. Let M
de�ned by (3.9). Then the equation (3.1) has a T -periodic solution in M.

Proof. By Lemmas 3.2.1, 3.2.2, A is continuous and A (M) is contained in a compact
set. Also, from Lemma 3.2.3, the mapping B is a large contraction. Next, we show that if
';  2M, we have kA + B'k � L. Let ';  2M with k'k ; k k � L. By (3.14)�(3.18)

kA + B'k � [1 + 2 + 3 + 4]L+
2

J
L

� L

J
+
2L

J
= L:

Clearly, all the hypotheses of the Krasnoselskii-Burton�s theorem are satis�ed. Thus there
exists a �xed point z 2 M such that z = Az + Bz. By Lemma 3.1.1 this �xed point is a
solution of (3.1). Hence (3.1) has a T -periodic solution.
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Example 3.2.5 Consider the following nonlinear neutral di¤erential equation

d

dt
[x (t)�Q (t; x (t� � (t)))]

= �a (t)h (x (t� � (t))) +G (t; x (t) ; x (t� � (t))) ; (3.20)

where

T = 2�; a (t) = 6:10�2; � (t) = 10�2p
3
; h (x) = x3;

Q (t; x) = 10�4 sin (x) ; G (t; x; y) = 2:10�6 sin (t) (cos (t) + cos (x) + sin (y)) :

Then the equation (3.20) has a T -periodic solution.

Proof. We have h : R ! R is continuous on
�
�
p
3=3;

p
3=3
�
, di¤erentiable on�

�
p
3=3;

p
3=3
�
, strictly increasing on

�
�
p
3=3;

p
3=3
�
and supt2(�

p
3=3;

p
3=3) h

0 (t) � 1.

By Theorem 1.1.17, the mapping H (x) = x� x3 is a large contraction on the set

M =
n
' 2 P2�; k'k �

p
3=3
o
:

Doing straightforward computations, we obtain

E = 1; q1 (t) = 0; q2 (t) = 10
�4; g1 (t) = 0; g2 (t) = 0; g3 (t) = 6:10

�6;

�1 =
10�2p
3
; �2 = 6:10

�2; 1 =
12p
3
:10�4; 2 =

6p
3
10�4; 3 = 0;

4 =
3p
3
10�4; J 2

"
3;

p
3

21
104

#
:

All hypotheses of Theorem (3.2.4) are ful�lled and so the equation (3.20) has at least a
2�-periodic solution belonging to M.

3.3 Existence of nonnegative periodic solutions

In this section we obtain the existence of a nonnegative periodic solution of (3.1). By
applying Theorem 1.2.14, we need to de�ne a closed, convex, and bounded subset M of
PT . So, let

M = f� 2 PT : 0 � � � Kg ; (3.21)

where K is positive constant. To simplify notation, we let

F (t; x (t)) =

Z t

t��(t)
a (u)h (x (u)) du; (3.22)

and
m = min

u2[t�T;t]
e�

R t
u a(s)ds; M = max

u2[t�T;t]
e�

R t
u a(s)ds: (3.23)
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It is easy to see that for all (t; u) 2 [0; 2T ]2,
m � � (t; u) �M; (3.24)

Then we obtain the existence of a nonnegative periodic solution of (3.1) by considering
the two cases;

(1) F (t; x (t)) � 0 8t 2 [0; T ] ; x 2M.

(2) F (t; x (t)) � 0 8t 2 [0; T ] ; x 2M.

In the case one, we assume for all t 2 [0; T ], x; y 2M, that there exist positive constants
c1 and c2 such that

0 � Q (t; y) � c1K; (3.25)

0 � F (t; x) � c2K (3.26)

c1 + c2 < 1; (3.27)

0 � �a (t)F (t; x) + [(1� � 0 (t)) a (t� � (t))� a (t)]h (y)

� a (t)Q (t; y) +G (t; x; y) ; (3.28)

� a (t)F (t; x) + [(1� � 0 (t)) a (t� � (t))� a (t)]h (y)

+ a (t)H (x)� a (t)Q (t; y) +G (t; x; y) � K (1� c1 � c2)

M�T
: (3.29)

Lemma 3.3.1 Let A; B given by (3.12), (3.13) respectively, assume (3.25)�(3.29) hold.
Then A;B :M!M.

Proof. Let A de�ned by (3.13). So, for any ' 2M, we have
0 � (A') (t) � Q (t; ' (t� � (t))) + F (t; x (t))

� �

Z t

t�T
� (t; u) a (u)F (u; x (u)) du

+ �

Z t

t�T
� (t; u) ((1� � 0 (u)) a (u� � (u))� a (u))h (' (u� � (u))) du

+ �

Z t

t�T
� (t; u) [�a (u)Q (u; ' (u� � (u))) +G (u; ' (u) ; ' (u� � (u)))] du

� �

Z t

t�T
M
K (1� c1 � c2)

M�T
du+ c1K + c2K = K;

That is A' 2M.
Now, let B de�ned by (3.13). So, for any ' 2M, we have

0 � (B') (t)

� �

Z t

t�T
M
K (1� c1 � c2)

M�T
du � �MT

K

M�T
= K:

That is B' 2M.
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Theorem 3.3.2 Suppose the hypothesis of Lemmas 3.2.2, 3.2.3 and 3.3.1 hold. Then
equation (3.1) has a nonnegative T -periodic solution x in the subset M.

