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 ملخص

 

 

في هذه الأطروحة نقترح لمحة عامة عن الترتيبات العشوائية للأخطار وتطبيقاتها. 

عنى أدق سنتطرق إلى مشكلة تعظيم قيمة الفوائد لمحفظة التأمين، إضافة إلى بم

تطبيقات حول التوزيع الأمثل لحدود واقتطاعات بوليصة التأمين وعلاقتها ببعض 

المخاطر عن ، نماذج copulasمقارنة  منها: الأخرىالمواضيع الإكتوارية 

 لخ.إالفردية والجماعية وعقود إعادة التأمين، 

 

، حدود واقتطاعات المحدب، الترتيب Comonotonicité :رئيسيةالكلمات ال

 بوليصة التأمين.
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Introduction générale en français
La science actuarielle moderne et la théorie de risque jouent un rôle important

dans l�économie et la �nance. Un des principaux objectifs de la profession actuarielle

est la comparaison de variables aléatoires (risques). Habituellement, le critère probab-

iliste «moyenne - variance» ne su¢ t pas toujours à comparer des variables aléatoires.

Cependant, il arrive souvent qu�on possède des informations plus détaillées en utilisant

les fonctions de répartition des variables aléatoires pour les comparés. Pour cela, il est

préférable de faire une comparaison basée sur les distributions que celle basée unique-

ment sur deux statistiques. La méthode utilisée pour comparer deux distributions

est nommée «ordre stochastique» . Tout d�abord, nous donnons un aperçu historique

de ce terme. Depuis les années 70, le concept de dominance stochastique, introduit

par Rothschild-Stieglitz, permet de comparer des distributions de probabilité. Plus

récemment, les ordres stochastiques qui généralisent la dominance stochastique sont

utilisés de façon accélérée dans plusieurs domaines, notamment la �nance, science

actuarielle et l�économie. En faite, des ordres stochastiques particuliers aient déjà

été étudiés par Karamata en 1932, par Lehmann en 1955, et par Littlewood et Polya

en 1967. En�n, les premières études presque complètes des ordres stochastiques ont

été données par Stoyan dans les années 1977 et 1983, et par Mosler en 1982. En �n-

ance et en économie, une des raisons principales pour comparer des variables aléatoires

(risques) en utilisant des ordres stochastiques est le fait que ces derniers utilisent toute

l�information sur la fonction de répartition a�n d�établir une comparaison adéquate
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entre deux variables aléatoires.

Notre travail est structuré de la manière suivante :

Le chapitre 2 présente et examine de façon systématique les ordres stochastiques

univariés les plus utilisés dans la littérature. Par ailleurs, des dé�nitions, notations

et propriétés sont établies. Par exemple, la fonction d�utilité, ordre de majorisation,

valeur at risque, et la fonction de distribution inverse.

De ce fait, le chapitre 3 traite la comonotonicté, à savoir les ensembles comono-

tones, les vecteurs aléatoires comonotones, la somme comonotone des variables aléatoires

et les bornes convexes pour la somme des variables aléatoires.

En�n, le dernier chapitre présente la contribution originale de notre travail dont

nous introduisons un nouveau modéle de l�allocation optimale des limites de police

et des déductibles. Il s�agit d�une extension et complémemt du résultat de Cheung

[6], Hua and Cheung [29] and Zhuang et al.[58]. Des applications sur l�allocation

optimale des limites de police et des déductibles sont obtenus, et quelques relations

avec d�autres sujets actuariels principaux (comparaison des copules, les modèles de

risque individuels et collectifs, des contrats de réassurance, etc.) sont également

étudiés.

Cette contribution est couronnée par (03) publications scienti�ques dans des re-

vues de renommées internationales à savoir:

� Bouhadjar, M. Zeghdoudi, H. Remita, M.R, Ordering of the Optimal Allocation

of Policy Limits in general model. European Journal of Scienti�c Research,
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Chapter 1

Introduction

Modern actuarial science and risk theory play a crucial role in the economy and

�nance. One of the principal objectives of the actuarial profession is the comparison

of random variables (risks). Usually, the probabilistic criterion «mean - variance»

is not always enough to compare random variables. However, it often happens that

we have more detailed information by using the distribution functions of the random

variables for compared.

This work is innovative in many respects. It integrates the theory of stochastic or-

ders, one of the methodological cornerstones of risk theory and the theory of stochastic

dependence, which has become increasingly important as new types of risks emerge.

More precisely, risk measures will be used to generate stochastic orderings, by identi-

fying pairs of risks about which a class of risk measures agree. Stochastic orderings

are then used to de�ne positive dependence relationships.
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In several works, orderings of optimal allocations of policy limits and deductibles were

established by maximizing the expected utility of wealth of the policyholder. In this

work, we study the problems of optimal allocation of policy limits and deductibles

for general model,by using some characterizations of stochastic ordering relations, we

reconsider the new general model and obtain some new results on orderings of optimal

allocations of policy limits and deductibles. To this end, we obtain the ordering of

the optimal allocation of policy limits, deductibles for this model and we extend the

above results in Cheung (2007; 2008).

We consider for the following model :

SN = X1f(Y1) +X2f(Y2) + :::+Xnf(Yn) (M1)

where :Yi = �iTi, SN is total discounted loss, Xi are loss due to the i-th risk, Ti are

time of occurrence of i-th insured risk and �i are discount rate capture the impact of

�nancial environment (Xi; Ti are independent non-negative random variables and �i

are non-random numbers). Also, we will make the following assumptions

1. f(Yi) � 0;8Yi and lim f(Yi)
Yi!1

= 0:

2. f(Yi) is decreasing and convex function.

3. Y1; Y2; :::; Yn are mutually independent.

4. A policyholder exposed to risks X1; X2; :::; Xn is granted a total of l dollars (l > 0)

as the policy limit with which (s)he can allocate arbitrarily among the n risks.

Remark 1.1 A very good property of the model (M1) is that Xi�s characterize the
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scales of the losses while f(Yi) characterize the chances of the losses.

In this situation, if some risk occurs, the insurer will make the payment right

after the event of the loss and the insurance coverage for this risk will terminate.

However the insurance coverage for the other risks is still in e¤ect. If (l1; :::; ln) are

the allocated policy we have 8i : li � 0 and
nX
i=1

li = l. When l is n-tuple admissible

and An(l) denote the class of all such n-tuples. If l = (l1; :::; ln) 2 An(l) is chosen,

then the discounted value of bene�ts obtained from the insurer would be

nX
i=1

(Xi ^ li) f(Yi) (1.1)

If we take expected utility of wealth as the criterion for the optimal allocation, then

the problem of the optimal allocation of policy limits is

Problem L : max
l2An(l)

E

"
u

 
w �

nX
i=1

[Xi � (Xi ^ li)] f(Yi))
!#

: (1.2)

where u is the utility function of the policyholder and w is the wealth (after premium).

Similarly, instead of policy limits, the policyholder may be granted a total of d dollars

(d > 0) as the policy deductible with which (s)he can allocate arbitrarily among the

n risks. If d = (d1; :::; dn) 2 An(d) are the allocated deductibles, then 8i : di �

0;
nP
i=1

di = d, and the discounted value of bene�ts obtained from the insurer would be

nX
i=1

(Xi � di)+ f(Yi) (1.3)
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Chapter 2

Preliminaries and Notations

In this chapter, we will present some de�nitions like: Utility function, Majorization

Order, Arrangement Increasing. . . etc.

Throughout this work, we de�ne In = f(a1; :::; an) 2 Rn : a1 � ::: � ang and

Dn = f(a1; :::; an) 2 Rn : a1 � ::: � ang. In addition, we noted that x[i] and x(i)

are the i-th largest and the i-th smallest element of x respectively. The notation x "

will be used to indicate the increasing rearrangement (x(1); :::; x(n)) 2 In and x # will

be used to indicate the decreasing rearrangement (x[1]; :::; x[n]) 2 Dn for any vector

x = (x1 ; :::; xn) 2 Rn. We represent a permutation of the set f1; 2; :::; ng by � , then

the permuted vector (x� (1) ; :::; x� (n)) will be denoted as x � � .
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2.1 Utility function

In economics, utility is a measure of preferences over some set of goods and ser-

vices. A utility function, u(x), can be described as a function which measures the

value, or utility, that an individual (or institution) attaches to the monetary amount

x. Throughout this work we assume that a utility function satis�es the conditions

u0(x) > 0 and u00(x) < 0: (2.1)

Mathematically, the �rst condition says that u is an increasing function, while the

second says that u is a concave function. Simply put, the �rst states that an individual

whose utility function is u prefers amount y to amount z provided that y > z, that is

the individual prefers more money to less! The second states that as the individual�s

wealth increases, the individual places less value on a �xed increase in wealth.

An individual whose utility function satis�es the conditions in (2:1) is said to be risk

averse, and risk aversion can be quanti�ed through the coe¢ cient of risk aversion

de�ned by

r(x) =
�u00(x)
u0(x)

(2.2)

The expected utility criterion

Decision making using a utility function is based on the expected utility criterion.

This criterion says that a decision maker should calculate the expected utility of

resulting wealth under each course of action, then select the course of action that

gives the greatest value for expected utility of resulting wealth. If two courses of
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action yield the same expected utility of resulting wealth, then the decision maker

has no preference between these two courses of action. To illustrate this concept, let us

consider an investor with utility function u who is choosing between two investments

which will lead to random net gains of X1 and X2 respectively. Suppose that the

investor has current wealth W , so that the result of investing in Investment i is

W + Xi for i = 1 and 2. Then, under the expected utility criterion, the investor

would choose Investment 1 over Investment 2 if and only if

E[u(W +X1)] > E[u(W +X2)]

Further, the investor would be indi¤erent between the two investments if

E[u(W +X1)] = E[u(W +X2)]

Types of utility function

It is possible to construct a utility function by assigning di¤erent values to di¤erent

levels of wealth. In the following table we consider some mathematical functions which

may be regarded as having suitable forms to be utility functions.

