THÈSE

Présenté en vue de l’obtention du diplôme de
Doctorat en Mathématiques
Option: Probabilités et Statistique

Modélisation des Marchés Financiers et
Krachs Boursiers

Par
EZZEBSA Abdelali

Sous la direction de
Docteur. Remita Med Riad

Devant le jury

PRESIDENT : BOUTABIA Hacène Prof U.B.M. ANNABA
EXAMINATEUR 1 : NECIR Abdelhakim Prof U. M.K. BISKRA
EXAMINATEUR 2 : MOHDEB Zaher Prof U.M. CONSTANTINE
EXAMINATEUR 3 : BOUKHETALA Kamel Prof U.S.T.H.B. ALGER
EXAMINATEUR 4 : ZEGHDoudi Halim M. C. A U.B.M. ANNABA

Année : 2014
Table des matières

1 L’effet de la volatilité sur le risque de marché 8
 1.1 Définition et importance de la volatilité 8
 1.1.1 Les différents types de volatilité 9

2 Généralités sur les séries temporelles 15
 2.1 Notions de stationnarité et notions de linéarité 16
 2.1.1 Illustration Graphique 18
 2.2 Caractéristiques d’une série temporelle 19
 2.2.1 Moyenne, Variance, Fonction d’autocovariance, et d’autocorré-
 lation ... 19
 2.3 Processus linéaires et processus linéaires généraux 20
 2.4 Les processus ARMA .. 21
 2.4.1 Inversion des polynômes 22
 2.4.2 Stationnarité et inversibilité d’un processus autorégressif ... 24
 2.4.3 Fonction d’autocorrélation partielle ($PACF$) 26
 2.4.4 Reconnaissance d’un processus AR(p) 27
 2.4.5 Densité spectrale 28
 2.4.6 Test de racine unitaire ou test de stationnarité 29
 2.4.7 Test de Dickey et Fuller augmenté 29
 2.4.8 Test d’égalité de deux variances 31

3 Modèles ARCH/GARCH 33
 3.1 Introduction .. 33
 3.2 Modèles ARCH(p) linéaire 34
 3.3 Modèle avec erreurs ARCH(q) 38
 3.4 Modèle GARCH(p,q) .. 39
 3.5 Modèle avec erreurs GARCH(p,q) 41
 3.6 Estimation des paramètres ARCH 42
 3.6.1 Estimation par maximum de vraisemblance 42
 3.6.2 Estimation des paramètres GARCH 43
3.7 Test de ARCH de Engle (1982) ... 44
3.8 Modèles ARCH/GARCH linéaires .. 45
 3.8.1 Modèles ARMA-GARCH .. 45
3.9 Variantes des processus ARCH ... 46
 3.9.1 Modèle GARCH-M .. 46
 3.9.2 Modèle IGARCH ... 47
3.10 Modèles ARCH/GARCH asymétriques 50
 3.10.1 Modèle EGARCH ... 51
 3.10.2 Modèle APARCH .. 53
 3.10.3 Modèles TGARCH .. 54
3.11 Introduction à la notion de mémoire longue 55
3.12 Application en finance .. 56

4 Application à la value at risk .. 57
 4.1 Problématique .. 57
 4.2 Modélisation ... 60
 4.2.1 Introduction à EViews .. 60
 4.2.2 Application 1 .. 61
 4.2.3 Spécification de la moyenne conditionnelle 62
 4.2.4 Analyse descriptive (S_t) 64
 4.2.5 Estimations et comparaison des modèles 65
 4.2.6 Comparaison entre les modèles 66
 4.2.7 Comparaison entre les modèles par rapport à la durée (courte
 et longue durée) .. 67
 4.2.8 Application 2 .. 69
 4.2.9 Test de racine unitaire et analyse descriptive 71
 4.2.10 Critères de choix des modèles 72

Bibliographie .. 87
Abstract

We propose in this thesis to give an overview on the effect of the volatility of the financials markets. More precisely, the applications in econometrics of finance and the description of the series of outputs of financial credits. In this direction we study and analyze the behavior of the dynamics of the exchange rate. To this end, we made an application relates to the exchange rate volatility of Algerien dinar against the Euro and the US. Dollar, which we compared the models resulting from various standard process and over various periods.
Résumé

Dans cette thèse, on s’intéresse à la volatilité boursière, car la volatilité est une composante essentielle de la gestion de portefeuille. Elle mesure le risque inhérent à tout placement boursier. En effet, plus un cours boursier est volatil, plus la différence entre le prix de vente et le prix d’achat d’un titre peut être grande. De plus, le placement concerné est jugé risqué si le gain ou la perte est importante. Dans cet esprit nous allons analyser et étudier le comportement de la dynamique du taux de change du Dinar Algérien, en appliquant la Value-at-Risk aux comportements de taux de change du Dinar Algérien (par rapport à l’Euro et au Dollar), en comparant les différents modèles sur différentes périodes.
Introduction

Les modèles introduits dans la littérature économique se présentaient généralement sous forme multiplicative, \(\varepsilon_t = \sigma_t \eta_t \) où \((\eta_t) \) est un processus indépendant identiquement distribué (i.i.d), et \((\sigma_t) \) une suite de variables aléatoires telles que \(\sigma_t \) soit mesurable par rapport à la filtration engendrée par le passé de \(\varepsilon_t \)-et éventuellement le présent-et par le passé d’un processus sous-jacent inobservable \(\nu_t \), \(\sigma_t \) et \(\eta_t \) soient des variables indépendantes, \(\sigma_t > 0 \) pour tout \(t \).

La variable aléatoire \(\sigma_t \) est appelée volatilité de \(\varepsilon_t \). Il est possible de noter que
\[
\mathbb{E}(\varepsilon_t) = \mathbb{E}(\sigma_t \eta_t) = 0 \quad \text{et} \quad cov(\varepsilon_t, \varepsilon_{t-h}) = 0 \quad \text{pour tout} \quad h > 0 : \quad (\varepsilon_t) \quad \text{est alors un bruit blanc, au sens faible, mais pas au sens fort. Plusieurs types de modèles existent alors suivant la spécification retenue pour} \quad (\sigma_t). \quad \text{La théorie traditionnelle des séries temporelles n’est pas suffisante pour décrire les mouvements à court terme des taux de change, car on peut constater des périodes de stabilité et des périodes de troubles en regardant la volatilité et les distributions non conditionnelles} \quad \text{leptokurtiques} ; \quad \text{Mussa} \quad (1979) \quad \text{et} \quad \text{Friedman et Vandersteel} \quad (1982). \quad \text{A cet effet, nous nous proposons, de modéliser la volatilité à l’aide d’un processus} \quad ARCH \quad \text{dont nous appliquons aux données des taux de change.}

En dehors des motivations probabilistes, la classe des modèles ARCH est
parfaitement adaptée pour décrire ce type de comportement, tandis que les rendements d’actions présentaient certains degrés d’asymétrie dans leur variance conditionnelle, la nature même des taux de change qui sont par définition bilatéraux rend de telles asymétries peu probables. L’analogie entre les modèles ARCH en temps discret et les modèles de diffusion en temps continu ont été établis par Nelson (1990). Cette analogie a permis en particulier le développement des modèles à volatilité stochastique. En effet, un des apports des modèles ARCH était de mieux s’ajuster aux données (en particulier aux données de taux de change) que ne le faisant les modèles ARMA. Dans ce travail, qui s’inspire de la base du modèle de ARCH – GARCH, plus précisément nous allons analyser et étudier le comportement de la dynamique du taux de change du Dinar Algérien, en appliquant la Value-at-Risk aux comportements de taux de change du Dinar algérien (par rapport à l’Euro et au Dollar), en comparant les différents modèles sur différentes périodes.

Dans cette thèse, nous avons réussi, de faire une synthèse sur les différents modèles ARCH – GARCH. Ensuite, nous avons étudié et analyser le comportement de taux de change du Dinar algérien (par rapport à l’Euro et au Dollar).

Ainsi, dans le premier chapitre, nous rappelons certaines définitions, propriétés et certains résultats qui seront utilisés par la suite à savoir les différents types de la volatilité (Evaluation du Swaps de volatilités) et le processus d’Ornstein-Uhlenbeck...

Dans le chapitre 2, nous faisons un tours d’horizon sur les séries temporelles dont nous avons rappelé quelques notions (stationinarité et linéarité...ect), et étudie les
processus ARMA.

Dans le chapitre 3, nous faisons une synthèse sur les processus linéaires et non linéaire notamment les modèles ARCH – GARCH et leurs extensions avec quelques méthodes d’estimation.

Ces résultats ont fait l’objet d’une publication dans le journal International journal of Statistics and Economics, sous le titre "Around ARCH-GARCH models and their application to exchange rate volatility".
Chapitre 1

L’effet de la volatilité sur le risque de marché

Ce chapitre contient, certaines définitions, propriétés et certains résultats qui nous utilisons par la suite à savoir les différents types de la volatilité (Evaluation du Swaps de volatilités) et le processus d’Ornstein-Uhlenbeck.

1.1 Définition et importance de la volatilité

Définition 1.1 : Une volatilité est essentiellement une mesure de variabilité conditionnelle de prix ou de rentabilité. Il existe de nombreuses mesures de volatilité qui se distinguent les unes des autres par :

1- la date t à laquelle on évalue la volatilité.

2- l’information I_t utilisée pour le calcul est disponible à cette date.
3- l’horizon \(T \) de la prévision.

4- la variable \(Y_{t+T} \) à prévoir, qui peut être :

- un prix : \(Y_{t+T} = p_{t+T} \),
- un rendement : \(Y_{t+T} = \frac{p_{t+T} - p_t}{p_t} \) ou \(Y_{t+T} = \ln \left(\frac{p_{t+T}}{p_t} \right) \).

La volatilité correspondante est \(Var(Y_{t+T}) = \mathbb{E}(Y_{t+T}^2 | I_t) - \mathbb{E}^2(Y_{t+T} | I_t) \) où \(\mathbb{E}(Y_{t+T} | I_t) \) désigne l’espérance conditionnelle à l’information, c’est-à-dire la meilleure prévision de \(Y_{t+T} \) fondée sur cette information.

1.1.1 Les différents types de volatilité

La volatilité est l’un des paramètres principales employées pour décrire et mesurer les fluctuations des prix des actifs. Elle joue un rôle important dans l’analyse financière moderne dont la gestion des risques, l’évaluation des options et d’allocation d’actifs. Il existe différents types de volatilité : la volatilité implicite, la volatilité locale et la volatilité stochastique. Les swaps de volatilité ou de variance permettent aux investisseurs de négocier et de contrôler la volatilité d’un actif directement.

Définition 1.2 : Le swap de variance (volatilité) est un contrat à terme sur la variance annualisée dans lequel un investisseur qui paye un montant fixe \(K_{var} \) \(1DZD \) comme nominal à l’échéance, reçoit le montant variable \(\sigma^2_R \) \(1DZD \) comme nominal. \(K_{var} \) est le prix d’exercice (variable annualisée) et \(\sigma^2_R \) est la variance réalisée annualisée. La mesure de la variance réalisée qui va être adoptée est définie au début du
contrat comme suit

\[\frac{1}{T-1} \sum_{i=1}^{T} \left(\frac{S_i - S_{i-1}}{S_{i-1}} \right)^2 \]

(1.1)

où \(T \) est le nombre de jours travaillés jusqu’à l’échéance et \(S_i \) représente le prix clôturé du sous-jacent. En temps continu, l’équation (1.1) s’écrit de la façon suivante

\[\sigma_{R}^2 = \frac{1}{T} \int_{0}^{T} \sigma^2 (t) \, dt \]

(1.2)

le payo¤ à l’échéance est égale à \((\sigma_{R}^2 - K_{var}) \). Donc à l’échéance, le détenteur du swap de variance reçoit \(N \, DZD \) pour chaque point par lequel la variance réalisée \(\sigma_{R}^2 \) du sous-jacent dépasse le prix fixe \(K_{var} \)

\[(\sigma_{R}^2 - K_{var}) \, N \]

(1.3)

Notons que les swaps de volatilité peuvent avoir comme sous-jacent une multitude de produits financiers (taux d’intérêt, taux de change, des indices boursiers,... etc).

