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 ملخص
 
 
 
 

نتشار لااالتنقل و : النقل لمعلماتحسابات العددية لا في ھذا العمل على لبحثا يكرس
تفاعل الموافقة ل نيةولطاقة الكما منحنيات اءنببقمنا أولا ، ھذه المھمة لإنجاز  +CHe.لجملةل

 He(1S) للھليوم الحالة الأساسية مع C+(4P)المثارة  والحالة C+(2P°) الحالة الأساسية
 حساب من اجل نيةواستخدمنا كل طاقات التفاعل الكم ثم MOLPRO. البرنامج بواسطة

والنشر باستعمال  التنقلمعاملات  أجرينا حساب أخيرا والكلاسيكية. الكميةالمقاطع الفعالة 
نتائج معامل التنقل تظھر  .الثلاث درجات الحرارةنظرية  : طورةتالنظرية الحركية الم

المقاطع  قابلية أيضاتكشف و، نية التي كونھاولطاقة الكما منحنيات فاعليةمدى  المحققة
  في اطار تحسين نتائج التنقل. الثلاث درجات الحرارة مع نظرية الكميةالفعالة 



Résumé

La recherche de ce travail est consacrée aux calculs numériques des paramètres de trans-

port : la mobilité réduite et la diffusion du système CHe+. Pour accomplir cette tâche, nous

avons d’abord construit les courbes d’énergie potentielle correspondant à l’interaction de

l’état fondamental C+
(
2P

◦
)
et de l’état excité métastable C+ (4P) avec l’état fondamental

de l’hélium He (1S) qui sont obtenus avec le programme ������. Ensuite, nous avons utilisé

ces potentiels d’interaction dans le calcul des sections efficaces de transport quantiques et

classiques. Enfin, nous avons calculé les coefficients de mobilité et de diffusion en utilisant la

théorie cinétique élaborée : théorie de trois températures. Les résultats obtenus de la mobi-

lité montrent la fiabilité de notre construction des courbes d’énergie potentielle et illustrent

également la viabilité des sections efficaces de transport quantiques avec la théorie de trois

températures pour améliorer les résultats de la mobilité.
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Abstract

The research of this work is devoted to the numerical calculations of the transport para-

meters : the reduced mobility and diffusion of the CHe+ system. To accomplish this task, we

first constructed the potential-energy curves corresponding to the interactions of the ground

C+
(
2P

◦
)
and metastable-excited C+ (4P) states with the ground state of helium He (1S)

which are achieved with the package ������. Then, we used these interaction potentials

in the calculation of the quantum-mechanical and classical transport cross sections. Finally,

we computed the mobility and diffusion coefficients by using the high kinetic theory : three

temperature theory. The attained results of mobility show the reliability of our constructed

potential-energy curves, and reveal also the viability of the quantum-mechanical transport

cross sections with the three-temperature theory as to improve the results of mobility.
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Introduction

The behavior of ions in gases is an area of continuing interest. Models of the upper atmosphere,

interstellar chemistry, lasers, and many other fields of physics and chemical physics require

quantitative information concerning the atomic or molecular ion-neutral gas interaction over a

wide range of temperature and/or collision energy.

The theoretical predictions and interpretations of most phenomena involving ions in neutral

gases hang on the information we have on the ion-neutral interaction potential. Since the ab

initio calculations are extremely difficult for most systems, the usually employed methods to

get the interaction potentials are the careful analysis of the accurate measurements of a given

property that depends on the potential in a well-established way. Nevertheless, since a unique

determination of the potential from a measured property is seldom possible, even in principle, a

more indirect procedure is usually followed: a mathematical model containing a few parameters

is chosen for the potential, and then the parameters are adjusted to obtain agreement with the

measured property. Such models are ordinarily selected to reproduce various known asymptotic

forms of the true potential and to behave in a qualitatively correct way in intermediate regions.

A major step in such a procedure is the calculation of the experimental property from the

potential model, a process which may require extensive numerical integration. This approach

has a long and successful history for the determination of neutral-neutral potentials. However,

until recently the approach has been of very limited utility for ion-neutral potentials. The reason

is that the theory requires measurements of the ion mobility in weak electric fields as a function

of temperature, and very few good experimental data were available.

It has long been realized that if mobility data covering such a wide range of ion energies

could be analyzed accurately, information on the ion-neutral potential could be derived that

would span a wide range of ion-neutral separation distances. The difficulty was that an accu-

rate general mobility theory existed only for weak electric fields. For that reason, Viehland and

Mason [1,2] have developed a rigorous kinetic theory of the ion mobility that is appropriate for
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electric fields of arbitrary strength. Therefore, it is now possible to determine ion-neutral po-

tentials over an extensive range of separation distances by the traditional procedure of adjusting

the parameters of potential models.

The main objective of this work comes from the recommendations of Matoba et al. [3], who

proposed to calculate the mobility of ground and metastable-excited states of C+ ions moving

into a helium buffer gas using the three-temperature theory for solving the Boltzmann kinetic

equation with full quantum-mechanical transport cross sections. These recommendations are

suggested to improve the results of the mobility of CHe+ system.

Therefore, the work described in this thesis is primarily concerned with the determination

of the kinetic theory of ion transport in gas, where the successful two-temperature theory by

Viehland and Mason [1,2] and the more accurate three-temperature theory of Lin et al. [4] are

both briefly detailed in Chapter 1. Because of the relationship between these kinetic theories

and the ion transport properties, we have also determined both ion mobility and ion diffusion,

which are calculated in the last Chapter.

The major details of the calculation of the theoretical interaction potentials for the open

shell CHe+ system and of the classical and quantum-mechanical cross sections are outlined in

Chapter 2.

Finally, to further investigate the effects of the quantum-mechanical cross sections and the

three-temperature theory on ion mobility, we introduced the obtained values of the quantum-

mechanical diffusion cross sections into the Fortran code gc.f90 [5—7] to compute the mobil-

ities of the ground C+
¡
2s22p; 2P

◦¢
and metastable-excited C+ (2s2p2; 4P) ions in a helium

He (1s2; 1S) gas at very low temperatures. We conclude this Chapter 3 by comparing and

discussing the quantum-mechanical and classical results.
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Chapter 1

Theoretical Background of Ion

Transport

The foundations of the ion mobility theory have been extensively detailed by several authors

and investigators, such as in the books of McDaniel and Mason [8, 9] which both treat the

transport phenomena of ions in like and unlike atomic or molecular gases. Their investigations

are either theoretical or experimental. In this Chapter, we hence attempt to give succinct

details of the ion transport theories that will be needed in the last Chapter.

1.1 Moment equations

Boltzmann’s equation is the fundamental kinetic equation for the transport of atomic ions

moving through a pure and dilute atomic gas without chemical reactions. It is written as [10,11]

½
∂

∂t
+ v ·∇r +

q

m
[E (r, t)+v×B (r, t)] ·∇v

¾
f (r,v, t) = Jf (r,v, t) , (1.1)

where f (r,v, t) is the ion distribution function, which is implicitly a function of time t, r is

the ion position, v is the ion velocity in the laboratory frame, and E (r, t) and B (r, t) are

the external electric and magnetic fields, respectively. Boltzmann’s collision operator J can

be written in a way that allows it to be used with either a classical or a quantum mechanical

description of the collision between an atomic ion and a neutral atom as

Jf (r,v, t) =

Z
[f (r,v0, t)F (V0)− f (r,v, t)F (V)] gσ sin θdθdφdV, (1.2)

9



with

F (V) = N (M/2πkBT )
3/2 exp

¡
−MV 2/2kBT

¢
, (1.3)

being the neutral distribution function which can be taken as Maxwellian, and

g = |v−V| = |v0 −V0| , (1.4)

is the relative velocity between an atomic ion velocity, v, and an atomic gas velocity, V. This

equation reveals the conservation energy of the pre-collision velocities, v and V, with the post-

collision velocities, v0 and V0. Here, σ is the total differential scattering cross section for ionic

atom-neutral atom collisions, T is the gas temperature, N is the atomic gas number density

with identical massM, and kB is Boltzmann’s constant. Besides, the ion density, n, is neglected

compared to the one of the atomic gas, because of the ionic atom-neutral atom collisions are

usually considered as elastic collisions.

With the aim of calculating the transport coefficients of the ions in the drift tube, one

requires from the solution of Boltzmann’s equation (1.1) to yield f, from which all ion properties

can then be acquired. Unfortunately, only trivial solutions to Boltzmann’s equation are known.

Therefore, Eq. (1.1) is converted into a set of moment equations by multiplying from the left

by an arbitrary set of functions ψ(v) and integrated over v as [10,11]

∂

∂t

Z
ψfdv +

Z
ψv ·∇rfdv+

q

m

Z
ψ [E (r, t)+v×B (r, t)] ·∇vf =

Z
ψJfdv. (1.5)

We neglect the effect of boundaries and transients by adopting the same assumptions made in

the analysis of the experimental drift tube data [10, 11], namely, those properties other than

the ion number density n does not vary with position and the time scale for the variation

of all macroscopic properties except n is much longer than the mean time between collisions.

These suppositions let certain terms in the moment equations (1.5) to be dropped, after some

mathematical manipulations and the use of the equation of continuity. [2, 9]. Thus, one gets

four terms that can be expressed in terms of the moments defined by the relation [10—12]

ψ (r, t) =
1

n (r, t)

Z
f (r,v, t)ψ(v)dv, (1.6)

where the other moments of f(r,v, t) vary much less rapidly with position and time than does

10



the ion number density [10—12]

n (r, t) =

Z
f (r,v, t) dv. (1.7)

By using Eqs. (1.5), (1.6), and (1.7), we get the following expression

∂

∂t
n (r, t)ψ +∇r · n (r, t)ψv−

q

m
n (r, t) (E+ v×B) ·∇vψ = n (r, t)NJ†ψ. (1.8)

In the case where ψ (v) = 1, Eq. (1.8) simplifies to the equation of continuity given by [10—12]

∂

∂t
n (r, t) +∇r · n (r, t)v = 0, (1.9)

which is a straightforward expression of conservation of ions in a system where reactions cannot

occur. It can also be used to eliminate the time derivative of the ion number density from Eq.

(1.8). After making a minor rearrangement and dropping explicit indication of the dependence

of every quantity upon position and time, Eq. (1.8) becomes [10—12]

∂

∂t
ψ − q

m
(E+ v×B) ·∇vψ − J†ψ = R

¡
ψ
¢
, (1.10)

where

R
¡
ψ
¢
=
¡
ψv− ψv

¢
·∇r lnn+

¡
ψ∇r · v−∇r · ψv

¢
. (1.11)

Eq. (1.10) is exact and has the same level of mathematical rigor as Boltzmann’s equation (1.1),

from which it was derived.

From the inverse encounter property of the collision operator for ion-atom collisions, it can

be shown that, without indicating dependences upon r and t,

J†ψ = −1
n

Z
f (v)F (V) [ψ (v)− ψ (v0)] gσ (g, θc) sin θcdθcdφcdVdv. (1.12)

The negative sign reflects simply a preference for having the difference in the integrand between

the pre-collision value and the post-collision value, rather than the reverse.

For more general ion-neutral gas systems, most techniques for solving Boltzmann’s equation

are special cases of the weighted residuals method that may be considered as based upon three

choices. The first choice is the ion velocity function f0 (v) that represents a zero-order estimate

of the unknown distribution function f (r,v, t) . The second is a set of trial functions φl,m,r (v) ,

11



where three indices are needed because of the three-dimensional nature of ion velocity v. The

zero-order distribution function and the trial function are used together to expand f (r,v, t) .

The third choice is a set of weighting functions Ψl,m,r (v) used to convert the kinetic equation

into a set of coupled, linear, and algebraic equations as

f (r,v, t) = n (r, t) f0 (v)
X
l,m,r

cl,m,r (r, t)Ψl,m,r (v) , (1.13)

where

(Ψl,m,r,Ψl0,m0,r0) =

Z
f0 (v)Ψ

∗
l,m,r (v)Ψl0,m0,r0 (v) dv = δl,l0δm,m0δr,r0Nl,m,r. (1.14)

Here, the asterisk indicates a complex conjugate and the normalization constants Nl,m,r depend

upon the particular basis functions being used. There is no error introduced by making these

assumptions as long as we use all possible values of the indices and the basis functions form

a complete set in velocity space, i.e., as long as the difference between the right-hand side of

Eq. (1.13) and any piecewise continuous function of the velocity converges to zero as the upper

limit on the sums becomes infinite [10—12].

1.1.1 Two-temperature theory

The tow-temperature theory was performed to overcome the high field divergence problems of

the one-temperature theory. The success of this theory has been attained in describing the ion

mobility in drift-tube experiments [1] by using a zero-order approximation to the ion distribution

function containing an ion kinetic temperature Ti and a neutral atomic temperature T. Hence,

the approach for solving Boltzmann’s equation for ion swarms in neutral gases is based on [12]

f
(2T )
0 (v) =

µ
m

2πkBTi

¶3/2
exp

µ
− mv2

2kBTi

¶
, (1.15)

where m and v are the ion mass and ion velocity in the laboratory frame, respectively. The

basis functions for this theory are chosen to be Burnett functions, namely, [13,14]

Ψ
(2T )
l,m,r(v) =W lS

(r)
l+1/2

¡
W 2
¢
Y m
l

³
Ŵ
´
, (1.16)
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where

Ŵ =

µ
m

2kBTi

¶1/2
v. (1.17)

Here, the indices l and r are non-negative indices that indicate a particular Sonine (generalized

Laguerre) polynomial S(r)l+1/2 (W
2) . The indices l and m are coupled together to indicate a

particular (normalized) complex spherical harmonic Y m
l

³
Ŵ
´
of the angles W. Therefore,

N
(2T )
l,m,r =

Γ (l + r + 3/2)

4πr!Γ (3/2)
, (1.18)

and

c
(2T )
0,0,0 = (4π)

1/2 . (1.19)

The two-temperature theory converges well only once the mass of the ion is less than that

of the neutral. The reason is that for heavy ions in a light gas, the ion distribution function

becomes anisotropic and skewed in the field direction, and diffusion is more sensitive than

mobility to such anisotropy.

a) Moment equation for velocity

Putting ψ (v) = vz into Eq. (1.10) leads to

∂

∂t
vz −

q

m
(E+ v×B)z − J†vz = R (vz) . (1.20)

After using Eqs. (1.3), (1.12), (1.13), and (1.15), we find that

J†vz = −N
X
l,m,r

c
(2T )
l,m,r

¡
Ψl,m,r, J

†vz
¢∗
, (1.21)

where
¡
Ψl,m,r, J

†vz
¢
can be calculated by using the notations of section 6.2 of Ref. [9]

¡
A, J†B

¢
=

µ
m

2πkBTi

¶3/2µ
M

2πkBT

¶3/2 Z
exp

µ
− mv2

2kBTi
− MV2

2kBT

¶
A∗ (v)

× [B (v)−B (v0)] gσ (g, θc) sin θcdθcdφcdVdv. (1.22)

In two-temperature theory, we have

Ψ
(2T )
1,0,0 (v) =

µ
3

4π

¶1/2µ
m

2πkBTi

¶1/2
vz. (1.23)
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We therefore find that

J†vz = −N
µ
4π

3

¶1/2µ
2πkBTi

m

¶1/2X
l,m,r

c
(2T )
l,m,r

³
Ψl,m,r,Ψ

(2T )
1,0,0

´∗
(1.24)

= −N
µ
4π

3

¶1/2µ
2πkBTi

m

¶1/2X
l,m,r

c
(2T )
1,0,rN

(ZT )
1,0,r a0,r (1) . (1.25)

Eq. (1.25) arises because Boltzmann’s collision operator is a scalar operator, so its matrix

elements with respect to Burnett functions must be real, diagonal in the l and m indices, and

independent of the m indices.

From Eq. (1.23), it can be seen that Eq. (1.25) is a special case of the general formula

J†Ψ
(2T )
l0,m0,r0 (v) = −N

X
l,m,r

c
(2T )
l0,m0,rN

(2T )
l0,m0,rar0,r (l

0) . (1.26)

And from Eqs. (1.6), (1.13), and (1.23), we can obtain another general formula as

Ψ
(2T )
l0,m0,r0 (v) = c

(2T )
l0,m0,r0N

(2T )
l0,m0,r0 . (1.27)

If we separate in Eq. (1.25) the term of r = 0 from the other terms, insert the expression into

Eq. (1.20), and make use of Eqs. (1.26) and (1.27), we get

∂

∂t
vz −

q

m
(E+ v×B)z +Na0,0 (1)vz

= R (vz)−N

µ
4π

3

¶1/2µ
2kBTi
m

¶1/2X
r>0

c
(2T )
1,0,rN

(2T )
1,0,ra0,r (1) . (1.28)

In the context of the two-temperature theory, Eq. (1.28) is called moment equation for ve-

locity along the z direction. It is exact if no approximations or truncations are made on the

right-hand side. Note, however, that knowledge of higher order moments must be available

before the right-hand side is completely specified and thus before the equation can be solved

for vz, just like knowledge of v must be available before the equation of continuity can be

solved for the ion number density. This is a general aspect of the moment method for solving

Boltzmann’s equation: each equation involves one or more higher order moments and, then,

some approximations must be made in order to truncate the system.