Types Form Use

Exponential u(x)=� expf��xg; where �>0 Decisions do not depend on the individual0s wealth

Quadratic u(x)=� log x; for x>0 and �>0 Restricted by the constraint x< 1
2�
;

which is required u0(x)>0

Logarithmic u(x)=� log x; for x>0 and �>0 For positive values of x

Fractional power u(x)=x� ; for x>0 and 0<�<1 For positive values of x
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2.2 Majorization Order

De�nition 2.1 ([6]) Given any two vectors a;b 2 Rn;

1. b is said to be majorized by a (denoted by b � a),if8>><>>:
Pn

i=1 b[i] =
Pn

i=1 a[i]Pm
i=1 b[i] �

Pm
i=1 a[i] m = 1; :::; n� 1:

(2.3)

2. b is said to be weakly majorized by a (denoted by b �� a); if

mX
i=1

b[i] �
mX
i=1

a[i]; m = 1; :::; n: (2.4)

If b � a, then b is also said to be smaller than a in the majorization order. In

literature, there are two di¤erent versions of weak majorization. The de�nition given

above is commonly known as weak submajorization. We refer to Marshall and Olkin

(1979) and Tong (1980) as standard references for the theory of majorization.

The following is the de�nition of a T-transform, which is a very useful tool in the

study of the majorization order. After the de�nition, we will collect some useful

properties of a T-transform.

De�nition 2.2 ([6]) A T-transform is a kind of linear transformation (from Rn to

Rn) whose transformation matrix has the form

T = �I+ (1� �)Q (2.5)

where 0 � � � 1, I is the identity matrix and Q is a permutation matrix that

interchanges two coordinates.
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Lemma 2.3 ([6]) If b � a, then b can be derived from a by successive applications of

a �nite number of T-transforms, and any T-transform can preserve the majorization

order. i.e., b � T (a) � a; where T is a T-transform.

For a proof of this result, we refer to Marshall and Olkin (1979) and Hardy et

al.(1934; 1952). Since each T-transform will only modify two coordinates in a vector,

Lemma (2:3) shows that it is often su¢ cient to check the case n = 2 in proving results

concerning majorization order. The next lemma provides a re�nement when both a

and b are in In:

Lemma 2.4 ([6]) Suppose that a and b are vectors in In. If b � a, then b can be

derived from a by successive applications of a �nite number of T-transforms of the

form

T (a) = (a1; :::; ai�1; �ai+(1��)aj; ai+1; ::::; ::::; aj�1; �aj+(1��)ai; aj+1; :::; an); (2.6)

where 1
2
� � � 1; so that T (a) 2 In and b � T (a) � a:

Proof. If we change each In in the above result to Dn and keep the rest un-

changed, then it is a fact given in [40]. Since

a;b 2 Dn;b � a) �a;�b 2 In; and (2.7)

T (a) 2 Dn ) T (�a) = �T (a)2 In;
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the result follows. �

An interesting property of the above T-transform is that it not only preserves the

majorization order but also preserves the ordering of the vector�s components.

Lemma 2.5 ([6]) If b � a and a 2 In, then

nX
i=1

aix[i] �
nX
i=1

bix[i] �
nX
i=1

aix[n�i+1] (2.8)

Lemma 2.6 ([6]) b �� a if and only if there exists a c such that c � a and b � c

(i:e:; bi � ci for each i)

Lemma (2:5) can be derived from the well-known rearrangement inequality; a

proof is given in [41]. Lemma (2:6) characterizes the weak majorization order in

terms of the majorization order, its proof can be found in Marshall and Olkin (1979,

page 123).

2.3 Arrangement Increasing

De�nition 2.7 ([6]) A function f : Rn ! R is said to be arrangement increasing

[decreasing], if for all i and j such that 1 � i < j � n,

(xi � xj)ff(x1; :::; xi; :::; xj; :::; xn)� f(x1; :::; xj; :::; xi; :::; xn)g � [�]0: (2.9)

One major example is given by the joint density function of mutually independent

random variables that are ordered by the likelihood ratio order.
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Lemma 2.8 ([6]) If X1; :::; Xn are mutually independent and X1 �lr ::: �lr Xn; then

the joint density function of (X1; :::; Xn) is arrangement increasing.

De�nition 2.9 ([6]) A function g(x;�) : Rn�Rn ! R is said to be an arrangement

increasing (AI ) function if

1. g is permutation invariant, i.e., g(x;�) = g(x � � ;� � �) for any permutation � ,

and

2. g exhibits permutation order, i.e., g(x #;� ") � g(x #;� � �) � g(x #;� #) for

any permutation � .

The following lemmas give us two examples of AI functions. Proofs can be found

in [6].

Lemma 2.10 ([29]) The function g : Rn � Rn ! R de�ned by

g(x;�) = �
nX
i=1

(xi � �i)+and g(x;�) =
nX
i=1

(xi ^ �i) (2.10)

are an AI function.

Proofs of the following lemmas can be found in [29].

Lemma 2.11 ([29]) Suppose that the function � (x; �) : R2 ! R is increasing both

in x and �. If the function

g(x;�) =

nX
i=1

� (xi; �i)
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from Rn � Rn to R is an AI function, then

�̂(x #;� ") �� �̂ (x #;� � �) �� �̂ (x #;� #) (2.11)

for any permutation � :

Lemma 2.12 ([29]) Suppose that the function �(x; �) : R2 ! R is increasing in one

variable and decreasing in the other. If the function

g(x;�) =
nX
i=1

� (xi; �i)

from Rn � Rn to R is an AI function, then

� �̂(x #;� #) �� ��̂ (x #;� � �) �� ��̂ (x #;� ") (2.12)

for any permutation � :

2.4 Value-at-Risk

These last years, several experts saw importance of the quantiles of the probability

distributions Since quantiles especially have an easy interpretation in practice of risk

management in the form of the concept of value-at-risk (VaR). This concept was

introduced to answer the following question: how much can we expect to lose in one

day, week, year, with a given probability? The VaR is given in Jorion (2000). In the

following de�nition we de�ned VaR .
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De�nition 2.13 ([21]) Given a risk X and a probability level p 2 (0; 1), the corres-

ponding V aR, denoted by V aR [X; p], is de�ned as

V aR [X; p] = F�1X (p) : (2.13)

Note that the VaR risk measure reduces to the percentile principle of Goovaerts,

De Vijlderand Hazendonck (1984).

2.4.1 Tail Value-at-Risk

A single VaR at a predetermined level p does not give any information about

the thickness of the upper tail of the distribution function. This is a considerable

shortcoming since in practice a regulator is not only concerned with the frequency

of default, but also with the severity of default. Also shareholders and management

should be concerned with the question �how bad is bad?�when they want to evaluate

the risks at hand in a consistent way. Therefore, one often uses another risk measure,

which is called the tail value-at-risk (TV aR) and de�ned next.

De�nition 2.14 ([21]) Given a risk X and a probability level p, the corresponding

TVaR, denoted by TV aR [X; p] , is de�ned as

TV aR [X; p] =
1

1� p

1Z
p

V aR [X; �] d�; 0 < p < 1: (2.14)

We thus see that TV aR [X; p] can be viewed as the �arithmetic average�of the

VaRs of X, from p on.
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2.5 Sotachastic orders

2.5.1 Stochastic Dominance

Stochastic dominance and risk measures

Stochastic dominance and VaRs In order to compare a pair of risks X and

Y , it seems natural to resort to the concept of V aR, and to consider X as less

dangerous than Y if V aR [X;�0] � V aR [Y ;�0] for some prescribed probability level

�0. However, it is sometimes di¢ cult to select such an �0, and it is conceivable that

V aR [X;�0] < V aR [Y ;�0] and V aR [X;�1] > V aR [Y ;�1] simultaneously for two

probability levels �0 and �1. In this case, what can we conclude? It seems reasonable

to adopt the following criterion: we place X before Y if the V aRs for X are smaller

than the corresponding V aRs for Y , for any probability level.

De�nition 2.15 Let X and Y be two rvs. Then X is said to be smaller than Y in

stochastic dominance, denoted as X �ST Y , if the inequality V aR [X; p] � V aR [Y ; p]

is satis�ed for all p 2 [0; 1].

Standard references for �ST are the books of Lehmann (1959), Marshall and Olkin

(1979), Ross (1983) and Stoyan (1983).

Stochastic dominance can also be characterized by the relative inverse distribution

function, de�ned as

x 7�! V aR [X;FY (x)] (2.15)



22

It is nothing more than the V aR of X at probability level p = FY (x) :

Stochastic dominance and monotonicity An important characterization of

�ST is given in the next result. It essentially states that if X �ST Y holds then there

exist rvs ~X and ~Y , distributed as X and Y for which Pr
h
~X � ~Y

i
= 1. In such a case,

~Y is larger than ~X according to Kaas et al.(2001, De�nition 10.2.1). This proposition

shows that �ST is closely related to pointwise comparison of rvs.

Proposition 2.16 Two rvs X and Y satisfy X �ST Y if, and only if, there exist two

rvs ~X and ~Y such that X =d ~X, Y =d ~Y and Pr
h
~X � ~Y

i
= 1. For a proof, see Kaas

et al.(2001, Theorem 10.2.3). The construction of ~X and ~Y involved in Proposition

(2:16) is known as a coupling technique (see Lindvall 1992). Proposition (2:16) can

be rewritten as follows.

Proposition 2.17 Two rvs X and Y satisfy X �ST Y if, and only if, there exists

a comonotonic random couple (Xc; Y c) such that Pr [Xc � Y c] = 1, X =d X
c and

Y =d Y
c:

Stochastic dominance and stop-loss premiums The following result relates

�ST to stop-loss transforms. (The function �X (t) = E
�
(X � t)+

�
is called the stop-

loss transform of X (See Kaas 1993)).

Proposition 2.18 Given two rvs X and Y , X �ST Y if, and only if, �Y � �X is

non-increasing on R.
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Proof. Clearly, if X �ST Y , �FY � �FX is non-negative so that the result follows

from �X (t) =
R +1
t

�FX (�) d�: Now assume the non-increasingness of the di¤erence

�Y � �X : Di¤erentiating this expression with respect to t yields �FX (t)� �FY (t) � 0,

whence X �ST Y follows. �

It is interesting to give an actuarial interpretation for Proposition (2:18). It basically

states that when X �ST Y holds, the di¤erence between their respective stop-loss

premiums decreases with the level t of retention. Since

lim
t!+1

�
E
�
(Y � t)+

�
� E

�
(X � t)+

��
= 0

we thus have that the largest di¤erence occurs for t = 0 (and equals E (Y )� E (X))

and that this di¤erence decreases with the level of retention. The pricing of stop-

loss treaties will thus lead to very di¤erent premiums for small retentions, but this

di¤erence will decrease as the retention increases.