Proof. By Lemmas 3.2.2, A is completely continuous. Also, from Lemma 3.2.3, the
mapping B is a large contraction. By Lemma 3.3.1, A;B :M!M. Next, we show that if
';  2M, we have 0 � A +B' � K. Let ';  2M with 0 � ';  � K. By (3.25)�(3.29)

(A ) (t) + (B') (t)

= �

Z t

t�T
� (t; u) a (u)H (' (u)) du+Q (t;  (t� � (t)))

+ F (t;  (t))� �

Z t

t�T
� (t; u) a(u)F (u; x (u)) du

+ �

Z t

t�T
� (t; u) [(1� � 0 (u)) a (u� � (u))� a (u)]h ( (u� � (u))) du

+ �

Z t

t�T
� (t; u) [�a (u)Q (u;  (u� � (u))) +G (u;  (u) ;  (u� � (u)))] du

� �

Z t

t�T
� (t; u)

K (1� c1 � c2)

M�T
du+ c1K + c2K

� �

Z t

t�T
M
K (1� c1 � c2)

M�T
du+ c1K + c2K = K:

On the other hand,
(A ) (t) + (B') (t) � 0:

Clearly, all the hypotheses of the Krasnoselskii-Burton�s theorem are satis�ed. Thus there
exists a �xed point z 2 M such that z = Az + Bz. By Lemma 3.1.1 this �xed point is a
solution of (3.1) and the proof is complete.

Example 3.3.3 Consider the following nonlinear neutral di¤erential equation

d

dt
[x (t)�Q (t; x (t� � (t)))]

= �a (t)h (x (t� � (t))) +G (t; x (t) ; x (t� � (t))) ; (3.30)

where

T = 2�; a (t) = 6:10�2; � (t) = 10�2p
3
; h (x) = x3;

Q (t; y) = 10�4 sin (y) ; F (t; x (t)) =
R t
t� 10�2p

3

x3 (u) du � 0;

G (t; x; y) = 8:10�2Q (t; y) + 8:10�2F (t; x) :

Then the equation (3.30) has a nonnegative T -periodic solution.
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Proof. By Example 3.2.5, the mapping H (x) = x� x3 is a large contraction on the set

M =
n
' 2 P2�; 0 � ' �

p
3=3
o
:

A simple calculation yields

m = e�12:10
�2�; M = 1; � =

�
1� e�12�:10

�2
��1

; c1 = 10
�4; c2 =

10�2

3
p
3
:

Then for x; y 2
�
0;
p
3=3
�
we have

0 � �a (t)F (t; x) + [(1� � 0 (t)) a (t� � (t))� a (t)]h (y)

� a (t)Q (t; y) +G (t; x; y) :

On the other hand, we have

� a (t)F (t; x) + [(1� � 0 (t)) a (t� � (t))� a (t)]h (y)

+ a (t)H (x)� a (t)Q (t; y) +G (t; x; y)

� 2:7� 10�2 < 2:88� 10�2 ' K (1� c1 � c2)

M�T
:

All conditions of Theorem (3.3.2) hold and so the equation (3.30) has at least a nonnegative
2�-periodic solution belonging to M.
In the case two, we substitute conditions (3.26)�(3.29) with the following conditions

respectively. We assume that there exist a negative constant c3 such that

c3K � F (t; x) � 0; (3.31)

� c3 + c1 < 1; (3.32)

�c3K
M�T

� �a (t)F (t; x) + [(1� � 0 (t)) a (t� � (t))� a (t)]h (y)

� a (t)Q (t; y) +G (t; x; y) ; (3.33)

� a (t)F (t; x) + [(1� � 0 (t)) a (t� � (t))� a (t)]h (y)

+ a(t)H (x)� a (t)Q (t; y) +G (t; x; y) � K (1� c1)

M�T
: (3.34)

Theorem 3.3.4 Suppose (3.25), (3.31)�(3.34) and the hypothesis of Lemmas 3.2.1, 3.2.2
and 3.2.3 hold. Then equation (3.1) has a nonnegative T -periodic solution x in the subset
M.
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Proof. By Lemmas 3.2.1, 3.2.2, A is completely continuous. Also, from Lemma 3.2.3,
the mapping B is a large contraction. To see that, it is easy to show as in Lemma 3.3.1
A;B : M ! M. Next, we show that if ';  2 M, we have 0 � A + B' � K. Let
';  2M with 0 � ';  � K. By (3.25) and (3.31)�(3.34) we have

(A ) (t) + (B') (t)

= �

Z t

t�T
� (t; u) a (u)H (' (u)) du+Q (t;  (t� � (t)))

+ F (t;  (t))� �

Z t

t�T
� (t; u) a (u)F (u;  (u)) du

+ �

Z t

t�T
� (t; u) [(1� � 0 (u)) a (u� � (u))� a (u)]h ( (u� � (u))) du

+ �

Z t

t�T
� (t; u) [�a (u)Q (u;  (u� � (u))) +G (u;  (u) ;  (u� � (u)))] du

� �

Z t

t�T
� (t; u)

