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Chapter 1

Introduction

The subject of this thesis is the study of the asymptotic behavior of solutions of some
porous thermoelastic problems. In this regards, several results concerning decay of solu-
tions in classical porous thermoelasticity as well as thermoelasticity of type III have been
established. This study extends and improves several earlier results. We begin by a short

summary of the theory of porous thermoelasticity and thermoelasticity of type III.

Porous thermoelasticity

The theory of porous materials is an important generalization of the classical theory of
elasticity for the treatment of porous solids in which the skeletal materials is thermoelas-
tic and the interstices are void of material. This theory deals with materials containing

small pores or voids. The basic premise underlying this theory is the concept that the
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bulk density is the product of two fields, the matrix material density field and the volume
fraction field. This representation of the bulk density introduces an additional degree of
kinematic freedom in the theory and was employed previously by Goodman and Cowin
[13] to overcome the failure of the classical theory of elasticity to describe the deformation
produced by the microstructure contribution. The theory of granular materials developed
by Goodeman and Cowin [13], equally valid for porous materials, was motivated by physi-
cal grounds. In this theory they introduced a higher order stress and body force to account
for energy flux and energy supply associated with the time rate of volume fraction. Terms
of this type are also contained in the higher order elasticity theories developed by Mindlin
[44], Toupin [67] and Green and Rivlin [19].

Nunziato and Cowin [50] employed the same balance equations developed by Good-
man and Cowin [13] and presented a nonlinear theory for the behavior of porous solids.
This theory admits both finite deformations and nonlinear constitutive relations. Jari¢
and Golubovi¢ [29] and Jari¢ and Rankovié¢ [30] studied the nonlinear theory of thermoe-
lastic materials with voids. Cowin and Nunziato [9] developed a linear theory of elastic
materials with voids to study mathematically the mechanical behavior of porous solids.
An extension of this theory to linear thermoelastic bodies was proposed by Tesan [24]. In
addition, Iesan [25],[26] added the microtemperature elements to this theory.

On the basis of micromorphic continua theory, Grot [20] developed a theory of ther-
modynamics of elastic material with inner structure whose microelements, in addition

to microdeformations, possess microtemperatures. The importance of materials with mi-
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crostructure has been demonstrated by the huge number of papers appeared in different
fields of applications such as petroleum industry, material science, biology and many
others.

Since this type of material has both microscopic and macroscopic structures, scientists
have investigated the coupling and how strong it is. In addition, an increasing interest has
been paid by mathematicians to analyze the longtime behavior of the solutions of thermoe-
lastic and porous problems. One of the first studies, in this sense, was the thermoelastic
coupling proposed by Slemrod [61]. As a result it was seen that in the one-dimensional
case the solutions decay exponentially. Since then, many problems were studied by consid-
ering different dissipation mechanisms at the microscopic and/or the macroscopic levels.
Many papers have been published where the authors tried to determine the type, as well
as, the rate of decay of solutions in porous elasticity with voids.

In one dimensional thermoelasticity theory, Munioz Rivera [45] , considered the linear

thermoelastic system
Ut — Uz + Oéex =0 (0, L) X (0, T)
0 — O + Pug, =0 (0,L) x (0,7)
with the initial and boundary conditions
u(2,0) = wo(z), w(w,0) =uy(x), 0(z,0)=bo(x) in (0,L)
u(0,t) =u(L,t) = 6(0,t) =0(L,t) =0 Vt € (0,7)
where v is the displacement, € is the temperature difference and o and [ are coupling

constants. He used the energy method and proved that the dissipation induced by the
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heat equation is strong enough to stabilize the system exponentially. Also, Mutioz Rivera

and Racke [47] studied the linear Timoshenko type system

(

P1Pet — k(spar + w)x =0 in (Oa L) X (Oa OO)?

P2 — gy + k(0 + 1) + 90, =0 in (0,L) x (0, 00), (1.1)

\

\ P30y — KOpw + vy =0 in (0, L) x (0, 00),

where ¢ is the displacement and ¢ is the rotation angle of filament of the beam and
P1, P2, P3, k, a,, v, k are constitutive constants. They showed that, for the boundary condi-
tions

o (z,t) =, (x,t) =0 (x,t) =0forx =0,L and t > 0, (1.2)
the energy of system (|1.1)) decays exponentially if and only if
— == (1.3)

and that condition (|1.3)) suffices to stabilize system (1.1]) exponentially for the boundary
conditions

o (z,t) = (x,t) =0,(x,t) =0, z=0,Landt>0.
Guesmia et al. [23] established a polynomial decay result for — in the case of non-
equal wave speed propagation, provided that the initial data are regular enough. They
also discuss the case when the system is supplemented with the boundary conditions

op (x,t) =Y (x,t) = 0,(x,t) =0, x=0,Landt>0.

and they established a non-exponential decay results for the case when (1.3|) does not

hold.
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In the isothermal case, (|1.1]) reduces to

pl%ott - k((px + w>x = O iIl <O7L> X (07 OO),

P2¢tt - vaz)a:x + k(% + ¢) =0 n (O’ L) X (07 OO):

(1.4)

This system is conservative and it would be interesting to add some king of damping that
may help in stabilizing such a system. Different types of dampings have been introduced
and several stability results have been obtained by Kim and Renardy [31], Raposo et
al. [60], Soufyane and Wahbe [66] and Munoz Rivera and Racke, [48], [49]. Alabau-
Boussouira [I] extended the results of [49] to the case of nonlinear feedback a(1;), instead
of di);, where « is a globally Lipchitz function satisfying some growth conditions at the
origin.

A weaker type of dissipation was considered by Ammar-Khodja et al. [3] by intro-
ducing the memory term / t g (t — 5) ¢us (x, s) ds in the rotation angle equation of (1.4).

0

They used the multiplier techniques and showed that the system is uniformly stable if and
only if holds and the kernel g decays uniformly. Precisely, they proved that the rate
of decay is exponential (polynomial) if g decays exponentially (polynomially). Guesmia
and Messaoudi [21] obtained the same uniform decay result under weaker conditions on
the regularity and growth of the relaxation function g. More general decay estimate was
obtained by Messaoudi and Mustafa [40] for a wider class of relaxation functions. This
latter result has been improved by Guesmia and Messaoudi [22] to accommodate systems,
were frictional and viscoelastic dampings are cooperating.

Fernandez Sare and Rivera [12] replaced the finite memory term in [3] by an infinite
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memory term /Oog(s)wm (t —s,.)ds and showed that if ¢ is of exponential decay, the
0

dissipation given by the history term is strong enough to stabilize the system exponen-
tially if and only if the wave speeds are equal. They also proved that the solution decays
polynomially for the case of different wave speeds. Messaoudi and Said-Houari [43] ex-
tended the results of [12] to polynomially decaying relaxation functions and without any
restriction on ¢” as in [12].

The analysis of temporal decay in one-dimensional porous-elasticity was first studied

by Quintanilla [58] which considered the system

.
Pollyt = Mgy + Bz, € (0,m), t>0

PoRPr = WPgy — Uy — Ty —Ep  x € (0,m), t>0
u(x, 0) = UO(ZL’), 90(1‘70) = 900(‘%‘)? YIS (077T)

ut(m?o) = ul(m)’ 9025(3770) = Qpl(x)> VIS (Ov’ﬁ)

\ w(0,t) = u(m, t) = . (0,t) = @u(m,t) =0, t>0.

where, ¢ is the volume fraction, py > 0 is the mass density, £ > 0 is the equilibrated iner-
tia, and p, a, o, 7, € are the constitutive constants which are positive and satisfy ué > 32.
He showed that the damping in the porous equation (—7¢;) is not strong enough to obtain
an exponential decay. In this case, only the slow decay has been proved. Magana and
Quintanilla [36] proved that the presence of viscoelastic dissipation is not powerful enough
to stabilize a porous-elastic system exponentially, only slow decay has been established.
They also, showed that neither the addition of temperature to viscoelastic-porous prob-

lem nor the addition of microtemperature to elastic-viscoporous problem can stabilize the
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system exponentially. However, the combination of viscoelasticity and porous dissipation
or the addition of microtemperature in porous elastic problems lead the solution to decay
exponentially.

Casas and Quintanilla [4] considered the system

(

Py = gy + bp, — B0, = 0, in[0, 7] x (0, 00),
Jou = Qe — bu, — Ep +mb — Ty, inf0, 7] x (0, 00),

by = kO, — Pug — mepy, inf0, 7] x (0, 00),

\

with Dirichlet-Neumann- Neumann boundary conditions. They proved that, under same
conditions on the constitutive constants, the sum of two slow decay processes (elastic-
viscoporous and thermal viscoelastic) determine a process that decays exponentially.
Several results concerning the rate of decay of solutions for thermoelastic and porous-
thermoelastic systems where obtained in [4], 36] 32, 34, [51]. In those papers, the authors
clarified the type of decay we obtain by combining different dissipations via temperature,
elastic viscosity, porous viscosity and microtemperature. In particular, we quote the work
of Magana and Quintanilla [36] in which they discussed the time behaviors of several sys-
tems with quasi-static microvoids (4 & 0) and established different slow and exponential

decay results. These results can be summarized by the help of the following scheme:

Thermal effect Elasticity Microthermal effect
Viscoelastic effect Porosity Viscoporous effect

If we take simultaneously one effect from the right square and another one from the left
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square or more than two effect then we get exponential stability. However, two simultane-
ous effects from one square only lead to slow decay. Perhaps it is worth recalling the main
difference between the concepts of exponential and slow decay. In a thermomechanical
point of view, if the decay is exponential, then after a short period of time, the thermo-
mechanical displacements are very small and can be neglected. However, if the decay is
slow, then the solution is weaken in the way that thermomechanical displacements could
be appreciated in the system after some time.

Munoz-Rivera and Quintanilla [46] considered some cases where the decay is slow
and proved that the energy associated to the solutions decays polynomially. Precisely,
E(t) < . for some positive constants C' and «.

Soufyane [63] was the first who proposed a porous-thermoelastic problem with a dis-

sipation of memory type. He considered the system

(

Uy = Ugg + 0z — 0, In(0, L) x Ry

Pt = Paz — Uz —p — O+ /Otg(t — 8)@uz(x, s)ds in(0, L) x Ry
O; = O — wge — @y, in(0, L) x Ry

u(z,t) = p(z,t) =0(x,t) =0 z=0,L, t>0,

u(z,0) =up(x), (z,0) =po(x), 6(x,0)=0(x), e (0,L),

ut<x>0) = U1<I>> th(x?O) = 901(]7)7 LS (07 L)7

\

where ¢ is a positive nonincreasing function, and proved that the decay is exponential
(respect. polynomial) when the relaxation function is of exponential (respect.. polyno-

mial) decay. A similar result was also obtained by Soufyane et al. [64] and [65], for the
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t
above system with the viscoelastic damping — / g (t — 8) @us (z,5)ds replaced by two
0

boundary viscoelastic dissipations of the form

w(L,t) = — /0 Cor(t — ) (L) + b(L, 5)]ds
o(L,t) = — /Ot g2(t — s)(L, s)ds,

where ¢g; and g, are positive nonincreasing functions. Recently, Pamplona et al. [52]

treated the following one-dimensional porous elastic problem with history

( +oo

puy = (1 + f(0))ugs + (b + h(0))ps + F1(8)uae(t — s)ds
. 0
+ /0 h'(0)p,(t — s)ds ,
o0
T = 0+ 90)pee = O+ O = €+ KODo+ [ g ()ganlt = 5)ds
— /0 h h'(s)u,(t — s)ds — /0 h K (s)p(t — s)ds,

u(0,8) = u(m,t) = . (0,1) = @u(m, 1) =0,

[ u(@,0) = uo(z), us(z,0) =wi(x), @(x,0)=po(z), ©u(x,0)=p1(x),
in [0, 7] xR, where p and J are positive constants, u, , &, b satisfy p > 0, ué—b? > 0,6 > 0

and f,g,h,k are the memory kernel functions. They proved the lack of exponential

stability if only porous dissipation are present and g does not satisfy

Jp
— —0—g(0)=0,
p (0)

or only elastic dissipation are present and f does not satisfy

P = 7(0) =0, (15)
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or if both elastic and porous dissipation are present but the porous dissipation is weak
and does not hold. Otherwise, exponential stability will be obtained.

We recall that problems involving viscoelastic damping given by a memory, or a past
history term have attracted the attention of a lot of scientists in the last two decades.
The obtained decay results depended on the rate of decay of the relaxation function and
it is exponential for g satisfying: ¢'(t) < —&g(t) for all £ > 0 and some positive constant
&. However, only polynomial decay result was proved for relaxation functions satisfying
J() < —€gP(#),Vt > 0 and 1 < p < g see [B], 211, [52], [63, 62, [65].

A considerable efforts are devoted to enlarging the space of admissible relaxation
functions leading to strong or slow decay. Messaoudi and Mustafa [40] considered the

system

(

uy — (uz +¢), =0 in (0,1) x Ry
t
Ot — Paz + Uy + @+ / g(t — 8)pue(z,8)ds =0 in  (0,1) x Ry
0

uw(0,t) =u(l,t) = p(0,t) = p(1,t) =0 t>0

U(JZ,O) = u0<m)7ut<x70) = ul(x),ga(m,()) = QDO(ZE)’ th(JZ,O) = ng(x) n (0’ 1)'

\

and assumed that the relaxation function ¢ satisfies the inequality

g < —€(b)glt) Vit > 0.

They established a more general decay result, from which the exponential and polynomial
decay rates are only special cases.

We also remind the contribution of Alabau-Boussouira and Cannarsa [2] in which
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decay result was obtained for relaxation functions

for some strictly increasing function y.

Nonclassical thermoelasticity

The classical thermoelasticity is concerned with the effect of heat on the deformation of
an elastic solid and with the inverse effect of deformation on the thermal state of the
solid. It is formulated on the principle of the classical theory of heat conduction, namely,

Fourier’s law

q+kVO=0

where 0 is the difference temperature, ¢ is heat conduction vector and k is the coefficient
of thermal conductivity. Consequently, the heat equation is of parabolic type. As a
result, this theory predicts an infinite speed of heat propagation. That is, any thermal
disturbance at a point has an instantaneous effect elsewhere in the body. This is physically
unrealistic and experiments showed that heat conduction in some dielectric crystals at low
temperatures is free of this paradox and disturbances, which are almost entirely thermal,
propagate in finite speed. This phenomenon in crystals dialectic is called second sound.
To overcome the deficiency of this theory many theories were developed, nonclassical

thermoelasticity theories involving hyperbolic-type heat transport equations admitting
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finite speeds for thermal signals have been formulated either by incorporating a flux-rate
term into Fourier’s law or by including temperature-rate among the constitutive variables.

By the end of last century Green and Naghdi [14] [16], [17] introduced three new types
of thermoelastic theories based on replacing the usual entropy inequality with an entropy
balance law. In each of these theories, the heat flux is given by a different constitutive
assumption. As a result three theories were obtained and respectively called thermoelas-
ticity type I, type II and type III. When the theory of type I is linearized we obtain the
classical system of thermoelasticity. The systems arising in thermoelasticity of type 111
are of dissipative nature whereas those of type II do not sustain energy dissipation. To
understand these new theories and their applications, several mathematical and physical
contributions have been made; see for example, Chandrasekharaiah [6] [7, 8], Quintanilla
[53, 54, 55] and Quintanilla and Racke [59]. In particular, we mention the survey paper of
Chandrasekharaiah [6], in which the author focussed attention on the work done during
two decades. He reviewed the theory of thermoelasticity with thermal relaxation and
the temperature rate dependent thermoelasticity. He also described the thermoelasticity
without dissipation and clarified its properties.