2.5.2 Sotachastic order

There are several references for stochastic orders include Denuit et al.(2002; 2005),

Kaas et al.(1994; 2001), Müller and Stoyan (2002), Shaked and Shanthikumar (1994; 2007).

We assume all random variables are de�ned on a common probability space (
;F ;P)

and all expectations mentioned exist.

De�nition 2.19 Let X and Y be two random variables,

1. X is said to be smaller than Y in the usual stochastic order (resp. increasing
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convex order, decreasing convex order, convex order), denoted by X �st Y (resp:

X �icx Y;X �dcx Y;X �cx Y ), if

E[�(X)] � E [�(Y )] (2.16)

for all increasing (resp. increasing convex, decreasing convex, convex) function

�:

2. X is said to be smaller than Y in the likelihood ratio order, denoted by X �lr Y ,

if

fX(x)gY (y) � fX(y)gY (x) for all x � y (2.17)

where fX and gY are the density functions of X and Y , respectively.

2.5.3 Convex ordering random variables

In this subsection we give the de�nition of the Stop-loss premium by E[(X�d)+] =
1Z
d

(1 � FX(x))dx;�1 < d < +1: Hence, we use the notation S for the sum of the

random vector (X1; X2; :::; Xn) : S = X1 +X2 + ::: +Xn: Moreover, we will present

the convex order and his characterization using Stop-loss premium .

We start by de�ne the Stop-loss order between random variables

De�nition 2.20 ([9]) (Stop-loss order). Consider two random variables X and Y .

then X is said to precede Y in the stop-loss order sense, notation X �st Y if and

only if X has lower stop-loss premiums than Y :

E[(X � d)+] � E[(Y � d)+];�1 < d < +1 (2.18)
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with (X � d)+ = max(X � d; 0):

De�nition 2.21 ([9]) (convex order). Consider two random variables X and Y such

that E [�(X)] � E [�(Y )] ; for all convex functions �;provided expectation exit. Then

X is said to be smaller than Y in the convex order denoted as X �cx Y .

De�nition 2.22 ([9]) (Convex order characterization using stop-loss premium). Con-

sider two random variables X and Y . Then X is said to precede Y in convex order

sense if and only if

E [X] = E [Y ] (2.19)

E[(X � d)+] � E[(Y � d)+];�1 < d < +1

Where

(X � d)+ = max(X � d; 0)

An equivalent de�nition can be derived from the following relation

E[(X � d)+]� E[(d�X)+] = E(X)� d

For the random variable Y the same relation is given by

E[(Y � d)+]� E[(d� Y )+] = E(Y )� d

Now assume X �cx Y , which implies that
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E [X] = E [Y ]

and

E[(X � d)+] � E[(Y � d)+];�1 < d < +1

hence

E[(d�X)+] � E[(d� Y )+]

Therefore, a de�nition equivalent to the de�nition here is

E [X] = E [Y ]

E[(d�X)+] � E[(d� Y )+];�1 < d < +1

Properties of Convex Ordering of Random Variables

1. If X precedes Y in convex order sense i.e if X �cx Y , then E [X] = E [Y ] and

V [X] � V [Y ] ; where V [X] is variance of X: [9]

2. If X �cx Y and Z is independent of X and Y then X + Z �cx Y + Z: [9]

3. Let X and Y be two random variables, then X �cx Y ) �X �cx �Y: [15]

4. Let X and Y be two random variables such that E [X] = E [Y ] : Then X �cx Y

if and only if E jX � aj �cx E jY � aj ;8a 2 R: [15]
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5. The convex order is closed under mixtures: LetX; Y and Z be random variables

such that [X j Z = z] �cx [Y j Z = z]8z in the support of Z. Then X �cx Y:

[33]

6. The convex order is closed under Convolution: Let X1; X2; :::; Xm be a set of

independent random variables and Y1; Y2; :::; Ym be another set of independent

random variables. If Xj �cx Yj;for i = 1; :::;m, then
Pm

j=1Xj �cx
Pm

j=1 Yj: [9]

7. Let X be a random variable with �nite mean. Then X + E [X] �cx 2X: (It

su¢ ces to use the De�nition (2:22))

8. Let X1; X2; ::Xn and Y be (n + 1) random variables. If Xi �cx Y; i = 1; :::; n;

then
Pn

i=1 aiXi �cx Y , whenever ai � 0; i = 1; :::; n and
Pn

i=1 ai = 1: (It su¢ ces

to use the property 6)

9. LetX and Y be two random variables. ThenX �cx Y if and only if E [�(X; Y )] �

E [�(Y;X)],8� 2 	cx where

	cx =
�
� : R2 ! R : �(X; Y )� �(Y;X) is convex for all x 2 y

	
: (2.20)

(It su¢ ces to use the De�nition (2:22))

10. Let X1 and X2 be a pair of independent random variables and let Y1 and Y2

be another pair of independent random variables. If Xi �cx Yi, i = 1; 2 then

X1X2 �cx Y1Y2. [9]

11. For all convex function �; then X �cx Y if and only E [�(X)] = E [�(Y )] : [33]
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12. Let X; Y and Z be random variables such that X �cx Y and Y �cx Z; then

X �cx Z: (It su¢ ces to use the De�nition (2:22))

13. If X �lr Y and � is any decreasing function, then �(X) �lr �(Y ). [50]

14. Let X 2 Rn+ and X1 �lr ::: �lr Xn are mutually independent. If b is weakly

majorized by a (denoted by b �� a) and a 2 In, then
nP
i=1

biXi �icx
nP
i=1

aiXi.

[29]

2.5.4 Lorenz Order

Lorenz curves

The Lorenz order is de�ned by means of pointwise comparison of the Lorenz

curves. These are used in economics to measure the inequality of incomes. More

precisely, let X be a non-negative rv with df FX . The Lorenz curve LCX associated

with X is then de�ned by

LCX =
1

E (X)

Z p

�=0

V aR [X; �] d�, p 2 [0; 1] : (2.21)

In an economics framework, when X models the income of the individuals in some

population, LCX maps p 2 [0; 1] to the proportion of the total income of the popu-

lation which accrues to the poorest 100p % of the population. An interpretation of

LCX in insurance business is the following: LCX (p) can be thought of as being the

fraction of the aggregate claims caused by the 100p % of the treaties with the lowest
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claim size.

Lorenz order

Now, we de�ne the lorenz order

De�nition 2.23 ([9]) Consider two risks X and Y . Then, X is said to be smaller

than Y in the Lorenz order, henceforth denoted by X �Lorenz Y , when LCX (p) �

LCY (p) for all p 2 [0; 1].

A standard reference on �Lorenz is Arnold (1987). We mention that <3 in Heil-

mann (1985) is in fact Lorenz. We also mention that the Lorenz order is the k-order

introduced by Heilmann (1986) (see also Heilmann and Schröter 1991, Remark 5)

Lorenz and Convex orders

There is a closely relation between the convex and Lorenz orders.

Property Given two risks X and Y ,

X �Lorenz Y ,
X

E [X]
�cx

Y

E [Y ]
: (2.22)

Obviously, when E [X] = E [Y ], we have

X �Lorenz Y , X �cx Y (2.23)

since the convex order is scale-invariant. It is worth mentioning that other approaches

to comparing rvs with unequal means via�cx have been proposed. The dilation order,

for instance, compares X � E [X] to Y � E [Y ].
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2.6 Inverse distribution functions

The cdf FX(x) = P[X � x] of a random variable X is a right-continuous (further

abbreviated as r.c.) non-decreasing function with

FX(�1) = lim
x!�1

FX(x) = 0; FX(+1) = lim
x!+1

FX(x) = 1:

The usual de�nition of the inverse of a distribution function is the non-decreasing

and left-continuous (l.c.) function F�1X (p) de�ned by

F�1X (p) = inf fx 2 R j FX(x) � pg ; p 2 [0; 1] (2.24)

with inf ; = +1(sup ; = �1) by convention. For all x 2 R and p 2 [0; 1]; we have

F�1X (p) � x, p � FX(x): (2.25)

In this work, we will use a more sophisticated de�nition for inverses of distribution

functions. For any real p 2 [0; 1], a possible choice for the inverse of FX in p is any

point in the closed interval

[inf fx 2 R j FX(x) � pg ; sup fx 2 R j FX(x) � pg] ;

where, as before, inf ; = +1, and also sup ; = �1: Taking the left hand border of

this interval to be the value of the inverse cdf at p, we get F�1X (p).

Similarly, we de�ne F�1+X (p) as the rihgt hand border of the interval:



31

F�1+X (p) = sup fx 2 R j FX(x) � pg ; p 2 [0; 1] (2.26)

which is a non-decreasing and r.c. function. Note that F�1X (0) = �1; F�1+X (1) = +1

and that all the probability mass of X is contained in the interval
�
F�1+X (0); F�1X (1)

�
:

Also note that F�1+X (p) are �nite for all p 2 (0; 1). In the sequel, we will always use

p as a variable ranging over the open interval (0; 1), unless stated otherwise.

For any � 2 [0; 1] ; we de�ne the �-mixed inverse function of FX as follows:

F
�1(�)
X (p) = �F�1X (p) + (1� �)F�1+X (p); p 2 (0; 1) ; (2.27)

which is a non-decreasing function. In particular, we �nd F�1(0)X (p) = F�1+X (p) and

F
�1(1)
X (p) = F�1X (p). One immediately �nds that for all � 2 [0; 1] ;

F�1X (p) � F�1(�)X (p) � F�1+X (p); p 2 (0; 1) : (2.28)

Note that only values of p corresponding to a horizontal segment of FX lead to di¤er-

ent values of F�1X (p); F�1+X (p) and F�1(�)X (p): This phenomenon illustrated in �gure

5:1.

