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Abstract 
 
A Matlab computer program for numerical modeling is proposed for the prediction of soil-
structure interaction effects on structures due to wave propagation. 
A hybrid finite element formulation based on pseudo-spectral methods, that is spectral 
finite element method (SFEM) is used to describe the wave through soil propagation in 
buildings. The modeling of the soil represents the key feature of the prediction model. Both 
direct and substructure methods are applied to model the soil structure system, where the 
soil is supposed as horizontally layered visco-elastic or Mohr-coulomb half-space for which 
the rigorous Green’s functions are derived. Nonlinearities of the superstructure and at the 
interface between the foundation and the soil are taken into account. Based on an indirect 
boundary integral method, the dynamic stiffness matrix of different foundation types at the 
surface of the layered half-space is calculated. This frequency dependent relation, between 
the structure-soil interaction forces and the displacements of the foundations, is transformed 
to a recursive evaluation of the forces in the time domain. This time domain analysis 
enables the prediction model to account for non-linear behavior in a further stage of the 
research.  Based on the Green’s functions of the layered half-space, the spectral density of 
the ground-borne vibrations is predicted. 
The applications of the thesis demonstrate the importance of the accurate and consistent 
soil model both for the evaluation of the structure-soil interaction forces as well as for the 
prediction of the ground-borne vibrations. The prediction model is applied to identify 
parameters that have a large impact on the generation and the propagation of vibrations due 
to seismic waves.  
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Résumé 
 
On propose un programme de calcul sous Matlab, pour la modélisation numérique des 
effets de l'interaction sol-structure sur la réponse dynamique de ces dernières dues à la 
propagation des ondes. Une formulation hybride des éléments finies basée sur des 
méthodes pseudo-spectrales, la méthode des éléments finis spectraux est utilisée pour 
décrire la propagation des ondes dans le sol jusqu'au bâtiments. La modélisation du sol 
représente l'étape principale du modèle numérique. Les deux méthodes directes et de sous-
structure sont appliquées pour la modélisation du système sol-structure, où le sol est 
supposé un demi-espace à multi-couches horizontales. Deux modèles de comportement du 
sol sont pris en compte, l'un viscoélastique et l'autre basé sur le critère Mohr-Coulomb pour 
lequel les fonctions de Green sont déduites. Les non-linéarités de la superstructure et à 
l'interface entre la fondation et le sol sont prises en considération. Se basant sur une 
formulation indirecte des éléments de frontières, la matrice dynamique de rigidité pour 
différents types de fondations superficielle ou partiellement enterrées est calculée. La 
relation entre les forces et les déplacements des fondations fonction de la fréquence est 
transformée en une évaluation récursive des forces dans le domaine de temps. Cette analyse 
dans le domaine des temps permet donc l'étude du comportement non linéaire du système 
sol-structure. Les fonctions de Green du demi-espace, sont utilisées pour déduire la densité 
spectrale des ondes de propagation dans le sol. Les applications numériques données 
démontrent la nécessité d'un bon modèle qui tient compte le plus correctement possible des 
effets de l'ISS. Ceci est une étape essentielle dans l'évaluation des forces d'interaction ainsi 
que pour la prévision des vibrations dues à la propagation des ondes dans le sol. Le modèle 
ainsi obtenu est utilisé pour identifier les paramètres ayant un grand impact sur la 
génération et la propagation des vibrations dues aux ondes séismiques.   
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Chapter 1 
 
 

1. Introduction 
 
 

1.1    Problem outline and motivation of research 
 
1.1.1 Vibrations in structures 
 
Vibrations in structures, especially in buildings may cause the following problems. Depending on the 
amplitudes of structural vibrations, the resulting may range from nuisance to occupants to life threat 
and full damage to buildings. 

Following the new concept in structural design based on the so-called Performance Based 
Design (PBD), damage caused to buildings is described as a change in the properties and/or position 
of structural members. Among the possible consequences, we may distinguish, failure of beams and/or 
columns, reduction of the structural capacity of a member or the whole structure and loss of 
serviceability due to cracks. 

The vibrations in structures can arise from many different sources among which industrial 
activities, construction works such as tunnel boring and earthquakes etc. These structural vibrations 
are well known and have been thoroughly investigated, especially in the field of structural dynamics 
and earthquake engineering for the case of large scale projects such as nuclear power plants and other 
important structures such as dams and long bridges. 

The higher urbanization of the cities in the northern of Algeria, makes these cities vulnerable 
to such near field seismic waves, as what had happened in Boumerdes, where an earthquake of 
magnitude 7 have caused a lot of damages even to recent buildings. Regarding the increasing interest 
in building performance under severe shaking, this type of problems, i.e. soil structure interaction and 
near source effects is becoming more and more important. 

The extension of the current Algerian code (RPA 99) [89] to include soil structure interaction 
and site effects has been planned. A further extension of the code to improve the performance of 
structures would be to include near source effects, as what had happened in Boumerdes on May 21st 
2003, as mentioned earlier. 

The increasing interest for the problem of soil structure interaction effects (SSI) for ordinary 
structures, which are the most vulnerable among the built in environment has triggered off the need for 
a better insight in the physical phenomena involved in SSI problems. Therefore, the development and 
validation of a numerical prediction model that takes into account SSI effects is treated in this thesis. 
Even though the validation is mainly focused on SSI, the numerical prediction model is generally 
applicable to other types of structural vibrations. 

 
 

1.1.2 The utility of a numerical model 
 
Empirical models derived from experimental tests and in situ measurements are commonly used for 
the study of SSI effects on structures. The application of those models is limited to situations similar to 
those covered by the experimental measurements. An extrapolation to different soil conditions having 
different characteristics has to be avoided. Furthermore, empirical models do not clarify the physical 
mechanisms involved in SSI problems and parametric studies can not be based on empirical models. 
However, empirical models continue to be used in design practice, which may result in inadequate or 
too conservative unsafe structures and, consequently, important economical loss. 
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In almost all seismic building codes, the structure response and foundation loads are computed 
neglecting the soil-structure interaction that is a fixed base analysis of the structure is performed. The 
belief is thought that SSI always plays a favorable role in decreasing the inertia forces; this is clearly 
related to the standard shape of code spectra which almost invariably possess a gently descending 
branch beyond a constant spectral acceleration plateau. Lengthening of the period, due to SSI, moves 
the response to a region of smaller spectral accelerations. However there is evidence that some 
structures founded on soft soils are vulnerable to SSI. Examples are given by Gazetas and Mylonakis 
[37].  
This has been recognized in some codes as Eurocode 8, where it is stated clearly that "The effects of 
dynamic soil-structure interaction shall be taken into account in the case of: 
 

• structures where P-δ effects play a significant role; 
• structures with massive or deep seated foundations; 
• slender tall structures; 
• structures supported on very soft soils, with average shear wave velocity less than 100 m/s. 

The effects of soil-structure interaction on piles shall be assessed..." 
In addition, an annex to the code describes the general effect of SSI and a specific chapter analyzes its 
effects on foundations and the way to deal with it. To the best of our knowledge Eurocode 8 is the 
only code which recognizes the importance of kinematic interaction for foundations, to quote: 
"Bending moments developing due to kinematic interaction shall be computed only when two or more 
of the following conditions occur simultaneously: 

• the subsoil profile is of class C (soft soil), or worse, and contains consecutive layers with 
sharply differing stiffness, 

• the zone is of moderate or high seismicity, α >0.10, 
• the supported structure is of importance category I or II." 

Note that implicitly for "normal" soil profiles and ordinary buildings kinematic interaction need not be 
computed. 
 
The simplest way to consider SSI effects is to assume that the building is supported by a rigid 
foundation. This results in a minimum number of additional degrees-of-freedom (three translations 
and three rotations), but may lead to restrictive and too simple representation of the real building. 
Studies which model the flexibility of foundations are rare [29] [50] and difficult to evaluate in the 
absence of strong motion records from in situ experiments. As far as we know, there exists no strong 
motion records program to document distortions and warping of foundations of structures during 
passage of seismic waves [108]. 
The extent to which SSI alters the apparent frequencies of the system response and changes of the time 
functions of absolute and relative displacements, rotations, shear forces and bending moments in the 
structure ranges from negligible to profound, and depends mainly on the relative stiffness of the soil 
and the structure. Recordings of strong structural motion show that destructive shaking is usually 
accompanied by nonlinear response of the foundation soils [78] [80], and that the time dependent 
changes of the apparent frequencies of response are usually accompanied by significant contribution 
of SSI [81]. Since the success of base-isolation systems, control of structural response, and of health 
monitoring depends on accurate representation of the anticipated and of recorded motions, it is clear 
that the nonlinear SSI phenomena must be included in the analysis. 
Experimental studies of SSI are best conducted in full-scale, in actual buildings during micro tremors 
[69] [70], forced vibrations [20], and earthquake excitation [46]. It is difficult to conduct SSI tests in 
laboratories, not only because of the constraints imposed by the need to satisfy to similarity laws, but 
mainly because it is almost impossible to model the half space boundary conditions for the soils. 
 Mathematical modeling of structures, for the purpose of response analyses, aims to find those 
representations which will satisfy all the modeling requirements and the constraints of the available 
analytical tools. 
For analytical representation of the incident waves, and for linear response analyses, the foundation 
soil has to be of simple geometry. With the analytical approach, it is practical to consider only simple 
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topographic irregularities [40] [109] and simple soil and alluvium layers [51] [52]. More complicated 
surface topography and layering must be represented by finite element or finite boundary models. 
Simple symmetric structures can be modeled by analytical methods and can be analyzed by wave 
propagation approach. Geometrically irregular structures and those which are expected to experience 
nonlinear response must be modeled by lumped masses, finite elements or by other discrete 
representations [85]. Simple surface or embedded foundations can be approximated by rigid slabs, 
when the soil is relatively soft and when the foundation and the structure are expected to experience 
only small relative deformations. However, it is difficult to predict intuitively how realistic is such an 
assumption and the decision should be guided by data and experience from full-scale tests on similar 
structures. Soft (flexible) foundations can be represented by discrete lumped mass interconnected 
foundations [87], and this can be combined with finite element representation of the structure. 
 
 

1.2    Objectives 
 
The main objective of the present research is to validate a model for the prediction of seismic free field 
wave propagations to a structure model accounting for dynamic SSI effects. The second objective is 
the process of implementing a coupling between the finite element method (FEM) and the spectral 
element methods (SEM) for nonlinear soil structure interaction (SSI) problems in MATLAB. This 
results in a new hybrid method called spectral finite element method (SFEM) which will be used for 
SSI problems, and a new Matlab Toolbox is obtained. The  validation of the numerical model for the 
prediction of seismic free field wave propagations to a structure model accounting for dynamic SSI 
effects is also verified. It is assumed that the forces transmitted from the structure to the soil and the 
incident wave field are not influenced by the presence of adjacent structures. This uncoupling of the 
SSI problem allows to apply a substructure approach, that is a solution in two stages, the first one 
dealing with the computation of the incident wave field, the second one coupling the calculated 
incident free field wave motion to the structure, this approach is best suited for nonlinear time analysis. 
The response of the structure due to the incident wave field is calculated using a subdomain 
formulation for dynamic SSI [2]. The structure having a finite dimension and the semi-infinite soil 
medium are treated by means of the spectral finite element method (SFEM), where special absorbing 
boundary conditions, the so-called perfectly matched layers (PML) are introduced and used with 
SFEM. An attempt has also been made to use BEM for the semi-infinite soil medium, using the 
Green's functions for the homogeneous or the layered half-space, which automatically takes into 
account the radiation condition.  
 This kind of problem (SSI) belongs to the field of earthquake engineering, where the response 
of the structure is calculated due to an incident wave field where the frequency content of typical 
earthquakes is in between the range 0-10Hz. 
 The third objective of this research is the validation of the resulting model for wave induced 
vibrations in buildings by means of an extensive parametric study based on a large number of case 
studies and with one building with known dynamic characteristics and varying soil conditions. A 
detailed investigation of input parameters in particular the dynamic characteristics of the building, the 
foundation shape and flexibility and the dynamic soil characteristics has been performed. 
 The use of a full Finite Element (FE) model for a single building is advocated to assess 
vibration problems. In practice, it used to be that FE modeling and dynamic SSI analysis is only 
performed for buildings of considerable societal importance (nuclear power plants, hospitals) and for 
critical work spaces as micro-electronics laboratories and rarely for ordinary buildings, that is 
residential buildings. 
This particular problem is considered, and this case was well documented within the frame of 
experimental studies through PEER and NEES reports. Furthermore, building a complete structural 
model allows to obtain a better insight in the decay of vibrations from the far field (free field) to the 
near field and the soil foundation (this is part of the soil adjacent to the foundation where most of the 
nonlinearities will happen), as well as the amplification per story over the height of the building. This 
would not have been possible with a simple 1D model of the structure on a half-space. 
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 The original contributions of this research work are the following: 
A clear overview of the numerical modeling for wave induced vibrations in buildings is given. For this 
purpose, a hybrid SFEM is used and a Matlab Toolbox grouping all the necessary programs and tools 
is obtained and validated. Plane incident waves are assumed in the modeling of SSI due to earthquakes 
as the distance between the epicenter and the region of interest is usually very large. An alternative 
implementation method for the incident wave field may be easily deduced and introduced in the 
numerical model to account for ambient vibrations, where the frequency content is in the range (1- 
80Hz) compared to the frequency content of typical earthquakes which is in the range (0 - 10Hz) as 
mentioned earlier. 
 
A parametric study to determine factors influencing wave propagation induced vibrations in buildings 
is undertaken. The influence of the type of foundation on the overall structural response is thoroughly 
investigated. The availability of test results of a seven-storey reinforced concrete hotel building 
located in the city of Van Nuys in Los Angeles [80] enabled us to perform a large number of case 
studies, such as the effect of SSI in vibration isolation. 
Matlab numerical computer programs are also developed for the following methods: FEM, BEM, 
FEM-BEM as they serve for comparisons with the new method SFEM, which is introduced recently to 
SSI problems. Theses Matlab scripts are intended to be inserted at a latter stage into Matlab main 
program as an independent toolbox solving SSI problems. 
 

1.3 Organization of the text 
 
A numerical model for wave induced vibrations in buildings is presented. 
 

In Chapter 2, the subject is introduced and it is explained where this work fits in the state-of-
the-art. The original contributions are emphasized, classical methods such FEM, BEM are presented as 
well as indirect and hybrid methods based on wave propagation. The new spectral method is presented 
where it will be coupled to FEM to form a new method applied for the first time to soil structure 
interaction analysis. 

 
In Chapter 3, basics of wave propagation in the soil is introduced. Conservation law, 

conservation of mass and momentum as well constitutive law in the presence of  various wave types 
are introduced to form  the variational formulation of the problem of the numerical model. 

 
In Chapter 4, we introduce and validate a pseudo-spectral method based on the tensorial 

differential formulation of the equations of elastodynamics, adapted to the treatment of half-spaces and 
layered soil domains. We show this for some application cases, based on Matlab codes developped for 
this purpose. We highlight the interesting effects related to topography, and underline also its intrinsic 
limitations. We deduce the need for using a more flexible method than the traditional differential 
formulation (finite differences, spectral or pseudo-spectral methods) for the treatment of realistic cases 
based on a variational method. 

 
In Chapter 5, for the solution of wave equations in the presence of unbounded domains, it is 

necessary to use absorbing boundaries to somewhat limit the domain under consideration and by the 
same time simulate the nature for unbounded domains. For this reason, highly accurate absorbing 
conditions called perfectly matched layers have been developed in the context of time harmonic 
elastodynamics by utilising insights obtained from the electromagnetic fields. This new concept has 
been developed and implemented into a Matlab computer code and later on will be implemented in the 
spectral finite element Matlab code. 

 
  Chapters  6 and 7, constitutes the heart of this thesis, we introduce and develop a variational 
formulation of a high nature of the equations of elastodynamics, known as "the spectral finite element 
method", and we highlight its properties on various traditional problems of increasing complexity 
(Lamb's problem, problem of Garvin, Rayleigh waves…). Then we present the application of this 
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method at more complex models taking into account the presence of the structure, for which strong 
effects in particular related to topography are highlighted. We obtain in particular strong local 
amplifications of the acceleration and displacement fields in such models.  
We will analyze the results provided by the of the spectral finite element method (SFEM) on a certain 
number of complicated models. We finish this study with by calculating soil structure interaction 
effects in 2-D structures, for which reference solutions exist . 

 
In Chapter 8,  a vast parametric study is performed; some conclusions on the effect of dynamic 

soil structure interaction (SSI) and of the influence of the type of foundation, building height and soil 
properties are drawn. SFEM, is then used for a real 5 storey reinforced concrete building. 

 
 In Chapter 9, important conclusions of this work are recapitulated and some suggestions for 
future research are given. 
 
All the work done using SFEM has been implemented in a Matlab computer program developed in the 
course of this thesis work. 
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Chapter 2 
 
2. State of the art of soil-structure-interaction 
methods 
 
This chapter gives an overview of the state-of-the-art of the used deterministic methods for solving soil-
structure-interaction (SSI) problems. This chapter considers the classical tools, such as the FEM and the 
BEM, and indirect methods, such as the spectral finite element method (SFEM). 
 
The FEM will be described in more detail than the other methods, because, most state-of-the-art methods 
are based on the FEM, and the FEM is coupled to the spectral element method in later stage and finally the 
FEM is used in numerous validation examples throughout this dissertation. The SFEM, will be used in this 
thesis, is the main topic and is considered only briefly here in order to show its relationship with the other 
methods. In chapter 6, the SFEM will be studied in more detail including the theoretical background, the 
convergence and the accuracy. 
This overview makes a distinction between uncoupled systems, either structure or soil, and coupled 
structure-soil systems. The coupled structure-soil problems are considered for both the FEM and the 
SFEM. The BEM is discussed with two extensions. Various generalizations and extensions of the FEM 
have been proposed in literature, which are presented in a structured manner in section 2.3. The last 
section considers the indirect spectral methods. 
 
 

2.1 Finite element method 
 
2.1.1 Introduction 
 
The FEM has proven to be one of the most suitable tools for solving many real-life engineering problems, 
which consist of finding the spatial distribution and possibly the temporal distribution of field variables in 
a continuous medium. Examples of such engineering problems can be found in the field of continuum 
solid mechanics, fluid mechanics and acoustics. Furthermore, the FEM is capable of handling multi-
physical problems, such as the one at hand where wave propagates from the soil medium to the structure, 
referred generally as soil-structure wave based methods. The considered problems are described 
mathematically by a set of partial differential equations (PDE) together with a set of appropriate boundary 
conditions and initial conditions.  
 
2.1.2 FEM strategy 
 
If one assumes that either a steady-state or static linear mathematical model is available, which describes 
the spatial distribution of the field variables accurately. Then, the exact solution of this model is 
approximated by employing the following FEM strategy. 
 

1. Subdivide the continuous domain in a finite number of sub-domains, i.e. the finite elements. 
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2. Within each element, approximate the solution by a linear combination of simple polynomial 
basis functions or interpolation functions. The contribution of each basis function forms a degree 
of freedom (DOF) of the FE model. In general, the DOF are nodal values of the considered field 
variables.  

3. The approximation solution violates the governing set of PDE and possibly some boundary 
conditions. Enforce the residuals on these relations to zero in some integral way. This can be 
achieved by application of either a variational principle, a weighted residual approach or a global 
physical statement (e.g. the principle of virtual work).  

4. Apply the Galerkin approach to the integral description obtained in the previous step in order to 
transform the continuous element model in a set of linear algebraic equations, which is the 
element FE model.  

5. Assemble all element FE models to obtain the global FE model. 
6. Solve the FE model for the unknown DOF. The approximation solution is then already available 

in discrete locations, because the DOF are nodal values of the considered field variables. 
Approximate the field variables in arbitrary locations by application of the element basis functions. 

 
 
2.1.3 Characteristics of FEM 
 
The discussion on the FEM is concluded with an overview of the advantageous and disadvantageous 
characteristic features of the method. 
 
Geometrical flexibility:  
The FEM is unrestricted with respect to geometrical features of the boundary of the considered problem 
domain due to the application of the isoparametric mapping procedure. 
 
Sparsely populated model:  
The FE models are sparsely populated, which allows one to use very efficient skyline solvers. For 
uncoupled problems the FE models are symmetric, which even further improves the efficiency of skyline 
solvers.  
 
Frequency independent sub-matrices:  
The mass matrices, the stiffness matrices and the structure-soil coupling matrix are real and frequency 
independent, which allows one to use the modal superposition technique based on a standard eigen-value 
decomposition. This improves the efficiency significantly for a broadband analysis of uncoupled problems. 
The efficiency improvement is less pronounced for coupled structure-soil problems. This may be 
compensated by the application of the component mode synthesis [18].  
 
Model size:  
The FE models are large. This is certainly the case for coupled structure-soil problems, which require the 
simultaneous consideration of a large structural FE sub-model and a large soil FE sub-model. For real-life 
engineering problems these FE models may contain millions of DOF.  
 
Accuracy:  
The FE approximation error is controlled for low frequencies by the "rule of thumb" kh = 1. This rule is 
not sufficient for increasing frequencies. Due to the large but limited available computational resources, 
the application of this type of rules restricts the FEM to low frequency applications. Furthermore, the 
approximation accuracy decreases for secondary field variables. 
 
Complex and frequency dependent submatrices:  
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The soil damping matrix is generally complex and frequency dependent through the presence of a 
complex and frequency dependent impedance value. The efficiency of the modal superposition technique 
decreases due to this property. 
 

2.2 Boundary element method 
 
2.2.1 Introduction 
 
The BEM is a well established alternative method for the FEM for various engineering problems. The 
application of boundary integral formulations forms the basis of the BEM. These boundary integral 
formulations relate the field variables in the problem domain  to boundary variables. In this way, the BEM 
follows a two step procedure. 

• First, the boundary variables are approximated by application of a FE type of strategy to a set of 
boundary integral formulations.  

• Then, the field variables are recovered by application of the boundary integral formulations with 
the approximated boundary variables. 

Two main classes of BEM are recognized, namely the direct BEM and the indirect BEM. 
• The direct BEM is based on the direct boundary integral formulations, which relate the field 

variables to physically meaningful boundary variables. For example in wave based SSI systems, 
the domain pressure is related to both the boundary pressure and the normal velocity. The direct 
BEM is applicable to either bounded problems or unbounded problems with a closed boundary 
surface (3D) or curve (2D). 

• In case of either combined bounded/unbounded problems or unbounded problems including an 
open boundary, the indirect BEM is required. This class of BEM uses indirect boundary integral 
formulations, which relate the field variables to boundary potentials, which do not have a direct 
physical meaning. For example in SSI systems, the domain pressure is related to a distribution of 
single layer and double layer potentials at an open boundary. 

 
Since this research considers bounded problems only, namely interior SSI problems or bounded structural 
dynamic problems, only the class of direct BEM is discussed here. More specific, this section discusses 
the application of the direct collocation BEM to interior SSI problems. 
 
 
2.2.2 Direct boundary integral formulation 
 
The direct boundary integral formulation relates the pressure at a position in a given domain , which is 
governed by the homogeneous Helmholtz equation, to the pressure and the normal velocity at position at 
the boundary.  
The Green’s kernel function associated with free field response of an acoustic source at a given position is 
needed, this makes use of Hankel function of the second kind.  
If a wave source at a position located inside the domain, the free field response in terms of green's 
functions takes its effect into account. This response is subtracted from the overall domain pressure field 
such that the resulting pressure field satisfies the homogeneous Helmholtz equation and the corresponding 
boundary conditions.  
 
 
2.2.3 Boundary variable approximation 
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A similar strategy, as used in the FEM, is used for the boundary variable approximation. The boundary is 
subdivided in a large number of small boundary elements. Within each boundary element, a linear 
combination of simple polynomial  basis functions approximates the boundary variables. 
The same set of local basis functions stored in a row vector are used both for the pressure approximation 
and for the normal velocity approximation. This is a reasonable choice since the continuity requirements 
for both boundary fields are the same.  
The application of the direct boundary integral formulation states that the pressure at each point in the 
domain  depends on the boundary pressure and normal velocity of all boundary points. Therefore, the 
local boundary variable approximations are assembled resulting in the global boundary variable 
approximations. 
 
2.2.4 Solution procedure 
 
The BE model  consists of n algebraic equations in 2 n DOF. In order to obtain a unique solution, the BE 
model requires n constraint relations, which follow from the incorporation of the boundary conditions. 
The pressure approximation in the problem domain follows from the two step procedure mentioned  
before. First, the BE model is solved. Then, the pressure approximation results from application of the 
direct boundary integral formulation using the boundary variable approximations. 
 
2.2.5 Characteristic features of BEM 
 
The direct collocation BEM applied to interior SSI problems exhibits the following features. 
• The BE models are small compared with FE models since their construction involves only the 
approximation of a small set of boundary variables. 
• The BE model matrices are fully populated since all boundary variable DOF influence the pressure in 
each domain position through the application of the direct boundary integral formulation. 
• The BE model matrices are non-symmetric by definition. 
• The BE model matrices depend implicitly on the wave-number k. Therefore, the application of a modal 
superposition technique based on a standard eigenvalue decomposition is not possible. 
• The BE model matrices are complex due to the application of the Green’s kernel function. 
• The BE model generation requires special care for the integral evaluation due to the singularity of the 
Green’s kernel function. 
• The velocity field approximation in the problem domain does not involve a loss in accuracy as in case of 
the FEM since the derivation of the direct boundary integral formulation can be performed analytically. 
• The direct collocation BEM can hardly compete with the FEM for interior SSI problems.  
The strength of the direct collocation BEM, or of the BEM in general, because of the fully populated 
matrices, and are very difficult to implement in computer programs. Since these topics are beyond the 
scope of this dissertation, the BEM is not considered further in the sense that the newly developed 
approaches are verified using analytical solutions or FE results only. 
Although the direct collocation BEM cannot compete with the FEM for bounded problems and although 
the BEM is not considered in the various numerical validation examples, the remainder of this section 
discusses briefly two extensions of the BEM reported in literature. 
 
2.2.6 Extension of BEM 
 
The BE model generation is computationally demanding. The associated model matrices are fully 
populated, complex and wave-number k dependent. Furthermore, the evaluation of the involved boundary 
integrals needs special attention due to the singularity of the integrands. This section considers two 
extensions of the BEM which are computational less expensive. 
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2.2.6.1 Regular grid method 
 
Bespalov [7] proposes the regular grid method (RGM) for electro-magnetic scattering problems and 
extends its application to exterior acoustic problems. The basic idea is to split the Green’s kernel function, 
namely in a singular part and in a regular part. Subsequently, the BE model matrices split in two parts too. 
The singular part of the Green’s kernel function has only a compact support. The corresponding BE model 
matrices are computed in the conventional way. However, due to the compact support of the Green’s 
kernel function, these BE model matrices are sparsely populated. 
The regular part of the Green’s kernel function is continuous and it is therefore well suited for 
approximation. For that purpose, an auxiliary regular grid, consisting of a 4 × 4 × 4 node cell, is selected 
for each boundary point. The interpolation of the nodal values forms the regular part of the Green’s kernel 
approximation. The corresponding BE model matrices are approximated. These approximate BE model 
contributions are sparsely populated due to the local approximation defined on the auxiliary regular grids. 
Due to the sparsity of the global approximate BE model, efficient skyline solvers can be used. 
 
 
2.2.6.2 Fast multipole BEM 
 
Instead of using a local approximation of the Green’s kernel functions, the fast multipole BEM (FM-
BEM) uses two different expansion systems, one for the near field response pattern of a source point and 
one for the far field response pattern [95]. The basic concepts of the fast multipole algorithm are explained 
below. 
• The contributions of the boundary variables in a patch of boundary elements are accumulated as 
multipole coefficients in one representative point of the patch. 
• The wave response at each representative point is computed for the multipole excitation of all 
representative points. 
• The wave response at each representative point is translated to the boundary DOF of all elements in the 
corresponding patch. These three steps represent the far field effect. 
• For each boundary DOF in a patch of boundary elements, the contributions of the boundary variables in 
the considered patch, and in its neighboring patches, are accounted for in the conventional way. This step 
represents the near field effect. 
The efficiency of the FM-BEM is improved further by implementing this fast multipole algorithm 
hierarchically, where the near field and far field effect of patches are combined using additional 
representative points. This results in the multilevel FM-BEM. Schneider compares the BEM and the 
multilevel FM-BEM with respect to (i) memory requirements, to (ii) computational costs and to (iii) 
accuracy. The numerical experiments illustrate 
• that both the required memory and the computational costs reduce substantially in case of the extended 
BEM while the accuracy is still of an acceptable level, 
• that the accuracy depends more on the complexity of the boundary than the multilevel FM-BEM, 
• and that, in case of short wave predictions, this reduces to the direct BEM whereas the multilevel FM-
BEM is still more efficient than the conventional BEM. 
 
 

2.3 Generalization and extension of finite element method 
 
2.3.1 Classes of FEM 
 
The FEM is restricted to low-frequency applications due to vastly increasing model sizes, which are 
required to control the approximation error. For low frequencies, the approximation error is governed 
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mainly by the interpolation error. However, the interpolation error gets polluted for increasing frequencies. 
The erroneous prediction of the numerical dispersion causes this pollution effect. Therefore, by reducing 
or even eliminating the dispersion error, the FE accuracy is improved significantly at higher frequencies, 
which allows one to enlarge the frequency application range of the FEM. 
Many classes of improved FEM have emerged, and this section discusses several of those classes applied 
to either uncoupled interior SSI problems or uncoupled continuum mechanical problems, namely 
• stabilized FEM, 
• generalized FEM including meshless methods, 
• multi-scale FEM, 
• and the classical FEM with a modified integration rule. 
Besides these classes of improved FEM, this section discusses some domain decomposition or sub-
structuring approaches, since these approaches allow (i) an enlargement of the overall FE model sizes and 
(ii) high efficient parallel implementations. 
The first results are very promising. Therefore the implementation of this new approach may improve 
commercial FE codes for SSI substantially with only a minimal amount of efforts. 
 
2.3.2 Domain decomposition 
 
The section on the generalization and on the extension of the FEM is finished by briefly considering some 
domain decomposition strategies. Domain decomposition allows one to investigate larger problems. For 
that purpose, the large problems are decomposed in several smaller sub-problems.  
Domain decomposition methods combine ideas from various disciplines, such as from the theory on PDE, 
structural dynamics, linear algebra, calculus and graph theory. Obviously, the subject of domain 
decomposition is too extensive to discuss it thoroughly in this dissertation. Therefore, this section refers 
only to some interesting techniques. 
 
 

2.4 Indirect Trefftz method 
 
2.4.1 Introduction 
 
Already in 1926, Trefftz proposes the use of this a priori knowledge in the definition of approximate 
solutions. The approximate solutions, used in the so-called Trefftz approach, satisfy the governing domain 
equations but violate the boundary conditions. Originally, the Trefftz approach is introduced as a 
counterpart for the Rayleigh-Ritz approach in order to obtain an error bound on the Rayleigh-Ritz 
prediction in case of a potential problem. 
Only half a century later, researchers have picked up the idea of Trefftz again as they recognize its 
potential advantages in numerical prediction methods. This has led to a class of numerical methods which 
are generally called Trefftz methods. The reader is referred to the introduction in [55] for a historical 
overview of the development of the Trefftz methods. Kita and Kamiya [57] provide a detailed overview of 
most accepted Trefftz methods of which this section only considers a small portion. 
This section discusses only indirect Trefftz methods. The term ‘indirect’ denotes that the DOF of the 
associated model have no direct physical meaning. The computation of the indirect Trefftz approximation 
solution always requires an additional post-processing step. The SFEM, which forms the topic of this 
research project, belongs to the class of indirect Trefftz methods. In addition to the indirect Trefftz 
methods, a whole class of direct Trefftz methods exists. The term ‘direct’ denotes that the associated 
model uses physically meaningful DOF. Direct Trefftz methods are based on a weighted residual 
formulation of the governing equations using weighting functions, which satisfy the domain equations a 
priori (Trefftz functions). After integration by parts, the weighted residual formulation consists of 
boundary integrals only. The involved boundary fields are approximated in a similar way as in the direct 
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BEM. However, instead of using singular Green’s kernel functions as weighting functions, the direct 
Trefftz methods use a linear combination of regular Trefftz functions. Since the SFEM does not belong to 
the class of direct Trefftz methods, these methods are not considered further. 
This section considers three classes of indirect Trefftz methods, which have been applied in the research 
field of either structural dynamics, acoustics, wave propagation or structure-wave based methods.  
• The first class consists of the hybrid-Trefftz FEM (HT-FEM). This method is based on an indirect 
approach to couple nonconforming Trefftz fields using the Lagrange multiplier technique. The principles 
behind the HT-FEM are well suited for the coupling of the SFEM to the FEM. 
• The second class consists of methods, which apply a direct approach to couple nonconforming Trefftz 
fields based on either a least-squares approach, a weighted residual approach or a variational principle. 
The SFE is a member of this class. 
• The third class consists of the spectral FEM. This method combines the indirect Trefftz approach with 
the dynamic stiffness method. Some computational efficient mid frequency methods have been derived 
from the spectral FEM for structural dynamic applications. 
 
 
2.4.2 Hybrid-Trefftz FEM 
 
Jirousek  report on the first attempts to incorporate the indirect Trefftz method in a FE framework which 
resulted in the hybrid-Trefftz FEM (HT-FEM) [45]. Since the late 1970s, the HT-FEM has been applied to 
various types of engineering problems, which has been reported in many publications. However, the 
efforts made to apply the HTFEM to steady-state dynamic problems are limited. Two examples from 
literature are given here. Farhat, Harari, and Hetmaniuk [31] and Farhat, Wiedemann-Goiran, and Tezaur 
[33] derive a HT-FEM for the Helmholtz problem, which they call the discontinuous Galerkin method and 
Cisma¸ siu [103] propose the application of the HT-FEM for elasto-dynamic applications. 
The principles behind the HT-FEM are well suited for the coupling of the FEM and the spectral methods. 
This paragraph merely summarizes these principles based on the following HT-FEM modelling procedure. 
• The problem domain is subdivided into finite elements. 
• In each element a linear combination of Trefftz functions, extended by appropriate particular solution 
functions, approximates the exact solution.  
• The field approximation satisfies the governing domain equations exactly but violates the boundary 
conditions and the inter-element continuity conditions. The application of the Lagrange multiplier 
technique enforces the involved residuals to zero in an integral sense. This requires the introduction of an 
independent boundary field for each element, the so called Lagrange multiplier. It consists of a linear 
combination of independent basis functions.  
• All condensed element models are assembled using the standard procedure of the direct stiffness method, 
as implemented in standard FE codes. 
• The global hybrid-Trefftz FE model is solved for the unknown Lagrange multiplier contribution factors. 
The field variable approximations inside each element are obtained in a post-processing step. 
The HT-FEM controls the pollution effect inherently better than the FEM. However, the application of a 
priori knowledge of the exact solution leads to ill-conditioned numerical models. This is a common 
feature of all indirect Trefftz methods [121]. However, by taking special care for the definition of both the 
Trefftz functions and the Lagrange multiplier basis functions, the HT-FEM is capable of providing 
accurate predictions for a wider frequency range than the FEM. Furthermore, a hybrid-Trefftz element is 
compatible with classical finite elements. This suggests that the indirect coupling procedure based on the 
Lagrange multiplier technique can be used to couple the FEM and the spectral element methods SEM too. 
 
 
2.4.3 Methods based on direct coupling of nonconforming Trefftz fields 
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This section discusses three indirect Trefftz methods, which are based on the indirect coupling of 
nonconforming Trefftz fields, namely 
• the SEM, 
• the Trefftz least-squares FEM (TLS-FEM). 
These methods follow the same modelling procedure but they differ with respect to (i) the application, to 
(ii) the applied Trefftz fields, to (iii) the applied integral formulations and to (iv) some implementation 
specific features. 
 
