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Chapter 1

Introduction

The subject of this thesis is the study of the asymptotic behavior of solutions of some

porous thermoelastic problems. In this regards, several results concerning decay of solu-

tions in classical porous thermoelasticity as well as thermoelasticity of type III have been

established. This study extends and improves several earlier results. We begin by a short

summary of the theory of porous thermoelasticity and thermoelasticity of type III.

Porous thermoelasticity

The theory of porous materials is an important generalization of the classical theory of

elasticity for the treatment of porous solids in which the skeletal materials is thermoelas-

tic and the interstices are void of material. This theory deals with materials containing

small pores or voids. The basic premise underlying this theory is the concept that the

1
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bulk density is the product of two fields, the matrix material density field and the volume

fraction field. This representation of the bulk density introduces an additional degree of

kinematic freedom in the theory and was employed previously by Goodman and Cowin

[13] to overcome the failure of the classical theory of elasticity to describe the deformation

produced by the microstructure contribution. The theory of granular materials developed

by Goodeman and Cowin [13], equally valid for porous materials, was motivated by physi-

cal grounds. In this theory they introduced a higher order stress and body force to account

for energy flux and energy supply associated with the time rate of volume fraction. Terms

of this type are also contained in the higher order elasticity theories developed by Mindlin

[44], Toupin [67] and Green and Rivlin [19].

Nunziato and Cowin [50] employed the same balance equations developed by Good-

man and Cowin [13] and presented a nonlinear theory for the behavior of porous solids.

This theory admits both finite deformations and nonlinear constitutive relations. Jarić

and Golubović [29] and Jarić and Ranković [30] studied the nonlinear theory of thermoe-

lastic materials with voids. Cowin and Nunziato [9] developed a linear theory of elastic

materials with voids to study mathematically the mechanical behavior of porous solids.

An extension of this theory to linear thermoelastic bodies was proposed by Ieşan [24]. In

addition, Ieşan [25],[26] added the microtemperature elements to this theory.

On the basis of micromorphic continua theory, Grot [20] developed a theory of ther-

modynamics of elastic material with inner structure whose microelements, in addition

to microdeformations, possess microtemperatures. The importance of materials with mi-
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crostructure has been demonstrated by the huge number of papers appeared in different

fields of applications such as petroleum industry, material science, biology and many

others.

Since this type of material has both microscopic and macroscopic structures, scientists

have investigated the coupling and how strong it is. In addition, an increasing interest has

been paid by mathematicians to analyze the longtime behavior of the solutions of thermoe-

lastic and porous problems. One of the first studies, in this sense, was the thermoelastic

coupling proposed by Slemrod [61]. As a result it was seen that in the one-dimensional

case the solutions decay exponentially. Since then, many problems were studied by consid-

ering different dissipation mechanisms at the microscopic and/or the macroscopic levels.

Many papers have been published where the authors tried to determine the type, as well

as, the rate of decay of solutions in porous elasticity with voids.

In one dimensional thermoelasticity theory, Muñoz Rivera [45] , considered the linear

thermoelastic system  utt − uxx + αθx = 0 (0, L)× (0, T )

θt − θxx + βutx = 0 (0, L)× (0, T )

with the initial and boundary conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x) in (0, L)

u(0, t) = u(L, t) = θ(0, t) = θ(L, t) = 0 ∀t ∈ (0, T )

where u is the displacement, θ is the temperature difference and α and β are coupling

constants. He used the energy method and proved that the dissipation induced by the
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heat equation is strong enough to stabilize the system exponentially. Also, Muñoz Rivera

and Racke [47] studied the linear Timoshenko type system
ρ1ϕtt − k(ϕx + ψ)x = 0 in (0, L)× (0,∞),

ρ2ψtt − αψxx + k(ϕx + ψ) + γθx = 0 in (0, L)× (0,∞),

ρ3θt − κθxx + γψtx = 0 in (0, L)× (0,∞),

(1.1)

where ϕ is the displacement and ψ is the rotation angle of filament of the beam and

ρ1, ρ2, ρ3, k, α, γ, κ are constitutive constants. They showed that, for the boundary condi-

tions

ϕ (x, t) = ψx (x, t) = θ (x, t) = 0 for x = 0, L and t ≥ 0, (1.2)

the energy of system (1.1) decays exponentially if and only if

ρ1
k

=
ρ2
α

(1.3)

and that condition (1.3) suffices to stabilize system (1.1) exponentially for the boundary

conditions

ϕ (x, t) = ψ (x, t) = θx(x, t) = 0, x = 0, L and t ≥ 0.

Guesmia et al. [23] established a polynomial decay result for (1.1)-(1.2) in the case of non-

equal wave speed propagation, provided that the initial data are regular enough. They

also discuss the case when the system (1.1) is supplemented with the boundary conditions

ϕx (x, t) = ψ (x, t) = θx(x, t) = 0, x = 0, L and t ≥ 0.

and they established a non-exponential decay results for the case when (1.3) does not

hold.
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In the isothermal case, (1.1) reduces to ρ1ϕtt − k(ϕx + ψ)x = 0 in (0, L)× (0,∞),

ρ2ψtt − αψxx + k(ϕx + ψ) = 0 in (0, L)× (0,∞),

(1.4)

This system is conservative and it would be interesting to add some king of damping that

may help in stabilizing such a system. Different types of dampings have been introduced

and several stability results have been obtained by Kim and Renardy [31], Raposo et

al. [60], Soufyane and Wahbe [66] and Muñoz Rivera and Racke, [48], [49]. Alabau-

Boussouira [1] extended the results of [49] to the case of nonlinear feedback α(ψt), instead

of dψt, where α is a globally Lipchitz function satisfying some growth conditions at the

origin.

A weaker type of dissipation was considered by Ammar-Khodja et al. [3] by intro-

ducing the memory term

∫ t

0

g (t− s)ϕxx (x, s) ds in the rotation angle equation of (1.4).

They used the multiplier techniques and showed that the system is uniformly stable if and

only if (1.3) holds and the kernel g decays uniformly. Precisely, they proved that the rate

of decay is exponential (polynomial) if g decays exponentially (polynomially). Guesmia

and Messaoudi [21] obtained the same uniform decay result under weaker conditions on

the regularity and growth of the relaxation function g. More general decay estimate was

obtained by Messaoudi and Mustafa [40] for a wider class of relaxation functions. This

latter result has been improved by Guesmia and Messaoudi [22] to accommodate systems,

were frictional and viscoelastic dampings are cooperating.

Fernàndez Sare and Rivera [12] replaced the finite memory term in [3] by an infinite
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memory term

∫ ∞
0

g(s)ψxx (t− s, .) ds and showed that if g is of exponential decay, the

dissipation given by the history term is strong enough to stabilize the system exponen-

tially if and only if the wave speeds are equal. They also proved that the solution decays

polynomially for the case of different wave speeds. Messaoudi and Said-Houari [43] ex-

tended the results of [12] to polynomially decaying relaxation functions and without any

restriction on g′′ as in [12].

The analysis of temporal decay in one-dimensional porous-elasticity was first studied

by Quintanilla [58] which considered the system

ρ0utt = µuxx + βϕx, x ∈ (0, π), t > 0

ρ0κϕtt = αϕxx − βux − τϕt − ξϕ x ∈ (0, π), t > 0

u(x, 0) = u0(x), ϕ(x, 0) = ϕ0(x), x ∈ (0, π)

ut(x, 0) = u1(x), ϕt(x, 0) = ϕ1(x), x ∈ (0, π)

u(0, t) = u(π, t) = ϕx(0, t) = ϕx(π, t) = 0, t ≥ 0.

where, ϕ is the volume fraction, ρ0 > 0 is the mass density, κ > 0 is the equilibrated iner-

tia, and µ, α, α, τ, ξ are the constitutive constants which are positive and satisfy µξ > β2.

He showed that the damping in the porous equation (−τϕt) is not strong enough to obtain

an exponential decay. In this case, only the slow decay has been proved. Magaña and

Quintanilla [36] proved that the presence of viscoelastic dissipation is not powerful enough

to stabilize a porous-elastic system exponentially, only slow decay has been established.

They also, showed that neither the addition of temperature to viscoelastic-porous prob-

lem nor the addition of microtemperature to elastic-viscoporous problem can stabilize the
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system exponentially. However, the combination of viscoelasticity and porous dissipation

or the addition of microtemperature in porous elastic problems lead the solution to decay

exponentially.

Casas and Quintanilla [4] considered the system
ρutt = µuxx + bϕx − βθx = 0, in[0, π]× (0,∞),

Jϕtt = αϕxx − bux − ξϕ+mθ − τϕt, in[0, π]× (0,∞),

cθt = kθxx − βutx −mϕt, in[0, π]× (0,∞),

with Dirichlet-Neumann- Neumann boundary conditions. They proved that, under same

conditions on the constitutive constants, the sum of two slow decay processes (elastic-

viscoporous and thermal viscoelastic) determine a process that decays exponentially.

Several results concerning the rate of decay of solutions for thermoelastic and porous-

thermoelastic systems where obtained in [4, 36, 32, 34, 51]. In those papers, the authors

clarified the type of decay we obtain by combining different dissipations via temperature,

elastic viscosity, porous viscosity and microtemperature. In particular, we quote the work

of Magaña and Quintanilla [36] in which they discussed the time behaviors of several sys-

tems with quasi-static microvoids (ϕtt ≈ 0) and established different slow and exponential

decay results. These results can be summarized by the help of the following scheme:

Thermal effect Elasticity Microthermal effect

−→ l ←−

Viscoelastic effect Porosity Viscoporous effect

If we take simultaneously one effect from the right square and another one from the left
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square or more than two effect then we get exponential stability. However, two simultane-

ous effects from one square only lead to slow decay. Perhaps it is worth recalling the main

difference between the concepts of exponential and slow decay. In a thermomechanical

point of view, if the decay is exponential, then after a short period of time, the thermo-

mechanical displacements are very small and can be neglected. However, if the decay is

slow, then the solution is weaken in the way that thermomechanical displacements could

be appreciated in the system after some time.

Muñoz-Rivera and Quintanilla [46] considered some cases where the decay is slow

and proved that the energy associated to the solutions decays polynomially. Precisely,

E (t) ≤ C

tα
for some positive constants C and α.

Soufyane [63] was the first who proposed a porous-thermoelastic problem with a dis-

sipation of memory type. He considered the system

utt = uxx + ϕx − θx in(0, L)× R+

ϕtt = ϕxx − ux − ϕ− θ +

∫ t

0

g(t− s)ϕxx(x, s)ds in(0, L)× R+

θt = θxx − utx − ϕt, in(0, L)× R+

u(x, t) = ϕ(x, t) = θ(x, t) = 0 x = 0, L, t > 0,

u(x, 0) = u0(x), ϕ(x, 0) = ϕ0(x), θ(x, 0) = θ0(x), x ∈ (0, L),

ut(x, 0) = u1(x), ϕt(x, 0) = ϕ1(x), x ∈ (0, L),

where g is a positive nonincreasing function, and proved that the decay is exponential

(respect. polynomial) when the relaxation function is of exponential (respect.. polyno-

mial) decay. A similar result was also obtained by Soufyane et al. [64] and [65], for the
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above system with the viscoelastic damping −
∫ t

0

g (t− s)ϕxx (x, s) ds replaced by two

boundary viscoelastic dissipations of the form
u(L, t) = −

∫ t

0

g1(t− s)[µux(L, s) + bϕ(L, s)]ds

ϕ(L, t) = −
∫ t

0

g2(t− s)ϕ(L, s)ds,

where g1 and g2 are positive nonincreasing functions. Recently, Pamplona et al. [52]

treated the following one-dimensional porous elastic problem with history

ρutt = (µ+ f(0))uxx + (b+ h(0))ϕx +

∫ +∞

0

f ′(s)uxx(t− s)ds

+

∫ +∞

0

h′(0)ϕx(t− s)ds ,

Jϕtt = (δ + g(0))ϕxx − (b+ h(0))ux − (ξ + k(0))ϕ+

∫ +∞

0

g′(s)ϕxx(t− s)ds

−
∫ +∞

0

h′(s)ux(t− s)ds−
∫ +∞

0

k′(s)ϕ(t− s)ds,

u(0, t) = u(π, t) = ϕx(0, t) = ϕx(π, t) = 0,

u(x, 0) = u0(x), ux(x, 0) = u1(x), ϕ(x, 0) = ϕ0(x), ϕx(x, 0) = ϕ1(x),

in [0, π]×IR+, where ρ and J are positive constants, µ, δ, ξ, b satisfy µ > 0, µξ−b2 > 0, δ > 0

and f, g, h, k are the memory kernel functions. They proved the lack of exponential

stability if only porous dissipation are present and g does not satisfy

Jµ

ρ
− δ − g(0) = 0,

or only elastic dissipation are present and f does not satisfy

ρδ

J
− µ− f(0) = 0, (1.5)
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or if both elastic and porous dissipation are present but the porous dissipation is weak

and (1.5) does not hold. Otherwise, exponential stability will be obtained.

We recall that problems involving viscoelastic damping given by a memory, or a past

history term have attracted the attention of a lot of scientists in the last two decades.

The obtained decay results depended on the rate of decay of the relaxation function and

it is exponential for g satisfying: g′(t) ≤ −ξg(t) for all t ≥ 0 and some positive constant

ξ. However, only polynomial decay result was proved for relaxation functions satisfying

g′(t) ≤ −ξgp(t),∀t ≥ 0 and 1 < p ≤ 3

2
, see [3], [21],[52], [63, 64, 65].

A considerable efforts are devoted to enlarging the space of admissible relaxation

functions leading to strong or slow decay. Messaoudi and Mustafa [40] considered the

system

utt − (ux + ϕ)x = 0 in (0, 1)× IR+

ϕtt − ϕxx + ux + ϕ+

∫ t

0

g(t− s)ϕxx(x, s)ds = 0 in (0, 1)× IR+

u(0, t) = u(1, t) = ϕ(0, t) = ϕ(1, t) = 0 t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x) in (0, 1).

.

and assumed that the relaxation function g satisfies the inequality

g′ ≤ −ξ(t)g(t) ∀t ≥ 0.

They established a more general decay result, from which the exponential and polynomial

decay rates are only special cases.

We also remind the contribution of Alabau-Boussouira and Cannarsa [2] in which
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decay result was obtained for relaxation functions

g′ ≤ −ξ(t)χ(g(t)), ∀t ≥ 0,

for some strictly increasing function χ.

Nonclassical thermoelasticity

The classical thermoelasticity is concerned with the effect of heat on the deformation of

an elastic solid and with the inverse effect of deformation on the thermal state of the

solid. It is formulated on the principle of the classical theory of heat conduction, namely,

Fourier’s law

q + k∇θ = 0

where θ is the difference temperature, q is heat conduction vector and k is the coefficient

of thermal conductivity. Consequently, the heat equation is of parabolic type. As a

result, this theory predicts an infinite speed of heat propagation. That is, any thermal

disturbance at a point has an instantaneous effect elsewhere in the body. This is physically

unrealistic and experiments showed that heat conduction in some dielectric crystals at low

temperatures is free of this paradox and disturbances, which are almost entirely thermal,

propagate in finite speed. This phenomenon in crystals dialectic is called second sound.

To overcome the deficiency of this theory many theories were developed, nonclassical

thermoelasticity theories involving hyperbolic-type heat transport equations admitting
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finite speeds for thermal signals have been formulated either by incorporating a flux-rate

term into Fourier’s law or by including temperature-rate among the constitutive variables.

By the end of last century Green and Naghdi [14, 16, 17] introduced three new types

of thermoelastic theories based on replacing the usual entropy inequality with an entropy

balance law. In each of these theories, the heat flux is given by a different constitutive

assumption. As a result three theories were obtained and respectively called thermoelas-

ticity type I, type II and type III. When the theory of type I is linearized we obtain the

classical system of thermoelasticity. The systems arising in thermoelasticity of type III

are of dissipative nature whereas those of type II do not sustain energy dissipation. To

understand these new theories and their applications, several mathematical and physical

contributions have been made; see for example, Chandrasekharaiah [6, 7, 8], Quintanilla

[53, 54, 55] and Quintanilla and Racke [59]. In particular, we mention the survey paper of

Chandrasekharaiah [6], in which the author focussed attention on the work done during

two decades. He reviewed the theory of thermoelasticity with thermal relaxation and

the temperature rate dependent thermoelasticity. He also described the thermoelasticity

without dissipation and clarified its properties.

Thermoelasticity of type II was introduced by Green and Naghdi [14] as an alternative

theory to describe thermomechanical interactions in elastic materials. They proposed the

use of the thermal displacement variable

ψ =

∫ t

t0

θ(x, s)ds+ ψ0 = 0

instead of the difference temperature variable θ. In this theory, called thermoelasticity
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without energy dissipation, the heat is allowed to propagate by means of thermal waves

but without energy dissipation. This theory has been the subject of some interesting

works in the last two decades.

Cicco and Diaco [11] derived a linear theory of thermoelastic materials with voids

that does not sustain energy dissipation and established uniqueness and continuous de-

pendence theorems. Quintanilla [56] proved the well posedness of the linear theory of

thermoelasticity without energy dissipation by means of semigroup theory. Ieşan and

Quintanilla [28] derived a linear theory of thermoelastic bodies with microstructure and

microtemperature based on Green and Naghdi balance

Recently, Leseduarte et al. [33] studied the system of thermoelasticity without energy

dissipation of the form
ρutt = µuxx + γφx − βψtx, in (0, π)× IR+

Jφtt = bφxx +mψxx − ξφ+ dψt − τφt − γux, in (0, π)× IR+

αψtt = kψxx +mφxx − dφt − βutx, in (0, π)× IR+

where u and φ are the displacement and the volume fraction respectively, and proved

that when m and β are not vanish the system is exponentially stable. However, if one

of the parameters m or β vanishes, then we lost the exponential decay. Note that β

relates the displacement and the temperature and m relates the volume fraction with the

thermal displacement, these parameters are responsible of the strong coupling among the

variables.

The theory of thermoelasticity of type III is characterized by the heat-flux constitutive
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equation

q + κ∗τx + κ̃θx = 0

where τ denotes the thermal displacement which satisfies τt = θ and κ∗, κ̃ are positive

constants.

In [59] Quintanilla and Racke considered a system of thermoelasticity of type III of the

form 
utt − αuxx + βθx = 0 in (0, L)× IR+

θtt − δθxx + γuttx − κθtxx = 0 in (0, L)× IR+

u (0, x) = u0 (x) , ut (0, x) = u1 (x) , θ(0, x) = θ0 (x) , θt (0, x) = θ1 (x) ,

where u is the displacement, θ is the temperature difference and α, β, δ, γ, κ are constitu-

tive positive constants. They used the spectral analysis method and the energy method

to establish an exponential stability in the one-dimension setting for different boundary

conditions. We recall also the contribution of Quintanilla [57], in which he proved that

solutions of thermoelasticity of type III converge to solutions of the classical thermoelas-

ticity as well as to solutions of thermoelasticity without energy dissipation.

Zhung and Zuazua [68] studied the long time behavior of the solution of the system

utt − µ∆u− (µ+ λ)∇ (div u) +∇θ = 0 in Ω× (0,+∞)

θtt −∆θ −∆θt + div utt = 0 in Ω× (0,+∞)

u (0, x) = u0 (x) , ut (0, x) = u1 (0) , θ (0, x) = θ0 (x) , θt (0, x) = θ1 (x) , in Ω,

u (t, x) = θ (t, x) = 0 on ∂Ω× (0,∞)
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and proved that under suitable conditions on the domain the energy of the system decays

exponentially. But for most domains in two dimension space, the energy of smooth

solutions decays in a polynomial rate.

Messaoudi and Said Houari [41] considered the system

ρ1ϕtt − k(ϕx + ψ)x = 0, in (0, 1)× IR+

ρ2ψtt − αψxx + k(ϕx + ψ)− βθx = 0, in (0, 1)× IR+

ρ3θtt − δθxx + γψttx − kθtxx = 0, in (0, 1)× IR+

ϕ (x, 0) = ϕ0 (x) , ψ (x, 0) = ψ0 (x) , θ (x, 0) = θ0 (x) , 0 ≤ x ≤ 1

ϕt (x, 0) = ϕ1 (x) , ψt (x, 0) = ψ1 (x) , θt (x, 0) = θ1 (x) , 0 ≤ x ≤ 1

ϕ (x, t) = ψ (x, t) = θx (x, t) = 0, x = 0, 1, t > 0.

and proved an exponential decay result similar to the one proved by Munõz Rivera and

Racke [47] for classical thermoelasticity. Also, Messaoudi and Said Houari [42] considered

a Timoshenko-type system of type III of the form

ρ1ϕtt −K(ϕx + ψ)x = 0, in (0, 1)× IR+

ρ2ψtt − bψxx +K(ϕx + ψ)

+

∫ +∞

0

g (s)ψxx (x, t− s) ds+ βθx = 0, in (0, 1)× IR+

ρ3θtt − δθxx + γψttx − kθtxx = 0, in (0, 1)× IR+

ϕ (x, 0) = ϕ0 (x) , ψ (x, 0) = ψ0 (x) , θ (x, 0) = θ0 (x) , 0 ≤ x ≤ 1

ϕt (x, 0) = ϕ1 (x) , ψt (x, 0) = ψ1 (x) , θt (x, 0) = θ1 (x) , 0 ≤ x ≤ 1

ϕ (x, t) = ψ (x, t) = θx (x, t) = 0, x = 0, 1, t > 0.

and proved that the above system decays exponentially (respectively polynomially) if g
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decays exponentially (respectively polynomially) in the case of equal speed
(ρ1
K

=
ρ2
b

)
.

