
 

 وزارة الـتعـلـيم الـعالـي و الـبحـث الـعـلـمي     
 

            BADJI MOKHTAR –ANNABA 
UNIVERSITY 

            UNIVERSITE BADJI MOKHTAR 
                              ANNABA 


 	��� ����ر   ���� 
           
	��
 

 
 

Faculté des Sciences 
Année : 2016 

Département de Mathématiques 
 
 

THESE 
 

Présentée en vue de l’obtention du diplôme  
de DOCTORAT en Maths 

 
Option 

Mathématiques appliquées 
Titre 

 
Mathematical Techniques in Image Processing  

(Techniques Mathématiques dans le Traitement d'Images) 
 
 
 

Par 
 

ZEGHBIB FATIMA ZOHRA 
 

        DIRECTRICE DE THESE :  Mme  Nouri Fatma Zohra    Prof.     U.B.M. Annaba 
 

Devant le jury 
 

      PRESIDENT:                  
Mr. Haiour Mohamed               Professeur                 Univ.B.M.  Annaba 
 

        EXAMINATEURS :    
              Mr. Daili Nouredine                Professeur                     Univ. Setif 1 

 
  Mr. Taallah Frekh                            M.C.A.                          Univ.B.M.  Annaba 

      
                        Mr. Oueld Hamouda Amar     M.C.A.                            E.N.S. Kouba-Alger 
 

           Mr. Heller Benjamin               Directeur de Recherche    Sheffield Hallam University, UK 
     (Principle Research Fellow) 



Remerciements 

Je tiens tout d’abord à remercier très vivement ma directrice de thèse Mme. 

NOURI Fatma Zohra, Professeur de l’enseignement supérieur, d’avoir accepté de 

diriger ce travail de recherche. Elle m’a encouragé. Je lui exprime ma plus profonde 

reconnaissance de m’avoir accompagné pendant les années de préparation de cette thèse. 

Elle a toujours apporté sa rigueur scientifique à certains points clés de ce travail. Je lui 

suis particulièrement reconnaissant de me soutenir tout en m’accordant sa confiance avec 

une grande liberté d’action. Elle m’a aidé à progresser dans ma réflexion grâce à ses 

conseils, son esprit critique et sa disponibilité. 

J’adresse mes sincères remerciements à tous les membres de jury pour l’intérêt 

qu’ils ont bien voulu porter à ce travail de thèse : 

- Monsieur Haiour Mohamed, Professeur à l’université Badji Mokhtar-

Annaba pour l’honneur qui me fait de présider ce jury, je la remercie très 

vivement. 

- Monsieur Daili Nourreddine, Professeur à l’université Setif 1 

- Monsieur Taallah Frekh, Maître de conférences à l’université Badji 

Mokhtar-Annaba, 

- Monsieur Ouled Hamouda Ammar Maître de conférences  à ENS Kouba.  

- Monsieur Ben Haller,  Directeur de Recherche (Principle Research 

Fellow)  au  Centre for Sports Engineering Research,  Sheffield Hallam 

University, uk 

D’avoir accepté d’examiner ce travail. Ceci fût pour moi un honneur, je les remercie 

chaleureusement pour leurs critiques constructives, les remarques pertinentes et les 

corrections qui ont amélioré la présentation de ce manuscrit. 

Un grand merci à mon Maré, qui a sacrifié sa recherche scientifique en 

Mathématiques et a crée les conditions favorables pour me soutenir afin que je puisse 

finaliser ma thèse.  

Enfin et non les moins remerciements également à ma grande famille, mes enfants, 

mes parents, mes frères et sœurs qui m’ont soutenu pendant toutes les périodes de mes 

études et surtout mon père « Cherif ». 

Merci à tous  ceux qui ont contribué de prés ou de loin pour la réalisation de ce  travail. 



TABLE OF CONTENTS

1.0 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 De�nitions and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Weak derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Convex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3.1 Conjugate Convex Functions . . . . . . . . . . . . . . . . . . . 5

1.2 Subdi¤erentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Subdi¤erential Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Functions of Bounded Variation . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Total Variation Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.0 METHOD OF DOMAIN DECOMPOSITION . . . . . . . . . . . . . . . 12

2.1 Basic Idea of Subspace Correction and Domain Decomposition . . 12

2.1.1 Non-overlapping Domain Decomposition . . . . . . . . . . . . . . . . . 14

2.1.2 Overlapping Domain Decomposition . . . . . . . . . . . . . . . . . . . 16

2.1.3 Subspace Correction for `1-norm Minimization . . . . . . . . . . . . . 20

2.1.4 Sequential Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.5 Multidomain Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Domain Decomposition for Total Variation Minimization . . . . . . . . . . . 23

2.2.1 The Overlapping Domain Decomposition Algorithm . . . . . . . . . . 24

2.2.2 Local Minimization by Lagrange Multipliers . . . . . . . . . . . . . . 26

2.2.3 Convergence of the Sequential Domain Decomposition Method . . . . 29

2.2.4 Applications and Numerical Implementations . . . . . . . . . . . . . . 37

ii



2.3 Non-overlapping Domain Decomposition Algorithm . . . . . . . . . . . . . . 41

2.3.1 Convergence of the Sequential Domain Decomposition Method . . . 42

3.0 OVERLAPPING AND NONOVERLAPPING DOMAIN DECOMPO-

SITION METHODS FOR IMAGE RESTORATION . . . . . . . . . . . 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 The minimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Domain decomposition based subspace correction method . . . . . . . . . . 46

3.4 Numerical algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Appendix: Code for the Tixotrop model in MATLAB . . . . . . . . . . . . . 56

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

iii



Abstract: In the last decades, many approaches and various algorithms are introduced

to minimize the functional calculus of the Tixotrop model. These classical techniques are

formulated in an iterative form, that will cost a lot of CPU time. To overcome this disad-

vantage, one can use the decomposition method which reduces the problem to a sequence

sub-problems of a more manageable size. In this particular context, we introduce a method

of correction subspace based on the decomposition methods for the minimization of the

Tixotrop model. These methods allow us to divide the space of the initial problem into

several subspaces, to solve sub-problems faster. Then the solution of the original problem

is obtained from the sub-problems�ones . The main di¢ culty in the resolution the tixotrop

model by a domain decomposition technique has a non regular behavior of the borders, with

discontinuities preserving. As the non regular model of the tixotrop is not adapted for the

decomposition algorithm with matching and non matching to minimize the functional asso-

ciated to the problem, after regularization; we provide several tests showing the e¤ectiveness

of the algorithm for image restoration. Furthermore we present a comparison of these results

with the same algorithm by the total variation method.

Keywords: Image Processing, Domain Decomposition, Tixotrop Model.
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Résumé: Dans les dernières décennies, de nombreuses approches et di¤érents algo-

rithmes sont introduits pour minimiser la fonctionnelle du modèle Tixotrop. Ces techniques

classiques sont formulées sous forme des suites itératives; mais ceci présente un inconveient

dans le coût de calcul de computation durant la résolution. Pour surmonter cet inconvénient,

on peut utiliser la méthode de décomposition du domaine qui permet de réduire le problème

à une suite �nie de sous problèmes d�une taille plus gérable.

Dans ce contexte particulier, nous introduisons une méthode de correction de sous-

espaces, basée sur les méthodes de décomposition de domaines pour la minimisation du mod-

èle Tixotrop. Ces méthodes permettent de diviser l�espace du problème initial en plusieurs

sous-espaces plus petits ceci qui permet de résoudre les sous problèmes plus rapidement.

Ensuite la solution du problème original est obtenue à partir des solutions des sous problèmes

associés. La di¢ culté essentielle dans la résolution du modèle tixotrop par la méthode de dé-

composition du domaine est le comportement non régulier des frontières des correctifs, avec

la préservation des discontinuités. Comme le modèle tixotrop est non régulier, on ne peut

pas adapter l�algorithme de décomposition de domaines avec recouvrement et sans recou-

vrement pour minimiser la fonctionnelle associée au problème, après la régularisation. On

donne plusieurs tests numériques, on montre l�e¢ cacité de l�algorithme pour la restauration

d�images. de plus on présente une comparison de ces résultats avec les résultats obtenus par

le même algorithme par la méthode de la variation totale.

Mots-clés: Traitement d�Images, Décomposition de Domaines, Modèle Tixotrop.
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  صـملخ

 

          لحل مسألة التيكسوتروب ختلفةالموارزميات الخو خلال السنوات الأخيرة، قدمت العديد من الطرق 

 'Tixotrop '  التراجعية  و هذا  البحث عن الحل بطريقة المتتاليات في ترتكز وارزمياتغير أن هذه الطرق والخ

المسألة   ةتقوم بتجزئ  تفكيك النطاق التيطريقة  هناكهذه المشكلة   لتفاديو .  الكثير من الوقت يستغرق

  .يمكن حلها بسهولةعرفة على نطاقات جزئية المزئية الجسائل عدد منتهي من المالأصلية إلى 

تفكيك  ةقيطر طريقة تصحيح الفضاءات  الجزئية  التي تعتمد على   باستعمالفي هذا السياق نقوم و 

بتقسيم فضاء المسألة الإبتدائية إلى عدة فضاءات  تسمح لنا ةقيطر اله هذ.  لحل نموذج التيكسوتروب النطاق

نحصل عليه من لة الأصلية أل المسح، حيث أن  سريعةحلها يكون بطريقة سائل جزئية بم فقةمر  جزئية صغيرة 

  .المرافقة لهاالجزئية خلال حلول المسائل 

بطريقة تفكيك النطاق تكمن في السلوك غير المنتظم  نموذج التيكسوتروبإن الصعوبات الأساسية في حل 

بتسوية المسألة الأصلية لتجاوز هذه الصعوبات نقوم  . عدم إلاستمرارية مع الحفاظ على لحواف النطاقات الجزئية

تحسين  علىلإثبات فعالية الخوارزمية نقوم بتطبيقه ثم نطبق طريقة تفكيك النطاقات بتغطية أو بدون تغطية، 

  .التباين الكلي لحل مسألةالنتائج المحصل عليها مع النتائج المحصل عليها بنفس الخوارزمية مقارنة الصور و 
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INTRODUCTION

Image restoration is one of the fundamental and challenging tasks in image processing [3],

and phenomenal advances have been achieved in variational and partial di¤erential equations

(PDE)-based approaches since the seminal work [59]. The Rudin Osher and Fatemi (ROF)

model minimizes the total variation (TV) over the space of bounded variation (BV), so

it is capable of preserving sharp edges and boundaries with a high quality recovery. More

precisely, given a bounded image domain 
 � Rd; (d = 1; 2; 3), one is interested in the general

minimization problem:

min
u2BV

8<:�
Z



jruj+
Z



f(u)dx

9=; ; � > 0 (1)

where the gradient is presented in the distributional sense [39], and f (:) as a di¤eren-

tiable functional. The associated Euler-Lagrange equation takes the form

�� div
�
ru
jruj

�
+ f 0 (u) = 0; (2)

which is also known as the curvature equation. As the TV model (1-2) continues to enjoy

applications in diverse areas such as image denoising, debluring and segmentation, [74],

interface evolution [56], and inverse problems [24], there still exists a great demand for

developing fast and robust methods for such minimization problems and nonlinear PDEs,

although considerable progress has been made in several directions. Among others, existing

methods in the literatures can be classi�ed into the following types:

1. The gradient descent method [19] , [25]: Instead of solving the nonlinear PDE, it involves

(2) with an arti�cial time and minimizes the energy along the gradient descent direct

via the evolution of a parabolic equation. This approach is very reliable, but converges

considerably slowly.

2. The method using di¤usivity �xed-point iteration (see, e.g.,[67], [68]): It solves the lin-

earized version of the nonlinear steady-state PDE (2) iteratively by treating the nonlinear

term 1=jruj explicitly. Various iterative solvers have been considered, but further stud-

ies are still needed, in particular, techniques to speed up the outer solvers for large size

images.
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3. The dual approach (cf. [12], [23] ): it introduces a dual variable (the original unknown

function u in(1) is referred to as the primal variable). These methods overcome the non-

di¤erentiability of the cost functional in (1). They often lead to more e¢ cient algorithms,

and have received increasing interests recently.

4. Additive operator splitting (AOS) scheme: this type of schemes was �rst developed for

(nonlinear elliptic/parabolic) monotone equation and Navier-Stokes equations in [33].

In image processing applications, the AOS scheme was found to be an e¢ cient way for

approximating the PeronaMalik �lter [72], [73], especially if symmetry in scale-space is

required. The AOS scheme is �rst order in time, semi-implicit, and unconditionally stable

with respect to its time-step [73]. These methods have been applied to a wide range of

image processing applications and often lead to very e¢ cient numerical algorithms.

5. Bregman iteration: Iterative optimization methods based on penalization or Bregman

distance [69], [71] have been proposed very recently. In [71], [69], the authors used

variable-splitting to separate theL1 and L2 terms and then solved an equality constrained

optimization problem by penalization and alternative minimization. Bregman iteration

for image processing was originated from [12] and was introduced by Osher et. al. in

[19]. It has been extended to wavelet-based denoising [70], nonlinear inverse scale space in

[24] and compressed sensing [76]. The basic ideas to transform the equality constrained

optimization problem into a series of unconstrained problems using Bregman distance.

By combining the variable-splitting and Bregman iteration, Goldsteinet. al. obtained

split Bregman method in [12] which is particularly e¢ cient for L1 regularized problems,

e.g., TV restoration.

6. Augmented Lagrangian method [76]: for total variation image restoration. It has many

advantages over other methods such as penalty method. As only linear problems need to

be solved during the iterations, FFT can be applied to get extremely e¢ cient implemen-

tations. In addition, the augmented Lagrangian approach provides close connections to

dual methods and split Bregman iteration [76].

7. Multigrid method [75]: It is one of the most powerful numerical methods for solving

some linear and nonlinear partial di¤erential equations. In [58], the linear algebraic

multigrid method [59] was adopted for solving the above PDE in each (outer) step of

viii



a �xed iteration,while attempted to use the standard multigrid methods with a non-

standard and some what global smoother. Recently, nonlinear multigrid methods based

on the subspace correction approach, for example in [58] have been introduced to image

processing in [24]. Numerical experiments indicate their promising numerical potentials.

These methods have been widely used for image processing, and their strength and weak-

ness have also been observed from real applications. Dual methods and Bregman iterations

are fast, but they are under intensive investigation for the applications to more general image

processing problems. Graph-cut approaches are usually fast, but they can be only applied to

a special class of problems and could also have matriculation errors. The AOS and multigrid

methods also have limitations in the models that they can be applied.

The purpose of this work is to apply a fast solver based on overlapping domain decompo-

sition and a coarse mesh correction for image processing tasks. Our aim is to demonstrate

several essential advantages of the implemented method. More precisely,

1. This method can be used for various general variational-based image processing problems.

Indeed, based on this notion, one can easily apply the existing solvers to the minimization

problem by solving a sequence of subdomain problems of smaller scale.

2. In practice, the original problem, e.g., large size 3D data processing, could be too large,

which induces di¢ culties in applying a given solver. By splitting a large problem into

many smaller sub-problems, that we can easily solve.