Now led d be such that 0 < FX(d) < 1: Then F�1X (FX(d)) and F�1+X (FX(d)) are

�nite, and F�1X (FX(d)) � d � F�1+X (FX(d)). So for some value �d 2 [0; 1] ; d can

be expressed as d = �dF�1X (FX(d)) + (1� �d)F�1+X (FX(d)) = F
�1(�d)
X (FX(d)) : This

implies that for any random variable X and any d with 0 < FX(d) < 1; there exists

an �d 2 [0; 1] such that F�1(�d)X (FX(d)) = d:
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In the following theorem, we state the relation between the inverse didtribution func-

tions of the random variables X and g (X) For a monotone function g:

Theorem 2.24 Let X and g (X) be real-valued random variables, and let 0 < p < 1:

(a) If g is non-decreasing and l.c., then

F�1g(X)(p) = g
�
F�1X (p)

�
: (2.29)

(b) If g is non-decreasing and r.c., then

F�1+g(X)(p) = g
�
F�1+X (p)

�
: (2.30)

(c) If g is non-increasing and l.c., then

F�1+g(X)(p) = g
�
F�1X (1� p)

�
: (2.31)

(d) If g is non-increasing and r.c., then

F�1g(X)(p) = g
�
F�1+X (1� p)

�
: (2.32)

Proof. We will prove (a). Then other results can be proven similarly. Let

0 < p < 1 and consider a non-decreasing and left-continuous function g: For any real

x we �nd from (2:25) that

F�1g(X)(p) � x, p � Fg(X)(x):

As g is l.c., we have that

g(z) � x, z � sup fy j g(y) � xg
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holds for all real z and x: Hence,

p � Fg(X)(x), p � FX [sup fy j g(y) � xg]

If sup fy j g(y) � xg is �nite then we �nd from (2:25) and the equivalence above

p � FX [sup fy j g(y) � xg], F�1X (p) � sup fy j g(y) � xg :

In case sup fy j g(y) � xg is +1 or �1, we cannot use (2:25), but one can verify

that the equivalence above also holds in this case. Indeed, if the supreum equals �1,

then the equivalence becomes p � 1, F�1X (p) � �1:

Because g is non-decreasing and l.c., we get that

F�1X (p) � sup fy j g(y) � xg , g
�
F�1X (p)

�
� x

Compining the equivalences, we �nally �nd that

F�1g(X)(p) � x, g
�
F�1X (p)

�
� x

holds for all values of x, which means that (a) must hold. �

For the special cases that X and g (X) are continuous and strictly increasing on�
F�1+X (0); F�1X (1)

�
; a simple proof is possible. Indeed, in this case we have that

Fg(X)(x) = (FX � g�1) (x) ; which is a continuous and strictly increasing function of

x. The results (a) and (b) then follow by inversion of this relation. A similar proof

holds for (c) and (d) if g and FX are both continuous, while g is strictly decreasing

and FX is strictly increasing.
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Hereafter, we will reserve the notation U for a uniform (0; 1) random variable, i.e.

Fu(p) = p and F�1u (p) = p for all 0 < p < 1: We can prove that for all � 2 [0; 1] ;

X
d
= F�1X (U)

d
= F�1+X (U)

d
= F

�1(�)
X (U): (2.33)

The �rst distributional equality is known as the quantile transform theorem and

follows immediately from (2:25). It states that a sample of random numbers from a

general distribution function FX can be generated from a sample of uniform random

numbers. Note that FX has at most a countable number of horizontal segments,

implying that the last three random variables in (2:33) only di¤er in a null-set of

values of U . This implies that these random variables are equal with probability one.

�
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Chapter 3

Comonotonicity

In this chapter we will discuss the comonotonicity notion for sums of dependent

random variables whose marginal distributions are known, but with an unknown or

complicated joint distribution. Considering comonotonic random vectors essentially

reduces the multidimensional problem to a univariate one since then all components

depend on the same variable. Also, we give a result to present a new theorem with

proposition of convex bounds and the comonotonic upper bound for SN .

3.1 Comonotonic sets and random vectors

In this section we give a total S =
Pn

i=1Xi where the terms Xi are not mutually

independent, and also we have the multivariate distribution function of the random

vector X= (X1; X2; :::; Xn). We will �nd the dependence structure for the random

vector (X1; :::; Xn). Then we use the joint distribution in the convex orders sense.
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Now, we de�ne the comonotonicity of a set of n�vectors in Rn. Let n�vector

(x1; x2; ::; xn) be denoted by x. For two n�vectors x and y, the notation x � y is

used for the componentwise order which is de�ned by xi � yi for all i = 1; 2; :::; n.

De�nition 3.1 (Comonotonic set). The set A � Rn is comonotonic if for any x and

y in A, either x � y or y � x holds.

So, a set A � Rn is comonotonic if for any x and y in A, if xi < yi for some i,then

x � y must hold. Hence, a comonotonic set is simultaneously non-decreasing in each

component. Notice that a comonotonic set is a �thin�set: it cannot contain any subset

of dimension larger than 1. Any subset of a comonotonic set is also comonotonic.

we will denote the (i; j)-projection of a set A in Rn by Ai;j: It is de�ned by

Ai;j = f(xi; xj) j x 2 Ag (3.1)

Lemma 3.2 A � Rn is comonotonic if and only if Ai;j is comonotonic for all i 6= j

in f1; 2; :::; ng :

The proof of lemma (3:2) is straightforward.

For a general setA, comonotonicity of the (i; i+1)-projectionAi;i+1,(i = 1; 2; :::; n� 1) ;

will not nessarily imply that A is comonotonic. As an example, consider the set

A = f(x1; 1; x3) j 0 < x1; x3 < 1g :

This set is not comonotonic, although A1;2 and A2;3 are comonotonic. Next, we will

de�ne the notion of support of an n-dimensional random vector X = (X1; :::; Xn):
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Any subset A � Rn will be called a support of X if Pr [X � A] = 1 holds true. In

general we will be interested in support of wich are �as small as possibe�. Informally,

the smallest support of a random vector X is the subset of Rn that is obtained by

subtracting of Rn all points which have a zero-probability neighborhood (with respect

to X). This support can be interpreted as the set of all possible outcomes X. Next,

we will de�ne comonotonicity of random vectors.

De�nition 3.3 (Comonotonic random vector). A random vector X = (X1; :::; Xn)

is comonotonic if it has a comonotonic support.

From the de�nition, we can conclude that comonotonicity is a very strong positive

dependency structure. Indeed, if x and y are elements of the (comonotonic) support

of X, i.e. x and y are possible outcomes of X, then they must be ordered compon-

entwise. This explains why the term comonotonic (common monotonic) is used.

Comonotonicity of a random vector X implies that the higher the value of one com-

ponent Xj, the higher the value of any other component Xk. This means that

comonotonicity entails that no Xj is in any way a �hedge�, perfect or imperfect, for

another component Xk.

In the following theorem, some equivalent characterizations are given for comonoton-

icity of a random vector.

Theorem 3.4 (Equivalent conditions for comonotonicity)

A random vector X = (X1; X2; :::; Xn) is comonotonic if and only if one of the

following equivalent conditions holds:
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1. X has a comonotonic support;

2. X has a comonotonic copula, i.e. for all x = (x1; x2; :::; xn), we have

FX(x) = min fFX1(x1); FX1(x1); :::; FXn(xn)g ; (3.2)

3. For U s Uniform(0; 1), we have

X
d
=
�
F�1X1 (U); F

�1
X2
(U); :::; F�1Xn (U)

�
; (3.3)

4. A random variable Z and non-decreasing functions fi(i = 1; :::; n) exist such

that

X
d
= (f1 (Z) ; f2 (Z) ; :::; fn (Z)) : (3.4)

Proof. (1) ) (2) : Assum that X has comonotonic support B. Let x 2 Rn and

let Aj be de�ned by

Aj =
�
y 2 B j yj � xj

	
; j = 1; 2; :::; n:

Because of the comonotonicity of B; there exists an i such that Ai = \nj=1Aj

Hence, we �nd

FX(x) = Pr
�
X 2 \nj=1Aj

�
= Pr(X 2 Ai) = FXi(xi)

= min fFX1(x1); FX1(x1); :::; FXn(xn)g :

The last equality follows from Ai � Aj so that FXi(xi) � FXj(xj) holds for all values

of j:
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(2) ) (3) : Now assume that FX(x) = min fFX1(x1); FX1(x1); :::; FXn(xn)g for all

x = (x1; x2; :::; xn): Then we �nd by (2:25)

Pr
�
F�1X1 (U) � x1; :::; F

�n
Xn
(U) � xn

�
= Pr [U � FX1(x1); :::; U � FXn(xn)]

= Pr

�
U � min

j=1;:::;n

�
FXj(xj)

	�
= min

j=1;:::;n

�
FXj(xj)

	
(3)) (4) : straightforward.

(4) ) (1) : Assume that there exists a random variable Z with support B, and

non-decreasing functions fi, (i = 1; 2; :::; n), such that

X
d
= (f1 (Z) ; f2 (Z) ; :::; fn (Z)) :

The set of possible outcomes of X is ff1 (z) ; f2 (z) ; :::; f2 (z) j z 2 Bg which is obvi-

ously comonotonic, which implies that X is indeed comonotonic. �

From (3:2) we see that, in order to �nd the probability of all the outcomes of n co-

monotonic risks Xi being less than xi (i = 1; :::; n) one simply takes the probability of

the least likely of these n events. It is obvious that for any random vector (X1; :::; Xn),

not necessarily comonotonic, the following inequality holds:

Pr[X1 � x1; :::; Xn � xn] � minfFX1(x1); :::; FXn(xn)g; (3.5)

and since Hoe¤ding [28] and Fréchet [20] it is known that the function
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minfFX1(x1); :::; FXn(xn)g is indeed the multivariate cdf of a random vector, i.c.�
F�1X1 (U); F

�1
X2
(U); :::; F�1Xn (U)

�
, which has the same marginal distributions as (X1; :::; Xn).

Inequality (3:5) states that in the class of all random vectors (X1; :::; Xn) with the

same marginal distributions, the probability that all Xi simultaneously realize �small�

values is maximized if the vector is comonotonic, suggesting that comonotonicity is

indeed a very strong positive dependency structure.

From (3:3) we �nd that in the special case that all marginal distribution functions FXi

are identical, comonotonicity of X is equivalent to saying that X1 = X2 = ::: = Xn

holds almost surely.

