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Abstract: In the last decades, many approaches and various algorithms are introduced
to minimize the functional calculus of the Tixotrop model. These classical techniques are
formulated in an iterative form, that will cost a lot of CPU time. To overcome this disad-
vantage, one can use the decomposition method which reduces the problem to a sequence
sub-problems of a more manageable size. In this particular context, we introduce a method
of correction subspace based on the decomposition methods for the minimization of the
Tixotrop model. These methods allow us to divide the space of the initial problem into
several subspaces, to solve sub-problems faster. Then the solution of the original problem
is obtained from the sub-problems’ones . The main difficulty in the resolution the tixotrop
model by a domain decomposition technique has a non regular behavior of the borders, with
discontinuities preserving. As the non regular model of the tixotrop is not adapted for the
decomposition algorithm with matching and non matching to minimize the functional asso-
ciated to the problem, after regularization; we provide several tests showing the effectiveness
of the algorithm for image restoration. Furthermore we present a comparison of these results
with the same algorithm by the total variation method.

Keywords: Image Processing, Domain Decomposition, Tixotrop Model.
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Résumé: Dans les derniéres décennies, de nombreuses approches et différents algo-
rithmes sont introduits pour minimiser la fonctionnelle du modeéle Tixotrop. Ces techniques
classiques sont formulées sous forme des suites itératives; mais ceci présente un inconveient
dans le cotit de calcul de computation durant la résolution. Pour surmonter cet inconvénient,
on peut utiliser la méthode de décomposition du domaine qui permet de réduire le probléme
a une suite finie de sous problémes d’une taille plus gérable.

Dans ce contexte particulier, nous introduisons une méthode de correction de sous-
espaces, basée sur les méthodes de décomposition de domaines pour la minimisation du mod-
¢éle Tixotrop. Ces méthodes permettent de diviser I’espace du probléme initial en plusieurs
sous-espaces plus petits ceci qui permet de résoudre les sous problémes plus rapidement.
Ensuite la solution du probléme original est obtenue a partir des solutions des sous problémes
associés. La difficulté essentielle dans la résolution du modeéle tixotrop par la méthode de dé-
composition du domaine est le comportement non régulier des frontiéres des correctifs, avec
la préservation des discontinuités. Comme le modéle tixotrop est non régulier, on ne peut
pas adapter 'algorithme de décomposition de domaines avec recouvrement et sans recou-
vrement pour minimiser la fonctionnelle associée au probléme, aprés la régularisation. On
donne plusieurs tests numériques, on montre 'efficacité de I'algorithme pour la restauration
d’images. de plus on présente une comparison de ces résultats avec les résultats obtenus par
le méme algorithme par la méthode de la variation totale.

Mots-clés: Traitement d’Images, Décomposition de Domaines, Modele Tixotrop.
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INTRODUCTION

Image restoration is one of the fundamental and challenging tasks in image processing [3],
and phenomenal advances have been achieved in variational and partial differential equations
(PDE)-based approaches since the seminal work [59]. The Rudin Osher and Fatemi (ROF)
model minimizes the total variation (TV) over the space of bounded variation (BV), so
it is capable of preserving sharp edges and boundaries with a high quality recovery. More
precisely, given a bounded image domain Q C R?, (d = 1,2, 3), one is interested in the general

minimization problem:

ueBV

min < « [ |Vu|+ [ f(u)dx p, a>0 (1)
[m]

where the gradient is presented in the distributional sense [39], and f(.) as a differen-

tiable functional. The associated Fuler-Lagrange equation takes the form

adiv <|§—Z|> + () =0, (2)

which is also known as the curvature equation. As the TV model (1-2) continues to enjoy
applications in diverse areas such as image denoising, debluring and segmentation, [74],
interface evolution [56], and inverse problems [24], there still exists a great demand for
developing fast and robust methods for such minimization problems and nonlinear PDEs,
although considerable progress has been made in several directions. Among others, existing

methods in the literatures can be classified into the following types:

1. The gradient descent method [19] , [25]: Instead of solving the nonlinear PDE, it involves
(2) with an artificial time and minimizes the energy along the gradient descent direct
via the evolution of a parabolic equation. This approach is very reliable, but converges
considerably slowly.

2. The method using diffusivity fixed-point iteration (see, e.g.,[67], [68]): It solves the lin-
earized version of the nonlinear steady-state PDE (2) iteratively by treating the nonlinear
term 1/|Vu| explicitly. Various iterative solvers have been considered, but further stud-
ies are still needed, in particular, techniques to speed up the outer solvers for large size

images.
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3. The dual approach (cf. [12], [23] ): it introduces a dual variable (the original unknown
function u in(1) is referred to as the primal variable). These methods overcome the non-
differentiability of the cost functional in (1). They often lead to more efficient algorithms,
and have received increasing interests recently.

4. Additive operator splitting (AOS) scheme: this type of schemes was first developed for
(nonlinear elliptic/parabolic) monotone equation and Navier-Stokes equations in [33].
In image processing applications, the AOS scheme was found to be an efficient way for
approximating the PeronaMalik filter [72], [73], especially if symmetry in scale-space is
required. The AOS scheme is first order in time, semi-implicit, and unconditionally stable
with respect to its time-step [73]. These methods have been applied to a wide range of
image processing applications and often lead to very efficient numerical algorithms.

5. Bregman iteration: Iterative optimization methods based on penalization or Bregman
distance [69], [71] have been proposed very recently. In [71], [69], the authors used
variable-splitting to separate theL' and L? terms and then solved an equality constrained
optimization problem by penalization and alternative minimization. Bregman iteration
for image processing was originated from [12] and was introduced by Osher et. al. in
[19]. It has been extended to wavelet-based denoising [70], nonlinear inverse scale space in
[24] and compressed sensing [76]. The basic ideas to transform the equality constrained
optimization problem into a series of unconstrained problems using Bregman distance.
By combining the variable-splitting and Bregman iteration, Goldsteinet. al. obtained
split Bregman method in [12] which is particularly efficient for L' regularized problems,
e.g., TV restoration.

6. Augmented Lagrangian method [76]: for total variation image restoration. It has many
advantages over other methods such as penalty method. As only linear problems need to
be solved during the iterations, FFT can be applied to get extremely efficient implemen-
tations. In addition, the augmented Lagrangian approach provides close connections to
dual methods and split Bregman iteration [76].

7. Multigrid method [75]: It is one of the most powerful numerical methods for solving
some linear and nonlinear partial differential equations. In [58], the linear algebraic

multigrid method [59] was adopted for solving the above PDE in each (outer) step of
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a fixed iteration,while attempted to use the standard multigrid methods with a non-
standard and some what global smoother. Recently, nonlinear multigrid methods based
on the subspace correction approach, for example in [58] have been introduced to image

processing in [24]. Numerical experiments indicate their promising numerical potentials.

These methods have been widely used for image processing, and their strength and weak-
ness have also been observed from real applications. Dual methods and Bregman iterations
are fast, but they are under intensive investigation for the applications to more general image
processing problems. Graph-cut approaches are usually fast, but they can be only applied to
a special class of problems and could also have matriculation errors. The AOS and multigrid
methods also have limitations in the models that they can be applied.

The purpose of this work is to apply a fast solver based on overlapping domain decompo-
sition and a coarse mesh correction for image processing tasks. Our aim is to demonstrate

several essential advantages of the implemented method. More precisely,

1. This method can be used for various general variational-based image processing problems.
Indeed, based on this notion, one can easily apply the existing solvers to the minimization
problem by solving a sequence of subdomain problems of smaller scale.

2. In practice, the original problem, e.g., large size 3D data processing, could be too large,
which induces difficulties in applying a given solver. By splitting a large problem into
many smaller sub-problems, that we can easily solve.

3. The implemented method can save CPU time cost. The gain is significant, efficient and
relatively accurate for subdomain solvers,

4. The implemented method is well-suited for distributed-memory in parallel computers.

It is known that domain decomposition (DD) methods are powerful iterative methods for
solving partial differential equations [75]. Some recent progress has shown that DD methods
are also efficient for some nonlinear elliptic problems and some convex minimization problems
with mesh independent convergence. So far, it is still unknown wether or not, we can use
domain decomposition methods for the ROF model. Some recent efforts have been devoted
to study these problems [56]. For simplicity of presentation, we implemented and tested this

method on the tixotrop model, see (1), and presented some results. We provide numerical
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results to show its capability in processing images of large size with low cost in CPU time
and memory. Once again, the essence of this technique is to view a domain decomposition
procedure in space. The original minimization problem related to the tixotrop model is
reduced to some sub-minimization problems with smaller size over the sub-domains. If the
sub-minimization problems are solved exactly, the convergence of the generated sequence
is trivial to prove. Due to the degeneracy of the nonlinear equation of tixotrop, it is not
convincing that we will be able to prove the convergence rate for the numerical solutions.

This thesis is organized as follows. In chapter one, we present the preliminary results
used in our study. In Chapter 2 we write down the method in a more general setting and
start with the description of the subspace correction algorithm for the TV technique.

Contribution of this thesis

The main contribution of this thesis reflected in [77] is presented in chapter 3. We use in
this work a fast algorithm for nonlinear minimization problems with particular applications
to image denoising. We describe in details the implementation of the domain decomposition
and coarse mesh correction techniques. We compare the non-overlapping domain decom-
position approach with the total variation minimization, according more attention to the

computational time and the efficiency.



1.0 PRELIMINARIES

In his chapter, we present a basic notion and principal mathematical results which will be

useful to us in the next chapters. Further details can be found in [3], and [47]

1.1 DEFINITIONS AND BASIC PROPERTIES

Definition 1. An open connected set Q C R" is called a domain. By 2 we denote the
closure of €2; 0 Q =T 1is the boundary.

We use the following notation:

T = (T1,%9, ..., Ty) €ER", Qju=——

)
al'j

a=(o,as,...,0n) €ZY, is a multi-index

dlely
aq a2 .
0x{'0x5*...0xon

la] = a1 +as+ ... + a,, 0%u =

Next, Vu = (O1u, ..., 0yu), |Vu| = (Z |8ju|2)
j=1

and  Du= (Dyu,...,Dyu) in §2

Definition 2. Let 1 < p < +o0, by LP(S2) we denote the Banach space of all measurable

functions on €Y, such that:

LP(Q2) = u:Q — R;u measurable and / lul” dz < 400

Q



with the associated norm

1
ey = | [ 1l d
Q

For p = o0, L*(Q) denotes the essentially bounded functions

[[u]| oo () = sup [u(z)] -
e

For p = 2, the space L*(Q) is a Hilbert space, with inner-product

Yu,v € L*(Q), (u, V) 2y = /u(w)v(a:)dx

1.1.1 Weak derivatives

Let C§°(€2) denotes the space of infinitely differentiable functions ¢ : 2 — R, with compact
support in . We will call a function ¢ belonging to C§°(£2), a test function.

Definition 3. Suppose that o € N" is a multi-index. A function f € L} (Q) has a weak

loc
derivative 0°f € L}, (Q) if

loc

/aaf(ﬂi)w(fﬁ)dx = (-1 /f(x)(?%(x)dx, for all o(x) € Cg°(2).

1.1.2 Sobolev spaces

Definition 4. We call a Sobolev space of order 1 on €2, the space
H' (Q)={ue L*(Q),0uec L*(Q), 1 <i<n}

The space H' () is endowed with the norm associated to the inner product:

(u,v) = / (uv + Z@ﬂ@ﬂj) dx,
i=1

Q

and we note the corresponding norm:

1/2

Joll = w0} = | [lupdz+ [1oup

These spaces are separable Hilbert spaces.



Definition 5. Let 1 < p < oo and for every m € N, m > 1, the Sobolev space W™P () is
defined to be

W™ (Q) = {ue LP(Q),0% € LP(Q), Yo € N, |a| < m},

where 0%u is the derivative in the distribution sense

endowed with the norm:

=

fullyos = ( 32 [ 1orulrda

lo|<m @

All these spaces are Banach spaces. However, we will consider here the spaces W™? (Q) =

H™ (Q).

Definition 6. We denote by H} (Q) the closure of D(Q) in H(Q2). By extension, we note
H{" () the closure of D(Q2) in H™ () (for the norm H.HHM(W)).

1.1.3 Convex analysis

Let E be a norm vector space over R (n.v.s).

Definition 7. The set,
dom(f) ={z € E/ f(x) < +o0}

18 the effective domain of f.

Definition 8. If f does not assume both —oo and +o0o as values this definition of a convex

function is equivalent to
FOAzy 4+ (1= Nag) < Af(z1) + (1 = N) f(xg), Vo, 20 € E, and 0< A< 1.

Definition 9. A convex function f on E is lower semi-continuous (1.s.c.) if, for each i € R,

the convex level set
{reE/ f(x)<u}

1s a closed set in E. Lower semi-continuity of convex functions is a constructive property.



Given any convex function f on F, we may construct a I1.s.c. convex function f on F
by taking f such that
f(z) =liminf f(2),Vz € E

Definition 10. A convex function f on E is said to be proper if f(x) > —oo for allz € E

and f(x) < 400 for at least one x € E.

1.1.3.1 Conjugate Convex Functions

Definition 11. Let f be a proper convex function on E. Its conjugate function f* on E*

(with respect to the givern-bilinear function (.,.) ) is defined by

f*(z*) = sup{(z,2*) — f(z)},Vx € E*

zel

with E* is called the topological dual of E that is, the space of all continuous linear

functionals on E; the (dual) norm on E* is defined by

1/

pe= sup |f(2)]
ze l

o] <1

The function f* is a I1.s.c. convex function but not necessarily proper. However, if f is

a l.s.c, proper convex function, then f* is also Ls.c, proper convex and (f*)* = f

1.2 SUBDIFFERENTIABILITY

In this section we make use results of [37].