3. The implemented method can save CPU time cost. The gain is signi�cant, e¢ cient and

relatively accurate for subdomain solvers,

4. The implemented method is well-suited for distributed-memory in parallel computers.

It is known that domain decomposition (DD) methods are powerful iterative methods for

solving partial di¤erential equations [75]. Some recent progress has shown that DD methods

are also e¢ cient for some nonlinear elliptic problems and some convex minimization problems

with mesh independent convergence. So far, it is still unknown wether or not, we can use

domain decomposition methods for the ROF model. Some recent e¤orts have been devoted

to study these problems [56]. For simplicity of presentation, we implemented and tested this

method on the tixotrop model, see (1), and presented some results. We provide numerical
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results to show its capability in processing images of large size with low cost in CPU time

and memory. Once again, the essence of this technique is to view a domain decomposition

procedure in space. The original minimization problem related to the tixotrop model is

reduced to some sub-minimization problems with smaller size over the sub-domains. If the

sub-minimization problems are solved exactly, the convergence of the generated sequence

is trivial to prove. Due to the degeneracy of the nonlinear equation of tixotrop, it is not

convincing that we will be able to prove the convergence rate for the numerical solutions.

This thesis is organized as follows. In chapter one, we present the preliminary results

used in our study. In Chapter 2 we write down the method in a more general setting and

start with the description of the subspace correction algorithm for the TV technique.

Contribution of this thesis

The main contribution of this thesis re�ected in [77] is presented in chapter 3. We use in

this work a fast algorithm for nonlinear minimization problems with particular applications

to image denoising. We describe in details the implementation of the domain decomposition

and coarse mesh correction techniques. We compare the non-overlapping domain decom-

position approach with the total variation minimization, according more attention to the

computational time and the e¢ ciency.
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1.0 PRELIMINARIES

In his chapter, we present a basic notion and principal mathematical results which will be

useful to us in the next chapters. Further details can be found in [3], and [47]

1.1 DEFINITIONS AND BASIC PROPERTIES

De�nition 1. An open connected set 
 � Rn is called a domain. By �
 we denote the

closure of 
; @ 
 = � is the boundary.

We use the following notation:

x = (x1; x2; ::::; xn) 2 Rn; @ju =
@u

@xj
;

� = (�1; �2; :::; �n) 2 Zn+; is a multi-index

j�j = �1 + �2 + :::+ �n; @�u =
@j�ju

@x�11 @x
�2
2 :::@x

�n
n

Next, ru = (@1u; :::; @nu) ; jruj =
 

nX
j=1

j@juj2
! 1

2

and Du = (D1u; :::; DNu) in 


De�nition 2. Let 1 � p � +1, by Lp(
) we denote the Banach space of all measurable

functions on 
; such that:

Lp(
) =

8<:u : 
 �! R;u measurable and
Z



jujp dx < +1

9=;
2



with the associated norm

kukLp(
) =

0@Z



jujp dx

1A 1
p

For p =1, L1(
) denotes the essentially bounded functions

kukL1(
) = sup
x2


ju(x)j :

For p = 2; the space L2(
) is a Hilbert space, with inner-product

8u; v 2 L2(
); hu; viL2(
) =
Z



u(x)v(x)dx

1.1.1 Weak derivatives

Let C10 (
) denotes the space of in�nitely di¤erentiable functions ' : 
 �! R, with compact

support in 
. We will call a function ' belonging to C10 (
); a test function.

De�nition 3. Suppose that � 2 Nn is a multi-index. A function f 2 L1loc (
) has a weak

derivative @�f 2 L1loc (
) ifZ



@�f(x)'(x)dx = (�1)j�j
Z



f(x)@�'(x)dx; for all '(x) 2 C10 (
):

1.1.2 Sobolev spaces

De�nition 4. We call a Sobolev space of order 1 on 
; the space

H1 (
) =
�
u 2 L2(
); @

i
u 2 L2(
); 1 � i � n

	
The space H1 (
) is endowed with the norm associated to the inner product:

hu; vi =
Z



 
uv +

nX
i=1

@
i
u@

i
v

!
dx;

and we note the corresponding norm:

kvk =
p
hu; vi =

0@Z



juj2dx+
Z



jruj2
1A1=2

:

These spaces are separable Hilbert spaces.

3



De�nition 5. Let 1 � p <1 and for every m 2 N; m � 1; the Sobolev space Wm;p (
) is

de�ned to be

Wm;p (
) =
�
u 2 Lp(
); @�u 2 Lp(
); 8� 2 Nd; j�j � m

	
;

where @�u is the derivative in the distribution sense

endowed with the norm:

kukWm;p =

0@X
j�j�m

Z



j@�ujp dx

1A 1
p

:

All these spaces are Banach spaces. However, we will consider here the spacesWm;2 (
) =

Hm (
).

De�nition 6. We denote by H1
0 (
) the closure of D(
) in H

1(
). By extension, we note

Hm
0 (
) the closure of D(
) in H

m (
) (for the norm k:kHm(Rd)).

1.1.3 Convex analysis

Let E be a norm vector space over R (n.v.s).

De�nition 7. The set,

dom(f) = fx 2 E= f(x) < +1g

is the e¤ective domain of f .

De�nition 8. If f does not assume both �1 and +1 as values this de�nition of a convex

function is equivalent to

f(�x1 + (1� �)x2) � �f(x1) + (1� �)f(x2); 8x1; x2 2 E; and 0 � � � 1:

De�nition 9. A convex function f on E is lower semi-continuous (1.s.c.) if, for each � 2 R,

the convex level set

fx 2 E= f(x) � �g

is a closed set in E. Lower semi-continuity of convex functions is a constructive property.

4



Given any convex function f on E, we may construct a 1.s.c. convex function f on E

by taking f such that

f(x) = lim
z�!

inf f(z);8x 2 E

.

De�nition 10. A convex function f on E is said to be proper if f(x) > �1 for all x 2 E

and f(x) < +1 for at least one x 2 E.

1.1.3.1 Conjugate Convex Functions

De�nition 11. Let f be a proper convex function on E. Its conjugate function f � on E�

(with respect to the givern-bilinear function h:; :i ) is de�ned by

f �(x�) = sup
x2E
f(x; x�)� f(x)g;8x 2 E�

with E� is called the topological dual of E that is, the space of all continuous linear

functionals on E; the (dual) norm on E� is de�ned by

kf �kE� = sup

x 2 E

kxk < 1

jf(x)j

The function f � is a 1.s.c. convex function but not necessarily proper. However, if f is

a l.s.c, proper convex function, then f � is also l.s.c, proper convex and (f �)� = f

1.2 SUBDIFFERENTIABILITY

In this section we make use results of [37].

De�nition 12. Let f : E ! �R be a real-valued functional on a Banach space E, The

directional derivative of f at x 2 E in the direction y 2 E is de�ned as the limit, if there

exists,

f 0 (x; y) = lim
�!0+

f (x+ ty)� f (x)
t

5



the last expression is called the Gâteau di¤erential of f(x) at x 2 E, and is denoted by

f 0(x) 2 E�, if the above limit exists for every y 2 E and

f 0 (x; y) = hy; f 0 (x)i :

There exists functions in which the above limit does not exist, which means that these

functions are not di¤erentiable. For such functions we introduce a more general concept of

di¤erentiability, called subdi¤erentiability.

De�nition 13. Let f : E ! R be a convex function, E� its topological dual, h�; �i the bilinear

canonical pairing over E � E�. The subdi¤erential of f at x 2 E, is de�ned by

@f (x) =

8<: ; if f (x) =1;

fx� : hx�; y � xi+ f (x) � f (y) for all y 2 Eg otherwise

y 2 @f (x) is called a subgradient. It is obvious from this de�nition that 0 2 @f(x) if and

only if x is a minimizer of f .

Proposition 14. For every function f : E ! �R we have

x� 2 @f (x) =) x 2 @f � (x�) :

If, further, f is convex, l.s.c., and proper, we have

x� 2 @f (x) () x 2 @f � (x�) : (1.1)
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1.2.1 Subdi¤erential Calculus

Let E be a locally convex space, f : E ! �R, and t > 0. At every point x 2 E, we have

@(tf)(x) = t@f(x):

Moreover, let f1; f2 : E ! R. At every point x 2 E, we have

@f1(u) + @f2(u) � @(f1 + f2)(u)

Having an equality in the latter relation is far from being always ful�lled. However, there

is a simple case where it holds:

Proposition 15. Let f1 and f2 be convex, l.s.c., and proper. If there exists a point �x 2

Domf1 \Domf2 where f1 is continuous, then we have for all u 2 E

@(f1 + f2)(x) = @f1(x) + @f2(x):

Let us consider now the subdi¤erential of a composite function.

Proposition 16. Let E1 and E2 be two locally convex sets with topological duals E�1 and

E�2 , g : E1 ! E2 with adjoint g�; f : E2 ! R a convex, l.s.c., and proper function, and

g � f : E1 ! R also a convex, l.s.c., and proper function. If there is a point g (�x) ; for

�x 2 E1, where f is continuous and �nite, then for all points x 2 E1, we have

@ (f � g) (x) = g�@f (g (x)) :

1.3 FUNCTIONS OF BOUNDED VARIATION

In image processing, one is interested in recovering and preserving discontinuities in images.

Using classical Sobolev spaces, denoted by W 1;1 (the Sobolev space of L1-functions with

L1-distributional derivatives), does not allow us to take such phenomena into account, since

the gradient of a Sobolev function is again a function. If u is discontinuous, then its gradient

has to be understood as a measure. Therefore we introduce the space of bounded variation

functions, which is adapted to this situation.
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De�nition 17. Let 
 be an open subset of RN . A function u 2 L1(
) whose partial deriv-

atives in the sense of distributions are measures with �nite total variation in 
 is called a

function of bounded variation. The vector space of functions of bounded variation in 
 is

denoted by BV (
). Thus u 2 BV (
) if and only if u 2 L1(
) and there are Radon measures

1; :::; N with �nite total mass in such thatZ



u
@�

@xi
dx = �

Z



�d Diu for all � 2 C1c (
) ; i = 1; ::::; N (1.2)

If u 2 BV (
), the total variation of the measure Du is

kDuk = sup

8<:
Z



u div �dx; � 2 C1c
�

;RN

�
; j� (x)j � 1 for, x 2 


9=; <1

The space BV (
) endowed with the norm

kukBV =
Z



juj dx+ kDuk

is a Banach space. We also use
Z



juj dx to denote the total variation kDuk.

Proposition 18. Let u 2 L1loc(
). Then, u belongs to BV (
) if and only if kDuk < 1.

In addition, kDuk coincides with jDuj for any u 2 BV (
) and u 7�! jDuj (
) is l.s.c. in

BV (
) with respect to the L1loc(
) topology.

Proposition 19. 1. (lower semi-continuity of the total variation) Suppose un 2 BV (
); n =

1; 2; :::: and that un ! u in L1loc (
). ThenZ



jDuj � lim
n!+1

inf

Z



jDunj

2. (approximation by smooth functions) Assume that u 2 BV (
). There is a sequence of

functions un 2 BV (
) \ C1 (
) such that

a. un ! u in L1(
) and

b.
Z



jDunj !
Z



jDuj as n! +1

Moreover, if u 2 BV (
)\ Lp (
), p <1, we can �nd un 2 Lp (
), un ! u in Lp (
).
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De�nition 20. Let un; u � BV (
). Then (un)n converges weakly-� to u in BV (
) if

un ! u in L1loc(
) and Dun converges weakly-� to Du as measures in 
:

Theorem 21. 1. Let un; u 2 BV (
): Then un ! u weakly-� in BV (
) if and only if un
is bounded in BV (
) and converges to u in L1loc(
).

2. (compactness) Let 
 � RN be open, bounded, with @
 Lipschitz. Assume un 2 BV (
)

satisfying kunkBV (
) < M < 1 for all n � 1. Then there is a subsequence unj and a

function u 2 BV (
) such that unj ! u in L1(
)

1.4 TOTAL VARIATION MINIMIZATION

Total variation based image restoration models were �rst introduced by ROF in their pioneer-

ing work [56] on edge preserving image denoising. It was designed with the explicit goal of

preserving sharp discontinuities (edges) in images while removing noise and other unwanted

�ne scale detail.

Let f : 
 � R2 ! R an original image descrbing a real scene and let u0 be the observed

image of the same scene (i.e. a degradation of u). We assume that:

u0 = Ru+ " (1.3)

where " stands for a white additive some noise and R is a linear operator modeling the

image-formation device. Given u0; the problem is then to reconstruct u knowing 1:3: As we

will see, the problem is ill-posed and we are only able to carry out an approximation of u:

A classical way to overcome ill-posed minimization problems is to add a regularization

term to the energy. This idea was introduced in 1977 by Tikhonov et al [60]. The authors

proposed to consider the minimization problem:

F (u) =

Z



ju0 �Ruj2 dx+ �
Z



jruj2 dx: (1.4)

The �rst term in F (u) measures the �delity to the data. The second one is a smoothing

term and � > 0 is a �xed regularization parameter weighting the importance of the two

terms.
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To study this problem, the fonctional space for which both terms are well-de�ned is

W 1;2 (
) =
n
u 2 L2 (
) : ru 2 [L2 (
)]2

o
;i.e., the Sobolev space of L2-functions with

L2-derivatives. This choice of regularization may have advantages, since the corresponding

problem to solve is linear. However, using the L2-norm of the gradient as a regularization

term allows us to remove noises but the minimization of 1:4 performs too much smoothing

and hence does not preserve edges (i.e. intensity jumps along curves) and discontinuities

across hypersurfaces, i.e., across lines in 2-dimensions, see Figure 1:1. For our purposes

a good regularization term should ensure some smoothing and should preserve edges and

discontinuities.

In the context of image restoration Rudin, Osher and Fatemi [56] proposed to use the

total variation as a regularization technique. We recall that for u 2 L1loc (
)

TV (u) := sup

�Z



u div'dx : ' 2
�
C1c (
)

�2
; k'k1 � 1

�
;

is the variation of u, where C1c (
) denotes the space of C-functions with compact support

in 
 and k'k1 = supx
pP

i '
2
i (x). Moreover, u 2 BV (
), the space of bounded variation

functions [2], if and only if TV (u) <1. In this case, jDuj (
) = TV (u) ; where jDuj is the

total variation of the �nite Radon measure Du, the derivative of u in the sense of distribu-

tions. If u 2W 1;1 (the Sobolev space of L1-functions with L1-distributional derivatives), then

jDuj (
) =
R


jruj dx: It is well-established that the total variation preserves edges and dis-

continuities across hypersurfaces. Additionally it is convex and therefore also the minimiza-

tion problem, which reads then as

argmin
u

Z



jRu� u0j2 dx+ 2� jDuj (
) ;

becomes convex. Hence many tools from convex optimization can be used to solve this

problem. This is a big advantage with respect to the non-convex approach of Mumford and

Shah, where the energy has to be minimized with respect to u and with respect to the edge

collection K. In this thesis we are interested in the e¢ cient minimization in BV (
) of the

functional

= (u) := kRu� u0k2L2(
) + 2� jDuj (
) ; (1.5)
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where R : L2 (
)! L2 (
) is a bounded linear operator, u0 2 L2 (
) is a datum, and � > 0

is a �xed regularization parameter. More precisely, we are concerned with minimizing J by

means of subspace correction and domain decomposition. That means, instead of minimizing

1.5 on the whole BV (
) we split the space into several subspaces and minimize alternating

on each subspace the functional of interest. Below we describe a few relevant and established

applications, where total variation minimization is already successfully applied [23]. Several

numerical strategies to e¢ ciently perform total variation minimizations have been proposed

in the literature see for example [47].
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2.0 METHOD OF DOMAIN DECOMPOSITION

2.1 BASIC IDEA OF SUBSPACE CORRECTION AND DOMAIN

DECOMPOSITION

The method of subspace corrections are general iterative methods that have a variety of ap-

plications. The method of alternating projection, �rst proposed by Von Neumann (1933) (see

[62]), is an algorithm for �nding the best approximation to any given point in a Hilbert space

from the intersection of a �nite number of subspaces. The method of subspace corrections,

an abstraction of general linear iterative methods such as multigridand domain decomposi-

tion methods, is an algorithm for �nding the solution of a linear system of equations. By

contrast for non-smooth and non-additive energies, such as 1.5, subspace correction methods

are far from being obviously working successfully.