Dans un swap de variance, la variable inconnue est l’espérance de la volatilité réalisée : \(\mathbb{E}(\sigma^2) = \mathbb{E}(V) \) avec \(\sigma^2 \) la volatilité au carré, elle peut être retrouvée en utilisant les modèles stochastique standard de volatilité. Le prix de tout swap est égal à zéro à l’émission. Pour le swap de volatilité, l’espérance de la volatilité réalisée est \(\mathbb{E} \left(\sqrt{V} \right) = \mathbb{E}(\sigma) \) qui n’est pas facile à calculer à partir du processus stochastique des modèles standard. Dans ce cas, nous devons utiliser une approximation comme celle de Brockhaus-long (2000) et Javaheri (2002). Cette approximation est un développement de Taylor d’ordre deux de la fonction récine carrée appliquée à la
variable V au voisinage du point $\mathbb{E} (V_0)$, ce qui donne le résultat suivant

$$\mathbb{E} (\sqrt{V}) \simeq \sqrt{\mathbb{E} (V)} - \frac{\text{Var} (V)}{3} \frac{8 \mathbb{E} (V)^2}{2}$$

(1.4)

avec $\frac{\text{Var} (V)}{3}$ est l’ajustement convexe. Donc afin de l’évaluer, nous utilisons dans $\frac{8 \mathbb{E} (V)^2}{2}$ un premier temps, un modèle stochastique de variance dans un contexte temporel continu donné par :

$$\begin{align*}
\frac{dS_t}{S_t} &= \mu dt + \sigma_t dW_t \\
\sigma_t &= f (Y_t) \\
dY_t &= \alpha (m - Y_t) dt + \beta dZ_t
\end{align*}$$

(I)

Dans (I) :

- S représente le sous-jacent, S_t son cours à la date t.
- μ est le rendement instantané, supposé constant,
- σ_t est la valeur à la date t de la volatilité du cours du sous-jacent.
- W_t est un mouvement brownien standard, la volatilité σ_t est elle-même un processus stochastique, fonction déterministe du processus Y, la fonction f est définie sur \mathbb{R} et à valeurs strictement positives,
- Y est un processus d’Ornstein-Uhlenbeck, de moyenne à long terme m et de variance à long terme $\frac{\beta^2}{2\alpha}$.
- Z est un mouvement brownien standard éventuellement corrélé à W, nous supposons que cette corrélation est constante et nous la notons ρ, avec $\rho \in]-1, 1[$, de
sorte que $d\langle W, Z \rangle = \rho dt$. Si nous définissons \hat{Z}_t par l’égalité $\hat{Z}_t = \rho W_t + \sqrt{1-\rho^2} Z_t$, alors W et \hat{Z} sont deux browniens indépendants. Nous nous plaçons sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ muni de la filtration $\mathcal{F}_t = \sigma(W_s, \hat{Z}_s, 0 \leq s \leq t)$. Nous nous limiterons aux diffusions markoviennes

$$dY_t = \mu_Y(t, y)dt + \sigma_Y(t, Y_t)d\hat{Z}_t \quad (1.5)$$

et parmi elles à celles qui possèdent la propriété de retour à la moyenne, i.e. celles pour lesquelles

$$\mu_Y(t, y) = \alpha(m - y) \quad (1.6)$$

Le paramètre α s’appelle le taux de retour à la moyenne et le paramètre m la moyenne à long terme. D’une part que la volatilité possède la propriété de retour à la moyenne, qu’on modélise par la force de rappel déterministe $\alpha(m - Y_t)dt$. D’autre part que ce retour à la moyenne est rapide. On suppose donc que l’intensité α de la force de rappel est grande, de manière équivalente que $\alpha >> (T - t)^{-1}$. La solution Y_t de (1.5) est exprimée explicitement par :

$$Y_t = m + (y - m)e^{-\alpha t} + \beta \int_0^t e^{-\alpha(t-s)}d\hat{Z}_s \quad (1.7)$$

qui prouve que Y_t suit la loi gaussienne ([13]) de moyenne :

$$\mathbb{E}(Y_t) = m + (y - m)e^{-\alpha t} \quad (1.8)$$

et de variance :

$$\text{Var}(Y_t) = \nu^2(1 - e^{-2\alpha t}) \quad (1.9)$$
où \(v^2 = \frac{\beta^2}{2\alpha}; Y_t \) converge en loi lorsque \(t \to \infty \) vers \(\pi = N(m, v^2) \).

Propriété de décorréléation

L’inverse de l’intensité \(\alpha \) de la force de rappel s’interprète aussi comme le temps caractéristique de décorrélélation du processus \(Y_t \) puisque, si \(s \leq t \),

\[
\text{Cov}(Y_s, Y_t) = \text{Cov}\left(\beta \int_0^s e^{-\alpha(t-u)} d\hat{Z}_u, \beta \int_0^t e^{-\alpha(t-v)} d\hat{Z}_v \right) = v^2(e^{-\alpha(t-s)} - e^{-\alpha(t+s)}).
\]

Par conséquent, si \(s \) et \(t \) tendent vers \(+\infty \) de sorte que \(\Delta = |t - s| \) reste constante la covariance limite vaut \(v^2 e^{-\alpha\Delta} \). Notons que c’est exactement la \(\text{Cov}(Y_s, Y_t) \) sous la loi \(\pi \).

Ergodicité : Elle consiste à admettre que la loi des grands nombres est vérifiée même sur un ensemble de réalisations non indépendantes.

Théorème ergodique : Pour toute fonction \(g \) intégrable pour la mesure \(\pi \),

\[
\lim_{\alpha \to +\infty} \frac{1}{T-t} \int_t^T g(Y_s)ds = \langle g \rangle
\]

où, par définition \(\langle g \rangle \) est l’espérance de la fonction \(g \) pour la mesure \(\pi \), i.e.

\[
\langle g \rangle = \int_{-\infty}^{+\infty} g(u)\Phi(u)du
\]

où \(\Phi \) est la densité pour la loi \(\pi \). En pratique, l’approximation

\[
\frac{1}{T-t} \int_t^T g(Y_s)ds \simeq \langle g \rangle
\]

ne sera valable que si \(\alpha >> \frac{1}{T-t} \).
Le problème posé par la volatilité dans les modèles financiers (Ornstein-Uhlenbeck, Black-Scholes) ainsi que dans d’autres formules à volatilité stochastique non stationnaire vient du fait que les réalisations du processus de volatilité sont inobservables et les formules de pricing d’options dépendent généralement des paramètres gouvernant l’évolution de la volatilité. Cette difficulté nécessite donc la prévision de la volatilité implicite. A cet effet on suppose que les marchés financiers ne sont pas efficaces et donc à essayer d’utiliser les données historiques pour prédire la volatilité future. La méthodologie généralement adoptée dans cette situation consiste en la modélisation \textit{ARCH} (\textit{Autoregressive Conditional Heteroskedasticity}) proposée par Engle (1982), que l’on verra plus explicitement par la suite.
Chapitre 2

Généralités sur les séries temporelles

Ce chapitre est consacré à l’étude des séries temporelles dont nous avons rappelé quelques notions (stationnarité et linéarité...), et étudie les processus ARMA.

Définitions

Définition 2.1 : Une série temporelle ou série chronologique est une suite de nombres réels \((X_t), t \in \mathbb{Z}\) tel que \(\forall t \in \mathbb{Z}\), \(X_t\) est une variable aléatoire. L’ensemble des valeurs \(X_t\) quand \(t\) varie est appelé processus aléatoire : \(\{X_t, t \in \mathbb{Z}\}\).

Pour une série temporelle \(X_t\), il convient à priori d’étudier ses caractéristiques stochastiques telles que son espérance et sa variance pour s’assurer que ces deux variables restent stables au cours du temps. C’est ainsi qu’on défini deux formes de stationnarités :

2.1 Notions de stationnarité et notions de linéarité

Considérons une suite de variables aléatoires \((X_t)_{t=0,1,...}\). On dit que cette suite est stationnaire lorsque la moyenne de chacune des variables de la suite est identiques :

\[E(X_t) = E(X_0), \forall t = 0, 1, 2, ... \]

De même, cette suite est stationnaire en variance lorsque :

\[Var(X_t) = Var(X_0), \forall t = 0, 1, 2, ... \]

On peut également définir un concept de stationnarité à partir des lois de probabilités jointe des variables aléatoires de la suite \((X_t)\).

Définition 2.2 : La suite \((X_t)_{t=0,1,2,...}\) est stationnaire au sens stricte si :

\[L(X_{t+h_1}, X_{t+h_2}, ..., X_{t+h_k}) = L(X_{h_1}, X_{h_2}, ..., X_{h_k}), \forall t, \forall (h_1, h_2, ..., h_k) \]

on a l’égalité entre les lois jointes.

Définition 2.3 : Un processus \((X_t, t \in \mathbb{Z})\) est dit stationnaire au second ordre, ou stationnaire au sens faible si les trois conditions suivantes sont satisfaites :

(i)\(\forall t \in \mathbb{Z}, E(X_t^2) < \infty\)

(ii)\(\forall t \in \mathbb{Z}, E(X_t) = m, \) indépendant de \(t\)

(iii)\(\forall (t, h) \in \mathbb{Z}^2, Cov(X_t, X_{t+h}) = E[(X_{t+h} - m)(X_t - m)] = \gamma(h), \) ne dépend que de \(h\).

Définition 2.4 : Un processus stationnaire au second ordre est dit ergodique si :

\[\lim_{T \to \infty} \frac{1}{T} \sum_{h=1}^{T} \gamma(h) = 0 \]
Condition nécessaire de l’ergodicité

Une condition nécessaire, mais non suffisante pour qu’un processus stationnaire au second ordre soit ergodique est qu’il satisfasse la propriété suivante :

$$\lim_{h \to \infty} \gamma(h) = 0$$

l’ergodicité est une forme faible de l’indépendance asymptotique.

Proposition 2.1 : Si $\{X_t\}_{t \in \mathbb{Z}}$ est un processus stationnaire et si $\{a_i\}_{i \in \mathbb{Z}}$ est une suite de nombres réels absolument sommables tel que $\left(\sum_{i=-\infty}^{\infty} |a_i| < \infty\right)$, alors :

$$Y_t = \sum_{i=-\infty}^{\infty} a_i X_{t-i}, t \in \mathbb{Z} \quad (2.1)$$

est un processus stationnaire.

Convention : Par abus de langage, nous appellerons par la suite série stationnaire une série temporelle stationnaire au sens faible.

Un premier exemple sera donné par un processus bruit blanc, qui constitue en fait l’exemple le plus simple pour un processus stationnaire.

Définition 2.5 : La suite de variables aléatoires $\{\varepsilon_t\}_{t=0,1,...}$ constitue un bruit blanc faible (respectivement fort) si les trois propriétés suivantes sont vérifiées :

\[
\begin{align*}
i) & \quad \mathbb{E}(\varepsilon_t) = 0 \ \forall t \in \mathbb{Z}; \\
ii) & \quad \mathbb{E}(\varepsilon_t^2) = \sigma^2; \\
iii) & \quad \text{Cov}(\varepsilon_t, \varepsilon_s) = 0 \text{ si } t \neq s \text{ (respectivement les } \varepsilon_t \text{ sont } i.i.d).
\end{align*}
\]
2.1.1 Illustration Graphique

La représentation graphique des observations est une étape indispensable avant d’entreprendre une analyse plus technique de la chronique. Cette représentation permet, à priori d’avoir une idée sur la stationnarité ou non d’une série, d’apprécier l’évolution lente du phénomène (tendance), de dégager les périodes de stabilités. C’est ainsi qu’une série qui semble être non stationnaire en moyenne, est caractérisée par une moyenne qui augmente au cours du temps, et celle qui semble être stationnaire en moyenne pour une moyenne représentée par une droite parallèle à l’axe des abscisses.

Pour la non stationnarité en variance, un phénomène d’entonnoir peut témoigner une variance qui a tendance à augmenter au cours du temps. Dans le souci de réduire cette variabilité, c’est à dire baisser la variance, une transformation de Box-Cox par changement de variable est souvent nécessaire : En appelant \((X_t)\) la série à étudier, on fait le changement de variable :

\[
Y_t = \begin{cases}
\frac{X_t^\lambda}{\lambda} & \text{si } \lambda \neq 0 \\
\ln(X_t) & \text{si } \lambda = 0.
\end{cases}
\]

où \(\lambda\) est estimée en même temps que les autres paramètres du modèle. Mais par la suite, nous avons utilisé la deuxième expression pour baisser la variance.
2.2 Caractéristiques d’une série temporelle

2.2.1 Moyenne, Variance, Fonction d’autocovariance, et d’autocorrélation

Soit \((X_t)\) un processus stationnaire, \(t = 1, ..., T\).

Définition 2.6 : La moyenne est donnée par :
\[
\mathbb{E}(X_t) = \frac{\sum_{t=1}^{T} X_t}{T}
\]
qui est la mesure de la tendance centrale.

Définition 2.7 : La variance est donnée par
\[
\text{Var}(X_t) = \frac{\sum_{t=1}^{T} [X_t - \mathbb{E}(X_t)]^2}{T}
\]
est la mesure de la dispersion.

Définition 2.8 : La fonction d’autocovariance est donnée par :
\[
\gamma_h = \gamma(h) = \text{Cov}(X_t, X_{t+h}),
\]
fournit des informations sur la variabilité de la série et sur les liaisons temporelles qui existent entre les différentes composantes de la série \((X_t)\).

Définition 2.9 : La fonction d’autocorrélation est donnée par :
\[
\rho(h) = \frac{\gamma_h}{\gamma(0)}
\]
 où \(\gamma(0) = \text{Var}(X_t) = \sigma_X^2\). Son graphique étant appelé corrélogramme, elle permet de mesurer les liaisons temporelles entre les différentes composantes de la série \((X_t)\).
2.3 Processus linéaires et processus linéaires généraux

Un processus linéaire est un processus stochastique X_t formé par une combinaison linéaire (non nécessairement finie) de bruit blanc forts. On définit également la classe des processus généraux, qui sont constitués de combinaisons linéaire de bruits blancs faibles. Introduisons formellement ces deux types importants de processus.

Définition 2.10 : $(X_t)_{t \in \mathbb{Z}}$ est un processus linéaire (resp : un processus linéaire général) de moyenne μ s’il peut être écrit sous la forme :

$$X_t = \mu + \sum_{k=-\infty}^{\infty} b_k \varepsilon_{t-k} \tag{2.2}$$

où $\{\varepsilon_t\}_{t \in \mathbb{Z}}$ est un bruit blanc fort (respectivement faible), avec variance σ_ε^2, et où la suite des coefficients b_k est supposée telle que

$$\sum_{k=-\infty}^{\infty} b_k^2 < \infty. \tag{2.3}$$

Théorème de Wold : Soit un processus stationnaire Y_t. Il est toujours possible de trouver une composante régulière d_t et une composante stochastique u_t telle que :

$$Y_t = d_t + u_t \tag{2.4}$$

$$u_t = \sum_{i=0}^{\infty} b_i \varepsilon_{t-i} \tag{2.5}$$

où ε_t un bruit blanc.
Ce théorème est à la base de la modélisation des séries temporelles stationnaires. La composante stochastique est exprimée sous la forme de ce que l’on appelle un processus moyenne mobile infinie. Un des buts de la modélisation consiste à approximer cette moyenne mobile infinie par un processus ayant un nombre fini de paramètres.

Preuve : En utilisant la proposition (2.1).

2.4 Les processus ARMA

Introduit par Box et Jenkins (1970), ce sont les processus les plus utilisés pour l’identification et l’estimation des modèles des séries temporelles. Ici, le but étant de modéliser une série temporelle en fonction de ses valeurs passées, mais aussi en fonction des valeurs présentes et passées d’un bruit.

