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IBNR Avec Années d’Accident Dépendantes Pour Solvabilité II

Résumé : L’objectif principal de cette thèse est de présenter les résultats de
nos recherches: the Stochastic Incremental Approach For Modeling The claims
Reserves [2] et the Chain-ladder with Bivariate Development factors, pour cela
nous présentons d’abord les théories mathématiques nécessaires.

Notre résultat principal généralise le modèle de Mack [18] pour la bien con-
nue Méthode de Chain Ladder dans les calculs IBNR, en incluant la dépen-
dance des paiements de sinistres entre les années d’accident et de développe-
ment. De même pour la méthode Chain Ladder, nous définissons les facteurs
de développements bivariées (BDF) α et β pour la dépendance sur les années
d’accident, resp. les années de développement. Le cas α ≡ 0 correspond au
modèle de Mack. Nous montrons comment estimer les BDF (α, β) par un
système d’équations linéaires. L’estimateur est implicitement sans biais. Cela
conduit à des estimations des provisions. Pour intégrer le modèle de Mack,
une transition lisse à partir de notre modèle est établi. Des exemples sont
donnés. Finalement, nous nous adaptons la méthode England-Verrall boot-
straping pour le nouveau modèle sous l’hypothèse des distributions Gamma
indépendantes avec un paramètre de forme. De cette manière, on définit les
résidus multiplicatifs indépendants de la ré-échantillonnage qui donne la base
de la procédure bootstrapping. Un exemple comparatif a [7] est donnée.

Pour le deuxieme resultat l’approche stochastique incrémental nous for-
mulons les hypothèses en modifiant le modèle de Mack [18]. Nous estimons
les facteurs de développement (β) et les provisions en utilisant uniquement
des données incrémentaux. Nous nous concentrons après sur un point de vue
d’année calendaire du triangle de développement, pour clarier plus, nous pro-
posons une nouvelle forme de tabulation, puis nous appliquons le CDR [25]
pour notre modèle. En utilisant la vision incrémentale nous évitons des étapes
de calcul, et nous obtenons des résultats identiques avec des formules plus
simple ce qui apporte beaucoup davantages pour les compagnies d’assurance.

Mots clés : Calcul stochastique des provision pour sinistres , IBNR, Chain
Ladder avec années d’accident dépendantes, Facteurs de développement bivar-
iées, Paiements incrémentaux, Bootstrap, CDR.



IBNR With Dependent Accident Years For Solvency II

Abstract : The main objective of this thesis is to presents the basic results
of our researches which are the Stochastic Incremental Approach For Model-
ing The claims Reserves [2], and the Chain-ladder with Bivariate Development
factors, for that we first present the mathematical theories needed for our dif-
ferent results.

Our main result generalize the model of Th. Mack [18] for the well known
Chain-Ladder method in IBNR calculations, by including dependencies of
the loss payments between accident and development years. Similarly to the
Chain-Ladder method, we define bivariate developments factors (BDF) α and
β for the dependence on the accident, resp. the development years. The case
α ≡ 0 corresponds to Mack’s model. We show how to estimate the BDFs (α, β)
by a linear system of equations. The estimator turns out to be implicitly unbi-
ased. This leads to estimations of the yearly and total provisions. To integrate
Mack’s model, a smooth transition from it to our model is established. Exam-
ples are given. Finally, we adapt the England-Verrall bootstrapping method
to the new model under the assumption of independent Gamma distributions
with a uniform shape parameter. In this way, we define independent multi-
plicative residuals the resampling of which yields the basis of the bootstrapping
procedure. An example comparative to the one in [7] is given.

For the second result the stochastic incremental approach we make the
assumptions by modifying Mack’s model [18]. We show how to estimate the
development factors (β) using only incremental data, this again leads to es-
timations the provisions. We next concentrate on the calendar year view of
the development triangle, to clarify more we propose a new tabulation form,
then we apply the CDR [25] for our model. By using the incremental vision
we avoid steps of calculation and we got identical results with easier formulae
which brings lot of advantages for insurance companies.

Key Words : Stochastic Claims Reserving, IBNR, Chain Ladder with
dependent accident years, Dependent bivariate development factors, Incremen-
tal Payments, Bootstrap, CDR.
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Introduction

1 Background

We begin with necessary background that motivates the study of the problems presented in this
thesis, where we consider claims reserving for a branch of insurance calledNon-Life Insurance

Though loss reserves are by far the largest liability on the balance sheet of an insurance
company, yet by nature these positions are heavily based on estimates. Even for the respon-
sible actuary, it is often very demanding to quantify the inherent uncertainty. This is mainly
a consequence of the complexity of estimating the variability of the reserve estimates. Corre-
lation across several dimensions makes statistical measurement of uncertainty difficult. For a
comprehensive bibliography on loss reserving we refer to [30].

The Chain-Ladder method is unquestionably the most widely used technique in claims re-
serving (see for instance the presentation in [33]). Being at the beginning a purely deterministic
calculation, considerable attention has been given to the relationship between the Chain-Ladder
technique and various stochastic models since a number of years. In particular, the pioneering
work of Th. Mack was the starting point in this research (see [17], [18], [20]). Other works can
be found e.g. in [21], [28], [36] and [37]. Many of these stochastic models have been established
with the aim of producing in the mean exactly the same reserve estimates as the traditional
deterministic Chain-Ladder model. Besides the better insight on the randomness inherent to
the future liabilities which these methods reveal, they help also to get a feeling of the impor-
tance of the assumptions underlying the Chain-Ladder model. With respect to the Solvency II
program in Europe, a transition from traditional reserving methods to stochastic one is more
and more demanded. For more recent papers in this direction, see e.g. [38] and [39].

In this thesis we prefer to describe a bootstrap procedure in analogy to the methods intro-
duced by P. England and R. Verrall (see [6], [7], [8], and [9], for a general presentation see [3]).
It’s essentially due to them that bootstrapping has become very popular in stochastic claims
reserving, because of the simplicity and flexibility of the approach. Other applications of the

1



Introduction

bootstrap technique to claims reserving can be found in [16] and [33].

2 Aims and outlines

The main objective of this thesis is to present the basic results of our researches which are a
various stochastic models based on the determinist chain-ladder method which is probably the
most popular loss reserving technique.

The thesis is set out as follows. First we start with the mathematical framework and notation
we use in the thesis. The two first chapters presents the mathematical theory we needs in our
different results. Chapter 1 describes methods of type Chain-Ladder, we present first the Mack’s
model (see [17], [18], [20]), followed by the Claims Development Result (see [25], [24] and [40]),
after that we present Bootstrap method. The next chapter describes the Generalized Linear
Models theory and the uses of GLM in claim reserving methods. The Chapter 3 presents
our first result, the stochastic incremental approach [2] which produces also the same reserve
estimates as Chain-Ladder model by using only incremental payments, we propose also a new
tabulation form for claims reserves, and we calculate the CDR for our model (for more details
about CDR see [25], [24] and [40]). The main result of our thesis is in Chapter 4, that presents
a mathematical model of loss reserves which starts from ideas similar to those of Mack’s model,
but which includes dependencies of the loss payments between accident and development years.
In so far, it represents a generalization with respect to the works of Mack. Finally a general
conclusion.

3 Mathematical framework and Notations

In this section we introduce Mathematical framework for claims reserving and the notations
used in this thesis. In most cases outstanding loss liabilities are estimated in so-called claims
development triangles which separates claims on two time axis: accident years i ∈ {1, ..., I}
and development years j ∈ {1, ..., J}. We assume that the last development period is given
by J , i.e. Xi,j = 0 for j > J , Moreover for simplicity, we assume that I = J . Of course,
all formulas similarly hold true for I > J(development trapezoids). We regard the matrix of
random variables

X := (Xi,j)1≤i,j≤I (1)

for some I ≥ 2. We assume that the variable Xi,j denotes incremental payments of development
year j for claims occurred in accident year i. In a claims development triangle accident years

2
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are usually on the vertical line whereas development periods are on the horizontal line. Usually
the loss development tables split into two parts the upper triangle where we have observations
X̂i,j ∈ R and the lower triangle where we want to estimate the outstanding payments. On the
diagonals we always see the accounting years.
Hence the claims data have the following structure (I = J):

accident development years j
year i 1 2 3 · · · j · · · J-1 J
1
2 realizations of r.v. Ĉi,j, X̂i,j

3 (observations)
...
i
... predicted Ci,j, Xi,j

I-1
I

Data can be shown in cumulative form or in non-cumulative (incremental) form.
We regard a matrix of random variables

C := (Ci,j)1≤i,j≤I (2)

for some I ≥ 2. The variable Ci,j is interpreted as the cumulated claims amount of accident
year i till the development year j, the cumulative data are given by

Ci,j =
j∑
l=1
Xi,l. (3)

Within the standard theory of claim reserving, also called IBNR-theory, it is assumed that
pairs (i, j) of accident and development years with i+ j ≤ I + 1 describe past years for which
the run-off triangle of real observations Ĉi,j ∈ R are available.

Ĉ :=
(
Ĉi,j

)
i+j≤I+1

(4)

Pairs (i, j) with i+ j > I + 1 refer to future years with unknown results for the corresponding
claim amounts.

3



Chapter 1

Methods of type Chain-Ladder

The Chain-Ladder Method is probably the most popular loss reserving technique. Despite its
popularity, there are weaknesses inherent to this method, the primary weakness is that it is
a deterministic algorithm, which implies that nothing is known about the variability of the
actual outcome. To amend this shortcoming, stochastic models have been developed which
provide the same estimates as in the Chain-Ladder method. These models make it possible to
find the variability of the estimate. A stochastic model can also be used to assess whether the
Chain-Ladder method is suitable for a given data set.

In this chapter we give different derivations for the Chain-Ladder method that we need in
the next chapters. We first introduce the Mack’s model presented in [18], [19] and [20], then
the difference between two successive predictions for the total ultimate claim: it’s about the
Claims Development Result (see Merz and Wüthrich [24], [25] and [40]). Finally we introduce
the Bootstrap Method.

1 Around Mack’s model

After having briefly presented Mack’s model, we will describe secondly the difference between
two successive predictions of the total ultimate claim: The Claims Development Result.

1.1 The distribution-free chain-ladder model

The distribution-free chain-ladder model (Mack’s model) is the stochastic version of the deter-
ministic Chain-Ladder method. In fact, the estimated amount of reserves is identical. It is a
non-parametric conditional model applies to run-off triangle of real observations Ĉi,j. However,

4



1.1 Around Mack’s model

it has the advantage that we are also able to give an estimator for the conditional mean square
error of prediction for Chain-Ladder estimator. It’s based on three assumptions:

Model Assumptions 1.1.

• Ci,j and Ck,j are stochastically independent for i 6= k.

• There exist constants fj and σ2
j , such that for 1 ≤ i ≤ I, 1 ≤ j ≤ I − 1 we have

E
[
Ci,j+1

∣∣∣Ci,1, . . . , Ci,j] = fj · Ci,j (1.1)

and
V ar

[
Ci,j+1

∣∣∣Ci,1, . . . , Ci,j] = σ2
j · Ci,j (1.2)

The coefficients (f, σ2) := (fj, σ2
j )j=1,...,I−1 are called respectively Chain-Ladder development

factors and variance parameters.

Mack has proved in his article [18] the following results:

Theorem 1.2.
(i) We have:

E
[
Ci,I

∣∣∣FI

]
= Ci,I−i+1 ·

I−1∏
j=I−i+1

fj (1.3)

with
FI := σ{Ci,j, i+ j ≤ I + 1}.

(ii) The Chain-Ladder development factors estimators

f̃j =

I−j∑
i=1
Ci,j+1

I−j∑
i=1
Ci,j

. (1.4)

the Chain-Ladder development factors estimators f̃j are an unbiased estimators of fj, and they
are uncorrelated.

Theorem 1.3.
(i) The estimator C̃i,I = Ci,I−i+1 · f̃I−i+1 · · · f̃I−1 is an unbiased estimator of E

[
Ci,I

∣∣∣FI

]
.

(ii) The estimator R̃i of the yearly claim reserve E
[
Ri

∣∣∣FI

]
with Ri = Ci,I −Ci,I−i+1 defined by

R̃i = C̃i,I − Ci,I−i+1 is an unbiased estimator.

5



Chapter 1. Methods of type Chain-Ladder

Theorem 1.4. An estimator of σ2
j for j = 1, · · · , I − 2 is given by :

σ̃2
j = 1

I − j − 1

I−j∑
i=1
Ci,j ·

(
Ci,j+1

Ci,j
− f̃j

)2

, (1.5)

σ̃2
j is an unbiased estimator of σ2

j with, moreover,

σ̃2
I−1 = min

(
σ̃4
I−2
σ̃2
I−3

,min(σ̃2
I−3, σ̃

2
I−2)

)
. (1.6)

The uncertainty in the estimation of Ci,j par C̃i,j is traditionally measured by the mean
square deviation (Conditionally to FI):

MSEP (C̃i,I) = E
[
(Ci,I − C̃i,I)2

∣∣∣FI

]
= V ar(Ci,I |FI)︸ ︷︷ ︸

Process variance

+
(
E[Ci,I |FI ]− C̃i,I

)2

︸ ︷︷ ︸
Estimation error

. (1.7)

This writing decomposes the MSEP into two terms, the stochastic error (process variance)
which measures the internal variability of the model and the estimation error, related to the
estimation real Chain-Ladder development factors fj. The process variance comes from the
stochastic character of the process Ci,I and can be explicitly calculated. The estimation error
comes from the fact that we estimated the real Chain-Ladder coefficients fj with f̃j. It is from
this latest error which in fact poses the major difficulties. The MSEP can be estimated using
the following formula:

Theorem 1.5.
(i) Under Mack’s assumptions (1.1) the mean squared error MSEP(R̃i) can be estimated by

˜MSEP (R̃i) = C̃2
i,I

I−1∑
j=I−i+1

σ̃2
j

f̃ 2
j

 1
C̃i,j

+ 1
I−j∑
k=1

Ck,j

 . (1.8)

This expression is the sum of the two principal terms, which the first corresponds to the process
variance and the second to the estimation error.

6



1.1 Around Mack’s model

(ii) An estimator of the aggregate MSEP of the total reserves is given by :

˜MSEP (R̃) =
I∑
i=2

MSEP (R̃i) + 2C̃i,I

 I∑
k=i+1

C̃k,I

 I−1∑
j=I−i+1

σ̃2
j

f̃ 2
j

I−j∑
l=1
C̃l,j

 . (1.9)

1.2 Claims Development Result (CDR)

We follow the approach developed by M. Merz and M.Wüthrich in [24], [25] and [40]. We assume
that the claims liability process satisfies the distribution-free chain-ladder model assumptions.
For claims reserving we predict the total ultimate claim at time I and after updating the
information available at time I + 1. The difference between these two successive best estimate
predictions for the ultimate claim is so-called claims development result (CDR) for accounting
year (I, I+1]. The realization of this claims development result has a direct impact on the profit
& loss (P&L) statement and on the financial strength of the insurance company. Therefore, it
also needs to be studied for solvency purposes.
The outstanding loss liabilities for accident year i ∈ {1, . . . , I} at time t = I are given by

RI
i = Ci,I − Ci,I−i+1, (1.10)

and at time t = I + 1 they are given by

RI+1
i = Ci,I − Ci,I−i+2, (1.11)

Let
FI := σ{Ci,j, i+ j ≤ I + 1} (1.12)

denote the data available at time t = I and

FI+1 := σ{Ci,j, i+ j ≤ I + 2} = FI ∪ {Ĉi,I−i+2} (1.13)

denote the claims data available one period later, at time t = I + 1. That is, If we go one step
ahead in time, we obtain new observations {Ĉi,I−i+2} on the new diagonal. More formally, this
means that we get an enlargement of the σ−algebra generated by the observations FI to the
σ−algebra generated by the observations FI+1, .i.e. σ(FI)→ σ(FI+1).

Model Assumptions 1.6.

• Ci,j and Ck,j are stochastically independent for i 6= k.