2.4.3.1 Modelling procedure 
 
The modelling procedure of the indirect Trefftz methods, considered in this section, is as follows. 
• The problem domain is subdivided in non-overlapping convex Trefftz subdomains. 
• In each Trefftz subdomain, a similar Trefftz approximation is used as in case of the HT-FEM with the 
unknown Trefftz DOF stored in column vectors. 
• As mentioned before, the Trefftz approximation satisfies the governing domain equation exactly but 
violates the boundary conditions and the continuity conditions between two adjacent subdomains (non-
conforming Trefftz fields). The application of some integral formulation, which is method dependent, 
enforces the violation on the boundary and continuity conditions to zero in an averaged way. The Trefftz 
DOF in a given subdomain are coupled directly to the Trefftz DOF in an adjacent subdomain via the 
coupling matrix and the associated coupling vector. The Trefftz component model is formulated in a given 
subdomain is connected with one subdomain only. The extension to multiple connected subdomains is 
straightforward. 
• The assembly of all Trefftz component models is simple bookkeeping procedure, which does not involve 
the add operation as in case of the direct stiffness method employed by the FEM and the HT-FEM. 
• The global Trefftz model is solved for the unknown Trefftz DOF. The field variable approximations 
inside each Trefftz subdomain are obtained in a post-processing step. 
 
2.4.3.2 Wave based method 
 
The WBM [26] has been applied to many steady-state dynamic problems, such as plate bending problems, 
acoustic problems and structural-wave problems. Several technical papers are available in literature 
discussing these WBM applications, [112] [86]. These papers illustrate that the WBM is capable of 
providing more accurate results in wider frequency range than the FEM. The method is named after the set 
of Trefftz functions, which consists of propagating and evanescent wave functions. These wave functions 
are defined for large convex subdomains. Model refinement consists of enlarging the basis of Trefftz 
functions per subdomain rather than increasing the number of subdomains. 
The application of either a least-squares approach or a weighted residual approach enforces the violation 
of the boundary and continuity conditions to zero. This results in two slightly different WB models. For 
example in an acoustic application, the pressure continuity is enforced in the WB model generation for a 
given subdomain and the velocity continuity in the WB model generation for another subdomain. 
 
2.4.3.3 Trefftz least-squares FEM 
 
Stojek propose the TLS-FEM for the analysis of a static mechanical problem, and later he  extends the 
application of the TLS-FEM to the Poisson problem and to the Helmholtz problem [100]. In case of the 
Helmholtz problem, the TLS-FEM uses generalized harmonic functions as Trefftz functions. Additional 
special purpose functions are introduced for non-convex subdomains which increase the accuracy 
substantially. Stojek investigates the convergence of the TLS-FEM by increasing both the number of 
subdomains and the number of Trefftz functions inside each subdomain. In both cases the TLS-FEM 
outperforms the FEM. 
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Originally, the TLS-FEM is based on a least-squares approach where all continuity conditions are 
enforced for each subdomain in the TLS-FEM model generation. In case of the WBM only half of the 
continuity conditions are enforced per subdomain. Later on, Stojek introduces the TLS-FEM based on a 
similar weighted residual approach as used in the WBM. The TLS-FEM may be implemented easily in a 
standard FE program. This requires the introduction of an additional FE mesh, which allows a standard 
assembly procedure of the direct stiffness method. 
 
2.4.3.4 Variational theory of complex rays 
 
The variational theory of complex rays (VTCR) has been applied for elastodynamic problems and for 
steady-state plate bending problems only [61]. These references illustrate that the VTCR provides the 
same level of accuracy in the mid frequency range as the FEM, however with substantially less 
computational efforts.  
The VTCR is based on a two-scale Trefftz approximation similar to the generalized FEM. A fine scale 
approximation, which consists of highly oscillatory interior modes, edge modes and corner modes, is 
multiplied with a coarse scale solution consisting of polynomial functions. Opposed to the generalized 
FEM, this product satisfies the domain equations exactly (Trefftz functions). The application of a 
variational principle enforces the violation of the boundary and continuity conditions to zero. At the 
interface between two subdomains, the variational principle divides the virtual transmission energy 
equally over the two subdomains. This implies that all continuity conditions are enforced for each 
subdomain similar to the TLS-FEM. The spatial distribution of the field approximation loses physical 
meaning in the mid frequency range. The effective quantities in this frequency range are spatial averaged 
values of the displacements, the elastic energy, the kinetic energy and the dissipation power. The VTCR 
approximates these effective quantities. These approximate effective quantities are computed in the 
postprocessing step. 
 
2.4.4 Spectral element method 
 
The third class of indirect Trefftz methods, considered here, is formed by the spectral element method 
(SEM). This method combines the indirect Trefftz approach with the dynamic stiffness method [61] for 
steady-state structural dynamic analyses. The objective of these analyses is to predict the mechanical wave 
propagation through a built-up structure. Since the dynamic field variables are represented in terms of 
frequency and wavenumber spectra, the dynamic stiffness method is referred to as the SFEM. 
The SFEM is a very efficient numerical method, but its application is limited to built-up structures of 
regularly shaped components only. A derived spectral FEM has emerged to overcome this drawback, 
namely the waveguide FEM, which is considered briefly in this section. 
 
2.4.4.1 Spectral FEM 
 
The SFEM combines the Trefftz approach with the direct stiffness method in the sense that the submodels 
or elements are assembled as in the standard FEMwhile the basis functions satisfy the domain equations 
exactly. Similar to the classical FEM, the spectral FEM is based on a variational principle. Two types of 
problems are considered, namely (i) problems, which are governed by an ordinary differential equation in 
one independent spatial variable, and (ii) problems, which are governed by a partial differential equation 
in two or three independent spatial variables. 
First consider problems, which are governed by an ordinary differential equation in one spatial variable, 
for example, the wave propagation through beam structures. The SFEM modelling procedure is as follows. 
• The 1D problem domain is subdivided in many finite elements, such that all geometrical, material and 
mechanical discontinuities occur at the element interfaces. 
• In each element, a homogeneous ordinary differential equation governs the steady-state dynamic 
response. The exact solution consists of a finite number of homogeneous solution functions. These 
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functions are linearly combined to obtain basis functions for which the corresponding contribution factors 
are nodal values of the field variables stored in a column vector. 
• The application of a variational principle results in a spectral element model. 
• All spectral element models are assembled by application of the direct stiffness method. 
• The solution of the global spectral FE model gives the exact nodal solutions of the field variables.  
The exact solutions inside the elements are obtained in a post-processing step. Lee and Lee [62] illustrate 
that the SFEM outperforms the classical FEM also in case of a distributed load over the 1D elements 
although it does not provide exact solutions. 
Next consider problems, which are governed by a partial differential equation in two or three independent 
spatial variables, for example, the wave propagation through plate structures. The SFEM modelling 
procedure is similar to its application for beam structures. However, in case of unloaded homogeneous 
plate elements, the exact solution consists of an infinite number of homogeneous solution functions. In 
order to cope with this infinite set, the second and third step in the modelling procedure are modified as is 
indicated below. 
• The SFEM requires the subdivision in rectangular plate elements, which are aligned in the x-direction. 
Furthermore, the boundary conditions do not vary in the x-direction. In that case, the exact solution can be 
expanded by an infinite set of y-dependent wave functions, each multiplied with a finite number of x-
dependent wave functions. The unknown contribution factors of each wave function is expressed in terms 
of the boundary values at the edges oriented in the y-direction. 
• The application of a variational principle results in the spectral element model, which is assembled using 
the direct stiffness method. 
In practice, the infinite set of wave functions is truncated in order to allow the implementation in a 
computer code. Therefore, the SFEM provides only approximate solutions in general. Using perfectly 
matched layers (PML) [6] [98] will overcome these shortcomings and improves the results. Due to the 
incorporation of a priori knowledge of the exact solution by application of the wave function, the SFEM is 
more efficient than the FEM. 
 
 

2.5 Conclusions 
 
This chapter gives an extensive overview of the state-of-the art of deterministic computer aided 
engineering tools for the steady-state dynamic response analysis of (i) interior acoustic problems, of (ii) 
plate bending problems and of (iii) interior structural-acoustic problems. The most accepted tool for these 
type of analyses is probably the FEM. Section 4.1 reviews the FEM where its application to interior wave 
propagation problems gets most attention. Not only is the FE modelling procedure expanded in detail, but 
also the convergence and the accuracy of the method are discussed thoroughly.  
The investigation of the accuracy reveals that the FEM suffers from the pollution effect caused by the 
dispersion error. In order to control this pollution effect, which gains importance at increasing frequencies, 
a vastly growing number of elements is required. This feature restricts the application of the FEM to the 
low frequency range. Several generalizations and extensions of the FEM try to control the pollution effect 
more efficiently by reducing the dispersion error in order to enlarge the low frequency application range. 
This is achieved by 
• stabilizing the weak form of the weighted residual formulation, 
• incorporating a priori knowledge of the exact solution in the approximation space, either in a 
multiplicative way or an additive way, 
• or by simply shifting the Gauss points for the integral evaluation to unconventional locations. 
The occurrence of the dispersion error cannot be removed by these measures, but the resulting improved 
FEMs suffer less from the pollution effect than the classical FEM. An alternative way to extend the 
frequency range of the FEM is the application of domain decomposition or substructuring. This approach 
is based on the idea of divide and conquer: solving many small problems can be computational less 
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expensive than solving a few large problems. An additional advantage of the domain decomposition is that 
it is well suited for parallelization. 
Another well established, deterministic tool for steady-state dynamic problems is the BEM. This method 
is based on boundary integral formulations, which relate the field variables to a set of boundary variables. 
Since only a set of boundary variables needs to be considered, the involved model sizes in the BEM are 
small compared with the FEM. However, the computational efficiency of the BEM is most pronounced for 
unbounded problems, which are not consider in this research project. Already in 1926, Trefftz proposed 
the use of a priori knowledge of the solution in numerical methods. In the late 1970s, researchers started to 
develop methods based on his idea, which are referred to as Trefftz methods. The key feature is to apply 
an approximate solution, which a priori satisfies the governing domain equations but which violates the 
boundary conditions (indirect Trefftz methods). Several indirect Trefftz methods are reviewed, which are 
categorized as follows 
• the hybrid Trefftz FEM, 
• the methods based on the direct coupling of nonconforming Trefftz fields, such as the WBM, 
• and the spectral FEM. 
All indirect Trefftz methods suffer inherently less from the dispersion error than the FEM with all its 
extensions and generalizations. Therefore, these methods have the potential to widen the frequency 
application range of the low-frequency deterministic methods. This research focuses on the further 
development of the SFEM, because the SFEM is applicable to a wide range of interior structural-wave 
based problems. 
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Chapter 3 
 
3. Wave propagation in an elastic medium  
 
3.1 Introduction 
 
As soon as one is interested in the propagation of waves in real structures, it is necessary to resort to 
numerical methods to solve the equations of elastodynamics in the medium considered. Indeed, we know 
analytical or semi-analytical solutions with these problems of propagation only in extremely simple cases 
(homogeneous models or formed by plane layers for example). Since the beginning of the 1970s, with the 
advent of the data-processing techniques and the spectacular increase in the capacities of computers, as 
well from the point of view of their computing speed, as well from the point of view of their memory size, 
sophisticated numerical techniques were born. 
Approximate methods, such as the ray theory for example, based on a high frequency approximation, or 
methods calculating the whole wave field (finite differences, spectral and pseudo-spectral methods, finite 
elements, integral methods…) have made it possible to make relatively easy the calculation of synthetic 
seismograms in 2D complex structures and to approach calculation in 3D structures.    
In the last few years, it appeared clearly, that the majority of the above mentioned methods, although very 
effective in many cases, suffered from intrinsic limitations which restricted the application to realistic 
models. Indeed, we may ask the following question: if we wish to calculate the whole wave field 
propagating in a 2D model or a complex 3D structure, presenting for example non-plane layers with 
strong contrasts in speed and Poisson's ratio, also presenting a broken surface topography, then, which 
method among those available will be able to answer our questions? In particular, how one can take into 
account topography? Is it possible to model a discontinuity of the free face? Is it possible to solve the 
difficult problem of Rayleigh waves propagating at an interface (Stoneley problem) of a given structure? 
In the case of elastic properties of a heterogeneous medium, is it possible to define a clear and precise 
space-time diagram?  
In the case of realistic 3D models (grid having several million points), are we going to be strongly limited 
by the cost of the proposed methods? Are we able to predict site effects of real three-dimensional 
structures? May these methods be adapted to the modern architectures of supercomputers (massive 
parallelism)? As surprising as it can appear, an inventory of the existing techniques in the literature did not 
make it possible to answer positively the whole of the above questions. Excluding approximate methods, 
such as the ray's theory, because we want to model the whole of the wave field, including surface waves 
and interfaces, moreover without making particular assumption on the frequency content of the 
propagated waves. The most common approach then consists in solving the equations of the 
elastodynamic problem written in differential form, using for example finite difference techniques or a 
pseudo-spectral type. Finite difference methods were largely used for 2D cases, and more recently in 3D, 
for modeling of wave propagation.  
Unfortunately, finite differences produce artifacts, called grid dispersion or numerical dispersion, in zones 
where the wave field presents a strong gradient, or when too coarse grids are used. For traditional 
diagrams of centered finite differences, of second or fourth order, a minimum of 15 points of the smaller 
wavelength of the propagated signal (approximately 8 points in the case of a fourth order diagram) is 
necessary [2] [28]. Dispersion and anisotropy related to the grid can be reduced while using, instead of the 
centered finite difference formulation, the formulation of the grid based on the equations of linear 
elastodynamics in the form of a first order symmetrical hyperbolic system [69] [97]. These diagrams are 
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however expensive, indeed they require the storage of a significant number of variables from a data-
processing point of view. Centered finite difference schemes of the fourth order in space and time, based 
on the modified wave equation [28] [10] [85] [25] [23], allow obtaining a significant improvement in term 
of precision and a considerable reduction in the calculation cost. Optimized operators were also proposed 
for the diagrams in quincunx, by increasing the frequency range for which the error of the diagram 
remains limited by a maximum value that one gives [65], unfortunately such diagrams are based on a 
separate treatment of the error in space discretization and error in temporal discretization [78]. 
If one can decrease as much as possible the error of the scheme by sufficiently refining the grid 
calculation, in space and in time, the price to be paid is obviously a proportional increase in computing 
time and memory size, which can prove to be very penalizing, especially in 3D case.  Then, for soil 
structure and geophysics applications which require a large effort of calculation, such as wave propagation 
in 3D realistic geological structures [48], it is often difficult to find a balance between a weak numerical 
dispersion and a reasonable computing time. If the model presents a surface topography or a soil structure 
interaction, the problem becomes more complex. Even if various techniques were proposed to incorporate 
such cases of soil structure and curved topographies or interfaces in the finite difference schemes, for 
example a discretization in stairs of interfaces [14] , or the introduction of a curvilinear frame of reference 
with a geometrical transformation ad hoc [74], or "the interpolation" of the model on both sides of the 
interface [109], such treatments remain limited to simple geometries, and lead to noisy diffraction. 
Moreover, many of these schemes become unstable as soon as the curve of the surface becomes large. 
Another disadvantage of the finite differences is their incapacity to implement the condition of free 
surface with the same numerical precision as in the interior of the model, particularly when schemes of 
high order are used. Thus, finite differences techniques seem less adapted for the modeling of the surface 
waves (Rayleigh) and other interface waves (Stoneley) in real models. 
In addition, finite element methods based on a variational formulation of the wave equation, which allow 
to take into account the boundary conditions (in particular the free surface condition), although they are 
adapted to the treatment of complex geometries and really heterogeneous models, were much used in the 
field of seismology [95]. Indeed, traditional finite element methods are limited in practice to weak 
polynomial approximation orders, and remain not very precise and dispersive in the case of wave equation 
[34] [9] [104]. The traditional finite elements of a higher nature also pose some problems difficult to solve, 
such as the appearance of noisy and parasitic waves, and the fact that they do not lead naturally to 
completely explicit numerical methods, which means that it is necessary to invert a matrix whose 
bandwidth grows with the order of the polynomial used. Let us note that recently, space-time finite 
element methods were introduced in elastodynamics  and opened interesting perspectives [68] [70]. 
In addition to the above presented methods, it is also possible to seek a solution of the wave equation by 
using an integral representation of the problem, having discretized quantities on the physical boundaries of 
the domain considered. That led, these last years, with the development of various boundaries methods 
based either on the domain decomposition of a family of functions, or on the introduction of Green's 
functions.  
The approach was largely extended by many authors in order to study the behavior of structures 
presenting irregular topographies [66]. In the same spirit, boundary methods based on the superposition of 
solutions obtained from sources having singularities placed outward (near the border) of the studied area 
were proposed for two-dimensional and three-dimensional problems, boundary conditions being 
automatically satisfied within the least squares meaning [33]. Direct or indirect boundary element methods, 
using the fundamental solutions like weighted functions and making use of Green's theorem, allowed to 
calculate precise solutions to various elastodynamic problems. 
 
Whereas the direct methods formulate the problem in terms of unknown displacements and tractions, the 
indirect methods formulate the problem in terms of the unknown force density and moment density factors 
on the boundary. Combination of the Green's functions in a discrete wave number  with an indirect 
integral representation, by using distributions of sources, or with a direct method [77], have led to the 
development of many interesting methods for the propagation of elastic waves, with the advantage that the 
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solution is sought in a space dimension decreased by one from the studied physical field (the interfaces 
alone are being considered). 
However, the methods of this kind are very often limited to the resolution of homogeneous layer problems 
in the case of a linear material behavior (and because of the absence of simple expression for Green's 
functions for non homogeneous non layered domains). Moreover, the linear systems that one have to solve 
are very large (for realistic soil structure problems that may include site effects), dense and generally 
nonsymmetrical. The profit in term of memory size and computing time, that one would intuitively expect 
to find from such methods, is thus not always obvious since models of realistic size including structures 
are studied. To remedy this disadvantage, it is possible to truncate certain coefficients of the linear system, 
which will result in a significant reduction of the size of the system, but at the price of a more or less 
significant degradation of the precision of the numerical results. 
 
The spectral methods, introduced in fluid mechanics at the beginning of the eighties in order to obtain a 
better precision of the numerical solution of differential equations, were also used, more recently, into 
elastodynamics [84]. 
The initial idea consists in using a decomposition method of the domain into truncated Fourier series does 
not make it possible to take into account non-periodic boundary conditions, such as the condition of free 
surface for example. Some numerical tricks, like the "zero padding"  were proposed but appeared not very 
precise [84]. The bases of circular functions were thus quickly replaced by bases of orthogonal 
polynomials (polynomials of Chebyshev or Legendre for the space decomposition for example), which led 
to the introduction of the so-called pseudo-spectral methods [59]. This technique was used much during 
the last twenty years, in particular, because of its precision, its low number of points per wavelength 
necessary to obtain almost a propagation not presenting numerical dispersion, and finally because of the 
good adaptation of this method to the vectorial calculator architectures. These approaches enter the class 
of collocation methods, for which the numerical solution must satisfy the differential form (strong form) 
of the wave equation on a suitably selected points. The choice of the collocation points is of crucial 
importance for the precision of the method, and it is important to note that the number of collocation 
points must be equal to the dimension of the space of approximation (i.e. the maximum degree of the 
polynomials used for the approximation of the solution).  
Another important remark is that these collocation points, that are for the Legendre polynomials or for the 
Chebyshev polynomials, do not have a uniform spacing, but densify on the edges of the domain. This 
constitutes a significant limitation of the pseudo-spectral methods because, the points near the edges are 
very close to each other near the edges of the grid,  we can show that the maximum time step value ∆ t, in 
the case of a conditionally stable time diagram , behaves like N – 2 , where N  is the number of collocation 
points in a direction of the grid, and thus the stability criterion becomes quickly very unfavorable when  N  
increases for better precision of the space discretization.  
Moreover, these global methods remain limited to very simple geometries and interfaces, such the case of 
slightly deformed squares or cubes, because of the difficulty of finding a global transformation grid 
sufficiently regular towards the reference square or cubic areas.  In addition, the global pseudo-spectral 
methods written in their strong formulation, suffer of the same type of difficulties as the finite difference 
methods for taking into account of the conditions of free surface. The natural idea consisting of coupling 
the domain decomposition technique with spectral methods was quickly proposed. However, the need for 
explicitly imposing connection conditions between sub-domains heavily burdens the algorithm. 
In the first part of this thesis, we will show that an approach based on pseudo-spectral methods makes it 
possible to obtain interesting results for sufficiently regular models, but we will also clearly show the 
limitations of this approach since a realistic model will have to be taken into account. The pseudo-spectral 
approach introduced into this first part will be original in the sense that, we will use a tensorial notation of 
the space derivatives, from which we will show that it makes it possible to reduce significantly the 
calculation cost of the method compared to the formulations used traditionally in the literature. 
In this context, by becoming aware of the great similarity existing between the collocation  methods and 
the variational formulation using consistent quadratures, it appears clearly that the spectral methods are 
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very close to the finite element methods in their high order versions called  p and h – p. This has led to the 
development, initially in the field of fluid mechanics, of the of the spectral element method [84], and with 
the recent approaches suggested by Seriani and Priolo for the elastodynamic problem [96]. In the second 
part of this thesis, which constitutes the main part of this work, we will introduce a spectral element 
method allowing to solve the hyperbolic second order system describing the elastic wave propagation in a 
complicated medium, for 2D as well for 3D. The potentialities of the introduced method will be shown for 
various traditional 2D problems, of which some are considered to be difficult to handle by other numerical 
modeling techniques.  
 
The principal differences between our approach and that proposed by Faccioli et al.[30] lie in the way of 
formulating the variational problem, and especially in the way of imposing coupling conditions between 
elements (we impose only one C 0 continuity by an assembly of the system, in the same way as in the 
finite element method when using p or h – p types). Even if the particular choice of the polynomials and 
the points of collocation do not affect appreciably the error made for the space discretization, it affects 
strongly the conditioning and the structure of the matrices of the algebraic equations system to solve, 
which is critical for the effectiveness of the algorithm, in particular in its degree of parallelization [34]. 
This approach leads to a really explicit diagram (diagonal mass matrix), and makes it possible to preserve 
the benefits of the summation-factorization algorithms [30]. The spectral element method proposed in this 
thesis, derived from a weak formulation of the equations of elastodynamics, allows combining in a natural 
way the geometrical flexibility of the variational methods of a weak order with the fast convergence rate 
characterizing the spectral approximations. This good property of convergence comes from the high 
accuracy of the space resulting from the use of the rule of Gauss-Lobatto-Legendre. Moreover, this space 
precision is preserved in the majority of the situations for which non-constant coefficients must be used 
within each element, i.e. in the case of a heterogeneous medium (elastic properties of the medium not 
constants), or in the case of a deformed geometry (non-constant jacobien of transformation) [30] [17]  
[105]. 
 
In this work, we were motivated, by the study of two types of problems: the first is the complete modeling 
(wave form, volume waves, surface and interface waves) of the elastic wave propagation in complicated 
mediums, in order to understand and to extract the physical information contained in the seismic data 
coming from recordings carried out in these difficult structures. The study of soil structure interaction 
problems presenting such phenomena (diffraction, coupling of modes, generation of Rayleigh waves and 
surface waves, effects of localization and amplification of the displacement and acceleration fields) must 
call upon numerical techniques providing very precise solutions, that take into account in a clear way the 
boundary conditions as well for surface interfaces in a heterogeneous medium. The second problem is that 
of the site effects. 
The movements of the soil can be amplified in a very significant way (at various frequencies) because of 
topography or local geology. This was observed for many earthquakes; in particular, 3D effects related to 
surface topography, or the sedimentary layers present in the model, can lead to complex phenomena such 
as amplification and scattering. Such effects can modify the movements of the soil in a very broad 
proportion, and are thus of a paramount interest in the prevention of the seismic risks and for the analysis 
and design of structures built in such zones. It is thus particularly interesting to be able to develop 
numerical techniques making it possible to model with precision such effects. 
 
The modeling of wave propagation in complex elastic media can call upon different forms of numerical 
techniques, of which, the most current are recalled in the second part of this chapter, showing their 
principal characteristics. All these techniques having in common, the description of bodies by using the 
theory of elasticity, whose basics were established by Cauchy and Poisson at the beginning of the XIXème 
century, we recall in the first part of this chapter the principal results of this theory. The description will be 
inevitably brief, for more details on this theory, the reader will refer to many traditional works on theory 
of elasticity. 
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3.2 Tensor of deformation  
 
The goal of the theory of elasticity is the study of the mechanics of solid bodies considered as continuous 
mediums (macroscopic approach). Under the effect of the forces applied to them, the bodies considered 
undergo deformation, resulting in a change of their form as well by a change of their volume. Let us note r 
the vector position of a point of the body, xi its components in a frame of reference which one defines.  
After deformation of the body, its points have moved, noting r′  (with components) the new vector 
position of this point material. The displacement vector of this point is then:  

'
ix

 
rru −′=                                                                      (3.1) 

 
Generally, knowing the vector displacement in each point of the body is enough to determine the 
deformation of that body. Let us consider two infinitely close points. Let us note dr having a component 
dxi, the vector connecting these two points before deformation, and rd ′  , of component , the vector 
connecting the same two points after deformation. The distance between the two points before 
deformation is then   
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i

ixdld 2                                                                   (3.3) 

 
Taking the square of equation (3.2), and making use of the following relation , and by 
implying the summation on the index i, we obtain 

iii dudxxd +=′

 
22
idxdl =                                                                      (3.4) 

 
And then 
 

222 )( iii dudxxdld +=′=′                                                         (3.5) 
 
So now if we introduce the relation ku

u
i dxdu

k

i
∂
∂= , we can rewrite the element length in the form  
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+=′ 222                                           (3.6) 

 
Note that we used here, as it will be always the case, unless otherwise specified, the convention of 
summation on indices, known as Einstein convention, which has the merit to reduce the notations 
considerably. 
The above expression can be simplified by noticing that, the indices being dumb, it is possible in the third 
term to invert the indices i and l, and to rewrite the second term in symmetrical form ( ) kiu

u
u
u dxdx

i

k

k

i
∂
∂

∂
∂ + ,  

which leads to the following expression  
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kiik dxdxdlld ε22 =′                                                             (3.7) 
 
where the tensor ikε , is symmetrical by definition )( kiik εε = ,  and is called deformation tensor, and is 
given by  
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In many practical cases and in particular when for the study of the elastic wave propagation, it is possible 
to suppose small disturbances and this assumption holds in the field of linear elasticity.  Then, the last 
term of equation (3.8), which is of the second order, can be neglected; this makes it possible to find the 
traditional expression for infinitesimal deformations  
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This is the expression that will be used throughout this thesis. 
 
 

3.3 Conservation Law  
 
Starting from the fundamental conservation laws (conservation of mass, momentum and angular 
momentum), expressed in total form, we can find their local expression on the assumption of a continuous 
medium. We work in an Euclidean space having a Cartesian frame of reference. In seismology, the 
distinction between Lagrangian approach and Eulerian (both developed by Leonhard Euler) is seldom 
necessary, because the space fluctuations of displacements, strains and stresses have wavelengths much 
larger than the displacement amplitudes of the particles. In this particular case, and from a practical point 
of view, there does not exist difference between the evaluation of a gradient in a fixed point (Eulerian 
approach) or a given particle in movement (Lagrangian approach). 
 
 
3.3.1 Conservation of mass  
 
Suppose that M ( t ) is the mass of an object of volume V  ( t )  in the time domain. For an isolated system, 
there is no creation of mass, the law of total conservation of mass is thus written  
 

0)( =t
dt

dM
                                                                  (3.10) 

 
If we introduce the density of mass ρ ( x , t ) , then the total mass of volume V  ( t )  is written  
 

∫∫∫=
)(

),x()(
tV

dVttM ρ                                                         (3.11) 

 
The volume V  ( t )  follows the matter in its movement, the condition (3.11) results in  
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t υρρ
                                  (3.12) 

 
 
Noting S ( t )  as the contour of V ( t ) , n j  the j th  external normal component of S ( t ), and V j ( t ) the j th 
speed component of the particle at  x and instant t. Using the theorem of divergence, we obtain  
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                                     (3.13) 

 
 
This expression being true for any volume V, the integrand is continuous, and then we deduce the law of 
conservation of mass as 
 

0)),x(),x((div),x(
=+

∂
∂ tt

t
t υρρ

                                               (3.14) 

 
 
3.3.2 Conservation of momentum  
 
By definition, the momentum contained in the volume V ( t )  is given by  
 

dVtttP
tV∫∫∫=
)(

),x(),x(),x( υρ                                                  (3.15) 

 
The force acting on this volume is the sum of the forces of external origin applied to this volume  
 

dVtftF
tVext ∫∫∫=
)(

),x()(                                                       (3.16) 

 
and of the interior forces resulting from the traction exerted on the surface S ( t )  of volume  V  ( t ) 
 

∫∫=
)(int ),x()(

tS
dSttF τ                                                        (3.17) 

 
where the vector traction is given by  
 

jiji nστ =                                                                    (3.18) 
 
the tensor σ ij  is called constraint tensor , and n j  being the j th component of the normal external to S( t ). 
By using this definition of the traction as well as the divergence theorem, we have  
 

∫∫∫∫∫ ∂==
)()(int ),x(),x(),x()(

tV ijjtS jij dVtdStnttF σσ                              (3.19) 

 
Now we write the total conservation of momentum, or second Newton's law, we obtain  
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)()()( intext tFtFt
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+=                                                         (3.20) 

 
With the expression of momentum (3.15) and external forces (3.16) and interior (3.17), we deduce  
 

ijjijij
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∂
∂ )(                                                   (3.21) 

 
which gives the well known form of conservation of momentum written in local form  
 

iijjij
i f

t
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∂
∂ )( συρυρυ

                                                   (3.22) 

 
 
3.3.3 Conservation of the angular momentum 
 
In the case of infinitesimal deformations, the law of conservation of angular momentum results in the 
symmetry of the constraints tensor )( jiij σσ = . 
 

3.4 Equations of elastodynamics  
 
3.4.1 Constitutive Law 
 
To be able to solve the system of conservation equations described above, it is necessary to give a law 
connecting the constraints in the medium to the history of its deformations, i.e. to define the rheology of 
the medium. Such a law is called constitutive law of the material. There are many traditional rheology 
models, for example of the elastic type, visco-elastic, plastic, visco-plastic, fluid…Within the framework 
of this thesis, we were interested more particularly in the elastic and elastic-plastic material models. 
That is to say { }),x(),x( tt ijσσ =  the constraints tensor and { }),x(),x( tt ijεε =  the tensor of the 
deformations in a point x of the medium at the moment t. The medium is known as elastic if the 
constraints at the moment t (at point x) depend only on the deformations at the moment t (in the same 
point x ). For small deformations, a Taylor development gives  
 

...
2
10 +++= klmnijklmnklijklijij dc εεσσ                                               (3.23) 

 
For sufficiently small deformations, one can keep only the first term of the development, which gives 
Hooke's law (sometimes called generalized Hooke's law)  
 

),x()(),x(),x( 0 txctt klijklijij εσσ +=                                             (3.24) 
 
The term ),x( 0tijσ is called prestress, and corresponds to the stress state of the system when it is in 

equilibrium. Thanks to the constitutive law, the tensors  being given, we can at any instant 
calculate the stress field σ from the strain field ε. If we add this law to the stated conservation laws given 

,..., ijklmnijkl dc
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in equations (3.14) and (3.22) above, and with the definition of the strain tensor (equation 3.9), we then 
have a complete set of equations allowing to describe the studied system. 
 
 
3.4.2 Small strain equations  
 
Developing and rearranging the terms of the conservation momentum equation (equation 3.22), we get 
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∂ )(ρυρυυρυσυρ                                   (3.25) 

 
According to the conservation mass equation (equation 3.14), the last term on the left of equation (3.25) is 
null, therefore  
 

iijjijj
i f

t
=∂+∂−

∂
∂ υρυσυρ                                                     (3.26) 

 
Within the framework of the of the elastic wave propagation, we can reasonably make the assumption of a 
medium subjected only to small disturbances, that is small strains. This approximation makes it possible to 
neglect certain terms, and led to the classical equation, which we will use thereafter  
 

iijj
i f
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+∂=
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∂ σρ 2
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                                                           (3.27) 

 
 
3.4.3 Isotropic elastic medium  
 
In the case of a linear elastic material, having the tensor of the elastic parameters c ijkl  will be enough to 
link the constraints to the deformations in any point of the material. This tensor has the following 
symmetries: 
 

klijijkl cc = (major symmetries) 

ijlkklijijkl ccc ==  (minor symmetries)                                              (3.28)  
 
Moreover, c  is positive definite : 
 

ψαψψ >klijijklc  with 0>α         0  , ≠=∀ jiij ψψψ                                 (3.29) 
 
The simplest case for an elastic medium is the case where the properties of the medium are the same in all 
directions of the space dimension. Such a medium is known as isotropic material. In such a case, only two 
elastic parameters are needed to characterize the relationship between the constraints and the strains. We 
can for example use the two Lamé's constants λ and µ and write Hooke's law in the form  
 

ijkkijij µεελδσ 2+=                                                           (3.30) 
 
that comes to say that  
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jkiljlikklijijklc δµδδµδδλδ ++=                                                   (3.31) 

 
where ijδ   represents the Kronecker's symbol, defined by ijδ  = 1 if i  =  j  otherwise ijδ  = 0. 
If the two Lamé's constants λ and µ are one possible parameterization in the isotropic elastic case, 
obviously it is not the only one. One of the major defects of the Lamé's parameters is that they are not 
linked in a direct way to an easily measurable physical quantity. Among the other measurable parameters 
frequently used, let us quote for example: 
 
- Bulk modulus µλ 3

2+=K     

- Young's modulus   
µλ
µλµ

+
+

=
)23(E  

- Poisson's ratio   
)(2 µλ

λν
+

=  

- Compression wave velocity (P waves)   
ρ
µλ 2+

=pc  

- Shear wave velocity (S waves)  
ρ
µ

=sc  

 
Some useful properties of these parameters can be cited. The Poisson's ratio is such that  
 

2
11 ≤<− ν                                                                   (3.32) 

 
Values of Poisson’s ratio in the vicinity of the limit 2

1=ν correspond to a slightly consolidated medium. It 
is interesting to note that need for being able to define an energy density which is of a definite positive 
form imposes only the condition 1−>ν and not 0>ν . Noting that for the majority of rocks, Poisson's 
ratio is in between 0.20 and 0.35. 
 
The relationship between S and P wave velocities are such that  
 

2
p

s

c
c <                                                                      (3.33) 

 
from which the name of these waves stands for (P = as Primary, S = as Secondary), the P waves always 
arrive first, before the S waves. It is also attributed to the following definition (P = as Pressure) and (S = 
as Shear), the P waves being compression waves of and the S waves as shearing waves. 
 
 
3.4.4  Hyperbolic system of first or second order  
 
We have just seen that the wave equations of the isotropic linear elastic case can be written in the 
following form  
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jiijij uu ∂+∂=ε  

ijkkijij µεελδσ 2+=  
 
We are thus in the presence of a second – order hyperbolic system for the unknown displacement field u. 
We thus expect to find solutions of diffusive type, in particular the existence of plane waves as a particular 
solution of the system in the homogeneous case. 
Let us note that it is possible to rewrite the above equations in the form of a first order hyperbolic system 
in time by choosing the unknown factors displacement, speed and the constraints [47] [48]. If we are 
interested only at the speed and the constraints, the system can be reformulated in a simple manner, for 
example for a 2D case we write : 
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with 
 

[ ]TxyyyxxyxU σσσυυ ,,,,=                                                     (3.35) 
 
and 
 

[ ]Tyx ffS 0,0,0,,=                                                           (3.36) 
 
while having posed  
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3.4.5 Boundary conditions  
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In practice, in the case of a numerical problem, the studied domain is never infinite, but is limited even by 

hus let us now define the limits problem in which we ought to solve. That is an open no-homogeneous 

the fact that the memory size of the used machine used for calculation is limited. We do have physical 
boundaries of the domain (primarily free surfaces, corresponding to a Neumann condition, and rigid edges, 
corresponding to a Dirichlet condition), and the so-called numerical boundaries of the domain, limiting the 
medium in an artificial manner, on which there must be posed absorbing boundary conditions. 
 
