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Abstract

The abstract of this thesis, which concerns with the oscillatory behavior of the solutions of

di�erential equations of second order and of partial equations , is as follows:

The �rst contribution, subject of chapter two, is concerned with a simple generalization of

Parhi and Kirane [28]. Our essential contribution in this part of thesis is to consider the

coe�cients and the delays as functions.

The second contribution, subject of chapter three, is to consider the following equation

without forcing term

[
r(t)ψ(x(t))x′(t)

]′
+ p(t)x′(t) + q(t)f(x(t)) = 0, t ≥ t0 ≥ 0, (1)

where t0 ≥ 0, r(t) ∈ C1([t0,∞); (0,∞)), p(t) ∈ C([t0,∞)); R), q(t) ∈ C([t0,∞)); R), p(t) and

q(t) are not identical to zero on [t?,∞[ for some t? ≥ t0, f(x), ψ(x) ∈ C(R,R) and ψ(x) > 0

for x 6= 0.

We do not only prove the oscillation of equation (1), but we also localize its zeros thanks to

an idea of Nasr [27].

Our result is obtained under the following conditions:

• (C1) For some positive constant K, f(x)/x ≥ K > 0 for all x 6= 0.

• (C2) For some two positive constants C1, 0 < C ≤ ψ(x) ≤ C1

• (C3) Suppose further there exists a continuous function u(t) such that u(a) = u(b) = 0,

u(t) is di�erentiable on the open set (a, b), a, b ≥ t?, and∫ b

a

[(
Kq(t)− p2(t)

2Cr(t)

)
u2(t)− 2C1r(t)(u

′)2(t)
]
dt ≥ 0 . (2)

The condition (C3) ensures that any solution of (1) admits a zero in [a, b].

This last result is an extension of the result of Kirane and Rogovchenko [21] where the

localization of the zeros is not treated.

On the other hand, our method to obtain previous result is very simple in the sense that we

use a simple Ricatti's transformation:

v(t) = −x
′(t)

x(t)
, t ∈ [a, b], (3)
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with respect to the work of Kirane and Rogovchenko [21] where the following Ricatti's

transformation is used:

v(t) = ρ
r(t)ψ(x(t))x′(t)

x(t)
. (4)

Therefore, with the Ricatti's transformation (3), the computations could be done easily.

We should mention that, for a given second order equation, there is neither a general rule

to choose the Ricatti's transformation nor a Darboux transformation:

v(t) =
A(t)x(t) +B(t)x′(t)

c(t)x(t) +D(t)x′(t)
. (5)

The technique used to study the oscillation of (1) is extended to study the oscillation of the

equation with forcing term

[
r(t)ψ(x(t))x′(t)

]′
+ p(t)x′(t) + q(t)f(x(t)) = g(t), t ≥ t0 ≥ 0, (6)

with the same conditions cited above for r, ψ, p, and q.

The forcing term g is assumed to satisfy the condition:

(C4): There exists an interval [a, b], where a, b ≥ t?, such that g(t) ≥ 0 and there exists

c ∈ (a, b) such that g(t) has di�erent signs on [a, c] and [c, b].

We assume in addition that

(C1)? : f(x)
x|x| ≥ K,

for some positive constant K and for all x 6= 0.

Furthermore, we assume that there exists a continuous function u(t) such that u(a) = u(b) =

u(c) = 0, u(t) is di�erentiable on the open set (a, c) ∪ (c, b), and satis�es the inequalities∫ c

a

[(√
Kq(t)g|(t)| − p2(t)

2Cr(t)

)
u2 − 2C1r(t)(u

′)2(t)
]
d(t) ≥ 0, (7)∫ b

c

[(√
Kq(t)g|(t)| − p2(t)

2Cr(t)

)
u2 − 2C1r(t)(u

′)2(t)
]
d(t) ≥ 0 . (8)

Then every solution of equation (1) has a zero in [a, b].

The third contribution, subject of chapter four, in our thesis is a generalization of our work

of Magister [3].



We are concerned with the oscillation of the following hyperbolic equation:

utt (x, t) + αut(x, t)− [∆u(x, t) +
k∑
i=1

bi(t)∆u(x, σi(t))]

+ C(x, t, u(x, t), u(x, τ1(t)), u(x, τ2(t)), . . . , u(x, τm(t))) = f(x, t), (9)

where (x, t) ∈ Q = Ω× (0,∞) and Ω is a bounded domain of Rn with a su�ciently regular

boundary Γ and ∆ is the Laplacian in Rn.

Under some suitable conditions on σi(t), τi(t), the coe�cients bi(t), as well as some condition

on the non�linearity C, we prove that all the solution of (9) are oscillatory. In addition, we

provide a localization for the zeros of such oscillatory solution.

Key words: Di�erential equation of second order, Hyperbolic partial di�erential equa-

tion with delays, Oscillation

AMS Classi�cation: 34C10, 34K11, 92B05
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Chapter 1

Introduction

While studying the heat conduction, C. Sturm, in 1936, posed the problem of oscillations of

linear di�erential equations of the form

x
′′
(t) + a(t)x(t) = 0. (1.1)

Since the work of Sturm, several works have been devoted for the oscillation theory.

The works of Sturm and Liouville, e.g. Sturm separation and comparison theorems, could

be found in the standard books of di�erential equations..

Swanson [38] summarized the classical results of the oscillation theory. We also �nd a nice

review of such theory in Kreith �Oscillation theory" Springer, 1973.

The oscillation theory of non linear di�erential equations of second order has also attracted

an attention, see for instance the books of Bogolyubov and Mitropolski �Méthodes asympto-

tiques en théorie des oscillations non linéaires", 1962, of Roseau �Vibrations non linéaires",

1966, and of Coddington and Levinson �Theory of ODEs", 1955. We do not know exactly

the �rst work on the oscillation theory of non linear di�erential equations of second order.

It seems that a �rst attempt to study the oscillation theory of di�erential equation with

delays was done by Fite in 1921.

Fite considered the following di�erential equation of order n with a delayed argument :

y(n)(t) + p(t)y(r(t)) = 0, t ∈ R, (1.2)

where n ≥ 1, p ∈ C(R), r(t) = k − t, t ∈ R, and k is a positive constant.

We should mention that for di�erential equations of �rst order, not considered here, there is

1



2 Chapter 1. Introduction

a drastic between an equation of type:

y′(t) + p(t)y(t) = 0, p ∈ C(R+), (1.3)

and an equation with a delay of type

y′(t) + y(t− π

2
) = 0, (1.4)

for example. The solutions of (1.3) have constant signs, whereas the equation (1.4) admits

an oscillatory solution y(t) = sin(t). This last oscillatory behaviour is caused by the delay
π
2
which appears in the argument of the second term on the left hand side of (1.4).

This remark shows that the study of equations with delays, even those simple, require a

particular attention.

It seems that the study of the oscillatory solutions of ordinary di�erential equations, with or

without delays, or of partial di�erential equations is important in practice, e.g. in biology,

mechanics, electronics, physics of elementary particles,....

Our �rst contribution in this thesis is concerned with an ordinary non linear di�erential

equation of second order with a forcing term in the general case, whereas the second contri-

bution is concerned with a non linear hyperbolic equation with delays and a forcing term.

The �rst contribution, the subject of the third chapter and the article [2], is an extension

of Kirane and Rogovchenko [20]. In [20], the authors show only that the solutions are oscil-

latory, whereas in our work we provide with a criterion allowing us to localize the zeros of

such oscillatory solutions. These results are important in practice.

In [2], we suggest a simple Ricatti's transformation, in contrast of [20], to study the oscillation

of the equation under consideration. This simple transformation makes our computations

easy.

We should mention that, for a given second order equation, there is neither a general rule

to choose the Ricatti's transformation nor a Darboux transformation:

v(t) =
A(t)x(t) +B(t)x′(t)

c(t)x(t) +D(t)x′(t)
.

The second contribution, the subject of the fourth chapter, does not only provide us with

some criterion for the oscillation behaviour of the solutions of an hyperbolic partial di�eren-

tial equation, but also allows us to localize the zeros of such oscillatory solutions.

In the end of thesis, we suggest some problems which could be good paths of research to be

followed in the future.
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1.1 Some examples of oscillatory solutions

1.1.1 The case of ordinary di�erential equations

Consider the following di�erential equation:

x
′′
(t) + q(t)x(t) = 0, t ∈ [t0,+∞), (1.5)

where the function q is locally integrable.

The following criterion is due to Wintner [39]: if the following condition

lim
t→+∞

1

t

∫ t

t0

dr

∫ r

t0

q(s)ds = +∞ (1.6)

is ful�lled, then the solutions of equation (1.5) are oscillatory. Hartman [17] showed that

the condition (1.6) could be replaced by an upper limit.

Theorem 1.1.1. (cf. Kamenev [23])

Let the function t1−nAn(t), where An is the n�th primitive of the function q, be not

bounded above for some n > 2 (not necessarily integral). Then the solutions of (1.5) are

oscillatory.

Proof We can remark that

An =
1

Γ(n)

∫ t

t0

(t− s)n−1q(s)ds, (1.7)

so one could write the condition of Theorem 1.1.1 as

lim sup
t→+∞

t1−n
∫ t

t0

(t− s)n−1q(s)ds = +∞. (1.8)

If we set

w =
x
′

x
, (1.9)

Then equation (1.5) is transformed into

w
′
+ w2 + q = 0, (1.10)

which implies that
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∫ t

t0

(t− s)n−1w
′
(s)ds+

∫ t

t0

(t− s)n−1w2(s)ds = −
∫ t

t0

(t− s)n−1q(s)ds. (1.11)

Thanks to an integration by parts, we have

∫ t

t0

(t− s)n−1w
′
(s)ds = (n− 1)

∫ t

t0

(t− s)n−2w(s)ds− w(t0)(t− t0)n−1. (1.12)

Inserting this in (1.11) and multiplying by t1−n, we get

t1−n
∫ t

t0

(t− s)n−1q(s)ds = −t1−n
∫ t

t0

(
(n− 1)(t− s)n−2w(s) + (t− s)n−1w2(s)

)
ds

+ w(t0)(
t− t0
t

)n−1

= −t1−n
∫ t

t0

{(t− s)
n−1

2 w(s) +
n− 1

2
(t− s)

n−3
2 }2

+
(n− 1)2(t− t0)n−2

4(n− 2)tn−1

+ w(t0)(
t− t0
t

)n−1

≤ (n− 1)2(t− t0)n−2

4(n− 2)tn−1
+ w(t0)(

t− t0
t

)n−1

≤ C1, (1.13)

for all t ≥ t0, which contradicts assumption (1.8). �

Remark 1.1.1. It is useful to mention that assumption (1.6) implies assumption (1.8) for

n = 3. Therefore the Wintner's criterion for the oscillation of equation (1.5) could be a

particular application of Theorem 1.1.1.

1.1.2 Oscillation of the solution of some time dependent equations

in higher dimensions

In the previous subsection, we quoted some criteria for the oscillation of some one dimensional

di�erential equations. These criteria are given in [23] and [39].

In this subsection, we quote some criteria for the oscillation of some di�erential equations in

higher dimensions. The models and the criteria we will quote in this subsection are given in

Parhi and Kirane [28]. These models are important from the point of view that they appear
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in biology.

We will focus our attention on the following �delay " equations:

utt(x, t) + βutt(x, t− ρ) + γut(x, t− θ)− {∆u(x, t) + α∆u(x, t− τ)}

+ c(x, t, u(x, t), u(x, t− σ)) = f(x, t), (x, t) ∈ Q = Ω× (0,∞), (1.14)

where Ω is a bounded domain in Rd, with regular boundary Γ = ∂Ω.

Of course, to get the well�posedness of (1.14), we need additional conditions. Some of these

conditions are concerned with the boundary conditions like

u(x, t) = ψ(x, t), (x, t) ∈ Γ× (0,∞), Dirichlet boundary conditions. (1.15)

∇u(x, t) · n(x) = ψ̃(x, t), (x, t) ∈ Γ× (0,∞), Neumann boundary conditions. (1.16)

∇u(x, t) · n(x) + µu(x, t) = 0, (x, t) ∈ Γ× (0,∞), , Robin boundary conditions. (1.17)

(Where we have denoted, as usual, n(x), x ∈ Γ, the unit vector normal to the boundary Γ

on the point x, outward to Ω.)

Here

∆u(x) =
d∑
i=1

∂2u

∂x2
i

, x = (x1, x2, x3, . . . , xd). (1.18)

The functions ψ, ψ̃ in (1.15)�(1.16) are given functions, and µ in (1.17) is positive.

The constants α, β, γ, θ, τ, σ which appear in (1.14) are positive. In addition to this, we

assume that

f ∈ C(Q). (1.19)

We need the following assumption on the function c which appears (1.14):

Assumption 1. We assume that the function c satis�es
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H1 : c(x, t, ξ, η) is a real valued continuous function on Q× R× R.