7



Chapter 1. Methods of type Chain-Ladder

Figure 1.1 – Loss development triangle at time t = I and t = I + 1

• There exist constants fj > 0 and σ2
j > 0, such that for 1 ≤ i ≤ I, 1 ≤ j ≤ I − 1 we have

E
[
Ci,j+1

∣∣∣Ci,j] = fj · Ci,j, (1.14)

and
V ar

[
Ci,j+1

∣∣∣Ci,j] = σ2
j · Ci,j. (1.15)

Remark 1.7.

• We require stronger assumption than the ones used in the original work of Mack [19] and
[18], namely the Markov process assumption was replaced by an assumption only on the
first two moments of Ci,j+1 depend only of Ci,j and not of Ci,l for l < j + 1. (see also
Wüthrich-Merz [39]).

• The Assumptions (1.6) satisfy the model assumptions of the Mack’s chain ladder model.

and that we have:

E
[
Ci,I

∣∣∣FI

]
= Ci,I−i+1 ·

I−1∏
j=I−i+1

fj and E
[
Ci,I

∣∣∣FI+1
]

= Ci,I−i+2 ·
I−1∏

j=I−i+2
fj (1.16)

As usual in the distribution-free Chain-Ladder model the Chain-Ladder development factors
fj are estimated as follows:

f̃ Ij =

I−j∑
i=1
Ci,j+1

I−j∑
i=1
Ci,j

and f̃ I+1
j =

I−j+1∑
i=1

Ci,j+1

I−j+1∑
i=1

Ci,j

(1.17)

Mack [18] has proved that these are unbiased estimators for fj, and moreover that f̃mj and f̃ml
(m = I or I + 1) are uncorrelated random variables for j 6= l (see Theorem 2 in [18]).
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1.1 Around Mack’s model

This immediately implies that, given Ci,I−i+1,

C̃I
i,I = Ci,I−i+1 · f̃ II−i+1 · · · f̃ I

I−1 (1.18)

is an unbiased estimator of E
[
Ci,I

∣∣∣FI

]
with j ≥ I − i+ 1, and given Ci,I−i+2,

C̃I+1
i,I = Ci,I−i+2 · f̃ I+1

I−i+2 · · · f̃ I+1
I−1 (1.19)

is an unbiased estimator of E
[
Ci,I

∣∣∣FI+1
]
with j ≥ I − i+ 2.

The estimator R̃i of the yearly claim reserve E
[
Ri

∣∣∣FI

]
with Ri = Ci,I − Ci,I−i+1 defined by

R̃i = C̃i,I − Ci,I−i+1 is an unbiased estimator.
We denote equally that, given Ci,I−i+1,

R̃FI
i = C̃I

i,I − Ci,I−i+1 (2 ≤ i ≤ I) (1.20)

is an unbiased estimator of E
[
RI
i

∣∣∣FI

]
, and given Ci,I−i+2,

R̃
FI+1
i = C̃I+1

i,I − Ci,I−i+2 (3 ≤ i ≤ I) (1.21)

is an unbiased estimator of E
[
RI+1
i

∣∣∣FI+1
]
.

Definition 1.8 (True CDR for a single accident year). The true CDR for accident year
i ∈ {1, ..., I} in accounting year (I, I + 1] is given by

CDRi(I + 1) = E
[
RI
i

∣∣∣FI

]
−
(
Xi,I−i+2 + E

[
RI+1
i

∣∣∣FI+1
])

(1.22)

= E
[
Ci,I

∣∣∣FI

]
− E

[
Ci,I

∣∣∣FI+1
]
.

Definition 1.9 (Observable CDR, estimator for true CDR). The observable CDR for acci-
dent year i ∈ {1, ..., I} in accounting year (I, I + 1] is given by

C̃DRi(I + 1) = R̃FI
i −

(
Xi,I−i+2 + R̃

FI+1
i

)
= C̃I

i,I − C̃I+1
i,I . (1.23)

True CDR (CDRi(I + 1)) is estimated by the CDR observable
(
C̃DRi(I + 1)

)
(see [40]).

9



Chapter 1. Methods of type Chain-Ladder

2 Bootstrap method

Obtaining only the first two moments is a disadvantage of mack’s model. The bootstrap
procedure adapted for provisioning allows to have more information, because it produces the
complete distribution of the claims reserves, and thus the moments of any order.

2.1 Methodology

With the framework of generalized linear models, we focused on the model described by Ren-
shaw and Verrall (1998), who proposed modelling the incremental claims using an over-dispersed
Poisson distribution. If the incremental claims for origin year i in development year j are de-
noted Xij , then

E[Xij] = mij and V ar[Xij] = φE[Xij] = φmij, (1.24)

log(mij) = ηij, (1.25)

ηij = c+ αi + βj, α1 = β1 = 0. (1.26)

equations (1.24, 1.26) define a generalised linear model in which the response is modelled with
a logarithmic link function and the variance is proportional to the mean (hence over-dispersed
Poisson). The parameter φ is an unknown scale parameter estimated as part of the fitting
procedure. With certain positivity constraints, predicted values and reserve estimates from
this model are exactly the same as those from the chain ladder model.
Therefore, Chain Ladder method is applied to each stage of the bootstrap procedure with
back and forth cumulative increments. More specifically, the bootstrap method applied to
provisioning is performed by completing the following steps:

• Obtain the standard chain ladder development factors from cumulative data.

• Obtain cumulative fitted values for the past triangle by backwards recursion, as described in
Appendix A of England and Verrall (1999).

• Obtain incremental fitted values for the past triangle by differencing.

• Calculate the unscaled Pearson residuals for the past triangle using:

r
(p)
ij = Xij − X̃ij√

X̃ij

. (1.27)

10



1.2 Bootstrap method

It is unscaled in the sense that it does not include the scale parameter φ which is not
needed when performing the bootstrap calculations, but is needed when considering the
process error.

• Adjust the Pearson residuals using:

r
adj(p)
ij =

√
n

n− p
r

(p)
ij .

To enable the adjustment to follow through to the predictive distribution automatically,
it is suggested that the residuals are adjusted prior to implementing the procedure. That
is, replace r(p)

ij by radj(p)
ij , for more details see England (2002).

• Calculate the Pearson scale parameter, φ, using:

φ(p) =

∑
i+j≤I+1

(r(p)
ij )2

n− p
,

where n is the number of data points in the sample, p the number of parameters estimated
and the summation is over the number (n) of residuals.

• Begin iterative loop, to be repeated N times (N = 1000, say):

◦ Resample the adjusted residuals with replacement, creating a new past triangle of
residuals.

◦ For each cell in the past triangle, solve the equation (1.27) for X̂∗ij, giving a set of
pseudo-incremental data for the past triangle.

◦ Create the associated set of pseudo-cumulative data.

◦ Fit the standard chain ladder model to the pseudo-cumulative data.

◦ Project to form a future triangle of cumulative payments.

◦ Obtain the corresponding future triangle of incremental payments in each cell (i, j)
by differencing, to be used as the mean (m̃∗ij) when simulating from the process
distribution.

◦ For each cell (i, j) in the future triangle, simulate a payment from the process dis-
tribution with mean m̃∗ij (obtained at the previous step), and variance φm̃∗ij, using
equation (1.24) and the value of φ calculated previously.

11



Chapter 1. Methods of type Chain-Ladder

◦ Sum the simulated payments in the future triangle by origin year and overall to give
the origin year and total reserve estimates, respectively.

◦ Store the results, and return to start of iterative loop.

The set of stored results forms the predictive distribution. The mean of the stored results
should be compared to the standard chain ladder reserve estimates to check for bias. The
standard deviation of the stored results gives an estimate of the prediction error.
It can be seen that essentially the bootstrap procedure provides a distribution of "means" in the
future triangle, and the process error is replicated by sampling from the underlying distribution
conditional on those means. The result is a simulated predictive distribution of future payments
which when summed appropriately provides a predictive distribution of reserve estimates, from
which summary statistics can be obtained.

12



Chapter 2

Generalized Linear Models

Generalized Linear Models have been introduced by J. Nelder and R.Wedderburn in 1972.
Many papers set out in details the underlying statistical theory. One of the best reference is
Mc Cullag and Nelder, 1989 [23]. Generalized linear modeling is a methodology for modeling
relationships between variables. It generalizes the classical normal linear model, by relaxing
some of its restrictive assumptions, and provides methods for the analysis of non-normal data
(de Jong, Heller, 2008). The exponential family of distributions is one of the key constructs in
generalized linear models (GLM) which are important in the analysis of insurance data. With
insurance data, the assumptions of the normal model are frequently not applicable.

1 The Structure of Generalized Linear Models

A generalized linear model (or GLM) consists of three components:

(i) A random component, We consider independent random variable (response) yi(i =
1, ..., n) with probability distributions belonging to the exponential family such as the
Gaussian (normal), binomial, Poisson, gamma, or inverse-Gaussian families of distribu-
tions. The density1 function of yi(i = 1, ..., n) is defined by

f(yi; θi, φ) = exp

{
yiθi − b(θi)
ai(φ) + c(yi, φ)

}
. (2.1)

where θi is the canonical parameter, φ > 0 is a dispersion parameter (eventually known)
independent of i and j, and b(θi) and c(yi, φ) are known functions. In all models considered

1True probability density function in the continuous case, simple probability in the discrete case.
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Chapter 2. Generalized Linear Models

in these notes the function ai(φ) has the form

ai(φ) = φ

wi
,

where wi is a known prior weight, Usually 1.
It can be shown that if Yi has a distribution in the exponential family then it has mean
and variance

E(Yi) = µi = b′(θi) (2.2)

var(Yi) = σ2
i = b′′(θi)ai(φ), (2.3)

where b′(θi) and b′′(θi) are the first and second derivatives of b(θi). When ai(φ) = φ/wi

the variance has the simpler form

var(Yi) = σ2
i = b′′(θi)φ/wi.

(ii) Systematic Component refers to the explanatory variables (x1, . . . , xp) as a combina-
tion of linear predictors,

ηi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip

The deterministic component of the model can also be defined as follow:

η = Xβ

where β is a vector of unknown parameters of size k, and X is the design matrix of
explanatory variables of size n× p.

(iii) Link function g(.), provides the relationship between the mean of the distribution func-
tion µi = E(Yi) and the linear predictor, in other words it links the random and deter-
ministic parts of the model:

g(µi) = ηi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip

• For a GLM where the response follows an exponential distribution we have

g(µi) = g(b′(θi)) = β0 + β1xi1 + β2xi2 + · · ·+ βpxip

14



2.2 Maximum Likelihood Estimation

The canonical link is defined as

g = (b′)−1

g(µi) = θi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik

2 Maximum Likelihood Estimation

We are interested here in the estimation of the vector of parameters β, of dimension k, co-
efficients of the linear combination of covariables (or explanatory variables) to explain the Y
vector. We describe, for this, briefly the classical procedure ML (Maximum Likelihood) allow-
ing to achieve the maximum likelihood estimator.
With the assumption of independence of the components of Y , the likelihood of the canonical
parameter vector θ is written:

L(θ; y) =
n∏
i=1

f(yi; θi, φ) =
n∏
i=1

exp

[
yiθi − b(θi)

φ/pi
+ c(yi, φ)

]

Rather than maximising this product which can be quite tedious, we often use the fact that
the logarithm is an increasing function so it will be equivalent to maximise the log-likelihood:

`(θ; y) =
n∑
i=1

log [f(yi; θi, φ)] =
n∑
i=1

yiθi − b(θi)
φ/pi

+ c(yi, φ)

To obtain the equations of maximum likelihood estimation β, we Differentiating the log-
likelihood ` of the vector parameters β with respect to its various components.

∂`i
∂βj

= ∂`i
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

= yi − µi
ai(φ)

ai(φ)
var(Yi)

1
g′(µi)

xij

The maximum likelihood estimates are obtained numerically by solving the following equations:

∂L

∂βj
=

n∑
i=1

(yi − µi)xij
var(Yi)g′(µi)

= 0 j = 1, . . . , n,

using iterative algorithms such as the Newton-Raphson or Fisher scoring methods (for details
see McCullagh and Nelder, 1989).
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Chapter 2. Generalized Linear Models

3 Generalised Linear Models and claim reserving meth-
ods

The use of GLM in actuarial science is well developed and broadly accepted. Not only does the
framework of GLM allow for flexibility in parameter and model selection, in some cases, such
as with the CL method, GLM recovers traditional methods for claims reserves estimation.
Following Renshaw and Verrall (1994) we can formulate most of the stochastic models for
claim reserving by means of a particular family of generalised linear models (see McCullagh
and Nelder (1989)). The structure of those GLM will be given by

(i) Yij ∼ f(y;µij, φ) with independent Yij, µij = E(Yij) and where f(.), the density(probability)
function of Yij belongs to the exponential family. φ is a scale parameter.

(ii) ηij = g(µij)

(iii) ηij = c+ αi + βj with α1 = β1 = 0 to avoid over-parametrization.

It is common in claim reserving to consider three possible distributions for the variable Cij:
Lognormal, Gamma or Poisson. For models based on Gamma or Poisson distributions, the
relations (i)− (iii) define a GLM with Yij = Cij denoting the incremental claim amounts. The
link function is ηij = ln(µij).

3.1 The Poisson model

When finding a stochastic model that reproduces chain-ladder estimates, some assumptions
must be made about the insurance claims. It is possible either to specify the distribution of
the insurance claims, or merely state the two first moments (England, Verrall, 2002).

There is a wide range of stochastic reserving models and they can be divided as chain ladder
"type" and as extensions to the chain ladder. The chain-ladder "type" models may reproduce
the chain ladder results exactly or can have a similar structure to chain-ladder without giving
the exactly the same results. We consider the Poisson model which reproduces reserve estimates
given by the chain-ladder technique.

Remark 2.1 (England, Verrall, 2002). Renshaw & Verrall (1998) were not the first to notice
the link between the chain-ladder technique and the Poisson distribution, but were the first to
implement the model using standard methodology in statistical modelling.
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2.3 Generalised Linear Models and claim reserving methods

Already in 1975 a stochastic model corresponding to Poisson model, which leads to the
chain-ladder technique, was discovered. This model works on the incremental amounts

Cij = Dij, if j = 1,

Cij = Dij −Dij−1, if j > 1.

The model makes the following assumptions:

(P1) E(Cij) = xiyj with unknown parameters xi and yi.

(P2) Each incremental amount Cij has a Poisson distribution.

(P3) All incremental amounts Cij are independent.

Here xi is the expected ultimate claims amount (up to the latest development year so far
observed) and yj is the proportion of ultimate claims to emerge in each development year with
restriction ∑n

k=1 yk = 1. The restriction immediately follows from the fact that yj is interpreted
as the proportion of claims reported in development year j. Obviously, the aggregate proportion
over all periods has to be 1.
We estimate the unknown parameters xi and yj from the triangle of known data (notation 4
is used for that) with the maximum likelihood method. The estimation procedure and results
are given with the following lemma.

Lemma 2.2. Assume that all Cij are independent with a Poisson distribution and E(Cij) = xiyj

holds. Then the maximum likelihood estimators for xi and yj are given by:

xi =
∑
j∈4i

Cij∑
j∈4i

yj

yi =
∑
i∈4j

Cij∑
i∈4j

xi
.

Proof. We derive the maximum likelihood estimates for the unknown parameters xi and yj

with the likelihood function

L =
∏
i,j∈4

(xiyj)Cij

Cij!
exp(−xiyj).

Therefore the log-likelihood function is

` = ln(L) = −
∑
i,j∈4

xiyj +
∑
i,j∈4

Cijln(xiyj)−
∑
i,j∈4

ln(Cij!),
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Chapter 2. Generalized Linear Models

where the summation is for all i, j where Cij is known. The maximum likelihood estimator are
those values xi, yj which maximize L or equivalently ln(L). They are given by the equations

0 = ∂`

∂xi
= −

∑
j∈4i

yj +
∑
j∈4i

Cij
1
xi

0 = ∂`

∂yj
= −

∑
i∈4j

xi +
∑
i∈4j

Cij
1
yj
,

thus the likelihood estimator for xi and yj are given, respectively, by

xi =
∑
j∈4i

Cij∑
j∈4i

yj

yi =
∑
i∈4j

Cij∑
i∈4j

xi
.