However, the decay is of polynomial type otherwise
(ρ1
K
6= ρ2

b

)
. This result has been

improved recently by Guesmia et al. [21] and a general decay rate was obtained.

This thesis

In this thesis we studied some problems which arising in porous thermoelasticity and

nonclassical thermoelasticity theories. Several decay results has been established which

improve and extend earlier ones.

This thesis is divided into four chapters. In chapter two we give a short summary of

the derivation of the equations in porous thermoelasticity.

In chapter 3 we studied a porous thermoelastic system of memory type, namely,

ρ1ϕtt − k(ϕx + ψ)x + θx = 0 in (0, 1)× IR+,

ρ2ψtt − αϕxx + k(ϕx + ψ) + θ +

∫ t

0

gt− s)ϕxx(x, s)ds = 0 in (0, 1)× IR+,

ρ3θt − κθxx + ϕtx + ψt = 0 in (0, 1)× IR+,

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = θ(0, t) = θ(1, t) = 0 t ≥ 0,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), x ∈ (0, ),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), θ(x, 0) = θ0(x) x ∈ (0, 1),

(1.6)

where ϕ, ψ, θ are the longitudinal displacement, the volume fraction and the tempera-

ture difference respectively, ρ1, ρ2, ρ3, k, α, κ are positive constants and g is nonincreasing

function. We adopted some argument of [52, 63] and established a general decay result of
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the solutions of (1.6) for which exponential and polynomial decay rates of [63] are merely

special cases. Two papers were appear, one concerning the case of equal speed the other

concerning the case of nonequal speed.

Chapter 4 is devoted to the study of a porous problem in non classical thermoelastic-

ity. A linear damped system in one-dimensional porous thermoelasticity of type III was

considered and several decay rate results have obtained.

Precisely, we have study the following system

ρ1ϕtt − k(ϕx + ψ)x + θx = 0, in (0, 1)× IR+

ρ2ψtt − αψxx + k(ϕx + ψ)− θ + aψt = 0, in (0, 1)× IR+

ρ3θtt − κθxx + ϕxtt + ψtt − kθtxx = 0, in (0, 1)× IR+

ϕ (x, 0) = ϕ0 (x) , ψ (x, 0) = ψ0 (x) , θ (x, 0) = θ0 (x) , 0 ≤ x ≤ 1

ϕt (x, 0) = ϕ1 (x) , ψt (x, 0) = ψ1 (x) , θt (x, 0) = θ1 (x) , 0 ≤ x ≤ 1

ϕ (x, t) = ψ (x, t) = θ (x, t) = 0, x = 0, 1, t > 0.

(1.7)

We use the multiplier techniques and proved that the energy of system (1.7) decays

exponentially if (1.3) holds and that the rate of decay is of polynomial type otherwise.

Also, in chapter 4, we improved an earlier result obtained by Messaoudi and Houari

[41] for the following Timoshenko-type system with thermoelasticity type III
ρ1ϕtt −K(ϕx + ψ)x = 0 in (0,∞)× (0, 1),

ρ2ψtt − bψxx +K(ϕx + ψ) + γθx = 0 in (0,∞)× (0, 1),

ρ3θtt − δθxx + γψttx − kθtxx = 0 in (0,∞)× (0, 1).

(1.8)

They established an exponential decay result for the weak solutions of (1.7) under
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the condition In the present thesis we consider (1.8), for the case and prove a polynomial

decay result for strong solutions.



Chapter 2

Derivation of equations

In this chapter we shall give a short summary of the three-dimensional theory of porous

solids in the framework of thermal conduction.

Consider a homogeneous porous thermoelastic body B0 which at some instant t0, oc-

cupies the reference configuration Ω, a bounded region of the euclidean three-dimensional

space IR3, with smooth boundary ∂Ω. The motion of the body is referred to a fixed system

of rectangular Cartesian axes Oxi (i = 1, 2, 3). We denote by Bt the configuration of the

body at time t ≥ t0, by u (x, t) = X (x, t)− x the displacement vector of a material point

with reference configuration x and by F = I + ∇u =

[
∂Xi

∂xj

]
the deformation gradient,

where X = X (x, t) is the position of this point at time t. We assume that the motion

equation is invertible, such that detF 6= 0. In this chapter, summation convention over

repeated subscripts are used as well as the comma followed by subscripts for partial dif-

ferentiation over the space coordinates while the differentiation over t is denoted by a dot

19
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over the function.

We adopt the approach of Goodman and Cowin [13], where, for each t, the region Bt is

endowed with a structure given by two real valued set fuctions Mt and Vt which repre-

sent the distributed mass and the distributed volume a time t, respectively and satisfy

the following axioms

- Mt and Vt are non-negative measures defined,

- Vt (Pt) ≤ V (Pt) for all Pt ⊂ Bt, where V is the Lebesgue volume measure,

- Mt is absolutely continuous with respect to Vt.

Thus, for all Borel subsets Pt ⊂ Bt, we have

Vt (Pt) =

∫
Pt
νdV (2.1)

and

Mt (Pt) =

∫
Pt
γνdVt =

∫
Pt
ρdV, (2.2)

where ν is the volume fraction, γ is the matrix density, ρ = γν is the bulk density and dV

is the image, at time t, of an element dV0 of the bulk volume in the reference configuration.

Moreover, the function ν has the property that, for almost every X ∈ Bt,

0 ≤ ν (X, t) ≤ 1.

Remark. Let dV0 be the infinitesimal volume element with sides dx, dy and dz in the

reference configuration and let dV be the image of dV0 in the current configuration. For

every side dw = dx, dy or dz let dw1, dw2, dw3 be the components of the vector dw, that
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is

dw = (dw1, dw2, dw3)
T , for w = x, y, z.

It is well known that

dV0 = dz · (dx ∧ dy)

= det (dz, dx, dy) = εijkdzidxjdyk,

where

εijk =


1, for (i, j, k) = (1, 2, 3) , (2, 3, 1) , (3, 1, 2)

−1, for (i, j, k) = (1, 3, 2) , (2, 1, 3) , (3, 1, 2)

0, otherwise.

Let dX, dY and dZ be the images of dx, dy and dz at time t. Thus,

(dW1, dW2, dW3)
T = F (dw1, dw2, dw3)

T ,W = X, Y, Z and w = x, y, z,

or

dWi = Fikdwk.

The element of bulk volume in the current configuration dV is given by

dV = εijkdZidXjdYk = εijkFildzlFjmdxmFkndyn

= εijkFilFjmFkndzldxmdyn = εlmn |detF | dzldxmdyn,

which yields

dV = JdV0,
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where J = |detF | > 0.

By differentiation of (2.1), it follows that an element of distributed volume in the

instantaneous configuration is related to an element of the bulk volume by the relation

dVt = νdV.

Similarly, in the reference configuration

dV0 = ν0dV0.

Thus, an element of distributed volume transforms according to the relation

dVt =
ν

ν0
JdV0. (2.3)

From (2.3) the constraint of incompressible distributed volume can be expressed by the

equation

ν

ν0
J = 1.

Time material derivative of time dependent volume integral

Let φ (t,X (t)) be a scalar function, differentiable with respect to t and Xi in (0,+∞)×

Bt, then

d

dt

∫
Pt
φ (t,X (t)) dV =

∫
Pt

(
∂φ (t,X (t))

∂t
+
∂φ (t,X (t))

∂Xi

∂Xi

∂t

)
dV+

∫
∂Pt

φ (t,X (t))
dXi

dt
.nidS

where n = (n1, n2, n3) is the outward normal vector on the surface ∂Pt and dS is a surface

element of ∂Pt. Using the divergence theorem we get

d

dt

∫
Pt
φ (t,X (t)) dV =

∫
Pt

(
∂φ (t,X (t))

∂t
+
∂φ (t,X (t))

∂Xi

∂Xi

∂t

)
dV+

∫
Pt
φ (t,X (t)) div υ (t) dV,
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=

∫
Pt

(
∂φ (t,X (t))

∂t
+
∂φ (t,X (t))

∂Xi

υi (t) + φ (t,X (t)) div υ (t)

)
dV,

which can be written

d

dt

∫
Pt
φ (t, x (t)) dV =

∫
Pt

(
·
φ+ φ div υ

)
dV,

where
·
φ =

dφ

dt
and υ =

∂X

∂t
is the velocity of the material point X.

Mass conservation law

Let ρ be the mass density per unit of volume in a fixed region Pt, then, differentiating

integral (2.2), the change in mass inside Pt will be

d

dt

∫
Pt
ρdV =

∫
Pt

∂ρ

∂t
dV.

The rate of mass flow out the volume Pt is

−
∫
∂Pt

ρυ.ndA,

where dA is an area element in ∂Pt and n is the unit outward normal vector to dA.

The mass conservation law states that the rate of change in mass within a fixed volume

mast be equal to rate of flow through the boundaries. Therefore∫
Pt

∂ρ

∂t
dV = −

∫
∂Pt

ρυ.ndA

which, using the divergence theorem, can be written∫
Pt

(
∂ρ

∂t
+ div (ρυ)

)
dV = 0.
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For ρ = γν with fixed γ, the last formula rewritten∫
Pt
γ

(
∂ν

∂t
+∇ν.υ + ν div υ

)
dV = 0

for all subset Pt ⊂ Bt, therefore,

·
ν + ν div υ = 0,

where

·
ν =

∂ν

∂t
+∇ν.υ

is the material derivative of ν.

As in Goodman and Cowin [13] and Ieşan [24, 27] we postulate an energy balance at

time t, for an arbitrary region Pt of the body Bt, in the form

1

2

d

dt

∫
Pt
ρ

(
|υ|2 + κ

∣∣∣ ·ν∣∣∣2) dV+
d

dt

∫
Pt
ρεdV =∫

Pt
ρ
(
fiυi + l

·
ν + s

)
dV +

∫
∂P

(
Tjiυi + hj

·
ν + qj

)
njdA

where Tij is the first Piola-Kirchhoff stress tensor, ε is the internal energy, κ is the equili-

brated inertia, fi is the body force, l is the extrinsic equilibrated body force, s is the heat

supply, hj is the equilibrated stress vector, qj is the heat flux vector across the surface

∂P .

The above formula mains that the change of the kinetic and internal energy in Pt for the

interval time dt is equal to the work of mechanical forces and the change of heat in the

same time dt,

d (Ekin + U)

dt
=
dW

dt
+
dQ

dt
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where,

dEkin
dt

=
1

2

d

dt

∫
Pt
ρ

(
|υ|2 + κ

∣∣∣ ·ν∣∣∣2) dV =

∫
Pt
ρ
(
υi
·
υi + κ

·
ν
··
ν
)
dV

is the time derivative of kinetic energy,

dU

dt
=

d

dt

∫
Pt
ρεdV =

∫
Pt
ρ
·
εdV

is the time derivative of internal energy,

dW

dt
=

∫
Pt
ρ
(
fiυi + l

·
ν
)
dV +

∫
A

(
Tjiυi + hj

·
ν
)
njdA

is time derivative of work, and

dQ

dt
=

∫
Pt
ρsdV +

∫
A

qjnjdA

is time derivative of the heat.

In the absence of the body force, the heat supply and the extrinsic equilibrated body

force the energy balance has the form∫
Pt
ρ
(
υi
·
υi + κ

·
ν
··
ν
)
dV +

∫
Pt
ρ
·
εdV =

∫
A

(
Tjiυi + hj

·
ν + qj

)
njdA. (2.4)

Following Green and Revilin [18] we consider a second motion which differs from the

given motion only by a constant superposed rigid body translational velocity, the body

occupying the same position a time t and we assume that
·
ε, h, Tij and q are unaltered

by such superposed rigid body velocity. Thus, (2.4) is also true when υi is replaced by

υi+ai, where ai are arbitrary constants, all others terms being unaltered. By subtraction

we get [∫
Pt
ρ
·
υidV −

∫
A

TjinjdA

]
ai = 0
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for all arbitrary constants ai. It follows that∫
Pt
ρ
·
υidV =

∫
A

TjinjdA

which, using the divergence theorem, gives,

Tji,j = ρ
··
Xi, (2.5)

where
·
υi =

··
Xi. Using the divergence theorem, again, we get∫

A

(
Tjiυi + hj

·
ν + qj

)
njdA =

∫
Pt

(
Tji,jυi + Tjiυi,j + hj,j

·
ν + hj

·
ν,j + qj,j

)
dV (2.6)

In view of (2.5), (2.6), the relation (2.4) reduces to∫
Pt
ρ
(
·
ε+ κ

·
ν
··
ν
)
dV =

∫
Pt

(
Tjiυi,j + qj,j + hj,j

·
ν + hj

·
ν,j

)
dV (2.7)

which holds for any region Pt ⊂ Bt. Thus,

ρ
·
ε = Tjiυi,j + qj,j + hj

·
ν ,j − f

·
ν (2.8)

where

f = ρκ
··
ν − hj,j (2.9)

is a dependent constitutive variable called the intrinsic equilibrated body force.

We consider a motion of the body which differs from the given motion only by superposed

uniform rigid body angular velocity, the body occupying the same position at time t and

assume that
·
ε, Tij, hj and qj are unaltered by such motion. The equation (2.7) holds when
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υi,j is replaced by υi,j + σij, where σij is a constant skew symmetric tensor representing a

constant rigid body angular velocity. It follows that

σij

∫
Pt
TjidV = 0

for all skew symmetric tensors σij. Since

∫
Pt
TjidV is independent of σij, it follows that

σij

∫
Pt

(Tji − Tij) dV = 0

for all arbitrary region Pt, so that Tij = Tji. Thus (2.8) becomes

ρ
·
ε =

1

2
Tji

d

dt
(Xi,j +Xj,i) + qj,j + hj

·
ν ,j − f

·
ν.

If we denote by

eij =
1

2
(ui,j + uj,i) ,

(2.8) reduces to

ρ
·
ε = Tji

·
eij + qj,j + hj

·
ν ,j − f

·
ν. (2.10)

To derive the temperature equation, we postulate an entropy production inequality,∫
Pt
ρ
·
ηdV −

∫
A

q

T
dA ≥ 0, (2.11)

where η is the specific entropy and T is the absolute temperature which is assumed to

be always positive.

We apply this inequality to a region which in the reference state was a tetrahedron

bounded by coordinate planes through the point X and by a plane whose unit normal is

n, we obtain

q = qini.
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Consequently, (2.11) can be written∫
Pt
ρ
·
ηdV −

∫
∂Pt

( q
T

)
i
nidA ≥ 0

and divergence theorem yields∫
Pt
ρ
·
ηdV −

∫
Pt

qj,jT − qjT,j
T 2

dV ≥ 0.

The fact that this inequality holds for all arbitrary region Pt, lead to

ρT
·
η − qj,j +

1

T
qjT,j ≥ 0. (2.12)

The Helmholtz free energy is defined by

ψ = ε− Tη (2.13)

and we introduce

ϕ = ν − ν0, θ = T − T0,

where ν0 is the volume fraction filed in the reference configuration and T0 is the constant

absolute temperature of the body in the reference configuration.

We restrict our attention to the linear theory of thermoelastic materials where the consti-

tutive variables are eij, ϕ, ϕ,i, θ and θ,i which are invariant under superposed rigid body

motions. Consistent with this theory, it is assumed that the overall response of a porous

material depends on eij, ϕ, ϕ,i, θ and θ,i, then, at each point X ∈ Ω and for all t ≥ 0, we
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have

σ = σ̂ (eij, ϕ, ϕ,i, θ, θ,i)

Tij = T̂ij (eij, ϕ, ϕ,i, θ, θ,i)

f = f̂ (eij, ϕ, ϕ,i, θ, θ,i)

h = ĥ (eij, ϕ, ϕ,i, θ, θ,i) ,

q = q̂ (eij, ϕ, ϕ,i, θ, θ,i) ,

(2.14)

where, σ = ρψ. With the help of (2.10) and (2.13), the inequality (2.12) becomes

−ρη
·
θ + Tji

·
eij − f

·
ϕ− ·

σ + hi
·
ϕ,i +

1

T
qiθ,i ≥ 0. (2.15)

The material derivative
·
σ of σ is given by

·
σ =

∂σ

∂t
+

∂σ

∂eij

·
eij +

∂σ

∂ϕ

·
ϕ+

∂σ

∂ϕ,i

·
ϕ,i +

∂σ

∂θ

·
θ +

∂σ

∂θ,i

·
θ,i. (2.16)

Thanks to (2.16), the insertion of constitutive functions (2.14) in the inequality (2.15),

yields

−∂σ
∂t

+

(
Tji −

∂σ

∂eij

)
·
eij −

(
∂σ

∂ϕ
+ f

)
·
ϕ+

(
hi −

∂σ

∂ϕ,i

)
·
ϕ,i

−
(
ρη +

∂σ

∂θ

)
θ − ∂σ

∂θ,i

·
θ,i +

1

T
qiθ,i ≥ 0.

(2.17)

In the theory of Green and Naghdi [14],[15],[16] the entropy inequality (2.17) must be sat-

isfied identically for all processes and will place restrictions on the constitutive functions.

Thus, (2.17) leads to

σ = σ̂ (eij, ϕ, ϕ,i, θ) ,
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Tji =
∂σ

∂eij
, f = −∂σ

∂ϕ
(2.18)

hi =
∂σ

∂ϕ,i
, ρη = −∂σ

∂θ

and

qiθ,i ≥ 0. (2.19)

The inequality (2.19) implies that

qi = 0, if θ,i = 0. (2.20)

Assuming that the initial body is free from stresses and has zero intrinsic body force and

that the porous medium is of viscoelastic type, the linear theory yields

σ =
1

2
Cijrseijers − βijeijθ −

1

2
αθ2 +

1

2
Aijϕ,iϕ,j +Bijϕeij

+Dijkeijϕ,k + diϕϕ,i +
1

2
ξϕ2 −mθϕ− αiϕ,iθ (2.21)

+
1

2

∫ t

0

g (t− s)ϕ2
,i (s) ds.

We note that experiments showed that when subject to sudden changes, the viscoelastic

response not only depends on the current state of stress but also on all past states of

stress. This leads to a constitutive relationship, between the stress and the stain, given

by a memory term which appears in the form of a convolution of the stain with a relaxation

function.
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The constitutive coefficients in (2.21) have the following symmetries

Cijrs = Crsij = Cjirs, βij = βji,

Dijk = Djik, Aij = Aji, Bij = Bji.

Using (2.18), (2.20) and (2.21) we obtain the following constitutive equations

Tji = Cijrsers +Bijϕ+Dijkϕ,k − βijθ,

hi = Aijϕ,j +Drsiers + diϕ− αiθ +

∫ t

0

g (t− s)ϕ,i (s) ds,

f = −Bijeij − ξϕ− diϕ,i +mθ, (2.22)

ρη = βijeij + aθ +mϕ+ αiϕ,i

qi = θ,i

where g is the relaxation function. In the case of an isotropic materials, the constitutive

equations (2.22) becomes

Tji =λerrδij + 2µeij + bϕδij − βθδij,

hj =αϕ,j +

∫ t

0

g (t− s)ϕ,j (s) ds,

f =− berr − ξϕ+mθ,

ρη =βerr + aθ +mϕ,

qi =θ,i,

(2.23)

where δij is the Kronecker’s delta, λ, µ are the Lamé moduli and b, α, β, ξ,m, a are con-

stitutive coefficients.
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In the linear theory, the insertion of

ρ
·
ε =

·
σ + ρT

·
η + ρ

·
Tη

in (2.10) using (2.18), reduces the equation of energy (2.10), to

ρT0
·
η = qi,i. (2.24)

Also, the equation of motion (2.5) can be written

ρ
··
ui = Tji,j.

For j = i, Tji we obtain

Tii = λur,r + 2µui,rδir + bϕ− βθ

= (λ+ 2µ)ui,kδik + bϕ− βθ + λ (1− δik)uk,k

and for j 6= i, we have

Tji = µ (ui,j + uj,i) ,

then,

ρ
··
ui = Tji,j = µui,jj + µuj,ij + λur,ri + 2µui,ii + bϕ,i − βθ,i

which can be written in the form

ρ
··
ui = µ∆ui + (λ+ µ) (div u),i + bϕ,i − βθ,i.

The equation (2.9) becomes

ρκ
··
ϕ = f + hj,j.
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By the insertion of constitutive equations (2.23), the above equation takes the form

ρκ
··
ϕ = αϕ,jj − buj,j − ξϕ+mθ +

∫ t

0

g (t− s)ϕ,jj (s) ds

which also written

ρκ
··
ϕ = α∆ϕ− b div u− ξϕ+mθ +

∫ t

0

g (t− s) ∆ϕ (x, s) ds.

The insertion of (2.23) in (2.24) gives the heat equation

a
·
θ = θ,ii − ρT0β

·
uj,j − ρT0m

·
ϕ

which is also written

a
·
θ = ∆θ − ρT0βdiv

·
u− ρT0m

·
ϕ.

Finally the linearized system takes the form
ρutt = µ∆u+ (λ+ µ)∇ (div u) + b∇ϕ− β∇θ,

ρκϕtt = α∆ϕ− b div u− ξϕ+mθ +

∫ t

0

g (t− s) ∆ϕ (x, s) ds,

aθt = ∆θ − ρT0β div ut − ρT0mϕt.

(2.25)

In the one-dimensional case system (2.25) takes the form
ρutt = (λ+ 2µ)uxx + bϕx − βθx,

ρκϕtt = αϕxx − bux − ξϕ+mθ +

∫ t

0

g (t− s)ϕxx (x, s) ds,

a
·
θ = θxx − ρT0βutx − ρT0mϕt

which is the system studied in chapter 3.