When analyzing such methods three main issues are of high interest: (i) convergence,

(ii) rate of convergence, and (iii) the independence of the rate of convergence on the mesh

size, which can be interpreted as a preconditioning strategy. For smooth energies these

concerns are at large well-established, while for non-smooth energies convergence is ensured

but no rate of convergence is usually known. In the thesis of [47] the author showed that

decomposition strategies may converge to a minimizer of the original problem for non-smooth

and non-additive cases. Theorem 2:2:8 and Theorem 2:3:1, and preconditioning e¤ects in

certain cases. However, a complete description of the rate of convergence and independence

of the mesh size is still a very open �eld of research. In this section we introduce domain

decomposition methods for smooth problems only, in order to describe the main ideas of

such splitting techniques. Before we do so, let us describe shortly the importance of such

methods. The main reason for the success of subspace correction methods is the reduction
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of the dimension with a potential for parallelization. In particular, subspace correction is

one of the most signi�cant ways for devising parallel approaches that can bene�t strongly

from multiprocessor computers. Such parallel approaches are mandatory when one has

to solve large-scale numerical problems, as they arise in many application of physics and

engineering. Let us summarize the main advantages of such an approach, which include (i)

dimension reduction; (ii) enhancement of parallelism; (iii) localized treatment of complex

and irregular geometries, singularities and anomalous regions; (iv) and sometimes reduction

of the computational complexity of the underlying solution method. There are a variety of

iterative methods appearing in the literature that fall into the category of subspace correction

methods, such as Jacobi method, Gauss-Seidel method, point or block relaxation methods,

multigrid methods, and domain decomposition methods. These techniques can often be

applied directly to the partial di¤erential equation, but also the discretization of the problem

is of major interest. We refer to [64] for more details on subspace correction methods.

The �rst known subspace correction strategy was proposed by H. A. Schwarz (1869)( see

[57]) who introduced an overlapping domain decomposition in order to prove the existence

of harmonic functions on irregular regions that are the union of overlapping subregions

[[55]; p26]. Domain decomposition refers to the decomposition of the spatial domain into

several subdomains. The original problem is then solved by iteratively solving alternating

problems. We focus now on domain decomposition methods and explain in more detail the

underlying idea, which can be adapted to more general subspace correction methods. In

particular, we review the non-overlapping domain decomposition as well as the alternating

and parallel overlapping domain decomposition approaches in the case of a splitting of the

physical domain into two subdomains. Their generalization to a partitioning into more

domains requires more sophisticated techniques, such as coloring, see [[25]; [55]; [59]] for more

details. For simplicity we discuss these methods now for a simple problem "the Poisson

problem", i.e., second-order self-adjoint elliptic problem,

Lu = ��u = f in 
; u = 0 on @
: (2.1)

Let 
 be a bonded domain in Rn (n = 2 or 3) ,with a lipschitz boundary �.

13



2.1.1 Non-overlapping Domain Decomposition

Let us start by splitting the spatial domain 
 into two non-overlapping subdomains 
1and


2 with interface �such that 
 = 
1 [ 
2 and 
1 \
2 6= ;; ( see Figure 1:5:):We de�ne the

domaine 
 to be:

Figure 1.1. Non-overlapping decomposition into

two domains

The interface between these two regions is de�ned by � := @
1 \ @
2. In addition, we

assume that the boundaries of the subdomains are regular enough. Then problem (2.1) can

be formulated as 8>>>>>>>>>>>><>>>>>>>>>>>>:

Lu1 = f in 
1

u1 = 0 on @
1 \ @
8<: u1 = u2 on �
@u1
@n
= @u2

@n
on �

Lu2 = f in 
2

u2 = 0 on @
2 \ @
;

(2.2)

where each n is the outward pointed normal on � from 
1. Here we see that due to the

partition of the original problem (2.1) is replaced by two subproblems on each subdomain

by imposing both Neumann and Dirichlet conditions on �. These conditions transmit in-

formation from one domain patch to the other and therefore they are called transmission
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conditions. The equivalence between the Poisson problem (2.1) and the multi-domain prob-

lem (2.2) is in general not obvious, but can be shown under suitable regularity assumptions

on f, typically f 2 L2, by considering the associated variational formulation.

Iterative Methods

We will now focus on solving the multi-domain problem (2.2) by iterative methods. These

methods typically introduce a sequence of subproblems on 
1 and 
2 for which Dirichlet

or Neumann conditions at the internal boundary are provided, which play the role of the

transmission conditions

The Method by Agoshkov and Lebedev The following non-overlapping domain

decomposition algorithm was proposed by Agoshkov and Lebedev (see [1]): given u(0)1 and

u
(0)
2 , for each k > 0 we have to solve

8>>><>>>:
Lu(K+1�2)1 = f in 
1;

u
(K+1�2)
1 = 0 on @
1��;

@u
(K+1�2)
1

@n
+ pku

(K+1�2)
1 =

@u
(k)
2

@n
+ pku

(k)
2 on �;

u
(k+1)
1 = u

(k)
1 + �k+1

�
u
(K+1�2)
1 � u(k)1

�
in 
1:

and

8>>><>>>:
Lu(K+1)2 = f in 
2;

u
(K+1)
2 = 0 on @
2��;

�qk@u
(K+1�2)
2

@n
+ u

(K+1�2)
2 = �qk @u

(k+1)
1

@n
+ u

(k+1)
1 on �;

(2.3)

u
(k+1)
2 = u

(k)
2 + �k+1

�
u
(K+1�2)
2 � u(k)1

�
in 
2;

where pk; qk > 0 and �k+1, �k+1 2 R are free parameters. This algorithm is a generalization
of many other methods, as the already mentioned Robin method (see [47]), which is obtained

by setting pk = 
1, qk = 1=
2 and �k = �k = 1 in (2:3).
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2.1.2 Overlapping Domain Decomposition

In this section we describe the so-called multiplicative and additive Schwarz methods (see

[57])

Let us decompose the domain 
 � R2 into two overlapping subdomains 
1 and 
2; such

that 
1\ 
2 6= ; ; and 
 = 
1[ 
2, cf. Figure 1:6. Further we denote �1 = @
1\ 
2; and

�2 = @
2\ 
1 the interior boundaries of the subdomains.

Figure 1.2. Overlapping decomposition into two

domains

Multiplicative Schwarz Method

The multiplicative Schwarz method starts with an initial value u(0) de�ned in 
 and

vanishing on @
 and computes a sequence of approximate solutions u(1); u(2); ::: by solving8>>><>>>:
Lu(k+1)1 = f in 
1;

u
(k+1)
1 = u

1��1
on �1;

u
(k+1)
1 = 0 on @
1��1:

and

8>>><>>>:
Lu(k+1)2 = f in 
2;

u
(k+1)
2 = u

1��2
on �2;

u
(k+1)
2 = 0 on @
2��2:

(2.4)

The next approximate u(k+1) is then de�ned by

u(k+1)(x) =

8<: u
(k+1)
2 (x) if x 2 
2;

u
(k+1)
1 (x) if x 2 
�
2:

It can be shown that the multiplicative Schwarz method (2:4) converges to a solution of

problem (2:1), see [49] and for a variational based proof consult [55] In particular, there
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exist constants c1; c2 2 (0; 1), which depend only on (
1;�2) and (
2;�1) respectively, such

that for all k > 0




u�
1 � u(k+1)1





L1(
1)

� ck1c
k
2



u� u(0)


L1(�1)

;


u�
2 � u(k+1)2





L1(
2)

� ck+11 ck2


u� u(0)



L1(�2)
:

Note that the constants c1; c2 depend on the size of the overlap and they can be quite

close to one if the overlapping region is thin [47].

Variational formulation Set(w; v) :=
R


wv; a(w; v) := (Lw; v), and H1

0 (
i) :=�
v 2 H1

0 (
i) : v = 0 in 
�
i
	
as closed subspaces of H1

0 (
) by extending their elements

on 
 by 0. Moreover we de�ne the energy

J(w; u) :=
1

2
a(w;w)� (f; w) + a(u;w): (2.5)

Let us rewrite (2:4) in the following form

L(u(k+1=2) � u(k)) = f � Lu(k) in 
1;

u(k+1=2) � u(k) 2 H1
0 (
1):

and

L(u(k+1) � u(k+1=2)) = f � Lu(k+1=2) in 
2;

u(k+1) � u(k+1=2) 2 H1
0 (
2):

The variational formulation of method (2:4) reads as follows: initialize u(0) 2 H1
0 (
); and

for k > 0 solve

w(k)1 2 H1
0 (
1) : a(w

(k)
1 ; v1) = (f; v1)� a(u(k); v1) for all v1 2 H1

0 (
1); (2.6)

u(k+1=2) = u(k) + w
(k)
1 ;

w
(k)
2 2 H1

0 (
2) : a(w
(k)
2 ; v2) = (f; v2)� a(u(k+1=2); v2) for all v2 2 H1

0 (
2);

u(k+1) = u(k+1=2) + w
(k)
2 :
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Or equivalently 8>>>>>><>>>>>>:

w
(k)
1 = argmin w12H1

0 (
1)
J(w1; u

(k));

u(k+1=2) = u(k) + w
(k)
1 ;

w
(k)
2 = argmin w22H1

0 (
2)
J(w2; u

(k+1=2));

u(k+1) = u(k+1=2) + w
(k)
2 :

(2.7)

From (2:6) we have

a(u(k+1=2) � u(k); v1) = a(u� u(k); v1); u(k+1=2) � u(k) 2 H1
0 (
1);

a(u(k+1) � u(k+1=2); v1) = a(u� u(k+1=2); v1); u(k+1) � u(k+1=2) 2 H1
0 (
2):

Which means

u(k+1=2) � u(k) = P1(u� u(k)) for all k > 0;

u(k+1) � u(k+1=2) = P2(u� u(k+1=2)) for all k > 0:

Or equivalently

u� u(k+1=2) = (I � P1)(u� u(k)) for all k > 0;

u� u(k+1) = (I � P2)(u� u(k+1=2)) for all k > 0:

where Pi : H1
0 (
) ! H1

0 (
i) are orthogonal projections. From the latter immediately

follows the error recursion formula

u� u(k+1) = (I � P2)(u� u(k+1=2)) = (I � P2)(I � P1)(u� u(k)) for all k > 0: (2.8)

Additive Schwarz Method

If we make the two steps (2:4) independent from each other, then we obtain the additive

alternating Schwarz method, which computes the sequence of approximations by solving8>>><>>>:
Lu(k+1)1 = f in 
1

u
(k+1)
1 = u

(k)
j�1 on �1

u
(k+1)
1 = 0 on @
1n�1

and

8>>><>>>:
Lu(k+1)2 = f in 
2

u
(k+1)
2 = u

(k)
j�2 on �2

u(k + 1)2 = 0 on @
2n�2:

(2.9)
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He next update u(k+1) is then de�ned by

u(k+1)(x) =

8>>><>>>:
u
(k+1)
1 (x) x 2 
n
2;

u
(k+1)
1 (x) + u

(k+1)
2 (x)� u(k)(x) x 2 
1 \ 
2;

u
(k+1)
2 (x) x 2 
n
1:

(2.10)

Variational Formulation The variational formulation of method (2:9) reads as8>>><>>>:
w
(k)
1 2 H1

0 (
1) : a(w
(k)
1 ; v1) = (f; v1)� a(u(k); v1) for all v1 2 H1

0 (
1);

w
(k)
2 2 H1

0 (
2) : a(w
(k)
2 ; v2) = (f; v2)� a(u(k); v2) for all v2 2 H1

0 (
2);

u(k+1) = u(k) + w
(k)
1 + w(k):

(2.11)

Or 8>>><>>>:
w
(k)
1 = argminw12H1

0 (
1)
J(w1; u

(k));

w
(k)
2 = argminw22H1

0 (
2)
J(w2; u

(k));

u(k+1) = u(k) + w
(k)
1 + w

(k)
2 :

(2.12)

Where J(w; u) = 1
2
a(w;w) � (f; w) + a(u;w). By relation (2:10) we verify that the

original formulation (2:9) is equivalent to the variational formulation. Moreover from (2:11)

we have that

a(w
(k)
1 ; v1) = a(u

(k+1)
1 � u(k); v1) = a(u� u(k); v1);

a(w
(k)
2 ; v2) = a(u

(k+1)
2 � u(k); v2) = a(u� u(k); v2);

and hence we deduce

u
(k+1)
1 � u(k) = P1(u� u(k)) for all k > 0;

u
(k+1)
2 � u(k) = P2(u� u(k)) for all k > 0:

Or equivalently

u� u(k+1)1 = (I � P1)(u� u(k)) for all k > 0;

u� u(k+1)2 = (I � P2)(u� u(k)) for all k > 0:

Then by using the update (2:10) we get the following error recursion formula:

u� u(k+1) = u� u(k+1)1 � u(k+1)2 � u(k) = (I � P1 � P2)(u� u(k)) for all k > 0: (2.13)

19



Inspired by the variational formulation (2:7) and (2:12) of the multiplicative and additive

Schwarz method in [42], a minimization of a functional formed by a discrepancy term with

respect to the data and by a `1-norm constraint by means of subspace correction is proposed.

That is, the functional is minimized by alternately minimizing local problems that are re-

stricted to suitable subspaces. We note that this problem is non-smooth, since a `1-term is

present, but additive with respect to the proposed splitting and therefore can be included in

the class of problems discussed in [21]. We recall this approach since it serves us as a model

for subspace correction methods for non-di¤erentiable problems.

2.1.3 Subspace Correction for `1-norm Minimization

The minimization of the `1-norm is well-known to give an e¤ective way for reconstructing

sparse signals from linear measurement [42];[47]. It has been shown that the minimization of

the `1-norm is very e¤ective in several applications, such as compressed sensing, and image

processing [21], [17], [18]...

Let H be a real separable Hilbert space and for a countable index set A we de�ne

`p(A) := fu = (u�)�2A : (
P

�2A ju�jp)1=pg for 1 6 p <1. We are interested in the numerical
minimization in `2(A) of the functional

J(u) := kTu� gk2H + 2� kuk`1(A) ; (2.14)

where T : `2(A) ! H is a bounded linear operator, g 2 H is a given observed datum,

and � > 0 is a �xed regularization parameter. In order to solve this minimization problem

with respect to u one can take an iterative thresholding algorithm [31]: pick an initial

u(0) 2 `2(A)(u(0) = 0 is a good choice) and iterate

u(n+1) = S�(u
(n) + T �(g � Tu(n))); n > 0; (2.15)

where T � denotes the adjoint operator of T and S� : `2(A)! `2(A), de�ned component wise

by S�(v) = (S�v�)�2A with

S(v) =

8<: v � sign (v)� if jvj > �;

0 otherwise,
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is the so-called soft-thresholding operator. The strong convergence of the algorithm in (2:15)

to �nd minimizers of J is proved in [31]. In [13], it was shown that under additional conditions

on the operator T or on minimizers of (2:14) the algorithm in (2:15) converges linearly, al-

though with a rather poor rate in general, see [39] for a more detailed discussion. There exist

several alternative approaches, that promise to solve `1-minimization with a fast convergence

[8]. One way to accelerate the speed of convergence of minimizing iterative soft-thresholding

algorithms for large-scale problems was proposed in [39], where a sequential and parallel

domain decomposition method for `1-norm minimization was introduced and analyzed. We

will explain now in more detail the main idea of this algorithm.