H2 : c(x, t, ξ, η) ≥ 0 for all (x, t, ξ, η) ∈ Q× R+ × R+.

H3 : c(x, t,−ξ,−η) = −c(x, t, ξ, η) is a real valued continuous function on Q× R+ × R+.

To analyze the oscillation of the time dependent equations (1.14), we need to use an

eigenfunction for Laplace operator; it is known that the �rst eigenvalue λ1 of the following

spectral problem,

−∆ω̄(x) = λω̄(x), x ∈ Ω, (1.20)

with homogenous Dirichlet boundary condition

ω̄(x) = 0, x ∈ Γ, (1.21)

is positive and the corresponding eigenfunction is either positive or negative. One could

remark that if ω̄ is an eigenfunction corresponding to an eigenvalue λ, than −ω̄ is also an

eigenfunction corresponding to an eigenvalue λ, one could choose the eigenfunction, denoted

by ϕ, corresponding to the �rst value λ1 such that ϕ(x) > 0, for all x ∈ Ω .

We also use the following notations, for all u ∈ C2(Q) ∩ C1(Q):

U(t) =

∫
Ω

u(x, t)ϕ(x)dx, (1.22)

Ũ(t) =

∫
Ω

u(x, t)dx, (1.23)

F (t) =

∫
Ω

f(x, t)ϕ(x)dx, (1.24)

F̃ (t) =

∫
Ω

f(x, t)dx, (1.25)

Ψ(t) =

∫
Γ

ψ(x, t)∇ϕ(x) · n(x)dx, (1.26)

Ψ̃(t) =

∫
Γ

ψ̃(x, t)dx. (1.27)
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The following Theorems, see [3], give su�cient conditions for the oscillation of equation

(1.14) with di�erent boundary conditions.

Theorem 1.1.2. (Oscillation of (1.14) with Dirichlet boundary condition) Assume that

Assumption 1 and the following conditions are ful�lled:

1.

lim inf
t→∞

∫ t

t0

(
1− s

t

)
(F (s)−Ψ(s)− αΨ(s− τ)) ds = −∞, (1.28)

2.

lim sup
t→∞

∫ t

t0

(
1− s

t

)
(F (s)−Ψ(s)− αΨ(s− τ)) ds = +∞, (1.29)

for a su�ciently large t0, then each solution of (1.14)�(1.15) is oscillatory on Q.

Theorem 1.1.3. (Oscillation of (1.14) with Neumann boundary conditions) Assume that

Assumption 1 and the following conditions are ful�lled:

3.

lim inf
t→∞

∫ t

t0

(
1− s

t

)(
F̃ (s) + Ψ̃(s) + αΨ̃(s− τ)

)
ds = −∞, (1.30)

4.

lim sup
t→∞

∫ t

t0

(
1− s

t

)(
F̃ (s) + Ψ̃(s) + α̃Ψ(s− τ)

)
ds = +∞, (1.31)

for a su�ciently large t0, then each solution of (1.14) with (1.16) is oscillatory on Q.

Theorem 1.1.4. (Oscillation of (1.14) with Robin boundary conditions) Assume that As-

sumption 1 and the following conditions are ful�lled:

5.

lim inf
t→∞

∫ t

t0

(
1− s

t

)
F̃ (s)ds = −∞, (1.32)

6.

lim sup
t→∞

∫ t

t0

(
1− s

t

)
F̃ (s)ds = +∞, (1.33)

for a su�ciently large t0, then each solution of (1.14) with (1.17) is oscillatory on Q.
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The Proofs of Theorems 1.1.2�1.1.4 are similar, we only present the Proof of Theorem

1.1.2.

Proof of Theorem 1.1.2:

Assume that the solution u is not oscillatory, then there exists a > 0 such that u is either

positive or negative on Qa (recall that Qa = Ω× (a,∞)).

We assume that

u(x, t) > 0, ∀(x, t) ∈ Qa. (1.34)

Multiplying (1.14) by ϕ (Recall that ϕ is the positive eigenfunction corresponding to the

�rst positive eigenvalue λ1 of (1.20).) and integrating the result over x ∈ Ω, we get

Utt(t) + βUtt(t− ρ) + γUt(t− θ) = F (t)

+

∫
Ω

∆u(x, t)ϕ(x)dx+ α

∫
Ω

∆u(x, t− τ)ϕ(x)dx

−
∫

Ω

c(x, t, u(x, t), u(x, t− σ))ϕ(x)dx, ∀t ∈ (0,∞). (1.35)

We �rst remark that, thanks to Assumption 1, and the fact that u and ϕ are positive

−
∫

Ω

c(x, t, u(x, t), u(x, t− σ))ϕ(x) ≤ 0, ∀t ∈ (a+ σ,∞). (1.36)

On the other hand, thanks to an integration by parts, we get∫
Ω

∆u(x, t)ϕ(x)dx = −
∫

Γ

u(x, t)∇ϕ(x) · n(x)dx+

∫
Ω

∆ϕ(x)u(x, t)dx

= −
∫

Γ

ψ(x, t)∇ϕ(x) · n(x)dx− λ1

∫
Ω

ϕ(x)u(x, t)dx

≤ −Ψ(t), (1.37)

and by the same way, we have

∫
Ω

∆u(x, t− τ)ϕ(x)dx ≤ −Ψ(t− τ), ∀t ∈ (a+ τ,∞). (1.38)

From (1.35)�(1.38), we deduce that, for any t ∈ (a+ max(τ, σ),∞)

Utt(t) + βUtt(t− ρ) + γUt(t− θ) ≤ F (t)−Ψ(t)− αΨ(t− τ). (1.39)
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To simplify the notation, we set

g(t) = F (t)−Ψ(t)− αΨ(t− τ), ∀t ∈ (T0,∞) , (1.40)

where, for the sake of simplicity of the notations

T0 = a+ max(τ, σ). (1.41)

Thanks to (1.39) and de�nition (1.40) of g, we have

Utt(t) + βUtt(t− ρ) + γUt(t− θ) ≤ g(t), ∀t ∈ (T0,∞) . (1.42)

Integrating inequality (1.42) over (T0,∞), we get

Ut(t) + βUt(t− ρ) + γU(t− θ) ≤
∫ t

T0

g(s)ds+ d1, ∀t ∈ (T0,∞) , (1.43)

where d1 ∈ R.
Integrating again (1.43) over (T1,∞), where T1 = a + max(τ, σ, θ, σ, ρ), we get since U and

γ are positive

U(t) + βU(t− ρ) ≤
∫ t

T1

∫ r

T0

g(s)dsdr + d1(t− T1)− γ
∫ t

T1

U(r − θ)dr + d2

≤
∫ t

T1

∫ r

T0

g(s)dsdr + d1(t− T1) + d2, (1.44)

where d2 ∈ R.

One could remark that

∫ t

T1

∫ r

T0

g(s)dsdr =

∫ t

T1

(t− s)g(s)ds + ζ(t− T1) for some ζ ∈ R, one

could deduce from the previous inequality that

U(t) + βU(t− ρ) ≤
∫ t

T1

(t− s)g(s)ds+ d̄1(t− T1) + d2, (1.45)

for some d̄1 ∈ R.
Since U is positive on (T1,∞) (recall that T1 = a+ max(τ, σ, θ, σ, ρ)), we have

lim inf
t→∞

1

t− T1

∫ t

T1

{U(s) + βU(s− ρ)}ds ≥ 0, (1.46)

which implies, using (1.45), that
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lim inf
t→∞

1

t− T1

∫ t

T1

(t− s)g(s)ds ≥ 0. (1.47)

On the other hand, thanks to assumption (1.28) of Theorem 1.1.2, we have

lim inf
t→∞

1

t− T1

∫ t

T1

(t− s)g(s)ds = lim inf
t→∞

t

t− T1

∫ t

T1

(1− s

t
)g(s)ds

= lim inf
t→∞

∫ t

T1

(1− s

t
)g(s)ds

= −∞, (1.48)

which is a contradiction with (1.47).

So far, we proved, under the assumptions of Theorem 1.1.2, that on any interval (a,∞) u

can not be only positive, i.e., for each a > 0, there exists some t̂ ∈ (a,∞) such that u(t̂) ≤ 0.

To conclude now the Proof of Theorem 1.1.2, we should prove that on any interval (a,∞) u

can not be only negative, i.e., for each a > 0, there exists some t̄ ∈ (a,∞) such that u(t̄) ≥ 0.

This will allow us to con�rm that for each interval (a,∞), there exists some t1 ∈ (a,∞) such

that u(t1) = 0.

Assume then that there exists a > 0 such that

u(x, t) < 0, ∀(x, t) ∈ Qa. (1.49)

Set

v(x, t) = −u(x, t), ∀(x, t) ∈ Qa, (1.50)

which implies, using (1.49)

v(x, t) > 0, ∀(x, t) ∈ Qa. (1.51)

Multiplying (1.35) by −1, we get

Vtt(t) + βVtt(t− ρ) + γVt(t− θ) = −F (t) +

∫
Ω

∆v(x, t)ϕ(x)dx+ α

∫
Ω

∆v(x, t− τ)ϕ(x)dx

+

∫
Ω

c(x, t,−v(x, t),−v(x, t− σ))ϕ(x)dx, ∀t ∈ (0,∞), (1.52)

where

V (t) = −U(t), ∀t > 0. (1.53)
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Using now hypothesis H3 of Assumption 1, equation (1.52) with (1.51) leads to

Vtt(t)+βVtt(t−ρ)+γVt(t−θ) ≤ −F (t)+

∫
Ω

∆v(x, t)ϕ(x)dx+α

∫
Ω

∆v(x, t−τ)ϕ(x)dx, (1.54)

for any t ∈ (0,∞).

On the other hand, thanks to an integration by parts, we get∫
Ω

∆v(x, t)ϕ(x)dx = −
∫

Γ

v(x, t)∇ϕ(x) · n(x)dx+

∫
Ω

∆ϕ(x)v(x, t)dx

=

∫
Γ

ψ(x, t)∇ϕ(x) · n(x)dx− λ1

∫
Ω

ϕ(x)v(x, t)dx

≤ Ψ(t), (1.55)

and by the same way, we have∫
Ω

∆u(x, t− τ)ϕ(x)dx ≤ Ψ(t− τ), ∀t ∈ (a+ τ,∞). (1.56)

From (1.54)�(1.56), we deduce that

Vtt(t) + βVtt(t− ρ) + γVt(t− θ) ≤ h(t), ∀t ∈ (a+ max(τ, σ),∞) , (1.57)

where h is de�ned by

h(t) = −F (t) + Ψ(t) + αΨ(t− τ). (1.58)

On the other hand, thanks to assumption (1.29) of Theorem 1.1.2, for a su�ciently large T1

lim inf
t→∞

1

t− T1

∫ t

T1

(t− s)h(s)ds = lim inf
t→∞

t

t− T1

∫ t

T1

(1− s

t
)h(s)ds

= lim inf
t→∞

∫ t

T1

(1− s

t
)h(s)ds

= −∞. (1.59)

This allows us to apply the same techniques used in (1.42)�(1.48), and consequently we get

a contradiction, which completes the proof.
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1.2 Oscillation of some nonlinear second order equations

Among the results related to our principal contribution given in chapter three, are those of

the article [20].

The article [20] presents new oscillation creteria for a nonlinear second order di�erential

equation with a damping term. An essential result in [20] is the nondecreasing property of

the nonlinearity.

Kirane and Rogovchenko [20] studied the oscillatory solutions of the equation

[
r(t)ψ(x(t))x′(t)

]′
+ p(t)x′(t) + q(t)f(x(t)) = 0, t ≥ t0, (1.60)

where t0 ≥ 0, r(t) ∈ C1([t0,∞); (0,∞)), p(t) ∈ C([t0,∞); R), q(t) ∈ C([t0,∞);

(0,∞)), q(t) is not identical to zero on [t∗,∞) for some t∗ ≥ t0, f(x), ψ(x) ∈ C(R,R) and

ψ(x) > 0 for x 6= 0.

As usual, a function x : [t0, t1) → (−∞,∞) with t1 > t0 is called a solution of equation

(1.60) if x(t) satis�es Equation (1.60) for all t ∈ [t0, t1) . The authors consider only proper

solutions x(t) of (1.60) in the sense that x(t) is non-constant solutions which exist for all

t ≥ t0 and

sup {x(t);∀t ≥ t0} > 0. (1.61)

A proper solution x(t) of (1.60) is called oscillatory if it has arbitrarily large zeroes; oth-

erwise it is called nonoscillatory. Finally, an equation (1.60) is said to be oscillatory if all its

proper solutions are oscillatory.