T
elastic limited domain Ω having a boundary Ω∂ , and Ω  the corresponding closed domain field, intΓ  the 
physical boundary, ext

absΓ  the numerical boundary on which absorbing boundary conditions m
introduced, and I = [0  ] ⊂  R

ust be 

1. Boundary conditions in constraint terms 

 , T + the time interval of study. According to the physical problems that one 
wishes to model, three types of boundary conditions can exist: 
 

int
rΓ  

 

jiji nστ =&       on                                                      (3.39) 
 

where 

 Ι×Γ int
r

),x( tττ = is the traction condition imposed on the boundary, and n the outward normal on Γ . A 
condition of null traction on the boundary, i.e. ),x( tττ = = 0; Ι∈∀t , corresponds to the very important 
particular case, of a free surface condition. 
 
 

2. Dirichlet boundary conditions (imposed displacement) on  
 

int
gΓ  

ii gu =       on                                                           (3.40) 
 

 Ι×Γ int
g

where g = g ( x , t ) is the displacement imposed on the boundary.  These conditions correspond to the case 
of a rigid edge boundary. 
 
 

3. Radiation conditions (absorbant conditions) on 
 

ext
absΓ  

When it is supposed that the physical domain under consideration extends toward infinity in one or more 
directions (which is only a view of mind, since actually any physical domain is inevitably limited), it is 
not possible to directly use the spectral element method without running up against the problem of the 
numerical modeling of the wave propagation in an infinite or semi-infinite medium. The traditional 
approaches to solve this difficulty is to replace the initial given problem by a limited domain by 
introducing a fictitious boundary (absorbing boundary) on which are imposed suitable boundary 
conditions. A condition of radiation must be introduced on this fictitious border ext

absΓ  in order to replace 
the external field. The correct writing of a condition of this type is a complex problem which will not be 
studied here; see for example Givoli [38] for a very complete study on this subject.  
Recently, exact non-local boundary conditions, using an asymptotic development of the solution in the 
external field were proposed, but they present the disadvantage of being particularly complicated to 
implement. Following Aubry et al. [2], a development in a wave number of the equations of 
elastodynamics written in Fourier domain is carried out, in order to obtain an expression for the 
impedance of the fictitious boundary. Such an approximation is exact only for relatively high frequencies, 
and especially for normal incidental waves on the absorbing boundaries. With order zero (used in this 
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research work), such an approximation is very similar to the traditional dampers proposed by Lysmer and 
Kuhlemeyer [72]: 
 

TsNp cc v)(v)( ρρτ +=        on                                               (3.41) 
 

here

Ι×Γext
abs

w  τ  is the traction on the boundary, and Nv)(ρ  as well Tv)(ρ  are respectively the normal and 
sorbin . 

y considering plane absorbent edges, the condition which we used is written here for a 2D example for a 

tangential components of the momentum on the ab g surface
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he improvement of  equation 3.42 gives :  T
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 a number of numerical simulations that we will show in the following sections of this work, the 

.4.6 Excitation of the medium  

n excitation source can be introduced into the medium either as a force located in a point of the grid, or 

ssible to introduce as a source, an arbitrary seismic moment tensor m ( x , t ), that is, a 

In
problem involved in the introduction of absorbing conditions will often constitute the principal source of 
numerical error, because of the wave reflections coming from the absorbent boundaries. An 
unquestionable improvement would consist in using a paraxial approximation of a higher nature, a 
combination of paraxial approximations [44], or even a radically different approach, in non-local matter, 
such as that proposed by Givoli [38], but at the price of a significant algorithmic complication. 
 
 
3
 
A
as an explosion (a specific pure compression point load).The time dependent source can in theory be any 
signal having a limited frequency band. Most of the time, as it is often used; a Ricker type function 
(second time Gaussian derivative) will be used. We can also, as is the case for plane waves for example, 
not to introduce a source explicitly, but to impose at the initial time a field of displacement, velocity and 
acceleration. 
Often, it is po
symmetrical tensor of row two having all the properties of a stress tensor, for which the equivalent force is 
given by  
 

),x(m div ),x( ttf −=                                                        (3.44) 
 

.4.7 Variational formulation of the problem  
 
3
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We saw previously that the elastodynamic linear equations could be written in the form: 

  in  
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ith the initial conditions as w
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here we noted  the studied unbounded elastic domain, w  Ω Ω  the bounded domain, its physical 

 b

intΓ
boundary, ext

absΓ   the numerical boundary on which absorbing oundary conditions are imposed, and 

⊂= T ],0[Ι   the time interval of study. +R dnRu →Ι×Ω: represents the displacement field;  
dnR→Ι×Ω:v the velocity field;  dnR→Ω:u  acement field; and 0 the initial displ dnR→Ω:v the 

ield. That is to say dnR the density field, and R→Ω:f inal 
force field. We suppose also that the medi free initial conditions, i. 0

0

initial velocity f also  the volum
um is having e. )0,x( =

+→Ω:ρ dn

 σ . 
Let us suppose also that the stress tensor is given in the linear case by the ge Hooke'neralized s law, 
because of symmetries of the c tensor, and then we can write: 
 

u:c)u( ∇=∇σ                                                              (3.47) 
 

at is to say th
klijklij c εσ =                                                                (3.48) 

 
here we introduced the contracted product notation of two tensors, represented by the symbol " : ", such w

that c  =  a  : b  is equivalent to writing klijklij bac = . 
It is then possible to write the problem in a variationel form (also called weak form). Given the Sobolev 

 

space H 1 (Ω) made of all the functions which, like their first derivatives within the distributions 
framework, belongs to L 2 (Ω), we can then introduce the whole accepted displacements S t at a given time 

I∈t  : 

( ) ( ) ( ) ( ){ }Ι×Γ=→Ι×ΩΩ∈= int
g

1 on    ,xg,xu  ;:,xu ttRHtS dd nn
t                     (3.49) 

 
here g  is the displacement imposed on the part of the boundary on which Dirichlet boundary conditions w

are imposed. Let us note ν  the space of the acceptable displacements variations (functions test) associated  
to S t and defined generally by: 
 

( ) ( ) ( ){ }int
g

1 on    0x  w;:xw Γ=→ΩΩ∈= dd nn RHv                               (3.50) 
 

e will note that the w functions do not depend on time. The variational formulation is then obtained by 

find u ( x , t ) S t , , such that 

W
forming the internal product defined in L 2 (Ω) equations described above with the whole accepted 
variations. By using the divergence theorem, this leads to solve the following problem: given f, g, τ , uo, vo, 

∈  I∈∀t ν∈∀w   : 
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( ) ( ) ( ) ( ) ( ) ext

absΓ+Γ+= ττ τ ,w,wfu,w int                                  (3.51) 
 

a+ρ ,w v,w &

( ) ( )v,w u,w ρρ =&                           
 
with the initial conditions  

                                  (3.52) 

 
( )( ) ( )00

u,w .,u,w ρρ =
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t                                                      (3.53) 
 

( )( ) ( )00
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=t
t                                                       (3.54) 

 
Where 

( ) ( ) ∫∫∫ ΩΩΩ
∇∇=∇=⋅= dVdVadV u:c:ww:uw, ;wv v,w σρρ &&                      (3.55) 

and 
( ) ( ) ( ) ∫∫∫ ΓΓΩ

Γ⋅=ΓΓ⋅=Γ⋅=
ext
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dddV ext
abs ww,  ;ww,   ;wf f,w

int

int ττττ
τ

τ                  (3.56) 

 
It will be noted that the given formulation here was written for a linear unspecified case (

riori ), the isotropic case will be easily obtained by particularizing the form of the tensor c .Also let us 
anisotropic a 

p
note in the foregoing a very important property of the variational form of the problem, and resulting 
directly from the above mentioned formulation: the contribution of the edges on which a condition in 
traction is fixed was written in the form ( ) intw, ττ Γ , where τ  is the traction vector on this border. 
Therefore, in the particular case of a free surface, the traction on that boundary is null, and the considered   
term disappears, this condition is thus taken into account automat ally. 
 
 

ic

.4.8 Total energy of the system  

 energy per unit volume can be written  

3
 
At any time in an elastic system, the kinetic
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and the strain energy density  
 

ijijklijijklp cU εσεε
2
1

2
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==                                                     (3.58) 

 
In the absence of an external source, if we introduce non null initial conditions,

 the system must be conserved, which results in  
 the total energy contained 

in
 

( )∫ +c dVUpU constante=
V

                                                    (3.59) 

 
If the behavior is linear elastic, for a homogeneous and infinite me , 
 relation even stronger exists, namely that the total kinetic energy and total potential energy are equal . 

dium, and in the absence of source term
a
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3.5 Various wave types  
 
In the case of wave propagation in an isotropic linear elastic medium, there can exist various types of 

aves which we will meet in the following development of this thesis. Let us try to describe the principal 

.5.1 Direct, reflected and refracted waves  

us medium, two wave types exist, called direct P 
aves and direct S waves. For a receiver placed in the far field, the P wave arrives first; it travels at the 

w
types. In the following, we will consider the case of an isotropic linear elastic solid. 
 
 
3
 
In the case of a source placed in an infinite homogeneo
w
velocity ( ) ρµλ 2+=pc and corresponds to a pure compression. The displacement of the particles is 
parallel to the direction of n (longitudinal wave). The S wave arrives second; it travels at the 
velocity 

 propagatio
ρµ=s corresponds to a pure shearing. The displacement of the particles is 

perpendicular to the direction of propagation (transverse wave). So now if the field considered is not 
infinite an  limited, when one of the waves hits a border of the field, a coupling between the P 
and S waves occurs at this border, and in the general case it results two wave types (P and S) for an 
incidental P or S wave. However, in the case of an incident S wave on an interface, as c 

c  and 

y more, but

P is always greater 
than c S , there is a critical angle  
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carcsinθ                                                              (3.60) 

 
beyond which there is no reflected P wave resulting from the incident S wave. Qualitatively, the same 

henomenon occurs when a P wave or an S wave meets a discontinuity in the elastic properties within the 

h the interface will 

.5.2 Rayleigh, Love and Stoneley waves 

to a condition of null 
action on the surface), there is a particular type of waves, highlighted by Lord Rayleigh [88], and 

 

p
medium (interface), this is especially the case of a horizontally layered medium. In such a case, and 
according to the value of the angle of incidence, an incident P or S wave can give rise to four waves:  
reflected P, reflected S, transmitted P and transmitted S. This property of mode conversion at the 
interfaces in a geological model is at the origin of the complexity in the seismic soil structure interaction 
problems, the number of phases observed which can quickly become very significant. 
In the particular case where the incident wave is within a critical angle, for a wave passing from a medium 
of weaker velocity in a medium of higher velocity, the transmitted wave going throug
have an angle of 90 degrees compared to the normal direction. Then the energy travels along the interface 
with the speed of the fastest medium, and the structures placed beyond a distance called critical distance 
will be subjected to refracted waves, which are very important to structures and much used in many 
seismic recordings. 
 
 
3
 
When a homogeneous elastic domain is limited by a free surface (corresponding 
tr
corresponds to waves propagating along the surface of the medium, in the vicinity of this one, without 
however penetrating in the medium (evanescent wave with the depth). These waves are called surface 
waves, or Rayleigh waves. These waves travel with velocity cR , which is lower than the S wave velocity, 
and are solution of: 
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As ps cc  depends only on the Poisson's ratio, since  
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the ratio c R /c S can be calculated numerically as a function of the Poisson's ratio only.  
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and the following typical values can be given (according to Has
 

 
kell, [43] ): 

 
ν cs/cp cR/cs

0.00 
0.25 

3 

0.707 
0.577 

0.862 
0.919 

0.3
0.40 
0.50

0.500 
0.408 
0.000

0.932 
0.941 
0.955

 
 
Let us note some important properties of R h s:

Rayleigh wave on the surface of a plane homogeneous medium is non-dispersive. The wave will be 
ispersive only if elastic heterogeneities properties are present in the thickness where the Rayleigh wave 

 of slow velocity is located on a homogeneous 

elative to the wavelength of Rayleigh wave propagating in the medium. Let 

ertical component. 

 called Love 
ave. Compared to Rayleigh wave, Love wave cannot exist if the half space is completely homogeneous. 

ayleig  wave  
- 
d
propagates, for example in the case of a fine layer having
half space of faster velocity. 
- In the case of a medium having a curved surface (topography), this one will induce a dispersion of the 
Rayleigh wave even if the medium is homogeneous. Dispersion is then strongly influenced by the 
curvature of the topography r
us note that in the case of a Rayleigh wave meeting a strong curvature of the surface, mode conversions of 
Rayleigh waves into volume waves (P and S waves) can also occur [90]. 
- Rayleigh wave is easily recognizable because of its retrograde elliptic polarization in the plan of 
propagation. A structure placed at the surface of the ground will thus be submitted at the same time to the 
horizontal component parallel with the direction of propagation, and the v
 
Love also showed that a surface wave, oscillating perpendicular to the plan of propagation, can exist when 
a layer of different elastic properties is located at the surface of a half space. Such a wave is
w
Love wave is also always dispersive. These waves are accompanied by a horizontal movement of the 
ground. A structure placed at the surface of the ground will be then submitted to a horizontal component 
perpendicular to the direction of propagation. 
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In the case of an interface between two solids, or a fluid and a solid, an evanescent solution can also exist 
and propagates along the interface. Such modes are called interface waves, or Stoneley waves. It is 

owever advisable to note that such solutions exist only for much reduced values of the densities and the h
elastic properties of the materials being in contact. For example, in the case of two solids in contact, it is 
necessary that S velocities of the two mediums are close to each other, so that a significant Stoneley wave 
propagates. 
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Chapter 4  
 
4.   Method of Chebyshev for the wave 
equations 
 
 

4.1 Introduction 
 
In many practical situation of interest to structural or geotechnical engineers, it is important to be able to 
simulate the propagation of waves in models including interfaces and/or topography of the surface. In 
such cases, the use of traditional collocation methods (calling upon Cartesian grids) presents the 
disadvantage of producing numerical artifacts such as parasitic and noisy diffraction resulting from the 
discretization at the interfaces and the surface. If the model presents curved interfaces, these artifacts can 
be attenuated by introducing particular numerical processing for the mesh sampling the interfaces, without 
however increasing the precision of the discrete diagram in this zone, the discretization remaining always 
uniform. Moreover, in the particular case of the free surface, it does not seem, that simple means for 
introducing the correct conditions of free surface into the numerical scheme if the surface is discretized in 
rectangular grids. 
  
An approach allowing to circumvent these problems, consist in solving the wave equation on a curvilinear 
grid whose lines coincide with the interfaces. This is conducted classically by solving the wave equation 
in a Cartesian reference system, and by calling upon the derivation rule to calculate the spatial Cartesian 
derivatives in the work field. This method has the advantage to take into account curved interfaces, but 
presents the disadvantage of being more expensive than in the case of a Cartesian grid, because a greater 
number of spatial derivatives must be evaluated numerically.  
  
A more natural approach, and which makes it possible to avoid this disadvantage, i.e. to preserve the same 
cost of calculation as in the case of a regular grid, consists in solving the wave equation directly in the 
curvilinear field.   For that, it is necessary to write the wave equation in tensorial form, which by 
definition is independent of the selected frame of reference. A transformation of co-ordinates makes it 
possible to bring back the curvilinear grid, whose lines coincide with the interfaces of the model as well 
with the free surface, to a field of square form.   That makes it possible to calculate, in any point of the 
medium, the metric tensor which appears in the wave equation given in tensorial form.   The numerical 
resolution of the wave equation posed in tensorial form requires the evaluation of the same number of 
partial derivatives as in the case of a regular grid.  
 
The algebraic method of generation of grids used makes it possible to ensure that lines of the grid follow 
well the various interfaces of the model, which thus makes it possible to get rid of the parasitic numerical 
diffractions resulting from the discretization of the interfaces in the case of a regular grid. Moreover, one 
local refinement of the grid in the vicinity of the various interfaces (in particular in the vicinity of the free 
surface) makes it possible to increase significantly the precision of the numerical scheme in these zones 
compared to the case of a Cartesian grid.  
 
It is also possible to discretize such complex domains by using grids which are orthogonal in any point of 
the domain.   That would make it possible to reduce the number of terms appearing in the equations to 
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solve (not-diagonal terms of the metric tensor being then null) but, on the one hand, it is very difficult to 
generate such grids for realistic models even in the 2D case, and, moreover, as outlined by Thompson et al. 
[104], the orthogonality of the grid is not the essential point for obtaining a weak error in the numerical 
calculations.   It is much more important that the variation of the size of the meshes of the grid is smooth, 
which is ensured by the algebraic method that we used. 
 
In this chapter, we sought to use, by improving a traditional modeling technique based on the differential 
formulation of the equations of elastodynamics and on the use of a polynomial basis of a high order 
(pseudo-spectral method) for the space resolution. Indeed, in many practical cases soil-structure 
interaction problems, it is necessary to take into account the layering of the mediums involved, as well as 
the topography of the surface. The collocation methods, for example the algorithms of pseudo-spectral 
types or finite differences, are interesting approaches to model the wave propagation in these complex 
media, in particular because of the relative facility and ease of implementing such algorithms. 
However, such methods formulated in Cartesian co-ordinates are not very well suited to the study of 
models presenting curved interfaces, because owing to the fact that the interfaces and the free surface do 
not coincide with the Cartesian grid. That led to a rate of weak convergence of which the most visible 
consequences are the appearance of artifacts such as parasitic and noisy diffraction resulting from the 
discretization of the interfaces and the free surface by a rectangular grid meshes. Such problems can be 
avoided by the use of curvilinear grids, of which the lines follow the interfaces and the surface, and of 
which the density of meshes increases in the vicinity of these interfaces. A possible approach consists in 
writing the wave equations in Cartesian co-ordinates and using the made up derivation rule to express the 
Cartesian partial derivatives in terms of the calculated partial derivatives in the curvilinear frame of 
reference. However, it is more natural to solve directly in the curvilinear frame of reference the wave 
equation written in tensorial form, after having defined a geometrical transformation making it possible to 
pass from the curvilinear field to the studied physical field. 
The tensorial approach, which by definition is independent of the chosen frame of reference, requires the 
calculation of the same number of partial derivatives as in the Cartesian case, whereas the approach using 
the made up derivation rule requires 25 % more calculations in 2D domains, and 50 % more for a 3D case. 
From the point of view of numerical calculation, however, the tensorial approach requires the use of a 
greater number of storage tables, therefore consumes more memory from a data-processing point of view. 
In this chapter, the tensorial approach is validated by comparing the results obtained for Lamb problem to 
the analytical solution of the problem [60]. A good agreement is found. The numerical calculations carried 
out on more complex 2D models show then the capacity of this method to model the wave propagation in 
the presence of interfaces and/or a structure on the surface. Mode conversions, of Rayleigh waves to 
volume waves, are observed when the surface of the model has a concavity. We also explain in this 
chapter why the method employed is particularly well suited to soil structure interaction problems 
computer, and we give an estimate of the performances which we obtained. However, in conclusion of this 
chapter, we note the limitation of the global differential solution, in particular because of the difficulty in 
finding, for a realistic model, a regular geometrical transformation between the physical field considered 
and the field of study. We deduce from it the need for using a finer approach, for example a subdomain 
type calculation or variational type, when we are interested in the study of really complex models. 
 
4.2 Tensorial formulation of the wave equation 
 
4.2.1 The wave equation in tensorial form  
 
The wave equation is generally written by using Cartesian co-ordinates. However, the introduction of a 
particular frame of reference is not really necessary. If we can define a metric, it is possible to use the 
tensorial formalism to write a system of equations describing the wave propagation in a heterogeneous 
medium and who is valid in any point of the space independently of the frame of reference. The choice of 
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the co-ordinates particularizes the metric tensor gij but the equations themselves remain unchanged. In the 
case of an isotropic linear elastic medium, and by supposing infinitesimal deformations, the general 
expression of these tensorial equations is the conservation equation of momentum  
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                                                            (4.1) 

 
the strain-displacement relation (within the framework of small strains)  
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and the isotropic linear relation stress-strain (Hooke's law )  
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where the covariance derivative  of a tensor  is given by the following expression  m∇ ...
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To improve the numerical calculations, we rewrite the wave equation in the form of stress-velocity. For 
2D case, the conservation of momentum is given by  
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the isotropic stress-strain relation is written in the following form 
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the stress-velocity relation is given by   
 

η
η
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and the transformation equation of the strain tensor between its covariance form and its mixed form is as 
follows 
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η εεε &&& gg +=                                                             (4.8) 
 
In the above equations, ξ and η are the curvilinear co-ordinates, λ and µ are Lamé's constants of the 
medium, ρ is the density, νi represents the covariance components of the velocity vector, φi the covariant 
source term, εij the covariant strain tensor,  the mixed strain (i.e. having a covariant index and a contra 

variant index) and  is the mixed stress tensor. A point above a tensor represents a time derivation.   
is the affined connection (Christoffel symbols of second type), which can be obtained from the metric 
tensor by 

j
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ijΓ
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ij gggg ∂−∂+∂=Γ                                                 (4.9) 

 
Let us note that we use the convention of Einstein's summation, i.e. a summation is implicitly implied 
when an index appears in a monomial in lower position and upper position at the same time. The symbols 

and  represent the covariance derivative, which is equal to the corresponding partial derivative plus 
a sum of the components of the field itself multiplied by the Christoffel symbols, as shown in equation 
(4.4). Information on the frame of reference is contained in the metric tensor, g 

ξ∇ η∇

ij represents this tensor in 
covariance components and gij this tensor in terms of contra variances components. 
It is possible to define a frame of reference which adapts itself to the physical model considered; the 
equations presented above can be used directly to solve the wave equation in this adapted co-ordinate 
reference system. This is exactly the same as solving the wave equation on a square grid (ξ, η ) ∈  [– 1 , 1] 
× [–1, 1] which may be adapted to the physical space ( x, z ) considered by a given transformation. As 
opposed to the method of derivation for which the wave equation is written in Cartesian co-ordinates (i.e.  
written with the velocity components ν x  and ν z and the stress tensor components σ xx , σ zz  and σ xz  for 
the 2D case) is solved by using the space derivatives calculated in the curvilinear reference frame, the 
tensorial formulation directly solves the equation in the curvilinear reference frame (i.e. the equation is 
written directly by using the velocity components ν ξ and ν η and σξξ, σηη and σξη of the stress tensor  
components) using the space derivatives calculated in the same curvilinear reference frame. 
 
 
4.2.2 Calculation cost 
 
Although the tensorial approach is more satisfactory, in its philosophy, than the approach using the 
composed derivation rule, because the equations are written in the same frame of reference as the one in 
which the calculations are carried out, the cost of calculation of the two approaches must be compared. It 
is always difficult to compare the costs of calculation of two methods, because of the great number of 
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possible implementations for each method. In the analysis presented here as an example, we suppose 
relatively similar implementations in which independent time coefficients are stored rather than 
recomputed with each time step (for example  in the case of the tensorial approach and k

ijΓ im x∂∂ξ  in the 
case of the composed derivation method). 
 
The cost of calculation of a numerical method of direct resolution of the wave equation written in 
differential form depends mainly on the spatial derivative number, noted ,  having to be calculated with 
each step of time for this method (by supposing that an operator of sufficiently precise discrete derivation 
is used, for example a pseudo-spectral operator or an operator of finite differences in high order). Thus, 
we can use the number of space derivations as an indicative measure of its calculation cost, that is 

θn

 
calculation cost ≅ constant )( Nn∂×                                               (4.10) 

 
where N  represents the spatial number. 
 
For the tensorial formulation, the number of spatial derivatives necessary for the calculation of the stress 
divergence is N2 and the necessary number of derivatives for the calculation of the strain tensor from the 
displacement is also N2 , which gives a total of  
 

22Nntensorial =∂                                                                (4.11) 
 
discrete derivations. That is identical to the number of derivatives necessary in the Cartesian case, which 
is a particular case of the tensorial approach for which g ij = δ ij  =  constant, which means that all the 
Christoffel symbols are null. 
 
In the approach using the composed derivation rule, we carried out the calculation of the Cartesian 
derivatives derived in the field work according  
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where ξm  represents the co-ordinates in the field work and f  the field to be derived. The divergence of the 
stress tensor is calculated using  
 

j

m

m

ij

i

ij

xx ∂
∂

∂

∂
=

∂

∂ ξ
ξ
σσ

                                                            (4.13) 

 
which implies the calculation of N 2 ×( N +1)/2 spatial independent derivatives. In the case of calculation 
of the deformations by using the composed derivation rule, the most effective method in term of cost 
calculation consists in calculating and storing the N 2 partial derivatives miu ξ∂∂ , and then using the 
equation (4.12). Thus, the total number of discrete derivatives which needs to be calculated when using 
the composed derivation rule is 
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It results that the additional calculation cost resulting from the use of the composed derivation rule 
compared to the tensorial approach can be written  
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The tensorial approach thus requires a calculation cost similar to the Cartesian case, but more working 
memory is necessary from a data-processing point of view to store the metric tensor g ij and the Christoffel 
symbols . If we recall that the metric tensor is symmetrical and that the Christoffel symbols are 
symmetrical in terms of the lower indices, the memory required for storage is N ( N  + 1) / 2  fields for the 
metric and of N 

k
ijΓ

2 ( N  + 1) / 2 for the Christoffel symbols. This applies to the general case for which no 
component of g ij is null. Noting the additional memory necessary for the tensorial approach necessary to 
store the metric and Christoffel symbols by  
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In the same way, the use of the derivation composed rule requires the storage of N 2 the fields im ξξ ∂∂  
compared to the Cartesian case, therefore  
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This is lower than the additional memory required by the tensorial approach, the difference between the 
two is 
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The total number of tables necessary to store all the components of displacements, velocity, acceleration, 
stresses and strains, is about 15 for 2D and 25 for 3D, we can note that the additional cost imposed by the 
tensorial approach is significant, especially for 3D, and this constitutes the principal disadvantage of this 
approach. The solution to this problem could be the use of orthogonal grids for which the non-diagonal 
terms of the metric are null, but such grids are extremely difficult to generate particularly for 3D realistic 
models. 
 
 

4.3 Grid generation, calculation of the metric and Christoffel 
symbols 
 
The following model representing a semi-infinite soil medium is represented by a set of points defining 
the curved interfaces of the layers and the surface of this one. By using an interpolation algorithm based 
on Hermit's polynomials of degree three, we use a simple method to generate a grid whose horizontal lines 
follow the interfaces, and whose vertical lines have tangent vectors to these interfaces, as illustrated on 
figure 4.1. 
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Fig. 4.1 – The algorithm for grid generation, determines a curve connecting points A and B with the given 
tangent vectors Aτ

r
 and Bτ

r
 . These tangent vectors can for example correspond to the normals at points A  

and B to the two curves C A  and C B  delimiting a given layer. 
 
 
It is then possible to define an analytical transformation from a given square field (ξ, η) towards the 
physical field ),,( zxrr  and consequently the transformation function co-ordinates x  =  x (ξ, η)  and z  =  z 
(ξ, η). 
In order to get a good precision for the modeling of surface and interface waves, it is often necessary to 
refine the grid in the vicinity of the various interfaces and the free surface; in order to increase the number 
of points per wavelength in these zones [90]. The method of grid generation used is interesting from this 
point of view, because the grid can be refined or stretched in the vicinity of the boundary of a layer, which 
makes it possible to increase the number of grid points close to the various interfaces and to the free 
surface, and to decrease this same number of grid points near the absorbing boundaries. 
 
Knowing the transformation functions ),( ηξxx =  and ),( ηξzz =  that make it possible to go from the 

work field to the physical space, the basic vectors of the natural reference frame associated with point M
r

 
are given by  
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with  and , where ),( zxx j ∈ ),( ηξξ ∈i

je 'r  are the basic vectors of an orthogonal Cartesian reference 
frame. That means that the metric tensor in a Euclidean space is given by  
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since kllk ee δ=⋅ '' rr

 in the orthogonal Cartesian reference frame. 
 
This expression makes it possible to calculate gij and gij in terms of the partial derivatives of the 
transformation functions. As the functions xi  =  xi (ξ, η) are known analytically, it is possible to calculate 
the metric tensor g ij by using the analytical expressions of the partial derivatives of the transformation 
functions. The metric tensor can be obviously calculated by using the same operator of the discrete 
derivation as the one which will be used to solve the wave equations (in our case a Chebyshev operator). 
Although this may appear surprising, the work of Thompson et al. [104] showed that the second approach 
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leads to a lower numerical error during the calculation of the partial derivatives in the curvilinear frame. 
For this reason, we chose to calculate the metric tensor numerically and not analytically. The same 
operator of discrete derivation is applied to the components gij in order to calculate Christoffel  symbols 
by using equation (4.9). 
 
 

4.4 Algorithm of resolution  
 
4.4.1 Description of Chebyshev algorithm 
 
We use a global pseudo-spectral method based on a base Chebyshev polynomials in order to solve the 
wave equations written in tensorial form. The various fields are written in terms of finite orthogonal 
functions which are Chebyshev polynomials. Time extrapolation is conducted using an explicit Runge-
Kutta scheme of order four, which gives a stability condition of the type dt  =  O ( N – 1 ) , where N is the 
number of grid points in each direction of the grid of calculation. The algorithm using Chebyshev 
polynomials was selected mainly because it is practically free from any numerical dispersion up to 
Nyquist frequency . 
 
 
Calculation of a space derivative by Chebyshev operator 
 
The calculation field is a square area (ξ , η ) ∈[–1, 1] on which the distribution of the grid points is 
defined by Gauss-Lobatto-Chebyshev points. Let us show for a 1D case, what occurs: defining the symbol 

 as a finite sum of which the first and the last term are divided by two, the field considered u (ξ ), ξ 
[–1, 1] is decomposed on the basis of Chebyshev polynomials of T
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∈ n(ξ ), the collocation points are 
Gauss-Lobatto-Chebyshev points  
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where 
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with Gauss-Lobatto-Chebyshev points given by  
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where the coefficients of the derived series are given by  
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with 
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where the derived series is given by  
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Then we may write  
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This is simply the real discrete Fourier transforms (cosine transforms) which can be calculated using an 
algorithm of fast Fourier transform (FFT). Then, we can obtain the b n coefficients of the series from the 
coefficients of the field using the recurrence formula (equation 4.23). The evaluation of the derivative at 
Gauss-Lobatto-Chebyshev points is then obtained using equation (4.22), and again using an FFT. One can 
also show that it is possible to calculate the derivative of the field by applying the product of this one by a 
matrix of coefficients called derivative matrix, for the analytical expression of this one, and for the 
Chebyshev polynomials [4] . 
 
Deformation of the grid "Mapping" 
 
In the case of Gauss-Lobatto-Chebyshev points given by  
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 the minimal size of a mesh in the field of study is obtained at the edge of the field, by  
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for sufficiently large values of N, which is generally the case in practice. It is seen that the size of the 
smallest mesh decreases as 1/N 2 , where N is the number of points in a direction of the grid. In the case of 
a conditionally stable time integration diagram, for which the stability criterion will be dictated by the size 
of the smallest mesh of the grid, this characteristic can quickly become very handicapping, even worse. To 
circumvent this problem, Gauss-Lobatto-Chebyshev points are reported to the interval [–1, 1]  by a non-
linear transformation on the edges of the field ("mapping"), allowing a local stretching of the smallest 
meshes. In the x direction for example, the sampling points are [96]   
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a stretching symmetrical function which satisfies g x (1) = 1 and  g x (–1) = –1,  where γ the parameter of 
stretching is taken very close to 1, about 0.99 in practice. The space derivative is thus given by  
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Time  integration scheme  
 
As we used previously, the equations of elastodynamics were rewritten in the form of a first order 
hyperbolic system in time in stress-velocities that we may note in symbolic form as follows 
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where U is the unknown stress-velocity vector, S the source vector, and M a differential operator. For this 
kind of first order systems, an effective time integration scheme is Runge-Kutta scheme of order four, 
which is a conditionally stable explicit scheme. That is, if t∆ is the time step, the solution U n +1 at time 
(n+1) is obtained from the solution U t∆ n at time n t∆ by  
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It is seen that four modelings are necessary (application of the differential operator M to a given field) for 
each time step of the Runge-Kutta method of order four. The stability condition of this diagram will be 
controlled primarily by the size of the smallest mesh of the grid (after stretching by the nonlinear 
"mapping" function described in the preceding section).  
 
In the case of a point force, the source term ϕ

r
 of the wave equation (4.5) can be written  

 
ntft s
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where )xx( s−δ  is the Dirac distribution of at the source point x s,  f ( t )  is a causal function describing 
the time dependence of the source, τ is the starting time of the simulation, and nris an unit vector defining 
the force source direction . The source term is converted from Cartesian co-ordinates to curvilinear co-
ordinates by using  
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The time extrapolation scheme is used with zero initial conditions v ( x , t 0 ) = 0  and σ ( x , t 0 ) = 0, the 
time t 0 = 0  corresponds to the beginning of the simulation. The stability time scheme is ensured by a 
traditional Courant condition 
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where  is the distance between grid points in the physical field, vx ∆ P is the  P wave velocity in the 
medium and ε is the Courant number. 
The scheme is practically free of any numerical dispersion until the Nyquist frequency. We ensure this 
condition by choosing a maximum grid step such that the minimum number of points per wavelength 
satisfies the following relation  
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where  is the distance between grid points in the physical field, v x ∆ S  is the the S wave velocity in the 
medium, f max  is the maximum frequency of the source, and   is the minimum number of points of 
the grid per wavelength necessary for a correct modeling (about 4 for Chebyshev operator ). 

schemenλ

 
The boundary conditions are of the absorbing type on all the edges of the model except for the free surface. 
These conditions as well as the free surface condition are implemented in the Chebyshev algorithm by 
decomposing the field using a paraxial equation according to the perpendicular edge. 
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4.4.2 Inadequacy of finite differences diagrams  
 
Tests were also carried out by using a finite difference method, but the algorithm led to numerical 
difficulties in the case of strong velocity contrasts at the interface, because of the fact that a grid which is 
not quincunx is in fact made up of two slightly coupled grids – even worse, completely uncoupled in the 
case of a regular grid mesh –. Consequently, this approach was abandoned. The finite difference 
algorithms in quincunx are not well adapted to solve wave equations on a curved grid (using the tensorial 
formulation or the composed derivation rule), because of the fact that many interpolations must be carried 
out in this case, which strongly affects and reduces the total precision of the diagram and increases the 
calculation cost significantly. In the case of the tensorial formulation used on a grid in quincunx, it is 
necessary to carry out interpolations to calculate the covariant derivative which is equal, in a grid point, to 
the sum of the partial derivative of the field and components of the field itself multiplied by Christoffel 
symbols. In the case of use of the composed derivation rule on a grid in quincunx, it is also necessary to 
carry out interpolations to calculate the Cartesian derivatives of the field, for which it is necessary to sum 
up in the same grid point the partial derivatives calculated along different axes in the grid of work. 
 
 
4.4.3 Vectorization of the algorithm and performances  
 
As we have shown previously, there are two methods for the calculation of the field derivative using 
Chebyshev's algorithm that makes use of Gauss-Lobatto collocation points. The first approach consists in 
calculating the coefficients of the field decomposition in terms of Chebyshev's series using an FFT 
(equation 2.24), then to calculate the coefficients of the series derived by recurrence, and then to obtain 
the field derivative from these coefficients by another FFT (equation 4.22). The second method consists in 
multiplying the field by the derivation matrix directly whose coefficients were calculated once for all. 
 