Thermoelasticity of type II was introduced by Green and Naghdi [14] as an alternative
theory to describe thermomechanical interactions in elastic materials. They proposed the

use of the thermal displacement variable

@bz/ 0(z,s)ds + 1y =0

instead of the difference temperature variable #. In this theory, called thermoelasticity
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without energy dissipation, the heat is allowed to propagate by means of thermal waves
but without energy dissipation. This theory has been the subject of some interesting
works in the last two decades.

Cicco and Diaco [I1I] derived a linear theory of thermoelastic materials with voids
that does not sustain energy dissipation and established uniqueness and continuous de-
pendence theorems. Quintanilla [56] proved the well posedness of the linear theory of
thermoelasticity without energy dissipation by means of semigroup theory. Iesan and
Quintanilla [28] derived a linear theory of thermoelastic bodies with microstructure and
microtemperature based on Green and Naghdi balance

Recently, Leseduarte et al. [33] studied the system of thermoelasticity without energy

dissipation of the form

(

PUt = HUzg + 7¢x - 6¢tm7 in (07 7T) X IR+
J¢tt - b¢:m: + mwxx - g(b =+ d% - T¢t — YUy, in (07 7T) X IRJr

awtt - kwwx + mqbzz - d¢t - ﬁutm in (07 7T) X R—l—

\

where u and ¢ are the displacement and the volume fraction respectively, and proved
that when m and (3 are not vanish the system is exponentially stable. However, if one
of the parameters m or [ vanishes, then we lost the exponential decay. Note that
relates the displacement and the temperature and m relates the volume fraction with the
thermal displacement, these parameters are responsible of the strong coupling among the
variables.

The theory of thermoelasticity of type III is characterized by the heat-flux constitutive
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equation

q+ K1, +K0, =0

where 7 denotes the thermal displacement which satisfies 7z = 6 and k*, K are positive
constants.
In [59] Quintanilla and Racke considered a system of thermoelasticity of type III of the

form

/

Upp — QUgy + ,801« =0 in (0, L) X ]R+

Qtt - 50%1) + YUtte — I{th =0 in (O, L) X IR,+

u(0,2) =wug (z), u (0,2) =uy (), 0(0,z) =6y (), 6, (0,2) =6 (x),

\

where u is the displacement, 6 is the temperature difference and «, 3, 9, v, k are constitu-
tive positive constants. They used the spectral analysis method and the energy method
to establish an exponential stability in the one-dimension setting for different boundary
conditions. We recall also the contribution of Quintanilla [57], in which he proved that
solutions of thermoelasticity of type III converge to solutions of the classical thermoelas-
ticity as well as to solutions of thermoelasticity without energy dissipation.

Zhung and Zuazua [68] studied the long time behavior of the solution of the system

;

U — AU — (p+ A) V(divu) + V=0 in Q x (0,+00)
ett—AH—Aet—f‘diVUtt:O iIl Q X (O, +OO)

U(wa) :Uo(m)a ut<0ax) =1 (0)7 9(0,1’) :90(1’), (9,5(0,1‘) =01 (l‘), in Q,

u(t,z) =0(t,z) =0 on 002 x (0,00)

\
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and proved that under suitable conditions on the domain the energy of the system decays
exponentially. But for most domains in two dimension space, the energy of smooth
solutions decays in a polynomial rate.

Messaoudi and Said Houari [41] considered the system

/

prow — k(e +4), =0, in (0,1) x Ry

P2ty — gy + k(0o + ) — B0, =0, in (0,1) x Ry

P30 — 000 + Yuw — kb = 0, in (0,1) x Ry

p(2,0) =¢o(x), ¥ (z,0)=1th(x), 0(0) =0, 0<zr<l
o (2,0) =1 (z), e (2,0) =t (z), b (2,0)=0(r), 0<z<1

@(x,t):¢($,t):0x($,t):0, r=0,1, ¢>0.

\

and proved an exponential decay result similar to the one proved by Munoz Rivera and
Racke [47] for classical thermoelasticity. Also, Messaoudi and Said Houari [42] considered

a Timoshenko-type system of type III of the form

;

P1Ptt — K(QOm + w)x = 07 in (0, 1) X IR—l—
+oo
+/ G (8)Yee (2, t —s)ds+ 56, =0, in (0,1) x R,
0
pBett - 50:(:1: + ’tht:c - kgtmx = 07 in (Oa 1) X IR+
SO(J?,O)IQO()(.T), 1/1(1’70):1?0(33)7 9(.’17,0):90(:6), 0<z<1
o (2,0) =1 (2), Y (2,0) =1 (x), 0O(x,0)=0,(x), 0<x<1

@(x,t):¢($,t):0x($,t):0, r=0,1, ¢>0.

\

and proved that the above system decays exponentially (respectively polynomially) if g
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decays exponentially (respectively polynomially) in the case of equal speed(% = %) :
However, the decay is of polynomial type otherwise (% =+ %) . This result has been

improved recently by Guesmia et al. [2I] and a general decay rate was obtained.

This thesis

In this thesis we studied some problems which arising in porous thermoelasticity and
nonclassical thermoelasticity theories. Several decay results has been established which
improve and extend earlier ones.

This thesis is divided into four chapters. In chapter two we give a short summary of
the derivation of the equations in porous thermoelasticity.

In chapter 3 we studied a porous thermoelastic system of memory type, namely,

p

p1ow — k(ps +¥)e + 0, =01n (0,1) x Ry,

pathi — Qe + k(pe + ) + 60 + /Ot gt — 8)pua(x, s)ds = 0 in (0,1) x R,
P30y — K0,p + Qe+, = 0 in (0,1) x Ry,

0(0,1) = o(1,1) = (0,t) = (1,t) = 0(0,t) = O(1,£) =0 >0,

p(x,0) = po(x),r(z,0) = @1 (z), z € (0,),

(x,0) = to(x), Pr(x,0) = ¢r(x), 0(x,0) =b(x) x€(0,1),

\

where ¢,1),0 are the longitudinal displacement, the volume fraction and the tempera-
ture difference respectively, p1, ps, p3, k, a,, k are positive constants and g is nonincreasing

function. We adopted some argument of [52} [63] and established a general decay result of
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the solutions of ([1.6]) for which exponential and polynomial decay rates of [63] are merely

special cases. Two papers were appear, one concerning the case of equal speed the other

concerning the case of nonequal speed.

Chapter 4 is devoted to the study of a porous problem in non classical thermoelastic-

ity. A linear damped system in one-dimensional porous thermoelasticity of type III was

considered and several decay rate results have obtained.

Precisely, we have study the following system

(

P1Ptt — k(gpz + 2b):f: + 93: - 07 in (07 1) X IR+
p2¢tt — Oﬂ/}xx + k(@x + 'QD) — 9 + agbt = 0, n (O, 1) X IR+
P30 — KOy + Qurt + Vit — kb =0,  in (0,1) x R4

Cp(ZE,O)ZQOO(l’), ¢($,0):¢0($), 0($,O)=90<J])7 0<z<1

o(x,t)y=¢(x,t)=0(x,t)=0, x=0,1, t>0.

\

o (2,0) = o1 (1), P (2,0) =y (z), 0;(x,0)=0,(r), 0<z<1

(1.7)

We use the multiplier techniques and proved that the energy of system ([1.7]) decays

exponentially if (1.3]) holds and that the rate of decay is of polynomial type otherwise.

Also, in chapter 4, we improved an earlier result obtained by Messaoudi and Houari

[41] for the following Timoshenko-type system with thermoelasticity type III

(

plSOtt - K((ch + 1/))m - 0 iIl (07 OO) X (07 1)7
P2¢tt - waz + K(gpw + ¢) + 79$ =0 in (07 OO) X (07 1)7

{ pgett — 69xx + fywttaz — ketm =0 in (0, OO) X (O, 1)

(1.8)

They established an exponential decay result for the weak solutions of ((1.7)) under
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the condition In the present thesis we consider (|1.8), for the case and prove a polynomial

decay result for strong solutions.



Chapter 2

Derivation of equations

In this chapter we shall give a short summary of the three-dimensional theory of porous
solids in the framework of thermal conduction.

Consider a homogeneous porous thermoelastic body By which at some instant tg, oc-
cupies the reference configuration €2, a bounded region of the euclidean three-dimensional
space IR?, with smooth boundary 9€2. The motion of the body is referred to a fixed system
of rectangular Cartesian axes Oz; (i = 1,2,3). We denote by B; the configuration of the

body at time ¢t > to, by u (z,t) = X (z,t) — = the displacement vector of a material point

0Xi
with reference configuration = and by F' = I + Vu = { 5
L

where X = X (z,t) is the position of this point at time . We assume that the motion

] the deformation gradient,

equation is invertible, such that det F' # 0. In this chapter, summation convention over
repeated subscripts are used as well as the comma followed by subscripts for partial dif-

ferentiation over the space coordinates while the differentiation over ¢ is denoted by a dot

19
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over the function.
We adopt the approach of Goodman and Cowin [I3], where, for each ¢, the region B, is
endowed with a structure given by two real valued set fuctions M; and V; which repre-
sent the distributed mass and the distributed volume a time ¢, respectively and satisfy
the following axioms

- M, and V, are non-negative measures defined,

-V (Py) <V (Py) for all P, C By, where V is the Lebesgue volume measure,

- M, is absolutely continuous with respect to V;.

Thus, for all Borel subsets P; C B;, we have

Vi (Pr) = /P vdV (2.1)

and
M, (P,) = / dV, = / pdV., (2.2)
Pt P

where v is the volume fraction, v is the matrix density, p = yv is the bulk density and dV'
is the image, at time t, of an element dV} of the bulk volume in the reference configuration.

Moreover, the function v has the property that, for almost every X € B;,
0<v(X,t) <L

Remark. Let dVj be the infinitesimal volume element with sides dx,dy and dz in the
reference configuration and let dV be the image of dVj in the current configuration. For

every side dw = dx, dy or dz let dw, dws, dws be the components of the vector dw, that
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is
dw = (dwy, dws, dw3)T, for w=ux,v,z.

It is well known that

dVy = dz - (dz A dy)

= det (dz, dz, dy) = e;jrdzidz;dyy,

where

1, for (i,5,k)=(1,2,3),(2,3,1),(3,1,2)

gijk =4 —1, for (i,5,k)=(1,3,2),(2,1,3),(3,1,2)

0, otherwise.
\

Let dX,dY and dZ be the images of dz,dy and dz at time t. Thus,
(dW7y, dWs, de)T = F (dwy, dw,, dw3)T W =X,Y,Z and w = x,v, z,

or

The element of bulk volume in the current configuration dV is given by

dV = €wdedede}€ = 5ijkElelemdmekndyn

= 5ijkElF1ijknledxmdyn = Elmn \det F’ led:L’mdyn,

which yields

AV = JdVj,
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where J = |det F'| > 0.
By differentiation of ({2.1)), it follows that an element of distributed volume in the

instantaneous configuration is related to an element of the bulk volume by the relation

dv, = vdV.

Similarly, in the reference configuration

dVy = vpdVj.

Thus, an element of distributed volume transforms according to the relation

v, = Vijdvo. (2.3)

0

From ({2.3)) the constraint of incompressible distributed volume can be expressed by the

equation

v
—J =1
Yo

Time material derivative of time dependent volume integral

Let ¢ (t, X (t)) be a scalar function, differentiable with respect to ¢t and X; in (0, 4+00) x

dX;

Bt, then
d _ 06 (, X (1)) | 9¢(t, X () 0X; .
— Ptgb(t,X(t))dV—/Pt( s et )dV+ 0 X (0) s

where n = (n1,ng, n3) is the outward normal vector on the surface P, and dS is a surface

element of OP;. Using the divergence theorem we get

(a¢ (tX(t) 99 (t,X(t))aXi) AV+ [ ¢t X (t) dive () dV,

d
G [ ewxwa = [ (20 42822 [

dt Pt Pt
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B 00 (1, X (1)) 09 (t, X (t))
N /7%( ot * 0X;

v; (£) + ¢ (6, X (t)) divo (t)) av,
which can be written

L gt a () av = / (¢+¢divv) dv,

dt Pt P

d 0X
where ¢ = m and v = a0 is the velocity of the material point X.
Mass conservation law

Let p be the mass density per unit of volume in a fixed region P;, then, differentiating

integral (2.2)), the change in mass inside P, will be

d )
S| pav = / Pav.
dt Jp, p, O

The rate of mass flow out the volume P; is

— / pv.ndA,
P

where dA is an area element in 9P; and n is the unit outward normal vector to dA.
The mass conservation law states that the rate of change in mass within a fixed volume

mast be equal to rate of flow through the boundaries. Therefore

dp /
—dV = — pv.ndA
/Pt ot oP,

which, using the divergence theorem, can be written

dp . -
/Pt (E + div (pv)) dv = 0.
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For p = yv with fixed ~, the last formula rewritten

/ v (@+Vy.v+udivv) av =20
P ot

for all subset P, C B;, therefore,

v+ vdive =0,
where
0
V= a—lz + Vv

is the material derivative of v.
As in Goodman and Cowin [13] and Iesan [24], 27] we postulate an energy balance at

time t, for an arbitrary region P; of the body B;, in the form

1d T d
-2 dV +— av =
2 dt Pf’('”' +“M> T

/Ptp<fwi+lb+s) dv+/a79 (Eivi+hjl)+qj> n;dA

where T;; is the first Piola-Kirchhoff stress tensor, ¢ is the internal energy, « is the equili-
brated inertia, f; is the body force, [ is the extrinsic equilibrated body force, s is the heat
supply, h; is the equilibrated stress vector, ¢; is the heat flux vector across the surface
IP.

The above formula mains that the change of the kinetic and internal energy in P, for the
interval time dt is equal to the work of mechanical forces and the change of heat in the

same time dt,
d(Epn +U)  dW +@
dt Codt o dt
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where,

dEy; 1d 12 .
dl;m ZQE Ptp<‘v‘2+/€‘y‘ >dV:/Ptp<UZ-Ui—|—m/V) dv

is the time derivative of kinetic energy,

U d

—_ = — dV = =d
pTa7 7DtpesV /Ptpsv

is the time derivative of internal energy,

aw

= (fvi+10)av+ /A (Tys05 + hy) nyda

is time derivative of work, and

d
Q _ [ v+ / g;n;dA
dt Pt A

is time derivative of the heat.

In the absence of the body force, the heat supply and the extrinsic equilibrated body

force the energy balance has the form

/ p (vt + wov) av + / pedV = / (Toivs + by + 45) mydA. (2.4)
Pt Pt A

Following Green and Revilin [18] we consider a second motion which differs from the
given motion only by a constant superposed rigid body translational velocity, the body
occupying the same position a time ¢ and we assume that ¢, h, T;; and ¢ are unaltered
by such superposed rigid body velocity. Thus, is also true when v; is replaced by

v; + a;, where a; are arbitrary constants, all others terms being unaltered. By subtraction

Pt A

we get
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for all arbitrary constants a;. It follows that
Pt A
which, using the divergence theorem, gives,
Tjij = pXi,
where v; = XZ Using the divergence theorem, again, we get
/ (ijzvz + h]V + Qj) n]dA = / (Eidvi + T’jiUiJ‘ + hj,j’./ + hjl/;j + C]j7j> dV
A Pt
In view of ([2.5)), (2.6)), the relation (2.4) reduces to
/ p(2+mov)av / (Tyivig + a3 + hyg + by ) AV
Pt Pt

which holds for any region P, C B;. Thus,

p€ = 7}51)14 + qj.j -+ hjl./,j — fV

where
f=prv—h;

is a dependent constitutive variable called the intrinsic equilibrated body force.