FromEq. (1.28), we can take the general expression for the collision frequency for momentum-

transfer ζ(Teff ), that is, Na0,0 (1) within the context of the two-temperature theory. By using
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table (6− 2− 1) of Ref. [9], we get

ζ(Teff) = Na0,0 (1) (1.29)

=
8N

3

M

m+M

µ
2kBTeff

πμ

¶1/2
Ω
(1,1)

(Teff) , (1.30)

where

Teff =
mT +MTi
m+M

, (1.31)

is the effective temperature that characterizes the kinetic energy of an ion-neutral gas collision

in the centre-of-mass frame and μ is the ion-neutral reduced mass. Note that ζ(Teff) has

a microscopic definition, since the momentum-transfer collision integral, also called collision

integral, Ω
(1,1)

(Teff) is given by

Ω
(1,1)

(Teff) =

µ
3

4π

¶Z +∞

−∞

Z +∞

−∞

Z +∞

−∞
exp

¡
−γ2x − γ2y − γ2z

¢
γ2zγQd

¡
kBTeffγ

2
¢
dγxdγydγz

=

Z +∞

0

exp
¡
−γ2

¢
Qd

¡
kBTeffγ

2
¢
γ5dγ, (1.32)

with γ2 = �/kBT. The collision integral can be calculated as a function of Teff from the

knowledge of only the ion and neutral masses and the ion-neutral interaction potential energy

as a function of the internuclear separation [9]. Consequently, Eq. (1.28) can be rewritten as

∂

∂t
vz −

q

m
(E+ v×B)z + ζ(Teff)vz = R (vz) +

h
ζ(Teff)vz + J†vz

i
, (1.33)

which can more easily be obtained by adding ζ(Teff )vz to both sides of Eq. (1.20). We can

also obtain the same form for the x and y directions, with the obvious change of subscript.

b) Moment equation for energy

By inserting the special function ψ(v) = 1
2
mv2 into Eq. (1.10), we obtain

∂

∂t

1

2
mv2 − qE·v− J†

µ
1

2
mv2

¶
= R

µ
1

2
mv2

¶
, (1.34)

with

(E+ v×B) ·∇v

µ
1

2
mv2

¶
= m(E+ v×B) · v = mE·v. (1.35)
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Here, the magnetic field does not directly affect the ion kinetic energy. From Eq. (1.16), we

can note that

J†
µ
1

2
mv2

¶
= (4π)1/2 kBTi

∙
3

2
J†Ψ

(2T )
0,0,0 (v)− J†Ψ

(2T )
0,0,1 (v)

¸
. (1.36)

We use Eq. (1.26) to get

J†ψ
(2T )∗
l0,m0,r0 (v) = −N

X
l,m,r

c
(2T )∗
l0,m0,rN

(2T )
l0,m0,rar0,r (l

0) , (1.37)

since N (2T )
l0,m0,r and ar0,r (l

0) are real [9] and, for all values of r in Eq. (1.37), the coefficients c(2T )l0,m0,r

must be real if Ψ(2T )
l0,m0,r0 (v) is real as well, as in Eq. (1.36). Hence,

J†
µ
1

2
mv2

¶
= (4π)1/2NkBTi

X
r

c
(2T )
0,0,rN

(2T )
0,0,r

∙
3

2
a0,r (0)− a1,r (0)

¸
, (1.38)

where a0,r (0) = 0 is given in Table (6− 2− 1) of Ref. [9]. This means that both Eqs. (1.33)

and (1.38) combine to get

∂

∂t

1

2
mv2 − qE·v− v0 − v1 = R

µ
1

2
mv2

¶
+
X
r>1

vr, (1.39)

with

vr = (4π)
1/2NkBTic

(2T )
0,0,rN

(2T )
0,0,ra1,r (0) . (1.40)

Specifically, we want to consider the first two cases of Eq. (1.40). By using the matrix elements

from Table (6− 2− 1) of [9], we find that

v0 = −
2m

m+M

∙
3

2
kBTi −

3

2
kBT

¸
ζ(Teff) (1.41)

and

v1 =
2m

m+M

∙
3

2
kBTi −

1

2
mv2

¸
ζ(Teff)

∙
1 +

1

2
{6C∗ (Teff )− 5}

M

m+M

Ti − T

Teff

¸
. (1.42)

Here, C∗ (Teff ) is a ratio of two collision integrals [9] of the type given in Eq. (1.32).

The Combination of Eqs. (1.39), (1.41), and (1.42) gives

∂

∂t

1

2
mv2 − qE·v+ 2mζ(Teff )

m+M

∙
1

2
mv2 − 3

2
kBT + eS¸ = R

µ
1

2
mv2

¶
+
X
r>1

vr, (1.43)
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where eS = 1

2
{6C∗ (Teff)− 5}

M

m+M

Ti − T

Teff

∙
1

2
mv2 − 3

2
kBTi

¸
. (1.44)

The new quantity eS is zero in most versions of the two-temperature theory. Thus, Eq. (1.43)
can be rewritten as

∂

∂t

1

2
mv2 − qE·v + 2mζ(Teff )

m+M

∙
1

2
mv2 − 3

2
kBT

¸
= R

µ
1

2
mv2

¶
+
2mζ(Teff)

m+M

∙
1

2
mv2 − 3

2
kBT

¸
+ J†

µ
1

2
mv2

¶
, (1.45)

which is, like Eq. (1.33), exact until making approximations to the right-hand side. Eq. (1.45)

is called moment equation for energy in the context of the two-temperature theory.

By using the relationship between the ion kinetic energy and the ion temperature,

1

2
mv2 =

3

2
kBTi, (1.46)

and Eq. (1.31), we can turn Eq. (1.45) into a moment equation for the effective temperature as

∂

∂t

∙
3

2
kB (Teff − T )

¸
− qM

m+M
E·v + 2mζ(Teff)

m+M

∙
3

2
kB (Teff − T )

¸
=

M

m+M

"
R

µ
1

2
mv2

¶
+
2mζ(Teff)

m+M

∙
1

2
mv2 − 3

2
kBT

¸
+ J†

µ
1

2
mv2

¶#
. (1.47)

Here, the right-hand side is expected to be small when the right-hand side of Eq. (1.33) is also

small. Note that from this result, when the ions are much heavier than the neutral atoms, the

influence of the electric field term is small and the rate of change of the effective temperature

is dominated by the collision frequency for momentum transfer in the two-temperature theory.

The reverse is true when the ions are much lighter than the neutral atoms.

1.1.2 Three-temperature theory

The two-temperature theory succeed to solve the convergence problems that resulted by requir-

ing the ion temperature to be identical to the dilute gas. However, it failed to calculate, with

high accuracy, the ion diffusion coefficients for systems with high ion-atom mass ratio at high

field strengths. It means its treatment is not adequate to deal with the ion diffusion through

gases, a process which is inherently anisotropic, whereas Eq. (1.15) is intrinsically isotropic.
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Therefore, the three-temperature theory was made [4] as a reason to overcome the problem of

the two-temperature theory where its zero-order ion distribution function is chosen to be an

anisotropic function

f
(3T )
0 (v) =

µ
m

2πkBTT

¶µ
m

2πkBTL

¶1/2
exp

Ã
−
m(v2x + v2y)

2kBTT
− m (vz − vd)

2

2kBTL

!
(1.48)

=

µ
m

2πkBTT

¶µ
m

2πkBTL

¶1/2
exp

¡
−W 2

x −W 2
y −W 2

z

¢
, (1.49)

where

Wi =

µ
m

2kBTT

¶1/2
vi, (1.50)

with i = x, y and

Wz =

µ
m

2kBTL

¶1/2
(vz − vd) . (1.51)

Here, vd is the magnitude of the ion drift velocity along z, the direction of the electric field,

while TT and TL are the ion kinetic temperatures transverse (perpendicular) and longitudinal

(parallel) to the field, respectively. The basis functions that correspond to Eq. (1.49) are

products of three Hermite polynomials,

Ψ
(3T )
l,m,r (v) = Hl (Wx)Hm (Wy)Hr (Wz) , (1.52)

and their normalization is such that

N
(3T )
l,m,r = 2

l+m+rl!m!r! (1.53)

with

c
(3T )
0,0,0 = 1. (1.54)

The three-temperature theory generally gives good results for all the ion transport coeffi-

cients but at the expense of more complicated calculations and of some loss of simple physical

interpretation of the results, as compared to the two-temperature theory.
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a) Moment equation for velocity

We consider once again Eq. (1.10) for the special function ψ(v) = vz

∂

∂t
vz −

q

m
(E+ v×B)z + ζz(Teff,x, Teff,y, Teff,z)vz

= R (vz)−N

µ
2kBTz
m

¶1/2X
l,m,r

(1− δl,0δm,0δr,1) a (0; 0; 1 | l;m; r)N (3T )
1,0,r c

(3T )
1,0,r, (1.55)

where the general notation, a (p; q; r | s; t;u) , of a (0; 0; 1 | l;m; r) is given as [9]

a (p; q; r | s; t;u) = 1

N
(3T )
s,t,u

µ
m

2πkBTx

¶1/2µ
m

2πkBTy

¶1/2µ
m

2πkBTz

¶1/2µ
M

2πkBT

¶1/2
×
Z
exp

µ
− mv2x
2kBTx

−
mv2y
2kBTy

− mv2z
2kBTz

− MV 2

2kBT

¶
×Ψ

(3T )
s,t,u (v)

£
Ψ(3T )
p,q,r (v)−Ψ(3T )p,q,r (v

0)
¤
gσ sin θdθdφdVdv, (1.56)

with a (p; q; r | s; t;u) = 0 if p+ s+ t or r+ u is odd. This leads to the final sum shown in Eq.

(1.55) with l and m must be even and r odd.

The collision frequency for momentum transfer along the direction z and in the context of

the three-temperature theory is given as

ζz(Teff,x, Teff,y, Teff,z) = Na (0; 0; 1 | 0; 0; 1) . (1.57)

Based on Eqs. (1.55) and (1.57), and likewise the two-temperature theory, themoment equation

for velocity can be written as

∂

∂t
vi −

q

m
(E+v×B)i + ζi(Teff,x, Teff,y, Teff,z)vi

= R (vi) +
h
ζi(Teff,x, Teff,y, Teff,z)vi + J†vi

i
, (1.58)

where ζi (Teff,x, Teff,y, Teff,z) is the collision frequency for momentum transfer along the direc-

tion i. It is given as

ζi (Teff,x, Teff,y, Teff,z) =
8N

3

M

m+M

µ
3

4π3/2

¶
×
Z Z Z

exp
¡
−γ2x − γ2y − γ2z

¢
γ2i gQd

µ
1

2
μg2
¶
dγxdγydγz, (1.59)
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with
1

2
μg2 = γ2xkBTeff,x + γ2ykBTeff,y + γ2zkBTeff,z (1.60)

and

Teff,i =
mT +MTi
m+M

(1.61)

γ2i =
�

kBTi
. (1.62)

with i = x, y, or z. Eq. (1.59) reduces to Eq. (1.30) when the three ion temperatures are set

equal to Ti.

A qualitative difference between Eq. (1.58) and Eq. (1.33) is that the collision frequencies

are different for the three directions in the apparatus. These differences arise because the

average ion energies and, hence, the mean times between collision are different in the various

directions. They also arise because there is a net correlation between the ion velocities and

energies in the various directions [15].

b) Moment equation for energy

By inserting the special function ψ(v) = 1
2
mv2z into Eq. (1.10), one can get

∂

∂t

1

2
mv2z − qEzvz + qByvxvz + qBxvyvz − J†

µ
1

2
mv2z

¶
= R

µ
1

2
mv2z

¶
. (1.63)

Note that the terms involving the magnetic field do not cancel, but they would do so if Eq.

(1.63) were added to similar equations for the kinetic energies along the x and y directions.

Note also that in terms of the basis functions given by Eq. (1.52),

J†
µ
1

2
mv2z

¶
=
1

2
kBTz

∙
1

2
J†Ψ

(3T )
0,0,2 (v) + J†Ψ

(3T )
0,0,0 (v)

¸
. (1.64)

From Eqs. (1.3), (1.12), (1.13), (1.49), and (1.58), it may be shown that

J†Ψ
(3T )
l0,m0,r0 (v) = −N

X
l,m,r

c
(3T )
l,m,rN

(3T )
l,m,ra (l

0,m0, r0; l,m, r) . (1.65)
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Thus, we can use Eqs. (1.64) and (1.65) to write Eq.(1.63) as

∂

∂t

1

2
mv2z − qEzvz + qByvxvz + qBxvyvz +

1

4
NkBTz

×
X
l,m,r

c
(3T )
l,m,rN

(3T )
l,m,r [a (0, 0, 2; l,m, r) + 2a (0, 0, 0; l,m, r)] = R

µ
1

2
mv2z

¶
, (1.66)

where a (0, 0, 0; l,m, r) is zero for all values of l, m, and r. Since the only values of a (0, 0, 2; l,m, r)

that do not vanish for the Maxwell model are a (0, 0, 2; 0, 0, 0) and a(0, 0, 2; 0, 0, 2), we can sep-

arate these terms from the sum in Eq. (1.66) to obtain the result

∂

∂t

1

2
mv2z − qEzvz + qByvxvz + qBxvyvz

+
1

4
NkBTz

h
c
(3T )
0,0,0N

(3T )
0,0,0a (0, 0, 2; 0, 0, 0) + c

(3T )
0,0,2N

(3T )
0,0,2a (0, 0, 2; l,m, r)

i
= R

µ
1

2
mv2z

¶
− 1
4
NkBTz

×
X
l,m,r

(1− δl,0δm,0δr,0 − δl,0δm,0δr,2) c
(3T )
l,m,rN

(3T )
l,m,ra (0, 0, 2; l,m, r) . (1.67)

From Eqs. (1.6) and (1.13), and from the orthogonality of the basis functions, we find that

1

2
mv2z =

1

2
kBTz

∙
1

2
c
(3T )
0,0,2N

(3T )
0,0,2 + c

(3T )
0,0,0N

(3T )
0,0,0

¸
. (1.68)

Then, from Eqs. (1.68), (1.53), and (1.54), we can also write

1

2
kBTzc

(3T )
0,0,2N

(3T )
0,0,2 =

1

2
mv2z −

1

2
kBTz. (1.69)

Since Tz is ordinarily chosen so as to omit the right-hand side of Eq. (1.69), we can drop from

both sides of Eq. (1.67) the term that involves c(3T )0,0,2. This gives

∂

∂t

1

2
mv2z − qEzvz + qByvxvz + qBxvyvz +

1

4
NkBTza (0, 0, 2; 0, 0, 0)

= R

µ
1

2
mv2z

¶
− 1
4
NkBTz

×
X
l,m,r

(1− δl,0δm,0δr,0) c
(3T )
l,m,rN

(3T )
l,m,ra (0, 0, 2; l,m, r) , (1.70)
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since

1

4
NkBTza (0, 0, 2; 0, 0, 0) =

2m

m+M
ζz(Teff,x, Teff,y, Teff,z)

∙
1

2
kB (Tz − T )

¸
+ ζz(Teff,x, Teff,y, Teff,z)

[0; 0; 0 | 0; 0; 2]
[0; 0; 1 | 0; 0; 1]

∙
1

2
kBTeff,z

¸
. (1.71)

Here, the ratio of irreducible collision integrals is obtained from the supplementary data file as

[0; 0; 0 | 0; 0; 2]
[0; 0; 1 | 0; 0; 1] =

R
exp (−γ2) γ2z

¡
2γ2zTeff,z − γ2xTeff,x − γ2yTeff,y

¢
Qv

¡
1
2
μg2
¢
gdγ

3
R
exp (−γ2) γ2zT

(eff)
z Qd

¡
1
2
μg2
¢
gdγ

. (1.72)

Based on Eq. (1.71), the moment equation for energy in Eq. (1.70), can be written as

∂

∂t

1

2
mv2z − qEzvz + qByvxvz + qBxvyvz +

2m

m+M
ζz(Teff,x, Teff,y, Teff,z)

∙
1

2
kB (Tz − T )

¸
+ ζz(Teff,x, Teff,y, Teff,z)

[0; 0; 0 | 0; 0; 2]
[0; 0; 1 | 0; 0; 1]

∙
1

2
kBTeff,z

¸
= R

µ
1

2
mv2z

¶
+ J†

1

2
mv2z +

2m

m+M
ζz(Teff,x, Teff,y, Teff,z)

∙
1

2
kB (Tz − T )

¸
+ ζz(Teff,x, Teff,y, Teff,z)

[0; 0; 0 | 0; 0; 2]
[0; 0; 1 | 0; 0; 1]

∙
1

2
kBTeff,z

¸
. (1.73)

The qualitative differences between Eq. (1.73) and the two-temperature equivalent equation,

Eq. (1.45), are the terms involving [0; 0; 0|0; 0; 2] and the magnetic field terms. It may be

shown that [0; 0; 0|0; 0; 2] vanishes in the special case where the three ion temperatures are

identical, i.e., when the three-temperature theory is reduced to the two-temperature theory.