From the point of view of the number of operations in 2D case, the first approach requires the calculation 
of 2N FFT of length N (2 FFT for each N column, that is a cost in O ( N 2 log N )), and N recurrences of 
length N, at a cost in O ( N 2 ). The total cost of the first approach is thus in O ( N 2 log N ). The second 
approach is a simple product of matrices, whose cost is O ( N 2 ) in the 2D case. A first glimpse on the 
analysis would thus seem to privilege the FFT approach.  
Without any doubt, this is the conclusion which would be necessary to draw for the case for a sequential 
computer code having to be carried out on a workstation. However, in the very frequent case of a powerful 
personal computer of the vectorial type, it is well-known that a relation of recurrence vectorises badly, 
even not at all because of the dependences existing between elements of the result vector of this relation of 
recurrence. In this case, calculation by product of matrix of derivation, although requiring more operations, 
is appreciably faster. Indeed, a product of matrix is an operation which vectorises well, especially if the 
size of the grid, therefore the N value, is large. Moreover, the manufacturer of the machine often provides 
particularly optimized algorithms, called BLAS (Basic Linear Algebra Subroutines), which make it 
possible to get maximum power benefit from the machine for this type of operations.  
 
 

4.5 Numerical tests in 2D  
 
Numerical tests were undertaken for 2D cases by using two different models, the first model is used to 
validate the tensorial approach by comparing the results obtained with that of the analytical solution of the 
problem, and the second making it possible to show the capacity of this approach to take into account the 
structure model with the free surface of the topography. 
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4.5.1 Validation of the tensorial formulation  
 
In order to validate the method using the tensorial formulation of the wave equation, we compared the 
results obtained for Lamb's problem, i.e. homogeneous elastic half-space in which a source force is placed 
in the medium with a normal direction, with the analytical solution of the problem. The grid used is 
represented on figure 4.2, and has a size of 500m×500m. The medium is homogeneous, the P wave 
velocity is equal to 3000 m.s–1 and the S wave velocity is equal to 1800 m.s–1, the density is taken equal to 
1000 kg.m–3. 
The source is a force having a normal direction with the free surface. It is placed at x s = 100 m, and just 
below the surface, at a depth of z s  = 8m.  One of the receivers (R 1) is placed on the free surface at xR 1 = 
200   1793.3m  the other receiver (R 2 ) is located in the medium at xR 2 = 180 m at a depth of  zR 2 = 80 m.  
Thus, the first receiver will record mainly a very strong Rayleigh wave, whereas the second receiver 
records the incident P wave and S wave propagating in the rectangular grid. This will make it possible to 
validate the tensorial formulation for the three principal wave types propagating in a solid. 
 
Numerical calculation are undertaken for a total duration of 0.875 s, i.e. 2500 time steps of duration t∆ = 
0.35ms. The length on the mesh sides of the rectangular grid in the physical field varies = 1.4m to 

= 16.3m along the horizontal lines of the grid, and 
minx∆

maxx∆ minz∆ = 0.9m to maxz∆ =14.1m along the vertical 
lines.  
The source function is a second derivative of Gaussian in time, having a central frequency of f 0 =  20.0 Hz 
and a maximum frequency of f max=50.0 Hz (defined as the frequency for which the spectral amplitude is 
equal to about 5 % of its maximum value). The minimum number of grid points per fundamental 
wavelength (corresponding to the largest meshes) is of 9.7 for the P waves and of 5.6 the S waves.  
Snapshots of the velocity vector are presented on figure 4.3, and show the incident P wave, the incident S 
wave as well as the Rayleigh wave propagating along the free surface. The accelerograms recorded at the 
two receivers are presented on figure 4.4. A very good agreement is obtained between the analytical 
solution and the numerical results, at the same time for Rayleigh waves (receiver R 1) and for volume 
waves (receiver R 2), which validates the tensorial approach for the elastic wave equations. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.2: Grid used to validate the tensorial approach compared to the analytical solution of Lamb's 
problem. The grid size is of 187×187 points. Locations of 2 receivers and the point source is also shown. 

S R2

R1

 
 
4.5.2 Simulation in the case of a layered half-space  
 
In order to test the capacity of the tensorial approach to model the elastic wave propagation in layered 
mediums, we conducted two simulations based on the model presented on figure 4.2. The grid is made up 
of 187×187 points. A model with two layers is used, the interface is also included. In the upper layer, the 
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density is taken equal to 1000 kg.m–3, the P wave velocity to 2800 m.s–1 and the S wave velocity to 
1820m.s–1, with a Poisson's ratio of σ = 0.13. In the sub-layer, the density is 1500 kg.m–3, the P wave 
velocity to is 3800 m.s–1 and the S wave velocity to 2000m.s–1, and a Poisson's ratio of σ = 0.30. Thus, this 
two layers model presents a strong contrast in terms of velocities and also a strong contrast in terms of 
Poisson's ratio, which makes it possible to check the behavior of the method for a soil model presenting 
realistic properties. The characteristics of the source remain the same ones as in the case of Lamb's 
problem previously studied.  
 
The size of the meshes on the sides of the grid varies between minx∆ = 1.4m and = 18.6m along the 

horizontal lines of the grid, and between 
maxx∆

minz∆ =2.0m and maxz∆ =15.6m along the vertical lines. It is 
noted that curved grids may also be used, and in this case the grid is curved, where a straight line in the 
physical field does not necessarily correspond to a straight line in the field of study. In general, the 
receivers are not located in grid points and it is necessary to interpolate the field (for example velocity 
field speed) which one wishes to record. This is carried out by using a bilinear interpolation starting from 
the known values located at the corners of the mesh. 
As previously, numerical calculation are undertaken a duration of propagation of 0.875 s, i.e. 2500 steps 
of time duration = 0.35ms each. The minimum number of grid points per wavelength is 7.5 for P wave, 
and 4.9 for S wave for the two tests. 

t∆

 

     
 

 
 
Fig. 4.3 -   Instantaneous snapshots of the velocity vector obtained for Lamb's problem. The source S and  
the two receivers R1 and R2 are as indicated on figure 4.2. The source is placed on the surface, and we can 
observe the incident P and S waves, along with Rayleigh waves. 
 

• Reflected and refracted waves in a layered half-space.  
 
This is the first test, where the source is a vertical force located at  xs = 425 m at a depth z s =  70 m.  Fifty 
equidistant receivers are placed along a horizontal line between  x r  = 25m and  x r = 100 m with a depth  
zr  = 20  m.  
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The instantaneous snapshots of the propagation are presented on figure 4.5, and the accelerograms on 
figure 4.6. 
 The form of the reflected P and S waves by the layered half-space on the free surface is complex, and 
triplications occur (see for example the reflected and transmitted waves made by the interface between the 
two layers and the reflexions made by the excavated part of the soil, where the structure is to be placed ). 
Wave mode conversion (from P to S and from S to P waves) occur at the free surface, wave mode 
conversion occurs also at the interface between two layers for the transmitted and reflected waves . 
These results clearly illustrate the fact that the tensorial approach is able to model the reflexion and the 
mode conversion of the P and S waves in a model having layers and/or curved interfaces, including strong 
velocity contrasts.   
 

• Rayleigh wave on a curved surface 
 
The source force is vertical and placed at xs = 660.9m at shallow depth (10 m depth). The incident P waves 
and S waves are clearly visible on these snapshots, as well as a strong Rayleigh wave propagating along 
the free surface with a speed slightly lower than the S waves.  
On these instantaneous snapshots, we can also observe a wave which is interpreted as a Rayleigh wave 
conversion into a volume wave in an area of the free surface where the topography has a strong curve 
because of the small monticule located in the left part of the model (see the instantaneous snapshots at 
times t = 0.280 s and t = 0.350 s). 
 

 
 
Fig. 4.4–Accelerograms (timehistories) of the horizontal velocity vector component v x (left) and the 
vertical component vz (right) for Lamb's problem of figure 4.3. The top accelerograms correspond to the 
receiver (R1) located at shallow depth (just under the free surface), and those of the bottom to the receiver 
(R2) located inside the model. The agreement obtained is excellent, the maximum change between the two 
solutions is less than 1 %.  
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The energy part of Rayleigh wave converted into volume waves presents itself in the form of a volume 
wave which closely follows the incident S wave. It seems that this converted wave was formed at the time 
of the passage of the Rayleigh wave in the concave part of the soil. This converted wave can be observed 
clearly on the horizontal component vx of the velocity recorded on the free surface. These results prove 
that the tensorial formulation of the wave equations allows the modeling of the propagation of Rayleigh 
waves in a layerd elastic model even in the presence of a curved surface. 
 
4.6 Insufficiency of Chebyshev algorithm for realistic models  
 
We have just seen that a simple solution of pseudo-spectral type can make it possible to solve with 
precision the wave equations of a complex medium. The introduced tensorial formulation made it possible 
to reduce significantly the number of calculations to be carried out. Nevertheless, during this study, 
several difficulties appeared clearly, and showed the intrinsic limitations of the global pseudo-spectral 
solution based on a differential from of the elastodynamic equations. 
 
- the method is very time consuming (expensive) in a number of operations. The cost of a 2D calculation 
is in the order of O (N 3), knowing that N is always large, at least 200 for a realistic 2D model. Runge-
Kutta algorithm of order four in terms of time is also expensive, since four complete modelings are 
necessary for each time step.  
 
- to avoid having a stability condition too restrictive in the explicit diagram of Runge-Kutta because of the 
closeness of Gauss-Lobatto-Chebyshev points on the edges of the domain, a strongly nonlinear mapping  
must be introduced. It is certain that this one introduces additional truncation errors into the scheme 
diagram and thus reduces the total precision of the calculation. 
 
- the algorithm is not suited for parallel architectures of modern supercomputers with distributed memory. 
 
- Finally and especially, the fact of having to find a global transformation grid sufficiently regular 
(smooth) between the studied domain and the square of reference, imposes extremely strong restrictions 
on the types of models being able to be studied, and decreases the interest of the method for really 
complicated cases. For example, for an accidental topography, it seems completely illusory to seek a total 
transformation which is sufficiently regular. It is clear that this argument is even more problematic if one 
wishes to consider the three-dimensional case. 
 
It is thus now necessary to seek to solve these various problems by other means. The approach that we 
chose, and which will be described in the following chapters, constitutes the main part of this thesis, is the  
spectral finite element method, which will make it possible to combine the geometrical flexibility of the 
variational approach in a weak nature with the precision of the spectral approach. 
 
4.7 Conclusions 
 
If one wishes to study a complex soil model, it is advantageous to be able to directly solve the wave 
equation in deformed grids whose lines coincide with the interfaces of the model which can be layered, 
and also with the free surface. This will lead to more precise results than if such a model is meshed with 
regular grids. 
A tensorial formulation of the wave equation was presented, which makes it possible to solve the problem 
without needing to introduce a Cartesian reference frame. Such an approach is more natural than the one 
largely used, consisting in solving the equation written in Cartesian co-ordinates by calling upon the 
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composed rule of derivation to calculate the Cartesian derivatives in the curvilinear domain of calculation. 
Moreover, this tensorial formulation approach results from a numerical point of view in calculating less 
spatial derivatives than in the case of the composed rule of derivation (exactly the same number as in the 
Cartesian case), which makes it possible to reduce significantly the total cost of calculation of the method.  
A simple algebraic grid generation algorithm makes it possible to define a grid adapting itself to the 
various interfaces, and which we can refine in a controlled manner in the vicinity of these interfaces and 
surface. That makes it possible to get rid of the numerical artifacts which would result from the 
discretization of the interfaces if Cartesian grids were used. 
 
Numerical tests were carried out for a 2D medium by using Chebyshev algorithm that have validated the 
tensorial approach which also illustrates its capacity to take into account curved interfaces as well as 
layered soils with non-horizontal surface topography. In the case of Lamb's problem, an excellent 
agreement with the analytical solution is obtained. In the case of a layered non-horizontal model, complex 
forms are obtained for the various reflected and converted waves considered, and triplications occur. 
Moreover, if the source is sufficiently close to surface, Rayleigh wave mode conversions occurs and gives 
result to volume waves that may be observed when the Rayleigh wave propagates in surface zone having a 
strong concavity.  
From a numerical point of view, we explained why the presented algorithm was particularly suited for 
supercomputers of the vectorial type, but were not optimal for a parallel architecture. We noted that its 
cost remained high with 2D, and probably prohibitory with 3D for realistic grid sizes. We have also said 
that, even if the presented global differential solution is applicable for many problems, it suffered from an 
intrinsic limitation when the form of the interfaces and free surface became really complicated, and we 
have deduced the need for a more flexible technique, typically derived from a variational formulation of 
the h or h – p type problem, that will allows the treatment of realistic cases.  
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Fig.  4.5   Instantaneous snapshots for a model presenting a layered half-space and an excavated part of the 
soil at the free surface. The source load is a vertical force placed inside  the model, one can observe the 
complex form of the various waves, for example the transmitted and reflected waves through the interface 
and from the excavated part of the soil.  
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Fig.  4.6 Accelerograms of the above model presenting a layered half-space (figure 4.5).The source is a 
vertical load located in the model, and the receivers are also located inside the medium. 
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Chapter 5  
 

 
5.   Perfectly matched layers for unbounded 
domains 
 
 

5.1.   Introduction 
 
Solution of wave equations in the presence of unbounded domains is of interest in various fields of  
engineering and science [110]. Especially, the solution of elastodynamic wave equation finds applications 
in soil-structure interaction analysis [115] and in the simulation of earthquake ground motion, since the 
ground beneath a structure of interest can be rationally modelled as an unbounded elastic domain. 
The solution of wave equation in the case of an unbounded domain requires the use of a radiation 
condition in any direction of the unbounded domain, where waves are allowed to radiate outwards from a 
source or a vibrating structure toward infinity, without spurious wave motions in the reverse direction. 
Because of the many irregularities in the geometry of the domain or in the physical material, it is generally  
called upon a numerical solution of the problem, which requires the use of a bounded domain, along with 
a somewhat artificial boundary that absorbs outgoing waves.  
Typical absorbing boundaries belong to one of two main categories:  
1) exact, non-local boundaries [99],  
2) approximate, local boundaries [44].  
The various absorbing boundaries, local or not, have some drawbacks. 
The exact rigorous boundaries are highly accurate and thus may be used even with a small bounded 
domain. However, the small computational cost due to the small size of the domain may be negated by the 
expensive cost due to not only the non-local nature of such boundaries but also the computation of the 
boundary terms. Moreover, exact boundaries may not be available for all types of problems. The 
approximate boundaries, although local and easy to compute, may require larger bounded domains 
compared to the first ones for satisfactory accuracy, since they absorb incident waves well only over a 
small range of angles of incidence. Moreover, high order approximate boundaries require the use of 
special finite elements such spectral finite elements [38] for proper implementation. Many different  
absorbing layer models [98] surrounding a bounded domain have also been proposed as alternatives to 
absorbing boundaries; but, obtaining satisfactory results from such models requires careful formulation 
and implementation, since the change in material properties from the elastic medium to the absorbing 
layer causes reflection of incident waves. Also interesting are special absorbing boundaries such as the 
superposition boundary and infinite elements [118]; although based on interesting ideas, use of these 
boundaries may prove to be cumbersome and computationally expensive. 
A perfectly matched layer (PML) is an absorbing layer model for linear wave equations that absorbs, 
almost perfectly, all propagating waves from all angles of incidence and of all non zero frequencies. The 
idea of a PML was first introduced by Bérenger [6] in the field of electromagnetic waves. PMLs have 
been also formulated for other linear wave equations, such the scalar wave equation or the Helmholtz 
equation [42], the linearised Euler equations [45], the wave equation for poroelastic media [119], and, as 
discussed below, to the elastodynamic wave equation. 
The idea that PMLs could be formulated for the elastodynamic wave equation was first introduced by 
Chew and Liu [12], they used complex valued coordinate stretching system to obtain the equations 
governing the PML and presented a proof of the absorptive property of the PML. They also presented a 
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finite difference time domain formulation obtained through field splitting. Later, Liu [64] applied the 
coordinate stretching idea to the velocity stress formulation of the elastodynamic equation to obtain split 
field PMLs for time dependent elastic waves in cylindrical and spherical coordinates. Zhang and Ballmann 
[120] and Collino and Tsogka [16] have also obtained split field, time domain PMLs for the velocity stress 
formulation and presented finite difference time domain (FDTD) implementations. The latter have also 
implemented the PML using a two dimensional mixed finite element scheme [5] in which the degrees of 
freedom of each element are the velocity, the shear stress, and split field components of the axial stresses. 
In this thesis the objective of  PMLs is twofold:  
a) develop the concept of a PML in the context of time harmonic elastodynamics in Cartesian coordinates, 
utilising some of the insights obtained in the context of electromagnetics [102],  
b) develop a new displacement based symmetric spectral finite element method (SFEM) of the PML for 
time harmonic plane strain to be implemented in the Matlab environment.  
The PML concept is first illustrated through the one dimensional example of a rod on elastic foundation 
and second through the two dimensional example of the anti plane motion of a continuum, governed by 
the Helmholtz equation. The PMLs for these two systems are studied through analytical and numerical  
results for the dynamic stiffness of a semi infinite rod on elastic foundation, and through numerical results 
for the out of plane dynamic stiffness of a semi infinite layer on rigid base. Numerical results are 
presented for the classical soil structure interaction problems of a rigid strip footing on a half-plane, and a 
layer on a half-plane, then for a layer on a rigid base. 
 
5.2.  One dimensional system 
 
5.2.1. Semi infinite rod on elastic foundation 
 
For the semi infinite rod on elastic foundation shown on (Fig. 5.1), not subjected to any body forces, but 
subjected to an imposed displacement u0 exp(iωt) at the left end (x = 0), and a radiation condition for x → 
∞, with ω being the frequency of excitation. This excitation causes time harmonic displacements u(x) 
exp(iωt), which are governed by the following equations: 
 

uu
A
k

dx
d g ρωσ 2−=−                                                         (5.1a) 

εσ E=                                                                    (5.1b) 

dx
du

=ε                                                                     (5.1c) 

 
where σ and ε are the axial stress and infinitesimal strain in the rod, E is the Young's modulus of the rod, A 
its cross-sectional area, ρ its mass density, and kg the static stiffness per unit length of the foundation. 
 

 
Fig. 5.1. Homogeneous viscous elastic semi infinite rod on elastic foundation. 
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The frequency response of this system can be expressed in terms of a dimensionless frequency 

lcra 00 ω= , where gkEAr =0   is a characteristic length quantity and ρEcl =  is the wave 

velocity in the rod. For a0 < 1, Eq. (5.1) admits rightward and leftward evanescent wave solutions of the 
form 
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and admits rightward and leftward propagating wave solutions of the form 
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for a0 > 1, with a0 = 1 the cutoff frequency of the system; the radiation condition allows only the rightward 
modes in the system. The dynamic stiffness at x = 0, which is the axial force –σA required in the positive 
x-direction at x = 0 to maintain u0 = 1, can be obtained using Eqs. (5.1b), (5.1c) and Eqs. (5.2a), (5.3a) as 
 

2
00 1)( aKaS −= ∞∞                                                          (5.4) 

 
where gEAkK =∞  is the static stiffness coefficient of the system. The dimensionless dynamic stiffness, 

corresponding to K1 = 1, is defined as 
2
00 1:)( aaS −=∞                                                             (5.5) 

 
For the case of the motion of a viscous elastic system, where material damping is introduced using the 
correspondence principle, may also be described by the above equations, but with complex valued 
material moduli  and  in place of the real moduli E and k)21(* ςiEE += )21(* ςikk gg += g, ζ being the 
hysteretic damping ratio. The introduction of such complex moduli values results in a complex valued 
wave speed ςicc ll 21* +=  and complex valued dimensionless frequency ςiaa 210

*
0 += . 

The solutions in terms of the displacement and dynamic stiffness of the semi infinite rod are obtained 
analytically by solving Eq. (5.1) on the unbounded domain [0, 1] using appropriate boundary conditions. 
The numerical solution of this unbounded domain problem requires the solution of Eq. (5.1) on a bounded 
domain increased by an artificial absorbing boundary or layer; the PML is well suited as an absorbing 
layer model that can be used for this purpose. 
 
 
5.2.2. Perfectly matched medium 
 
For a given system of equations of the same form as Eq. (5.1), but with x replaced by a stretched 
coordinate x~ , defined as  

∫=
x

dsxx
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)(:~ λ                                                                 (5.6) 

 
where λ is a nowhere zero, continuous complex valued coordinate function. By the continuity of λ , 
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which formally implies 
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Thus this aforementioned system of equations can be defined as 
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as a modification of Eq. (5.1), where the constitutive relation, Eq. (5.9b), remains the same as in the elastic 
medium. A perfectly matched medium (PMM) for a rod on elastic foundation is defined to be a medium 
where the field variable u is governed by Eq. (5.9). The viscoelastic medium is a special PMM, where 

1)( ≡xλ . 
 
Equation (5.9) is only motivated by, but defined independently of Eq. (5.8); using the latter to derive the 
PMM equations from Eq. (1) would involve issues of complex differentiability, all of which are avoided 
by the independent definition of the PMM. The assumption of continuity on λ could be dropped, by 
considering one-sided derivatives, or possibly even weak derivatives, in Eq. (5.7); such technical issues 
are avoided by this convenient assumption. Note that the assumption of a continuous λ is not restrictive in 
the least, the stretching function is specified a priori, and is not a physical quantity that is intrinsically 
discontinuous. 
 
As is to be expected from the coordinate stretching motivation, Eq. (5.9) admits solutions similar in form 
to those in Eqs. (5.2) and (5.3) admitted by the elastic medium, but with x replaced by x~ . Evanescent 
wave type solutions are of the form 
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for a0 < 1, and propagating wave type solutions are of the form 
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for a0 > 1; that these are solutions of Eq. (5.9) can be shown by utilising the continuity of λ through Eq. 
(5.7). An interesting property of these PMMs is that if two PMMs having different λ are placed adjacent to 
each other, with the functions λ such that they match at the interface of the two media, then a wave type 
motion will pass through the interface without generating any reflected waves; this is the perfect matching 
property of the PMM. Without loss of generality, consider two PMMs: one is defined on (– ∞, 0) with 
λ(x):= λ(x)lt (x), and the other on (0, ∞) with λ(x):= λ(x)rt (x), with the stretching functions such that λ(x)lt 
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(0) = λ (x)rt (0). These two PMMs can be considered as only one PMM but with a continuous λ defined 
piecewise on (– ∞,  0) and (0, ∞); thus, there is no interface, precluding the possibility of the generation of 
any reflected waves. The perfect matching property holds for both solutions in Eq. (5.11) as well as for 
those in Eq. (5.10), i.e., it is independent of the wave type, of the direction of propagation, and of the 
frequency a0. 
Another special property of the PMMs is that for suitable choices of λ, the solutions in the PMM take the 
form of the corresponding elastic medium solution but with an imposed spatial attenuation. Consider, for 
a0 > 1, λ defined in terms of a real valued, continuous function f as 
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where 
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with 0rξξ = and )()()( 0 ξξξ frff == . On substituting for x~  from Eq. (5.13) into Eq. (5.11a), the 
solution is obtained as 
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Thus, if )( 0rxF > 0, then u(x) is a rightward propagating wave that is attenuated in that direction, with 
the attenuation independent of the frequency due to the choice of λ(x); the function f is termed the 
attenuation function. Furthermore, for a0 < 1, λ is defined as 
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then Eq. (5.10) is transformed to 
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i.e., an evanescent wave with additional attenuation. The above choices for the stretching function are only 
illustrative choices that exploit prior knowledge of the solution. A more realistic choice for λ would be in 
terms of two non negative attenuation functions f e and f P, as 
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This function does not assume knowledge of the frequency equation of the system, nor does a priori 
distinguish between evanescent and propagating waves. This choice for λ imposes a frequency dependent 
attenuation and a phase change on the rightward propagating wave. Eq. (5.11) is transformed into 
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where eF  and PF  are appropriately defined integrals of f e and f P, respectively. Using Eq. (5.18) 
imposes an attenuation and a harmonic mode on evanescent waves. Eq. (5.10) transforms to 
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Thus, f e imposes an attenuation on evanescent waves and f p on propagating waves. 
 
5.2.3. Perfectly matched layer 
 
The special properties of the PMM can be used to define an absorbing layer adjacent to a bounded domain 
such that the layer and the domain together model the unbounded domain. 
Forr the system shown in Fig. 5.2(a): ΩBD (:= [0, L] ) is the bounded domain governed by Eq. (5.1), and  

is the unbounded PMM, governed by Eq. (5.9). The stretch λ is taken to be of the form 
given in Eq. (5.12) for a

)),((: ∞=Ω∞ LPM

0 > 1 and Eq. (5.16) for a0 < 1, with f chosen such that f (L) = 0. Alternatively, λ 
can be chosen as in Eq. (5.18) for all a0, with the attenuation functions such that f  e (L) = f  P(L) = 0. Since 
the medium in ΩBD is a special PMM, with  λ ≡ 1, and since the admissible choices of attenuation 
functions impose that the functions λ for the two domains are matched at the interface, all waves 
propagating outwards from ΩBD are completely absorbed into and then attenuated in . Thus, the 
displacements of this system in Ω

∞ΩPM

BD are exactly the same as the displacements of the semi infinite rod in 
ΩBD. 
If the waves are attenuated enough in a finite distance,  can be terminated with a fixed boundary 
condition at that distance without any significant reflection of the waves. Shown in Fig. 5.2(b), this 
bounded [PMM Ω

∞ΩPM

PM (:= (L; L+LP ] is termed the perfectly matched layer (PML). If the wave reflection 
from the fixed boundary is not significant, the displacements of the entire bounded system  Ω(:= ΩBD 

Ω∪ PM) in ΩBD should be almost the same as the displacements of the semi infinite rod in ΩBD. 
 
5.2.4. Effect of fixed-end termination of the PML 
 
The effect of fixed-end termination in a given domain on the PMM is considered, first by calculating the 
reflected waves from the fixed boundary conditions and then by investigating the effects of L, LP and f on 
the dynamic stiffness )( 0aS  of Ω at x = 0. 
The reflected wave amplitude is calculated by considering a PMM defined on [0, LP ] with an imposed 
displacement u (LP ) = 0. The stretch is chosen as in Eq. (5.12) for a0 > 1 and as in Eq. (5.16) for a0 < 1.  A 
rightward propagating wave (a0 > 1) with a unit amplitude as it enters the PML, along with a wave 
reflected back from the fixed boundary, can be represented 
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    Ω(:= ΩBD Ω ∪ PM) 
Fig. 5.2. (a) Perfectly matched medium; (b) perfectly matched layer, adjacent to the bounded domain for 
the semi infinite rod on elastic foundation. 
 
Imposing u(LP ) = 0 gives 
 

)](2exp[ 0rLFR P−=                                                      (5.22) 
 

which is the amplitude of the reflected wave as it exits the PML. A similar calculation for evanescent 
waves using Eq. (5.16) shows that ׀R׀ in Eq. (5.22) is the additional attenuation imposed by the PML on 
the reflected evanescent wave. This reflection coefficient ׀R׀ due to the PML is controlled by the choice of 
the parameters f and LP /r0, independently of the size of the bounded domain to which the PML is adjacent. 
This suggests that if displacement and stress quantities near x = 0 for the semi infinite elastic medium are 
the quantities of interest in the analysis, the bounded domain may be restricted to the region of interest, 
thus lowering the computational cost, if  the parameters of the PML are chosen appropriately. 
A choice of λ as in Eq. (5.18) leads to 
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for a0 > 1, and 
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for a0 < 1; an additional attenuation is imposed upon evanescent waves. 
 
The dynamic stiffness of Ω at x = 0 is calculated as follows:  
1) assume a solution of the form 
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in terms of constants B1 and B2, with imaginary square roots for a0 > 1, and λ in x~  defined as 
 

λ(x) ≡ 1 for x ∈  [0, L]                                                      (5.26a) 
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and, following Eqs. (5.16) and (5.12), in terms of a non-negative attenuation function f as 
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2) impose boundary conditions u(0) = 1 and u(L + LP ) = 0 to calculate B1 and B2, and 
3) compute the dynamic stiffness as  

0
)(
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z
Aσ using Eqs. (5.9b) and (5.9c). The dimensionless dynamic 

stiffness of Ω is thus obtained as 
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with )( 0aS ∞  given by Eq. (5.5), ׀R׀ given by Eq. (5.22). Here )()( 00 aSaS ∞→  as ׀R ׀→ 0, i.e., the 
dynamic stiffness of the entire bounded domain is a good approximation to that of the unbounded domain 
if the reflection coefficient is suitably small. 
 
If λ is chosen as 
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in [L, L+Lp], following Eq. (5.18), then the dynamic stiffness for all a0 is still given by Eq. (5.27), but with 
  replaced by ׀R׀
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The accuracy of the bounded domain approximation is thus controllable by f e for evanescent waves and 
by  f P for propagating waves. 
 
5.2.5.  PML parameters effect on results accuracy 
 
Equations (5.27), and (5.22), are used to investigate the effect of the PML parameters LP /r0 and f on the 
dynamic stiffness )( 0aS , represented in terms of frequency dependent stiffness, k(a0), and damping, c(a0), 
coefficients given by the relation 

)()()( 0000 aciaakaS +=                                                       (5.29) 
 
This approximation to the stiffness of the unbounded medium is compared against the exact stiffness 

)( 0aS ∞ , also decomposed into stiffness and damping coefficients. 
 
The attenuation function is chosen to be of the form 
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which gives 
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Thus the reflection coefficient ׀R׀in Eq. (5.22) depends on the maximum value of the attenuation function, 
f0 [= f (LP )], the depth of the PML, LP / r0, and the polynomial degree of the attenuation function, m. 
Equation (5.31) suggests that the accuracy will be related directly to f0 and to LP / r0, but inversely to m. 
It is demonstrated that it is the depth LP / r0 of the PML that is significant, rather than the size L / r0 of the 
bounded domain. Figure 5.3(a) shows that if LP / r0 is not large enough, then increasing L / r0  does not 
improve the accuracy of the results. However, as shown in Fig. 5.3(b), for a sufficiently large PML (LP / r0 
= 1), the size of the bounded domain does not affect the results, there is no difference between either 
approximate result and the exact one. 
Figure 5.4 shows the effect of the choice of the attenuation function on the accuracy of results. 

 
                                        a0                                                                                        b0 

(a) L p / r0 = 1 / 2  
 

 
                                        a0                                                                                          b0 

(b) L p / r0 = 1  
Fig. 5.3. Size effect of bounded domain on the accuracy of dynamic stiffness of the elastic rod for two 
different depths of the PML;  f0 = 10,  m = 1. 
 
As was predicted from Eq. (5.31), increasing f0 increases the accuracy of results, but increasing m leads to 
less accurate results. This suggests that the attenuation function should be chosen as a linear polynomial 
and that the accuracy should be controlled through f0. An adequate value of f0 can be established through a 
rudimentary trial-and-error procedure; it is not appropriate to choose a value of f0 by choosing an adequate 
value of ׀R׀ in e.g., Eq. (5.22), because adequacy of the ׀R׀ value is equivalent to adequacy of the f0 value. 
If the dynamic stiffness of the bounded domain is calculated for λ in the PML given by Eq. (5.28) with f e 
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= f p = f, then the effects of L / r0, LP / r0, f0 and m on the dynamic stiffness is qualitatively similar to their 
effects for λ in the PML given by Eq. (5.26b), shown in Figs. 5.3 and 5.4.  In fact, a highly accurate 
dynamic stiffness is still obtained by choosing the parameter values L / r0 = 1 / 2, LP / r0 = 1,  f 0 = 10 and 
m = 1. 
 
5.2.6.  Finite element method 
 
The non homogeneous viscoelastic medium is interpreted as a perfectly matched medium, which is then 
implemented using standard displacement based finite elements [47]. As is known, the displacement 
formulation is well established, therefore only the salient steps of the implementation are presented. 
Equation (5.9) is rewritten in the form of Equation (5.9a) multiplied by λ(x), and ε in Eq. (5.9c) 
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                                        a0                                                                                          b0 

(a) m = 1  
 

 
                                        a0                                                                                          b0 

(b) f0 = 10  
Fig. 5.4. Effect of attenuation function on the accuracy of dynamic stiffness of the elastic rod; L / r0 = 1/2, 
LP / r0 = 1. is redefined as ε ← λ ( x ) to obtain an equivalent system of equations 
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The coordinate stretch is transformed into a change in the material parameter properties; this PMM can 
therefore be interpreted as a non homogeneous elastic medium. 
Then, the weak form of Eq. (5.32a) will be derived as follows: first, the equation is multiplied by an 
arbitrary weighting function, w, in an appropriate admissible space, and then integrated using integration-
by-parts to obtain 
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The functions u and w are interpolated by element in terms of nodal quantities using N, a vector of nodal 
shape functions, then Eqs. (5.32b) and (5.32c) are substituted into the integrals on the left hand side of Eq. 
(5.33). Limiting the integrals to Ω e, the element domain, will give the stiffness and mass matrices for a 
PML element: 
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e
IJm  and are the nodal sub matrices of the whole element matrices m e

IJk e and k e, with I and J the node 
numbers and NI the shape function corresponding to node I. In Eq. (5.34), λ is defined globally on the 
computational domain. The obtained element mass and stiffness matrices are symmetric, but are complex 
valued and frequency dependent because of the choice for λ [Eq. (5.12) or (5.18)]. Therefore, the system 
matrices for Ω will be complex, symmetric, and banded, the PML contributions to which will have to be 
computed  for each frequency. 
 
5.3. Anti-plane motion 
 

5.3.1. Elastic domain  
 
For the case of a two-dimensional homogeneous isotropic elastic domain undergoing time harmonic anti-
plane displacements and in the absence of body forces. For such motion, if the x3-direction is pointing out 
of the plane, only the 31- and 32-components of the three-dimensional stress and strain tensors are non-
zero. The displacements in terms of u(x) exp(iωt), with ω being the excitation frequency are governed by 
the following equations (i ∈2 {1,  2}): 
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ii µεσ =                                                                (5.36b) 
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i x
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where ρ is the mass density and µ the shear modulus of the medium; σi and εi represent the 3i-components 
of the stress and strain tensors. 
For an unbounded domain, Eq. (5.36) admits only plane shear wave solutions of the following form 
 

u(x) exp[– i ks x . p]                                                          (5.37) 
 
where the wave-number is given by k s = ω / c s, with the wave velocity ρµ=sc , and p is a unit vector 
representing the propagation direction. In addition, consider the domain shown in Fig. 5.5, where a layer 
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of thickness d and material constants µl and ρl, and a traction free surface at x1 = – d, supported by a half 
plane having material constants µh and ρh. For such a domain, Eq. (5.36) Love wave solutions are given by 
the following  
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if  , where  and  are the shear wave velocities in the half-plane and the layer  respectively. In 
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An elastic medium, with damping introduced through the correspondence principle, can also be described 
using the above equations, but with a complex valued shear modulus , ζ being the 

hysteretic damping ratio, leading to a complex valued wave velocity

)21(* ζµµ i+=

ζicc ss 21* +=  and wavenumber 

ζikk ss 21* +=  

 
Fig. 5.5. Layer with a free surface supported on a half-plane; this geometry admits Love wave motion. 