A standard way of modelling situations where individual random variables X1; :::; Xn

are subject to the same external mechanism is to use a secondary mixing distribu-

tion. The uncertainty about the external mechanism is then described by a structure

variable z, which is a realization of a random variable Z and acts as a (random)

parameter of the distribution of X. The aggregate claims can then be seen as a

two-stage process: �rst, the external parameter Z = z is drawn from the distribution

function FZ of z. The claim amount of each individual risk Xi is then obtained as a

realization from the conditional distribution function of Xi given Z = z. A special

type of such a mixing model is the case where given Z = z, the claim amounts Xi

are degenerate on xi, where the xi = xi(z) are non-decreasing in z. This means

that (X1; :::; Xn)
d
= (f1 (Z) ; :::; fn (Z)) where all functions fi are non-decreasing.

Hence, (X1; :::; Xn) is comonotonic. Such a model is in a sense an extreme form
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of a mixing model, as in this case the external parameter Z = z completely determ-

ines the aggregate claims. As the random vectors
�
F�1X1 (U); F

�1
X2
(U); :::; F�1Xn (U)

�
and�

F
�1(�1)
X1

(U); F
�1(�2)
X2

(U); :::; F
�1(�n)
Xn

(U)
�
are equal with probability one, we �nd that

comonotonicity of X can be charcterized by

X
d
=
�
F
�1(�1)
X1

(U); F
�1(�2)
X2

(U); :::; F
�1(�n)
Xn

(U)
�

(3.6)

For U � Uniform(0; 1) and given real numbers �i 2 [0; 1] :

If U � Uniform(0; 1), then also 1� U � Uniform(0; 1). This implies that comono-

tonicity of X can also be characterized by

X
d
=
�
F�1X1 (1� U); F

�1
X2
(1� U); :::; F�1Xn (1� U)

�
(3.7)

0ne can prove that X is comonotonic if and only if there exist a random variable Z

and non-increasing functions fi, (i = 1; 2; :::; n), such that

X
d
= (f1 (Z) ; f2 (Z) ; :::; fn (Z)) :

The proof is similar to the proof of the characterization (4) in theorem (3:4).

In the sequel, for any random vector (X1; :::; Xn), the notation (Xc
1; :::; X

c
n) or

�
~X1; :::; ~Xn

�
will be used to indicate a comonotonic random vector with the marginals as (X1; :::; Xn) :

From (3:3), we �nd that for any random vector X the outcome of its comonotonic

counterpart Xc = (Xc
1; :::; X

c
n) is with probability 1 in the following set

��
F�1X1 (p); F

�1
X2
(p); :::; F�1Xn (p) j 0 < p < 1

�	
: (3.8)
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This support of Xc is not necessarily a connected curve. Indeed, all horizontal seg-

ments of the cdf of Xi lead to �missing pieces� in this curve. This support can be

seen to be a series of ordered connected curves. Now by connecting the endpoints of

consecutive curves by straigh lines, we obtain a comonotonic connected curve in Rn:

Hence, it may be traversed in a direction which is upwards for all components simul-

taneously. we will call this set the connected support of Xc. It might be parmeterized

as follows:

n�
F
�1(�)
X1

(U); F
�1(�)
X2

(U); :::; F
�1(�)
Xn

(U)
�
j 0 < p < 1; 0 < � < 1

o
: (3.9)

Observe that this parameterization is not necessarily unique: there may be elements

in the connected support which can be characterized by di¤erent values of �:

Theorem 3.5 (Pairwise comonotonicity)

A random vector X is comonotonic if and only if the couples (Xi; Xj) are comono-

tonic for all i and j in f1; 2; :::; ng.

3.2 Examples

� Continuous Distributions [15]. Let X vUniform on the set
�
0; 1

2

�
[
�
0; 3

2

�
;

Y vBeta (2; 2) ; hence FY (y) = 3y2 � 2y3 on (0; 1) ; and Z vNormal (0; 1) : If

X, Y and Z are mutually independent, then the support of (X;Y; Z) is the set
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�
(x; y; z) j x 2

�
0;
1

2

�
[
�
0;
3

2

�
; y 2 (0; 1) ; z 2 R

�
:

The support of the comonotonic random vector (Xc; Y c; Zc) is given by

��
F�1X (p); F�1Y (p); F�1Z (p)

�
j 0 < p < 1

	
;

See Figure 5:2. Actually, not all of this support is depicted. The part left out

corresponds to p =2 (� (�2) ;� (2)) and extends along the vertical asymptotes (0; 0; z)

and
�
3
2
; 1; z

�
. The thick continuous line is the support of Xc, while the dotted line is

the straight line needed to transform this support into the connected support. Note

that FX has a horizontal segment between 1
2
and 1: The projection of the connected

curve along the z�axis can also be seen to constitute an in increasing curve, as

projections along the other axes.

� Discrete Distributions [15]. We takeX vUniformf0; 1; 2; 3g and Y vBinomial�
3; 1

2

�
: It is easy to verify that
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�
F�1X (p); F�1Y (p)

�
= (0; 0) for 0 < p <

1

8
;

= (0; 1) for
1

8
< p <

2

8
;

= (1; 1) for
2

8
< p <

4

8
;

= (2; 2) for
4

8
< p <

6

8
;

= (3; 2) for
6

8
< p <

7

8
;

= (3; 3) for
7

8
< p <

1

8
;

The support of (Xc; Y c) is just these six points, and the connected support arises by

simply connecting them consecutively with straight lines, the dotted lines in Figure

5:3. The straight line connecting (1; 1) and (2; 2) is not along, one of the axes. This

happens because at level p = 1
2
; both FX (y) and FY (y) have horizontal segments.

Note that any non-decreasing curve connecting (1; 1) and (2; 2) would have led to a

feasible connected curve. These two points have probability 2
3
; the other points 1

8
:

3.3 Sums of comonotonic random variables

Notice that Sc is the sum of the components of the comonotonic counterpart

(Xc
1; X

c
2; :::; X

c
n) of a random vector (X1; X2; :::; Xn):

Sc = Xc
1 +X

c
2 + :::+X

c
n (3.10)
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In this section, we will prove the fowllowing theorems which we give the approximation

of the distribution function of S = X1 + X2 + ::: + Xn by the distribution function

of the comonotonic sum Sc is a prudent strategy in the sense that S �cx Sc and

determining the marginal distribution functions of the terms in the sum.

In the next theorem we prove that the inverse disrtibution function of a sum of

comonotonic random variables is simply the sum of the inverse distribution functions

of the marginal distributions.

Theorem 3.6 The ��inverse distribution F�1(�)Sc of a sum Sc of comonotonic ran-

dom variables (Xc
1; X

c
2; :::; X

c
n) is given by

F
�1(�)
Sc (p) =

nX
i=1

F
�1(�)
Xi

(p); 0 < p < 1; 0 � � � 1: (3.11)

Proof. Consider the random vector (X1; X2; :::; Xn) and its comonotonic coun-

terpart (Xc
1; X

c
2; :::; X

c
n). Then S

c = Xc
1 + X

c
2 + ::: + X

c
n

d
= g (U) ; with U uniformly

distributed on (0; 1) and with the function g de�ned by

g (u) =

nX
i=1

F�1Xi (u); 0 < u < 1:

It is clear that g is non-decreasing and left-continuous. Application of Theorem

2.24(a) leads to

F�1Sc (p) = F
�1
g(U)(p) = g

�
F�1U (p)

�
= g(p); 0 < p < 1;

So the inverse distribution function of Sc can be computed from
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F�1Sc (p) =

nX
i=1

F�1Xi (p); 0 < p < 1:

Similarly, from Theorem 2.24(b), we �nd that

F�1+Sc (p) =

nX
i=1

F�1+Xi
(p); 0 < p < 1:

Multiplying the last two equalities by � and 1 � � respectively, and adding up, we

�nd the desired result. �

Note that

Sc
d
=

nX
i=1

F
�1(�)
Xi

(U): (3.12)

By the theorem above, we �nd that the connected support of Sc is given by

n
F
�1(�)
Sc (p) j 0 < p < 1; 0 � � � 1

o
(

nX
i=1

F
�1(�)
Xi

(p) j 0 < p < 1; 0 � � � 1
)
:

This implies

F�1+Sc (0) =
nX
i=1

F�1+Xi
(0); (3.13)

F�1Sc (1) =
nX
i=1

F�1Xi (1): (3.14)

Hence, The minimal value of the comonotonic sum equals the sum of the minimal

values of each term. Similarly, the maximal value of the comonotonic sum equals the



47

sum of the maximal values of each term. The number
Pn

i=1 F
�1+
Xi

(0), which is either

�nite or �1 (if any the terms in the sum is �1), is the minimum possible value of

Sc, and
Pn

i=1 F
�1
Xi
(1) is the maximum.

Also note that

F�1+Sc (1) =

nX
i=1

F�1+Xi
(1) = +1;

F�1Sc (0) =
nX
i=1

F�1+Xi
(0) = �1:

For any (X1; X2; :::; Xn), we have that S = X1 +X2 + :::+Xn �
Pn

i=1 F
�1+
Xi

(0) must

hold with probability 1. This implies

nX
i=1

F�1+Xi
(0) � F�1+S (0): (3.15)

Similarly, we �nd

F�1S (1) �
nX
i=1

F�1Xi (1): (3.16)

This means that the sum S of the components of any random vector (X1; X2; :::; Xn)

has a support that is contained in the interval
�Pn

i=1 F
�1+
Xi

(0);
Pn

i=1 F
�1
Xi
(1)
�
: The

minimal value of S is larger than or equal to the one of Sc, since by comonotonicity

all terms of the latter are small simultaneously.

Given the inverse functions F�1X , the cdf of Sc = Xc
1+X

c
2+ :::+X

c
n can be determined

as follows:
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FSc (x) = sup fp 2 (0; 1) j FSc (x) � pg (3.17)

= sup
�
p 2 (0; 1) j F�1Sc (p) � x

	
= sup

(
p 2 (0; 1) j

nX
i=1

F�1Xi (p) � x
)
:

In the sequel, for any random variables X, the expression �FX increasing� should

always be interpreted as �FX is strictly increasing on
�
F�1+Xi

(0); F�1Xi (1)
�
�.