The magnetic field terms require knowledge of a moment of a product of two different velocity

components. Proceeding in exactly the same manner as above leads to the moment equation

∂

∂t
vxvy −

q

m
Exvy −

q

m
vxEy −

q

m

2Bz

m

µ
1

2
mv2x +

1

2
mv2y

¶
+

q

m
Bxvxvz +

q

m
Byvyvz + ςxy(Teff,x, Teff,y, Teff,z)vxvy

= R (vxvy) + J (vxvy) + ςxy(Teff,x, Teff,y, Teff,z)vxvy. (1.74)

The new quantity

ςxy(Teff,x, Teff,y, Teff,z) =
2MN

m+M

1

3π3/2

Z Z Z
exp

¡
−γ2

¢
γ2xγ

2
yQv

µ
1

2
μg2
¶
gdγ, (1.75)
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Figure 1-1: Drift tube mass spectrometer (DT-SM).

is the collision frequency for correlated velocities along the x and y directions in the three-

temperature theory.

1.2 Ion drift tube transport properties

The drift tube mass spectrometer, shown in Fig. 1-1, is one of the very powerful techniques

for studying ion-atom/molecule collisions at very low collision energies, from sub-milli to a

few electron volts. It is generally used for measuring the ion transport properties in gases,

such as mobility and diffusion coefficients and also the reaction rate constants. The drift-tube

techniques succeeded to separate the different electronic states of ions, likewise the metastable-

excited state. Hence, we will be able to obtain the detailed information about the interaction

potential between the metastable-excited ion and the gas molecule.

Based on the field cases of ion drift tube, we have given the appropriate definitions of ion

mobility and ion diffusion in neutral gas.

23



1.2.1 Ion mobility

Most of the measurements in drift tube are made at steady state, so that the time derivatives

in the moment equations can be dropped. On the average, the ions move only along the z axis,

and their average speed along this direction is usually written as vd. In such apparatus, the first

approximations of Eqs. (1.33) and (1.47) are, respectively,

vd =
qE

mζ(Teff)
, (1.76)

and
2

M
ζ(Teff )

∙
3

2
kB (Teff − T )

¸
=

qE

m
vd. (1.77)

The ion mobility K is defined by

vd = KE, (1.78)

while the reduced mobility K0 is defined in terms of Loschmidt’s constant N0 as

N0K0 = NK. (1.79)

Usually, the mobility coefficient is expressed, if p is in torrs and T in kelvins, as [9]

K0 =
³ p

760

´µ273.15
T

¶
K. (1.80)

Both Eqs. (1.76) and (1.77) can be solved for the effective temperature at steady state by

eliminating ζ(Teff). This gives

�eff =
3

2
kBTeff =

3

2
kBT +

1

2
Mv2d. (1.81)

Eq. (1.81) is valid only for ions in pure neutral gases. The expressions for neutral gas mix-

tures, which are considerably more complex [18] and Eqs. (1.76) and (1.81) are the desired

expressions—in first approximation—for the drift velocity and effective temperature in drift tube

in terms of experimental parameters and microscopic properties.

Eqs. (1.31) and (1.81) give the Wannier formula as

3

2
kBTi =

3

2
kBT +

1

2
mv2d +

1

2
Mv2d. (1.82)

24



This equation shows that the ion energy in the laboratory frame consists of three pieces: thermal

energy, kinetic energy that the ions have absorbed from the external field and are exhibiting as

motion along the field axis, and kinetic energy that the ions have similarly absorbed, but that

has been transformed into a random motion due to collisions with the neutrals.

The success achieved with the first approximation for drift tube means that this approxi-

mation can be used to find a better way of describing the change of the mobility as the field

strength increases in DTMS. Eq. (1.81) shows that there is essentially one independent variable

Teff rather than the two ordinarily considered T and E/N. This was first noted in [1]. Since

Eq. (1.81) is equivalent to

3

2
kBTeff =

3

2
kBT +

1

2
MN2

0 (E/N)
2K2

0 , (1.83)

from this equation, we can calculate Teff within the experimental quantities of E/N and by

using only a simple algebra.

1.2.2 Ion diffusion

At zero field, the ion-gas diffusion occurs at the same rate in directions parallel and perpendic-

ular to the electric field. Hence, the diffusion coefficient, D, is directly related to the mobility,

K, by the familiar Einstein (or Nemst-Townsend) relationship

D =

µ
kBT

q

¶
K. (1.84)

Here, q is the ionic charge. However, at a non-zero field, the diffusion D increases more much

rapidly than the mobility K and becomes anisotropic. As a result, diffusion tensor takes place

at different components transverse, DT , and longitudinal, DL, to the field as

DT =

µ
kBTT
q

¶
K

∙
1 +∆T

µ
K 0

2 +K 0

¶¸
(1.85)

DL =

µ
kBTL
q

¶
K [1 + (1 +∆L)K

0] , (1.86)

where

K 0 =
d lnK0

d ln (E/N)
. (1.87)
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The value of K 0 can be calculated from the experimental data by a numerical differentiation,

but it is easier to find it from the differentiation of Eq. (1.83) as

1 +K 0 =

∙
1− 2

µ
Teff − T

Teff

¶
d lnK0

d lnTeff

¸−1
. (1.88)

Eqs. (1.85) and (1.86) are called generalized Einstein relations which have been elaborated from

the three-temperature theory by Waldman and Mason [19]. These authors have introduced the

small correction parameters ∆T and ∆L which depend primarily on the ion-atom mass ratio

m/ (m+M) .

The ion temperatures TT and TL are given by

kBTT, L = kBT + δT,L
¡
1 + βT,LK

0¢Mv2d, (1.89)

where

δT =
4m− (2m−M) Ă

4m+ 3MĂ
(1.90)

δL =
(m+M) Ă

4m+ 3MĂ
, (1.91)

with Ă being a dimensionless ratio of collision integrals occurring in the three-temperature

theory [9,19]. Its numerical value depends on the Teff and the ion-atom potential [20].

The determination of βT,L is still only on a semiempirical basis in which βT = 0 and using

semiempirical tabulated values for βL. As a first approximation, βL depends only on the ion-

atom mass ratio m/ (m+M) [20].
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Chapter 2

CHe+ System

The main part for the evaluation of the transport properties of ions in gases, such as mobility

and diffusion, is to know accurately the expressions of the transport cross sections and collision

integrals, which are strongly related to the ion-neutral interaction potential. Thus, an accurate

interaction potential is necessary for the theoretical calculations of the ion mobility. In this

case, not only the interaction potentials of the ground state should be known, but also those

related to the metastable-excited state of the CHe+ system.

Therefore, in the following sections, we give the details of the constructions of the potential-

energy curves via which the ground C+(2s22p; 2P
◦
) and metastable-excited C+(2s2p2; 4P) ions

interact with ground-state helium He(1s2; 4S). Then, we describe two approaches to calculate

the diffusion cross sections, which will be used in Chapter 3 devoted to the computation of the

CHe+ mobility.

2.1 Interaction potentials

To find out the exact interaction potential V (R) between two atomic species, the task is

almost impossible. Instead, mathematical models that mimic this potential in a reasonable

way provide good tools to test the kinetic theories via the mobility measurements. So, the

ion-atom potentials should be known in the long (or attractive), intermediate, and short (or

repulsive) regions for the requisite calculations.
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2.1.1 Short-range potential

The short-range ion-atom potential can be expressed by the Born-Meyer relationship [21]

VSR (R) = α exp (−βR) , (2.1)

with α and β are two constant parameters and R is the internuclear distance. This form is sug-

gested by approximate quantum-mechanical calculations, since the short-range interactions are

purely quantal. In some cases, to simplify the mathematical calculation, VSR (R) is represented

as an inverse power function

VSR (R) ≈
B

Rn
, (2.2)

where the constants n and B are adapted empirically to the experimental data of the interac-

tions. But, in general, there are no simple known methods by which the short-range parameters

α and β (or B and n) can be estimated from properties of the isolated ions and atoms [9]. Ac-

cording to Mason and McDaniel [9], the best known methods to estimate the short-range para-

meters α and β is the correlation scheme which is based on models and empirical observations

of VSR for various systems from various sources.

2.1.2 Long-range potential

The long-range interaction potential can be written as the sum of three parts

VLR (R) = Vpol (R) + Vdis (R) + Vele (R) , (2.3)

with

• Vpol (R) : the polarization potential which arises primarily from the interaction of the

ionic charge with the multipole moments induced in the neutral atom;

• Vdis (R) : the dispersion potential which is fundamentally quantum-mechanical in nature,

but has a simple semiclassical interpretation; and

• Vele (R) : the electrostatic potential that arises from the interactions between the charge

on the ion and the permanent multipole moments of the neutral.
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According to the theoretical calculations of each part of these different potentials, the long-range

potential function in Eq. (2.3) ends up in the mathematical form [32,33]

VLR (R) = −
µ
C4
R4
+

C6
R6
+

C8
R8

¶
, (2.4)

where

C4 =
1

2
αd (2.5)

C6 =
1

2
αq (2.6)

C8 =
1

2
αo (2.7)

are the dispersion coefficients correlated to the dipole αd, quadrupole αq, and octupole αo polar-

izabilities of the neutral atom, respectively. In this case, the dominant ion-neutral interaction

is usually the inverse fourth power term R−4 which accounts for the attraction between the

charge on the ion and the dipole that induces in the polarizable neutral. The coefficients C4,

C6, and C8 are often known rather accurately from the knowledge of the polarizabilities. Fur-

thermore, Mason and McDaniel [9] described some methods for estimating C6 that end up with

the expression

αq ≈
3

2
α2d

hν

e2f
, (2.8)

where hν is the oscillator frequency or some mean excitation energy and f is the oscillator

strength. The usual simple guess takes hν equal to the ionization potential I and f = 1, which

yields

αq ≈ 0.104α2dI. (2.9)

The units of αq and αd are here in Å
5
and Å

3
, respectively, and I in eV. It has been realized

that the estimation methods of C6 is seldom known as accurately as C4. The addition of

the long-range attraction energy −C6/R6 to −C4/R4 causes a minimum to develop at lower

temperatures and the further energy −C4/R4 suppresses eventually both the maximum and

the minimum.

At low temperatures and weak electric field, the mobility is dominated by the long-range

polarization attraction energy −C4/R4 of Eq. (2.4). It approaches the polarization limit as
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T → 0. This limit of the mobility is at the standard gas density

Kpol =
13.853
√
μαd

, (2.10)

with μ being the reduced mass of the ion-neutral species. The mobility is in this case in units

of cm2V−1 s−1.

2.1.3 Intermediate data points

It is well-known from quantum chemistry that the ground-state carbon C+
¡
2s22p; 2P

◦¢
ion

and the ground-state He (1s2) neutral atom approach each other, with a relative motion of

energy �, along one of the doublet molecular states 2Π and 2Σ. However, the metastable-excited

C+ (2s2p2; 4P) ion and the ground-state He (1s2) atom approach each other through one of the

excited quartet molecular states 4Σ− and 4Π. Consequently, we have to generate in this work

with ab initio methods the ion-atom potential-energy curves of four individual and distinct

molecular states: 2Π, 2Σ, 4Σ−, and 4Π. Since the spin-orbit effects are small for light atoms, as

it is the case for carbon, they are not here taken into account.

In order to determine the potential curves of the above doublet and quartet states, we have

chosen the Dunning correlation consistent polarized valence quintuple zeta (cc-pV5Z) basis for

both C and He atoms [22]. The calculations yield the value 5.351 eV of the C+(2P
◦ −→ 4P)

transition energy, which is very close to the recommended value 5.335 eV by National Institute

of Standards and Technology (NIST) [23] and to the numerical results 5.307 eV of Matoba et

al. [3] and 5.32± 0.18 eV of Hughes and von Nagy-Felsobuki [24]. We have further performed

the multireference configuration interaction (MRCI) method [25,26], using reference functions

derived from the state-averaged complete active space self-consistent field (SA-CASSCF) ap-

proach [27, 28]. Among the seven electrons of the CHe+ system, two are frozen and the re-

maining ones are considered as active. The active space contains the following orbitals: 5σ

corresponding to C(2s; 3p0; 3s; 4p0) and He(1s) and 4π corresponding to C(2p±; 3s±). These 9

active orbitals are distributed among the irreducible representations a1, b1, b2, and a2 of the C2v

symmetry as follows: 5, 2, 2, and 0. To estimate the effect of higher-order excitations, we have

introduced the Davidson correction [29]. The basis-set superposition error (BSSE) has also

been introduced via the counterpoise correction technique [30]. The C+He electronic potential

curves are determined for the 2Π, 2Σ, 4Σ−, and 4Π states in the range of internuclear distances

1.0 ≤ R ≤ 20.8. We have performed all the calculations with the quantum-chemistry package
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molpro [31].

2.1.4 CHe+ potential-energy curves

For the requisite calculations, the four ion-atom potential curves have to be known in the long,

intermediate, and short regions of R. We hence adopted the data points we have generated

above to construct smooth and reliable C+
¡
2P

◦¢
He and C+ (4P) He potential-energy curves.

In the short-range region, i.e., for R ≤ 1.0, the ion-neutral interaction potential VSR (R) was

computed by using Eq. (2.1). The adopted values of constant parameters α and β are listed

for each molecular state in Table 2.2. For R ≥ 20.8, the extension is chosen at large distances

of the analytical form [32,33] where VLR (R) is given by Eq. (2.4). Since the leading R−4 term

is important in shaping the common long-range forms of all the ion-atom interaction potentials

and in fixing the C+He polarization limit, Kpol ' 17.66 cm2V−1 s−1, by Eq. (2.10).

In the calculations of CHe+ potential energy curves, we employed the theoretical value

αd ' 1.384 of Łach et al. [34]. Experimental measurements performed by Schmidt et al. [35]

confirmed this value, which is also very close to the NIST dipole polarizability αd ' 1.404 [23].

Complete and useful compilations of calculated and measured dipole polarizabilities of helium

and many other systems can be found in Masili and Starace [36] and Mitroy et al. [37]. The two

remaining polarizabilities, αq ' 2.445 and αo ' 10.620, are taken from the recent theoretical

work of Kar and Ho [38], which are identical to the figures already produced by Yan et al. [39].

In addition, Matoba et al. [3] used the same dipole polarizability αd = 0.205Å
3
for all the C+He

molecular states. In contrast, they utilized different values of αq and αo which they deduced

from analytical fittings of the different potentials. Their values of αq and αo are listed in Table

2.3.

The constructed C+He potential-energy curves are shown in Fig. 2-1 and some of their data

points are reported from R = 1 to R = 10 in Table 2.4. The potential curves are also compared

in Fig. 2-1 with some data points provided in Matoba et al. [3]. The agreement between both

potential sets, mainly for the lower states, is in general quite good. To further characterize

quantitatively our computed and constructed potentials, we list in Table 2.5 the internuclear

separations σ at which V (σ) = 0, as well as the equilibrium distances Re and potential depths

De, both contrasted with previous published data. We also give in Table 2.6 their rotationless-

vibrational energy levels, where the calculations showed that the 2Π, 2Σ, 4Σ−, and 4Π states
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Table 2.1: Data points derived from the calculated interaction potentials with the BSSE ab
initio method of the ground and metastable-excited C+He molecular states. All the data are
given in a.u.

