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Résumé

Nous nous proposons, dans cette thése, un apercu sur les ordres stochastiques et ses
applications. Plus précisément, nous étudions le probléme de maximisation pour cer-
taines fonctionnelles sur les portefeuilles d’assurance. Des applications sur 1’allocation
optimale des limites de police et des déductibles sont obtenus, et quelques relations
avec d’autres sujets actuariels principaux (comparaison des copules, les modéles de
risque individuels et collectifs, des contrats de réassurance, etc.) sont également
étudiés.

Mots clés: Comonotonicité, Ordre Convexe, Les limites de police et déductibles.



Abstract

We propose in this thesis an overview on several types of stochastic orders affecting
random variables and linear combinations of random variables. We study the prob-
lem of finding maximal expected utility for some functionals on insurance portfolios
involving some additional (independent) randomization. Applications in policy limits
and deductible are obtained, and some relationships with other actuarial main topics
(comparison of copulas, individual and collective risk models, reinsurance contracts,
etc.) are studied too.

Key Words: Comonotonicity, Convex Order, Policy Limits and Deductibles.
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Introduction générale en francais

La science actuarielle moderne et la théorie de risque jouent un réle important
dans ’économie et la finance. Un des principaux objectifs de la profession actuarielle
est la comparaison de variables aléatoires (risques). Habituellement, le critére probab-
iliste «moyenne - variance» ne suffit pas toujours & comparer des variables aléatoires.
Cependant, il arrive souvent qu’on posséde des informations plus détaillées en utilisant
les fonctions de répartition des variables aléatoires pour les comparés. Pour cela, il est
préférable de faire une comparaison basée sur les distributions que celle basée unique-
ment sur deux statistiques. La méthode utilisée pour comparer deux distributions
est nommée «ordre stochastique». Tout d’abord, nous donnons un apercu historique
de ce terme. Depuis les années 70, le concept de dominance stochastique, introduit
par Rothschild-Stieglitz, permet de comparer des distributions de probabilité. Plus
récemment, les ordres stochastiques qui généralisent la dominance stochastique sont
utilisés de facon accélérée dans plusieurs domaines, notamment la finance, science
actuarielle et ’économie. En faite, des ordres stochastiques particuliers aient déja
été étudiés par Karamata en 1932, par Lehmann en 1955, et par Littlewood et Polya
en 1967. Enfin, les premieres études presque complétes des ordres stochastiques ont
été données par Stoyan dans les années 1977 et 1983, et par Mosler en 1982. En fin-
ance et en économie, une des raisons principales pour comparer des variables aléatoires
(risques) en utilisant des ordres stochastiques est le fait que ces derniers utilisent toute

I'information sur la fonction de répartition afin d’établir une comparaison adéquate



entre deux variables aléatoires.
Notre travail est structuré de la maniére suivante :

Le chapitre 2 présente et examine de fagon systématique les ordres stochastiques
univariés les plus utilisés dans la littérature. Par ailleurs, des définitions, notations
et propriétés sont établies. Par exemple, la fonction d’utilité, ordre de majorisation,
valeur at risque, et la fonction de distribution inverse.

De ce fait, le chapitre 3 traite la comonotonicté, a savoir les ensembles comono-
tones, les vecteurs aléatoires comonotones, la somme comonotone des variables aléatoires
et les bornes convexes pour la somme des variables aléatoires.

Enfin, le dernier chapitre présente la contribution originale de notre travail dont
nous introduisons un nouveau modéle de ’allocation optimale des limites de police
et des déductibles. Il s’agit d'une extension et complémemt du résultat de Cheung
[6], Hua and Cheung [29] and Zhuang et al.[58]. Des applications sur l’allocation
optimale des limites de police et des déductibles sont obtenus, et quelques relations
avec d’autres sujets actuariels principaux (comparaison des copules, les modéles de
risque individuels et collectifs, des contrats de réassurance, etc.) sont également
étudiés.

Cette contribution est couronnée par (03) publications scientifiques dans des re-

vues de renommeées internationales & savoir:

e Bouhadjar, M. Zeghdoudi, H. Remita, M.R, Ordering of the Optimal Allocation

of Policy Limits in general model. Furopean Journal of Scientific Research,
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Chapter 1

Introduction

Modern actuarial science and risk theory play a crucial role in the economy and
finance. One of the principal objectives of the actuarial profession is the comparison
of random variables (risks). Usually, the probabilistic criterion «mean - variance»
is not always enough to compare random variables. However, it often happens that
we have more detailed information by using the distribution functions of the random
variables for compared.

This work is innovative in many respects. It integrates the theory of stochastic or-
ders, one of the methodological cornerstones of risk theory and the theory of stochastic
dependence, which has become increasingly important as new types of risks emerge.
More precisely, risk measures will be used to generate stochastic orderings, by identi-
fying pairs of risks about which a class of risk measures agree. Stochastic orderings

are then used to define positive dependence relationships.



In several works, orderings of optimal allocations of policy limits and deductibles were
established by maximizing the expected utility of wealth of the policyholder. In this
work, we study the problems of optimal allocation of policy limits and deductibles
for general model,by using some characterizations of stochastic ordering relations, we
reconsider the new general model and obtain some new results on orderings of optimal
allocations of policy limits and deductibles. To this end, we obtain the ordering of
the optimal allocation of policy limits, deductibles for this model and we extend the
above results in Cheung (2007, 2008).

We consider for the following model :

Sy = X1 f(Y1) + Xof (Y2) + ... + X0 f(Y2) (M1)

where :Y; = 0,T;, Sy is total discounted loss, X; are loss due to the i-th risk, T; are
time of occurrence of i-th insured risk and §; are discount rate capture the impact of
financial environment (X;,7; are independent non-negative random variables and d;
are non-random numbers). Also, we will make the following assumptions

L. £(¥) 2 0:Y, and lim f(¥) =0,

2. f(Y;) is decreasing anél convex function.

3. Y1,Y,, ..., Y, are mutually independent.

4. A policyholder exposed to risks X1, Xs, ..., X,, is granted a total of [ dollars (I > 0)

as the policy limit with which (s)he can allocate arbitrarily among the n risks.

Remark 1.1 A very good property of the model (M1) is that X;’s characterize the
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scales of the losses while f(Y;) characterize the chances of the losses.

In this situation, if some risk occurs, the insurer will make the payment right
after the event of the loss and the insurance coverage for this risk will terminate.
However the insurance coverage for the other risks is still in effect. If (I4,...,1,) are

the allocated policy we have Vi : [; > 0 and Z l; = 1. When [ is n-tuple admissible
i=1
and A, (l) denote the class of all such n-tuples. If 1 = (3, ...,1,) € A,(l) is chosen,

then the discounted value of benefits obtained from the insurer would be

n

' (Xi A L) f(Y3) (1.1)

(2

If we take expected utility of wealth as the criterion for the optimal allocation, then

the problem of the optimal allocation of policy limits is

Problem L : max E

1.2
le A, (1) ( )

U (w — Z [Xi — (Xi A L)) f(K)))

i=1

where w is the utility function of the policyholder and w is the wealth (after premium).
Similarly, instead of policy limits, the policyholder may be granted a total of d dollars
(d > 0) as the policy deductible with which (s)he can allocate arbitrarily among the

n risks. If d = (dy,...,d,) € A,(d) are the allocated deductibles, then Vi : d; >

n

0,> d; = d, and the discounted value of benefits obtained from the insurer would be
i=1

n

(X — di), f(Y3) (1.3)

(2



Then the problem of the optimal allocation of policy deductibles is

Problem D : max E [u (w — z": [Xi — (X, — di)+] f(Y2)>

deAn(d) P

11

(1.4)
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Chapter 2

Preliminaries and Notations

In this chapter, we will present some definitions like: Utility function, Majorization
Order, Arrangement Increasing. . . etc.
Throughout this work, we define Z,, = {(a1,...,a,) € R" : a3 < ... < a,} and
D, = {(a1,...,a,) € R" : ay > ... > a,}. In addition, we noted that z and z;
are the i-th largest and the ¢-th smallest element of x respectively. The notation x T
will be used to indicate the increasing rearrangement (1), ..., £()) € Z, and x | will
be used to indicate the decreasing rearrangement (xpy, ..., ) € D, for any vector
x = (z,,...,x,) € R". We represent a permutation of the set {1,2,...,n} by 7, then

the permuted vector (z; ,,, ..., Zr ) Will be denoted as x o 7.
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2.1 Utility function

In economics, utility is a measure of preferences over some set of goods and ser-
vices. A utility function, u(x), can be described as a function which measures the
value, or utility, that an individual (or institution) attaches to the monetary amount

x. Throughout this work we assume that a utility function satisfies the conditions
v (z) > 0 and v’ (z) < 0. (2.1)

Mathematically, the first condition says that u is an increasing function, while the
second says that u is a concave function. Simply put, the first states that an individual
whose utility function is u prefers amount y to amount z provided that y > z, that is
the individual prefers more money to less! The second states that as the individual’s
wealth increases, the individual places less value on a fixed increase in wealth.