The lemma is proved.

Thus, the proportion factors yj express the ratio of the sum of observed incremental values
for certain development year j with respect to certain ultimate claims, i.e. yi denotes the
proportion of claims reported in development year j. The parameters xi refer to the ratio of
the sum of observed incremental values for certain origin year i with respect to corresponding
proportion factors, i.e. if the incremental claim amounts and respective proportions factors are
known, it is simple to derive the corresponding ultimate claim xi for origin year i. One can
note the principal similarities with chain-ladder technique, where development factors are also
outcomes of certain ratios.
The mean given as E(Cij) = xiyj in assumption (P1) has a multiplicative structure, i.e. it
is the product of the row effect and the column effect. Both the row and the column effect
have specific interpretations and it is sometimes useful to preserve the model in this form.
Nevertheless, for estimation purposes, sometimes it is better to reparameterise the model so
that the mean has a linear form. The Poisson model can be cast into the form of a GLM and
to linearise the multiplicative model we need to choose the logarithm as a link function so that

E(Cij) = exp(lnxi + lnyj),

or, equivalently,
ln(E(Cij)) = αi + βj, (2.4)

where αi = ln(xi) and βj = ln(yj) and structure of linear predictor (2.4) is still a chain-ladder
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2.3 Generalised Linear Models and claim reserving methods

type, because parameters for each row i and each column j are given. Hence, the structure
(2.4) is defined as a generalised linear model, in which the incremental values Cij are modelled
as Poisson random variables with a logarithmic link function and linear predictor

ηi,j = c+ αi + βj. (2.5)

In any case, a constraint
α1 = β1 = 0 (2.6)

is needed to estimate the remaining model parameters c, αi, βj and to avoid overparametriza-
tion. Considering a single incremental payment Cij with origin year i and claim payments in
development year j (yet to be observed), we obtain the estimates of future payments from the
parameter estimates by inserting them into equation (2.4) and exponentiating, resulting as

C̃ij = x̃iỹj = exp(η̃i,j). (2.7)

Given the equation (2.7), the reserve estimates for origin year and overall estimates can be
easily derived by summation:

R̃i = x̃iỹn+2−i + . . .+ x̃iỹn (2.8)

From the assumptions (P1)− (P3), the maximum likelihood estimator (2.8) of the claims
reserve for origin year i, Ri = Ci,I+2−i + . . . + CiI = DiI −Di,I+1−i, gives the same prediction
D̃iI = Di,I+1−i+R̃i as the chain-ladder method. According to the assumption (P3), Di,I+1−i+R̃i

is an estimator of the conditional expectation E(DiI |Di1, . . . , Di,I+1−i) and assumption (P2)
constrains all incremental amounts Cij to be non-negative integers.
In the Poisson model for loss reserving it is assumed that the incremental claims are independent
and Poisson distributed with expectations being the product of two factors, depending on
the occurrence year and the development year, respectively. It is well-known that maximum-
likelihood estimation in the Poisson model yields the chain-ladder estimators of the expected
ultimate aggregate claims (Schmidt, 2002). Moreover, Renshaw & Verrall (1998) pointed out
that this is also true for overdispersed Poisson models.
We recall, that the only distributional assumptions used in GLMs are the functional relationship
between variance and mean and the fact, that distribution belongs to the exponential family.
In case of Poisson, the mentioned relationship is V ar(Cij) = E(Cij) and it can be generalized
to V ar(Cij) = φE(Cij) without any change in form and solution of the likelihood equations

19



Chapter 2. Generalized Linear Models

(Mack, Venter, 1999). This kind of generalisation allows for more dispersion in the data. For the
solution of the likelihood equations it is not needed incremental values Cij to be non-negative
or integers and this leads to an over-dispersed Poisson model and to quasi-likelihood equations,
since the range of the underlying distribution is not important anymore.

3.2 The over-dispersed Poisson model

The model we consider in this section is based on the Poisson distribution. The specification
of the Poisson modelling distribution does not mean that the model can only be applied to
data which are positive integers; it is easy to write down a quasi-likelihood which has all the
characteristics of a Poisson likelihood, without actually referring directly to the probability
function for the Poisson random variable (Renshaw, Verrall, 1998). This means that the model
can be applied to non-integer data, positive and negative.
The over-dispersed Poisson (ODP) model is different from the distribution-free chain-ladder
model of Mack (1993), but both methods reproduce the historical chain-ladder estimator for
the claims reserve and these models are the only ones known that lead to the same estimators
for Din as the chain-ladder algorithm. However, only the Mack’s distribution-free model is
close enough to the chain-ladder algorithm in enough aspects so it qualifies to be called the
stochastic model underlying the chain-ladder algorithm, because the Poisson model deviates
from the historical chain-ladder algorithm in several aspects that the Mack’s distribution-free
model does not (Mack, Venter, 1999).
The ODP distribution differs from the Poisson distribution in that the variance is not equal
to the mean, but is proportional to the mean. It is shown (in Schmidt, 2002) that every ODP
model can be transformed into the Poisson model by dividing all incremental claims by the
parameter. The over-dispersed Poisson model assumes that the incremental claims Cij are
distributed as independent over-dispersed Poisson random variables and the general form for
the overdispersed Poisson chain-ladder model can be given as follows:

E(Cij) = xiyj,

V ar(Cij) = φxiyj,

where
I∑

k=1
yk = 1.
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2.3 Generalised Linear Models and claim reserving methods

Over-dispersion is introduced through the parameter φ, which is unknown and estimated from
the data.

Remark 2.3. The parameter yj appears in variance, so the restriction that yj must be positive
is automatically imposed. This leads to the limitation of the model that the sum of incremental
claims in column j must be positive. Some negative incremental values are allowed, as long as
any column sum is not negative.

The over-dispersed Poisson model makes the following assumptions:

(ODP1) E(Cij) = xiyj with unknown parameters xi and yi.

(ODP2) The distribution of Cij belongs to the exponential family with V ar(Cij) = φxiyj ,
where φ is an unknown parameter.

(ODP3) All Cij are independent.

The resulting quasi-likelihood equations are

I+1−i∑
j=1

xiyj =
I+1−i∑
j=1

Cij, i = 1, . . . , I,

I+1−j∑
i=1

xiyj =
I+1−j∑
i=1

Cij, j = 1, . . . , I,

Mack (1991) has shown that these equations have the unique solution (if all f̃j are well defined
and are not equal to zero, but without any restrictions on the row sums or column sums over
Cij):

x̃iỹj = Di,I+1−if̃I+2−i · . . . · f̃j−1(f̃j−1 − 1) for j > I + 1− i,

x̃iỹj = Di,I+1−i((f̃j+1 · . . . · f̃I+1−i)−1(f̃j · . . . · f̃I+1−i)−1) for j ≤ I + 1− i,

with f̃j from the chain-ladder algorithm.
Because (f̃j−1) + f̃j · (f̃j+1−1) = f̃j · f̃j+1−1, we obtain an estimation for the reserve of origin
year i

R̃i = x̃iỹI+2−i + . . .+ x̃iỹj = Di,I+1−i(ỹI+2−i · . . . · ỹI − 1).

This shows us that the solution of the quasi-likelihood equations of the overdispersed Pois-
son model gives the same estimator for ultimate claim DiI as the chain-ladder algorithm (the
distribution-free model of Mack).
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3.3 Gamma model

Mack (1991) proposed further model with a multiplicative parametric structure for the mean
incremental claims amounts which are modelled as Gamma response variables. As Renshaw &
Verrall (1998) note, the same model can be fitted using the GLM described in over-dispersed
Poisson model, but in which the incremental claim amounts are modelled as independent
Gamma response variables, with a logarithmic link function and the same linear predictor,
and just replacing V ar(Cij) = φµij by V ar(Cij) = φµ2

ij. As it was with log-normal model, the
predicted values provided by Gamma model are usually close to chain-ladder estimates, but it
cannot be guaranteed.

Remark 2.4 (England, Verrall, 1998). The Gamma model implemented as a generalised linear
model gives exactly the same reserve estimates as the Gamma model implemented by Mack
(1991), which is comforting rather than surprising.

To obtain predictions and prediction errors for the Gamma model simply requires a small
change in the ODP model. The Gamma model is given with the mean

E(Cij) = µij,

and with variance
V ar(Cij) = φ(E(Cij))2 = φµ2

ij,

so the variance in this model is proportional to the mean squared, not proportional to the mean
as in the case of ODP model.

Remark 2.5. We need to impose that each incremental value should be nonnegative if we
work with gamma (Poisson) models. This restriction can be overcome using a quasi-likelihood
approach.

Using the chain-ladder type predictor structure

ηij = c+ αi + βj, α1 = β1 = 0,

log(µij) = ηij,

it is straightforward to obtain parameter estimates and predicted values using GLM.
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Chapter 3

Stochastic Incremental Approach For
Modeling The claims Reserves

This chapter, with some development and modifications is the text of an article [2] appeared
in Journal of International Mathematical Forum in which we focuses on calculation of claims
reserves using a stochastic incremental approach (stochastic Chain Ladder using only incre-
mental payments), and for that we establish the require formulae and we put our assumptions.
We will next concentrate on the calendar year view of the development triangle, then we apply
the CDR for incremental approach and calendar year view.

Introduction

Payment of claims does not always take place at once, in the same accident year. The regulation
of claims is done over time, and it is necessary to establish reserves to honor future liabilities. As
the claims amount, that will be finally paid are unknown currently. The amount to put in reserve
is also unknown and must be estimated. These estimations can be calculate by the so-called
technical IBNR (Incurred But Not Reported), which are based on the past claims payments to
estimate its future development. In this chapter we will study a new approaches, more formally
a modern and sophistical vision to old techniques, for estimation of loss reserves. So we will
first present the so-called stochastic incremental approach which calculate the reserves and
the ultimate claims using only incremental payments of development triangle, and the second
approach is a modern presentation of an old vision, the incremental approach in calendar
year view (t) which is already mentioned by Buchwalder-Bühlmann-Merz-Wüthrich[1], Eisele-
Artzner[4], Partrat-Pey-Schilling[26], in our case we study the approach in details, establish the
formulae and propose a new tabulation form to give a clear view for the calendar years.
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A claims development triangle has three directions:

Figure 3.1 – Three directions of claims development triangle

The two directions, development year and accident year, are orthogonal, but the calendar
year direction is not orthogonal neither to the accident year direction nor to the development
year direction. The chapter is organized as follows. In the first section, we will present the
stochastic incremental approach which is the incremental case of the Mack’s model, so we will
reformulate the assumptions and establish the formulae require basing only on incremental
payments, which include the error estimation on calculation of reserves, then we will apply the
CDR for this approach. Section 2 presents the incremental approach in calendar year view, so
we propose a new form of tabulation figure 3.4 to clarify this vision, follow by the apply of the
CDR. To illustrate the results, a numerical example with conclusion is provided in Section 3,
the example show the uses of the two approaches studied, and the results obtained are identical
of those using traditional claims reserving techniques for run-off triangles, in addition of these
results we can get the reserve of each calendar year (t).

1 Presentation of the incremental approach

In this section we will base only on the incremental payments data Di,j to estimate the pa-
rameters. This mean we don’t need to go a step forward to calculate the cumulated payments
as it’s done in traditional claims reserving techniques, otherwise said, we want show that we
can find the same results of traditional claims reserving techniques based on cumulated de-
velopment triangle, directly by the incremental development triangle and for that we present
the approach as follow, first we will add some specific notations. Secondly we will present the
assumptions of the approach by modifying Mack’s Model, and show that the development will
be conditioned to the incremental payments data, then we will establish the formulae for esti-
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mating the parameters. Next we will estimate the error in calculation of reserves. After that
we will make comparison between Mack’s formulae and the formulae given by the incremental
approach, finally we apply the CDR for this approach. We begin with adding so notations we
need is this chapter, and we denote:
Provisioning is a prediction problem, conditioned by the information available at time t=I.

For that we denote Di,j the set of all data available at time t=I, more formally

Di,j = σ{Xi,j | i+ j ≤ I + 1}.

If we focus on the set of all data observed until the development year j,we note

Dj = σ{Xi,l | i+ l ≤ I + 1, l ≤ j}.

Figure 3.2 – The information available to make the prediction.

1.1 Assumptions’ modification of Mack’s model

This new approach is also based on three assumptions, the two first assumptions are:
H1 : There exist constants fj, such that for 1 ≤ i ≤ I, 1 ≤ j ≤ I − 1 we have

E
[
Xi,j+1

∣∣∣Xi,1, . . . , Xi,j

]
= Si,j · (fj − 1), with Si,j =

j∑
l=1
Xi,l

H2 : Xi,j and Xk,j are stochastically independent for i 6= k.
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1.2 Estimation of parameters

1.2.1 The development factors

For each development year j ∈ {1, ..., I − 1}, the development factors fj are estimated by

f̃j =

I−j∑
i=1
Xi,j+1

I−j∑
i=1
Si,j

+ 1. (3.1)

We can not guess the true values of the development factors f1, . . . , fI−1 from data because the
whole run-off triangular is not yet known at time t = I. They only can be estimated using
incremental payments Xi,j as we showed in the formula (3.1), One prominent property of a
good estimator is that the estimator should be unbiased.

Theorem 3.1. Under the assumptions H1 and H2, the development factors estimators f̃1, . . . , f̃I−1

defined by (3.1) are unbiased and uncorrelated.

Proof A. First we demonstrate the unbiasedness of development factors estimators (the Chain
Ladder Development factors), i.e. that E[f̃j] = fj. Because of the iterative rule for expectations,

E[f̃j] = E
[
E[f̃j | Dj]

]
. (A1)

We have
E[Xi,j+1 | Dj] = E [Xi,j+1 | Xi,1, . . . , Xi,j] , by H2

= Si,j · (fj − 1), by H1.
(A2)

This implies that

E[f̃j | Dj] = E[

I−j∑
i=1

Xi,j+1

I−j∑
i=1

Si,j

+ 1 | Dj]

=

I−j∑
i=1

E[Xi,j+1|Dj ]

I−j∑
i=1

Si,j

+ 1, because Si,j is Dj-measurable

=
(fj−1).

I−j∑
i=1

Si,j

I−j∑
i=1

Si,j

+ 1 = fj.

(A3)

E[f̃j] = E
[
E[f̃j | Dj]

]
= E[fj] = fj. Which shows that the estimators f̃j are unbiased.
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We turn now to the no correlation between the estimators of the development factors, i.e. that
E[f̃j1 · f̃j2 ] = E[f̃j1 ] · E[f̃j2 ] for j1 < j2,

E[f̃j1 · f̃j2 ] = E
[
E[f̃j1 · f̃j2 | Dj2 ]

]
= E

[
f̃j1 · E[f̃j2 | Dj2 ]

]
, because j1 < j2

= E[f̃j1 ] · fj2
= E[f̃j1 ] · E[f̃j2 ] , becausef̃j are unbiased. (A4)

1.2.2 The ultimate claims amount

The aim of the Chain Ladder method and every claims reserving method is the estimation of
the ultimate claims amount Zi for the accident years i ∈ {2, ..., I}. In our approach we can
calculate Z̃i using two formulae, the first one by using the summation of the ith line of the
matrix of random variables (Xi,j)1≤i,j≤I

Z̃i =
I−i+1∑
j=1

Xi,j +
I∑

j=I−i+2
X̃i,j (3.2)

= Z0
i + R̃i.

Where the first term represents a known part (the yearly past obligations) Z0
i , and the second

term corresponds the outstanding claims reserves R̃i, or we can simply using the classic form
given by

Z̃i = Z0
i · (f̃I−i+1 . . . f̃I−1). (3.3)

Theorem 3.2. Under the assumptions H1 and H2, the estimation of the ultimate claims
amount Z̃i defined by (3.2) and (3.3) are unbiased.
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Proof B.