26

(2.6)

(2.7)

(2.8)

We consider a motion of the body which differs from the given motion only by superposed

uniform rigid body angular velocity, the body occupying the same position at time t and

assume that ¢, T};, h; and ¢; are unaltered by such motion. The equation (2.7)) holds when
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v; ; is replaced by v; j + 0,5, where o0;; is a constant skew symmetric tensor representing a

constant rigid body angular velocity. It follows that

Pt

for all skew symmetric tensors o;;. Since / T;;dV is independent of o;;, it follows that
Pt

Oﬁ/(ﬂjﬂwdvzo
P

for all arbitrary region P, so that 7;; = Tj;. Thus (2.8]) becomes

.1, .d . :
pE = 57-31% (Xi,j + Xj,i) + qj.j + th,j — fl/.
If we denote by
1
cij = 5 (uig + uzi),
(2.8)) reduces to
pe = Tjiei; + qj5 + hjv; — fv. (2.10)

To derive the temperature equation, we postulate an entropy production inequality,

/7> pth—/A%dA >0, (2.11)

where 7 is the specific entropy and 71" is the absolute temperature which is assumed to
be always positive.

We apply this inequality to a region which in the reference state was a tetrahedron
bounded by coordinate planes through the point X and by a plane whose unit normal is

n, we obtain

q = q;ny.
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Consequently, (2.11]) can be written

/Pt ondV — /m (%)inidA >0

and divergence theorem yields

. T —q.T,
/pndV—/ Ba” G gy >,
Py Py T

The fact that this inequality holds for all arbitrary region P, lead to
. 1
PTN = 45+ 7415 2 0. (2.12)
The Helmholtz free energy is defined by
v=e—="1Tn (2.13)

and we introduce

Y =V =1, QZT_T(%

where 1y is the volume fraction filed in the reference configuration and T is the constant
absolute temperature of the body in the reference configuration.

We restrict our attention to the linear theory of thermoelastic materials where the consti-
tutive variables are e;;, ¢, ¢ ;, 0 and 6, which are invariant under superposed rigid body
motions. Consistent with this theory, it is assumed that the overall response of a porous

material depends on e;;, ¢, ¢ ;,0 and 8 ;, then, at each point X € Q and for all ¢ > 0, we
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have

o a(em%@,i,@,@,i)

—~

iJ E] (eijy P, P, 97 0,7,)
f
h

M

f(eij790’ @,i:eae,i) (214)
=h (61']', P Piis 67 9,1) 5

q= a(eij7 L, Py 07 9,1) )
where, 0 = pib. With the help of (2.10)) and (2.13)), the inequality (2.12)) becomes

: . . . . 1
—p’l’]@ —+ sz-eij — ng — 0+ hﬁ&ﬂ + T(]iai Z 0. (215)

The material derivative o of ¢ is given by

oo do . do . oo . oo do :
_ 99 5. +%% 4 %% 2.16
A R P PR T AT (2.16)

g

Thanks to (2.16]), the insertion of constitutive functions (2.14) in the inequality (2.15)),

yields
Jo do \ - 0o : do \ .
_E—i_ (T]—£> €ij — (a—+f> ®+ (hz—a—> ®i
i s i (2.17)

B +8_a 9_80'
P 90

1
0;+ —qb; > 0.
96, " T T4
In the theory of Green and Naghdi [14],[15],[16] the entropy inequality (2.17) must be sat-

isfied identically for all processes and will place restrictions on the constitutive functions.

Thus, (2.17) leads to

0 = a-\(eija 90780,%0) )
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Oo Oo
T.. = = —— 2.18
b do B _@
(2 8507/ p77 80
and
The inequality (2.19) implies that
=0, if 6,=0. (2.20)

Assuming that the initial body is free from stresses and has zero intrinsic body force and

that the porous medium is of viscoelastic type, the linear theory yields

1 1 1
0= §Cijrseijers - Bijeije - 50602 + 5141']‘@71'(,0,]' + B’ijgoeij
1
+ Dijreijipr + dipp i+ 589" — mbp — aip 0 (2.21)
1 [t 9
+= [ g(t—s)p5(s)ds.
2 Jo :

We note that experiments showed that when subject to sudden changes, the viscoelastic
response not only depends on the current state of stress but also on all past states of
stress. This leads to a constitutive relationship, between the stress and the stain, given
by a memory term which appears in the form of a convolution of the stain with a relaxation

function.
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The constitutive coefficients in (2.21)) have the following symmetries

Oijrs - Orsij - Ojirsa Bij - 5ji7

Diji = Djig, Aij = Ay, Bij = Bj;.

]
Using , and we obtain the following constitutive equations
Tj; = Cijrsers + Bijo + Dijror — Bij0,
hi = Aijpj + Drsiers + dip — ;6 + /Otg (t—s)pi(s)ds,
[ =—Bijeij —&p — dip; +mb, (2.22)
pn = Bijei; + al +me + a;p

qi = 6,2’

where ¢ is the relaxation function. In the case of an isotropic materials, the constitutive

equations becomes
Tji =Xepr0ij + 2pe5 + bpdy; — PO,
h; = ; + /Otg (t—s)p;(s)ds,
f=—ben —Ep+mb, (2.23)
pn =Be + ab +myp,
qi Zg,i,
where ¢;; is the Kronecker’s delta, A, p1 are the Lamé moduli and b, o, 3, &, m, a are con-

stitutive coefficients.
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In the linear theory, the insertion of
pé = o+ pTh + pT'n
in using , reduces the equation of energy , to
pTon = qis. (2.24)
Also, the equation of motion can be written
sz‘ = ngg
For j =14, T}j; we obtain

Ty = ANy p + 2p00; 004 + b — 30
= (A +2p) w10k + bp — BO + A (1 — i) wpe i
and for j # 7, we have
Ty = p(uiy + u5,)
then,
pu; = Tjij = p g5 + ptdg 5 + Ny ps + 2055 + b s — 56,

which can be written in the form
pu; = pAu; + (A + ) (divu) ; + b — (6.

The equation (2.9) becomes

prp = f+ hjj.
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By the insertion of constitutive equations (2.23)), the above equation takes the form
. t
pre = ap jj —bujj — Ep +mb + / g(t—s)p; j(s)ds
0
which also written
. t
prp = alAp — bdivu —§g0+m6’+/ g(t—3s)Ap(x,s)ds.
0

The insertion of (2.23) in ([2.24]) gives the heat equation
af = 0, — pToBuj; — pTomep
which is also written
af = A — pToBdivie — pTyme.
Finally the linearized system takes the form

puy = pAu+ (A + p) V (divu) + bVe — V0,
t
Py = alp —bdivu — o + mb + / g(t—s)Ap(x,s)ds, (2.25)
0

aby = A0 — pTo B divuy — pTymeps.

\

In the one-dimensional case system (2.25)) takes the form

(

pue = (A + 20) Ugy + by — B0,

t
PRQtt = OPyy — buac - 690 +mo +/ g (t - S) Prx (:L‘7 S) dS,
0

ab = Qrm - pTOBUtr - IOTOmSOt

\

which is the system studied in chapter 3.



Chapter 3

General decay in porous

thermoelasticity

3.1 Introduction

In this chapter we investigate the asymptotic behavior of the solutions of a one-dimensional
porous thermoelastic problem with two dissipations, porous dissipation of memory type
and thermal dissipation arising in the heat equation.

It is well known that the combination of a thermal or viscoelastic dissipation with
microthermal or porous dissipation leads to an uniform stability. In addition, if dissipation
of memory type is present then the rate of decay depends on the relaxation function,
Precisely, the decay is of exponential rate if the kernel decays exponentially and the decay

is polynomial if the kernel decays polynomially.

34
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Ammar Khodja et al.[3] considered a linear Timoshenko-type system with memory of

the form

prw — k(o +9), =0, in(0,L) x Ry,

Py — bihyy + /0 g(t — $)uz(8)ds + k(v + ) =0, in(0,L) x IRy,

together with homogeneous boundary conditions. They used the multiplier techniques
and proved that the system is uniformly stable if and only if the wave speeds are equal

(ﬂzpz

I ?> and g decay uniformly. Guesmia and Messaoudi [2I] obtained the same uni-
form decay result under weaker conditions on the regularity and the growth of the re-
laxation function. Also Messaoudi and Mustafa [40] established a more general decay
estimate for a wider class of relaxation function.

In porous thermoelasticity, Soufyane [63] considered the following one-dimensional

porous thermoelastic system of memory type

(

Gt = Pz + wx - Hxa in (07 L) X IR—H
¢
Yy = Yy — Qu — Y + 0 — / g(t — $)ez(s)ds, in (0,L) x Ry,
0

L et = exm — Ptz — wta in <Oa L) X ]R'Jr;

with Dirichlet boundary conditions and proved that the solutions decay exponentially

(polynomially) if the relaxation function g decays exponentially (polynomially).
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In this chapter we are concerned with the following system
.

1w — k(0o +1)e +0, =0, in (0,1) x Ry

Pt — Oy + Ky +10) — 0+ [) g(t — 8)uu(z,5)ds =0, in (0,1) x Ry
pal — Koy + por + 10, =0, in (0,1) x Ry

0(0,1) = p(1,t) = ¥(0,) = ¥(1,£) = 0(0,¢) = 6(1,£) =0, >0

o(,0) = @o(z), @i(x,0) =¢1(x), 0(x,0)=0(x), x€(01)

¢($70) - %(95)7 1/&(1’,0) = 1/}1(1:)’ LS (07 1)'

\

36

(1.1)

where p1, pa, p2, k, , k are positive constants and ¢ : IRy — IR, is a nonincreasing func-

tion. We will adopt some arguments of [63] and [40] to establish a general decay of ” weak”

solutions, from which the exponential and polynomial decay results of [63] are only special

cases.

3.2 Preliminaries

In this section, we present some notations and material needed in our work then, we

present our hypotheses and state, without proof, a global existence result and prove

several technical lemmas. For the relaxation function g we assume

(H1) g : R, — IR, is a differentiable function satisfying

(e}

g(0) >0, a—/g(s)ds:l>0

(H2) There exists a nonincreasing differentiable function £ : IR, — IR, satisfying

g'(t) < =&(t)g(t), vt =0.
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Example. We give here an example of a function which satisfies (H1) and (H2) and is

not of exponential or polynomial decay
g(t) = ae 0", 0<v<l,

and a and b to chosen properly.
Proposition 2.1. Assume that (H1), (H2) hold, then, for any ((po, 1), (Yo,11)) €

(H} (0;1) x L*(0; 1))* and 6 € H} (0;1), problem has a unique global solution
(¢.¥) € (C(Ry; Hy (0;1)) N CH (IR L2(0; 1)), o)
0 € C(R4; L*(0;1)) N L*(R; Hy (0; 1))

Moreover, if
(0 p1) s (o, 1)) € (H?(031) M HG (0:1) x H; (0;1))°, 6 € Hy (0;1)
then has a unique (strong) solution
(¢, ¥) € (C (Rys H? (0:1) N HY (0:1)) N C* (Rys Hy (0:1)) N C2 (Ry; L2 (0:1))),
0 € C(Rs; Hy (0;1)) NC' (Ry; L (0;1)) .

Proof. The proof of this proposition can be established by using the well-known Galerkin

method. O

We introduce the first order energy of Problem (1.1)) by

E(t)zl/l 24 poh? + psf* + | — t (s)ds ) V2 + k (@y + 1)°
2 J, P1Py T P2¥y T P3 09 . P

(2.2)

1
+§90¢z
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where for v € L?(0;1),

(gov)( // (t — s)(v(z,t) — v(x, s))*dsdx.

It is clear that, by (H1), E(t) >

Lemma 2.1. Under assumptions (H1) and (H2), we have

[t [ ot = pmatorisis =35 [oova - (/Otg<j>ds) [ o] -
- 50 0va+ alt) [ w2t

Proof. Integrating by parts and using the boundary conditions we get

[0 [ ote -~ atnte =~ [ [ o= ooy oyt

/ / )0t [ (5) — (1)) disdx — / / St ()50 (1) s
=g [ [ ot = 9uts) ~ voras]

- / [ 9= 10at6) — a0 dsa — 5 ([ atoas) [ Soitoas

~ g foeve— ([ ot0as) [ v - g0 ova o0 [ v O

Lemma 2.2. Assume that (H1) holds. Then

/01 (/Otg(t S (w(t) - U(S))d5>2 iz < cog o v,

for all v € H} (0;1) ,where cqy, here and throughout this section, denotes a generic positive
constant.

Proof. By using Schwarz and Poincaré’s inequalities, we get

A (/Otgof—s)(v(t)—v(s))ds)de:/Ol ([ 2=

N[

(t—s)(v(t) — v(s))ds) dx
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< [ ([ o) ([ att= o100 - vts)as)

/Otg@ds / / gt = $)(0(0) - v(s)Pdsde

O\(_..
Q
—

V)
N—

QL

Vo)

N‘\
Q
S

~
|
V)
S~—
N
Q
O\
S -
(4
8
—~
~
N—
|
4
s
e
V2]
N—
N—
o
IS
53
N—
QL
V2]

|
< /01 /Otg(t—s)(vm(t) _ uy(s))2dsdz = cog o vy, [

Remark 2.2. Similarly, we have

2

/01 ( / (6 — () - vx(s))ds) do < cog o,

/01 (/Ot gt — 8)(w(t) — U(S))dS)Q iz < —cog o v,

Lemma 2.3. There exists a constant ¢y > 0 such that

/01 (%—/Otg(t—s)wx(s)ds)

Proof. Using the fact that (a + b)* < 242 + 20 and Remark 2.2, we obtain

A (wx—/otg@—s)wx(s)ds)

and

2

1
dr < cD/ W2dz + cog o s
0

2

2

§2/01w§d33+2/01 (/Otg(t—S)(%(S)—wx(t)+¢x(t))d8) da

dx§2/01¢;dx+2/01 (/Otg(t—s)wm<s>ds>

39

dx
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oo o[-
Jﬁ (Jg (t = 5) (s (5) = s (1) d s)de

1
<a [ Wdrtagou,. D
0

Lemma 2.4. Assume that (H1) holds. Then, there exists a positive constant cy such

1t 1 o [l c
/ u/ g(t — s)vg(s)dsdr < 5/ udr + —0/ vide 4+ g o,
0 0 0 € Jo €

for all € >0 and for all w € L?(0,1) and v € H' (0,1).

that

Proof. Using Young’s inequality, we get

/Olu/otg(t—S)vx(s)dsdx ga/ 2dx—|—— 01 (/0 gt—svw(s)d5>2dag
/ de+_/ (/ >2u§(t)dx

Co

b O(Ag@—ﬁ[4$—uAMdQ2m.

Then, the result is obtained by using Remark 2.2. [J

3.3 General decay (equal-speed case)

In this section we state and prove the main general decay result for solutions of system
(L.1)). All calculations are done for strong solutions, the results remain valid for weak
solutions by simple density arguments. We start with the following

Theorem 3.1. Let ((¢o, 1), (Yo,11)) € (HL(0,1) x L2(0,1))* and 6, € H}(0,1).
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Assume that (H1) and (H2) hold and that
—=— (3.1)

Then, there exist two positive constants w and X, for which the solution of Problem (|1.1))

w/ £(s)ds
e 0 th 0.