Opérateur retard : On note L, l’opérateur qui fait passer de X_t à X_{t-p} par l’équation : $L^p X_t = X_{t-p}$ où $p \in \mathbb{N}$; et si $p \in \mathbb{Z}^-$ on parle d’opérateur avance.

Opérateur différence : On note Δ l’opérateur différence défini par :

$$\Delta X_t = (1 - L) X_t = X_t - X_{t-1}$$

Les opérations usuelles telles que l’addition, multiplication, division et inverse sont possibles sur l’ensemble des polynômes de retard avec les mêmes propriétés que sur les séries entières.
2.4.1 Inversion des polynômes

Pour parler de l’inverse d’un polynôme de retard, il est commode dans un premier temps de considérer un polynôme particulier qui est le polynôme de retard de degré un défini par :

\[A(L) = 1 - \alpha L \]

Pour \(|\alpha| < 1\) ce polynôme possède un inverse, c’est à dire que l’on peut définir :

\[A^{-1}(L) = \frac{1}{1 - \alpha L} = \sum_{i=0}^{\infty} \alpha_i L^i \]

en utilisant l’expression de la somme d’une progression géométrique. Considérons maintenant le polynôme \(A(L)\) de degré \(p\) que l’on note :

\[A(L) = 1 - \alpha_1 L - \alpha_2 L^2 - \ldots - \alpha_p L^p \]

On peut définir l’équation caractéristique associée à ce polynôme comme l’expression en z

\[A(z) = 1 - \alpha_1 z - \alpha_2 z^2 - \ldots - \alpha_p z^p = 0 \]

Théorème 2.1 : Le polynôme \(A(L)\) est inversible si les \(p\) racines \(l_j\) de son équation caractéristique associée sont toutes extérieures au cercle unité. Son inverse est donné par :

\[A^{-1}(L) = \prod_{j=1}^{p} \left[\sum_{k=0}^{\infty} \left(\frac{1}{l_j} \right)^k L^k \right] \]
Preuve : Factoriser le polynôme \(A(z) \) en utilisant les \(p \) racines de l’équation caractéristique :

\[
A(z) = \prod_{j=1}^{p} (z - l_j) \alpha_r
\]

On peut remarquer que le produit des racines est égal à \(\frac{1}{\alpha_r} \) car :

\[
A(0) = 1 = (-l_j) \alpha_r
\]

D’autre part on a la factorisation :

\[
(z - l_j) = -l_j \left(1 - \frac{z}{l_j} \right)
\]

ce qui permet d’exprimer le polynôme en \(z \) sous la forme :

\[
A(z) = \prod_{j=1}^{p} \left(1 - \frac{z}{l_j} \right)
\]

On peut alors calculer l’inverse de \(A(z) \) comme suit :

\[
A^{-1}(z) = \prod_{j=1}^{p} \left(1 - \frac{z}{l_j} \right)^{-1}
\]

puisque :

\[
\left(1 - \frac{z}{l_j} \right)^{-1} = \sum_{k=0}^{\infty} \left(\frac{1}{l_j} \right)^k L^k
\]

Cet inverse existe si les racines \(l_j \) de l’équation caractéristique sont toutes en dehors du cercle unité.

Processus ARMA

Nous pouvons à présent introduire une classe de processus linéaires qui est très importante dans la modélisation des séries chronologiques : Les processus ARMA.

2.4.2 Stationnarité et inversibilité d’un processus autorégressif

Supposons que le processus \((X_t)\) soit stationnaire. Pour toute date \(t \geq 0\), on peut écrire successivement :

\[
\begin{align*}
X_t &= c + \varepsilon_t + a_1 X_{t-1} \\
 a_1 X_{t-1} &= a_1 c + a_1 \varepsilon_{t-1} + a_1^2 X_{t-2} \\
 a_1^2 X_{t-2} &= a_1^2 c + a_1^2 \varepsilon_{t-2} + a_1^3 X_{t-3} \\
 &\vdots
\end{align*}
\]

(2.6)

puis en sommant les équations membre à membre, on peut conclure que :

\[
X_t = c \sum_{i=0}^{h} a_1^i + \varepsilon_t + a_1 \varepsilon_{t-1} + a_1^2 \varepsilon_{t-2} + \ldots + a_1^h \varepsilon_{t-h} + a_1^{h+1} X_{t-h-1}
\]

(2.7)

supposons que \(|a_1| < 1\). Dans ce cas, lorsque \(h\) augmente indéfiniment \(a_1^{h+1}\) tend vers zéro. Par la suite on a la convergence au sense de l’erreur quadratique moyenne :

\[
\mathbb{E} \left\{ \left(a_1^{h+1} X_{t-h-1} \right)^2 \right\} \to 0 \text{ quand } h \to \infty
\]

(2.8)

On vérifie en effet que les limites :

\[
\lim_{h \to \infty} \mathbb{E} \left(a_1^{h+1} X_{t-h-1} \right) \text{ et } \lim_{h \to \infty} \text{Var} \left(a_1^{h+1} X_{t-h-1} \right)
\]

(2.9)

respectivement égale à \(\lim_{h \to \infty} (a_1^{h+1} m)\) et \(\lim_{h \to \infty} (a_1^{h+1} \sigma^2)\) sont égales à zéro. Par suite, on est assuré que :

\[
\forall t \geq 0, \ X_t = \lim_{h \to \infty} \left(c \sum_{i=0}^{h} a_1^i + \varepsilon_t + a_1 \varepsilon_{t-1} + a_1^2 \varepsilon_{t-2} + \ldots + a_1^h \varepsilon_{t-h} \right)
\]

(2.10)
si cette limite existe, ce que l’on note :

$$
\forall t \geq 0, \quad X_t = m + \sum_{h=0}^{\infty} a_t^h \varepsilon_{t-h}
$$

(2.11)

où

$$
m = c \sum_{i=0}^{h} a_i^1 = \frac{1}{1 - a_1} c = a (1)^{-1} c
$$

(2.12)

On conclut donc que le processus \((X_t)\) est stationnaire lorsque \(|a_1| < 1\).

Définition 2.11 : Un processus \((X_t)_{t \in \mathbb{Z}}\) est appelé ARMA \((p, q)\), \(p \geq 0, q \geq 0\) s’il est stationnaire et s’il vérifié : \(\Phi (L) X_t = \Theta (L) \varepsilon_t\) où, \(\Phi (L) = 1 - \sum_{k=1}^{p} a_k L^k\),

\[\Theta (L) = \sum_{j=1}^{q} \theta_j L^j\] et \(\varepsilon \rightarrow \text{bruit blanc} \ BB (0, \sigma^2)\) où le processus \((\varepsilon_t)\) est appelé processus des innovations, avec \(L\) l’opérateur retard. Ce processus est une extension naturelle des processus AR et MA dans le sens où il incorpore simultanément des composantes AR et MA :

- Si le polynôme \(\Phi\) a toutes ses racines à l’extérieur du disque unité, il est stationnaire.
- Si le polynôme \(\Theta\) a toutes ses racines à l’extérieur du disque unité, il est inversible.
- Si \(\Phi\) et \(\Theta\) ont leurs racines à l’extérieur du disque unité, on peut écrire :

Soit sous la forme

$$
MA (\infty) : X_t = \frac{\Theta (L)}{\Phi (L)} \varepsilon_t = \sum_{i=0}^{\infty} \alpha_i \varepsilon_{t-i}; \text{ avec } \alpha_0 = 1 \text{ et } \sum_{i=0}^{\infty} |\alpha_i| < \infty.
$$

(2.13)

$$
AR (\infty) : \varepsilon_t = \frac{\Phi (L)}{\Theta (L)} X_t = \sum_{i=0}^{\infty} \beta_i X_{t-i}; \text{ avec } \beta_0 = 1 \text{ et } \sum_{i=0}^{\infty} |\beta_i| < \infty.
$$

(2.14)
Sa fonction d’autocorrélation est donnée par : \(\rho(h) = \sum_{i=1}^{p} \phi_i \rho(h - i), \forall h > q \). La signification de cette classe de processus pour la modélisation se déduit du résultat suivant : Pour une suite d’autocovariance \(\{\gamma(h)\} \) donnée et pour chaque nombre entier \(K > 0 \), il existe un processus \(ARMA(X_t) \) tel que ses premières \(K \) autocovariances \(\gamma(h) \) coïncident avec \(\rho(h) : \gamma(h) = \rho(h) \) pour \(h = 0, 1, \ldots, K \).

Proposition 2.2 [Brockwell et Davis (1991)] : Si \((X_t) \) est un processus stationnaire au second ordre, centré, tel que

\[
\gamma(h) - \sum_{i=1}^{p} a_i \gamma(h - i) = 0 \text{ si } |h| > q
\]

alors \((X_t) \) est un processus \(ARMA(p, q) \).

2.4.3 Fonction d’autocorrélation partielle (PACF)

Pour déterminer l’ordre \(p \) d’un processus autorégessif, on recourt à la fonction d’autocorrélation partielle. Dans un processus \(AR(2) \), \(\theta_2 \) évalue l’autocorrélation partielle notée par \(\theta_{22} \) qui peut être estimée par les MCO. Si l’on estime un processus \(AR(3) \) alors que le vrai processus est un \(AR(2) \), on devrait observer que \(\theta_3 \) n’est pas significatif. Pour un modèle \(AR(p) \), l’autocorrélation partielle d’ordre \(p \), notée par \(\theta_{pp} \), est estimée par \(\theta_p \).

Plus précisément, l’autocorrélation partielle \(\theta_{pp} \) mesure l’association linéaire entre \(y_t \) et \(y_{t-p} \) compensée pour l’effet des autres variables, soit \(y_{t-1}, y_{t-2} \) jusqu’à \(y_{t-p-1} \). La fonction d’autocorrélation partielle est la suite \(\{\theta_{11}, \theta_{22}, \ldots, \theta_{pp}\} \).
L’ordre p d’un modèle AR\(_p\) sera choisi de telle sorte que \(\theta_{kk} \neq 0\) pour \(k = p\) et \(\theta_{kk} = 0\) pour \(k > p\). Donc, si \(\theta_{kk}\) est significativement différent de 0 pour \(p = k\) et égal à 0 pour \(k > p\), on peut alors déterminer l’ordre par le test suivant :

\[
\begin{align*}
H_0 & : \theta_{kk} = 0 \text{ pour } k > p \\
H_1 & : \theta_{kk} \neq 0 \text{ pour } k = p
\end{align*}
\]

sous l’hypothèse nulle, on sait que : \(\hat{\theta}_{kk}\) est asymptotiquement normalement distribué avec moyenne 0 et variance égale à : \(\text{Var}(\hat{\theta}_{kk}) = \frac{1}{T}\). On peut alors construire la statistique \(t\) asymptotique suivante :

\[
t = \frac{\hat{\theta}_{kk}}{\sqrt{T}} = \sqrt{T}\theta_{kk} \rightarrow N(0, 1) \quad (2.16)
\]

le test bilatéral se formule comme à l’accoutumée. On rejette \(H_0\) pour \(\alpha = 5\%\) si \(t > 2\). D’où l’intervalle de confiance : \(\hat{\theta}_{kk} \pm \frac{2}{\sqrt{T}}\).

2.4.4 Reconnaissance d’un processus AR(p)

La reconnaissance statistique de l’ordre d’un AR\(_p\) est fondée sur la proposition suivante :

Proposition 2.3 : On peut établir la propriété suivante :

Etant donné un processus AR\(_p\), les coefficients de corrélation partielle \(r(h)\) définis par :

\[
r(h) = \frac{\text{Cov}(X_t - X_t^*, X_{t-h} - X_{t-h}^*)}{\text{Var}(X_t - X_t^*)} \quad (2.17)
\]
où X_t^* (respectivement X_{t-h}^*) désigne la meilleure prévision linéaire de X_t, fondée sur la connaissance de $X_{t-1}, ..., X_{t-h+1}$:

$$
\mathbb{E}(X_t | X_{t-1}, ..., X_{t-h+1})
$$

(respectivement de X_{t-h}, sur $X_{t-1}, ..., X_{t-h+1}$) sont nuls pour $h \geq p + 1$

2.4.5 Densité spectrale

L’analyse spectrale est une des composantes fondamentales de l’analyse des séries chronologiques. A cet effet on décrit la notion de densité spectrale comme suit :

Définition 2.12 : La densité spectrale ou spectre est donnée par :

$$
f(\omega) = \frac{1}{2\pi} \sum_{h=-\infty}^{\infty} \gamma(h) \exp(-i\omega h), \forall h \in \mathbb{R} \tag{2.18}
$$

où $\gamma(h)$ est la fonction d’autocovariance. C’est une fonction paire, positive, continue, et périodique de période 2π, reliée à la fonction d’autocovariance par :

$$
\gamma(h) = \int_{-\pi}^{\pi} f(\omega) \exp(i\omega h) d\omega \tag{2.19}
$$

Théorème 2.2 : Soient deux variables aléatoires $\alpha(.)$ et $\beta(.)$ de moyenne nulle et non autocorrélées. Tout processus stationnaire y_t peut se décomposer en une somme infinie de termes déterministes $\cos(\omega t)$ et $\sin(\omega t)$ pondérés par ces deux variables aléatoires selon

$$
y_t = \mu + \int_{0}^{\pi} [\alpha(\omega) \cos(\omega t) + \beta(\omega) \sin(\omega t)] d\omega \tag{2.20}
$$

Cette approche est particulièrement utile pour étudier des cycles.
2.4.6 Test de racine unitaire ou test de stationnarité

C’est ici qu’on décide en général de la différentiation ou non de la série. Les tests principaux les plus utilisés dans la littérature sont les tests de Dicky-Fuller et de Phillips-Perron pour lesquelles l’hypothèse nulle est la non stationnarité de la série étudiée. On effectue la régression suivante : \(Y_t = \rho Y_{t-1} + \varepsilon_t \) et le processus est :

- stationnaire si \(|\rho| < 1\)
- explosif si \(|\rho| > 1\)
- intégré si \(|\rho| = 1\).