Distance C+
¡
2P

◦¢
+He C+ (4P) + He

R 2Σ 2Π 4Σ− 4Π
1.0 −38.8239 −38.9172 −38.9479 −38.3916
1.2 −39.4591 −39.5612 −39.5795 −39.0333
1.4 −39.7646 −39.8832 −39.8840 −39.3345
1.6 −39.9069 −40.0475 −40.0272 −39.5282
1.8 −39.9678 −40.1342 −40.0903 −39.7092
2.0 −39.9884 −40.1826 −40.1138 −39.8318
2.2 −40.0252 −40.2117 −40.1186 −39.9139
2.4 −40.0947 −40.2305 −40.1154 −39.9684
2.6 −40.1459 −40.2432 −40.1091 −40.0040
2.8 −40.1826 −40.2518 −40.1022 −40.0273
3.0 −40.2087 −40.2576 −40.0959 −40.0425
3.2 −40.2270 −40.2614 −40.0904 −40.0525
3.4 −40.2397 −40.2639 −40.0860 −40.0592
3.6 −40.2485 −40.2655 −40.0826 −40.0636
3.8 −40.2545 −40.2664 −40.0800 −40.0666
4.0 −40.2586 −40.2669 −40.0779 −40.0686
4.2 −40.2612 −40.2671 −40.0764 −40.0699
4.4 −40.2630 −40.2671 −40.0753 −40.0708
4.6 −40.2641 −40.2671 −40.0744 −40.0713
4.8 −40.2649 −40.2669 −40.0738 −40.0716
5.0 −40.2653 −40.2668 −40.0732 −40.0718
5.2 −40.2655 −40.2666 −40.0729 −40.0719
5.4 −40.2656 −40.2665 −40.0726 −40.0719
5.6 −40.2657 −40.2663 −40.0723 −40.0719
5.8 −40.2657 −40.2662 −40.0722 −40.0718
6.0 −40.2656 −40.2661 −40.0719 −40.0718
6.4 −40.2655 −40.2659 −40.0718 −40.0717
6.8 −40.2655 −40.2658 −40.0716 −40.0716
7.0 −40.2654 −40.2657 −40.0716 −40.0715
8.0 −40.2653 −40.2655 −40.0714 −40.0714
9.0 −40.2652 −40.2655 −40.0713 −40.0713
10.0 −40.2652 −40.2654 −40.0713 −40.0713
12.8 −40.2652 −40.2654 −40.0712 −40.0713
16.8 −40.2652 −40.2654 −40.0712 −40.0712
20.8 −40.2652 −40.2654 −40.0712 −40.0712
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Table 2.2: Adopted short-range parameters, that appear in Eq. (2.1), in the construction of
the ground and metastable-excited C+He potential-energy curves. All the data are in a.u.

Short-range C+He states
parameters 2Π 2Σ 4Σ− 4Π

α 33.54 28.63 51.67 23.89
β 3.230 3.004 3.847 2.663

Table 2.3: Constant parameters adopted for the construction of the ground and metastable-
excited C+He potentials in both short- and long-range regions. All these data (in a.u.) are
taken from Matoba et al. [3].

Molecular Short range Long range
states α β C6 C8
2Σ+ 3.76924 1.46937 3.28353 24.3240
2Π 20.5114 2.84693 9.09081 31.5853
4Σ− 310.868 5.29863 10.50999 209.8915
4Π 3.87397 1.23193 5.949524 62.33395

can hold 7, 5, 19, and 5 vibrational levels, respectively.

2.2 Transport cross sections

The transport cross sections Q(l) are the key relation between the ion-neutral interaction poten-

tial and the transport coefficients. In general, the numerical calculation of the transport cross

sections are usually accomplished over wide ranges of the relative kinetic energy � for collisions

between two structureless particles and for many values of l (l ≥ 1) . The first transport cross

sections Q(1) ≡ Qd is known as the diffusion (or momentum-transfer) cross sections. However,

for l = 0, the cross section corresponds to the isotropic part of the elastic cross sections and the

associated collisions do not affect the ion transport because of the isotropy of these collisions.

In the case of ion-atom elastic collisions, the transport cross sections provide us with full

information on the exchange probability of the impulsion and the energy during an elastic

collision. The general expression of Q(l) is given by [9]

Q(l)(�) = 2π

Z π

0

¡
1− cosl θ

¢
σ (θ, �) sin θdθ, (2.11)

where σ (θ, �) is the differential cross section for elastic scattering, through an angle θ, by the
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Table 2.4: Data points derived from the constructed interatomic potentials of the ground and
metastable-excited C+He molecular states. The numbers in parentheses indicate powers of ten.
All the data are given in a.u.

Distance C+
¡
2P

◦¢
+He C+ (4P) + He

R 2Π 2Σ 4Σ− 4Π
1.0 +1.3271 +1.4192 +1.1031 +1.6327
1.5 +0.2793 +0.4073 +9.4923(−2) +0.5829
2.0 +7.9249(−2) +0.2723 −4.5776(−2) +0.2302
2.5 +2.5362(−2) +0.1382 −4.3557(−2) +7.9152(−2)
3.0 +5.9367(−3) +5.4191(−2) −2.6429(−2) +2.6370(−2)
3.5 −6.1676(−4) +1.9212(−2) −1.4091(−2) +8.2620(−3)
4.0 −2.1468(−3) +5.8192(−3) −7.2897(−3) +1.9001(−3)
4.5 −2.0167(−3) +1.1453(−3) −3.8766(−3) −1.9463(−4)
5.0 −1.5226(−3) −2.5992(−4) −2.1814(−3) −7.0990(−4)
5.5 −1.0722(−3) −5.5073(−4) −1.3093(−3) −7.0169(−4)
6.0 −7.4407(−4) −5.1325(−4) −8.3500(−4) −5.6522(−4)
6.5 −5.2161(−4) −4.0862(−4) −5.6069(−4) −4.2790(−4)
7.0 −3.7340(−4) −3.1133(−4) −3.9266(−4) −3.1969(−4)
7.5 −2.7372(−4) −2.3615(−4) −2.8462(−4) −2.4048(−4)
8.0 −2.0540(−4) −1.8078(−4) −2.1218(−4) −1.8353(−4)
8.5 −1.5731(−4) −1.4042(−4) −1.6185(−4) −1.4235(−4)
9.0 −1.2271(−4) −1.1069(−4) −1.2583(−4) −1.1213(−4)
9.5 −9.6598(−5) −8.8456(−5) −9.9443(−5) −8.9581(−5)
10.0 −7.7534(−5) −7.1560(−5) −7.9699(−5) −7.2468(−5)
10.5 −6.2991(−5) −5.8533(−5) −6.4662(−5) −5.9280(−5)
11.0 −5.1713(−5) −4.8349(−5) −5.3025(−5) −4.8974(−5)

Table 2.5: Some of the spectroscopic parameters compared with previous published data. The
potential depths De are measured with respect to the dissociation limits of the respective ab
initio C+He molecular states. The numbers in parentheses are powers of ten.

C+
¡
2P

◦¢
He C+ (4P)He

Parameters 2Π 2Σ 4Σ− 4Π Refs.
σ
¡
Å
¢

1.905 2.593 0.900 2.381 This work

Re

¡
Å
¢

2.196 2.963 1.164 2.752 This work
2.21 2.99 1.16 2.78 [3]
2.2330 1.1555 [24]
2.329 2.978 1.158 2.805 [40]
2.406 1.168 [41]
2.504 1.177 [42]

De ( cm
−1) 482 122 11.007(3) 162 This work

468 122 10.691 (3) 159 [3]
406 147 10.254 (3) 175 [40]
385 10.248 (3) [41]
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Figure 2-1: The constructed potential-energy curves of the quasimolecular C+
¡
2P

◦¢
He and

C+ (4P)He states. Empty circles represent the data points produced by Matoba et al. [3].

Table 2.6: Rotationless-vibrational energy levels (in cm−1) of the doublet and quartet C+He
molecular states.

Level C+
¡
2P

◦¢
He C+ (4P)He

v 2Π 2Σ 4Σ− 4Π
0 −312.6197 −75.1408 −9756.0190 −99.5158
1 −184.9595 −26.6879 −8509.1256 −40.2552
2 −92.5661 −7.8367 −7346.0876 −13.2426
3 −36.3233 −1.2937 −6267.3752 −2.9865
4 −11.2541 −0.0431 −5273.1523 −0.2821
5 −2.3101 −4363.4599
6 −0.1761 −3539.5131
7 −2803.2954
8 −2156.5573
9 −1600.8161
10 −1136.5718
11 −762.4773
12 −474.9170
13 −267.7434
14 −131.8062
15 −53.3043
16 −16.8371
17 −3.9306
18 −0.4114
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ion-neutral interaction potential V (R) . This differential cross section is usually defined as

dσ

dΩ
= I (Ω)σ (θ, �) , (2.12)

i.e., the ratio of the number of scattered particles into the solid angle dΩ by time unit and the

incident flux density.

The differential transport cross section is therefore a tool for determining the transport cross

section in classical or quantum-mechanical approach.

2.2.1 Classical approach

At high temperatures, the collision of unlike particles can be described classically, except at

very small scattering angles. The differential cross section for this approach is calculated by

the relationship

σ (θ, �) =

¯̄̄̄
¯ 1

sin θ (b, �)

X
i

dbi
dθ (b, �)

¯̄̄̄
¯ , (2.13)

where the index i corresponds to the impact parameters bi for which the absolute value of the

angle θ is the same. Therefore, the classical expression of Eq. (2.11) is written as

Q(l)(�) = 2π

Z ∞

0

£
1− cosl θ (b, �)

¤
bdb. (2.14)

Here b is the impact parameter and θ is the scattering angle defined by the expression [9]

θ (b, �) = π − 2b
Z ∞

R0

∙
1− b2

R2
− V (R)

�

¸−1/2
dR

R2
, (2.15)

where the distance of closest approach R0 is the outermost of

1− b2

R20
− V (R0)

�
= 0. (2.16)

It is through Eq. (2.16) that the position-dependent interaction potential V (R) affects the

transport cross sections and, hence, the transport coefficients.

Figure 2-2(a)-(b) displays the individual classical diffusion cross sections for the doublet

and quartet states of the C+He system. These transport cross sections are viable, but do

not consider the quantum effects, such as tunnelling and interference, that give the orbiting

resonances in the low-energy cross sections.
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The values of the classical transport cross section for both the ground C+
¡
2P

◦¢−He and
metastable-excited C+ (4P)−He states were obtained by using the Fortran program pc.f90 of

Viehland [43]. Before pc.f90 calculates the transport cross sections from Eq. (2.14), it needs

to determinate the orbiting parameters (�, bo, Ro) to find the possible bo values corresponding

to �. Then, if necessary, it rearranges them so that the bo values are monotonically increasing.

Mathematically, orbiting occurs because of a non-integrable singularity in the integrand of Eq.

(2.15). Orbiting can only occur at energies smaller than some critical value �c that depends

upon the interaction potential. This is because larger values of � mean that the ratio V (R) /�

in Eq. (2.16) is negligible compared to 1− (b/R)2 .

For N values of bo, Eq. (2.14) can then be written as the sum

Q(l) (�) =
NX
i=0

Q
(l)
i (�) , (2.17)

where, for 1 ≤ i ≤ N − 1,

Q
(l)
i (�) = 2π

Z bi+1

bi

£
1− cosl θ (b, �)

¤
bdb (2.18)

and

Q
(l)
0 (�) = 2π

Z b1

0

£
1− cosl θ (b, �)

¤
bdb (2.19)

Q
(l)
N (�) = 2π

Z ∞

bN

£
1− cosl θ (b, �)

¤
bdb. (2.20)

Hence, due to the fact that the numerical techniques used for calculating the integrals in Eqs.

(2.18), (2.19), and (2.20) are different, Viehland et al. [43] separated the integral of Eq. (2.14)

into three separate integrals. The calculations of the classical transport cross sections in Eqs.

(2.18)-(2.20) need three distinctive energy intervals.

a) Region 1: �min 6 � < �c

In the case of the first integral (2.19), the energy is agreed to that orbiting collisions only occur

at the upper endpoint of the integral, i.e., when b = b1. The transport cross sections in Eq.

(2.19) are therefore expressed as [44]

Q
(l)
0 (�) =

Z 1

−1
f
(l)
0 (y, �) dy, (2.21)
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Figure 2-2: Individual classical transport cross sections, effective in diffusion, varying with
energy. The cross sections are computed: in (a), for doublet states; in (b), for quartet states.
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where

f
(l)
0 (y, �) =

1

4
π2b21

£
1− cosl θ

¡
b(1) (y) , �

¢¤
sin
hπ
2
(y + 1)

i
, (2.22)

and

b(1) (y) = b1 cos
hπ
4
(y + 1)

i
. (2.23)

This equation gives the relationship between the variables b and y. The integral in Eq. (2.19)

is well suited for Clenshaw-Curtis quadrature, since the integrand is zero at each endpoint

but, due to orbiting, varies rapidly near y = −1, where many of the quadrature points are

concentrated.

Then, in the second integral (2.18), the orbiting collisions occur at both endpoints, bi and

bi+1, and the transport cross sections appearing in this equation are given by [45]

Q
(l)
i (�) = 2π

Z Ri+1

Ri

£
1− cosl θ

¡
b(2) (R) , �

¢¤ ∙
1− V (R)

�
− R

2

V 0 (R)

�

¸
RdR, (2.24)

with V 0 (R) being the potential first derivative, and

b(2) (R) = R

∙
1− V (R)

�

¸1/2
, (2.25)

which helps to change the integration variables from the impact parameter to the distance of

the closest approach. One may notice that the integral in Eq. (2.24) is more difficult than

the one in Eq. (2.19), because it needs to calculate potential derivatives and to define the two

endpoints, b(2) (Ri) = bi and b(2) (Ri+1) = bi+1, iteratively from Eq. (2.25). However, the most

important difficult is that the integrand would have to be evaluated exactly at each endpoint,

which is an impossible task.

In order to get out of this task in Eq. (2.24), Viehland et al. [43] split the integration into

two pieces at Ri = (Ri +Ri+1) /2 as to transform the integral in Eq. (2.24) likewise that in

Eq. (2.21), i.e.,

Q
(l)
i (�) =

Z 1

−1
f
(l)
i (y, �) dy, (2.26)
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with 1 ≤ i ≤ N − 1, and

f
(l)
i (y, �) =

1

8
π2R

2

i

³
1− x

(1)
i

´ £
1− cosl θ

¡
b(2)

¡
R(1)

¡
x(1) (y)

¢¢
, �
¢¤

×
"
1−

V
¡
R(1)

¡
x(1) (y)

¢¢
�

−
R(1)

¡
x(1) (y)

¢
2

V 0 ¡R(1) ¡x(1) (y)¢¢
�

#
× sin

hπ
2

¡
x(1) (y) + 1

¢i
+
1

8
π2R2i+1

³
1 + x

(2)
i

´
×
£
1− cosl θ

¡
b(2)

¡
R(2)

¡
x(2) (y)

¢¢
, �
¢¤

×
"
1−

V
¡
R(2)

¡
x(2) (y)

¢¢
�

−
R(2)

¡
x(2) (y)

¢
2

V 0 ¡R(2) ¡x(2) (y)¢¢
�

#
× sin

hπ
2

¡
x(2) (y) + 1

¢i
. (2.27)

Here, R(1) and x(1) describe the variables in the piece below Ri, that are given by

R(1) (x) = Ri sin
hπ
4
(x+ 1)

i
, (2.28)

and

x(1) (y) =
1

2

h³
1− x

(1)
i

´
y + x

(1)
i + 1

i
, (2.29)

with

x
(1)
i =

4

π
sin−1

µ
Ri

Ri

¶
− 1. (2.30)

However, the variables R(2) and x(2), expressed by

R(2) (x) = Ri+1 cos
hπ
4
(x+ 1)

i
(2.31)

and

x(2) (y) =
1

2

h³
1 + x

(2)
i

´
y + x

(2)
i − 1

i
, (2.32)

with

x
(2)
i =

4

π
cos−1

µ
Ri

Ri+1

¶
− 1, (2.33)

determine the piece above Ri. The values of the integrand (2.27) at the endpoints are given by
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the expressions of f (l)i (−1, �) and f
(l)
i (1, �) as

f
(l)
i (−1, �) = 1

8
π2R

2

i

³
1− x

(1)
i

´h
1− cosl θ

³
b(2)

³
R(1)

³
x
(1)
i

´´
, �
´i

×

⎡⎣1− V
³
R(1)

³
x
(1)
i

´´
�

−
R(1)

³
x
(1)
i

´
2

V 0
³
R(1)

³
x
(1)
i

´´
�

⎤⎦ sin hπ
2

³
x
(1)
i + 1

´i
(2.34)

and

f
(l)
i (1, �) =

1

8
π2R2i+1

³
1 + x

(2)
i

´h
1− cosl θ

³
b(2)

³
R(2)

³
x
(2)
i

´´
, �
´i

×

⎡⎣1− V
³
R(2)

³
x
(2)
i

´´
�

−
R(2)

³
x
(2)
i

´
2

V 0
³
R(2)

³
x
(2)
i

´´
�

⎤⎦ sin hπ
2

³
x
(2)
i + 1

´i
. (2.35)

Finally, in the case of the third integral, orbiting occurs at the lower endpoint of the integral,

i.e., only when b = bN . Henceforth, the expression of this integral is

Q
(l)
N (�) = 2π

Z ∞

RN

£
1− cosl θ

¡
b(2) (R) , �

¢¤ ∙
1− V (R)

�
− R

2

V 0 (R)

�

¸
RdR, (2.36)

with

b(2) (RN) = bN (2.37)

Following O’Hara et al. [44], the integral in Eq. (2.36) can be rehabilitated as

Q
(l)
N (�) = π2R2N

Z 1

0

£
1− cosl θ

¡
b(2)

¡
R(3) (x)

¢
, �
¢¤

×
"
1−

V
¡
R(3) (x)

¢
�

− R(3) (x)