 
 
5.3.2.  Perfectly matched medium 
 
For a given system of equations of the same form as Eq. (5.36), but with xi replaced by stretched 
coordinates ix~ , defined as  
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where λ i are nonzero, continuous, complex valued coordinate stretching functions. This coordinate 
stretching formally implies that 
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this system of equations can be expressed by 
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which a modification of Eq. (5.36), where the constitutive relation [Eq. (5.42b)] remains the same as for 
the case of the elastic medium. For the case of a two dimensional elastic continuum, the PMM for anti 
plane motion is governed by Eq. (5.42); an elastic viscous medium corresponds to λ i (xi) ≡ 1. Eq. (5.42) is 
then defined independently, but motivated by the definition of ix~ ; this is similar to the definition of Eq. 
(5.9) for the one dimensional PMM.  
For the continuity of λi, the forms of the solutions admitted in the PMM are similar to those given by Eqs. 
(5.37) and (5.38) for the case of the elastic medium, but with xi replaced by ix~ . Then, for an unbounded 
domain, Eq. (5.42) admits plane wave type solutions of the following equation 
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In addition, for the domain shown in Fig. 5.7 given by λ 1 (x1) ≡ 1, Eq. (5.42) admits Love wave type 
solutions of the following equation  
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 where βl, βh, kv etc., defined for the elastic medium. 
 
The exact matching property of these PMMs is that: if two PMMs having different λi are placed adjacent 
to each other, and with the λi functions for the two media such that they match at the interface, then a 
propagating wave will pass through the interface without generating any reflected waves. To clearly show 
this property, it is implicitly assumed in the definition of the PMM that λi is a function of xi only, which 
means that, the coordinate stretches are uncoupled. Consider the x1 – x2 plane, with two PMMs defined on 
it; one on the left half plane (:= {(x1, x2)| x1 < 0}) with , and another on the right half 

plane  (:= {(x

)(:)( i
lt
iii xx λλ =

1, x2)| x1 ≥ 0}) with . If , and if , then the two 
PMMs can be considered as one PMM, where a continuous λ 
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1 is defined piecewise on the two half planes, 
and each λi is a function of xi only; thus there is no interface to generate any reflected waves. This perfect 
matching property holds for any wave solution admitted by the PMM. In particular, for a plane wave type 
solution as in Eq. (5.43), the matching is independent of the direction of propagation p and of the wave 
number ks. A good choice of λi  imposes an attenuation on the wave solutions to Eq. (5.42). Again for the 
plane wave type solution in Eq. (5.43), if the functions λi  are defined in terms of real valued, continuous 
attenuation functions fi by the following equation 
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where 
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and 
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Substitution of Eq. (5.46) into Eq. (5.43) gives the following 
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Therefore, if Fi(xi) > 0 and pi > 0, then u(x) is attenuated as exp[– Fi(xi)pi] in the xi-direction, and the 
attenuation is independent of the frequency.    
In addition, consider the Love wave-type solution in Eq. (5.44); if λ 2 for the layer and for the half plane 
are chosen as in Eq. (5.45), as follows 
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for the half-plane, then the )~exp( 2xikv−  term in Eq. (5.44), which represents a wave propagating in the 
positive x 2-direction, is transformed to the following 
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Since cv depends on ω through Eq. (5.39), the attenuation is not independent of frequency for the choices 
of λ 2 given above. The use of kv in place of and  in Eq. (5.49) would, of course, make the attenuation 
independent of frequency, but would require the solution of Eq. (5.39) to determine k

l
sk h

sk
v. In a PMM for an 

elastic medium, with damping incorporated through the correspondence principle, the complex 
wavenumber k*

s may be used in place of ks, even in the stretching function, such, in Eq. (5.45). 
 
 
5.3.3. Perfectly matched layer 
 
For a given wave of the form in Eq. (5.37) propagating in an unbounded elastic domain, the x1-x2 plane, 
governed by Eq. (5.36). Then, the main idea of defining a PML is to simulate this wave propagation by 
using a corresponding bounded domain. For the replacement of the unbounded domain by  as 
shown in Fig. 5.8(a), where Ω

∞Ω∪Ω PMBD

BD is a bounded truncated domain, governed by Eq. (5.36), and is the 
unbounded PMM, governed by Eq. (5.42), with λ

∞ΩPM

1 of the form in Eq. (5.45), satisfying f1(0) = 0, and λ 2 ≡ 1. 
Because the medium in ΩBD is a special PMM [λ i (xi) ≡ 1, no summation], and the functions λ i for the two 
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media are chosen to be matched at the interface, all waves of the form in Eq. (5.37) propagating outwards 
from ΩBD (waves having p1 > 0) are completely absorbed and then attenuated in the x1-direction in . 
Thus the displacements in Ω

∞ΩPM

BD due to an outward propagating wave are exactly the same as the 
displacements of the original unbounded elastic medium in ΩBD due to the same wave. If this outward 
propagating wave is attenuated enough in a finite distance, then  can be truncated by a fixed 
boundary without any significant wave reflections. The layer Ω

∞ΩPM

PM of the PMM shown in Fig. 5.8(b) is 
termed the PML. If wave reflections from the fixed boundary are not significant, then the displacements of 
the system (ΩBD Ω∪ PM) into ΩBD should be the same as those of the unbounded elastic domain into ΩBD. 
Similarly, a PML for the system given in Fig. 5.5 can be constructed  by using a vertical layer consisting 
of two different PMMs with material properties matching the physical layer and the half-plane. 
Next, the effect of domain truncation in the PMM is analysed by studying the plane wave reflections by 
fixed boundary conditions. Shown in Fig. 5.6(b), is the incident plane wave at an angle θ and of unit 
amplitude as it enters the PML, is reflected from the fixed boundary. 
 

 
                                                                    (a)                                                               (b) 
Fig. 5.6. (a) A PMM adjacent to a bounded truncated domain attenuates an outgoing plane wave; (b) a 
PML with a fixed edge also reflects the wave back towards the bounded domain. 
 
Then, the total wave motion may be expressed by the following equation 
 

[ ] [ ])()( ~exp ~exp)( R
s

I
s pxikRpxikxu ⋅−+⋅−=                                    (5.50) 

 
where, p(I) and p(R) are the propagation directions of the incident and reflected waves respectively. Fixing 
u(x) ≡ 0 for x1 = LP and for all x2, and substituting ,  will result in θcos)(

1 =Ip
 

[ ]θcos)(2exp 1 pLFR −=                                                    (5.51) 
 

which is the amplitude of the reflected wave as it exits the PML. This reflection coefficient is mainly 
controlled by the choice of the parameters f1 and LP independently of the size of the bounded domain to 
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which the PML is adjacent and is influenced by the angle of incidence. This suggests that the bounded 
domain may be restricted to the region of interest in the analysis, thus lowering considerably the 
computational cost, if the parameters and the orientation of the PML are chosen accordingly. 
 
5.3.4.  Interpretation of the PMM 
 
Given below is another  interpretation  of the anti plane PMM as an anisotropic, non homogeneous elastic 
medium, obtained by simply transforming the coordinate stretch into a change in the constitutive relation. 
In the plane, consider two rectangular Cartesian coordinate systems as follows:  
1) an {xi} system, with respect to an orthonormal basis {ei}, 
2) an {x'i} system, with respect to another orthonormal basis {e'i}, with the two bases related by the 
rotation of basis matrix Q, with components Qij := ei . e'j  .  
Equation (5.42) can  also be rewritten differently in terms of the coordinates x'i just by replacing xi  by x'I  , 
as no summation is considered (the summation convention is abandoned in this section) representing a 
PMM where waves are attenuated in the e'1  and e'2 directions, rather than in the e1 and e2 directions as in 
Eq. (5.42);  and  are the 3i components in the basis {e''

iσ
'
iε i} of the stress and strain tensors.   
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Multiplying Eq. (5.52a) with λ1{x'1}λ2{x'2} and knowing that λi is a function of x'i  only, Eq. (5.52) can be 
rewritten as 
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The primed quantities in Eq. (5.53) can be transformed to the basis {ei} to obtain 
 

[ ]uxx )'()'()~( 2211
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µεσ =                                                                    (5.56b) 
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and 
TQQ '~~ Λ=Λ ,                                                       (5.58) TQQ 'Λ=Λ

The tensors Λ
~

 and  are called the left and right stretch tensors. In addition, because these stretch 
tensors are diagonal in the basis {e'

Λ
i}, this basis is called the characteristic basis of the PMM. Redefining σ 

as σσ Λ← ~
 and ε as  in Eq. (5.56), and defining εε 1−Λ←
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will result in an equivalent system of equations: 
 

ufmρωσ 2−=⋅∇                                                           (5.60a) 
εµσ D=                                                                 (5.60b) 

u∇=ε                                                                  (5.60c) 
where 

TQQ ''~~:D ΛΛ=ΛΛ=                                                        (5.61) 
 
Coordinate stretching in the PMM, represented by Λ

~
 and Λ  in Eq. (5.56), has been transformed into a 

change in the constitutive relation, thus leading to an interpretation of this PMM as an anisotropic, non 
homogeneous elastic medium. This interpretation of the PMM is similar to the non homogeneous media 
interpretation of the one dimensional PMM presented above. 
 
5.3.5. Finite element implementation 
 
The anisotropic non homogeneous medium form of the PMM, given by Eq. (5.60), is next implemented 
using standard displacement based finite elements. The weak form of Eq. (5.60a) is derived by 
multiplying it with an arbitrary weighting function w in an appropriate admissible space, and then 
integrating over the whole computational domain  using integration by parts and the divergence theorem 
to get the following 
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Γ⋅=Ω−Ω⋅∇ ndudfd m ωσωρωσω 2                                       (5.62) 

 
where Γ : = ∂Ω is the boundary of Ω and n is a unit normal to Γ. Assuming element interpolations of u and 
ω in terms of nodal shape functions N, imposing Eqs. (5.60b) and (5.60c) point in Eq. (5.62), and 
restricting the domain integrals to the element domain  Ω = Ω e will result in the stiffness and mass 
matrices for a PML element. For nodal sub matrices, these are 
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where I and J denote node element numbers.  
 
In Eq. (5.63), the functions λi in D and in fm are globally defined on the computation domain. We note that 
a finite element implementation of Eq. (5.56) would also have resulted in the stiffness and mass matrices 
in Eq. (5.63), because the coordinate stretch model of the PMM [Eq. (5.56)] is similar to the anisotropic 
medium model [Eq. (5.60)]. These element matrices are symmetric, but intrinsically complex valued and 
frequency dependent. Therefore, the system matrices for Ω will be complex, symmetric, and banded, the 
PML contributions have to be computed for each given frequency. 
 
5.4. Conclusions 
 
Perfectly matched layers have been developed in the context of time harmonic elastodynamics by utilising 
insights obtained from the electromagnetic fields. This new concept has been developed and implemented 
into a Matlab computer code and later on will be implemented in the spectral finite element Matlab code 
through the presentation of perfectly matched media for three different systems:  
1) a rod on elastic foundation,  
2) a continuum undergoing anti plane motion, 
3) a continuum undergoing plane strain motion. 
The PML concept is resumed as a perfectly matched medium (PMM) defined as one governed by a 
modification of the equations for the elastic medium, with the modification motivated by a continuous, 
complex valued, uncoupled coordinate stretching. The PMM solutions are of the form of those admitted 
by an elastic medium, but with the stretched coordinates replacing the real coordinates. PMMs exhibit the 
perfect matching property; if the stretching functions of two adjacent PMMs match at their interface, then 
the interface is invisible to all wave type solutions and no reflected waves are generated when a wave 
travels from one PMM to the other. This property holds for any direction of propagation and for any 
frequency. In addition, if choices of the stretching functions are appropriate, the solutions in the PMM 
take the form of the corresponding elastic medium solution, but with an imposed spatial attenuation, the 
imposed attenuation is spatial; it is not imposed through a temporal attenuation, or damping, employed in 
earlier absorbing layer models [98]. 
Perfect matching and attenuation properties of the PMM are used to build an absorbing layer the perfectly 
matched layer around a bounded domain such that the layer absorbs and attenuates outward propagating 
waves of all non tangential angles of incidence and of all non zero frequencies. Ending the layer by a fixed 
boundary causes reflection of the waves back towards the bounded domain, with the amplitude of 
reflected waves controllable; independently of the size of the bounded domain by the choice of the PML 
parameters:  
a) the depth of the layer,  
b) the attenuation profile.  
Therefore, wave propagation in an unbounded domain can be modelled through a bounded domain that is 
restricted to the region of interest, and a PML surrounding it. The one dimensional problem of the semi 
infinite rod on elastic foundation has been used to analytically study a bounded domain PML model. The 
function expressing the stretching is given in terms of an attenuation function, which controls the 
reflection due to the finite depth of the PML. Then, the reflection coefficient is directly related to the 
dynamic stiffness of the rod, and it is shown that the dynamic stiffness of the PML model approaches that 
of the unbounded domain system as the reflection coefficient approaches zero. Analytically speaking, the 
attenuation function should be chosen to increase linearly from zero at the bounded domain PML interface 
to a maximum value at the end of the layer, and that this maximum value, as well as the depth of the layer, 
should be used to control the accuracy of results; this conclusion is validated through analytical results. It 
is expected that a rudimentary trial and error procedure should be sufficient to establish an adequate 
maximum value of the attenuation function. Also proposed is a realistic choice of the stretching function 
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that does not employ prior knowledge of the frequency equation of the system, but is adequate for both 
evanescent and propagating waves; this adequacy is confirmed through analytical and numerical results. 
It has been shown that the one dimensional and the anti plane PMM, although formulated through 
coordinate stretching, can also be interpreted as anisotropic, non homogeneous elastic media. Equivalent 
interpretations have then been used to obtain symmetric finite element (FE) implementations of these 
PMMs, with the implementation of the anti plane PMM matching those presented in earlier works [25] 
[41]. The PMM for plane strain or two dimensional motion is not amenable to a similar equivalent 
interpretation; however, a new displacement based, symmetric FE implementation of this PMM is 
obtained, by expressing the PMM equations in a tensorial form. The obtained FE matrices are symmetric, 
but complex valued and frequency dependent. Thus the system matrices for the bounded domain are 
complex, symmetric and banded, the PML contributions to which have to be computed for each new 
frequency. 
These FE implementations have been applied to the following canonical problems:  
1) one dimensional semi-infinite rod on elastic foundation,  
2) anti plane motion of a semi in finite layer on rigid base,  
3) classical plane strain soil structure interaction problems 

i) half plane,  
ii) layer on a half plane,  
iii) layer on a rigid base.  

Very accurate results have been obtained from PML models using small bounded domains; the 
computational cost of the PML models was seen to be similar to that of comparable viscous dashpot 
models, and the inaccuracy of results from these dashpot models emphasized the small size of these 
bounded domains. Notably, accurate PML results have been obtained even for the waveguide system of a 
layer on a rigid base, undergoing either anti plane or plane strain motion, where evanescent modes are 
significant. This is achieved through the realistic choice of the stretching function proposed in the one 
dimensional analysis; such a stretching function is thus seen to be adequate even for systems with many 
evanescent modes. Numerical investigations of the mesh density effect on the accuracy of results suggest 
that the mesh density in the PML should be chosen to be similar to that of the bounded domain [42]. 
In this research, PMLs are presented for isotropic, homogeneous or discretely non homogeneous media. 
The same motivation of complex valued coordinate stretching is used for all three systems to define the 
PMM corresponding to the elastic medium. Consequently  
1) all three PMMs exhibit perfect matching property,  
2) propagating harmonic waves in the elastic medium are transformed to attenuated waves in the PMM, 
3) the constitutive relation is not affected by the coordinate stretching, i.e., the constitutive relation in the 
PMM is the same as that in the elastic medium.  
The PMMs presented in this research, as well as any extensions, could be seen as verifications of an 
assertion made by Teixeira and Chew [102]. They give a geometric interpretation of the PML concept, as 
a change in the metric of the coordinate space, and state: ". . . the PML concept does not depend on the 
particular form of field equations and is applicable to any linear wave phenomena." 
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Chapter 6 
 
 
 

6.    Spectral finite element method  
 
 
6.1 Introduction 
 
A first approach making it possible to model the wave propagation in complicated structures consists in 
solving the wave equations written in differential form, for example by using finite element method, 
boundary element method, hybrid methods combining FEM and BEM or a pseudo-spectral method. 
Although this approach can be used successfully in certain cases, it presents the major disadvantage to be 
limited if a total transformation of sufficiently smooth grid can be found between the studied physical 
field and the square field in which calculations are carried out, which is seldom the case when one 
considers realistic models.  
An approach much more natural, making it possible to solve this problem, consists in using the variational 
formulation of the wave equation on a grid adapted to the geometrical constraints of the model. Classically, 
this will lead to the finite element method by Hughes [48]. One attempt to use this method in geophysics 
were carried out by Lysmer and Drake [71] but, because of the weak approximation order which is usually 
used in order to reduce the cost of calculation of such schemes, the precision of the results often appeared 
disappointing [75]. 
 
Taking account of these developments, and with an aim of increasing the precision of modeling while 
maintaining a reasonable low calculation cost, we use in this chapter a spectral element method [83] [4]  
[105]  [30]  which, during the last decade, proved its effectiveness primarily in the field of fluid mechanics 
[94] [95]. Such a method makes it possible to solve the equation of the elastic waves in complicated 
mediums, presenting for example a curved topography and interfaces, while keeping the high degree of 
accuracy of the pseudo-spectral methods. The wave equation is written in a weak formulation, the grid 
being made up of curved 2D quadrangles or curved 3D hexahedrons. In the 2D case, each element is 
brought back to the square [−1, 1] × [−1, 1], and to the cube [−1, 1] × [−1, 1] × [−1, 1] for the 3D case, on 
which tensorial products of Lagrange polynomials associated with Gauss-Lobatto-Legendre integration 
points are used as polynomial bases. A fundamental consequence of this particular choice is that the 
system mass matrix is diagonal by construction, which leads to a completely explicit diagram and makes 
easy the inversion of this matrix. We use for the time integration an explicit-implicit diagram predictor-
multicorrector of the Newmark type based either on a traditional formulation in terms of acceleration by 
Hughes [48], or on a formulation based on the speed written in conservative form by Simo [97]. Three 
types of boundary conditions can be used: a free surface condition (Neumann), a rigid edge condition 
(Dirichlet) or an absorbing condition allowing simulating an extending infinite medium. The latter is 
introduced by solving a first order paraxial equation in time domain on the boundary. In this chapter, the 
precision of the introduced method is shown for two traditional problems (problem of Lamb, problem of 
Garvi) by comparing the solution calculated by using a low number of points per wavelength 
(approximately 5) with the analytical solution of the problems considered. An excellent agreement is 
found. The flexibility and the robustness of the method will be then proven in the following by studying 
more realistic models in 2D as 3D. The heterogeneous structural analysis by a spectral finite element 
method constitutes, to our knowledge, a new approach in the field of SSI problems.  
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We also show the implementation of the method into a MATLAB computer program called SFEM2D 
(Appendix C), this by itself constitute a major contribution that had never been undertaken before and we 
show that it is possible to reach very interesting performances. 
 
 

6.2 Spacial discretization and Galerkin approximation  
 
As we know, it is possible to write the equations governing the elastic wave propagation in variational 
form. The advantages which one can get from such an approach are (geometrical flexibility allowing to 
treat really complex models, easy implementation of the natural boundary conditions, in particular the free 
surface boundary condition …). However, in order to be able to solve numerically the problem for the 
different boundary conditions thus formulated, it is necessary to reduce the size of the dynamic system of 
infinite extent to a system of manageable finite size. This is generally carried out in three steps:  
 

1. Spatial discretization:  the geometrical field Ω is discretized in a family of sub-fields not 
overlapping {Ωe} , e =1, nel. This enables us to introduce the restriction we of w  to Ωe, i.e. the 
field defined on Ωe and which coincides with w on this finite support.  

2. Galerkin approximation:   the subspace containing the phases of infinite size S x V  is replaced by 
a subspace of finite size via a Galerkin projection. This is carried out by introducing the space of 
the polynomials functions per pieces, and a projection operator on the grid of collocation defined 
by the integration points.  This boundary problem with initial conditions is now formulated in the 
form of an ordinary linear differential equations resulting from the discretization of the variational 
form of the equations, taking account of the local form of the constitutive equations. 

3. Discretization in time domain: the system of ordinary linear differential equations introduced 
above describes the evolution in time of the discrete degrees of freedom. A discretization in time 
and the introduction of a time evolution algorithm are then necessary to be able to calculate the 
displacement fields, speed and acceleration at any moment of the time interval considered. 

 
 
 

6.2.1 Space discretization 
 

The studied physical field is first discretized in non-overlapping elements:  .  At 2D,  the e
ne

e
el Ω=Ω =

=1U

elements are quadrangles (in the general case, their sides may be curved). For the 3D, they are 
hexahedrons. This field partition must satisfy the traditional finite element condition, that consists to make 
sure that for all e ≠ e'  the intersection Ω ∩ Ωe'  must be either empty or made up of a node, a side or a 
common face. For each element Ωe  of the field, the field  we = w│Ωe is defined as the restriction of w on 
the spatial finite support Ωe . 
Let us note □ the area of reference in the space ξ (for example a closed square of R2 in 2D: □ = Λ × Λ , 
where Λ = [–1, 1], and a closed cube of R3  in 3D: □ = Λ × Λ × Λ ). For each element Ωe, we can define a 
regular diffeomorphism  F e: □→ Ωe  such that:  
 

x( ξ ) = F e ( ξ )                                                               (6.1) 
 

A traditional way to build F e , following Gordon and Hall [39], consists to start the parameterization from 

the four curved sides Γ  constituting the border  ∂Ω)4,...,1( =ie
i e of the element Ωe.  That is, if  aj 

(j=1,…,4) are  the tops of Ωe, let us suppose given four regular functions fi  from [ – 1 ,  1]  in R2  [4]: 
  
 

22121 a)1()1(])1 ,1([])1 1([ =−=−=−− fff,f I  
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33232 a)1()1(])1 ,1([])1 ,1([ =−==−− ffff I  

44343 a)1()1(])1 ,1([])1 ,1([ ===−− ffff I                                        

11414 a)1()1(])1 ,1([])1 ,1([ ==−=−− ffff I                                       (6.2) 
Then the application F e  of  Λ 2  in R2 can be written in the form  
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It is then advisable to make sure that the jacobien  Je of the transformation F e  thus defined is not null 
everywhere. Another traditional way to define such a transformation (see figure 6.1) consists in 
considering the 1D Lagrange polynomials of order  n , finite on Λ starting from the 11,, +≤≤ nil n

i

geometrical nodes used to discretetize the segment. One can then simply define the geometrical 
transformation F e  by writing (example for a 2D case): 
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where  ak, k =1, …, n en are  the geometrical nodes defining the element. For a quadratic parameterization 
on each side of the element (corresponding to a 2D transformation controlled by eight nodes), the 
functions Nk, called shape functions in finite element terms, are, for the nodes belonging to the corners of 
the element: 
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and for the nodes in the middle 
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Fig. 6.1. Example of a quadratic geometrical transformation between the deformed field and the area of 
reference. 
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The analytical expression of these 2D shape functions having eight nodes is given in Dhatt and Touzot 
[27].  
The case of a 3D element can be described by elements having 20 nodes for which the analytical 
expression of the shape functions is somewhat difficult to write. In order to ensure the condition of non-
overlapping of the elements of the grid, it is necessary to check that the jacobien Je  of the transformation 
thus defined is non-null everywhere. 
 
 
6.2.2 Galerkin Approximation 
 
The subspace of phases of infinite size S × V  is replaced by a subspace of finite size  by using a 
Galerkin approximation and an operator of polynomial interpolation. The index h is referred to as the 
association of S 

h
N

h
NS V×

h and V h with the grid, i.e. the spacial discretization of the field Ω, which can be 
parameterized by a characteristic scale length h. In relation with the space discretization, let us consider 
for  N∈N, the approximation of finite size of S  defined as follows (with nd being the dimension of the 
physical space considered): 
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and for the space of the acceptable variations V  
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where  PN (□ ) is the space of the polynomials of degree ≤ N defined on the domain of reference. This 
defines a polynomial approximation per pieces on each element Ωe.  
Galerkin approximation of the considered problem can then be formulated as follows: 
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All integrations appearing in the formulas above must now be approximated by numerical integrations. 
Thanks to the geometrical transformation F e  previously defined, we can transform each integral on an 
elementary field in the physical space into an integral in the area of reference (that is to say the square or 
the cube □ previously introduced, according to whether one works with 2D or 3D). Then, the integrals can 
be calculated in an approximate way by means of a numerical integration method (square rule) which can 
be defined on the domain of reference. The square rule that we use is the Gauss-Lobatto-Legendre. For 1D, 
the Gauss-Lobatto-Legendre integration points ξj, 0 ≤  j  ≤  N, are defined as the zeros of the polynomial 
(1– ξ 2 ) LN' ' where LN' ∈PN (Λ) is the Legendre polynomial of degree N defined on  Λ. The square rule in 
higher dimension (2D or 3D) is obtained by simple tensorisation  of the 1D squaring rule. For example in 
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the 3D case, we can detail this stage of space discretization.  One associates each elementary field  Ω e a 
grid of integration  { }NkNjNikji

e
N ≤≤≤≤≤≤=Ξ 0 ,0 ,0 );,,( γηξ   including (N + 1)3  points which 

can be defined in the domain of reference □ (see figure 6.2):  
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       where ρ j > 0  are the weights associated with the squaring rule and ∇~  the gradient operator in the 
domain of reference □: 
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where  represents the gradient of the geometrical transformation.  )(F ξe )(ξξ NF∂=

In order to define the polynomial approximation in pieces   of the field w, we use the integration grid 

of Gauss-Lobatto , defined for each elementary field 

h
Nw

e
NΞ eΩ , as well as the local geometrical 

transformation F e. In the elementary field eΩ , we introduce the Lagrange interpolation operator 

associated with the grid of Gauss-Lobatto defined on the domain of reference □ : for restrictions 
eΩw , 

NI ( )o
eΩw  is the single polynomial of  PN (□) which coincides with 

eΩw  at (N + 1)3 points of . e
NΞ

 
η

ξ

 
Fig. 6.2. Grid points of Gauss-Lobatto-Legendre in the domain of reference for the 2D case, and in the 
corresponding curved element. 
 
Let   be the Lagrange polynomial of degree N associated with point i  of Gauss-Lobatto-Legendre 

in the 1D squaring formula (see figure 6.3). The Lagrange polynomials  define a base of  

)(ξN
il

N
k

N
j

N
i lll ⊗⊗

PN(□) and thus:  
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with x = F e ( ξ ) and o

e

h
N

e
ijku Ω= u

N

 F e ( ξ i, η j, γk).  

One notes Ξ  the global collocation grid which is the assemblage of collocation grids defined on each 
elementary field: 
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Fig. 6.3. 1D Lagrange polynomials associated to Gauss-Lobatto-Legendre points of order N=8. 
 
 
6.2.3 Matrix form of the problem with initial semi-discrete values:  
 
The discretization procedure described above leads to a coupled system of ordinary linear differential 
equations written in conservative form:  
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subjected to the initial condition  )p,d()p,d( 000 ==t . If  n node is the total number of nodes of the global 

collocation grid  , note d  as the global displacement vector having n NΞ node degrees of freedom, and p  
the global momentum vector having also n node degrees of freedom:  
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Noting   as the tensorized base for the 3D case, corresponding to the usual notation 

 in the elementary Gauss-Lobatto-Legendre grid, one can define the mass matrix M by: 
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 where  is the assembly operator, as in the finite element method for example, on the total number 
of spectral elements n

[ ]⋅=
eln

e 1A
el.   The use of the squaring rule of Gauss-Lobatto, as well as the Lagrange 

polynomials, has the fundamental advantage to lead to a diagonal mass matrix. One also notes  F ext  the 
vector of the external forces (imposed nodal forces): 
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and F int  the total vector of the interior forces: 
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In the case of a distribution of moments  m(x, t) = m0(x) g(t – t0), we can write: 
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The particular case where m = m0 I , with I the identity tensor, corresponds to an impulsive source force.  
 
 

6.3 Time integration algorithms 
 
We present here two diagrams which we used for the discretization in time of the problem to the initial 
values semi-discrete. 
 
 
6.3.1 Newmark schemes 
 
The evolution in time is defined by the semi-discrete equation of conservation of momentum that have to 
be checked at time  t n+1, associated with Newmark formulas [47]: 
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Some interesting properties of this family of diagrams can be quoted in [84]: 
 

• These diagrams are unconditionally stable in the linear case for β ≥ γ ≥ 1/2, and conditionally 
stable for      γ ≥ 1/2 and  β  < 1/2. A detailed study of the stability of such diagrams is available in 
Hughes [47]. 

• These diagrams are of the second order if and only if  γ = 1/2. 
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• The only member of this family which ensures the conservation of the total angular momentum is 
the method of the centered explicit finite differences (β = 0 and γ = 1/2 ).  

• The trapezoidal rule associated to Newmark diagram, (γ = 1/2 and β = 1/4), does not have this 
property of conservation of the total angular momentum. However, this diagram has good 
properties ensuring the conservation of the total momentum, and defines an algorithm of temporal 
discretization depending on acceleration. On the other hand, the acceleration field predicted by 
this algorithm is known to be disturbed. 

 
 

6.3.2 Newmark algorithms in terms of speed in conservative form 
 
In this case, the conservation equation of the total momentum is written in conservative form at time t n + α 
[97], which gives the following speed algorithm: 
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( ) nnn d1dd 1 ααα −+= ++ &                                                       (6.24) 

where  
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and  
 
We can mention some interesting properties of this type of diagrams: 
 

• The exact conservation of the total angular momentum is obtained for α = β / γ = 1/2, which 
corresponds to the medium point rule written in conservative form. These values of the parameters 
define an algorithm of evolution in time independent of acceleration. 

• A precision of the second order is obtained if and only if  α = 1/2 . The particular case α = β / γ = 
1/2  and γ = 1, often used in practice, gives the formula a posteriori  a n+1 = ( v n+1 – v n ) / ∆ t.  The 
stability of these diagrams is studied in Hughes [48] and Simo [97].  

 
 

6.3.3 Predictor-multicorrector algorithms  
 
The two diagrams presented can be rewritten in the form of an iterative algorithm of predictor-
multicorrector type which can make it possible to improve their properties in certain cases. A traditional 
implementation of this type is given below for the family of Newmark diagrams written in acceleration 
terms: 
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where the predictors are defined by: 
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For a scheme posed in terms of speed in conservative form, we can write: 
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where the predictors are defined by: 
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with by definition 
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6.4 Implementation of the algorithm 
 
After space and temporal discretization, we have seen that we are led to solve for each step of time a 
system of the type (6.16). Let us note that the 2D expressions differ from the 3D expressions by their 
number of terms, but not by their structure because of the use of a tensorized base at the elementary level, 
because of this the reasoning will hold for both cases. From an algorithmic point of view, we can describe 
the essential calculation phases (in the order in which it is necessary to carry out these operations within 
each step of time): 
 

1. Calculation of the interior forces on the level of each element. 
2. Assembly of the interior forces at boundary of the neighboring elements. 
3. Calculation of the external forces at the global level. 
4. Inversion of the linear system (6.16) to obtain at the global level the speed or acceleration field      

starting from the sum of the calculated forces, and the mass matrix. 
5. Updates of the speed and displacement fields thanks to the calculated acceleration field, by using 

the relations (6.22) . 
 

For the 2D case, the calculation of the interior forces at the local level can be done by multiplication of the 
displacement field by local derivation matrices (calculation of the gradient), then numerical integration of 
the resulted quantities, again by a simple matrix multiplication at the local level. We also show that the 
calculation of the external forces is commonplace, and that the mass matrix is rigorously diagonal because 
of the base choice. From these very significant properties of the formulation suggested, we can draw the 
following conclusions: 
 

• The calculation of the interior forces at the local level, corresponding to a succession of products 
by matrices of calculated coefficients once for all, has a cost in O ( N 3 )  in the 2D case, and in O 
( N 4 )  for the 3D case, N  being the number of Gauss-Lobatto points used in each direction within 
the element of reference, which corresponds to a polynomial degree of N –1. This cost is thus 
moderated, in particular for 3D, the magnitude order of the number of points N  being 10.  

 
• The summation of the contributions between close elements, for the global calculation of the 

interior forces, utilizes the tops, edges and faces common for several elements, but not the interior 
points within each element. So the quantity of information to exchange remains limited to the only 
boundaries of the close elements, and thus remains weak within the framework of the field 
decomposition. 

• The calculation of the external forces is of a negligible cost.  
• Lastly, the mass matrix is exactly diagonal, we have a really explicit method because the inversion 

of this matrix is immediate, which is a very strong property compared to a traditional finite 
element method. 

 
Of these various conclusions, which had already been established in the field of fluid mechanics a few 
years ago [32], one can establish that in the case of linear elastodynamic equations, the cost of total 
calculation of the method will be primarily controlled by the cost of calculation of the interior forces. This 
cost is weak at the local level, to pass at the global level it is necessary to sum up the contributions 
between ends of the close elements (phase "of assembly" in the finite element language, or phase of "send-
get" or even "gather-scatter" in the language of parallel calculation). The cost of this operation of 
assemblage is not easily calculable, because it strongly depends on the structure of the calculator being 
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used. However, on a parallel calculator and within the framework of using an algorithm of field 
decomposition [32], making it possible to distribute the data on the various processors by ensuring a 
balance of their load and making it possible to minimize communication times by supporting the locality 
of data, this operation is natural for a grid made up of hexahedrons. The number of information to be 
summed up remains limited to the boundary of the neighboring (close) elements, typically, on a parallel 
calculator, this phase will include mainly communication data, but will require very little CPU time. On 
the Connection Machine, by using the programming Parallel Data model, it is not necessary to call 
explicitly upon a decomposition of domain to distribute the data on the various processors, indeed this 
organization is dealt with by the compiler and optimized routines are provided by the manufacturer.  
Contrary, such an algorithm will lead itself relatively bad to an implementation on a supercomputer of the 
vectorial type, indeed, the polynomial order remaining always relatively low within an element (typically 
10), all the vectorial operations at the local level will apply to vectors of very low length, which is always 
penalizing for this type of architectures. So, the algorithm will function but its effectiveness on this kind of 
architecture will be rather average.  
 
 

6.5 Validation for 2D Lamb problem 
 
The problem of Lamb is a traditional test which is often used to measure the precision of a method of 
modeling of the elastic wave propagation. One considers an elastic homogeneous half-space, with a force 
source placed in the medium, or on the surface of this one. There is an analytical solution with this 
problem. The problem of Lamb thus makes it possible to validate the algorithm for a source of the external 
force type colloqued in a point of the grid. If the source is placed in volume, a direct P wave and a direct S 
wave will be propagated, and reflexions and conversion of modes will occur on the free surface. If the 
source is placed just under the surface, or exactly on the surface, the principal event will be a Rayleigh 
wave [88] which will propagate along the surface. In this case, Rayleigh wave is nondispersive, because 
the medium is homogeneous and its surface is plane. Thus, the problem of Lamb constitutes an excellent 
test of the precision of a numerical modeling technique, since the three types of elastic waves (P wave, S 
wave and Rayleigh wave) must be correctly modeled. A detailed numerical analysis of this problem is 
available in Khun [58].  
 