Observe that for any random variable X, the following equivalences hold:

FX is strictly increasing, F�1X is continuous on (0; 1) ; (3.18)

and also

FX is continuous, F�1X is strictly increasing on (0; 1) : (3.19)

Now assume that the marginal distribution functions FXi,i = 1; :::; n of the comono-

tonic random vector (Xc
1; X

c
2; :::; X

c
n) are strictly increasing and continuous. Then

each inverse distribution function F�1Xi is continuous on (0; 1), wich implies that F
�1
Sc

is continuous on (0; 1) because F�1Sc (p) =
Pn

i=1 F
�1
Xi
(p) holds for 0 < p < 1. This

in turn implies that FSc is strictly increasing on
�
F�1+Sc (0); F�1Sc (1)

�
. Further, by a

similar reasoning we �nd that FSc is continuous.

Hence, in case of strictly increasing and continuous marginals, for any F�1+Sc (0) <

x < F�1Sc (1), the probability FSc (x) is uniquely determined by F
�1
Sc (FSc (x)) = x, or
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equivalently,
nX
i=1

F�1Sc (FSc (x)) = x; F�1+Sc (0) < x < F�1Sc (1): (3.20)

It su¢ ces thus to solve the latter equation to get FSc (x).

In the following theorem, we prove that also the stop-loss premiums of a sum of

comonotonic random variables can be obtained from the stop-loss premimiums of the

terms.

Theorem 3.7 The stop-loss premiums of the sum Sc of the components of the co-

monotonic random vector (Xc
1; X

c
2; :::; X

c
n) are given by

E
�
(Sc � d)+

�
=

nX
i=1

E
�
(Xi � di)+

�
;

�
F�1+Sc (0) < d < F�1Sc (1)

�
; (3.21)

with the di given by

di = F
�1(�d)
Xi

(FSc (d)); (i = 1; :::; n) (3.22)

and �d 2 [0; 1] determined by

F
�1(�d)
Sc (FSc (d)) = d: (3.23)

Proof. Let d 2
�
F�1+Sc (0); F�1Sc (1)

�
, hence 0 < FSc (d) < 1:

As the connected support of Xc as de�ned in (3:9) is comonotonic, it can have at

most one point of intersection with the hyperplane fx j x1 + :::+ xn = dg : This is

because the hyperplane contains no di¤erent points x and y such that x � y or x � y

holds.
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Now we will prove that the vector d = (d1; d2; :::; dn) as de�ned above is the unique

point of this intersection. As 0 < FSc (d) < 1 must hold, we know from Section (2:6)

that there exists an �d 2 [0:1] that ful�ls condition (3:23). Also note that by Theorem

(3:6), we have that
Pn

i=1 di = d: Hence, the vector d with the di de�ned in (3:22)

and (3:23) is an element of both the connected support of Xc and the hyperplane

fx j x1 + :::+ xn = dg :

We can conclude that d is the unique element of the intersection of the connected

support and the hyperplane. Let x be an element of the connected support of Xc.

Then the following equality holds:

(x1 + x2 + :::+ xn � d)+ � (x1 � d1)+ + (x2 � d2)+ + :::+ (xn � dn)+ :

This is because x and d are both elements of the connected support of Xc, and hence,

if there exists any j such that xj > dj holds, then we also have xk � dk for all k, and

the left hand side equals the right hand side because
Pn

i=1 di = d: On the other hand,

when all xj � dj, obviously the left hand side is 0 as well.

Now replacing constants by the corresponding random variables in the equality above

and taking expectations, we �nd (3:21). �

Note that we also �nd that

E
�
(Sc � d)+

�
=

nX
i=1

E [Xi]� d; if d � F�1+Sc (0) (3.24)

and

E
�
(Sc � d)+

�
= 0; if d � F�1Sc (1): (3.25)
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So from (3:13), (3:14), (3:24), (3:25) and Theorem (3:7) we can conclude that for any

real d, there exist di with
Pn

i=1 di = d, such that E
�
(Sc � d)+

�
=
Pn

i=1 E
�
(Xi � di)+

�
holds.

The expression for the stop-loss premiums of a comonotonic sum Sc can also be

written in terms of the usual inverse distribution functions. Indeed, for any retention

d 2
�
F�1+Sc (0); F�1Sc (1)

�
, we have

E
��
Xi � F�1(�d)Xi

(FSc (d))
�
+

�
= E

h�
Xi � F�1Xi (FSc (d))

�
+

i
�
�
F
�1(�d)
Xi

(FSc (d))� F�1Xi (FSc (d))
�
(1� FSc (d))

Summing over i, and taking into account the de�nition of �d, we �nd the expres-

sion derived in Dhaene, Wang, Young & Goovaerts (2000), where the random vari-

ables were assumed to be non-negative. This expression holds for any retention

d 2
�
F�1+Sc (0); F�1Sc (1)

�
:

E
�
(Sc � d)+

�
=

nX
i=1

E
h�
Xi � F�1Xi (FSc (d))

�
+

i
(3.26)

�
�
d� F�1Sc (FSc (d))

�
(1� FSc (d)) :

In case the marginal cdf�s FXi are strictly increasing, (3:26) reduces to

E
�
(Sc � d)+

�
=

nX
i=1

E
h�
Xi � F�1Xi (FSc (d))

�
+

i
; d 2

�
F�1+Sc (0); F�1Sc (1)

�
: (3.27)

From Theorem (3:7), we can conclude that ant stop-loss premium of a sum of co-

monotonic random variables can be written as the sum of stop-loss premiums for

the individual random variables involved. The theorem provided an algorithm for

directly computing stop-loss premiums of sums of comonotonic random variables,
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without having to compute the stop-loss premium with retention d, we only need to

know FSc (d), which can be computed directly from (3:17).

Application of the relation E
�
(X � d)+

�
= E

�
(d�X)+

�
+ E [X]� d for Sc and the

Xi in relation (3:21) leads to the following expression for the lower tails of a sum of

comonotonic random variables:

E
�
(d� Sc)+

�
=

nX
i=1

E [(di �Xi)] ; F�1+Sc (0) < d < F�1Sc (1); (3.28)

with the di as de�ned in (3:22) and (3:23).

The comonotonic upper bound for
Pn

i=1Xi

Theorem 3.8 ([15]) For any vector (X1; X2; :::; Xn) we have

X1 +X2 + :::+Xn �cx Xc
1 +X

c
2 + :::+X

c
n: (3.29)

3.4 The New Results

The main results of this work are the following theorem, and proposition.

3.4.1 Convex bounds and the comonotonic upper bound for

SN

In risk theory and �nance, one is often interested in distribution of the sums

S = X1+ :::+Xn or the form SN = X1f(Y1)+X2f(Y2)+ :::+Xnf(Yn)(our model) of
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individual risks of a portfolio X: In this subsection we give a short overview of these

stochastic ordering results. For proofs and more details on the presented results, we

refer to the overview paper of Dhaene et al.[9] and Zeghdoudi and Remita [56].

Theorem 3.9 (M.Bouhadjar et al.) We note that:

~SN = ~X1f(Y1) + ~X2f(Y2) + :::+ ~Xnf(Yn) (3.30)

For any random vector X = (X1; :::; Xn) and f(Yi); i = 1; :::; n we have

SN �cx ~SN : (3.31)

Proof. It is su¢ ces to prove stop-loss order because E (SN) = E
�
~SN

�
: Hence,

we have to prove that

E[(SN � d)+] � E[( ~SN � d)+]

The following holds for all (X1f(Y1); X2f(Y2); :::; Xnf(Yn)) when d1+d2+ :::+dn = d

(X1f(Y1) +X2f(Y2) + :::+Xnf(Yn)� d)+

= (X1f(Y1)� d1 +X2f(Y2)� d2 + :::+Xnf(Yn)� dn)+

�
�
(X1f(Y1)� d1)+ + (X2f(Y2)� d2)+ + :::+ (Xnf(Yn)� dn)+

�
+

= (X1f(Y1)� d1)+ + (X2f(Y2)� d2)+ + :::+ (Xnf(Yn)� dn)+

Now taking expectations, we get that

E
�
(X1f(Y1) +X2f(Y2) + :::+Xnf(Yn)� d)+

�
�

nX
i=1

E
�
(Xif(Yi)� di)+

�
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According to [15] we have

E[( ~SN � d)+] =
nX
i=1

E
�
(Xif(Yi)� di)+

�
Then,

SN �cx ~SN :

�

Proposition 3.10 For any random vector X = (X1; :::; Xn), any random variable

� and for U v Uniform(0; 1), which is assumed to be a function of X and for

f(Yi) � 1; i = 1; :::; n, we have,

(a)

S �cx SN (3.32)

(b)

~S �cx ~SN (3.33)

(c)
nX
j=1

E [Xi j �] �cx SN (3.34)

(d)
nX
j=1

E
h
~Xi j �

i
�cx ~SN (3.35)

Proof.

(a) We have f(Yi) � 1; i = 1; :::; n and we used property 10 and 6, we obtain

X1 +X2 + :::+Xn �cx X1f(Y1) +X2f(Y2) + :::+Xnf(Yn)
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thus

S �cx SN :

(b) We will omit the proof here because the idea is very similar to the proof in (a).

(c) According to Dhaene et al.[9] we have,
nP
j=1

E [Xi j �] �cx S and (a), we deduce

that
nX
j=1

E [Xi j �] �cx SN :

(d) According to Zeghdoudi and Remita [56] we have
nP
j=1

E
h
~Xi j �

i
�cx ~S, using

property 12 and (b), we obtain

nX
j=1

E
h
~Xi j �

i
�cx ~SN :

�

In addition, if f(Yi) � 1; i = 1; :::; n; we can check easily that

SN �cx ~SN �cx S �cx ~S: (3.36)
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Chapter 4

Policy Limits and Deductibles

If the sum of policy limits(deductible) is �xed, then Xi �st Xj ) l�i � l�j and

d�i � d�j when ( X1; X2; :::; Xn) is comonotonic, where l�i : optimal policy limit and

d�i : optimal deductible allocated to i-th risk.