2

V 0 ¡R(3) (x)¢
�

#
cos (πx/2)

sin3 (πx/2)
dx (2.38)

with

R(3) (x) =
RN

sin (πx/2)
. (2.39)

The integrand in Eq. (2.38) has also difficulties to compute it, therefore the program pc.f90

uses the same technique that are made for the integral in Eq. (2.24) by introducing the change

of variables

x(3) (y) = (1 + y) /2, (2.40)
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as to get

Q
(l)
N (�) =

Z 1

−1
f
(l)
N (y, �) dy, (2.41)

with

f
(l)
N (y, �) =

1

2
π2R2N

Z 1

0

£
1− cosl θ

¡
b(2)

¡
R(3)

¡
x(3) (y)

¢¢
, �
¢¤

×
"
1−

V
¡
R(3)

¡
x(3) (y)

¢¢
�

−
R(3)

¡
x(3) (y)

¢
2

V 0 ¡R(3) ¡x(3) (y)¢¢
�

#

×
"
R(3)

¡
x(3) (y)

¢
RN

#3
cos
³π
2
R(3)

¡
x(3) (y)

¢´
. (2.42)

b) Region 2: �c 6 � < 3�c

In this region, orbiting does not occur but there is a large negative minimum in the scattering

angle. Viehland et al., [43] split the integral at b = Rc, where Rc is the orbiting separation

corresponding to energy �c. In each piece, they used Eq. (2.25) to change variables. This gives

Q(l) (�) = 2π

Z Rc

R0

£
1− cosl θ

¡
b(2) (R) , �

¢¤ ∙
1− V (R)

�
− R

2

V 0 (R)

�

¸
RdR

+ 2π

Z ∞

Rc

£
1− cosl θ

¡
b(2) (R) , �

¢¤ ∙
1− V (R)

�
− R

2

V 0 (R)

�

¸
RdR, (2.43)

where eR0 and eRc are determined from iterative solutions of the equations

b(2)
³ eRc

´
= Rc, (2.44)

and

V
³eR0´ = �. (2.45)

It is clearly noticeable that there is no trouble with the first integral, so Viehland et al. [43]

introduced

R(4) (y) =
1

2

h³ eRc − eR0´ y + eRc + eR0i (2.46)

to change the interval to [−1, 1] and, to concentrate the quadrature points near the integration

endpoints for the second integral, one must use

R(5) (x) =
eRc

sin (πx/2)
. (2.47)
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The changing variables defined in Eqs. (2.46) and (2.47) convert Eq. (2.43) into

Q(l) (�) =

Z 1

−1
g(l) (y, �) dy, (2.48)

where

g(l) (y, �) = π
³ eRc − eR0´ £1− cosl θ ¡b(2) ¡R(4) (y)¢ , �¢¤

×
"
1−

V
¡
R(4) (y)

¢
�

− R(4) (y)

2

V 0 ¡R(4) (y)¢
�

#
R(4) (y)

+
1

2
π2 eRc

£
1− cosl θ

¡
b(2)

¡
R(5)

¡
x(3) (y)

¢¢
, �
¢¤

×
"
1−

V
¡
R(5)

¡
x(3) (y)

¢¢
�

−
R(5)

¡
x(3) (y)

¢
2

V 0 ¡R(5) ¡x(3) (y)¢¢
�

#

×
"
R(5)

¡
x(3) (y)

¢
eRc

#3
cos
³π
2
x(3) (y)

´
(2.49)

From this equation, we can deduce that

g(l) (−1, �) =
h
1 + (−1)l

i
π eR0 ³ eRc − eR0´

⎡⎣− eR0
2

V 0
³ eR0´
�

⎤⎦ (2.50)

and

g(l) (1, �) = π eRc

³ eRc − eR0´h1− cosl θ ³b(2) ³ eRc

´
, �
´i⎡⎣1− V

³ eRc

´
�

−
eRc

2

V 0
³ eRc

´
�

⎤⎦ . (2.51)

c) Region 3: 3�c 6 � < �max

Because orbiting does not also occur in this region, one has to make use of the same techniques

for the integration of Eq. (2.14) at bc, the orbiting impact parameter corresponding to �c. At

small impact parameter, we define a new variable

b(4) (y) =
bc
2
(y + 1) (2.52)

and, at large impact parameters, we give another new variable

b(5) (y) =
2bc
y + 1

. (2.53)
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Likewise the two above regions, Viehland et al. [43] transformed the integral in Eq. (2.14) into

Q(l) (�) =

Z 1

−1
h(l) (y, �) dy, (2.54)

where

h(l) (y, �) =
1

2
πb2c

£
1− cosl θ

¡
b(4) (y) , �

¢¤
(y + 1) + πb2c

£
1− cosl θ

¡
b(5) (y) , �

¢¤ ∙b(5) (y)
bc

¸3
.

(2.55)

We can easily show from Eq. (2.55) that h(l) (−1, �) = 0. Hence, we may also show that

h(l) (1, �) = 2πb2c
£
1− cosl θ (bc, �)

¤
. (2.56)

2.2.2 Quantum approach

The quantum-mechanical cross sections are obtained from the differential scattering σ (θ, �)

which has the following form in the framework of the partial plane wave description [46,47]

σ (θ, �) =
1

4κ2

¯̄̄̄
¯
∞X
l=0

(2l + 1) exp (2iηl)Pl (cos θ)

¯̄̄̄
¯
2,

(2.57)

where l is the orbital angular momentum quantum number, κ =
√
2μ�/~ is the wave number

of the relative motion at energy �, Pl (cos θ) are Legendre polynomials, and ηl = ηl (�) are the

elastic phase shifts, which depend on the angular momentum l and energy �. Hence, the problem

of the quantum-mechanical transport cross sections is that the calculation of the phase shift ηl

for each value of l is requiring detailed description of the interactions between the ions and the

neutral atoms.

a) Phase shift

The phase shifts are usually obtained from the regular solution of the radial wave equation

d2ψl (R)

d2R
+

∙
κ2 − 2μ

~2
V (R)− l (l + 1)

R2

¸
ψl (R) = 0. (2.58)

The partial wave functions ψl (R) must behave, at large distances R, like

ψl (R) ∼
R→∞

sin

µ
κR− l

2
π + ηl

¶
(2.59)
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The energy-dependent elastic phase shifts ηl are basically employed in the quantal computation

of the transport cross sections.

The phase shifts are typically evaluated by using the approximation of Jeffrey with the

modification of Langer as [48]

ηl =

Z ∞

R0

(
κ2 − 2μV (R)

~2
− (l + 1/2)

2

R2

)1/2
dR−

Z ∞

R00

(
κ2 − (l + 1/2)

2

R2

)1/2
dR, (2.60)

the lower limits being the outermost zeros of the respective integrands.

In practice, ηl are computed quantum mechanically up to a certain large value of the or-

bital angular momentum l∗ beyond which the calculations are achieved with the semiclassical

approximation [48,49]

ηl ≈ −μ
Z ∞

R0

V (R)q
(κR)2 − (l + 1/2)2

RdR, (2.61)

where the lower limit R0 verifies

κR0 =

µ
l +

1

2

¶
. (2.62)

In Figs. 2-3 and 2-4, we have illustrated, as an example, the behavior of the quantal phase

shifts that correspond to the doublet C+He molecular states, 2Π and 2Σ, and to the quartet

C+He molecular states, 4Π and 4Σ−, at the energies 10−4 and 10−3 hartree, respectively. One

may notice from both Figures that, beyond l∗ = 132 and l∗ = 82, and respectively l∗ = 119 and

l∗ = 115, the phase shifts ηl are calculated semiclassically with Eq. (2.61). The semiclassical

asymptotes are represented in full solid curves.

b) Quantal diffusion cross section

The quantal expression for the diffusion transport cross section Qd is obtained by summing

over the angular momentum quantum number l [9]

Qd(κ) =
4π

κ2

∞X
l=0

(l + 1) sin2
¡
ηl − ηl+1

¢
. (2.63)

This Eq. (2.63) shows orbiting resonances when the relative energy � corresponds to a significant

increase in the phase shifts ηl.

In Fig. 2-5, we illustrate a comparison of the quantum-mechanical and classical diffusion

cross sections for the case of individual doublet and quartet states. It clearly shows that the
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Figure 2-3: Elastic phase shifts obtained at the same energy, � = 10−4 hartree, for two doublet
C+He states 2Π and 2Σ.
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Figure 2-4: Elastic phase shifts obtained at the same energy, � = 10−3 hartree, for two quartet
C+He states 4Π and 4Σ−.
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quantal effects are important at lower energies, where the cross sections exhibit undulations

with some regular peaks occurring at orbiting resonances. However, at higher energies, the

quantum-mechanical diffusion cross sections have the same behavior as the classical diffusion

cross sections. One may see that the behavior of the diffusion cross sections depend tightly on

the depth of the considered interaction potential and their decrease becomes smooth and sharp

beyond the energies corresponding to the well-depth values De. In particular, since the 4Σ−

curve represents the deepest potential, the slope change occurs in Fig. 2-5(d) at the highest

energy superior to 10−2Eh.

Moreover, assuming one third of the collisions between C+ and He occur along the Σ curves

and two thirds along the Π curves [9], the average quantum-mechanical diffusion cross sections

are therefore given by the statistically weighted sum

Qd (κ) =
1

3
QΣ
d (κ) +

2

3
QΠ

d (κ) . (2.64)

The average quantum-mechanical cross sections, relative to the doublet and quartet states, are

displayed in Fig. 2-6(a) and (b). They are both compared with the semiclassical results of

Matoba et al. [3], which have linear forms at small energies. This Figure shows also the results

of the average quantum-mechanical diffusion cross sections obtained by using the interaction

potentials of Matoba et al. [3]. At higher energies, both potentials yield very similar behavior

of the cross sections, which is not the case at lower energies.

2.3 Zero-field diffusion and mobility coefficients

The diffusion transport cross sections should allow the determination of the temperature-

dependent coefficients of diffusion. The knowledge of such measurable parameter may primarily

constitute sensitive probes and high-quality assessments for the accuracy of the ion-atom po-

tentials. Indeed, according to the Chapman-Enskog model for the transport theory of dilute

gases [9,48], the collision integrals are defined as

Ωd (T ) =
1

2

Z ∞

0

�2

(kBT )
3Qd (�) exp

µ
− �

kBT

¶
d�, (2.65)
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in diffusion, with those obtained classically. The cross sections are computed, in (a) and (b),
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Figure 2-6: Average diffusion cross sections calculated with Eq. (2-6): in (a), for doublet states;
in (b), for quartet states. Both cross sections are compared with the quantum-mechanical cross
sections determined from the use of Matoba potentials. The semiclassical results of Matoba et
al. [3] are represented in dashed lines.

which lead to the calculation of the zero-field mobility from the expression

K (T ) =
q

kBT
D (T ) (2.66)

with q being the electric charge of the atomic ion and D (T ) , given by

D (T ) =
3

8N

s
πkBT

2μ

1

Ωd (T )
, (2.67)

is the temperature-dependent coefficient of diffusion for the zero-field case. The number density

N of the helium buffer gas is related to its pressure p by

p = NkBT. (2.68)

At this point, one may observe that, numerically, the calculation of K is only possible if

the integrand appearing in Eq. (2.65) constitutes a sommable function. Thus, the choice of

the whole energy interval, over which the cross sections are computed, should be made to

fulfill this requirement. For more illustration, we display in Fig. 2-7 the integrands of the
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Figure 2-7: Integrands appearing in the collision integrals (2.65), in connection with the as-
ymptotic separation C+

¡
2P

◦¢
He, at the gas temperature 4.3K; in the inset, at 77K.

collision integrals, in connection with the asymptotic separation C+
¡
2P

◦¢
He, at two distinct

gas temperatures: 4.3 and 77K. This Figure shows the required minimum and the maximum

values of energy � for each gas temperature. For instance, the energy interval should be 10−8 .
� . 10−3 hartree, if the gas temperature is 4.3K.
As stated above in Eq. (1.80), the mobility coefficient is usually expressed, if p is in torrs

and T in kelvins, as

K0 (T ) =
³ p

760

´µ273.15
T

¶
K (T ) , (2.69)

known as the reduced mobility [9]. The results of the diffusion coefficient D, presented as D

times the gas pressure p = 0.250Torr or times the number density N, are listed in Table 2.7 for

the case of helium buffer gas at temperature T = 297K. The same Table 2.7 also presents, in the

same conditions, the zero-field reduced mobility K0 of the C+
¡
2P

◦¢
and C+ (4P) ions moving

through helium. In particular, our ground theoretical results are compared to the experimental

measurements of Dotan, Fehdenfeld, and Albritton [53]. The comparison shows an excellent

agreement between the values, which confirms, once again, the good quality of our generated

ab initio C+He potentials.
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Table 2.7: Zero-field reduced mobility K0 and diffusion coefficients D at room temperature
T = 297 K. The diffusion coefficients are given as D times the pressure p = 0.250 torr and
times the gas densityN. The ground-state results are compared with data fromDotan et al. [53].

C+
¡
2P

◦¢
in He C+ (4P) in He

Coefficients This work Dotan et al. [53] This work
pD ( cm2Torr s−1) 468 461 463
ND (1019 cm−1 s−1) 1.52 1.50 1.51
K0

¡
cm2V−1 s−1

¢
22.1 21.8± 1.1 21.9
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Chapter 3

Mobility of C+ Ions in Helium Gas

As a consequence of the relative simplicity at calculating cross sections for closed shell systems,

most of the kinetic theory studies of ion transport systems have involved alkali metal cations and

halogen anions with inert gases. However, there are few theoretical studies of open-shell atomic

systems that are published in literature. As a result, the information contained in the available

databases of the transport properties [20,50,51] of open-shell atomic systems has largely been

neglected. This is mainly due to the difficulties met at calculating the cross sections in which two

or more collision channels correlate to the non-interacting collision partners. Similarly, there

are a few theoretical studies of electronically excited ion-atom systems [3,40,52], although the

databases of such systems are equally sparse.

So, in this last Chapter, a detailed review of the ion mobility calculations is given for the

open-shell carbon ion, in the ground C+
¡
2P

◦¢
and metastable C+ (4P) states, interacting with

helium, using the three-temperature theory. To accomplish this task, we use the quantum-

mechanical diffusion cross sections deduced in the previous Chapter. The obtained results are

compared with the published experimental data in Ref. [3].

3.1 Previous works

The mobility of C+ ions in helium has been of continuing interest in the experimental deter-

mination of the ion/molecule rate coefficients of C+ reactions, which have large astrophysical

applications. It is very sensitive to the shape and numerical values of the interaction potential

curve between the ion and the neutral gas.

For this reason, several experiments have been performed to measure the mobility of C+ ions

in helium gas, such as the experiments of Dotan et al. [53], Thomas et al. [54], Peska et al. [55],
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Twiddy et al. [56], Grice et al. [40], and more recently of Matoba et al. [3]. Furthermore, there

have been different theoretical attempts at calculating the mobility of ground and metastable-

excited states of C+ ions in helium gas, such as by Grice et al. [40] and Matoba et al. [3], which

have been obtained by using the classical transport cross sections within the first approximation

of the two-temperature theory.

The crucial theoretical idea of Grice et al. [40] at calculating the mobility of groundC+(2P
◦
)−

He and metastable-excited C+(4P)−He states at room temperature was based on the relation-

ship between the reduced mobility and the effective collision integral which provides them to

give an expression for calculating the average reduced mobility. Their theoretical results were

in good agreement with their measured results.

In fact, in recent experiment of Matoba, Tanuma, and Ohtsuki [3] using a very low temper-

ature drift-tube-mass spectrometer at 4.3 and 77K, they could achieve a condition in which the

Teff is low enough for mobility to become very close to Kpol of ground and metastable-excited

states. Moreover, they also computed the relevant average classical transport cross sections

and used them to calculate the mobility. In their published work [3], the authors suggest to

improve the calculations by using quantum-mechanical cross sections and a higher-level kinetic

theory. Accordingly, we intend to use the three-temperature theory and the quantal transport

cross sections generated above to determine the mobility of C+ in He.

3.2 Numerical details

In this section, we introduce the average of the doublet and quartet diffusion cross sections

Qd (�) for C
+−He system into the Fortran code gc.f90 to compute the mobility of ground

C+
¡
2P

◦¢
and metastable-excited C+ (4P) states in helium gas [5—7]. This code, which relies on

the Gram-Charlier series [6], uses the cross sections into three distinctive energy intervals that

were revealed earlier in Chapter 2

�min 6 � < �c

�c 6 � < 3�c (3.1)

3�c 6 � 6 �max.
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In each interval, the transport cross sections are fitted by means of the Chebyshev expansion

coefficients

ai =
2

N

NX
k=0

∼
Ti

∙
cos

µ
kπ

N

¶¸
log
©
Qd (�)

ª
, (3.2)

where N is the number of energies in each region and the tilde sign above the Chebyshev

polynomials
∼
Ti indicates that the first and last terms in the summation are halved. The cross

sections are given by a finite series of Chebyshev polynomials
∼
Ti [ξ (�)] in gc.f90 as [43]

log
©
Qd (�)

ª
=

NX
i=0

ai
∼
Ti [ξ (�)] , (3.3)

with |ξ (�)| 6 +1 being defined by

ξ (�) =
2 log (�)− log (�max)− log (�min)

log(�max)− log(�min)
, (3.4)

where �min and �max are the limits of each of the above energy intervals.