The proof of this theorem will be established through several lemmas.

satisfies

Lemma 3.2. Under assumptions (H1), (H2), the energy satisfies, along the solution of

(1),
ko[ 1 1 !
E'(t) = ——/ 02dr 4+ =g’ oh, — —g (t)/ V2 (z,t)dr < 0. (3.2)
2 J, 2 2 .

Proof. Multiplying the first equation of (1.1)) by ¢, the second by 1, and the third by

6 and integrating over (0,1), we get

&i 1 ) ﬁi 1 ) B /1 /l B
5 T prdx + 5 7t wydr — k i Yeppdx + i O, pdx = 0,

2dt/ Yida +_—/ ¢2dw+k/ gpxwtdﬂia/ 0

1 1 t
- [ovdat [0 [ ot = nstes)iste =0,

/92d o /02dx+/ %tedﬁ/ bibdr = 0,
2 dt ;

and
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By summation of theses three identities, we get

1d

1 1

—— (0197 + pabi + p3b” + k (o, + V) + a?] dx + r / 02dx

2 dt 0 1 ' 2 0 (33)

+/ Wy (t)/ g(t — 8)tue(x, 8)dsdx = 0.
0 0

Thus, (2.3)) leads to equality (3.2)) for regular solutions. This equality remains valid for
solutions ([2.1)) by simple density argument. [J

Lemma 3.3. Under assumptions (H1), (H2), the functional

-/ oot [ st = s)00t6) — vis)ydsdo

satisfies, along the solution of (1.1)), the estimate
t 1 1
10 < ([ atas =) [vtaers [t vpa
0 0 0
1 1
2 2 € 1
+dco | Yrdr+dcy | Oidx — 590 Yy +co | 0+ 5)9° Ve, (3.4)
0 0

for all 6 > 0.

Proof. A direct differentiation using (1.1]), gives

10 == [ [ovee =00 - /Ot< a5t /tgu—s)w(t) U(s))dsdr

/ pggz)t/ (t —s)( dsdx—/ / pathi (t

:/0 a%/o gt = ) (ha(t) — ha(s ))dsdx+k/ (s0x+¢)/ g(t = s)((t) — ¢(s))dsdx

0 0

[ o [ ot - 00 - vpasts

_/ol/o 9t = 5)0u(z, 5>d8/ glt = )W (t) — tu(s))dsda
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1 t t 1
[ o [ = @0 - viopdsds ~ [ gls)as [ pavitias
0 0 0 0
By using Young’s and Poincaré’s inequalities, Lemma 2.2. and Remark 2.2, we get, for

all o > 0,
1 t 1
_ 4 _ 2 _C_O "o
[ [t = 00— voasda <5 [ vde =2 o,

[ v [ ot =)l = viteisde <6 [ iar+ Fg o,
e[ ot o) [ ot =500~ o)isds <3 [ (o0 + g0,

_/Ole/otg(t—s)(w(t)—¢(s))d5dm§5/010§+%090¢m7

and

[ ot sy [ att = w0~ vutoisa
<0 /01 (/tg(f — 5)(tha(s) — ¥a(t) + wx(t))ds) Ci

0
2
Co

2 01 (/ gl — )W lt) — a(e)ds ) da

/ t 2 M — 1 t 2
<24 (/0 g(s)ds) /0 Vidr + (25 + §> /0 (/0 g(t — s)(V(t) — @Z)x(s))ds) dx
1 1
gcoé’/o Y2dx + ¢ (5’+%>gowx gé/o Vidr + <6+§)gowz,

By combining all above estimates the assertion of the lemma is established.[]
Lemma 3.4. Under assumptions (H1), (H2), the functional

1
J(t) = _/0 (prp@y + parpify)da
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satisfies, along the solution of (1.1)), the estimate

1 1
It < - / (1% + pot)de + k(1 +2) / (0 + ) da
0 1 1 0
+c0/ ¢§d:c+cg—°/ 02dz + cog 0 by,
0 0

for all e > 0.

Proof. Direct differentiation, using (1.1)), leads to

1

1
J(t) = — 2 2)dx — k@ + ktby — 0,)d
(t) /O(plsoera@D)w /090(90 + kv )dx
-

w[a@bxx—k:gox—kw#—@—/g(t—s)@bm(s)ds] dx
0
1 ) ) 1 1
. t N+ k | gulpe +0)dr — [ 0.0
/O(mso + patfy)dx + /090(90 +¢)dz /Ow

[aery

to /0 etk /0 e+ W)~ /0 e /0 . /0 gt — ) ()dsde

1 1 1
. / (10 + pot?)da + / (60 + 0Pz + a / YRde
0 0 0

[ v vrse— [ [ ot utopisas

Using Lemma 2.4, we obtain,

1 t 1
- / e / ot — 8)u(z, s)ds)dx < co / W2 (t) dz + cog o b
0 0 0

Also, exploiting Young’s and Poincaré’s inequalities, we get, for all € > 0,

1 1 1
_/ (%+¢)edxggk/ (%+¢)2dx+%/ 0%dz.
0 0 0

Substituting these estimates in (3.6]), we obtain (3.5)). O

44

(3.5)

(3.6)
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Lemma 3.5. Assume that (H1), (H2) and (3.1) hold. Then, the functional

K0 = [ e (o | ol ulssds ) + [ okt (o + 1) d

satisfies, along the solution of (L.1)), and for any € > 0, the estimate

=1

Ki(t) <k [ (Oz% - /Ot (t = )tba(z, s)ds>L:O

—|—k:,02/ wt dr — k* (1 — 500) / (¢ + ) dz (3.7)
1 c .
0 5
Proof. Direct differentiation, using (1.1]), gives

1 1

d 1
plaa ordr = o / (k@zz + kthy — 0,) Yodr + pra / Oradr
0 0

1

1 1 1
= ak [@xwx]izé — ak/ OpWpedr + ak/ Vida — a/ 0. dx + pla/ V.
0 0 0 0

Also,
1 ¢
dt plcpt/ (t — $)b.(s)dsdx = _/0 (kYze + ktby — 933)/0 g(t — $),(s)dsdx

1 1 t
—P1g (0)/ ¢t¢xd$—p1/ <,0t/ g (t — s).(s)dsdz.
0 0 0
Finally,
ka—/ Ui (s + ) dx—ka/ Ui (ot + 1) da

+k/01<oc¢m— e — kb + 0 — / §)ea(8)d )(%+¢)dw

1 1
= —kps / Yarprdx + kpo / wfd:v + ak/ Yz Prdr — ak:/ wid:):
0 0 0 0
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1 1
k /O (s +0) dx+k/0 0 (0o + ) da

r=1

[ [t = hntshisde — k[ o) [ ot = syt 15

—H{;/O Vy /Otg(t — $),(s)dsdx.

Therefore, a combination of all above estimates and use of (3.1]) lead to

K} (1) =k s (v - [ ot = sy s)a )} ~a [ v

1 1
st [ we =12 [ (o) da:+k/ 0 (pu+ ) da
0 (3.8)

/ / (t — s)tby(s)dsdx — ()/ pLoed
- / o / J(t - $)a(s)dsda.

Using Young’s inequality, Remark 2.2 and Lemma 2.4, we get

-« L0.dr < ¢ 24 92d1:
[oaarse et [

1

1
k’/ 0 (p, + 1) dx < = 92d:)3 + 51{:200/ (0n+10)*d

/ / (t — $)a(s dsdx<—/ 02 (t) dx + eg 0 9,

Iy 2 _@ /o
/opl(pt/og(t s)wx(s)dsdajge/o oy (t) dz <gg Yy

=0

1 1 c 1
9(0) / prgrthada < e / Z(detr D [ g2
0 0 € Jo

A substitution of these estimates in ({3.8]), inequality (3.7]) occurs immediately. [J
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As in [47], to handle the boundary terms in (3.7), we let M € C* ([0;1]) be a function
satisfying
M(1)=—-M(0) = —2.

Lemma 3.6. Under assumptions (H1), (H2), the functionals Ky and Ks defined by
1 ¢
Ka(t) = [ pat @i (= [ olt = 9)0nls)is) do
0 0

1
K3 (t) ::/ p1 M () progdx
0

satisfy, along the solution of (1.1), and for any € > 0, the estimates

Ky (t) < - (awx ao- [ ol s>wx<1,s>ds)2

t 1
— (azpm (0,¢) —/ g(t—s)ww(o,s)ds) +€k’/ (0o + ) da (3.9)
0 0
1 1 1
o 2 2 2 8 e o
+2 [t [t r [ 02+ Doou—ag o

and

Ky (1) < =k (g3 (1,1) + 93 (0,1))

1 1 1 1
+ co (/ 2dx —I—/ ©ldx +/ Vidx +/ 0§dx> . (3.10)
0 0 0 0

Proof. Direct differentiation, using (1.1f), yields

K0 = [ 20 (o [ o= na1as) (o= [ ot opa(oras) s

- [ 3w e k= 0) (= [ ot oppntsias) do
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1 t
b [ o) (ath g~ [ g s>wx<s>ds) da
0 0

- — (awx (1,) — /Otg(t - s)wx(l,s)ds>2 — (awx (0,t) — /Otg(t— s)%(&s)ds)

-1/ M () (o | gl swx(s)ds)zdx
b [ 21 et ) (v [ ot - )06 ) do
#3000 (= [ oti = patoris ) e =22 [ ) vt

+/01 paM () (—g (t) ¥ + /Ot gt —5) (e (t) — Vu(s)) ds) A

2

Using Young’s inequality and Remark 2.2 we get

/01 paM (x) Yy (-9 (t) e + /Ot gt —s) (Vu(t) — ¢u(s)) dS) dx

1 1
< / Weda + co / W2z — cogl o .
0 0

Again, Young’s inequality and Lemma 2.3, lead to

—/-C/O1 M () (¢x +¢) (a% - /Otg(t - S)%(S)d&’) dx

1 1
& &
éek/ (o + )2 dz+= | 2+ 2go,.
0 € Jo €
The use of the same arguments for the other terms yields the desired result. [J

Next,

1
Ky (1) = / M (2) prpuda
0
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1
K (t M ) (kYgs + kb — 0, )<pxdx—i—/ p1 M (z) propdr
= —k (@2 (1,1) + ¢2 (0,1)) ——/ M (x dx—i—k’/M ) Uy pdr

—/ M (z) wgoxx——/ M' (x
0

Similar estimates lead to (3.10]).
Lemma 3.7. Under assumptions (H1), (H2), the functional
1 1 3
Ky =-Ki+—Ky+ - K.
4= + 1 + s

satisfies along the solution of (L.1) and for any £ > 0, the estimate

1 1 1
Kj(t) < -— (%k—eco)/ (cpx—l—wfda:—l—%/ wt2+€co/ ©2dx
0 0 0

1 1
C C C C
+—Z/ widx+—°/ 02+ 2goty, — —g o
% Jo e Jo € €

(3.11)

Proof. By using the inequality

Pe (oawx - /Otg(t — 5).(s)d ) <epl+ — <awm - /Otg(t - s)wm(s)ds)

and substituting (3.7]), (3.9) and (3.10) in the expression of K}, we obtain

2

1 1
K (1) < po / YRde — k(1 - ecp) / (6o + 9) da

! 2 Co ! 2 Co ! 2 Co ,
—|—5/ gotdx—i——/ Qxdxqt—/ Yrdr +ego, — —g oy,
0 e Jo e Jo €

ko[ 2 Co ! 2  Co ! 2 Co ! 2 . Co
4 /o % Jo e Jo e Jo €
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1 1 1 1
D o, + ey (/ 2dx +/ idx —|—/ Vidx —|—/ ﬁid:c) :
€ 0 0 0 0

By recalling
Prdr <2 (g, + )" + 207

and Poincaré’s inequality, we get

1 1 1
/widﬂfS?/ (%+¢)2+CO/ V2.
0 0 0

Thus (3.11)) is proven. [J
Lemma 3.8. Under assumptions (H1), (H2), the functional

2
K5 = EJ‘{' K4,
P1

satisfies along the solution of (1.1 and for a fized ¢ small enough, the estimate

k 1 1 1
Ké(t)§—§/ (%W)chﬂﬂ—u/ w?deJrcO/ vy
0 0 0

1 1
Co/ widx+co/ 02 + cog 0 s — cog' © U,
0 0

(3.12)

for some (fixed) p > 0.

Proof. Direct differentiation, using (3.5)), (3.11)) gives

1 1
Ké(t)S—Gk—wo)/o (soxﬂ/))de—cOe/o wtdIJr(——?%)/ Uy

1 1
c c
+ <€Co+€_g>/ @bidﬂH'Co/ 02 + cog © thy — ;09/0@%-
0 0

3 k
Fixing € small enough, such that Zk —ecy > 5 and — — 2¢ cop2 > 0, we arrive at

€ P1
(3.10)(3.10), with p = cpe. O
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As in [64], we use the multiplier w given by the solution of
Wy = Yy, w(0) =w(1)=0.

Lemma 3.9. The solution of (3.13)) satisfies

1 1 1 1
/ w2dr < / iz, / widr < C’/ Yid.
0 0 0 0

Proof. Using integration by parties and (3.13) we obtain

1 1 1
/ w2dr = / Vywdr = —/ wdr.
0 0 0

Thus, Cauchy Schwarz inequality leads to

1 1 1 2 1 3
/wid:cg/ [hw,| dz < (/ ¢2d:c) (/ widm) )
0 0 0 0
1 1
/ widmﬁ/ w2dx.
0 0
1 1
/ w?xdxg/ Yida.
0 0

Thus, Poincaré’s inequality yields

1 1 1
/ widr < C’/ w? dr < C/ Yide. O
0 0 0

Lemma 3.10. Under assumptions (H1), (H2), the functional

then,

Similarly,

1
K (1) = / (o1 + potiyts) da

ol

(3.13)
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[
satisfies, along the solution of (1.1) and for 0 <&y < o the estimate
/ L[, oy co [ co [ o
Ki(t) < —= | ¢ide+e | pide+— | Oide+— | ¢idx+cogotp,, (3.14)
2 Jo 0 €1 Jo €1 Jo

where [ is defined in (HI).

Proof. Direct differentiation, using (1.1]), yields

1 1
K (t) = / W (kpge + kb, — 0,) dx + py / wyprdx
0 0

+ /0 1 (awm—m—kww— /O tg(t—S)wm(S)dS) Y + po /O g
= —k:/l Wy pedr + k:/ol wida: + /01 w,0dx + py /01 wypedx
—a/ Yide —k /Ol%wdx—k/01¢2dx+/019¢dx+p2/1¢§dx
/wx (/0 (t—s)(%(t)—wx(s))ds) da:+(/ ds)/ Err
:k</1 w2dx — /01w2d:c) /Olwxﬁdx+p2/ wtdx—l—pl/o wyppdx

1

—« @/J dr — / (we + V) prdz —I—/ Odx
0

[ ([ ot =ty = vatsnas) o ([ gtspas) [ vt

Integration by parts, using (3.13]), gives
1
k/ (W + ) prdx = 0.
0

Consequently, Lemma 3.9 yields

1 1 1 1 1
K§ (t) < —a/ Yida —|—/ w0dr + pg/ Vidx + pl/ wpppda —|—/ Odx
0 0 0 0 0
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[ ([ ot =9t~ watonas) o+ ([ ateras) | i

Young’s inequality, Remark 2.2, Poincaré’s inequality and Lemma 3.9 then yield

¢ 1 1
K (t) < — (a — / g(s)ds — ey — ECO> / Vidr + e / oldx
0 0 0

1 1
—i—C—O/ ¢t2d11:—|—@gowx+—0/ 02dx, Ve > 0.
€1 Jo € 0

¢
€1
Recalling (H1), we deduce

1 1 1 1
Ki(t) < —(l—¢e —500)/ widx—i-sl/ @fdx—i—@/ Qidx—l-@/ @/)fdx—i-@goq/;x.
0 0 €1 Jo €1 Jo €

l
Thus, for 0 < &1 < 5 We can fix e small enough such that (3.14]) is established. O
Proof of Theorem 3.1.
For Ny, Ny, N3 > 0, we define the Lyapunov functional by

L(t) = N,E (t) + Noi (t) + N3Kg (t) + %K5 (t).