Definition 12. Let f : E — R be a real-valued functional on a Banach space E, The
directional derivative of f at x € E in the direction y € E is defined as the limit, if there

exists,




the last expression is called the Gateau differential of f(x) at x € E, and is denoted by

f'(x) € E*, if the above limit exists for every y € E and

f(xy) =y, f ()

There exists functions in which the above limit does not exist, which means that these
functions are not differentiable. For such functions we introduce a more general concept of

differentiability, called subdifferentiability.

Definition 13. Let f : E — R be a convex function, E* its topological dual, {-,-) the bilinear
canonical pairing over E x E*. The subdifferential of f at x € E, is defined by

0 if f(x) = oo,
{z*:{a*y—x)y+ f(x) < fy) forallye E} otherwise

y € Of (x) is called a subgradient. It is obvious from this definition that 0 € Jf(x) if and

only if x is a minimizer of f.

Proposition 14. For every function f : E — R we have

ot €0f (x) = € df (27).

If, further, f is convex, l.s.c., and proper, we have

zt € df (x) <= ze€df(z"). (1.1)



1.2.1 Subdifferential Calculus

Let E be a locally convex space, f : E — R, and t > 0. At every point # € E, we have

otf)(x) =tof(x).

Moreover, let fi, fo : E — R. At every point x € E, we have

Af1(u) + 0fa(u) CO(f1 + f2)(u)

Having an equality in the latter relation is far from being always fulfilled. However, there

is a simple case where it holds:

Proposition 15. Let f; and fy be convex, l.s.c., and proper. If there exists a point T €

Dom fi N Dom fs where fi is continuous, then we have for all u € F

A(f1+ f2)(x) = Ofi(z) + O fa(z).

Let us consider now the subdifferential of a composite function.

Proposition 16. Let E; and Ey be two locally convex sets with topological duals ET and
E;, g: Ey — Ey with adjoint g*, f: Ea — R a convex, l.s.c., and proper function, and
go f: E — R also a convex, l.s.c., and proper function. If there is a point g (z) , for

x € Ey1, where f 1s continuous and finite, then for all points v € F,, we have

d(fog)(x)=g"0f(g(x)).

1.3 FUNCTIONS OF BOUNDED VARIATION

In image processing, one is interested in recovering and preserving discontinuities in images.
Using classical Sobolev spaces, denoted by W1 (the Sobolev space of L!-functions with
L'-distributional derivatives), does not allow us to take such phenomena into account, since
the gradient of a Sobolev function is again a function. If u is discontinuous, then its gradient
has to be understood as a measure. Therefore we introduce the space of bounded variation

functions, which is adapted to this situation.



Definition 17. Let Q be an open subset of RY. A function u € L*(Q2) whose partial deriv-
atives in the sense of distributions are measures with finite total variation in € is called a
function of bounded variation. The vector space of functions of bounded variation in € is
denoted by BV (Q). Thus u € BV () if and only if u € L*(Q2) and there are Radon measures
1,..., N with finite total mass in such that

/ a¢d$ /gzﬁdDu forallp e CF (), i=1,...N (1.2)

ox;
Q

If uw € BV(R2), the total variation of the measure Du is

| Dul|| = sup /udivgzﬁdx7 o CHQRY), |¢p(x)| <1 for, 2€Qp <00
Q

The space BV () endowed with the norm

lull gy = / | de + | Du]
Q

is a Banach space. We also use / |u| dz to denote the total variation ||Dul|.

Proposition 18. Let u € L}, (). Then, u belongs to BV (Q) if and only if ||Dul| < cc.
In addition, ||Du|| coincides with |Du| for any v € BV (Q) and u — |Du| (2) is l.s.c. in
BV () with respect to the L}, (Q) topology.

Proposition 19. 1. (lower semi-continuity of the total variation) Suppose u,, € BV (), n =

1,2,.... and that u, — w in L} (). Then
/]Du] < hrf inf/\Dun\
Q Q

2. (approximation by smooth functions) Assume that u € BV (QQ). There is a sequence of
functions u,, € BV (2) N C* () such that

U, — u in L'(Q) and

/|Dun|—>/|Du as n — +00

Moreover, ifu e BV(Q)ﬁ LP(Q), p < oo, we can find u, € LP (), u, — u in LP ().



Definition 20. Let wu,,u C BV (Q2). Then (uy,), converges weakly-+ to u in BV (Q) if

1

e(82) and Du,, converges weakly-+ to Du as measures in 2.

U, — U N L

Theorem 21. 1. Let u,,u € BV(Q). Then u,, — u weakly-+ in BV () if and only if u,
is bounded in BV () and converges to u in L} ().

2. (compactness) Let @ C RY  be open, bounded, with O Lipschitz. Assume u,, € BV ()
satisfying |unll gy < M < oo for all n > 1. Then there is a subsequence u,; and a

function w € BV () such that u,, — u in L'(Q)

1.4 TOTAL VARIATION MINIMIZATION

Total variation based image restoration models were first introduced by ROF in their pioneer-
ing work [56] on edge preserving image denoising. It was designed with the explicit goal of
preserving sharp discontinuities (edges) in images while removing noise and other unwanted
fine scale detail.

Let f: Q C R? — R an original image descrbing a real scene and let ug be the observed

image of the same scene (i.e. a degradation of u). We assume that:

where ¢ stands for a white additive some noise and R is a linear operator modeling the
image-formation device. Given ug, the problem is then to reconstruct u knowing 1.3. As we
will see, the problem is ill-posed and we are only able to carry out an approximation of u.
A classical way to overcome ill-posed minimization problems is to add a regularization
term to the energy. This idea was introduced in 1977 by Tikhonov et al [60]. The authors

proposed to consider the minimization problem:
F(u) = / lug — Rul” dz + )\/ \Vul|? de. (1.4)
Q Q

The first term in F'(u) measures the fidelity to the data. The second one is a smoothing
term and A > 0 is a fixed regularization parameter weighting the importance of the two

terms.



To study this problem, the fonctional space for which both terms are well-defined is

Wh2(Q) = {u € L*(Q):Vue [L? (Q)]Q} i.e., the Sobolev space of L*-functions with
L?-derivatives. This choice of regularization may have advantages, since the corresponding
problem to solve is linear. However, using the L?-norm of the gradient as a regularization
term allows us to remove noises but the minimization of 1.4 performs too much smoothing
and hence does not preserve edges (i.e. intensity jumps along curves) and discontinuities
across hypersurfaces, i.e., across lines in 2-dimensions, see Figure 1.1. For our purposes
a good regularization term should ensure some smoothing and should preserve edges and
discontinuities.

In the context of image restoration Rudin, Osher and Fatemi [56] proposed to use the

total variation as a regularization technique. We recall that for u € L}, (Q)

TV (u) := Sup{/ udivdz : ¢ € [C} (Q)}z el < 1},
Q

is the variation of u, where C! () denotes the space of C-functions with compact support
in Q and ||¢||., = sup, />, ¥? (z). Moreover, u € BV (Q), the space of bounded variation
functions [2], if and only if TV (u) < co. In this case, |Du| (2) = TV (u) , where |Du] is the
total variation of the finite Radon measure Du, the derivative of u in the sense of distribu-
tions. If u € W (the Sobolev space of L!-functions with L!-distributional derivatives), then
|Dul () = [, |Vu|dz. It is well-established that the total variation preserves edges and dis-
continuities across hypersurfaces. Additionally it is convex and therefore also the minimiza-

tion problem, which reads then as

argmin/ | Ru — uo|? dz 4 20| Dul (),
Q

becomes convex. Hence many tools from convex optimization can be used to solve this
problem. This is a big advantage with respect to the non-convex approach of Mumford and
Shah, where the energy has to be minimized with respect to v and with respect to the edge
collection K. In this thesis we are interested in the efficient minimization in BV (Q2) of the
functional

S (u) 1= | Ru = woll}aq, + 20 |Dul (©), (15)
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where R : L?(Q) — L?(Q) is a bounded linear operator, uy € L? () is a datum, and o > 0
is a fixed regularization parameter. More precisely, we are concerned with minimizing J by
means of subspace correction and domain decomposition. That means, instead of minimizing
1.5 on the whole BV () we split the space into several subspaces and minimize alternating
on each subspace the functional of interest. Below we describe a few relevant and established
applications, where total variation minimization is already successfully applied [23]. Several
numerical strategies to efficiently perform total variation minimizations have been proposed

in the literature see for example [47].
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2.0 METHOD OF DOMAIN DECOMPOSITION

2.1 BASIC IDEA OF SUBSPACE CORRECTION AND DOMAIN
DECOMPOSITION

The method of subspace corrections are general iterative methods that have a variety of ap-
plications. The method of alternating projection, first proposed by Von Neumann (1933) (see
[62]), is an algorithm for finding the best approximation to any given point in a Hilbert space
from the intersection of a finite number of subspaces. The method of subspace corrections,
an abstraction of general linear iterative methods such as multigridand domain decomposi-
tion methods, is an algorithm for finding the solution of a linear system of equations. By
contrast for non-smooth and non-additive energies, such as 1.5, subspace correction methods
are far from being obviously working successfully.

When analyzing such methods three main issues are of high interest: (i) convergence,
(ii) rate of convergence, and (iii) the independence of the rate of convergence on the mesh
size, which can be interpreted as a preconditioning strategy. For smooth energies these
concerns are at large well-established, while for non-smooth energies convergence is ensured
but no rate of convergence is usually known. In the thesis of [47] the author showed that
decomposition strategies may converge to a minimizer of the original problem for non-smooth
and non-additive cases. Theorem 2.2.8 and Theorem 2.3.1, and preconditioning effects in
certain cases. However, a complete description of the rate of convergence and independence
of the mesh size is still a very open field of research. In this section we introduce domain
decomposition methods for smooth problems only, in order to describe the main ideas of
such splitting techniques. Before we do so, let us describe shortly the importance of such

methods. The main reason for the success of subspace correction methods is the reduction
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of the dimension with a potential for parallelization. In particular, subspace correction is
one of the most significant ways for devising parallel approaches that can benefit strongly
from multiprocessor computers. Such parallel approaches are mandatory when one has
to solve large-scale numerical problems, as they arise in many application of physics and
engineering. Let us summarize the main advantages of such an approach, which include (i)
dimension reduction; (ii) enhancement of parallelism; (iii) localized treatment of complex
and irregular geometries, singularities and anomalous regions; (iv) and sometimes reduction
of the computational complexity of the underlying solution method. There are a variety of
iterative methods appearing in the literature that fall into the category of subspace correction
methods, such as Jacobi method, Gauss-Seidel method, point or block relaxation methods,
multigrid methods, and domain decomposition methods. These techniques can often be
applied directly to the partial differential equation, but also the discretization of the problem

is of major interest. We refer to [64] for more details on subspace correction methods.

The first known subspace correction strategy was proposed by H. A. Schwarz (1869)( see
[57]) who introduced an overlapping domain decomposition in order to prove the existence
of harmonic functions on irregular regions that are the union of overlapping subregions
[[55], p26]. Domain decomposition refers to the decomposition of the spatial domain into
several subdomains. The original problem is then solved by iteratively solving alternating
problems. We focus now on domain decomposition methods and explain in more detail the
underlying idea, which can be adapted to more general subspace correction methods. In
particular, we review the non-overlapping domain decomposition as well as the alternating
and parallel overlapping domain decomposition approaches in the case of a splitting of the
physical domain into two subdomains. Their generalization to a partitioning into more
domains requires more sophisticated techniques, such as coloring, see [[25], [55], [59]] for more
details. For simplicity we discuss these methods now for a simple problem "the Poisson

problem", i.e., second-order self-adjoint elliptic problem,

Lu=—-Au=f inQ, u=0 ondl (2.1)

Let ) be a bonded domain in R™ (n = 2 or 3) ,with a lipschitz boundary I".
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2.1.1 Non-overlapping Domain Decomposition

Let us start by splitting the spatial domain €2 into two non-overlapping subdomains 2;and

Q, with interface T'such that Q = Q; U Q, and Q; N, # 0, ( see Figure 1.5.). We define the

domaine {2 to be:

Figure 1.1. Non-overlapping decomposition into

two domains

The interface between these two regions is defined by I' := 02y N €. In addition, we

assume that the boundaries of the subdomains are regular enough. Then problem (2.1) can

be formulated as

Eulzf iIlQl
u; =0 on 99 N O

u; = ug on I’

(2.2)
% = % on I
£UQ = f in QQ

\ s = 0 on 9y N OS2,

where each n is the outward pointed normal on I' from €2;. Here we see that due to the

partition of the original problem (2.1) is replaced by two subproblems on each subdomain

by imposing both Neumann and Dirichlet conditions on I'. These conditions transmit in-

formation from one domain patch to the other and therefore they are called transmission

14



conditions. The equivalence between the Poisson problem (2.1) and the multi-domain prob-
lem (2.2) is in general not obvious, but can be shown under suitable regularity assumptions
on f, typically f € L2, by considering the associated variational formulation.