3.3 Results and discussion

Mobility and diffusion coefficients have been reported for both groundC+
¡
2P

◦¢
He andmetastable-

excited states C+ (4P)He. Their calculations were performed at the gas temperatures 297, 4.3,

and 77K. We have first chosen to treat the reduced mobility K0 at 297K to confirm the relia-

bility of our CHe+ interaction potentials, then, to verify the quantum-mechanical results of K0,

at the temperatures of interest, 4.3 and 77K, with the three-temperature theory. Moreover, we

have also used, for more illustrations, the interaction potentials of Ref. [3] in the calculations

of mobility.

3.3.1 Room temperature: 297K

According to the results of several experiments that have been performed to measure the reduced

mobilities K0 of ground and metastable-excited C+ ions in helium at room temperature T =

297K or close to it [40,53—56], we have first chosen to treat K0 at this temperature to confirm

the reliability of our CHe+ interaction potentials and to verify the results of the quantum-

mechanical calculations, with three-temperature theory, of the reduced mobility, K0, at the

temperature of interest, 4.3 and 77K.
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Figure 3-1: Non zero-field mobilities of the C+
¡
2P

◦¢
and C+ (4P) ions into He as a function of

E/N at room temperature T ' 300K. They are compared with published data from [40,53—56].

The obtained results, presented in terms of the ratio E/N of the electric field strength

to the gas number density, are drawn in Fig. 3-1 as full solid lines. They are compared

in the same figure with a bunch of theoretical and experimental data determined at very

close temperatures [40, 53—56]. As the ratio E/N goes to zero, the curves show particu-

larly that the lower limits of the reduced mobilities agree quite well with the values 22.1 and

21.9 cm2V−1 s−1, also confirmed from Table 2.5. Moreover, when the electric field increases

in intensity, the present C+
¡
2P

◦¢
mobility results reach a maximum that lies between 20 and

50Td (1Td = 10−21Vm2) , which is believed typical for mobilities in helium [55]. As already

underlined by Dotan et al. [53], the zero-field mobilities show they are substantially different

from the polarization valueKpol ' 17.66 cm2V−1 s−1, which suggests that the Langevin approx-

imation is a poor one for ions at room temperature in the rather weakly polarizable helium.

The polarization limit is theoretically reached when the gas temperature is low enough, i.e.,

T → 0 [57].
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3.3.2 Low temperatures: 4.3 and 77K

We have further employed the three-temperature model of Lin et al. [4,9,11,43] to generate the

mobilities of C+ into He as a function of the ratio E/N at very low temperatures, namely, 4.3

and 77K by means of quantum-mechanical transport cross sections. The results are presented

in Fig. 3-2(a)-(d). The upper and lower graphs illustrate the calculations and measurements at

4.3 and 77K, respectively. The solid curves correspond to those in which the present ab initio

potentials are used, whereas the dashed lines represent the calculated mobilities by inserting the

potentials described in Ref. [3]. The polarization limits, Kpol ' 17.66 cm2V−1 s−1, are shown

with horizontal dotted lines. All the present calculations are contrasted with the mobility

measurements, known with the accuracy of ±0.2 cm2V−1 s−1, carried out by Matoba et al. [3]

at the prescribed temperatures.

The first column gives the reduced mobility coefficients in connection with the ground

C+
¡
2P

◦¢
ions moving into helium. As the electric field tends to zero, the curves in Fig. 3-2(a)

shows that the mobility approaches the value 18.8 cm2V−1 s−1, also found from the zero-field

calculations. For higher values of the ratio E/N, the experimental data attain lower values

around ∼ 10Td before their increase. Unfortunately, this feature was unable to be imitated

numerically by using both potential sets. Furthermore, for the 77K curves exhibited in Fig.

3-2(b), the agreement of the present results with the experimental data is better, which leads

us to assume the accuracy of the quantal collision integrals at a higher temperature is good

enough. As the electric strength goes to zero, the reduced mobility appear here too to tend to

19.1 cm2V−1 s−1. Tables 3.1 and 3.2 list the main transport parameters as a function of E/N

at 4.3 and 77K, respectively.

The second column displays the variation ofK0 in terms of the ratio E/N of the metastable-

excited C+ (4P) ions through helium. In Fig. 3-2(c) and (d), the curves, extrapolated to the

zero-field limits, end at the values 18.4 and 19.6 cm2V−1 s−1. Tables 3.3 and 3.4 give also the

transport parameters as a function of E/N at 4.3 and 77K, respectively.

3.3.3 Further calculations and comparisons

With the aim of computing the non zero-field mobility of C+
¡
2P

◦¢
and C+ (4P) ions through

helium gas at cooled temperatures, it is interesting to compare the results generated by the

present potentials with those produced by the potentials of Matoba and his collaborators [3].

Both classical and quantal approaches are used, within the frameworks of the three-temperature
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Figure 3-2: Non zero-field mobilities of the C+
¡
2P

◦¢
and C+ (4P) ions into helium as a function

of E/N at two distinct temperatures: in the upper row at T = 4.3K, and in the lower row at
T = 77K. Full circles are the measurements of Matoba et al. [3], estimated as ±0.2. The first
column is connected with C+

¡
2P

◦¢
moving through He and the second column with C+ (4P) .

The dashed lines represent our calculations with the potentials described in [3]. The horizontal
dotted lines represent the polarization limit Kpol = 17.66 cm

2V−1 s−1.
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Table 3.1: Non zero-field transport properties for the ground state C+(2P) in He at 4.3 K.
These values are calculated with our potentials.

E/N vd K0 TL TT NDL NDT

(Td) (m s−1)
¡
cm2V−1 s−1

¢
(K) (1020m2 s−1)

0.03 0.001 18.76 4.30 4.30 0.187 0.187
1.47 0.553 18.75 5.76 4.88 0.250 0.212
4.46 1.675 18.68 17.71 9.66 0.766 0.418
8.27 3.095 18.63 50.07 22.61 2.160 0.975
12.90 4.881 18.82 118.12 49.83 5.148 2.172
18.40 7.253 19.61 255.62 104.83 11.605 4.759
24.41 10.566 21.53 537.67 217.64 26.803 10.850
29.21 13.941 23.75 932.92 375.74 51.291 20.658
35.61 18.034 25.19 1558.26 625.87 90.896 36.508
42.31 21.553 25.34 2223.74 892.05 130.483 52.343
50.64 25.253 24.81 3051.12 1222.99 175.238 70.241
60.49 29.007 23.86 4024.52 1612.34 222.285 89.054
71.25 32.667 22.81 5102.91 2043.68 269.475 107.923
81.96 36.067 21.89 6219.47 2490.30 315.226 126.218
91.50 39.040 21.23 7286.37 2917.04 358.065 143.349
102.02 42.258 20.61 8536.40 3417.04 407.258 163.022

Table 3.2: Non zero-field transport properties for the ground state C+(2P) in He at 77 K. These
values are calculated with our potentials.

E/N vd K0 TL TT NDL NDT

(Td) (m s−1)
¡
cm2V−1 s−1

¢
(K) (1020m2 s−1)

0.07 0.006 19.10 77.00 77.00 3.405 3.405
1.39 0.126 19.11 78.37 77.55 3.467 3.431
4.52 0.412 19.16 91.50 82.80 4.060 3.674
8.24 0.758 19.37 126.20 96.68 5.659 4.335
12.96 1.220 19.82 204.28 127.91 9.374 5.870
18.59 1.849 20.94 369.39 193.95 17.905 9.401
24.32 2.640 22.86 673.44 315.57 35.642 16.702
29.41 3.416 24.45 1075.10 476.23 60.848 26.953
35.38 4.247 25.27 1620.04 694.20 94.770 40.609
42.29 5.075 25.27 2280.83 958.51 133.421 56.070
50.74 5.947 24.67 3102.39 1287.12 177.211 73.521
60.61 6.831 23.72 4068.94 1673.73 223.477 91.926
71.33 7.693 22.70 5139.75 2102.04 270.172 110.494
81.92 8.493 21.83 6248.46 2545.51 315.744 128.628
91.40 9.193 21.17 7307.85 2969.25 358.255 145.562
101.77 9.951 20.59 8549.09 3465.74 407.444 165.175
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Table 3.3: Non zero-field transport properties for the ground state C+(4P) in He at 4.3 K.
These values are calculated with our potentials.

E/N vd K0 TL TT NDL NDT

( Td) (m s−1)
¡
cm2V−1 s−1

¢
(K) (1020m2 s−1)

0.03 0.001 18.42 4.30 4.30 0.183 0.183
1.46 0.542 18.44 5.70 4.86 0.243 0.208
4.48 1.675 18.60 17.71 9.66 0.763 0.416
8.22 3.095 18.72 50.07 22.61 2.171 0.980
12.95 4.978 19.12 122.72 51.67 5.432 2.287
18.55 7.851 21.06 298.76 122.08 14.564 5.951
24.38 10.777 21.99 559.22 226.26 28.473 11.520
29.29 12.880 21.88 796.87 321.32 40.363 16.275
35.87 15.392 21.35 1136.28 457.08 56.156 22.589
42.49 17.681 20.70 1497.92 601.73 71.788 28.838
50.69 20.310 19.93 1975.10 792.60 91.142 36.575
60.81 23.330 19.08 2604.73 1044.44 115.092 46.149
71.48 26.273 18.29 3302.28 1323.45 139.802 56.028
82.01 29.007 17.60 4024.52 1612.34 163.949 65.683
91.47 31.399 17.08 4714.62 1888.37 186.391 74.656
101.88 33.987 16.60 5523.20 2211.79 212.220 84.985

Table 3.4: Non zero-field transport properties for the ground state C+(4P) in He at 77 K. These
values are calculated with our potentials.

E/N vd K0 TL TT NDL NDT

( Td) (m s−1)
¡
cm2V−1 s−1

¢
(K) (1020m2 s−1)

0.00 0.000 19.59 77.00 77.00 3.492 3.492
1.36 0.126 19.62 78.37 77.55 3.560 3.522
4.38 0.412 19.77 91.50 82.80 4.187 3.789
8.22 0.789 20.20 130.25 98.30 6.091 4.597
12.96 1.294 21.02 220.34 134.33 10.723 6.538
18.57 1.923 21.80 393.49 203.59 19.861 10.276
24.37 2.538 21.92 628.02 297.40 31.878 15.096
29.50 3.033 21.65 863.99 391.79 43.300 19.635
35.38 3.554 21.14 1157.37 509.14 56.650 24.921
42.87 4.164 20.44 1560.12 670.23 73.835 31.720
51.05 4.783 19.72 2033.94 859.75 92.870 39.257
61.15 5.494 18.91 2659.14 1109.83 116.435 48.596
71.77 6.187 18.15 3351.78 1386.87 140.825 58.269
82.16 6.831 17.50 4068.94 1673.73 164.881 67.823
91.62 7.394 16.99 4754.20 1947.82 186.991 76.611
101.81 8.003 16.55 5557.08 2268.97 212.917 86.935
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theory, in the calculation of the transport cross sections. The utilization of these cross sections

into the Fortran code gc.f90 allows then the comparison of all sets of results.

Since, the reduced mobility has a straightforward relationship with the diffusion cross sec-

tions Qd, we opted here to determine the average reduced mobility from the average relationship

1

K0
=

1

3KΣ
0

+
2

3KΠ
0

. (3.5)

Such an approach of calculations has already been adopted by Grice et al. [40].

Figures 3-3 and 3-4 display for comparison the quantum-mechanical and classical results of

the reduced mobilities K0 of ground C+ ions in helium He at 4.3 and 77K, respectively. The

upper(left-hand-side) plots(graphs) (a) illustrate the calculated reduced mobilities using the

interaction potentials generated in the present work, whereas the mobility values represented

in the lower(right-hand-side) plots(graphs) (b) are determined with the potential-energy curves

as calculated by Matoba et al. [3]. Both Figures 3-3 and 3-4 show for E/N . 10Td slight

differences between the quantal and classical K0 values. As E/N → 0, the mobilities approach

close values. However, for higher values of the electric field, more precisely for E/N & 10Td,
these differences become noticeable. On the other hand, for lower electric field, the mobility

coefficients of metastable-excited C+ ions moving into helium, presented in Figures 3-5 and 3-6,

show more distinctive differences between the results due to the present and Matoba potentials.

With these two potential sets, as E/N exceeds 30Td, the quantal and classical results coincide,

though they seem at T = 77K closer to the experimental values.

Moreover, as the electric field approaches zero, the classical calculations of K0 with Matoba

potentials yield, at the very low temperature T = 4.3K, results very close to the polarization

limit Kpol ' 17.66 cm2V−1 s−1 than those obtained quantum mechanically. This is clearly

demonstrated in Figs. 3-3(b) and 3-5(b).
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Figure 3-3: Non zero-field mobilities of the C+
¡
2P

◦¢
ions in He as a function of E/N at T =

4.3K. The quantal and classical mobilities are obtained in (a) with the interaction potentials
of the present work and in (b) with those of Matoba et al. [3]. Full circles are measurements
from [3], estimated as ±0.2. The horizontal dotted lines represent the polarization limit Kpol =
17.66 cm2V−1 s−1.
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Figure 3-4: Non zero-field mobilities of the C+
¡
2P

◦¢
ions in He as a function of E/N at

T = 77K. The quantal and classical mobilities are obtained in (a) with the interaction potentials
of the present work and in (b) with those of Matoba et al. [3]. Full circles are measurements
from [3], estimated as ±0.2. The horizontal dotted lines represent the polarization limit Kpol =
17.66 cm2V−1 s−1.
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Figure 3-5: Non zero-field mobilities of theC+ (4P) ions inHe as a function of E/N at T = 4.3K.
The quantal and classical mobilities are obtained in (a) with the interaction potentials of
the present work and in (b) with those of Matoba et al. [3]. Full circles are measurements
from [3], estimated as ±0.2. The horizontal dotted lines represent the polarization limit Kpol =
17.66 cm2V−1 s−1.
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Figure 3-6: Non zero-field mobilities of the C+ (4P) ions in He as a function of E/N at T = 77K.
The quantal and classical mobilities are obtained in (a) with the interaction potentials of
the present work and in (b) with those of Matoba et al. [3]. Full circles are measurements
from [3], estimated as ±0.2. The horizontal dotted lines represent the polarization limit Kpol =
17.66 cm2V−1 s−1.
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Conclusion

This thesis succeeded in its main objective based on the recommendations of the recent work

of Matoba et al. [3]. Ion transport properties of C+ in He have been calculated at cooled

temperatures. The calculations have generally resulted in fairly good agreement with the

experiments.

The process of this work is started by the construction of the energy-potential curves cor-

responding to the dimers which dissociate into C+
¡
2P

◦¢
+He (1S) and C+ (4P)+He (1S) . The

constructed potentials have been made in the three separation domains, depending on the ab

initio data computed with molpro. The quality and the accuracy of our obtained potentials

have been compared and verified with data from the literature, such as the spectroscopic pa-

rameters. The obtained results are generally in good agreement with the obtained ones of the

other authors, which proves the trustworthiness of our constructions.

Afterward, we have numerically calculated the diffusion cross sections for the doublet¡
2Σ and 2Π

¢
and quartet

¡
4Σ− and 4Π

¢
states. These cross sections have followed two dif-

ferent trajectory methods: classical method and quantal method. The classical transport cross

sections have been computed with the Fortran code pc.f90 [43]. The obtained results have

been compared with the semi-classical transport cross sections of Matoba et al. [3].

Finally, we have used the average transport cross sections within the frames of the the

three-temperature theory accomplished with the gc.f90 Fortran code [5—7] to determine, at

4.3 and 77K temperatures, the mobility of C+ ions in He and to examine their variation with

the ratio E/N. These transport parameters have been compared with published measurements

of C+ in He mobilities. The agreement has been found fairly good.
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Appendix A

Publication and communication

The main work presented in this thesis has been the subject of a paper, published in Molecular

Physics, and an international communication. They are both given below.

A.1 Paper

L. Aïssaoui, M. Bouledroua, and K. Alioua, Mobility of carbon ions C+
¡
2P

◦¢
and C+ (4P)

in helium computed from quantum-mechanical transport cross sections, Molecular Physics 113

(2015).