 
6.5.1 Source inside the model 
 
In this first example, the source is placed inside the model, the free surface is plane, the medium has a P 
wave speed of 3200 m/s,  an S wave speed of 1847.5 m/s and a density of 2200 kg/m3. The studied model 
has a width of 4000 m and a 2000 m height. Absorbing conditions are used on the left,  right and lower 
boundaries in order to simulate a semi-infinite medium. The grid is composed of 50 × 30 elements, and 
one uses a polynomial degree of 8 in each direction of an element. This value of 8 was selected because it 
is close to the optimum for a spectral element method approach [96]. Indeed, if a higher order polynomial 
is used, and because of the densification of Gauss-Lobatto points on the edges of the element, one does 
not gain much in precision whereas the cost of calculation grows significantly at the elementary level. If 
on the other hand a weaker order polynomial is taken, one tends towards a traditional finite element 
method, and the precision of the diagram is quickly degraded. 
The grid that we use is thus composed of 96 641 points. In order to have very precise results in this 
numerical experiment of which the goal is to compare the calculated results with the exact solution of the 
problem, a small time step ∆t  = 0.25  ms is used. If we define the Courant number by  
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such a time step corresponds for the smallest mesh of the grid in a number of Courant of 0.25, that is to 
say approximately 40 % of the limit of stability which corresponds to a Courant number of approximately 
0.60 (this value being empirically given).  
The time diagram used is the predictor-corrector algorithm of Newmark type, that we choose purely 
explicit (β = 0  and γ = 1 / 2 ) . The total number of time steps is 6000. The position of the source is ( x, z ) 
= (2000 , 1400)  m and the line of receivers goes from (600, 1700) to (3400, 2200) m. The source is a 
force, of the Ricker type (second Gaussian derivative) having a central frequency of 14.5 Hz. Such a 
frequency corresponds, for the grid used, to a sampling of approximately 5 points for smaller wavelength 
S in the model, on average on a spectral element. 
Let us recall that, for a Ricker of central frequency f0, if we define the maximum frequency fmax  of this 
Ricker as the frequency for which the amplitude of the spectrum is 5 % of its maximum value, then we 
have 

0max 5.2 ff ≈                                                                 (6.34) 
  
The smallest wavelength S in the heterogeneous model is then  
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and one will be always placed, in a situation such as this smaller wavelength is sampled by approximately 
5 points within a spectral element, which, after test, seems to be the limit of sampling, in which, point 
numbers below 5 points will cause numerical problems. Wave propagation snapshots corresponding to the 
problem of Lamb are presented on figure 6.4. As subsequently, all over this thesis, on snapshots the source 
is represented by a small cross and the line of receivers by two rhombuses connected by a dotted line. One 
can observe the P and S waves, as well as the converted and reflected waves on the free surface. The 
displacements recorded by the line of receivers placed in the model are shown on figure 6.5, and the 
comparison with the analytical solution for receivers 75 and 100 is also shown on figure 6.5. On the figure 
showing the comparison with the analytical solution, the numerical solution was drawn as well as the 
residues compared to the analytical solution, represented on the same scale after multiplication by a factor 
10. The real amplitudes were compared (without standardization). We obtain a very good agreement, the 
maximum error relative being less than 1 %. This value is close to the limit of resolution of the analytical 
code, indeed the analytical solution is obtained after numerical convolution with the temporal function of 
the source, which introduces in fact a small numerical error into the reference solution (it would be thus 
preferable to speak about a semi - analytical solution). It is interesting to note that, as it will be often the 
case in the numerical tests which we will present in the following, the principal source of numerical error 
comes from the stray reflections on the absorbent boundaries, because owing to the fact that to simulate 
these absorbing boundaries, a paraxial approximation was used, this approximation being exact for an 
incidental wave according to the normal at the boundary, and its effectiveness degrades as the incidence 
angle of the wave deviates from the normal. 
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Fig. 6.4. Snapshots obtained for Lamb problem with a source force placed inside the model. One can 
observe the P and S waves, as well as the reflections and the mode conversions which occur on the free 
surface.  
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                                          Fig. 6.5 c                                                                       Fig. 6.5 d 
 
Figs. 6.5 (a, b, c and d) : Snapshots recorded by receivers 75 and 100 of Lamb problem with a source load 
placed inside the model.   The residues compared to the analytical solution, drawn on the same scale after 
multiplication by a factor 10, are also represented. A very good agreement is obtained, the maximum 
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relative error is less than 1 %. The small artifacts on the right are noise reflections coming from absorbing 
boundaries. 
  
 
6.5.2 Source on the surface 
 
In this second example, the model and the source are the same ones as previously, but the source is now 
placed exactly on the free face, in xs = 1720  m, as well as the line of receivers. So those will record 
mainly a strong non-dispersive Rayleigh wave. Such a simulation constitutes an excellent test of the 
precision of the numerical free surface condition. The corresponding snapshots are introduced on figure 
5.6, where the strong Rayleigh wave can be clearly observed, with its elliptic characteristic polarization. 
The wave refracted on the surface ("head wave") appears also clearly. A diagram of the various wave 
fronts appearing in such a case is presented on figure 6.7. The displacements recorded by the receivers are 
shown on figure 6.8 and the comparison with the analytical solution for receivers 75 and 100 is also 
represented on the same figure. The real amplitudes were compared (without standardization). Again, we 
find a very good agreement with the reference solution, the maximum relative error being about 1 %. Note 
that for this simulation, the distance from the source to receiver 100 corresponds to approximately 20 
fundamental Rayleigh wavelengths, and 50 minimal Rayleigh wavelengths.  
 
One observes few numerical artifacts, which constitutes a significant advantage related to the use of a 
variational formulation, into which the free surface condition is introduced in a natural way, to solve the 
problem - the introduction of the numerical free surface condition being a difficult point in certain 
traditional numerical methods, for example if high order finite differences or differential pseudo-spectral 
methods are used [59] [93] [94]-. On the traces presented on figure 6.8, we can observe that the amplitude 
of the Rayleigh wave remains constant while propagating along the surface, as is required by theoretical 
calculations in the case of a simulation in plane deformations (corresponding to an infinite source line in 
the third direction, see for example Garvin [36] ).  
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Fig. 6.6: Snapshots recorded by receivers 75 and 100 of Lamb problem with a source load placed at the 
free surface of the model. The residues compared to the analytical solution, drawn on the same scale after 
multiplication by a factor 10, are also represented. A very good agreement is obtained; the maximum 
relative error is less than 1 %. The small artifacts on the right are noise reflections coming from absorbing 
boundaries. 
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z  
Fig. 6.7 : Diagram showing wave types appearing in Lamb problem when the source is placed on the free 
face. One can distinguish the P wave, the S wave, the of Rayleigh  (R) wave and the  P-S wave "head-
wave". Θc  is the critical angle.  
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Fig. 6.8: Traces recorded by receivers 75 and 100 for Lamb problem when the source force is placed 
exactly on the free surface. The residues compared to the analytical solution of the problem are also drawn 
on the same scale, after multiplication by a factor 10. The agreement is excellent, almost no numerical 
dispersion is observed, the maximum relative error being about 1%. The amplitude of the Rayleigh wave 
remains constant during the propagation, which is correct in the case of a calculation in plane 
deformations. 
 
 
6.5.3 Behaviour on a random grid 
 
In this example, we show that the numerical method suggested remains very precise even if the grid 
employed is disturbed. The physical model that we consider is the same one as in the preceding case when 
the source was placed in the volume, but now we use a random grid to solve the problem. The disturbance 
of the position of the grid points compared to their original position (see figure 6.9), in which the size of 
the meshes was about 80 m, is drawn randomly between 0 and ± 22  m along the x axis , and between 0 
and ± 20  m along the y axis , which represents significant maximum disturbances compared to the 
original size of the meshes. 
The corresponding snapshots are presented on figure 6.9, and the comparison with the analytical solution 
for receivers 75 and 100 on figure 5.10. Again, we obtain a very good agreement with the analytical 
solution, which proves that the method remains very precise even when a very disturbed grid is used. The 
maximum relative error is again about 1 %.   
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Fig. 6.9: Instantaneous snapshots for Lamb problem using a random grid, with a source placed inside the 
model. In spite of the use of this strongly disturbed grid, we observe the same phenomena as on figure 6.5. 
A weak noise reflection coming from the absorbing edge is also visible on the lower edge of the model. 
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Fig. 6.10: Snapshots recorded by receivers 75 and 100 for Lamb problem using a random grid, the source 
is placed inside the model. The residues compared to the analytical solution of the problem are also drawn 
on the same scale after multiplication by a factor 10.  A very good agreement is obtained even by using 
this strongly disturbed grid; the maximum relative error is about 1 %. The weak artifacts on the line are 
noise reflections coming from the absorbents boundaries. 
 
 
6.6 Stability and dispersion of the numerical method 
 
6.6.1 Numerical checking of the stability of the method 
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It is fundamental to have an idea of the stability and dispersion properties of the algorithm proposed. Let 
us note immediately that such a study, in the general case of a medium with a non-regular grid, is 
extremely difficult to carry out (traditional techniques of analysis of stability for example, use a regular 
Cartesian grid). Thus, we were constrained to limit our study to the stability of the diagram using a series 
of numerical experiments.  
 
The first experiment was undertaken for Lamb problem previously exposed, by using an explicit 
Newmark diagram in time ( β = 0 and γ = 1/2 ). All other parameters are identical to the cases used above 
at the time of comparisons to the analytical solution of the problem. However, in order to preserve exactly 
the total energy contained in the dynamic system considered, we use free boundaries on the four sides of 
the grid, and not of the absorbent boundaries. We test numerically the stability of the diagram by 
calculating the total kinetic energy at each time step, the total potential energy, and their sum, which is the 
total energy present in the medium. If the numerical diagram is stable, the total energy must remain 
constant during simulation. The explicit Newmark diagram being conditionally stable, we carry out same 
simulation for several values of time steps ( ∆ t =  0.50 ms , ∆ t =  0.75 ms , ∆ t =  0.80 ms and ∆ t =  0.81 
ms ). The value ∆t = 0.50 ms corresponds, for the smallest mesh, to a maximum Courant number of 
approximately 0.38, and the value ∆t = 0.81 ms with a number of maximum Courant slightly higher than 
0.60. The results obtained (see figure 6.11 are identical for the first three time step values, and the total 
energy remains constant during simulation of 3000 time steps, which means that the diagram is stable. The 
value ∆t  = 0.81 ms is slightly beyond the limit of stability, because we note numerically that after a 
certain number of time steps, the diagram becomes unstable. The number of maximum Courant 
corresponding to the limit of stability is thus approximately 0.60  in this case.  
 
The second numerical experiment was undertaken for the same model as previously (only the position of 
the source being slightly different), but now by using successively the three numerical temporal 
discretization diagrams that we have, namely:  
 

1. Explicit Newmark diagram in time ( β = 0 and γ = 1/2 ).  This diagram, is equivalent to a of finite 
differences centered diagram of order two, is conditionally stable. 
 
2. Newmark implicit-explicit diagram ( β = 1/4 and γ = 1/2 in equations 6.22), written in the form 
predictor/multicorrector (see equations 6.29). This iterative diagram is also conditionally stable . 
 
3. Algorithm written in terms of velocity in conservative form (α = 1/2, β = 1/2 and γ = 1  in equations 
(6.23), with a diagram of the predictor/multicorrector type.  This diagram is conditionally stable [97].  
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Fig. 6.11: Stability of Newmark diagram for the case of Lamb problem. The four tests correspond to a 
time step value of (from left to right and from top to bottom) from ∆ t = 0.50, 0.75, 0.80 and 0.81 ms 
respectively. Total energy remains constant during 3000 time steps, proving the stability of the diagram, 
except for ∆t  = 0.81 ms, for which the diagram explodes because the limit of stability was exceeded. 
 
 
6.6.2 Numerical dispersion of the method 
 
As soon as one is interested in a numerical diagram to solve the elastic wave propagation problem in a 
medium, it is important to ask about the dispersion properties of the diagram being used. The spectral 
element methods present a very weak numerical dispersion. The analytical study of this numerical 
dispersion is very hard in the general case (deformed grid). For regular grids, the non-uniformity of the 
Gauss-Lobatto collocation points makes the analysis rather heavy. In the case of a uniform grid and for 
polynomial degree N  = 3 , the collocation points, in each space direction, are divided into several types of 
nodes repeating itself periodically, with periodicity h , the size of the element: the end node of a segment 
and two interior nodes. Fourier analysis of the approximation leads to a system of three 1D equations and 
2D equations. The solution of this system compared with the Fourier transform of the solution of the 
continuous system provides an estimate of the error of the space approximation and numerical dispersion. 
This problem was recently analyzed in the case of the acoustic equation by Cohen et al. [17] and 
Tordjman [105]. The analysis is rather long. The principal results, for a spectral approximation of order N  
= 3 , are:  
 

• the error of the space approximation is of order O ( h 6 ) for the end nodes and O ( h 5 ) for the 
interior nodes, which indicates properties of super convergence (one would expect intuitively 
an error in O( h 4 ));  

• dispersion is controlled by the maximum eigenvalue of the discrete dynamic matrix. 
For spectral elements of order 2, this eigenvalue is given by (k  being the wave number)  
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and for spectral elements of order 3 by  
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One can deduce that numerical dispersion for the semi-discrete problem, for particular solutions of the 
form : 
 

u( x, y, t ) = exp i ( k1 x + k2 y – ωt )        k1 ,  k2 ∈R     ω ≥ 0                            (5.38) 
is given by 
 

K
KK

Kq h
h π

φλφλ
ω
ωφ
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),(
11 +

==                                   (5.39) 

 
 where ),( φKqh is the adimensional phase speed, with ωh the numerical pulsation and ω the physical 

pulsation, 
N

hkK 1
2

==
π

 where N corresponds to the number of elements per wavelength, andφ the angle 

between the x  axis and the direction of propagation. 
The corresponding dispersion curves are given on figure 6.12 for spectral elements of order two and order 
three. It is clear according to the curves presented that, even for polynomial  orders relatively low, the 
spectral element method has a very weak numerical dispersion in comparison with finite difference 
methods of order 2 or order 4 (see the dispersion analysis of such methods for example in Rodrigues, 
[90] ). 
These properties can be better for higher polynomial orders ( N > 3 ). The complete study for the 
elastodynamic case is in hand, and should confirm the preceding results obtained for the acoustic case. 
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Fig. 6.12:  Adimensional phase speed according to the inverse of the element number per wavelength K 
for the case of the spectral elements of order two and three. The left side curves correspond to Φ= 0°, the 
right side curves to Φ = 45°.  
 
 
 

6.7 Effectiveness of the absorbents boundaries 
 
We have seen in the simulations of Lamb problem (see section 6.5) in which it was necessary to introduce 
on the three sides of the grid absorbent boundaries in order to be able to simulate a semi-infinite medium. 
The implementation of such absorbent boundaries calls upon paraxial conditions posed in weak form. The 
equations used being exact only for an incident normal wave for the boundary considered, it is interesting 
to investigate the effectiveness of these conditions. For that, we again consider the case of Lamb problem 
studied previously, but we use now absorbent boundaries on the four sides of the grid, in order to simulate 
an infinite homogeneous medium. Thus, if the absorbing conditions had a perfect effectiveness, we should 
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see that the total energy contained in the system decreases as the waves emitted by the point source reach 
the boundaries of the field. 
The obtained curve for total energy is given on figure 6.13, the second curve being a zoom of an 
interesting zone of the first curve. Even if the general shape of the curve is correct, and shows as awaited a 
fast decrease of the total energy contained in our numerical system, a zoom carried out on the final part of 
the curve shows that it remains a residue of energy even when all the waves should have left the field. 
This residual energy corresponds to spurious reflections on the absorbent boundaries, for waves emitted 
by the point source and whose incidence angle is not normal at the boundary considered. Even if this 
residual energy corresponds only to some ten-thousandth of total energy, in displacement, this can 
correspond to parasitic waves whose amplitude is about some percents of the direct wave. These parasitic 
waves are superimposed on the calculated solution in the model, and can lead to significant errors on the 
calculated signal. 
As we have already announced previously, the parasitic reflections coming from the absorbent boundaries 
will often constitute, in the simulations presented in this thesis, the principal source of numerical noise, 
and it would be advisable in the future to improve the effectiveness of these absorbing boundary 
conditions. Another problem which it would be advisable to tackle is the inconsistency between absorbing 
condition and free surface condition in the higher corners of the model, when a half space is considered. 
Indeed, in this case, the higher edge is a free surface, imposing a null traction in the higher corners of the 
grid, condition which is incompatible with the fact that these corners also belong to the absorbent lateral 
boundaries. In the current approach, this problem has not been solved; the two corners diffract parasitic 
energy which comes to pollute the numerical solution calculated in the model. 
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Fig. 6.13:  Energy residue in the case of a homogeneous medium having with four absorbents boundaries. 
The residual value means that, for a non perpendicular incident waves, noise reflections are present in the 
model. These noisy reflections cause a conversion between kinetic energy and potential energy on the 
boundary (see for example to t  = 0.8 s on the of right-hand side figure). The noisy reflections are 
absorbed after having been propagated in the grid (around t = 1.3 s). Calculation was carried out using 
Newmark algorithm with  β = 0.25 and a time step ∆ t  = 0.50 ms.  
 
6.8 Validation for the 2D Garvin problem  
 
The problem of Garvin [29] is another traditional test making it possible to check the precision of a code 
of the elastic wave propagation. A homogeneous elastic half space is considered again, but the source is 
now an explosion. There is an analytical solution for this problem. If the source is placed inside the 
medium, only a direct P wave is propagated, and a P wave reflection as well as a P-S wave conversion 
occurs on the free surface. If the source is placed right under the surface, the principal event will be the 
propagation of a Rayleigh wave along this one. The Rayleigh wave is in this case non-dispersive, because 
the medium is homogeneous and its surface is plane we simulate the wave propagation by using a grid 
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whose surface is inclined (the Jacobean matrix is thus not diagonal). The receivers record the normal and 
tangential components (compared to surface) of the displacement field, then the analytical solution given 
by Garvin can be used.  
 
 
6.8.1 Source inside the model 
 
In this first example, the medium has a P wave speed of 3200 m/s, an S wave speed of 1847 m/s and a 
density of 2200 kg/m3. The studied physical model has a width of 4000 m and a 2000 m height.  
Absorbing conditions are used on all the boundaries of the model except for the free surface, in order to 
simulate a semi-infinite medium. The grid is composed of 50 × 30 elements, a polynomial degree of 8 
being used in each direction of an element. The total number of grid points is 96 641.  The time step used 
is again ∆t  = 0.25  ms (corresponding to a Courant number of 0.25) in order to obtain very precise results 
in this simulation of which the goal is to compare the calculated solution with the exact solution of the 
problem. The total number of time steps is 6000. The position of the source is ( x, z ) = (1850, 1380)m and 
the line of receivers extends from (600, 2200) to (3400, 1700)m. The source is a Ricker having a central 
frequency of 14.5 Hz. The corresponding snapshots are introduced on figure 6.14. We can observe the 
direct P wave, the reflected P wave as well as the converted P-S wave. The comparison with the analytical 
solution for receivers 55 and 80 is shown on figure 6.15. We find a very good agreement between the two 
solutions; the maximum relative error is about 1 %, which is the order of magnitude of the precision of the 
analytical solution, in which the numerical convolution with the source signal introduces a light numerical 
noise. Again, the spurious reflections coming from the absorbent boundaries constitute the principal 
source of numerical error. 
 
 

          
 

Fig. 6.14: Snapshots for Garvin problem with a compressive wave source (explosion) placed inside the 
model. The P wave, the reflected P wave as well as the converted P-S wave can be observed. 
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Fig. 6.15: Traces recorded by receivers 55 and 80 for Garvin problem when the explosive source is placed 
inside the model. The numerical solution is represented, as well as the residues compared to the analytical 
solution, are drawn on the same scale after multiplication by a factor 10. The agreement obtained is very 
good; the maximum relative error is about 1 %. The weak artifacts on the line are noisy reflections coming 
from the absorbents boundaries. 
 
 
6.8.2 Source on the surface 
 
The impulsive source is now placed exactly on the free surface. In this case, the principal event is a strong 
non-dispersive Rayleigh wave propagating along the surface; its amplitude remains constant in a plane 
strain simulation. The corresponding snapshots are introduced on figure 6.16, the receivers being placed 
on the surface. We can observe the direct P wave, the Rayleigh wave with its typical elliptic polarization, 
and the refracted wave ("head wave"). The comparison with the analytical solution for receivers 75 and 
100 is represented on figure 6.17. The agreement obtained is very good, the maximum relative error being 
again about 1 %. We can notice on the snapshots that almost no energy is emitted in the form of P wave in 
the normal direction with the surface, the source being placed exactly on the free surface. It can thus 
appear preferable in certain cases to place more in-depth impulsive (explosive) source in order to 
illuminate all the medium, the principal disadvantage in this case being the presence of a strong wave 
reflected from the free surface (wave called "phantom wave" or "ghost wave" in oil industry) which comes 
to superimpose, with a small shift, with the direct wave. 
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Fig. 6.16: Snapshots Garvin problem when the explosive source is placed exactly on the free surface. The 
Rayleigh wave, with its typical elliptic polarization, is clearly recognizable, as well as the "head-wave". In 
this case, almost no energy is emitted in the form of P wave in the direction perpendicular to the slope. 
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Fig. 6.17: Traces recorded by receivers 75 and 100 for Garvin problem when the explosive source is 
placed exactly on the free surface. The numerical solution is represented, as well as the residues compared 
to the analytical solution, drawn on the same scale after multiplication by a factor 10. The agreement is 
very good; the maximum relative error is about 1 %. 
 
6.9 Conclusions 
 
In many cases of elastodynamic problems, it is important to be able to simulate the elastic wave 
propagation in models containing plan interfaces and/or layered topography. The use of a variational 
formulation of the wave equation makes it possible to naturally take into account these complex 
geometries. 
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We showed that it was possible to use a spectral element method in order to solve the wave equations of 
such complex mediums for both 2D as 3D cases. The precision of the method was shown by solving two 
traditional 2D problems (Lamb problem and Garvin problem) and by comparing the calculated solution by 
using a low number of points per wavelength (about 5) with analytical solutions. An excellent agreement 
was found, which made it possible to validate the introduced numerical method. 
The stability of the suggested method was checked numerically, and the effectiveness of the boundary 
conditions was discussed. We also noted that the spectral element method was very well adapted to the 
modern computer architectures, and that very interesting performances could be obtained from a data-
processing point of view.  
 
Chapters 4 and 6 of the present thesis reviewed methods of soil structure interaction (SSI) problem 
analysis and the coupling of finite element analysis with spectral element methods. Emphasis has been put 
on the spectral finite element method (SFEM), which is claimed to provide reliable results. As already 
stated in Chapter 4, there has been little research of SFEM related to SSI, and no reliability study at all. 
Chapter 6 and the next chapter of this research aims at applying SFEM to SSI problems and making 
comparisons and evaluations with respect to more classical approaches such as FEM, BEM and hybrid 
methods FEM-BEM. As already discussed in chapter 6, SFEM is well established for linear problems so 
far. Thus elastic two-dimensional mechanical problems have been chosen for the present study. The 
conclusions of the study should be understood only in this context. It is reminded that both the boundary 
element method and the finite element methods can be and have already been applied to general non-
linear problems (including large strains, plasticity) as well as dynamics. These approaches have a much 
larger scope than SFEM, at least in its present stage of development. However, in the case when all these 
approaches are applicable (i.e. for linear problems), the present study will give some new lights about their 
respective advantages and shortcomings. 
 

 - 97 -



Chapter 7 
 
7.   2-D spectral finite element analysis  
 
 
 

7.1 Introduction 
 
In this chapter, we will show the flexibility of the of the spectral element method by simulating the wave 
propagation in 2-D models having more realistic structures than those used in the preceding chapter 
(heterogeneous mediums, layered mediums presenting a discontinuity of the free surface, or wave types 
reputed difficult to model by using more traditional numerical methods, like the refracted waves or 
Stoneley waves). Such models are often encountered in practice. For example when a seismic soil 
structure interaction analysis is undertaken in order to assess the vulnerability of existing or newly 
designed structures, or a seismic zoning campaign in zones presenting high seismic risk, such 
discontinuities of the free surface, presence of faults or interfaces in highly contrasted mediums, where 
wave mode conversion from surface waves into volume waves can take place. In this chapter, we will 
analyze the results provided by the of the spectral element method on a certain number of complicated 
models corresponding to such situations. We finish this study by calculating soil structure interaction 
effects in 2-D structures, for which reference solutions exist . 
 
 

7.2 Modeling of the refracted waves  
 
The correct calculation of the refracted waves on an interface in a heterogeneous medium is fundamental 
in all seismic refraction experiments. To model this phenomenon, we consider a medium made up of two 
elastic half spaces of different properties in contact, an explosive source being placed in one of them. An 
incident P wave will be propagated, and will be partly reflected and partly transmitted at the interface. A 
converted P-S wave will be also generated in each half space. But the most interesting phases, and most 
difficult to model, are certainly the refracted waves which will be propagated along the interface, and 
which will be recorded by the receivers.    
 
The grid is divided horizontally into two parts having different elastic properties. Absorbing conditions are 
used on all the edges of the grid. The lower medium has a P velocity of 3400 m.s – 1, an S velocity of 1963 
m.s–1 and a density of 2600 kg.m–3. The upper medium has a P velocity  of 2500 m.s–1, an S velocity of 
1558 m.s–1 and a density of 1500 kg.m–3. The physical model considered has a width of 4000m and a 
height of 3000m. The grid is composed of 40 × 30 elements, an 8 degree polynomial is used in each 
direction of an element. Thus, the total number of the grid points is 77361. The time step used is again∆ t 
= 0.25ms (corresponding to a maximum Current number of 0.25), and the total number of time steps is 
6000. The position of the source is ( x, z ) = (1042, 1570)m and the line of receivers extends from (500, 
1920) to (3900,1920)m. the source is an explosion, its time dependence is a Ricker of a central frequency 
of 14 Hz. The corresponding instantaneous snapshots are represented on figure 7.1. We can observe the 
incident P wave, the reflected and converted waves at the interface. 
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Fig. 7.1 – Instantaneous snapshots obtained in the case of two layer elastic medium. We can observe the 
incident P-wave, the reflected and converted waves on the interface.  
 
 

7.3 Dispersive Rayleigh wave  
 
In the case of a fine layer of low velocity (for example, a surface layer having a thickness of few meters 
only) located on a homogeneous elastic half space, Rayleigh waves are highly dispersive. Such a 
phenomenon is frequently observed into seismic terrestrial prospecting. Let us consider a homogeneous 
elastic half space having a P velocity of 3000 m.s–1, an S velocity of 1500 m.s–1 and a density of 2000 
kg.m–3, covered with a fine elastic layer of 63.2m thickness, having a P velocity of 2000 m.s–1, an S 
velocity of 1200 m.s–1 and a density of 1000 kg.m–3. There is no analytical solution with this problem, but 
a certain number of numerical studies are available [87]. The physical model considered has a width of 
3200m and a height of 2400m. The grid is composed of 50 × 38 elements, a polynomial degree of 8 being 
used in each direction of an element. The total number of points of the grid is 122305. 
The time step used is ∆ t = 0.4ms, and the total number of time steps is 3800. The position of the source is 
( x, z ) = (1100, 2383)m and the line of receivers is placed on the free surface between  x = 1200  and x = 
2900m. The source is an explosion, with a Ricker time dependence having a central frequency of 13 Hz. 
The instantaneous correspondents are given on figure 7.2. The predominant event is a Rayleigh dispersive 
wave, accompanied by the incident P wave as well converted waves in the zone of low velocity. The 
recorded accelerograms by the receivers are presented on figure 7.3, where we can identify multiple P 
waves, generated in the zone of low velocity, as well as the dispersive Rayleigh waves. 
 

                    
 
Fig. 7.2 : Instantaneous snapshots obtained in the case of a dispersive Rayleigh wave in a double-layered 
elastic medium. We can observe the dominant phase which is the dispersive Rayleigh wave, as well as the 
incident P wave and the multiples (reflected and converted waves in the zone of low velocity). 
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Fig. 7.3: Recorded accelerograms in the case of two elastic half-spaces in contact. We can observe the 
incident P wave, the reflected and the converted waves at the interface, and various types of refracted 
waves. Because of the low amplitude of the refracted waves compared to the incident wave, the 
amplitudes were represented with a strong saturation, which reveals a little numerical noise and parasitic 
reflections coming from the edges of the model. 
 
 

7.4 Discontinuity at the free surface  
 
In this example, we study the behavior of a Rayleigh wave meeting a discontinuity on the free surface, for 
example a discontinuity in the form of stair. This problem was the subject of a theoretical study and of an 
experimental study [26]. It is representative of a soil model whose surface has a clear discontinuity, like a 
cliff for example. The source is a vertical force placed right under the upper free surface. Absorbing 
conditions are used on the left edge and the lower edge of the grid. The medium has a P velocity of 3200 
m.s–1, an S velocity of 1847.5 m.s–1 and a density of 2200 kg.m–3. The studied physical model has a width 
of 4000m, and a height of 2400m. The grid is composed of 50 × 30 elements, a polynomial degree of 8 
being used in each direction of an element. The total number of grid points is 96641. The time step used is 

t = 0.50ms, and the total number of time steps is 5000. The position of the source is ( x, z ) = (2440,  
2340)m and the receivers are placed on the free surface on both sides of the corner. The normal and 
tangential displacement components are recorded by the receivers on two surfaces. The source is a 
colloced force, its time dependence is a Ricker having a central frequency of 14.5 Hz. The corresponding 
instantaneous snapshots are shown on figure 7.4. We can observe a strong Rayleigh wave which is 
propagating along the upper edge of the model, and which is partially reflected and partially transmitted 
by the corner. We can observe the transmitted Rayleigh wave going down along the flat rim from the 
model. The corner behaves like a diffracting point, and gives rise to spherical P and S waves which can be 
clearly observed on the second instantaneous snapshot. The accelerograms recorded by the receivers 
placed on both sides of the corner are shown on figure 7.5. 

∆
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Fig. 7.4:Snapshots of the displacement vector in which the corner is touched by a Rayleigh wave. We can 
observe a strong Rayleigh wave propagating along the higher border of the model, which is partly 
reflected and partly transmitted by the corner. We can observe the transmitted Rayleigh wave propagating 
In its way down along the flat rim from the model. The corner acts like a diffracting point, and gives rise 
to spherical P and S waves. 
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Fig. 7.5: Accelerograms recorded in the case of a corner of the model hit by a Rayleigh wave. We can 
observe a strong Rayleigh wave propagating along the upper surface, which is partly reflected and partly 
transmitted by the corner. The corner acts like a diffracting point, and gives rise to spherical P and S 
waves. 
 
 

7.5 Wave propagation in the presence of multi-story buildings 
 
In this section we present the through soil wave-propagation to calculate the seismic response of 
multistory buildings, founded on a layered soil media and subjected to vertically propagating shear waves. 
Buildings are modeled as an extension of the layered soil media by considering each story as another layer 
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in the wave-propagation path. The seismic response is expressed in terms of wave travel times between 
the layers and wave reflection and transmission coefficients at layer interfaces. Accounts is made of the 
filtering effects of the concentrated foundation and floor masses. Compared with commonly used 
vibration formulation, the wave-propagation formulation provides several advantages, including simplicity, 
improved accuracy, better representation of damping, the ability to incorporate the soil layers under the 
foundation, and providing better tools for identification and damage detection from seismic records.  
 
7.5.1 Wave propagation in buildings 
 

Figure (7.6) shows a multistory building resting on a layered soil medium and subjected to vertically 
propagating shear waves. The seismic waves propagating through the soil and the building can be 
separated into the upgoing and the down-going components, as shown in the figure. Whenever the up-
going and downgoing waves cross a layer interface they are partly reflected and partly transmitted into the 
next layer. The reflections and transmissions are characterized by the reflection and transmission 
coefficients. This is schematically shown in Fig. 7.7(b), where u denotes the upgoing wave, and Ru and Tu 
denote the reflection and transmission coefficients for the upgoing wave, respectively. Similarly, d 
denotes the down-going wave, and Rd and Td denote the corresponding reflection and transmission 
coefficients for the downgoing wave, respectively. 

We derive the wave-propagation equations by using the discrete-time formulation that is commonly 
used by researchers in oil exploration. Consider the three consecutive layers, layers j –1, j, and j + 1, as 
schematically shown in Fig. 7.7(b). Let uj(t) and dj(t) represent the amplitudes at discrete time t of the 
upgoing wave at the top and the downgoing wave at the bottom, respectively, of layer j. We can show 
from Fig. 7.7(b) that the upgoing wave u1(t) in layer j is composed of the reflected portion of the 
downgoing wave from the bottom, plus the transmitted portion of the upgoing wave from the layer below. 
This relationship can be expressed by the following equation: 
 

)(.)(.)( 11.1. jjjujjjdj tuTtdRtu ττ −+−= −−−                                        (7.1 )        
 
where and  denote the reflection coefficient for the downgoing waves and the transmission 
coefficient for the up-going waves, respectively, at interface j – 1. τ

1. −jdR 1. −juT
j is the one-way 
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Fig. 7.6  : Bedrock-soil-building system: (a) Layers, interfaces, and upgoing and downgoing waves. 
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Fig. 7.7 . (b) Reflection and transmission of upgoing and downgoing waves; (c) Three consecutive layers 
with upgoing and downgoing waves. 
 
 
 
travel time of the waves in layer j. Similarly, we note that the downgoing wave dj(t) in layer j is composed 
of the reflected portion of the upgoing wave from the top, plus the transmitted portion of the downgoing 
wave from the layer above. This can be expressed by 
 

)(.)(.)( 1.. jjjujjjuj tdTtuRtd ττ −+−= +                                           (7.2 )             
 

Where R u,j , and T d,j denote the reflection coefficient for the upgoing waves and the transmission 
coefficient for the down-going waves, respectively, at interface j. eqs. (7.1) and (7.2) are valid for all 
intermediate soil and building layers. For the first and the last layers, we modify the equations to 
incorporate the boundary conditions. For the first layer, which is the bottom soil layer next to the bedrock 
[Fig. (7.7)], we can show that 
 

)(.)(.)( 100,110,1 ττ −+−= txTtdRtu ud                                             (7.3 )                  
 

)(.)(.)( 121,111,1 ττ −+−= tdTtuRtd du                                             (7.4 )                        
 
where x0(t) = input seismic wave at the bedrock-soil interface. It is assumed that there are no reflections 
from the bottom of bedrock. For the last layer [layer m + N in Fig. (7.1)], which is the top story of the 
building, we note that there are no downgoing waves transmitted from the layer above. Thus 
 

)(.)(.)( 11,1, NmNmNmuNmNmNmdnm tuTtdRtu +−+−+++−++ −+−= ττ                         (7.5 )                      
 
 

)(.)( , NmNmNmuNm tuRtd ++++ −= τ                                               (7.6 )                        
 

Eqs. (7.1) - (7.6) provide a complete description of the wave propagation in a soil-building system. 

 - 103 -



 
The actual response of any floor in the building, or any interface in the soil medium, can be calculated 

by combining the upgoing and downgoing waves. For interface j in the building, for example, the response 
at the top and the bottom of the floor slab is 
 

)()()( 111, tdtuty jjjtopj +++ +−= τ                                                (7.7 )                        
            

)()()(, jjjbotj tdtuty τ−+=                                                     (7.8 )     
                                 

The continuity of displacements at the floor slab requires that )()( ,, tyty botjtopj = ; therefore, either (7.7) 
or (7.8) can be used to represent the motions of the floors. 
 

If the sampling interval of the incident bedrock motion x0(t) is small enough such that the travel times τj 
in the layers are integer multiples of the sampling interval, the wave-propagation equations all become 
finite-difference (i.e., discrete-time filtering) equations. The soil-building system is defined in the 
equations by the wave travel times in the layers, and the wave reflection and transmission coefficients at 
the layer interfaces, which can all be determined uniquely from the physical characteristics of the building 
and the soil (we will add the damping in the equations later). For a given soil-building system and the 
bedrock motion, the equations can be solved recursively starting from the bedrock [i.e., with eq.(7.3)] and 
continuing upward. Note that the initial values of uj(t) and dj(t) are zero until the first arrival of the waves 
in layer j. That is 
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We should mention that in the wave-propagation formulation either accelerations, velocities, or 
displacements can be used as input. Calculated response is of the same type as the input, and the response 
in the building represents the absolute response, not the relative response with respect to ground. 
 