An individual whose utility function satisfies the conditions in (2.1) is said to be risk
averse, and risk aversion can be quantified through the coefficient of risk aversion
defined by

r(z) = (2.2)

The expected utility criterion

Decision making using a utility function is based on the expected utility criterion.
This criterion says that a decision maker should calculate the expected utility of
resulting wealth under each course of action, then select the course of action that

gives the greatest value for expected utility of resulting wealth. If two courses of
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action yield the same expected utility of resulting wealth, then the decision maker
has no preference between these two courses of action. To illustrate this concept, let us
consider an investor with utility function v who is choosing between two investments
which will lead to random net gains of X; and X, respectively. Suppose that the
investor has current wealth W, so that the result of investing in Investment i is
W + X; for i =1 and 2. Then, under the expected utility criterion, the investor

would choose Investment 1 over Investment 2 if and only if

Elu(W + X1)] > Blu(W + Xs)]

Further, the investor would be indifferent between the two investments if

Elu(W + X1)] = Elu(W + Xs)]

Types of utility function
It is possible to construct a utility function by assigning different values to different
levels of wealth. In the following table we consider some mathematical functions which

may be regarded as having suitable forms to be utility functions.

Types Form Use
FExponential u(z)=—exp{—Lz}, where >0 Decisions do not depend on the individualls wealth
Quadratic u(xz)=Blogz, for x>0 and >0 | Restricted by the constraint r<z=

237
which is required u'(z)>0

Logarithmic u(z)=Llogz, for >0 and >0 | For positive values of x

Fractional power | u(z)=zf, for x>0 and 0<3<1 For positive values of x
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2.2 Majorization Order

Definition 2.1 ([6]) Given any two vectors a,b € R",

1. b is said to be majorized by a (denoted by b < a),if

Z?:l b[i] = Z?zl af)
Yoby <Y ay m=1,...,n—1

2. b is said to be weakly majorized by a (denoted by b << a), if

Em:bm < Em:am, m=1,..,n. (2.4)
i=1 i=1
If b < a, then b is also said to be smaller than a in the majorization order. In
literature, there are two different versions of weak majorization. The definition given
above is commonly known as weak submajorization. We refer to Marshall and Olkin
(1979) and Tong (1980) as standard references for the theory of majorization.
The following is the definition of a T-transform, which is a very useful tool in the

study of the majorization order. After the definition, we will collect some useful

properties of a T-transform.

Definition 2.2 ([6]) A T-transform is a kind of linear transformation (from R™ to

R™) whose transformation matriz has the form
T=MN+(1-))Q (2.5)

where 0 < A < 1, I is the identity matrix and Q is a permutation matrix that

interchanges two coordinates.
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Lemma 2.3 ([6]) Ifb < a, then b can be derived from a by successive applications of
a finite number of T-transforms, and any T-transform can preserve the majorization

order. i.e., b < T(a) < a, where T is a T-transform.

For a proof of this result, we refer to Marshall and Olkin (1979) and Hardy et
al.(1934,1952). Since each T-transform will only modify two coordinates in a vector,
Lemma (2.3) shows that it is often sufficient to check the case n = 2 in proving results
concerning majorization order. The next lemma provides a refinement when both a

and b are in Z,,:

Lemma 2.4 ([6]) Suppose that a and b are vectors in Z,,. If b < a, then b can be
deriwed from a by successive applications of a finite number of T-transforms of the

form
T(a) = (al, vy i1, )\az—k(l—)\)aj, (07 PPN G,j,l, )\aj—l—(l—)\)az, aj+1, ceey an), (26)
where 3 < X <1, so that T(a) € Z,, and b < T'(a) < a.

Proof. If we change each Z,, in the above result to D, and keep the rest un-

changed, then it is a fact given in [40]. Since

a,b € D, b<a= —a,—beZ,, and (2.7)

T(a) € D,=T(—a)=—-T(a)e Z,,
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the result follows. [
An interesting property of the above T-transform is that it not only preserves the

majorization order but also preserves the ordering of the vector’s components.

Lemma 2.5 ([6]) Ifb < a and a € 7,,, then

Zail’m < Zbixm < Zaﬁ[n—iﬂ] (2.8)
i—1 =1 =1

Lemma 2.6 ([6]) b << a if and only if there exists a ¢ such that ¢ < a and b < c

(i.e.,b; < ¢; for each 1)

Lemma (2.5) can be derived from the well-known rearrangement inequality; a
proof is given in [41]. Lemma (2.6) characterizes the weak majorization order in
terms of the majorization order, its proof can be found in Marshall and Olkin (1979,

page 123).

2.3 Arrangement Increasing

Definition 2.7 ([6]) A function f : R" — R is said to be arrangement increasing

[decreasing], if for all i and j such that 1 <i < j <mn,

(i — ) {f(@1, s Ty ooy Ty ooy ) — f(T1, o, @y o, Ty ey )} < [>]0. (2.9)

One major example is given by the joint density function of mutually independent

random variables that are ordered by the likelihood ratio order.
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Lemma 2.8 ([6]) If X1, ..., X,, are mutually independent and X1 <, ... < X, then

the joint density function of (X1, ..., X,,) is arrangement increasing.

Definition 2.9 ([6]) A function g(x, ) : R" x R™ — R is said to be an arrangement

increasing (AI) function if

1. g is permutation invariant, i.e., g(x,A\) = g(xoT, AoT) for any permutation T,

and

2. g exhibits permutation order, i.e., g(x |, A T) < g(x [,Ao7) <g(x |,A]) for

any permutation T.

The following lemmas give us two examples of Al functions. Proofs can be found

in [6].

Lemma 2.10 ([29]) The function g : R" x R* — R defined by

n n

g(x,A) = —Z(% — Ai)+and g(x,X) = Z(% A Ni) (2.10)

=1 i=1

are an Al function.

Proofs of the following lemmas can be found in [29].

Lemma 2.11 ([29]) Suppose that the function ¢ (z,)\) : R* — R is increasing both

in x and \. If the function
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from R" x R™ to R is an Al function, then
O(x LAT) << d(x [, Ao7) << ¢ (x [.A]) (2.11)

for any permutation .

Lemma 2.12 ([29]) Suppose that the function ¢(z,)\) : R* — R is increasing in one

variable and decreasing in the other. If the function
o0 =3 6 ()
i=1
from R™ x R™ to R is an Al function, then
—o(x LA << —d(x L Aor) << —d(x LAT) (2.12)

for any permutation .

2.4 Value-at-Risk

These last years, several experts saw importance of the quantiles of the probability
distributions Since quantiles especially have an easy interpretation in practice of risk
management in the form of the concept of value-at-risk (VaR). This concept was
introduced to answer the following question: how much can we expect to lose in one
day, week, year, with a given probability? The VaR is given in Jorion (2000). In the

following definition we defined VaR .



20

Definition 2.13 ([21]) Given a risk X and a probability level p € (0,1), the corres-

ponding VaR, denoted by VaR [X;p), is defined as
VaR[X;p] = Fx' (p). (2.13)

Note that the VaR risk measure reduces to the percentile principle of Goovaerts,

De Viglderand Hazendonck (1984).

2.4.1 Tail Value-at-Risk

A single VaR at a predetermined level p does not give any information about
the thickness of the upper tail of the distribution function. This is a considerable
shortcoming since in practice a regulator is not only concerned with the frequency
of default, but also with the severity of default. Also shareholders and management
should be concerned with the question ‘how bad is bad?’ when they want to evaluate
the risks at hand in a consistent way. Therefore, one often uses another risk measure,

which is called the tail value-at-risk (7VaR) and defined next.

Definition 2.14 ([21]) Given a risk X and a probability level p, the corresponding

TVaR, denoted by TVaR [X;p] , is defined as
X 1
TVaR[X;p] :Tp/VaR[X;é]dﬁ, 0<p<Ll (2.14)
p

We thus see that TV aR [X;p| can be viewed as the ‘arithmetic average’ of the

VaRs of X, from p on.
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2.5 Sotachastic orders

2.5.1 Stochastic Dominance
Stochastic dominance and risk measures

Stochastic dominance and VaRs In order to compare a pair of risks X and
Y, it seems natural to resort to the concept of VaR, and to consider X as less
dangerous than Y if VaR [X; ap] < VaR[Y;ap] for some prescribed probability level
«g. However, it is sometimes difficult to select such an «g, and it is conceivable that
VaR [X; ) < VaR[Y;a) and VaR [X;a1] > VaR[Y;ay] simultaneously for two
probability levels ay and a;. In this case, what can we conclude? It seems reasonable
to adopt the following criterion: we place X before Y if the VaRs for X are smaller

than the corresponding VaRs for Y, for any probability level.

Definition 2.15 Let X and Y be two rvs. Then X is said to be smaller than 'Y in
stochastic dominance, denoted as X =<gr Y, if the inequality VaR [ X;p] < VaRY;p]

is satisfied for all p € [0, 1].

Standard references for < g7 are the books of Lehmann (1959), Marshall and Olkin
(1979), Ross (1983) and Stoyan (1983).
Stochastic dominance can also be characterized by the relative inverse distribution

function, defined as

r+— VaR[X; Fy (x)] (2.15)
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It is nothing more than the VaR of X at probability level p = Fy (z).

Stochastic dominance and monotonicity An important characterization of
=g is given in the next result. It essentially states that if X <g¢7 Y holds then there
exist rvs X and }7, distributed as X and Y for which Pr [)N( < 37} = 1. In such a case,
Y is larger than X according to Kaas et al.(2001, Definition 10.2.1). This proposition

shows that <g7 is closely related to pointwise comparison of rvs.