Iterative Methods

We will now focus on solving the multi-domain problem (2.2) by iterative methods. These
methods typically introduce a sequence of subproblems on €2; and €2y for which Dirichlet
or Neumann conditions at the internal boundary are provided, which play the role of the
transmission conditions

The Method by Agoshkov and Lebedev The following non-overlapping domain
decomposition algorithm was proposed by Agoshkov and Lebedev (see [1]): given u” and

u§°> , for each k > 0 we have to solve

LugK“/Z) = f in Qq,
uFH = on 9 \T',
L (K+1/2) ult)
2 Fr— +ppul™TY Y = % +peuy” on T,
and
Luf ™ = f in €2,
ugKH) =0 on O \T', (2:3)
oo K1) u{F )
S T = g 2 Y on
ugkﬂ) = u(zk) + Bt (“gKH/Q) - uik)) in §1,

where py, g, > 0 and aj41, B4 € R are free parameters. This algorithm is a generalization
of many other methods, as the already mentioned Robin method (see [47]), which is obtained

by setting pr = v, gx = 1/75 and ag, = f, = 1 in (2.3).
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2.1.2 Overlapping Domain Decomposition

In this section we describe the so-called multiplicative and additive Schwarz methods (see
[57])

Let us decompose the domain Q C R? into two overlapping subdomains ; and €, such
that QN Qy # 0 ; and Q = QU Qo, cf. Figure 1.6. Further we denote I'y = 9Q2;N Q,, and

I'y = 0€2,N €4 the interior boundaries of the subdomains.

Figure 1.2. Overlapping decomposition into two

domains

Multiplicative Schwarz Method

The multiplicative Schwarz method starts with an initial value u(? defined in Q and

vanishing on 99 and computes a sequence of approximate solutions u™, u(?, ... by solving
Lo = f i, Lo = f in Q,
ugkﬂ) =u, . on Iy, and ugkﬂ) =, on Dy, (2.4)
ugkﬂ) =0 on 0 \I";. ugkﬂ) =0 on 0O\ I's.

The next approximate u**1 is then defined by

ugkﬂ) () if z € Qo,

WY () if 2 € DN Qo.

u(k+1) (I) _

It can be shown that the multiplicative Schwarz method (2.4) converges to a solution of

problem (2.1), see [49] and for a variational based proof consult [55] In particular, there
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exist constants ¢y, ¢y € (0, 1), which depend only on (£21,T'2) and (€5, I'1) respectively, such
that for all £k > 0

Hu/ﬂl B uﬁkﬂ)Hm(m) < aclu- U(O)”L“’(Fl)’
HWQ? — g Lo (02) < el “(O)HLw(m'

Note that the constants ci, cs depend on the size of the overlap and they can be quite
close to one if the overlapping region is thin [47].

Variational formulation Set(w,v) := [, wv,a(w,v) := (Lw,v), and Hj () =
{ve H(Q):v="0in O\;} as closed subspaces of H{(f2) by extending their elements

on ) by 0. Moreover we define the energy
1
J(w7 u) = §a(w7 w) - (fa w) + CL(U, w) (25)
Let us rewrite (2.4) in the following form

L2 By = f — £u® in Q)

uwFH2 &) e mgl(Qy).
and

L(u(k+1) . u(k+1/2)) = f- LuF+1/2) i Qy,

u(k+1) . u(k-i—l/?) e H&(Qg)

The variational formulation of method (2.4) reads as follows: initialize u(® € H(Q), and

for k£ > 0 solve

w1 € HIQ): a(w§k),v1) = (f,v1) — a(u® vy) for all v; € HL(Qy), (2.6)

u kL2 u(k)+w§k),

wék) € Hj(%) : &(Q,Uék),/l)g) = (f,v2) — a(u* T/ wy,) for all v, € HE (D),

WD 1/2) )
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Or equivalently

(
k :
wy' = argmin g, ey 0,) I (wi,u®),
u(k+1/2) — u(k) + wgk),
(2.7)
k :
wé ) = arg min w2€H3(92)‘]<w27 u(k+1/2)>7
wk+) — g (k+1/2) 4 wék).
\
From (2.6) we have
a2 —oy® p)) = a(u—u®, vy), u* D —u®) e my),
a(u(kJrl) . u(k+1/2)’vl) _ a(u . u(k+1/2)7 Ul); u(k+1) . u(k+1/2) € H&(QQ)
Which means
w12 &) = Py —u®) for all k > 0,

ukHD) — 12— Py — YD) for all k >
Or equivalently

uw—uYD = (I — P)(u—u®) for all k >0,

u—uF = (I = Py)(u—u*?) for all k > 0.

where P; : H}(Q) — H(€;) are orthogonal projections. From the latter immediately

follows the error recursion formula
ut ) = (I = Py)(u — u* YD) = (I = P)(I — P)(u—u®) forall k > 0.  (2.8)

Additive Schwarz Method
If we make the two steps (2.4) independent from each other, then we obtain the additive

alternating Schwarz method, which computes the sequence of approximations by solving

L.ugkﬂ) = f iny L (k+1) = f in Q
£ ooy w09
ugkﬂ) =0 on 0O \I'y u(k +1)2=0 on 92\I>.
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He next update u**+Y is then defined by

ugkﬂ)(a:) xz € Q\Qy,
uk ) (z) = ugkﬂ)(x) + ugkﬂ) (z) —u®(z) =€ Q Ny, (2.10)
W (2) e\

Variational Formulation The variational formulation of method (2.9) reads as

wgk) € Hi () : a(wgk),vl) = (f,v1) — a(u® v;) for all v; € H(Qy),
wi e HQ) : a(wgk),m) = (f,v2) — a(u®, vy) for all vy € HE(Qy), (2.11)

k )
w§ ) — arg min,, ¢ g1 (a,) J(wy, u(k)),

wi® = argmin, ey ay) J (w2, u®), (2.12)
wkHD) — (B wgk) + wgk)'
Where J(w,u) = ja(w,w) — (f,w) + a(u,w). By relation (2.10) we verify that the

original formulation (2.9) is equivalent to the variational formulation. Moreover from (2.11)

we have that

a(ugk-i- n (k)

a(wik), V1) = u® vy) = a(u —u® ),

a(wgk), vg) = a(ugkﬂ) — u(k), ve) = a(u — u(k), va),
and hence we deduce

JFY oy ® = P —u®) for all k>0,
ugkﬂ) —u® = Py(u — u(k)) for all k> 0.

Or equivalently

u— uﬁ’““) = (I—-P)(u— u®) for all k>0,

u— U;Hl) = (I —P)(u— u(k)) for all £ > 0.

Then by using the update (2.10) we get the following error recursion formula:

w— ) = — ugkﬂ) - uékﬂ) —u®) = (I =P, — P)(u—u®) forall £>0. (2.13)
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Inspired by the variational formulation (2.7) and (2.12) of the multiplicative and additive
Schwarz method in [42], a minimization of a functional formed by a discrepancy term with
respect to the data and by a ¢;-norm constraint by means of subspace correction is proposed.
That is, the functional is minimized by alternately minimizing local problems that are re-
stricted to suitable subspaces. We note that this problem is non-smooth, since a ¢;-term is
present, but additive with respect to the proposed splitting and therefore can be included in
the class of problems discussed in [21]. We recall this approach since it serves us as a model

for subspace correction methods for non-differentiable problems.

2.1.3 Subspace Correction for /;-norm Minimization

The minimization of the ¢;-norm is well-known to give an effective way for reconstructing
sparse signals from linear measurement [42],[47]. It has been shown that the minimization of
the ¢1-norm is very effective in several applications, such as compressed sensing, and image
processing [21], [17], [18]...

Let H be a real separable Hilbert space and for a countable index set A we define
Up(A) i= {u = (un)rea : (e [us]P)/P} for 1 < p < co. We are interested in the numerical

minimization in f5(A) of the functional
J(u) = | Tu — gl + 20 [[ully, 4 - (2.14)

where T : l5(A) — H is a bounded linear operator, g € H is a given observed datum,
and o > 0 is a fixed regularization parameter. In order to solve this minimization problem
with respect to u one can take an iterative thresholding algorithm [31]: pick an initial

u(® € £y(A)(u® =0 is a good choice) and iterate
u™ = S (u™ + T*(g — Tu™)),n >0, (2.15)

where T™* denotes the adjoint operator of T" and S,, : ¢5(A) — ¢3(A), defined component wise
by Sa(v) = (Savr)rea with

S() = v —sign (v)a if |v| > a,

0 otherwise,
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is the so-called soft-thresholding operator. The strong convergence of the algorithm in (2.15)
to find minimizers of J is proved in [31]. In [13], it was shown that under additional conditions
on the operator 7' or on minimizers of (2.14) the algorithm in (2.15) converges linearly, al-
though with a rather poor rate in general, see [39] for a more detailed discussion. There exist
several alternative approaches, that promise to solve ¢;-minimization with a fast convergence
[8]. One way to accelerate the speed of convergence of minimizing iterative soft-thresholding
algorithms for large-scale problems was proposed in [39], where a sequential and parallel
domain decomposition method for /;-norm minimization was introduced and analyzed. We

will explain now in more detail the main idea of this algorithm.

2.1.4 Sequential Algorithm

We decompose the domain A: set A into two disjoint sets A; (i = 1,2) i.e. A = A; U A,.
Associated with this decomposition we define Vi = {uy € lo(A) : supp(us) C A;} for i =
1,2. Then we minimize J in (2.14) by using the following alternating algorithm: take an

initial v = u(fl) + u(&) € Vi @ V,, for example, u(® = 0, and iterate

ufffl) ~ arg min J(ua, —i—ui@), (2.16)
UAq %]

uf:;l) ~ arg min J(U%H) +uga,),
uA2€ 2

u™ o = u(ffl) + uf4n2+1)7

where u,, is supported on A; only, ¢ = 1,2. This algorithm is inspired by (2.7) and (2.12),
but differently from the situations there, the energy (2.14) is now nonsmooth. Nevertheless

we observe that the ¢;-norm splits additively

[wa, + UA2||£1(A) = HuAl”El(Al) + ||UA2H51(A2) ’

and hence the subproblems in (2.16) are of the same kind as the original problem (2.14), i.e.,

for example, for the problem on A; we have

arg min J(u; + u{”) = arg min
uA1EV] uA1eV;

Tayua, — (9 — Tayu'y))

oy 20l
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where T4, (i = 1,2) are the restrictions of the matrix 7" to the columns indexed by A;.
Moreover, this splitting results in a dimension reduction for each subproblem. For solving
the subminimization problems of (2.16) we can use one of the before mentioned methods,

for example, again the iterative thresholding algorithm:

ulHEE = Sa ™ Tl (g = Tal)) = Tau® )G e {L2NG) (247)

This leads to the following sequential algorithm: pick an initial u(0) = uffl’L) —|—uf£2’M) €

0) _

Vi & Vs, for example, u! 0, and iterate

( n+1,0 n,L

QO (D)
n+1,0+1 n+1,¢4 % n,M n+1,4
U/EAI ) - Sa (uf41 ) + TAl((g - TA2UE42 )) - TAIUE41 ))> ?
(=0, L—1,
uffjl’o) — (M) (2.18)
n+1,0+1 n+1,4 * n+1,L n+1,0
uf D = 5 (w0 4 T (g = T ) = Tagul))
(=0, M—1,
n . n+1,L n+1,M
\ umth) = “541 )+ uf42 ),

Note, that we perform only a finite number L and M of inner iterations. However,
for any choice of L and M this algorithm produces a sequence (u(™),, such that .J(u(™) is
monotonically decreasing. Moreover, its convergence to a strong minimizer of the functional
(2.14) is proven [39]. Nothing is known about the rate of convergence, which is still an
open problem, however the great advantages of this subspace correction algorithm are the
fact that we can solve several smaller problems, instead of a large one. This may lead us
to an acceleration of convergence due to preconditioning effects with a reduction of overall

computational cost.
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2.1.5 Multidomain Splitting

The above described subspace correction algorithm is not restricted to a decomposition into
two subspaces, but can be generalized to an algorithm for multiple decompositions. We
split now the domain into multiple disjoint sets A;,i = 1,2, ..., N,such that A = U} A;.
Associated with this decomposition we define V; = {Ay € l5(A) : supp(us) C A;} for
1 =1,2,...,N. Then we minimize J by using the following alternating algorithm: take an

initial ©(©) = u(fl’L) + ...+ uffI’VLN) eVi @ Vy..® Vy, for example, u(® = 0, and iterate

( n+1,0 n,L
’U/E41 ) = ’U/qu 1)7
n+1,0+1 n+1,0 * N n,Li n+1,0
UE41 ) = SCV (uf‘h ) + TAl((g - ZiZQ TAzu,(AZ )> - TAIUE&[ )>> ’
g - O7 ---7L1 - 1,

(n+1,0) u(n,LN)

AN - Axn
U%;MH) = Sa (U(fﬁ:l’é) + i, (9= 20 TANuff:l’Li)i) — TANu(n+1,2))> 7
g == O, ...,LN - 17
\ w1 = ZfiluX’;+1’L;+(N71)u<n>'

The monotonicity of the energy with respect to the iterations and the convergence to an

expected minimizer is ensured by M.Fornasier et Al in [39].