By combining 23), (82), B-12) and (3.14), we have

N. ! N N. !
L) < — (73l — ¢y — N25co> / @bid:p — (Tw —co — Nydcy — 300) / Qidiv
0 0

€1

1 t 1
e [ (o o5} - 2] [t
0 0 1 0

1 ! 1
_ (5_5]\/'2) / ((pm—l—zb)zdx—{— <N200(5+5)+N300+Co)901/}x
0

Ny

C /
+<7—N2§—co>g 0 Y.
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1 to
Let § = A and g = p2/ g(s)ds for some fixed ty > 0. Then for all ¢ > ¢y, and
2 0

)
0<51<§Weget

, N3l 5cy 9 Nik  5cg Nicg /1 2
< | = _ -
£l < (2 )/wd <2 4 €1 )oedx
! 1 Nsc
_<N—N3€1)/ @?dl'—(Nzgo—Z—ﬂ— )/?/ftdx
0

1 /! 5¢
—Z/ (@z+¢)2d$+ (4N§+N3c0+70)go¢x
0

(3.15)

N
+ (71 — 4NZcy — co) g o y.

Next, we choose N3 large enough so that

N3l 5
01:_3_ﬂ>07

2 4

then ; small enough so that

co = it — N3eq1 > 0.

After that, we pick N large enough such that

1 N.
c3 = Nogyp — — — co — 30

> 0.
4 €1

Finally, we take N; large enough so that

Nlli NgC
C4=—— +co—
2 &1

N
0~ 0 and 05271—4N2200—co>0.

Therefore, (3.15)) takes the form

1 1 1 1
L'(t) < —cl/ Yidr — 02/ Oldr — 03/ Yidr — 04/ 02dx
0 0 0 0
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1 [t 5
—1/ (pr + ) dx + c5g' 0 Uy + (4N22+N3€0+%>90¢x-
0

Thus, for two positive constants A and C, we have
L'(t)<—=AE(t)+Cgotp,, Vt>tg
On the other hand, by choosing N; even large (if needed), we get £ ~ E.
Multiplying by & (t) and using (H1), (H2) and we arrive at
§(H) L < =A() E(t) +CE(t) gothn

=X () E(t) = Cg' oty

< =XE(t) E(t) — CE'(t).

By using the fact that &' (¢) < 0, we obtain

d

Z(EOLO+CE) <=M E(), V> to,

Again, by noting that

F=¢L+CE~E({),

we obtain, for some positive constant w,

Integrating over (to,t) we easily see that

F(t) < Fl(ty)e /5

—w/ ¢(s)ds
€ 0 5 \ Z to.

%)

(3.16)
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The assertion of Theorem 3.1 is then obtained by virtue of the boundedness of E and &

and the fact that F' ~ E£. O

3.4 General decay (nonequal-speed case)

In this section we consider for the case of different propagation speeds, that is
does not holds.We will establish a general decay result which depends on the asymptotic
behavior of g, and the regularity of solutions.

It is worth mentioning that in the case of nonzero history, the integral in (|1.1]) will be
infinite (from 0 to infinity) instead of the finite integral. This situation was discussed by
Rivera and others (see references [63], [65], [52]) for only exponential decaying relaxation
functions. However, in this work, we are concerned with more general relaxation functions

and our analysis cannot be applied directly to the situation of nonzero history.

In this section we present our hypotheses and state, without proof, a global existence

result as well as some well-known lemmas.

We recall that the first-order energy of the system ({1.1)) is given by

1 1 t )
B0~y [ [odt+ st e ot (o= [ o) vz kot 0| o

1
+§g o ¢x7
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where, for any v € L? (0;1),

1 gt
o) i= [ [ 9tt=9) Wt~ o) dso
o Jo
and note that, throughout this section, ¢ denotes a generic positive constant.

Lemma 4.1. Assume that (H1), (H2) hold. Then we have, for all t > 0,

2

/01 (/Otg(t — 5)(Wa(t) — %(s))ds) dx < go (t) g 0 s, (4.1)

where go (t) ::/O g (s)ds.

Proof. By using Schwarz inequality, we get

2

/01 (/otg<t —8) (W) = wx(S))ds> du
N / (/otgé“ —8)g7 (t = 8)(¥a(t) - ms))ds)Z dz

< ([[atas) [ ([ att=oratt) = wutopas ) an. ©

Remark 4.2. For —¢’ instead of g, (4.1) becomes

N

2

1 t
[ ([ o= 5100 - wtsps) o < ~g(0)5'0 v
0 0
Now, we state the main theorem in this section.

Theorem 4.3. Let (po, o) € [H2(0,1)NHL(0;1)])%,6, € HL(0;1) and (p1, 1) €

k
[HL(0;1)]> and suppose that (H1), (H2) hold and o + e Then, for any to, there
1

P2
exists a positive constant A for which the “strong” solution of problem (1.1)) satisfies

A

B -~
(t) < fgf(s) ds
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Examples. To illustrate our general estimate (4.2]), we give here some examples of

functions which satisfy (H1) and (H2).

1) Let g(t) = —(1 :_Lt)l,, for v > 1 and 0 < a < a(1+v), then (H2) is satisfied with
E(t) = 1:—15 and (4.2) becomes
C
Ft)y< ———  t>0.
()= In(1+1¢)

2) Let g (t) = ae~ " for 0 < v < 1 and a > 0 to be chosen such that (H1) is satisfied,

then (H2) is satisfied with & (t) = v (1 +¢)""" and ([£.2) becomes

C
(1 +t>l/7

E(t) < t>0.

3) Let g (t) = ae~ ™+ for ¢ > 1 and a > 0 small enough so that (H1) is satisfied, then

(H2) is satisfied with £ (t) = ILH (In(1+1¢))*" and [@.2) becomes

C
E(t)gm, t>0.

Proof of Theorem 4.3.

The proof of Theorem 4.3 will be established through several lemmas.

Lemma 4.4. Under the assumptions (H1), (H2), the functional

1 () = —ps / " / g(t—s) (6 (£) — v (5)) dsda

satisfies, along the solution of (1.1)), the estimate

¢ 1 1 1
I (t) < —po (/ g(s)ds — 5> / Yidr + (5/ Yidx + 5/ 02dx
0 0 0 0
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1
+5/ (¢ + ) dx + csgo (t) g 0 thy — 59’ 0 1y, (4.3)
0
where cs is a constant depending on 9.

Proof. By differentiating I, and using (L), we arrive at
B == [ [ 4= 006D itz [ ara5) [ vias
v [ v [ glt= 900 v () ds
[ Gorr o) [ 9l=9) 0 - v o) dse
[0 a-900 - ve)dsis

1 t t
- / / g(t—s). () ds/ g (t—35) (g (1) — 1 () dsdz.
0o Jo 0
Using Young’s and Poincaré’s inequalities, Remark 4.2 and (4.1]), we get

s /¢ /g (t = ) (6 (£) = (s)) dsde < p25/01¢3dx — csq 0¥,
o [ [ 065 ) o st <5 [t
ves [ ([ 00900 - i5)
gg/olwidwcago (t) g0 v,
[ et [alt=9) @@ = v eDasir <0 [ (ot 0 de + e 0900,

—/0 G/Otg(t—s)(w(t)—w(s))dsd:c§5/ 02dx + c590 (t) g 0 V.

0

Finally, the last term

_/Ol/otg(t—8)%(5)d8/0tg(t—s)(wx(t)—wx(s))dsda:g
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2

4(Je" 95<s> ds)” /01 ( /0 g (t—5)ts (s) ds) da

2

+/ (/Otg@—s)(wx(t)—wx<s>>ds) do.

2 2

/01 (/Otg(t—s)i/}x(S)ds) dxg/ol (/Otg(t—s)[%(S)Jr%(t)—z/zx(t)]ds> d
SQ/OI(/Otg(t—s)wm(t)ds) ’

By using

2

w2 (/Otg@—swx(t)—msﬂds) e

gz(/Ooog@)ds)Q/Olwi(t)dasH/ol ([ a9 [%(t)—%(s)]dsfdx

and recalling Lemma 4.1, we get

_/Ol/otg(t—S)wx(S)dS/Otg(t—s)(@bx(t)—wx(s))dsdxg

2

/o1 (/otg (t = 5) (¥ (s) — 9= (1)) ds) da

)
2 (fooo g (s)ds)

6 1
< 5/0 V2 (t) dx + csgo (t) g 0 Yy

5 1
§§/ ¢§(t)dm+ 5+ Cs
0

Combining all the above inequalities, we obtain the desired estimate. []

Lemma 4.5. Under the assumptions (H1), (H2), the functional

1
B(0) 1=~ [ (oot pabido
0
satisfies, along the solution of (1.1)), the estimate

1 1 1
Iyt < - / (1 + pa?)de + 2K / (o + )2 de + / Y2da
0 . 0 0 (4.4)

+c/ 02dx + cgo (t) g o ,.
0
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Proof: Similar to proof of Lemma 3.4. [

Lemma 4.6. Under the assumptions (H1), (H2), the functional

1 t 1
)= [ (v [t = esasic) + [ panlon ) do

satisfies, along the solution of (1.1)), the following estimate

10 < o (ave - [ gte- sm(l,s)ds)z

bor (0 00— [t = u0.90s) +5 6200+ 62 0.0)

1 1
/¢tdx— 1—50)/ (gom+1/1)2dx+6/ g&fdx—l—g/ 02dx
0 0

1
(0%
/ lp dx + £g o wm - _g © w:ﬂ (ﬂ - P2> / @thtdl',
€ k 0

(4.5)

for all € > 0.

Proof. Using (1.1)), we get

d (p _« ! j4te !
dt(k / asot%dx) -2 /0 (kat ), = 00) e+ 22 [

» 1 1 o 1 pa [
= [@xwx];;o - O‘/ @xwxa}dz + O‘/ widﬂf - 7 %%dif + T ¢t¢xtd$a

0
d
7 </ P2y (P + ) d37> = /)2/ Yy (Yot + ) do

+ /01 (awm —k(pz + )+ 06— /Otg(t — 8)Uza(a, S)dS) (02 +¢) dx

1 1 1 1 1
- / g + pa / W2de + a / Vraipad — @ / Ve — k / (o0 + 1) da
0 0 0 0 0

+/019(90x+w)dx+/01 Paz (t) /Otg(t_s)%(x,s)dsdx
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r=1

e gt — e S ) [ o= syt s,

x=0
and
(dt/(pt/ t—swxxsdsda:>:
_/0 ((@x+¢) - EQ >/0 g(t — 8),(x, s)dsdx
o [ o ! ‘o
—g(0) ?/0 Py dr — E/o QOt/O g (t — s)y(z, s)dsdz.
Therefore,

r=1

IL(t) = [ 2 (1) (a%— / t (t—S)%(x,s)ds)L:O
__/ vibodr+ (20— ) /Olsotwﬂdx

+p2/ Y2z — & /Omwfdw/le(%w)daz
+ /0 o (1) / ol — s (., $)dsd + / (1 / ot — )iz, 5)dsda

[ (00 [ ot syt syisa
—g(O)%/Ol @t%(x,t)dx—%/ol gpt/otg’(t—s)@bx(x,s)dsdx.

Using Young’s and Poincaré’s inequalities and Lemma 2.4, we obtain

1

[ (a%— / glt — )l s)ds)E:)

2 ' 2
(awz 1,4) /Ogt—swz (1, 5)d ) %(awm(o,t)—/o g<t—s>wx<o,s>ds> ,

1 1 1
/9 0+ 1) dx<5c/ (%+¢)2da:+§/ 02dz,
0 0

(2 (1,1) + 45 (0,1))

l\DI(T)
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o [l 1 o [
——/ Y0 dr < 5/ Vidr + —/ 02dx,
k Jo 0 € Jo

o [ 1 e [l
—g(0) —/ Oihg(z, t)dr < 5/ idr + —/ Vida,
k Jo 0 €Jo
1 1 t c 1 1
—/ 993/ g(t — ). (x, s)dsdx < —/ 02 dx + 5/ Vidx + g o,
k Jo 0 €Jo 0
and
o [ t 1 e [ c
o [ uteiste<e [ e+ [ vt Sgou,
k Jo 0 0 €Jo €
Combining all the above inequalities yields (4.5)) for all ¢ > 0. O

To estimate the boundary terms in (4.5) we need the following
Lemma 4.7. Let m(x) =2 — 4z and (p,1),0) be the strong solution of (1.1)). Then for

any € > 0, the functionals

Iu(t) == pg/o m () Yy (b, —/0 g(t — ), (s)ds)dx
and
I(t) == ,01/0 m(x) pro.de

satisfy

2 2

130) <~ (o002 = [ ot = 90n(1.9)05) = (0.0 [ gle =)0 (0.5)05)

+5k:/01 (e + ) dx + ¢ (1 + é) (/01 ©2dx + go (t)go%) (4.6)

1
+C/ (¢f+9§) dr — cg’ o,
0
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and
1
IL(t) < —k (@2 (1,t) + @2 (0,t)) + c/ (97 + 02 + 02 +62) dx. (4.7)
0

Proof. Differentiating I, using (|1.1)) and properties of m, we obtain

150 = [ ) (b= [ ot = 9pnelohts (e 0)+0)

x@%—élwﬂwwmﬁw
+P2/01m(37)@/}t

< (vt uuto) - s)ds g0 - [ - il ) da

0 0

= [ (v [ ote - spntonas) a
- [ o0 0) (v - /t<—>w<>ds)d
—I—ap/m ity dx+p/m ¢/ ))dsda
g (t /7n ) Grtoa(t)d
— (ot (e - [(ate- st ) - (av- 0 t)d:c—/otga—s)wx(o,s)ds)
02 [ (ovs— [ ote (o) o+ 2 [ i
[ @) (v / - (sl ) (a4 0) o
oo [
t/ o [ o dm7pgl/m ) dutbadr

2
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By using Lemma 4.1 and the fact that (a 4 b)* < 2a® + 2b%, we get

2

[ (o | tg@_s)wx(s)ds) dr =
2/01((a—/0tg<s>ds) ¢x<t>+/0t (t = 5) (o (1) - %(s))ds)zdas

2

<o [tarre [ ([ o= 0= vl ds) o

1
< c(/ ¢id$+90(t)907/1x> :
0
Similarly, we have

b [ ) (= [ o= opats)is) o+ o

2

<ah [[rwran s [ (av= [ ot sputas)

<gk/1(sox+w) dx + - (/ (U dm+go()90¢x),

[ o (v [ att=un(oris)
SC/O Q§d$+g(/0 ¢§dx+go(t)90¢x)

and

o2 / m.(z) ¢ / Gt — )y (1) — bals))dsde — pag (1 / m () bethada

1
SC/O (V7 +2) dz — cg’ 0 1,

A combination of all the above estimate leads to (4.6]).
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To prove (4.7)), we differentiate I5, we obtain

/m k(e +1)s —H)soxderpl/ m () prpmda
1

= m )G o)y 2% [ e do 2o | e
+ /Om(:c)wgo x /Om(zz:) Opdx

then, Young’s inequality, for the last two integrals, yields (4.7)). O

Lemma 4.8. Under the assumptions (H1), (H2), the functional

1
Is =1 —1 —]
6 3+2 4+2k55

satisfies, along the strong solution of (1.2), the estimate
' k ! 2 ¢ [ 2 2 ! 2
IL(t) < — 5 e (e +7) dx+g (V7 +02)da +ce | @jda
0 0 0
(4.8)
1 1
c c c «
+—2/ e+ —g0 (1) g o the — =g 0 Yy + (ﬂ - pg) / Oy,
e Jo € € k 0
forany 0 <e < 1.