Chapter 3

General decay in porous

thermoelasticity

3.1 Introduction

In this chapter we investigate the asymptotic behavior of the solutions of a one-dimensional

porous thermoelastic problem with two dissipations, porous dissipation of memory type

and thermal dissipation arising in the heat equation.

It is well known that the combination of a thermal or viscoelastic dissipation with

microthermal or porous dissipation leads to an uniform stability. In addition, if dissipation

of memory type is present then the rate of decay depends on the relaxation function,

Precisely, the decay is of exponential rate if the kernel decays exponentially and the decay

is polynomial if the kernel decays polynomially.

34
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Ammar Khodja et al.[3] considered a linear Timoshenko-type system with memory of

the form
ρ1ϕtt − k(ϕx + ψ)x = 0, in(0, L)× IR+,

ρ2ψtt − bψxx +

∫ t

0

g(t− s)ψxx(s)ds+ k(ϕx + ψ) = 0, in(0, L)× IR+,

together with homogeneous boundary conditions. They used the multiplier techniques

and proved that the system is uniformly stable if and only if the wave speeds are equal(ρ1
k

=
ρ2
b

)
and g decay uniformly. Guesmia and Messaoudi [21] obtained the same uni-

form decay result under weaker conditions on the regularity and the growth of the re-

laxation function. Also Messaoudi and Mustafa [40] established a more general decay

estimate for a wider class of relaxation function.

In porous thermoelasticity, Soufyane [63] considered the following one-dimensional

porous thermoelastic system of memory type
ϕtt = ϕxx + ψx − θx, in (0, L)× IR+,

ψtt = ψxx − ϕx − ψ + θ −
∫ t

0

g(t− s)ψxx(s)ds, in (0, L)× IR+,

θt = θxx − ϕtx − ψt, in (0, L)× IR+,

with Dirichlet boundary conditions and proved that the solutions decay exponentially

(polynomially) if the relaxation function g decays exponentially (polynomially).
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In this chapter we are concerned with the following system

ρ1ϕtt − k(ϕx + ψ)x + θx = 0, in (0, 1)× IR+

ρ2ψtt − αψxx + k(ϕx + ψ)− θ +
∫ t
0
g(t− s)ψxx(x, s)ds = 0, in (0, 1)× IR+

ρ3θt − κθxx + ϕxt + ψt = 0, in (0, 1)× IR+

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = θ (0, t) = θ(1, t) = 0, t ≥ 0

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), θ(x, 0) = θ0(x), x ∈ (0, 1)

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, 1).

(1.1)

where ρ1, ρ2, ρ2, k, α, κ are positive constants and g : IR+ → IR+ is a nonincreasing func-

tion. We will adopt some arguments of [63] and [40] to establish a general decay of ”weak”

solutions, from which the exponential and polynomial decay results of [63] are only special

cases.

3.2 Preliminaries

In this section, we present some notations and material needed in our work then, we

present our hypotheses and state, without proof, a global existence result and prove

several technical lemmas. For the relaxation function g we assume

(H1) g : IR+ → IR+ is a differentiable function satisfying

g(0) > 0, α−
∞∫
0

g(s)ds = l > 0

(H2) There exists a nonincreasing differentiable function ξ : IR+ → IR+ satisfying

g′(t) ≤ −ξ(t)g(t), ∀t ≥ 0.
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Example. We give here an example of a function which satisfies (H1) and (H2) and is

not of exponential or polynomial decay

g(t) = ae−b(1+t)
ν

, 0 < ν < 1,

and a and b to chosen properly.

Proposition 2.1. Assume that (H1), (H2) hold, then, for any ((ϕ0, ϕ1) , (ψ0, ψ1)) ∈

(H1
0 (0; 1)× L2 (0; 1))

2
and θ0 ∈ H1

0 (0; 1) , problem (1.1) has a unique global solution

(ϕ, ψ) ∈ (C(IR+;H1
0 (0; 1)) ∩ C1(IR+;L2(0; 1)))2,

θ ∈ C(IR+;L2(0; 1)) ∩ L2(IR+;H1
0 (0; 1)).

(2.1)

Moreover, if

((ϕ0, ϕ1) , (ψ0, ψ1)) ∈
(
H2 (0; 1) ∩H1

0 (0; 1)×H1
0 (0; 1)

)2
, θ0 ∈ H1

0 (0; 1)

then (1.1) has a unique (strong) solution

(ϕ, ψ) ∈
(
C
(
IR+;H2 (0; 1) ∩H1

0 (0; 1)
)
∩ C1

(
IR+;H1

0 (0; 1)
)
∩ C2

(
IR+;L2 (0; 1)

))2
,

θ ∈ C
(
IR+;H1

0 (0; 1)
)
∩ C1

(
IR+;L2 (0; 1)

)
.

Proof. The proof of this proposition can be established by using the well-known Galerkin

method. �

We introduce the first order energy of Problem (1.1) by

E(t) =
1

2

∫ 1

0

[
ρ1ϕ

2
t + ρ2ψ

2
t + ρ3θ

2 +

(
α−

∫ t

0

g(s)ds

)
ψ2
x + k (ϕx + ψ)2

]
+

1

2
g ◦ ψx

(2.2)
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where for v ∈ L2 (0; 1) ,

(g ◦ v)(t) =

∫ 1

0

∫ t

0

g(t− s)(v(x, t)− v(x, s))2dsdx.

It is clear that, by (H1), E(t) ≥ 0.

Lemma 2.1. Under assumptions (H1) and (H2), we have∫ 1

0

ψt(t)

∫ t

0

g(t− s)ψxx(s)dsdx =
1

2

d

dt

[
g ◦ ψx −

(∫ t

0

g(s)ds

)∫ 1

0

ψ2
x(t)dx

]
− 1

2
g′ ◦ ψx +

1

2
g(t)

∫ 1

0

ψ2
x(t)dx.

(2.3)

Proof. Integrating by parts and using the boundary conditions we get∫ 1

0

ψt(t)

∫ t

0

g(t− s)ψxx(s)dsdx = −
∫ 1

0

∫ t

0

g(t− s)ψxt(t)ψx(s)dsdx

= −
∫ 1

0

∫ t

0

g(t− s)ψxt(t) [ψx(s)− ψx(t)] dsdx−
∫ 1

0

∫ t

0

g(t− s)ψxt(t)ψx(t)dsdx

=
1

2

d

dt

∫ 1

0

∫ t

0

[
g(t− s)[ψx(s)− ψx(t)]2ds

]
dx

−1

2

∫ 1

0

∫ t

0

g′(t− s) [ψx(s)− ψx(t)]2 dsdx−
1

2

(∫ t

0

g(s)ds

)∫ 1

0

d

dt
ψ2
x(t)dx.

=
1

2

d

dt

[
g ◦ ψx −

(∫ t

0

g(s)ds

)∫ 1

0

ψ2
x(t)

]
− 1

2
g′ ◦ ψx +

1

2
g (t)

∫ 1

0

ψ2
x(t). �

Lemma 2.2. Assume that (H1) holds. Then∫ 1

0

(∫ t

0

g(t− s)(v(t)− v(s))ds

)2

dx ≤ c0g ◦ vx

for all v ∈ H1
0 (0; 1) ,where c0, here and throughout this section, denotes a generic positive

constant.

Proof. By using Schwarz and Poincaré’s inequalities, we get∫ 1

0

(∫ t

0

g(t− s)(v(t)− v(s))ds

)2

dx =

∫ 1

0

(∫ t

0

g
1
2 (t− s)g

1
2 (t− s)(v(t)− v(s))ds

)2

dx
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≤
∫ 1

0

(∫ t

0

g(s)ds

)(∫ t

0

g(t− s)(v(t)− v(s))2ds

)
dx

≤
(∫ t

0

g(s)ds

)∫ 1

0

∫ t

0

g(t− s)(v(t)− v(s))2dsdx

≤
(∫ t

0

g(s)ds

)∫ t

0

g(t− s)
(∫ 1

0

(v(t)− v(s))2dx

)
ds

≤
(∫ t

0

g(s)ds

)∫ t

0

g(t− s)
(
C

∫ 1

0

(vx(t)− vx(s))2dx
)
ds

≤ c0

∫ 1

0

∫ t

0

g(t− s)(vx(t)− vx(s))2dsdx = c0g ◦ vx. �

Remark 2.2. Similarly, we have∫ 1

0

(∫ t

0

g(t− s)(vx(t)− vx(s))ds
)2

dx ≤ c0g ◦ vx.

and ∫ 1

0

(∫ t

0

−g′(t− s)(v(t)− v(s))ds

)2

dx ≤ −c0g′ ◦ vx.

Lemma 2.3. There exists a constant c0 > 0 such that∫ 1

0

(
ψx −

∫ t

0

g (t− s)ψx (s) ds

)2

dx ≤ c0

∫ 1

0

ψ2
xdx+ c0g ◦ ψx

Proof. Using the fact that (a+ b)2 ≤ 2a2 + 2b2 and Remark 2.2, we obtain∫ 1

0

(
ψx −

∫ t

0

g (t− s)ψx (s) ds

)2

dx ≤ 2

∫ 1

0

ψ2
xdx+ 2

∫ 1

0

(∫ t

0

g (t− s)ψx (s) ds

)2

dx

≤ 2

∫ 1

0

ψ2
xdx+ 2

∫ 1

0

(∫ t

0

g (t− s) (ψx (s)− ψx (t) + ψx (t)) ds

)2

dx
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≤ 2

∫ 1

0

ψ2
xdx+ 4

∫ 1

0

ψ2
x (t)

(∫ t

0

g (t− s) ds
)2

dx

+4

∫ 1

0

(∫ t

0

g (t− s) (ψx (s)− ψx (t)) ds

)2

dx

≤ c0

∫ 1

0

ψ2
xdx+ c0g ◦ ψx. �

Lemma 2.4. Assume that (H1) holds . Then, there exists a positive constant c0 such

that ∫ 1

0

u

∫ t

0

g(t− s)vx(s)dsdx ≤ ε

∫ 1

0

u2dx+
c0
ε

∫ 1

0

v2xdx+
c0
ε
g ◦ vx

for all ε > 0 and for all u ∈ L2 (0, 1) and v ∈ H1 (0, 1) .

Proof. Using Young’s inequality, we get∫ 1

0

u

∫ t

0

g(t− s)vx(s)dsdx ≤ε
∫ 1

0

u2dx+
c0
ε

∫ 1

0

(∫ t

0

g(t− s)vx(s)ds
)2

dx

≤ε
∫ 1

0

u2dx+
c0
ε

∫ 1

0

(∫ t

0

g(s)ds

)2

v2x (t) dx

+
c0
ε

∫ 1

0

(∫ t

0

g(t− s) [vx(s)− vx (t)] ds

)2

dx.

Then, the result is obtained by using Remark 2.2. �

3.3 General decay (equal-speed case)

In this section we state and prove the main general decay result for solutions of system

(1.1). All calculations are done for strong solutions, the results remain valid for weak

solutions by simple density arguments. We start with the following

Theorem 3.1. Let ((ϕ0, ϕ1) , (ψ0, ψ1)) ∈ (H1
0 (0, 1)× L2 (0, 1))

2
and θ0 ∈ H1

0 (0, 1) .
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Assume that (H1) and (H2) hold and that

k

ρ1
=

α

ρ2
. (3.1)

Then, there exist two positive constants ω and λ, for which the solution of Problem (1.1)

satisfies

E (t) ≤ λe
−ω

∫ t

0

ξ (s) ds
∀t ≥ 0.

The proof of this theorem will be established through several lemmas.

Lemma 3.2. Under assumptions (H1), (H2), the energy satisfies, along the solution of

(1.1),

E ′ (t) = −κ
2

∫ 1

0

θ2xdx+
1

2
g′ ◦ ψx −

1

2
g (t)

∫ 1

0

ψ2
x(x, t)dx ≤ 0. (3.2)

Proof. Multiplying the first equation of (1.1) by ϕt, the second by ψt and the third by

θ and integrating over (0, 1), we get

ρ1
2

d

dt

∫ 1

0

ϕ2
tdx+

k

2

d

dt

∫ 1

0

ϕ2
xdx− k

∫ 1

0

ψxϕtdx+

∫ 1

0

θxϕtdx = 0,

ρ2
2

d

dt

∫ 1

0

ψ2
t dx+

α

2

d

dt

∫ 1

0

ψ2
xdx+ k

∫ 1

0

ϕxψtdx+
k

2

d

dt

∫ 1

0

ψ2

−
∫ 1

0

θψtdx+

∫ 1

0

ψt (t)

∫ t

0

g(t− s)ψxx(x, s)dsdx = 0,

and

ρ3
2

d

dt

∫ 1

0

θ2dx+
κ

2

∫ 1

0

θ2xdx+

∫ 1

0

ϕxtθdx+

∫ 1

0

ψtθdx = 0,
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By summation of theses three identities, we get

1

2

d

dt

∫ 1

0

[
ρ1ϕ

2
t + ρ2ψ

2
t + ρ3θ

2 + k (ϕx + ψ)2 + αψ2
x

]
dx+

κ

2

∫ 1

0

θ2xdx

+

∫ 1

0

ψt (t)

∫ t

0

g(t− s)ψxx(x, s)dsdx = 0.

(3.3)

Thus, (2.3) leads to equality (3.2) for regular solutions. This equality remains valid for

solutions (2.1) by simple density argument. �

Lemma 3.3. Under assumptions (H1), (H2), the functional

I(t) := −
∫ 1

0

ρ2ψt

∫ t

0

g(t− s)(ψ(t)− ψ(s))dsdx

satisfies, along the solution of (1.1), the estimate

I ′(t) ≤ −
(
ρ2

∫ t

0

g(s)ds− δ
)∫ 1

0

ψ2
t dx+ δ

∫ 1

0

(ϕx + ψ)2dx

+ δc0

∫ 1

0

ψ2
xdx+ δc0

∫ 1

0

θ2xdx−
c0
δ
g′ ◦ ψx + c0

(
δ +

1

δ

)
g ◦ ψx, (3.4)

for all δ > 0.

Proof. A direct differentiation using (1.1), gives

I ′(t) = −
∫ 1

0

[
αψxx − kϕx − kψ + θ −

∫ t

0

g(t− s)ψxx(s)ds
] ∫ t

0

g(t− s)(ψ(t)−ψ(s))dsdx

−
∫ 1

0

ρ2ψt

∫ t

0

g′(t− s)(ψ(t)− ψ(s))dsdx−
∫ t

0

g(s)ds

∫ 1

0

ρ2ψ
2
t (t)dx

=

∫ 1

0

αψx

∫ t

0

g(t− s)(ψx(t)− ψx(s))dsdx+ k

∫ 1

0

(ϕx + ψ)

∫ t

0

g(t− s)(ψ(t)− ψ(s))dsdx

−
∫ 1

0

θ

∫ t

0

g(t− s)(ψ(t)− ψ(s))dsdx

−
∫ 1

0

∫ t

0

g(t− s)ψx(x, s)ds
∫ t

0

g(t− s)(ψx(t)− ψx(s))dsdx
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−
∫ 1

0

ρ2ψt

∫ t

0

g′(t− s)(ψ(t)− ψ(s))dsdx−
∫ t

0

g(s)ds

∫ 1

0

ρ2ψ
2
t (t)dx

By using Young’s and Poincaré’s inequalities, Lemma 2.2. and Remark 2.2, we get, for

all δ > 0,

−
∫ 1

0

ρ2ψt

∫ t

0

g′(t− s)(ψ(t)− ψ(s))dsdx ≤ δ

∫ 1

0

ψ2
t dx−

c0
δ
g′ ◦ ψx,

∫ 1

0

αψx

∫ t

0

g(t− s)(ψx(t)− ψx(s))dsdx ≤ δ

∫ 1

0

ψ2
xdx+

c0
δ
g ◦ ψx,

k

∫ 1

0

(ϕx + ψ)

∫ t

0

g(t− s)(ψ(t)− ψ(s))dsdx ≤ δ

∫ 1

0

(ϕx + ψ)2 +
c0
δ
g ◦ ψx,

−
∫ 1

0

θ

∫ t

0

g(t− s)(ψ(t)− ψ(s))dsdx ≤ δ

∫ 1

0

θ2x +
c0
δ
g ◦ ψx,

and

−
∫ 1

0

∫ t

0

g(t− s)ψx(s)ds
∫ t

0

g(t− s)(ψx(t)− ψx(s))dsdx

≤ δ′
∫ 1

0

(∫ t

0

g(t− s)(ψx(s)− ψx(t) + ψx(t))ds

)2

dx

+
c0
δ′

∫ 1

0

(∫ t

0

g(t− s)(ψx(t)− ψx(s))ds
)2

dx

≤ 2δ′
(∫ t

0

g(s)ds

)2 ∫ 1

0

ψ2
xdx+

(
2δ′ +

c0
δ′

)∫ 1

0

(∫ t

0

g(t− s)(ψx(t)− ψx(s))ds
)2

dx

≤ c0δ
′
∫ 1

0

ψ2
xdx+ c0

(
δ′ +

1

δ′

)
g ◦ ψx ≤ δ

∫ 1

0

ψ2
xdx+ c0

(
δ +

1

δ

)
g ◦ ψx,

By combining all above estimates the assertion of the lemma is established.�

Lemma 3.4. Under assumptions (H1), (H2), the functional

J(t) := −
∫ 1

0

(ρ1ϕϕt + ρ2ψψt)dx



CHAPTER 3. GENERAL DECAY IN POROUS THERMOELASTICITY 44

satisfies, along the solution of (1.1), the estimate

J ′(t) ≤ −
∫ 1

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx+ k (1 + ε)

∫ 1

0

(ϕx + ψ)2 dx

+c0

∫ 1

0

ψ2
xdx+

c0
ε

∫ 1

0

θ2xdx+ c0g ◦ ψx,
(3.5)

for all ε > 0.

Proof. Direct differentiation, using (1.1), leads to

J ′(t) = −
∫ 1

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx−

∫ 1

0

ϕ(kϕxx + kψx − θx)dx

−
∫ 1

0

ψ

[
αψxx − kϕx − kψ + θ −

∫ t

0

g(t− s)ψxx(s)ds
]
dx

(3.6)

= −
∫ 1

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx+ k

∫ 1

0

ϕx(ϕx + ψ)dx−
∫ 1

0

ϕxθ

+α

∫ 1

0

ψ2
xdx+ k

∫ 1

0

ψ(ϕx + ψ)dx−
∫ 1

0

ψθdx−
∫ 1

0

ψx

∫ t

0

g(t− s)ψx(s)dsdx

= −
∫ 1

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx+ k

∫ 1

0

(ϕx + ψ)2dx+ α

∫ 1

0

ψ2
xdx

−
∫ 1

0

(ϕx + ψ) θdx−
∫ 1

0

ψx

∫ t

0

g(t− s)ψx(s)dsdx.

Using Lemma 2.4, we obtain,

−
∫ 1

0

ψx

∫ t

0

g(t− s)ψx(x, s)ds)dx ≤ c0

∫ 1

0

ψ2
x (t) dx+ c0g ◦ ψx.

Also, exploiting Young’s and Poincaré’s inequalities, we get, for all ε > 0,

−
∫ 1

0

(ϕx + ψ) θdx ≤ εk

∫ 1

0

(ϕx + ψ)2 dx+
c0
ε

∫ 1

0

θ2xdx.

Substituting these estimates in (3.6), we obtain (3.5). �



CHAPTER 3. GENERAL DECAY IN POROUS THERMOELASTICITY 45

Lemma 3.5. Assume that (H1), (H2) and (3.1) hold. Then, the functional

K1 (t) :=

∫ 1

0

ρ1ϕt

(
αψx −

∫ t

0

g(t− s)ψx(s)dsdx
)

+

∫ 1

0

ρ2kψt (ϕx + ψ) dx

satisfies, along the solution of (1.1), and for any ε > 0, the estimate

K ′1(t) ≤ k

[
ϕx

(
αψx −

∫ t

0

g(t− s)ψx(x, s)ds
)]x=1

x=0

+kρ2

∫ 1

0

ψ2
t dx− k2 (1− εc0)

∫ 1

0

(ϕx + ψ)2 dx

+ε

∫ 1

0

ϕ2
tdx+

c0
ε

∫ 1

0

θ2xdx+
c0
ε

∫ 1

0

ψ2
xdx+ εg ◦ ψx −

c0
ε
g′ ◦ ψx.

(3.7)

Proof. Direct differentiation, using (1.1), gives

ρ1α
d

dt

∫ 1

0

ϕtψxdx = α

∫ 1

0

(kϕxx + kψx − θx)ψxdx+ ρ1α

∫ 1

0

ϕtψxtdx

= αk [ϕxψx]
x=1
x=0 − αk

∫ 1

0

ϕxψxxdx+ αk

∫ 1

0

ψ2
xdx− α

∫ 1

0

ψxθxdx+ ρ1α

∫ 1

0

ϕtψxtdx.

Also,

− d

dt

∫ 1

0

ρ1ϕt

∫ t

0

g(t− s)ψx(s)dsdx = −
∫ 1

0

(kϕxx + kψx − θx)
∫ t

0

g(t− s)ψx(s)dsdx

−ρ1g (0)

∫ 1

0

ϕtψxdx− ρ1
∫ 1

0

ϕt

∫ t

0

g′(t− s)ψx(s)dsdx.