E[Z̃i] =E
[
Z0
i · f̃I−i+1 . . . f̃I−1

]
=E

[
E[Z0

i · f̃I−i+1 . . . f̃I−1 | DI−1]
]

=E
[
Z0
i · f̃I−i+1 . . . f̃I−2 · E[f̃I−1 | DI−1]

]
=E[Z0

i · f̃I−i+1 . . . f̃I−2] · fI−1

by repeated the operation we get

E[Z̃i] =Z0
i · fI−i+1 . . . fI−2 · fI−1 = Zi.

1.2.3 Yearly claims reserves

One of the advantages of our new approach is that we can easily calculate the outstanding
claims reserves estimators (in other words, what is left to pay for claims incurred in year i), by
a simple sum of the incremental payments estimators for i ∈ {2, ..., I}

R̃i =
I∑

j=I−i+2
X̃i,j. (3.4)

We can also obtain R̃i using the classic principle, i.e.(make the difference between the estimators
of the ultimate claims amount Z̃i and the past obligations Z0

i has already been paid up to now),
and we denote for i ∈ {2, ..., I}

R̃i = Z̃i − Z0
i = Z0

i ·

 I−1∏
j=I−i+1

f̃j − 1
 , (3.5)

and their sum will give

R̃ =
I∑
i=2
R̃i =

I∑
i=2

[
Z̃i − Z0

i

]
(3.6)

=
I∑
i=2
Z0
i ·

 I−1∏
j=I−i+1

f̃j − 1
 .

we observe here that we can also get the overall reserve by a simple summation of all the
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future incremental payments in the lower part of the matrix of random variables (Xi,j)1≤i,j≤I ,

R̃ =
I∑
i=2

I∑
j=I−i+2

X̃i,j. (3.7)

Theorem 3.3. Under the assumptions H1 and H2, the estimation of the outstanding claims
reserves R̃i and the estimation overall reserve R̃ are unbiased.

Proof C.

E[R̃i] = E[Z̃i − Z0
i ]

= E[Z̃i]− E[Z0
i ] (C1)

= Zi − Z0
i = Ri.

and

E[R̃] = E[
I∑
i=2
R̃i] =

I∑
i=2
Ri = R. (C2)

1.3 Calculation of standard error

The formula for estimating the standard error is based on Mack’s model, and in this subsection
we will measure the uncertainty using only the incremental payments.

1.3.1 The estimation error of the yearly claims reserves

Z̃i provides an estimator but not the exact value of Zi. Here we are interested in the average
distance between the estimator and the true value. The mean square error MSEP (Z̃i) is
defined by

MSEP (Z̃i) = E[(Z̃i − Zi)2 | Di,j].

We are interested in a conditional mean based on the specific incremental payments data set
Di,j to obtain the mean deviation between Z̃i and Zi only due to future randomness.
The standard error SE(Z̃i) is defined as equal to

√
MSEP (Z̃i). If we are interested in the

error on the provision, we must calculate

MSEP (R̃i) = E
[
(R̃i −Ri)2 | Di,j

]
,
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such as R̃i = Z̃i − Z0
i and Ri = Zi − Z0

i we finally obtain

MSEP (R̃i) = E[(R̃i −Ri)2 | Di,j]

= E[(Z̃i − Zi)2 | Di,j] = MSEP (Z̃i).

The error in estimating the yearly claims reserves is equal to the estimation error of the
ultimate claims amount.
In order to calculate MSEP (Z̃i) we’ll decompose it according to the following formula:

MSEP (R̃i) = V ar(Zi | Di,j) + (E[Zi | Di,j]− Z̃i)2. (3.8)

This formula shows that we therefore need to estimate the variance of Xi,j, this will lead us to
identify a third assumption for our new approach derived from Mack’s Model,

H3 : V ar(Xi,j+1 | Xi,1, . . . , Xi,j) = Si,j · σ2
j , for 1 ≤ i ≤ I, 1 ≤ j ≤ I − 1.

The parameters σ2
j are unknown and must be estimated.

Property 3.4. Under H1, H2 and H3,

σ̃2
j = 1

I − j − 1

I−j∑
i=1
Si,j · (

Xi,j+1

Si,j
+ 1− f̃ j)2 , for 1 ≤ j ≤ I − 2 (D1)

is an unbiased estimator of σ2
j and

σ̃2
I−1 = min(

σ̃4
I−2

σ̃2
I−3

,min(σ̃2
I−3 , σ̃

2
I−2 )), see Mack [19]. (D2)
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Proof D. The formula (D1) Comes from

σ2
j = V ar(Xi,j+1 | Xi,1, . . . , Xi,j)

Si,j

= V ar(Xi,j+1√
Si,j
| Xi,1, . . . , Xi,j)

= 1
I − j − 1

I−j∑
i=1

Xi,j+1√
Si,j
− E[Xi,j+1√

Si,j
| Xi,1, . . . , Xi,j]

2

= 1
I − j − 1

I−j∑
i=1

Xi,j+1√
Si,j
− E[Xi,j+1 | Xi,1, . . . , Xi,j]√

Si,j

2

= 1
I − j − 1

I−j∑
i=1
Si,j(

Xi,j+1

Si,j
+ 1− fj)2 by H1.

We get σ̃2
j by replacing the unknown parameters fj, with their unbiased estimators f̃ j.

σ̃2
j = 1

I − j − 1

I−j∑
i=1
Si,j · (

Xi,j+1

Si,j
+ 1− f̃j)2.

Theorem 3.5. Under the assumptions H1, H2 and H3, σ̃2
j are unbiased.

Proof E. The definition of σ̃2
j can be rewritten as

(I − j − 1) · σ̃2
j =

I−j∑
i=1
Si,j · (Si,j+Xi,j+1

Si,j
− f̃j)2

=
I−j∑
i=1

(Si,j+Xi,j+1)2

Si,j
− 2 · (Si,j +Xi,j+1)× f̃j + Si,j · f̃ 2

j

=
I−j∑
i=1

(Si,j+Xi,j+1)2

Si,j
−

I−j∑
i=1
Si,j · f̃ 2

j ,

(E1)

then

E[(I − j − 1) · σ̃2
j | Dj] =

I−j∑
i=1

E[(Si,j +Xi,j+1)2 | Dj]︸ ︷︷ ︸
(E3)

/Si,j −
I−j∑
i=1
Si,j · E[f̃ 2

j | Dj]︸ ︷︷ ︸
(E4)

, (E2)
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because Si,j is Dj-measurable, we calculate first (E3) by

E [(Si,j +Xi,j+1)2 | Dj] = E [(Si,j +Xi,j+1)2 | Xi,1, . . . , Xi,j] , by H2
= V ar [(Si,j +Xi,j+1) | Xi,1, . . . , Xi,j]

+E [(Si,j +Xi,j+1) | Xi,1, . . . , Xi,j]2

= V ar(Xi,j+1 | Xi,1, . . . , Xi,j)
+ (E[Xi,j+1 | Xi,1, . . . , Xi,j] + Si,j)2

= Si,j · σ2
j + (Si,j · fj)2 , by H1 and H3.

(E3)

We turn now to (E4) for that we using (F6) and (A3) we obtain

E[f̃ 2
j | Dj] = V ar(f̃ j | Dj) + (E[f̃ j | Dj])2 = σ2

j
I−j∑
i=1

Si,j

+ f 2
j . (E4)

Inserting (E3) and (E4) into (E2) we obtain

E[(I − j − 1) · σ̃2
j | Dj] =

I−j∑
i=1

(σ2
j + Si,j · f 2

j )−
I−j∑
i=1

Si,j · σ2
j

I−j∑
i=1
Si,j

+ Si,j · f 2
j = (I − j − 1) · σ2

j .

The following theorem gives the formula for estimating MSEP (R̃i).

Theorem 3.6. Under the assumptions H1, H2 and H3, MSEP (R̃i) can be estimated by

M̃SEP (R̃i) = Z̃2
i ·

I−1∑
j=I−i+1

σ̃2
j

f̃ 2
j

 1
S̃i,j

+ 1
I−j∑
l=1
Sl,j

 . (3.9)

Proof F. We use the abbreviations

Ei[Y ] = E[Y | Xi,1, ..., Xi,I−i+1], (F1)

V ari[Y ] = V ar[Y | Xi,1, ..., Xi,I−i+1]. (F2)

The theorem of conditional variance

V ar(Y ) = E[V ar(Y |X)] + V ar[E[Y |X]], (F3)
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we have the formula (3.8) given by

MSEP (R̃i) = V ar(Zi | Di,j)︸ ︷︷ ︸
Error Process

+ (E[Zi | Di,j]− Z̃i)2︸ ︷︷ ︸
Error Estimators

. (F4)

Using assumption H2 and then repeatedly applying the formula of the assumptions H1 and
H3, the first term of MSEP (R̃i) can be written as:

V ar(Zi | Di,j) = V ari(Zi), H2
= Ei[V ar(Zi | Xi,1, . . . , Xi,I−1)] + V ari[E[Zi | Xi,1, . . . , Xi,I−1]]
= Ei[Si,I−1 · σ2

I−1] + V ari[Si,I−1 + Si,I−1 · (fI−1 − 1)], by H3, H1
= Ei[Si,I−1] · σ2

I−1 + V ari[Si,I−1] · f 2
I−1

= Ei[Si,I−2 · (fI−2 − 1) + Si,I−2] · σ2
I−1 + f 2

I−1 · Ei[Si,I−2 · σ2
I−2]

+f 2
I−1 · V ari [Si,I−2 + Si,I−2 · (fI−2 − 1)]

= Ei[Si,I−2] · fI−2 · σ2
I−1 + Ei[Si,I−2] · f 2

I−1 · σ2
I−2

+V ari[Si,I−2] · f 2
I−1 · f 2

I−2
...

= Z0
i ·

I−1∑
j=I+1−i

(fI+1−i . . . fj−1)× σ2
j ·
(
f 2
j+1 . . . f

2
I−1

)
.

As we don’t know the parameters fj et σ2
j , we replace them by their estimators f̃j et σ̃2

j , that
is to say that we estimate the first term of the expression (F4) for MSEP (R̃i) by

˜V ar(Zi | Di,j) = Z0
i ·

I−1∑
j=I−i+1

f̃I−i+1 . . . f̃j−1 · σ̃2
j · f̃ 2

j+1 . . . f̃
2
I−1

= Z0
i ·

I−1∑
j=I−i+1

f̃2
I−i+1...f̃

2
j−1·f̃

2
j ·σ̃

2
j ·f̃

2
j+1...f̃

2
I−1

f̃I−i+1...f̃j−1·f̃2
j

= (Z0
i )2 ·

I−1∑
j=I+1−i

f̃2
I−i+1...f̃

2
I−1·σ̃

2
j

Z0
i ·f̃I−i+1...f̃j−1·f̃2

j

= (Z0
i )2 · f̃ 2

I−i+1 . . . f̃
2
I−1 ·

I−1∑
j=I−i+1

σ̃2
j /f̃

2
j

Z0
i ·f̃I−i+1...f̃j−1

.

So
˜V ar(Zi | Di,j) = (Z̃i)2 ·

I−1∑
j=I+1−i

σ̃2
j/f̃

2
j

S̃i,j
. (F5)

We turn now to the second term of the expression (F4) for MSEP (R̃i)

(E[Zi | Di,j]− Z̃i)2 = (Z0
i )2 · (fI−i+1 . . . fI−1 − f̃I−i+1 . . . f̃I−1)2
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To estimate the second term we cannot simply replace fj by their estimator because this will
lead to cancel it. We therefore use another approach. We assume that,

F = fI−i+1 . . . fI−1 − f̃I−i+1 . . . f̃I−1 = TI−i+1 + . . .+ TI−1,

where Tj = f̃I−i+1 . . . f̃j−1 · (fj − f̃j) · fj+1 . . . fI−1,

so we have

F 2 = (TI+1−i + . . .+ TI−1)2 =
I−1∑

j=I−i+1
T 2
j + 2

∑
l<j

TlTj

Then we approximate T 2
j by E(T 2

j | Dj) et Tl, Tj par E[TlTj | Dj].
As, E[fj − f̃j | Dj] = 0 (because f̃j is an unbiased), we have

E[TlTj | Dj] = 0, for l < j,

so

F 2 =
I−1∑

j=I+1−i
E[T 2

j | Dj] + 2
∑
i 〈 j

E[TiTj | Dj] =
I−1∑

j=I+1−i
E[T 2

j | Dj].

or
E[T 2

j | Dj] = f̃ 2
I+1−i . . . f̃

2
j−1 · E[(fj − f̃j)2 | Dj] · f 2

j+1 . . . f
2
I−1.

So we should calculate E[(fj − f̃j)2 | Dj],

E[(fj − f̃j)2 | Dj] = V ar(f̃j | Dj)

= V ar(

I−j∑
i=1
Xi,j+1

I−j∑
i=1
Si,j

+ 1 | Dj)

=

I−j∑
i=1
V ar (Xi,j+1 | Dj)(

I−j∑
i=1
Si,j

)2 =
σ2
j

I−j∑
i=1
Si,j

.

So
E[(fj − f̃j)2 | Dj] = V ar(f̃j | Dj) =

σ2
j

I−j∑
i=1
Si,j

. (F6)
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We obtain

E[T 2
j | Dj] =

f̃ 2
I+1−i . . . f̃

2
j−1 · σ2

j · f 2
j+1 . . . f

2
I−1

I−j∑
i=1
Si,j

,

so we estimate F 2 by
I−1∑

j=I−i+1
E(T 2

j | Dj) and we can now replace the parameters fj et σ2
j by their

unbiased estimators f̃j et σ̃2
j , that is to say that we estimate the second term of MSEP (R̃i),

˜(E[Zi | Di,j]− Z̃i)2 = (Z̃i)2 ·
I−1∑

j=I−i+1

f̃ 2
I+1−i . . . f̃

2
j−1 · σ̃2

j · f̃ 2
j+1 . . . f̃

2
I−1

I−j∑
i=1
Si,j

= (Z̃i)2 ·
I−1∑

j=I−i+1

σ̃2
j/f̃

2
j

I−j∑
i=1
Si,j

. (F7)

By adding the expressions (F5) and (F7), we find the formula proposed for ˜MSEP (R̃i),

˜MSEP (R̃i) = ˜V ar(Zi | Di,j) + ˜(E[Zi | Di,j]− Z̃i)2

= (Z̃i)2 ·
I−1∑

j=I−i+1

σ̃2
j/f̃

2
j

S̃i,j
+ (Z̃i)2 ·

I−1∑
j=I−i+1

σ̃2
j/f̃

2
j

I−j∑
i=1
Si,j

= (Z̃i)2 ·
I−1∑

j=I−i+1

σ̃2
j

f̃ 2
j

 1
S̃i,j

+ 1
I−j∑
i=1
Si,j

 .

1.3.2 The estimation error of the overall reserves

It is also interesting to calculate the error on the estimated overall reserve R̃ = R̃2 + ...+R̃I .We
can not simply sum the errors MSEP (R̃) because they are correlated by the same estimators
f̃j and σ̃2

j , but we can use the following theorem.
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Theorem 3.7. Under the assumptions H1, H2 and H3, MSEP (R̃) can be estimated by

M̃SEP (R̃) =
I∑
i=2

MSEP (R̃i) + Z̃i

 I∑
k = i+1

Z̃k

 I−1∑
j=I−i+1

2 σ̃2
j/f̃

2
j

I−j∑
k=1

Sk,j

 . (3.10)

Proof G. This proof is analogous to that in (Proof F). The explanations will therefore be
brief.

MSEP (
I∑
i=2
R̃i) = E[(

I∑
i=2
R̃i −

I∑
i=2
Ri)2 | Di,j]

= E[(
I∑
i=2
Z̃i −

I∑
i=2
Zi)2 | Di,j]

= V ar(
I∑
i=2
Zi | Di,j) + (E[

I∑
i=2
Zi | Di,j]−

I∑
i=2
Z̃i)2.

We have been calculated this terms on (Proof F),

MSEP (
I∑
i=2
R̃i) =

I∑
i=2
MSEP (R̃i) +

∑
26i<k6I

2 · Z0
i Z

0
k · FiFk.