Proof. Substitution of (4.5))-(4.7]) in the expression of I§(t) and use of

1 1 1
/goiﬂ/ (oo +0)Pda+2 [ P,
0 0 0

together with Poincaré’s inequality lead to (4.8). OJ
Lemma 4.9. Under the assumptions (H1), (H2), the functional

1
G1 = IG + EIQ

satisfies, along the strong solution of (1.1) and for € small enough, the estimate

el 1 1 1 1
Gi(y) < 2 / (oz + ¢)2 dr — g—; ©2dr + c (/ Vidr + / Vidr + / Hidx)
0 0 0 0 0
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1
+c(go(t) go by — g o) + (% - p2> /0 Orpde. (4.9)

Proof. By exploiting (4.4) and (4.8]) we arrive at

G’l(t)g—(%—ec) /01(90x+¢)2d93—<f—é—ca>/olgpfdx+<€%+c>/ol¢idx

1
& Cy (0]
+(—2+c> go(t)gowm——og’owfr(ﬁ—pz)/ Prprdr
5 € k 0

+(§_f_g) /01¢3dx+(c+§) /Oleidx.

By choosing € small enough such that

3k

oo

we obtain (4.9). O

Now, we introduce the function

w@w=1[¢mw@+([wmw@)n

One can easily see that

%@hhwmw+lwww@

)= [Cwnlutydy+ (/Olwt<y7t>dy) v

and
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A simple calculation then yields

1 1 1 2
/widw§2/ 1/12(x,t)dx+2</ ¢(y,t)dy> dx
0 0 0
1
4/ Ve
0
1 1
/w?dxgél/ Vid.
0 0

Lemma 4.10. Under the assumptions (H1), (H2), the functional

1
G (1) 1:/0 (P2 + prwepy) da

satisfies, along the solution of (1.1)), the estimate

' _£ ! 2 ¢ ! 2
Gy(t) < Yrdx + Ypdx
2 Jo € Jo

1 1 1
+5/ idx + cgo (t) g oV, + 7/ 02dzx.
0 0

Proof. A differentiation of Gy gives

1 1
Gy(t) = /0 (207 + prwrp) doe + /0 w (k(¢s +1)s — 0.) dx

+/O (0 (Of%cz - k(%g + l/)) +6 — /0 g(t — 8)¢x$(x, s)ds) dx

68

(4.10)

(4.11)

1 1 1 1 t
:/0 (P20} + preorpr) dx—a/o widx—i—/o 1Z)t9dx+/0 wz/o g(t — ). (x, s)dsdx

—krf (ws + ) (9o +1p)dx — /1w9xda:

0
1

1 1
= po wt dz + py / wypdr — k/ (wz + ) (Yo + ¥)dx + / (wy + 1) Odx

0

—(a—/ )/¢2dx+/ %/ (t = 5) (6uls) — s (1)) dsda.
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By noting that
1
wy + 1 = / ¥ (y,t)dy,
0

we get

b [t 9) ot e = (/Olwy,t)dy)ng,

- (a - /Otg(s)ds) /01 Vldr < —z/ol¢§dx.

By using Young’s, Poincaré’s inequalities, Lemma 4.1 and (4.10]), we arrive at

1 1 1
pl/ wyprdr < 5/ gp?dx + E/ wfd:c,
0 0 € Jo

/Olwzw)eda:: (/Olzb(y,t)dy) /Oleda:

L[t 1,
< — | ¢Ypdr+- | O.dx
4 Jo L Jo

and

[ e /Otg<t—s><wx<s>—wm<t>>dsda:si [ stte+ g0,

Combining all the above estimate, (4.11)) is established. [J

Next, we would like to deal with the second-order energy. For this reason, we first

note that
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Therefore, by differentiating system ((1.1)) with respect to ¢, we arrive at

;

P12 — k(0 1) et + 0 =0, in (0,1) x IR,
P2t — Oy + k(e +101) — 0 + g (1) Youa ()
t
+/ G(t—8) g (s)ds =0, in (0,1) x R, (4.12)
0

P30 — KOryy + @ure + v =0, in (0,1) x R4,

| 0(0,8) = @i(1,8) = 6a(0,8) = Wi(1,) = 0,(0,8) = 6, (1,8) = 0, > 0.

We also, define the second-order energy by

E*<t>:%g%+%/ol (a_/otg@ds) 2 (1) da

1 1
+§ / [pIQO?t + patby, + p3b; 4+ k (pur + %&)2] dx
0

Lemma 4.11. Let ¢ € C* (Ry; H} (0;1)) and g satisfies (H1), then

/@btt / t—3)¢xxt()d5d$———go¢xt+ 9 /7/1

g o= ([ 009 )/¢ “

(4.13)

Proof. Using integration by parts with respect to =, we get

/ Py (t / (t = 5) Vyar (5) dsdr = / Yo (1 /t (t — 8) 1y (8) dsdx

/wm ) [0 =9) (o (9 = v 1) s — [ o (1) [0t 5) v 0 s

:5/0 /0g@_s)%(%t(s)_%@ydsdx_%(/Otg<s>ds)%/ol¢gt<t>dx
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th// (t — ) (gt (8) — by (£))? dsd:c—%%((/t (s)ds)/olwit(wdx)
-5 /0 / g (t = 5) (Vat (5) = Yt (t))zdsdﬂ—g (t) / 1 Vo (1) da
_%%{g s — (/ ds>/¢ dx}——go@/)xt—l- St /w O

Lemma 4.12. Let (¢,1,0) be the strong solution of (1.1)), Then the energy E. (t) satis-

fies, for all t > 0,
1 1
0

and

E.(t)<M, vt>0. (4.15)

Proof. Multiplying the equations of system by @, Yy and 6, respectively and
integrating over (0, 1) using boundary conditions, (H1), and the assumptions on
the constitutive constants, we obtain for regular solutions. This inequality remains
valid for strong solutions of by a simple density argument.

To prove (4.15)), we use the fact that

00 [ (VA i)
—q(t + ——Uoze | dx >0, Vt>0;
9()/0 \/E%t \/E%

which implies that

1 1
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Thus,

1 ! o, 1 o
1
<g(t)E, (t)+ 2%29 (t) /0 Pgpdir.

Consequently,

! o) ds - tg(s)ds )
CACEYIONRA0) / e <6/ng@ | e

which implies that

d - [ g(s)ds 1 1

E.(fe IXCLE B0 () s) | i,

_ h s)ds - t s)ds
E.(t)e /0 9(s) < E.(t)e /Og() <E, (0)—1-% (a—1) / Y2 dx

which gives (4.15)). O

to
Now let tg > 0, set g; = / g (s)ds and define, for Ny, No, N3 > 0, the Lyapunov
0
functional

L(t) = Ny (E(t)+ B, (t)) + NoTy () + N3G () + Gy (1) .
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By noting that
! 1
El (t) S _"i/ eaztdx + §g/ © wxa EI / wttw(}:px
0

and combining the estimates (4.3)), (4.9) and (4.11)), we obtain

ﬂ(t)g—(l&—(ﬂ\fg—c)/ Yidr — ——5N3)/1gofdx
0

cN: k !
- (P2N291 p2 N2 — —3 - C) / % dr — (‘ - 5N2) / (o + ¢)2 dr
0
1
a
— </€N1 — 0Ny —c— 7) /0' Hidﬂf + (% - P2) /0 Sothtdx

N , !
‘I'CNzNggO (t) go wz + (71 - N205 - C) g o ¢$ - ng (t) / wttwaoc (ZL‘) dJT
0

By taking § = &Ny we arrive at

L’(t)g—(%— >/ Y2da — ——€N3)/01g0t2d1:

—(2N291—C—f3— G )/ wtdx——/ (0 + ) da

k 1 o !
— (KZNl — g — C— 7) /0 Hidx + <% - p2> /(; thwmtdx

Ny , 1
CNynsGo (t) g o Yy, + (7 — Nac — C) g o, — Nyg (t) / Yoz (T) do
0

for all ¢t > t,.

[N. k
We choose N3 large enough such that 73 — (g +¢) > 0, then we choose ¢ < 35]1\[
3

N.
get 5—2 —eN3 > 0. Next we choose N, large enough so that ps Nogy — “B_ s
€

to
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Consequently, we have for all ¢t > t,

1 1 1 1
/ _ 2 2 2 2
L(t) < c( i @Dxd:)s+/0 gotd:x+/0 wtdx+/0 (0z + ) da:)

1
— (I{Nl —c— —) / 02dx + cqgo (t) g o W, + (% — c) g o, (4.16)
0
1 1
+ (% - pz) /0 Qithgdr — Nig (t) /O Vutozs () do

1
To estimate the term (% — p2> / Ydr, we prove the following lemma.
0

Lemma 4.13. Let (p,1,0) be the strong solution of (1.1), then for any € > 0 and t > ty,
we have
apy ! ! / c
(7 - ,02) erbgdr <e [ pjdr+ = (go( )gota =g ote) + -E(0)g(t). (4.17)
0

Proof. We have, for all t > t,,

i g(s)ds

o 1 apr 1 ¢
(%2 =) [ e = | 2| [P gt 5) i () dso
k 0 / 0 0

I e il B /0%/0 Gt = 5) (tus () — thue (5)) dsda.

/Otg(S)dS

By using Young’s inequality, the fact that

apr
Geom) Liom_ )

/Otg(S)OlS_g1

and Lemma 4.1 (for v,;) we get, for all ¢ > 0,

am _ 1
PQ / th/ (t —8) (e () — ¢xt(s))dsdx§§/0 gofdx+§g0 (t) got)y. (4.18)



CHAPTER 3. GENERAL DECAY IN POROUS THERMOELASTICITY 75

On the other hand, by integrating by parts with respect to t, using Young’s inequality

and the fact that (¢, (t) — 10.)° < 202 (t) + 202, we get

(f?;(—;)ﬁ/olwt/otg(t—s)lbm(s)dsdx
:ﬁ—‘)’;)/w (g<o>wz<t>—g(tw%—/Otg'a—swx(s)ds) s
:(f—g(_—fd)/go (90000 0= 0 O [ (1= ()= ) ) o

Noting that

0

Consequently, the boundedness of g yields

R0 [ @R+ i) < S0 B, w0

Thus,

_(%_pQ) ' ! £ ! 2 c c ,
t N at =5 id - E0) —-g oy, (4
fotg(s)ds/o @/Og(t s) (s)dsd:c<2/0 pidr + g (1) B (0) = —g 0t (419)

A combination of all the above leads to (4.17)). O
Lemma 4.14. Assume that (p,1,0) is the strong solution of (1.1). Then for all t > ty,

we have

1 1 1 1 1
L' (t) < —c (/ ¢§d:p+/ gofda:+/ ¢§d:c+/ (pr+¢)2dl‘+/ eﬁda;)
0 0 0 0 0

+cgo (t) (g o ¥y + g 0 b)) + cg (1) (E (0) + E. (0) + /O wémdx) : (4.20)
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Proof. Young’s inequality and (4.15]) yield

1 1 1
~ [ toie < 5 [ k) do <
0 0

We then insert (4.17)) and (4.21)) in (4.16[ to obtain

1 1 1 1
L(t) < —c (/0 Vide +/O Ordx —i—/o Vide +/0 (¢ +¢)2 dx)

1 1 1
— </<;N1—c—7)/ Qidqus/ ©2dx + cgo (t) g o Y,
0 0

N1 C

N (7_5_C>g/o¢z+ggo@)gowm§g<t>+N1cg<t>.

We choose ¢ small enough and N; large enough so that

1 N
%Nl—c—7>0,71—f—c>0, and L (t) > cE (t),
€

thus, we obtain (4.20)).

The fact that

1 1 1 1 1
—c (/ ¢§dx+/ ¢§dx+/ wfdx—i-/ (%c+1b)2dx+/ 93@)
0 0 0 0 0

< —E(t) +cgor),

allows (4.20]) to be written
L)< ——cE@)+c[(1+go(t)gothe+ go(t)gotyl +cg(t), Yt > to.
Recalling (H1), (H2), one can easily see that

E(t)got, (t) < —g o1y, and £(t)g o by (t) < —g' 0 1y

76

(4.21)

(4.22)



CHAPTER 3. GENERAL DECAY IN POROUS THERMOELASTICITY 77
Consequently, multiplying by £ (t), we obtain
EQE®) < =)L) —cl(1+90(1) g 0tbe+go(t) g 0thu] +cg(t)E(F).  (4.23)

The non-increasingness of £ leads, for v € {1, ¥, }, to

5<t><gov>:/0 5(25)/0 gt —5) (0(t) —v(s)) dsdz

1t
: / / E(t—5)g(t—s)(v(t) —v(s) dsde < —g o,
o Jo
Thus, Integrating (4.23)) over [tg,t], using (4.14)), (4.15)) and the fact that 2E’ (t) < ¢’ o1}y,

we get

Using (H1), we easily see that
L (to) < c[E (to) + Ex (to)] < ¢,
/ttf’(s)ﬁ(s)ds—é(t)ﬁ(t) <0,  go(s) S/Ooog(s)ds:a—l
/tg(s)f(s)czssg(@)/owg<s>ds=s<o><a—z>7

and /g ()9 (s) ds < / ([amar)s@ras<@-n [ geas
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Therefore, using (4.21)), estimate (4.24) becomes

t

/t:g(s)E(S)dSSc—c/t[E'(s)—i—Ei(s)]ds—i—c/ go (s) g (s)ds

to to

§c+E(t0)—|—E*(t0)—E*(t)—l—(oz—l)/%og(s)dsgc.

Thus, recalling that E is positive and non-increasing, (4.25)) gives

E<t>/0t5<s>dss/0t5<s>E<s>ds=/Ot°§<s>E<s>ds+/t:as)E(s)ds

<€ (0) £(0) +¢,

which yields

This completes the proof of Theorem 4.3.

78

(4.25)



Chapter 4

Thermoelasticity type 111

4.1 Introduction
The Fourier’s law of heat conduction,
q+ kVO =0,

gives, along with the law of conservation of energy and in absence of internal heat source,

the heat transport equation

A direct consequence is, that any thermal disturbance at a point, in material conducting
heat, has an instantaneous effect elsewhere in the body. This is physically unrealistic.