2.2 DOMAIN DECOMPOSITION FOR TOTAL VARIATION
MINIMIZATION

This section is dedicated to overlapping and non-overlapping domain decomposition meth-
ods for total variation minimization. In order to successfully show convergence of these
methods. The subminimization problems in the overlapping and non-overlapping domain
decomposition methods are solved by the iterative oblique thresholding, which is based on
an iterative proximity map algorithm and the computation of a Lagrange multiplier by a

fixed point iteration.
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2.2.1 The Overlapping Domain Decomposition Algorithm

We are interested in the minimization of the functional

J(u) := || Tu g3 + 20|V (u)| (), (2.19)

where T': H — H is now any bounded linear operator, g € H is a given data, and a > 0, is
a fixed constant. We recall that in order to guarantee the existence of minimizers for (2.19)
we assume condition (C), i.e., that J is coercive in H. Now, instead of minimizing (2.19)
on the whole domain, we decompose (2 into two overlapping subdomains €2; and €2y such

that Q = Q; U Q,,Q2 N Qy # 0, and a certain splitting property for the total variation, i.e.,

|VU‘<Q> = ‘VU\Q1|(91)+cl(u\(ﬂ2\91)UF1>7 (2‘20)

Vul(Q) = [Vua|(922) + cauj@,\0q)urs),

where ciand ¢ are suitable functions that depend only on the restrictions ujq,\q,)ur, and
Uy \0z)ur, Tespectively, is fulfilled. The simplest examples of discrete domains with such
a property are discrete d-dimensional rectangles (d-orthotopes). For instance, with our
notations, it is easy to check that for d = 1 and for €2 being a discrete interval, one computes
c1(uj@o\anyury) = [Vuanayur [(Q22\Q1) UT1), ea(u@aq)ur.) = [Vuj@namor, | ((2:0\Q22) U
['9)); it is straightforward to generalize the computation to d > 1. Hence, for ease of
presentation, we will assume to work with d-orthotope domains, also noting that such
decompositions are already sufficient for any practical use in image processing, and stressing
that the results can be generalized also to subdomains with different shapes as long as
(2.20) is satisfied. However, for consistency of the definitions of gradient and divergence, we
assume that also the subdomains §2; are discrete d-orthotopes as well as €2, stressing that
this is by no means a restriction, but only for ease of presentation. Due to this overlapping
decomposition of the domain (2, the function space H is split into two closed subspaces

Vj={ue H : supp(u) C Q;}, for j = 1,2. Note that H = Vj + V4 is not a direct sum
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of V; and V5, but just a linear sum of subspaces. Thus any v € H has a non unique

representation
uy () r € U\ Qy,
u(w) = ¢ wuy(x) + u(x) z €0 N0, w € Vii=1,2. (2.21)
us(x) x € N\,

We denote by I'; the interface between Q; and 2,\2; and by I's the interface between 2y
and 1\ (the interfaces are naturally defined in the discrete setting). We introduce the

trace operator of the restriction to a boundary I';
Trip; : Vi — R, i=1,2

with T'rp; (v;) = vi|r,, the restriction of v; on I';. Note that R is as usual the set of maps
from I', to R. The trace operator is clearly a linear and continuous operator.
We additionally fix abounded uniform partition of unity {x1,x2} C H such that
(a)Tyr,x; =0 for i = 1,2,
O)x1 +x2 =1,
(c)suppy; C Q; for i =1,2,
(@) max{ |, o s IIall o} = e < oo.

We would like to solve

arg min J(u) (2.22)

by taking an initial u(®) = aﬁo) + &go) eVi+ Weg., ﬂgo) =0,7 = 1,2, and iterate

" argmin e, J(vg + @57,
TT|F1'U1=O
W xargmin e, J(Y A+ 0g),
e 2.93
w1 ugn—l-l) + ugn—i-l)’ ( . )
~(n+1 n
e p———
~(n+1 n
\ u; . Yot

Note that we are minimizing over functions v; € V; for ¢+ = 1, 2 that vanish on the interior

boundaries, i.e., T, v; = 0. Moreover u™ is the sum of the local minimizers u&”) and
2
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ué"), which are not uniquely determined on the overlapping part. Therefore we introduced

a suitable correction by y; and x, in order to force the subminimizing sequences (uY‘))n
(n))
2

and (us '), to remain uniformly bounded. This issue will be explained in detail below, see

Lemma (27). From the definition of y;, i = 1,2, it is clear that

u§n+1) I ugn—&—l) = u™D = (yq + xo)u™tY = ﬂ§n+1) + a;n-i-l)'

Note that in general v!” = @™and " = 4" . The realization of the approximate
solution to the individual subspace minimizations, discussed in the next section, for the

general subspace correction algorithm in (3.5).

2.2.2 Local Minimization by Lagrange Multipliers

Let us consider, for example, the subspace minimization on {2,

arg mi‘r} J(v1 4+ ug) = arg mi‘r/l [ Tvy — (g — Tug)||5 + 20|V (v1 + u)[(Q).  (2.24)
v € V1€
T"\I‘ll ’1)11:0 Tr\Fll U11:0

We observe that {u € H: Ty u="T,. us, J(u) < C} C {J < C}. By assumption (C)
these sets are bounded and hence the minimization problem (2.24) has solutions.

In order to realize an approximate solution to (2.24) we use the following algorithm: for

o = e Vi

WY = arg flnel& T3 (uy + ug, ul?), € > 0, (2.25)
TT|F1U1:0

where J} is the surrogate functional of J defined , i.e., for a, u, € Vi, u, € Vo we have
i (uy 4 ug,a) = J (ug +ug) + [luy — all; = |7 (ua — a)|f3 - (2.26)

Note that J; can be written in the following form

Ji (ug 4+ ug, a) = Hul —(a+ (T (g —Tuy — Ta))‘gl)H; + 2a|V(uy + u2)|(Q) + ®(a, g, us),
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with ® being a function of a, g, us only. Additionally in (2.25) we can restrict the total

variation on {2; only, since we have

V(1 + u2)[(Q) = |V (ur + us)ja, | (1) + e (u2]@01)ury), (2:27)

where we used (2.20) and the assumption that u; vanishes on the interior boundary I';.

Hence (2.25) is equivalent to

arg umel‘r/l T3 (ug + ug, ul?) = arg gnelg Jur — 21|35 + 20 |V (ug 4 ug)| ] (Q1),  (2.28)
TT‘Fll u11:0 TT|F11 u11:O

where z; = uﬁ” + (T * (g —Tug — Tugz)))hl. Similarly the same arguments work for the

second subproblem.

G

Let us now clarify how to practically compute u; ) for a given u

9 . To do so we need

to recall a useful result from convex analysis.

We observe that in order to solve the subminimization problems (2.28) we have to solve

a constrained minimization problem, i.e.,

arg min{ F'(z) : Gz = 0}, (2.29)

zeH

where ' : H — R is a convex functional and G : H — H is a bounded linear operator

on H. We have the following useful result,

Theorem 22. . ([47]). Let N ={G*\: A € H} = Range(G*). Then, 2" € {xr € H : Gz =

0} solves the constrained minimization problem (2.29) if and only if

0 € OF(zo) + N. (2.30)

Oblique Thresholding (OT)
We want to exploit theorem (22) in order to produce an algorithmic solution to each

iteration step (2.25), which practically stems from the solution of a problem of this type

arg m€1‘1/1 |y — 21 || + 2cx V(1 + uz) g, | ().
uy 1

TTll"l u1=O
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It is well-known how to solve this problem if u, = 0 in €2; and if the trace condition
is not imposed. For the general case we propose to use the oblique thresholding strategy,
which was already introduced for the general subspace correction method. In what follows

all the involved quantities are restricted to 1, e.g.,us = ugq,.

Theorem 23. (Oblique thresholding). For uy € Vo and for z; € Vi the following statements

are equivalent:

(i) ui = argmin_wev, g — 215 + 20 [V (g + us)| () ;

r|F1 U=

(ii) there exists n € Range(Tr,. )* = {n € Vi with supp(n) = I';} such that

0 € uj = (21 = n) + adVi|V (-+uz) | () (u7);

(iii) there exists n € Viwith supp(n) = I'; such that uf = (I — Pyg)(21+us—n) —ug € V4
and Ty, uj = 0;

(iv) there exists n € Vi with supp(n) = I'y such that T'r, n = Tr. 21 + Tr, PaK(n—

(21 + ug)) or equivalently

n=(Try )" Try (21 + Pax(n — (21 + u2))). (2.31)

The proof follows analogue arguments as the one of Theorem 3.1.4 in [47] by just correctly
replacing the projection 7y, by the trace operator 7. and by replacing the spacesV; with

the new ones respectively.

Proposition 24. The following statements are equivalent:
(i) there exists n € Vi such that n = (T, )*Tr. (21 + Pax(n — (21 + u2))) (which is in
turn the condition (iv) of Theorem (23)

(ii) the sequence (n(™),, produced by the following iterative algorithm

n® e Vi, supp n'® =Ty (2.32)

pmth = (TT|F1) Ty, (z1 + Poe(n'™ — (2 + u2))) ,m > 0.

converges to any n € Vi that satisfies (2.31).
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Convergence of the subspace minimization
From the results of the previous section it follows that the iteration (2.25) can be explicitly

computed by

i = Sa(ul? +T*(g = Tuz = Tu?) + uz =1 ¥) = u, (2:33)

where S, := I — P,K and n¥ € V; is any solution of the fixed point equation

0= (Tr, ) Trie, (W + T (g = Ty = Tul”)) = Pare(wl” + T*(g = Tup = Tul” + uz ~ 1)) .

The computation of 7 can be implemented by the algorithm in (2.32).

Proposition 25. Assume us € V, and ||T|| < 1. Then the iteration (2.33) converges to a

solution uf € Vi of (2.24) for any initial choice of ugo) e V.

The proof of this statement is analogue to the one of Theorem 3.1.9. in [47] We conclude
this section by mentioning that for the minimization on V5 all the results presented here hold

symmetrically by just adjusting the notations accordingly.

2.2.3 Convergence of the Sequential Domain Decomposition Method

In this subsection we want to prove the convergence of the algorithm in (2.23) to minimizers
of J. In order to do that, we need a characterization of solutions of the minimization problem
(2.22) as the one provided in [[61], Proposition 4.1] for the continuous setting and specified
for the discrete setting in Proposition 3.2.2 in [47].

Convergence properties

We return to the sequential algorithm in (2.23). Let us explicitly express the algorithm

as follows: take an initial u(® = aﬁo) + ﬂéo) e Vi + V,, for example, ﬂgo) = 0,7 = 1,2, and
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iterate

n)

¢
(n+1,0) (
u 1

1

I
=g

uﬁ"*”*” =argmin_.ev, Ji(ur + ~gn)7U§n+1’€)) t=0,..,L-1,
Tr‘rlu;l:O

ugnJrl,U) )

= a{",
ué”“’mﬂ) =argmin  u,ev, Jj(ugnH’L) + ug, ué”“’m)) m=20,...M—1, (2.34)
Tr‘F2 u2=0
u(n+1) - ugn-‘rl,L) + u(2n+1,M)7
a§n+1) - X1'U(n+1),

~(n+1 n
\ ug =y u ),

The algorithm in (2.34) consists of two nested iterations. The inner iterations with in-
dexes ¢ and m constitute the iterative solution for the sequence of surrogate function on each
subspace. Hence, these iterations approximatively compute minimizers for the functional J
on the subspaces. The outer iteration with index n stems from our domain decomposition
approach and iteratively computes the minimizer of J on the whole space. Note that we
do prescribe a finite number L and M of inner iterations for each subspace respectively and
that w1 = aﬁ”“) + ﬂénﬂ) , with u§”+1> = aﬁ“”, i = 1,2, in general. In this section we

want to prove the convergence of the algorithm in 2.34 for any choice of L and M.

Proposition 26. (Convergence properties). Let us assume that ||T'|| < 1. The algorithm in
2.34 produces a sequence (u'™),, in H with the following properties:

(i)J (u™) > J(uV) for all n € N (unless u™ = u+1);

(it [ — )], = 0;

(iii) the sequence (u™),, has subsequences that converge in H.

We will skip the proof of this proposition, since it follows analogue arguments as the one
of Theorem 3.1.12 in [47], .
The use of the partition of unity {x;, x»} allows not only to guarantee the boundedness

of (u™),,, but also of the sequences (aﬁ”))n and (aé”’)n_

Lemma 27. The sequences (125") )n and (ag’”‘))n produced by the algorithm in (2.34) are

bounded, i.e., there exists a constant C > 0 such that ™ <C fori=1,2.
2

i
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Proof. From the boundness of (u(™), we have

= [l < ex [, < €.

for + = 1,2

Lemma 28. The sequences (ngn’L))n and (n nM))n are bounded.

Proof. From previous considerations we know that

ugn,L) _ S ( YLL 1) +d ~(n 1) _ngn,L)) _ﬂgn71)7
D S, D o) o)

Assume that (n{™"),, were unbounded, (iii), also S, (""" + @™ — ") would be

unbounded. By the monotonicity property of .J, see proposition (26), we obtain :

~
—_

) (n+1 0) _lrtm) 2

2
2

-

— 0,n — o0. (2.35)

T
o

Since (aé"))n and (u ("’L))n are bounded by Lemma (27) and formula (2.35), we have a
contradiction. Thus (n; (. )) has to be bounded. With the same argument we can show that
(n$*),, is bounded.

Convergence to Minimizers

Now we are eventually able to show that the algorithm in (2.34) is indeed converging to

a minimizer of the original functional J.