2.1.4 Sequential Algorithm

We decompose the domain A: set A into two disjoint sets Ai (i = 1; 2) i.e:A = A1 [ A2.

Associated with this decomposition we de�ne V i = fuA 2 `2(A) : supp(uA) � Aig for i =

1; 2: Then we minimize J in (2:14) by using the following alternating algorithm: take an

initial u(0) = u(0)A1 + u
(0)
A2
2 V1 � V2, for example, u(0) = 0, and iterate

u
(n+1)
A1

' arg min
uA12V1

J(uA1 + u
(n)
A2
); (2.16)

u
(n+1)
A2

' arg min
uA22V2

J(u
(n+1)
A1 + uA2);

u(n+1) : = u
(n+1)
A1

+ u
(n+1)
A2

;

where uAi is supported on Ai only, i = 1; 2. This algorithm is inspired by (2:7) and (2:12),

but di¤erently from the situations there, the energy (2:14) is now nonsmooth. Nevertheless

we observe that the `1-norm splits additively

kuA1 + uA2k`1(A) = kuA1k`1(A1) + kuA2k`1(A2) ;

and hence the subproblems in (2:16) are of the same kind as the original problem (2:14), i.e.,

for example, for the problem on A1 we have

arg min
uA12V1

J(u1 + u
(n)
2 ) = arg min

uA12V1




TA1uA1 � (g � TA2u(n)A2 )


L2(
) + 2� kuA1k`1(A1) ;
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where TAi (i = 1; 2) are the restrictions of the matrix T to the columns indexed by Ai.

Moreover, this splitting results in a dimension reduction for each subproblem. For solving

the subminimization problems of (2:16) we can use one of the before mentioned methods,

for example, again the iterative thresholding algorithm:

u(n+1;`+1)i = S�(u
(n+1;`)
A1

+ T �Ai((g � TAiu
(n)
Ai
)� TAiu(n+1;`)));bi 2 f1; 2gnfig: (2.17)

This leads to the following sequential algorithm: pick an initial u(0) = u
(0;L)
A1

+u
(0;M)
A2

2

V1 � V2, for example, u(0) = 0, and iterate

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

8>>><>>>:
u
(n+1;0)
A1

= u
(n;L)
A1

;

u
(n+1;`+1)
A1

= S�

�
u
(n+1;`)
A1

+ T �A1((g � TA2u
(n;M)
A2

)� TA1u
(n+1;`)
A1

)
�
;

` = 0; :::; L� 1;8>>><>>>:
u
(n+1;0)
A2

= u(n;M);

u
(n+1;`+1)
A2

= S�

�
u
(n+1;`)
A2

+ T �A2((g � TA1u
(n+1;L)
A1

)� TA2u
(n+1;`)
A2

)
�
;

` = 0; :::;M � 1;

u(n+1) := u
(n+1;L)
A1

+ u
(n+1;M)
A2

:

(2.18)

Note, that we perform only a �nite number L and M of inner iterations. However,

for any choice of L and M this algorithm produces a sequence (u(n))n such that J(u(n)) is

monotonically decreasing. Moreover, its convergence to a strong minimizer of the functional

(2:14) is proven [39]. Nothing is known about the rate of convergence, which is still an

open problem, however the great advantages of this subspace correction algorithm are the

fact that we can solve several smaller problems, instead of a large one. This may lead us

to an acceleration of convergence due to preconditioning e¤ects with a reduction of overall

computational cost.
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2.1.5 Multidomain Splitting

The above described subspace correction algorithm is not restricted to a decomposition into

two subspaces, but can be generalized to an algorithm for multiple decompositions. We

split now the domain into multiple disjoint sets Ai; i = 1; 2; :::; N;such that A = [Ni=1Ai.

Associated with this decomposition we de�ne Vi = fA2 2 `2(A) : supp(uA) � Aig for

i = 1; 2; :::; N: Then we minimize J by using the following alternating algorithm: take an

initial u(0) = u(0;L)A1
+ :::+ u

(0;LN )
AN

2 V1 � V2::� VN , for example, u(0) = 0, and iterate

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

8>>><>>>:
u
(n+1;0)
A1

= u
(n;L1)
A1

;

u
(n+1;`+1)
A1

= S�

�
u
(n+1;`)
A1

+ T �A1((g �
PN

i=2 TAiu
(n;Li)
Ai

)� TA1u
(n+1;`)
A1

)
�
;

` = 0; :::; L1 � 1;

:::8>>><>>>:
u
(n+1;0)
AN

= u(
n;LN )
AN

;

u
(n+1;`+1)
AN

= S�

�
u
(n+1;`)
AN

+ T �AN ((g �
PN�1

i=1 TANu
(n+1;Li)
AN

i)� TANu(n+1;`))
�
;

` = 0; :::; LN � 1;

u(n+1) :=
PN
i=1 u

(n+1;Li)
Ai +(N�1)u(n)

N
:

::

The monotonicity of the energy with respect to the iterations and the convergence to an

expected minimizer is ensured by M.Fornasier et Al in [39]:

2.2 DOMAIN DECOMPOSITION FOR TOTAL VARIATION

MINIMIZATION

This section is dedicated to overlapping and non-overlapping domain decomposition meth-

ods for total variation minimization. In order to successfully show convergence of these

methods. The subminimization problems in the overlapping and non-overlapping domain

decomposition methods are solved by the iterative oblique thresholding, which is based on

an iterative proximity map algorithm and the computation of a Lagrange multiplier by a

�xed point iteration.
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2.2.1 The Overlapping Domain Decomposition Algorithm

We are interested in the minimization of the functional

J(u) := kTu� gk22 + 2�jr(u)j(
); (2.19)

where T : H ! H is now any bounded linear operator, g 2 H is a given data, and � > 0; is

a �xed constant. We recall that in order to guarantee the existence of minimizers for (2.19)

we assume condition (C), i.e., that J is coercive in H. Now, instead of minimizing (2.19)

on the whole domain, we decompose 
 into two overlapping subdomains 
1 and 
2 such

that 
 = 
1 [ 
2,
1 \ 
2 6= ;, and a certain splitting property for the total variation, i.e.,

jruj(
) = jruj
1 j(
1) + c1(uj(
2n
1)[�1); (2.20)

jruj(
) = jruj
2j(
2) + c2(uj(
1n
2)[�2);

where c1and c2 are suitable functions that depend only on the restrictions uj(
2n
1)[�1 and

uj(
1n
2)[�2 respectively, is ful�lled. The simplest examples of discrete domains with such

a property are discrete d-dimensional rectangles (d-orthotopes). For instance, with our

notations, it is easy to check that for d = 1 and for 
 being a discrete interval, one computes

c1(uj(
2n
1)[�1) = jruj(
2n
1)[�1 j((
2n
1)[�1); c2(uj(
1n
2)[�2) = jruj(
1n
2)[�2j((
1n
2)[

�2)); it is straightforward to generalize the computation to d > 1. Hence, for ease of

presentation, we will assume to work with d-orthotope domains, also noting that such

decompositions are already su¢ cient for any practical use in image processing, and stressing

that the results can be generalized also to subdomains with di¤erent shapes as long as

(2.20) is satis�ed. However, for consistency of the de�nitions of gradient and divergence, we

assume that also the subdomains 
i are discrete d-orthotopes as well as 
, stressing that

this is by no means a restriction, but only for ease of presentation. Due to this overlapping

decomposition of the domain 
, the function space H is split into two closed subspaces

V j = fu 2 H : supp(u) � 
jg, for j = 1; 2. Note that H = V1 + V2 is not a direct sum
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of V1 and V2, but just a linear sum of subspaces. Thus any u 2 H has a non unique

representation

u(x) =

8>>><>>>:
u1(x) x 2 
1n
2;

u1(x) + u2(x) x 2 
1 \ 
2; ui 2 Vi; i = 1; 2:

u2(x) x 2 
2n
1;

(2.21)

We denote by �1 the interface between 
1 and 
2n
1 and by �2 the interface between 
2
and 
1n
2 (the interfaces are naturally de�ned in the discrete setting). We introduce the

trace operator of the restriction to a boundary �i

Trj�i : Vi ! R�i ; i = 1; 2

with Trj�i (vi) = vij�i, the restriction of vi on �i. Note that R�i is as usual the set of maps

from �
i
to R: The trace operator is clearly a linear and continuous operator.

We additionally �x abounded uniform partition of unity f�1; �2g � H such that

(a)Trj�i�i = 0 for i = 1; 2;

(b)�1 + �2 = 1;

(c)supp�i � 
i for i = 1; 2;

(d)maxfk�1k1 ; k�2k1g = c� <1:

We would like to solve

argmin
u2H

J(u) (2.22)

by taking an initial u(0) = ~u(0)1 + ~u
(0)
2 2 V1 + V2;e.g:; ~u(0)i = 0; i = 1; 2; and iterate8>>>>>>>>>>><>>>>>>>>>>>:

u
(n+1)
1 � argmin v12V1

Trj�1v1=0
J(v1 + ~u

(n)
2 );

u
(n+1)
2 � argmin v22V2

Trj~u2v2=0
J(u

(n+1)
1 + v2);

u(n+1) := u
(n+1)
1 + u

(n+1)
2 ;

~u
(n+1)
1 := �1�u(n+1);

~u
(n+1)
2 := �2�u(n+1):

(2.23)

Note that we are minimizing over functions vi 2 Vi for i = 1; 2 that vanish on the interior

boundaries, i.e., Trj�i vi = 0. Moreover u(n) is the sum of the local minimizers u(n)1 and
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u
(n)
2 , which are not uniquely determined on the overlapping part. Therefore we introduced

a suitable correction by �1 and �2 in order to force the subminimizing sequences (u
(n)
1 )n

and (u(n)2 )n to remain uniformly bounded. This issue will be explained in detail below, see

Lemma (27). From the de�nition of �i, i = 1; 2, it is clear that

u
(n+1)
1 + u

(n+1)
2 = u(n+1) = (�1 + �2)u

(n+1) = ~u
(n+1)
1 + ~u

(n+1)
2 :

Note that in general u(n)1 = ~u
(n)
1 and u

(n)
2 = ~u

(n)
2 . The realization of the approximate

solution to the individual subspace minimizations, discussed in the next section, for the

general subspace correction algorithm in (3.5).

2.2.2 Local Minimization by Lagrange Multipliers

Let us consider, for example, the subspace minimization on 
1

arg min
v12V1

Trj�1
v1=0

J(v1 + u2) = arg min
v12V1

Trj�1
v1=0

kTv1 � (g � Tu2)k22 + 2�jr(v1 + u2)j(
): (2.24)

We observe that
n
u 2 H : Trj�1u = Trj�1u2; J(u) � C

o
� fJ � Cg. By assumption (C)

these sets are bounded and hence the minimization problem (2.24) has solutions.

In order to realize an approximate solution to (2.24) we use the following algorithm: for

u
(0)
1 = ~u

(0)
1 2 V1;

u
(`+1)
1 = arg min

v12V1
Trj�1

v1=0

Js1(u1 + u2; u
(`)
1 ); ` � 0; (2.25)

where Js1 is the surrogate functional of J de�ned , i.e., for a; u1 2 V1, u2 2 V2 we have

Js1(u1 + u2; a) = J (u1 + u2) + ku1 � ak
2
2 � kT (u1 � a)k

2
2 : (2.26)

Note that Js1 can be written in the following form

Js1(u1 + u2; a) =


u1 � (a+ (T � (g � Tu2 � Ta))j
1)

22 + 2�jr(u1 + u2)j(
) + �(a; g; u2);
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with � being a function of a; g; u2 only. Additionally in (2.25) we can restrict the total

variation on 
1 only, since we have

jr(u1 + u2)j(
) =
��r(u1 + u2)j
1�� (
1) + c1(u2j(
2n
1)[�1); (2.27)

where we used (2.20) and the assumption that u1 vanishes on the interior boundary �1.

Hence (2.25) is equivalent to

arg min
u12V1

Trj�1
u1=0

Js1(u1 + u2; u
(`)
1 ) = arg min

u12V1
Trj�1

u1=0

ku1 � z1k22 + 2� jr(u1 + u2)j
1j (
1); (2.28)

where z1 = u
(`)
1 + (T � (g � Tu2 � Tu(`)1 ))j
1. Similarly the same arguments work for the

second subproblem.

Let us now clarify how to practically compute u(`+1)1 for a given u(`)1 . To do so we need

to recall a useful result from convex analysis.

We observe that in order to solve the subminimization problems (2.28) we have to solve

a constrained minimization problem, i.e.,

argmin
x2H

fF (x) : Gx = 0g; (2.29)

where F : H ! R is a convex functional and G : H ! H is a bounded linear operator

on H. We have the following useful result,

Theorem 22. . ([47]). Let N = fG�� : � 2 Hg = Range(G�). Then, x0 2 fx 2 H : Gx =

0g solves the constrained minimization problem (2.29) if and only if

0 2 @F (x0) +N: (2.30)

Oblique Thresholding (OT)

We want to exploit theorem (22) in order to produce an algorithmic solution to each

iteration step (2.25), which practically stems from the solution of a problem of this type

arg min
u12V1

Trj�1
u1=0

ku1 � z1k22 + 2�
��r(u1 + u2)j
1�� (
1):
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It is well-known how to solve this problem if u2 � 0 in 
1 and if the trace condition

is not imposed. For the general case we propose to use the oblique thresholding strategy,

which was already introduced for the general subspace correction method. In what follows

all the involved quantities are restricted to 
1, e.g.,u2 = u2j
1.

Theorem 23. (Oblique thresholding). For u2 2 V2 and for z1 2 V1 the following statements

are equivalent:

(i) u�1 = argmin u12V1
Trj�1

u1=0
ku1 � z1k22 + 2� jr(u1 + u2)j (
1) ;

(ii) there exists � 2 Range(Trj�1 )
� = f� 2 V1 with supp(�) = �1g such that

0 2 u�1 � (z1 � �) + �@V1jr(�+u2)j(
1)(u�1);

(iii) there exists � 2 V1with supp(�) = �1 such that u�1 = (I�P�K)(z1+u2��)�u2 2 V1
and Trj�1 u

�
1 = 0;

(iv) there exists � 2 V1 with supp(�) = �1 such that Trj�1� = Trj�1z1 + Trj�1P�K(��

(z1 + u2)) or equivalently

� = (Trj�1 )
�Trj�1 (z1 + P�K(� � (z1 + u2))): (2.31)

The proof follows analogue arguments as the one of Theorem 3.1.4 in [47] by just correctly

replacing the projection �V2 by the trace operator Trj�1 and by replacing the spacesVi with

the new ones respectively.

Proposition 24. The following statements are equivalent:

(i) there exists � 2 V1 such that � = (Trj�1 )
�Trj�1 (z1 + P�K(� � (z1 + u2))) (which is in

turn the condition (iv) of Theorem (23)

(ii) the sequence (�(m))m produced by the following iterative algorithm

�(0) 2 V1; supp �
(0) = �1 (2.32)

�(m+1) = (Trj�1 ) � Trj�1
�
z1 + P�K(�

(m) � (z1 + u2))
�
;m � 0:

converges to any � 2 V1 that satis�es (2:31).
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Convergence of the subspace minimization

From the results of the previous section it follows that the iteration (2.25) can be explicitly

computed by

u
(`+1)
1 = S�(u

(`)
1 + T �(g � Tu2 � Tu(`)1 ) + u2 � �(`))� u2; (2.33)

where S� := I � P�K and �(`) 2 V1 is any solution of the �xed point equation

� = (Trj�1 )
�Trj�1

�
(u
(`)
1 + T �(g � Tu2 � Tu(`)1 ))� P�K(u

(`)
1 + T �(g � Tu2 � Tu(`)1 + u2 � �))

�
:

The computation of �(`) can be implemented by the algorithm in (2.32).