We therefore need only develop an estimator for FiFk. We immediately get the final result of
M̃SEP (R̃)

M̃SEP (R̃) =
I∑
i=2

MSEP (R̃i) + Z̃i

 I∑
k = i+1

Z̃k

 I−1∑
j=I+1−i

2 σ̃2
j/f̃

2
j

I−j∑
k=1

Sk,j

 .

1.4 Comparison between Mack’s model and incremental approach

We can see that this new approach using only incremental claims which results easier formulae.
Proceeding from the formulae of our approach we can automatically find the same formulae of
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3.1 Presentation of the incremental approach

Mack’s model.

Mack’s Model Incremental Approach

f̃j =

I−j∑
i=1

Ci,j+1

I−j∑
i=1

Ci,j

f̃j =

I−j∑
i=1

Xi,j+1

I−j∑
i=1

Si,j

+ 1

C̃i,I = Ci,I−i+1 ·
I−1∏

j=I−i+1
f̃j Z̃i =

I−i+1∑
j=1

Xi,j +
I∑

j=I−i+2
X̃i,j

R̃i = C̃i,I − Ci,I−i+1 R̃i =
I∑

j=I−i+2
X̃i,j

R̃ =
I∑
i=2
R̃i R̃ =

I∑
i=2
R̃i

1.5 Claim development result

We will calculate the CDR using the incremental claims data, for that we will change the
notation of the incremental claims data available at time t = I to

D I
i,j = σ{Xi,j| i+ j ≤ I + 1},

and for the incremental claims data available one period later, at time t = I + 1 by

D I+1
i,j = {Xi,j| i+ j ≤ I + 2, i ≤ I} = D I

i,j ∪ {Xi,I−i+2, i ≤ I},

1.5.1 Estimators

The development factors

f̃ Ij =

I−j∑
i=1
Xi,j+1

I−j∑
i=1
Si,j

+ 1 and f̃ I+1
j =

I−j+1∑
i=1

Xi,j+1

I−j+1∑
i=1

Si,j

+ 1. (3.11)

The ultimate claims amount

Z̃I
i =

I−i+1∑
j=1

Xi,j +
I∑

j=I−i+2
X̃i,j = Z0

i + R̃i. (3.12)

Z̃I+1
i =

I−i+2∑
j=1

Xi,j +
I∑

j=I−i+3
X̃i,j = Z0

i + R̃
DI+1

i,j

i . (3.13)
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Yearly claims reserves

R̃
DI

i,j

i =
I∑

j=I−i+2
X̃i,j = Z̃I

i − Z0
i . (3.14)

R̃
DI+1

i,j

i =
I∑

j=I−i+3
X̃i,j = Z̃I+1

i − Z0
i . (3.15)

These estimators are unbiased

Definition 3.8 (True CDR according to the incremental approach).
The true CDR for accident year i ∈ {1, ..., I} in accounting year (I, I + 1] is given by

CDRi(I + 1) = E[R̃I
i | D I

i,j]− (Xi,I−i+2 + E[R̃I+1
i | D I+1

i,j ]) (3.16)

our approach will permit us to define the CDR as the difference between the matrix of all
incremental payments data at time t = I minus the matrix of all incremental payments data
at time t = I + 1.

CDRi(I + 1) = E[Zi | D I
i,j]− E[Zi | D I+1

i,j ]. (3.17)

Definition 3.9 (Observable CDR according to the incremental approach).
The observable CDR for accident year i ∈ {1, ..., I} in accounting year (I, I + 1] in the chain
ladder method is given by

C̃DRi(I + 1) = R̃
DI

i,j

i − (Xi,I−i+2 + R̃
DI+1

i,j

i ) = Z̃I
i − Z̃I+1

i . (3.18)

CDR real (CDRi(I + 1)) is estimated by the CDR observable (C̃DRi(I + 1)). See [24], [25]

1.5.2 The one-year bootstrap

The stochastic process is applied only to the diagonal of the calendar year I + 1, this new
diagonal has been projected by our approach. Because we use only the incremental claims
in this approach, the Bootstrap simulation will be more easy to calculate since the Pearson
residuals are based on incremental payments. So we will avoid 3 steps in calculations and we
directly calculate the data incremental payments backwards XB

i,j by the following formula:

XB
i,j = Si,I−i+2

I−i+1∏
l=j

fl

− Si,I−i+2
I−i+1∏
k=j−1

fk

. (3.19)
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3.2 The incremental approach in the calendar years view

then we calculate the Pearson residues, and apply the bootstrap n times only for the diagonal
we want simulate, using classic formulae see [8].

2 The incremental approach in the calendar years view

We will focus our interest from the development years j to the calendar years t which give
us a new view for the past obligation of each calendar year t and also the estimation of the
obligations left to pay of each calendar year t.

Figure 3.3 – The triangle liquidation in calendar years view

To more clarify this vision we proposed new tabulation form instead of the development
triangle.

Figure 3.4 – The new form of the triangle liquidation

In this new tabulation, we always represent the accident years by i ∈ {1, ..., I} and the
calender years by t ∈ {−T, ..., T}, for t ∈ {−T, ..., 0} we have i ≤ t+ I and for the future part
t ∈ {1, ..., T} we have i ≥ t+ 1. We used negative index t ∈ {−T, ...,−1} to represent the past
and the current time by t = 0 and finally the future time by the positive index t ∈ {1, ..., T}.
Such as T = I−1. In this view we can calculate Z0

t , R̃t of each calender year and the sum of all
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Chapter 3. Stochastic Incremental Approach For Modeling The claims Reserves

payments of the development lozenge will give the ultimate claims amount Z. We can complete
the right part of the lozenge (future part) of the incremental payments by,

E[Xi,t+1 | Xi,i−I , . . . , Xi,t] = Si,t · (f−i+t+1 − 1). (3.20)

2.1 Estimation of parameters in the calendar years view

2.1.1 The development factors at time t

For each development year t ∈ {−T, ...,−1}, the development factors are estimated by

f̃t =

−t∑
i=1
Xi,i+t

−t∑
i=1
Si,i+t−1

+ 1, where Si,t =
t∑

l=i−I
Xi,l. (3.21)

We observe that the development factors are indexed by the calendar year (t), but they calculate
always the proportion between the development years.

2.1.2 The past obligations at time t

The process of past obligations for each t ∈ {−T, ..., 0}, i.e the past claims amount Xi,j, has
already been paid for each calendar year till the current date t = 0, which is defined by

Z0
t =

t+I∑
i=1
Xi,t. (3.22)

We can obtain the overall past obligations by

Z0 =
0∑

t=−T
Z0
t .

2.1.3 The ultimate claims amount

We can calculate the yearly ultimate claims amount by

Z̃i =
0∑

t=−T+i−1
Xi,t +

i−1∑
t=1
X̃i,t (3.23)
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3.2 The incremental approach in the calendar years view

The process Z̃ defined by

Z̃ =
I∑
i=1
Z̃i =

0∑
t=−T

Z0
t +

T∑
t=1
R̃t. (3.24)

2.1.4 Claims reserves at time t

To obtain the estimators of the outstanding claims reserves for each calendar year t, we denote
for t ∈ {1, ..., T}

R̃t =
I∑

i=t+1
X̃i,t. (3.25)

also the reserves for each year i, for i ∈ {2, ..., I}

R̃i =
i−1∑
t=1
X̃i,t. (3.26)

and their sum will give the overall reserves

R̃ =
T∑
t=1
R̃t =

I∑
i=2
R̃i.

2.2 Claim development result in the calendar years view

We can apply the same definitions of the CDR presented above to get the observable C̃DRi(I+
1)

C̃DRi(I + 1) = R̃
DI

i,t

i − (Xi,1 + R̃
DI+1

i,t

i ) = Z̃I
i − Z̃I+1

i . (3.27)

Where Xi,1 is simulated by a one year bootstrapping, with X1,1 = 0.

Figure 3.5 – Claim Development Result in the calendar years view

41



Chapter 3. Stochastic Incremental Approach For Modeling The claims Reserves

The development factors

f̃ It =

−t∑
i=1
Xi,i+t

−t∑
i=1
Si,i+t−1

+ 1 and f̃ I+1
t =

−t+1∑
i=1

Xi,i+t

−t+1∑
i=1

Si,i+t−1

+ 1.

The ultimate claims amount

Z̃I
i =

0∑
t=−T+i−1

Xi,t +
i−1∑
t=1
X̃i,t and Z̃I+1

i =
1∑

t=−T+i−1
Xi,t +

i−1∑
t=2
X̃i,t.

Yearly claims reserves

R̃
DI

i,j

i =
i−1∑
t=1
X̃i,t and R̃

DI+1
i,j

i =
i−1∑
t=2
X̃i,t.

The aggregate CDR is given by

C̃DR(I + 1) = Z̃I − Z̃I+1 =
I∑
i=2

C̃DRi(I + 1).

3 Numerical example and conclusions

For our numerical example we use the data set given in table 3.1. The table contains incremental
payments for accident years i ∈ {1, ..., 9}. We will apply our approach (Stochastic Chain ladder
using incremental payments) on the incremental observations X̂i,j data Xi,j, we first calculate
the development factors according to formula (3.1) then we complete the lower triangle, and
finally we obtain the amounts we seek to put in reserve.
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3.3 Numerical example and conclusions

Development year j Reserve Ultimate
i 1 2 3 4 5 6 7 8 9 Ri Zi

1 2 202 584 1 007 865 257 673 76 948 76 557 23 009 24 376 5 499 4 122 0 3 678 633
2 2 350 650 1 202 373 230 823 56 221 25 120 13 557 19 537 4 144 4 378 3 906 803
3 2 321 885 1 102 305 276 686 97 322 56 557 24 238 19 832 9 347 3 908 172
4 2 171 487 993 787 230 567 70 612 49 250 32 718 28 392 3 576 813
5 2 140 328 1 016 751 242 183 101 258 85 292 51 444 3 637 256
6 2 290 664 1 047 533 212 135 90 704 111 811 3 752 847
7 2 148 216 1 071 559 208 560 187 084 3 615 419
8 2 143 728 1 014 853 411 864 3 570 445
9 2 144 738 1 433 505 3 578 243
fj 1,4759 1,0719 1,0232 1,0161 1,0063 1,0056 1,0013 1,0011 2 237 825 33 224 631

Table 3.1 – Run-off triangle incremental payments, in Euro 1000

The results are identical to those given by the classic Chain ladder using cumulated pay-
ments, so we can calculate our reserves simply without need to calculate the cumulated triangle,
by avoiding a step of calculation and we can got a clear image about information we have in
the triangle, and the formula we use here are more easy by applying simple summations. Let’s
move at present to the new tabulation form for the calendar years view and we can recalculate
the reserves as in table 3.2.

Table 3.2 – Run-off triangle in calendar view (incremental payments, in Euro 1000) for time I = 9

We observe here that we can calculate reserves of each calendar year (which is represented
by diagonals in classic triangle) by calculating first the development factors for each calendar
year t using formula (3.21), then we can find the overall reserve. By using the new tabulation
form we find the same development factors, also we got identical overall reserves and ultimate
claims amounts comparing with those calculated by our incremental approach (stochastic chain
ladder using incremental payments). Now we will calculate CDR for the two cases ( incremental
approach and for calendar year view), the results are given in the following table,
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Z̃I
i Z̃I+1

i C̃DRi(I + 1)
1 3 678 633 3 678 633 0
2 3 906 803 3 906 699 104
3 3 908 172 3 906 113 2059
4 3 576 813 3 572 156 4657
5 3 637 256 3 635 610 1646
6 3 752 847 3 771 609 -18762
7 3 615 419 3 641 266 -25847
8 3 570 445 3 575 394 -4949
9 3 578 243 3 566 649 11594

Total 33 224 631 33 254 129 -29498

Table 3.3 – Realization of the observable CDR at time t = I + 1, in Euro 1000

Conclusion
This work has examined new ways to estimate the amounts place in reserve to perform in

the future payments related to claims incurred.
First, the calculation of claims reserves using a stochastic incremental approach by modifying

Mack’s model, so we establish the require formulae using only incremental payments which avoid
calculation of the cumulative triangle, and we can got identical results see Comparison [1.4].
We calculate the CDR for this case, and we apply the bootstrap by developed a new formula
see (3.19) which avoid 3 steps in calculations.

Second, we examined the incremental approach in calendar year view, so we propose a new
form of tabulation Figure 3.4, so we can easily calculate the past obligation of each calendar
years (t), the claims reserves of each accident year (i) and the overall reserve.

The incremental approach give us the advantage to avoid lot of steps in different cases, and
we can observe the simplicity of the formulae used to give identical results.
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Chapter 4

Chain-ladder with Bivariate
Development factors

This Chapter presents a mathematical model of loss reserves which represents a generalization
of Mack’s Model [18], it includes dependencies of the loss payments between accident and
development years.

More precisely, we assume that the expectations of the loss payments in accident year i
and development year j, conditioned on the information of previous years, depend linearly
on the payments of the proceeding accident and the proceeding development year. We get
development factors α between accident years and factors β between development years: the
bivariate development factors. In this way, the whole run-off ’triangle’ is covered by a net of
dependencies.

Here, the usual stationarity assumption in IBNR methods is replaced by a condition on the
upper boundary of the IBNR-triangle which reminds the von-Neumann boundary condition
in partial differential equations. The right-hand boundary of the triangle is naturally subject
to a Dirichlet-type condition since no claims settlements can be done before the accident has
occurred.

If by brut force we suppress the development factors α between accident years, we are pushed
back to Mack’s model and the Chain-Ladder development factors βCL. However, there is a
smooth transition between our full model and Mack’s one by varying a continuous parameter
between 1 and 0 (see Section 2). The parameter transition allows also to find first order
perturbation terms, both for the bivariate development factors and the claims provisions.

Simple examples show the influence of these boundary conditions on the final provision. In
an other example, we compare our results to those resulting from the example of Wüthrich in
[38].
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Chapter 4. Chain-ladder with Bivariate Development factors

We deliberately do not require any assumptions on the variances, as they can be found in
[18] and have further be analyzed in [12]. If the consequences of these assumptions are used to
calculate variances at the level of the provisions, one ends up with most complicated formulas
and proofs.

In our approach to the bootstrap method, we first apply a linear regression estimator for the
mean of the boundary values with special attention to the critical value on the lower corner of
the triangle. We then choose a multiplicative version for the residuals with an identical Gamma
distribution (see Section 4). The numerical example in Section 5 uses the same initial data as
the one in [7], thus allowing an easy comparison with their results.

1 The Bivariate Development Factors Model

Throughout this chapter we use the standard conventions that empty sums or products are equal
to the additive, resp. multiplicative, neutral elements, i. e. for κ > ` we have ∑`

µ=κ · · · = 0 and∏`
µ=κ · · · = 1.
We regard a matrix of random variables

C := (Ci,j)1≤i≤I,1≤j≤J (4.1)

for some I ≥ J ≥ 2. The variable Ci,j is interpreted as the cumulated claims amount of accident
year i till the development year j. For convenience we set Ci,0 = 0.

Within the standard theory of claim reserving, also called IBNR-theory, it is assumed that
pairs (i, j) of accident and development years with i+ j ≤ I + 1 describe past years for which
the run-off ’triangle’ of real observations Ĉi,j ∈ R are available:

Ĉ :=
(
Ĉi,j

)
(i,j)∈P

(4.2)

where P :=
{

(i, j)
∣∣∣1 ≤ i ≤ I, 1 ≤ j ≤ (I − i+ 1) ∧ J

}
is the index set of the ’triangle’. Pairs

(i, j) with i+ j > I + 1 refer to future years with unknown results for the corresponding claim
amounts. It is the task of the IBNR-theory to provide estimations for the outstanding claims
to be paid, i.e. estimators for the random total provision

P :=
I∑

i=I−J+2
Ci,J − Ci,I+1−i =

I∑
i=I−J+2

Pi (4.3)

with Pi := Ci,J − Ci,I+1−i the random provision for accident year i ≥ I − J + 2.
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4.1 The Bivariate Development Factors Model

1.1 Assumption Model

In generalization of the theory of Th. Mack we make the following assumption:

Assumption 4.1.