To overcome this deficiency many theories were developed, one of which is proposed by

79
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Cattaneo (1948-1958) which generalized Fourier’s law by

th—l—q—i—kV@:O,

where 7 is nonnegative constant. The corresponding heat equation reads thus,

Tett + et = kAS.

This equation is of hyperbolic type and allows heat to propagate as wave with finite speed.
Green and Naghdi [14]- [I7] proposed three thermoelastic theories based on an entropy
equality rather than the usual entropy inequality. In each of these theories the heat flux
is given by a different constitutive assumption. Three theories were obtained and called
respectively, thermoelasticity type I, type II and type III.

In this chapter we are concerned with thermoelasticity of type III. In section 2 we
study a linear damped porous thermoelastic system. However, section 3 is devoted to the

study of Timoshenko type system.
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4.2 Porous thermoelasticity

We consider the following one-dimensional linear damped porous thermoelastic system of

type III

;

prow — k(pe + ) +60, =0, in (0,1) x R,

pothst — by + k(py + ) —0+ahy =0, in (0,1) x Ry

P30 — K02z + Qart + Yt — kbree = 0, in (0,1) X IRy

p(2,0) =¢o(x), ¥(z,0)=1th(x), 0(0)=0), 0<zr<l
o (2,0) =1 (x), e (2,0)=v1(x), 6 (2,0)=0(r), 0<z<1

p(x,t) =9 (z,t)=0(x,t) =0, z=0,1, >0,

(2.1)

\

where ¢ is the displacement, 1 is the volume fraction, # is the temperature difference and
P1, P2, P3, O, K, k and a are constitutive constants. In this section we will investigate how
strong is it the damping given by at; (a > 0) to stabilize system ({2.1)) uniformly. The
type as well as the rate of decay of this system will be determined following the wave’s
propagation speed.

Many papers have appeared where the authors used different dissipative mechanisms
at the microscopic and/or macroscopic levels to stabilize the vibrations. Messaoudi and
Said-Houari [41] considered a type III linear thermoelastic system of Timoshenko type

and proved an exponential decay result. Also, Messaoudi and Said-Houari [42] considered
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a Timoshenko-type system of type III of the form

(

prow — K(oe +1), =0, in (0,1) x IRy

pgwtt—biﬂm—FK(Qﬁx—l—w)—i—/ooog(s)wm(:v,t—s)ds—i—ﬁ@x—O, in (0,1) x Ry
301 — 000 + Vbitw — kOppw = 0, in (0,1) x R

p(2,0)=po(x), ¥(,0)=1vo(z), 0(x,0)=0b(), 0<z<1

pr (2,0) = @1 (x), e (2,0) =91 (2), bp(r,0)=01(x), 0<z<1

o(z,t) =0 (z,t) =0, (x,t)=0, x=0,1, t>0.

(2.2)

and proved that the system (2.2) decays exponentially (respectively polynomially) if g

decays exponentially (respectively polynomially) in the case of equal speed (% = %2)
However, the decay is of polynomial rate otherwise (% #+ %) .

In this section several decay results depending on the wave’s propagation speeds, will
be obtained for system (|2.1)).
In the aim of exhibiting the dissipative nature of (2.1)), we differentiate the first and

the second equations of (2.1)) with respect to ¢ and introduce new dependent variables
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¢ = ¢y and ¥ = ;. So system (2.1)) takes the form

(

pro — k(e + V) + 6, =0, in (0,1) x Ry
P2V — AV + k(¢pp + V) =0 +a¥; =0, in (0,1) x Ry
p30tt — lié’m + gbmt + \Ilt — k@tm = O7 in (07 1) X ]:R,+

(2.3)
o (x,0)=¢o(z), V(z,0)=Vq(z), 6(z,0)=0(zr), 0<z<1,

O (2,0) =1 (), Yy (z,0) ="y (z), 6;(x,0)=0(x), 0<zx<1

¢ (x,t) =V (x,t) =60 (x,t)=0, x=0,1, t>0.

\

The first energy associated to ([2.3)) is given by

1 1
Ev(t) = E(6,¥,0) = 5 /0 (167 + 207 + k (60 +0)° + QW3 + puf)] + i6;) dv.

4.2.1 Uniform decay

The main result of this section is the following
Theorem 2.1. Let ((¢o,d1), (Wo, 1), (6p,01)) € (HE(0,1) x L2(0,1))" be given and
suppose that

n_r (2.4)

holds. Then, there exist two positive constants w and X, independent of the initial data

and t, for which the solution of (2.3)) satisfies

Ey(t) < Xe ™, t>0. (2.5)
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The proof of our result will be established through several lemmas.

Lemma 2.2. The energy Ei (t) satisfies

1 1
B (t) = —a/o W2dy — k/o 02,dx < 0. (2.6)

Proof. Multiplying the equations (2.3) by ¢, ¥, and 6; respectively, integrating over

(0,1), we obtain

2dt/¢t+§ﬁ/¢+k/ %mﬁ/l Oty = 0,

p2 d ! 2 Oéd/ 2 / k d 2 /1 /1 2
— U4+ —— U+ k LU \IJ— 0, U =0
2dt/0 YT Tk e ol | e |

PSd 1 2 2
th +§% 6 ¢tzt+ \I]tgt—F/{? Qt—O

Thus, summing up gives

and

1d

1
5& [pﬁb? + pg\Ij? + p39t2 + k (¢x + \11)2 + a\Ifi + Kﬁi] dz.

1 1
:—a/ \Iffdx—k/ 0, dr. O
0 0

Let w be the solution of
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Lemma 2.3. The function w satisfies

1 1 1
/ wid:v S/ U2dx S/ \I/idx,
0 0 0
1 1 1
/ wfdx < / wfxdx < / \I/tzdx,
0 0 0

1 1 1
—/ U (w, + V) de = —/ \Il2dx—|-/ widr < 0.
0 0 0
Proof. See chapter II, Lemma 3.9. [J

Lemma 2.4. The functional
! a
I(t) = / (pl(btw + pQ‘If\Ijt -+ 5\112) dx
0

satisfies, for all € > 0, the estimate

1 1 1 1 1
I'(t) < —3/ \Ifida:+—/ 02 dx + <p2+&>/ \If§+ap1/ opda.

Proof. A differentiation of (2.10)), using (2.3)), leads to

1 1
I'(t) = — /0 E(pr + V) (w, + V) dx + /0 Oyw,dx

1 1 1 1
— a/ \I/idx +/ Uo,dx —l—/ PLOW; —|—/ pQ\Ilf
0 0 0 0

1 1 1 1
= —/ kU (w, + V) dz + / O, wdr — a/ U2 da + / Vo, dx
0 0 0 0

1 1
+/ Pl¢twt+/ pa U7
0 0

1 1 1 1 1
< —a/ \Ifidx—l—/ Gthdx+/ \Iletdw+/ p1¢twt+/ pQ\Df.
0 0 0 0 0

85

(2.10)

(2.11)
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By using (2.7)-(2.9)), Young’s and Poincaré’s inequalities, (2.11]) is established. [J

Lemma 2.5. Under Condition (2.4]), the functional
1 1 a
J(t) = pg/ U, (¢ + V) dx + pg/ U, ¢pdr + 5/ 2 (2.12)
0 0 0

satisfies

1 2 !
J' () < [Oé¢x\px]izé - g/o (és + \D)Z + (02 * 2%) /0 \IJ?

+ e+ k /1 U2 4 1 + 2 /1 62 (2.13)
for all €1 > 0.

Proof. Differentiating (2.12) and using ({2.3]), we arrive at

1 1
T (0) = [ (@ = ka5 W)+, = W) G+ W)l g [ Wi+ 9 o

1 1 1
0 0

1Jo

1 1 1
= g, T, / k(e + 0)° + / (60 + V)6, — a / Vo

1 02 1
+p2/ U2 — = [ W0,
0 P1 Jo

To obtain (2.13)), it suffuses to use Young’s inequality and the fact that

1 1 1 1
/ ¢2dx§/ ¢§da:g2/ (¢x+\11)2dx+2/ W2dr. O (2.14)
0 0 0 0

To handle the boundary term in (2.13]) we introduce the function m (x) = 2 — 4x.



CHAPTER 4. THERMOELASTICITY TYPE III 87

Lemma 2.6. Let (¢, V,0) be a solution of (2.3) . Then, we have, for all e, > 0,

vd ! aps d

J' (t) + Z% P1MOL Dy + 4_{-51%

ko elk? ! 9 32 a? k v,
<— == - e+ W 10e; + — 1\
< (2 1 851)/0(¢+)+41+43+ €1+4/0 -

1
m\Ijt\Dx
0

(2.15)

1 P 1 /1 2
- 0;..
+(k;+4€1p%+251 +k2) b

Proof. Using (2.3) and Young’s inequality, we easily see that

d

1
4 plm@@ /m (60 + )y — Oh) by + /plmqm

1
CR[62(0) + 62 (1)] + 2k /0 T /0 6, — /0 e + 21 /0 5

< —k[¢2(0)+ 5 (1 +4k/¢+k:/\lf2 / +2p1/¢t (2.16)

Similarly,

1
ong—/ mW, U —a/ m(aV,, — k(¢ + V) + 6, — aV,) U, + / apomV, Wy,
0

1 1 1
:{—m@ﬂ —|—2a2/ \I’i+2a,02/ ‘I’?—/ akm(¢, + W)W
2 =0 0 0 0

1 1
+/ ambV, — a/ amW,,
0 0

1 1
< — o [V2(0) + W2 (1)] +3a2/ \If§+2ap2/ 2
0

0

2 1 1 1 1
+— U2 + g7k /(¢x+\11) / 9§+2a2/ w2,
et Jo 0 0 0
(2.17)
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Combining (2.16)), (2.17) and

2

(0, W, 1720 < ey [62(0) + 62 (1)] + —

y (02 (0) + W2 (1)],

we arrive at

e e d (1 Q
ol < -2 8 [ mod, ~ 28 [ i, ae, [ o2

! 5101
w2 62 + 2.18
te /O + ]{72 t:v / th 251/ ( )
302 o apo a e1k?
— 4 — U2 4 — \If2 .+ U)2
+ <451 + 48?) /0 r (281 + 251) /0 T 4 0 (¢ + )

A substitution of (2.18)) in (2.13)) leads to (2.15]). O

Lemma 2.7. The functional

1 1 1
Kl (t) = —p1 gbt(bdx — ,02/ ‘Ijtqjdﬂf — %/ \IIle'
0 0 0

satisfies, along the solution of (2.3)) , the estimate

1 1 1 1
K (t)< —p | ¢dx — p2/ VZdr + <k + Z) / (¢pr + U)da (2.19)
0 0 0

1 1 1
+la+ = / W2dy + 3/ 07 dx.
2) Jo 0

Proof. A simple differentiation of K7, using (2.3)), gives
1 1
K} (1 /¢?dx—/¢ (6t W~ )~y [ Whdr—a [ wivds
0 0
1
0

1 1 1 1 1 1
=—p | ¢Pdv— p2/ U2dx +/ k(¢y + W)%dr + a/ Vdr + | bpdr — / Vo,dx.
0 0 0 0 0 0
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The desired estimate then follows, by using Young’s and Poincaré’s inequalities, ([2.7)) and

ET). o

Lemma 2.8. Along the solution of (2.3), the functional
! k
Ky (t) = / (pg@tﬁ + 56’3; + (¢ + \11)0) dz.
0
satisfies, for all €9 > 0, the estimate
1 1 1
0 2 0
Proof. A simple differentiation of K5, using ([2.3)), leads to
1 1
0 0
1 1 1
+ k/ 0,0;.dx + / (e + Vy)0dx + / (s + V)0,dx
0 0 0

1 1 1
= pg/ 02dx — /{/ 02dx + / (¢p + V)0, d.
0 0 0

The desired estimate is then obtained, using Young’s and Poincaré’s inequalities. [

To finalize the proof of Theorem 2.1, we define the Lyapunov functional by

F@y:NEmw+NJ@HwKM)+Kﬂ

d 1
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A combination of (2.6), (2.11), (2.15), (2.19) and (2.20) gives

Ny p242p2 ke 1 !
Frt)<—|Nk——— 2 ! —30 — ——/92
®) < { « ( de1pt " k? & dea] Jo 7

N 30?2  o? k 1 v,
_|:T_<4_€1+4_€:1)’+1061+Z)_6(a+§>}/0 v
9 1 1
-, (5—5N1—E /¢?—K/ 0>
k] Jo 0
k 1 k2 ! )

P1 20> apy a’ /1 2
—N—N( —)—1— - - — v,
[ a 1 P2+4€ (1=10)p2 2 ] .

Now we have to choose our constants carefully. First we take
0= —F——~

and then &; so small that

k 1 k? k k2
5—52—5(k+1>—(Z+8)51:§—(Z+8)81>0
2 )
2

Next, we choose N; large enough such that

N« 302 o k 1
R (e I SRR | MY s -
: <451+4€?+ 051+4) (a+2>>0

and ¢ so small that

2
5—€N1—%>0.

Finally, we pick N large enough such that

Ny (p§+2p%+k:+51>

Nk — —
a 4eqp? k2

30 L >0
P3 1,

90

(2.21)
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and

p1 26>  apy a®
N —N( )— 1) py— 20 QP2 O
a=Nilppt D) = (=0)pr = 5 = o = o

Consequently, there exist two positive constants 7 and C' such that

F’(t)g—n(/ o7 + /‘1’2 /%*‘I’ /‘I’Q / /01992”)

<-CE/(t). (2.22)

1 1

where we have used / 07 < / 2. Moreover, we may choose N even large (if needed)
0

so that

F(t) ~ E;(t). (2.23)
A combination of (2.22)) and ([2.23)) yields
F'(t) < —wF(t), t>0, (2.24)

for a positive constant w.

A simple integration of (2.24)) leads to
Ft)<F(0)e™ t>0. (2.25)

Again, a use of (2.23)) and (2.25)) yield (2.5). O

4.2.2 Polynomial decay

In this subsection, we discuss the case of non-equal speed of wave propagation. We have

the following result.
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Theorem 2.9. Let ((¢o,d1),(Wo, W), (6o,01)) € [HE(0,1) N H2(0,1) x HE(0,1)] be

giwen and suppose that

P, P2
B = (2.26)

holds. Then, there exists a positive constant &, independent of t and the initial data, such

that the energy of system (2.3)) satisfies

¢ (B (0) + E5(0))

, t>0,
t

E (t) <

where Ey (t) := E (¢, Yy, 0;) is the second energy of the system ([2.3)).

Remark 2.10. The energy E, (t) satisfies along the strong solution of (2.3]) the estimate

1 1
Ey(t) = —a/ V2 dr — k/ 0,.dx < 0. (2.27)
0 0
To prove Theorem 2.9 we need the following lemmas.

Lemma 2.11. Let (¢, ¥, 0) be a solution of (2.3) . Assume that (2.26|) holds. Then the

functional

1 Lo 1 a 1
0 0 0

satisfies

2a?

B k 1 1
50 < ool -5 [ e wie (e 30) [0

k ! 2 1 P% 12
e ] - 2] 2.29
Saed) [ee (i) [ (228

1
«
+ (2= 2%) [ Wigds
0
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for all £, > 0.
Proof. To obtain (2.29), it suffuses to differentiate (2.28) and use (2.3), Young’s and

Poincaré’s inequalities as in Lemma 2.5. [

Lemma 2.12. Let (¢,V,0) be a solution of (2.3)), then the functional

plb 1 1
JQ (t) =\ P2 — — % \Ijxex + k \leﬁm
k 0 0

satisfies

plb 1 1 1 1 1
Jé(t)+(p2——K)/ @\Ifmg(/ \If?+/ \Pi)—i-c(/ H?ﬁ/ 93,%), (2.30)
0 0 0 0 0

where ¢ is a positive constant.