Proposition 25. Assume u2 2 V2 and kTk < 1. Then the iteration (2.33) converges to a

solution u�1 2 V1 of (2.24) for any initial choice of u
(0)
1 2 V1.

The proof of this statement is analogue to the one of Theorem 3.1.9. in [47] We conclude

this section by mentioning that for the minimization on V2 all the results presented here hold

symmetrically by just adjusting the notations accordingly.

2.2.3 Convergence of the Sequential Domain Decomposition Method

In this subsection we want to prove the convergence of the algorithm in (2.23) to minimizers

of J . In order to do that, we need a characterization of solutions of the minimization problem

(2.22) as the one provided in [[61], Proposition 4.1] for the continuous setting and speci�ed

for the discrete setting in Proposition 3.2.2 in [47].

Convergence properties

We return to the sequential algorithm in (2.23). Let us explicitly express the algorithm

as follows: take an initial u(0) = ~u
(0)
1 + ~u

(0)
2 2 V1 + V2, for example, ~u(0)i = 0; i = 1; 2; and
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iterate

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

8><>:
u
(n+1;0)
1 = ~u

(n)
1 ;

u
(n+1;`+1)
1 = argmin u12V1

Trj�1
u1=0

Js1(u1 + ~u
(n)
2 ; u

(n+1;`)
1 ) ` = 0; :::; L� 1;8><>:

u
(n+1;0)
2 = ~u

(n)
2 ;

u
(n+1;m+1)
2 = argmin u22V2

Trj�2
u2=0

Js2(u
(n+1;L)
1 + u2; u

(n+1;m)
2 ) m = 0; :::;M � 1;

u(n+1) := u
(n+1;L)
1 + u

(n+1;M)
2 ;

~u
(n+1)
1 := �1�u(n+1);

~u
(n+1)
2 := �2�u(n+1):

(2.34)

The algorithm in (2.34) consists of two nested iterations. The inner iterations with in-

dexes ` and m constitute the iterative solution for the sequence of surrogate function on each

subspace. Hence, these iterations approximatively compute minimizers for the functional J

on the subspaces. The outer iteration with index n stems from our domain decomposition

approach and iteratively computes the minimizer of J on the whole space. Note that we

do prescribe a �nite number L and M of inner iterations for each subspace respectively and

that u(n+1) = ~u
(n+1)
1 + ~u

(n+1)
2 , with u(n+1)i = ~u

(n+1)
i ; i = 1; 2, in general. In this section we

want to prove the convergence of the algorithm in 2.34 for any choice of L and M .

Proposition 26. (Convergence properties). Let us assume that kTk < 1. The algorithm in

2.34 produces a sequence (u(n))n in H with the following properties:

(i)J(u(n)) > J(u(n+1)) for all n 2 N (unless u(n) = u(n+1));

(ii)limn!1


u(n+1) � u(n)



2
= 0;

(iii) the sequence (u(n))n has subsequences that converge in H.

We will skip the proof of this proposition, since it follows analogue arguments as the one

of Theorem 3.1.12 in [47], .

The use of the partition of unity f�1; �2g allows not only to guarantee the boundedness

of (u(n))n, but also of the sequences (~u
(n)
1 )n and (~u

(n)
2 )n.

Lemma 27. The sequences (~u(n)1 )n and (~u
(n)
2 )n produced by the algorithm in (2.34) are

bounded, i.e., there exists a constant ~C > 0 such that



~u(n)i 




2
� ~C for i = 1; 2.
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Proof. From the boundness of (u(n))n we have




~u(n)i 



2
=



�iu(n)

2 � c� 

u(n)

2 � ~C:

for i = 1; 2

Lemma 28. The sequences (�(n;L)1 )n and (�
(n;M)
2 )n are bounded.

Proof. From previous considerations we know that

u
(n;L)
1 = S�(z

(n;L�1)
1 + ~u

(n�1)
2 � �(n;L)1 )� ~u(n�1)2 ;

u
(n;M)
2 = S�(z

(n;M�1)
2 + u

(n;L)
1 � �(n;M)

2 )� u(n;L)1 :

Assume that (�(n;L)1 )n were unbounded, (iii), also S�(z
(n;L�1)
1 + ~u

(n�1)
2 � �(n;L)1 ) would be

unbounded. By the monotonicity property of J , see proposition (26), we obtain :

L�1X
`=0




u(n+1;`+1)1 � u(n+1;`)1




2
2
+
M�1X
m=0




u(n+1;m+1)2 � u(n+1;m)2




2
2
! 0; n!1: (2.35)

Since (~u(n)2 )n and (u
(n;L)
1 )n are bounded by Lemma (27) and formula (2.35), we have a

contradiction. Thus (�(n;L)1 )n has to be bounded. With the same argument we can show that

(�
(n;M)
2 )n is bounded.

Convergence to Minimizers

Now we are eventually able to show that the algorithm in (2.34) is indeed converging to

a minimizer of the original functional J .

Theorem 29. (Convergence to minimizers). Assume kTk < 1. Then accumulation points

of the sequence (u(n))n produced by the algorithm in (2.34) are minimizers of J . If J has

a unique minimizer, then the sequence (u(n))n converges to it.
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Proof. Let us denote u(1) the limit of a subsequence. For simplicity, we rename such a

subsequence by (u(n))n. From Lemma (27) we know that (~u(n)1 )n,(~u
(n)
2 )n and consequently

(u
(n;L)
1 )n,(u

(n;M)
2 )n are bounded. So the limit u(1) can be written as

u(1) = u
(1)
1 + u

(1)
2 = ~u

(1)
1 + ~u

(1)
2 ; (2.36)

where u(1)1 is the limit of (u(n;L)1 )n, u
(1)
2 is the limit of (u(n;M)

2 )n, and ~u
(1)
i is the limit of

(~u
(n)
i )n for i = 1; 2. Now we show that ~u

(1)
2 = u

(1)
2 . By using the triangle inequality, from

(2.35) it directly follows that 


u(n+1;M)
2 � ~u(n)2





2
! 0; n!1: (2.37)

Moreover, since �
2
2 V2 is a �xed vector which is independent of n, we obtain from

Proposition (26) (ii) that



�2(u(n) � u(n+1))

2 ! 0; n!1;

and hence




~u(n)2 � ~u(n+1)2





2
! 0; n!1: (2.38)

Putting (2.37) and (2.38) together and noting that




u(n+1;M)
2 � ~u(n)2





2
+



~u(n)2 � ~u(n+1)2





2
�



u(n+1;M)

2 � ~u(n+1)2





2

we have




u(n+1;M)
2 � ~u(n+1)2





2
! 0; n!1; (2.39)

which means that the sequences (u(n;M)
2 )n and (~u

(n)
2 )n have the same limit, i.e., ~u

(1)
2 = u

(1)
2

, which we can denote by u(1)2 . Then from (2.39) and (2.36) it directly follows that ~u(1)1 =

u
(1)
1 .

We set

F1(u
(n+1;L)
1 ) :=




u(n+1;L)1 � z(n+1;L)1




2
2
+ 2�jr(u(n+1;L)1 + ~u

(n)
2j
1
)j(
1);
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where

z
(n+1;L)
1 := u

(n+1;L�1)
1 +

�
T �(g � T ~u(n)2 � Tu(n+1;L�1)1 )

�
j
1

The optimality condition for u(n+1;L)1 is

0 2 @V1F (u
(n+1;L)
1 ) + 2�

(n+1;L)
1

where

�
(n+1;L)
1 = (Trj�1

) � Trj�1
�
(z
(n+1;L)
1 ) + P�K(�

(n+1;L)
1 � z(n+1;L)1 � ~u(n)2 )

�
:

In order to use the characterization of elements in the subdi¤erential of jruj(
), i.e.,

(Proposition 3.2.2 in [47]), we have to rewrite the minimization problem for F1. More

precisely, we de�ne

F̂1(�
(n+1;L)
1 ) :=




�(n+1;L)1 � ~u(n)2j
1 � z
(n+1;L)
1




2
2
+ 2�jr(�(n+1;L)1 )j(
1)

for �(n+1;L)1 2 V1 with Trj�1�
(n+1;L)
1 = ~u

(n)
2 . Then the optimality condition for �(n+1;L)1 is

0 2 @F̂1(�(n+1;L)1 ) + 2�
(n+1;L)
1 : (2.40)

Note that indeed �(n+1;L)1 is optimal if and only if u(n+1;L)1 = �
(n+1;L)
1 � ~u(n)2j
1 is optimal.

Analogously we de�ne

F̂2(�
(n+1;M)
2 ) :=




�(n+1;M)
2 � u(n+1;L)1j
2

� z(n+1;M)
2




2
2
+ 2�jr(�(n+1;M)

2 )j(
2)

for �(n+1;M)
2 2 V2 with Trj�2�

(n+1;M)
2 = u

(n+1;L)
1 , and the optimality condition for �(n+1;M)

2

is

0 2 @F̂2(�(n+1;M)
2 ) + 2�

(n+1;M)
2 ; (2.41)

where

�
(n+1;M)
2 = (Trj�2 ) � Trj�2

�
(z
(n+1;M)
2 ) + P�K(�

(n+1;M)
2 � z(n+1;M)

2 � u(n+1;L)1 )
�
:
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Let us recall that now we are considering functionals with '(s) = s, T = I; and 
 =


i,i = 1; 2. We get that �(n+1;L)1 , and consequently u(n+1;L)1 is optimal, i.e., �2�(n+1;L)1 2

@F̂1(�
(n+1;L)
1 ), if and only if there exists an M (n+1)

1 = (M
(n+1)
0;1 ;M

(n+1)

1 ) 2 V1 � V d1 with

jM (n+1)

1 (x)j � 2� for all x 2 
1 such that

D
M

(n+1)

1 (x); (r(u(n+1;L)1 + eu(n)2 ))(x)E
Rd
+ 2�j(r(u(n+1;L)1 + ~u

(n)
2 ))(x)j = 0 (2.42)

�2(u(n+1;L)1 (x)� z(n+1;L)1 (x))� divM (n+1)

1 (x)� 2�(n+1;L)1 (x) = 0; (2.43)

for all x 2 
1. Analogously we get that �(n+1;M)
2 , and consequently u(n+1;M)

2 is optimal,

i.e., �2�(n+1;M)
2 2 @ bF2(�(n+1;M)

2 ), if and only if there exists an M (n+1)
2 = (M

(n+1)
0;2 ;M

(n+1)

2 ) 2

V2 � V d2 with jM
(n+1)

2 (x)j � 2� for all x 2 
2 such that

D
M

(n+1)

2 (x); (r(u(n+1;L)1 + u
(n+1;M)
2 ))(x)

E
Rd
+ 2�j(r(u(n+1;L)1 + ~u

(n+1;M)
2 ))(x)j = 0 (2.44)

�2(u(n+1;M)
2 (x)� z(n+1;M)

2 (x))� divM (n+1)

2 (x)� 2�(n+1;M)
2 (x) = 0; (2.45)

for all x 2 
2. Since (M
(n)

1 (x))n is bounded for all x 2 
1 and (M
(n)

2 (x))n is bounded for

all x 2 
2, there exist convergent subsequences (M
(nk)

1 (x))k and (M
(nk)

2 (x))k. Let us denote

M
(1)
1 (x) and M

(1)
2 (x) the respective limits of the sequences. For simplicity we rename such

sequences by (M
(n)

1 (x))n and (M
(n)

2 (x))n.

Note that, by Lemma (28)(or simply from (2.43) and (2.45) the sequences (�(n;L)1 )n and

(�
(n;M)
2 )n are also bounded. Hence there exist convergent subsequences that we denote, for

simplicity, again by (�(n;L)1 )n and (�
(n;M)
2 )n with limits �

(1)
i ; i = 1; 2. By taking in (2.42)-

(2.45) the limits for n!1 we obtain

D
M

(1)
1 (x); (r(u(1)1 + u

(1)
2 ))(x)

E
Rd
+ 2�j(r(u(1)1 + u

(1)
2 ))(x)j = 0 for all x 2 
1;

�2(u(1)1 (x)� z(1)1 (x))� divM (1)
1 (x)� 2�(1)1 (x) = 0 for all x 2 
1
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D
M

(1)
2 (x); (r(u(1)1 + u

(1)
2 ))(x)

E
Rd
+ 2�j(r(u(1)1 + u

(1)
2 ))(x)j = 0 for all x 2 
2;

�2(u(1)2 (x)� z(1)2 (x))� divM (1)
2 (x)� 2�(1)2 (x) = 0 for all x 2 
2

Since supp �(1)1 = �1 and supp �
(1)
2 = �2 we have

D
M

(1)
1 (x); (r(u(1))(x)

E
Rd
+ 2�j(ru(1))(x)j = 0 for all x 2 
1; (2.46)

�2T �((Tu(1))(x)� g(x))� divM (1)
1 (x) = 0 for all x 2 
1n�1

D
M

(1)
2 (x); (r(u(1))(x)

E
Rd
+ 2�j(ru(1))(x)j = 0 for all x 2 
2; (2.47)

�2T �((Tu(1))(x)� g(x))� divM (1)
2 (x) = 0 for all x 2 
2n�2:

Observe now that from (proposition 3.2.2 in [47]) we also have that 0 2 J(u(1)) if and

only if there exists M (1) = (M
(1)
0 , M

(1)
) with jM (1)

(x)j � 2� for all x 2 
 such that

D
M

(1)
(x); (r(u(1))(x)

E
Rd + 2�j(ru(1))(x)j = 0 for all x 2 
; (2.48)

�2T �((Tu(1))(x)� g(x))� divM (1)
(x) = 0 for all x 2 
:

Note that M
(1)
j (x); j = 1; 2, for x 2 
1 \ 
2 satis�es both (2.46) and (2.47) .

Hence let us choose

M (1)(x) =

8<: M
(1)
1 (x) if x 2 
1n�1;

M
(1)
2 (x) if x 2 (
2n
1) [ �1:

With this choice ofM (1) the equations (2.46) - (2.48) are valid and hence u(1) is optimal

in 
:
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Remark 30. (i) If ru(1)(x) = 0 for x 2 
j;j = 1; 2; then M
(1)
j is given by

M
(1)
j (x) = �2�

(ru(1)j
j )(x)

j(ru(1)j
j )(x)j

(ii) The boundedness of the sequences (eu(n)1 )n and (eu(n)2 )n has been technically used for
showing the existence of an optimal decomposition u(1) = u(1)1 +u

(1)
2 in the proof of Theorem

(29). Their boundedness is guaranteed as in Lemma (27) by the use of the partition of the

unity f�1; �2g. Let us emphasize that there is no way of obtaining the boundedness of the local

sequences (u(n;L)1 )n and (u
(n;M)
2 )n otherwise. In Figure 4.6 we show that the local sequences

can become unbounded in case we do not modify them by means of the partition of the unity.

(iii) Note that for deriving the optimality condition (2.48) for u(1) we combined the

respective conditions (2.46) and (2.47) for u(1)1 and u(1)2 . In doing that, we strongly took

advantage of the overlapping property of the subdomains, hence avoiding a �ne analysis of

�
(1)
1 and �(1)2 on the interfaces �1 and �2.