DOI: 10.1080/00268976.2015.1059960

A.2 Communication

M. Bouledroua, L. Aïssaoui, and K. Alioua, Quantal determination of the mobility of ground and

excited C+ ions evolving in a cooled helium gas, Physical Processes in the Interstellar Medium,

Max-Plank Institute for Extraterrestrial Physics 21-25 October 2013, Garching-Munich, Ger-

many.
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Mobility of carbon ions C+(2P
◦
) and C+(4P) in helium computed from quantum-mechanical

transport cross sections

Lamia Aı̈ssaouia,∗, Moncef Bouledrouab and Kamel Aliouab,c

aPhysics Department, Badji Mokhtar University, Annaba, Algeria; bLaboratoire de Physique des Rayonnements, Badji Mokhtar
University, Annaba, Algeria; cFaculty of Science and Technology, Chérif Messadia University, Souk-Ahras, Algeria

(Received 17 April 2015; accepted 2 June 2015)

On the light of a previous work and its recommendations by Matoba et al. [J. Phys. B 41, 145205 (2008)], this paper
proposes to look at the mobility of ground and metastable-excited states of C+ ions moving into a helium buffer gas.
The calculations, based on the three-temperature theory for solving the Boltzmann kinetic equation, are accomplished
with quantum-mechanical transport cross sections at the low temperatures 4.3 and 77 K. The obtained mobility results are
contrasted with the available theoretical data and experimental measurements, which show acceptable agreements.

Keywords: potential-energy curve; transport cross section; three-temperature theory; mobility

PACS numbers: 34.20.Cf; 51.10.+y; 51.20.+d; 72.20.Fr

1. Introduction

In 2008, Matoba et al. [1] studied at Tokyo Metropolitan
University (TMU) the mobility of carbon ions in a neutral
helium gas, cooled by helium and nitrogen. More specif-
ically, using a drift tube mass spectrometer with a mass-
selected-ion-injection system, they measured the mobilities
of the ground 2s22p 2P

◦
and metastable-excited 2s2p2 4P

states of C+ into He at two low temperatures, 4.3 and 77 K.
They further computed the relevant classical transport cross
sections, which they used to determine the mobilities of C+

in He, within the first approximation of the two-temperature
theory set up for solving the Boltzmann equation [2,3],
and analysed their behaviour in terms of the ratio E/N of
the electric field strength to the gas number density of
the neutral gas. In their published work [1], the authors
suggest to improve the calculations by using quantum-
mechanical cross sections and a higher level kinetic
theory.

Although the spin-orbit couplings between the inter-
action potentials are considered negligible at short inter-
nuclear distances [1], this study deals with the same ion–
atom system and is devoted to the calculation, at the above
temperatures, of the mobility of C+(2P

◦
) and C+ (4P) ions

diffusing through a dilute buffer gas made of helium. Prac-
tically, this work aims at (1) generating with the MOLPRO

package new ab initio potential-energy curves via which
ground and metastable-excited C+ ions interact with neu-
tral He, (2) computing quantum mechanically the transport
cross sections over a larger energy interval to cover low

∗
Corresponding author. Email: lamia.aissaoui@aol.com

temperatures, and finally (3) determining, with the three-
temperature theory of the Boltzmann kinetic equation, the
non-zero-field transport parameters, such as the diffusion
and mobility coefficients. The three-temperature theory of
gaseous ion transport is an enhanced theoretical treatment,
proposed by Lin et al. [4] and Viehland and Lin [5], in-
tended to overcome the drawbacks and imperfections of
the two-temperature model and to include essentially some
anisotropic features [2,3].

The mobility of carbon ions in inert gases is particu-
larly important for the experimental determination of the
ion–molecule rate constants of C+ reactions which have
astrophysical interests. It is very sensitive to the shape and
numerical values of the interaction potentials occurring be-
tween the ion and the neutral. For this reason, several exper-
iments have been realised for measuring the C+ mobility
in helium, such as the measurements of Dotan et al. [6],
Thomas et al. [7], Peska et al. [8] , Twiddy et al. [9], and
more recently of Matoba et al. [1].

The main purposes of this investigation are therefore
to carry out full quantum-mechanical calculations of the
transport cross sections, based on the ab initio interaction
potentials of the ionic dimers, which dissociate asymptot-
ically into C+(2P

◦
) + He(1S) and C+ (4P) + He(1S), and

to examine theoretically the mobilities of C+ ions mov-
ing in a helium gas by comparing them with the previous
experimental and computed data. In order to get the appro-
priate transport coefficients, the latter task will be fulfilled
by implementing the quantal cross sections in the Fortran

C© 2015 Taylor & Francis
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code GC.F, a more recent version of the older GRAMCHAR.F
program, both written by Viehland [10–12].

Unless otherwise specified, atomic units (a.u.) are used
throughout this paper; in particular, energies are in hartrees
(Eh), distances in bohrs (a0), and � = 1.

2. Potentials

In this section, we expose the ab initio methods we used in
this work to generate the ion-atom potential-energy curves
via which the ground C+ (

2s22p 2P
◦)

and metastable-
excited C+ (2s2p2 4P) ions interact with ground-state he-
lium He(1s2 1S) atoms. Since the spin-orbit effects are small
for light atoms, as it is the case with carbon, they are not
taken into account here. When a ground C+(2P

◦
) ion inter-

acts with helium, both species approach each other through
one of the molecular curves 2� or 2�. However, when
a metastable-excited C+ (4P) ion interacts with He, they
rather form an excited quasimolecular system in the 4�−

or 4� state.
In order to determine the potential curves of the above

doublet and quartet states, we have chosen the Dunning
correlation consistent polarised valence quintuple zeta (cc-
pV5Z) basis for both C and He atoms [13]. The calculations
yield the value 5.351 eV of the unperturbed C+ (

2P
◦ →4 P

)
transition energy, which is very close to the National Insti-
tute of Standards and Technology (NIST) recommended
value 5.335 eV [14] and to the numerical results 5.307 eV
of Matoba et al. [1] and 5.32 ± 0.18 eV of Hughes and von
Nagy-Felsobuki [15]. Grice et al. [16] reported an energy
difference close to 5.141 eV, which they compared with the
value 5.331 eV determined spectroscopically.

We have further performed the multireference config-
uration interaction method [17,18] using reference func-
tions derived from the state-averaged complete active
space self-consistent field approach [19,20]. Among the
seven electrons of the C+ He system, two are frozen and
the remaining ones are considered as active. The active
space contains the following orbitals: 5σ , corresponding to
C (2s; 3p0; 3s; 4p0) and He(1s2), and 4π , corresponding
to C(2p±; 3p±). These nine active orbitals are distributed
among the irreducible representations a1, b1, b2, and a2 of
the C2v symmetry as follows: 5, 2, 2, and 0. To estimate
the effect of higher order excitations, we have introduced
the Davidson correction [21]. The basis-set superposition
error has also been introduced via the counterpoise correc-
tion technique [22]. The C+ He electronic potential curves
are determined for the 2�, 2�, 4�−, and 4� states in the
range of internuclear distances 1.0 ≤ R ≤ 20.8. We have
performed all the above calculations with the quantum-
chemistry package MOLPRO [23].

For the requisite calculations, the four ion-atom poten-
tial curves have to be known in the long, intermediate, and
short regions of R. We hence adopted the above-generated
data points to construct smooth and reliable C+(2P

◦
)He and

Table 1. Adopted short-range parameters, that appear in Equa-
tion (1), in the construction of the ground and metastable-excited
C+ He potential-energy curves. All the data are in a.u.

Short-range C+ He states

parameters 2� 2� 4�− 4�

α 33.54 28.63 51.67 23.89
β 3.230 3.004 3.847 2.663

C+ (4P)He potential-energy curves. In the short-range re-
gion, namely for R ≤ 1.0, the ion–atom potential follows
the Born–Meyer relationship [24]

VSR (R) = α exp (−βR) , (1)

with α and β being two constant parameters. Their adopted
values are listed for each molecular state in Table 1. For
R ≥ 20.8, the extension is chosen at large distances of the
analytical form [25,26]

VLR (R) = −1

2

(
αd

R4
+ αq

R6
+ αo

R8

)
, (2)

where VLR(R) is the long-range potential function corre-
lated with the dipole αd, quadrupole αq, and octupole αo

polarisabilities of the neutral atom He.
Since the leading R−4 term is important in shaping the

common long-range forms of all the ion–atom interaction
potentials and in fixing the C+ He classical polarisation
limit, Kpol � 17.66 cm2 V−1 s−1, determined from [2]

Kpol = 13.853√
μαd

, (3)

with μ being the reduced mass of the colliding species, we
employed in the present calculations the theoretical value
αd � 1.384 of Łach et al. [27]. Experimental measurements
performed by Schmidt et al. [28] confirmed this value,
which is also very close to the NIST dipole polarisability
αd � 1.404 [14]. Complete and useful compilations of cal-
culated and measured dipole polarisabilities of helium and
many other systems can be found in Masili and Starace [29]
and Mitroy et al. [30]. The two remaining polarisabilities,
αq � 2.445 and αo � 10.620, are taken from the recent
theoretical work of Kar and Ho [31], which are identical
to the figures already produced by Yan et al. [32]. In their
investigations, based on the classical momentum-transfer
theory, Matoba et al. [1] used the same dipole polarisability
αd = 0.205 Å3 for all the C+ He molecular states they gen-
erated with the multi-configuration self-consistent field and
multi-reference singly and doubly excited configuration in-
teraction calculations. In contrast, they utilised different
values of αq and αo which they deduced from analytical
fittings of different potentials.
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Figure 1. The present constructed potential-energy curves of the
quasimolecular C+(2P

◦
)He and C+ (4P)He states. Empty circles

represent the data points produced by Matoba et al. [1].

The constructed C+ He potential-energy curves are
shown in Figure 1 and some of their data points are re-
ported from R = 1 to R = 10 in Table 2. The potential
curves are also compared in Figure 1 with some data points
provided in Matoba et al. [1]. The agreement between both
potential sets, mainly for the lower states, is in general quite
good. To further characterise quantitatively our computed
and constructed potentials, we list in Table 3 the internuclear
separations σ at which V(σ ) = 0, as well as the equilibrium

distances Re and potential depths De, both contrasted with
the previous published data. We also give in Table 4 their
rotationless-vibrational energy levels, where the calcula-
tions showed that the 2�, 2�, 4�−, and 4� states can hold
7, 5, 19, and 5 vibrational levels, respectively.

3. Zero-field transport properties

Once determined at all internuclear separations R, the four
electronic interaction potentials are inserted separately into
the radial wave equation [35]

d2ψl (R)

dR2
+

[
κ2 − 2μV (R) − l (l + 1)

R2

]
ψl (R) = 0

(4)

to determine numerically the radial wave functions ψ l(R) of
the colliding species, forcing them to behave asymptotically
like [35]

ψl (R) ∼
R→∞

sin

(
κR − l

2
π + ηl

)
. (5)

In both equations, l is the orbital angular momentum quan-
tum number and κ = √

2με is the wave number of relative
motion at energy ε. The energy-dependent elastic phase
shifts ηl are basically employed in the quantal computation
of the transport cross sections [36]. In practice, ηl are com-
puted quantum mechanically up to a certain large value of

Table 2. Data points derived from the constructed interatomic potentials of the ground and metastable-excited C+ He molecular states.
The numbers in parentheses indicate powers of 10. All the data are given in a.u.

Distance C+(2P
◦
) + He C+ (4P) + He

R 2� 2� 4�− 4�

1.0 +1.3271 +1.4192 +1.1031 +1.6327
1.5 +0.2793 +0.4073 +9.4923(−2) +0.5829
2.0 +7.9249(−2) +0.2723 −4.5776(−2) +0.2302
2.5 +2.5362(−2) +0.1382 −4.3557(−2) +7.9152(−2)
3.0 +5.9367(−3) +5.4191(−2) −2.6429(−2) +2.6370(−2)
3.5 −6.1676(−4) +1.9212(−2) −1.4091(−2) +8.2620(−3)
4.0 −2.1468(−3) +5.8192(−3) −7.2897(−3) +1.9001(−3)
4.5 −2.0167(−3) +1.1453(−3) −3.8766(−3) −1.9463(−4)
5.0 −1.5226(−3) −2.5992(−4) −2.1814(−3) −7.0990(−4)
5.5 −1.0722(−3) −5.5073(−4) −1.3093(−3) −7.0169(−4)
6.0 −7.4407(−4) −5.1325(−4) −8.3500(−4) −5.6522(−4)
6.5 −5.2161(−4) −4.0862(−4) −5.6069(−4) −4.2790(−4)
7.0 −3.7340(−4) −3.1133(−4) −3.9266(−4) −3.1969(−4)
7.5 −2.7372(−4) −2.3615(−4) −2.8462(−4) −2.4048(−4)
8.0 −2.0540(−4) −1.8078(−4) −2.1218(−4) −1.8353(−4)
8.5 −1.5731(−4) −1.4042(−4) −1.6185(−4) −1.4235(−4)
9.0 −1.2271(−4) −1.1069(−4) −1.2583(−4) −1.1213(−4)
9.5 −9.6598(−5) −8.8456(−5) −9.9443(−5) −8.9581(−5)

10.0 −7.7534(−5) −7.1560(−5) −7.9699(−5) −7.2468(−5)
10.5 −6.2991(−5) −5.8533(−5) −6.4662(−5) −5.9280(−5)
11.0 −5.1713(−5) −4.8349(−5) −5.3025(−5) −4.8974(−5)
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4 L. Aı̈ssaoui et al.

Table 3. Some of the spectroscopic parameters compared with
the previous published data. The potential depths De are measured
with respect to the dissociation limits of the respective ab initio
C+ He molecular states. The numbers in parentheses are powers
of 10.

C+(2P
◦
)He C+ (4P)He

Parameters 2� 2� 4�− 4� Refs.

σ (Å) 1.905 2.593 0.900 2.381 This work
Re (Å) 2.196 2.963 1.164 2.752 This work

2.21 2.99 1.16 2.78 [1]
2.2330 1.1555 [15]
2.329 2.978 1.158 2.805 [16]
2.406 1.168 [33]
2.504 1.177 [34]

De (cm−1) 482 122 11.007(3) 162 This work
468 122 10.691(3) 159 [1]
406 147 10.254(3) 175 [16]
385 10.248(3) [33]

the orbital angular momentum l∗ beyond which the calcu-
lations are achieved with the semiclassical approximation
[35,36]

ηl ≈ −μ

∫ ∞

R0

V (R)√
(κR)2 − (l + 1/2)2

R dR, (6)

where the lower limit R0 verifies the relationship κR0 = (l +
1/2). Figure 2 illustrates, as an example, the behaviour of
two different data sets of the quantal phase shifts that cor-
respond to the C+ He molecular states 2� and 4�− at the

Table 4. Rotationless-vibrational energy levels (in cm−1) of
the doublet and quartet C+ He molecular states.

Level C+(2P
◦
)He C+ (4P)He

v 2� 2� 4�− 4�

0 −312.6197 −75.1408 −9756.0190 −99.5158
1 −184.9595 −26.6879 −8509.1256 −40.2552
2 −92.5661 −7.8367 −7346.0876 −13.2426
3 −36.3233 −1.2937 −6267.3752 −2.9865
4 −11.2541 −0.0431 −5273.1523 −0.2821
5 −2.3101 −4363.4599
6 −0.1761 −3539.5131
7 −2803.2954
8 −2156.5573
9 −1600.8161

10 −1136.5718
11 −762.4773
12 −474.9170
13 −267.7434
14 −131.8062
15 −53.3043
16 −16.8371
17 −3.9306
18 −0.4114
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Figure 2. Elastic phase shifts obtained at the energies ε = 10−4

and ε = 10−3 hartree for the two different C+ He states: (a) 2�,
and (b) 4�−. The asymptotic forms are given in full lines.

energies 10−4 and 10−3 hartree, respectively. One may no-
tice from Figure 2(a) and 2(b) that, beyond l∗ = 115 and l∗ =
132, the phase shifts ηl are calculated semiclassically with
Equation (6). The semiclassical asymptotes are presented
in full solid curves.

The accuracy of the phase shifts is highly recommended,
since they are determinant in the computation of the re-
quested quantal transport cross sections, namely, those ef-
fective in diffusion [2]

Qd (κ) = 4π

κ2

∞∑
l=0

(l + 1) sin2 (ηl+1 − ηl) , (7)

also known as the momentum-transfer cross sections. The
individual doublet and quartet transport cross sections are
displayed in Figure 3(a) and 3(b), respectively. At lower
energies, where the quantal effects are important, the
cross sections exhibit undulations with some regular peaks
occurring at orbiting resonances [2]. As pointed out in Refs
[1,2], the general behaviour of the transport cross sections
depend tightly on the depth of the considered interaction
potential, and their decrease becomes smooth and sharp
beyond the energies corresponding to the well-depth
values De. In particular, since the 4�− curve represents
the deepest potential, the slope change occurs in Figure
3(b) at the highest energy superior to 10−2Eh. Moreover,
if Qi denotes the momentum-transfer cross section for the
individual molecular state i, the average transport cross
sections are therefore expressed by [1]

Q =
∑

i giQi∑
i gi

, (8)

where gi is the multiplicity of the considered state.
Accordingly, the average diffusion cross sections Qd (κ)
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Figure 3. Individual quantal cross sections, effective in diffu-
sion, varying with energy. The cross sections are computed in (a)
for doublet states; in (b) for quartet states.

are given by the statistically weighted sum [2]

Qd (κ) = 1

3
Q�

d (κ) + 2

3
Q�

d (κ) . (9)

The average diffusion cross sections relative to the doublet
and quartet states are shown in Figure 4(a) and 4(b). They
are both compared with the semiclassical results of Matoba
et al. [1], which have linear forms for small energies.