2.4.7 Test de Dickey et Fuller augmenté

C’est la correction du test de Dickey et Fuller, qui prend en compte l’autocorrélation possible de la série différenciée par l’utilisation des valeurs retardées,

\[H_0 : X_t \text{ non stationnaire contre } H_1 : X_t \text{ stationnaire} \]

Dickey-Fuller considèrent trois modèles de base pour la série \(X_t, t = 1, \ldots, T \).

- Modèle [1] : Sans constante ni tendance déterministe :

\[(1 - \rho B) X_t = \varepsilon_t \]

- Modèle [2] : Avec constante sans tendance déterministe :

\[(1 - \rho B) (X_t - \mu) = \varepsilon_t \]

- Modèle [3] : Avec constante et tendance déterministe :

\[(1 - \rho B) (X_t - \alpha - \mu) = \varepsilon_t \]
et dans chacun des trois modèles, on suppose que $\varepsilon_t \rightarrow BB(0, \sigma^2_\varepsilon)$. En pratique, on estime les modèles sous la forme suivante :

- Modèle $[1']$: Sans constante ni tendance déterministe :

\[(1 - B) X_t = \phi X_{t-1} + \varepsilon_t\]

- Modèle $[2']$: Avec constante sans tendance déterministe :

\[(1 - B) X_t = \phi X_{t-1} + \gamma + \varepsilon_t\]

- Modèle $[3']$: Avec constante et tendance déterministe :

\[(1 - B) X_t = \phi X_{t-1} + \lambda + \delta t + \varepsilon_t\]

avec $\phi = \rho - 1$ et $\varepsilon_t \rightarrow BB(0, \sigma^2_\varepsilon)$. On test alors

$H_0 : \phi = 0$ (non stationnarité) contre $H_1 : \phi < 0$ (stationnarité)

la règle de décision est : Si la valeur calculée de la t - statistique associée à ϕ est inférieure à la valeur critique, on rejette l’hypothèse nulle de non stationnarité, si non on accepte l’hypothèse nulle de non stationnarité. Ce test est relativement limité car il apparaît quasi-systématiquement une autocorrélation des résidus. Et pour résoudre ce problème d’autocorrélation, deux types de corrections ont été proposées : une correction paramétrique (Test de Dickey-Fuller augmenté) et une correction non paramétrique (Test de Phillips-Perron).
2.4.8 Test d’égalité de deux variances

Ce test est très simple à réaliser. Il suffit de suivre les étapes suivantes

Étape 1

Poser les hypothèses de départ (toujours les mêmes)

\(H_0 : \) (Les variances sont égales)

\(H_1 : \) (Les variances ne sont pas égales : une est plus grande que l’autre)

NB : La plus grande variance d’échantillon sera notée \(S^2_1 \) et la plus petite \(S^2_2 \)

Étape 2

Déterminer le risque d’erreur \(\alpha \), généralement \(\alpha = 5\% \) ou \(1\% \)

Étape 3

Déterminer le critère de rejet d’un test d’égalité des variances.

Le rapport de deux variances suit une loi de Fisher. C’est pourquoi nous établirons la règle de décision en comparant le rapport des variances trouvées dans les échantillons à une valeur critique trouvée dans la table de Fisher avec \(\alpha \), \(\nu_1 = n_1 - 1 \) où \(n_1 \) est la taille de l’échantillon ayant la plus grande variance et \(\nu_2 = n_2 - 1 \), où \(n_2 \) est la taille de l’échantillon ayant la plus petite variance.

Calculez :

\[
F_E = \frac{S^2_1}{S^2_2} = \frac{\text{la plus grande variance}}{\text{la plus petite variance}}
\]
Étape 4

Règle de décision

Il faut maintenant trouver dans la table de Fisher la valeur critique $F_{1,2}$ où α est le risque d'erreur, ν_1 est le degré de liberté de l’échantillon ayant la plus grande variance et ν_2 est le degré de liberté de l’échantillon ayant la plus petite variance. La règle de décision s’énoncera alors ainsi : Si $F_E > F_{\alpha,\nu_1,\nu_2}$ alors on rejette H_0. Autrement on acceptera H_1.

Étape 5

Conclusion

En mentionnant le risque d’erreur dire simplement si les variances sont égales ou pas.

Définition 2.13 : Un modèle est homoscédastique si $Var(X_t|X_{t-1})$ est constante. Si cette variance conditionnelle n’est pas constante, le modèle est appelé hétéroscédastique.

Noté bien : L’espérance conditionnelle d’un $ARMA(p,q)$ dépend du passé (est non constante), c’est une variable aléatoire. Par contre, sa variance conditionnelle est toujours σ^2, indépendante du passé.
Chapitre 3

Modèles ARCH/GARCH

3.1 Introduction

Face aux lacunes des représentations ARMA(p,q) pour les problèmes monétaires et financiers, Engle (1982) propose une nouvelle classe de modèles autorégressifs conditionnellement hétéroscédastiques (ARCH) apte à capter le comportement de la volatilité dans le temps. Engle (1982) a donc proposé ces processus pour palier aux insuffisances de la classe des représentations ARMA, notamment en ce qui concerne les séries financières qui présentent une volatilité (ou variabilité instantanée mesurée par la variance conditionnelle) fonction du temps et par des ajustements asymétriques. Ainsi, les modèles ARCH sont basés sur une paramétrisation endogène de la variance conditionnelle. La famille des modèles ARCH peut se décomposer en deux sous-ensembles : les modèles ARCH linéaires et les modèles ARCH non linéaires.
Les premiers reposent sur une spécification quadratique de la variance conditionnelle des perturbations : modèles $ARCH(p, q)$, $GARCH(p, q)$ Bollerslev (1986), et $IGARCH(p, q)$. Les modèles $ARCH$ non linéaires sont caractérisés par des spécifications asymétriques des perturbations, ce sont les modèles $EGARCH(p, q)$, $TARCH(q)$ et $TGARCH(p, q)$ ce qui on va l’abordés.

3.2 Modèles $ARCH(p)$ linéaire

Comme nous venons de le voir, des exemples pratiques de séries économiques ont imposé d’étudier des modèles pouvant expliquer, par exemple une variation de la variance au cours du temps (plus largement des moments d’ordres supérieurs ou égaux à deux). Dans la théorie des processus $ARMA$, la variance d’une série est (entre autre) déterminée par la variance du processus des innovations. Pour simplifier, considérons le bruit blanc gaussien :

$$X_t = \varepsilon_t$$

où $\varepsilon \rightarrow N(0, \sigma^2)$.

Nous souhaitons à présent tenir compte d’un éventuel changement au cours du temps de la variance, provenant de l’évolution passée du processus (variation instantanée). C’est ce que permettent les modèles $ARCH$, dont l’idée est de déterminer la distribution de ε_t conditionnellement à toutes les valeurs passées X_{t-1}, X_{t-2}, \ldots. Plus
précisément, un processus $ARCH$ est défini comme suit : supposons que

$$X_t = \varepsilon_t$$

et explicitons la distribution de ε_t sachant les valeurs prises par le processus dans le passé, $X_{t-1}, X_{t-2}, ...$:

$$\varepsilon_{t|X_{t-1},X_{t-2},...} \rightarrow N \left(0, \sigma_t^2\right)$$

où la variance conditionnelle σ_t^2 dépend du temps et est égale à :

$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + ... + \alpha_p X_{t-p}^2$$

(3.1)

pour certains paramètres : $\alpha_0 > 0$ et $\alpha_i \geq 0, i = 1, ..., p$. Les modèles pour X_t dépend de p paramètres et est appelé $ARCH(p)$.

Définition 3.1 : Commençons par présenter le modèle $ARCH(1)$. Un processus X_t satisfait une représentation $ARCH(1)$ si :

$$X_t = \varepsilon_t \sqrt{h_t} \text{avec } h_t = \alpha_0 + \alpha_1 X_{t-1}^2$$

où ε_t désigne un bruit blanc faible tel que :

$$\mathbb{E}(\varepsilon_t) = 0 \text{ et } \mathbb{E}(\varepsilon_t^2) = \sigma^2$$

De façon générale, ε_t désigne un ensemble de variables aléatoires indépendantes, identiquement distribuées, centrées réduites. La composante h_t désigne une variable qui, conditionnellement à l’ensemble d’information des valeurs passées de X_t i.e. à
$X_{t-1} = \{X_{t-1}, X_{t-2}, ..., X_{t-j}, \ldots \}$ est déterministe et positive. Dans ce système, le processus X_t est caractérisé par des autocorrélations nulles et une variance conditionnelle variable dans le temps.

Propriété 3.1 : La variance conditionnelle du processus $X_t \rightarrow ARCH(1)$ défini par l’équation :

$$X_t = \varepsilon_t \sqrt{h_t} \quad (3.2)$$

est non constante dans le temps et vérifie :

$$Var(X_t|X_{t-h}) = \alpha_0 \left(\frac{1 - \alpha_1^h}{1 - \alpha_1} \right) + \alpha_1^h X_{t-h}^2, \; \forall t \quad (3.3)$$

C’est la propriété centrale des processus $ARCH$: Puisque la variance conditionnelle d’un processus $ARCH$ varie dans le temps, ces processus sont appelés conditionnellement hétéroscédastiques (d’où leur nom), néanmoins inconditionnellement ces processus sont homoscédastiques. En ce qui concerne la fonction d’autocovariance conditionnelle, on a pour tout $h \geq 1$

$$Cov(X_t, X_{t+h}|X_{t-h}) = 0, \; \forall k \geq 1 \quad (3.4)$$

il ya donc non corrélation en tout instant entre les valeurs futures d’un processus $ARCH$. En utilisant cette dernière propriété, on peut montrer aussi que le processus est inconditionnellement non corrélé :

$$Cov(X_t, X_{t+k}) = 0 \quad (3.5)$$

l’absence de corrélation entre les valeurs futures d’un processus $ARCH$ est une caractéristique très importante de cette famille de modèle, qui les rend utiles pour modéliser
certaines séries financières.

Remarque 3.1 : Lorsque h tend vers l’infini, ces variances conditionnelles convergent vers la variance non conditionnelle, et l’on retrouve alors la formule :

$$\text{Var}(X_t) = \lim_{h \to \infty} V(X_t|X_{t-h}) = \lim_{h \to \infty} \alpha_0(1 - \alpha_1^h) + \alpha_1^h X_{t-h}^2 = \frac{\alpha_0}{1 - \alpha_1}$$

(3.6)

on peut en outre établir les moments conditionnels et non conditionnels d’ordre 4 du processus X_t.

Propriété 3.2 : L’analyse du quatrième moment standardisé (le kurtosis, ou coefficient d’aplatissement de Fisher) donne une indication sur l’aplatissement de la distribution de X_t. Il est défini pour un processus de moyenne zéro par :

$$\text{kurtosis} = \frac{E(X_t^4)}{[E(X_t^2)]^2}$$

il est difficile d’écrire une expression générale concise du kurtosis d’un processus $ARCH(p)$. Néanmoins, on peut le calculer explicitement si est un processus $ARCH(1)$:

il est donné dans ce cas par :

$$\text{kurtosis} = \frac{E(X_t^4)}{[E(X_t^2)]^2} = 3 \frac{1 - \alpha_1^2}{1 - 3 \alpha_1^2} \text{ si } 3 \alpha_1^2 < 1$$

(si $3 \alpha_1^2 \geq 1$, alors le quatrième moment du processus n’existe pas). Puisque :

$$0 < \alpha_1 < 1/\sqrt{3} < 1$$

On en déduit que le kurtosis supérieur à trois, et donc que la distribution de X_t est plus aplatie que celle de la loi normale. Il est possible d’arriver facilement à la conclusion que pour tout p le kurtosis supérieur à trois. Toutes ces propriétés peuvent être généralisées au cas d’un processus $ARCH(p)$.
3.3 Modèle avec erreurs ARCH(q)

On considère dorénavant non plus un processus ARCH pour modéliser directement la série financière, mais le résidu d’un modèle linéaire. Prenons l’exemple d’un modèle linéaire auto-régressif avec résidus de type ARCH(q).

Définition 3.2 : On considère un modèle linéaire auto-régressif de la forme :

$$Y_t = \mathbb{E}(Y_t|Y_{t-1}) + \varepsilon_t$$ (3.7)

où ε_t est un bruit blanc faible, tel que :

$$\mathbb{E}(\varepsilon_t) = 0 \text{ et } \mathbb{E}(\varepsilon_t \varepsilon_s) = 0 \text{ si } s \neq t$$

satisfaisant la condition de différence de martingale :

$$\mathbb{E}(\varepsilon_t|\varepsilon_{t-1}) = 0$$

On suppose que ce résidu admet une représentation de type ARCH(q) :

$$\varepsilon_t = z_t \sqrt{h_t} \text{ avec } h_t = \alpha_0 + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-i}^2$$ (3.8)

où z_t est un bruit blanc faible. On a donc un modèle qui décrit à la fois l’évolution de l’espérance conditionnelle et de la variance conditionnelle du processus Y_t dans le temps. Envisageons le cas le plus simple d’un processus de type AR(1) avec erreur ARCH(1) :

$$Y_t = \mu + \rho Y_{t-1} + \varepsilon_t, \text{ où } |\rho| < 1 \text{ et }$$

$$\varepsilon_t = z_t \sqrt{\alpha_0 + \alpha_1 \varepsilon_{t-1}^2}$$
On peut montrer tout d’abord que l’espérance conditionnelle de Y_t est alors :

$$E(Y_t|Y_{t-h}) = \mu + \rho E(Y_t|Y_{t-h}) = \mu \frac{1 - \rho^h}{1 - \rho} + \rho^h Y_{t-h} \quad (3.10)$$

De la même façon, on montre que la variance conditionnelle de Y_t dépend du temps.

En effet, on peut montrer qu’elle dépend du processus ε_{t-h}^2 de la façon suivante.