K (1� c1)

M�T
du

= �

Z t

t�T
M
K (1� c1)

M�T
du+ c1K = K:

On the other hand,
(A ) (t) + (B') (t) � 0:

Clearly, all the hypotheses of the Krasnoselskii-Burton�s theorem are satis�ed. Thus there
exists a �xed point z 2 M such that z = Az + Bz. By Lemma 3.1.1 this �xed point is a
solution of (3.1) and the proof is complete.
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CHAPTER 4

Existence of periodic solutions for a system of nonlinear neutral
functional di¤erential equations

Keywords. Krasnoselskii�s theorem; Contraction; Neutral di¤erential equation; Integral
equation; Periodic solution; Fundamental matrix solution; Floquet theory.
In this chapter, we expose the work cited in [83] as follow

Mesmouli M. B., Ardjouni A. and A. Djoudi., Existence and uniqueness of periodic solu-
tions for a system of nonlinear neutral functional di¤erential equations with two functional
delays, Rend. Circ. Mat. Palermo (2014) 63:409-424, DOI 10.1007/s12215-014-0162-x.
The goal of the present chapter is to study the existence of periodic solutions of the

nonlinear neutral system of di¤erential equations. By using Krasnoselskii�s �xed point
theorem we obtain the existence of periodic solution and by contraction mapping principle
we obtain the uniqueness. Our results extend and complement some earlier publications
([65], [110]).

4.1 Preliminaries, remarks and some history of the
equation

A qualitative analysis such as periodicity, positivity and stability of solutions of neu-
tral di¤erential equations which the delay has been studied extensively by many authors,
we refer the readers to [44, 31, 53], [58, 59, 60, 61, 65, 66, 67, 68, 79], [82, 109] and references
therein for a wealth of reference materials on the subject.
Recently, Yankson in [110] studied the existence and uniqueness of a periodic solution

of the system of di¤erential equations

d

dt
x (t) = A (t)x (t� �) ; (4.1)

where A (�) is an n � n matrix with continuous real-valued functions as its elements and
� is a positive constant.
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In 2007, Islam and Ra¤oul in [65] used Krasnoselskii�s �xed point theorem to establish
the existence of periodic solutions for the system of nonlinear neutral functional di¤erential
equations

d

dt
x (t) = A (t)x (t) +

d

dt
Q (t; x (t� g (t))) +G (t; x (t) ; x (t� g (t))) : (4.2)

where where A (�) is a nonsingular n� n matrix with continuous real-valued functions as
its elements. The functions Q : R� Rn ! Rn and G : R� Rn � Rn ! Rn are continuous
in their respective arguments. Also, the authors used the contraction mapping principle
to show the uniqueness of periodic solutions of (4.2).
Motivated by the works mentioned above and the references therein, we study the

existence and uniqueness of periodic solutions for the system of nonlinear di¤erential
equations with two functional delays

d

dt
x (t) = A (t)x (t� � (t)) +

d

dt
Q (t; x (t� g (t))) +G (t; x (t) ; x (t� g (t))) ; (4.3)

where A (�) is a nonsingular n � n matrix with continuous real-valued functions as its
elements. The functions Q : R � Rn ! Rn and G : R � Rn � Rn ! Rn are continuous
in their respective arguments. In the analysis we use the fundamental matrix solution of
x0 (t) = A (t)x (t) coupled with Floquet theory to invert the system (4.3) into an integral
system. Then we employ the Krasnoselskii�s �xed point theorem to show the existence
of periodic solutions of system (4.3). The obtained integral system is the sum of two
mappings, one is a compact operator and the other is a contraction. Also, transforming
system (4.3) to an integral system enables us to show the uniqueness of the periodic
solution by appealing to the contraction mapping principle.
For the de�nitions of the di¤erent notions used throughout this paper we

refer, for example [31, 62, 63, 100, 106]. For T > 0 de�ne CT =
f� : � 2 C (R;Rn) ; � (t+ T ) = � (t) ; t 2 Rg where C (R;Rn) is the space of all n-vector
continuous functions. Then CT is a Banach space when it is endowed with the supremum
norm

kx (�) k = max
t2[0;T ]

jx (t) j;

where j�j denotes the in�nity norm for x 2 Rn. Also, if A is an n� n real matrix, then we
de�ne the norm of A by

jAj = max
1�i�n

nX
j=1

jaijj :

De�nition 4.1.1 If the matrix A (�) is periodic of period T , then the linear system

y0 (t) = A (t) y (t) ; (4.4)

is said to be noncritical with respect to T , if it has no periodic solution of period T except
the trivial solution y = 0.
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In this chapter we assume that

A (t+ T ) = A (t) ; � (t+ T ) = � (t) � � � > 0; g (t+ T ) = g (t) � g� > 0; (4.5)

with � is twice continuously di¤erentiable and � �, g� are constant. For t 2 R, x; y; z; w 2
Rn, the functions Q (t; x) and G (t; x; y) are periodic in t of period T , they are also globally
Lipschitz continuous in x and in x and y, respectively. That is