Remark 31. The generalization of the algorithm to a multiple domain decomposition is

straightforward. Let us split now 
 into N � 2 overlapping domains 
i; i = 1; :::; N .

Associated with this decomposition we de�ne Vi := fu 2 H : supp(u) � 
ig such that

H = V1 + ::: + VN and we denote ui = �Viu for i = 1; :::; N:By �i = @
in@
 we denote the

inner interfaces of the domain patches. Further we �x a bounded uniform partition of unity

(BUPU)f�1; :::; �Ng � H such that

(a) Trj�i�i = 0 for i = 1; :::; N;

(b)
PN

i=1 �i = 1;

(c) supp �i � 
i for i = 1; :::; N;

(d) maxfk�1k1 ; :::;


�

N




1g = c� <1:

Then we de�ne the overlapping multiple domain decomposition algorithm as follows: for

an initial V1 + :::+ VN 3 eu(0)1 + :::+ eu(0)N := u(0) 2 H, for example, eu(0)i = 0, i = 1; :::; N , use
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the iteration8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

8>>>><>>>>:
u
(n+1;0)
1 = eu(n)1 ;
u
(n+1;`+1)
1 = argmin u12V1

Trj�1
u1=0

Js1(u1 +
PN

i=2 eu(n)i ; u(n+1;`)1 );

` = 0; :::; L1 � 1;

:::8>>>><>>>>:
u(n+ 1; 0)N = eu(n)N ;

u
(n+1;`+1)
N = argmin uN2VN

Trj�N uN=0
JsN(

PN�1
i=1 u

(n+1;L)
i + uN ; u

(n+1;`)
N );

` = 0; :::; LN � 1;

u(n+1) :=
PN

i=1 u
(n+1;L)
i ;eu(n+1)i := �i�u(n+1) for i = 1; :::; N:

(2.49)

The surrogate functionals Jsi are de�ned in an analogous way as above, for instance, J
s
1 is

given as in (2.26) by just substituting
PN

i=2 u
(n)
i for u2 and by using the appropriate spaces.

Then one can show the same convergence properties as in proposition (26) and Theorem

(29). Hence the convergence of algorithm in (2.49) to a minimizer of the original functional

(2.19) is ensured.

2.2.4 Applications and Numerical Implementations

In this section we present the application of the sequential algorithm ( 2.34) for the mini-

mization of J in one and two dimensions. In particular, we give a detailed explanation of

the domain decompositions used in the numerics.

Numerical Results

In the following we present numerical examples for the sequential algorithm in ( 2.34)

in two particular applications: signal interpolation and compressed sensing. The scope of

the section is to illustrate by simple examples the main properties of the algorithms, as

proven in our theoretical analysis. In particular, we emphasize the monotonicity properties

of the algorithms with respect to the energy J , the boundedness of the iterations due to

the implementation of bounded uniform partition of unity (BUPUs), and the robustness

in correctly computing minimizers independently of the size of overlapping regions. In the

37



numerical experiments the value for the parameter � has been chosen experimentally, i.e., we

chose the value that gave the best compromise between visual quality of the minimizer and

computational time of the algorithm. Note however, that there exist more systematic ways

in order to choose an optimal value for �, where the choice depends both on the data noise

level and the exact solution of the problem, for a general approach in regularized inverse

problems, or for a discussion of the correspondence between the noise level and � in the case

of total variation minimization. In Figure 2.4 and Figure 2.5 we show a partially corrupted

1D signal on an interval 
 of 100 sampling points, with a loss of information on an interval

D � 
. The domainD of the missing signal points is marked with green. These signal points

are reconstructed by total variation interpolation, i.e., minimizing the functional J in ( 2.19)

with � = 0:4 and Tu = 1
nD�u, where 1
nD is the indicator function of 
nD. A minimizer

u(1) of J is precomputed with an algorithm working on the whole interval 
 without any

decomposition. We show also the decay of relative error and of the value of the energy J

for applications of algorithm in ( 2.34) on two subdomains and with di¤erent overlap sizes

q = 1; 5; 10; 20; 30. The �xed points ��s are computed on a small interval b
i; i = 1; 2, of size
2. These results con�rm the behavior of the algorithm in ( 2.34) as predicted by the theory;

the algorithm monotonically decreases J and computes a minimizer, independently of the

size of the overlapping region. A larger overlapping region does not necessarily imply a slower

convergence. In these �gures we do compare the speed in terms of CPU time. In Figure 4.6

we also illustrate the e¤ect of implementing the bounded uniform partition of unity (BUPU)

with in the domain decomposition algorithm. In this case, with datum g as in Figure 2.3,

we chose � = 1 and an overlap of size q = 10. The �xed points ��s are computed on a small

interval b
i; i = 1; 2 respectively, of size 6.
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Figure 2.3. We present a numerical experiment related to the interpolation of a 1D signal by

total variation minimization. The original signal is only provided outside of the green

subinterval. The initial datumg is shown in (a). As expected, the minimizer u(1) is the constant

vector 1, as shown in (b). In (c) and (d) we display the rates of decay of the relative error and of

the value of J respectively, for applications of the algorithm in ( 2.34) with di¤erent sizes

G = 1; 5; 10; 20; 30 of the overlapping region of two subintervals.
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Fig. 2.4. We show a second example of total variation interpolation in 1D. The initial

datumg is shown in (a). As expected, a minimizer u(1) is (nearly) a piecewise linear function,

as shown in (b). In (c) and (d) we display the rates of decay of the relative error and of the

value of J respectively, for applications of the algorithm in ( 2.34) with di¤erent sizes

G = 1; 5; 10; 20; 30 of the overlapping region of two subintervals.

1 domain 4 domains 16 domains

CPU time 23086:68 s 6531:94 s 1583:52 s

Nr. outer iterations 1000 10 10

Table 2.1: Regularization parameter � = 0:1; 3 inner iterations on the subdomains.
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The stopping criterion for all three algorithms is when the squared L2-norm of the dif-

ference between the current minimizer and the original image


u(n) � uorg

22 gets below

" = 0:0048.

While the algorithm applied on the whole domain does not reach the prescribed accuracy

after more than 6 hours of running time, the computation with multiple subdomains can

reach the result in less than half an hour. We also emphasize that in these experiments

the computational time decreases linearly with the number of subdomains, showing that

the computation of the Lagrange multipliers, used in our algorithm in order to correctly

interface the patches, has a nearly negligible cost with respect to the minimizations on the

subdomains, see Table 2.1.

2.3 NON-OVERLAPPING DOMAIN DECOMPOSITION ALGORITHM

The work presented in the previous section was particularly addressed to overlapping domain

decomposition. In this section we show how to specify the subspace correction algorithm

from Chapter 3 [47], i.e., the algorithm in (3.13 ) in [47] , to the case of a non-overlapping

domain decomposition as suggested in [42]. The functional of interest to be minimized is

again the discrete functional J in (2.19) together with the coercivity condition (C). Now,

instead of minimizing J on the whole domain, we propose to decompose 
 into disjoint

and non-overlapping subdomains. We limit ourselves to split the problem into two disjoint

subdomains 
1 and 
2 such that 
1 � 
 and 
2 = 
n
1, but one can easily generalize

the splitting to multiple subdomains. As in the previous section, we assume again, only

for simplicity, that also the subdomains 
i are discrete d-orthotopes as well as 
. Due to

this domain decomposition H is splitted into two closed orthogonal and complementary

subspaces V i = fu 2 H : supp(u) � 
ig;for i = 1; 2; i:e:;H = V1 � V2. Note that in the

following ui = �Vi(u); for i = 1; 2. Now we would like to solve ( 2.22) by picking an initial
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V1 � V2 3 u(0)1 + u
(0)
2 := u(0) 2 H;e.g.; u(0)i = 0; i = 1; 2; and iterate8>>><>>>:

u
(n+1)
1 � argminv12V1 J(v1 + u

(n)
2 );

u
(n+1)
2 � argminv22V2 J(u

(n+1)
1 + v2);

u(n+1) := u
(n+1)
1 + u

(n+1)
2 :

(2.50)

The subspace minimization problems of the algorithm in ( 2.50) are solved as described

in Section 3.1 in [47]. That is, for Js1 de�ned as in (3.4) in [47] now with the spaces Vi from

above,each subspace minimization is approximated by the surrogate functional minimization

u
(0)
1 2 V1; u(`+1)1 = arg min

v12V1
Js1(u1 + u2; u

(`)
1 ); ` � 0:

(cf. (3.5) in [47]), which is then solved by Lagrange multipliers or more precisely by iterative

oblique thresholding.

2.3.1 Convergence of the Sequential Domain Decomposition Method

Let us return to the sequential algorithm in (3.13) in [47] and express it explicitly for the

case of a non-overlapping domain decomposition as follows: take an initial

V1 � V2 3 u(0;L)1 + u
(0;M)
2 := u(0) 2 H;e.g:; u(0)i = 0; i = 1; 2; and iterate8>>>>>>>>><>>>>>>>>>:

8<: u
(n+1;0)
1 = u

(n;L)
1 ;

u
(n+1;`+1)
1 = argminu12V1 J

s
1(u1 + u

(n;M)
2 ; u

(n+1;`)
1 ) ` = 0; :::; L� 1;8<: u

(n+1;0)
2 = u

(n;M)
2 ;

u
(n+1;m+1)
2 = argminu22V2 J

s
2(u

(n+1;L)
1 + u2; u

(n+1;m)
2 ) m = 0; :::;M � 1;

u(n+1) := u
(n+1;L)
1 + u

(n+1;M)
2 :

(2.51)

In this section we want to prove its convergence to a minimizer of the discrete functional

J for any choice of �nite numbers L and M of inner iterations. We recall that by Theorem

3.1.12 in [47] the algorithm in ( 2.51) decreases the energy J monotonically and converges.

Moreover only under some technical conditions, which are in general not ful�lled, the al-

gorithm even converges to a minimizer of the original functional ( 2.19). However, in the

numerical experiments shown in [42], the algorithm seems always converging robustly to the

expected minimizer.
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Convergence to Minimizers

We close this gap between the lacking theoretical analysis and the promising numerical

examples from above by showing that the algorithm in ( 2.51) indeed converges to an expected

minimizer in our discrete setting. Then by following the same strategy as in the proof of

Theorem (29) we are eventually able to prove the convergence of the algorithm in ( 2.51) to

minimizers of J:

Theorem 32. (Convergence to minimizers). Assume kTk < 1. Then accumulation points

of the sequence (u(n))n produced by the algorithm in ( 2.51) are minimizers of J . If J has

a unique minimizer, then the sequence (u(n))n converges to it.

Proof. Note that due to the orthogonal splitting of 
 the sequences (u(n;L)1 )n and (u
(n;M)
2 )n

produced by the algorithm in (2.51) are bounded. Hence there exist convergent subsequences,

which we denote for ease again by (u(n;L)1 )n and (u
(n;M)
2 )n.

Let us denote by u(1)1 the limit of the sequence (u(n;L)1 )n and u
(1)
2 the limit of the sequence

(u
(n;M)
2 )n. Then by analogous arguments as the ones in the proof of theorem 2.2.8 we obtain

with the help of the following optimality conditions

D
M

(1)
1 (x); (r(u(1)1 + u

(1)
2 ))(x)

E
Rd
+ 2�j(r(u(1)1 + u

(1)
2 ))(x)j = 0 for all x 2 


�2(u(1)1 (x)� z(1)1 (x))� divM (1)
1 (x)� 2�(1)1 (x) = 0 for all x 2 
;

for u(1)1 and the following optimality conditions

D
M

(1)
2 (x); (r(u(1)1 + u

(1)
2 ))(x)

E
Rd
+ 2�j(r(u(1)1 + u

(1)
2 ))(x)j = 0 for all x 2 


�2(u(1)2 (x)� z(1)2 (x))� divM (1)
2 (x)� 2�(1)2 (x) = 0 for all x 2 
;

for u(1)2 . Since �(1)1 2 V2 is only supported in 
2, i.e., �(1)1 (x) = 0 in 
1, and �
(1)
2 2 V1

is only supported in 
1, i.e., �
(1)
2 (x) = 0 in 
2, we have

D
M

(1)
1 (x); (r(u(1))(x)

E
Rd
+ 2�j(ru(1))(x)j = 0 for all x 2 
 (2.52)

�2�
V1
T �((Tu(1))(x)� g(x))� divM (1)

1 (x) = 0 for all x 2 
1
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D
M

(1)
2 (x); (r(u(1))(x)

E
Rd
+ 2�j(ru(1))(x)j = 0 for all x 2 
 (2.53)

�2�V2T �((Tu(1))(x)� g(x))� divM
(1)
2 (x) = 0 for all x 2 
2:

Observe now that from proposition 3.2.2 [47] we also have that 0 2 J(u(1)) if and only

if there exists M (1) = (M
(1)
0 ;M

(1)
) with jM (1)(x)j � 2� for all x 2 
 such that

D
M

(1)
(x); (r(u(1))(x)

E
Rd
+ 2�j(ru(1))(x)j = 0 for all x 2 
 (2.54)

�2T �((Tu(1))(x)� g(x))� divM (1)
(x) = 0 for all x 2 
:

Hence let us choose

M (1)(x) =

8<: M
(1)
1 (x) if x 2 
1;

M
(1)
2 (x) if x 2 
2

With this choice of M (1) equations(2.52)-(2.54)are valid and hence u(1) is optimal in 
.

Remark 33. Note that in comparison to the proof of Theorem (29), here we could not

use the overlapping property of the subdomains, but we took strongly advantage of the fact

that supp �1 � 
2 and supp �2 � 
1. Hence we could restrict the corresponding optimality

conditions in (2.52) and (2.53) to the domain 
1 and 
2 only.
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3.0 OVERLAPPING AND NONOVERLAPPING DOMAIN

DECOMPOSITION METHODS FOR IMAGE RESTORATION

3.1 INTRODUCTION

In this chapter we present some applications of domain decomposition techniques to image

restoration. Here we are concerned with an overlapping and nonoverlapping domain decom-

position methods for image restoration by the tixotrop model. Given the observation that

natural and man-made images are characterized by extensive relatively uniform parts, one

may want to help the reconstruction by imposing that the interesting solution is the one which

matches the given data and has also few discontinuities localized on sets of a lower dimen-

sion. In this chapter we review both nonoverlapping and overlapping domain decomposition

methods for the Tixotrop model minimization and we provide their convergence properties

to global minimizers. Furthermore, we show e¢ ciency by numerical applications in classical

problems of signal and image processing.

3.2 THE MINIMIZATION PROBLEM

Assume that u is a piecewise constant function as given in [39]. The multiphases piecewise

constant Tixotrop model [46] is to solve the following minimization problem:

min
u
F (u) =

"

p

Z



jrujp dx+ g
Z



jr (u� u0)j dx+
�

2

Z



ju� u0j2 dx (3.1)

Where p can be adaptively selected based on the local gradient image features that is,

away from edges, p tend to 2 to preserve edges. Therefore this new model where p = 2 can
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e¤ectively reduce the staircase e¤ect in TV model whereas it can still retain the sharp edges

[23]. For more details, the reader is referred to [74]

3.3 DOMAIN DECOMPOSITION BASED SUBSPACE CORRECTION

METHOD

We put the method in a more general setting and start with the description of the subspace

correction algorithm of [39]. Given a re�exive Banach space V and a convex, Gateaux

di¤erentiable functional F : V ! R;we consider the minimization problem:

min
u2V

F (u) (3.2)

Under the notion of space correction, we �rst subdivide the space V into a sum of smaller

subspaces:

V = V1 + V2 + ���+ Vm; (3.3)

in the sense that for any v 2 V , there exists vj 2 Vj such that v =
mP
i=1

vj:

Following the framework of [29] and [51] for linear problems, we solve a �nite sequence

of sub-minimization problems over the subspaces (Vj)
n
j=1:

min
e2Vj

F (un + e); (3.4)

where un denotes a the previous approximation. Two types of subspace correction methods

based, known as the parallel subspace correction (PSC) and successive subspace correction
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(SSC) method, were proposed in [31], [52]. Here, we adopt the latter, which can be described

as follows:
Algorithm SSC. Choose an initial value u0 2 V .