Finally,

kρ2
d

dt

∫ 1

0

ψt (ϕx + ψ) dx = kρ2

∫ 1

0

ψt (ϕxt + ψt) dx

+k

∫ 1

0

(
αψxx − kϕx − kψ + θ −

∫ t

0

g(t− s)ψxx(s)ds
)

(ϕx + ψ) dx

= −kρ2
∫ 1

0

ψxtϕtdx+ kρ2

∫ 1

0

ψ2
t dx+ αk

∫ 1

0

ψxxϕxdx− αk
∫ 1

0

ψ2
xdx



CHAPTER 3. GENERAL DECAY IN POROUS THERMOELASTICITY 46

−k2
∫ 1

0

(ϕx + ψ)2 dx+ k

∫ 1

0

θ (ϕx + ψ) dx

+k

∫ 1

0

ϕxx

∫ t

0

g(t− s)ψx(s)dsdx− k
[
ϕx (x, t)

∫ t

0

g(t− s)ψx(x, s)ds
]x=1

x=0

+k

∫ 1

0

ψx

∫ t

0

g(t− s)ψx(s)dsdx.

Therefore, a combination of all above estimates and use of (3.1) lead to

K ′1 (t) =k

[
ϕx

(
αψx −

∫ t

0

g(t− s)ψx(x, s)ds
)]x=1

x=0

− α
∫ 1

0

ψxθxdx

+ kρ2

∫ 1

0

ψ2
t dx− k2

∫ 1

0

(ϕx + ψ)2 dx+ k

∫ 1

0

θ (ϕx + ψ) dx

+

∫ 1

0

θx

∫ t

0

g(t− s)ψx(s)dsdx− g (0)

∫ 1

0

ρ1ϕtψxdx

−
∫ 1

0

ρ1ϕt

∫ t

0

g′(t− s)ψx(s)dsdx.

(3.8)

Using Young’s inequality, Remark 2.2 and Lemma 2.4, we get

−α
∫ 1

0

ψxθxdx ≤ ε

∫ 1

0

ψ2
x +

c0
ε

∫ 1

0

θ2xdx

k

∫ 1

0

θ (ϕx + ψ) dx ≤ c0
ε

∫ 1

0

θ2xdx+ εk2c0

∫ 1

0

(ϕx + ψ)2 dx∫ 1

0

θx

∫ t

0

g(t− s)ψx(s)dsdx ≤
c0
ε

∫ 1

0

θ2x (t) dx+ εg ◦ ψx∫ 1

0

ρ1ϕt

∫ t

0

g′(t− s)ψx(s)dsdx ≤ ε

∫ 1

0

ϕ2
t (t) dx− c0

ε
g′ ◦ ψx

g (0)

∫ 1

0

ρ1ϕtψxdx ≤ ε

∫ 1

0

ϕ2
t (t) dx+

c0
ε

∫ 1

0

ψ2
x.

A substitution of these estimates in (3.8), inequality (3.7) occurs immediately. �
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As in [47], to handle the boundary terms in (3.7), we let M ∈ C1 ([0; 1]) be a function

satisfying

M (1) = −M (0) = −2.

Lemma 3.6. Under assumptions (H1), (H2), the functionals K2 and K3 defined by

K2 (t) :=

∫ 1

0

ρ2M (x)ψt

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)
dx

K3 (t) :=

∫ 1

0

ρ1M (x)ϕtϕxdx

satisfy, along the solution of (1.1), and for any ε > 0, the estimates

K ′2 (t) ≤ −
(
αψx (1, t)−

∫ t

0

g(t− s)ψx(1, s)ds
)2

−
(
αψx (0, t)−

∫ t

0

g(t− s)ψx(0, s)ds
)2

+ εk

∫ 1

0

(ϕx + ψ)2 dx (3.9)

+
c0
ε

∫ 1

0

ψ2
x + c0

∫ 1

0

ψ2
t dx+ c0

∫ 1

0

θ2x +
c0
ε
g ◦ ψx − c0g′ ◦ ψx.

and

K ′3 (t) ≤ −k
(
ϕ2
x (1, t) + ϕ2

x (0, t)
)

+ c0

(∫ 1

0

ϕ2
xdx+

∫ 1

0

ϕ2
tdx+

∫ 1

0

ψ2
xdx+

∫ 1

0

θ2xdx

)
. (3.10)

Proof. Direct differentiation, using (1.1), yields

K ′2 (t) =

∫ 1

0

M (x)

(
αψxx −

∫ t

0

g(t− s)ψxx(s)ds
)(

αψx −
∫ t

0

g(t− s)ψx(s)ds
)
dx

−
∫ 1

0

M (x) (kϕx + kψ − θ)
(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)
dx
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+

∫ 1

0

ρ2M (x)ψt

(
αψxt − g (0)ψx −

∫ t

0

g′(t− s)ψx(s)ds
)
dx

= −
(
αψx (1, t)−

∫ t

0

g(t− s)ψx(1, s)ds
)2

−
(
αψx (0, t)−

∫ t

0

g(t− s)ψx(0, s)ds
)2

−1

2

∫ 1

0

M ′ (x)

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)2

dx

−k
∫ 1

0

M (x) (ϕx + ψ)

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)
dx

+

∫ 1

0

M (x) θ

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)
dx− ρ2α

2

∫ 1

0

M ′ (x)ψ2
t dx

+

∫ 1

0

ρ2M (x)ψt

(
−g (t)ψx +

∫ t

0

g′(t− s) (ψx(t)− ψx(s)) ds
)
dx.

Using Young’s inequality and Remark 2.2 we get∫ 1

0

ρ2M (x)ψt

(
−g (t)ψx +

∫ t

0

g′(t− s) (ψx(t)− ψx(s)) ds
)
dx

≤ c0

∫ 1

0

ψ2
t dx+ c0

∫ 1

0

ψ2
xdx− c0g′ ◦ ψx.

Again, Young’s inequality and Lemma 2.3, lead to

−k
∫ 1

0

M (x) (ϕx + ψ)

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)
dx

≤ εk

∫ 1

0

(ϕx + ψ)2 dx+
c0
ε

∫ 1

0

ψ2
x +

c0
ε
g ◦ ψx.

The use of the same arguments for the other terms yields the desired result. �

Next,

K3 (t) :=

∫ 1

0

ρ1M (x)ϕtϕxdx
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K ′3 (t) =

∫ 1

0

M (x) (kϕxx + kψx − θx)ϕxdx+

∫ 1

0

ρ1M (x)ϕtϕxtdx

= −k
(
ϕ2
x (1, t) + ϕ2

x (0, t)
)
− k

2

∫ 1

0

M ′ (x)ϕ2
xdx+ k

∫ 1

0

M (x)ψxϕxdx

−
∫ 1

0

M (x) θxϕxdx−
ρ1
2

∫ 1

0

M ′ (x)ϕ2
tdx.

Similar estimates lead to (3.10).

Lemma 3.7. Under assumptions (H1), (H2), the functional

K4 :=
1

k
K1 +

1

4ε
K2 +

ε

k
K3,

satisfies along the solution of (1.1) and for any ε > 0, the estimate

K ′4 (t) ≤ −
(

3

4
k − εc0

)∫ 1

0

(ϕx + ψ)2 dx+
c0
ε

∫ 1

0

ψ2
t + εc0

∫ 1

0

ϕ2
tdx

+
c0
ε2

∫ 1

0

ψ2
xdx+

c0
ε

∫ 1

0

θ2x +
c0
ε2
g ◦ ψx −

c0
ε
g′ ◦ ψx.

(3.11)

Proof. By using the inequality

ϕx

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)
≤ εϕ2

x +
1

4ε

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)2

and substituting (3.7), (3.9) and (3.10) in the expression of K ′4, we obtain

K ′4 (t) ≤ ρ2

∫ 1

0

ψ2
t dx− k (1− εc0)

∫ 1

0

(ϕx + ψ)2 dx

+ε

∫ 1

0

ϕ2
tdx+

c0
ε

∫ 1

0

θ2xdx+
c0
ε

∫ 1

0

ψ2
xdx+ εg ◦ ψx −

c0
ε
g′ ◦ ψx

+
k

4

∫ 1

0

(ϕx + ψ)2 dx+
c0
ε2

∫ 1

0

ψ2
x +

c0
ε

∫ 1

0

ψ2
t dx+

c0
ε

∫ 1

0

θ2x +
c0
ε2
g ◦ ψx



CHAPTER 3. GENERAL DECAY IN POROUS THERMOELASTICITY 50

−c0
ε
g′ ◦ ψx + εc0

(∫ 1

0

ϕ2
xdx+

∫ 1

0

ϕ2
tdx+

∫ 1

0

ψ2
xdx+

∫ 1

0

θ2xdx

)
.

By recalling

ϕ2
xdx ≤ 2 (ϕx + ψ)2 + 2ψ2

and Poincaré’s inequality, we get∫ 1

0

ϕ2
xdx ≤ 2

∫ 1

0

(ϕx + ψ)2 + c0

∫ 1

0

ψ2
x.

Thus (3.11) is proven. �

Lemma 3.8. Under assumptions (H1), (H2), the functional

K5 :=
2c0ε

ρ1
J +K4,

satisfies along the solution of (1.1) and for a fixed ε small enough, the estimate

K ′5 (t) ≤ −k
2

∫ 1

0

(ϕx + ψ)2 dx− µ
∫ 1

0

ϕ2
tdx+ c0

∫ 1

0

ψ2
t

+c0

∫ 1

0

ψ2
xdx+ c0

∫ 1

0

θ2x + c0g ◦ ψx − c0g′ ◦ ψx,

(3.12)

for some (fixed) µ > 0.

Proof. Direct differentiation, using (3.5), (3.11) gives

K ′5 (t) ≤ −
(

3

4
k − εc0

)∫ 1

0

(ϕx + ψ)2 dx− c0ε
∫ 1

0

ϕ2
tdx+

(
c0
ε
− 2ε

c0ρ2
ρ1

)∫ 1

0

ψ2
t

+
(
εc0 +

c0
ε2

)∫ 1

0

ψ2
xdx+ c0

∫ 1

0

θ2x + c0g ◦ ψx −
c0
ε
g′ ◦ ψx.

Fixing ε small enough, such that
3

4
k − εc0 ≥

k

2
and

c0
ε
− 2ε

c0ρ2
ρ1

> 0, we arrive at

(3.10)(3.10), with µ = c0ε. �
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As in [64], we use the multiplier w given by the solution of

−wxx = ψx, w(0) = w(1) = 0. (3.13)

Lemma 3.9. The solution of (3.13) satisfies∫ 1

0

w2
xdx ≤

∫ 1

0

ψ2dx,

∫ 1

0

w2
t dx ≤ C

∫ 1

0

ψ2
t dx.

Proof. Using integration by parties and (3.13) we obtain∫ 1

0

w2
xdx =

∫ 1

0

ψxwdx = −
∫ 1

0

wxψdx.

Thus, Cauchy Schwarz inequality leads to∫ 1

0

w2
xdx ≤

∫ 1

0

|ψwx| dx ≤
(∫ 1

0

ψ2dx

) 1
2
(∫ 1

0

w2
xdx

) 1
2

,

then, ∫ 1

0

w2
xdx ≤

∫ 1

0

ψ2dx.

Similarly, ∫ 1

0

w2
txdx ≤

∫ 1

0

ψ2
t dx.

Thus, Poincaré’s inequality yields∫ 1

0

w2
t dx ≤ C

∫ 1

0

w2
txdx ≤ C

∫ 1

0

ψ2
t dx. �

Lemma 3.10. Under assumptions (H1), (H2), the functional

K6 (t) :=

∫ 1

0

(ρ1wϕt + ρ2ψtψ) dx
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satisfies, along the solution of (1.1) and for 0 < ε1 <
l

2
, the estimate

K ′6 (t) ≤ − l
2

∫ 1

0

ψ2
xdx+ ε1

∫ 1

0

ϕ2
tdx+

c0
ε1

∫ 1

0

θ2xdx+
c0
ε1

∫ 1

0

ψ2
t dx+ c0g ◦ ψx, (3.14)

where l is defined in (H1).

Proof. Direct differentiation, using (1.1), yields

K ′6 (t) =

∫ 1

0

w (kϕxx + kψx − θx) dx+ ρ1

∫ 1

0

wtϕtdx

+

∫ 1

0

(
αψxx − kϕx − kψ + θ −

∫ t

0

g(t− s)ψxx(s)ds
)
ψdx+ ρ2

∫ 1

0

ψ2
t dx

= −k
∫ 1

0

wxϕxdx+ k

∫ 1

0

w2
xdx+

∫ 1

0

wxθdx+ ρ1

∫ 1

0

wtϕtdx

−α
∫ 1

0

ψ2
xdx− k

∫ 1

0

ϕxψdx− k
∫ 1

0

ψ2dx+

∫ 1

0

θψdx+ ρ2

∫ 1

0

ψ2
t dx

−
∫ 1

0

ψx

(∫ t

0

g(t− s) (ψx(t)− ψx(s)) ds
)
dx+

(∫ t

0

g(s)ds

)∫ 1

0

ψ2
xdx

= k

(∫ 1

0

w2
xdx−

∫ 1

0

ψ2dx

)
+

∫ 1

0

wxθdx+ ρ2

∫ 1

0

ψ2
t dx+ ρ1

∫ 1

0

wtϕtdx

−α
∫ 1

0

ψ2
xdx− k

∫ 1

0

(wx + ψ)ϕxdx+

∫ 1

0

θψdx

−
∫ 1

0

ψx

(∫ t

0

g(t− s) (ψx(t)− ψx(s)) ds
)
dx+

(∫ t

0

g(s)ds

)∫ 1

0

ψ2
xdx.

Integration by parts, using (3.13), gives

k

∫ 1

0

(wx + ψ)ϕxdx = 0.

Consequently, Lemma 3.9 yields

K ′6 (t) ≤ −α
∫ 1

0

ψ2
xdx+

∫ 1

0

wxθdx+ ρ2

∫ 1

0

ψ2
t dx+ ρ1

∫ 1

0

wtϕtdx+

∫ 1

0

θψdx
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−
∫ 1

0

ψx

(∫ t

0

g(t− s) (ψx(t)− ψx(s)) ds
)
dx+

(∫ t

0

g(s)ds

)∫ 1

0

ψ2
xdx.

Young’s inequality, Remark 2.2, Poincaré’s inequality and Lemma 3.9 then yield

K ′6 (t) ≤ −
(
α−

∫ t

0

g(s)ds− ε1 − εc0
)∫ 1

0

ψ2
xdx+ ε1

∫ 1

0

ϕ2
tdx

+
c0
ε1

∫ 1

0

ψ2
t dx+

c0
ε
g ◦ ψx +

c0
ε1

∫ 1

0

θ2xdx, ∀ε > 0.

Recalling (H1), we deduce

K ′6 (t) ≤ − (l − ε1 − εc0)
∫ 1

0

ψ2
xdx+ ε1

∫ 1

0

ϕ2
tdx+

c0
ε1

∫ 1

0

θ2xdx+
c0
ε1

∫ 1

0

ψ2
t dx+

c0
ε
g ◦ ψx.

Thus, for 0 < ε1 <
l

2
we can fix ε small enough such that (3.14) is established. �

Proof of Theorem 3.1.

For N1, N2, N3 > 0, we define the Lyapunov functional by

L (t) = N1E (t) +N2I (t) +N3K6 (t) +
1

k
K5 (t) .

By combining (2.3), (3.2), (3.12) and (3.14), we have

L′(t) ≤ −
(
N3l

2
− c0 −N2δc0

)∫ 1

0

ψ2
xdx−

(
N1κ

2
− c0 −N2δc0 −

N3c0
ε1

)∫ 1

0

θ2xdx

− (µ−N3ε1)

∫ 1

0

ϕ2
tdx−

[(
ρ2

∫ t

0

g(s)ds− δ
)
N2 − c0 −N3

c0
ε1

] ∫ 1

0

ψ2
t dx

−
(

1

2
− δN2

)∫ 1

0

(ϕx + ψ)2 dx+

(
N2c0(δ +

1

δ
) +N3c0 + c0

)
g ◦ ψx

+

(
N1

2
−N2

c0
δ
− c0

)
g′ ◦ ψx.
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Let δ =
1

4N2

and g0 = ρ2

∫ t0

0

g(s)ds for some fixed t0 > 0. Then for all t ≥ t0, and

0 < ε1 <
l

2
we get

L′(t) ≤ −
(
N3l

2
− 5c0

4

)∫ 1

0

ψ2
xdx−

(
N1κ

2
− 5c0

4
− N3c0

ε1

)∫ 1

0

θ2xdx

− (µ−N3ε1)

∫ 1

0

ϕ2
tdx−

(
N2g0 −

1

4
− N3c0

ε1
− c0

)∫ 1

0

ψ2
t dx

−1

4

∫ 1

0

(ϕx + ψ)2 dx+

(
4N2

2 +N3c0 +
5c0
4

)
g ◦ ψx

+

(
N1

2
− 4N2

2 c0 − c0
)
g′ ◦ ψx.

(3.15)

Next, we choose N3 large enough so that

c1 =
N3l

2
− 5c0

4
> 0,

then ε1 small enough so that

c2 = µ−N3ε1 > 0.

After that, we pick N2 large enough such that

c3 = N2g0 −
1

4
− c0 −

N3c0
ε1

> 0.

Finally, we take N1 large enough so that

c4 =
N1κ

2
+ c0 −

N3c0
ε1

> 0 and c5 =
N1

2
− 4N2

2 c0 − c0 > 0.

Therefore, (3.15) takes the form

L′(t) ≤ −c1
∫ 1

0

ψ2
xdx− c2

∫ 1

0

ϕ2
tdx− c3

∫ 1

0

ψ2
t dx− c4

∫ 1

0

θ2xdx
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−1

4

∫ 1

0

(ϕx + ψ)2 dx+ c5g
′ ◦ ψx +

(
4N2

2 +N3c0 +
5c0
4

)
g ◦ ψx.

Thus, for two positive constants λ and C, we have

L′(t) ≤ −λE (t) + Cg ◦ ψx, ∀t ≥ t0 (3.16)

On the other hand, by choosing N1 even large (if needed), we get L ∼ E.

Multiplying (3.16) by ξ (t) and using (H1), (H2) and (3.2) we arrive at

ξ (t)L′ ≤ −λξ (t)E (t) + Cξ (t) g ◦ ψx

≤ −λξ (t)E (t)− Cg′ ◦ ψx

≤ −λξ (t)E (t)− CE ′(t).

By using the fact that ξ′ (t) ≤ 0, we obtain

d

dt
(ξ (t)L(t) + CE (t)) ≤ −λξ (t)E (t) , ∀t ≥ t0.

Again, by noting that

F = ξL+ CE ∼ E (t) ,

we obtain, for some positive constant ω,

F ′ (t) ≤ −ωξ (t)F (t) , ∀t ≥ t0.

Integrating over (t0, t) we easily see that

F (t) ≤ F (t0) e
−ω

∫ t

t0

ξ (s) ds

≤ Ce
−ω

∫ t

0

ξ (s) ds
, ∀t ≥ t0.
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The assertion of Theorem 3.1 is then obtained by virtue of the boundedness of E and ξ

and the fact that F ∼ E. �

3.4 General decay (nonequal-speed case)

In this section we consider (1.1) for the case of different propagation speeds, that is (3.1)

does not holds.We will establish a general decay result which depends on the asymptotic

behavior of g, and the regularity of solutions.

It is worth mentioning that in the case of nonzero history, the integral in (1.1) will be

infinite (from 0 to infinity) instead of the finite integral. This situation was discussed by

Rivera and others (see references [63], [65], [52]) for only exponential decaying relaxation

functions. However, in this work, we are concerned with more general relaxation functions

and our analysis cannot be applied directly to the situation of nonzero history.

In this section we present our hypotheses and state, without proof, a global existence

result as well as some well-known lemmas.

We recall that the first-order energy of the system (1.1) is given by

E (t) =
1

2

∫ 1

0

[
ρ1ϕ

2
t + ρ2ψ

2
t + ρ3θ

2 +

(
α−

∫ t

0

g(s)ds

)
ψ2
x + k (ϕx + ψ)2

]
dx

+
1

2
g ◦ ψx,
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where, for any v ∈ L2 (0; 1) ,

(g ◦ v) (t) :=

∫ 1

0

∫ t

0

g (t− s) (v (x, t)− v (x, s))2 dsdx

and note that, throughout this section, c denotes a generic positive constant.

Lemma 4.1. Assume that (H1), (H2) hold. Then we have, for all t > 0,∫ 1

0

(∫ t

0

g(t− s)(ψx(t)− ψx(s))ds
)2

dx ≤ g0 (t) g ◦ ψx, (4.1)

where g0 (t) :=

∫ t

0

g (s) ds.

Proof. By using Schwarz inequality, we get∫ 1

0

(∫ t

0

g(t− s)(ψx(t)− ψx(s))ds
)2

dx

=

∫ 1

0

(∫ t

0

g
1
2 (t− s)g

1
2 (t− s)(ψx(t)− ψx(s))ds

)2

dx

≤
(∫ t

0

g(s)ds

)∫ 1

0

(∫ t

0

g(t− s)(ψx(t)− ψx(s))2ds
)
dx. �

Remark 4.2. For −g′ instead of g, (4.1) becomes∫ 1

0

(∫ t

0

−g′(t− s)(ψ(t)− ψ(s))ds

)2

dx ≤ −g (0) g′ ◦ ψx.

Now, we state the main theorem in this section.

Theorem 4.3. Let (ϕ0, ψ0) ∈ [H2 (0, 1) ∩H1
0 (0; 1)]

2
, θ0 ∈ H1

0 (0; 1) and (ϕ1, ψ1) ∈

[H1
0 (0; 1)]

2
and suppose that (H1), (H2) hold and

k

ρ1
6= α

ρ2
. Then, for any t0, there

exists a positive constant λ for which the ”strong” solution of problem (1.1) satisfies

E (t) ≤ λ∫ t
0
ξ (s) ds

, ∀t ≥ t0. (4.2)
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Examples. To illustrate our general estimate (4.2), we give here some examples of

functions which satisfy (H1) and (H2).