Q (t+ T; x) = Q (t; x) ; G (t+ T; x; y) = G (t; x; y) ; (4.6)

and there are positive constants k1, k2, k3 such that

jQ (t; x)�Q (t; y)j � k1 kx� yk ; (4.7)

jG (t; x; y)�G (t; z; w)j � k2 kx� zk+ k3 ky � wk : (4.8)

Throughout this paper it is assumed that the system (4.4) is noncritical. Now, we
state some known results [62] about system (4.4). Let K (t) represent the fundamental
matrix of (4.4) with K (0) = I, where I is the n� n identity matrix. Then

a) detK (t) 6= 0.

b) There exists a constant matrixB such thatK (t+ T ) = K (t) eTB, by Floquet theory.

c) System (4.4) is noncritical if and only if det (I �K (T )) 6= 0.

Remark 4.1.2 By preserving the notation in [110], we notice that, for the equation (4.1)
Yankson assumed that there exists a nonsingular n� n matrix G (�) with continuous real-
valued functions as its elements such that

d

dt
x (t) = G (t)x (t)� d

dt

Z t

t��
G (u)x (u) du+ [A (t)�G (t� �)]x (t� �) :

But this condition is not necessary and we can replace G (�) by A (�) because A (t� �)
exist. However, in the present work, this condition is removed and we assumed that A (�)
is nonsingular n� n matrix.

The following lemma is fundamental to our results.

Lemma 4.1.3 Suppose (4.5) and (4.6) hold. If x 2 CT , then x is a solution of the
equation (4.3) if and only if

x (t) = Q (t; x (t� g (t)))�
Z t

t��(t)
A (s)x (s) ds

+K (t)U (T )

Z t+T

t

K�1 (s)A (s)

�
Q (s; x (s� g (s)))�

Z s

s��(s)
A (u)x (u) du

�
ds

+K (t)U (T )

Z t+T

t

K�1 (s) [F (s)x (s� � (s)) +G (s; x (s) ; x (s� g (s)))] ds; (4.9)

64



Chapter 4. Existence of periodic solutions for a system of nonlinear neutral functional
di¤erential equations

where
U (T ) =

�
K�1 (T )� I

��1
;

and
F (t) = A (t)� (1� � 0 (t))A (t� � (t)) :

Proof. Let x 2 CT be a solution of (4.3) and K (�) is a fundamental system of solutions
for (4.4). Rewrite the equation (4.3) as

d

dt
x (t) = A (t)x (t)� A (t)x (t) + A (t)x (t� � (t))

+
d

dt
Q (t; x (t� g (t))) +G (t; x (t) ; x (t� g (t)))

= A (t)x (t)� d

dt

Z t

t��(t)
A (u)x (u) du

+ [A (t)� (1� � 0 (t))A (t� � (t))]x (t� � (t))

+
d

dt
Q (t; x (t� g (t))) +G (t; x (t) ; x (t� g (t))) :

We put A (t)� (1� � 0 (t))A (t� � (t)) = F (t), we obtain

d

dt

�
x (t)�Q (t; x (t� g (t))) +

Z t

t��(t)
A (u)x (u) du

�
= A (t)

�
x (t)�Q (t; x (t� g (t))) +

Z t

t��(t)
A (u)x (u) du

�
+ A (t)

�
Q (t; x (t� g (t)))�

Z t

t��(t)
A (u)x (u) du

�
+ F (t)x (t� � (t)) +G (t; x (t) ; x (t� g (t))) :

Since K (t)K�1 (t) = I, it follows that

0 =
d

dt

�
K (t)K�1 (t)

�
= A (t)K (t)K�1 (t) +K (t)

d

dt
K�1 (t)

= A (t) +K (t)
d

dt
K�1 (t) :

This implies
d

dt
K�1 (t) = �K�1 (t)A (t) :
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If x (�) is a solution of (4.3) with x (0) = x0, then

d

dt

�
K�1 (t)

�
x (t)�Q (t; x (t� g (t))) +

Z t

t��(t)
A (u)x (u) du

��
=

d

dt
K�1 (t)

�
x (t)�Q (t; x (t� g (t))) +

Z t

t��(t)
A (u)x (u) du

�
+K�1 (t)

d

dt

�
x (t)�Q (t; x (t� g (t))) +

Z t

t��(t)
A (u)x (u) du

�
= �K�1 (t)A (t)

�
x (t)�Q (t; x (t� g (t))) +

Z t

t��(t)
A (u)x (u) du

�
+K�1 (t)A (t)

�
x (t)�Q (t; x (t� g (t))) +

Z t

t��(t)
A (u)x (u) du

�
+K�1 (t)A (t)

�
Q (t; x (t� g (t)))�

Z t

t��(t)
A (u)x (u) du

�
+K�1 (t) (F (t)x (t� � (t)) +G (t; x (t) ; x (t� g (t)))) :

An integration of the above equation from 0 to t yields

x (t) = Q (t; x (t� g (t)))�
Z t

t��(t)
A (s)x (s) ds

+K (t)