(i) For all 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1 there exist constants αi and βj with

E
[
Ci+1,j+1

∣∣∣ Fi+j] = αi · Ci,j+1 + βj · Ci+1,j (4.4)

where we have set

Fk := σ {Ci,j, i+ j ≤ k + 1} for 1 ≤ k ≤ I + J − 1 and F0 := σ{∅,Ω}. (4.5)

(ii) At the accident year boundary (i = 0) we replace condition (4.4) by

E
[
C1,j+1

∣∣∣ Fj] = α0 · E
[
C0,j+1

∣∣∣ Fj−1
]

+ βj · C1,j (4.6)

for 1 ≤ j ≤ J − 1 and we assume a von-Neumann kind stationary boundary condition for
the unknown expectation on the right-hand side of (4.6):

E [C1,j+1] = E [C0,j+1] . (4.7)

The coefficients (α, β) := (α0, . . . , αI−1, β1, . . . , βJ−1) are called bivariate development fac-
tors, short BDFs.

Remark 4.2.

(i) The case of αi = 0 for all 0 ≤ i < I is exactly Mack’s model (see [18]) for the Chain-
Ladder estimations. The estimated Chain-Ladder development factors β̃CLj are defined
via

I−j∑
m=1

Cm,j+1 = β̃CLj ·
I−j∑
m=1

Cm,j. (4.8)

(ii) The first example of section 3 of this chapter shows that the boundary condition (4.7) is
important to get reasonable results.
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1.2 Estimation of Bivariate Development Factors

We sum up equations (4.4) over i, resp. j within the region of the run-off triangle and take
expectations. Together with Ci,0 = 0 for all i, this leads to the following system of equations
for 0 ≤ i ≤ I − 1 and 1 ≤ j ≤ J − 1:

E

J∧(I−i)∑
n=1

Ci+1,n

 = αi ·
J∧(I−i)∑
n=1

E [Ci,n] +
J∧(I−i)∑
n=2

βn−1 · E [Ci+1,n−1]

E

 I−j∑
m=1

Cm,j+1

 =
I−j∑
m=1

αm−1 · E [Cm−1,j+1] + βj ·
I−j∑
m=1

E [Cm,j] . (4.9)

We use (4.9) to derive the following system of linear equations for the estimations of the depen-
dent development factors (α, β). Here, the boundary condition (4.7) is naturally transformed
into C0,n := C1,n for 1 ≤ n ≤ J .

for i = 0, . . . , I − J
J∑
n=1

Ci+1,n = α̃i ·
J∑
n=1

Ci,n +
J∑
n=2

β̃n−1 · Ci+1,n−1,

for i = I − J + 1, . . . , I − 1
I−i∑
n=1

Ci+1,n = α̃i ·
I−i∑
n=1

Ci,n +
I−i∑
n=2

β̃n−1 · Ci+1,n−1,

and for j = 1, . . . , J − 1
I−j∑
m=1

Cm,j+1 =
I−j∑
m=1

α̃m−1 · Cm−1,j+1 + β̃j ·
I−j∑
m=1

Cm,j. (4.10)

This defines the implicit BDF-estimators (α̃, β̃)tr := (α̃0, . . . , α̃I−1, β̃1 . . . , β̃J−1)tr.

To rewrite (4.10) in matrix form, we introduce the stochastic matrix Z by

Z :=
 Z1,1 Z1,2
Z2,1 Z2,2

 (4.11)
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with the sub-matrices

Z1,1 :=



J∑
n=1

C0,n 0 0 · · · 0

0

J∑
n=1

C1,n 0 · · · 0

...
. . .

...

0 · · ·

J∑
n=1

CI−J,n · · ·
...

0 · · ·

J−1∑
n=1

CI−J+1,n · · ·

. . .

. . .
0 · · · CI−1,1



,

Z1,2 :=



C1,1 · · · C1,J−1
C2,1 · · · C2,J−1

...
...

CI−J+1,1 · · · CI−J+1,J−1
CI−J+2,1 · · · CI−J+2,J−2 0

...
...

CI−1,1 0 · · · 0
0 · · · 0


,

Z2,1 :=


C0,2 C1,2 · · · CI−J,2 · · · CI−2,2 0
C0,3 C1,3 · · · CI−J,3 · · · 0 0

...
...

C0,J−1 C1,J−1 · · · CI−J,J−1 CI−J+1,J−1 · · · 0
C0,J C1,J · · · CI−J,J 0 · · · 0

 ,

and

Z2,2 :=



I−1∑
m=1

Cm,1 0 · · · 0

0
. . . 0

...
. . .

...

0 · · · 0

I−J+1∑
m=1

Cm,J−1


. (4.12)

Further we set

X :=
(

J∑
n=1

C1,n,
J∑

n=1

C2,n, . . . ,
J∑

n=1

CI−J+1,n,
J−1∑
n=1

CI−J+2,n, . . . , CI,1

)tr

Y :=
(

I−1∑
m=1

Cm,2,
I−2∑
m=1

Cm,3, . . . ,
I−J+1∑

m=1

Cm,J

)tr
, (4.13)
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so that the linear equation system (4.10) can be rewritten as

Z ·
 α̃

β̃

 =
 X

Y

 . (4.14)

An application of the general Hadamard’s invertibility criterion shows that the system (4.14)
has always a unique solution:

Theorem 4.3.
Let’s assume that Ci,j > 0 a.s. Then the stochastic matrix Z is a.s. invertible.

Proof.
Let Z̃ = (zµ,ν)1≤µ,ν≤I+J−1,µ 6=I,ν 6=I be the matrix obtained from Z by suppressing the I th column
and the I th row. Since all suppressed values are equal zero except for the diagonal element
zI,I = CI−1,1 > 0, the matrix Z is invertible if and only if Z̃ is invertible.

By simple inspection the stochastic matrix Z̃ clearly satisfies a.s. condition (ii) of definition
D.11. It remains only to show the irreducibility of Z̃. We remark that if 1 ≤ µ ≤ I − 1 then

zµ,I+1 zI+1,ν > 0 for 1 ≤ ν ≤ I − 1
zµ,I+J−µ zI+J−µ,1 z1,ν > 0 for I + 1 ≤ ν ≤ I + J − 1,

and if I + 1 ≤ µ ≤ I + J − 1 then

zµ,I+J−µ zI+J−µ,I+1 zI+1,ν > 0 for 1 ≤ ν ≤ I − 1
zµ,1 z1,ν > 0 for I + 1 ≤ ν ≤ I + J − 1.

This shows that all elements of Z̃3 are strictly positive. Hence, Z̃ is irreducible and the proof
is complete.

Though the stochastic matrix Z is a.s. invertible, we can not expect the BDF-estimator
(α̃, β̃) to be unbiased in an explicit form, since the inverse matrix Z−1 is strongly non-linear.
However, we have the following result of implicit unbiasedness:

Theorem 4.4.
Under the condition of theorem 4.3 the BDF-estimator (α̃, β̃)tr satisfies the following property
of implicit unbiasedness:

E

Z ·
 α̃

β̃

 = E
[
Z
]
·

 α

β

 . (4.15)
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Proof.

By (4.14), (4.9), (4.7), and (4.4), we get

E

Z ·
 α̃

β̃

 = E

 X

Y

 =



α0

J∑
n=1

E[C0,n] +
J∑

m=2

βn−1E[C1,n−1]

...
αI−1E[CI−1,1]

I−1∑
m=1

αm−1E[Cm−1,2] + β1

I−1∑
m=1

E[Cm,1]

...
I−J+1∑

m=1

αm−1E[Cm−1,J ] + βJ−1

I−J+1∑
m=1

E[Cm,J−1]


= E

[
Z
]
·

 α

β



If we replace in the definitions (4.10) to (4.13) of X, Y , and Z, the random variables Ci,j
by their observations Ĉi,j from (4.2), we get the observed items X̂, Ŷ , and Ẑ. The estimations
(α̂, β̂)tr := (α̂0, . . . , α̂I−1, β̂1 . . . , β̂J−1)tr are then defined by the linear system

Ẑ ·
 α̂

β̂

 =
 X̂

Ŷ

 . (4.16)

1.3 Estimators For Future Claims Amounts

For the claims amount of future years we find the following mean result:

Proposition 4.5.
Under the assumptions 4.1 the conditional mean of the claim amount of future years are given
as follows:
For all I − J + 1 < i ≤ I, 1 < j ≤ J and i ∨ j ≤ k ≤ i+ j − 1 we have

E
[
Ci,j

∣∣∣Fk] =
i∑

`=k+1−j
C`,k+1−`

(
i+ j − k − 1
`+ j − k − 1

)
i−1∏
µ=`

αµ

j−1∏
ν=k+1−`

βν . (4.17)

Proof.
We shall prove the equation (4.17) by (4.4) and the induction on the difference between i+j−1
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Chapter 4. Chain-ladder with Bivariate Development factors

and k. If k = i + j − 1, then Ci,j is Fk-measurable and the left-hand side of (4.17) is equal to
Ci,j. The summation on the right-hand side has only l = i as index and its result turns out to
be again Ci,j.
Now let 1 < i ∨ j ≤ k < i+ j − 1. By induction we get

E[Ci,j|Fk] = E[E[Ci,j|Fi+j−2]|Fk] = αi−1E[Ci−1,j|Fk] + βj−1E[Ci,j−1|Fk]

= Ck+1−j,j

(
i+ j − k − 2

0

)
i−1∏

µ=k+1−j
αµ

j−1∏
ν=j

βν

+
i−1∑

`=k+2−j
C`,k+1−`

[(
i+ j − k − 2
`+ j − k − 1

)
+
(
i+ j − k − 2
`+ j − k − 2

)]
i−1∏
µ=`

αµ

j−1∏
ν=k+1−`

βν

+Ci,k+1−i

(
i+ j − k − 2
i+ j − k − 2

)
i−1∏
µ=i

αµ

j−1∏
ν=k+1−i

βν

=
i∑

`=k+1−j
C`,k+1−`

(
i+ j − k − 1
`+ j − k − 1

)
i−1∏
µ=`

αµ

j−1∏
ν=k+1−`

βν

where we used the equality
(

n
m−1

)
+
(
n
m

)
=
(
n+1
m

)
for 0 < m ≤ n from Pascal’s triangle.

Let’s assume for the moment that the dependent development factors (α, β) are known.
Then for future accident and development years (i, j), i.e. i + j > I + 1, proposition 4.5 leads
with k = I to the estimator C̃i,j(α, β) by

C̃i,j(α, β) :=
i∑

`=I+1−j
C`,I+1−`

(
i+ j − I − 1
`+ j − I − 1

)
i−1∏
µ=`

αµ

j−1∏
ν=I+1−`

βν . (4.18)

Proposition 4.6.
If the dependent development factors (α, β) are known, then the estimator C̃i,j(α, β) for future
years i+ j > I + 1 is conditionally unbiased with respect to FI .

Proof.
Since the proof of proposition 4.5 needs only assumptions 4.1, the proposition follows from
formula (4.18).

If we combine theorem 4.4 and proposition 4.6 we find the following natural estimator
C̃i,j(α̃, β̃) for the claim amounts in future years (i+ j > I + 1, i ≤ I, j ≤ J):

C̃i,j(α̃, β̃) :=
i∑

`=I+1−j
C`,I+1−`

(
i+ j − I − 1
`+ j − I − 1

)
i−1∏
µ=`

α̃µ

j−1∏
ν=I+1−`

β̃ν (4.19)
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Of course, we can no longer expect that the composed estimator C̃i,j(α̃, β̃) is unbiased.

1.4 Estimation of Provisions

For the yearly claim provisions of the accident years i = I − J + 2, . . . , I we get

P̃i(α̃, β̃) :=
i−1∑

`=I−J+1
C`,I+1−`

(
i− (I − J)− 1
`− (I − J)− 1

)
i−1∏
µ=`

α̃µ
J−1∏

ν=I+1−`
β̃ν

+Ci,I+1−i

 J−1∏
ν=I+1−i

β̃ν − 1
 (4.20)

and their sum gives for the total provision P̃ (α̃, β̃) := ∑I
i=I−J+2 P̃i(α̃, β̃).

Again, if we replace the variables Ci,j by their observations Ĉi,j and the estimators (α̃, β̃)
by the real estimations (α̂, β̂) we get in (4.19) to (4.20) the estimations Ĉi,j for future years
(i+ j > I+1, i ≤ I, j ≤ J) and the estimations P̂i(α̂, β̂) of the provisions for year i ≥ I−J+2,
as well as of the total provision P̂ (α̂, β̂).

2 Embedding The Univariate Chain-Ladder Into The Bi-
variate One

In [18] Th. Mack presented a model for IBNR-calculations which gave a statistical background
for the well known Chain-Ladder method which is based on the standard estimators for the
Chain-Ladder development factors β̃(0) :=

(
β̃

(0)
j

)
1≤j≤J−1

= β̃CL given by (4.8). The two main
assumptions of Mack’s model are:

Assumption 4.7.

(M1) The sequence (Ci,j, 1 ≤ j ≤ J)1≤i≤I of families of the accident year variables are mutually
independent.

(M2) Among the accident year variables (Ci,j)1≤j≤J the following Markov-property holds for
j = 1, . . . , J − 1:

E
[
Ci,j+1

∣∣∣Ci,1, . . . , Ci,j] = β
(0)
j · Ci,j (4.21)

with stationary development factors β(0) :=
(
β

(0)
j

)
1≤j≤J−1

.
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Chapter 4. Chain-ladder with Bivariate Development factors

It is shown that under Assumptions 4.7 the Chain-Ladder estimators (4.8) are unbiased and
uncorrelated estimators for β(0).

In this context, we want to give our estimators of the dependent development factors a more
general version which include as well the bivariate development factors (α̃, β̃) from (4.14) and
β̃(0) from (4.21). For this purpose we set for τ ∈ [0, 1]

Z(τ) :=
 Z1,1 τ ·Z1,2
τ ·Z2,1 Z2,2

 . (4.22)

The extended depended development factors (α̃(τ), β̃(τ))tr := (α̃(τ)
0 , . . . , α̃

(τ)
I−1, β̃

(τ)
1 , . . . , β̃

(τ)
J−1)tr

are now defined by

Z(τ) ·
 α̃(τ)

β̃(τ)

 =
 τ ·X

Y

+ τ(1− τ) ·
 Z1,2 · 1IJ−1

−Z2,1 · 1II

 . (4.23)

Here, 1II := (1, . . . , 1) ∈ RI is the counting vector in RI whose components are all 1; similar for
1IJ−1. Notice that we introduced the last, second order term in (4.23) which vanishes for τ = 1
and τ = 0, in order to smooth the transition from τ = 1 to τ = 0 which otherwise could reveal
great excursions.

As in the proof of theorem 4.3, Hadamard’s criterion applies to the matrix Z(τ) for all
τ ∈ [0, 1] such that Z(τ) is a.s. invertible and the implicit estimators (α̃(τ), β̃(τ)) have a unique
solution.

Obviously, for τ = 1 the matrix Z from (4.11) is equal to Z(1), thus the equality (4.23) is
identical to (4.14) and the estimator for the dependent development factors (α̃, β̃) is equal to
(α̃(1), β̃(1)).

On the other hand, for τ = 0, the matrix Z(0) is diagonal and the estimator (α̃(0), β̃(0))
has an explicit solution with α̃(0) = 0 ∈ RI and β̃(0) = β̃CL the Chain-Ladder estimators from
(4.8). Of course, if we apply the Chain-Ladder estimators (α̃(0), β̃(0)) in the estimators (4.19)
and (4.20) we get the standard Chain-Ladder estimator for future claim amounts C̃i,j, for the
accident claim provisions P̃i and the total reserve P̃ (see [18]). In example 3.2 below, we show
how the total provision P̃ (τ) develops during the transition from Mack’s model (τ = 0) to the
dependent model (τ = 1).