Oscillatory and nonoscillatory behavior of solutions for di�erent classes of linear and

nonlinear second order di�erential equations has been studied by many authors (see, for

example, [1�26] and the references quoted therein). Some papers [12, 13, 15, 16, 21, 23] are

concerned with particular cases of equation (1.60) such as linear equations:

x
′′
(t) + q(t)x(t) = 0, (1.62)

(r(t)x′(t))
′
+ q(t)x(t) = 0, (1.63)

and the nonlinear equation
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(r(t)x′(t))
′
+ q(t)f(x(t)) = 0. (1.64)

The main idea to deal with Equations (1.62)�(1.64) uses the average behavior of the

integral of q(t) and originates from the techniques used in Wintner [39], Hartman [17] and

Kamenev [23]. For more details, we refer to Yan [42], Philos [29], and Li [24] , where one

can follow the re�nement of the ideas and methods cited above, see also corrections to the

later paper in Rogovchenko [31].

The purpose of [20] is to derive new oscillation criteria for equation (1.60) which com-

plements and extends those in [9], [11], [31], [40],[42].

More precisely, the techniques used [20] are similar to that used in Grace [11], Kirane

and Rogovchenko [21], Philos [29], Rogovchenko [32], [33], and Yan [42]. Their results are as

follows

Theorem 1.2.1. Assume that for some constants K,C,C1 and for all x 6= 0, f(x)/x ≥
K > 0 and 0 < C ≤ ψ(x) ≤ C1. Let h, H ∈ C(D,R), where D = {(t, s) : t ≥ s ≥ t0}, be
such that

(i) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 in D0 = {(t, s) : t > s ≥ t0}

(ii) H has a continuous and non-positive partial derivative in D0 with respect to the second

variable, and

−∂H
∂s

= h(t, s)
√
H(t, s) (1.65)

for all (t, s) ∈ D0.

If there exists a function ρ ∈ C1([t0,∞); (0,∞)) such that

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

[H(t, s)Θ(s)− C1

4
ρ(s)r(s)Q2(t, s)]ds =∞ , (1.66)

where

Θ(t) = ρ(t)
(
Kq(t)−

( 1

C
− 1

C1

)p2(t)

4r(t)

)
,

Q(t, s) = h(t, s) +
[ p(s)

C1r(s)
− ρ′(s)

ρ(s)

]√
H(t, s),

then (1.60) is oscillatory.
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Proof Assume that a solution x(t) for (1.60) is not oscillatory, therefore there exists a

T0 ≥ t0 such that x(t) 6= 0 for all t ∈ (T0,+∞).

Let us consider the function v(t) de�ned by

v(t) = ρ(t)
r(t)ψ(x(t))x

′
(t)

x(t)
,∀t ∈ (T0,+∞). (1.67)

Since x(t) 6= 0 for all t ∈ (T0,+∞), then v(t) is well de�ned.

Di�erentiating (1.67) and using (1.60), we get

v
′
(t) = ρ

′
(t)
r(t)ψ(x(t))x

′
(t)

x(t)

+ ρ(t)
[r(t)ψ(x(t))x

′
(t)]

′
x(t)− r(t)ψ(x(t))[x

′
(t)]2

x2(t)

= ρ
′
(t)
r(t)ψ(x(t))x

′
(t)

x(t)

− ρ(t)
p(t)x′(t)

x(t)
− ρ(t)

q(t)f(x(t))

x(t)

− ρ(t)
r(t)ψ(x(t))[x

′
(t)]2

x2(t)

= −ρ(t)
q(t)f(x(t))

x(t)

+
{
ρ
′
(t)r(t)ψ(x(t))− ρ(t)p(t)

} x′(t)
x(t)

− ρ(t)r(t)ψ(x(t))[
x
′
(t)

x(t)
]2 (1.68)

On the other hand, thanks to (1.67), we get

x
′
(t)

x(t)
=

v(t)

ρ(t)r(t)ψ(x(t))
. (1.69)
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Inserting this in (1.68), we get

v
′
(t) = −ρ(t)

q(t)f(x(t))

x(t)

+
{
ρ
′
(t)r(t)ψ(x(t))− ρ(t)p(t)

} v(t)

ρ(t)r(t)ψ(x(t))
− ρ(t)r(t)ψ(x(t))[

v(t)

ρ(t)r(t)ψ(x(t))
]2

= −ρ(t)
q(t)f(x(t))

x(t)
+
ρ
′
(t)

ρ(t)
v(t)

− 1

r(t)ψ(x(t))

{
p(t)v(t) +

1

ρ(t)
v2(t)

}
= −ρ(t)

q(t)f(x(t))

x(t)
+
ρ
′
(t)

ρ(t)
v(t) +

p2(t)ρ(t)

4r(t)ψ(x(t))

− 1

r(t)ψ(x(t))

{
p(t)

√
ρ(t)

2
+

1√
ρ(t)

v(t)

}2

. (1.70)

Thanks to the hypothesis f(x)/x ≥ K > 0 of Theorem 1.2.1 , for x 6= 0, and since x(t) 6= 0,

for all t ∈ (T0,+∞), ρ and q are positive, we have the following estimate for the �rst term

on the right�hand side of the previous inequality

−ρ(t)
q(t)f(x(t))

x(t)
≤ −Kρ(t)q(t), ∀t ∈ (T0,+∞). (1.71)

Thanks to the hypothesis C1 ≥ ψ(x) ≥ C > 0 of Theorem 1.2.1, and since x(t) 6= 0, for all

t ∈ (T0,+∞), and ρ is positive, we have the following estimate for the third term on the

right�hand side of inequality (1.70)

p2(t)ρ(t)

4r(t)ψ(x(t))
≤ p2(t)ρ(t)

4Cr(t)
, ∀t ∈ (T0,+∞). (1.72)

and the following estimate for the fourth term on on the right�hand side of inequality (1.70)

− 1

r(t)ψ(x(t))

{
p(t)

√
ρ(t)

2
+

1√
ρ(t)

v(t)

}2

≤ − 1

C1r(t)

{
p(t)

√
ρ(t)

2
+

1√
ρ(t)

v(t)

}2

= − 1

C1r(t)

{
p(t)v(t) +

1

ρ(t)
v2(t)

}
− p2(t)ρ(t)

4C1r(t)
, (1.73)

for any t ∈ (T0,+∞).
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Combining now (1.72) and (1.73) with (1.71), we get

v
′
(t) ≤ −Kρ(t)q(t) +

ρ
′
(t)

ρ(t)
v(t) +

1

4p2(t)ρ(t)r(t)
(

1

C
− 1

C1

)

− 1

C1r(t)

{
p(t)v(t) +

1

ρ(t)
v2(t)

}
= −Θ(t)−

(
p(t)

C1r(t)
− ρ

′
(t)

ρ(t)

)
v(t)− 1

C1r(t)ρ(t)
v2(t), (1.74)

for any t ∈ (T0,+∞).

where Θ(t) is de�ned in Theorem 1.2.1.

Multiplying both sides of (1.74) by H(t, s), integrating the result over (T, t), where t ≥ T ≥
T0, by an integration by parts, using the fact that H(t, t) = 0 and (1.65), we get∫ t

T

H(t, s)Θ(s)ds ≤ −
∫ t

T

H(t, s)v
′
(s)ds−

∫ t

T

H(t, s)

(
p(s)

C1r(s)
− ρ

′
(s)

ρ(s)

)
v(s)ds

−
∫ t

T

H(t, s)
1

C1r(s)ρ(s)
v2(s)ds

= −
∫ t

T

H(t, s)v
′
(s)ds−

∫ t

T

H(t, s)

(
p(s)

C1r(s)
− ρ

′
(s)

ρ(s)

)
v(s)ds

−
∫ t

T

H(t, s)

C1r(s)ρ(s)
v2(s)ds

= −
∫ t

T

H(t, s)v
′
(s)ds−

∫ t

T

Q(t, s)
√
H(t, s)v(s)ds−

∫ t

T

∂H

∂s
(t, s)v(s)ds

−
∫ t

T

H(t, s)

C1r(s)ρ(s)
v2(s)ds

= H(t, T )v(T )−
∫ t

T

Q(t, s)
√
H(t, s)v(s)ds−

∫ t

T

H(t, s)

C1r(s)ρ(s)
v2(s)ds

= H(t, T )v(T )

−
∫ t

T

{√
H(t, s)

C1r(s)ρ(s)
v(s) +

1

2

√
C1r(s)ρ(s)Q(t, s)

}2

ds

+
C1

4

∫ t

T

r(s)ρ(s)Q2(t, s)ds, (1.75)
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which implies that∫ t

T

{
H(t, s)Θ(s)− C1r(s)ρ(s)Q2(t, s)

4

}
ds ≤ H(t, T )v(T )

−
∫ t

T

{√
H(t, s)

C1r(s)ρ(s)
v(s) +

1

2

√
C1r(s)ρ(s)Q(t, s)

}2

ds (1.76)

and therefore, since H is a decreasing function with respect to the second variable and t ≥ t0∫ t

T

{
H(t, s)Θ(s)− C1r(s)ρ(s)Q2(t, s)

4

}
ds ≤ H(t, t0)|v(T )|. (1.77)

Using the fact that H(t, s) ≥ 0 for all s ∈ [t0, t] and again the fact that H is a decreased

function with respect to the second variable, (1.77) leads to∫ t

t0

{
H(t, s)Θ(s)− C1r(s)ρ(s)Q2(t, s)

4

}
ds =

∫ T

t0

H(t, s)Θ(s)ds

−
∫ T

t0

C1r(s)ρ(s)Q2(t, s)

4
ds+

∫ t

T

{
H(t, s)Θ(s)− C1r(s)ρ(s)Q2(t, s)

4

}
ds

≤ H(t, t0)

{∫ T

t0

Θ(s)ds+ |v(T )|
}
, (1.78)

which implies that

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

{
H(t, s)Θ(s)− C1r(s)ρ(s)Q2(t, s)

4

}
ds ≤

∫ T

t0

Θ(s)ds+ |v(T )|, (1.79)

which contradicts the assumption (1.66) of Theorem 1.2.1, and consequently x(t) is oscilla-

tory. � From Theorem 1.2.1, we could deduce the following useful

Corollary.

Corollary 1.2.2. The assumption (1.66) of Theorem 1.2.1 could be replaced by the following

two conditions together:

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

H(t, s)Θ(s)ds =∞, (1.80)

and

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

r(s)ρ(s)Q2(t, s)ds <∞. (1.81)
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It is useful to give some choices for H and h which satisfy conditions of Theorem 1.2.1.

We de�ne

H(t, s) = (t− s)n−1, ∀(t, s) ∈ D, (1.82)

where D = {(t, s), t ≥ s ≥ t0} and n is an integer such that n > 2.

We have

• H(t, t) = 0,

• H(t, s) ≥ 0, ∀(t, s) ∈ D,

• H(t, s) ≥ 0, ∀(t, s) ∈ D0 = D ∩ {(t, s), t 6= s}.

The function h could then be chosen as

h(t, s) = −
∂H
∂s

(t, s)√
H(t, s)

= (n− 1)(t− s)(n−3)/2, ∀(t, s) ∈ D. (1.83)

With the choices (1.82) and (1.83), Theorem 1.2.1 becomes:

Corollary 1.2.3. Under the conditions of Theorem 1.2.1, if there exists a function ρ ∈
C1([t0,∞); (0,∞)) such that

lim sup
t→+∞

t1−n
∫ t

0

{
(t− s)n−1Θ(s)− C1

4
ρ(s)r(s)(t− s)n−3A(s)

}
ds =∞, (1.84)

where Θ is de�ned as in Theorem 1.2.1 and

A(s) =

{
n− 1 +

(
p(s)

C1r(s)
− ρ

′
(s)

ρ(s)

)
(t− s)

}2

,

then (1.60) is oscillatory.

Example: Consider the following non�linear di�erential equation:{
(1 + cos2 t)

2 + x2(t)

1 + x2(t)
x
′
(t)

}′
+ 2(sin t cos t)x

′
(t)

+ (20 + cos2 t)x(t)

{
1 +

18

1 + x2(t)

}
= 0, t ≥ 1. (1.85)
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The equation (1.85) is of the form (1.60) where:

• t0 = 1,

• f(x) = x(t)

{
1 +

18

1 + x2(t)

}
,

• q(t) = 20 + cos2 t,

• p(t) = 2(sin t cos t),

• r(t) = 1 + cos2 t,

• ψ(x) =
2 + x2

1 + x2
.

First, one remarks that for all x ∈ R that

ψ(x) = 1 +
1

1 + x2
, (1.86)

one could deduce that

1 ≤ ψ(x) ≤ 2, ∀x ∈ R, (1.87)

which gives C = 1 and C1 = 2.