Theorem 29. (Convergence to minimizers). Assume |T|| < 1. Then accumulation points
of the sequence (u'™),, produced by the algorithm in (2.34) are minimizers of J. If J has

a unique minimizer, then the sequence (u("))n converges to it.
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Proof. Let us denote u(*) the limit of a subsequence. For simplicity, we rename such a

subsequence by (u(),. From Lemma (27) we know that (aﬁ”))n,(agn))n and consequently

(u{™™),,,(ud™)),, are bounded. So the limit u(> can be written as

ul™®) = u§°°) + ug’") = a§°°) + ﬂéoo), (2.36)

where u§°°) is the limit of (ugn’L))n, u§°°) is the limit of (ugn’M))n, and ﬁgoo) is the limit of

(n) (c0) (c0)

(a; ') for i = 1,2. Now we show that @y ’ = us . By using the triangle inequality, from

(2.35) it directly follows that

— 0,n — 0. (2.37)

n+1,M ~(n
-,

Moreover, since x, € V3 is a fixed vector which is independent of n, we obtain from

Proposition (26) (ii) that

X2 (™ =t )|, — 0,0 — oo,

and hence

Haé"’ - ag"“)HQ 5 0,n — oo. (2.38)

Putting (2.37) and (2.38) together and noting that

‘ uén—&-l,M) _ agn) i ‘ agn) _ ﬂgn—i-l) > Hugn—‘rl,M) _ agn-i-l)
2 2 2
we have
(n+1,M)  ~(n+1)
Us — Uy , 7 0,n — o0, (2.39)
which means that the sequences (u{"""), and (@), have the same limit, i.e., @5 = u{™

, which we can denote by u$™ . Then from (2.39) and (2.36) it directly follows that (> =

u.

We set

2
Fl (ugn-i-l,L)) — ‘ ugn-‘rl,L) - Z](_n+1’L)H2 + ZOL‘V(UYL_‘_LL) + ﬂ/(n) )|(Ql)’

210,
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where

Z§n+1,L) — u§n+1,L71) X (T*(g Tu(n) Tu§n+1,L1)))Q
1

The optimality condition for u{""™" is

0 € Ay, F ("1 4 21

where

n D = () Ty (G 4 PacnHY = 0 — ).
In order to use the characterization of elements in the subdifferential of |Vu|(f2), i.e.,
(Proposition 3.2.2 in [47]), we have to rewrite the minimization problem for F;. More
precisely, we define

2]o,

r n n ~(n n 2 n
Fl(é-g_ +1,L)) — ‘fg_ +1,L) _ U( ) _ Z§_ +1,L)H + 2a’v<€§- +1,L))|(Ql)

for gi”“’” € Vi with T'rp, & (n+1,L) _ é ") Then the optimality condition for 5 (n+1,L) 49

0 € OFy (D) 4 gl (2.40)
Note that indeed £ is optimal if and only if u{""™* = ¢{"*15) _ ug‘g is optimal.
Analogously we define

1M n1,M (n+1,L 1,0m) |2 n1,M
Fy(el™ (et — D) D 90 9 (60 (00)
for fg"H’M € V, with T7“|F (n+LM) _ §”+1’L> and the optimality condition for 5 (n+1,M)
is

0 € OF (5T 4 gplr D), (2.41)

where

n+1,M n+1,M n+1,M n+1,M n+1,L
B = (T ) Ty (7)o Pasclnf 10 = 27040 oty
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Let us recall that now we are considering functionals with ¢(s) = s, T = I, and Q =

(n+1,L) . (n+1,L)

Q0 = 1,2. We get that 55"“’” , and consequently u, is optimal, i.e., —2m; €

8F1(£§"+1’L)), if and only if there exists an Ml("H) = (Méj}*”,ﬂﬁ”*”) € Vi x V& with

|M§n+1)(x)| < 2a for all z € € such that

——(n+1) n+1,L ~(n (n+1,L
(@), (VY + @) @) +20(VE i) @) =0 (242)
—2(u" P (@) = A (@) — div I (@) 2T @) =0, (243)
for all x € £2;. Analogously we get that f (nt1,M) , and consequently ué"H’M) is optimal,

—op M) e 9 R, (€M) i and only if there exists an M"Y = (Mégﬂ),ﬂénﬂ)) €
Vo x Vg with (375" (2)] < 2a for all 2 € Q, such that

(0, @), (V™ 4 a0 @)+ 20l (T +a ) @) =0 (2.44)

—2uf M () — 2D () — div My () — 208 () = 0, (2.45)

for all = € Q. Since (M&n) (x)), is bounded for all z € €y and (H(n) (x)),, is bounded for
all © € (), there exist convergent subsequences (Mﬁ”’“)( ) and (M (nk)( ))k. Let us denote

Mi‘”)(x) and Méoo) (z) the respective limits of the sequences. For simplicity we rename such

sequences by (Mi")(x))n and (Mén) (2))n.
Note that, by Lemma (28)(or simply from (2.43) and (2.45) the sequences (ngn’L))n and
(né"’M))n are also bounded. Hence there exist convergent subsequences that we denote, for

gn,M))n with limits 77(.00)71' = 1,2. By taking in (2.42)-

7

simplicity, again by (n{"™), and (n

(2.45) the limits for n — oo we obtain

(M7 (@), (V™ + uf) (@) + 20|V + o)) = 0 forall w € O,

—2(ul™(2) = 2®)(2)) — ding )(x) —2®)(z) = Oforallz e
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<Mé°o)(x), (V (™ + ugoo)))(:c)>Rd +20|(V(ul® +ul®))(z)] = 0forall z € Qy,

—2(ul™(z) — 25 (2)) — divﬂéoo) (z) — 205 (z) = 0 forall z €

(o0)

) = I’y and supp ny ' =TI'y we have

Since supp n§°°

<M§°°) (2), (V(u(oo))(x)>Rd +20](Vu®)(z)] = 0 forall z € Q, (2.46)
9T ((Tu®)) () — g(2)) — divd () = 0 for all # € Q\I

<Mé®o) (x), (V(u(oo))(:p)>Rd +2a|(Vu®))(z)] = 0forall z € Qy, (2.47)
o7 ((Tu®))(2) — g(x)) — divds () = 0 for all = € Qy\Dy.

Observe now that from (proposition 3.2.2 in [47]) we also have that 0 € J(u(*)) if and
only if there exists M(>®) = (Méoo) ) M(oo)) with |M(Oo) ()] <2« for all z € Q such that

<M(°°> (2), (V(u(oo))(:v)> R? 4 20|(Vu™)(z)| = 0for all z € Q, (2.48)
—2T*((Tu*)(z) — g(x)) — div DT> (x) = 0forall z € Q.

Note that W;OO) (x),7 = 1,2, for x € Oy N satisfies both (2.46) and (2.47) .

Hence let us choose

M) (z) if z € Q\I'y,

M) (z) =

With this choice of M(*) the equations (2.46) - (2.48) are valid and hence u(*) is optimal
in Q.
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Remark 30. (i) If Vu(™®)(z) =0 for x € Q;,;=1,2, then MEOO) is given by

(ii) The boundedness of the sequences (ﬂﬁ"))n and (ﬁg") )n has been technically used for

showing the existence of an optimal decomposition u(®) = u§°°)+u§°°’ in the proof of Theorem
(29). Their boundedness is guaranteed as in Lemma (27) by the use of the partition of the
unity {x,, xo}- Let us emphasize that there is no way of obtaining the boundedness of the local
sequences (u&"’L))n and (ugn’M))n otherwise. In Figure 4.6 we show that the local sequences
can become unbounded in case we do not modify them by means of the partition of the unity.

(iii) Note that for deriving the optimality condition (2.48) for u'™) we combined the
respective conditions (2.46) and (2.47) for u§°°) and uéoo) . In doing that, we strongly took
advantage of the overlapping property of the subdomains, hence avoiding a fine analysis of

7% and ) on the interfaces 'y and Ts.

Remark 31. The generalization of the algorithm to a multiple domain decomposition is
straightforward. Let us split now ) into N > 2 owverlapping domains §2;,¢ = 1,...,N.
Associated with this decomposition we define V; := {u € H : supp(u) C §;} such that
H =V, + ..+ Vy and we denote u; = wy,u fori =1,..., N.By I'; = 0Q;\0Q2 we denote the
inner interfaces of the domain patches. Further we fix a bounded uniform partition of unity

(BUPU){x1,....xN} C H such that

a) Trip,x; =0 fori=1,...,N,

(

(b)Zz 1 Xz = 1

(c) supp x; C ; fori=1,..., N,
(d

||Oo} = ¢, < 00.

) maX{HX1Hoo JRRES)

Then we define the overlapping multiple domain decomposition algorithm as follows: for

an initial V; + ...+ Vy > u(o) + ...+ u(o) =u® € H, for example, a@(p) =0,2=1,..., N, use
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the iteration

( (n+1,0) _ ~(n)
u1 = u1 ’
n+1,0+1)

Ug (n+1,0)

: N ~(n)
= argmiil  uev ‘]f (ul + Zi:2 U; ~ U )7
T7“|F1 u1=0

(=0,.,L —1,

u(n +1,0)N =P,
u Y = argmin uger, SRS 0 uy ™),
Tr|pNuN:O

(=0,...Ly—1,

N +1,L
umth = dic ugn )7

\ ag”“) = y;um fori=1,..., N.

(2.49)

The surrogate functionals J? are defined in an analogous way as above, for instance, J; is
given as in (2.26) by just substituting ZZVZQ uﬁ”) for u, and by using the appropriate spaces.
Then one can show the same convergence properties as in proposition (26) and Theorem

(29). Hence the convergence of algorithm in (2.49) to a minimizer of the original functional

(2.19) is ensured.

2.2.4 Applications and Numerical Implementations

In this section we present the application of the sequential algorithm ( 2.34) for the mini-
mization of J in one and two dimensions. In particular, we give a detailed explanation of
the domain decompositions used in the numerics.

Numerical Results

In the following we present numerical examples for the sequential algorithm in ( 2.34)
in two particular applications: signal interpolation and compressed sensing. The scope of
the section is to illustrate by simple examples the main properties of the algorithms, as
proven in our theoretical analysis. In particular, we emphasize the monotonicity properties
of the algorithms with respect to the energy .J, the boundedness of the iterations due to
the implementation of bounded uniform partition of unity (BUPUs), and the robustness

in correctly computing minimizers independently of the size of overlapping regions. In the
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numerical experiments the value for the parameter o has been chosen experimentally, i.e., we
chose the value that gave the best compromise between visual quality of the minimizer and
computational time of the algorithm. Note however, that there exist more systematic ways
in order to choose an optimal value for «,, where the choice depends both on the data noise
level and the exact solution of the problem, for a general approach in regularized inverse
problems, or for a discussion of the correspondence between the noise level and « in the case
of total variation minimization. In Figure 2.4 and Figure 2.5 we show a partially corrupted
1D signal on an interval €2 of 100 sampling points, with a loss of information on an interval
D C Q. The domain D of the missing signal points is marked with green. These signal points
are reconstructed by total variation interpolation, i.e., minimizing the functional .J in ( 2.19)
with @ = 0.4 and T'u = 1\ p-u, where 1g\p is the indicator function of O\D. A minimizer

() of J is precomputed with an algorithm working on the whole interval  without any

U
decomposition. We show also the decay of relative error and of the value of the energy J
for applications of algorithm in ( 2.34) on two subdomains and with different overlap sizes
q =1,5,10, 20, 30. The fixed points n’s are computed on a small interval ﬁi,i =1, 2, of size
2. These results confirm the behavior of the algorithm in ( 2.34) as predicted by the theory;
the algorithm monotonically decreases J and computes a minimizer, independently of the
size of the overlapping region. A larger overlapping region does not necessarily imply a slower
convergence. In these figures we do compare the speed in terms of CPU time. In Figure 4.6
we also illustrate the effect of implementing the bounded uniform partition of unity (BUPU)
with in the domain decomposition algorithm. In this case, with datum ¢ as in Figure 2.3,

we chose a = 1 and an overlap of size ¢ = 10. The fixed points 1’s are computed on a small

interval Qi,i = 1, 2 respectively, of size 6.
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Figure 2.3. We present a numerical experiment related to the interpolation of a 1D signal by

subinterval. The initial datumg is shown in (a). As expected, the minimizer u(* is the constant

vector 1, as shown in (b). In (c) and (d) we display the rates of decay of the relative error and of

total variation minimization. The original signal is only provided outside of the green

the value of J respectively, for applications of the algorithm in ( 2.34) with different sizes

G =1,5,10,20, 30 of the overlapping region of two subintervals.
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Fig. 2.4. We show a second example of total variation interpolation in 1D. The initial

datumg is shown in (a). As expected, a minimizer u(>) is (nearly) a piecewise linear function,

as shown in (b). In (c) and (d) we display the rates of decay of the relative error and of the

value of J respectively, for applications of the algorithm in ( 2.34) with different sizes

G =1,5,10,20, 30 of the overlapping region of two subintervals.

1 domain | 4 domains | 16 domains
CPU time 23086.68 s | 6531.94 s 1583.52 s
Nr. outer iterations 1000 10 10

Table 2.1: Regularization parameter o = 0.1, 3 inner iterations on the subdomains.
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The stopping criterion for all three algorithms is when the squared L?-norm of the dif-
ference between the current minimizer and the original image ||u(”) — uOTgH; gets below

e = 0.0048.

While the algorithm applied on the whole domain does not reach the prescribed accuracy
after more than 6 hours of running time, the computation with multiple subdomains can
reach the result in less than half an hour. We also emphasize that in these experiments
the computational time decreases linearly with the number of subdomains, showing that
the computation of the Lagrange multipliers, used in our algorithm in order to correctly
interface the patches, has a nearly negligible cost with respect to the minimizations on the

subdomains, see Table 2.1.