Proposition 2.16 Two rvs X and Y satisfy X <gr Y if, and only if, there exist two
rvs X andY such that X =4 X,Y =4 Y and Pr [f( < f/} = 1. For a proof, see Kaas
et al. (2001, Theorem 10.2.3). The construction of X and Y involved in Proposition
(2.16) is known as a coupling technique (see Lindvall 1992). Proposition (2.16) can

be rewritten as follows.

Proposition 2.17 Two rvs X and Y satisfy X <gr Y if, and only if, there exists
a comonotonic random couple (X¢ Y°) such that Pr(Xc <Y =1, X =4 X° and

Y =;Y¢

Stochastic dominance and stop-loss premiums The following result relates
=7 to stop-loss transforms. (The function 7x (¢t) = E [(X — ¢)_] is called the stop-

loss transform of X (See Kaas 1993)).

Proposition 2.18 Given two rvs X and Y, X <g7 Y if, and only if, 7y — wx 1is

non-increasing on R.
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Proof. Clearly, if X <g¢r Y, Fy — Fx is non-negative so that the result follows
from 7x (t) = j:foo Fx (£) d¢. Now assume the non-increasingness of the difference
7y — mx. Differentiating this expression with respect to t yields Fy (t) — Fy (t) <0,
whence X <g7r Y follows. [J
It is interesting to give an actuarial interpretation for Proposition (2.18). It basically
states that when X =<g7 Y holds, the difference between their respective stop-loss

premiums decreases with the level ¢ of retention. Since

lim (E[(Y —t),] -E[(X-1),])=0

t—-4o0

we thus have that the largest difference occurs for ¢ = 0 (and equals E (V) — E (X))
and that this difference decreases with the level of retention. The pricing of stop-
loss treaties will thus lead to very different premiums for small retentions, but this

difference will decrease as the retention increases.

2.5.2 Sotachastic order

There are several references for stochastic orders include Denuit et al.(2002, 2005),
Kaas et al.(1994, 2001), Miiller and Stoyan (2002), Shaked and Shanthikumar (1994, 2007).
We assume all random variables are defined on a common probability space (€2, F,P)

and all expectations mentioned exist.
Definition 2.19 Let X and Y be two random variables,

1. X is said to be smaller than Y in the usual stochastic order (resp. increasing
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convez order, decreasing convex order, convex order), denoted by X <y Y (resp.

X Sicac Y,X Sdcac Y7X Sca: Y)’ Zf
Elp(X)] <E[p(Y)] (2.16)

for all increasing (resp. increasing convezx, decreasing convez, convez) function

0.

2. X 1s said to be smaller than Y in the likelihood ratio order, denoted by X <;. Y,
if
fx(@)gy (y) = fx(y)gy (z) for allz <y (2.17)

where fx and gy are the density functions of X and Y, respectively.

2.5.3 Convex ordering random variables

In this subsection we give the definition of the Stop-loss premium by E[(X —d), ] =

[e.e]

/(1 — Fx(z))dz,—00 < d < +00. Hence, we use the notation S for the sum of the
d
random vector (X1, Xo, ..., X,) : S = Xj + X + ... + X,,. Moreover, we will present

the convex order and his characterization using Stop-loss premium .

We start by define the Stop-loss order between random variables

Definition 2.20 ([9]) (Stop-loss order). Consider two random variables X and Y .
then X 1s said to precede Y in the stop-loss order sense, notation X <4 Y if and

only if X has lower stop-loss premiums than Y :

E[(X — d),] <E[(Y — d),]; —00 < d < +o0 (2.18)
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with (X — d);+ = mazx(X —d,0).
Definition 2.21 ([9]) (convex order). Consider two random variables X andY such

that B [¢p(X)] < E[p(Y)], for all convex functions ¢,provided expectation exit. Then

X 18 said to be smaller than Y in the convex order denoted as X <., Y.

Definition 2.22 ([9]) (Convex order characterization using stop-loss premium). Con-
sider two random variables X and Y. Then X s said to precede Y in convex order

sense if and only if

E[X]=E[Y] (2.19)
BI(X — d)4] < B(Y — d),J;—o0 < d < +oo

Where

(X —d); = max(X —d,0)

An equivalent definition can be derived from the following relation

B((X —d);] - E[(d - X)4] = B(X) —d

For the random variable Y the same relation is given by

B((Y —d)] - E[(d-Y) ] =E(Y) —d

Now assume X <., Y, which implies that
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and

BI(X — d)4] < BI(Y — d);J;—o0 < d < +oc

hence

El(d - X).] < E[(d - Y)4]

Therefore, a definition equivalent to the definition here is

E[(d— X)) <E[(d-Y)4];—00 <d < +0

Properties of Convex Ordering of Random Variables

1. If X precedes Y in convex order sense i.e if X <. Y, then E[X] = E[Y] and

V [X] < V[Y], where V [X] is variance of X. [9]

2. f X <. Y and Z is independent of X and Y then X + Z <., Y + Z. [9]

3. Let X and Y be two random variables, then X <., Y = —X <. —Y. [15]

4. Let X and Y be two random variables such that E[X] = E[Y]. Then X <., Y

if and only if E|X — a| <., E|Y —al,Va € R. [15]
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The convex order is closed under mixtures: Let X, Y and Z be random variables
such that [X | Z = z] <. [Y | Z = 2] Vz in the support of Z. Then X <. Y.

[33]

The convex order is closed under Convolution: Let X, Xs, ..., X,, be a set of
independent random variables and Y7, Y5, ..., Y,, be another set of independent

random variables. If X; <., Y; fori=1,...,m, then Z;”:l X <ew 27:1 Y;. [9]

Let X be a random variable with finite mean. Then X + E[X] <., 2X. (It

suffices to use the Definition (2.22))

Let X1, Xs,..X,, and Y be (n + 1) random variables. If X; <., Y,i =1,...,n,
then >""  a;X; <. Y, whenever a; > 0,i=1,...,nand )., a; = 1. (It suffices

to use the property 6)

Let X and Y be two random variables. Then X <., Yifand only if E [®(X,Y)] <

E[®(Y, X)],V® € U, where
U, ={®:R* > R:®(X,Y)— ®(Y,X) is convex for all z € y} . (2.20)
(It suffices to use the Definition (2.22))

Let X; and X, be a pair of independent random variables and let Y; and Y5
be another pair of independent random variables. If X; <., Y;, i = 1,2 then

X1X2 Scx 1/11/2 [9]

For all convex function v, then X <. Y if and only E [v(X)] = E[v(Y)]. [33]
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12. Let X,Y and Z be random variables such that X <., Y and Y <. Z, then

X <. Z. (It suffices to use the Definition (2.22))
13. If X <, Y and ¢ is any decreasing function, then ¢(X) >, ¢(Y). [50]

14. Let X € R} and X; <, ... <jp X, are mutually independent. If b is weakly
majorized by a (denoted by b << a) and a € Z,, then > b, X; <;.x > a;X;.
i=1 i=1

[29]

2.5.4 Lorenz Order

Lorenz curves

The Lorenz order is defined by means of pointwise comparison of the Lorenz
curves. These are used in economics to measure the inequality of incomes. More
precisely, let X be a non-negative rv with df F'x. The Lorenz curve LC'x associated

with X is then defined by

L0y = ﬁ /g po VaR [X;€de, pe0.1]. (2.21)
In an economics framework, when X models the income of the individuals in some
population, LC'x maps p € [0, 1] to the proportion of the total income of the popu-
lation which accrues to the poorest 100p % of the population. An interpretation of

LC'x in insurance business is the following: LCx (p) can be thought of as being the

fraction of the aggregate claims caused by the 100p % of the treaties with the lowest
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claim size.
Lorenz order

Now, we define the lorenz order

Definition 2.23 ([9]) Consider two risks X and Y. Then, X is said to be smaller
than Y in the Lorenz order, henceforth denoted by X <poren. Y, when LCx (p) >

LCy (p) for all p € ]0,1].

A standard reference on < ,.en, is Arnold (1987). We mention that <3 in Heil-
mann (1985) is in fact Lorenz. We also mention that the Lorenz order is the k-order
introduced by Heilmann (1986) (see also Heilmann and Schroter 1991, Remark 5)
Lorenz and Convex orders

There is a closely relation between the convex and Lorenz orders.

Property Given two risks X and Y,

X Y
X = orenz Y & jc;v . 2.22
Obviously, when E [X] = E[Y], we have
X jLorenz Y& X jca: Y (223)

since the convex order is scale-invariant. It is worth mentioning that other approaches
to comparing rvs with unequal means via <., have been proposed. The dilation order,

for instance, compares X —E[X] to Y —E[Y].
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2.6 Inverse distribution functions

The cdf Fx(z) = P[X < z] of a random variable X is a right-continuous (further

abbreviated as r.c.) non-decreasing function with

Fx(—o0) = lim Fx(z) =0, Fx(4+o00) = lim Fx(z)=1.

r——00 r—-+00
The usual definition of the inverse of a distribution function is the non-decreasing

and left-continuous (l.c.) function Fy'(p) defined by

Fil(p) =inf{z € R| Fx(x) >p}, pe[0,1] (2.24)

with inf () = +o00(sup ) = —00) by convention. For all x € R and p € [0; 1], we have

Fi'(p) <z < p < Fx(). (2.25)

In this work, we will use a more sophisticated definition for inverses of distribution
functions. For any real p € [0,1], a possible choice for the inverse of Fy in p is any

point in the closed interval

[inf{z € R| Fx(z) > p},sup{z € R| Fx(x) < p}|,

where, as before, inf () = +o00, and also sup ) = —oco. Taking the left hand border of
this interval to be the value of the inverse cdf at p, we get Fi'(p).