We also remark that

f(x)/x = 1 +
18

1 + x2(t)
≥ 1, ∀x ∈ R. (1.88)

Let n = 3 and ρ(t) = 1, for all t ∈ [1,+∞). Therefore the function Θ, given in Theorem

1.2.1, is de�ned by

Θ(t) = 20 + cos2 t− (1− 1

2
)
4 sin2 t cos2 t

4(1 + cos2 t)

= 20 + cos2 t− sin2 t cos2 t

2(1 + cos2 t)
. (1.89)
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Inserting the previous value of Θ in the left�hand side on (1.84), we get

lim sup
t→+∞

t−2

∫ t

0

(t− s)2

(
20 + cos2 s− sin2 s cos2 s

2(1 + cos2 s)

)
ds

−
∫ t

0

1

2
(1 + cos2 s)

{
2 +

(
sin s cos s

1 + cos2 s

)
(t− s)

}2

ds

≥ lim sup
t→+∞

t−2

∫ t

0

(t− s)2

(
20− 1

2

)
ds

−
∫ t

0

1

2
(1 + cos2 s)

{
2 +

(
sin s cos s

1 + cos2 s

)
(t− s)

}2

ds

≥ lim sup
t→+∞

t−2

∫ t

0

{
(t− s)2

(
39

2

)
− (2 + t− s)2

}
ds

= lim sup
t→+∞

t−2

{
−39

6
(t− s)3 − 4s+ 2(t− s)2 +

1

3
(t− s)3

}
|t0

= lim sup
t→+∞

t−2

{
37

6
t3 − 4t− 2t2

}
= +∞. (1.90)

Thanks to Corollary 1.2.3, equation (1.85) is oscillatory.



Chapter 2

On the zeros of the solutions of certain

coupled hyperbolic problems with delays

2.1 Introduction

The study of the oscillatory behavior of the solutions of hyperbolic di�erential equations of

neutral type had an increasing interest these last years.

It seems that the �rst attempt in this direction was made by Mishev and Bainov [25]. In

[25], they have obtained su�cient conditions for the oscillation of all solutions of a class of

neutral hyperbolic equations with conditions at the boundary of the Neumann type. Yosida

[7] had obtained su�cient conditions which garantee the existence of bounded domains in

which each solution of a neutral hyperbolic equation with boundary conditions of the Dirich-

let, Neumann ou Robin type has a zero.

The oscillatory behavior of the solutions of di�erential equations of neutral type are

studied recently by many authors (see for instance [28], [26], [45], and [46], and the references

quoted therein.).

Let us cite for example the attempt of Parhi and Kirane [28] who studied the oscillatory

behavior of equations of type

utt (x, t) + βutt (x, t− ρ) + γut (x, t− θ)− [δ4µ (x, t) + α4u (x, t− z)]

+ c (x, t, u (x, t, u (x, t) , u (x, t− σ))) = f(x, t) (2.1)

and other generalizations on the coe�cients and on the delays, as well as the work of Parhi

21
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and Kirane [28], who studied oscillatory behavior of the following coupled problem of neutral

type:

utt(x, t) + δ1utt(x, t− ρ1) + γ1ut(x, t− θ1)− {α1∆u(x, t) + α2∆u(x, t− z1) + α3∆v(x, t)

+ α4∆v(x, t− z2)}+ c1(x, t, u(x, t), u(x, t− σ1), v(x, t), v(x, t− σ2))

= f1(x, t), (2.2)

and

vtt(x, t) + δ2vtt(x, t− ρ2) + γ2vt(x, t− θ2)− (β1∆v(x, t) + β2∆u(x, t− z3) + β3∆v(x, t)

+ β44v(x, t− z4)) + c2(x, t, u(x, t), u(x, t− σ3), v(x, t), v(x, t− σ4)

= f2(x, t). (2.3)

This work is concerned with a simple generalization of Parhi and Kirane [28]. Our

essential contribution is to consider the coe�cients and the delays as functions. Consequently

we consider the following coupled problem

utt(x, t) + δ1(t)utt(x, ρ1(t)) + γ1(t)ut(x, θ1(t))

− {α1(t)∆u(x, t) + α2(t)∆u(x, z1(t)) + α3∆v(x, t) + α4∆v(x, z2(t))}

+ c1(x, t, u(x, t), u(x, σ1
1(t)), ..., u(x, σr1(t)), v(x, t), v(x, σ1

2(t)),

, ..., v(x, σs2(t))) = f1(x, t) (2.4)

and

vtt(x, t) + δ2(t)vtt(x, ρ2(t)) + γ2(t)vt(x, θ2(t))

− {β1(t)∆u(x, t) + β2(t)∆u(x, z3(t)) + β3(t)∆v(x, t) + β4(t)∆v(x, z4)}

+ c2(x, t, u(x, t), u(x, σ1
3(t)), ..., u(x, σk3(t)), v(x, t), v(x, σ1

4(t)),

..., v(x, σl4(t))) = f2(x, t) (2.5)

where (x, t) ∈ Q = Ω × (0,∞) where Ω is a bounded domain of Rn with a su�ciently

regular boundary Γ and ∆ is the Laplacian in Rn.

This problem is posed on Ω with one of the following types of boundary conditions:
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• Neumann boundary conditions:

(B1) : ∀(x, t) ∈ Γ× (0,∞),


∇u(x, t) · n(x) = ψ1(x, t),

∇v(x, t) · n(x) = ψ2(x, t).

(2.6)

• Robin boundary conditions:

(B2) : ∀(x, t) ∈ Γ× (0,∞),


∇u(x, t) · n(x) + µ2u(x, t) = 0,

∇v(x, t) · n(x) + µ2v(x, t) = 0.

(2.7)

• Dirichlet boundary conditions:

(B3) : ∀(x, t) ∈ Γ× (0,∞),


u(x, t) = ψ̃1(x, t),

v(x, t) = ψ̃2(x, t).

(2.8)

where ψi and ψ̃i
(
i = 1, 2

)
are real valued functions on Γ × (0,∞) , µ1 and µ2 are positive

continuous functions on Γ× (0,∞) and n denotes the unit normal vector to Γ outward to Ω.

Some times, in order to simplify the notations, we denote by

∇u(x, t) · n(x) =
∂u

∂ν
(x, t), (2.9)

and

∇v(x, t) · n(x) =
∂v

∂ν
(x, t). (2.10)

In order to get the oscillation behavior, we assume that :

(H1)


δi, σi, αj and βj ∈ C ((0,∞) ; (0,∞)) for i = 1, 2 and j = 1, 4

c1 ∈ C
(
Q× R× Rr × R× Rs; R

)
,

c2 ∈ C(Q× R× Rr × R× R`; R).
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(H2)



ρi, θi ∈ C((0,∞); R) for i = 1, 2 and zi ∈ C((0,∞); R) for i = 1, 4

σ1
i , σ

2
j , σ

3
k, σ

4
L ∈ C((0,∞); R) for i = 1, r and

j = 1, s, k = 1, k, L = 1, `,

and for each j : lim
t→+∞

ρi(t) = lim
t→+∞

θi(t) = lim
t→+∞

σji (t) = +∞

and ρi(t), θi(t), σ
j
i ≤ t,∀t > 0

(H3)



(i) c1 (x, t, ξ, ξ1, ..., ξr, η, η1, ..., ηs)

 ≥ 0 if ξ and ξi > 0,∀ i = 1, r

≤ 0 if ξ and ξi < 0,∀ i = 1, r

(ii) c2 (x, t, ξ, ξ1, ..., ξk, η, η1, ..., η`)

 ≥ 0 si η and ηi > 0,∀ i = 1, `

≤ 0 si η and ηi < 0,∀ i = 1, `

(H4)


α2, α3, α4, β4, δ1, δ2, γ1, γ2 are nonnegative real valued �unctions

and

α1 et β3 are positive functions.

(H5)


α2, α3, α4, β1, β2, β4, δ1, δ2, γ1, γ2 are non�negative functions

and

α1 et β3 are positive functions.

For our need we de�ne:

t̂ (s) = min

(
min

1≤i≤2

(
inf
t≥s
ρi (t)

)
, min

1≤i≤z

(
inf
t≥s
θi (t)

)
, min

1≤i≤4

(
inf
t≥t
zi (t)

)
; min
i,∂J

(
inf
t≥s

(
σJi (t)

)))
We say that the couple of functions (u, v) is a solution of ((2.4),(2.5)) with a boundary

condition Bi0 , i0 ∈ {1, 2, 3} if the couple of functions (u, v) satis�es the coupled equation

(2.4)�(2.5) and Bi0 .

A function w(x, t) is said oscillatory in Q if w has a zero (or vanishes) in Qa for each

a ≥ 0, with Qa = Ω× (a,∞).

A solution (u, v) of the coupled problem (2.4)�(2.5) with one type of the boundary con-

ditions (Bi) , i = 1, 2, 3 is said to be oscillatory in Q if u or v oscillates.
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A solution (u, v) of (2.4)�(2.5), with one type of the boundary conditions (Bi) , i = 1, 2, 3

is said to be strongly oscillatory in Q if u, v oscillates at the some time.

We assume that:

(i) (α1 + β3)2 ≥ 4 (α1 β3 − α3 β1) .

(ii) α1 β3 > β1 α3

which ensures the total hyperbolicity of equations (2.4)�(2.5) (see [6]).

The following notations will be used in what follows.

For each

u, v ∈ C2 (Q)
⋂
C2
(
Q
)
,

We write:

U (t) =

∫
Ω

u (x, t) dx, V (t) =

∫
Ω

v (x, t) dx,

Ũ (t) =

∫
Ω

ϕ (x) u (x, t) dx, Ṽ (t) =

∫
Ω

ϕ (x) v (x, t) dx.

In addition, for all i ∈ {1, 2}, we denote by

Ψi (t) =

∫
Γ

ψi (x, t) dγ(x),

Ψ̃i (t) =

∫
Γ

Ψ̃i (x, t)
∂ϕ

∂v
dγ(x)

Fi (t) =

∫
Ω

fi (x, t) dx

F̃i (t) =

∫
Ω

ϕ (x) fi (x, t) dx,

where dγ denotes the integration symbol for (n− 1)�dimensional Lebesgue measure on the

considered hyperplane.
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2.2 The coupled hyperbolic problem

2.2.1 Existence theorem of oscillations

The main results of our paper are the following Theorems:

Theorem 2.2.1. We assume that the conditions (H1) , (H2) , (H3) , (H5) hold. If in addition

(A1)


lim inf
t→∞

1
t−t0

∫ t
t0

(t− s) [F1 (s) + α1Ψ1 (s) + α2Ψ1 (s− z1 (s)) +

+ α3Ψ2 (s) + α4Ψ2 (s− z2 (s))] ds = −∞,

and

(A2)


lim sup
t→∞

1
t−t0

∫ t
t0

(t− s) [F1 (s) + α1Ψ1 (s) + α2Ψ1 (s− z1 (s)) +

+α3Ψ2 (s) + α4Ψ2 (s− z2 (s))] ds =∞,

or if

(A3)


lim inf
t→∞

1
t−t0

∫
t0

t
(t− s) [F2 (s) + β1Ψ1 (s) + β2Ψ1 (s− z3(s)) +

+ β3Ψ2 (s) + β4Ψ2 (s− z4 (s))] ds = −∞

and

(A4)


lim sup
t→∞

1
t−t0

∫
t0

t
(t− s) [F2 (s) + β1Ψ1 (s) + β2Ψ1 (s− z3(s)) +

+ β3Ψ2 (s) + β4Ψ2 (s− z4(s))] ds =∞

for any t0 ≥ 0 , then each solution (u, v) of the coupled problem ((2.4),(2.5)) with (B1)

oscillates in Q.

Theorem 2.2.2. We assume that the conditions (H1) , (H2) , (H5) , (A1)− (A4) hold. Then

each solution of problem ((2.4),(2.5)) , (B1) oscillates in Q.

Theorem 2.2.3. Assume that the conditions (H1) , (H2) , (H4) are satis�ed and (A1)−(A4)

hold, then each solution of problem ((2.4),(2.5)) , (B2) oscillates in Q.

Theorem 2.2.4. We assume that the conditions (H1) , (H2) , (H5) are satis�ed. If
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lim inf
t→∞

1

t− t0

∫
t0

t

(t− s) [F̃1 (s)− α1Ψ̃1 (s)− α2Ψ̃1 (s− z1(s))−

− α3Ψ̃2 (s)− α4Ψ̃2 (s− z2 (s))] ds = −∞,

lim inf
t→∞

1

t− t0

∫
t0

t

(t− s) [F̃1 (s)− β3Ψ̃1 (s)− β2Ψ̃1 (s− z3(s))−

− β3Ψ̃2 (s)− β4Ψ̃2 (s− z4 (s))] ds = −∞,

lim sup
t→∞

1

t− t0

∫
t0

t

(t− s) [F̃1 (s)− α1Ψ̃1 (s)− α2Ψ̃1 (s− z1 (s))−

− α3Ψ̃2 (s)− α4Ψ̃2 (s− z2 (s))] ds =∞,

and

lim sup
t→∞

1

t− t0

∫
t0

t

(t− s) [F̃2 (s)− β3Ψ̃1 (s)− β2Ψ̃1 (s− z3(s))−

− β4Ψ̃2 (s− z4 (s))] ds =∞,

for each t0 ≥ 0, then each solution of problem (2.4)�(2.5), (B3) oscillates in Q.