�
x (0)�Q (0; x (0� g (0))) +

Z 0

��(0)
A (s)x (s) ds

�
+K (t)

Z t

0

K�1 (s)A (s)

�
Q (s; x (s� g (s)))�

Z s

s��(s)
A (u)x (u) du

�
ds

+K (t)

Z t

0

K�1 (s) (F (s)x (s� � (s)) +G (s; x (s) ; x (s� g (s)))) ds: (4.10)

Since x (T ) = x0 = x (0), using (4.10) we get

x (0)�Q (0; x (�g (0))) +
Z 0

��(0)
A (s)x (s) ds

= (I �K (T ))�1
Z T

0

K (T )K�1 (s)A (s)

�
Q (s; x (s� g (s)))�

Z s

s��(s)
A (u)x (u) du

�
ds

+ (I �K (T ))�1
Z T

0

K (T )K�1 (s) (F (s)x (s� � (s)) +G (s; x (s) ; x (s� g (s)))) ds:

(4.11)
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A substitution of (4.11) into (4.10) yields

x (t)

= Q (t; x (t� g (t)))�
Z t

t��(t)
A (s)x (s) ds

+K (t) (I �K (T ))�1
Z T

0

K (T )K�1 (s)A (s)

�
Q (s; x (s� g (s)))�

Z s

s��(s)
A (u)x (u) du

�
ds

+K (t) (I �K (T ))�1
Z T

0

K (T )K�1 (s) (F (s)x (s� � (s)) +G (s; x (s) ; x (s� g (s)))) ds

+K (t)

Z t

0

K�1 (s)A (s)

�
Q (s; x (s� g (s)))�

Z s

s��(s)
A (u)x (u) du

�
ds

+K (t)

Z t

0

K�1 (s) (F (s)x (s� � (s)) +G (s; x (s) ; x (s� g (s)))) ds: (4.12)

Now, we will show that (4.12) is equivalent to (4.9). Since

(I �K (T ))�1 =
�
K (T )

�
K (T )�1 � I

���1
=

�
K (T )�1 � I

��1
K (T )�1 ;

then the equations (4.12) becomes

x (t)

= Q (t; x (t� g (t)))�
Z t

t��(t)
A (s)x (s) ds

+K (t)
�
K (T )�1 � I

��1 Z T

0

K�1 (s)A (s)

�
Q (s; x (s� g (s)))�

Z s

s��(s)
A (u)x (u) du

�
ds

+K (t)
�
K (T )�1 � I

��1 Z T

0

K�1 (s) (F (s)x (s� � (s)) +G (s; x (s) ; x (s� g (s)))) ds

+

Z t

0

K (t)K�1 (s)A (s)

�
Q (s; x (s� g (s)))�

Z s

s��(s)
A (u)x (u) du

�
ds

+

Z t

0

K (t)K�1 (s) (F (s)x (s� � (s)) +G (s; x (s) ; x (s� g (s)))) ds;
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then

x (t)

= Q (t; x (t� g (t)))�
Z t

t��(t)
A (s)x (s) ds

+K (t)
�
K (T )�1 � I

��1�Z T

t

K�1 (s)A (s)

�
Q (s; x (s� g (s)))�

Z s

s��(s)
A (u)x (u) du

�
ds

+

Z T

t

K�1 (s) [F (s)x (s� � (s)) +G (s; x (s) ; x (s� g (s)))] ds

+

Z t

0

K (T )�1K�1 (s)A (s)

�
Q (s; x (s� g (s)))�

Z s

s��(s)
A (u)x (u) du

�
ds

+

Z t

0

K (T )�1K�1 (s) [F (s)x (s� � (s)) +G (s; x (s) ; x (s� g (s)))] ds

�
:

By letting s = v � T and U (T ) =
�
K (T )�1 � I

��1
, the above expression yields

x (t) = Q (t; x (t� g (t)))�
Z t

t��(t)
A (s)x (s) ds

+K (t)U (T )

Z T

t

K�1 (s)A (s)

�
Q (s; x (s� g (s)))�

Z s

s��(s)
A (u)x (u) du

�
ds

+K (t)U (T )

Z T

t

K�1 (s) (F (s)x (s� � (s)) +G (s; x (s) ; x (s� g (s)))) ds

+K (t)U (T )

Z t+T

T

K (T )�1K�1 (v � T )A (v � T ) (Q (v � T; x (v � T � g (v � T )))

�
Z v�T

v�T��(v�T )
A (u)x (u) du

�
dv

+K (t)U (T )

Z t+T

T

K (T )�1K�1 (v � T ) (F (v � T )x (v � T � � (v � T )) (4.13)

+ G (v � T; x (v � T ) ; x (v � T � g (v � T )))) dv:

By (b) we have
K (t� T ) = K (t) e�TB and K (T ) = eTB:

Hence,
K�1 (T )K�1 (v � T ) = K�1 (v) :
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Consequently, since (4.5) and (4.6) hold, (4.13) becomes

x (t) = Q (t; x (t� g (t)))�
Z t

t��(t)
A (s)x (s) ds

+K (t)U (T )