Similarly, we define F'y *(p) as the rihgt hand border of the interval:
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Fi'(p) =sup{z € R| Fx(z) <p}, pe0,1] (2.26)

which is a non-decreasing and r.c. function. Note that Fi;*(0) = —oo, F'*(1) = +o00
and that all the probability mass of X is contained in the interval [F'*(0), Fy'(1)] .
Also note that Fi;'(p) are finite for all p € (0,1). In the sequel, we will always use
p as a variable ranging over the open interval (0, 1), unless stated otherwise.

For any « € [0,1], we define the a-mixed inverse function of Fy as follows:
F' 9 (p) = aFgt —a)Fgtt 1 2.27
x  (p)=aFx(p)+ (A -a)Fx " (p), pe(01), (2.27)

which is a non-decreasing function. In particular, we find F' ;1(0) (p) = Fx'"(p) and

F);l(l)(p) = Fx'(p). One immediately finds that for all a € [0, 1],
Ft ) < B ) < FyM ), pe(01). (2.28)

Note that only values of p corresponding to a horizontal segment of F'y lead to differ-
ent values of Fi'(p), Fx'"(p) and F ;(“) (p). This phenomenon illustrated in figure
5.1.

Now led d be such that 0 < Fx(d) < 1. Then Fy'(Fx(d)) and Fx'" (Fx(d)) are
finite, and Fi' (Fx(d)) < d < Fy'" (Fx(d)). So for some value oy € [0,1], d can
be expressed as d = agFg! (Fx(d)) + (1 — ag) Fx'" (Fx(d)) = F"* (Fx(d)) . This
implies that for any random variable X and any d with 0 < Fx(d) < 1, there exists

an ay € [0,1] such that F' " (Fy(d)) = d.
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In the following theorem, we state the relation between the inverse didtribution func-

tions of the random variables X and ¢ (X) For a monotone function g.
Theorem 2.24 Let X and g (X) be real-valued random variables, and let 0 < p < 1.
(a) If g is non-decreasing and l.c., then
F o) =g (Fx'(p) - (2-29)
(b) If g is non-decreasing and r.c., then
F () =g (F<™(p). (2.30)
(¢) If g is non-increasing and l.c., then
F 5 0) =g (Fx'(1-p)). (2.31)
(d) If g is non-increasing and r.c., then
F P =g (Fs (1 -p). (2.32)

Proof. We will prove (a). Then other results can be proven similarly. Let
0 < p < 1 and consider a non-decreasing and left-continuous function g. For any real

x we find from (2.25) that

As g is l.c., we have that

9(z) <z <z <sup{y|g(y) <=}
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holds for all real z and z. Hence,

If sup{y | g(y) < x} is finite then we find from (2.25) and the equivalence above

p< Fx[sup{y | g(y) < z}] & Fx'(p) <sup{y | g(y) < =}.

In case sup{y | g(y) < z} is 400 or —oo, we cannot use (2.25), but one can verify
that the equivalence above also holds in this case. Indeed, if the supreum equals —oo,
then the equivalence becomes p < 1 < Fy'(p) < —oo0.

Because ¢ is non-decreasing and l.c., we get that

Fe'(p) <sup{y| gly) <z} e g (Fx'(p) <=

Compining the equivalences, we finally find that

Fop) <zeg(Fy'(p) <=

holds for all values of =, which means that (a) must hold. [

For the special cases that X and ¢ (X) are continuous and strictly increasing on
[F'7(0), Fx'(1)], a simple proof is possible. Indeed, in this case we have that
Fyx)(z) = (Fx og™ ') (z), which is a continuous and strictly increasing function of
x. The results (a) and (b) then follow by inversion of this relation. A similar proof

holds for (c) and (d) if ¢ and Fx are both continuous, while g is strictly decreasing

and Fly is strictly increasing.
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Hereafter, we will reserve the notation U for a uniform (0,1) random variable, i.e.

F,(p) = pand F,'(p) = p for all 0 < p < 1. We can prove that for all a € [0,1],
X L F{NU) £ FU) £ P, (2.33)

The first distributional equality is known as the quantile transform theorem and
follows immediately from (2.25). It states that a sample of random numbers from a
general distribution function F'x can be generated from a sample of uniform random
numbers. Note that Fx has at most a countable number of horizontal segments,
implying that the last three random variables in (2.33) only differ in a null-set of

values of U. This implies that these random variables are equal with probability one.

O
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Chapter 3

Comonotonicity

In this chapter we will discuss the comonotonicity notion for sums of dependent
random variables whose marginal distributions are known, but with an unknown or
complicated joint distribution. Considering comonotonic random vectors essentially
reduces the multidimensional problem to a univariate one since then all components
depend on the same variable. Also, we give a result to present a new theorem with

proposition of convex bounds and the comonotonic upper bound for Sy.

3.1 Comonotonic sets and random vectors

In this section we give a total S =) " | X; where the terms X; are not mutually
independent, and also we have the multivariate distribution function of the random
vector X= (X1, Xo,...,X,,). We will find the dependence structure for the random

vector (X1, ..., X,,). Then we use the joint distribution in the convex orders sense.
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Now, we define the comonotonicity of a set of n—vectors in R". Let n—vector
(21,22, ..,x,) be denoted by z. For two n—vectors z and y, the notation z < y is

used for the componentwise order which is defined by z; < y; for allt = 1,2, ..., n.

Definition 3.1 (Comonotonic set). The set A C R" is comonotonic if for any x and

y i A, either x < yory<z holds.

So, a set A C R" is comonotonic if for any z and y in A, if x; < y; for some 4,then
z < y must hold. Hence, a comonotonic set is simultaneously non-decreasing in each
component. Notice that a comonotonic set is a 'thin’ set: it cannot contain any subset
of dimension larger than 1. Any subset of a comonotonic set is also comonotonic.

we will denote the (i, j)-projection of a set A in R™ by A, ;. It is defined by

Aij={(zi,75) |z € A} (3.1)

Lemma 3.2 A C R" is comonotonic if and only if A, ; is comonotonic for all i # j

in{1,2,...,n}.

The proof of lemma (3.2) is straightforward.
For a general set A, comonotonicity of the (i, i41)-projection A; ;+1,(i = 1,2, ...,n — 1),

will not nessarily imply that A is comonotonic. As an example, consider the set
A= {(3}1,1,1'3) ‘ 0<z1,23 < 1}

This set is not comonotonic, although A, 5 and A, 3 are comonotonic. Next, we will

define the notion of support of an n-dimensional random vector X = (Xj,..., X,,).
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Any subset A C R™ will be called a support of X if Pr[X C A] = 1 holds true. In
general we will be interested in support of wich are “as small as possibe”. Informally,
the smallest support of a random vector X is the subset of R™ that is obtained by
subtracting of R™ all points which have a zero-probability neighborhood (with respect
to X). This support can be interpreted as the set of all possible outcomes X . Next,

we will define comonotonicity of random vectors.

Definition 3.3 (Comonotonic random vector). A random vector X = (X,..., X,)

18 comonotonic if it has a comonotonic support.

From the definition, we can conclude that comonotonicity is a very strong positive
dependency structure. Indeed, if x and y are elements of the (comonotonic) support
of X, i.e. z and y are possible outcomes of X, then they must be ordered compon-
entwise. This explains why the term comonotonic (common monotonic) is used.
Comonotonicity of a random vector X implies that the higher the value of one com-
ponent X, the higher the value of any other component X;. This means that
comonotonicity entails that no X is in any way a “hedge”, perfect or imperfect, for
another component Xj.

In the following theorem, some equivalent characterizations are given for comonoton-

icity of a random vector.

Theorem 3.4 (Equivalent conditions for comonotonicity)
A random vector X = (X1, Xs, ..., X,,) is comonotonic if and only if one of the

following equivalent conditions holds:



1. X has a comonotonic support;

2. X has a comonotonic copula, i.e. for all z = (xy, 23, ..., z,,), we have
FX(@) = min {FXI (I1>7 FXI (Il)ﬂ ) FXn(‘Tn)} )
3. For U ~ Uniform(0,1), we have

x4 (Fx (U), FLl(U), ... F< (D)) 5

4. A random variable Z and non-decreasing functions f;(i = 1,...,n) exist such

that

XL (f(2), 2(2) s fu(2)).

Proof. (1) = (2) : Assum that X has comonotonic support B. Let z € R™ and

let A; be defined by

Aj:{£€B|yj§ZL‘j}, j:1,2,...,n.

Because of the comonotonicity of B, there exists an i such that A; = N}_, A;

Hence, we find

Fx(z) =Pr (X € N}, Aj) = Pr(X € A)) = Fx,(x,)

=min {Fx, (z1), Fx,(x1), ..., Fx, (z)} .