Propriété 3.3 : La variance conditionnelle du processus $AR(1)$ avec erreur $ARCH(1)$, Y_t s’écrit :

$$Var(Y_t|Y_{t-h}) = \left(\frac{\mu}{1 - \alpha_1} \right) \left[\frac{1 - \rho^{2h}}{1 - \rho^2} - \alpha_1 \left(\frac{\alpha_1^h - \rho^{2h}}{\alpha_1 - \rho^2} \right) \right] + \alpha_1 \left(\frac{\alpha_1^h - \rho^{2h}}{\alpha_1 - \rho^2} \right) \varepsilon_{t-h}^2 \quad (3.11)$$

Ainsi la variance d’une erreur de prévision à l’horizon 1, s’écrit :

$$Var(Y_t|Y_{t-1}) = \mu + \alpha_1 \varepsilon_{t-1}^2 \quad (3.12)$$

En conclusion, si l’on désire prévoir le processus Y_t dans le cas d’erreur $ARCH(1)$, l’erreur de prévision à un horizon d’une période admet une variance $Var(Y_t|Y_{t-1})$ qui varie dans le temps en fonction de la valeur de ε_{t-1}^2. Dès lors les intervalles de confiance sur cet prévision ne sont plus constants dans le temps.

3.4 Modèle GARCH(p,q)

Définition 3.3 : Un processus X_t satisfait une représentation $GARCH(p, q)$ si :

$$X_t = z_t \sqrt{h_t} \text{ avec } h_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i X_{t-i}^2 + \sum_{j=1}^{q} \beta_j X_{t-j}^2 \quad (3.13)$$
où z_t est un bruit blanc faible et où :

$$
\alpha_0 > 0, \alpha_i \geq 0, i = 1, \ldots, p \text{ et } \beta_j \geq 0, j = 1, \ldots, q
$$

X_t admet pour moments conditionnels :

$$
\mathbb{E}(X_t|X_{t-1}) = 0
$$

$$
\text{Var}(X_t|X_{t-1}) = h_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i X_{t-i}^2 + \sum_{j=1}^{q} \beta_j X_{t-j}^2 \text{ si } \text{Var}(z_t) = 1
$$

Le modèle $GARCH$ peut être représenté comme un modèle $ARMA$ dans les erreurs au carré. Tout comme pour le modèle $ARCH$, on peut par inversion exprimer le processus X_t^2 sous la forme (d’un processus $ARMA$ défini dans une innovation), on a :

$$
h_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i X_{t-i}^2 + \sum_{j=1}^{q} \beta_j X_{t-j}^2 \quad (3.14)
$$

$$
X_t^2 = \alpha_0 + \sum_{i=1}^{p} \alpha_i X_{t-i}^2 + \sum_{j=1}^{q} \beta_j h_{t-j} + (X_t^2 - h_t) \quad (3.15)
$$

Soit :

$$
\mu_t = X_t^2 - h_t
$$

Introduisant cette notation dans l’équation (3.15), il vient :

$$
X_t^2 = \alpha_0 + \sum_{i=1}^{p} \alpha_i X_{t-i}^2 + \sum_{j=1}^{q} \beta_j(X_{t-j}^2 - \mu_{t-j}) + \mu_t \quad (3.16)
$$

D’où l’on tire que :

$$
X_t^2 = \alpha_0 + \sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i) X_{t-i}^2 + \mu_t - \sum_{j=1}^{q} \beta_j \mu_{t-j}
$$
avec la convention $\alpha_i = 0$ pour $i > p$ et $\beta_i = 0$ pour $i > q$, en plus, le processus X_t^2 d’une représentation $GARCH(p, q)$ peut être représenté sous la forme d’un processus $ARMA[\max(p, q), p]$ avec innovations :

$$\mu_t = X_t^2 - Var(X_t|X_{t-1})$$

(3.17)

Noté bien : Ce modèle a les mêmes propriétés que le modèle $ARCH(p)$.

Proposition 3.4 : Si le processus X_t satisfait une représentation $GARCH(p, q)$ conditionnellement gaussienne, telle que :

$$X_t = z_t \sqrt{h_t}$$
$$Var(X_t|X_{t-1}) = h_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i X_{t-i}^2 + \sum_{j=1}^{q} \beta_j X_{t-j}^2$$

(3.18)

où z_t est un bruit blanc faible gaussien, alors :

(i) la loi marginale de X_t a des queues plus épaisses qu’une loi normale (distribution leptokurtique) :

$$\mathbb{E}(X_t^4) \geq 3\left[\mathbb{E}(X_t^2)\right]^2$$

(3.19)

(ii) son coefficient d’excès de kurtosis peut s’exprimer sous la forme suivante :

$$\text{Excès de Kurtosis} = \frac{\mathbb{E}(X_t^4)}{[\mathbb{E}(X_t^2)]^2} - 3 = 3 \frac{Var[\mathbb{E}(X_t^2/X_{t-1})]}{[\mathbb{E}(X_t^2)]^2}$$

(3.20)

3.5 Modèle avec erreurs $GARCH(p,q)$

On considère un modèle linéaire autorégressif exprimé sous la forme suivante :

$$Y_t = \mathbb{E}(Y_t|Y_{t-1}) + \varepsilon_t$$

(3.21)
où \(\varepsilon_t \) est un bruit blanc faible, tel que \(\mathbb{E}(\varepsilon_t) = 0 \) et \(\mathbb{E}(\varepsilon_t \varepsilon_s) = 0 \) si \(s \neq t \), satisfaisant la condition de différence de martingale \(\mathbb{E}(\varepsilon_t | \varepsilon_{t-1}) = 0 \). On suppose toujours que le processus \(\varepsilon_t \) peut s’écritre sous la forme :

\[
\varepsilon_t = z_t \sqrt{h_t}
\]

(3.22)

où \(z_t \) est un bruit blanc faible, avec :

\[
h_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i X_{t-i}^2 + \sum_{j=1}^{q} \beta_j X_{t-j}^2
\]

(3.23)

et

\[
\alpha_0 > 0, \alpha_i \geq 0, i = 1, ..., p \text{ et } \beta_j \geq 0, j = 1, ..., q
\]
suffisantes pour garantir la positivité de \(h_t \).

Noté bien : Ce modèle à les même propriétés que le modèle avec erreur ARCH.

3.6 Estimation des paramètres ARCH

Pour comprendre cette approche, nous allons tout d’abord considérer le cas d’un processus ARCH pur pour \(X_t \), sans régression ni composante ARMA. Nous étudierons ensuite le cas des processus GARCH, et enfin des modèles de régression avec erreur GARCH et les modèles ARMA – GARCH.

3.6.1 Estimation par maximum de vraisemblance

L’estimation des paramètres de modèles ARCH se base très souvent sur la maximisation de la fonction de vraisemblance. Par hypothèse \(X_t \) est conditionnellement
gaussien. La vraisemblance associée à X_t conditionnellement au passé X_{t-1} est donc :

$$L(x_t|X_{t-1}; \theta) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp\left(-\frac{x_t^2}{2\sigma_t^2}\right)$$ (3.24)

et dépend du vecteur de paramètres $\theta = (\alpha_0, \alpha_1, \ldots, \alpha_p)^t$ à travers σ_t défini en (3.1).

La fonction de vraisemblance de $(x_1; \ldots; x_T)^t$ conditionnelle à $X_0 = 0$, est par conséquent

$$L_T(x_1, x_2, \ldots, x_T|X_{t-1}; \theta) = \prod_{t=1}^{T} \frac{1}{\sigma_t \sqrt{2\pi}} \exp\left(-\frac{x_t^2}{2\sigma_t^2}\right)$$ (3.25)

l’estimateur est alors défini comme le vecteur

$$\hat{\theta}_T = (\hat{\alpha}_{0,T}, \ldots, \hat{\alpha}_{p,T})^t$$

qui maximise le logarithme de cette fonction de vraisemblance :

$$\hat{\theta}_T = \arg \max_{\theta} \ln L_T(x_1, x_2, \ldots, x_T; \theta)$$

Sous diverses conditions de régularité, l’estimateur est convergent Weiss (1986).

3.6.2 Estimation des paramètres GARCH

L’estimation par maximum de vraisemblance d’un modèle ARMA est rendue plus difficile que celle d’un processus autorégressif pur, puisque le processus d’innovations n’est pas directement observé, le même phénomène survient lorsqu’on tente de maximiser la vraisemblance d’un processus GARCH. En effet, la vraisemblance associée à X_t conditionnellement au passé X_{t-1} s’écrit

$$L \left(x_t \mid X_{t-1}; \theta \right) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp \left(-\frac{x_t^2}{2\sigma_t^2} \right)$$ (3.26)
mais cette fois, la variance σ_t^2 est donné par (3.13) et dépend donc des valeurs passées de la variance conditionnelle $\sigma_{t-1}^2, \ldots, \sigma_{t-q}^2$. Ces valeurs n’étant pas observées en pratique, la maximisation directe de la vraisemblance est rendue impossible. En pratique, on estime successivement les valeurs de $\sigma_1^2, \sigma_2^2, \ldots, \sigma_{t-1}^2$ avant de calculer la vraisemblance. Ainsi, pour un vecteur $\theta^o = \left(\alpha_0^o, \ldots, \alpha_p^o, \beta_1^o, \ldots, \beta_q^o\right)'$ fixé de paramètres, on calcule récursivement

$$\hat{\sigma}_s^2 = \alpha_0^o + \sum_{i=1}^{p} \alpha_i^o X_{s-i}^2 + \sum_{j=1}^{q} \beta_j^o \hat{\sigma}_{s-j}^2$$

(3.27)

avec la convention $X_i = 0$ et $\sigma_i^2 = 0$ si $i \leq 0$. On remplace donc la fonction de vraisemblance (3.26) par

$$L_T(x_t, \ldots, x_T; \theta^o) = \Pi_{t=1}^{T} L(x_t \mid X_{t-1}; \theta^o)$$

(3.28)

cette fonction de vraisemblance peut être calculée pour différentes valeurs du vecteur θ^o et sa maximisation donne l’estimateur de maximum de vraisemblance. Pour le cas du modèle de régression avec erreur GARCH ainsi que pour le modèle ARMA – GARCH en basant sur l’estimation par la méthode de moindres carrés.

3.7 Test de ARCH de Engle (1982)

Le principe de ce test est le suivant :

On effectue la régression suivante : $\hat{\varepsilon}_t = \alpha_0 + \sum_{i=1}^{l} \alpha_i \hat{\varepsilon}_{t-i}^2$ où les $\hat{\varepsilon}_t$ sont les résidus issus de l’estimation du processus du type ARMA(p, q). Très fréquemment utilisé
dans les séries financières, ce test a pour objet de tester l’hypothèse nulle :

\(H_0 : \) d’homoscédasticité, c’est-à-dire : \((\alpha_i = 0, \forall i = 1, \ldots, l) \) contre

\(H_1 : \) d’hétéroscédasticité conditionnelle, c’est-à-dire : \((\exists i, \alpha_i \neq 0) \)

on calcule la statistique du multiplicateur de lagrange \(LM = TR^2 \) où

\[R^2 = 1 - \frac{\sum \varepsilon_i^2}{\sum (\bar{z}_i - \bar{z})} \]

est le coefficient de détermination associé et \(T \) le nombre d’observations. Sous l’hypothèse nulle \(H_0 : TR^2 \) suit une loi du \(\chi^2 (l) \) où \(l \) le nombre de régresseurs. La règle de décision est :

- si \(TR^2 < \chi^2_\alpha (l) \), on accepte l’hypothèse \(H_0 \) d’homoscédasticité au seuil \(\alpha \)

- si \(TR^2 > \chi^2_\alpha (l) \), on n’accepte pas \(H_0 \) au seuil \(\alpha \) en faveur d’hétéroscédasticité conditionnelle, où \(\chi^2_\alpha (l) \) est le quantile d’ordre \(\alpha \) de la loi de \(\chi^2 \) à \(l \) degré de liberté, où \(l \) est le nombre de régresseurs.

3.8 Modèles ARCH/GARCH linéaires

3.8.1 Modèles ARMA-GARCH

La modélisation \(GARCH \) peut être appliquée non au processus initial, mais au processus d’innovation. Ceci permet alors d’introduire divers effets additionnels de variables explicatives soit dans la moyenne conditionnelle, soit dans la variance conditionnelle. Par exemple, on peut considérer un modèle de régression linéaire avec erreurs \(GARCH \)

\[y_t = ax_t + \varepsilon_t \text{ avec } \varepsilon_t \rightarrow GARCH(p,q) \] (3.29)
on peut aussi considérer un modèle ARMA avec erreurs GARCH

\[\Phi(L)y_t = \Theta(L)\varepsilon_t \text{ avec } \varepsilon_t \rightarrow GARCH(p, q) \] (3.30)

Ce modèle est appelé modèle ARMA - GARCH. Alors, on peut concevoir un modèle ARMA dans lequel la variance non conditionnelle de \(y \) peut avoir un effet sur la variance conditionnelle :

\[
\begin{align*}
\Phi(L)y_t &= \Theta(L)\varepsilon_t \\
\text{et } \mathbb{E}(\varepsilon_t|\varepsilon_{t-1}) &= 0
\end{align*}
\]

\[
\text{Var}(\varepsilon_t|\varepsilon_{t-1}) = c + \sum_{j=1}^{q} \alpha_j \varepsilon_{t-j} + \gamma_0 [\mathbb{E}(y_t|y_{t-1})]^2 + \sum_{j=1}^{p} \gamma_j y_{t-j}^2
\] (3.31)

3.9 Variantes des processus ARCH

3.9.1 Modèle GARCH-M

Définition 3.3 : L’écriture du modèle GARCH – M porte sur la non stationnarité de son processus de variance conditionnelle et par une variance non conditionnelle
infinie. Soit un processus y_t, d’espérance $\mathbb{E}(y_t) = 0$ satisfaisant une représentation de type $GARCH - M(p, q)$. Ce processus s’écrit sous la forme suivante :

$$
\begin{aligned}
&y_t = x_t b + \delta h_t + z_t \sqrt{h_t} = x_t b + \delta \text{Var}(\varepsilon_t | \varepsilon_{t-1}) + z_t \sqrt{h_t} \\
&\varepsilon_t = z_t \sqrt{h_t} \\
&h_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i \varepsilon^2_{t-i} + \sum_{i=1}^{q} \beta_i h_{t-i}
\end{aligned}
$$

et

$$
\begin{aligned}
&\mathbb{E}(\varepsilon_t | \varepsilon_{t-1}) = 0 \\
&\text{Var}(\varepsilon_t | \varepsilon_{t-1}) = \text{Var}(y_t | y_{t-1}) = h_t
\end{aligned}
$$

En plus de la forme linéaire de l’écriture de y_t ci-dessus ; on peut envisager différentes variantes de la relation entre la variable dépendante y_t et la variance conditionnelle. Par exemple, on peut considérer les cas suivants :

Forme Log-Linéaire :

$$
y_t = x_t b + \delta \log h_t + \varepsilon_t
$$

Forme Racine Carrée :

$$
y_t = x_t b + \delta \sqrt{h_t} + \varepsilon_t
$$

3.9.2 Modèle IGARCH

Le modèle *IGARCH* (Integrated General Autoregressive Conditional Heteroskedasticity) correspond au cas d’une racine unitaire dans la variance conditionnelle. C’est un modèle qui caractérisé par un effet de persistance dans la variance. C’est-à-dire qu’un choc sur la variance conditionnelle actuelle se répercute sur toutes les
valeurs futures prévues. L'étude de la stationnarité (au 2nd ordre) d'un processus GARCH revient à démontrer que la variance inconditionnelle est asymptotiquement indépendante du temps Gourieroux (1992). Le processus εₜ étant une différence de martingale (admettant des composantes non corrélées de moyenne nulle), on a la propriété suivante :

\[Var(X_t) = Var(\mathbb{E}(X_t|X_{t-1})) + \mathbb{E}(Var(X_t|X_{t-1})) = \mathbb{E}(h_t) \]
(3.36)

La proposition suivante permet de caractériser la notion de stationnarité asymptotique d’un processus GARCH(p,q).