2.3 NON-OVERLAPPING DOMAIN DECOMPOSITION ALGORITHM

The work presented in the previous section was particularly addressed to overlapping domain
decomposition. In this section we show how to specify the subspace correction algorithm
from Chapter 3 [47], i.e., the algorithm in (3.13 ) in [47] , to the case of a non-overlapping
domain decomposition as suggested in [42]. The functional of interest to be minimized is
again the discrete functional J in (2.19) together with the coercivity condition (C'). Now,
instead of minimizing J on the whole domain, we propose to decompose () into disjoint
and non-overlapping subdomains. We limit ourselves to split the problem into two disjoint
subdomains ©; and Qy such that Q; C Q and Qy = Q\Qy, but one can easily generalize
the splitting to multiple subdomains. As in the previous section, we assume again, only
for simplicity, that also the subdomains €2; are discrete d-orthotopes as well as 2. Due to
this domain decomposition H is splitted into two closed orthogonal and complementary
subspaces Vi = {u € H : supp(u) C ;},for i = 1,2,i.e., H =V, @ V5. Note that in the

following w; = my, (u), for i = 1,2. Now we would like to solve ( 2.22) by picking an initial
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VieoV,s uﬁ‘” + ugo) =u0 ¢ H,e.g.,u(o) =0,7=1,2, and iterate

7

u{"™ ~ arg miny, e, J(v1 + 1),

WS & arg ming, ey, (w4 vy), (2.50)

u(n+1) — ugn—l-l) + ugn—l-l).

The subspace minimization problems of the algorithm in ( 2.50) are solved as described
in Section 3.1 in [47]. That is, for J; defined as in (3.4) in [47] now with the spaces V; from
above,each subspace minimization is approximated by the surrogate functional minimization
¢
1)

u§°) e Vi, u(leﬂ) = arg min J; (u; + ug, u {>0.

)
v1€V]

(cf. (3.5) in [47]), which is then solved by Lagrange multipliers or more precisely by iterative
oblique thresholding.

2.3.1 Convergence of the Sequential Domain Decomposition Method

Let us return to the sequential algorithm in (3.13) in [47] and express it explicitly for the

case of a non-overlapping domain decomposition as follows: take an initial

VieVe > uf”L) + ug]’M) =u" € Heg., ugo) = 0,7 =1, 2, and iterate

.
+1,0 L
w0 u§” )

1 = )

ugnH’Hl) = arg minu1€V1 Jf(ul + UgmM)? u§”+17€)) f = 0’ tt L - 1’
ugnﬂ,o) _ ugn’M), (2.51)
uén+1,m+l) — argmin,, ey, Js(ugn—irl,L) T ug, Uén+17m)) m=0,..,M-1,

u(n+1) — ugnJrl,L) + u;nJrl,M).

\

In this section we want to prove its convergence to a minimizer of the discrete functional
J for any choice of finite numbers L and M of inner iterations. We recall that by Theorem
3.1.12 in [47] the algorithm in ( 2.51) decreases the energy J monotonically and converges.
Moreover only under some technical conditions, which are in general not fulfilled, the al-
gorithm even converges to a minimizer of the original functional ( 2.19). However, in the
numerical experiments shown in [42], the algorithm seems always converging robustly to the

expected minimizer.
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Convergence to Minimizers

We close this gap between the lacking theoretical analysis and the promising numerical
examples from above by showing that the algorithm in ( 2.51) indeed converges to an expected
minimizer in our discrete setting. Then by following the same strategy as in the proof of
Theorem (29) we are eventually able to prove the convergence of the algorithm in ( 2.51) to

minimizers of J.

Theorem 32. (Convergence to minimizers). Assume |T|| < 1. Then accumulation points
of the sequence (u™),, produced by the algorithm in ( 2.51) are minimizers of J. If J has

a unique minimizer, then the sequence (u("))n converges to it.

Proof. Note that due to the orthogonal splitting of {2 the sequences (ugn’L)) and (u2" M ))n
produced by the algorithm in (2.51) are bounded. Hence there exist convergent subsequences,
which we denote for ease again by (ugn’L)) and (u$ (n,M ))n.

(00) (n (00)

Let us denote by u;” the limit of the sequence (u;" ’L))n and us ~ the limit of the sequence

(u5™")

5 n- Then by analogous arguments as the ones in the proof of theorem 2.2.8 we obtain

with the help of the following optimality conditions

(A1 @), (V™ +uf)(@)), + 200V (e +uf) (@) = 0forallz € Q
—2ul(z) — 2 (2)) — ding )(:L‘) — 2\ (x) = 0forallz e,

for u(loo) and the following optimality conditions

(317 @) (V™ + uf)(@)), + 20|V (W +uf)(@)] = 0forallz € Q
—2(ul™(z) — 25 (2)) — dz'vM; )(a:) — 2 (z) = 0forallz €,

for ug . Since 771 ) eV is only supported in €2, i.e. ng )(a:) =0 1in 4, and ng‘”) %

is only supported in €y, i.e., 77% )(x) = 0 in €, we have

<M§°°>(x), (V(u(oo))(a:)>Rd +2a|(Vu™)(z)] = Oforallze (2.52)

=27, T*((Tu®)(z) — g(z)) — divﬁgoo) () = Oforall z e
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<Méoo) (x), (V(u(oo))(x)>Rd + 20| (Vul®) (z)| = 0 for all z € Q (2.53)

o, T (Tu®)) (2) — g(a)) — div IS () = 0 for all 7 € Q.

Observe now that from proposition 3.2.2 [47] we also have that 0 € J(u(>)) if and only
if there exists M) = (Méoo),ﬁ(oo)) with |M () (z)| < 2a for all » € Q such that

<M(OO) (z), (V(U(OO))(IJ)>RUZ + 20| (Vu®)(z)| = 0 forall z € Q (2.54)
—2T*((Tu'™)(z) — g(x)) — divﬁ(w)(aj) = 0 for all x € Q.
Hence let us choose
ME(z) = M7 (x) if x € Qy,
M) (z) if z € Q

With this choice of M(*) equations(2.52)-(2.54)are valid and hence u(* is optimal in €.

Remark 33. Note that in comparison to the proof of Theorem (29), here we could not
use the overlapping property of the subdomains, but we took strongly advantage of the fact
that supp n; C Qs and supp n, C Q1. Hence we could restrict the corresponding optimality
conditions in (2.52) and (2.53) to the domain Q1 and Q0 only.
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3.0 OVERLAPPING AND NONOVERLAPPING DOMAIN
DECOMPOSITION METHODS FOR IMAGE RESTORATION

3.1 INTRODUCTION

In this chapter we present some applications of domain decomposition techniques to image
restoration. Here we are concerned with an overlapping and nonoverlapping domain decom-
position methods for image restoration by the tixotrop model. Given the observation that
natural and man-made tmages are characterized by extensive relatively uniform parts, one
may want to help the reconstruction by imposing that the interesting solution is the one which
matches the given data and has also few discontinuities localized on sets of a lower dimen-
sion. In this chapter we review both nonoverlapping and overlapping domain decomposition
methods for the Tixotrop model minimization and we provide their convergence properties
to global minimizers. Furthermore, we show efficiency by numerical applications in classical

problems of signal and image processing.

3.2 THE MINIMIZATION PROBLEM

Assume that u is a piecewise constant function as given in [39]. The multiphases piecewise

constant Tixotrop model [46] is to solve the following minimization problem:
. £ » A 2
minF'(u) = p |Vul’ dx + g |V(u—u0)|dx+§ |u — uo|” dx (3.1)
Q Q Q

Where p can be adaptively selected based on the local gradient image features that is,

away from edges, p tend to 2 to preserve edges. Therefore this new model where p = 2 can
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effectively reduce the staircase effect in 7'V model whereas it can still retain the sharp edges

[23]. For more details, the reader is referred to [74]

3.3 DOMAIN DECOMPOSITION BASED SUBSPACE CORRECTION
METHOD

We put the method in a more general setting and start with the description of the subspace
correction algorithm of [39]. Given a reflexive Banach space V' and a convex, Gateaux

differentiable functional F': V' — R,we consider the minimization problem:

minF(u) (3:2)

ueV

Under the notion of space correction, we first subdivide the space V' into a sum of smaller

subspaces:

V=V+Vot-+Vp, (33)

in the sense that for any v € V', there exists v; € V; such that v = ) v,.
i=1
Following the framework of [29] and [51] for linear problems, we solve a finite sequence

of sub-minimization problems over the subspaces (V;))_;:

minF' (u" + e), (3.4)

ecV;

where u" denotes a the previous approximation. Two types of subspace correction methods

based, known as the parallel subspace correction (PSC) and successive subspace correction
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(SSC) method, were proposed in [31], [52]. Here, we adopt the latter, which can be described

as follows:

Algorithm SSC. Choose an initial value ug € V' .
For n =0,
while j =1,...,m do
Find e} € Vj such that
F (untG=0/m pen) < F (untU-D/m o)) Yoy €V (3.5)
set

end

Go to next iteration for n.

As an illustrative example, we apply the algorithm to the regularized Tixotrop denoising

model with the cost functional:

F(u) = %/Q|Vu|2da:dy + oz/Q \/B + |V (u — up) | dady (3.6)

1
+—/|u—u0|2dxdy, a,B8>0
2 Ja

where 1 is a given noisy image defined on 2 = (0,1) x (0,1). Here, F' is differentiable and

avoiding the division by zero in the corresponding Euler-Lagrange equation:

V (u — ug)
VBHIV (u—uo)?

with an homogenous Neumann boundary condition du/0n = 0 along the boundary. Recall

Au — o div

+u = ug (3.7)

that the lagged diffusivity fixed-point iteration for (3.7) is to solve the linearized equation:

\V4 (uk—H _ UO)
VBV (=)

with the initial value ug. We see that each iteration involves all the pixel values in the image

AuFt — o div

+uftt =wy, k=0,1,..., (3.8)

domain, so it will be costly and usually the system is not well conditioned when the image’s
size is large. The domain decomposition based SSC algorithm will overcome the difficulties

by breaking down the whole problem into sub-problems of much smaller size.
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Firstly, we use an overlapping domain decomposition to decompose the solution space
V = H'(Q). More precisely, we procceed by a partition of the domain 2 into m overlapping

subdomains
m

Q= 4NUAD, k#], (3.9)

j=1
Clearly,each subdomain €2; is colored with a color j, and {2; consists of m; subdomains

(assumed to be “blocks” for simplicity), which are not intersected. Hence, the total number

of blocks that cover (2 is :
M=> "m (3.10)
j=1

Figure 1 illustrates schematically the decomposition of €2 into four colored subdomains with
25 blocks. Based on the above domain decomposition, we decompose the space V = H'(Q)
as the following :

j=1
where H; (£2;) denotes the subspace of H' (£2;) with zero traces on the “interior” bound-
aries 0€2;\0S). by applying the SSC algorithm to the Tixotrop-denoising model leads to an
iterative method.This is to say:
Given an initial value ug € V', Algorithm SSC leads us to get u™ from
i—1 i—1
F (u”*JT + e?) <F (u”*JT + Uj) ,Yv; € V; = Hg (Q;)

(3.12)

g i=1
un+m = u7’L+ m —|— 67.1

i I<j<m.
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Figure 3.1. Schematic illustration of the

coloring of the subdomains, and fine/coarse
meshes on Q = (0,1)2, This corresponds to

the decomposition:

Here, we notice that e is the solution of the subproblem over €; . It is also easy to see

that u™+# satisfies the associated Euler-Lagrange equations for 1 < j < m,

i : V(“H%‘“O) i :
Au"tm — o div +u"tm =wug, in Q;
Joelo (7 ) T
1
6un+% (3 3)
5= =0, on 00N oS,
unt =yt on  09Q;\00.

. g =1 . i .
Outside €, we have v"*m = """ % with «""m = u(n......), thus, there is no need to solve

u i outside ;. As the subdomain (2; may contain many disjoint “blocks”, the values of

u"*%% can be obtained in parallel in these “blocks” by solving (3.13).

3.4 NUMERICAL ALGORITHM

At this stage, we present the full two-level algorithm formulated in the previous section for

the Tixotrop denoising model.
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First, we subdivide the image domain = (0,1) x (0,1) into N x N uniform cells with

mesh size h = 1/N. The cell centers are given by

(zi,y;) = ((i = 1) .h, (j — 1) .h), 1<i,j<N+1. (3.14)

0. 0

.; be the pixel value of the original image u

As a second step we procceed by letting u

at (z;,y;), and u; ; be the finite difference solution at (x;,y;). By using the notation:

(5;tui,j =+ (uiiu — ui,j) s 5yium ==+ (ui,jil — ui,j) s (315)

Optiij = (Uit1; — i), Oy = (Wi — ij-1) (3.16)

the finite difference approximation of (3.7) is:

wny — 65 (57uiy) — 8 (5 uiy) — o N T S PN € BT
5

Y \/(5§ui,j)2+(5$ui,j)2+5h

where aj, = 3 and ), = 4hf3, with a = 0.5, §=0.1.