The last equality follows from A; C A; so that Fi,(z;) < Fx,(z;) holds for all values

of j.
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(2) = (3) : Now assume that Fy(z) = min{Fyx,(x;), Fx,(x1),..., Fx, (z,)} for all

z = (21,2, ...,2,). Then we find by (2.25)

(3) = (4) : straightforward.
(4) = (1) : Assume that there exists a random variable Z with support B, and

non-decreasing functions f;, (i = 1,2, ...,n), such that

XE(fi(2),[2(Z) s fu(2))

The set of possible outcomes of X is {f1 (2), fa(2),..., f2(2) | z € B} which is obvi-
ously comonotonic, which implies that X is indeed comonotonic. []

From (3.2) we see that, in order to find the probability of all the outcomes of n co-
monotonic risks X; being less than z; (i = 1,...,n) one simply takes the probability of
the least likely of these n events. It is obvious that for any random vector (X7, ..., X,,),

not necessarily comonotonic, the following inequality holds:
Pr[X; < xq,..., X, <2, <min{Fx,(z1),..., Fx, (xn)}, (3.5)

and since Hoeffding [28] and Fréchet [20] it is known that the function
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min{ Fx, (z1), ..., Fx, (x,)} is indeed the multivariate cdf of a random vector, i.c.
(Fx (U), Fx}(U), ..., Fx!(U)), which has the same marginal distributions as (X1, ..., X,,).
Inequality (3.5) states that in the class of all random vectors (X7, ..., X,,) with the
same marginal distributions, the probability that all X; simultaneously realize ’small’
values is maximized if the vector is comonotonic, suggesting that comonotonicity is
indeed a very strong positive dependency structure.

From (3.3) we find that in the special case that all marginal distribution functions F;,
are identical, comonotonicity of X is equivalent to saying that X; = X, = ... = X,
holds almost surely.

A standard way of modelling situations where individual random variables X1, ..., X,
are subject to the same external mechanism is to use a secondary mixing distribu-
tion. The uncertainty about the external mechanism is then described by a structure
variable z, which is a realization of a random variable Z and acts as a (random)
parameter of the distribution of X. The aggregate claims can then be seen as a
two-stage process: first, the external parameter Z = z is drawn from the distribution
function F of z. The claim amount of each individual risk X; is then obtained as a
realization from the conditional distribution function of X; given Z = z. A special
type of such a mixing model is the case where given Z = z, the claim amounts X;
are degenerate on x;, where the z; = x;(z) are non-decreasing in z. This means
that (Xi,..., X,,) & (f1(Z),..., fn(Z)) where all functions f; are non-decreasing.

Hence, (Xi,...,X,) is comonotonic. Such a model is in a sense an extreme form
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of a mixing model, as in this case the external parameter Z = 2z completely determ-
ines the aggregate claims. As the random vectors (Fi ! (U), Fy)(U), ..., F5'(U)) and
<F§11(a1)(U), F);Zl(O‘Q)(U), s F)E:(a”)(U)> are equal with probability one, we find that

comonotonicity of X can be charcterized by

X 2 (R0 0), P DW), o () (3.6)

For U ~ Uniform(0,1) and given real numbers «; € [0, 1].
If U ~Uniform(0,1), then also 1 — U ~ Uniform(0,1). This implies that comono-

tonicity of X can also be characterized by
X £ (FRl(1-U),Fg(1-U),...Fx!(1-1)) (3.7)

One can prove that X is comonotonic if and only if there exist a random variable Z

and non-increasing functions f;, (i = 1,2, ...,n), such that

XE(fi(2),[2(2) s fu(2))

The proof is similar to the proof of the characterization (4) in theorem (3.4).

In the sequel, for any random vector (Xj, ..., X,,), the notation (XY, ..., X¢) or (Xl, ey Xn)
will be used to indicate a comonotonic random vector with the marginals as (X, ..., X,,) .
From (3.3), we find that for any random vector X the outcome of its comonotonic

counterpart X = (X¢,..., X¢) is with probability 1 in the following set

{(F5 ), Fxl(0), - Fxl(p) [0<p < 1)}, (3.8)
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This support of X° is not necessarily a connected curve. Indeed, all horizontal seg-
ments of the cdf of X; lead to “missing pieces” in this curve. This support can be
seen to be a series of ordered connected curves. Now by connecting the endpoints of
consecutive curves by straigh lines, we obtain a comonotonic connected curve in R”.
Hence, it may be traversed in a direction which is upwards for all components simul-
taneously. we will call this set the connected support of X°. It might be parmeterized

as follows:

{(F)}ll(a)(U), FOw), ., F);j(C“)(U)) 0<p<1l,0<a< 1} . (3.9)

Observe that this parameterization is not necessarily unique: there may be elements

in the connected support which can be characterized by different values of a.

Theorem 3.5 (Pairwise comonotonicity)
A random vector X is comonotonic if and only if the couples (X;, X;) are comono-

tonic for all i and j in {1,2,...,n}.

3.2 Examples

e Continuous Distributions [15]. Let X «Uniform on the set (0,1) U (0,2),
Y «Beta (2,2), hence Fy (y) = 3y* — 2y® on (0,1), and Z ~Normal (0,1). If

X, Y and Z are mutually independent, then the support of (X, Y, Z) is the set
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{(x,y,z)lxe (O,%) U (0,;) RIRS (0,1),26R}.

The support of the comonotonic random vector (X¢, Y Z¢) is given by

{(Fx'(p), Fy''(p), F;'(p)) |0 <p <1},

See Figure 5.2. Actually, not all of this support is depicted. The part left out
corresponds to p ¢ (® (—2),® (2)) and extends along the vertical asymptotes (0, 0, z)
and (%, 1, z) The thick continuous line is the support of X, while the dotted line is
the straight line needed to transform this support into the connected support. Note

1

5 and 1. The projection of the connected

that F'x has a horizontal segment between
curve along the z—axis can also be seen to constitute an in increasing curve, as

projections along the other axes.

e Discrete Distributions [15]. We take X «~Uniform{0, 1,2, 3} and Y «~Binomial

(3, %) . It is easy to verify that
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(Fx'(p), Fy''(p)) = (0,0) for 0 <p < <,

= (0,1) for

A\
i
A\

= (1,1) for

A\
i
A\

= (2,2) for

A\
]
A

= (3,2) for

N
0|l 00~3 00| | colby Xl

<P

-3 00| O 0Ol 00N 0o

= (3,3) f0r§<p<

The support of (X° Y¢) is just these six points, and the connected support arises by
simply connecting them consecutively with straight lines, the dotted lines in Figure
5.3. The straight line connecting (1,1) and (2, 2) is not along, one of the axes. This
happens because at level p = %, both Fx (y) and Fy (y) have horizontal segments.
Note that any non-decreasing curve connecting (1,1) and (2,2) would have led to a

feasible connected curve. These two points have probability %, the other points %.

3.3 Sums of comonotonic random variables

Notice that S¢ is the sum of the components of the comonotonic counterpart

(X§, X5, ..., X°) of a random vector (X1, Xs, ..., X,,):

SC=XT+ X5+ ..+ X (3.10)
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In this section, we will prove the fowllowing theorems which we give the approximation
of the distribution function of S = X; + X5 + ... + X, by the distribution function
of the comonotonic sum S¢ is a prudent strategy in the sense that S <. 5S¢ and
determining the marginal distribution functions of the terms in the sum.

In the next theorem we prove that the inverse disrtibution function of a sum of
comonotonic random variables is simply the sum of the inverse distribution functions

of the marginal distributions.

Theorem 3.6 The a—inverse distribution F- of a sum S°¢ of comonotonic ran-

dom wvariables (X§{, X5, ..., X°) is given by
Fi'%p) =Y Fy'p), 0<p<l, 0<a<l (3.11)
i=1

Proof. Consider the random vector (X, Xs, ..., X,,) and its comonotonic coun-
terpart (X7, X5, ..., X¢). Then S¢ = X7+ X§+ ... + X Ly (U), with U uniformly

distributed on (0, 1) and with the function ¢ defined by

g(u)= ZF);:(U), 0<u<l.
i=1

It is clear that ¢ is non-decreasing and left-continuous. Application of Theorem

2.24(a) leads to

Fgl(p) = Fyp(p) = 9 (F5'(p)) = 9(p), 0<p<L,

So the inverse distribution function of S¢ can be computed from
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Similarly, from Theorem 2.24(b), we find that

Fa " (p) =) Fx"(p), 0<p<l.
=1

Multiplying the last two equalities by o and 1 — « respectively, and adding up, we
find the desired result. [J

Note that

n

S DI (%) (3.12)

i=1

By the theorem above, we find that the connected support of S¢ is given by

FaOm) [0<p<1,0<a< 1}

{ZF);(‘”(p)|0<p<1,0§a§1}.

i=1

This implies
Fat (0) =) Fy'™(0), (3.13)

F' (1) =Y Fel(D). (3.14)

=1

Hence, The minimal value of the comonotonic sum equals the sum of the minimal

values of each term. Similarly, the maximal value of the comonotonic sum equals the
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sum of the maximal values of each term. The number >7 | F'*(0), which is either
finite or —oo (if any the terms in the sum is —o0), is the minimum possible value of
S¢, and Y7, F (1) is the maximum.

Also note that

Ft (1) = DRt (1) = oo,
=1
FgH (0) = ZFZ*(O) = —00.
i=1
For any (X1, Xz, ..., X,,), we have that S = X1 + Xy + ...+ X,, > >, F'*(0) must

hold with probability 1. This implies

> Fe(0) < Fg'0). (3.15)

Similarly, we find

P <3, (3.16)
This means that the sum S of the components of any random vector (X, Xs, ..., X},)
has a support that is contained in the interval [>7 , F'"(0), Y7, Fi'(1)]. The
minimal value of S is larger than or equal to the one of 5S¢ since by comonotonicity
all terms of the latter are small simultaneously.
Given the inverse functions Fi!, the cdf of S¢ = X¢+ X5 +...+ X¢ can be determined

as follows:
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Fse(x) = sup{p€ (0,1)]| Fsc (x) > p} (3.17)
= sup{pe (0,1) | Fg.' (p) S:L‘}

= sup {p € (0,1) Y Filp) < :c}

i=1
In the sequel, for any random variables X, the expression “Fy increasing” should
always be interpreted as “Fly is strictly increasing on (Fi*(0), F )?2_1(1))”.