For n = 0;

while j = 1; :::;m do������������

Find enj 2 Vj such that

F
�
un+(j�1)=m + enj

�
� F

�
un+(j�1)=m + vj

�
; 8vj 2 Vj

set

un+j=m = un+(j�1)=m + enj

end

Go to next iteration for n:

(3.5)

As an illustrative example, we apply the algorithm to the regularized Tixotrop denoising

model with the cost functional:

F (u) =
1

2

Z



jruj2 dxdy + �
Z



q
� + jr (u� u0)j2dxdy (3.6)

+
1

2

Z



ju� u0j2 dxdy; �; � > 0

where u0 is a given noisy image de�ned on 
 = (0; 1)� (0; 1). Here, F is di¤erentiable and

avoiding the division by zero in the corresponding Euler-Lagrange equation:

�u� � div

0@ r (u� u0)q
� + jr (u� u0)j2

1A+ u = u0 (3.7)

with an homogenous Neumann boundary condition @u=@n = 0 along the boundary. Recall

that the lagged di¤usivity �xed-point iteration for (3.7) is to solve the linearized equation:

�uk+1 � � div

0@ r
�
uk+1 � u0

�q
� + jr (uk � u0)j2

1A+ uk+1 = u0; k = 0; 1; ::::; (3.8)

with the initial value u0. We see that each iteration involves all the pixel values in the image

domain, so it will be costly and usually the system is not well conditioned when the image�s

size is large. The domain decomposition based SSC algorithm will overcome the di¢ culties

by breaking down the whole problem into sub-problems of much smaller size.
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Firstly, we use an overlapping domain decomposition to decompose the solution space

V = H1(
). More precisely, we procceed by a partition of the domain 
 into m overlapping

subdomains


 =
m[
j=1


j; 
j \ 
k 6= ;; k 6= j; (3.9)

Clearly,each subdomain 
j is colored with a color j, and 
j consists of mj subdomains

(assumed to be �blocks�for simplicity), which are not intersected. Hence, the total number

of blocks that cover 
 is :

M =

mX
j=1

mj (3.10)

Figure 1 illustrates schematically the decomposition of 
 into four colored subdomains with

25 blocks. Based on the above domain decomposition, we decompose the space V = H1(
)

as the following :

V =
mX
j=1

Vj; Vj = H
1
0 (
j) ; (3.11)

where H1
0 (
j) denotes the subspace of H

1 (
j) with zero traces on the �interior� bound-

aries @
jn@
. by applying the SSC algorithm to the Tixotrop-denoising model leads to an

iterative method.This is to say:

Given an initial value u0 2 V , Algorithm SSC leads us to get un from8<: F
�
un+

j�1
m + enj

�
� F

�
un+

j�1
m + vj

�
;8vj 2 Vj = H1

0 (
j)

un+
j
m = un+

j�1
m + enj ; 1 � j � m:

(3.12)
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Figure 3.1. Schematic illustration of the

coloring of the subdomains, and �ne/coarse

meshes on 
 = (0; 1)2; This corresponds to

the decomposition:

Here, we notice that enj is the solution of the subproblem over 
j . It is also easy to see

that un+
j
m satis�es the associated Euler-Lagrange equations for 1 � j � m;8>>>>>>><>>>>>>>:

�un+
j
m � � div

0B@ r
�
un+

j
m�u0

�
s
�+

����r�un+ j�1
m �u0

�����2
1CA+ un+ j

m = u0; in 
j

@un+
j
m

@n
= 0; on @
j \ @
;

un+
j
m = un+

j�1
m ; on @
jn@
:

(3.13)

Outside 
j, we have un+
j
m = un+

j�1
m with un+

j
m = u(n::::::), thus, there is no need to solve

un+
j�1
m outside 
j. As the subdomain 
j may contain many disjoint �blocks�, the values of

un+
j�1
m can be obtained in parallel in these �blocks�by solving (3.13).

3.4 NUMERICAL ALGORITHM

At this stage, we present the full two-level algorithm formulated in the previous section for

the Tixotrop denoising model.
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First, we subdivide the image domain 
 = (0; 1)� (0; 1) into N �N uniform cells with

mesh size h = 1=N . The cell centers are given by

(xi; yj) = ((i� 1) :h; (j � 1) :h) ; 1 � i; j � N + 1: (3.14)

As a second step we procceed by letting u0i;j be the pixel value of the original image u
0

at (xi; yj), and ui;j be the �nite di¤erence solution at (xi; yj). By using the notation:

��x ui;j = � (ui�1;j � ui;j) ; ��y ui;j = � (ui;j�1 � ui;j) ; (3.15)

�cxui;j = (ui+1;j � ui�1;j) ; �cyui;j = (ui;j+1 � ui;j�1) ; (3.16)

the �nite di¤erence approximation of (3.7) is:

ui;j � �+x
�
��x ui;j

�
� �+y

�
��y ui;j

�
� �h

8>><>>:
��x

�
�+x ui;jq

(�+x ui;j)
2
+(�cyui;j)

2
+�h

�
+

��y

�
�+y ui;jq

(�cxui;j)
2+(�+y ui;j)

2
+�h

�
9>>=>>; = u0i;j (3.17)

where �h = �
h
and �h = 4h�, with � = 0:5; � = 0:1:

3.5 NUMERICAL RESULTS

We present in this section various numerical results to demonstrate the e¢ ciency of the

proposed domain decomposition algorithms without and with a coarse domain correction,

denoted by DD and DDC in short, respectively. If we, assume that the pixel values of all

images lie in the interval [0; 255], and the Gaussian white noise is added by the normal

imnoise function imnoise( I,�gaussian�, M, �) (i.e., the mean M and variance �) in Matlab.

In our numerical tests, we use PSNR as a criteria for the quality of restoration. This

quantity is usually expressed in terms of the logarithmic decibel scale by:

PSNR = 10 log10
(255)2

1
mn

P
i;j

�
ui;j � u0i;j

�2 (3.18)
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where fui;j � u0i;jg are the di¤erences of the pixel values between the restored and original

images. Typical values for the PSNR in lossy image and video compression are between

30dB and 50dB (the higher implies the better). Acceptable values for wireless transmission

quality loss are considered to be about 20dB to 25dB. We shall also use the relative dynamic

error between two consecutive iterations:

uk � uk�1


L2(
)

kukkL2(
)
< " (3.19)

for a prescribed tolerance ", as the stopping criteria.
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Figure 3.2. Row one: original image (left lena-512� 512), noise image with � = 0:04

(middle) and restored image(right) obtained by DD with subdomain size d = 32,

overlapping size � = 4,� = 0:025, " = � = 10� 4. Here, PSNR = 25:9388 (TV)

Original image

(512�512)
Noise image with

�=0.04

Restored image

obtained by DD with

subdomain size

d=32,overlapping size

�=4,�=0.025,"=�=10-

4. The

PSNR=35.9388.

Figure 3:3:
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Original image

Noised color image with

15% multiplicative noise.

Restored color image

obtained with subdomain

size d = 64;overlapping

size = 4:

ThePSNR = 27; 303:

Figure 3:4:

Image d � k PSNR Time

TV 45 25:9725 415:9900

1 63 25:9135 6:32%

2 51 25:8780 15:32%

3 46 25:8724 5:82%

Lena 512 4 43 25:9261 16:41%

32 5 41 25:9022 17:86%

6 41 25:8859 19:84%

7 45 25:9778 24:71%

8 46 25:9247 28:62%

Image d � k PSNR Time

Tixotrop 42 29:9782 1970:2

1 55 29:9892 13:81%

2 45 29:9994 12:40%

3 40 29:9997 12:74%

Lena 512 32 4 40 29:9697 13:96%

5 39 29:9587 15:28%

6 39 29:9797 16:88%

7 39 29:9497 20:54%

8 39 29:9897 24:10%

Table3.1.Di¤erent overlapping size with stopping residual " = 10�4; � = 0:04

Comparison of TV, and Tixotrop, � = 0:025 and � = 10�4:
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To illustrate the impact of overlapping sizes, we present results in Table 3.1 the PSNR

and CPU time of the classic TV by the lagged di¤usivity �xed-point iteration and Tixotrop

with subdomain size 32 and 64 for black and white, and color images respectively, but with

di¤erent overlapping size �. Here, the percentage of the CPU time is against TV. We see

that the PSNR obtained by Tixotrop is not so sensitive to the overlapping size �, while the

computational time increases as � increases, as expected. To have a good trade-o¤ between

the convergence rate and the quality of restoration, it is advisable to choose � to be 2; 3 or

4. It is essential to point out that the use of Tixotrop leads to a remarkable reduction of

computational time in particular for images of large size. Numerical results are shown in

Figure 3.3. for Lena-512� 512 image and Figure 3.4. for a color image.
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4.0 CONCLUSIONS

In this thesis, we presented a technique based on a domain decomposition. This technique

involving many known results from fonctional to numerical analysis, has lead us to enumerate

all the tools needed in our applications. In a preliminary chapter, we started by introducing

the fonctional spaces, the conversity, the di¤erentiability and some optimisation methods.In

the second chapter we described the domain decomposition procedure in a general way.

Finally, we presented our contribution resumed in a domain decomposition method for an

image processing problem by the tixotrop model. As a �rst step, we described in details,

the implementation of the domain decomposition and coarse mesh correction techniques.

Then by several numerical simulations we gave useful guidelines for the choice of parame-

ters through such quantitative studies, and demonstrate the e¤eciency of the implemented

methods in CPU time and memory saving. The results shown in table 3.1. and Figures 3.4.

and 3.5. show the advantages for our tixotrop model and the subdomain technique used.

Moreover, we compared the proposed method with the dual algorithms with respect to the

decay of numerical residuals. We conclude that, these techniques are very useful from many

points:

1- The low cost: less CPU time is needed

2- The quality of the stored image: the PSNR is qualitatively better

3- Simpler problems are solved: a large scale problem is decomposed to subproblems of

much smaller size in an e¢ cient manner

4- Parallel computing can be used
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4.1 FUTURE WORK

As an extension to this work, we plan to:

(i) implement some other algorithms for solving the Tixotrop model for vectorial and

colored images.

(ii) Use parallel implementations.

4.2 APPENDIX: CODE FOR THE TIXOTROP MODEL IN MATLAB

The following is a matlab level algorithm for the solution of the tow-dimensional model

problem tixotrop equation for image processing.

� � � � � � � � � � � � � � � � � �

function Tixotrop_overlap_2D

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Overlapping DOMAIN DECOMPOSITION FOR

Tixotrop-DENOISING AND INTERPOLATION of 2D IMAGES %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% % Domain Decomposition Method for Tixotrop Minimization.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

close all

t=cputime;

%choice of a grayvalue image:

image = �Lena.png�;%image = �color image.jpg�;

g=imread(image);

g=rgb2gray(g);

g=double(g);

[m,n]=size(g);

%% De�nition of PARAMETERS:%%%%%%%%

h=1; %spacestep size
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dt=1/4; %timestep size

lpower=-0.5; %Lagrange multiplier nlambda_0=10^lpower

lambda0=10^lpower;

D=4; %Number of subdomains

sub=3; %number of iterations in each subdomain

erreta=10^(-9); %aimed maximal error in the computation of neta

itetamax=10; %maximal number of iterations in the �xed point computation of neta

projerr=10^(-2); %aimed error in the computation of the projection of Chambolle to

compute the tixotrop-seminorm.

errthresh=10^(-6); %aimed error in the computation of the outer iterations, i.e. the

computations of the minimizer.

overlaphalf=�oor((m/D)/6);%=13

overlap=2*overlaphalf; %size of overlap

etacomp1=5;

etacomp2=0;

%%%%%%%%%%%%%%%%%%%%%%%

%scale image values to [0,1]

g = g./max(max(g));

%grayvalue range for plotting

clims=[0 1]

% %%%%%%%%%%%%%%%%%%%%%%%%%

%(LAMBDA = CHARACTERISTIC FUNCTION OF nOMEGAnsetminus D):

lambda = ones(m,n);

% Comment the next 7 lines if used for image denoising!

[j,k] = �nd(g ==0); %t

sd = size(j,1);

for i=1:sd

lambda(j(i),k(i)) = 0;

end

clear j k sd
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lambda = sparse(lambda);

% INITIALIZATION:

u=sparse(g);

%DOMAIN DECOMPOSITION:

%Split the problem in D subproblems with overlapping domains:

%%%%%%%%%%%%%%%%%%%%%%%%%%

% % % %

% % % %

% Omega_1 %nGamma_2 %nGamma_1 Omega_2 %

% % % %

% % % %

%%%%%%%%%%%%%%%%%%%%%%%%%%

% nOmega = nOmega_1ncupnOmega_2

% nGamma_1 = interface of nOmega_1; nGamma_2 = interface of nOmega_2

% u in nOmega_1nsetminusnOmega_2 = u1;

% u in nOmega_1ncapnOmega_2 = u1+u2;

% u in nOmega_2nsetminusnOmega_1 = u2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Size of nOmega_1 = s1 =(m/D)+overlaphalf

%nGamma_1 = s1+1

s=�oor(m/D);

Eud(:,:,1)=zeros(m,n);

Eud(1:s-overlaphalf,:,1)=u(1:s-overlaphalf,:);

%On the overlapping part nOmega_1 ncap nOmega_2 we de�ne u1=u/2;

Eud(s-overlaphalf+1:s+overlaphalf,:,1)=u(s-overlaphalf+1:s+overlaphalf,:)/2;

%Correction function for u_1

Chi(:,:,1)=zeros(m,n);

Chi(1:s-overlaphalf,:,1)=1;

for j=s-overlaphalf+1:s+overlaphalf

Chi(j,:,1)=1-1/overlap*(j-(s+overlap/2-overlap+1));
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end

Chi(s+overlaphalf+1:m,:,1)=0;

if D>2

for i=2:D-1

Eud(:,:,i)=zeros(m,n);

Eud((i-1)*s-overlaphalf+1:(i-1)*s+overlaphalf,:,i)=u((i-1)*s-overlaphalf+1:(i-1)*s+overlaphalf,:)/2;

Eud((i-1)*s+overlaphalf+1:i*s-overlaphalf,:,i)=u((i-1)*s+overlaphalf+1:i*s-overlaphalf,:);

Eud(i*s-overlaphalf+1:i*s+overlaphalf,:,i)=u(i*s-overlaphalf+1:i*s+overlaphalf,:)/2;

%Correction function for u_i

Chi(:,:,i)=zeros(m,n);

for j=(i-1)*s-overlaphalf+1:(i-1)*s+overlaphalf

Chi(j,:,i)=1/overlap*(j-((i-1)*s+overlaphalf-overlap+1));

end

Chi((i-1)*s+overlaphalf+1:i*s-overlaphalf,:,i)=1;

for j=(i)*s-overlaphalf+1:i*s+overlaphalf

Chi(j,:,i)=1-1/overlap*(j-(i*s+overlaphalf-overlap+1));

end

end

end

%Size of nOmega_D = m-(D-1)*s+overlaphalf

%nGamma_2 = (D-1)*s-overlaphalf

Eud(:,:,D)=zeros(m,n);