In this chapter we present the problem of the optimal allocation of policy limits and

deductibles. For make the new general model analytically tractable, we will make the

following assumptions :

1. the policyholder is risk-averse, and therefore the utility function is increasing and

concave;

2. the random vector X = (X1; :::; Xn), which represents the loss severities, and

random vector Y = (Y1; :::; Yn), which represents the time of occurrence of losses, are

independent; moreover, Y1; :::; Yn are mutually independent;

3. dependence structure of the severities of the risks is unknown.
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4.1 Policy limits with unknown dependent struc-

tures

The �rst problem to be considered is to maximize the expected utility of wealth:

max min
I2An(l)X2R

E

"
u

 
w �

nX
i=1

�
Xi � (Xi ^ li)+

�
f(Yi)

!#
(4.1)

where u and w are the utility function (increasing and concave), the wealth (after

premium) respectively and ~u is an increasing convex function. The problem is equi-

valent to

min max
l2An(l)X2R

E

"
~u

 
nX
i=1

(Xi � li)+ f(Yi)
!#

(4.2)

Lemma 4.1 (B) If ( ~X1; :::; ~Xn) 2 R comonotonic, then

E

"
~u

 
nX
i=1

(Xi � li)+ f(Yi)
!#

� E
"
~u

 
nX
i=1

�
~Xi � li

�
+
f(Yi)

!#
(4.3)

for any (l1; :::; ln) 2 An(l) and (X1; :::; Xn) 2 R independent of Y.

Proof. Let ~X = ( ~X1; :::; ~Xn) 2 R be comonotonic and independent of Y. For

any �xed constants y1 ; :::; yn, Theorem (3:4) implies that��
~X1 � l1

�
+
f(y1); :::;

�
~Xn � ln

�
+
f(yn)

�
is still comonotonic. Therefore, by Theorem (3:8) and Theorem (3:9), we have

nX
i=1

(Xi � li)+ f(yi) �cx
nX
i=1

�
~Xi � li

�
+
f(yi)
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because ~u is increasing and convex. Then by the independence of X and Y,

E

"
~u

 
nX
i=1

(Xi � li)+ f(Yi)
!#

= E

"
E

(
~u

 
nX
i=1

(Xi � li)+ f(Yi)
!
j Y1; :::; Yn

)#

� E

"
E

(
~u

 
nX
i=1

�
~Xi � li

�
+
f(Yi)

!
j Y1; :::; Yn

)#

= E

"
~u

 
nX
i=1

�
~Xi � li

�
+
f(Yi)

!#
:

and hence

E

"
~u

 
nX
i=1

(Xi � li)+ f(yi)
!#

� E
"
~u

 
nX
i=1

�
~Xi � li

�
+
f(yi)

!#

�

Now, the initial problem becomes

Problem L0 :
�

min
l2An(l)

E
�
~u
�Pn

i=1 (Xi � li)+ f(Yi)
��

Proposition 4.2 Let l� = (l�1; :::; l
�
n) be the solution to Problem L0, then

Yi �lr Yj; Xi �st Xj ) l�i � l�j : (4.4)

Proof. Assume that li � lj. Since x! f(Yi) is decreasing , by property 13

Yi �lr Yj ) f(Yi) �lr f(Yj)

Since (Xi; Xj) is comonotonic and Xi �st Xj , Xi(!) � Xj(!) for any ! 2 
. By the

independence ofX andY, we can hereafter �x an outcome of (X1; :::; Xi; :::; Xj; :::; Xn)

as (x1; :::; xi; :::; xj; :::; xn) with xi � xj. As g(x; I) = �
Pn

i=1(xi � li)+ is an AI func-

tion by Lemma (2:10) and the function (x; l) ! �(x � l)+ is increasing in l but
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decreasing in x, then by Lemma (2:12)

((xi � li)+; (xj � lj)+) �� ((xi � lj)+; (xj � li)+)

Since wehave (xi � lj)+ � (xj � li)+, then by property 14 we have

(xi � li)+f(Yi) + (xj � lj)+f(Yj) �icx (xi � lj)+f(Yi) + (xj � li)+f(Yj):

Morever, for the increasing convex function ~u,

E

"
~u(

 
xi � li)+f(Yi) + (xj � lj)+f(Yj) +

X
k 6=i;j

(xk � lk)+f(Yk)
!#

� E

"
~u

 
(xi � lj)+f(Yi) + (xj � li)+f(Yj) +

X
k 6=i;j

(xk � lk)+f(Yk)
!#

By taking expectations conditional on X, we obtain

E

"
~u

 
(Xi � li)+f(Yi) + (Xj � lj)+f(Yj) +

X
k 6=i;j

(Xk � lk)+f(Yk)
!#

� E

"
~u

 
(Xi � lj)+f(Yi) + (Xj � li)+f(Yj) +

X
k 6=i;j

(Xk � lk)+f(Yk)
!#

The result follows. �

4.2 Policy deductibles with unknown dependent

structures

The same thing is made that the of policy limits, we consider the problem of the

optimal allocation of deductibles :
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max min
d2An(d)X2R

E

"
u

 
w �

nX
i=1

�
Xi � (Xi � di)+

�
f(Yi)

!#
(4.5)

which we have

min max
d2An(d)X2R

E

"
~u

 
nX
i=1

(Xi ^ di)+ f(Yi)
!#

(4.6)

Lemma 4.3 If ( ~X1; :::; ~Xn) 2 R is comonotonic and independent of Y, then

E

"
~u

 
nX
i=1

(Xi ^ di)+ f(Yi)
!#

� E
"
~u

 
nX
i=1

�
~Xi ^ di

�
+
f(Yi)

!#
(4.7)

for any (d1; :::; dn) 2 An(d) and (X1; :::; Xn) 2 R independent of Y.

The proof is similar to the proof of Lemma B.

From the above lemma, our problem becomes

Problem D0 :
�
min

d2An(d)
E
�
~u
�Pn

i=1 (Xi ^ di)+ f(Yi)
��

Proposition 4.4 Let d� = (d�1; :::; d
�
n) be the solution to Problem D0, then

Yi �lr Yj; Xi �st Xj ) d�i � d�j : (4.8)

Proof. Assume that di � dj: As in the proof of Proposition (4:2), we have

Yi �lr Yj ) f(Yi) �lr f(Yj);

And we can �x an outcome of (X1; :::; Xi; :::; Xj; :::; Xn) as (x1; :::; xi; :::; xj; :::; xn)

with xi � xj. As g(x;d) =
Pn

i=1(xi ^ di) is an AI function by Lemma (2:10) and the
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function (x; d)! x ^ d is increasing both in x and d, then by Lemma (2:11),

((xi ^ di); (xj ^ dj)) �� ((xi ^ dj); (xj ^ di)):

Since we also have (xi ^ dj) � (xj ^ di), then by property 14 we have

(xi ^ di)f(Yi) + (xj ^ dj)f(Yj) �icx (xi ^ dj)f(Yi) + (xj ^ di)f(Yj)

By independence convolution, we have

(xi ^ di)f(Yi) + (xj ^ dj)f(Yj) +
X
k 6=i;j

(xk ^ dk)+f(Yk)

� icx (xi ^ dj)f(Yi) + (xj ^ di)f(Yj) +
X

k 6=i;j

(xk ^ dk)+f(Yk)

Morever, for the increasing convex function ~u,

E

"
~u

 
(xi ^ di)f(Yi) + (xj ^ dj)f(Yj) +

X
k 6=i;j

(xk ^ dk)+f(Yk)
!#

� E

"
~u

 
(xi ^ dj)f(Yi) + (xj ^ di)f(Yj) +

X
k 6=i;j

(xk ^ dk)+f(Yk)
!#

With a same manner we �nd the result on X. �

4.3 Some examples and Application

In this section we will describe several examples that show how distribution func-

tion of the sum of random variables can be approximated by convex order of random

variable (see Rüschendorf [48]) for lower convex order of random variables and com-

parison of two families of copulas.
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4.3.1 Lower Bound Approximations of the Distribution Sum

of Random Variables with Convex Ordering

Example 4.5 (Approximation of distribution sum of two independent standard nor-

mal random variables)[22]

Suppose X and Y be independent N(0; 1) random variables. We want to derive

lower bounds for S = X + Y . In this case we know the exact distribution of S, i.e

S v N(0; 2). Let us see how lower bound approximation works in this case. Let

Z = X + aY for some real a. Then Z v N(0; 1 + a2). Therefore, for some choices of

a, we get the following distribution for the lower bound for S :

a = 0 gives N(0; 1) �cx S = X + Y v N(0; 2)

a = 1 gives N(0; 2) �cx S = X + Y v N(0; 2)

a = �1 gives N(0; 2) �cx S = X + Y v N(0; 2)

Thus in this case best lower bound is obtained for a = 1 which is the exact distribution.

The variance of the lower bound can be seen to have a maximum at a = 1 and a

minimum at a = �1.

Example 4.6 [15]

As a theoretical example, consider an insurance portfolio consisting of n risks.

The payments to be made by the insurer are described by a random vector (X1 +



63

X2+ :::+Xn), where Xi is the claim amount of policy i during the insurance period.

We assume that all payments have to be done at the end of the insurance period

[0; 1]. In a deterministic �nancialsetting, the present value at time 0 of the aggregate

claims X1 +X2 + :::+Xn to be paid by the insurer at time 1 is determined by

S = (X1 +X2 + :::+Xn)�

where � = (1+ r)�1 is the deterministic discount factor and r is the technical interest

rate. This will be chosen in a conservative way (i.e.su¢ ciently low), if the insurer

doesn�t want to underestimate his future obligations. To demonstrate the e¤ect of

introducing random interest on insurance business, we look at the following special

case. Assume all risks Xi to be non-negative, independent and identically distrib-

uted,and let X d
= Xi, where the symbol

d
= is used to indicate equality in distribution.