Proposition 3.5 : Un processus εₜ satisfaisant une représentation GARCH(p,q) telle que :

\[Var(X_t|X_{t-1}) = h_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i X_{t-i}^2 + \sum_{i=1}^{q} \beta_i h_{t-i} \]
(3.37)

avec \(\alpha_0 \geq 0, \alpha_i \geq 0 \) pour \(i = 1, \ldots, p \) et \(\beta_i \geq 0, i = 1, \ldots, q \) est asymptotiquement stationnaire au second ordre si et seulement si :

\[\sum_{i=1}^{p} \alpha_i + \sum_{i=1}^{q} \beta_i = 1 \]

En effet, nous avons vu que l'on pouvait obtenir la représentation ARMA suivante sur le processus au carré \(\varepsilon_t^2 \) :

\[X_t^2 = \alpha_0 + \sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i) X_{t-i}^2 + \mu_t - \sum_{j=1}^{p} \beta_j \mu_{t-j} \]
(3.38)

où :

\[\mu_t = X_t^2 - h_t = X_t^2 - Var(X_t|X_{t-1}) \]
(3.39)
est un processus d’innovation pour X_t^2. On peut alors montrer que

$$X_t^2 = \alpha_0 + \sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i)X_{t-i}^2 + \mu_t - \sum_{j=1}^{p} \beta_j \mu_{t-j}$$

(3.40)

Par construction

$$\mathbb{E}(\mu_{t-i}) = \mathbb{E}(X_{t-i}^2) - \mathbb{E}(h_{t-i}) = 0$$

Puisque nous avons vu que $Var(X_t) = \mathbb{E}(h_t)$, dès lors que ε_t est une différence de martingale. On a donc

$$\mathbb{E}(X_t^2) = \alpha_0 + \sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i)\mathbb{E}(X_{t-i}^2)$$

(3.41)

dès lors, il suffit que les racines du polynôme retard défini par

$$\Phi(L) = \alpha_0 + \sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i)L^i$$

(3.42)

soient toutes à l’extérieur du disque unité pour la suite

$$\mathbb{E}(X_t^2) = Var(X_t)$$

le processus est alors asymptotiquement stationnaire. Par conséquent un modèle IGARCH(p, q) est défini par la non stationnarité de son processus de variance conditionnelle.

Définition 3.4 : Un processus X_t satisfait une représentation IGARCH(p, q) si et seulement si :

$$Var(X_t|X_{t-1}) = h_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i x_{t-i}^2 + \sum_{i=1}^{q} \beta_i h_{t-i}$$
avec $\alpha_0 \geq 0$, $\alpha_i \geq 0$ pour $i = 1, \ldots, p$ et $\beta_j \geq 0$, $j = 1, \ldots, q$ et :

$$\sum_{i=1}^{p} \alpha_i + \sum_{i=1}^{q} \beta_i = 1$$

L'exemple le plus simple est bien évidemment le processus $IGARCH(1,1)$ proposé notamment par Nelson (1990)

$$Var(X_t|X_{t-1}) = h_t = \alpha_0 + \alpha_1 x_{t-1}^2 + \beta_1 h_{t-1}$$

Pour ce processus les prévisions de la variance conditionnelles aux différents horizon k sont de la forme :

$$\mathbb{E}(h_{t+k}|X_{t-1}) = (\alpha_1 + \beta_1)^k h_t + \alpha_0 \sum_{i=0}^{k-1} (\alpha_1 + \beta_1)^i \quad (3.43)$$

Ainsi, lorsque $\alpha_1 + \beta_1 < 1$, le processus X_t est stationnaire et un choc sur la variance conditionnelle h_t a une influence décroissante et asymptotiquement négligeable sur h_{t+k} quand k tend vers l’infini. Par contre, lorsque $\alpha_1 + \beta_1 = 1$

$$\mathbb{E}(h_{t+k}|X_{t-1}) = h_t + \alpha_0 k \quad (3.44)$$

on a divergé avec k.

3.10 Modèles ARCH/GARCH asymétriques

La seconde grande approche couvre les modèles $ARCH$ non linéaires et plus particulièrement la prise en compte des phénomènes asymétriques (mauvaises informations). L'idée est que l'effet hétéroscédastique n'est sans doute pas le même suivant
que l’erreur précédente est positive ou négative. Deux grandes classes de modèles ont été proposés :

- **Nelson** (1990) s’est intéressé aux évolutions asymétriques de la variance à l’aide des modèles **EGARCH** (*Exponential Generalized Auto Regressive Conditional Heteroscedastic*).

- **Engle et Bollerslev** (1986) ont étudié les modèles **ARCH** à seuils (**TARCH**) où la variance est une fonction linéaire définie par morceaux qui permet différentes fonctions de volatilité selon le signe et la valeur des chocs. **Rabemananjara** et **Zakoian** (1991) ont proposés une généralisation avec les modèles **TGARCH**.

3.10.1 Modèle EGARCH

Proposé par **Nelson** (1991), le processus **Exponential GARCH** ou **EGARCH**(*p, q*) donne à la variance conditionnelle la définition suivante :

Définition 3.5 : Un processus ε_t satisfait une représentation **EGARCH**(*p, q*) si et seulement si :

$$
\varepsilon_t = z_t \sqrt{h_t} \\
\log(h_t) = \alpha_0 + \sum_{i=1}^{q} \alpha_i g(z_{t-i}) + \sum_{i=1}^{p} \beta_i \log(h_{t-i})
$$

(3.45)

où le résidu normalisé z_t est un bruit faible et où la fonction $g(.)$ vérifie :

$$
g(z_{t-i}) = \theta z_{t-i} + \gamma(\left| z_{t-i} \right| - \mathbb{E} \left| z_{t-i} \right|)
$$

(3.46)
Si l’on pose $\alpha_i = \theta \alpha_i$ et $b_i = \alpha_i \gamma_i$ la variance conditionnelle de ε_t peut se réécrire sous la forme :

$$\log(h_t) = \alpha_0 + \sum_{i=1}^{q} \alpha_i z_{t-i} + \sum_{i=1}^{q} b_i(|z_{t-i}| - \mathbb{E}(|z_{t-i}|)) + \sum_{i=1}^{p} \beta_i \log(h_{t-i})$$ (3.47)

Dans le cas d’un processus $EGARCH(1,1)$, nous avons donc :

$$\log(h_t) = \alpha_0 + \alpha_1 z_{t-1} + b_1(|z_{t-1}| - \mathbb{E}(|z_{t-1}|)) + \beta_1 \log(h_{t-1})$$ (3.48)

Deux remarques doivent être faites à ce niveau :

Remarque 3.2 : L’écriture porte sur le logarithme de la variance conditionnelle h_t de ε_t, en conséquence aucune restriction n’a besoin d’être imposée sur les différents paramètres de l’équation pour assurer la positivité de h_t.

Remarque 3.3 : La variance conditionnelle h_t fait apparaître un effet de signe, correspondant à $\alpha_1 z_{t-1}$, et un effet d’amplitude mesuré par $b_1(|z_{t-1}| - \mathbb{E}(|z_{t-1}|))$. Dans ces expressions, la valeur de $\mathbb{E}(|z_{t-1}|)$ dépend bien évidemment de la loi supposée de z_t. On a ainsi pour les trois distributions : loi Gaussienne, loi de Student, loi de Student dissymétrique et standarisée.
3.10.2 Modèle APARCH

Introduit par Ding, Granger et Engle (1993) le modèle APARCH est l’un des plus intéressants pour qu’il admet comme cas particuliers plusieurs autres processus existants.

Définition 3.6 : Un processus ε_t satisfait une représentation $APARCH(p, q)$ si et seulement si :

$$
\varepsilon_t = z_t \sqrt{h_t}
$$

et

$$
\sigma_i^\delta = \alpha_0 + \sum_{i=1}^{q} \alpha_i (|\varepsilon_{t-1} | - \gamma_i \varepsilon_{t-1})^\delta + \sum_{i=1}^{p} \beta_i \sigma_{t-i}^\delta
$$

où $\sigma_t = \sqrt{h_t}$ est l’écart-type conditionnel de ε_t, et z_t est un bruit blanc faible. La positivité σ_t est assurée par les conditions : $\alpha_0 > 0, \alpha_i \geq 0$ et $-1 < \gamma_i < 1, i = 1, ..., q, \beta_i \geq 0, i = 1, ..., p, \delta > 0$. La stationnarité au second ordre d’un processus $APARCH$ nécessite :

$$
\sum_{i=1}^{q} \alpha_i \mathbb{E} [(|\varepsilon_{t-1} | - \gamma_i \varepsilon_{t-1})^\delta] + \sum_{i=1}^{p} \beta_i \sigma_{t-i}^\delta < 1 \quad (3.49)
$$

Dans le cas d’un processus $APARCH(1, 1)$ on a :

$$
\sigma_1^\delta = \alpha_0 + \alpha_1 (|\varepsilon_{t-1} | - \gamma_1 \varepsilon_{t-1})^\delta + \beta_1 \sigma_{t-1}^\delta \quad (3.50)
$$

On remarque en particulier que :

- Un processus $APARCH(1, 1)$ correspond à un processus $ARCH$ lorsque :

$$
\delta = 2 \text{ et } \gamma_i = 0 \text{ et } \beta_1 = 0
$$
• Un processus \(APARCH(1, 1)\) correspond à un processus \(GARCH\) lorsque :

\[
\delta = 2 \text{ et } \gamma_i = 0
\]

3.10.3 Modèles TGARCH

Les modèles \(TARCH\) Zakoian (1991) et \(TGARCH\) Zakoian (1994) sont des modèles asymétriques, définis de la façon suivante :

Définition 3.7 : Un processus \(\varepsilon_t\) satisfait une représentation \(TGARCH\) si et seulement si :

\[
\varepsilon_t = z_t \sqrt{h_t}
\]

et

\[
\sigma_t^2 = \alpha_0 + \sum_{i=1}^{p} \beta_i \sigma_{t-i}^2 + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-i}^2 I_{\varepsilon_{t-i} < 0} + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-i}^2 I_{\varepsilon_{t-i} > 0}
\]

(3.51)

où le résidu normalisé \(z_t\) est un bruit faible et \(I_{\varepsilon_{t-i}}\) désigne la fonction indicatrice telle que \(I_{\varepsilon_{t-i} < 0} = 1\) si \(\varepsilon_{t-i} < 0\) et \(I_{\varepsilon_{t-i} < 0} = 0\) sinon. Dans le cas d’un processus \(TGARCH(1, 1)\) on a :

\[
\sigma_1^2 = \alpha_0 + \beta_1 \sigma_{t-1}^2 + \alpha_1 \varepsilon_{t-1}^2 I_{\varepsilon_{t-1} < 0} + \alpha_1 \varepsilon_{t-1}^2 I_{\varepsilon_{t-1} > 0}
\]

(3.52)

Ce type de modèle permet de prendre en compte une dissymétrie de l’information : les agents suivent un comportement différent selon que la variable à expliquer est à la hausse ou à la baisse (une erreur \((-\)) va entraîner un plongeon bien plus rapide que l’erreur \((+\)) c’est pour cela que les cours boursiers parfois chutent beaucoup avant de remonter).
3.11 Introduction à la notion de mémoire longue

Dans le domaine temporel, les processus ARMA sont souvent appelé processus à mémoire courte, car l’autocorrélation entre X_t et X_{t+h} à une décroissance rapide quand $h \to \infty$ (décroissance exponentielle de $\rho(h)$). En fait, il est possible de vérifier que, pour un processus ARMA stationnaire, sa fonction d’autocorrélation est bornée,

$$|\rho(h)| \leq cr^h \text{ pour } h = 1, 2, ...$$

pour une certaine constante $c > 0$ et $0 < r < 1$.

Définition 3.8 : Un processus stationnaire sera dit à mémoire longue si les autocorrélations $\rho(h)$ satisfont

$$\rho(h) \sim ch^{2d-1} \text{ quand } h \to \infty$$

où c est une constante non nulle et $d < \frac{1}{2}$. Il est possible de remarquer suivant la valeur de d :

- si $d < 0$: mémoire intermédiaire, la série $\rho(h)$ est absolument convergente.
- si $0 < d < \frac{1}{2}$: mémoire longue, la série $\rho(h)$ n’est plus absolument convergente.