�Z T

t

K�1 (s)A (s)

�
Q (s; x (s� g (s)))�

Z s

s��(s)
A (u)x (u) du

�
ds

+

Z T

t

K�1 (s) (F (s)x (s� � (s)) +G (s; x (s) ; x (s� g (s)))) ds

�
+K (t)U (T )

�Z t+T

T

K�1 (s)A (s)

�
Q (s; x (s� g (s)))�

Z s

s��(s)
A (u)x (u) du

�
ds

+

Z t+T

T

K�1 (s) (F (s)x (s� � (s)) +G (s; x (s) ; x (s� g (s)))) ds

�
: (4.14)

By combining the two integrals of the equation (4.14), we can obtained easily the equation
(4.9) The converse implication is easily obtained and the proof is complete.

4.2 Existence and uniqueness of periodic solutions

By applying Theorems 1.2.2 and 1.2.11, we obtain in this Section the existence and
the uniqueness of the periodic solution of (4.3). So, let a Banach space (CT ; k�k), a closed
bounded convex subset of CT ,

M = f' 2 CT , k'k � Lg ; (4.15)

with L > 0, and by the Lemma 4.1.3, let a mapping P given by

(P') (t) = Q (t; ' (t� g (t)))�
Z t

t��(t)
A (s)' (s) ds

+K (t)U (T )

Z t+T

t

K�1 (s)A (s)

�
Q (s; ' (s� g (s)))�

Z s

s��(s)
A (u)' (u) du

�
ds

+K (t)U (T )

Z t+T

t

K�1 (s) [F (s)' (s� � (s)) +G (s; ' (s) ; ' (s� g (s)))] ds:

(4.16)

We express equation (4.16) as
P' = A'+ B';

where A and B are given by

(A') (t) = K (t)U (T )

Z t+T

t

K�1 (s)A (s)

�
Q (s; ' (s� g (s)))�

Z s

s��(s)
A (u)' (u) du

�
ds

+K (t)U (T )

Z t+T

t

K�1 (s) [F (s)' (s� � (s)) +G (s; ' (s) ; ' (s� g (s)))] ds;

(4.17)
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and

(B') (t) = Q (t; ' (t� g (t)))�
Z t

t��(t)
A (s)' (s) ds: (4.18)

By a series of steps we will prove the ful�llment of (i), (ii) and (iii) in Theorem 1.2.11.
Since ' 2 CT , (4.5) and (4.6) hold, we have for ' 2M

(A') (t+ T ) = (A') (t) and A' 2 C (R;Rn) =) (AM) � CT ; (4.19)

and
(B') (t+ T ) = (B') (t) and B' 2 C (R;Rn) =) (BM) � CT : (4.20)

Lemma 4.2.1 Suppose (4.5)�(4.8) hold. If A is de�ned by (4.17), then A is continuous
and the image of A is contained in a compact set.

Proof. Let 'n 2M where n is a positive integer such that 'n ! ' as n!1. Then

j(A'n) (t)� (A') (t)j

� jK (t)U (T )j
Z t+T

t

��K�1 (s)
��

� jA (s)j
�Z s

s��(s)
jA (u)j j'n (u)� ' (u)j du+ jQ (s; 'n (s� g (s)))�Q (s; ' (s� g (s)))j

�
ds

+ jK (t)U (T )j
Z t+T

t

��K�1 (s)
�� [jF (s)j j'n (s� � (s))� ' (s� � (s))j

+ jG (s; 'n (s) ; 'n (s� g (s)))�G (s; ' (s) ; ' (s� g (s)))j] ds:

Since Q, G are continuous, the dominated convergence theorem implies,

lim
n!1

j(A'n) (t)� (A') (t)j = 0:

Then A is continuous. Next, we show that the image of A is contained in a compact set.
Let M de�ned by (4.15), by (4.7) and (4.8), we obtain

jQ (t; y)j � jQ (t; y)�Q (t; 0) +Q (t; 0)j
� k1 kyk+ jQ (t; 0)j ;

jG (t; x; y)j � jG (t; x; y)�G (t; 0; 0) +G (t; 0; 0)j
� k2 kxk+ k3 kyk+ jG (t; 0; 0)j :

Let 'n 2M where n is a positive integer, then (4.17) is equivalent to

(A'n) (t)

=

Z t+T

t

�
K (s)U (T )�1K (t)�1

��1
A (s)

�
Q (s; 'n (s� g (s)))�

Z s

s��(s)
A (u)'n (u) du

�
ds

+

Z t+T

t

�
K (s)U (T )�1K (t)�1

��1
[F (s)'n (s� � (s)) +G (s; 'n (s) ; 'n (s� g (s)))] ds:
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Consequently

k(A'n) (�)k � c

Z T

0

[jAj (� jAj+ k1L+ �) + jF jL+ (k2 + k3)L+ ] ds

= cT [jAj (� jAj+ k1L+ �) + jF jL+ (k2 + k3)L+ ]