Proof. By using ([2.3))3 we get

1 1
/ Oz Ve = / Uy (kOze — p3by — Vi + ki)
0 0

1 1 1 1
= —/ ‘Ilfdx - Fu’/ V0, — k’/ VU0 — P3/ U, 04
0 0 0 0

1 d 1 1 d L
/o v “dt/o +’{/o ’* dt/o t

1 1
+ k/ V04, — P3/ U0y,
0 0

which implies

1 d 1 d 1
/0 o t+'€dt/0 * dt/o !

1 1 1 1
= —/ qf?di[f -+ K)/ \Ifzetx + k’/ \Ijxetta: — pg/ \Ijtett.
0 0 0 0
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B (1) + (— ~pa) [ v
p1b ' '
=\ 5= — P2 — \Ijt dx + K \Ij etm + k \I/mﬁtm — pP3 \I/té’tt .
K 0 0 0 0

Use of Young’s and Poincaré’s inequalities yield (2.30)). OJ

Consequently,

To complete the proof of Theorem 2.9, we define the functional

G(t) = NI[Ey (t)+ Ey ()] + NI () + 6K, () + Ky () +

1 d

1
|:J1 (t) + JQ ( ) + E% p1m¢t¢x + ZPQ dt / m‘lft :| .

A combination of (2.6), (2.11), (2.18), (2.19), (2.20), (2.27), (2.29) and (2.30]) gives

N 2 1 9p2 1 1
¢z [vi- Do (B ey g, L[y
0

a de p3 k2 €2
Ny« 302 a2 k 1 !
I L 1 — ) o e
(g (o) [
2e ! !
— {5—@%—%}/ ¢§—n/ 02 (2.31)
0 0

k 1 k? ! )
s (5 [
[ va— PN gy 2 e @ ]
|:N(l N1 (pg + 4€> (1 5) P2 2 1:| A \Ilt
1 1
— [Nk — (] / 02 dr — Na/ U2 da.
0 0

At this point, we choose our constants similarly to the previous section, to arrive at

ol ae oo o)

< —CE;(t

G (t)

IN
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Recalling that E; is nonincreasing, integration of the last inequality leads to

LB, (1) < /0 B (s)ds < %(G(O) G < @
Thus,
g ()< S0 < SEOEEO) y,

This, completes the proof of Theorem 2.9.

4.3 Timoshenko system with thermoelasticity type

111

Messaoudi and Said-Houari [42] considered the following Timoshenko-type system with

thermoelasticity type I11

(

P1Pt — K (‘pw + ¢)Z =0 in (07 OO) X (07 1) )

pathyy — by + K (0 + )+ 50, =0 in (0,00) x (0, 1), (3.1)

L P39tt - 699030 + /Bwttac - kemx = O in (Oa OO) X (07 1) )

b

together with initial and boundary conditions, and showed, under the condition — = —,
P1 P2

that weak solutions decay exponentially. In this section we consider (3.1)), for the case

K b
— # — and prove a polynomial decay result for strong solutions.

Pr P2
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In order to exhibit the dissipative nature of system ({3.1)), we introduce the new vari-

ables ¢ = ¢, and ¥ = 9, So, system (3.1)) takes the form

7

p1ou — K (¢, + V), =0 in (0,00) x (0,1)

P2y — bWsy + K (g + U) + 86, = 0 in (0,00) x (0,1) (3.2)

pgﬂtt — 69331« =+ B\Ijtx — /i@tm =0 n (0, OO) X (O, 1) .
\

We supplement ([3.2)) with the following initial and boundary conditions

(

¢(70) = ¢07 ¢t (70) = (bla \I’(,O) = \Ijoa \Ijt (70) = ‘Ijl

0(.,0) = bp, 6,(.,0) =0, (3.3)

\ ¢m(0at) :¢x(17t) :\P(O,t) :\Ij(lvt) :ea:(ovt) :Qx(17t) =0.

From equations (3.2);, (3.2))35 and (3.3), we easily verify that

d2
dat?

1 d2 1
/ o(z,t)dx =0 and — | O(z,t)dx = 0.
0 di* Jo

So, if we set

Ba,1) = 6. 1) —t/ol 61 (2)dz — /01 bolx)dz

9(1’,75):9(35,75)—t/olel(x)dx—/olé?o(x)dx

then simple substitution shows that (5, \11,9) satisfies (3.2)), the boundary conditions in
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(3.3), and more importantly
1 _ 1 _
/ ¢(z,t)de =0 and / O(x,t)de =0, Vt>0. (3.4)
0 0

In this case, Poincaré’s inequality is applicable for 8 and ¢. In the sequel, we work with
¢ and 6 but for convenience, we write ¢ and 6 instead.

Remark 3.1. Our main objective is to prove stability result. The existence of weak and
strong solutions can be established by using the standard Galerkin method.

To state our decay result, we introduce the first and second-order energy functionals:

1
B (t) = / (167 + P2V} + psb; + K |6 + W[* + b2 + 667) du, (3.5)
0

1
B, (t) = / (P03, + p2T7, + p3b, + K |dur + W] + bU2, + 662,) da. (3.6)
0

Theorem 3.1. Let (¢,¥,0) be the strong solution of (3.2)), (3.3) then there exists a
positive constant k, independent of t and the initial data, such that the energy E satisfies

the estimate
k (E1(0) + E»(0))
t

Ei(t) < . V> 0. (3.7)

The proof of our result will be established through several lemmas.

Lemma 3.2. Let (¢, V,0) be the strong solution of (3.2)), (3.3). Then, we have

1
B (t) = —/ﬁ:/ 02 dx <0 (3.8)
0



CHAPTER 4. THERMOELASTICITY TYPE III 98
and
1
Ey(t) = —/<;/ 07, dx < 0. (3.9)
0

Proof. Multiplying equations (3.2) by ¢;, ¥; and 6,, respectively, integrating over (0, 1)
and summing up we obtain (3.8]). Then, differentiating (3.2)) with respect to ¢ and multi-

plying the resulting equations by ¢4, Uy and 6y, respectively, integrating over (0, 1) and

summing up we obtain (3.9). O

Lemma 3.3. Let (¢, V,0) be the strong solution of (3.2), (3.3). Then the functional

Li(t) = p2 /01 U — py /01 o (/j@(y,t)dy)

satisfies, for all e, > 0,

b 1 1 pQ 1 2 1
L(t)<— [ ©? 2 —L /\112 —/ 07.. 3.10
<3 [wee [ o (L) [oe D [ Gw)

Proof. By taking a derivative of I; and using (3.2)), (3.3]), we conclude

fi(t)——b/oltviwz/;@f—ﬁ/olwm—pl/ol@ (/Oxwy,t)dy).

By using Young’s inequality and

T 2 1 1 1
(/ ‘Iit(y,t)dy) S/ U7 and /\Iﬂg/ w2,
0 0 0 0

estimate (3.10)) is established. [

Lemma 3.4. Let (¢, V,0) be the strong solution of (3.2)), (3.3). Then the functional:

1 x 1
Iy(t) = paps / 7, ( / et<y,t>dy)—5p2 / 6,0
0 0 0
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satisfies, for all €5 > 0,

1 1
L(t) < —%/ \If§+52/ (\Di+¢i)+cgz/ 02, (3.11)
0 0 0

Proof. By taking a derivative of I, and using ., we get

B0 = [ 00 K000 ([0 00 0)

1 T 1 1
+p2/ qjt (/ 66:1:1: - 5\Ijtx - Heta:x) dx — 502/ etx\Ild:E - 502/ ex\ptdx
0 0 0 0

1 1 1 1 v
I(t) = 503/ 0; — P3b/ 0, U, + P3K/ 0:¢ — PSK/ v (/ 0 (y,t) dy>
0 0 0 0 0

1 1 1
- ’€P2/ O Wy — ﬁpz/ ‘Iff - 5P2/ Vo, .
0 0 0

The assertion of the lemma then follows, using Young’s and Poincaré’s inequalities. [

Lemma 3.5. Let (¢, V,0) be the strong solution of (3.2)), (3.3). Then the functional:

1
L= [ w02 e

satisfies

2 1
]’()<——/ (¢ + U)? +p2/ \IJMf—K 92x+(b—[p(l—p2)/0 V. (3.12)

Proof. A differentiation of I3, taking in account ({3.2]), |} gives

/ b 1
0

Consequently, (3.12]) follows by Young’s inequality. [J

Lemma 3.6. Let (¢, V,0) be the strong solution of (3.2), (3.3). Then the functional:

1 1
—Pl/ Or — P2/ v,
0 0
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satisfies

I;<t>s—pl/olas?—m/l\lf%(b%)/olﬁ (3.13)
+K/01(¢x+\11 52/ 0.

Proof. A differentiation of I, taking in account (3.2)), (3.3, gives

I, (t :—,01/ ¢t—p2/ \112+b/ \I/2+K/ (bp + W) +5/ V0,,.

Using Young’s and Poincaré’s inequalities for the last term, (3.13)) follows. [J

Lemma 3.7. Let (¢, V,0) be the strong solution of (3.2),(3.3)). Then the functional:

1 A 1
0 2 Jo 0
satisfies, for all €5 > 0,

1 52 1 1
Ié (t) < —5/ 93 + (Pg + —) / 6’,52 + 52/ \Ifi (3.14)
0 4ey 0 0

Proof. A simple differentiation of I5, taking in account (3.2)),(3.3)) , leads to

1 1 1
Ig(t)ng/ 93—5/ 9§+6/ W0,
0 0 0

Finally, by Young’s inequality, (3.14]) is obtained. [J

Proof of Theorem 3.1. We define the Lyapunov functional £ as follows

L(t) = N (B () + Ba(®)) + Nily + Nols + I (£) + 214 (6) + I (1)

A combination of (3.8)-(3.14)), and use of

1 1 1
/92 / b ¢idw§2/ (¢x+\11)2+2/ (8 (3.15)
0 0 0
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give

, 1 L K ! 2
L(t) < — ylaa Nigy / i 229Ny / (¢ +¥)
0 0
NafBpo P% 3 /1 2
[ 5 Ny (,02—1‘481 1P : b
Nib 1/1 ! !
0 0
! ! ! bp: !
vk [ [ (7—/)2)/ Wy
0 0 0 0

where A is a positive constant independent of N.

At this point, we choose our constants carefully. First, let’s take N7 large enough such

Nib 1/1
that Tl 1 (5 + b) > 0, then pick 1 so small that
1
é_lpl — Njegq > 0.

We then choose N, large enough so that

Nofpo p1 3
—5 N, <P2+4—81 le2>0'

Finally, we select €5 so small that

Nyb 1/1
2 4\2

K
— — 3Ny — — —+b) — ey >0 and Z—262N2>0.
Therefore (3.16|) takes the form

1 1 1
£ < 2B (1)~ Now [ 62, - (V- [ 9§t+(b%—p2) [ o @)

for some constant 1 > 0.
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Now, we handle the last term in the right-hand side of (3.17)), using (3.2)3 as follows:

1 1
/0 Yy = B/ Ot (Kbggt + 0020 — p3bi)

:_%/ ol — M/ 0u5s + ﬁ/ 0,16,
kd 1

- /0 buito + 5 /0 Oriso

p1b
Multiplying by — — pa, we get

) [ (i)
< >/ Yoty = ( ,02>/ 3 x(ba:"i‘ 3 ot P
p_lb . _
+ ( pz) < / 02100 + 5/ OttDa ¢t9tt> .

Therefore, recalling Young’s inequality and , we get, Veg > 0,

p1b d (*/6 K

(_ - 102> / ¢xt¢t < - (_ - pQ) E/g (Eemgbx + Bextgbx) (318)
vos [ (@04 0ot )
0

C (8 —p,)" !
+M/ (0% + 62,).
0

€3

where C' is a positive constant depending on 9, 5, k, p3 only. We then define

- nb N[ (s,
2= £0)+ (% —pa) [ (Ga0+ 5o

to get, from (3.17) and (B.18),

V() < B 0) 42 [ (6404 (6 0)) (3.19)

(Nﬁ—g)/ Qitt—(N/{—/\—g)/ 02,.
53 0 83 0
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b 2
where C' = C' <% — p2> . By using (3.5]), choosing 3 small enough and taking N large
!

enough so that L is positive and NGk — A — gg > 0, (3.19) takes the form
3
L'(t) < —nE4(t).

Simple integration, recalling that F; is non-increasing, leads to

i) < [ Bs)ds <3 (L0) - L) < 2

Consequently,

LO)/n _ k(5 (0) + E:(0))

< , Vt>O0.
t t

Ei(t) <

This completes the proof. [

Remark 3.2. Similar results can be established for boundary conditions of the form

(b(O?t) :¢<17t> :\Px(oat) :‘Ijx<17t) :Qx(o,t) :Qx(l,t).



Prospects

The results we obtained encouraging us to extend our study to a wide class of dissipation

mechanisms.

In classical porous thermoelasticity we will study problem (1.1)) of chapter 3 with the

dissipation / b 9(8)(t — s)dx instead of the dissipation of memory type. We will also,
0

investigate system in the absence of the viscoelstic dissipation (¢ = 0), and try to

obtain some type of uniform decay.

In thermoelasticity of type III, we will investigate problem of chapter 4 when the

dissipation is given by h(1;) for some convex function h and try to obtain some stability

results similar at those obtained by damping term a),.

Finally, we will extend all results to problems of thermoelasticity with second sound.
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Résumé

Dans cette thése on a étudié quelques problemes de thérmoelasticité des milieux poreux et de
Timoshenko de type lIl.

Le premier travail est un probléeme en thérmoelasticité classique. Un systéme de milieux poreux a été
considéré ou le contrble est donné par deux dissipations, thermique dans I'équation d’élasticité et
viscoélastique dans I’équation de poreusité. En utilisant la méthode des multiplicateurs, on a établi un
résultat de stabilité générale pour les deux cas, égalité et non égalité des vitesses de propagation. Les
stabilités exponentielle et polynomiale sont des cas particuliers de cette stabilité générale.

Le second travail est un probléme poreux de type lll. Deux forces de contréles ont été considéré,
thermique et un amortissement linéaire. Une stabilité exponentielle a été établie dans le cas de vitesses
égales quand au cas de vitesses différentes la stabilité est polynomiale.

Le troisiéeme travail est un probleéme de type Timoshenko de type Ill. Le cas de vitesses différentes a été
considéré et une stabilité polynomiale a été établie.

Abstract
In this thesis we consider some one-dimensional porous thermo-elastic and Timoshenko-type problems.

The first work is concerned with a classical porous thermoelastic system in the presence of thermal and
porous dissipations. We used the multiplier techniques and established a general decay rate which
depends on the decay of the relaxation function of the memory term. Both the equal and non-equal
speed of wave propagation were considered.

The second problem is a porous thermo-elastic system of type Ill which has two dissipative mechanisms
being present in the elastic equation by a thermal dissipation and a in the porous equation by a linear
frictional damping. An exponential decay rate was established for the equal-speed of propagation case,
whereas in the case of non-equal speeds, only a polynomial decay rate was obtained.

The third problem is concerned with a Timoshinko-type problem of thermoelasticity of type IIl. A
polynomial stability result was established for the non-equal wave propagation speed case.
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