In order to prove Theorems 2.2.2�2.2.4, we need to use the following technical Lemmata:

Lemma 2.2.1. We assume that the conditions (H1) , (H2), (H3) (i) , (H5) are satis�ed. If

(u, v) is a solution of problem ((2.4),(2.5)), (B1) and u (x, t) > 0 in Qt0 . Then the function

U satis�es the following di�erential inequality of neutral type:

y′′ (t) + δ1 y
′′ (ρ1 (t)) + γ1 y

′ (θ1 (t)) ≤ F1 (t) +

+ α1Ψ1 + α2Ψ1 (z1 (t)) + α3Ψ2 (t) + α4Ψ2 (z2 (t))

(2.11)

for a su�ciently large t.

Proof Integrating equation (2.4) over the domain Ω, we get:

U ′′ + δ1 (t)U ′′ (ρ1 (t)) + γ1 (t)U ′ (θ1 (t))−
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[α1(t)

∫
Ω

4 u(x, t) dx+ α2(t)

∫
Ω

4 u (x, z1(t)) dx+

+α3(t)

∫
Ω

4 v(x, t) dx+ α4(t)

∫
Ω

4 v(x, z2(t)) dx]+

+

∫
Ω

c1(x, t, u(x, t), u(x, σ1
1(t)), ..., u(x, σr1(t)), v(x, t), v(x, σ1

2(t)), ..., v(x, σs2(t)))dx = F1 (t)

An integration by parts yields:

∫
Ω

4 u (x, t) dx =

∫
Γ

∂u

∂ν
(x, t) dγ(x)

=

∫
Γ

ψ1 (x, t) dγ(x)

= Ψ1 (t) (2.12)

and

∫
Ω

4 u (x, z1 (t)) dx = Ψ1 (z1 (t)) .

Assumption (H2) implies that lim
t→+∞

σ1
1 (t) = +∞, and then there exists some A > 0 such

that for all t > A, we have

σ1
1(t) > t0. (2.13)

This together with the hypothesis u(x, t) > 0 yields that

u(x, σ1
1(t)) > 0, (2.14)

for a su�ciently large t.

By the same manner, we justify that

u(x, σi1(t)) > 0, ∀i = 1, r, (2.15)

for a su�ciently large t.
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Inequality (2.15) together with hypothesis (H3)(i) implies that

c1(x, t, u(x, t), u(x, σ1
1(t)), ..., u(x, σr1(t)), v(x, t), v(x, σ1

2(t)), ..., v(x, σs2(t))) > 0, (2.16)

for a su�ciently large t.

Which implies

U ′′ (t) + δ1 (t)U ′′ (ρ1 (t)) + δ1 (t)U ′ (θ1 (t))− α1(t)Ψ1(t)− α2(t)Ψ1 (z1(t))−

α3(t)Ψ2(t)− α4(t)Ψ2 (z2(t)) ≤ F1 (t) ,

and therefore

U ′′ (t) + δ1 (t)U ′′ (ρ1 (t)) + γ1 (t)U ′ (θ1 (t)) ≤

F1 (t) + α1Ψ1(t) + α2Ψ1 (z1(t)) + α3Ψ2(t) + α4Ψ2 (z2(t)) .

�

Lemma 2.2.2. We assume that the conditions (H1) , (H2), (H3) (ii) , (H5) are satis�ed, if

(u, v) is a solution of ((2.4),(2.5)),(B1) such that v (x, t) > 0 on Qt0, then the solution V (t)

satis�es the following neutral ordinary di�erential inequality:

y′′ (t) + δ2 (t) y′′ (ρ2 (t)) + γ2 y
′ (θ2(t)) ≤ F2 (t) + β1Ψ1 (t) +

β2Ψ1 (z3 (t)) + β3 (t) Ψ2 (t) + β4 (t) Ψ2 (z4 (t)) (2.17)

for a su�ciently large t.

The proof of this Lemma is similar to the one of Lemma 2.2.1, so we omit it.

Lemma 2.2.3. Let us suppose that the conditions (H1) , (H2), (H3) (i) , (H4) are satis�ed,

and (u, v) is a solution of the coupled problem ((2.4),(2.5)), (B2) such that u (x, t) >

0 and v (x, t) > 0 on Qt0 for some t0 > 0.

Then the solution U satis�es inequality (2.11) for a su�ciently large t.

If u < 0 and v < 0 on Qt0, then the function −U satis�es the following neutral ordinary

di�erential inequality:

y′′ (t) + δ1 (t) y′′ (ρ1 (t)) + γ1 y
′ (θ1) ≤
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− [−F1 (t) + α1 (t) Ψ1 (t) + α2 (t) Ψ1 (z1 (t)) + α3 (t) Ψ2 (t) + α4 (t) Ψ2 (z2 (t))] (2.18)

for a su�ciently large t.

Lemma 2.2.4. Assume that the conditions (H1) , (H2), (H3) (ii) , (H4) are satis�ed, if (u, v)

is a solution of problems ((2.4),(2.5)),(B2).

If u < 0 and v > 0 on a Qt0, then V (t) satis�es the ordinary di�erential inequality (2.17)

for a su�ciently large t.

If u > 0 and v < 0 on Qt0 , then −V (t) satis�es inequality:

y′′ (t) + δ2 (t) y′′ (ρ2 (t)) + γ2 y
′ (θ2 (t)) ≤

− [−F2 (t) + β1 (t) Ψ1 (t) + β2 (t) Ψ1 (z3 (t)) + β3 (t) Ψ2 (t) + β4 (t) Ψ2 (z4 (t))] (2.19)

for su�ciently large t.

The proofs of Lemmata 2.2.3 and 2.2.4 are similar to that of Lemma 2.2.1, so we omit

them.

Lemma 2.2.5. Let us suppose that the conditions (H1) , (H3) (i) , (H4) are satis�ed, if (u, v)

is a solution of problem ((2.4),(2.5)),(B3) . If u (x, t) > 0 and v (x, t) > 0 on a Qt0 , then

the function Ũ (t) veri�es the following di�erential inequality of neutral type:

y′′ (t) + δ1 (t) y′′ (ρ1 (t)) + γ1 y
′ (θ1 (t)) ≤

F̃1 (t)− α1 (t) Ψ̃1 (t)− α2 (t) Ψ̃1 (z1 (t))− α3 (t) Ψ̃2 (t) + α4 (t) Ψ̃2 (z2 (t)) (2.20)

for a su�ciently large t. If u (x, t) > 0 and v (x, t) < 0 on a Qt0 , then the function

−Ũ (t) satis�es the following inequality:

y′′ (t) + δ1 (t) y′′ (ρ1 (t)) + δ1 y
′ (θ1 (t))

≤ −F̃1 (t)− α1 (t) Ψ̃1 (t)− α2 (t) Ψ̃1 (z1 (t))− α3 (t) Ψ2 (t) + α4 (t) Ψ̃2 (z2 (t)) (2.21)

Proof Multiplying both sides of equation (2.4) by the function ϕ (x), integrating the

result over Ω, using (H2) and (H3)(ii), to obtain:
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Ũ ′′ (t) + δ1 (t)U ′′ (ρ1 (t)) + γ1 (t) Ũ ′ (θ1 (t))

≤ F̃1 (t) + α1 (t)

∫
Ω

ϕ(x)4 u (x, t) dx+ α2 (t)

∫
Ω

ϕ(x)4 u (x, z1 (t)) dx+

+α3 (t)

∫
Ω

ϕ(x)4 v (x, t) dx+ α4 (t)

∫
Ω

ϕ(x)4 v (x, z2 (t)) dx,

for a su�ciently large t.

An application of the Green's formula yields, since ϕ = 0 in Γ and ∆ϕ = −λ1ϕ:

∫
Ω

ϕ(x)4 u (x, t) dx =

∫
Γ

ϕ(x)∇u(x)·n(x)dγ(x)−
∫
Γ

u(x)∇ϕ(x)·n(x)dγ(x)+

∫
Ω

u(x)∆ϕ(x)dx

= −
∫
Γ

u(x)∇ϕ(x) · n(x)dγ(x)− λ1

∫
Ω

u(x)ϕ(x)dx

= −Ψ̃1 (t)− λ1Ũ(t)

and then, thanks to (H1), u > 0, ϕ > 0, and λ1 > 0:

Ũ ′′ (t) + δ1 (t)U ′′ (ρ1 (t)) + γ1 (t) Ũ ′ (θ1 (t))

≤ F̃1 (t)− α1 (t) Ψ̃1 (t)− α2 (t) Ψ̃1 (z1 (t))− α3 (t) Ψ2 (t) + α4 (t) Ψ̃2 (z2 (t)) .

Hence the �rst part of the Lemma is proved. The second part of the Lemma can handled

as above.

�

Lemma 2.2.6. Assume that the conditions (H1) , (H3) (ii) , (H4) are satis�ed, if (u, v) is a

solution of problem ((2.4),(2.5)),(B3) . If u (x, t) < 0 and v (x, t) > 0 on some Qt0, then

Ṽ (t) veri�es the following di�erential inequality of neutral type:

y′′ + δ2 (t) y′′ (ρ2 (t)) + δ2 y
′ (θ2(t))
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≤ F̃2 (t)− β1 (t) Ψ̃1 (t)− β2 (t) Ψ̃1 (z3 (t))− β3 (t) Ψ̃2 (t)− β4 (t) Ψ̃2 (z4 (t)) (2.22)

for su�ciently large t.

If u(x, t) > 0 and v(x, t) < 0 on some Qt0 , then the function −Ṽ (t) satis�es the following

inequality:

y′′ (t) + δ2 (t) y′′ (ρ2 (t)) + δ2 y
′ (θ2 (t)) ≤

−
[
F̃2 (t)− β1 (t) Ψ̃1 (t)− β2 (t) Ψ̃1 (z3 (t))− β3 (t) Ψ̃2 (t)− β4 (t) Ψ̃2 (z4 (t))

]
for a su�ciently large t.

The proof of this Lemma is similar to that one of Lemma 2.2.5, so we omit it.

Theorem 2.2.5. Assume that the conditions (H1) − (H5) are ful�lled. If the di�erential

inequatities (2.11) and (2.18) or the di�erential inequalities (2.17) and (2.19) do not admit

positive solutions for a su�ciently large t, then all solutions of problem ((2.4),(2.5)),(B1)

oscillate in Q.

Proof Let (u, v) be a solution of problem ((2.4),(2.5)),(B1) which does not oscillates in

Q. Then, there exists t0 such that

u (x, t) 6= 0 and v (x, t) 6= 0 in Qt0 .

Assume that (2.11) and (2.18) do not admit positive solutions for a su�cently large t.

Since u (x, t) 6= 0 in Qt0 , one has u(x, t) > 0 or u(x, t) < 0 in Qt0 .

If u(x, t) > 0 in Qt0 , then thanks to Lemma 2.2.1, U is a positive solution of (2.11) for a

su�cently large t, which is a contradiction.

If u(x, t) < 0 on Qt0 , we set û(x, t) = −u(x, t) on Q, and then (û, v) is a solution of the

following problem:

utt (x, t) + δ1 (t) utt (x, ρ1 (t)) + γ1(t)ut (x, θ1 (t))−

[α1 (t)4 u (x, t) + α2 (t)4 u (x, z1 (t))− α3 (t)4 v (x, t)− α4 (t)4 v (x, z2 (t))]

− c1

(
x, t,−u (x, t) ,− u

(
x, σ1

1 (t)
))
, ...,−u (x, σr1 (t)) , v (x, t) ,



Existence theorem of oscillations 33

v
(
x, σ1

2 (t)
)
, ..., v (x, σs2 (t)) = −f1 (x, t)

vtt (x, t) + δ2 (t) vtt (x, ρ2 (t)) + γ2 vt (x, θ2 (t))−

[β14 u (x, t) + β2 (t)4 u (x, z3 (t))− β34 v (x, t)− β4 (t) ∆ v (x, z4 (t))]

− c2

(
x, t,− û (x, t) ,− û

(
x, σ1

2 (t)
))
, ...,− û (x, σr3 (t)) , v (x, t) ,

v
(
x, σ1

4 (t)
)
, ..., v (x, σs4 (t)) = f2(x, t),

and

∂û

∂ν
= −ψ1 and

∂v

∂ν
= ψ2 on Γ× (0,∞) .

Proceeding as in the proof of Lemma 2.2.1 one may prove that Û is a positive solution of

(2.18), where

Û =

∫
Ω

û(x, t)dx.

we get a contradiction.

If the di�erential inequalities (2.17) and (2.19) do not admit positive solutions for large

t, then we proceed as above considering v(x, t) 6= 0 in some Qt0 to arrive at necessary

contradictions. This completes the proof of the Theorem.