= E;

where

� = sup
t2[0;T ]

j� (t)j ; � = sup
t2[0;T ]

jQ (t; 0)j ;  = sup
t2[0;T ]

jG (t; 0; 0)j ;

c = sup
t2[0;T ]

 
sup

s2[t;t+T ]

����K (s)U (T )�1K (t)�1��1���! :
Second, we calculate (A'n)

0 (t) and show that it is uniformly bounded. By making use of
(4.5) and (4.6) we obtain by taking the derivative in (4.17) that

(A'n)
0 (t)

= K 0 (t)U (T )

Z t+T

t

K�1 (s)A (s)

�
Q (s; 'n (s� g (s)))�

Z s

s��(s)
A (u)'n (u) du

�
ds

+K 0 (t)U (T )

Z t+T

t

K�1 (s) [F (s)'n (s� � (s)) +G (s; 'n (s) ; 'n (s� g (s)))] ds

+K (t)U (T )
�
K�1 (t+ T )�K�1 (t)

�
A (t)

�
Q (t; 'n (t� g (t)))�

Z t

t��(t)
A (s)'n (s) ds

�
+K (t)U (T )

�
K�1 (t+ T )�K�1 (t)

�
[F (t)'n (t� � (t)) +G (t; 'n (t) ; 'n (t� g (t)))] :

(4.21)

Since
K 0 (t) = A (t)K (t) ; (4.22)

and noting that K�1 (t+ T ) = e�TBK�1 (t), we have

K�1 (t+ T )�K�1 (t) = e�TBK�1 (t)�K�1 (t) =
�
K�1 (T )� 1

�
K�1 (t) : (4.23)

A substitution of (4.22) and (4.23) into (4.21) yields

(A'n)
0 (t) = A (t) (A'n) (t) + A (t)

�
Q (t; 'n (t� g (t)))�

Z t

t��(t)
A (s)'n (s) ds

�
+ F (t)'n (t� � (t)) +G (t; 'n (t) ; 'n (t� g (t))) :

Then (A'n)0 (�) � jAjE + E

cT
:

Thus the sequence (A'n) is uniformly bounded and equicontinuous. Hence by Ascoli-
Arzela�s theorem A (M) is relatively compact.
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Lemma 4.2.2 Suppose (4.5)�(4.7) hold and

k1 + � jAj < 1: (4.24)

If B is de�ned by (4.18), then B is a contraction.

Proof. Let B be de�ned by (4.18). Then for '1; '2 2M we have by (4.7)

j(B'1) (t)� (B'2) (t)j

=

����Q (t; '1 (t� g (t)))�Q (t; '2 (t� g (t))) +

Z t

t��(t)
A (s)'1 (s) ds�

Z t

t��(t)
A (s)'2 (s) ds

����
� (k1 + � jAj) k'1 � '2k :

Hence B is contraction by (4.24).

Theorem 4.2.3 Suppose the assumptions of the Lemmas 4.2.1 and 4.2.2 hold. If there
exists a constant L > 0 de�ned in M such that

cT [jAj (� jAj+ k1L+ �) + jF jL+ (k2 + k3)L+ ] + k1L+ � + � jAjL � L:

Then (4.3) has a T -periodic solution.

Proof. By Lemma 4.2.1, A :M! CT is continuous and A(M) is contained in a compact
set. Also, from Lemma 4.2.2, the mapping B : M ! CT is a contraction. Next, we show
that if '; � 2M, we have kA'+ B�k � L. Let '; � 2M with k'k ; k�k � L. Then

k(A') (�) + (B�) (�)k
� cT [jAj (� jAj+ k1L+ �) + jF jL+ (k2 + k3)L+ ] + k1L+ � + � jAjL
� L:

Clearly, all the hypotheses of the Krasnoselskii�s theorem are satis�ed. Thus there exists
a �xed point z 2M such that z = Az+Bz. By Lemma 4.1.3 this �xed point is a solution
of (4.3). Hence (4.3) has a T -periodic solution.

Theorem 4.2.4 Suppose (4.5)�(4.8) hold. If

cT [jAj (� jAj+ k1) + jF j+ (k2 + k3)] + k1 + � jAj < 1; (4.25)

then equation (4.3) has a unique T -periodic solution.
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Proof. Let the mapping P be given by (4.16). For '1; '2 2 CT , we have

j(P'1) (t)� (P'2) (t)j

�
����Q (t; '1 (t� g (t)))�Q (t; '2 (t� g (t))) +

Z t

t��(t)
A (s)'1 (s) ds�

Z t

t��(t)
A (s)'2 (s) ds

����Z t+T

t

����K (s)U (T )�1K (t)�1��1���
� jA (s)j

�Z s

s��(s)
jA (u)j j'1 (u)� '2 (u)j du+ jQ (s; '1 (s� g (s)))�Q (s; '2 (s� g (s)))j

�
ds

+

Z t+T

t

����K (s)U (T )�1K (t)�1��1��� [jF (s)j j'1 (s� � (s))� '2 (s� � (s))j

+ jG (s; '1 (s) ; '1 (s� g (s)))�G (s; '2 (s) ; '2 (s� g (s)))j] ds
= [cT [jAj (� jAj+ k1) + jF j+ (k2 + k3)] + k1 + � jAj] k'1 � '2k :

Since (4.25) hold, the contraction mapping principle completes the proof.