1) Let g (t) =
a

(1 + t)ν
, for ν > 1 and 0 < a < α (1 + ν) , then (H2) is satisfied with

ξ (t) =
ν

1 + t
and (4.2) becomes

E (t) ≤ C

ln (1 + t)
, t > 0.

2) Let g (t) = ae−(1+t)
ν

, for 0 < ν < 1 and a > 0 to be chosen such that (H1) is satisfied,

then (H2) is satisfied with ξ (t) = ν (1 + t)ν−1 and (4.2) becomes

E (t) ≤ C

(1 + t)ν
, t > 0.

3) Let g (t) = ae−(ln(1+t))
q

, for q > 1 and a > 0 small enough so that (H1) is satisfied, then

(H2) is satisfied with ξ (t) =
q

1 + t
(ln (1 + t))q−1 and (4.2) becomes

E (t) ≤ C

(ln (1 + t))q
, t > 0.

Proof of Theorem 4.3.

The proof of Theorem 4.3 will be established through several lemmas.

Lemma 4.4. Under the assumptions (H1), (H2), the functional

I1 (t) := −ρ2
∫ 1

0

ψt

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx

satisfies, along the solution of (1.1), the estimate

I ′1 (t) ≤ −ρ2
(∫ t

0

g (s) ds− δ
)∫ 1

0

ψ2
t dx+ δ

∫ 1

0

ψ2
xdx+ δ

∫ 1

0

θ2xdx
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+δ

∫ 1

0

(ϕx + ψ)2 dx+ cδg0 (t) g ◦ ψx − cδg′ ◦ ψx, (4.3)

where cδ is a constant depending on δ.

Proof. By differentiating I1 and using (1.1), we arrive at

I ′1 (t) =− ρ2
∫ 1

0

ψt

∫ t

0

g′ (t− s) (ψ (t)− ψ (s)) dsdx− ρ2
(∫ t

0

g (s) ds

)∫ 1

0

ψ2
t dx

+ α

∫ 1

0

ψx

∫ t

0

g (t− s) (ψx (t)− ψx (s)) dsdx

+ k

∫ 1

0

(ϕx + ψ)

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx

−
∫ 1

0

θ

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx

−
∫ 1

0

∫ t

0

g (t− s)ψx (s) ds

∫ t

0

g (t− s) (ψx (t)− ψx (s)) dsdx.

Using Young’s and Poincaré’s inequalities, Remark 4.2 and (4.1), we get

−ρ2
∫ 1

0

ψt

∫ t

0

g′ (t− s) (ψ (t)− ψ (s)) dsdx ≤ ρ2δ

∫ 1

0

ψ2
t dx− cδg′ ◦ ψx,

α

∫ 1

0

ψx

∫ t

0

g (t− s) (ψx (t)− ψx (s)) dsdx ≤δ
2

∫ 1

0

ψ2
xdx

+cδ

∫ 1

0

(∫ t

0

g (t− s) (ψx (t)− ψx (s)) ds

)2

dx

≤δ
2

∫ 1

0

ψ2
xdx+ cδg0 (t) g ◦ ψx,

k

∫ 1

0

(ϕx + ψ)

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx ≤ δ

∫ 1

0

(ϕx + ψ)2 dx+ cδg0 (t) g ◦ ψx,

−
∫ 1

0

θ

∫ t

0

g (t− s) (ψ (t)− ψ (s)) dsdx ≤ δ

∫ 1

0

θ2xdx+ cδg0 (t) g ◦ ψx.

Finally, the last term

−
∫ 1

0

∫ t

0

g (t− s)ψx (s) ds

∫ t

0

g (t− s) (ψx (t)− ψx (s)) dsdx ≤
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δ

4
(∫∞

0
g (s) ds

)2 ∫ 1

0

(∫ t

0

g (t− s)ψx (s) ds

)2

dx

+ cδ

∫ 1

0

(∫ t

0

g (t− s) (ψx (t)− ψx (s)) ds

)2

dx.

By using∫ 1

0

(∫ t

0

g (t− s)ψx (s) ds

)2

dx ≤
∫ 1

0

(∫ t

0

g (t− s) [ψx (s) + ψx (t)− ψx (t)] ds

)2

dx

≤ 2

∫ 1

0

(∫ t

0

g (t− s)ψx (t) ds

)2

dx+ 2

∫ 1

0

(∫ t

0

g (t− s) [ψx (t)− ψx (s)] ds

)2

dx

≤ 2

(∫ ∞
0

g (s) ds

)2 ∫ 1

0

ψ2
x (t) dx+ 2

∫ 1

0

(∫ t

0

g (t− s) [ψx (t)− ψx (s)] ds

)2

dx

and recalling Lemma 4.1, we get

−
∫ 1

0

∫ t

0

g (t− s)ψx (s) ds

∫ t

0

g (t− s) (ψx (t)− ψx (s)) dsdx ≤

≤ δ

2

∫ 1

0

ψ2
x (t) dx+

[
δ

2
(∫∞

0
g (s) ds

)2 + cδ

]∫ 1

0

(∫ t

0

g (t− s) (ψx (s)− ψx (t)) ds

)2

dx

≤ δ

2

∫ 1

0

ψ2
x (t) dx+ cδg0 (t) g ◦ ψx.

Combining all the above inequalities, we obtain the desired estimate. �

Lemma 4.5. Under the assumptions (H1), (H2), the functional

I2(t) := −
∫ 1

0

(ρ1ϕϕt + ρ2ψψt)dx

satisfies, along the solution of (1.1), the estimate

I ′2(t) ≤ −
∫ 1

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx+ 2k

∫ 1

0

(ϕx + ψ)2 dx+ c

∫ 1

0

ψ2
xdx

+c

∫ 1

0

θ2xdx+ cg0 (t) g ◦ ψx.
(4.4)
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Proof : Similar to proof of Lemma 3.4. �

Lemma 4.6. Under the assumptions (H1), (H2), the functional

I3 (t) :=
ρ1
k

∫ 1

0

ϕt

(
αψx −

∫ t

0

g(t− s)ψx(x, s)dsdx
)

+

∫ 1

0

ρ2ψt (ϕx + ψ) dx

satisfies, along the solution of (1.1), the following estimate

I ′3(t) ≤
1

2ε

(
αψx (1, t)−

∫ t

0

g(t− s)ψx(1, s)ds
)2

+
1

2ε

(
αψx (0, t)−

∫ t

0

g(t− s)ψx(0, s)ds
)2

+
ε

2
(ϕ2

x (1, t) + ϕ2
x (0, t))

+ρ2

∫ 1

0

ψ2
t dx− k (1− εc)

∫ 1

0

(ϕx + ψ)2 dx+ ε

∫ 1

0

ϕ2
tdx+

c

ε

∫ 1

0

θ2xdx

+
c

ε

∫ 1

0

ψ2
xdx+ εg ◦ ψx −

c

ε
g′ ◦ ψx +

(αρ1
k
− ρ2

)∫ 1

0

ϕtψxtdx,

(4.5)

for all ε > 0.

Proof. Using (1.1), we get

d

dt

(
ρ1
k

∫ 1

0

αϕtψxdx

)
=
α

k

∫ 1

0

(k (ϕx + ψ)x − θx)ψxdx+
ρ1α

k

∫ 1

0

ϕtψxtdx

= α [ϕxψx]
x=1
x=0 − α

∫ 1

0

ϕxψxxdx+ α

∫ 1

0

ψ2
xdx−

α

k

∫ 1

0

ψxθxdx+
ρ1α

k

∫ 1

0

ϕtψxtdx,

d

dt

(∫ 1

0

ρ2ψt (ϕx + ψ) dx

)
= ρ2

∫ 1

0

ψt (ϕxt + ψt) dx

+

∫ 1

0

(
αψxx − k (ϕx + ψ) + θ −

∫ t

0

g(t− s)ψxx(x, s)ds
)

(ϕx + ψ) dx

= −ρ2
∫ 1

0

ψxtϕtdx+ ρ2

∫ 1

0

ψ2
t dx+ α

∫ 1

0

ψxxϕxdx− α
∫ 1

0

ψ2
xdx− k

∫ 1

0

(ϕx + ψ)2 dx

+

∫ 1

0

θ (ϕx + ψ) dx+

∫ 1

0

ϕxx (t)

∫ t

0

g(t− s)ψx(x, s)dsdx



CHAPTER 3. GENERAL DECAY IN POROUS THERMOELASTICITY 62

−
[
ϕx (t)

∫ t

0

g(t− s)ψx(x, s)ds
]x=1

x=0

+

∫ 1

0

ψx (t)

∫ t

0

g(t− s)ψx(x, s)dsdx,

and

−ρ1
k

(
d

dt

∫ 1

0

ϕt

∫ t

0

g(t− s)ψx(x, s)dsdx
)

=

−
∫ 1

0

(
(ϕx + ψ)x −

1

k
θx

)∫ t

0

g(t− s)ψx(x, s)dsdx

−g (0)
ρ1
k

∫ 1

0

ϕtψxdx−
ρ1
k

∫ 1

0

ϕt

∫ t

0

g′(t− s)ψx(x, s)dsdx.

Therefore,

I ′3(t) =

[
ϕx (t)

(
αψx −

∫ t

0

g(t− s)ψx(x, s)ds
)]x=1

x=0

− α

k

∫ 1

0

ψxθxdx+
(ρ1α
k
− ρ2

)∫ 1

0

ϕtψxtdx

+ ρ2

∫ 1

0

ψ2
t dx− k

∫ 1

0

(ϕx + ψ)2 dx+

∫ 1

0

θ (ϕx + ψ) dx

+

∫ 1

0

ϕxx (t)

∫ t

0

g(t− s)ψx(x, s)dsdx+

∫ 1

0

ψx (t)

∫ t

0

g(t− s)ψx(x, s)dsdx

−
∫ 1

0

(
(ϕx + ψ)x −

1

k
θx

)∫ t

0

g(t− s)ψx(x, s)dsdx

− g (0)
ρ1
k

∫ 1

0

ϕtψx(x, t)dx−
ρ1
k

∫ 1

0

ϕt

∫ t

0

g′(t− s)ψx(x, s)dsdx.

Using Young’s and Poincaré’s inequalities and Lemma 2.4, we obtain[
ϕx

(
αψx −

∫ t

0

g(t− s)ψx(x, s)ds
)]x=1

x=0

≤ ε

2

(
ϕ2
x (1, t) + ϕ2

x (0, t)
)

+
1

2ε

(
αψx (1, t)−

∫ t

0

g(t− s)ψx(1, s)ds
)2

+
1

2ε

(
αψx (0, t)−

∫ t

0

g(t− s)ψx(0, s)ds
)2

,∫ 1

0

θ (ϕx + ψ) dx ≤ εc

∫ 1

0

(ϕx + ψ)2 dx+
c

ε

∫ 1

0

θ2xdx,
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−α
k

∫ 1

0

ψxθxdx ≤ ε

∫ 1

0

ψ2
xdx+

c

ε

∫ 1

0

θ2xdx,

−g (0)
ρ1
k

∫ 1

0

ϕtψx(x, t)dx ≤ ε

∫ 1

0

ϕ2
tdx+

c

ε

∫ 1

0

ψ2
xdx,

1

k

∫ 1

0

θx

∫ t

0

g(t− s)ψx(x, s)dsdx ≤
c

ε

∫ 1

0

θ2xdx+ ε

∫ 1

0

ψ2
xdx+ εg ◦ ψx

and

−ρ1
k

∫ 1

0

ϕt

∫ t

0

g′(t− s)ψx(x, s)dsdx ≤ ε

∫ 1

0

ϕ2
tdx+

c

ε

∫ 1

0

ψ2
xdx−

c

ε
g′ ◦ ψx.

Combining all the above inequalities yields (4.5) for all ε > 0. �

To estimate the boundary terms in (4.5) we need the following

Lemma 4.7. Let m (x) = 2− 4x and (ϕ, ψ, θ) be the strong solution of (1.1). Then for

any ε > 0, the functionals

I4(t) := ρ2

∫ 1

0

m (x)ψt(αψx −
∫ t

0

g(t− s)ψx(s)ds)dx

and

I5(t) := ρ1

∫ 1

0

m (x)ϕtϕxdx

satisfy

I ′4(t) ≤ −
(
αψx (1, t)−

∫ t

0

g(t− s)ψx(1, s)ds
)2

−
(
αψx (0, t)−

∫ t

0

g(t− s)ψx(0, s)ds
)2

+εk

∫ 1

0

(ϕx + ψ)2 dx+ c

(
1 +

1

ε

)(∫ 1

0

ϕ2
xdx+ g0 (t) g ◦ ψx

)
(4.6)

+c

∫ 1

0

(
ψ2
t + θ2x

)
dx− cg′ ◦ ψx
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and

I ′5(t) ≤ −k
(
ϕ2
x (1, t) + ϕ2

x (0, t)
)

+ c

∫ 1

0

(
ϕ2
t + ϕ2

x + ψ2
x + θ2x

)
dx. (4.7)

Proof. Differentiating I4, using (1.1) and properties of m, we obtain

I ′4(t) =

∫ 1

0

m (x)

(
αψxx −

∫ t

0

g(t− s)ψxx(s)ds− k (ϕx + ψ) + θ

)
×
(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)
dx

+ ρ2

∫ 1

0

m (x)ψt

×
(
αψxt + ψx(t)

∫ t

0

g′ (t− s) ds− g (t)ψx(t)−
∫ t

0

g′(t− s)ψx(s)ds
)
dx

=

∫ 1

0

m (x)

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)2

dx

−
∫ 1

0

m (x) (k (ϕx + ψ)− θ)
(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)
dx

+ αρ2

∫ 1

0

m (x)ψtψxtdx+ ρ2

∫ 1

0

m (x)ψt

∫ t

0

g′ (t− s) (ψx (t)− ψx(s))dsdx

− ρ2g (t)

∫ 1

0

m (x)ψtψx(t)dx

= −
(
αψx (1, t) dx−

∫ t

0

g(t− s)ψx(1, s)ds
)2

−
(
αψx (0, t) dx−

∫ t

0

g(t− s)ψx(0, s)ds
)2

+2

∫ 1

0

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)2

dx+ 2ρ2α

∫ 1

0

ψ2
t dx

−k
∫ 1

0

m (x)

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)

(ϕx + ψ) dx

+

∫ 1

0

m (x) θ

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)
dx

+ρ2

∫ 1

0

m (x)ψt

∫ t

0

g′(t− s)(ψx (t)− ψx(s))dsdx− ρ2g (t)

∫ 1

0

m (x)ψtψxdx.
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By using Lemma 4.1 and the fact that (a+ b)2 ≤ 2a2 + 2b2, we get

2

∫ 1

0

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)2

dx =

2

∫ 1

0

((
α−

∫ t

0

g (s) ds

)
ψx (t) +

∫ t

0

g(t− s) (ψx (t)− ψx(s)) ds
)2

dx

≤ c

∫ 1

0

ψ2
xdx+ c

∫ 1

0

(∫ t

0

g(t− s) (ψx (t)− ψx(s)) ds
)2

dx

≤ c

(∫ 1

0

ψ2
xdx+ g0 (t) g ◦ ψx

)
.

Similarly, we have

−k
∫ 1

0

m (x)

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)

(ϕx + ψ) dx

≤ εk

∫ 1

0

(ϕx + ψ)2 dx+
c

ε

∫ 1

0

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)2

dx

≤ εk

∫ 1

0

(ϕx + ψ)2 dx+
c

ε

(∫ 1

0

ψ2
xdx+ g0 (t) g ◦ ψx

)
,∫ 1

0

m (x) θ

(
αψx −

∫ t

0

g(t− s)ψx(s)ds
)
dx

≤ c

∫ 1

0

θ2xdx+
c

ε

(∫ 1

0

ψ2
xdx+ g0 (t) g ◦ ψx

)
and

ρ2

∫ 1

0

m (x)ψt

∫ t

0

g′(t− s)(ψx (t)− ψx(s))dsdx− ρ2g (t)

∫ 1

0

m (x)ψtψxdx

≤ c

∫ 1

0

(
ψ2
t + ψ2

x

)
dx− cg′ ◦ ψx.

A combination of all the above estimate leads to (4.6).
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To prove (4.7), we differentiate I5, we obtain

I ′5(t) =

∫ 1

0

m (x) (k(ϕx + ψ)x − θx)ϕxdx+ ρ1

∫ 1

0

m (x)ϕtϕxtdx

=
k

2

[
m (x)ϕ2

x (x)
]1
0

+ 2k

∫ 1

0

ϕ2
x (x) dx+ 2ρ1k

∫ 1

0

ϕ2
tdx

+ k

∫ 1

0

m (x)ψxϕxdx− k
∫ 1

0

m (x) θxϕxdx

then, Young’s inequality, for the last two integrals, yields (4.7). �

Lemma 4.8. Under the assumptions (H1), (H2), the functional

I6 := I3 +
1

2ε
I4 +

ε

2k
I5

satisfies, along the strong solution of (1.2), the estimate

I ′6(t) ≤ −
(
k

2
− εc

)∫ 1

0

(ϕx + ψ)2 dx+
c

ε

∫ 1

0

(
ψ2
t + θ2x

)
dx+ cε

∫ 1

0

ϕ2
tdx

+
c

ε2

∫ 1

0

ψ2
xdx+

c

ε2
g0 (t) g ◦ ψx −

c

ε
g′ ◦ ψx +

(αρ1
k
− ρ2

)∫ 1

0

ϕtψxtdx,

(4.8)

for any 0 < ε < 1.

Proof. Substitution of (4.5)-(4.7) in the expression of I ′6(t) and use of∫ 1

0

ϕ2
x ≤ 2

∫ 1

0

(ϕx + ψ)2 dx+ 2

∫ 1

0

ψ2dx,

together with Poincaré’s inequality lead to (4.8). �

Lemma 4.9. Under the assumptions (H1), (H2), the functional

G1 := I6 +
1

16
I2

satisfies, along the strong solution of (1.1) and for ε small enough, the estimate

G′1(y) ≤ −k
4

∫ 1

0

(ϕx + ψ)2 dx− ρ1
32

∫ 1

0

ϕ2
tdx+ c

(∫ 1

0

ψ2
t dx+

∫ 1

0

ψ2
xdx+

∫ 1

0

θ2xdx

)
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+c (g0 (t) g ◦ ψx − g′ ◦ ψx) +
(αρ1
k
− ρ2

)∫ 1

0

ϕtψxtdx. (4.9)

Proof. By exploiting (4.4) and (4.8) we arrive at

G′1(t) ≤ −
(

3k

8
− εc

)∫ 1

0

(ϕx + ψ)2 dx−
(ρ1

16
− cε

)∫ 1

0

ϕ2
tdx+

( c
ε2

+ c
)∫ 1

0

ψ2
xdx

+
( c
ε2

+ c
)
g0 (t) g ◦ ψx −

c0
ε
g′ ◦ ψx +

(αρ1
k
− ρ2

)∫ 1

0

ϕtψxtdx

+
(c
ε
− ρ2

16

)∫ 1

0

ψ2
t dx+

(
c+

c

ε

)∫ 1

0

θ2xdx.

By choosing ε small enough such that

3k

8
− εc ≥ k

4
,

ρ1
16
− cε ≥ ρ1

32
,

c

ε
− ρ2

16
≥ 0,

we obtain (4.9). �

Now, we introduce the function

ω (x) := −
∫ x

0

ψ (y, t) dy +

(∫ 1

0

ψ (y, t) dy

)
x.

One can easily see that

ωx (x) = −ψ (x, t) +

∫ 1

0

ψ (y, t) dy

and

ωt (x) := −
∫ x

0

ψt (y, t) dy +

(∫ 1

0

ψt (y, t) dy

)
x.



CHAPTER 3. GENERAL DECAY IN POROUS THERMOELASTICITY 68

A simple calculation then yields∫ 1

0

ω2
xdx ≤ 2

∫ 1

0

ψ2 (x, t) dx+ 2

(∫ 1

0

ψ (y, t) dy

)2

dx

≤ 4

∫ 1

0

ψ2dx∫ 1

0

ω2
t dx ≤ 4

∫ 1

0

ψ2
t dx.

(4.10)

Lemma 4.10. Under the assumptions (H1), (H2), the functional

G2(t) :=

∫ 1

0

(ρ2ψψt + ρ1ωϕt) dx

satisfies, along the solution of (1.1), the estimate

G′2(t) ≤ −
l

2

∫ 1

0

ψ2
xdx+

c

ε

∫ 1

0

ψ2
t dx (4.11)

+ ε

∫ 1

0

ϕ2
tdx+ cg0 (t) g ◦ ψx +

1

l

∫ 1

0

θ2xdx.

Proof. A differentiation of G2 gives

G′2(t) =

∫ 1

0

(
ρ2ψ

2
t + ρ1ωtϕt

)
dx+

∫ 1

0

ω (k(ϕx + ψ)x − θx) dx

+

∫ 1

0

ψ

(
αψxx − k(ϕx + ψ) + θ −

∫ t

0

g(t− s)ψxx(x, s)ds
)
dx

=

∫ 1

0

(
ρ2ψ

2
t + ρ1ωtϕt

)
dx− α

∫ 1

0

ψ2
xdx+

∫ 1

0

ψθdx+

∫ 1

0

ψx

∫ t

0

g(t− s)ψx(x, s)dsdx

−k
∫ 1

0

(ωx + ψ) (ϕx + ψ)dx−
∫ 1

0

ωθxdx

= ρ2

∫ 1

0

ψ2
t dx+ ρ1

∫ 1

0

ωtϕtdx− k
∫ 1

0

(ωx + ψ) (ϕx + ψ)dx+

∫ 1

0

(ωx + ψ) θdx

−
(
α−

∫ t

0

g(s)ds

)∫ 1

0

ψ2
xdx+

∫ 1

0

ψx

∫ t

0

g(t− s) (ψx(s)− ψx (t)) dsdx.
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By noting that

ωx + ψ =

∫ 1

0

ψ (y, t) dy,

we get

−k
∫ 1

0

(ωx + ψ) (ϕx + ψ)dx = −k
(∫ 1

0

ψ (y, t) dy

)2

≤ 0,

−
(
α−

∫ t

0

g(s)ds

)∫ 1

0

ψ2
xdx ≤ −l

∫ 1

0

ψ2
xdx.