Eud((D-1)*s-overlaphalf+1:(D-1)*s+overlaphalf,:,D)=u((D-1)*s-overlaphalf+1:(D-1)*s+overlaphalf,:)/2;

Eud((D-1)*s+overlaphalf+1:m,:,D)=u((D-1)*s+overlaphalf+1:m,:);

%Correction function for u_2 (BUPU)

Chi(:,:,D)=zeros(m,n);

Chi(1:(D-1)*s-overlaphalf,:,D)=0;

for j=(D-1)*s-overlaphalf+1:(D-1)*s+overlaphalf

Chi(j,:,D)=1/overlap*(j-((D-1)*s+overlaphalf-overlap+1));

end
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Chi((D-1)*s+overlaphalf+1:m,:,D)=1;

%Test if the sum of the Chi�s is 1

for i=1:m

if(sum(Chi(i,:,1:D),3)~=1)

fprintf(�Chi is not correct choosen�)

pause()

end

end

%%%%%%%%%%%%%%%%

uplot(:,:,1)=zeros(m,n); uplot(:,:,2)=zeros(m,n); uplot(:,:,3)=zeros(m,n);

uplot(:,:,1)=u; uplot(:,:,2)=u; uplot(:,:,3)=u;

for i=1:D-1

uplot(i*s-overlaphalf,:,1)=1;

uplot(i*s-overlaphalf,:,2:3)=0;

uplot(i*s+overlaphalf+1,:,1:2)=0;

uplot(i*s+overlaphalf+1,:,3)=1;

end

�gure

imagesc(uplot,clims); axis image; axis o¤; title(�Initial Picture�);

pause(0.01)

%%%%%%%%%%%%%%%%%%%%

%

%rect = get(gcf,�Position�);

%rect(1:2) = [0 0];

%%%%%% MOVIE %%%%%%%%%%

�gure

%count number of necessary outer iterations:

r=0;

err=1;

while err > errthresh
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r=r+1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% ITERATION FOR U1 IN nOMEGA_1 %%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Computation only takes place on nOmega_1 + nGamma_1

for k=1:sub

g1=lambda(1:s+overlaphalf+etacomp2+1,:).*(g(1:s+overlaphalf+etacomp2+1,:)-...

sum(Eud(1:s+overlaphalf+etacomp2+1,:,2:D),3));

y1=sum(Eud(1:s+overlaphalf+etacomp2+1,:,2:D),3);

z1=Eud(1:s+overlaphalf+etacomp2+1,:,1)+...

lambda(1:s+overlaphalf+etacomp2+1,:).*(g1-Eud(1:s+overlaphalf+etacomp2+1,:,1));

%FIXEDPOINT ITERATIONFOR nETA only within a small stripe around nGamma_1:

eta1=zeros(s+overlaphalf+etacomp2+1,n);

etatr=eta1(s+overlaphalf-etacomp1+1:s+overlaphalf+etacomp2+1,:);

ytr=y1(s+overlaphalf-etacomp1+1:s+overlaphalf+etacomp2+1,:);

ztr=z1(s+overlaphalf-etacomp1+1:s+overlaphalf+etacomp2+1,:);

d=1;

it=0;

while (d > erreta*sum(sum(abs(etatr(:,:,1))))/100) & (it<itetamax)

ftr=etatr(:,:,1)-ytr-ztr;

%Chambolle

divp=proj(ftr,lambda0,dt,projerr);

etatr1=ztr+lambda0.*divp;

etatr1(1:etacomp1,1:n)=0;

if etacomp2>0

etatr1(etacomp1+2:etacomp1+etacomp2+1,1:n)=0;

end

d=sum(sum(abs(etatr(:,:,1)-etatr1)));

etatr(:,:,1) = etatr1;

clear etatr1
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it=it+1;

end

clear f divp it

%We compute the projection for u_1 only in Omega_1

eta1(s+overlaphalf+1,:)=etatr(etacomp1+1,:);

f1=y1+z1-eta1;

divp1=proj(f1,lambda0,dt,projerr);

clear f y_omega1

%%%%%%%%%%%%%SOLUTIONE_1u_1^{(n+1)} of minimization problem in nOMEGA_1:

Eud(1:s+overlaphalf+etacomp2+1,:,1)=z1-eta1-lambda0.*divp1;

Eud(s+overlaphalf+1:m,:,1) = 0;

clear z_omega1 divp_omega1 eta_omega1

end

u1new=sum(Eud(:,:,1:D),3);

uplot(:,:,1)=zeros(m,n); uplot(:,:,2)=zeros(m,n); uplot(:,:,3)=zeros(m,n);

uplot(:,:,1)=u1new; uplot(:,:,2)=u1new; uplot(:,:,3)=u1new;

for i=1

uplot(i*s+overlaphalf+1,:,1:2)=0;

uplot(i*s+overlaphalf+1,:,3)=1;

end

imagesc(uplot,clims); axis image; axis o¤; colormap(gray);title([num2str(r) � iterations

�]);

pause(0.01)

%%%%%%%%%%%% %%% %%%%%%%%

mov_matrix(D*(r-1)+1) = getframe(gcf,rect);

%%%%%%%%%%%% %% %%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%

%% ITERATIONs FOR Ui IN nOMEGA_i FOR 1<i<D%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=2:D-1
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for k=1:sub

gd=lambda((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:).*...

(g((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:)-...

sum(Eud((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:,1:i-1),3)-...

sum(Eud((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:,i+1:D),3));

y=sum(Eud((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:,1:i-1),3)+...

sum(Eud((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:,i+1:D),3);

z=Eud((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:,i)+...

lambda((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:).*...

(gd-Eud((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:,i));

%FIXEDPOINT ITERATIONFOR nETA only within a small stripe around nGamma_i:

%Compute �xed point iteration for neta only in a small stripe around

%nGamma_incapnOmega_{i-1}

etai=zeros(s+2*overlaphalf+etacomp2+2,n);

etatr_L=etai(1:etacomp1+etacomp2+1,:);

ytr_L=y(1:etacomp1+etacomp2+1,:);

ztr_L=z(1:etacomp1+etacomp2+1,:);

d=1;

it=0;

while (d > erreta*sum(sum(abs(etatr)))/100) & (it<itetamax)

ftr=etatr_L-ytr_L-ztr_L;

divp=proj(ftr,lambda0,dt,projerr);

etatr1_L=ztr_L+lambda0.*divp;

if etacomp2>0

etatr1_L(1:etacomp2,:)=0;

end

etatr1_L(etacomp2+2:etacomp2+etacomp1+1,1:n)=0;

d=sum(sum(abs(etatr_L-etatr1_L)));

etatr_L = etatr1_L;

clear etatr1_L
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it=it+1;

end

clear ftr divp it y_stripeL z_stripeL

%Compute �xed point iteration for neta only in a small stripe around

%nGamma_incapnOmega_{i+1}

etatr_R=etai(s+2*overlaphalf-etacomp1+2:s+2*overlaphalf+etacomp2+2,:);

ytr_R=y(s+2*overlaphalf-etacomp1+2:s+2*overlaphalf+etacomp2+2,:);

ztr_R=z(s+2*overlaphalf-etacomp1+2:s+2*overlaphalf+etacomp2+2,:);

d=1;

it=0;

while (d > erreta*sum(sum(abs(etatr_R)))/100) & (it<itetamax)

ftr=etatr_R-ytr_R-ztr_R;

divp=proj(ftr,lambda0,dt,projerr);

etatr1_R=ztr_R+lambda0.*divp;

etatr1_R(1:etacomp1,1:n)=0;

if etacomp2>0

etatr1_R(etacomp1+2:etacomp1+etacomp2+1,1:n)=0;

end

d=sum(sum(abs(etatr_R-etatr1_R)));

etatr_R = etatr1_R;

clear eta1_stripeR

it=it+1;

end

clear ftr divp it ytr_R ztr_R

%We compute the projection for u_i only in Omega_i

etai(etacomp2+1,:)=etatr_L(etacomp2+1,:);

etai(s+2*overlaphalf+1,:)=etatr_R(etacomp1+1);

f=y+z-etai;

divpi=proj(f,lambda0,dt,projerr);

clear f y_omegad
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%%%%%%%%%%%%%SOLUTIONEu_i^{(n+1)} of minimization problem in nOMEGA_i:

Eud((i-1)*s-overlaphalf-etacomp2:i*s+overlaphalf+etacomp2+1,:,i)=z-etai-lambda0.*divpi;

Eud(1:(i-1)*s-overlaphalf-1,:,i) = 0;

Eud(i*s+overlaphalf+1:m,:,i) = 0;

clear z_omegad divp_omegad eta_omegad

%We compute the projection for u_D only in Omega_D

%etaD(etacomp2+1,:)=etatr(etacomp2+1,:);

%fD=yD+zD-etaD;

%divpD=proj_convset(fD,lambda0,dt,projerr);

%clear fD yD

%

%%%%%%%%%%%%%SOLUTIONEu_D^{(n+1)} of minimization problem in nOMEGA_D:

%Eud((D-1)*s-overlaphalf-etacomp2:m,:,D)=zD-etaD-lambda0.*divpD;

%Eud(1:(D-1)*s-overlaphalf-1,:,D) = 0;

%clear zD divpD etaD

end

uinew=sum(Eud(:,:,1:D),3);

uplot(:,:,1)=zeros(m,n); uplot(:,:,2)=zeros(m,n); uplot(:,:,3)=zeros(m,n);

uplot(:,:,1)=uinew; uplot(:,:,2)=uinew; uplot(:,:,3)=uinew;

uplot(i*s+overlaphalf+1,:,1:2)=0;

uplot(i*s+overlaphalf+1,:,3)=1;

imagesc(uplot,clims); axis image; axis o¤; colormap(gray);title([num2str(r) � iterations

�]);

pause(0.01)

%%%%%%%%%%%% MOVIE %%%%%%%%%%%%%%%%%%

mov_matrix(D*(r-1)+i) = getframe(gcf,rect);

%%%%%%%%%%%% MOVIE %%%%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% ITERATION FOR UD IN nOMEGA_D %%%%%%%%%%%%
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for k=1:sub

gD=lambda((D-1)*s-overlaphalf-etacomp2:m,:).*(g((D-1)*s-overlaphalf-etacomp2:m,:)-...

sum(Eud((D-1)*s-overlaphalf-etacomp2:m,:,1:D-1),3));

yD=sum(Eud((D-1)*s-overlaphalf-etacomp2:m,:,1:D-1),3);

zD=Eud((D-1)*s-overlaphalf-etacomp2:m,:,D)+...

lambda((D-1)*s-overlaphalf-etacomp2:m,:).*(gD-Eud((D-1)*s-overlaphalf-etacomp2:m,:,D));

%FIXEDPOINT ITERATIONFOR nETA only within a small stripe around nGamma_D:

%Compute �xed point iteration for neta

etaD=zeros(m-(D-1)*s+overlaphalf+etacomp2+1,n);

etatr=etaD(1:etacomp1+etacomp2+1,:);

ytr=yD(1:etacomp1+etacomp2+1,:);

ztr=zD(1:etacomp1+etacomp2+1,:);

d=1;

it=0;

while (d > erreta*sum(sum(abs(etatr)))/100) & (it<itetamax)

ftr=etatr-ytr-ztr;

divp=proj(ftr,lambda0,dt,projerr);

etatr1=ztr+lambda0.*divp;

if etacomp2>0

etatr1(1:etacomp2,:)=0;

end

etatr1(etacomp2+2:etacomp2+etacomp1+1,1:n)=0;

d=sum(sum(abs(etatr-etatr1)));

etatr = etatr1;

clear etatr1

it=it+1;

end

clear f divp it

%We compute the projection for u_D only in Omega_D

etaD(etacomp2+1,:)=etatr(etacomp2+1,:);
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fD=yD+zD-etaD;

divpD=proj_convset(fD,lambda0,dt,projerr);

clear fD yD

%%%%%%%%%%%%%SOLUTIONEu_D^{(n+1)} of minimization problem in nOMEGA_D:

Eud((D-1)*s-overlaphalf-etacomp2:m,:,D)=zD-etaD-lambda0.*divpD;

Eud(1:(D-1)*s-overlaphalf-1,:,D) = 0;

clear zD divpD etaD

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%SOLUTION ON WHOLE DOMAIN:%%%%%%%

unew=sum(Eud(:,:,1:D),3);

err = sum(sum(abs(u-unew)))./(m*n)

u=unew;

clear unew

for i=1:D

Eud(:,:,i)=Chi(:,:,i).*u;

end

imagesc(u,clims); axis image; axis o¤; colormap(gray);title([num2str(r) �iterations �]);%,

num2str(cputime-t) �sec�]);

pause(0.01)

%%%%%%%%%%%% MOVIE %%%%%%%%%%%%

mov_matrix(D*(r-1)+D) = getframe(gcf,rect);

%%%%%%%%%%%% MOVIE %%%%%%%%%%%%

end

iterations=r

fprintf(�Time: %f sec nn�, cputime-t);

%%%%%%%MOVIE%%%%%%%%%%%%%%%%%%

movie(gcf,mov_matrix,1,50);

movie2avi(mov_matrix,[savepath �movie.avi�],�compression�,�Indeo5�,�fps�,2);

%%%%%%%%%MOVIE%%%%%%%%%%%%%%%%
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%PROJECTION - CHAMBOLLE:

%Iteration to compute the projection

%nPi_{nlambda K})(a+A^*(g-Aa)) (Chambolle)

function divp=proj(f,lambda0,dt,projerr)

[m,n]=size(f);

px(1:m,1:n)=0;

py(1:m,1:n)=0;

p=sparse([px,py]);

di¤=1;

it=0;

while di¤> projerr * sum(sum(abs(p)))/(n*m)

it=it+1;

%divergence (backward di¤erences)

divp(2:m-1,2:n-1) = (px(2:m-1,2:n-1)-px(1:m-2,2:n-1)) + (py(2:m-1,2:n-1)-py(2:m-1,1:n-

2));

divp(2:m-1,1) = (px(2:m-1,1)-px(1:m-2,1)) + py(2:m-1,1);

divp(2:m-1,n) = (px(2:m-1,n)-px(1:m-2,n)) - py(2:m-1,n-1);

divp(1,2:n-1) = px(1,2:n-1) + (py(1,2:n-1)-py(1,1:n-2));

divp(1,1) = px(1,1) + py(1,1);

divp(1,n) = px(1,n) - py(1,n-1);

divp(m,2:n-1) = -px(m-1,2:n-1) + (py(m,2:n-1)-py(m,1:n-2));

divp(m,1) = -px(m-1,1) + py(m,1);

divp(1,n) = -px(m-1,n) - py(m,n-1);

arg = divp - f./lambda0;

%gradient (forward di¤erences)

gradx(1:m-1,1:n) = arg(2:m,1:n)-arg(1:m-1,1:n);

gradx(m,1:n) = 0;

grady(1:m,1:n-1) = arg(1:m,2:n)-arg(1:m,1:n-1);

grady(1:m,n) = 0;

grad = [gradx, grady];

68



if sum(sum(grad==0))==n*m

absgrad=grad;

else

absgrad = abs(grad);

end

p1 = (p + dt.*grad)./(1+dt.*absgrad);

di¤ = sum(sum(abs(p-p1)))/(2*m*n);

p=p1;

clear p1;

px(1:m,1:n) = p(1:m,1:n);

py(1:m,1:n) = p(1:m,n+1:2*n);

if it>100

it

end

end
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