K3

Observe that for any random variable X, the following equivalences hold:

Fx is strictly increasing < Fy'is continuous on (0, 1), (3.18)

and also

Fy is continuous < Fy' is strictly increasing on (0,1). (3.19)

Now assume that the marginal distribution functions Fx,,s = 1,...,n of the comono-
tonic random vector (X, X, ..., X¢) are strictly increasing and continuous. Then
each inverse distribution function F )}il is continuous on (0, 1), wich implies that F S’Cl
is continuous on (0,1) because Fg.'(p) = i, Fi'(p) holds for 0 < p < 1. This
in turn implies that Fys. is strictly increasing on (Fg.'™(0), Fg.'(1)). Further, by a
similar reasoning we find that Fg. is continuous.

Hence, in case of strictly increasing and continuous marginals, for any Fgo!'*(0) <

r < Fg'(1), the probability Fg. () is uniquely determined by Fg.' (Fs. (z)) = x, or
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equivalently,

ZF—; (Fse (z)) =z, Fgt(0) <z < Fgl(1). (3.20)

It suffices thus to solve the latter equation to get Fge ().
In the following theorem, we prove that also the stop-loss premiums of a sum of
comonotonic random variables can be obtained from the stop-loss premimiums of the

terms.

Theorem 3.7 The stop-loss premiums of the sum S¢ of the components of the co-

monotonic random vector (X7, X§, ..., X¢) are given by
B[S —d).] =Y B[(X—d).], (K0 <d<FM1),  (321)
i=1
with the d; given by
di = F ") (Fge (d)), (i=1,...,n) (3.22)
and a4 € [0, 1] determined by
Fa ) (Fge (d)) = d. (3.23)

Proof. Let d € (Fg.'"(0), F&.'(1)), hence 0 < Fs. (d) < 1.
As the connected support of X¢ as defined in (3.9) is comonotonic, it can have at
most one point of intersection with the hyperplane {z | z; + ... + z, = d} . This is

because the hyperplane contains no different points x and y such that z < yorxz >y

holds.
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Now we will prove that the vector d = (dy,ds, ..., d,) as defined above is the unique
point of this intersection. As 0 < Fge (d) < 1 must hold, we know from Section (2.6)
that there exists an oy € [0.1] that fulfils condition (3.23). Also note that by Theorem
(3.6), we have that > " , d; = d. Hence, the vector d with the d; defined in (3.22)
and (3.23) is an element of both the connected support of X¢ and the hyperplane
{z|x1+...+x,=d}.

We can conclude that d is the unique element of the intersection of the connected
support and the hyperplane. Let x be an element of the connected support of X°.

Then the following equality holds:
(.’E1+$2+...—|—$n—d)+5 (.fl—d1)++(.’Ig—dz)Jr—i-...—{—(ajn—dn)Jr.

This is because x and d are both elements of the connected support of X, and hence,
if there exists any j such that z; > d; holds, then we also have z;, > d}, for all k, and
the left hand side equals the right hand side because )" | d; = d. On the other hand,
when all z; < d;, obviously the left hand side is 0 as well.

Now replacing constants by the corresponding random variables in the equality above
and taking expectations, we find (3.21). OJ

Note that we also find that
E[(S°—d),] =) E[X)]—d ifd<Fg"(0) (3.24)
i=1

and

=0, ifd>Fg'(1). (3.25)
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So from (3.13), (3.14), (3.24), (3.25) and Theorem (3.7) we can conclude that for any
real d, there exist d; with Y | d; = d, such that B [(S¢ —d), | = Y1 | B [(X; — d;). ]
holds.
The expression for the stop-loss premiums of a comonotonic sum S¢ can also be
written in terms of the usual inverse distribution functions. Indeed, for any retention
d € (Fg(0), F&.' (1)), we have

E [(X — P (. (d)))J

=B [(X: — ! (For (@), ] — (F& (Fse () = Fg! (Fse (4))) (1~ Fie (d)
Summing over ¢, and taking into account the definition of oy, we find the expres-
sion derived in Dhaene, Wang, Young & Goovaerts (2000), where the random vari-
ables were assumed to be non-negative. This expression holds for any retention

d € (Fg(0), Fg' (1)) -

n

E[(5°~d).] = S E [(XZ-—F)}} (Fse (d)))+] (3.26)

i=1

— (d— F5! (Fs (d))) (1 = Fs. (d)).

In case the marginal cdf’s Fl, are strictly increasing, (3.26) reduces to

B[(s°-d),) = Y B[(Xi- Fi! (Fae (1),] . de (F5(0). Fs (V). (327

From Theorem (3.7), we can conclude that ant stop-loss premium of a sum of co-
monotonic random variables can be written as the sum of stop-loss premiums for
the individual random variables involved. The theorem provided an algorithm for

directly computing stop-loss premiums of sums of comonotonic random variables,
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without having to compute the stop-loss premium with retention d, we only need to
know Flse (d), which can be computed directly from (3.17).

Application of the relation E [(X —d), | =E [(d — X),] + E[X] — d for S¢ and the
X; in relation (3.21) leads to the following expression for the lower tails of a sum of

comonotonic random variables:

E(d-59,] =) Eld-X)], F70)<d<Fg(), (3.28)

with the d; as defined in (3.22) and (3.23).

The comonotonic upper bound for )" X,
Theorem 3.8 ([15]) For any vector (X1, Xs, ..., X,,) we have

X1+ Xo+ .+ X, <. X+ X5+ ...+ X,. (3.29)

3.4 The New Results

The main results of this work are the following theorem, and proposition.

3.4.1 Convex bounds and the comonotonic upper bound for

SN

In risk theory and finance, one is often interested in distribution of the sums

S = Xi+...4+ X, or the form Sy = X1 f(Y1) + Xof (Y2) +... + X, f(¥2,) (our model) of
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individual risks of a portfolio X. In this subsection we give a short overview of these
stochastic ordering results. For proofs and more details on the presented results, we

refer to the overview paper of Dhaene et al.[9] and Zeghdoudi and Remita [56].
Theorem 3.9 (M.Bouhadjar et al.) We note that:
Sy =X f (V1) + Xof (Ya) + oo+ X f (V) (3.30)

For any random vector X = (Xy,...,X,) and f(Y;),i =1,...,n we have

Sy <eo Sn. (3.31)

Proof. It is suffices to prove stop-loss order because E (Sy) = E <§ N) . Hence,
we have to prove that

E[(Sy — d)+] < E[(Sy — d)]
The following holds for all (X7 (Y1), Xof (Y2), ..., Xp f(Y3)) when dy +da+...+d, = d
= (Xif(M) —di + Xof (Vo) —da+ .. + X f(Va) — dn) ¢

< ((Xif(V) —da)y + (Xaf (Ya) = do) 4o+ (X f (Vo) —da),)

= (le(Yi) - d1)+ + (X2f(yé) - d2)+ +.t (an(Yn) - dn)+
Now taking expectations, we get that

E[(X1f (Y1) + Xof (Ya) + oo + Xo f(Yn) = d) ] < ZE (X f(Y:) — i), ]
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According to [15] we have
BI(Sx = d)4] = 3B [(Xif (V) - di), ]

Then,

O

Proposition 3.10 For any random vector X = (X, ..., X,), any random variable
A and for U « Uniform(0,1), which is assumed to be a function of X and for

fY;) >1,i=1,...,n, we have,

(a)
(b)
§ <w Sy (3.33)
(c)
> B[X; [ A] <e Sy (3.34)
(d)
Proof.

(a) We have f(Y;) > 1,i=1,...,n and we used property 10 and 6, we obtain
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thus

S SC.I SN-

(b) We will omit the proof here because the idea is very similar to the proof in (a).
(c) According to Dhaene et al.[9] we have, > E[X; | A] <. S and (a), we deduce
j=1

that

n

D EX; | A] <e S

Jj=1

(d) According to Zeghdoudi and Remita [56] we have Y E [f(z \ A} <o S, using

7j=1

property 12 and (b), we obtain

0

In addition, if f(Y;) < 1,i=1,...,n, we can check easily that

SN Scx 5;N Scm S Scx g (336)
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Chapter 4

Policy Limits and Deductibles

If the sum of policy limits(deductible) is fixed, then X; <, X; = [ < [z and
di > dj when ( X1, Xs,...,X,,) is comonotonic, where [} : optimal policy limit and
d; : optimal deductible allocated to i-th risk.
In this chapter we present the problem of the optimal allocation of policy limits and
deductibles. For make the new general model analytically tractable, we will make the
following assumptions :
1. the policyholder is risk-averse, and therefore the utility function is increasing and
concave;
2. the random vector X = (Xj,..., X,,), which represents the loss severities, and
random vector Y = (Y7, ..., Y,,), which represents the time of occurrence of losses, are

independent; moreover, Y7, ..., Y,, are mutually independent;

3. dependence structure of the severities of the risks is unknown.
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4.1 Policy limits with unknown dependent struc-

tures

The first problem to be considered is to maximize the expected utility of wealth:

max min &

4.1
IcA,()XeER ( )

u (w — Z (X, — (Xinl),] f(Yz))

i=1

where v and w are the utility function (increasing and concave), the wealth (after
premium) respectively and @ is an increasing convex function. The problem is equi-

valent to

in e | <; (Xi— b)), f (Yi)> (4.2)
Lemma 4.1 (B) If (Xy,...,X,) € R comonotonic, then
B | u (Z (Xi =), f(ﬁ‘)) <E|u (Z <Xz - li>+ f(ﬁ)) (4.3)
i=1 i=1

for any (Iy,..., 1) € A,(l) and (X4, ..., X,)) € R independent of Y.