�

Theorem 2.2.6. Assume that conditions (H1) − (H5) are satis�ed. Suppose that none of

the di�erential inequalities (2.11), (2.17), (2.18) and (2.19) admit a positive solution for

large t. Then all solutions of problem ((2.4),(2.5)), (B1) oscillates strongly in Q.

ProofAssume the contrary, so there exists a solution (u(x, t), v(x, t)) of problem ((2.4),(2.5))

(B1) which does not oscillate strongly in Q. This means that u or v does not oscillate.

If u does not oscillate on Q, then there exists some t0 such that u(x, t) > 0 or u(x, t) < 0 in

Qt0 . If u(x, t) > 0 in Qt0 , then thanks to Lemma 2.2.1 it follows that U(t) =
∫

Ω
u(x, t)dx is

a positive solution of inequality (2.11), a contradiction.

If u(x, t) < 0 in Qt0 , then by setting û(x, t) = −u(x, t) and proceeding as in Lemma 2.2.1 it
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may be proven that Û =
∫
Ω

û (x, t) dx is a positive solution of (2.18), contradiction. Similar

contradictions may be obtained thanks to 2.2.2 if v(x, t) does not osciallate in Q. The proof

of the Theorem is complete. �

Theorem 2.2.7. Let us suppose that (H1)−(H4) are satis�ed, if inequalities (2.11), (2.17),

(2.18) and (2.19) do not admit positive solutions for su�ciently large t, then each solution

of problem ((2.4),(2.5)), (B2) oscillates in Q.

The proof of this Theorem is similar to that of the previous Theorem.

Similarly we prove:

Theorem 2.2.8. Assume that (H1)− (H4) are satis�ed. If the inequalities (2.11), (2.17),

(2.18) and (2.19) do not admit positive solutions for su�ciently large t, then each solution

of problem ((2.4),(2.5)), (B3) oscillates in Q.

In the previous section, we remarked that the oscillation of problem ((2.4),(2.5)) with

one of the boundary conditions (Bi), where i ∈ {1, 2, 3}, depends on the fact if (2.23), given

below, admit or not positive solutions.

For this reason, we will devote the following sections to give some su�cient conditions, see

Lemma 2.2.7 given below, in order that inequality (2.23) does not admit positive solution

for large t.

Let

y′′(t) + λ1 (t) y′′ (ρ (t)) + λ2 (t) y′ (θ (t)) ≤ g (t) (2.23)

where

• ρ is a positive increasing function

• ρ has an inverse ξ such that ξ′ is an increasing function

• limt→+∞ ρ(t) = +∞

• the same properties satis�ed by ρ should be satis�ed by θ. The inverse of θ will be

denoted by χ.

In addition, λ1 and λ2 are decreasing positive functions and there derivatives are increasing

functions.
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Lemma 2.2.7. If the following limit holds

lim
t→+∞

1

t− t0

∫
t0

t

(t− s) g (s) ds = −∞ (2.24)

for each t0 > 0, then inequality (2.23) does not admit positive solution for large t.

Proof Assume the contrary, which means that there exists a positive solution y (t) for

(2.23) for some t > t0 > 0 .

Let us condsider t > t1 > t0 such that ρ (t1) > t0 and θ (t1) > t0 (this is possible since

limt→+∞ ρ(t) = +∞ and limt→+∞ θ(t) = +∞).

Integrating (2.23) over (t1, t) to get∫
t1

t

y′′ (s) ds+

∫
t1

t

λ1 (s) y′′ (ρ (s)) ds+

∫
t1

t

λ2 (s) y′′ (θ (s)) ds ≤
∫
t1

t

g (s) ds. (2.25)

Integrations by parts, the previous inequality yields that

y′ (t) +M (ρ (t)) y′ (ρ (t))−M ′ (ρ (t)) y (ρ (t)) +

∫ ρ(t)

ρ(t1)

M ′′ (s) y (s) ds+

+ m (θ (t)) y′ (θ (t))−m′ (θ (t)) y (θ (t)) +

∫ θ(t)

θ(t1)

m′′ (s) y (s) ds+ c1 ≤
∫
t1

t

g (s) ds

with c1 ∈ R, M(s) = λ1(ξ(s))ξ′(s) and m(s) = λ2(χ(s))χ′(s).

A second integration from t to t1, yields:

y (t) +

∫
t1

t

M (ρ (α)) y′ (ρ (α)) dα−
∫
t1

t

M ′ (ρ (α)) y (ρ (α)) dα+

∫
t1

t
(∫ ρ(α)

ρ(t1)

M ′′ (s) y (s) ds

)
dα+

∫
t1

t

m (θ (α)) y′ (θ (α)) dα−
∫
t1

t

m′ (θ (α)) y′ (θ (α)) dα+

+

(∫ θ(α)

θ(t1)

m” (s) y (s) ds

)
dα + c1 (t− t1) ≤

∫
t1

t

(t− s) g (s) ds,
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which yields

y (t) +H (ρ (t)) y (ρ (t)) + c−
∫ ρ(t)

ρ(t1)

H ′ (x) y (x) dx−
∫
t1

t

M ′ (ρ (α)) y (ρ (α)) dα+

+

∫
t1

t
(∫ ρ(α)

ρ(t1)

M” (s) y (s) ds

)
dα + h (θ (t)) y (θ (t))−

∫ θ(t)

θ(t1)

h′ (x) y (x) dx−

−
∫
t1

t

m′ (θ (α)) y (θ (α)) dα + c1 (t− t1) ≤
∫
t1

t

(t− s) g (s) ds

with  M (x) = λ1 (ρ−1 (x)) ,

m (x) = λ2 (θ−1 (x)) ,

and

 H (x) = M (x)
(
ρ−1 (x)′

)
,

h (x) = m (x)
(
(θ−1 (x))

′)
.

We have

 H (ρ (t)) ≥ 0

and

h (θ (t)) ≥ 0

and

 H decreases⇒ H ′ ≤ 0

h decreases⇒ h′ ≤ 0

Now:

M ′ (x) =
(
ρ−1 (x)

)′
λ′1
(
ρ−1 (x)

)
.

and then

M ′′ (x) =
(
ρ−1 (x)

)′′
λ′1
(
ρ−1 (x)

)
+
[(
ρ−1 (x)′

)]2
λ”

1

(
ρ−1 (x)

)
≤ 0

By the same way, we justify that

m′′ ≤ 0. (2.26)

Therefore
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c (t− t1) + c2 ≤
∫
t1

t

(t− s) g (s) ds

=⇒ c1 +
c2

t− t1
≤
∫
t1

t

(t− s) g (s) ds

=⇒ lim
t→+∞

1

t− t1

∫
t1

t

(t− s) g (s) ds ≥ c

�

Come back to prove Theorems 2.2.1, 2.2.2, 2.2.3, and 2.2.4.

Proof of Theorem 2.2.1. It follows from Lemma 2.2.7 and Theorem 2.2.5.

Proof of Theorem 2.2.2. It follows from Lemma 2.2.7 and Theorem 2.2.6.

Proof of Theorem 2.2.3. It follows from Lemma 2.2.7 and Theorem 2.2.7.

Proof of Theorem 2.2.4 . We use Lemma 2.2.7 and Theorem 2.2.8.

Remark 2.2.1. If

lim
t→+∞

1

t

∫
0

t

(t− s)g(s)ds = −∞,

then:

lim
t→+∞

1

t− t0

∫
t0

t

(t− s) g (s) ds = −∞.

Indeed

1

t− t0

∫
t0

t

(t− s) g (s) ds =
1

t− t0

∫
0

t

(t− s) g (s) ds−
∫
0

t0

(t− s) g (s) ds
1

t− t0

now:

1

t− t0

∫
t0

t0

(t− s) g (s) ds =
t

t− t0

∫
0

t0

g (s) ds−
∫
0

t0

s g (s) ds
1

t− t0
t→ +∞−−−−−→

∫
0

t0

g (s) ds

=⇒ lim
t→+∞

1

t− t0

∫
t0

t

(t− s) g (s) ds = lim
t→+∞

1

t− t0
.
1

t

∫
0

t

(t− s) g (s) ds
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= lim
t→+∞

1

t

∫
0

t

(t− s) g (s) ds = −∞.

The following examples, even not describing phenomena of physics, of elasticity or other

sciences, though illustrate our results .

2.2.2 Examples

Example 1

Let us consider the problem:

utt (x, t) +
1

2
utt (x, t− π) + ut (x, t− π)−

−
[
4 u (x, t) +4 u (x, t− π) +4 v (x, t) +4 v

(
x, t− π

2

)]
+

+ u (x, t) + u (x, t− π) = 2
(
e−x − 1

)
et sin t sinx+

(
2− 3e−x

)
et cos t sinx+

+ et sin t cosx− e−
x
2 et cos t cosx (2.27)

and

vtt (x, t) +
1

2
vtt (x, t− π) + vt (x, t− π)

−
[
4 u (x, t) +4 u (x, t− π) +4 v (x, t) +4 v

(
x, t− π

2

)]
+ v (x, t) + v

(
x, t− π

2

)
= 2

(
1− e−π − e−

π
2

)
et cos t cosx

+
(
2− e−π

)
et sin t cosx+ (1− e−π)et cos t sinx (2.28)

(x, t) ∈ (0, π)× (0, π),

with boundary conditions:

− ux (0, t) = ux (π, t) = −et cos t (2.29)

and

− vx (0, t) = vx (π, t) = 0
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So

Ω = (0, π) , ψ1 (x, t) = − et cos t and ψ2 (x, t) = 0.

Therefore

Ψ1 (t) = − 2 et cos t andΨ2 (t) = 0, t > 0

and

F1 (t) =

∫
0

π

f1 (x, t) dx = 4
(
e−π − 1

)
et sin t + 2

(
2− 3 e−π

)
et cos t

and

F2 (t) =

∫
0

π

f2 (x, t) dx = 2
(
1− e−π

)
et cos t.

Now

I1 (t) =
1

t

∫
0

t

(t− s) [F1 (s) + Ψ1(s) + Ψ1 (s− π)] ds

=
1

t

∫
0

t

(t− s)
[
4
(
e−π − 1

)
es sin s+ 2

(
1− 2 e−π

)
es cos s

]
ds

= 2
(
e−π − 1

) 1

t

(
1 + t− et cos t

)
+
(
1− 2 e−π

)
1t
(
−t+ et sin t

)
and

I2 (t) =
1

t

∫
0

t

(t− s) [F2 (s) + Ψ1 (s) + Ψ1 (s− π)] ds = 0

It is clear that:

lim inf
t→+∞

I1(t) = −∞ , lim sup
t→+∞

I1(t) = +∞.

According to Theorem 2.2.1, any solution of (2.27), (2.28), (2.29) oscillates on

(0, π)× (0,∞).

In particular the solution (et cos t sin x, et sin t cos x) oscillates.

Example 2

Let us consider the problem:

utt (x, t) + utt (x, t− π) + ut

(
x, t− π

2

)
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− [4 u (x, t) +4 u (x, t− π) +4 v (x, t) +4 v (x, t− 2π)]

+ u (x, t) + u
(
x, t− π

2

)
= 2

(
−1 + e−π + e−

π
2

)
et sin t sinx

+
(
2 + e−

x
2 − e−x

)
et cos t sinx+ 2(t− π)sinx (2.30)

and

vtt (x, t) + vtt

(
x, t− π

2

)
+ vt (x, t− 2π)

−
[
4 u (x, t) +4 u (x, t− π) +4 v (x, t) +4 v

(
x, t− 2

π

)]

+v (x, t) + v (x, t− 2π)

= (
2− 5π

2
) sinx+ 4t sinx+ (e−π − 1) et cos t sinx (2.31)

(x, t) ∈ (0, π)× (0,∞) with the boundary conditions:

u = (x, t) = 0 and v(x, t) = 0, (x, t) ∈ {0, π} × (0,∞). (2.32)

So

Ω = (0, π), Ψ̃1 (x, t) = 0 et Ψ̃2 (x, t) = 0.