De façon heuristique, une série à mémoire longue est caractérisée par une fonction d’autocorrélation qui décroit lentement lors que le retard h augmente. Dans le domaine fréquentiel, les processus à mémoire longue sont caractérisés par une densité spectrale s’accroissant sans limite quand la fréquence tend vers zéro. En général, un processus stationnaire (X_t) est un processus à mémoire longue s’il existe un nombre β, avec
$0 < \beta < 1$, et une constante c, $c > 0$, vérifiant :

$$\lim_{\omega \to 0} \frac{f(\omega)}{c|\alpha|^{-\beta}} = 1$$

où $f(\omega)$ est la densité spectrale du processus (X_t) à la fréquence ω. Ainsi, la densité spectrale présente un pôle à la fréquence 0.

3.12 Application en finance

Les prix d’actifs financiers (taux de change, cours boursiers...etc) sont des séries qui présentent des comportements de type hétéroscédastique, avec très souvent de la persistance. En outre, la plupart du temps les distributions des prix ne sont pas normales. A partir des années quatre vingt Engle (1982), une large classe de modèles à temps discret a été proposée : $ARCH$, $GARCH$, $EGARCH$, $TGARCH$, $IGARCH$....

Une des caractéristiques des modèles est la prise en compte explicite de l’hypothèse d’hétéroscédasticité dans les séries observées. Mais, leurs fonctions d’autocorrélation est semblable à celle d’un processus à mémoire courte : la fonction d’autocorrélation d’un processus type $ARCH$ décrit exponentiellement vers 0. Pour h augmente, l’autocorrélation entre X_t et X_{t+h} est alors supposée très efficace.
Chapitre 4

Application à la value at risk

4.1 Problématique

Pour expliquer ce qu’est la VaR, commençons par prendre un exemple concret. Considérons que nous avons investis 10000DZD dans notre portefeuille d’actions.

Comment avoir une idée de la perte maximale que le portefeuille peut subir d’ici un mois ?

La réponse la plus logique est que nous pouvons perdre tout notre investissement.

Néanmoins, un événement de perte totale est vraiment très peu probable. Une réponse plus réaliste serait par exemple qu’en l’absence d’événement exceptionnel, il y a 5% de chance de perdre 1000DZD. C’est le type de réponse fourni par la VaR.

On pourrait croire de nos jours que les établissements disposent de tous les outils nécessaires pour avoir une vision future des cotations et ainsi limiter certains risques.
Or, on s’aperçoit à l’usage, d’une inefficacité des prévisions reposant sur des données économiques (prévisions fondamentalistes).

Il existe de plus, un autre type de prévisions (techniques) se basant sur l’analyse de graphe (courbes) ou sur des traitements mathématiques de données historiques. Le fait que chaque intervenant sur les marchés soit libre de choisir sa méthode, peut amener à des prévisions contradictoires entraînant des opérations dont l’effet est difficile à déterminer. Indépendamment des outils de prévision de cours ou de taux, il existe également des méthodes destinées à mesurer le risque du marché dont la plus connue est la VaR ou Value at Risk en anglais.

Définition 4.1 : La Value at risk de l’actif pour la durée t et le niveau de probabilité q se définit comme la perte encourue maximale sur cet actif durant l’intervalle $[0; t]$ pour une probabilité de $(1 - q) :$

$$Pr[V_t > VaR] = 1 - q \iff Pr[V_t \leq VaR] = q$$

En pratique on calcule la VaR en fonction de la probabilité $q :$

$$VaR(q) = F^{-1}(q)$$

Si l’on reprend notre exemple de distribution normale, on affiche alors une VaR pour un niveau de confiance de 95% ($\alpha = 5\%$) égale à 1.645. Cela signifie qu’il y a 95% de chances que la perte associée à la détention de l’actif n’excède pas 1.645

Remarque 4.1 : Toute fois, cette définition pose un certain nombre de problèmes liés notamment à l’existence et à la caractérisation de la fonction de densité. Pour
les variables discrètes par exemple, la VaR n’est pas défini de façon précise et dans le cas où q correspond à un saut de la fonction de répartition, aucune valeur de la perte ne peut convenir. De la même manière, lorsque q correspond à un palier de la fonction de répartition, une infinité de valeurs conviennent et on choisit, par sécurité, de prendre la valeur la plus défavorable, c’est à dire la plus grande. De ce fait, la définition rigoureuse de la VaR s’écrit alors sous la forme :

$$VaR_q = \max \{V : Pr[V_t \leq V] \leq q\}$$

(4.1)

Remarque 4.2 : lorsque la variable aléatoire V_t suit une loi normale de moyenne μ et d’écart type σ, on peut écrire :

$$P \left[\frac{V_t - \mu}{\sigma} \leq \frac{VaR_q - \mu}{\sigma} \right] = q$$

(4.2)

et si on note z_q le quantile d’ordre q de la distribution normale, on obtient une formule très simple de la VaR : La VaR peut être définie de la manière suivante :

$$VaR_q = \mu + \sqrt{\Delta T} z_q$$

(4.3)

Le terme $\sqrt{\Delta T}$ est un facteur qui permet d’ajuster des données d’un horizon temporel à un autre. On a supposé que $\sqrt{\Delta T}$ est égal à 1.
4.2 Modélisation

4.2.1 Introduction à EViews

Les données sous EViews

La "work file" La première étape consiste à créer un work file, qui contiendra l’ensemble des séries chronologiques. La démarche à suivre est de cliquez sur File puis New, puis de donner un nom à la base. Il est alors nécessaire d’indiquer le format des données des séries qui seront utilisées : données annuelles (annual : 2009 2011), données trimestrielles (quarterly 2009 : 12011 : 4), données mensuelles (monthly 2009 : 012011 : 12), données journalières (daily 3 : 25 : 200912 : 7 : 2011), ou sans date (undated or irregular 1 174). Par défaut, deux séries seront alors créées, "c" qui correspondra, par défaut à la constante, et "resid" qui correspondra (lors de régressions) à la série des résidus. Une fois créée cette work file, deux alternatives existent pour travailler avec des données : importer des données (sous format texte ou excel, par exemple), ou les générer. L’importation est relativement simple, à condition que les séries soient présentées sous forme de colonnes. Il suffit de cliquer sur File puis Import, puis d’indiquer le format de la base à importer. Dans notre application, il s’agit d’importer une série au format txt : on choisit Read Text Lotus-Excel puis on va chercher la base dans le répertoire où elle se trouve (par défaut dans le répertoire où est installé Eviews). Une fois sélectionné le fichier, une autre fenêtre demande de nommer les séries dans l’ordre où elle apparaissent : dans l’application considéré, il
n'y avait qu'une série, que nous avons appelée "Serie". Pour générer une série, deux alternatives sont possibles : générer une série à partir d'une autre série X, ou générer une série aléatoire.

Les graphiques sous Eviews

Plusieurs types de représentations sont possibles sous Eviews. Pour générer le graphique (standard) d'une série temporelle, il suffit de cliquer sur "Line Graph". Une fois le graphique obtenu, il est possible d'obtenir la fenêtre associée au module graphique, permettant de changer les différents paramètres.

4.2.2 Application 1

La figure ci-après présente l'historique des taux de change journalier du dinar Algérien $DZD (S_t)$, contre la monnaie Européenne ($EURO$) et le Dollar Américain (USD), entre la période du 17 juin 2009 et 17 Mai 2011, (les données en partie annexe).
La lecture visuelle des séries du taux de change EURO/DZD et USD/DZD exhibe une non stationnarité en moyenne et en variance. Ce qui nous ramène à l’utilisation de la transformation logarithmique des séries de taux de change \(y_t = \ln(S_t) \).

4.2.3 Spécification de la moyenne conditionnelle

Les séries logarithme du taux de change \(\ln(S_t) \), ne sont pas stationnaires en moyenne. En effet, le calcul des autocorrélations empiriques \((ACE) \) de chacune des deux séries, jusqu’au retard 36, illustre des \(ACE \) qui décroissent lentement, et une première valeur très proche de l’unité. De plus, les autocorrélations partielles empiriques \((ACPE) \) calculées pour les deux séries, sont significatives, et une \(ACPE \) d’ordre 1 très proche de l’unité 0.945(resp 0.876) pour la série logarithmique EURO/DZD
(resp USD/DZD). Ces deux observations indiquent la présence de racine unitaire, ce qui est confirmé par le test de racine unitaire de Dickey-Fuller Augmenter (ADF) et le test de Philips Péron (PP) (les résultats de tests sont faits à l’aide de logiciel Eviews)

<table>
<thead>
<tr>
<th>Test</th>
<th>ADF</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln(USD/DZD)$</td>
<td>-3.077806</td>
<td>-5.667490</td>
</tr>
<tr>
<td>$\ln(EURO/DZD)$</td>
<td>-1.824564</td>
<td>-3.057600</td>
</tr>
<tr>
<td>valeur critique</td>
<td>-3.439517</td>
<td>-3.439464</td>
</tr>
</tbody>
</table>

Tableau 1 : Test de racine unitaire 1%

L’application des tests : ADF et PP sur les séries différenciées rejette la présence de stationnarité (pour $\alpha = 1\%$) finalement, l’étude portera sur les rendements logarithmique du taux de change ($RLTC$), désignés par :

$$Y_t = \nabla \ln(S_t) = \ln\left(\frac{S_t}{S_{t-1}}\right)$$

<table>
<thead>
<tr>
<th>RV</th>
<th>$M_C(10)$</th>
<th>$M_C(100)$</th>
<th>$M_C(300)$</th>
<th>$M_C(650)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$RLTC(EURO/DZD)$</td>
<td>0.073555</td>
<td>0.00973</td>
<td>0.003899</td>
<td>0.005054</td>
</tr>
<tr>
<td>$RLTC(USD/DZD)$</td>
<td>0.114328</td>
<td>0.176427</td>
<td>0.751723</td>
<td>12.75038</td>
</tr>
</tbody>
</table>

Tableau 2 : Test de rapport des variances

On étudie également l’hypothèse de marche aléatoire, ou de non prévisibilité des séries $RLTC$. En effet, certains auteurs prônent pour la non prévisibilité des rendements, et qu’aucune information exploitable, n’est contenue dans les rendements passés. Le
test de rapport des variances de Lo et Kinlay, permet de rejeter cette hypothèse, et montre la non efficacité des marchés des changes (Tableau 2).

4.2.4 Analyse descriptive (S_t)

Dans ces tableaux on a résumé les paramètres de distribution des séries USD et $EURO$ et les séries logarithmique du taux de change :

<table>
<thead>
<tr>
<th>Séries</th>
<th>Moy</th>
<th>Min</th>
<th>Max</th>
<th>σ</th>
<th>Me</th>
<th>Kurt</th>
<th>Assym</th>
<th>\sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{Euro,t}$</td>
<td>0.01</td>
<td>0.0084</td>
<td>0.0111</td>
<td>4.4233×10^{-4}</td>
<td>0.01</td>
<td>0.0688</td>
<td>0.4417</td>
<td>7.0104</td>
</tr>
<tr>
<td>$S_{Usd,t}$</td>
<td>0.01371</td>
<td>0.0129</td>
<td>0.0141</td>
<td>2.0644×10^{-4}</td>
<td>0.0137</td>
<td>-0.0251</td>
<td>-0.3461</td>
<td>9.6142</td>
</tr>
</tbody>
</table>

Tableau 3 : Statistiques descriptives (S_t)

<table>
<thead>
<tr>
<th>Séries</th>
<th>Moy</th>
<th>Min</th>
<th>Max</th>
<th>σ</th>
<th>Me</th>
<th>Kurt</th>
<th>Asym</th>
<th>\sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln S_{Euro,t}$</td>
<td>-4.6060</td>
<td>-4.7795</td>
<td>-4.5008</td>
<td>0.0439</td>
<td>0.01</td>
<td>-3228.86</td>
<td>0.0508</td>
<td>0.3159</td>
</tr>
<tr>
<td>$\ln S_{Usd,t}$</td>
<td>-1.8628</td>
<td>-1.8894</td>
<td>-1.8507</td>
<td>0.0065</td>
<td>0.0137</td>
<td>-1305.86</td>
<td>0.0477</td>
<td>-0.3885</td>
</tr>
</tbody>
</table>

Tableau 4 : Statistiques descriptives ($\ln S_t$)

<table>
<thead>
<tr>
<th>Séries</th>
<th>Moy</th>
<th>Min</th>
<th>Max</th>
<th>σ</th>
<th>Me</th>
<th>Kurt</th>
<th>Asym</th>
<th>\sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_{EURO,t}$</td>
<td>0.000015</td>
<td>-0.223144</td>
<td>0.2135</td>
<td>0.01447</td>
<td>0</td>
<td>147.6253</td>
<td>-0.7166</td>
<td>0.0102</td>
</tr>
<tr>
<td>$Y_{USD,t}$</td>
<td>0.000011</td>
<td>-0.045120</td>
<td>0.0305</td>
<td>0.00756</td>
<td>0</td>
<td>4.7395</td>
<td>-0.2260</td>
<td>0.0073</td>
</tr>
</tbody>
</table>

Tableau 5 : Statistiques descriptives ($RLTC$)

Les paramètres de distribution des séries $Y_{USD,t}$ et $Y_{EURO,t}$ montrent que les coefficients d’asymétries ($Skewness$) et d’aplatissement ($Kurtosis$) devient des valeurs
de la loi normale, donnant naissance à des distributions léptokurtique ; une conséquence du regroupement de la volatilité. Ces caractéristiques sont propres aux séries de rendement d’actifs financiers. (Tableau 5). L’hypothèse de marche aléatoire étant rejetée, on commence par la modélisation $ARMA(p,q)$ des séries des taux de change.

4.2.5 Estimations et comparaison des modèles

Analyse des résultats de la modélisation de type ARCH

Parmi les valeurs intéressantes, on a celles du maximum du log –vraisemblance.