Next, we want to establish a first-order perturbation of the univariate Chain-Ladder esti-
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mators (α̃(0) = 0, β̃(0) = β̃CL). For this purpose we write (4.23) for τ > 0 as
 Z1,1 0

0 Z2,2

+ τ

 0 Z1,2

Z2,1 0

 ·
 α̃(τ)

β̃(τ)

 =
 0
Y

+ τ

 X + (1− τ)Z1,2 · 1IJ−1

−(1− τ)Z2,1 · 1II

 .
(4.24)

The first-order perturbation term (α̃(0)′ , β̃(0)′) at τ = 0 of (α̃(τ), β̃(τ)) is characterized via
 α̃(τ)

β̃(τ)

 =
 0
β̃(0)

+ τ

 α̃(0)′

β̃(0)′

+ o(τ), (4.25)

where o(τ) is the Landau symbol representing any vector function of τ with o(τ)/τ → 0 for
τ ↘ 0. It follows from (4.24) and (4.25) that

 Z1,1 · α̃(0)′

Z2,2 · β̃(0)′

 =
 X + Z1,2 · (1IJ−1 − β̃(0))

−Z2,1 · 1II

 . (4.26)

Thereof we get the explicit solution, first for β̃(0)′ , then for α̃(0)′ :

β̃(0)′ =


β̃

(0)′
1
...

β̃
(0)′
J−1

=


−

I−2∑
m=0

Cm,2
/ I−1∑

m=1

Cm,1

...

−
I−J∑
m=0

Cm,J
/ I−J+1∑

m=1

Cm,J−1


. (4.27)

α̃(0)′ =



α̃
(0)′
0
...

α̃
(0)′
I−J

α̃
(0)′
I−J+1
...

α̃
(0)′
I−2
α̃

(0)′
I−1


=



(
J−1∑
n=1

C1,n(2− β̃(0)
n ) + C1,J

)/ J∑
n=1

C0,n

...(
J−1∑
n=1

CI−J+1,n(2− β̃(0)
n ) + CI−J+1,J

)/ J∑
n=1

CI−J,n(
J−2∑
n=1

CI−J+2,n(2− β̃(0)
n ) + CI−J+2,J−1

)/ J−1∑
n=1

CI−J+1,n

...(
CI−1,1(2− β̃(0)

1 ) + CI−1,2
)/ 2∑

n=1

CI−2,n

CI,1
/
CI−1,1



(4.28)

Even if one uses the standard Chain-Ladder estimators for future claims amounts or for claims
provision, it may be interesting to take a look at the first-order correction terms. Since α̃(0) = 0,
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the estimator for the claim amount has the following first-order correction term if i+ j > I+ 1:

C̃
(0)′
i,j = (i+ j − I − 1) · Ci−1,I+2−i · α̃(0)′

i−1 ·
j−1∏

ν=I+2−i
β̃(0)
ν

+Ci,I+1−i ·
j−1∑

ν=I+1−i

 j−1∏
ρ=I+1−i,ρ 6=ν

β̃(0)
ρ

 β̃(0)′
ν (4.29)

For the provision of the accident year i > I − J + 1 the correction term is

P̃
(0)′
i =

J−1∏
ν=I+1−i

β̃(0)
ν ·(i− (I − J)− 1) · Ci−1,I+2−i · α̃(0)′

i−1

/
β̃

(0)
I+1−i + Ci,I+1−i ·

J−1∑
ν=I+1−i

β̃(0)′
ν

/
β̃(0)
ν

 (4.30)

and the correction term of the total provision is P̃ (0)′ = ∑I
i=I−J+2 P̃

(0)′
i .

3 Examples

In this section we present a number of examples and applications of the model with dependent
development factors. The first example shows the importance of a good choice of the boundary
condition for the first accident year.

Example 3.1.
We regard a run-off triangle with I = 4, where the cumulative values are linearly decreasing in
accident years but constant in development years. Obviously, the classical Chain-Ladder devel-
opment factors are all equal to one and the provision is zero. If we take C0,· = (0, 0.5, 1.5, 2.0)
as boundary condition we get a provision of P = 2.074
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BDF Chain
j model Ladder

i 1 2 3 4 α̃
(1)
i P̃(1)

i P̃(0)
i

0 0,0 0,5 1,5 2,0 12,600
1 4,0 4,0 4,0 4,0 1,575 0,0 0,0
2 3,0 3,0 3,0 0,900 -12,600 0,0
3 2,0 2,0 0,500 2,610 0,0
4 1,0 12,064 0,0

β̃
(1)
j -0,7 -2,6 -5,3

β̃CL
j 1,0 1,0 1,0 ∑

P̃i 2,074 0,0

Table 4.1 – Run-off triangle of cumulative claims Ci,j for I = J = 4

However, if we apply the boundary condition (4.7) leading to the system (4.14) we find:

BDF Chain
j model Ladder

i 1 2 3 4 α̃
(1)
i P̃(1)

i P̃(0)
i

0 4,0 4,0 4,0 4,0 1,000
1 4,0 4,0 4,0 4,0 0,750 0,0 0,0
2 3,0 3,0 3,0 0,667 0,0 0,0
3 2,0 2,0 0,500 0,0 0,0
4 1,0 0,0 0,0

β̃
(1)
j 0,0 0,0 0,0

β̃CL
j 1,0 1,0 1,0 ∑

P̃i 0,0 0,0

Table 4.2 – Run-off triangle of cumulative claims Ci,j with von-Neumann boundary condi-
tion

Example 3.2.
In this example we compare our model with dependent bivariate development factors to the
following example of M. Wüthrich given in [38].
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Chain-Ladder
βj αi βj

1 2 3 4 5 6 7 8 9 10 11 1,5024 0,9690 0,0033
1 1 196 242 1 838 489 2 144 331 2 255 181 2 355 208 2 539 765 2 761 554 2 922 055 3 045 575 3 184 027 3 291 088 1,1535 1,0417 0,0033
2 1 225 928 1 818 969 2 066 089 2 337 709 2 542 414 2 711 028 2 980 627 3 161 874 3 424 628 3 549 130 3 786 885 1,1222 0,9398 0,0120
3 1 233 323 1 846 154 2 073 088 2 278 136 2 498 793 2 585 022 2 784 254 2 967 520 3 376 057 3 416 823 3 647 386 1,1185 1,0823 0,0318
4 1 267 049 1 923 375 2 169 457 2 330 124 2 593 996 2 839 750 3 241 585 3 679 853 3 795 873 4 117 558 4 126 216 1,0956 1,0176 0,0370
5 1 339 749 2 082 500 2 439 217 2 658 199 2 928 930 3 237 039 3 449 952 3 624 018 3 719 605 3 820 989 1,1187 1,1487 0,0338
6 1 471 940 2 171 472 2 470 916 2 834 330 3 230 480 3 626 482 4 231 529 4 940 961 5 198 128 1,0924 0,8405 0,0480
7 1 328 544 1 993 900 2 280 334 2 498 017 2 759 961 3 058 012 3 644 176 3 930 538 1,0593 0,8465 0,0671
8 1 246 696 1 695 630 1 867 971 2 253 053 2 429 396 2 695 728 2 963 261 1,0419 1,0611 0,0267
9 1 105 615 1 650 577 2 033 279 2 395 948 2 803 067 3 157 740 1,0409 0,8765 0,0510
10 1 012 347 1 541 137 1 747 709 2 011 153 2 536 544 1,0200
11 1 005 938 1 553 794 1 822 230 2 087 166 0,9935
12 1 025 464 1 507 839 1 828 583 1,0731
13 1 047 903 1 674 176 1,0475
14 1 097 661

                                                                                             Année de developpement j

i 1 2 3 4 5 6 7 8 9 10 11
0 1 196 242 1 838 489 2 144 331 2 255 181 2 355 208 2 539 765 2 761 554 2 922 055 3 045 575 3 184 027 3 291 088

1 1 196 242 1 838 489 2 144 331 2 255 181 2 355 208 2 539 765 2 761 554 2 922 055 3 045 575 3 184 027 3 291 088
2 1 225 928 1 818 969 2 066 089 2 337 709 2 542 414 2 711 028 2 980 627 3 161 874 3 424 628 3 549 130 3 786 885
3 1 233 323 1 846 154 2 073 088 2 278 136 2 498 793 2 585 022 2 784 254 2 967 520 3 376 057 3 416 823 3 647 386
4 1 267 049 1 923 375 2 169 457 2 330 124 2 593 996 2 839 750 3 241 585 3 679 853 3 795 873 4 117 558 4 126 216
5 1 339 749 2 082 500 2 439 217 2 658 199 2 928 930 3 237 039 3 449 952 3 624 018 3 719 605 3 820 989 4 393 515
6 1 471 940 2 171 472 2 470 916 2 834 330 3 230 480 3 626 482 4 231 529 4 940 961 5 198 128 4 527 763 5 277 711
7 1 328 544 1 993 900 2 280 334 2 498 017 2 759 961 3 058 012 3 644 176 3 930 538 4 632 925 3 929 349 4 636 562
8 1 246 696 1 695 630 1 867 971 2 253 053 2 429 396 2 695 728 2 963 261 3 469 282 4 154 427 3 436 936 4 100 076
9 1 105 615 1 650 577 2 033 279 2 395 948 2 803 067 3 157 740 3 250 820 3 837 011 4 665 444 3 771 186 4 542 725
10 1 012 347 1 541 137 1 747 709 2 011 153 2 536 544 2 861 732 2 946 129 3 504 611 4 324 542 3 420 931 4 156 358
11 1 005 938 1 553 794 1 822 230 2 087 166 2 653 712 3 017 166 3 106 974 3 723 756 4 660 853 3 613 674 4 423 818
12 1 025 464 1 507 839 1 828 583 2 095 594 2 703 119 3 097 525 3 191 358 3 852 583 4 888 933 3 720 525 4 584 764
13 1 047 903 1 674 176 1 967 910 2 272 557 2 973 134 3 434 064 3 540 745 4 304 182 5 535 218 4 140 250 5 131 237
14 1 097 661 1 757 331 2 067 216 2 405 354 3 190 847 3 715 168 3 834 340 4 692 467 6 112 808 4 499 856 5 604 376
βj(0) 1,5024 1,1535 1,1222 1,1185 1,0956 1,1187 1,0924 1,0593 1,0419 1,0409
βj(0)' ‐1,5130 ‐1,1681 ‐1,1295 ‐1,1109 ‐1,0700 ‐1,1100 ‐1,0487 ‐0,9583 ‐1,0052 ‐0,9824
βj(τ) 0,0033 0,0033 0,0120 0,0318 0,0370 0,0338 0,0480 0,0671 0,0267 0,0510

Bivariate Chain-Ladder

Table 4.3 – Data of the run-off ’triangle’ from [38]

We find the development factors of the Chain-Ladder model, resp. of the bivariate model
as follows:

Chain-Ladder

0,9690

1,5024 1,0417 0,0033

1,1535 0,9398 0,0033

1,1222 1,0823 0,0120

1,1185 1,0176 0,0318

1,0956 1,1487 0,0370

1,1187 0,8405 0,0338

1,0924 0,8465 0,0480

1,0593 1,0611 0,0671

1,0419 0,8765 0,0267

1,0409 1,0200 0,0510

0,9935

1,0731

1,0475

bivariat Chain-Ladder

Table 4.4 – The development factors of the Chain-Ladder and the bivariate model

This gives the estimations of the payments in future years:

Chain-Ladder
βj αi βj

1 2 3 4 5 6 7 8 9 10 11 1,5024 0,9690 0,0033
1 1 196 242 1 838 489 2 144 331 2 255 181 2 355 208 2 539 765 2 761 554 2 922 055 3 045 575 3 184 027 3 291 088 1,1535 1,0417 0,0033
2 1 225 928 1 818 969 2 066 089 2 337 709 2 542 414 2 711 028 2 980 627 3 161 874 3 424 628 3 549 130 3 786 885 1,1222 0,9398 0,0120
3 1 233 323 1 846 154 2 073 088 2 278 136 2 498 793 2 585 022 2 784 254 2 967 520 3 376 057 3 416 823 3 647 386 1,1185 1,0823 0,0318
4 1 267 049 1 923 375 2 169 457 2 330 124 2 593 996 2 839 750 3 241 585 3 679 853 3 795 873 4 117 558 4 126 216 1,0956 1,0176 0,0370
5 1 339 749 2 082 500 2 439 217 2 658 199 2 928 930 3 237 039 3 449 952 3 624 018 3 719 605 3 820 989 1,1187 1,1487 0,0338
6 1 471 940 2 171 472 2 470 916 2 834 330 3 230 480 3 626 482 4 231 529 4 940 961 5 198 128 1,0924 0,8405 0,0480
7 1 328 544 1 993 900 2 280 334 2 498 017 2 759 961 3 058 012 3 644 176 3 930 538 1,0593 0,8465 0,0671
8 1 246 696 1 695 630 1 867 971 2 253 053 2 429 396 2 695 728 2 963 261 1,0419 1,0611 0,0267
9 1 105 615 1 650 577 2 033 279 2 395 948 2 803 067 3 157 740 1,0409 0,8765 0,0510
10 1 012 347 1 541 137 1 747 709 2 011 153 2 536 544 1,0200
11 1 005 938 1 553 794 1 822 230 2 087 166 0,9935
12 1 025 464 1 507 839 1 828 583 1,0731
13 1 047 903 1 674 176 1,0475
14 1 097 661

αi' βj' Pi'

0,9046 -1,5130
1 2 3 4 5 6 7 8 9 10 11 0,9757 -1,1681

5 4 393 515 0,8789 -1,1295
6 4 527 763 5 277 711 1,0165 -1,1109
7 4 632 925 3 929 349 4 636 562 0,9421 -1,0700
8 3 469 282 4 154 427 3 436 936 4 100 076 1,0613 -1,1100
9 3 250 820 3 837 011 4 665 444 3 771 186 4 542 725 0,7599 -1,0487
10 2 861 732 2 946 129 3 504 611 4 324 542 3 420 931 4 156 358 0,7526 -0,9583
11 2 653 712 3 017 166 3 106 974 3 723 756 4 660 853 3 613 674 4 423 818 0,9465 -1,0052
12 2 095 594 2 703 119 3 097 525 3 191 358 3 852 583 4 888 933 3 720 525 4 584 764 0,7661 -0,9824
13 1 967 910 2 272 557 2 973 134 3 434 064 3 540 745 4 304 182 5 535 218 4 140 250 5 131 237 0,8717
14 1 757 331 2 067 216 2 405 354 3 190 847 3 715 168 3 834 340 4 692 467 6 112 808 4 499 856 5 604 376 0,8250

0,8667
1,0475

β 1,502444 1,153505 1,122191 1,118521 1,095613 1,118668 1,092369 1,059334 1,041862 1,040935

β 1,5024444 1,153505 1,1221908 1,1185207 1,0956134 1,118668 1,0923691 1,0593336 1,0418615 1,0409347
βj(1) 0,0033337 0,0033368 0,0120397 0,0318201 0,0369945 0,033772 0,0479633 0,0670775 0,0266675 0,0509993
βj(0) -1,513041 -1,168107 -1,12946 -1,110918 -1,070016 -1,110008 -1,0487 -0,958257 -1,005174 -0,982401

β Chain-Ladder βj(0)'
1,5024444 -1,513041
1,153505 -1,168107

1,1221908 -1,12946
1,1185207 -1,110918

Bivariate Chain-Ladder

Table 4.5 – The estimations for future years

For the provision the different models shows the following results:
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4.4 Bootstrap for the BDF Model

provisions Mack’s Chain Wüthrich’s BDF
Ladder Bayesian model model

total provision 12 411 560 12 374 052 18 556 355

Table 4.6 – Comparison of the total provision for different models

The following diagram shows the behaviour of the total provision P̃ (τ) during the transition between
Mack’s model (τ = 0) and ours (τ = 1).
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Figure 4.1 – Transition of the total provision between Mack’s model in the bivariate one

For the first-order correction terms
(
α̃(0)′ , β̃(0)′

)
of
(
α̃(τ), β̃(τ)

)
and for the correction terms P̃ (0)′

at τ = 0, we get:

0,9046
0,9757 -1,5130
0,8789 -1,1681
1,0165 -1,1295
0,9421 -1,1109
1,0613 -1,0700 133 693
0,7599 -1,1100 -2 316 538
0,7526 -1,0487 149 166
0,9465 -0,9583 -438 167
0,7661 -1,0052 -3 525 736
0,8717 -0,9824 -2 026 580
0,8250 -378 135
0,8667 -3 631 222
1,0475 -5 102 817

3 203 302
Sum -13 933 034

Table 4.7 – First-order correction terms of the development factors and the provision

4 Bootstrap for the BDF Model

New systems of regulation and supervision of insurances, like Solvency II and the Swiss Solvency
Test (SST), uses not only a sound estimation of the ’mean value’ (or more precisely the market-
consistent best estimate) of liabilities, but in addition they require the applications of operators
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Chapter 4. Chain-ladder with Bivariate Development factors

of their whole distribution, like the value at risk (VaR) or the conditional tail expectation (Tail-
VaR) (see e.g. [10] for details). In the case of outstanding liabilities, the problem to estimate
their distribution is a very demanding task.