 
7.5.2 Wave travel times in buildings 
 
Wave travel times in the layers are calculated by simply dividing the layer thickness with the wave 
velocity in each layer. The shear-wave velocities for soil are generally determined by field tests and are 
available in the literature for a large number of different soil types. Theoretically, the 1D shear-wave 
velocity Sυ , in an elastic soil medium is ρυ GS = , where G and ρ are the shear modulus and the mass 
density, respectively, of the soil. In buildings, if we assume that the vertical segment between the two 
floor slabs is fairly uniform (in terms of its mass and stiffness), we can approximate the shear-wave 
velocity bυ  in that story as γυ Shb =  [15], where S, h, and γ are the shear stiffness, height, and the 
mass per unit length of the story, respectively. γ represents the mass per unit length of the vertical segment 
between the floors but does not include any of the concentrated floor masses at the top or the bottom of 
the story. If a vertical segment between the floors is not uniform (e.g., a large window opening, a sharp 
stiffness change at mid-story, etc.), we can always divide it into smaller vertical segments until each 
segment is approximately uniform. In other words, we represent such stories with more than one layer. 
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More precise methods of estimating shear-wave velocities in reinforced concrete frame buildings can be 
found in Trifunac  and Todorovska [109]. 
 
 
7.5.3 Wave reflection and transmission coefficients  
 

When the upgoing and downgoing waves cross from one layer to another, their amplitudes and phases 
are altered because of the reflections at the layer interface. These alterations are characterized by the 
reflection and transmission coefficients and are different for upgoing and downgoing waves. If the 
interface has no concentrated mass, such as the bedrock-soil or soil-soil interfaces, the coefficients are 
constants. When the interface has a concentrated mass, such as the foundation or the building floors, the 
coefficients become functions of frequency. 
To derive the equations for the reflection and transmission coefficients, we subject the layer interface to an 
incident plane wave of a specified frequency and calculate its reflected and transmitted components by 
using the conditions that the displacements above and below the interface are equal and the shear forces 
are in equilibrium. The inertia forces acting on the concentrated masses of the foundation and the building 
floors should be included in the shear equilibrium equations for those interfaces. More detail of these 
calculations can be found in [15]. The coefficients for all interfaces can be summarized by the following 
equations: 
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where Ij = impedance of layer j; and mj denotes the concentrated mass at interface j. For soil layers, Ij = 
ρjυj, where ρj and υj are the mass density and the shear-wave velocity in the layer, respectively; and mj≡ 0. 
For building layers, Ij = γjυj, with γj and υj denoting the mass per unit length and the wave velocity, 
respectively, in layer j. At the soil-foundation interface [interface m in Fig. (7.1)], we take Im = ρm υm Afn, 
where Afn is the contact area of the foundation. Note for the bedrock-soil and soil-soil interfaces that since 
mj≡ 0 the reflection and transmission coefficients are constants. For the foundation and the building floors 
the coefficients are frequency dependent because mj ≠ 0. 
 
The amplitude and the phase of the reflection coefficients for upgoing and downgoing waves at the soil-
foundation interface for typical bounds of a = I m+1 / I m and b = mf / I m are calculated. For small a and b 
values (i.e., small first-story stiffness, small foundation mass, large contact area, or hard soil) the 
amplitude and the phase of the reflection coefficient for the upgoing waves approach one and zero, 
presence of the building does not influence the motions at the top of the soil layer, and they are practically 
equal to those at a free field. For large a values, the reflection coefficient becomes much less than one at 
low frequencies and, depending on the value of b, gradually approaches one as the frequency increases. In 
other words, the low frequency components are transmitted to the building, while most of the high-
frequency components are blocked.  
For the amplitude and the phase of the reflection coefficients in a building floor for typical bounds of a = I 
j+1  / Ij and b = mj / Ij,  the concentrated floor masses have the effect of a low-pass filter on the upgoing and 
downgoing waves crossing the interface. 

The reflection and transmission coefficients derived above are for shear waves, because we assumed 
that the building deforms mainly in shear. If the bending deformations are significant, we have to use the 
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reflection and transmission coefficients calculated for flexural waves. Flexural waves include four terms, 
two complex-valued propagating terms (same as the shear waves) plus two real-valued ringing terms. Four 
coefficients require four equations to determine the reflection and transmission coefficients. The equations 
are obtained by writing the equality of the displacements and rotations and the equilibrium of the shear 
forces and the bending moments at the interface. 
 
 
7.5.4 Damping  
 

Damping gives a measure of energy loss per cycle and is present in all oscillatory systems. For soils the 
energy loss due to damping can be represented by the following simple attenuation equation [3]: 
 

Qf
s efA  )( πτ−=                                                           (7.13 ) 

 
where AS(f) represents the reduction in the amplitude of a sinusoidal wave of frequency f when it travels a 
distance of travel time τ. The damping is defined by Q, known as the quality factor. l/Q gives the measure 
of energy loss per cycle and can be assumed to be independent of frequency for many cases. The 
logarithmic decrement (i.e., the natural logarithm of the ratio of amplitudes of two successive maxima) for 
the solid friction model is π / Q. By comparing this with the logarithmic decrement of free vibrations 
under viscous damping, we can show that ξ = 1/ 2Q, where ξ is the viscous damping ratio. The exponent 
of the attenuation function for viscous damping is proportional to f 2 , whereas for solid friction it is 
proportional to f, as seen in eq.(7.13). In this paper, the damping in each soil layer will be defined by its Q 
value. 
For buildings, the damping has generally been assumed to be of viscous type and proportional to the mass 
or the stiffness of the building. The assumption of proportionality is mainly for mathematical convenience 
so that we can have real-valued frequencies and mode shapes when using modal analysis. In the wave-
propagation formulation, these assumptions are not needed because we can specify the damping 
independently for each story. Experiments show that for cyclically stressed materials, the energy loss per 
cycle is independent of frequency and proportional to the square of vibration amplitude [15]. This type of 
damping is called the structural damping and is represented by the structural damping factor λ. The 
attenuation function for structural damping is identical to that for solid friction; except for notation, we use 
A instead of 1/Q in the exponent of eq.(7.13). It can be shown by comparing the resonance amplitudes of 
an oscillator under harmonic loads that at the resonance frequency the structural damping factor is equal to 
twice the viscous damping factor. It should be remembered, however, that for viscous damping the energy 
loss per cycle depends on the frequency, whereas for structural damping it is independent of frequency. 

The simplest way to incorporate damping in the equations is to make shear stiffnesses of the layers 
complex quantities. For soil layers, we can approximate the damping by multiplying the wave velocities 
with (1– 0.5 i /Q). For building layers, we make the stiffness complex by multiplying the original stiffness 
with (1 + i. λ ) in each layer. Complex stiffnesses result in complex wave velocities. 
 
 
7.5.5 Solution of wave propagation equations  
 
As stated earlier, for a given building and bedrock motion, the wave propagation equations [(7.1) - (7.6)] 
can be solved recursively starting from the bedrock [i.e., with eq.(7.3)] and continuing upward. The initial 
values of u(t) and d(t) to start the recursion are given by eqs (7.9) and (7.10). If we choose to incorporate 
the damping in the equations by making the shear stiffnesses complex, the wave velocities and the travel 
times all become complex resulting in finite-difference equations with complex time shifts. A frequency-
domain technique might be more appropriate to solve such equations. The frequency-domain solution 
methods will be the subject of another paper. In this paper, we will solve the equations by using recursive, 
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discrete-time domain methods, which are simpler and easier to program than the frequency-domain 
methods. 

First, we need to write the damped version of the wave-propagation equations given by eqs. (7.1) - (7.6). 
To incorporate damping, we multiply the upgoing and downgoing waves in each layer with the 
corresponding attenuation function for damping in the layer. When this is done, the equations for layer j 
become 

 
)](.)(.).[()( 11,.1, jjjujjjdjj tuTtdRfAtu ττ −+−= −−−                               (7.14 )       

 
 

)](.)(.).[()( 1,., jjjdjjjujj tdTtuRfAtd ττ −+−= +                                 (7.15 )                   
 
where Aj(f) denotes the attenuation function for layer j. Although these equations are in the discrete-time 
domain, the reflection and transmission coefficients for the foundation and the building, as well as the 
attenuation function due to damping, are all frequency dependent. Therefore, to solve the equations 
recursively in the time domain, we should first convert the frequency-dependent parameters into discrete-
time filters. 
Because the reflection and transmission coefficients, given by eqs (7.11) and (7.12), include the term 
i(2πf) explicitly, they can easily be converted into discrete-time filters by using the bilinear transformation 
[1]. To do this we simply replace i(2πf) with 
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where ∆ = sampling interval in seconds; and q –1 = backward-shift operator, defined as q –1 x(t) = x (t – j). 
With the transformation, we can write each reflection and transmission coefficient as a first-order discrete-
time filter. For example, Ru,j (q), the discrete-time equivalent of R u ,j (f), is 
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where the filter coefficients j0β , j1β and j1α are found to be 
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Similar conversions can be made for Rd(f), Tu(f), and Td(f). 
 
 The attenuation function for damping [eq.(7.13)] does not have the term i(2πf ) explicitly. However, it has 
the form of a low pass filter and can be matched by a simple discrete-time filter of the following form : 
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where 
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The parameter Q in eq.(7.20) should be replaced with 1/ λ if the layer belongs to the building. 
 By incorporating eqs (7.17, 7.18) and eqs (7.19, 7.20) in eqs (7.14, 7.15), we obtain the discrete-time 
forms of the wave-propagation equations as follows: 
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The coefficients A1k,…, B3s can all be calculated in terms of the coefficients of the filters given by eqs 
(7.17, 7.18) and eqs (7.19, 7.20). Similar discrete forms can be written for the first and the top layers. 
There are several software packages with routines to convert frequency domain filters into discrete-time 
filters [e.g., the m-file invfreqz.m in MATLAB’s Signal Processing Toolbox]. The utilization of such 
routines greatly simplifies the calculations. 
 
7.6 Conclusions 
 
In the preceding chapter, we have described and validated the spectral element method to solve the elastic 
wave propagation problem on some classical models having an analytical solution that may be used as 
reference solution. In this chapter, we showed also, that the method may be applied to many real 2D cases 
(of which some are considered difficult to study). In particular we showed that the method may also be 
used for the study of wave propagation along an elastic interface, and the modeling of Stoneley wave 
propagation, and allowed also to take into account a non-plane surface topography, even having a 
discontinuity. Moreover, we were able to study some 2D site effects, for which we found the expected 
effects described in the literature. It seems now natural to try to extend this reasoning to the coupled soil 
structure interaction problems, which we will try to make in the next chapter. 

 - 108 -



 
Chapter 8 
 

8. Parametric study 
 
 
8.1 Introduction 
 
In the following, a parametric study is performed in order to investigate SSI effects for the case of a 
structure subjected to an incident wave field. 
In practice, a general assessment of the wave propagation induced vibration is based on simple rules, 
expressing the decay of vibrations from the free field to the basement, as well as the attenuation of the 
vibration energy as it propagates through the structure and the amplification due to resonance of floors or 
other structural members. The dynamic soil characteristics as well as the structural parameters such as the 
foundation type and the used materials are expected to importantly affect the wave propagation in the soil 
and the vibration levels in the free field and the structure. In the case of particular, sensitive structures 
such as a micro-electronics lab, a concert hall, a hospital, etc., a detailed study of the dynamic SSI 
problem using a FE model of the structure is also advised. For such projects, it is customary to perform 
free field vibration measurements on the future building site, especially if the latter is located in the 
vicinity of busy roads or tracks. 
Detailed studies are not always possible, especially not in small-scale projects, and the simple design rules 
are unreliable, a first calculation using a simplified numerical prediction model where no dynamic SSI is 
accounted for would be very useful. Therefore, a parametric study on the effect of dynamic SSI is 
performed in this chapter. A simple structure representing an ordinary type buiding is studied. 
Because all parameters can be changed, the structure is referred to as a parametric building in the 
following. The response of this structure is computed for the passage of a wave field on a halfspace. As 
the effects of structural parameters are important, the results of three cases where the structure is founded 
on a slab foundation, a strip foundation and a box foundation are compared, accounting for or neglecting 
the effects of dynamic SSI. 
If SSI is neglected, the motion of the foundation is derived from the incident wave field assuming a rigid 
or a flexible kinematic behaviour of the foundation. In addition, the parametric study also investigates the 
influence of the stiffness of the soil. The acquired knowledge within the frame of this parametric study 
will provide guidance and  technical basis for the development of national or international vibration norms 
and guidelines as well as for the evaluation of the efficiency of vibration isolation measures. 
 
 

8.2 Problem outline 
 
8.2.1 Introduction 
 
The response of a parametric building due to the passage of a wave front field on a halfspace is 
considered. Figure 8.1 shows the plan view of the foundation and the soil-structure system. Three cases 
are compared, where the building is founded on a slab foundation, a strip foundation and a box 
foundation. The different foundation types and the layout of the structure are given in figure 8.2. 
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Fig. 8.1: Plan view of the soil-structure system. 
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a. Slab foundation. b. Strip foundation. c. Box foundation. 

Fig. 8.2: Geometry of the (a) slab, (b) strip and (c) box foundation. 
 
 
The analysis of the parametric building is based on the Craig-Bampton substructure technique, developed 
earlier. As mentioned before, this method is advantageous due to the possibility of decoupling the 
foundation from the superstructure. If changes are made in the structural properties a new BE analysis is 
not required. Only a new FE analysis in order to obtain the modes aΨ  of the superstructure and a new 
assembly and solution of the problem are required. The computation of the new dynamic stiffness matrix 
Ks of the soil and the load vector ff on the interface ∑ due to the incident wave field using a BEM are 
time-consuming. Therefore, the method used in the parametric study is preferable to the one used in the 
validation where modes of the total structure are introduced in the modal decomposition. In spite of all 
that, a new BE analysis has to be performed in some cases like changes in the length Lx or the width Ly of 
the structure or in the material characteristics of the foundation. 
 
 
8.2.2 The source model 
 
The aim of this parametric study is to investigate the dynamic soil structure interaction (DSSI) effect and 
the influence of the foundation type on the structural response. Therefore, the parametric study has 
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intentionally been limited to the passage of a wave field with known characteristics at a single frequency 
on a halfspace fixed at its base. Figure 8.3 shows the halfspace sine-shaped ramp with a length l = 1:2m. 
The foundation has a width of 2B = 4 m. The properties of the foundation section, are as given in table 
8.1. The foundation is supported by a homogeneous halfspace with a shear wave velocity Cs = 200 m/s, a 
density ρ = 1800 kg/m3, a Poisson's ratio ν = 1/3 and a material damping ratio β = 0.025. 
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Fig. 8.3: Sine-shaped ramp as a function of the coordinate y along the base of the halfspace. 

 
The resulting free field displacements at the interface between the foundation and the soil are used as an 
input for the SSI calculation. Figure 8.4 shows the free field vertical velocity in a receiver point at x = 0m, 
y = 3m and z = 0m.  
The time history shows four peaks corresponding to the wave front over the two ramps. The frequency 
content of the free field velocity is concentrated below 30 Hz.  
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Fig. 8.4: (a) Time history and (b) frequency content of the free field vertical velocity in the point at x = 0  
m ,  y = 3m and z = 0m due to a Sine-shaped ramp load applied at the base of the halfspace. 
 
 
8.2.3 The receiver model 
 
8.2.3.1 The foundation 
 
As mentioned earlier, three different foundation types are considered for the parametric building. Figure 
8.2 shows the geometry of a structure with a concrete slab foundation, an embedded concrete strip 
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foundation and an embedded concrete box foundation. The foundation has a length Lx = 12m and a width 
Ly = 6m. The thickness of the slab foundation is equal to 0.3 m, while the bottom slab of the embedded 
box foundation has a thickness of 0.3 m and the thickness of the foundation walls is also equal to 0.3 m. 
The embedment of the box foundation is equal to 2 m. The width of the strips is equal to 0.3 m and the 
embedment equals 1 m. The slab and box foundation are modelled using 4-node shell elements with 6 
DOF per node (3 translational DOF and 3 rotational DOF). As the slabs and the walls have no stiffness 
around the normal axis, this rotational degree of freedom is eliminated. 
 
As the building is supposed to be constructed in a row of adjacent houses, it is then assumed that 
displacements in the global y-direction are prevented and only motions in the global x- and z-direction 
occur. This assumption does not affect the overall structural behaviour of the building and results only in a 
reduction of the number of degrees of freedom. The following material properties for concrete are used: a 
Young's modulus E = 33300x106 N/m2, a Poisson's ratio ν = 1/3 and a density ρ = 2500 kg/m3. In order to 
model the strip foundation, the 4-node shell elements are extruded into 8-node brick elements with the 
same material properties and 2 translational DOF per node as the displacements in the global y-direction 
are prevented. The element size is determined by the minimum wavelength in the soil, which is equal to 
λmin = 4m corresponding to a shear wave velocity Cs = 200 m/s and the maximum frequency fmax = 30 Hz 
that is considered in the analysis. Furthermore, in order to represent accurately the minimum wavelength 

max
4

min 2 fdD ρπλ =  in the structure, where ))1(12( 23 ν−= EdD  is the bending stiffness and d 
is the slab thickness, a condition is imposed on the element length that is used in the FEM. The minimum 
wavelength is equal to λmin = 6m for the foundation. A FE model with a rectangular mesh is proposed, 
where Ne = 12 elements per wavelength are chosen. This results in nex = 24 and ney = 12 elements in the x- 
and y-direction, respectively. The number of elements in the z-direction is chosen equal to nez = 5 for the 
embedded box foundation and nez = 4 for the embedded strip foundation. As the minimum wavelength in 
the soil is smaller than the minimum wavelength in the building, an accurate BE analysis of the soil 
requires a finer mesh. However, the same element length of 0.5 m is used on the interface in the horizontal 
as well as the vertical direction in order to limit the computational effort. The element length of 0.5 m 
corresponds to Ne = 8 elements per wavelength, which is larger than the advised minimum value Ne = 6 
[91]. 
 
8.2.3.2 The structure 
 
Figure 8.5 represents the parametric building with ns stories and a story height Hs =3 m. The properties of 
the model are given in table 7.1. A modal damping ratio ξ = 0.02 is used for each mode. Based on the size 
of the elements of the foundation, nex = 24 and ney = 12 elements in the x- and y-direction are used. The 
number of elements in the z-direction is chosen equal to nez = 5. This results in a rectangular mesh. 
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Fig. 8.5: Parametric building with two stories. 
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The front and the back walls are modelled using 4-node shell elements. The presence of window and door 
openings generally reduces the stiffness of the walls. Using the principle of conservation of strain energy, 
the internal brick walls are modelled without openings using shell elements with an equivalent reduced 
thickness. 

 Table 8.1: The parameters of the building. 
 

layer 
type 

D 
(m) 

υ ρ 
(kg/m3)

E 
(x106 N/m2) 

Front and back massonry walls 0.20 0.15 1200 10500 
Side massonry walls  0.30 0.15 1200 10500 
Reinforced concrete 0.20 0.20 2500 15000 

 
Only the internal brick walls are assumed to contribute to the structural stiffness, whereas the mass of the 
external walls is accounted for using an equivalent density for the masonry. As expected, the out-of-plane 
stiffness of the wall is negligible. The degrees of freedom of the front and back walls are determined by 
the global response of the structure. The structural motion is limited to a displacement in the x- and z-
direction and a rocking motion around the y-axis. 
In the present study, the inner walls are not modelled. However, the influence of the presence of the inner 
walls on the behaviour of the structure and especially of the slabs can be large. In fact, a change in span 
seriously affects the resonance frequency of a slab. Craig [19] provide an analytical expression for the 
generalised mass and stiffness matrix of a simply supported slab based on sine-shaped displacement 
modes in two directions: 

yx L
y

L
xyx ππψ sinsin),( =                                                         (8.1) 

where Lx and Ly denote the span in the x- and y-direction, respectively. The generalised mass and stiffness 
matrix are given by: 
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where m(x, y) is the mass per unit of surface, ))1(12( 23 ν−= EdD  is the bending stiffness, d is the slab 

thickness and ν is the Poisson's ratio. The influence of the span on the eigenfrequency ** mk=ω  can 
be obtained evaluating equations (8.2), which results into: 
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= πω                                                  (8.3) 

where a constant mass distribution m over the surface is used.  
 
The slabs have the same degrees of freedom as the walls and an additional rocking degree of freedom 
around the x-axis. The degrees of freedom are depicted in figure 8.5 using arrows for the displacements 
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and double arrow-heads for the rocking motion. All floors are simply supported, corresponding to hinged 
joints at the slab edges. 
 
8.2.3.3 Kinematics of the structure 
             

For the three foundation types, the modes of the structure clamped (fixed) at the base and the quasi-static 
transmission of the foundation modes into the structure is calculated. Figure 8.6 illustrates some of these 
modeshapes. The first two modes of the structure fixed at the base are local bending modes of the floors at 
11.58 Hz and 11.71 Hz. The following modes up to mode 6 are all local bending modes of the floors. 
Mode 7 at 32.75 Hz is a global deformation of the structure. 
 

           
Fig. 8.6: Some snapshots of the modeshapes for the slab foundation type. 

 
For the slab foundation, the first four foundation modes with free boundary conditions on the interface are 
rigid body modes, followed by bending modes of the foundation at 7.84 Hz and 9.99 Hz. The modes of the 
structure that incorporate a wall deformation are not likely to occur given the low frequency content of the 
excitation. Therefore, two situations can be expected. If the building is resting on a soft soil, no 
deformation of the walls occurs and the global motion of the building is dominated by rigid body 
kinematics. In the case of a structure resting on a stiff soil, the walls deform in a quasi-static way, 
following the ground motion. In addition to this, the presence of a (stiff) foundation prohibits the walls to 
deform.  
For the strip and the box foundation, similar conclusions can be drawn concerning the modeshapes and 
eigenfrequencies (Figures 8.7 and 8.8). The eigenfrequencies of the structure fixed at the base are 
different, due to the presence of a floor at ground level and the implementation of the connection between 
the structure and the foundation. 
In fact, 4-node shell elements with 4 DOF per node are used to model the box foundation and the 
superstructure, whereas the strip foundation is modelled using 8-node brick elements with 2 DOF per 
node. Only the translational DOF can therefore be coupled in the case of a strip foundation. Lysmer's 
criterion [73], which suggests to employ all modes with an eigenfrequency lower than 1.5 times the 
highest excitation frequency, can only be applied if the modes of the total structure (superstructure and 
foundation) are used. 
20 modes for the foundation and 20 modes for the building clamped at the base (40 modes in total) are 
sufficient to have a similar accuracy as in a calculation using 20 modes of the total structure (20 in total). 
For both alternatives, 20 modes are considered in the SSI calculation for the determination of the soil 
stiffness. At first, the benefits of the Craig-Bampton substructuring technique seem to be negligible.  
However, as the computational effort for the SSI calculation is very large, the Craig-Bampton analysis is a 
good alternative to a modal analysis using the total structural modes as it does not require a new SSI 
calculation if a property (e.g. the number of stories) is changed. 
 

         
Fig. 8.7: Some snapshots of the modeshapes for the strip foundation type. 
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Fig. 8.8: Some snapshots of the modeshapes for the box foundation type. 

 
The eigenfrequencies of the slab foundation are much lower than those of the strip and the box foundation. 
However, this does not necessarily mean that the slab foundation is flexible. The stiffness of the slab 
foundation is influenced by the stiffness of the superstructure, which is stiff due to the presence of the side 
walls, on the interface between the superstructure and the foundation. Furthermore, the behaviour of the 
foundation largely depends on the stiffness of the soil. 
 
8.2.3.4 The impedance matrix of the soil 
 
Embedded foundations may suffer from the fictitious eigenfrequencies depending mainly on the 
characteristics of the foundation and the soil. In order to check wether the fictitious eigenfrequencies 
occur in the frequency range of interest, the eigenfrequencies of the excavated part of the soil with 
Dirichlet conditions on the boundary ∑ and free boundary conditions along the free surface soΓ  are 
computed for both a box and a strip foundation. A FE model consisting of linear 8-node brick elements, 
which material properties correspond to the excavated soil, is investigated. 
For the box foundation, the first vertical displacement mode M1 occurs at the dimensionless frequency 
a0=5. As the latter is below the maximum dimensionless frequency amax = 7.5 corresponding to the 
frequency of 50 Hz, fictitious eigenfrequencies are likely to occur for the box foundation. A dimensionless 
coupling constant

max
0a

13.0max
0 == aiα is therefore introduced. The hypersingularity in the boundary integral 

equation is avoided using a finite difference approximation of the mixed boundary integral equation. A 
dimensionless distance h  = 1 is used in the present calculations. 
In the case of the strip foundation, the first vertical displacement mode M1 occurs at the dimensionless 
frequency a0 = 50.9, which is much larger than for the box foundation. As this frequency exceeds the 
maximum dimensionless frequency  = 7.5, problems are not expected.  max

0a
 

8.3 The importance of SSI for different foundation types 
 

8.3.1 The results in different points in the structure 
 
The response of the structure with the three foundation types is calculated by means of the spectral finite 
element method . Taking fully accounts for SSI effects. In the following, this calculation is denoted as the 
SSI calculation. As an alternative, the response of the structure is calculated neglecting SSI, which will be 
referred to as the no-SSI calculation. 
The effect of SSI on the amplitude of the structural response is twofold. The peak response, which occurs 
at the eigenfrequency of the corresponding dynamic system, shifts to lower frequencies due to a decrease 
in the stiffness of the soil, while the geometrical damping (radiation damping) in the unbounded soil 
generally causes a decrease in amplitude. 
In the no-SSI calculation, the response of the foundation is found using finite element method of the 
incident wave field on the soil-structure interface. The behaviour of a structure subjected to an incident 
wave field depends on the difference in stiffness between the structure and the soil. In this procedure, the 
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number of foundation modes used for this approximation is varied. Besides the calculation of the response 
using all foundation modes (no-SSI-FF calculation) (FF:Flexible Foundation), the response is estimated 
using only the rigid body modes of the foundation (no-SSI-RF calculation) (RF:Rigid Foundation). 
The first choice results in a good correspondance between the incident wave field and the foundation 
displacement as would be the case for a relatively rigid soil, while the second results in a rigid body 
motion of the foundation that is the spatial average of the incident wave field. 
The difference in the SSI, the no-SSI-RF and the no-SSI-FF calculation is first investigated using the 
vertical displacement of the edge between the wall and the foundation for the three foundation types (line 
JK in Figure 8.5) at succesive points in time. 
 
Figure 8.9 shows the results of the SSI, the no-SSI-FF and the no-SSI-RF calculation for the slab 
foundation. The incident wave field, which is indicated too in Figure 8.9, is approximated properly by the 
linear combination of 20 foundation modes with free boundary conditions in the no-SSI-FF calculation. 
Due to the wall stiffness, no wall deformation modes appear in the frequency range of interest. 
Rather than following the soil displacements of the incident wave field, the motion of the wall is 
dominated by rigid body kinematics. If the building is resting on a soft soil, no deformation of the walls 
occurs and the global motion of the building is dominated by rigid body kinematics. In the case of a 
structure resting on a stiff soil, the walls deform in a quasi-static way, following the ground motion. In 
addition to this, the presence of a (stiff) foundation prohibits the walls to deform. 
The no-SSI-FF calculation gives rise to an unphysical deformation of the walls and unsatisfactory results. 
A no-SSI-RF calculation is a solution to this problem, as the rigid body kinematics of the foundation do 
not deform the walls. The resulting displacements of the wall-foundation edge better approximate the 
displacements of a SSI calculation than the no-SSI calculation using all foundation modes. A no-SSI-FF 
calculation results in a foundation displacement that is close to the incident wave field. 
Figure 8.10 shows the results of the SSI, the no-SSI-FF and the no-SSI-RF calculation for the strip 
foundation. The incident wave field is approximated properly by the linear combination of 20 foundation 
modes with free boundary conditions in the no-SSI-FF calculation. 
Figure 8.11 for the box foundation shows that this number of foundation modes is insufficient to 
approximate the incident wave field at the edge by means of the least squares approximation, because the 
box foundation mode shapes are dominated by bending modes of the bottom slab. Especially for the box 
foundation, the SSI calculation results in a linear vertical displacement of the wall-foundation edge. 
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Fig. 8.9 : Vertical displacement of the 
foundation-structure interface JK at t = -0.35s for 
the slab foundation.                                          

Fig. 8.10 : Verticaldisplacement of the 
foundation-structure interface JK at t = -0.33 s 
for the strip foundation. 
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Fig. 8.11: Vertical displacement of the 
foundation-structure interface JK at t = -0.31s for 
the box foundation.                                          

Fig. 8.12 : Time history of the horizontal 
response in point A (front wall-foundation  edge) 
for the slab foundation. 
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 Fig. 8.13 : Time history of the horizontal 
response in point A (front wall-foundation  edge) 
for the strip foundation.                                    

Fig. 8.14: Time history of the horizontal 
response in point A (front wall-foundation  edge) 
for the box foundation. 
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Fig. 8.15 : Time history of the horizontal 
response in point  C, for the slab foundation.                                                                             

Fig. 8.16 : Time history of thehorizontal 
response in  point C, for the strip foundation. 
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Fig. 8.17 : Time history of the horizontal 
response in point C, for the box foundation.                                                

Fig. 8.18 : Time history of the vertical response 
in point A, for the slab foundation. 
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Fig. 8.19 : Time history of the vertical response 
in point A, for the strip foundation.                  

Fig. 8.20 : Time history of the vertical response 
in point A, for the box foundation. 
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Fig. 8.21 : Time history of the vertical response 
in point C, for the slab foundation.                    

Fig. 8.22: Time history of the vertical response 
in point C, for the strip foundation. 

- 118 - 

 



-0.5              0                   0.5                 1               1.5
                                     Time (s)

   
   

   
   

  V
el

oc
ity

 (m
/s

)
-1

   
   

  0
.5

   
   

  0
   

   
   

   
   

   
   

1

x10-3

SSI no-SSI-FF

-0.5              0                   0.5                 1               1.5
                                     Time (s)

   
   

   
   

   
V

el
oc

ity
 (m

/s
)

   
   

   
   

 
-1

   
   

 0
.5

   
   

  0
   

  
   

1

x10-3

SSI

no-SSI-

 
 
       
Fig. 8.23 : Time history of the vertical response 
in point C, for the box foundation.                   

Fig. 8.24 : Time history of the vertical response 
in point G, for the slab foundation.   
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Fig. 8.25 : Time history of the vertical response 
in point G, for the strip foundation.                    

Fig.  8.26 : Time history of the vertical response 
in point G, for the box foundation. 
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Fig. 8.27 : Time history of the vertical response 
in point D, for the slab foundation.                       

Fig. 8.28 : Time history of the vertical response 
in point D, for the box foundation. 
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Fig. 8.29 : Time history of the vertical response 
in point B, for the slab  foundation.                    

Fig. 8.30 : Time history of the vertical response 
in point B,for the strip foundation. 
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Fig. 8.31 : Time history of the vertical response 
in point B,  for the box foundation.                         

Fig. 8.32 : Time history of the vertical response 
in point M,  for the slab  foundation. 
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Fig. 8.33 : Time history of the vertical response 
in point M, for the strip foundation.                 

Fig. 8.34 : Time history of the vertical response 
in point M, for the box  foundation. 
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Fig. 8.35 : Time history of the vertical response 
in point H,  for the slab  foundation.                      

Fig. 8.36 : Time history of the vertical response 
in point H, for the strip  foundation. 
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Fig. 8.37 : Time history of the vertical response 
in point H,  for the box  foundation.                         

Fig. 8.38 : Time history of the vertical response 
in point E, for the slab  foundation. 
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Fig. 8.39 : Time history of the vertical response 
in point E,  for the strip  foundation.               

Fig. 8.40 : Time history of the vertical response 
in point E,  for the box foundation 

Figures 8.12 up to 8.17 show the time history and the frequency content of the horizontal velocity in the 
points A and C for the SSI, the no-SSI-FF and the no-SSI-RF calculation (Figure 8.5). As expected, the 
horizontal response in point A is larger for the box foundation due to the rocking component that arises for 
an embedded structure. This effect is less pronounced for the strip foundation as the embedment is small. 
Bending effects of the structure around the y-axis increase to a large extent the response in the horizontal 
direction in point C in comparison with point A. 
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Figures 8.18 up to 8.26 show the time history and the frequency content of the vertical velocity in the 
points A, C and G. The response in the vertical direction is almost the same in the points A and C due to 
the high structural stiffness in the vertical direction. In point A, the incident wave field is only weakly 
affected by the presence of the building. The response in point G is more affected by the rigid body 
motion of the walls, since the wave front is disturbed by the presence of the building as it travels from 
point A to point G. In the low frequency range, the no-SSI-RF calculation is a good approximation for the 
response of the building in a calculation using SSI. 
Figures 8.27 and 8.28 show the time history and the frequency content of the vertical response for both the 
slab and the box foundation in point D. Due to the flexibility of the slab foundation with respect to the 
stiffness of the soil, the response of the centre of the foundation is close to the incident wave field. The 
assumption of a rigid foundation yields an underestimation of the response of the foundation. The box 
foundation is more rigid, and follows the global rigid body kinematics of the entire building. Therefore, 
the effect of SSI is more important in the latter case. 
The problem of excessive vibrations is often related to the slab. Figures 8.29 up to 8.37 show the time 
history and the frequency content of the vertical velocity in the points B, M and H along the boundary of 
the slab (Figure 8.5). As there is a difference between the results in points located on the edges of the slab, 
a plate model of this slab, that is excited by a non-uniform input motion along its boundary is required.  
 
Figures 8.38, 8.39 and 8.40 shows the time history and the frequency content of the vertical response in 
point E positioned in the centre of the first floor. The frequency content is dominated by a peak at 11.58 
Hz, corresponding to the first eigenmode (Figures 8.6, 8.7 and 8.8) of the structure clamped at the base. 
The difference between both SSI and no-SSI calculations is explained as follows. The incident wave field 
adds an amount of energy to the structure through the soil-structure interface. In a calculation without SSI, 
the structure can be referred to as a closed system after the incident wave has passed. All energy is 
dissipated through material damping in the structure. 
In contrast to this, the energy can be dissipated through radiation damping in the soil in a SSI calculation. 
The response on the oors is dominated by the local floor modes, resulting in a resonance of the floors. Due 
to the presence of radiation damping, the effect of SSI results in an increased attenuation of the floor 

 



response (Figures 8.38, 8.39 and 8.40). In contrast to points on the slab, the difference between the SSI 
and the no-SSI calculation is smaller for the walls. 
It is generally assumed that the effect of dynamic SSI increases the more flexible the soil is and the stiffer 
the structure is. The parametric building has a stiff superstructure, which predominantly acts as a rigid 
body. The same holds for the strip foundation and especially for the box foundation. A good 
approximation of the structural behaviour in stiff points is therefore obtained using a no-SSI-RF 
calculation. However, in points located on the slab foundation (point D) or on the other slabs (points E and 
F) resonance of the floors is attenuated more rapidly due to radiation damping and a SSI calculation is 
therefore advisable. 
A modal damping ratio ξ = 0.02 is used for each mode. The damping ratio that is estimated from the 
logaritmic decrement of the peak response in point E measured over consecutive cycles (the free vibration 
decay method), is equal to ξ = 0.0188 for the no-SSI-RF, ξ = 0.0184 for the no-SSI-FF and ξ = 0.0325 for 
the SSI calculation for a structure with a slab foundation. As expected, the damping ratio increases taking 
the SSI effect into account. The small deviation of the damping ratio for the no-SSI-RF and the no-SSI-FF 
calculation is due to reading errors using the plot of the peak amplitudes and a ruler. 