By using Young’s, Poincaré’s inequalities, Lemma 4.1 and (4.10), we arrive at

ρ1

∫ 1

0

ωtϕtdx ≤ ε

∫ 1

0

ϕ2
tdx+

c

ε

∫ 1

0

ψ2
t dx,

∫ 1

0

(ωx + ψ) θdx =

(∫ 1

0

ψ (y, t) dy

)∫ 1

0

θdx

≤ l

4

∫ 1

0

ψ2
xdx+

1

l

∫ 1

0

θ2xdx

and ∫ 1

0

ψx

∫ t

0

g(t− s) (ψx(s)− ψx (t)) dsdx ≤ l

4

∫ 1

0

ψ2
xdx+ cg0 (t) g ◦ ψx.

Combining all the above estimate, (4.11) is established. �

Next, we would like to deal with the second-order energy. For this reason, we first

note that

∂

∂t

(∫ t

0

g (t− s)ψxx (s) ds

)
=

∂

∂t

∫ t

0

g (s)ψxx (t− s) ds

= g (t)ψ0xx (x) +

∫ t

0

g (s)ψxxt (t− s) ds.
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Therefore, by differentiating system (1.1) with respect to t, we arrive at

ρ1ϕttt − k(ϕx + ψ)xt + θtx = 0, in (0, 1)× IR+

ρ2ψttt − αψtxx + k(ϕtx + ψt)− θt + g (t)ψ0xx (x)

+

∫ t

0

g (t− s)ψxxt (s) ds = 0, in (0, 1)× IR+

ρ3θtt − κθtxx + ϕxtt + ψtt = 0, in (0, 1)× IR+,

ϕt(0, t) = ϕt(1, t) = ψt(0, t) = ψt(1, t) = θt (0, t) = θt (1, t) = 0, t ≥ 0.

(4.12)

We also, define the second-order energy by

E∗ (t) =
1

2
g ◦ ψxt +

1

2

∫ 1

0

(
α−

∫ t

0

g (s) ds

)
ψ2
xt (t) dx

+
1

2

∫ 1

0

[
ρ1ϕ

2
tt + ρ2ψ

2
tt + ρ3θ

2
t + k (ϕxt + ψt)

2] dx.
Lemma 4.11. Let ψ ∈ C2 (IR+;H1

0 (0; 1)) and g satisfies (H1), then∫ 1

0

ψtt (t)

∫ t

0

g (t− s)ψxxt (s) dsdx =− 1

2
g′ ◦ ψxt +

1

2
g (t)

∫ 1

0

ψ2
xt (t) dx

+
1

2

d

dt

[
g ◦ ψxt −

(∫ t

0

g (s) ds

)∫ 1

0

ψ2
xt (t) dx

] .
(4.13)

Proof. Using integration by parts with respect to x, we get∫ 1

0

ψtt (t)

∫ t

0

g (t− s)ψxxt (s) dsdx = −
∫ 1

0

ψxtt (t)

∫ t

0

g (t− s)ψxt (s) dsdx

= −
∫ 1

0

ψxtt (t)

∫ t

0

g (t− s) (ψxt (s)− ψxt (t)) dsdx−
∫ 1

0

ψxtt (t)

∫ t

0

g (t− s)ψxt (t) dsdx

=
1

2

∫ 1

0

∫ t

0

g (t− s) d
dt

(ψxt (s)− ψxt (t))2 dsdx− 1

2

(∫ t

0

g (s) ds

)
d

dt

∫ 1

0

ψ2
xt (t) dx
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=
1

2

d

dt

∫ 1

0

∫ t

0

g (t− s) (ψxt (s)− ψxt (t))2 dsdx− 1

2

d

dt

((∫ t

0

g (s) ds

)∫ 1

0

ψ2
xt (t) dx

)
−1

2

∫ 1

0

∫ t

0

g′ (t− s) (ψxt (s)− ψxt (t))2 dsdx+
1

2
g (t)

∫ 1

0

ψ2
xt (t) dx

=
1

2

d

dt

[
g ◦ ψxt −

(∫ t

0

g (s) ds

)∫ 1

0

ψ2
xt (t) dx

]
− 1

2
g′ ◦ ψxt +

1

2
g (t)

∫ 1

0

ψ2
xt (t) dx. �

Lemma 4.12. Let (ϕ, ψ, θ) be the strong solution of (1.1), Then the energy E∗ (t) satis-

fies, for all t ≥ 0,

E ′∗ (t) ≤ 1

2
g′ ◦ ψxt − g (t)

∫ 1

0

ψttψ0xx (x) dx (4.14)

and

E∗ (t) ≤M, ∀t ≥ 0. (4.15)

Proof. Multiplying the equations of system (4.12) by ϕtt, ψtt and θt respectively and

integrating over (0, 1) using boundary conditions, (H1), (4.13) and the assumptions on

the constitutive constants, we obtain (4.14) for regular solutions. This inequality remains

valid for strong solutions of (1.1) by a simple density argument.

To prove (4.15), we use the fact that

1

2
g (t)

∫ 1

0

(
√
ρ2ψtt +

1
√
ρ2
ψ0xx

)2

dx ≥ 0, ∀t ≥ 0;

which implies that

1

2
g (t)

∫ 1

0

(
ρ2ψ

2
tt +

1

ρ2
ψ2
0xx

)
dx ≥ −g (t)

∫ 1

0

ψttψ0xx (x) dx.
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Thus,

E
′

∗ (t) ≤ 1

2
g (t)

∫ 1

0

(
ρ2ψ

2
tt +

1

ρ2
ψ2
0xx

)
dx

≤ g (t)E∗ (t) +
1

2ρ2
g (t)

∫ 1

0

ψ2
0xxdx.

Consequently,

(
E

′

∗ (t)− g (t)E∗ (t)
)
e
−

∫ t

0

g (s) ds
≤ e

−

∫ t

0

g (s) ds

2ρ2
g (t)

∫ 1

0

ψ2
0xxdx,

which implies that

d

dt

E∗ (t) e
−

∫ t

0

g (s) ds

 ≤ 1

2ρ2
g (t)

∫ 1

0

ψ2
0xxdx.

A simple integration yields

E∗ (t) e
−

∫ t

0

g (s) ds
− E∗ (0) ≤ 1

2ρ2

(∫ t

0

g (s) ds

)∫ 1

0

ψ2
0xxdx,

then,

E∗ (t) e
−

∫ +∞

0

g (s) ds
≤ E∗ (t) e

−

∫ t

0

g (s) ds
≤ E∗ (0) +

1

2ρ2
(α− l)

∫ 1

0

ψ2
0xxdx

which gives (4.15). �

Now let t0 > 0, set g1 =

∫ t0

0

g (s) ds and define, for N1, N2, N3 > 0, the Lyapunov

functional

L (t) := N1 (E (t) + E∗ (t)) +N2I1 (t) +N3G2 (t) +G1 (t) .
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By noting that

E ′ (t) ≤ −κ
∫ 1

0

θ2xdx+
1

2
g′ ◦ ψx, E ′∗ (t) ≤ −g (t)

∫ 1

0

ψttψ0xx (x) dx

and combining the estimates (4.3), (4.9) and (4.11), we obtain

L′ (t) ≤ −
(
lN3

2
− δN2 − c

)∫ 1

0

ψ2
xdx−

(ρ1
32
− εN3

)∫ 1

0

ϕ2
tdx

−
(
ρ2N2g1 − ρ2N2δ −

cN3

ε
− c
)∫ 1

0

ψ2
t dx−

(
k

4
− δN2

)∫ 1

0

(ϕx + ψ)2 dx

−
(
κN1 − δN2 − c−

1

l

)∫ 1

0

θ2xdx+
(αρ1
k
− ρ2

)∫ 1

0

ϕtψxtdx

+CN2N3g0 (t) g ◦ ψx +

(
N1

2
−N2cδ − c

)
g′ ◦ ψx −N1g (t)

∫ 1

0

ψttψ0xx (x) dx.

By taking δ =
k

8N2

, we arrive at

L′ (t) ≤ −
(
lN3

2
− (

k

8
+ c)

)∫ 1

0

ψ2
xdx−

(ρ1
32
− εN3

)∫ 1

0

ϕ2
tdx

−
(
ρ2N2g1 −

cN3

ε
− (

kρ2
8

+ c)

)∫ 1

0

ψ2
t dx−

k

8

∫ 1

0

(ϕx + ψ)2 dx

−
(
κN1 −

k

8
− c− 1

l

)∫ 1

0

θ2xdx+
(αρ1
k
− ρ2

)∫ 1

0

ϕtψxtdx

CN2N3g0 (t) g ◦ ψx +

(
N1

2
−N2c− c

)
g′ ◦ ψx −N1g (t)

∫ 1

0

ψttψ0xx (x) dx

for all t ≥ t0.

We choose N3 large enough such that
lN3

2
− (

k

8
+ c) > 0, then we choose ε <

ρ1
32N3

to

get
ρ1
32
− εN3 > 0. Next we choose N2 large enough so that ρ2N2g1 −

cN3

ε
− c > 0.
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Consequently, we have for all t ≥ t0,

L′ (t) ≤ −c
(∫ 1

0

ψ2
xdx+

∫ 1

0

ϕ2
tdx+

∫ 1

0

ψ2
t dx+

∫ 1

0

(ϕx + ψ)2 dx

)
−
(
κN1 − c−

1

l

)∫ 1

0

θ2xdx+ cg0 (t) g ◦ ψx +

(
N1

2
− c
)
g′ ◦ ψx (4.16)

+
(αρ1
k
− ρ2

)∫ 1

0

ϕtψxtdx−N1g (t)

∫ 1

0

ψttψ0xx (x) dx.

To estimate the term
(αρ1
k
− ρ2

)∫ 1

0

ϕtψxtdx, we prove the following lemma.

Lemma 4.13. Let (ϕ, ψ, θ) be the strong solution of (1.1), then for any ε > 0 and t ≥ t0,

we have(αρ1
k
− ρ2

)∫ 1

0

ϕtψxtdx ≤ ε

∫ 1

0

ϕ2
tdx+

c

ε
(g0 (t) g ◦ ψxt − g′ ◦ ψx) +

c

ε
E (0) g (t) . (4.17)

Proof. We have, for all t ≥ t0,

(αρ1
k
− ρ2

)∫ 1

0

ϕtψxtdx =

 αρ1
k
− ρ2∫ t

0

g (s) ds

∫ 1

0

ϕt

∫ t

0

g (t− s)ψxt (s) dsdx

+

 αρ1
k
− ρ2∫ t

0

g (s) ds

∫ 1

0

ϕt

∫ t

0

g (t− s) (ψxt (t)− ψxt (s)) dsdx.

By using Young’s inequality, the fact that(
αρ1
k
− ρ2

)∫ t

0

g (s) ds

≤ 1

g1

(αρ1
k
− ρ2

)

and Lemma 4.1 (for ψxt) we get, for all ε > 0,(
αρ1
k
− ρ2

)∫ t
0
g (s) ds

∫ 1

0

ϕt

∫ t

0

g (t− s) (ψxt (t)− ψxt (s)) dsdx ≤ ε

2

∫ 1

0

ϕ2
tdx+

c

ε
g0 (t) g◦ψxt. (4.18)
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On the other hand, by integrating by parts with respect to t, using Young’s inequality

and the fact that (ψx (t)− ψ0x)
2 ≤ 2ψ2

x (t) + 2ψ2
0x, we get(

αρ1
k
− ρ2

)∫ t
0
g (s) ds

∫ 1

0

ϕt

∫ t

0

g (t− s)ψxt (s) dsdx

=

(
αρ1
k
− ρ2

)∫ t
0
g (s) ds

∫ 1

0

ϕt

(
g (0)ψx (t)− g (t)ψ0x −

∫ t

0

g′ (t− s)ψx (s) ds

)
dx

=

(
αρ1
k
− ρ2

)∫ t
0
g (s) ds

∫ 1

0

ϕt

(
g (t)ψx (t)− g (t)ψ0x −

∫ t

0

g′ (t− s) (ψx (t)− ψx (s)) ds

)
dx

≤ ε

2

∫ 1

0

ϕ2
tdx+

c

ε
g2 (t)

∫ 1

0

(
ψ2
x (t) + ψ2

0x

)
dx− c

ε
g′ ◦ ψx.

Noting that ∫ 1

0

ψ2
x (t) dx ≤ 1

l
E (t) ≤ cE (0) , ∀t ≥ 0.

Consequently, the boundedness of g yields

c

ε
g2 (t)

∫ 1

0

(
ψ2
x (t) + ψ2

0x

)
dx ≤ c

ε
g (t)E (0) , ∀t ≥ 0.

Thus,(
αρ1
k
− ρ2

)∫ t
0
g (s) ds

∫ 1

0

ϕt

∫ t

0

g (t− s)ψxt (s) dsdx ≤ ε

2

∫ 1

0

ϕ2
tdx+

c

ε
g (t)E (0)− c

ε
g′ ◦ ψx. (4.19)

A combination of all the above leads to (4.17). �

Lemma 4.14. Assume that (ϕ, ψ, θ) is the strong solution of (1.1). Then for all t ≥ t0,

we have

L′ (t) ≤ −c
(∫ 1

0

ψ2
xdx+

∫ 1

0

ϕ2
tdx+

∫ 1

0

ψ2
t dx+

∫ 1

0

(ϕx + ψ)2 dx+

∫ 1

0

θ2xdx

)
+ cg0 (t) (g ◦ ψx + g ◦ ψtx) + cg (t)

(
E (0) + E∗ (0) +

∫ 1

0

ψ2
0xxdx

)
. (4.20)
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Proof. Young’s inequality and (4.15) yield

−
∫ 1

0

ψttψ0xxdx ≤
1

2

∫ 1

0

(
ψ2
tt + ψ2

0xx

)
dx ≤ c. (4.21)

We then insert (4.17) and (4.21) in (4.16) to obtain

L′ (t) ≤ −c
(∫ 1

0

ψ2
xdx+

∫ 1

0

ϕ2
tdx+

∫ 1

0

ψ2
t dx+

∫ 1

0

(ϕx + ψ)2 dx

)
−
(
κN1 − c−

1

l

)∫ 1

0

θ2xdx+ ε

∫ 1

0

ϕ2
tdx+ cg0 (t) g ◦ ψx

+

(
N1

2
− c

ε
− c
)
g′ ◦ ψx +

c

ε
g0 (t) g ◦ ψxt +

c

ε
g (t) +N1cg (t) .

We choose ε small enough and N1 large enough so that

κN1 − c−
1

l
> 0,

N1

2
− c

ε
− c > 0, and L (t) ≥ cE (t) ,

thus, we obtain (4.20).

The fact that

−c
(∫ 1

0

ψ2
xdx+

∫ 1

0

ϕ2
tdx+

∫ 1

0

ψ2
t dx+

∫ 1

0

(ϕx + ψ)2 dx+

∫ 1

0

θ2xdx

)

≤ −E (t) + cg ◦ ψx

allows (4.20) to be written

L′ (t) ≤ −cE (t) + c [(1 + g0 (t)) g ◦ ψx + g0 (t) g ◦ ψxt] + cg (t) , ∀t ≥ t0. (4.22)

Recalling (H1), (H2), one can easily see that

ξ (t) g ◦ ψx (t) ≤ −g′ ◦ ψx, and ξ(t)g ◦ ψxt (t) ≤ −g′ ◦ ψxt.
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Consequently, multiplying (4.22) by ξ (t) , we obtain

ξ (t)E (t) ≤ −cξ (t)L′ (t)− c [(1 + g0 (t)) g′ ◦ ψx + g0 (t) g′ ◦ ψxt] + cg (t) ξ (t) . (4.23)

The non-increasingness of ξ leads, for v ∈ {ψx, ψtx} , to

ξ (t) (g ◦ v) =

∫ 1

0

ξ (t)

∫ t

0

g (t− s) (v (t)− v (s))2 dsdx

≤
∫ 1

0

∫ t

0

ξ (t− s) g (t− s) (v (t)− v (s))2 dsdx ≤ −g′ ◦ v,

Thus, Integrating (4.23) over [t0, t] , using (4.14), (4.15) and the fact that 2E ′ (t) ≤ g′◦ψx,

we get ∫ t

t0

ξ (s)E (s) ds

≤ c

(
ξ (t0)L (t0)− ξ (t)L (t) +

∫ t

t0

ξ′ (s)L (s) ds

)
−c
∫ t

t0

[
(1 + g0 (s))E ′ (s) + g0 (s)

(
E ′∗ (s) + g (s)

∫ 1

0

ψttψ0xx (x) dx

)]
ds

+c

∫ t

t0

g (s) ξ (s) ds.

(4.24)

Using (H1), we easily see that

L (t0) ≤ c [E (t0) + E∗ (t0)] ≤ c,∫ t

t0

ξ′ (s)L (s) ds− ξ (t)L (t) ≤ 0, g0 (s) ≤
∫ ∞
0

g (s) ds = α− l∫ t

t0

g (s) ξ (s) ds ≤ ξ (0)

∫ ∞
0

g (s) ds = ξ (0) (α− l),

and

∫ t

t0

g0 (s) g (s) ds ≤
∫ t

t0

(∫ ∞
0

g (τ) dτ

)
g (s) ds ≤ (α− l)

∫ +∞

0

g (s) ds.



CHAPTER 3. GENERAL DECAY IN POROUS THERMOELASTICITY 78

Therefore, using (4.21), estimate (4.24) becomes∫ t

t0

ξ (s)E (s) ds ≤ c− c
∫ t

t0

[E ′ (s) + E ′∗ (s)] ds+ c

∫ t

t0

g0 (s) g (s) ds (4.25)

≤ c+ E(t0) + E∗ (t0)− E∗ (t) + (α− l)
∫ +∞

0

g (s) ds ≤ c.

Thus, recalling that E is positive and non-increasing, (4.25) gives

E (t)

∫ t

0

ξ (s) ds ≤
∫ t

0

ξ (s)E (s) ds =

∫ t0

0

ξ (s)E (s) ds+

∫ t

t0

ξ (s)E (s) ds

≤ t0ξ (0)E (0) + c,

which yields

E (t) ≤ λ∫ t
0
ξ (s) ds

∀t ≥ t0.

This completes the proof of Theorem 4.3.



Chapter 4

Thermoelasticity type III

4.1 Introduction

The Fourier’s law of heat conduction,

q + k∇θ = 0,

gives, along with the law of conservation of energy and in absence of internal heat source,

the heat transport equation

θt = k∆θ.

A direct consequence is, that any thermal disturbance at a point, in material conducting

heat, has an instantaneous effect elsewhere in the body. This is physically unrealistic.

To overcome this deficiency many theories were developed, one of which is proposed by

79
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Cattaneo (1948-1958) which generalized Fourier’s law by

τqt + q + k∇θ = 0,

where τ is nonnegative constant. The corresponding heat equation reads thus,

τθtt + θt = k∆θ.

This equation is of hyperbolic type and allows heat to propagate as wave with finite speed.

Green and Naghdi [14]- [17] proposed three thermoelastic theories based on an entropy

equality rather than the usual entropy inequality. In each of these theories the heat flux

is given by a different constitutive assumption. Three theories were obtained and called

respectively, thermoelasticity type I, type II and type III.

In this chapter we are concerned with thermoelasticity of type III. In section 2 we

study a linear damped porous thermoelastic system. However, section 3 is devoted to the

study of Timoshenko type system.
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4.2 Porous thermoelasticity

We consider the following one-dimensional linear damped porous thermoelastic system of

type III

ρ1ϕtt − k(ϕx + ψ)x + θx = 0, in (0, 1)× IR+

ρ2ψtt − αψxx + k(ϕx + ψ)− θ + aψt = 0, in (0, 1)× IR+

ρ3θtt − κθxx + ϕxtt + ψtt − kθtxx = 0, in (0, 1)× IR+

ϕ (x, 0) = ϕ0 (x) , ψ (x, 0) = ψ0 (x) , θ (x, 0) = θ0 (x) , 0 ≤ x ≤ 1

ϕt (x, 0) = ϕ1 (x) , ψt (x, 0) = ψ1 (x) , θt (x, 0) = θ1 (x) , 0 ≤ x ≤ 1

ϕ (x, t) = ψ (x, t) = θ (x, t) = 0, x = 0, 1, t ≥ 0,

(2.1)

where ϕ is the displacement, ψ is the volume fraction, θ is the temperature difference and

ρ1, ρ2, ρ3, α, κ, k and a are constitutive constants. In this section we will investigate how

strong is it the damping given by aψt (a > 0) to stabilize system (2.1) uniformly. The

type as well as the rate of decay of this system will be determined following the wave’s

propagation speed.