Therefore

Ψ̃1 (t) = Ψ̃2 (t) = 0 for t > 0 and ϕ (x) = sin x and λ1 = 1,

so:

F̃1 (t) =

∫
0

π

f1 (x, t) sin x dx
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= a1e
t sin t+ a2 e

t cos t + πt− π2

with:

a1 = π
(
−1 + e−π + e−

π
2

)
, a2 =

π

2

(
2 + e−

π
2 − e−π

)
and:

F̃2 (t) =

∫
0

π

f2 (x, t) sin x dx

= (2− 5π)
π

4
+ 2xt+

π

2

(
e−π − 1

)
et cos t.

and:

I1 (t) =
1

t

∫
0

t

(t− s) F̃1 (s) ds

=
et

2t

[
a1

(
e−t + t e−t + cos t

)
+ a2

(
−t e−t + sin t

)
+
π

3

(
t3e−t − π2t2e−t

)]
and:

I2 (t) =
et

t

[π
3
t3e−t + (2− 5π)

x

8
t2 e−t +

(
e−π − 1

) π
4

(
−t e−t + sin t

)]
it is clear that:

lim inf
t→+∞

I1(t) = −∞ and lim sup
t→+∞

I1(t) =∞,

lim inf
t→+∞

I2(t) = −∞ and lim sup
t→+∞

I2(t) =∞

According to Theorem 2.2.4 any solution of problem (2.30), (2.31), (2.32) oscillates on (0, π)×
(0,∞). In particular (et cos t sin x, t sin x) oscillates.
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Su�cient conditions for the oscillation of

solutions to nonlinear second-order

di�erential equations

3.1 Introduction

Kirane and Rogovchenko [20] studied the oscillatory solutions of the equation

[
r(t)ψ(x(t))x′(t)

]′
+ p(t)x′(t) + q(t)f(x(t)) = g(t), t ≥ t0, (3.1)

where t0 ≥ 0, r(t) ∈ C1([t0,∞); (0,∞)), p(t) ∈ C([t0,∞); R), q(t) ∈ C([t0,∞);

(0,∞)), q(t) is not identical zero on [t∗,∞) for some t∗ ≥ t0, f(x), ψ(x) ∈ C(R,R) and

ψ(x) > 0 for x 6= 0. Their results read as follows

Theorem 3.1.1. Case g(t) ≡ 0: Assume that for some constants K,C,C1 and for all

x 6= 0, f(x)/x ≥ K > 0 and 0 < C ≤ Ψ(x) ≤ C1. Let h, H ∈ C(D,R), where D = {(t, s) :

t ≥ s ≥ t0}, be such that

(i) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 in D0 = {(t, s) : t > s ≥ t0}

(ii) H has a continuous and non-positive partial derivative in D0 with respect to the second

variable, and

−∂H
∂s

= h(t, s)
√
H(t, s)

for all (t, s) ∈ D0.

42
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If there exists a function ρ ∈ C1([t0,∞); (0,∞)) such that

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

[H(t, s)Θ(s)− C1

4
ρ(s)r(s)Q2(t, s)]ds =∞ ,

where

Θ(t) = ρ(t)
(
Kq(t)−

( 1

C
− 1

C1

)p2(t)

4r(t)

)
,

Q(t, s) = h(t, s) +
[ p(s)

C1r(s)
− ρ′(s)

ρ(s)

]√
H(t, s),

then (3.1) is oscillatory.

Theorem 3.1.2. Case g(t) 6= 0: Let the assumptions of Theorem 3.1.1 be satis�ed and

suppose that the function g(t) ∈ C([t0,∞); R) satis�es∫ ∞
ρ(s)|g(s)|ds = N <∞ .

Then any proper solution x(t) of (3.1); i.e, a non-constant solution which exists for all t ≥ t0

and satis�es supt≥t0 |x(t)| > 0, satis�es

lim inf
t→∞

|x(t)| = 0.

Note that localization of the zeros is not given in the work by Kirane and Rogovchenko

[20]. Here we intend to give conditions that allow us to localize the zeros of solutions to

(3.1). Observe that in contrast to [20] where a Ricatti type transform,

v(t) = ρ
r(t)ψ(x(t))x′(t)

x(t)
,

is used, here we simply use a usual Ricatti transform.
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3.2 Solution of nonlinear second�order di�erential equa-

tion

3.2.1 Di�erential equation without a forcing term

Consider the second-order di�erential equation

[
r(t)ψ(x(t))x′(t)

]′
+ p(t)x′(t) + q(t)f(x(t)) = 0, t ≥ t0 (3.2)

where t0 ≥ 0, r(t) ∈ C1([t0,∞); (0,∞)), p(t) ∈ C([t0,∞)); R), q(t) ∈ C([t0,∞)); R), p(t) and

q(t) are not identical zero on [t?,∞) for some t? ≥ t0, f(x), ψ(x) ∈ C(R,R) and ψ(x) > 0 for

x 6= 0. The next theorem follows the ideas in Nasr [27].

Theorem 3.2.1. Assume that for some constants K,C,C1 and for all x 6= 0,

f(x)

x
≥ K ≥ 0, (3.3)

0 < C ≤ ψ(x) ≤ C1 . (3.4)

Suppose further there exists a continuous function u(t) such that u(a) = u(b) = 0, u(t) is

di�erentiable on the open set (a, b), a, b ≥ t?, and∫ b

a

[(
Kq(t)− p2(t)

2Cr(t)

)
u2(t)− 2C1r(t)(u

′)2(t)
]
dt ≥ 0 . (3.5)

Then every solution of (3.2) has a zero in [a, b].

Proof Let x(t) be a solution of (3.2) that has no zero on [a, b]. We may assume that

x(t) > 0 for all t ∈ [a, b] since the case when x(t) < 0 can be treated analogously. Let

v(t) = −x
′(t)

x(t)
, t ∈ [a, b]. (3.6)
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Multiplying this equality by r(t)ψ(x(t)) and di�erentiate the result. Using (3.2) we obtain

(r(t)ψ(x(t))v(t))′ = −(r(t)ψ(x(t))x′(t))′

x(t)
+ r(t)ψ(x(t))v2(t)

= −p(t)v(t) + q(t)
f(x(t))

x(t)
+ r(t)ψ(x(t))v2(t)

=
(r(t)ψ(x(t))

2
v2(t) +

r(t)ψ(x(t))

2

(
v2(t)− 2

p(t)

r(t)ψ(x(t))v(t)

)
+ q(t)

f(x(t))

x(t)

=
(r(t)ψ(x(t))

2
v2(t) +

r(t)ψ(x(t))

2

(
v(t)− p(t)

(r(t)ψ(x(t))

)2

− p2(t)

2r(t)ψ(x(t))
+ q(t)

f(x(t))

x(t)
.

Using (3.3)-(3.4) and the fact that

(r(t)ψ(x(t))

2

(
v(t)− p(t)

r(t)ψ(x(t))

)2 ≥ 0,

we have

(r(t)ψ(x(t))v(t))′ ≥ (r(t)ψ(x(t))

2
v2(t)− p2(t)

2Cr(t)
+Kq(t) (3.7)
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Multiplying both sides of this inequality by u2(t) and integrating on [a, b]. Using integration

by parts on the left side, the condition u(a) = u(b) = 0 and (3.4), we obtain

0 ≥
∫ b

a

r(t)ψ(x(t))

2
v2(t)u2(t)dt+ 2

∫ b

a

r(t)ψ(x(t))v(t)u(t)u′(t)dt

+

∫ b

a

Kq(t)u2(t)dt−
∫ b

a

p2(t)

2Cr(t)
u2(t)dt

≥
∫ b

a

r(t)ψ(x(t))

2
(v2(t)u2(t) + 4v(t)u(t)u′(t))dt

+

∫ b

a

Kq(t)u2(t)dt−
∫ b

a

p2(t)u2(t)

2Cr(t)
dt

≥
∫ b

a

r(t)ψ(x(t))

2
[v(t)u(t) + 2u′(t)]2dt− 2

∫ b

a

r(t)ψ(x(t))u′2(t)dt

+

∫ b

a

Kq(t)u2(t)dt−
∫ b

a

p2(t)

2Cr(t)
u2(t)dt

≥
∫ b

a

[(
Kq(t)− p2(t)

2Cr(t)

)
u2(t)− 2r(t)ψ(x(t))u′2(t)

]
dt

+

∫ b

a

r(t)ψ(x(t))

2
[v(t)u(t) + 2u′(t)]2dt .

Now, from (3.4) we have

0 ≥
∫ b

a

[(
Kq(t)− p2(t)

2Cr(t)

)
u2(t)− 2r(t)C1u

′2(t)
]
dt

+

∫ b

a

r(t)ψ(x(t))

2
[v(t)u(t) + 2u′(t)]2dt.

If the �rst integral on the right-hand side of the inequality is greater than zero, then we have

directly a contradiction. If the �rst integral is zero and the second is also zero then x(t) has

the same zeros as u(t) at the points a and b; (x(t) = ku2(t)), which is again a contradiction

with our assumption. �

Corollary 3.2.2. Assume that there exist a sequence of disjoint intervals [an, bn], and a

sequence of functions un(t) de�ned and continuous an [an, bn], di�erentiable on (an, bn) with

un(an) = un(bn) = 0, and satisfying assumption (3.5). Let the conditions of Theorem 3.2.1.

hold. Then (3.2) is oscillatory.
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3.2.2 Di�erential equation with a forcing term

Consider the di�erential equation

[
r(t)ψ(x(t))x′(t)

]′
+ p(t)x′(t) + q(t)f(x(t)) = g(t), t ≥ t0 (3.8)

where t0 ≥ 0, g(t) ∈ C([t0,∞); R) r(t) ∈ C1([t0,∞); (0,∞)), p(t) ∈ C([t0,∞)); R), q(t) ∈
C([t0,∞)); R), p(t) and q(t) are not identical zero on [t?,∞[ for some t? ≥ t0, f(x), ψ(x) ∈
C(R,R) and ψ(x) > 0 for x 6= 0. Assume that there exists an interval [a, b], where a, b ≥ t?,

such that g(t) ≥ 0 and there exists c ∈ (a, b) such that g(t) has di�erent signs on [a, c] and

[c, b]. Without loss of generality, let g(t) ≤ 0 on [a, c] and g(t) ≥ 0 on [c, b].

Theorem 3.2.3. Let (3.4) hold and assume that

f(x)

x|x|
≥ K, (3.9)

for a positive constant K and for all x 6= 0. Furthermore assume that there exists a con-

tinuous function u(t) such that u(a) = u(b) = u(c) = 0, u(t) di�erentiable on the open set

(a, c) ∪ (c, b), and satis�es the inequalities∫ c

a

[(√
Kq(t)g|(t)| − p2(t)

2Cr(t)

)
u2 − 2C1r(t)(u

′)2(t)
]
d(t) ≥ 0, (3.10)∫ b

c

[(√
Kq(t)g|(t)| − p2(t)

2Cr(t)

)
u2 − 2C1r(t)(u

′)2(t)
]
d(t) ≥ 0 . (3.11)

Then every solution of equation (3.8) has a zero in [a, b].
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Proof Assume to the contrary that x(t), a solution of (3.8), has no zero in [a, b]. Let

x(t) < 0 for example. Using the same computations as in the �rst part, we obtain:

(r(t)ψ(x(t))v(t))′ = −(r(t)ψ(x(t))x′(t))′

x(t)
+ r(t)ψ(x(t))v2(t)− g(t)

x(t)

= −p(t)v(t) + q(t)
f(x(t))

x(t)
+ r(t)ψ(x(t))v2(t)− g(t)

x(t)

=
(r(t)ψ(x(t))

2
v2(t) +

r(t)ψ(x(t))

2

(
v2(t)− 2

p(t)v(t)

r(t)ψ(x(t))

)
+ q(t)

f(x(t))

x(t)
− g(t)

x(t)

=
(r(t)ψ(x(t))

2
v2(t) +

r(t)ψ(x(t))

2

(
v(t)− p(t)

r(t)ψ(x(t))v(t)

)2

− p2(t)

2r(t)ψ(x(t))
+ q(t)

f(x(t))

x(t)
− g(t)

x(t)

For t ∈ [c, b] we have

(r(t)ψ(x(t))v(t))′ =
r(t)ψ(x(t))

2
v2(t) +

r(t)ψ(x(t))

2

(
v(t)− p(t)

r(t)ψ(x(t))

)2

− p2(t)

2r(t)ψ(x(t))
+ q(t)

f(x(t))

x(t)|x(t)|
|x(t)|+ |g(t)|

|x(t)|

From (3.9), and using the fact that

r(t)ψ(x(t))

2

(
v(t)− p(t)

r(t)ψ(x(t))

)2 ≥ 0

we deduce

(r(t)ψ(x(t))v(t))′ ≥ (r(t)ψ(x(t))

2
v2(t)− p2(t)

2r(t)ψ(x(t))
+Kq(t)|x(t)|+ |g(t)|

|x(t)|
. (3.12)

Using the Hölder inequality in (3.12) we obtain

(r(t)ψ(x(t))v(t))′ ≥ (r(t)ψ(x(t))

2
v2(t) +

√
Kq(t)|g(t)| − p2(t)

2r(t)ψ(x(t))
. (3.13)
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Multiplying both sides of this inequality by u2(t) and integrating on [c, b], we obtain after

using integration by parts on the left-hand side and the condition u(c) = u(b) = 0,

0 ≥
∫ b

c

r(t)ψ(x(t))

2
v2(t)u2(t)dt+

∫ b

c

√
Kq(t)|g(t)|u2(t)dt

−
∫ b

c

p2(t)u2(t)

2r(t)ψ(x(t))
dt+ 2

∫ b

c

r(t)ψ(x(t))v(t)u(t)u′(t)dt

≥
∫ b

c

r(t)ψ(x(t))

2
[v(t)u(t)− 2u′(t)]2dt− 2

∫ b

c

r(t)ψ(x(t))u′2(t)dt

+

∫ b

c

√
Kq(t)|g(t)|u2(t)dt−

∫ b

c

p2(t)u2(t)

2r(t)ψ(x(t))
dt.