One possible solution to this problem — at least approximately — is the application of
bootstrapping to the IBNR-data as developed in [7], [8], and [9]. We adapt these methods to
the bivariate Chain-Ladder scheme.

The first step is to establish how the mean values E[Ci,j] depends on the left boundary
values (E[Cm,1])1≤m≤I and the upper boundary values (E[C0,n])2≤n≤J . For i < I, the answer is
given in the following proposition.

Proposition 4.8. For 1 ≤ i ≤ I − 1, 2 ≤ j ≤ J we have

E [Ci,j] =
i−1∏
µ=0

αµ

j∑
n=2

E [C0,n]
(
i+ j − n− 1

i− 1

) j−1∏
ν=n

βν

+
j−1∏
ν=1

βν
i∑

m=1
E [Cm,1]

(
i+ j −m− 2

j − 2

)
i−1∏
µ=m

αµ. (4.31)

Proof. We proceed by induction on ` = i+ j. For ` = 3, i.e. i = 1 and j = 2, we have by (4.6)

E [C1,2] = E [C0,2]α0 + E [C1,1] β1.

which is exactly (4.31). Recalling the convention that ∑`
µ=κ · · · = 0 whenever κ > `, we get for
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4.4 Bootstrap for the BDF Model

` > 3, again by (4.4), resp. (4.6), and the induction hypothesis

E [Ci,j] = E [Ci−1,j]αi−1 + E [Ci,j−1] βj−1

=
j∑

n=2
E [C0,n]

(
i− 1 + j − n− 1

i− 2

) i−2∏
µ=0

αµ

αi−1

j−1∏
ν=n

βν

+
i−1∑
m=1

E [Cm,1]
(
i− 1 + j −m− 2

j − 2

)(
i−2∏
µ=m

αµ

)
αi−1

j−1∏
ν=1

βν

+
j−1∑
n=2

E [C0,n]
(
i+ j − 1− n− 1

i− 1

)
i−1∏
µ=0

αµ

j−2∏
ν=n

βν

 βj−1

+
i∑

m=1
E [Cm,1]

(
i+ j − 1−m− 2

j − 3

)
i−1∏
µ=m

αµ

j−1∏
ν=1

βν

 βj−1

=
j∑

n=2
E [C0,n]

(
i+ j − n− 1

i− 1

)
i−1∏
µ=0

αµ

j−1∏
ν=n

βν

+
i∑

m=1
E [Cm,1]

(
i+ j −m− 2

j − 2

)
i−1∏
µ=m

αµ

j−1∏
ν=1

βν .

If for a negative lower index −1, we define the binomial coefficient as the Kronecker symbol:

(
m

−1

)
= δm,−1 =

 1 if m = −1,
0 else .

(4.32)

By this, we see that (4.31) also holds trivially for j = 1 and 1 ≤ i ≤ I − 1.
In nearly all IBNR-estimations, the left lower corner of the run-off triangle is a critical point,
since only one value is available for the accident year I. This is particularly true for the
classical Chain-Ladder method where the provision for the accident year I is given by P̃CL

I =
E [CI,1]

(∏J−1
j=1 β̃

CL
j − 1

)
.

To stabilize this critical corner, we make use of the fact that Assumption 4.1 (i) make also sense
for j = 1 since Ci+1,0 = 0 for all 1 ≤ i ≤ I − 1. In the arithmetic mean we find

E [CI,1] = 1
I

I∑
m=1

I−1∏
µ=m

αµE [Cm,1] . (4.33)

Collecting the equations (4.31), together with (4.32) in the case j = 1 and the relation (4.33)
for E [CI,1], we rewrite the dependence of the run-off triangle on the boundary values as follows
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Chapter 4. Chain-ladder with Bivariate Development factors

in a matrix form:

(E [Ci,j])1≤i≤I
1≤j≤(I−i+1)∧J

=W
 V1

V2

 :=
(
A(1)A(2), B(1)B(2)

) V1

V2

 . (4.34)

Here we have set:

V1 := (E [C0,j])2≤j≤J , V2 := (E [Ci,1])1≤i≤I , (4.35)

A(1) :=
δ(i,j),(m,n)

i−1∏
µ=0

αµ


(i,j),(m,n)∈P

,

B(1) :=
δ(i,j),(m,n)

j−1∏
ν=1

βν


(i,j),(m,n)∈P

, (4.36)

and

A(2) :=
1In≤j

(
i+ j − n− 1

i− 1

) j−1∏
ν=n

βν


(i,j)∈P,2≤n≤J

,

B(2) :=
(
B

(2)
(i,j),m

)
(i,j)∈P,1≤m≤I

with

B
(2)
(i,j),m :=


1Im≤i

(
i+j−m−2

j−2

)∏i−1
µ=m αµ. for i < I

1
I

∏I−1
µ=m αµ for i = I

(4.37)

Based on the given data Ĉ from (4.2), we use the linear regression estimator (Ṽ tr
1 , Ṽ tr

2 )tr to
estimate the mean values of the boundaries. We get

 Ṽ1

Ṽ2

 =



C̃0,2
...

C̃0,J

C̃1,1
...

C̃I,1


=
(
W trW

)−1
W tr Ĉ. (4.38)

Having thus found estimator for the mean values of the boundaries we get estimator for the
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4.4 Bootstrap for the BDF Model

mean values using (4.4) recursively:

C̃i+1,j+1 = α̃i · C̃i,j+1 + β̃j · C̃i+1,j (4.39)

for 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1.
It is well known that in order to apply a bootstrapping procedure, the usual assumptions

about the (conditional) means, as they are given in our case by the Assumption 4.1, have to
be strengthened. Standard conditions include independent distributions which may be normal,
overdispersed Poisson, or Gamma. In our case, it seems to be appropriate to adopt for the last
case, i.e. for independent Gamma distributions with a uniform shape parameter.

Assumption 4.9. (i) For 1 ≤ i ≤ I, 1 ≤ j ≤ J , the random variables Ci,j are Gamma
distributed with a common shape parameter φ, but dependent scale parameter 1/ψi,j. The
latter are supposed to satisfy the following linear system

ψi,j=
j∑

n=2
ψ0,n

(
i+ j − n− 1

i− 1

)
i−1∏
µ=0

αµ

j−1∏
ν=n

βν+
i∑

m=1
ψm,1

(
i+ j −m− 2

j − 2

)
i−1∏
µ=m

αµ

j−1∏
ν=1

βν (4.40)

where 1 ≤ i ≤ I − 1, 2 ≤ j ≤ J . Of course, (4.40) is an immediate consequence of the
conditions made in Assumption 4.1. Under these assumptions, we have that

E [Ci,j] = φ ψi,j and var(Ci,j) = φ ψ2
i,j. (4.41)

Consequently, the multiplicative Pearson residuals Ri,j, defined by

Ri,j := Ci,j
φ ψi,j

, (4.42)

are Gamma variables with mean 1 and variance 1
/
φ.

(ii) We assume that the residuals are exchangeable.

Now in analogy to (4.31), the estimation of the boundary values from (4.38) deliver estima-
tions for φ ψi,j with 1 ≤ i ≤ I − 1, 2 ≤ j ≤ (I + 1− i) ∧ J ; more precisely we have

φ̃ ψi,j := C̃i,j =
j∑

n=2
C̃0,n

(
i+ j − n− 1

i− 1

)
i−1∏
µ=0

α̃µ

j−1∏
ν=n

β̃ν

+
i∑

m=1
C̃m,1

(
i+ j −m− 2

j − 2

)
i−1∏
µ=m

α̃µ

j−1∏
ν=1

β̃ν . (4.43)
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Chapter 4. Chain-ladder with Bivariate Development factors

According to (4.42), we get the observed multiplicative Pearson residuals R̂i,j by

R̂i,j := Ĉi,j

C̃i,j
(4.44)

where 1 ≤ i ≤ I − 1, 1 ≤ j ≤ (I + 1 − i) ∧ J . The bootstrapping procedure assumes that the
observed residuals R̂i,j may be treated as observations of iid random variables.

Remark 4.10.

(i) Most bootstrap calculations of the residuals include the case (i, j) = (I, 1) where the
observed value ĈI,1 is also used as the estimated mean C̃I,1. As a result, the observed
residual is deterministic, either R̂I,1 = 0 for additive residuals or R̂I,1 = 1 for multiplica-
tive residuals. Our estimator C̃i,j of the mean E [Cm,1] include all data Ĉ from (4.2), i.e;
all observations of the run-off ’triangle’. Therefore our residual R̂I,1 is not deterrministic.

(ii) In Assumption 4.9 we suppose that the random variables Ci,j are Gamma distributed.
This restricts the application of bootstrapping essentially to IBNR situation stemming
from attritional losses. One should clearly avoid to apply the bootstrap procedure to
situations where heavy tailed losses, like Pareto distributed ones, are involved.

The bootstrap procedure now runs as follows:

(i) To every index-pair (i, j) of the upper triangle, i.e. 1 ≤ i ≤ I, 1 ≤ j ≤
(I + 1 − i) ∧ J , one of the observed residuals from (4.44) is attributed in an
independent random way allowing for repetitions. The result is denoted by
R̂κ(i,j).

(ii) The resampled observed cumulative claims amounts are then defined as

Ĉ
(κ)
i,j := C̃i,j R̂κ(i,j). (4.45)

(iii) If we replacing Ĉi,j by Ĉ(κ)
i,j in (4.16), we get the resampled estimations (α̂(κ), β̂(κ)).

(iv) The last paragraph of Section 1.3 describes how to derive the resampled es-
timations Ĉ(κ)

i,j for future years and the resampled estimations P̂ (κ)
i (α̂(κ), β̂(κ))

of the provisions for year i ≥ I − J + 2, as well as of the total provision
P̂ (κ)(α̂(κ), β̂(κ)).

(v) The procedure restarts at (i) by a new sampling of the residuals to deliver new
resampled estimations of provisions in (iv).
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4.5 Example for bootstrapping

(vi) With a sufficiently large number of resampled estimations, we can construct
empirical distribution, calculate an empirical VaR or TailVaR for the provi-
sions, etc.

5 Example for bootstrapping

For comparison reasons, we apply the bootstrap procedure to the example below given by P.
England and R. Verrall (see [6], [7], [8], and [9]).

1 2 3 4 5 6 7 8 9 10

1 357 848 1 124 788 1 735 330 2 218 270 2 745 596 3 319 994 3 466 336 3 606 286 3 833 515 3 901 463

2 352 118 1 236 139 2 170 033 3 353 322 3 799 067 4 120 063 4 647 867 4 914 039 5 339 085

3 290 507 1 292 306 2 218 525 3 235 179 3 985 995 4 132 918 4 628 910 4 909 315

4 310 608 1 418 858 2 195 047 3 757 447 4 029 929 4 381 982 4 588 268

5 443 160 1 136 350 2 128 333 2 897 821 3 402 672 3 873 311

6 396 132 1 333 217 2 180 715 2 985 752 3 691 712

7 440 832 1 288 463 2 419 861 3 483 130

8 359 480 1 421 128 2 864 498

9 376 686 1 363 294

10 344 014

Table 4.8 – Data of the exemple from [7]

The calculation of the BDFs gives the following table:

0,9374 0

1,2531 0,0866 0

0,9467 0,1072 -109804

0,9867 0,1108 391961

0,8116 0,0793 1018326

0,9924 0,0568 1008099

1,0423 0,0483 1508003

1,0753 0,0689 2337711

0,9589 0,0910 3860345

0,9133 0,0637 5566478

6458544

Sum 22 039 663

Table 4.9 – The bivariate development factors

For the first multiplicative residuals we find the following results:
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1 2 3 4 5 6 7 8 9 10

1 1,0000 1,0211 1,0548 0,9579 0,9788 1,0385 0,9902 0,9914 0,9885 1,0000

2 1,0046 0,8762 0,9806 1,0655 1,0091 0,9763 1,0125 1,0081 1,0067

3 0,9509 0,9488 0,9900 1,0023 1,0433 0,9812 1,0174 0,9962

4 0,9347 1,0336 0,9308 1,0903 0,9968 0,9991 0,9760

5 0,9531 0,9843 1,0444 0,9586 0,9663 1,0302

6 0,9485 1,1282 1,0148 0,9221 0,9841

7 0,9858 1,0141 1,0184 0,9573

8 0,9924 1,0168 1,0590

9 1,0022 0,9932

10 0,8498

Table 4.10 – The multiplicative residuals

Finally, a thousand simulations yield for the total provisions a histogram of the Diagram
4.2. This empirical distribution is in line with the results in [7], [8], and [9].

Figure 4.2 – Histogram of the total provisions
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General Conclusion

In this thesis we have developed our own models for claims reserves, the main result is a gen-
eralization of the Mack’s model in the case of α ≡ 0, the most popular stochastic model using
in the IBNR theory, derived from the well known Chain-Ladder method.

The bivariate development factors model presented in chapter 4 includes dependencies of
the loss payments between accident and development years, in this way, the whole run-off tri-
angle is covered by a net of dependencies. as mentioned above the boundary conditions on the
final provision has an important influence, of these the usual stationarity assumption in IBNR
methods is replaced by a condition on the upper boundary of the IBNR-triangle which reminds
the von-Neumann boundary condition in partial differential equations. The right-hand bound-
ary of the triangle is naturally subject to a Dirichlet-type condition since no claims settlements
can be done before the accident has occurred. To integrate Mack’s model, a smooth transition
from it to our model is established. In our approach to the bootstrap method, we first apply
a linear regression estimator for the mean of the boundary values with special attention to the
critical value on the lower corner of the triangle. We then choose a multiplicative version for
the residuals with an identical Gamma distribution.

This new incremental approach – developed by modifying Mack’s model assumptions – was
aimed to estimate the development factors (β) and provisions using only incremental claims.
Starting from our formulae we can proceed the same as in Mack’s model, thus the identical
results. To apply the bootstrap for our approach we developed a new formula see (3.19) which
avoid three steps in calculations. We can also examine the incremental approach in calendar
year view, and we focus our interest from the development years (j) to the calendar years (t)
which give us a new view for the past obligation of each calendar year (t) and also the estimation
of the obligations left to pay of each calendar year (t), accident year (i) and the overall reserve,
and to give a clear view we proposed a new form of tabulation Figure 3.4. The incremental
approach avoid lot of steps in different cases, with the simplicity of the formulae used to give
identical results, which brings lot of advantages for insurance companies.
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Appendix

In Theorem 4.3 the Hadamard theorem is used in a general form making us of the following
definition:

Definition D.11. A square matrix A = (ai,j)1≤i,j≤n ∈ Cn×n is said to be irreducible diagonally
dominant if the following properties hold:

(i) A is irreducible.

(ii) A is diagonally dominant, i.e.

| ai,i |≥
n∑

1≤j≤n,j 6=i
| ai,j | (D.1)

and for at least one i0 ≤ n, we have a strict inequality in (D.1).

Hadamard’s theorem runs now as follows:

Theorem D.12. A irreducible diagonally dominant matrix A is invertible.

For the proof, we refer to [15], corollary 6.2.27. It can also be found in [34], theorem 1.21
or in [35], theorem 1.11.

In fact, in a less general form, this theorem goes back to L. Lévy in 1881 and has been
found independently by several other mathematicians, for example by O. Taussky [32]. A nice
history of the theorem can be found in [31].
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