Many papers have appeared where the authors used different dissipative mechanisms

at the microscopic and/or macroscopic levels to stabilize the vibrations. Messaoudi and

Said-Houari [41] considered a type III linear thermoelastic system of Timoshenko type

and proved an exponential decay result. Also, Messaoudi and Said-Houari [42] considered



CHAPTER 4. THERMOELASTICITY TYPE III 82

a Timoshenko-type system of type III of the form

ρ1ϕtt −K(ϕx + ψ)x = 0, in (0, 1)× IR+

ρ2ψtt − bψxx +K(ϕx + ψ) +

∫ ∞
0

g (s)ψxx (x, t− s) ds+ βθx = 0, in (0, 1)× IR+

ρ3θtt − δθxx + γψttx − kθtxx = 0, in (0, 1)× IR+

ϕ (x, 0) = ϕ0 (x) , ψ (x, 0) = ψ0 (x) , θ (x, 0) = θ0 (x) , 0 ≤ x ≤ 1

ϕt (x, 0) = ϕ1 (x) , ψt (x, 0) = ψ1 (x) , θt (x, 0) = θ1 (x) , 0 ≤ x ≤ 1

ϕ (x, t) = ψ (x, t) = θx (x, t) = 0, x = 0, 1, t > 0.

(2.2)

and proved that the system (2.2) decays exponentially (respectively polynomially) if g

decays exponentially (respectively polynomially) in the case of equal speed (
ρ1
K

=
ρ2
b

).

However, the decay is of polynomial rate otherwise
(ρ1
K
6= ρ2

b

)
.

In this section several decay results depending on the wave’s propagation speeds, will

be obtained for system (2.1).

In the aim of exhibiting the dissipative nature of (2.1), we differentiate the first and

the second equations of (2.1) with respect to t and introduce new dependent variables
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φ = ϕt and Ψ = ψt. So system (2.1) takes the form

ρ1φtt − k(φx + Ψ)x + θtx = 0, in (0, 1)× IR+

ρ2Ψtt − αΨxx + k(φx + Ψ)− θt + aΨt = 0, in (0, 1)× IR+

ρ3θtt − κθxx + φxt + Ψt − kθtxx = 0, in (0, 1)× IR+

φ (x, 0) = φ0 (x) , Ψ (x, 0) = Ψ0 (x) , θ (x, 0) = θ0 (x) , 0 ≤ x ≤ 1,

φt (x, 0) = φ1 (x) , Ψt (x, 0) = Ψ1 (x) , θt (x, 0) = θ1 (x) , 0 ≤ x ≤ 1

φ (x, t) = Ψ (x, t) = θ (x, t) = 0, x = 0, 1, t ≥ 0.

(2.3)

The first energy associated to (2.3) is given by

E1 (t) = E(φ,Ψ, θ) =
1

2

∫ 1

0

(
ρ1φ

2
t + ρ2Ψ

2
t + k (φx + Ψ)2 + αΨ2

x + ρ3θ
2
t + κθ2x

)
dx.

4.2.1 Uniform decay

The main result of this section is the following

Theorem 2.1. Let ((φ0, φ1) , (Ψ0,Ψ1) , (θ0, θ1)) ∈ (H1
0 (0, 1)× L2 (0, 1))

3
be given and

suppose that

ρ1
k

=
ρ2
α

(2.4)

holds. Then, there exist two positive constants ω and λ, independent of the initial data

and t, for which the solution of (2.3) satisfies

E1 (t) ≤ λe−ωt, t > 0. (2.5)
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The proof of our result will be established through several lemmas.

Lemma 2.2. The energy E1 (t) satisfies

E ′1 (t) = −a
∫ 1

0

Ψ2
tdx− k

∫ 1

0

θ2xtdx ≤ 0. (2.6)

Proof. Multiplying the equations (2.3) by φt,Ψt and θt respectively, integrating over

(0, 1) , we obtain

ρ1
2

d

dt

∫ 1

0

φ2
t +

k

2

d

dt

∫ 1

0

φ2
x + k

∫ 1

0

Ψφxt +

∫ 1

0

θxtφt = 0,

ρ2
2

d

dt

∫ 1

0

Ψ2
t +

α

2

d

dt

∫ 1

0

Ψ2
x + k

∫ 1

0

φxΨt +
k

2

d

dt

∫ 1

0

Ψ2 −
∫ 1

0

θtΨt + a

∫ 1

0

Ψ2
t = 0

and

ρ3
2

d

dt

∫ 1

0

θ2t +
κ

2

d

dt

∫ 1

0

θ2x −
∫ 1

0

φtθxt +

∫ 1

0

Ψtθt + k

∫ 1

0

θ2xt = 0.

Thus, summing up gives

1

2

d

dt

∫ 1

0

[
ρ1φ

2
t + ρ2Ψ

2
t + ρ3θ

2
t + k (φx + Ψ)2 + αΨ2

x + κθ2x
]
dx.

= −a
∫ 1

0

Ψ2
tdx− k

∫ 1

0

θ2xtdx. �

Let ω be the solution of

wxx = −Ψx, w (0) = w (1) = 0.
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Lemma 2.3. The function ω satisfies∫ 1

0

w2
xdx ≤

∫ 1

0

Ψ2dx ≤
∫ 1

0

Ψ2
xdx, (2.7)∫ 1

0

w2
t dx ≤

∫ 1

0

w2
txdx ≤

∫ 1

0

Ψ2
tdx, (2.8)

−
∫ 1

0

Ψ (wx + Ψ) dx = −
∫ 1

0

Ψ2dx+

∫ 1

0

w2
xdx ≤ 0. (2.9)

Proof. See chapter II, Lemma 3.9. �

Lemma 2.4. The functional

I(t) :=

∫ 1

0

(
ρ1φtw + ρ2ΨΨt +

a

2
Ψ2
)
dx (2.10)

satisfies, for all ε > 0, the estimate

I ′(t) ≤ −α
2

∫ 1

0

Ψ2
xdx+

1

α

∫ 1

0

θ2txdx+
(
ρ2 +

ρ1
4ε

)∫ 1

0

Ψ2
t + ερ1

∫ 1

0

φ2
tdx. (2.11)

Proof. A differentiation of (2.10), using (2.3), leads to

I ′(t) = −
∫ 1

0

k(φx + Ψ) (wx + Ψ) dx+

∫ 1

0

θtwxdx

− α
∫ 1

0

Ψ2
xdx+

∫ 1

0

Ψθtdx+

∫ 1

0

ρ1φtwt +

∫ 1

0

ρ2Ψ
2
t

= −
∫ 1

0

kΨ (wx + Ψ) dx+

∫ 1

0

θtwxdx− α
∫ 1

0

Ψ2
xdx+

∫ 1

0

Ψθtdx

+

∫ 1

0

ρ1φtwt +

∫ 1

0

ρ2Ψ
2
t

≤ −α
∫ 1

0

Ψ2
xdx+

∫ 1

0

θtwxdx+

∫ 1

0

Ψθtdx+

∫ 1

0

ρ1φtwt +

∫ 1

0

ρ2Ψ
2
t .
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By using (2.7)-(2.9), Young’s and Poincaré’s inequalities, (2.11) is established. �

Lemma 2.5. Under Condition (2.4), the functional

J (t) := ρ2

∫ 1

0

Ψt (φx + Ψ) dx+ ρ2

∫ 1

0

Ψxφtdx+
a

2

∫ 1

0

Ψ2 (2.12)

satisfies

J ′ (t) ≤ [αφxΨx]
x=1
x=0 −

k

2

∫ 1

0

(φx + Ψ)2 +

(
ρ2 +

2a2

k

)∫ 1

0

Ψ2
t

+

(
ε1 +

k

4

)∫ 1

0

Ψ2
x +

(
1

k
+

ρ22
4ε1ρ21

)∫ 1

0

θ2tx, (2.13)

for all ε1 > 0.

Proof. Differentiating (2.12) and using (2.3), we arrive at

J ′ (t) =

∫ 1

0

(αΨxx − k(φx + Ψ) + θt − aΨt) (φx + Ψ) dx+ ρ2

∫ 1

0

Ψt (φtx + Ψt) dx

+ρ2

∫ 1

0

Ψtxφtdx+
ρ2
ρ1

∫ 1

0

Ψx (k(φx + Ψ)x − θtx) + a

∫ 1

0

ΨΨt

= [αφxΨx]
x=1
x=0 −

∫ 1

0

k(φx + Ψ)2 +

∫ 1

0

(φx + Ψ)θt − a
∫ 1

0

Ψtφxdx

+ρ2

∫ 1

0

Ψ2
t −

ρ2
ρ1

∫ 1

0

Ψxθtx.

To obtain (2.13), it suffuses to use Young’s inequality and the fact that∫ 1

0

φ2dx ≤
∫ 1

0

φ2
xdx ≤ 2

∫ 1

0

(φx + Ψ)2dx+ 2

∫ 1

0

Ψ2
xdx. � (2.14)

To handle the boundary term in (2.13) we introduce the function m (x) = 2− 4x.



CHAPTER 4. THERMOELASTICITY TYPE III 87

Lemma 2.6. Let (φ,Ψ, θ) be a solution of (2.3) . Then, we have, for all ε1 > 0,

J ′ (t) +
ε1
k

d

dt

∫ 1

0

ρ1mφtφx +
αρ2
4ε1

d

dt

∫ 1

0

mΨtΨx

≤ −
(
k

2
− ε1k

2

4
− 8ε1

)∫ 1

0

(φx + Ψ)2 +

(
3α2

4ε1
+
α2

4ε31
+ 10ε1 +

k

4

)∫ 1

0

Ψ2
x

+
2ε1ρ1
k

∫ 1

0

φ2
t +

(
ρ2 +

2a2

k
+
αρ2
2ε1

+
a2

2ε1

)∫ 1

0

Ψ2
t

+

(
1

k
+

ρ22
4ε1ρ21

+
1

2ε1
+
ε1
k2

)∫ 1

0

θ2tx.

(2.15)

Proof. Using (2.3) and Young’s inequality, we easily see that

d

dt

∫ 1

0

ρ1mφtφx =

∫ 1

0

m (k(φx + Ψ)x − θtx)φx +

∫ 1

0

ρ1mφtφtx

= −k
[
φ2
x (0) + φ2

x (1)
]

+ 2k

∫ 1

0

φ2
x + k

∫ 1

0

mΨxφx −
∫ 1

0

mθtxφx + 2ρ1

∫ 1

0

φ2
t

≤ −k
[
φ2
x (0) + φ2

x (1)
]

+ 4k

∫ 1

0

φ2
x + k

∫ 1

0

Ψ2
x +

1

k

∫ 1

0

θ2tx + 2ρ1

∫ 1

0

φ2
t . (2.16)

Similarly,

αρ2
d

dt

∫ 1

0

mΨtΨx =α

∫ 1

0

m (αΨxx − k(φx + Ψ) + θt − aΨt) Ψx +

∫ 1

0

αρ2mΨtΨtx

=

[
α2

2
mΨ2

x

]x=1

x=0

+ 2α2

∫ 1

0

Ψ2
x + 2αρ2

∫ 1

0

Ψ2
t −

∫ 1

0

αkm(φx + Ψ)Ψx

+

∫ 1

0

αmθtΨx − a
∫ 1

0

αmΨtΨx

≤− α2
[
Ψ2
x (0) + Ψ2

x (1)
]

+ 3α2

∫ 1

0

Ψ2
x + 2αρ2

∫ 1

0

Ψ2
t

+
α2

ε21

∫ 1

0

Ψ2
x + ε21k

2

∫ 1

0

(φx + Ψ)2 + 2

∫ 1

0

θ2t + 2a2
∫ 1

0

Ψ2
t .

(2.17)
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Combining (2.16), (2.17) and

[αφxΨx]
x=1
x=0 ≤ ε1

[
φ2
x (0) + φ2

x (1)
]

+
α2

4ε1

[
Ψ2
x (0) + Ψ2

x (1)
]
,

we arrive at

[αφxΨx]
x=1
x=0 ≤ −

ε1
k

d

dt

∫ 1

0

ρ1mφtφx −
αρ2
4ε1

d

dt

∫ 1

0

mΨtΨx + 4ε1

∫ 1

0

φ2
x

+ ε1

∫ 1

0

Ψ2
x +

ε1
k2

∫ 1

0

θ2tx +
2ε1ρ1
k

∫ 1

0

φ2
t +

1

2ε1

∫ 1

0

θ2t (2.18)

+

(
3α2

4ε1
+
α2

4ε31

)∫ 1

0

Ψ2
x +

(
αρ2
2ε1

+
a2

2ε1

)∫ 1

0

Ψ2
t +

ε1k
2

4

∫ 1

0

(φx + Ψ)2.

A substitution of (2.18) in (2.13) leads to (2.15). �

Lemma 2.7. The functional

K1 (t) := −ρ1
∫ 1

0

φtφdx− ρ2
∫ 1

0

ΨtΨdx−
a

2

∫ 1

0

Ψ2dx

satisfies, along the solution of (2.3) , the estimate

K ′1 (t) ≤ −ρ1
∫ 1

0

φ2
tdx− ρ2

∫ 1

0

Ψ2
tdx+

(
k +

1

4

)∫ 1

0

(φx + Ψ)2dx (2.19)

+

(
α +

1

2

)∫ 1

0

Ψ2
xdx+ 3

∫ 1

0

θ2txdx.

Proof. A simple differentiation of K1, using (2.3), gives

K ′1 (t) = −ρ1
∫ 1

0

φ2
tdx−

∫ 1

0

φ (k(φx + Ψ)x − θtx) dx− ρ2
∫ 1

0

Ψ2
tdx− a

∫ 1

0

ΨtΨdx

−
∫ 1

0

Ψ (αΨxx − k(φx + Ψ) + θt − aΨt) dx

= −ρ1
∫ 1

0

φ2
tdx− ρ2

∫ 1

0

Ψ2
tdx+

∫ 1

0

k(φx + Ψ)2dx+ α

∫ 1

0

Ψ2
xdx+

∫ 1

0

φθtxdx−
∫ 1

0

Ψθtdx.
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The desired estimate then follows, by using Young’s and Poincaré’s inequalities, (2.7) and

(2.14). �

Lemma 2.8. Along the solution of (2.3), the functional

K2 (t) :=

∫ 1

0

(
ρ3θtθ +

k

2
θ2x + (φx + Ψ)θ

)
dx.

satisfies, for all ε2 > 0, the estimate

K ′2 (t) ≤ −κ
∫ 1

0

θ2xdx+

(
ρ3 +

1

4ε2

)∫ 1

0

θ2txdx+ ε2

∫ 1

0

(φx + Ψ)2dx. (2.20)

Proof. A simple differentiation of K2, using (2.3), leads to

K ′2 (t) = ρ3

∫ 1

0

θ2t dx+

∫ 1

0

(κθxx − φxt −Ψt + kθtxx) θdx

+ k

∫ 1

0

θxθtxdx+

∫ 1

0

(φtx + Ψt)θdx+

∫ 1

0

(φx + Ψ)θtdx

= ρ3

∫ 1

0

θ2t dx− κ
∫ 1

0

θ2xdx+

∫ 1

0

(φx + Ψ)θtdx.

The desired estimate is then obtained, using Young’s and Poincaré’s inequalities. �

To finalize the proof of Theorem 2.1, we define the Lyapunov functional by

F (t) := NE1 (t) +N1I (t) + δK1 (t) +K2 (t)

+

[
J (t) +

ε1
k

d

dt

∫ 1

0

ρ1mφtφx +
αρ2
4ε1

d

dt

∫ 1

0

mΨtΨx

]
.
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A combination of (2.6), (2.11), (2.15), (2.19) and (2.20) gives

F ′ (t) ≤ −
[
Nk − N1

α
−
(
ρ22 + 2ρ21

4ε1ρ21
+
k + ε1
k2

)
− 3δ − ρ3 −

1

4ε2

] ∫ 1

0

θ2tx

−
[
N1α

2
−
(

3α2

4ε1
+
α2

4ε31
+ 10ε1 +

k

4

)
− δ

(
α +

1

2

)]∫ 1

0

Ψ2
x

− ρ1
[
δ − εN1 −

2ε1
k

] ∫ 1

0

φ2
t − κ

∫ 1

0

θ2x (2.21)

−
[
k

2
− ε2 − δ

(
k +

1

4

)
−
(
k2

4
+ 8

)
ε1

] ∫ 1

0

(φx + Ψ)2

−
[
Na−N1

(
ρ2 +

ρ1
4ε

)
− (1− δ) ρ2 −

2a2

k
− αρ2

2ε1
− a2

2ε1

] ∫ 1

0

Ψ2
t .

Now we have to choose our constants carefully. First we take

δ =
k

8
(
k + 1

4

) , ε2 =
k

4

and then ε1 so small that

k

2
− ε2 − δ

(
k +

1

4

)
−
(
k2

4
+ 8

)
ε1 =

k

8
−
(
k2

4
+ 8

)
ε1 > 0

δ − 2ε1
k

>
δ

2
.

Next, we choose N1 large enough such that

N1α

2
−
(

3α2

4ε1
+
α2

4ε31
+ 10ε1 +

k

4

)
− δ

(
α +

1

2

)
> 0

and ε so small that

δ − εN1 −
2ε1
k

> 0.

Finally, we pick N large enough such that

Nk − N1

α
−
(
ρ22 + 2ρ21

4ε1ρ21
+
k + ε1
k2

)
− 3δ − ρ3 −

1

4ε2
> 0



CHAPTER 4. THERMOELASTICITY TYPE III 91

and

Na−N1

(
ρ2 +

ρ1
4ε

)
− (1− δ) ρ2 −

2a2

k
− αρ2

2ε1
− a2

2ε1
> 0.

Consequently, there exist two positive constants η and C such that

F ′ (t) ≤ −η
(∫ 1

0

φ2
t +

∫ 1

0

Ψ2
t +

∫ 1

0

(φx + Ψ)2 +

∫ 1

0

Ψ2
x +

∫ 1

0

θ2tx +

∫ 1

0

θ2x

)
≤ −CE1 (t) . (2.22)

where we have used

∫ 1

0

θ2t ≤
∫ 1

0

θ2tx. Moreover, we may choose N even large (if needed)

so that

F (t) ∼ E1 (t) . (2.23)

A combination of (2.22) and (2.23) yields

F ′ (t) ≤ −ωF (t) , t ≥ 0, (2.24)

for a positive constant ω.

A simple integration of (2.24) leads to

F (t) ≤ F (0) e−ωt, t ≥ 0. (2.25)

Again, a use of (2.23) and (2.25) yield (2.5). �

4.2.2 Polynomial decay

In this subsection, we discuss the case of non-equal speed of wave propagation. We have

the following result.
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Theorem 2.9. Let ((φ0, φ1) , (Ψ0,Ψ1) , (θ0, θ1)) ∈ [H1
0 (0, 1) ∩H2 (0, 1)×H1

0 (0, 1)]
3

be

given and suppose that

ρ1
k
6= ρ2

α
. (2.26)

holds. Then, there exists a positive constant ξ, independent of t and the initial data, such

that the energy of system (2.3) satisfies

E1 (t) ≤ ξ (E1 (0) + E2 (0))

t
, t > 0,

where E2 (t) := E (φt,Ψt, θt) is the second energy of the system (2.3).

Remark 2.10. The energy E2 (t) satisfies along the strong solution of (2.3) the estimate

E ′2 (t) = −a
∫ 1

0

Ψ2
ttdx− k

∫ 1

0

θ2ttxdx ≤ 0. (2.27)

To prove Theorem 2.9 we need the following lemmas.

Lemma 2.11. Let (φ,Ψ, θ) be a solution of (2.3) . Assume that (2.26) holds. Then the

functional

J1 (t) := ρ2

∫ 1

0

Ψt (φx + Ψ) dx+
ρ1α

k

∫ 1

0

Ψxφtdx+
a

2

∫ 1

0

Ψ2 (2.28)

satisfies

J ′1 (t) ≤ [αφxΨx]
x=1
x=0 −

k

2

∫ 1

0

(φx + Ψ)2 +

(
ρ2 +

2a2

k

)∫ 1

0

Ψ2
t

+

(
ε1 +

k

4

)∫ 1

0

Ψ2
x +

(
1

k
+

ρ22
4ε1ρ21

)∫ 1

0

θ2tx

+
(
ρ2 −

ρ1α

k

)∫ 1

0

Ψtφtxdx,

(2.29)
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for all ε1 > 0.

Proof. To obtain (2.29), it suffuses to differentiate (2.28) and use (2.3), Young’s and

Poincaré’s inequalities as in Lemma 2.5. �

Lemma 2.12. Let (φ,Ψ, θ) be a solution of (2.3), then the functional

J2 (t) :=

(
ρ2 −

ρ1b

k

)[
κ

∫ 1

0

Ψxθx + k

∫ 1

0

Ψxθtx

]
satisfies

J ′2 (t) +

(
ρ2 −

ρ1b

K

)∫ 1

0

φtΨtx ≤
(∫ 1

0

Ψ2
t +

∫ 1

0

Ψ2
x

)
+ c

(∫ 1

0

θ2tx +

∫ 1

0

θ2ttx

)
, (2.30)

where c is a positive constant.

Proof. By using (2.3)3 we get∫ 1

0

φtxΨt =

∫ 1

0

Ψt (κθxx − ρ3θtt −Ψt + kθtxx)

= −
∫ 1

0

Ψ2
tdx− κ

∫ 1

0

Ψtxθx − k
∫ 1

0

Ψtxθtx − ρ3
∫ 1

0

Ψtθtt

= −
∫ 1

0

Ψ2
tdx− κ

d

dt

∫ 1

0

Ψxθx + κ

∫ 1

0

Ψxθtx − k
d

dt

∫ 1

0

Ψxθtx

+ k

∫ 1

0

Ψxθttx − ρ3
∫ 1

0

Ψtθtt,

which implies ∫ 1

0

φtxΨt + κ
d

dt

∫ 1

0

Ψxθx + k
d

dt

∫ 1

0

Ψxθtx

= −
∫ 1

0

Ψ2
tdx+ κ

∫ 1

0

Ψxθtx + k

∫ 1

0

Ψxθttx − ρ3
∫ 1

0

Ψtθtt.
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Consequently,

J ′2 (t) +

(
ρ1b

K
− ρ2

)∫ 1

0

φtΨtx

=

(
ρ1b

K
− ρ2

)[
−
∫ 1

0

Ψ2
tdx+ κ

∫ 1

0

Ψxθtx + k

∫ 1

0

Ψxθttx − ρ3
∫ 1

0

Ψtθtt

]
.