The mean transport cross sections should allow the de-
termination of the temperature-dependent coefficients of
diffusion. The knowledge of such measurable parameters
may primarily constitute sensitive probes and high-quality
assessments for the accuracy of the ion–atom potentials we
utilised in the present computations. Indeed, according to
the Chapman–Enskog model for the transport theory of di-
lute gases [2], the collision integrals, in connection with the
asymptotic separation C+(2P

◦
) + He or C+ (4P) + He, are

defined as

�d (T ) = 1

2

∫ ∞

0

ε2

(kBT )3
Qd (ε) exp

(
− ε

kBT

)
dε. (10)
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Figure 4. Average diffusion cross sections calculated with Equa-
tion (9): in (a) doublet states; in (b) quartet states. Both cross
sections are compared with the semiclassical results of Matoba
et al. [1].

These integrals lead, in particular, to the zero-field diffusion
coefficient given by [36]

D (T ) = 3

8N

√
πkBT

2μ

1

�d (T )
, (11)

where kB denotes Boltzmann’s constant and N is the number
density of the helium gas. Assuming that the ideal gas law
applies, the pressure p of the buffer gas can then be related
to N with p = NkBT. Moreover, the diffusion coefficient
allows the calculation of the zero-field mobility K(T) of the
ions C+ within the helium buffer gas defined as [36]

K (T ) = q

kBT
D (T ) (12)

with q being the electric charge of the atomic ion. Usually,
the mobility coefficient is expressed, if p is in torrs and T
in kelvins, as

K0 (T ) =
( p

760

) (
273.15

T

)
K (T ) , (13)
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6 L. Aı̈ssaoui et al.

Table 5. Zero-field reduced mobility K0 and diffusion coeffi-
cients D at room temperature T = 297 K. The diffusion coeffi-
cients are given as D times the pressure p = 0.250 torr and the gas
density N. The ground-state results are compared with data from
Dotan et al. [6].

C+(2P
◦
) in He C+ (4P) in He

Coefficients This work Dotan et al. [6] This work

pD (cm2 Torr s−1) 468 461 463
ND (1019 cm−1 s−1) 1.52 1.50 1.51
K0 (cm2 V−1 s−1) 22.1 21.8 ± 1.1 21.9

known as the reduced mobility [2]. Note that, at one tem-
perature T, the integrand appearing in Equation (10) should
be a numerically integrable function. Thus, the choice of
the whole energy interval, over which the cross sections are
computed, should be made to fulfil this requirement.

The results of the diffusion coefficient D, presented
in Table 5 as D times the gas pressure p = 0.250 Torr
or times the number density N, are listed for the helium
gas temperature T = 297 K. Table 5 presents also, in the
same conditions, the zero-field reduced mobility K0 of
the C+(2P

◦
) and C+ (4P) ions moving through helium. In

particular, our ground theoretical results are compared to
the experimental measurements of Dotan, Fehdenfeld, and
Albritton [6]. The comparison shows an excellent agree-
ment between the values, which confirms, once again, the
good quality of our generated ab initio C+ He potentials.

4. Non-zero-field mobility

Knowing the full quantum-mechanical cross sections from
εmin = 10−8 to εmax = 10−2, which is roughly equivalent
to the temperature interval 10−3 � T � 10+ 3 K, it is now
possible to make use of the three-temperature theory [2] to
output the diffusion and mobility coefficients in the case of
a non-zero electric field strength E.

4.1. Numerical details

With the aim of computing, with a higher level kinetic
theory of ions in gases, the mobility of C+ ions in helium,
the doublet and quartet transport cross sections Qd (ε) have
to be introduced into the Fortran code GC.F [10–12]. This
code, which relies on the Gram–Charlier series [11], uses
the cross sections into three distinctive energy intervals

εmin � ε < εc

εc � ε < 3εc (14)

3εc � ε � εmax,

where εc is a critical energy at which classical orbiting
occurs. Within each interval, the quantum-mechanical cross

sections are fitted by means of the Chebyshev expansion
coefficients

ai = 2

N
N∑

k=0

∼
Ti

[
cos

(
kπ

N
)]

log
{
Qd (ε)

}
, (15)

where N is the number of energies in each region and the
tilde sign above the Chebyshev polynomials Ti indicates
that the first and last terms in the summation are halved.
The cross sections are rebuilt in GC.F as [37]

log
{
Qd (ε)

} =
N∑

i=0

ai

∼
Ti [ξ (ε)] , (16)

with |ξ (ε)| ≤ + 1 being defined by

ξ (ε) = 2 log (ε) − log
(
εsup

) − log (εinf )

log(εsup) − log(εinf )
, (17)

where εinf and εsup are the limits of each of the above energy
intervals (14). More numerical details are provided in [37]
and in the original Fortran code of Viehland.

4.2. Results and discussion

Before dealing with the reduced mobilities K0 of ground
and metastable-excited C+ ions in helium at the tempera-
tures of interest 4.3 and 77 K, we have first of all chosen to
treat K0 at room temperature T = 297 K. The obtained re-
sults, presented as a function of the ratio E/N of the electric
field strength to the gas number density, are drawn in solid
lines in Figure 5. They are compared in the same figure with
a bunch of theoretical and experimental data determined at
very close temperatures [6–9,16]. As the ratio E/N goes to
zero, the curves show in particular that the lower limits of
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Figure 5. Non-zero-field mobilities of the C+(2P
◦
) and C+ (4P)

ions into He as a function of E/N at room temperature T � 300 K.
They are compared with the published data from [6–9,16].
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Figure 6. Non-zero-field reduced mobilities at two distinct temperatures: in the upper row at T = 4.3 K and in the lower row at T = 77 K.
Full circles are the measurements of Matoba et al. [1], estimated as ±0.2. The first column is connected with C+(2P

◦
) moving through

He and the second column with C+ (4P). The dashed lines represent our calculations with the potentials described in [1]. The horizontal
dotted lines represent the polarisation limit Kpol = 17.66 cm2 V−1 s−1.

the reduced mobilities agree quite well with the values 22.1
and 21.9 cm2 V−1 s−1, also confirmed in Table 5. When the
electric field increases in intensity, the present C+(2P

◦
) mo-

bility results reach a maximum that lies between 20 and
50 Td (1 Td = 10−21 V m2), which is believed typical for
mobilities in helium [8]. In addition, as already emphasised
by Dotan et al. [6], the zero-field mobilities in He show
they are generally substantially different from the polari-
sation value Kpol � 17.66 cm2 V−1 s−1. This fact indicates
that the Langevin approximation is a poor one for ions at
room temperature in the rather weakly polarisable helium.
The polarisation limit is theoretically reached when the gas
temperature is low enough, i.e., T → 0 [38].

Being fully satisfied with the reliability and consis-
tency of our C+ He interaction potentials, we have fur-
ther employed the mathematical three-temperature model
of Lin and co-workers [2–5] to generate the mobility of
C+ through He in terms of the ratio E/N at very low
temperatures. The results are presented in Figure 6(a)–
6(d). The upper and lower graphs illustrate the calcula-

tions and measurements at the temperatures 4.3 and 77 K,
respectively. The solid curves correspond to those results
deduced from the use of the present ab initio potentials,
whereas the dashed lines represent the mobilities obtained
with the potentials described in [1]. The polarisation limit,
Kpol � 17.66 cm2 V−1 s−1, is shown with horizontal dot-
ted lines. All the present calculations are contrasted with
the mobility measurements, known with the accuracy of
±0.2 cm2 V−1 s−1, performed at the prescribed tempera-
tures by the TMU group.

Furthermore, the first column of Figure 6 gives the
reduced mobility coefficients in connection with the ground
C+(2P

◦
) ions moving into helium. As the electric field tends

to zero, the curves in Figure 6(a) show that the mobility
approaches the value 18.8 cm2 V−1 s−1, also found from
the zero-field analysis based on the Chapman–Enskog
model [35,39]. For higher values of the ratio E/N, the
experimental data attain their lowest magnitude near 10 Td
before they increase again. Unfortunately, the calculations,
carried out here with both potential sets, are incapable to

D
ow

nl
oa

de
d 

by
 [

19
7.

20
0.

59
.1

78
] 

at
 0

3:
44

 1
0 

Ju
ly

 2
01

5 



8 L. Aı̈ssaoui et al.

Table 6. Non-zero-field transport properties for the ground state C+ (2P) in He at (a) 4.3 K and (b)
77 K. These values are calculated with our potentials.

E/N vd K0 TL TT DL DT

(Td) (m s−1) (cm2 V−1 s−1) (K) (1020 m2 s−1)

(1) T = 4.3 K
0.03 0.001 18.76 4.30 4.30 0.187 0.187
1.47 0.553 18.75 5.76 4.88 0.250 0.212
4.46 1.675 18.68 17.71 9.66 0.766 0.418
8.27 3.095 18.63 50.07 22.61 2.160 0.975
12.90 4.881 18.82 118.12 49.83 5.148 2.172
18.40 7.253 19.61 255.62 104.83 11.605 4.759
24.41 10.566 21.53 537.67 217.64 26.803 10.850
29.21 13.941 23.75 932.92 375.74 51.291 20.658
35.61 18.034 25.19 1558.26 625.87 90.896 36.508
42.31 21.553 25.34 2223.74 892.05 130.483 52.343
50.64 25.253 24.81 3051.12 1222.99 175.238 70.241
60.49 29.007 23.86 4024.52 1612.34 222.285 89.054
71.25 32.667 22.81 5102.91 2043.68 269.475 107.923
81.96 36.067 21.89 6219.47 2490.30 315.226 126.218
91.50 39.040 21.23 7286.37 2917.04 358.065 143.349
102.02 42.258 20.61 8536.40 3417.04 407.258 163.022
(2) T = 77 K
0.07 0.006 19.10 77.00 77.00 3.405 3.405
1.39 0.126 19.11 78.37 77.55 3.467 3.431
4.52 0.412 19.16 91.50 82.80 4.060 3.674
8.24 0.758 19.37 126.20 96.68 5.659 4.335
12.96 1.220 19.82 204.28 127.91 9.374 5.870
18.59 1.849 20.94 369.39 193.95 17.905 9.401
24.32 2.640 22.86 673.44 315.57 35.642 16.702
29.41 3.416 24.45 1075.10 476.23 60.848 26.953
35.38 4.247 25.27 1620.04 694.20 94.770 40.609
42.29 5.075 25.27 2280.83 958.51 133.421 56.070
50.74 5.947 24.67 3102.39 1287.12 177.211 73.521
60.61 6.831 23.72 4068.94 1673.73 223.477 91.926
71.33 7.693 22.70 5139.75 2102.04 270.172 110.494
81.92 8.493 21.83 6248.46 2545.51 315.744 128.628
91.40 9.193 21.17 7307.85 2969.25 358.255 145.562
101.77 9.951 20.59 8549.09 3465.74 407.444 165.175

replicate numerically this feature. On the other hand, the
agreement of the present results with the experimental
data at 77 K is much better for the curves exhibited in
Figure 6(b). Accordingly, this leads us to assume that
the accuracy of the quantal collision integrals (10) at a
higher temperature is good enough. For the same case,
as E/N → 0, the reduced mobility appears approaching
K0 = 19.1 cm2 V−1 s−1, which is in conformity with the
zero-field value [39]. Table 6 lists in (a) and (b) the most
important transport parameters, namely, drift velocity vd,
reduced mobility K0, parallel TL and perpendicular TT tem-
peratures, and parallel DL and perpendicular DT diffusion
coefficients, that characterise the mobility of C+(2P

◦
) in

He, as a function of E/N at 4.3 and 77 K, respectively.
The second column displays the dependence, on E/N,

of the reduced mobility K0 relevant to the drift movement
of metastable-excited C+ (4P) ions in helium at the above
temperatures. One may observe in Figure 6(c) and 6(d)

that, despite the technical complexity of measuring, at low
temperatures, the mobility of the metastable-excited ionic
species in gases, the experimental data are, in this case,
only available for E/N � 30 Td. The extrapolation of the
mobility curves to the zero-field limits ends at the val-
ues 18.4 and 19.6 cm2 V−1 s−1. We compile in parts (a)
and (b) of Table 7, respectively, at 4.3 and 77 K, the main
transport coefficients versus the ratio E/N. As remarked
above, the computed results with the present and Matoba
potentials are capable to better reproduce the measured
data.

Once the investigation is complete, it appears that the
mobilities are very sensitive to the shape and values of the
C+ He potentials. The calculations revealed in particular
that the use, within the three-temperature theory, of the
quantal cross sections does not make a notable difference
in the results of K0 if compared to those obtained by Matoba
et al. [1].
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Table 7. Non-zero-field transport properties for the ground state C+ (4P) in He at (a) 4.3 K and (b)
77 K. These values are calculated with our potentials.

E/N vd K0 TL TT DL DT

(Td) (m s−1) (cm2 V−1 s−1) (K) (1020 m2 s−1)

(1) T = 4.3 K
0.03 0.001 18.42 4.30 4.30 0.183 0.183
1.46 0.542 18.44 5.70 4.86 0.243 0.208
4.48 1.675 18.60 17.71 9.66 0.763 0.416
8.22 3.095 18.72 50.07 22.61 2.171 0.980
12.95 4.978 19.12 122.72 51.67 5.432 2.287
18.55 7.851 21.06 298.76 122.08 14.564 5.951
24.38 10.777 21.99 559.22 226.26 28.473 11.520
29.29 12.880 21.88 796.87 321.32 40.363 16.275
35.87 15.392 21.35 1136.28 457.08 56.156 22.589
42.49 17.681 20.70 1497.92 601.73 71.788 28.838
50.69 20.310 19.93 1975.10 792.60 91.142 36.575
60.81 23.330 19.08 2604.73 1044.44 115.092 46.149
71.48 26.273 18.29 3302.28 1323.45 139.802 56.028
82.01 29.007 17.60 4024.52 1612.34 163.949 65.683
91.47 31.399 17.08 4714.62 1888.37 186.391 74.656
101.88 33.987 16.60 5523.20 2211.79 212.220 84.985
(2) T = 77 K
0.00 0.000 19.59 77.00 77.00 3.492 3.492
1.36 0.126 19.62 78.37 77.55 3.560 3.522
4.38 0.412 19.77 91.50 82.80 4.187 3.789
8.22 0.789 20.20 130.25 98.30 6.091 4.597
12.96 1.294 21.02 220.34 134.33 10.723 6.538
18.57 1.923 21.80 393.49 203.59 19.861 10.276
24.37 2.538 21.92 628.02 297.40 31.878 15.096
29.50 3.033 21.65 863.99 391.79 43.300 19.635
35.38 3.554 21.14 1157.37 509.14 56.650 24.921
42.87 4.164 20.44 1560.12 670.23 73.835 31.720
51.05 4.783 19.72 2033.94 859.75 92.870 39.257
61.15 5.494 18.91 2659.14 1109.83 116.435 48.596
71.77 6.187 18.15 3351.78 1386.87 140.825 58.269
82.16 6.831 17.50 4068.94 1673.73 164.881 67.823
91.62 7.394 16.99 4754.20 1947.82 186.991 76.611
101.81 8.003 16.55 5557.08 2268.97 212.917 86.935

5. Conclusion

In this work, motivated by the recommendations of Ma-
toba et al.[1], we have applied the three-temperature theory
to determine, at T = 4.3 and 77 K temperatures, the mo-
bility coefficients of C+ ions in He and to examine their
variation with the ratio E/N. To do so, we have produced
with MOLPRO the ground and metastable C+ He potential-
energy curves and calculated quantum-mechanically the
momentum-transfer cross sections over a wide energy in-
terval. We have further utilised these cross sections to de-
termine the transport parameters and compared them with
published measured and computed C+ He mobilities. The
agreement has been found fairly good.
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T. Korona, F.R. Manby, G. Rauhut, R.D. Amos, A. Bern-

hardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J.
Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A.W. Lloyd,
S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, P.
Palmieri, R. Pitzer, U. Schumann, H. Stoll, A.J. Stone, R.
Tarroni, and T. Thorsteinsson, MOLPRO, version 2002.6, a
package of ab initio programs.

[24] H. Pauly, in Atom-Molecule Collision Theory, edited by
R.B. Bernstein, (Plenum Press, New York, 1979).
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