3.5 NUMERICAL RESULTS

We present in this section various numerical results to demonstrate the efficiency of the
proposed domain decomposition algorithms without and with a coarse domain correction,
denoted by DD and DDC in short, respectively. If we, assume that the pixel values of all
images lie in the interval [0,255], and the Gaussian white noise is added by the normal
imnoise function imnoise( 1, ‘gaussian’, M, o) (i.e., the mean M and variance o) in Matlab.
In our numerical tests, we use PSNR as a criteria for the quality of restoration. This

quantity is usually expressed in terms of the logarithmic decibel scale by:

(255)

1 a0 )2
mn Z (UW ui»j
/L?]

PSNR = 10log,, (3.18)
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where {u;; — ugj} are the differences of the pixel values between the restored and original
images. Typical values for the PSNR in lossy image and video compression are between
30dB and 50dB (the higher implies the better). Acceptable values for wireless transmission
quality loss are considered to be about 20dB to 25dB. We shall also use the relative dynamic

error between two consecutive iterations:

bk
H“ Ul 2

(3.19)
[0¥]] L2

for a prescribed tolerance ¢, as the stopping criteria.
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Figure 3.2. Row one: original image (left lena-512 x 512), noise image with o = 0.04
(middle) and restored image(right) obtained by DD with subdomain size d = 32,
overlapping size 6 = 4,0 = 0.025, ¢ = f = 10 — 4. Here, PSNR = 25.9388 (TV)

Restored image

obtained by DD with
subdomain size

d=32,overlapping size

0=4,0=0.025,e=£=10-

Original image

Noise image with 4. The
(512x512) 0=0.04 PSNR=35.9388.

Figure 3.3.
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Original image

Noised color image with

15% multiplicative noise.

Restored color image

size = 4.

obtained with subdomain

size d = 64,overlapping

ThePSNR = 27,303.

Comparison of TV, and Tixotrop, a =

93

Figure 3.4.
Image d |Jd]| k | PSNR Time Image d 0| k | PSNR | Time
TV 45 | 25.9725 | 415.9900 Tixotrop 42 | 29.9782 | 1970.2
1163259135 | 6.32% 1155 29.9892 | 13.81%
2 | 51| 25.8780 | 15.32% 2| 45 | 29.9994 | 12.40%
3|46 | 25.8724 | 5.82% 3140 | 29.9997 | 12.74%
Lena 512 41431259261 | 16.41% | Lena 512 32 4 |40 | 29.9697 | 13.96%
32 | 5411259022 | 17.86% 5139 | 29.9587 | 15.28%
6| 41 | 25.8859 | 19.84% 6 | 39 | 29.9797 | 16.88%
7145 25.9778 | 24.71% 7139 | 29.9497 | 20.54%
8 | 46 | 25.9247 | 28.62% 8 |39 | 29.9897 | 24.10%
Table3.1.Different overlapping size with stopping residual e = 1074, 0 = 0.04

0.025 and 8 = 1072




To illustrate the impact of overlapping sizes, we present results in Table 3.1 the PSNR
and C'PU time of the classic TV by the lagged diffusivity fixed-point iteration and Tixotrop
with subdomain size 32 and 64 for black and white, and color images respectively, but with
different overlapping size d. Here, the percentage of the C'PU time is against TV. We see
that the PSNR obtained by Tixotrop is not so sensitive to the overlapping size ¢, while the
computational time increases as § increases, as expected. To have a good trade-off between
the convergence rate and the quality of restoration, it is advisable to choose § to be 2,3 or
4. Tt is essential to point out that the use of Tixotrop leads to a remarkable reduction of
computational time in particular for images of large size. Numerical results are shown in

Figure 3.3. for Lena-512 x 512 image and Figure 3.4. for a color image.
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4.0 CONCLUSIONS

In this thesis, we presented a technique based on a domain decomposition. This technique
involving many known results from fonctional to numerical analysis, has lead us to enumerate
all the tools needed in our applications. In a preliminary chapter, we started by introducing
the fonctional spaces, the conversity, the differentiability and some optimisation methods.In
the second chapter we described the domain decomposition procedure in a general way.
Finally, we presented our contribution resumed in a domain decomposition method for an
image processing problem by the tixotrop model. As a first step, we described in details,
the implementation of the domain decomposition and coarse mesh correction techniques.
Then by several numerical simulations we gave useful guidelines for the choice of parame-
ters through such quantitative studies, and demonstrate the effeciency of the implemented
methods in CPU time and memory saving. The results shown in table 3.1. and Figures 3.4.
and 3.5. show the advantages for our tixotrop model and the subdomain technique used.
Moreover, we compared the proposed method with the dual algorithms with respect to the
decay of numerical residuals. We conclude that, these techniques are very useful from many

points:
1- The low cost: less CPU time is needed
2- The quality of the stored image: the PSNR is qualitatively better

3- Simpler problems are solved: a large scale problem is decomposed to subproblems of

much smaller size in an efficient manner

4- Parallel computing can be used

95



4.1 FUTURE WORK

As an extension to this work, we plan to:
(i) implement some other algorithms for solving the Tixotrop model for vectorial and
colored images.

(ii) Use parallel implementations.

4.2 APPENDIX: CODE FOR THE TIXOTROP MODEL IN MATLAB

The following is a matlab level algorithm for the solution of the tow-dimensional model

problem tixotrop equation for image processing.

function Tizotrop overlap 2D

%% %%0%0%%0%0 % %0 %0 %0 %% %0 %0 %0 %0 %0 %0 %0 %0 %0 o %o %0 %0 %0 %0 %0 Vo
%%% Overlapping DOMAIN DECOMPOSITION FOR
Tixotrop-DENOISING AND INTERPOLATION of 2D IMAGES %%%
%% %% %%% % % % % %% %% % % % %0 %0 %0 %0 % %0 %0 %0 %0 %0 %% %o
9%0%%%% % % %% % %0 %0 %0 %0 %% % %0 %0 %0 0 %0 %% %0 %0 %0 %0 %0 % %o

% % Domain Decomposition Method for Tixotrop Minimization.
%% %% %% %% % % % %% % % % % % %0 %% % % % % % % % % % %

close all

t=cputime;

%choice of a grayvalue image:

image = 'Lena.png’;%image = ’color image.jpg’;
g=imread(image);

g=rgb2gray(g);

g=double(g);

[m,n] =size(g)

%% Definition of PARAMETERS: %% % %% % %%

h=1; %spacestep size
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dt=1/4; %timestep size

Ipower=-0.5; %Lagrange multiplier \lambda_0=10"lpower

lambda0=10"Ipower;

D=4; %Number of subdomains

sub=3; %number of iterations in each subdomain

erreta=10"(-9); %aimed maximal error in the computation of \eta

itetamax=10; %maximal number of iterations in the fixed point computation of \eta

projerr=10"(-2); %aimed error in the computation of the projection of Chambolle to
compute the tixotrop-seminorm.

errthresh=10"(-6); %aimed error in the computation of the outer iterations, i.e. the
computations of the minimizer.

overlaphalf=floor((m/D)/6);%=13

overlap=2*overlaphalf; %size of overlap

etacompl=5;

etacomp2=0;

% %%% % %% % % %% % % %% % % %% % %6 % %

%scale image values to [0,1]

g = g./max(max(g));

%grayvalue range for plotting

clims=[0 1]

% %%%%% % % %% %% % % % % %0 %% % % % % %6 % %

%(LAMBDA = CHARACTERISTIC FUNCTION OF \OMEGA \setminus D):

lambda = ones(m,n);

% Comment the next 7 lines if used for image denoising!

[jk] = find(g ==0); %t

sd = size(j,1);

for i=1:sd

lambda(j(i),k(i)) = 0;

end

clear j k sd
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lambda = sparse(lambda);

% INITTALIZATION:

u=sparse(g);

%DOMAIN DECOMPOSITION:

%Split the problem in D subproblems with overlapping domains:

%% %% %0 %0 %0 %0 %0 %0 %0 %0 %0 % %0 % % % % % % % % % % %o

% % % %o

% % % %

% Omega_ 1 %\Gamma_2 %\Gamma_1 Omega 2 %

% % % %

% % %o %o

%% %% %0%%% % %0 %0 %0 %0 %% %0 % %0 %0 %0 %0 %% % % Yo

% \Omega = \Omega_1\cup\Omega 2

% \Gamma_ 1 = interface of \Omega 1; \Gamma_ 2 = interface of \Omega_ 2
% u in \Omega_1\setminus\Omega 2 = ul;

% uin \Omega 1\cap\Omega 2 = ul+4u2;

% uin \Omega 2\setminus\Omega 1 = u2;

%% %% %%% % % % % %% % % % % % %0 %% % % % % %0 % %0 %

%Size of \Omega 1 = sl =(m/D)+overlaphalf

%\Gamma_ 1 = s1+1

s=floor(m/D);

Eud(:,:,1)=zeros(m,n);

Eud(1:s-overlaphalf,:,1)=u(1:s-overlaphalf;:);

%On the overlapping part \Omega 1 \cap \Omega 2 we define ul=u/2;
Eud(s-overlaphalf+1:s4-overlaphalf,:,1)=u(s-overlaphalf+1:s4-overlaphalf,:) /2;
%Correction function for u_ 1

Chi(:,:,1)=zeros(m,n);

Chi(1:s-overlaphalf,:,1)=1;

for j=s-overlaphalf+1:s+overlaphalf

Chi(j,:,1)=1-1/overlap*(j-(s+overlap /2-overlap+1));

o8



end

Chi(s4overlaphalf4+1:m,:,1)=0;

if D>2

for i=2:D-1

Eud(:,:,i)=zeros(m,n);

Eud((i-1)*s-overlaphalf+1:(i-1)*s+overlaphalf,: i)=u((i-1) *s-overlaphalf+1:(i-1) *s+overlaphalf,:) /2;
Eud((i-1)*s+overlaphalf+1:i*s-overlaphalf,:,i)=u((i-1)*s-+overlaphalf+1:i*s-overlaphalf,:);
Eud(i*s-overlaphalf+1:i*s+overlaphalf,:,i)=u(i*s-overlaphalf+1:i*s+overlaphalf,:) /2;
%Correction function for u_ i

Chi(:,:,i)=zeros(m,n);

for j=(i-1)*s-overlaphalf+1:(i-1)*s+overlaphalf
Chi(j,:,i)=1/overlap*(j-((i-1)*s+overlaphalf-overlap+1));

end

Chi((i-1)*s+overlaphalf+1:i*s-overlaphalf,:,i)=1;

for j=(i)*s-overlaphalf+1:i*s+overlaphalf
Chi(j,:,1)=1-1/overlap*(j-(i*s+overlaphalf-overlap+1));

end

end

end

%Size of \Omega D = m-(D-1)*s+overlaphalf

%\Gamma_2 = (D-1)*s-overlaphalf

Eud(:,:,D)=zeros(m,n);
Eud((D-1)*s-overlaphalf+1:(D-1)*s+overlaphalf,:,D)=u((D-1)*s-overlaphalf+1:(D-1)*s+overlaphalf,:),
Eud((D-1)*s4overlaphalf+1:m,:,D)=u((D-1)*s+overlaphalf+1:m,:);

%Correction function for u_2 (BUPU)

Chi(:,:,D)=zeros(m,n);

Chi(1:(D-1)*s-overlaphalf,:,D)=0;

for j=(D-1)*s-overlaphalf+1:(D-1)*s+overlaphalf
Chi(j,:,D)=1/overlap*(j-((D-1)*s+overlaphalf-overlap+1));

end
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Chi((D-1)*s4overlaphalf4+1:m,:,D)=1;

%Test if the sum of the Chi’s is 1

for i=1:m

if(sum(Chi(i,:,1:D),3) "=1)

fprintf(’Chi is not correct choosen’)

pause()

end

end

% %%% % % %% % %% % % %% %

uplot (:,:,1)=zeros(m,n); uplot(:,:,2)=zeros(m,n); uplot(:,:,3)=zeros(m,n);
uplot(:,:,1)=u; uplot(:,:,2)=u; uplot(:,:,3)=u;
for i=1:D-1

uplot (i*s-overlaphalf,:,1)=1;

uplot (i*s-overlaphalf,:,2:3)=0;

uplot (i*s+overlaphalf+1,:,1:2)=0;

uplot (i*s+overlaphalf+1,:,3)=1;

end

figure

imagesc(uplot,clims); axis image; axis off; title(’'Initial Picture’);
pause(0.01)

% %%% % %% % % %% % % %% % % % % %

%

%orect = get(gef, Position’);

Y%rect(1:2) = [0 0];

%%%%%% MOVIE %%% %% %% % %%
figure

%count number of necessary outer iterations:
r=0;

err=1;

while err > errthresh
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r=r+1;

% %%% % %% % % %% % % %% % %0 %% % %0 %0 % % %0 % %

%% ITERATION FOR Ul IN \OMEGA 1 %%%%%%

% %%% % % %% % %% % % %% % %0 %% % %0 %0 % % %0 % %

%Computation only takes place on \Omega 1 + \Gamma_1

for k=1:sub
gl=lambda(1:s4-overlaphalf+etacomp2+1,:).*(g(1:s4-overlaphalf+etacomp2+1,:)-...
sum(Eud(1:s+overlaphalf+etacomp2+1,:,2:D),3));
yl=sum(Eud(1:s+overlaphalf+etacomp2+1,:,2:D),3);
z1=FEud(1:s4overlaphalf+etacomp2+1,:,1)+...
lambda(1:s4-overlaphalf+etacomp2+1,:).*(gl-Eud(1:s+overlaphalf+etacomp2+1,:,1));
%FIXED POINT ITERATION FOR \ETA only within a small stripe around \ Gamma,_1:
etal=zeros(s+overlaphalf+etacomp2+1,n);
etatr=etal(s+overlaphalf-etacompl+1:s+overlaphalf+etacomp2+1,:);
ytr=y1(s4overlaphalf-etacompl+1:s+overlaphalf+etacomp2+1,:);
ztr=z1(s+overlaphalf-etacompl+1:s+overlaphalf+etacomp2+1,:);

d=1;

it=0;

while (d > erreta*sum(sum(abs(etatr(:,:;,1))))/100) & (it<itetamax)
ftr=etatr(:,:,1)-ytr-ztr;