The average payment S
n
has mean and variance

E
�
S

n

�
= �E(X);V

�
S

n

�
=
�2

n
V(X)

The stability necessary for both insureds and insurer is maintained by the Law of

Large Numbers, provided that n is indeed �large�and that the risks are mutually

independent and rather well-behaved, not describing for instance risks of catastrophic

nature for which the variance might be very large or even in�nite.
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Example 4.7 [15]

Let us examine the consequences of introducing stochastic discounting. Replacing

the �xed discount factor � by a random variable Y , representing the stochastic amount

to be invested at time 0 with value 1 at the end of the period [0; 1], the present value

of the aggregate claims becomes

S = (X1 +X2 + :::+Xn)Y

If we assume that the discount factor is independent of the payments,we �nd that the

average payment per policy Sn has mean and variance

E
�
S

n

�
= E(X)E(Y );V

�
S

n

�
=
V(X)
n

E(Y 2) + E2(X)V(Y )

Assuming that E [X] and V [Y ] are positive, the Law of Large Numbers no longer

eliminates the risk involved. This is because for n ! 1;V
�
S
n

�
converges to its

second term. So to evaluate the total risk, both the distributions of insurance risk

and �nancial risk are needed. Risk pooling and large portfolios are no longer su¢ -

cient tools to eliminate or reduce the average risk associated with a portfolio. This

observation implies that the introduction of stochastic �nancial aspects in actuar-

ial models immediately leads to the necessity of determining distribution functions

of sums of dependent random variables. Under the assumption that the vectors

X = (X1 + X2 + ::: + Xn) and Y = (Yt1 ; Yt2 ; :::; Ytn) are mutually independent and
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that the marginal distributions of the Xi and the Ytiare given, the problem of de-

termining bounds for the distribution function of S =
nX
i=1

XiYti can be reduced to

determining bounds for the distribution function of a sum S = Z1+Z2+:::+Znof ran-

dom variables Z1; Z2; :::; Zn with given marginaldistributions, but of which the joint

distribution is either unspeci�ed or too cumbersome to work with. The unknown or

complex nature of the dependence between the random variables Zi is the reason why

it is impossible to derive the distribution function of S exactly.

4.3.2 Individual and collective risk model

The classical individual and collective model of risk theory has the form XInd =Pn
i=1 biIi; XColl =

Pn
i=1 biNi, where Ii v Bernoulli(pi) and Ni v poisson(�i). With

probability pi contract i will yield a claim of size bi � 0 for any of the n policies.

As an application of stochastic and stop-loss ordering we get that the collective risk

model XColl leads to an overestimate of the risks and, therefore, also to an increase

of the corresponding risk premiums for the whole portfolio

XInd �sl(cx) XColl:

4.3.3 Reinsurance contracts

We consider reinsurance contracts I(X) for a risk X, where 0 � I(X) � X is

the reinsured part of the risk X and X � I(X) is the retained risk of the insurer.

Consider the stop-loss reinsurance contract Ia(X) = (X�a)+, where a is chosen such
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that EIa(X) = EI(X). Then for any reinsurance contract I(X)

X � Ia(X) �sl(cx) X � I(X):

4.3.4 Dependent portfolios increase risk

Let Yi =
Pm

i=1 �iXi, where �i and Xi v Bernoulli with
mP
i=1

�i = 1,then Yi v

Bernoulli. It is interesting to compare the total risk Tn =
Pn

i=1 Yi in the mixed

model (Xi) with the total risk Sn =
Pn

i=1Wi in an independent portfolio model (Wi),

where Wi v Bernoulli are distributed identical to Xi. Then we obtain

Sn �sl(cx) Tn:

4.3.5 Applications of the theory of comonotonicity

Derivatives pricing and hedging

Several European options have a pay-o¤ written on one or multiple underlyings

combined in a weighted sum of non-independent random variables expressing asset

prices at the time of maturity or at di¤erent time points before and at maturity. Ex-

amples of this type of options with positive weights are Asian options, basket options

and Asian basket options. When the weights can be both positive and negative, one

refers to these options as spread options, Asian spread options, basket spread options

and Asian basket spread options. Pricing and hedging of these products by means of
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comonotonicity bounds has been studied in a model dependent as well as in a model

independent framework. As mentioned before, early references to this topic are Ro-

gers and Shi (1995), Simon et al.(2000) and Dhaene et al.(2002).

Risk management : risk sharing, optimal investment, capital allocation

Dhaene et al.(2009a) investigate the in�uence of the dependence between random

losses on the shortfall and on the diversi�cation bene�t that arises from merging

these losses. They prove that increasing the dependence between losses, expressed in

terms of correlation order, has an increasing e ect on the shortfall, expressed in terms

of an appropriate integral stochastic order. Furthermore, increasing the dependence

between losses decreases the diversi�cation bene�t. In particular, they consider mer-

ging comonotonic losses and show that even in this extreme case a non-negative

diversi�cation bene�t may arise. Also, Embrechts et al.(2005) prove that comono-

tonicity gives rise to the on-average-most-adverse Value-at-Risk (V aR) scenario for

a function of dependent risks, when the marginal distributions are known but the

dependence structure between the risks is unknown. Dhaene et al.(2005) investigate

multiperiod portfolio selection problems in a Black and Scholes type market where a

basket of one risk free and m risky securities are traded continuously. They look for

the optimal allocation of wealth within the class of constant-mix portfolios.

The Enterprise Risk Management process of a �nancial institution usually contains

a procedure to allocate, or subdivide, the total risk capital of the company into its

di¤erent business units. In Dhaene et al.(2003), an optimization argument is used
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to nd an optimal rule for allocating the aggregate capital of a �nancial �rm to its

business units The optimal allocation can be found using general results from the

theory on comonotonicity. Dhaene et al.(2009b) generalize the approach of Dhaene

et al.(2003) and develop a unifying framework for allocating the aggregate capital by

considering more general deviation measures.

Life Insurance and pensions

In the classical approach to the theory of life contingencies, discounting factors

and mortality tables are assumed to be deterministic. In view of the long durations of

life annuity contracts it is more realistic to take the stochastic nature of investment

returns and mortality into account when investigating the risks related to annuity

portfolios. Over the last two decades, a large number of papers have been published

covering this stochastic approach of returns and/or mortality. For more details we

can see: (Koch and De Schepper (2007), Darkiewicz et al.(2009), Hoedemakers et

al.(2005) and Ahcan et al.(2006), Zhang et al.(2006), Denuit and Dhaene (2007) and

Denuit (2007; 2008; 2009), Spreeuw (2006)).

4.3.6 Comparison of two families of copulas

De�nition 4.8 (copulas) C(u1; :::; un) is distribution function whose marginals are

all uniformly distributed, (See Nelson [45]).

Now we consider two risks X and Y with given survival functions �F and �G. A

su¢ cient condition of the stop-loss order is given by:
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Cut-criterion(Karlin and Noviko¤ [35]). Let X and Y be two risks with E (X) �

E (Y ). If there exists a constant c such that

8>><>>:
�F (x) � �G (x) for all x < c;

�F (x) � �G (x) for all x � c;

then

X �st Y

De�nition 4.9 (Bivariate orthant convex order) Given non-negative random vec-

tors X = (X1; X2) and Y = (Y1; Y2): We say that X is smaller than Y in the orthant

convex order denoted as X �uo�cx Y if the inequalities

E [v1(X1)v2(X)2]� E [v1(Y1)v2(Y )2]

holds for all non-decreasing convex function v1and v2 .

Characterization. X �uo�cx Y if and only, if

1. E[(Xi � di)+] � E[(Yi � di)+] for all di > 0, i = 1; 2

2. E[(X1 � d1)+(X2 � d2)+] � E[(Y1 � d1)+(Y2 � d2)+] for all d1; d2 > 0:

Consequently:

X �uo�cx Y ) Xi �st Yi; i = 1; 2:
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This shows that �uo�cxcan be viewed as bivariate extension of stop-loss order.

Crossing condition for the bivariate orthant convex order

Let X = (X1; X2) and Y = (Y1; Y2) be non-negative random vectors with survival

functions �F and �G. Let h be a level curve de�ned by

�F (x; h (x))� �G (x; h (x)) = 0; x � 0:

Let

C =
�
(x; y) 2 R+ � R+ : y � h (x)

	
we denote by �C the complement of C in R+ � R+:

Comparison of two families of copulas

The concordance order is used to compare members of a given copula family C�

when the dependence parameter varies:

�1 � �2 ) C�1 �C C�2

Remark 4.10 There is no comparison between a copulas from di¤erent families with

�C :

C�1 �c C�2 and C�2 �C C�1

Example 4.11 Let C�1 be a Clayton copula with parameter �1 = 1 and C�2 be a Frank

copula with parameter �2 = 2: Since �uo�cx is weaker than �C. Thus one can expect

to rank the copulas C�1 and C�2 with respect to �uo�cx instead of �C. Therefore, one
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can use our cut-criterion to establish a such comparison with respect �uo�cx. To this

end, we can see that C�1 �uo�cx C�2 : This means that the upper orthant convex order

can be more convenient for compare the concordance between two di¤erent families of

copulas.
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Conclusion and Perspectives
In this work, we give a synthesis on the theory of stochastic orderings, comono-

tonicity and their applications. Also, we study the problems of optimal allocation

of policy limits and deductibles. By using some characterizations of stochastic or-

dering relations, we reconsider the new general model and obtain some new res-

ults on orderings of optimal allocations of policy limits and deductibles. Moreover,

we obtain an convex upper and lower bound in terms of comonotonic portfolios for

SN = X1f(Y1) +X2f(Y2) + :::+Xnf(Yn)(our model).

For future studies, we may try to explore the following directions. First, we can

relax the condition imposed on f(Yi) and introduce �nancial risks to the model.

Second, we can remakes same work for obtain the optimal allocation of policy limits

and deductibles in a model with mixture and discount factors.
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Chapter 5

Appendix

Proof of Theorem 3.5

The proof of the �)�-implication is straightforward.

For the proof of the �(�-implication, consider the set A in Rn de�ned by

A =
��
F�1X1 (p); F

�1
X2
(p); :::; F�1Xn (p) j 0 < p < 1

�	
Its (i; j)-projections are give by

Ai;j =
n�
F�1Xi (p); F

�1
Xj
(p)
�o

The event �X 2 A�is equivalent with the event �(Xi; Xj) 2 Ai;j for all (i; j)�.

Because of the comonotonicity of the pairs (Xi; Xj), the latter event is the certain

event. Hence we �nd that Pr [X � A] = 1; so that the comonotonic random vector.

�
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The theorem states that comonotonicity of a random vector is equivalent with pair-

wise comonotonicity.

Consider the random vector (U; 1; V ) where U and V are mutually independent ran-

dom variables that are both uniformly distributed on the unitinterval (0; 1). It is

clear that (U; 1) and (1; V ) are both comonotonic pairs, but (U; 1; V ) isn�t comono-

tonic. Hence, for a general random vector X, comonotonicity of the pairs (Xi; Xi+1) ;

(i = 1; 2; :::; n� 1), will not necessary imply comonotonicity of X:

Figures
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Figure 5.1: Graphical de�nition of F�1X ; F�1+X and F�1(�)X :

Figure 5.2: A continuous example with n = 3:
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Figure 5.3: A discrete example.
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