 

8.4 Variation of the number of stories 
 
In this section, the effect of the number of stories in dynamic SSI problems is illustrated by means of the 
parametric building with a slab foundation and four stories. 
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Figure 8.41 shows the modeshapes of the 4-story building. The first eigenfrequency at 11.34 Hz of the 
structure clamped at the base is near the first eigenfrequency at 11.58 Hz of the building with two stories. 
Figure 8.42 shows the vertical response in point C. The results for the no-SSI-FF calculation are 
comparable, whereas the results for the SSI calculation show a large difference. The peak amplitude 
decreases and the frequency content shifts to lower frequencies. This phenomenon can be attributed to the 
mass. As the mass of the 4-story structure is larger than the mass of the 2-story structure, the effect of SSI 
is more important. Figure 8.43 shows the horizontal response in point C. Besides a shift to the lower 
frequency range, the peak amplitude seriously increases as bending effects of the structure around the y-
axis increase to a large extent the response in the horizontal direction in a 4-story building in comparison 
with a 2-story building. This example clearly demonstrates that the SSI effect is very important for taller 
structures and cannot be omitted using an easier no-SSI calculation. 

           
Fig. 8.41: Some snapshots of the modeshapes of the 4-story building for the strip foundation type. 
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                          (a) 4 stories structure                                                     (b) 2 stories structure 

Fig. 8.42 : Time history of the vertical response in point C on the front wall-second floor edge. 
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                          (a) 4 stories structure                                                     (b) 2 stories structure 
Fig. 8.43 : Time history of the horizontal response in point C on the front wall-second floor edge. 

 
8.5 Variation of the soil properties 
 
Only qualitative statements on the effect of the stiffness of the soil on the SSI problem are possible at this 
stage, as the parameters related to the soil have not been varied yet. If the effect of the stiffness of the soil 
on the response of the structure is investigated, a decrease in stiffness of the soil can reduce or increase the 
structural response depending on the excitation frequency. In general, the peak response is smaller for a 
structure founded on a softer soil. However, the incident wave field increases if the stiffness of the soil 
decreases. Therefore, the effect of the stiffness of the soil on the dynamic SSI problem should be 
examined thoroughly. The response of the parametric building founded on a softer soil is investigated. A 
homogeneous halfspace with a shear wave velocity Cs = 100 m/s, a density ρ = 1750 kg/m3, a Poisson's 
ratio ν = 1/3 and a material damping ratio β = 0.025 in deviatoric and volumetric deformation is 
considered. This soil will be denoted as a soft soil in the following, whereas the soil with a shear wave 
velocity.  
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                                    (a). Soft soil.                                                               (b). Stiff soil. 

Fig. 8.44 : Time history of the horizontal response in point A on the front wall-foundation edge. 
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                                    (a). Soft soil.                                                               (b). Stiff soil. 
Fig. 8.45 : Time history of the horizontal response in point C on the front wall-second floor edge. 
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                                    (a). Soft soil.                                                               (b). Stiff soil. 

Fig.8.46 : Time history of the vertical response in point A on the front wall-foundation edge. 
 
Figures 8.44 and 8.45 show the time history and the frequency content of the horizontal response in the 
points A and C. As the vibration level of the incident wave is approximately a factor of four larger for the 
soft soil, the same phenomenon is observed in the point A in the structure. An increasing horizontal 
response in the point C is observed in figure 8.46 due to the flexibility of the structure and the rocking 
motion around the y-axis. For the softer soil (Cs = 100 m/s) the frequency content in the frequency range 
below 8 Hz is largely amplified, whereas, beyond the frequency of 8 Hz, only a slight difference in 
vibration level in comparison with the stiffer soil (Cs = 200 m/s) is visible. 
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                                    (a). Soft soil.                                                               (b). Stiff soil. 
Fig. 8.47 : Time history of the vertical response in point D on the centre of the ground floor. 

 
The same trend is observed in Figures 8.46 and 8.47 for the response in the vertical direction in the points 
A and D. Note that a different vertical scale is chosen for the vertical response. A decrease in stiffness of 
the soil shifts the frequency content to lower frequencies. In spite of the increasing peak amplitude related 
to the higher incident wave field, the amplification factor on the response in the structure is smaller than 

 



the amplification factor of four on the free field response due to the flexibility of the soil. Figures 8.44 to 
8.47 show large deviations between the SSI and the no-SSI calculations. If the response of heavy 
structures founded on a soft soil is considered, it is crucial to take the SSI effect into account. Omitting the 
SSI effect may result in an overestimation of the response and an expensive structural design. 
Figure 8.33 shows the time history and frequency content of the vertical response in point F. The peak in 
the frequency content due to resonance of the slab at a frequency of 10 Hz is amplified. However, the 
increase in the maximum amplitude of the incident wave field is much larger. Due to the flexibility of the 
soil, energy in the slab can be radiated more easily than for a structure founded on a stiff soil. 
Figure 8.49 shows the time history of the energy in the structure for the SSI calculation. As the incident 
wave field for a structure founded on a soft soil is larger than for a stiff soil, the energy in the structure is 
much larger. 
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                                    (a). Soft soil.                                                               (b). Stiff soil. 

 
Fig. 8.48 : Time history of the vertical response in point F on the centre of the second floor. - 126 - 
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Fig. 8.49 : The time history of the total energy in the structure for the SSI calculation for a stiff soil (solid 

line) and a soft soil (dashed line). 
 

8.6  Spectral finite element analysis of a real 2-D soil structure 
system 
 
This section is intented to evaluate the effects of soil-structure interaction (SSI) on the modal 
characteristics and on the dynamic response including stresses of a real structure Figure 8.50. From the 
above studies, the stress was on the overall behaviour of SSI systems, and it was not possible from a 
pratical point of vue  to study a full 3-D SSI system. In fact a simple 3-D five storey reinforced concrete 
structure building typically encountered in Algeria including a finite extent of a soil domain limited by a 
simple viscous type boundary conditions, will have several hundreds of thousands of degrees of freedom. 
The PC used, an Intel Pentium 4 with a 2.40GHz processor having a 512 Mo memory, becomes very slow 
and crashes from time to time. That is why, the study was limited to a 2-D SSI sytem, which is the most 
used method in real life studies in most pratical situations. Unstead of the homogeneous halfspace used in 
the parametric building of section 8.2.2, a bounded Mohr-Coulomb soil model is used. 
The unbounded nature of the soil medium requires special Boundary Conditions (BC) that do not reflect 
seismic waves into the soil-structure system. Various models of BC exist that enable the energy 
transmission [72], the most commonly used in the FEM are of the viscous type. The position of the local 
viscous boundaries should be far away from the structure in order to obtain realistic results. From recent 
studies it is recommended that the location of the transmitting boundary to be selected far away 8-10 
times of the foundation base width [91].  
The BC used in this study are based on the method described by Lysmer and Kuhlmeyer [72].   
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Fig. 8.50 : Finite element discretization of the Soil-Structure System. 
 

8.6.1 Characteristics of soil-structure model   
 

 



In order to investigate the soil-structure-interaction of regular type reinforced concrete (R/C) buildings 
with isolated footings response due to earthquake ground motion, 48 models of the 5 storey building have 
been examined. Table 8.2 shows the dynamic properties and the geometry of the 5-storey R/C building 
model. 

Table 8.2. Dynamic characteristics and geometry of 5-storey model. 
 

Structural properties 
Shear Wave 

Velocity  
Vs (m/s) 

Depth of Soil Layer H (m) 
 

30 50 100 
VS Fundamental Period of Vibration  

T1 (sec) 

50 2.54055 2.74284 2.73103 

400 0.81089 0.84031 0.88972 

1200 0.80314 0.81222 0.81214 

Superstructure 
Exterior Footing=1.5 x 1.5(m); 
thickness=0.36m 
Interior Footing=2.1 x 2.1(m); 
thickness=0.51m 
Area of cross-section of members = 0.3x0.3m2 
storey height = 4.08m with a bay of 4.20m.  
Poisson's ratio = 0.20 
mass of each storey = 40.21 KN/m 
mass of roof = 26.38 KN/m 
critical damping ratio =10% 
modulus of elasticity= 24821129 KN/ m2

mass density=2.40 KN/m3

 
Soil 
Poisson’s Ratio of soil = 0.20 
mass density=1.70 KN/m3 

critical damping ratio =10% 

Fixed Base 
Condition  
(i.e., without 
SSI) 

0.79038 

 
Since the dynamic response of this soil-structure system depends on the frequency content of the input 
motion and its variation through the soil layers, the interaction between foundation and it’s underneath soil 
layers has been studied. Three different types of soil layers with different depths 30, 50 and 100m have 
been considered. In each analytical model different shear wave velocities ranging from 50 to 1200m/s 
simulating soft to hard soil conditions have been used.  

- 128 - 

The dynamic characteristics of three types of soil layers will be considered, simulating soft, medium and 
hard soil conditions (table 8.2.). To study the dynamic response of soil-structure interaction, the 5-storey 
building model is submitted to El Centro earthquake ground motion. 
 
8.6.2 Discussions of results  
 
For the real 5-storey R/C structure mentioned above a comparison of the results is undertaken in order to 
evaluate the effects of SSI, initially, in terms of fundamental periods (table 8.2). One limits our 
presentation and analyzes of results for three types of ground only (Vs = 50, 400, 1200m/s) representing 
soft, medium and hard soil conditions respectively.  
As expected, soft soil condition amplify structural response and elongates natural periods, as opposed to 
hard soil, where for increasing values of shear wave velocities, we approach the fixed base condition 
(fixed base condition represents a theoretical case of a surface soil having an infinite rigidity). The 
severity of damages will be amplified when the frequency content of the earthquake input motion will be 
near the fundamental mode of vibration of the soil – structure system.  
When the depth of the soil layer increases and its stiffness decreases, the period of the soil-structure 
system will increase and in these cases the adjacent soil stiffness plays very important role in decreasing 
or increasing the base shear for the type of structure considered.  One of the aims of this study is the 

 



necessity to explicitly consider the occurrence of one or more nonlinearities (geometric and material); i.e., 
allowing for the structure to slide and uplift at the foundation interface.  
It is interesting to compare the behaviour of the building that is not allowed to uplift nor slide with the 
behaviour of the same building that is allowed to uplift and slide (table 8.3). By allowing the uplifting and 
the sliding of the foundations the lateral displacement at the top of the structure has not changed 
significantly (displacement and acceleration time histories are given in figures 8.51 and 8.52 respectively). 
However, allowing foundation uplifting reduces significantly the base shear (–74,0%) and overturning 
moments (table 8.4).  
In addition of the insight gained from SSI analysis it improves our understanding of the behaviour of real 
structures. As a result of this understanding, design and construction practices can be modified so that 
future earthquake damage is minimized. As reported in the literature SSI analysis is seldom performed for 
ordinary structures. Even, when SSI effects are negligible in terms of loads, they do affect structural 
stability in terms of large deflection and nonlinear response; this is rarely investigated.  
It is possible to investigate such effects, by first creating a model that represents the real structure and then 
perform a sensitivity analysis as for different support conditions allowing for the structure to uplift and 
slide.  

Table 8.3. Summary of Results for Building allowed to Uplift and slide submitted to El Centro 
Earthquake ξ=0.05 

Cases 
considered 

Shear Wave 
Velocity 
Vs (m/s) 

Max. lateral 
Displacement 
at top of Bldg. 

(cm) 

Max. Axial 
Force 
(KN) 

Max. Base 
Shear 
(KN) 

Max. Base 
Moment 
(KN.m) 

Model A* Encastré 11.1 575.5 440.8 108.3 
50 16.9 617.6 327.0 0.0 

400 9.6 575.8 114.5 106.9 
Model B* 

 
1200 10.0 575.0 431.2 103.4 

 
* Model A: structure fully fixed at base, i.e., without SSI.  
* Model B: Nonlinear SSI, taking into account possible uplift and slide of foundation.  
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Table 8.4 . Summary of Results for Building allowed to Uplift and slide (in terms of percent difference)       

submitted to El Centro Earthquake ξ=0.05 
Percent Difference % Cases 

considered 
Shear Wave 

Velocity 
Vs (m/s) 

Max. lateral 
Displacement at 

top of Bldg 

Max. Axial 
Force 

Max. Base 
Shear 

Max. Base 
Moment 

50 +43% +6.8% -25.8% -99.9% 
400 +1% 0% -74.0% -1.2% 

Model A & 
Model B 

1200 0% 0% -2.2% -4.4% 
 

   
 

 



       
 

     
 

Fig. 8.51 : Displacement time history plots for H=30, 50 and 100m; Vs= 50, 400 and 1200m/s. 
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Fig. 8.52 : Acceleration time history plots for H=30, 50 and 100m; Vs= 50, 400 and 1200m/s. 

 
8.7 Conclusions 
 
In this chapter, a parametric study on the determining factors for wave induced vibrations in buildings has 
been performed. The response of a parametric building  due to the passage of a wave field has been 
calculated for a slab, a strip and a box foundation. The second study was for a real 5 storey R/C building. 
The importance of SSI for the three foundation types as well as the influence of the number of stories in 

 



the dynamic SSI problem has been investigated. The stiffness of the soil has also been varied. The 
conclusions from the investigation of the modes of the structure and the response in different points in the 
structure and from an energy perspective are summarized as follows: 
 

1. For the calculation of the response of the structure, a decomposition of the displacement vector of 
the structure into the modes of the superstructure clamped at the base and the quasi-static 
transmission of the free foundation modes into the superstructure is performed. Because of the 
rigidity of the walls, the free foundation modes do not properly represent the kinematics of the 
foundation, which is prevented to deform along the connection between the foundation and the 
walls. Therefore, a sufficiently high number of modes of the foundation (20) must be used. 
Accounting for the additional 20 modes of the superstructure, the total number of modes is twice. 
However, the number of modes used for the calculation of the soil impedance is the same in both 
cases. Therefore, the Craig-Bampton substructure method, that distinguishes between the modes 
of the foundation and the superstructure, is a valuable alternative to a modal decomposition based 
on the modes of the total structure, as it does not require a new dynamic SSI calculation when the 
properties of the structure are changed. 

 
2. Due to the stiffness of the walls, no wall deformation modes appear in the frequency range of 

interest. In general, two situations may occur: (1) if the building is resting on a soft soil, no 
deformation of the walls occurs and the global motion of the building is dominated by rigid body 
kinematics; (2) in the case of a structure resting on a stiff soil, the walls deform in a quasi-static 
way, following the ground motion. Additionally, the presence of a stiff foundation prevents wall 
deformations. This has important consequences for vibration induced damage to buildings: wall 
cracking, caused by excessive deformations, is more likely to occur in the case where there is a 
quasi-static transmission of the ground motion into the walls. 

 
3. The influence of the stiffness of the soil on the response in the free field and the structure is 

examined. The stiffness of the soil seriously affects the free field response. Higher vibration levels 
occur in the case of a soft soil.  
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4. When no dynamic SSI is accounted for, the assumption that the motion of the foundation is equal 
to the incident wave field results in unrealistic wall deformations when the structure is relatively 
rigid with respect to the soil. Allowing only for a rigid body motion of the foundation as a spatial 
average of the incident wave field, results in a better approximation of the wall displacements. 
When dynamic SSI is accounted for, the loss of energy due to radiation damping in the soft soil is 
benefficial. In general, the peak amplitudes decrease and the frequency content shifts to lower 
frequencies. The importance of a SSI calculation for structures founded on a soft soil is 
demonstrated by this example. 

 
5. The response of the floors is dominated by the local bending modes. Dynamic SSI results in an 

increased attenuation of the floor response due to radiation damping in the soil. 
 

6. The importance of the foundation flexibility has been investigated. The slab foundation is flexible 
with respect to the stiffness of the soil. The eigenfrequency of the first flexible eigenmode of the 
slab is close to the frequency range of interest. Therefore, the response of the centre of the 
foundation is close to the incident wave field. The box foundation is more rigid and follows the 
global rigid body kinematics of the entire building. Therefore, the effect of dynamic SSI is more 
important in the latter case. 

 
7. The height of a building seriously influences the horizontal response. Bending effects of the 

structure increase to a large extent the horizontal motion. The SSI effect increases due to the 

 



higher mass. The peak amplitude decreases and the frequency content shifts to lower frequencies. 
This example shows the importance of a SSI calculation for tall structures. 

 
8. When no SSI is accounted for, energy has to be dissipated through material damping in the 

structure. The total energy in the structure is large, especially if the motion of the foundation is 
derived from the incident wave field assuming a flexible behaviour of the foundation. If SSI is 
accounted for, the total energy in the structure is smaller as energy can be dissipated through 
radiation damping in the soil. The energy in the structure is attenuated more rapidly. 

 
9. The results of the parametric study have shown that the influence of the type of foundation is 

small. The highest vibration levels occur in the structure with a box foundation, although, the 
difference with the other types of foundations is not significant. As the stiffness of the structure 
with a box foundation is larger, the loss of energy due to radiation damping in the soil is smaller. 
The effect of the difference in mass for the three types of foundations on the SSI effect cannot be 
observed in the present example. 

 
10. The results of the second study, it was found that, by allowing the uplifting and the sliding of the 

foundations the lateral displacement at the top of the structure has not changed significantly. 
However, allowing foundation uplifting reduces significantly the overturning moments and base 
shear up to –74,0%. 

 
The results of this study allow estimating vibration in new-built and existing situations and may aid to 
develop effcient and cost-effective vibration isolation solutions. 
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Chapter 9 
 
 

9. Conclusions and recommendations for further 
research 
 
 

9.1 Conclusions 
 
 
A numerical model for the prediction of wave induced vibrations in buildings has been developed and a 
MATLAB Toolbox is elaborated, which includes different methods, that is, FEM, BEM, FEM-BEM and 
the new method SFEM, which is recently introduced to SSI problems.  
The coupling of a source model for the prediction of free field wave induced vibrations to the receiver 
model is emphasized. Both models are based on a subdomain formulation for dynamic SSI problems, 
while the direct formulation may also be easily imlemented. The formulation used is not novel, in a sense 
that it has been applied before, especially to the seismic analysis of structures. However, a substantial 
contribution of this work is the application to foundation wave induced vibrations. This is novel and not 
trivial, necessitating the mitigation of fictitious eigenfrequencies when a BEM is used for the computation 
of the impedance of embedded foundations. The basic procedure that is used in seismic engineering to 
solve dynamic SSI problems is extended, taking measures against the occurrence of fictitious 
eigenfrequencies. 
First the numerical model for the prediction of vibrations in buildings due to wave propagation is 
elaborated. A dynamic foundation-soil interaction problem is solved to compute the incident wave field, 
which is subsequently applied to the structure. 
The response in the structure is calculated using a subdomain formulation. A FEM is applied for the 
structure, whereas the unbounded soil domain is computed using a pseudo-spectral approach for the 
calculation of the wave propagation into a homogeneous or layered halfspace.  
Very good correspondence with the results published in the literature is obtained with a constant 
dimensionless imaginary coupling parameter inversely proportional to the maximum dimensionless 
frequency that is considered and a unit dimensionless distance. As the results of this parametric study have 
proven that spurious non-zero displacements in the interior domain due to fictitious resonances disappear 
almost completely when these parameters are used, this solution procedure is subsequently used in the 
numerical model for wave induced vibrations in buildings with an embedded foundation. 
Next, the computer Matlab program of the numerical prediction model for foundation wave induced 
vibrations accounting for dynamic SSI at the source and the receiver is successfully elaborated. The 
source model is subsequently coupled with the receiver and the incident wave field is applied to the 
structure. A spectral finite element method is used for the soil-structure model. An attempt has been made 
to trace the propagation of waves through the soil, the interaction with the building and the amplification 
in the structure.  
The results of the numerical model are very satisfactory and show that the prediction model describes the 
essential physical phenomena, while meeting a reasonable accuracy. The numerical prediction model is a 
valuable tool in the calculation of the stresses under the dynamic behaviour of the structure. 
Finally, the numerical prediction model is used in a parametric study as to elucidate the effect of dynamic 
SSI for three types of foundations. The response of a two and five story buildings due to the passage of a 
wave front field are considered. The results of three cases where the structure is founded on a slab 
foundation, a strip foundation and a box foundation are compared, accounting for or neglecting the effects 
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of dynamic SSI. If SSI is disregarded, the motion of the foundation is found as the least squares 
approximation of the incident wave field assuming a rigid kinematic behaviour of the foundation. This 
assumption results in a rigid body motion of the foundation which is the spatial average of the incident 
wave field and is a valuable alternative for the SSI calculation. It is concluded that the effect of dynamic 
SSI on the response of this type of structure can be disregarded if the foundation is assumed to behave as a 
rigid body. Accounting for the dynamic SSI effect results in an increased attenuation of the floor response 
due to radiation damping in the soil.  
The results of the parametric study have shown that the influence of the type of foundation is relatively 
small. The SSI effect is more important for tall structures. The coupled source-receiver model has proven 
to be a valuable tool in the prediction of wave induced vibrations and an important help to study the 
relevant physical phenomena. The present work contributes to a large extent to the latest developments in 
the area of dynamic SSI analysis. However, this prototype version of the numerical prediction model has 
to be translated into a practically-oriented toolbox that is applicable for design purposes, for the study of 
cases were vibration nuisance occurs or to predict the effect of vibration isolation measures.  
An improved elements based on spectral element method allows to reduce complex SSI models to simpler 
and precise models taking into account absorbent boundary conditions. The numerical model described 
above has been implemented into a MATLAB toolbox. The calculation of the Green's functions of the 
horizontally layered halfspace is performed separately within the existing computer program SFEM2D.  
 
 

9.2 Recommendations for further research 
 
9.2.1 A further refinement of the soil model 
 
The foregoing discussion of the prediction model allows to indicate a few points where the model can be 
refined: 

• The loss of contact between the foundation and the soil or non-linear characteristics can be 
accounted for if a non-linear SSI model is used. 

• The use of a plate model for the foundation instead of a beam model allows to account for the 
flexibility of the foundation's cross section. This refinement is important as far as the foundation's 
response is considered. Its influence on the free field response is limited to the high frequency 
contribution where the wavelength in the soil is small with respect to the width of the foundation. 

• In the present model, it is assumed that the foundation is located at the soil's surface. The 
discussion on the numerical simulation results compared to literature results shows, that the 
embedment of the foundation has a considerable influence on the free field wave propagation. The 
importance of these refinements, is estimated to be relatively high compared to the impact of 
parameters as the dynamic soil characteristics. 

• More elaborated work may be undertaken to improve the numerical methods used, that is, FEM, 
BEM, FEM-BEM and the new method SFEM. As each one of these constitute a specialized 
domain by itself. 

 
 
9.2.2     A source-receiver model for wave induced vibrations 
 
More than refining the soil model, the further study of wave induced vibrations requires the development 
of a model that allows to predict the dynamic response of nearby buildings. If it is assumed that the 
dynamic soil-structure interaction problems at the source and at the receiver can be uncoupled, a solution 
in two stages can be applied. First, the present source model is used to predict the incident wave field.  
Next, the interaction of the incident wave field with the structure is considered. The uncoupling of the 
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source and the receiver is a wide-spread assumption in the field of earthquake engineering and is valid 
when the distance between the source and the receiver is much larger than the dominant wavelength in the 
soil. The main focus in further research should therefore go to the development of such a source-receiver 
model. 
For the experimental validation of this model, it is advantageous to set up experiments where the building 
response as well as the free field response are measured simultaneously. This enables a rigorous validation 
at the different stages of the prediction model. In order to usefully apply this model for design purposes, it 
is important to indicate how the uncertainty on the various input parameters affects the prediction of the 
structural response. Such an approach results in the prediction of the probability of exceeding a given 
vibration level during a certain period of time. The source-receiver model allows to address a wider range 
of problems related to wave induced vibrations: 
 

• The prediction of the building response provides insight in the factors that determine the vibration 
levels in buildings. The attenuation of the vibrations at the foundation level, the vertical resonance 
of flexible floors and the amplification of the horizontal vibrations over the height of the building 
are important phenomena that should be investigated in detail. 

• Predictions of building vibrations can be combined with fatigue laws of brittle materials to study 
the occurrence of structural damage due to wave propagation induced vibrations. 

• In problem situations where wave induced vibrations lead to structural damage, the model can be 
used to identify the causes. 

• Numerical simulations under Matlab or others, allow to evaluate the efficiency of vibration 
isolating measures at the source, at the receiver or on the transmission path of the vibrations. 

• For the design of important structures, such as micro-electronics laboratories or concert halls, 
where wave induced vibrations are of great concern, the model can be used in a design phase. 

• For small structures, such as single story structures, the model can be used to formulate simplified 
guidelines. In practical guidelines, minimum eigen-frequencies for floors or other structural 
building parts can be advised. 
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Appendix A 
 
 

A.  Boundary Element Method 
 
 
The BEM uses the Boundary Integral Equation (BIE) in elastodynamics, which is based on the dynamic 
reciprocity theorem that specifies the relationship between a pair of elastodynamic states. It is the dynamic 
extension of the classical reciprocity theorem of Betti-Rayleigh in elastostatics [48]. 
Consider a volume Ω with boundary ∑. The Betti-Rayleigh theorem in the frequency domain between two 
states can be written as: 

∫ ∫
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where u1j(x) and u2j (x) are elastodynamic displacement fields with the corresponding tractions t1j (x) and 
t2j (x). ρb1j (x) and ρb2j (x) denote the body forces. 
The Green's displacements  and tractions  are introduced as one of the states in the 

dynamic reciprocity theorem (A.1). The second-order Green's tensor  represents the 

displacement components in the direction e
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The second-order Green's tensor represents the components of the traction vector in the direction 
e

)x,(ξG
ijt

j in the point x for the same load. On a boundary with a unit outward normal vector nk, these tractions are 
equal to , with  the stress tensor. k
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The Green's tensors  and  show singularities of the order r )x,(ξG
iju )x,)(u( ξG

ijt –1 and r –2, respectively, 
for points ξ located on the boundary ∑. Therefore, the dynamic reciprocity theorem is not immediately 
applicable and a regularisation procedure has to be applied. A spherical extension with centre ξ and radius 
ε of the interior domain  is introduced and the radius ε is taken to the limit, i.e. ε → 0. This finally 

results in the boundary integral equation for the unbounded soil domain  : 
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with cij (ξ) = 0 if , cint

sΩ∈ξ ij (ξ) = 1/2 if Σ∈ξ  for a locally smooth boundary and a locally homogeneous 

domain at the point ξ, and cij (ξ)  = 1 if . ext
sΩ∈ξ

The second integral is the Cauchy Principal Value (CPV) integral. This integral equation formulation is 
called a direct formulation as the unknowns have a physical meaning such as displacements or tractions. 
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If the BIE is based on the Green's functions for a horizontally layered halfspace, only a discretisation into 
elements of the interface ∑ between the soil and the structure is required and the number of unknowns is 
drastically reduced. The interface ∑ =  is discretised into ne

n
e Ee

1=∪ e boundary elements Ee. 
A collocation method is used where the displacements uj (x) and tractions tj (x) are interpolated from the 
value at the centre of gravity of each element: 
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where jlu  and jlt  are the displacements and the tractions at the element l. The element based shape 
functions Nl(x) are equal to 1 on the element l and zero elsewhere. The discretisation of the displacements 
uj (x) and the tractions tj (x) according to equations (A.4) and (A.5) is introduced into the boundary 
integral equation (A.3) and is evaluated on the boundary ∑: 
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As the interpolation functions Nl(x) are equal to 1 on the element l and zero elsewhere, equation (A.6) 
becomes: 
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The boundary integral can be evaluated numerically for each element resulting in a fully-populated non-
symmetrical system of 3 × ne algebraical equations: 
 

tGuH =                                                                    (A.8) 
 
where t  and u  are the nodal traction and displacement vectors. The elements of the fully populated and 
non-symmetric matrices G and H that represent the Green's displacement and traction tensor, respectively, 
are calculated as follows: 
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The calculation of the elements of the matrices G and H involves the evaluation of ne – 1 regular integrals 
when the point ξ is located outside the element where the integral is evaluated and one singular integral if 
the point ξ coincides with the centre of gravity of the element. A regularisation technique is therefore 
applied [37]. 
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Appendix B 
 
 

B.  Computation of the loading term due to a 
free field incident wave field 
 
The loading term due to the incident wave field is computed on the boundary ∑ of the unbounded exterior 
soil domain  using a BEM. This loading term fext

sΩ b due to an incident wave field applied on the structure 
is defined as: 
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The BIE for the locally diffracted wave field ud0 defined on the boundary ∑ of the unbounded exterior soil 
domain  is equal to: ext
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with cij (ξ) = 1/2 for Σ∈ξ  for locally smooth boundary and a locally homogeneous domain at the point ξ. 
The BIE (B.2) for the locally diffracted wave field ud0 is defined on the boundary ∑ of the unbounded 
exterior soil domain with the unit outward normal vector  (figure B.1). ext

sΩ ext
in

As the loading term due to the incident wave field is computed on the exterior soil domain  using a 

BEM, the unit outward normal vector  is also preferred for the definition of the BIE for the incident 
wave field u
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inc on the boundary ∑, which is equal: 
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Figure B.1: The exterior soil domain  ext
sΩ

 
Subtraction of equations (B.2) and (B.3) results into: 
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The displacement field u0 is decomposed into an incident wave field uinc and a locally diffracted wave 
field ud0 from which follows: 
 

)(u2)(u)(u)(u inc0inc0 ξξξξ −=−d                                            (B.5) 
 
Equation (B.4) can then be elaborated as: 
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As u0 = 0 on the interface ∑ and with cij (ξ) = 1/2 for Σ∈ξ  for a locally smooth boundary and a locally 
homogeneous domain at the point ξ, equation (B.6) reduces to: 
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The tractions tj (u0)(x) in equation (B.7) are calculated in the centre of gravity of each element of the 
discretised boundary ∑. The loading term  (equation B.1) due to the incident wave field is 

subsequently computed. 
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Appendix C 
 
 

C.  Matlab Code Implementation 
 
MATLAB is a high-level technical computing language and interactive environment for algorithm 
development, data visualization, data analysis, and numerical computation. It allows one to solve technical 
computing problems faster than with traditional programming languages, such as C, C++, and Fortran. 
Add-on toolboxes (collections of special-purpose MATLAB functions) extend the MATLAB environment 
to solve particular classes of problems. You can integrate your MATLAB code with other languages and 
applications. 
 
 

C.1.  The MATLAB Language 
 
The MATLAB language supports the vector and matrix operations that are fundamental to engineering 
and scientific problems. It enables fast development and execution. With the MATLAB language, you can 
program and develop algorithms faster than with traditional languages because you do not need to perform 
low-level administrative tasks, such as declaring variables, specifying data types, and allocating memory. 
In many cases, MATLAB eliminates the need for ‘for’ loops. As a result, one line of MATLAB code can 
often replace several lines of C or C++ code. At the same time, MATLAB provides all the features of a 
traditional programming language, including arithmetic operators, flow control, data structures, data types, 
object-oriented programming (OOP), and debugging features. 

 
C.2.   Object-oriented implementation in Matlab 
 
In order to carry out the comparisons mentioned above, numerical tools had to be implemented. The 
Matlab environment was chosen for this purpose. The first reason is the ease of implementation due to the 
numerous toolboxes for numerical analysis provided by Matlab. The second reason is the ability of 
developing software within the object-oriented paradigm. Matlab possesses some special features (e.g. 
structures, cell arrays) that allow to pack information into some kinds of objects. Having adopted this way 
of programming, it should not be a hard task to transfer the Matlab code into a true object-oriented 
language like C++ and Fortran 90 or 95. In this sense, the computer code produced for the present study 
can be viewed as a paste-up for later more robust implementation in C++ or Fortran. 
 
The first objective is to compare analysis methods for elastic two-dimensional mechanical problems. 
Precisely, two methods have been implemented, the simulated samples of the buildings carrying out a 
deterministic finite element analysis of the mechanical problem, and finally, the SFEM method is applied 
followed by the post-processing.  
 
The second objective is rather the implementation of the Spectral Finite Element Method (SFEM) in the 
Matlab environment. In order to be able to compare a broad spectrum of methods, attention has been 
focused on elastic two-dimensional problems, even though more elaborated soil models (Mohr-Coulomb) 
is given and may be implemented in SFEM at a later stage. Object-oriented programming was aimed at, 
first to allow a versatile utilization of the code, second to build a base for later implementation in a true 
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object-oriented language like C++. The different programs were applied to SSI problems in a large 
parametric study  (chap6.). As far as is concerned, SFEM methods provide good results, when perfectly 
matched layers are used as boundary conditions.  SFEM can give fair results and better insight for SSI 
problems, at a cost much lesser than that of the direct FEM or BEM methods.  
For this purpose, different routines grouped in different repertories have been developed under the Matlab 
environment,  and they may be looked at, as my contribution for SSI related problems: 
 

• A random wave field discretization program called WAVE. 
• A  finite element code called FEM. 
• A boundary element code called BEM. 
• A hybrid code called FEM-BEM. 
• A dynamic soil structure Interaction code called Dynamic_SSI. 
• A BEM wave code called BEM-WAVE. 
• A FEM wave code called FEM-WAVE. 
• A Green's functions code called Greens_Function. 
• A soil model code called Soil_Models 
• a software implementing the SFEM method. 

 
Due to limited space only few Matlab routines are given at the end of this section. 
 
 

C.3.    SFEM Software 
 

C.3.1   History and credits 
 

The main part of the elastic-isotropic solver was written in the mid 90's by Dimitri Komatitsch. The 
elastic-anisotropic solver and several significant improvements to the isotropic code were added by this 
research, the code was almost completely rewritten in a more object-oriented style in preparation to the 
implementation of higher level functionalities, such as multigrid, subcycling, adaptivity and multiscale 
coupling. While the extensive use of object-oriented features can degrade performance this is not critical 
in 2D simulation, the emphasis has been rather in code reusability and expandibility. 
A simultaneous development for the simulation of earthquake dynamics was undertaken and is the main 
new feature of the current toolbox. Spontaneous rupture along multiple non-planar faults can be currently 
modelled. Although there is no intrinsic limitation on applying different friction laws, only linear slip 
weakening friction is implemented. Dynamic source simulations using methods that discretize the bulk, 
such as finite difference, finite element and spectral element methods, are more prone to high frequency 
numerical noise than boundary element methods. 
 

C.3.2   Overview 
 

The SFEM package is a set of tools for the simulation and analysis of the seismic response of soil-
structure systems as well as dynamic earthquake ruptures. Its core is SFEM2D, an explicit Spectral 
Element solver for the 2D elastic wave equation. The general flow of a simulation project is: 
1. Mesh generation: SFEM2D works on an initial mesh made of quadrangles (basically a Q4 or Q9 finite 
element mesh). 
2. Mesh quality verification, eventually return to previous step. 
3. Numerical simulation. 
4. Post-processing and visualization of the output. 
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This is a research code, and is still under development and provided "as is", and therefore it should not be 
considered by the user as a 100 % bug-free software package. We welcome comments, suggestions, 
module contributions and bug reports. 
 
 C.3.3    The solver SFEM2D 
 
Based on a mesh of quadrangular spectral elements and a set of material properties, sources and receivers 
SFEM2D solves the elastic wave equation applying a Spectral element method in space and a second-
order explicit Newmark scheme in time. The SFEM, first introduced in Computational fluid dynamics, can 
be seen as a domain decomposition version of Pseudo-spectral methods or as a high order version of the 
Finite element method. It inherits from its parent methods the accuracy (spectral convergence) and the 
geometrical exibility and natural implementation of mixed boundary conditions, respectively. 
  

C.3.4    Installation  
 

• Just put SFEM2D package in Matlab toolbox directory 
• Launch Matlab, Add a new directory path to the list of included directories.  

To do so use the Matlab addpath function, by using the Set Path dialog box. Select Set Path from the File 
menu in the MATLAB desktop by using the following Syntax addpath('SFEM2D'). For more details refer 
to MATLAB Function Reference book or the website: http://www.mathworks.com
 
 

C.4    Conclusion 
 
As a conclusion, it is noted that the present study is the first attempt to compare SFEM methods to FEM or 
BEM methods for a given SSI application. Throughout the description of the implementation, it has been 
seen that these methods have more in common than what the different research communities involved in 
their development sometimes think, at least from a computational point of view. Of course, three building 
type examples cannot be used to draw general conclusions of the superiority of some methods over others, 
but it gives at least a new light on their respective advantages and shortcomings. 
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