Proof. Let X = (Xl, ,f(n) € R be comonotonic and independent of Y. For

any fixed constants ¥, , ..., y,, Theorem (3.4) implies that

(%= ) s (%= 1) )

is still comonotonic. Therefore, by Theorem (3.8) and Theorem (3.9), we have

n n

DX 1)y F) < D (K= 1) )

i=1 i=1
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because u is increasing and convex. Then by the independence of X and Y,

E ﬁ(i (Xl-—li)+f(YZ-)> = E _E{ﬂ (i (Xi—lv:)+f(Yi)> |Y1,...,Yn}
< B :E{a (Z (Xi—li)j(m) Y, ,Yn}
_E _a < : (X - Zi>+f(YZ)>
and hence |
B a(i%—w(yi)) < u<z (%-1) f<yi>)]
O

Now, the initial problem becomes

Problem L’ :{ 134%)1@ [fb (Z:’L:l (Xi— 1), f(Y;))]

Proposition 4.2 Let 1* = (I3, ...,1%) be the solution to Problem L', then
Yi 20 Y5, Xi <o X; = 17 <[] (4.4)
Proof. Assume that [; < ;. Since x — f(Y;) is decreasing , by property 13
Y; 20 Y = f(Yi) <u f(Y))

Since (X;, X;) is comonotonic and X; <y X, , X;(w) < X;(w) for any w € Q. By the
independence of X and Y, we can hereafter fix an outcome of (Xi, ..., X;, ..., X;, ..., X,)
as (L1, ..., Tiy ooy Tjy oo, Tpy) With 2 < ;. As g(x,I) = =Y (2, — ;)4 is an AT func-

tion by Lemma (2.10) and the function (z,l) — —(z — )4 is increasing in [ but
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decreasing in z, then by Lemma (2.12)

(v = L)y, (25 — li)+)

i)y) <= (s = 1), (25 —

Since wehave (z; — [;)+ < (x; — l;), then by property 14 we have

(i = L)+ f(YD) + (x5 — )+ [ (Y)) Sico (20 — 1) f(Y) + (25 — L)+ f(Y)).

Morever, for the increasing convex function u,

E ﬂ((% — 1) f(Y3) + (25 = L) f(Y)) + D (g — lk)+f(Yk)>
I -

< Ela ((l‘i — L) fVG) + (5 — L) F(Y)) + D (e — lk)+f(Yk)>
I -y

By taking expectations conditional on X, we obtain

E|u <(Xi — 1)+ (Y3 + (X5 = L)+ f(Y)) + Z (Xk — lk)—i—f(Yk))
L k#i,j i

< E|u <(Xz — 1)+ f(Ys) + (X5 = L)+ f(Y)) + Z (Xk — lk)-i—f(Yk:))
L k#i,5 J

The result follows. OJ

4.2 Policy deductibles with unknown dependent

structures

The same thing is made that the of policy limits, we consider the problem of the

optimal allocation of deductibles :
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max min E

(4.5)
deA, (d)XeR

u <w — Z [Xi —(X; — dz‘)JJ f(Yi)>

=1

which we have

min max E

(4.6)
deA, (d)XeR

i (Z (Xi A di), f(m))

=1

Lemma 4.3 If ()~(1, e Xn) € R is comonotonic and independent of Y, then

i (Z (Xind), fm))

=1

E <E (4.7)

i (Z (X, nd), fm))

=1

for any (dy, ...,d,) € A,(d) and (Xi, ..., X,,) € R independent of Y.

The proof is similar to the proof of Lemma B.

From the above lemma, our problem becomes
Problem D’ :{derﬁi:%d)E [a (X0, (XiAdy), F(Y2))]
Proposition 4.4 Let d* = (d], ..., d}) be the solution to Problem D', then
Y 20 Y, Xi <o Xj = df > d}. (4.8)
Proof. Assume that d; > d;. As in the proof of Proposition (4.2), we have

}/i Zl'r Yj = f(YU Sl'r f()/})u

And we can fix an outcome of (Xi,...,X;, ..., X;, ..., X)) as (z1,..., T4, ooy Ty o0y Tpy)

with z; < ;. As g(x,d) =", (z; Ad;) is an Al function by Lemma (2.10) and the
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function (z,d) — x A d is increasing both in = and d, then by Lemma (2.11),
((zi Ndy), (x5 N dy)) << ((zi A dy), (5 A dy)).
Since we also have (z; A d;) < (z; A d;), then by property 14 we have
(@i A di) f(Ya) + (5 A dj) f(Y5) Siea (3 A ) f(Y3) + (2 A di) £(Y5)
By independence convolution, we have

(i Adi) f(YD) + (25 Ad) F(Y) + Y (@ Adi)+ f (Vi)
k#i,j

< e (@ A FYD) + (2 Ad)F(Y) + ) (e A di) 1 (Yr)

ki,

Morever, for the increasing convex function u,

B |u ((m‘i Nd)FY3) + (g A ) f(Y5) + D (i A dk)+f(Yk)>

k#i,5

IA
&=

i ((xi Ny (V) + (25 Adi) F(Y7) + D (kA dk)+f<Yk>>

k#i,5

With a same manner we find the result on X. [

4.3 Some examples and Application

In this section we will describe several examples that show how distribution func-
tion of the sum of random variables can be approximated by convex order of random
variable (see Riischendorf [48]) for lower convex order of random variables and com-

parison of two families of copulas.
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4.3.1 Lower Bound Approximations of the Distribution Sum
of Random Variables with Convex Ordering

Example 4.5 (Approzimation of distribution sum of two independent standard nor-

mal random variables)[22]

Suppose X and Y be independent N(0,1) random variables. We want to derive
lower bounds for S = X + Y. In this case we know the exact distribution of S, i.e
S « N(0,2). Let us see how lower bound approximation works in this case. Let
Z = X +aY for some real a. Then Z «~ N(0,1 + a?). Therefore, for some choices of

a, we get the following distribution for the lower bound for S :

a = 0gives N(0,1) <., S=X+Y «~ N(0,2)
a = 1gives N(0,2) <., S=X+Y «~ N(0,2)

a = —1gives N(0,2) <., S=X+Y «~ N(0,2)

Thus in this case best lower bound is obtained for ¢ = 1 which is the exact distribution.
The variance of the lower bound can be seen to have a maximum at ¢ = 1 and a

minimum at a = —1.

Example 4.6 [15]

As a theoretical example, consider an insurance portfolio consisting of n risks.

The payments to be made by the insurer are described by a random vector (X; +
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Xo+ ...+ X,), where X is the claim amount of policy ¢ during the insurance period.
We assume that all payments have to be done at the end of the insurance period
[0,1]. In a deterministic financialsetting, the present value at time 0 of the aggregate

claims X; + X5 + ... + X, to be paid by the insurer at time 1 is determined by

S=X;1+Xo+ ...+ X,)v

where v = (1+47)~! is the deterministic discount factor and r is the technical interest
rate. This will be chosen in a conservative way (i.e.sufficiently low), if the insurer
doesn’t want to underestimate his future obligations. To demonstrate the effect of
introducing random interest on insurance business, we look at the following special
case. Assume all risks X; to be non-negative, independent and identically distrib-
uted,and let X < X, where the symbol 2 is used to indicate equality in distribution.

The average payment % has mean and variance

S S 2
i (—) = vE(X); V (-) = 2 y(X)
n n n
The stability necessary for both insureds and insurer is maintained by the Law of
Large Numbers, provided that n is indeed ‘large’and that the risks are mutually

independent and rather well-behaved, not describing for instance risks of catastrophic

nature for which the variance might be very large or even infinite.
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Example 4.7 [15]

Let us examine the consequences of introducing stochastic discounting. Replacing
the fixed discount factor v by a random variable Y, representing the stochastic amount
to be invested at time 0 with value 1 at the end of the period [0, 1], the present value

of the aggregate claims becomes

S=X1+Xo+ ...+ X,)Y

If we assume that the discount factor is independent of the payments,we find that the

average payment per policy 5, has mean and variance

E (%) = E(X)E(Y); V (%) = @E(W) + E*(X)V(Y)
Assuming that B [X] and V[Y] are positive, the Law of Large Numbers no longer
eliminates the risk involved. This is because for n — oo,V [%] converges to its
second term. So to evaluate the total risk, both the distributions of insurance risk
and financial risk are needed. Risk pooling and large portfolios are no longer suffi-
cient tools to eliminate or reduce the average risk associated with a portfolio. This
observation implies that the introduction of stochastic financial aspects in actuar-
ial models immediately leads to the necessity of determining distribution functions

of sums of dependent random variables. Under the assumption that the vectors

X=X1+Xo+ ..+ X,) and Y = (V},,Y%,, ..., Ys,) are mutually independent and
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that the marginal distributions of the X; and the Y} are given, the problem of de-

termining bounds for the distribution function of S = zn:Xthi can be reduced to
i=1

determining bounds for the distribution function of a sum S = 7+ Z5+ ...+ Z,,of ran-

dom variables 71, Zs, ..., Z, with given marginaldistributions, but of which the joint

distribution is either unspecified or too cumbersome to work with. The unknown or

complex nature of the dependence between the random variables Z; is the reason why

it is impossible to derive the distribution function of S exactly.