On va calculer le gain en LV des modélisations de la variance conditionnelle par rapport à la modélisation $ARMA$ des déférents processus de types $ARCH$ (tableau 7). En suite, on va classer les modèles précédents : modèles symétriques (ARCH, GARCH, IGARCH) et modèles asymétriques (TGARCH, PARCH, EGARCH) :

1-Selon leurs processus de types $ARCH$, c’est-à-dire les modèles a une variance conditionnelle minimale.

2-Selon des déférentes périodes (longue ou courte période) c’est-à-dire, quelle période qui nous donne une variance minimale. Cette modélisation est importante, puisque ces mesures désignent la distance entre la distribution théorique et la distribution empirique, l’intérêt de cette comparaison est de choisir le meilleur modèle.
4.2.6 Comparaison entre les modèles

Dans ce tableau on a résumé le gain en \(LV \) de la modélisation de la variance conditionnelle, par rapport à la modélisation \(ARMA \) des modèles \(ARCH, GARCH \) et \(IGARCH, TGARCH, PARCH \) et \(EGARCH \).

<table>
<thead>
<tr>
<th>Processus</th>
<th>(ARCH)</th>
<th>(GARCH)</th>
<th>(IGARCH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(EURO)</td>
<td>21.10334%</td>
<td>20.49704%</td>
<td>20.33979%</td>
</tr>
<tr>
<td>(USD)</td>
<td>11.45273%</td>
<td>10.99329%</td>
<td>11.147%</td>
</tr>
<tr>
<td>Processus</td>
<td>(TGARCH)</td>
<td>(PGARCH)</td>
<td>(EGARCH)</td>
</tr>
<tr>
<td>(EURO)</td>
<td>21.06695%</td>
<td>21.87488%</td>
<td>21.33878%</td>
</tr>
<tr>
<td>(USD)</td>
<td>11.9470%</td>
<td>11.34352%</td>
<td>11.32565%</td>
</tr>
</tbody>
</table>

Le tableau 6, montre que les modèles \(ARCH, PGARCH, TGARCH \) et \(EGARCH \) sont les candidats dont la modélisation de la variance conditionnelle de la série RLTC \(EURO/DZD \) la plus élevé par rapport aux candidats \(GARCH, IGARCH \), tel que les valeurs des variances conditionnelles de ces derniers sont proche. Pour la série RLTC \(USD/DZD \), les modèles \(TGARCH, EGARCH, IGARCH \) sont les candidats dont la modélisation de la variance conditionnelle la plus élevé par rapport aux candidats \(ARCH, GARCH \), remarquons aussi que la variance de modèle \(PGARCH \) est proche de celle de modèle \(ARCH \) tel que les variances conditionnelles de ce dernier sont enco proche.
Les précédents résultats désignent que la plus part des modèles asymétriques, ayant le maximum du LV pour atteindre une valeur maximale de 21.87488 % dans le modèle $PGARCH$, pour la série $RLTC\ EURO/DZD$, au même temps pour la série $RLTC\ USD/DZD$ le gain en LV atteindre sa valeur maximale de 11.9470% dans le modèle $TGARCH$. Par contre la plus part des modèles symétriques ayant le minimum du LV pour atteindre une valeur minimale de 20.33979% dans le modèle $IGARCH$ pour la série $RLTC\ EURO/DZD$ qu'elle est très proche à la valeur 20.49704% du modèle $GARCH$, de même pour la série $RLTC\ USD/DZD$ le gain en LV atteindre sa valeur minimale de 10.99329% dans le modèle $GARCH$. Alors dans les deux cas, on constate clairement que les modèles symétriques sont mieux que les modèles asymétriques grâce à sa variance minimale, cependant et d’une façon générale le modèle $GARCH$ est le meilleur parmi les modèles symétriques.

4.2.7 Comparaison entre les modèles par rapport à la durée (courte et longue durée)

Dans le tableau 7 on a résumé le gain en LV des modélisations de la variance conditionnelle, par rapport à la modélisation $ARMA$ des modèles $ARCH, GARCH, IGARCH, TGARCH, PARCH$ et $EGARCH$, ces résultats sont faits sur une période de 7 jours (court terme) avant de faire une comparaison avec les résultats de long terme (701 jours Tableau 6)
Le tableau 7, montre que la variance conditionnelle de chaque modèle est diminuée pour les deux séries dans la période de 7 jours (court terme) par rapport à celle qui on a calculé dans la période de 701 jours (long terme), c'est-à-dire la période à une influence sur la persistance de la volatilité, et que les résultats obtenus dans le court terme sont mieux que les résultats obtenus par le long terme, grâce à la décroissance de sa variance conditionnelle. D'un autre coté même avec le changement du période, les modèles symétriques restent mieux que les modèles asymétriques grâce à sa variance minimale et plus précisément le modèle GARCH reste le meilleur parmi les modèles symétriques et asymétriques grâce à la même raison. Donc la meilleure période dans notre modélisation est la période de court terme.
4.2.8 Application 2

Dans cette application on a utilisé des données actualisées, et d’autres critères de choix du modèle à retenir peuvent être standards ou d’informations. Les critères les plus utilisés, comme on le verra sont repris comme suit : \(BIC, SEE, RMSE, MAE, MAPE \) et \(R^2 \) ajusté.

La figure ci-après présente l’historique des taux de change journalier du Dinar Algérien \(D\text{ZD} (S_t) \), contre la monnaie Européenne \(\text{EURO} \) et le Dollar Américain \(\text{USD} \), entre la période du 24 sep 2012 et 22 mar 2013 (les données en partie annexe).
La figure des séries du taux de change \textit{EURO/DZD} et \textit{USD/DZD} exhibe une non stationnarité en moyenne et en variance. Dans ce cas, il est nécessaire d’utiliser la transformation des séries du taux de change comme suit :

\[
Y_t = \ln\left(\frac{S_t}{S_{t-1}}\right), \quad Y'_t = \frac{S_t - S_{t-1}}{S_t}
\]
4.2.9 Test de racine unitaire et analyse descriptive

Dans cette section, nous avons résumé les tests de racine unitaire et les résultats d’analyse descriptive des : $S_t(\text{dollar})$, $S_t(\text{euro})$, $Y_t(\text{dollar})$, $Y_t(\text{dollar})$, $Y_t(\text{euro})$ et $Y_t(\text{euro})$.

<table>
<thead>
<tr>
<th>Test</th>
<th>ADF</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_t(\text{dollar})$</td>
<td>-2.288704</td>
<td>-2.200239</td>
</tr>
<tr>
<td>$Y_t(\text{dollar})$</td>
<td>-17.79141</td>
<td>-18.06257</td>
</tr>
<tr>
<td>$\dot{Y}_t(\text{dollar})$</td>
<td>-18.02989</td>
<td>-18.32705</td>
</tr>
<tr>
<td>$S_t(\text{euro})$</td>
<td>-3.130979</td>
<td>-2.776755</td>
</tr>
<tr>
<td>$Y_t(\text{euro})$</td>
<td>-12.19625</td>
<td>-16.09615</td>
</tr>
<tr>
<td>$\dot{Y}_t(\text{euro})$</td>
<td>-12.45342</td>
<td>-16.71938</td>
</tr>
</tbody>
</table>

Tableau 8 : Test de racine unitaire $\alpha = 1\%$

<table>
<thead>
<tr>
<th>Série</th>
<th>Moy</th>
<th>Med</th>
<th>Std.Dev</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Jaque-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_t(\text{dollar})$</td>
<td>78.94792</td>
<td>78.99755</td>
<td>0.716340</td>
<td>0.192236</td>
<td>2.192384</td>
<td>5.600434</td>
</tr>
<tr>
<td>$Y_t(\text{dollar})$</td>
<td>2.20E06</td>
<td>-6.61E05</td>
<td>0.003693</td>
<td>0.339521</td>
<td>4.361684</td>
<td>16.01403</td>
</tr>
<tr>
<td>$\dot{Y}_t(\text{dollar})$</td>
<td>-2.40E05</td>
<td>0.000100</td>
<td>0.003710</td>
<td>0.360246</td>
<td>4.343592</td>
<td>16.17358</td>
</tr>
<tr>
<td>$S_t(\text{euro})$</td>
<td>103.2357</td>
<td>103.0672</td>
<td>0.96673</td>
<td>0.572673</td>
<td>0.903143</td>
<td>9.138277</td>
</tr>
<tr>
<td>$Y_t(\text{euro})$</td>
<td>5.79E05</td>
<td>5.91E05</td>
<td>0.004490</td>
<td>-0.079887</td>
<td>4.513551</td>
<td>16.11803</td>
</tr>
<tr>
<td>$\dot{Y}_t(\text{euro})$</td>
<td>8.48E06</td>
<td>0.000100</td>
<td>0.004477</td>
<td>-0.036451</td>
<td>4.558465</td>
<td>16.73464</td>
</tr>
</tbody>
</table>

Tableau 9
Remarque 4.3 : Les tableaux 8 et 9 montrent que les séries $Y_t(dollar)$ et $Y_t(euro)$ sont fortement stationnaires par rapport aux autres séries, par contre les séries des taux de changes $S_t(dollar), S_t(euro)$ sont non stationnaires.

4.2.10 Critères de choix des modèles

Afin de valider les performances des modèles, nous procédons au diagnostique des critères de choix issus de chacune des modélisations comme suit :

-Erreur absolue moyenne : $MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|.$

-Racine de l’erreur quadratique moyenne : $RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}.$

-Erreur absolue moyenne en pourcentage : $MAPE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{y_i - \hat{y}_i}{y_i} \right|.$

-R^2 - ajusté donnée par : $R^2 = \frac{(n-1)R^2 - p}{n-(p+1)}$ où p est le nombre de variables explicatives dans le modèle.

-Erreur de somme de régression SEE.

-Critère de Schwarz : $BIC = n \ln (SEE) + k \ln (n) .$

Remarque 4.4 : Pour qu’un modèle de prévision soit jugé performant il faut que les indicateurs suivants : $BIC, SEE, RMSE, MAE, MAPE$ soient petits et $R^2 - ajusté$ soit grand.
Tableau 10 : Comparaison Dollar

<table>
<thead>
<tr>
<th>modèles</th>
<th>AdjuR²</th>
<th>SEE</th>
<th>BIC</th>
<th>RMSE</th>
<th>MAE</th>
<th>MAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA(19)</td>
<td>0.338647</td>
<td>0.003193</td>
<td>-8.168226</td>
<td>0.003682</td>
<td>0.002612</td>
<td>1.054673</td>
</tr>
<tr>
<td>ARMA(8,15)</td>
<td>0.347783</td>
<td>0.003045</td>
<td>-8.146117</td>
<td>0.003329</td>
<td>0.002387</td>
<td>1.374679</td>
</tr>
<tr>
<td>GARCH(2,1)</td>
<td>1.000000</td>
<td>1.20E-15</td>
<td>-65.48819</td>
<td>1.18E-15</td>
<td>8.33E-16</td>
<td>4.85E-16</td>
</tr>
</tbody>
</table>

Tableau 11 : Comparaison Euro

<table>
<thead>
<tr>
<th>modèles</th>
<th>AdjuR²</th>
<th>SEE</th>
<th>BIC</th>
<th>RMSE</th>
<th>MAE</th>
<th>MAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA(23)</td>
<td>0.253387</td>
<td>1.824437</td>
<td>4.620721</td>
<td>1.954451</td>
<td>1.551150</td>
<td>1.113412</td>
</tr>
<tr>
<td>ARMA(10,13)</td>
<td>0.303334</td>
<td>1.721631</td>
<td>4.531454</td>
<td>1.891137</td>
<td>1.477115</td>
<td>2.613360</td>
</tr>
<tr>
<td>ARCH(2)</td>
<td>1.000000</td>
<td>2.18E-16</td>
<td>-69.09017</td>
<td>2.14E-16</td>
<td>1.19E-16</td>
<td>8.32E-19</td>
</tr>
<tr>
<td>GARCH(2,1)</td>
<td>1.000000</td>
<td>2.17E-17</td>
<td>-73.68439</td>
<td>2.12E-17</td>
<td>2.69E-18</td>
<td>2.47E-18</td>
</tr>
</tbody>
</table>
Fig. 4.2:

Fig. 4.3:
Après une lecture visuelle des figures 4.2 et 4.3 les séries prévues du Euro/dollar sont presque identiques aux séries d’observations. De cette application, on remarque l’exactitude des prévisions du modèle $GARCH(2,1)$ non linéaire par rapport aux modèles linéaires MA, $ARMA$, cependant les modèles non linéaires sont meilleurs par rapport aux modèles linéaires classiques. Aussi, nous pouvons conclure que les taux de change du dollar est plus stable que le taux de change euro.
Conclusion et Perspectives

A l’issue de cette étude, nous constatons que les séries de rendement du taux de change du dinar algérien contre le dollar américain et l’euro sont plus étalées et plus pointues. L’étude de la volatilité montre l’existence d’une persistance de chocs sur la volatilité future.

Ainsi, nous avons remarqué aussi, que les modèles asymétriques, tel que TGARCH, PARCH, et EGARCH sont moins performants que les modèles ARCH, GARCH et IGARCH symétriques, ceci ne confirme pas l’effet asymétrique des chocs sur la volatilité (l’effet levier), ce résultat est différent des études précédentes sur la non pré-sence de l’effet levier sur le marché des changes. De plus, on constate que les modèles non linéaires sont meilleurs que les modèles linéaires classiques.

D’après la partie pratique, nous avons constaté la diversité des modèles autoré-gressifs pour des périodes de courts et longs termes dont la volatilité est plus faible pour les périodes de courts termes.

Par la suite, il serait intéressant d’étudier les composantes permanentes et transitoires du taux de change, ainsi que l’existence des phénomènes de mémoire longue au moyen des modèles ARCH.

Aussi nous pouvons dans nos recherches futures de modéliser des cas plus généraux à savoir :

- La covariance conditionnelle, en utilisant des processus de type GARCH multi-variés.
-Les swaps de volatilité pour les prévisions des risques de portefeuilles du marché (CAC 40 French index).
Annexe
T
T
T
T

Bibliographie

[14] Engle, R. Jeffrey, R. Forecasting the frequency of changes in quoted foreign ex-