Assumption (3.4) allows us to write

0 ≥
∫ b

c

r(t)ψ(x(t))

2
[v(t)u(t) + 2u′(t)]2dt− 2

∫ b

c

C1r(t)(u
′)2(t)dt

+

∫ b

c

√
Kq(t)|g(t)|u2(t)dt−

∫ b

c

p2(t)u2(t)

2Cr(t)
dt

≥
∫ b

c

r(t)ψ(x(t))

2
[v(t)u(t) + 2u′(t)]2dt

+

∫ b

c

[(√
Kq(t)g|(t)| − p2(t)

2Cr(t)

)
u2(t)− 2C1r(t)(u

′)2(t)
]
dt.

This leads to a contradiction as in Theorem 3.2.1; the proof is complete. �

Corollary 3.2.4. Assume that there exist a sequence of disjoint intervals [an, bn] a sequences

of points cn ∈ (an, bn), and a sequence of functions un(t) de�ned and continuous on [an, bn],

di�erentiable on (an, cn)∪ (cn, bn)with un(an) = un(bn) = un(cn) = 0, and satisfying assump-

tions (3.10)-(3.11). Let the conditions of Theorem 3.2.3 hold. Then (3.8) is oscillatory.



Chapter 4

Some results concerning the oscillations

of solutions of a hyperbolic equation

with delays

4.1 Introduction

In this chapter, we extend the results of [3] to the equation

utt (x, t) + αut(x, t)− [∆u(x, t) +
k∑
i=1

bi(t)∆u(x, σi(t))]

+ C(x, t, u(x, t), u(x, τ1(t)), u(x, τ2(t)), . . . , u(x, τm(t))) = f(x, t), (4.1)

where (x, t) ∈ Q = Ω× (0,∞) and Ω is a bounded domain of Rn with a su�ciently regular

boundary Γ and ∆ is the Laplacian in Rn.

This problem is posed on Ω with one of the following types of boundary conditions:

• Dirichlet boundary conditions:

(DBC) : u(x, t) = ψ(x, t), Γ× (0,+∞) (4.2)

• Robin boundary conditions:

(RBC) : ∇u(x, t) · n(x) + µu(x, t) = ψ̃, Γ× (0,+∞) (4.3)
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where ψ, ψ̃, µ ∈ C(Γ× (0,∞)) and µ ≥ 0 on Γ× (0,∞).

We assume that

(H1) bi ∈ C([0,∞); [0,∞)), i = 1, . . . , k, f(x, t) ∈ C(Q̄; R), and α is constant

(H2) σi ∈ C([0,∞); R), i = 1, . . . , k, τi ∈ C([0,∞; R), i = 1, . . . ,m.

lim
t→∞

σi(t) =∞, σi(t) ≤ t, ∀t ∈ [0,∞), i = 1, . . . , k (4.4)

lim
t→∞

τi(t) =∞, τi(t) ≤ t, ∀t ∈ [0,∞), i = 1, . . . ,m (4.5)

(H3) C(x, t, ξ, η1, . . . , ηm) ∈ C(Q̄× R× Rm; R),

C(x, t, ξ, η1, . . . , ηm) ≥ K2
0ξ, ∀(x, t) ∈ Q, ξ ≥ 0, ηi ≥ 0, (4.6)

C(x, t, ξ, η1, . . . , ηm) ≤ K2
0ξ, ∀(x, t) ∈ Q, ξ ≤ 0, ηi ≤ 0, (4.7)

where K0 is some positive constant.

We de�ne the following de�nitions:

t?(s) = min
1≤i≤k

{inf
t≥s

σi(t)}, (4.8)

t??(s) = min
1≤i≤m

{inf
t≥s

τi(t)}, (4.9)

T ? = min{t?(s), t??(s)}. (4.10)

It is useful to mention that the generalization of this section does not only consider the delay

as function but also the number of delays is increased. It is also useful to mention that, in

contrast of the previous section, the ((RBC) is not homogeneous.The notion of a solution is

given in the following de�nition:

Definition 1. A function u ∈ C2(Ω̄×(t?(0),∞); R)∩C(Ω̄×(t??(0),∞); R) satisfying (4.1),

with (4.3) (resp. (4.2)) is said to be a solution of (4.1) with (4.3) (resp. (4.2)).
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4.2 Oscillation of the problem (4.1)

4.2.1 Oscillation of the problem (4.1) with Dirichlet boundary con-

dition

Theorem 4.2.1. Assume that α2−4(λ1+K2
0) < 0, and let ω1 = α

2
and ω2 = 1

2

√
4(λ1 +K2

0)− α2.

If there exists a number s such that T ?(s) ≥ 0 and

H(s) =

∫ s+ π
ω2

s

R(t)eω1(t−s) sin(ω2(t− s))dt = 0, (4.11)

where

R(s) = F (s)−Ψ(s)−
k∑
i=1

bi(s)Ψ(σi(s)), (4.12)

where Ψ is given by (1.26).

Then any solution u of problem (4.1) with (4.2) has a zero in Ω× (T ?, s+ π
ω2

).

Proof Assume the contrary. So there exists a solution u with no zero in Ω× (T ?, s+ π
ω2

).

Assume then that u > 0 on Ω× (T ?, s+ π
ω2

).

Multiplying both sides of (4.1) by ϕ and integrating over Ω, we get for t > 0

Utt(t) + αUt(t)−
∫

Ω

[∆(x, t) +
k∑
i=1

bi(t)∆U(x, σi(t))]ϕ(x)dx

+

∫
Ω

C(x, t, u(x, t), u(x, τ1(t)), u(x, τ2(t)), . . . , u(x, τm(t)))ϕ(x)dx = F (t), (4.13)

where F (t) is given by (1.24).

Using the fact that∫
Ω

C(x, t, u(x, t), u(x, τ1(t)), . . . , u(x, τm(t)))ϕ(x)dx ≥ K2
0U(t), (4.14)

for all t ∈ [s, s+ π
ω2

).

Combining (4.14) with (4.13), we get

Utt(t) + αUt(t)(λ1 +K2
0)U(t) + λ1

k∑
i=1

bi(t)U(σi(t)) ≤ F (t), (4.15)

for t ∈ [s, s+ π
ω2

).
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Since u > 0 on (T ?, s + π
ω2

), then U(σi(t)) ≥ 0, for i ∈ {1, . . . , k}, on [s, s + π
ω2

) thanks to

the de�nition of T ?(s).

Therefore U(t) is a positive solution of the following di�erential inequation

Utt(t) + αUt(t)(λ1 +K2
0)U(t) ≤ R(t), t ∈ [s, s+

π

ω2

), (4.16)

where R(t) is given by (4.12).

which is equivalent to

Utt(t) + 2ω1Ut(t)(ω
2
1 + ω2

2)U(t) ≤ R(t), t ∈ [s, s+
π

ω2

). (4.17)

Multiplying both sides of the previous inequality by eω1(t−s) sin(ω2(t − s)) and integrating

both sides of the resulting inequation over (s, s+ π
ω2

), we get

0 < U(s+
π

ω2

)e
ω1
ω2
π

+ U(s) ≤ 1

ω2

∫ s+ π
ω2

s

R(t)eω1(t−s) sin(ω2(t− s))dt (4.18)

Using the de�nition of H(s) given by (4.11), we get

0 < U(s+
π

ω2

)e
ω1
ω2
π

+ U(s) ≤ 1

ω2

H(s). (4.19)

This with (4.11) leads to a contradiction.

If u < 0, we set v = −u and obtain, for V (t) = −
∫

Ω
u(x, t)ϕ(x)dx, the following inequation

Vtt(t) + 2ω1Vt(t)(ω
2
1 + ω2

2)V (t) ≤ −R(t), t ∈ [s, s+
π

ω2

). (4.20)

We can obtain a contradition by following the steps of the previous proof. �

4.2.2 Oscillation of the problem (4.1) with Robin boundary condi-

tion

The following theorem gives a su�cient condition for the oscillation of (4.1) with (4.3).

Theorem 4.2.2. Let K0 > 0 and assume that α2 − 4K2
0 < 0, and let ω3 = 1

2

√
4K2

0 − α2).

If there exists a number s such that T ?(s) ≥ 0 and

H?(s) =

∫ s+ π
ω2

s

R̃(t)eω1(t−s) sin(ω3(t− s))dt = 0, (4.21)



54 Chapter 4. Localization of the zero of the solutions

where

R̃(s) = F̃ (s) + Ψ̃(s)−
k∑
i=1

bi(s)Ψ̃(σi(s)). (4.22)

Then any solution u of problem (4.1) with (4.3) has a zero in Ω× (T ?, s+ π
ω3

).

Proof The proof of this Theorem is similar to that of Theorem 4.2.1 �

4.3 Example

Let us consider the following one dimensional problem

utt(x, t)+2ut(x, t)−[uxx(x, t)+2uxx(x, t−π)]+u(x, t) = 4 sinx cos 2t, (x, t) ∈ (0, π)×(0,∞),

(4.23)

with the Dirichlet boundary condition

u(0, t) = u(π, t) = 0, t > 0. (4.24)

Here n = 1, Ω = (0, π), α = 2, k = 1, b1(t) = 2, σ1(t) = t − π, K0 = 1, ψ = 0, and

f(x, t) = 4 sinx cos 2t.

It is easily seen that ω1 = ω2 = 1, T ?(s) = inft≥s(t−s) = s−π and F (x, t) =
∫ π

0
4 sinx cos 2tdx =

2π cos 2t.

On the other hand, since ψ(t) = 0, we have R(t) = F (t).

Some computation gives us

H(s) =

∫ s+ π
ω2

s

4 cos 2tet−s sin(t− s)dt

=
1√
5

(eπ + 1) sin(2s− θ0), (4.25)

where θ0 = tg−1(1
2
) (0 < θ0 <

π
2
).

Therefore H(s) = 0 for s = sn = θ0
2

+ nπ
2
(n = 2, 3, . . .).

Theorem 4.2.1 implies that any solution of (4.23)�(4.24) has a zero on Ω× (sn − π, sn + π).

Such solution is u(x, t) = sinx ˙sin2t.



Perspectives

Although a huge number of articles has been devoted to the oscillation theory of di�erential

equations, some interesting problems have not attracted the attention it merits yet.

Let us quote some of these problems:

1. Find conditions for non existence of oscillatory solutions of functional di�erential equa-

tions (FDEs).

It is well known that there is a considrable number of articles devoted to �nd the

su�cient conditions such that all the solutions of the following second order ordinary

di�erential equation are not oscillatory:

y′′ + p(t)f(y) = 0, (1)

whereas there is lack of such results concerning the second order FDE:

y′′(t) + p(t)f(y(r(t))) = 0. (2)

The technique used to look for the su�cient conditions in order that all the solutions

of (1) are oscillatory is based in general on the constuction of the energy function and

on the use of the uniqueness of the zero solution.

It is well known that all the solutions of

y′(t) + q(t)y(t) + p(t)y([t]) = 0, (3)

are nonoscillatory, if p(t) ≤ 0 or p(t) ≥ 0 and lim sup
n→+∞

∫ n+1

n

p(t)exp

(∫ t

n

q(s)ds

)
dt < 1

where [t] denotes the integer part function.

There is no such result even for

y′(t) + q(t)y(t) + p(t)y(τ(t)) = 0, (4)
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where τ(t) ≤ t (τ(t) 6≡ t) and limt→∞ τ(t) =∞.

2. Find conditions for the existence of oscillatory solutions of FDE.

3. Study oscillation and non oscillation problems for delay systems.

4. Find conditions for the non oscillation caused by delays.

It is easy to see that every solution (x(t), y(t)) of{
x′(t) = 2x(t)− y(t)

y′(t) = x(t) + y(t)
(5)

is oscillatory. If we consider the corresponding delay system of the form{
x′(t) = 2x(t)− y

(
t− 1

3
log 4

)
y′(t) = x

(
t− 1

3
log 4

)
+ y(t),

(6)

then it is easy to �nd that (6) has a non oscillatory solution x(t) = exp(3
2
t), y(t) =

exp(3
2
t).

This non oscillation is caused by the delay.

But there is no further result concerning this problem till now.

5. Find further relation between the oscillation theory of second order FDE and the

corresponding boundary value problems.

6. Study the distribution of zeros, the variations of amplitude and the asymptotic behavior

of oscillatory solutions.

7. Study some special FDE, which are posed by practical applications. For example,

consider the oscillation problems for the equations with delays, which depends on the

states, such as

y(n)(t) + p(t)y (t− r(t)) = 0. (7)

Even the case n = 1 is interesting to be considered.

There are also other paths to be followed like partial di�erential equations and systems

of equations with delays depending on the states.
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