Remark 4.2.5 Note that, when Q (�; �) = G (�; �; �) = 0 and � (t) is positive constant, the
Theorems 4.2.3 and 4.2.4 reduce to the Theorems 2.7 and 2.8 respectively in [110].

Corollary 4.2.6 Suppose (4.5) and (4.6) hold. Let M de�ned by (4.15). Suppose there
are positive constants k�1, k

�
2 and k

�
3, such that for x, y, z and w 2M, we have

jQ (t; x)�Q (t; y)j � k�1 kx� yk and k�1 + � jAj < 1; (4.26)

jG (t; x; y)�G (t; z; w) j � k�2kx� zk+ k�3ky � wk: (4.27)

and

cT [jAj (� jAj+ k�1L+ �) + jF jL+ (k�2 + k�3)L+ ] + k�1L+ � + � jAjL � L: (4.28)

Then (4.3) has a T -periodic solution in M. Moreover, if

cT [jAj (� jAj+ k�1) + jF j+ (k�2 + k�3)] + k�1 + � jAj < 1;

then (4.3) has a unique solution in M.

Proof. Let the mapping P de�ned by (4.16). Then the proof follow immediately from
Theorem 4.2.3 and Theorem 4.2.4.

Remark 4.2.7 Note that, when � (t) = 0, the Theorems 4.2.3, 4.2.4 and Corollary 4.2.6
reduces to the Theorems 2.5, 2.6 and Corollary 2.7 respectively in [65].
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4.3 Application to second order model

Consider the second-order nonlinear neutral di¤erential equation

d2

dt2
x(t)+ p(t)

d

dt
x(t� � (t))+ q(t)x(t� � (t)) = d

dt
V (t; x(t� g(t)))+W (t; x(t); x(t� g(t)));

(4.29)
where p and q are positive periodic continuous real-valued functions with period T . The
functions V : R � R ! R and W : R � R � R ! R are continuous in their respective
arguments. � (�) and g (�) satisfy (4.5).
Functions V (t; x) andW (t; x; y) are periodic in t with period T . They are also supposed

to be globally Lipschitz continuous in x and in x and y, respectively. That is,

V (t+ T; x) = V (t; x); W (t+ T; x; y) =W (t; x; y); (4.30)

and there are positive constants k1, k2, k3 such that

jV (t; x)� V (t; y)j � k1kx� yk; (4.31)

and
jV (t; x; y)� V (t; z; w)j � k2kx� zk+ k3ky � wk: (4.32)

To show the existence of periodic solutions, we transform (4.29) by letting�
x1 = x;
x2 = x0;

into a following system�
x1 (t)
x2 (t)

�0
=

�
0 1

�q (t) �p (t)

��
x1(t� � (t))
x2(t� � (t))

�
+
d

dt

�
0

V (t; x1(t� g(t)))

�
+

�
0

W (t; x1(t); x1(t� g(t)))

�
; (4.33)

where

A (�) =
�

0 1
�q (�) �p (�)

�
; Q(t; x(t� g(t))) =

�
0

V (t; x1(t� g(t)))

�
;

G (t; x (t) ; x (t� g (t))) =

�
0

W (t; x1(t); x1(t� g(t)))

�
:

Example 4.3.1 Let q (t) = p (t) = 1, � (t) = �4 cos t, g (�) is nonnegative, continuous and
2�-periodic, V (t; w) = �1 sin (t)w

2, W (t; z; w) = �2 cos (t) z � �3w.
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Since the matrix A has eigenvalues with non-zero real parts, the system x0 = Ax is
noncritical. Consider the Banach space (C2�; k�k),

C2� =
�
� : � 2 C

�
R;R2

�
; � (t+ 2�) = � (t) ; t 2 R

	
;

and the closed bounded convex subset of C2�,

M = f' 2 C2�, k'k � Lg :

Let ' = ('1; '2), � = (�1; �2). Then for '; � 2M we have

kG (�; ' (�) ; ' (� � g (�)))�G (�; � (�) ; � (� � g (�)))k
� �2 k'� �k+ �3 k'� �k :

Hence k�2 = �2; k
�
3 = �3, in the same way k�1 = 2�1L, and

� = �4; � = 0;  = 0;

and

F (t) = A (t)� (1� � 0 (t))A (t� � (t)) = � 0 (t)A (t)

= ��4 sin t
�

0 1
�1 �1

�
; jF j = 2�4:

Consequently

cT
�
jAj
�
�4 jAjL+ 2�1L2

�
+ 2�4L+ (�2 + �3)L

�
+ 2�1L

2 + �4 jAjL � L;

for all �i, 1 � i � 4 small enough. Then (4.29) has a 2�-periodic solution, by Corollary
4.2.6. Moreover,

cT [jAj (�4 jAj+ 2�1L) + 2�4 + (�2 + �3)] + 2�1L+ �4 jAj < 1;

is satis�ed for �i, 1 � i � 4 small enough. Then (4.29) has a unique 2�-periodic solution,
by Corollary 4.2.6.
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