%Chambolle

divp=proj(ftr,Jambda0,dt,projerr);

etatrl=ztr+lambda0.*divp;

etatrl(1:etacompl,1:n)=0;

if etacomp2>0

etatrl(etacompl+2:etacompl+etacomp2+1,1:n)=0;

end

d=sum(sum(abs(etatr(:,:,1)-etatrl)));

etatr(:,:,1) = etatrl;

clear etatrl
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it=it+1;

end

clear f divp it

%We compute the projection for u_1 only in Omega 1
etal(s+overlaphalf+1,:)=etatr(etacompl+1,:);
fl=yl+zl-etal;

divpl=proj(fl,lambda0,dt,projerr);

clear f y omegal

%%%% % %% % % %% %% SOLUTION E_1u_ 1" {(n+1)} of minimization problem in \OMEGA _1:

Eud(1:s+overlaphalf+etacomp2+1,:,1)=z1-etal-lambda0.*divp1;
Eud(s+overlaphalf+1:m,:,1) = 0;

clear z_omegal divp omegal eta omegal

end

ulnew=sum(Eud(:,:,1:D),3);

uplot (:,:,1)=zeros(m,n); uplot(:,:,2)=zeros(m,n); uplot(:,:,3)=zeros(m,n);
uplot(:,:,1)=ulnew; uplot(:,:,2)=ulnew; uplot(:,:,3)=ulnew;

for i=1

uplot(i*s+overlaphalf+1,:,1:2)=0;

uplot (i*s+overlaphalf+1,:,3)=1;

end

’ iterations

imagesc(uplot,clims); axis image; axis off; colormap(gray);title([num2str(r)
pause(0.01)

90%%% %% % %% %% % %% %0 %0%%%% %% %0

mov_matrix(D*(r-1)+1) = getframe(gcf,rect);

90%%% %% % %% % %% %% %0 %%0%% % %%

%% % %% %% %% %0 %0 %% % %0 %% %0 %0 %% %0 %0 %o

%% ITERATIONs FOR Ui IN \OMEGA i FOR 1<i<D%%

90%%% %% % % %% %0 %0 %0 %0 %0 %% % %0 %0 %0 %0 %0 %% %0 %o Yo

for i=2:D-1
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for k=1:sub
gd=lambda((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:).*...
(g((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:)-...
sum(Eud((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:,1:i-1),3)-...
sum(Eud((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:,i+1:D),3));
y=sum(Eud((i-1)*s-overlaphalf-etacomp2:i*s-+overlaphalf+etacomp2+1,:,1:i-1),3)+...
sum(Eud((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:,i+1:D),3);
z=FEud((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:,i)+...
lambda((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+-etacomp2+1,:).*...
(gd-Eud((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:,i));
%FIXED POINT ITERATION FOR \ETA only within a small stripe around \ Gamma _ i:
%Compute fixed point iteration for \eta only in a small stripe around

%\Gamma _i\cap\Omega {i-1}

etai=zeros(s+2*overlaphalf+etacomp2+2n);

etatr _L=etai(1l:etacompl+etacomp2+1,:);

ytr_L=y(l:etacompl+etacomp2+1,:);

ztr _L=z(1:etacompl+etacomp2+1,:);

d=1;

it=0;

while (d > erreta*sum(sum(abs(etatr)))/100) & (it<itetamax)
ftr=etatr L-ytr L-ztr L;

divp=proj(ftr,Jambda0,dt,projerr);

etatrl L=ztr L4lambda0.*divp;

if etacomp2>0

etatrl L(1l:etacomp2,:)=0;

end

etatrl L(etacomp2+2:etacomp2+etacompl+1,1:n)=0;

d=sum(sum(abs(etatr _L-etatrl L)));

etatr L = etatrl L;

clear etatrl L
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it=it+1;

end

clear ftr divp it y _stripel z_stripeL

%Compute fixed point iteration for \eta only in a small stripe around
%\Gamma _i\cap\Omega {i+1}

etatr  R=etai(s+2*overlaphalf-etacomp14-2:s+2*overlaphalf+etacomp2+2,:);
ytr  R=y(s+2%*overlaphalf-etacomp14-2:s+2*overlaphalf+etacomp2+-2,:);
ztr_ R=z(s+2*overlaphalf-etacomp1+2:s42*overlaphalf4+etacomp2+-2;:);
d=1;

it=0;

while (d > erreta*sum(sum(abs(etatr R)))/100) & (it<itetamax)
ftr=etatr R-ytr R-ztr R;

divp=proj(ftr,Jambda0,dt,projerr);

etatrl R=ztr R+lambda0.*divp;

etatrl R(1:etacompl,l:n)=0;

if etacomp2>0

etatrl R(etacompl+2:etacompl+etacomp2+1,1:n)=0;

end

d=sum(sum(abs(etatr R-etatrl R)));

etatr R = etatrl R;

clear etal stripeR

it=it+1;

end

clear ftr divp it ytr R ztr R

%We compute the projection for u_i only in Omega_ i
etai(etacomp2+1,:)=etatr _L(etacomp2+1,:);
etai(s+2%overlaphalf+1,:)=etatr R(etacompl+1);

f=y+z-etai;

divpi=proj(f,Jambda0,dt,projerr);

clear f y omegad
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%%% %% %% % %% % %% SOLUTION Eu_i~{(n+1)} of minimization problem in \OMEGA _i:
Eud((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:,i)=z-etai-lambda0.*divpi;
Eud(1:(i-1)*s-overlaphalf-1,:,i) = 0;

Eud(i*s+overlaphalf+1:m,:,i) = 0;

clear z_omegad divp omegad eta omegad

%We compute the projection for u_D only in Omega D
%etaD(etacomp2+1,:)=etatr(etacomp2+1,:);

%tD=yD+zD-etaD;

%divpD=proj _convset(fD,Jlambda0,dt,projerr);

%clear fD yD

%

%%%% % %% % % %% %% SOLUTION Eu_ D~{(n+1)} of minimization problem in \OMEGA D:
%Eud((D-1)*s-overlaphalf-etacomp2:m,:,D)=zD-etaD-lambda0.*divpD;
%Eud(1:(D-1)*s-overlaphalf-1,:.D) = 0;

%clear zD divpD etaD

end

uinew=sum(Eud(:,:,1:D),3);

uplot(:,:,1)=zeros(m,n); uplot(:,:,2)=zeros(m,n); uplot(:,:,3)=zeros(m,n);
uplot(:,:,1)=uinew; uplot(:,:,2)=uinew; uplot(:,:,3)=uinew;
uplot(i*s+overlaphalf+1,:,1:2)=0;

uplot (i*s+overlaphalf+1,:,3)=1;

’ iterations

imagesc(uplot,clims); axis image; axis off; colormap(gray);title([num2str(r)
pause(0.01)

%% %% % %% %% % %% MOVIE %% %% %% %% %% % %% %% % % %
mov_matrix(D*(r-1)+i) = getframe(gcf,rect);

%% %% % % % %% % %% MOVIE %%%%%%%% %% % %% %% % % %

end

%% %% %0 % % %0 %0 % %0 % % %0 % % % % % % % % % % % % % % % % % % %o

%% ITERATION FOR UD IN \OMEGA D %%%%%%%%%%%%
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for k=1:sub
gD=lambda((D-1)*s-overlaphalf-etacomp2:m,:).*(g((D-1)*s-overlaphalf-etacomp2:m.,:)-...
sum(Eud((D-1)*s-overlaphalf-etacomp2:m,:,1:D-1),3));
yD=sum(Eud((D-1)*s-overlaphalf-etacomp2:m,:,1:D-1),3);
zD=Eud((D-1)*s-overlaphalf-etacomp2:m,:,D)+...
lambda((D-1)*s-overlaphalf-etacomp2:m,:).*(gD-Eud((D-1)*s-overlaphalf-etacomp2:m,:,D));
%FIXED POINT ITERATION FOR \ETA only within a small stripe around \ Gamma,_D:
%Compute fixed point iteration for \eta
etaD=zeros(m-(D-1)*s+overlaphalf+etacomp2+1,n);
etatr=etaD(1:etacompl+etacomp2+1,:);

ytr=yD(1:etacompl—+etacomp2+1,:);

ztr=zD(1:etacompl+etacomp2+1,:);

d=I;

it=0;

while (d > erreta*sum(sum(abs(etatr)))/100) & (it<itetamax)

ftr=etatr-ytr-ztr;

divp=proj(ftr,Jambda0,dt,projerr);

etatrl=ztr+lambda0.*divp;

if etacomp2>0

etatrl(l:etacomp2,:)=0;

end

etatrl(etacomp2+2:etacomp2+etacompl+1,1:n)=0;

d=sum(sum(abs(etatr-etatrl)));

etatr = etatrl;

clear etatrl

it=it+1;

end

clear f divp it

%We compute the projection for u_D only in Omega D
etaD(etacomp2+1,:)=etatr(etacomp2+1,:);
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fD=yD+zD-etaD;
divpD=proj convset(fD,lambda0,dt,projerr);
clear fD yD
%%% %% %% % %% % %% SOLUTION Eu_ D~ {(n+1)} of minimization problem in \OMEGA _D:
Eud((D-1)*s-overlaphalf-etacomp2:m,:,D)=zD-etaD-lambda0.*divpD;
Eud(1:(D-1)*s-overlaphalf-1,:,D) = 0;
clear zD divpD etaD
end
%% %% %%%% % % %% %% %0 % %0 % %0 %0 %0 %0 %0 o Yo %0 %0 %0 %0 %0 %0 %o %o %0 %0 %0 %0 %0 %o
% %%% % %% % % %% % % %SOLUTION ON WHOLE DOMAIN:%%% % %%%
unew=sum(Eud(:,:,1:D),3);
err = sum(sum(abs(u-unew)))./(m*n)
u=unew;
clear unew
for i=1:D
Eud(:,:,1)=Chi(:,:,i).*u;
end
imagesc(u,clims); axis image; axis off; colormap(gray);title([num2str(r) ’ iterations ’]); %,
num2str(cputime-t) ’sec’]);
pause(0.01)
% %%% % %% % % %% % MOVIE %%%% % %% % % %% %
mov_matrix(D*(r-1)+D) = getframe(gcf,rect);
%% %% % %% % % %% % MOVIE %% %% % %%% % %% %
end
iterations=r
fprintf("Time: %f sec \n’, cputime-t);
%%% %% % P MOVIE % % % % % % % % % % % % % % % % % Yo
movie(gef,mov__matrix,1,50);
movie2avi(mov__matrix,[savepath 'movie.avi’],’compression’,’Indeo5’, fps’,2);

%9%0%%% % % %% MOVIE% % %% %% % % % % %% % % % %%
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%PROJECTION - CHAMBOLLE:

Y%lteration to compute the projection
%\Pi_{\lambda K})(a+A"*(g-Aa)) (Chambolle)
function divp=proj(f,lambda0,dt,projerr)
[m,n]=size(f);

px(1:m,1:n)=0;

py (1:m,1:m)=0;

p=sparse([px,py]);

diff=1;

it=0;

while diff > projerr * sum(sum(abs(p)))/(n*m)
it=it+1;

%divergence (backward differences)

divp(2:m-1,2:n-1) = (px(2:m-1,2:n-1)-px(1:m-2,2:n-1)) + (py(2:m-1,2:n-1)-py(2:m-1,1:n-

divp(2:m-1,1) = (px(2:m-1,1)-px(1:m-2,1)) + py(2:m-1,1);
divp(2:m-1,n) = (px(2:m-1,n)-px(1:m-2n)) - py(2:m-1,n-1);
divp(1,2:n-1) = px(1,2:n-1) + (py(1,2:n-1)-py(1,1:n-2));
divp(1,1) = px(1,1) + py(1,1);

divp(1,n) = px(1,n) - py(1,n-1);

divp(m,2:n-1) = -px(m-1,2:n-1) + (py(m,2:n-1)-py(m,1:n-2));
divp(m,1) = -px(m-1,1) + py(m,1);

divp(1,n) = -px(m-1,n) - py(m,n-1);

arg = divp - f./lambda0;

%gradient (forward differences)
gradx(1:m-1,1:n) = arg(2:m,1:n)-arg(1:m-1,1:n);
gradx(m,l:m) = 0;

grady(1:m,1:n-1) = arg(1l:m,2:n)-arg(1l:m,l:n-1);
grady(1:m,n) = 0;

grad = [gradx, grady];
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if sum(sum(grad==0))==n*m

absgrad=grad;

else

absgrad = abs(grad);

end

pl = (p + dt.*grad)./(1+dt.*absgrad);
diff = sum(sum(abs(p-p1)))/(2*m*n);
p=pl;

clear pl;

px(1:m,1:n) = p(1l:m,l:n);
py(1:m,1:n) = p(1l:m,n+1:2%n);

if it>100

it

end

end
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