Use of Young’s and Poincaré’s inequalities yield (2.30). �

To complete the proof of Theorem 2.9, we define the functional

G (t) := N [E1 (t) + E2 (t)] +N1I (t) + δK1 (t) +K2 (t) +[
J1 (t) + J2 (t) +

ε1
k

d

dt

∫ 1

0

ρ1mφtφx +
αρ2
4ε1

d

dt

∫ 1

0

mΨtΨx

]
.

A combination of (2.6), (2.11), (2.18), (2.19), (2.20), (2.27), (2.29) and (2.30) gives

G′ (t) ≤ −
[
Nk − N1

α
−
(
ρ22 + 2ρ21

4ε1ρ21
+
k + ε1
k2

)
− 3δ − ρ3 −

1

4ε2
− c
] ∫ 1

0

θ2tx

−
[
N1α

2
−
(

3α2

4ε1
+
α2

4ε31
+ 10ε1 +

k

4

)
− δ

(
α +

1

2

)
− 1

] ∫ 1

0

Ψ2
x

− ρ1
[
δ − εN1 −

2ε1
k

] ∫ 1

0

φ2
t − κ

∫ 1

0

θ2x (2.31)

−
[
k

2
− ε2 − δ

(
k +

1

4

)
−
(
k2

4
+ 8

)
ε1

] ∫ 1

0

(φx + Ψ)2

−
[
Na−N1

(
ρ2 +

ρ1
4ε

)
− (1− δ) ρ2 −

2a2

k
− αρ2

2ε1
− a2

2ε1
− 1

] ∫ 1

0

Ψ2
t

− [Nk − c]
∫ 1

0

θ2ttxdx−Na
∫ 1

0

Ψ2
ttdx.

At this point, we choose our constants similarly to the previous section, to arrive at

G′ (t) ≤ −η
(∫ 1

0

φ2
t +

∫ 1

0

Ψ2
t +

∫ 1

0

(φx + Ψ)2 +

∫ 1

0

Ψ2
x +

∫ 1

0

θ2tx +

∫ 1

0

θ2x

)
≤ −CE1 (t) .
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Recalling that E1 is nonincreasing, integration of the last inequality leads to

tE1 (t) ≤
∫ t

0

E1 (s) ds ≤ 1

C
(G (0)−G (t)) ≤ G (0)

C
.

Thus,

E1 (t) ≤ G (0)

Ct
≤ ξ (E1 (0) + E2 (0))

t
, ∀t > 0.

This, completes the proof of Theorem 2.9.

4.3 Timoshenko system with thermoelasticity type

III

Messaoudi and Said-Houari [42] considered the following Timoshenko-type system with

thermoelasticity type III



ρ1ϕtt −K (ϕx + ψ)x = 0 in (0,∞)× (0, 1) ,

ρ2ψtt − bψxx +K (ϕx + ψ) + βθx = 0 in (0,∞)× (0, 1) ,

ρ3θtt − δθxx + βψttx − kθtxx = 0 in (0,∞)× (0, 1) ,

(3.1)

together with initial and boundary conditions, and showed, under the condition
K

ρ1
=

b

ρ2
,

that weak solutions decay exponentially. In this section we consider (3.1), for the case

K

ρ1
6= b

ρ2
and prove a polynomial decay result for strong solutions.
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In order to exhibit the dissipative nature of system (3.1), we introduce the new vari-

ables φ = ϕt and Ψ = ψt, So, system (3.1) takes the form



ρ1φtt −K (φx + Ψ)x = 0 in (0,∞)× (0, 1)

ρ2Ψtt − bΨxx +K (φx + Ψ) + βθtx = 0 in (0,∞)× (0, 1)

ρ3θtt − δθxx + βΨtx − κθtxx = 0 in (0,∞)× (0, 1) .

(3.2)

We supplement (3.2) with the following initial and boundary conditions

φ (., 0) = φ0, φt (., 0) = φ1, Ψ (., 0) = Ψ0, Ψt (., 0) = Ψ1

θ (., 0) = θ0, θt (., 0) = θ1

φx (0, t) = φx (1, t) = Ψ (0, t) = Ψ (1, t) = θx (0, t) = θx (1, t) = 0.

(3.3)

From equations (3.2)1, (3.2)3 and (3.3), we easily verify that

d2

dt2

∫ 1

0

φ(x, t)dx = 0 and
d2

dt2

∫ 1

0

θ(x, t)dx = 0.

So, if we set

φ(x, t) = φ(x, t)− t
∫ 1

0

φ1(x)dx−
∫ 1

0

φ0(x)dx

θ (x, t) = θ (x, t)− t
∫ 1

0

θ1 (x) dx−
∫ 1

0

θ0 (x) dx

then simple substitution shows that (φ,Ψ, θ) satisfies (3.2), the boundary conditions in
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(3.3), and more importantly∫ 1

0

φ(x, t)dx = 0 and

∫ 1

0

θ(x, t)dx = 0, ∀ t ≥ 0. (3.4)

In this case, Poincaré’s inequality is applicable for θ and φ. In the sequel, we work with

φ and θ but for convenience, we write φ and θ instead.

Remark 3.1. Our main objective is to prove stability result. The existence of weak and

strong solutions can be established by using the standard Galerkin method.

To state our decay result, we introduce the first and second-order energy functionals:

E1 (t) =

∫ 1

0

(
ρ1φ

2
t + ρ2Ψ

2
t + ρ3θ

2
t +K |φx + Ψ|2 + bΨ2

x + δθ2x
)
dx, (3.5)

E2 (t) =

∫ 1

0

(
ρ1φ

2
tt + ρ2Ψ

2
tt + ρ3θ

2
tt +K |φxt + Ψt|2 + bΨ2

xt + δθ2xt
)
dx. (3.6)

Theorem 3.1. Let (φ,Ψ, θ) be the strong solution of (3.2), (3.3) then there exists a

positive constant k, independent of t and the initial data, such that the energy E satisfies

the estimate

E1(t) ≤
k (E1(0) + E2(0))

t
, ∀t > 0. (3.7)

The proof of our result will be established through several lemmas.

Lemma 3.2. Let (φ,Ψ, θ) be the strong solution of (3.2), (3.3). Then, we have

E ′1 (t) = −κ
∫ 1

0

θ2txdx ≤ 0 (3.8)
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and

E ′2 (t) = −κ
∫ 1

0

θ2ttxdx ≤ 0. (3.9)

Proof. Multiplying equations (3.2) by φt,Ψt and θt, respectively, integrating over (0, 1)

and summing up we obtain (3.8). Then, differentiating (3.2) with respect to t and multi-

plying the resulting equations by φtt,Ψtt and θtt, respectively, integrating over (0, 1) and

summing up we obtain (3.9). �

Lemma 3.3. Let (φ,Ψ, θ) be the strong solution of (3.2), (3.3). Then the functional

I1(t) := ρ2

∫ 1

0

ΨtΨ− ρ1
∫ 1

0

φt

(∫ x

0

Ψ(y, t)dy

)
satisfies, for all ε1 > 0,

I
′

1(t) ≤ −
b

2

∫ 1

0

Ψ2
x + ε1

∫ 1

0

φ2
t +

(
ρ2 +

ρ21
4ε1

)∫ 1

0

Ψ2
t +

β2

2b

∫ 1

0

θ2tx. (3.10)

Proof. By taking a derivative of I1 and using (3.2), (3.3), we conclude

I
′

1(t) = −b
∫ 1

0

Ψ2
x + ρ2

∫ 1

0

Ψ2
t − β

∫ 1

0

Ψθtx − ρ1
∫ 1

0

φt

(∫ x

0

Ψt(y, t)dy

)
.

By using Young’s inequality and(∫ x

0

Ψt(y, t)dy

)2

≤
∫ 1

0

Ψ2
t and

∫ 1

0

Ψ2 ≤
∫ 1

0

Ψ2
x,

estimate (3.10) is established. �

Lemma 3.4. Let (φ,Ψ, θ) be the strong solution of (3.2), (3.3). Then the functional:

I2(t) := ρ2ρ3

∫ 1

0

Ψt

(∫ x

0

θt (y, t) dy

)
− δρ2

∫ 1

0

θxΨ
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satisfies, for all ε2 > 0,

I
′

2(t) ≤ −
βρ2
2

∫ 1

0

Ψ2
t + ε2

∫ 1

0

(Ψ2
x + φ2

x) + Cε2

∫ 1

0

θ2tx. (3.11)

Proof. By taking a derivative of I2 and using (3.2), (3.3), we get

I ′2 (t) = ρ3

∫ 1

0

(bΨxx −K (φx + Ψ)− βθtx)
(∫ x

0

θt (y, t) dy

)
dx

+ρ2

∫ 1

0

Ψt

(∫ x

0

δθxx − βΨtx − κθtxx
)
dx− δρ2

∫ 1

0

θtxΨdx− δρ2
∫ 1

0

θxΨtdx

I
′

2(t) = βρ3

∫ 1

0

θ2t − ρ3b
∫ 1

0

θtΨx + ρ3K

∫ 1

0

θtφ− ρ3K
∫ 1

0

Ψ

(∫ x

0

θt (y, t) dy

)
− κρ2

∫ 1

0

θtxΨt − βρ2
∫ 1

0

Ψ2
t − δρ2

∫ 1

0

Ψθtx.

The assertion of the lemma then follows, using Young’s and Poincaré’s inequalities. �

Lemma 3.5. Let (φ,Ψ, θ) be the strong solution of (3.2), (3.3). Then the functional:

I3 (t) := ρ2

∫ 1

0

Ψt (φx + Ψ) +
bρ1
K

∫ 1

0

Ψxφt

satisfies

I ′3 (t) ≤ −K
2

∫ 1

0

(φx + Ψ)2 + ρ2

∫ 1

0

Ψ2
t +

β2

2K

∫ 1

0

θ2tx +

(
bρ1
K
− ρ2

)∫ 1

0

Ψtxφt. (3.12)

Proof. A differentiation of I3, taking in account (3.2), (3.3), gives

I ′3 (t) = −K
∫ 1

0

(φx + Ψ)2 − β
∫ 1

0

(φx + Ψ) θtx + ρ2

∫ 1

0

Ψ2
t +

(
bρ1
K
− ρ2

)∫ 1

0

Ψtxφt.

Consequently, (3.12) follows by Young’s inequality. �

Lemma 3.6. Let (φ,Ψ, θ) be the strong solution of (3.2), (3.3). Then the functional:

I4 (t) := −ρ1
∫ 1

0

φtφ− ρ2
∫ 1

0

ΨtΨ
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satisfies

I ′4 (t) ≤ −ρ1
∫ 1

0

φ2
t − ρ2

∫ 1

0

Ψ2
t +

(
b+

1

2

)∫ 1

0

Ψ2
x (3.13)

+K

∫ 1

0

(φx + Ψ)2 +
β2

2

∫ 1

0

θ2tx.

Proof. A differentiation of I4, taking in account (3.2), (3.3), gives

I ′4 (t) = −ρ1
∫ 1

0

φ2
t − ρ2

∫ 1

0

Ψ2
t + b

∫ 1

0

Ψ2
x +K

∫ 1

0

(φx + Ψ)2 + β

∫ 1

0

Ψθtx.

Using Young’s and Poincaré’s inequalities for the last term, (3.13) follows. �

Lemma 3.7. Let (φ,Ψ, θ) be the strong solution of (3.2),(3.3). Then the functional:

I5 (t) := ρ3

∫ 1

0

θtθ +
k

2

∫ 1

0

θ2x + β

∫ 1

0

Ψxθ,

satisfies, for all ε2 > 0,

I ′5 (t) ≤ −δ
∫ 1

0

θ2x +

(
ρ3 +

β2

4ε2

)∫ 1

0

θ2t + ε2

∫ 1

0

Ψ2
x. (3.14)

Proof. A simple differentiation of I5, taking in account (3.2),(3.3) , leads to

I ′5 (t) = ρ3

∫ 1

0

θ2t − δ
∫ 1

0

θ2x + β

∫ 1

0

Ψxθt

Finally, by Young’s inequality, (3.14) is obtained. �

Proof of Theorem 3.1. We define the Lyapunov functional L as follows

L (t) := N (E1 (t) + E2(t)) +N1I1 +N2I2 + I3 (t) +
1

4
I4 (t) + I5 (t) .

A combination of (3.8)-(3.14), and use of∫ 1

0

θ2t ≤
∫ 1

0

θ2tx,

∫ 1

0

φ2
xdx ≤ 2

∫ 1

0

(φx + Ψ)2 + 2

∫ 1

0

Ψ2
x, (3.15)
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give

L′ (t) ≤ −
(

1

4
ρ1 −N1ε1

)∫ 1

0

φ2
t −

(
K

4
− 2ε2N2

)∫ 1

0

(φx + Ψ)2

−
[
N2βρ2

2
−N1

(
ρ2 +

ρ21
4ε1

)
− 3

4
ρ2

] ∫ 1

0

Ψ2
t

−
[
N1b

2
− 3ε2N2 −

1

4

(
1

2
+ b

)
− ε2

] ∫ 1

0

Ψ2
x − δ

∫ 1

0

θ2x (3.16)

−
∫ 1

0

θ2t −Nκ
∫ 1

0

θ2xtt − (Nκ− λ)

∫ 1

0

θ2xt +

(
bρ1
K
− ρ2

)∫ 1

0

Ψtxφt

where λ is a positive constant independent of N .

At this point, we choose our constants carefully. First, let’s take N1 large enough such

that
N1b

4
− 1

4

(
1

2
+ b

)
> 0, then pick ε1 so small that

1

4
ρ1 −N1ε1 > 0.

We then choose N2 large enough so that

N2βρ2
2
−N1

(
ρ2 +

ρ21
4ε1

)
− 3

4
ρ2 > 0.

Finally, we select ε2 so small that

N1b

2
− 3ε2N2 −

1

4

(
1

2
+ b

)
− ε2 > 0 and

K

4
− 2ε2N2 > 0.

Therefore (3.16) takes the form

L′ (t) ≤ −2ηE1 (t)−Nβκ
∫ 1

0

θ2xtt − (Nβκ− λ)

∫ 1

0

θ2xt +

(
bρ1
K
− ρ2

)∫ 1

0

Ψtxφt (3.17)

for some constant η > 0.
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Now, we handle the last term in the right-hand side of (3.17), using (3.2)3 as follows:∫ 1

0

ψxtφt =
1

β

∫ 1

0

φt (κθxxt + δθxx − ρ3θtt)

= −ρ3
β

∫ 1

0

φtθtt −
δ

β

d

dt

∫ 1

0

θxφx +
δ

β

∫ 1

0

θxtφx

− κ

β

d

dt

∫ 1

0

θxtφx +
κ

β

∫ 1

0

θxttφx.

Multiplying by
ρ1b

K
− ρ2, we get(

ρ1b

K
− ρ2

)∫ 1

0

ψxtφt = − d

dt

(
ρ1b

K
− ρ2

)∫ 1

0

(
δ

β
θxφx +

κ

β
θxtφx

)
+

(
ρ1b

K
− ρ2

)(
δ

β

∫ 1

0

θxtφx +
κ

β

∫ 1

0

θxttφx −
ρ3
β

∫ 1

0

φtθtt

)
.

Therefore, recalling Young’s inequality and (3.15), we get, ∀ε3 > 0,(
ρ1b

K
− ρ2

)∫ 1

0

ψxtφt ≤ −
(
ρ1b

K
− ρ2

)
d

dt

∫ 1

0

(
δ

β
θxφx +

κ

β
θxtφx

)
(3.18)

+ ε3

∫ 1

0

(
φ2
t + Ψ2

x + (φx + Ψ)2
)

+
C
(
ρ1b
K
− ρ2

)2
ε3

∫ 1

0

(
θ2xt + θ2xtt

)
.

where C is a positive constant depending on δ, β, κ, ρ3 only. We then define

L(t) := L(t) +

(
ρ1b

K
− ρ2

)∫ 1

0

(
δ

β
θxφx +

κ

β
θxtφx

)
to get, from (3.17) and (3.18),

L′(t) ≤ −2ηE1(t) + ε3

∫ 1

0

(
φ2
t + Ψ2

x + (φx + Ψ)2
)

(3.19)

−
(
Nκ− C ′

ε3

)∫ 1

0

θ2xtt −
(
Nκ− λ− C ′

ε3

)∫ 1

0

θ2xt.
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where C ′ = C

(
ρ1b

K
− ρ2

)2

. By using (3.5), choosing ε3 small enough and taking N large

enough so that L is positive and Nβκ− λ− C ′

ε3
> 0, (3.19) takes the form

L′(t) ≤ −ηE1(t).

Simple integration, recalling that E1 is non-increasing, leads to

tE1(t) ≤
∫ t

0

E1(s)ds ≤
1

η
(L(0)− L(t)) ≤ L(0)

η

Consequently,

E1(t) ≤
L(0)/η

t
≤ k (E1(0) + E2(0))

t
, ∀t > 0.

This completes the proof. �.

Remark 3.2. Similar results can be established for boundary conditions of the form

φ (0, t) = φ (1, t) = Ψx (0, t) = Ψx (1, t) = θx (0, t) = θx (1, t) .



Prospects

The results we obtained encouraging us to extend our study to a wide class of dissipation

mechanisms.

In classical porous thermoelasticity we will study problem (1.1) of chapter 3 with the

dissipation

∫ ∞
0

g(s)ψxx(t− s)dx instead of the dissipation of memory type. We will also,

investigate system (1.1) in the absence of the viscoelstic dissipation (g ≡ 0), and try to

obtain some type of uniform decay.

In thermoelasticity of type III, we will investigate problem (2.1) of chapter 4 when the

dissipation is given by h(ψt) for some convex function h and try to obtain some stability

results similar at those obtained by damping term aψt.

Finally, we will extend all results to problems of thermoelasticity with second sound.
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ف ����� ��	د�ت �رار�� ��	��� �ز�� و أ�رى ھذه ا�ر�	�� ��
	ول درا��  �  .III���و �
�و �ن ا�

ھ�	 �راري و اأ�د ا�����د���وي %�& 
و%�ن �ن ��ت درا�� ���� ��	د�ت �رار�� ��	��� �ز��  �	نا$و� 	نا���#��"! 
 � �ل و ا�ذي  �د ا�ذا�رة����ق )	��	)5 ا���رف ���ط	�3  %	م إ1)	ت ا��0رار ��ث �مّ  ،ذا�رة وا*�ر ��	�! ����ق )�د ذ


6 �	�ت�ا���0رار�ن ا��)ري و ا$�! � ��	�.  


ف و��ط! ا��راري و ا� ا�����د�نو أ1)�
	 أن  III"! ا��و8وع ا�1	�ث ��ت درا�� ��#�� �رار�� ��	��� �ز�� �ن ا�

  .ا$�واج
� 	راا��)ري ��ب ا���39 )�ن �ر%	ت  �& ا���0رار ا$�! أوإا���	�! �	"�	ن �د"5 ا����� 


ف �5 و�ود �رارة ���� ��	د�ت ����و �
�و �
	و�ت "ا���#�� ا�را)�� أّ�	 �"! �	�� %دم ��	وي �ر%�! وذ�ك  �IIIن ا�


<	��إا��0رار �)ري %
د�	 �ؤول ا�ز�ن  �&إ��6 و أ1)�
	 أن ا�ط	�3 �  ا
� 	را$�واج � 	� &�.   

Résumé 

Dans cette thèse on a étudié quelques problèmes de thérmoelasticité des milieux poreux et de 

Timoshenko de type III. 

Le premier travail est un problème en thérmoelasticité classique. Un système de milieux poreux a été 

considéré où le contrôle est donné par deux dissipations, thermique dans l’équation d’élasticité et 

viscoélastique dans l’équation de poreusité. En utilisant la méthode des multiplicateurs, on a établi un 

résultat de stabilité générale pour les deux cas, égalité et non égalité des vitesses de propagation. Les 

stabilités exponentielle et polynomiale sont des cas particuliers de cette stabilité générale. 

Le second travail est un problème poreux de type III. Deux forces de contrôles ont été considéré, 

thermique et un amortissement linéaire. Une stabilité exponentielle a été établie dans le cas  de vitesses 

égales quand au cas de vitesses différentes la stabilité est polynomiale. 

Le troisième travail est un problème de type Timoshenko de type III. Le cas de vitesses  différentes a été 

considéré et une stabilité polynomiale a été établie. 

Abstract 

In this thesis we consider some one-dimensional porous thermo-elastic and Timoshenko-type problems. 

The first work is concerned with a classical porous thermoelastic system in the presence of thermal and 

porous dissipations. We used the multiplier techniques and established a general decay rate which 

depends on the decay of the relaxation function of the memory term. Both the equal and non-equal 

speed  of wave propagation were considered. 

 The second problem is a porous thermo-elastic system of type III which has two dissipative mechanisms 

being present in the elastic equation by a thermal dissipation and a in the porous equation by a linear 

frictional damping. An exponential decay rate was established for the equal-speed of propagation case, 

whereas in the case of non-equal speeds, only a polynomial decay rate was obtained. 

  The third problem is concerned with a Timoshinko-type problem of thermoelasticity of type III. A 

polynomial stability result was established for the non-equal wave propagation speed case. 
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