4.3.2 Individual and collective risk model

The classical individual and collective model of risk theory has the form X, =
Sor o bidiy Xeou = Yoy bilN;, where I; «~ Bernoulli(p;) and N; « poisson()\;). With
probability p; contract ¢ will yield a claim of size b; > 0 for any of the n policies.
As an application of stochastic and stop-loss ordering we get that the collective risk
model X, leads to an overestimate of the risks and, therefore, also to an increase

of the corresponding risk premiums for the whole portfolio

XInd Ssl(cm) XColl-

4.3.3 Reinsurance contracts

We consider reinsurance contracts /(X) for a risk X, where 0 < I(X) < X is
the reinsured part of the risk X and X — [(X) is the retained risk of the insurer.

Consider the stop-loss reinsurance contract /,(X) = (X —a),, where a is chosen such
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that E1,(X) = EI(X). Then for any reinsurance contract I(X)

X — I(X) <a(e) X — I(X).

4.3.4 Dependent portfolios increase risk

m

Let V; = >, ;X;, where o; and X; «~ Bernoulli with > «o; = 1,ithen Y; «
i=1

Bernoulli. Tt is interesting to compare the total risk 7,, = Z:.L:l Y, in the mixed

model (X;) with the total risk S,, = >_"" | W, in an independent portfolio model (1;),

where W; «~ Bernoulli are distributed identical to X;. Then we obtain

Sn Ssl(c:r) Tn

4.3.5 Applications of the theory of comonotonicity

Derivatives pricing and hedging

Several European options have a pay-off written on one or multiple underlyings
combined in a weighted sum of non-independent random variables expressing asset
prices at the time of maturity or at different time points before and at maturity. Ex-
amples of this type of options with positive weights are Asian options, basket options
and Asian basket options. When the weights can be both positive and negative, one
refers to these options as spread options, Asian spread options, basket spread options

and Asian basket spread options. Pricing and hedging of these products by means of
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comonotonicity bounds has been studied in a model dependent as well as in a model
independent framework. As mentioned before, early references to this topic are Ro-
gers and Shi (1995), Simon et al.(2000) and Dhaene et al.(2002).

Risk management : risk sharing, optimal investment, capital allocation

Dhaene et al.(2009a) investigate the influence of the dependence between random
losses on the shortfall and on the diversification benefit that arises from merging
these losses. They prove that increasing the dependence between losses, expressed in
terms of correlation order, has an increasing e ect on the shortfall, expressed in terms
of an appropriate integral stochastic order. Furthermore, increasing the dependence
between losses decreases the diversification benefit. In particular, they consider mer-
ging comonotonic losses and show that even in this extreme case a non-negative
diversification benefit may arise. Also, Embrechts et al.(2005) prove that comono-
tonicity gives rise to the on-average-most-adverse Value-at-Risk (VaR) scenario for
a function of dependent risks, when the marginal distributions are known but the
dependence structure between the risks is unknown. Dhaene et al.(2005) investigate
multiperiod portfolio selection problems in a Black and Scholes type market where a
basket of one risk free and m risky securities are traded continuously. They look for
the optimal allocation of wealth within the class of constant-mix portfolios.

The Enterprise Risk Management process of a financial institution usually contains
a procedure to allocate, or subdivide, the total risk capital of the company into its

different business units. In Dhaene et al.(2003), an optimization argument is used
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to nd an optimal rule for allocating the aggregate capital of a financial firm to its
business units The optimal allocation can be found using general results from the
theory on comonotonicity. Dhaene et al.(2009b) generalize the approach of Dhaene
et al.(2003) and develop a unifying framework for allocating the aggregate capital by
considering more general deviation measures.
Life Insurance and pensions

In the classical approach to the theory of life contingencies, discounting factors
and mortality tables are assumed to be deterministic. In view of the long durations of
life annuity contracts it is more realistic to take the stochastic nature of investment
returns and mortality into account when investigating the risks related to annuity
portfolios. Over the last two decades, a large number of papers have been published
covering this stochastic approach of returns and/or mortality. For more details we
can see: (Koch and De Schepper (2007), Darkiewicz et al.(2009), Hoedemakers et
al.(2005) and Ahcan et al.(2006), Zhang et al.(2006), Denuit and Dhaene (2007) and

Denuit (2007, 2008, 2009), Sprecuw (2006)).

4.3.6 Comparison of two families of copulas

Definition 4.8 (copulas) C(uy,...,u,) is distribution function whose marginals are

all uniformly distributed, (See Nelson [45]).

Now we consider two risks X and Y with given survival functions F and G. A

sufficient condition of the stop-loss order is given by:
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Cut-criterion(Karlin and Novikoff [35]). Let X and Y be two risks with E(X) <

E (Y). If there exists a constant ¢ such that

F(x)>G(x) forall x<e,

F(z) <G(z) forall z>c¢,

IN

then

sttY

Definition 4.9 (Bivariate orthant convex order) Given non-negative random vec-
tors X = (X1, Xs) and Y = (Y1,Ys). We say that X is smaller than Y in the orthant

convex order denoted as X =,o_cr Y if the inequalities

E 01 (X1)v2(X)2] < E [01(Y1)va(Y)2]

holds for all non-decreasing convex function viand vy .

Characterization. X <,, .. Y if and only, if

1. B[(X; —dy)y]) <E[(Y; —d;)4] foralld; >0,i=1,2

2. E[(Xl — d1)+(X2 — d2)+] S E[(Yi — dl)_i_(Yé — d2)+] for all dl, dg > 0.

Consequently:

X juo—cx Y = Xz jst Y;,Z = 17 2.
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This shows that <,,_..can be viewed as bivariate extension of stop-loss order.
Crossing condition for the bivariate orthant convex order

Let X = (X4, X3) and Y = (Y71, Y2) be non-negative random vectors with survival
functions I and G. Let h be a level curve defined by

F(z,h(z)) — G(x,h(x)) =02 >0.

Let

C={(z,y) eR* xR" : y < h(z)}

we denote by C' the complement of C' in RT x R*.
Comparison of two families of copulas
The concordance order is used to compare members of a given copula family Cy

when the dependence parameter varies:

01 < 0y = Cy, 2¢c Cy,

Remark 4.10 There is no comparison between a copulas from different families with

Cgl ﬁc 092 and 092 ﬁc 091

Example 4.11 Let Cy, be a Clayton copula with parameter 61 = 1 and Cy, be a Frank
copula with parameter 05 = 2. Since =<yo_ce 18 weaker than <¢. Thus one can expect

to rank the copulas Cy, and Cy, with respect to =yo—c: instead of 2¢. Therefore, one
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can use our cut-criterion to establish a such comparison with respect <,o_c. To this
end, we can see that Cp, =yuo—cz Co,. This means that the upper orthant convex order

can be more convenient for compare the concordance between two different families of

copulas.
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Conclusion and Perspectives

In this work, we give a synthesis on the theory of stochastic orderings, comono-
tonicity and their applications. Also, we study the problems of optimal allocation
of policy limits and deductibles. By using some characterizations of stochastic or-
dering relations, we reconsider the new general model and obtain some new res-
ults on orderings of optimal allocations of policy limits and deductibles. Moreover,
we obtain an convex upper and lower bound in terms of comonotonic portfolios for
Sy =X1f(V1) + Xof (Ya) + ... + X, f(Y,,) (our model).

For future studies, we may try to explore the following directions. First, we can
relax the condition imposed on f(Y;) and introduce financial risks to the model.
Second, we can remakes same work for obtain the optimal allocation of policy limits

and deductibles in a model with mixture and discount factors.
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Chapter 5

Appendix

Proof of Theorem 3.5

The proof of the “="-implication is straightforward.

For the proof of the “«<”-implication, consider the set A in R" defined by

A= {(Fx!(p): Fx,(0). . Fxi(p) [ 0 <p < 1)}

Its (i, j)-projections are give by

Ay ={ (F2' ). Fxl () }
The event “X € A” is equivalent with the event “(X;, X;) € A, ; for all (4, j)”.

Because of the comonotonicity of the pairs (X;, X;), the latter event is the certain

event. Hence we find that Pr[X C A] = 1, so that the comonotonic random vector.

O
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The theorem states that comonotonicity of a random vector is equivalent with pair-
wise comonotonicity.

Consider the random vector (U, 1,V) where U and V' are mutually independent ran-
dom variables that are both uniformly distributed on the unitinterval (0,1). It is
clear that (U,1) and (1,V) are both comonotonic pairs, but (U, 1, V) isn’t comono-
tonic. Hence, for a general random vector X, comonotonicity of the pairs (X;, X;11),
(1=1,2,...,n — 1), will not necessary imply comonotonicity of X.

Figures
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X

F)}H and FoHe),

Figure 5.1: Graphical definition of Fig?,

Figure 5.2: A continuous example with n = 3.
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