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Abstract
The abstract of this thesis, which concerns with the oscillatory behavior of the solutions of
differential equations of second order and of partial equations , is as follows:
The first contribution, subject of chapter two, is concerned with a simple generalization of
Parhi and Kirane [28]. Our essential contribution in this part of thesis is to consider the
coefficients and the delays as functions.
The second contribution, subject of chapter three, is to consider the following equation

without forcing term
[r(®) ()2 ()] +p(O)2' () + q(8) f(2(£)) =0, >ty >0, (1)

where to > 0, r(t) € C'([tg, 20); (0,00)), p(t) € C([to,00)); R), q(t) € C([ty,00)); R), p(t) and
q(t) are not identical to zero on [t,, oco[ for some t, > tq, f(z),?(z) € C(R,R) and ¥(z) > 0
for x # 0.

We do not only prove the oscillation of equation (1), but we also localize its zeros thanks to
an idea of Nasr [27].

Our result is obtained under the following conditions:
e (C}) For some positive constant K, f(x)/x > K > 0 for all x # 0.
e (C5) For some two positive constants C1, 0 < C' < ¢(x) < C4

e (C3) Suppose further there exists a continuous function u(t) such that u(a) = u(b) = 0,
u(t) is differentiable on the open set (a,b), a,b > t,, and

[ 100 = 215y - 200 0. 2)

The condition (C3) ensures that any solution of (1) admits a zero in [a, b].

This last result is an extension of the result of Kirane and Rogovchenko [21] where the
localization of the zeros is not treated.

On the other hand, our method to obtain previous result is very simple in the sense that we

use a simple Ricatti’s transformation:

u(t) = — t € [a,b], (3)



with respect to the work of Kirane and Rogovchenko [21| where the following Ricatti’s

_ r@p(z@)2'(1)
v(t)=p o0 :

Therefore, with the Ricatti’s transformation (3), the computations could be done easily.

transformation is used:

(4)

We should mention that, for a given second order equation, there is neither a general rule

to choose the Ricatti’s transformation nor a Darboux transformation:

A(t)z(t) + B(t)2' (1)
c(t)z(t) + D(t)a'(t)

o(t) = (5)
The technique used to study the oscillation of (1) is extended to study the oscillation of the

equation with forcing term

(D)2’ ()] + p(6)a' () + a(t) f(x(1)) = g(t), ¢ >tg >0, (6)

with the same conditions cited above for r, ¥, p, and q.

The forcing term g is assumed to satisfy the condition:

(Cy): There exists an interval [a,b], where a,b > t,, such that g(t) > 0 and there exists
¢ € (a,b) such that g(¢) has different signs on [a, c] and [c, b].

We assume in addition that

(Ch): > K ’

for some positive constant K and for all x # 0.
Furthermore, we assume that there exists a continuous function w(t) such that u(a) = u(b) =

u(c) = 0, u(t) is differentiable on the open set (a,c) U (¢, b), and satisfies the inequalities

[ H/RA@aT0] = g = 200 (0 0] dte) = o )

/ [(VKaq(t)g|(t)] — 2%7("2))u2 —2Cr(t)(W)*(1)]d(t) > 0. (8)

Then every solution of equation (1) has a zero in [a, b].

The third contribution, subject of chapter four, in our thesis is a generalization of our work
of Magister |3].



We are concerned with the oscillation of the following hyperbolic equation:

k
ug (z,t) +  aw(z,t) — [Au(z, t) + Zbl t)Au(x, 0;(t))]
=1

+ Ozt ulz, 1), ule, (1), u(@, (1)), ..., u(z, 7 (1)) = f(z, 1), (9)

where (z,t) € Q = Q x (0,00) and € is a bounded domain of R"™ with a sufficiently regular
boundary I' and A is the Laplacian in R".

Under some suitable conditions on o;(t), 7;(t), the coefficients b;(¢), as well as some condition
on the non-linearity C, we prove that all the solution of (9) are oscillatory. In addition, we

provide a localization for the zeros of such oscillatory solution.

Key words: Differential equation of second order, Hyperbolic partial differential equa-

tion with delays, Oscillation

AMS Classification: 34C10, 34K11, 92B05
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Chapter 1

Introduction

While studying the heat conduction, C. Sturm, in 1936, posed the problem of oscillations of

linear differential equations of the form
z (t) +a(t)xz(t) = 0. (1.1)

Since the work of Sturm, several works have been devoted for the oscillation theory.

The works of Sturm and Liouville, e.g. Sturm separation and comparison theorems, could
be found in the standard books of differential equations..

Swanson [38] summarized the classical results of the oscillation theory. We also find a nice
review of such theory in Kreith "Oscillation theory" Springer, 1973.

The oscillation theory of non linear differential equations of second order has also attracted
an attention, see for instance the books of Bogolyubov and Mitropolski "Méthodes asympto-
tiques en théorie des oscillations non linéaires", 1962, of Roseau "Vibrations non linéaires",
1966, and of Coddington and Levinson "Theory of ODEs", 1955. We do not know exactly
the first work on the oscillation theory of non linear differential equations of second order.
It seems that a first attempt to study the oscillation theory of differential equation with
delays was done by Fite in 1921.

Fite considered the following differential equation of order n with a delayed argument :
y™ (1) + p(t)y(r(t) =0, t € R, (1.2)

where n > 1, p e C(R), 7(t) =k —t, t € R, and k is a positive constant.

We should mention that for differential equations of first order, not considered here, there is

1



2 Chapter 1. Introduction

a drastic between an equation of type:

y'(t) +p(t)y(t) =0, p e C(RT), (1.3)

and an equation with a delay of type

y'(t) +y(t — g) =0, (1.4)

for example. The solutions of (1.3) have constant signs, whereas the equation (1.4) admits
an oscillatory solution y(t) = sin(t). This last oscillatory behaviour is caused by the delay
7 which appears in the argument of the second term on the left hand side of (1.4).

This remark shows that the study of equations with delays, even those simple, require a
particular attention.

It seems that the study of the oscillatory solutions of ordinary differential equations, with or
without delays, or of partial differential equations is important in practice, e.g. in biology,
mechanics, electronics, physics of elementary particles,....

Our first contribution in this thesis is concerned with an ordinary non linear differential
equation of second order with a forcing term in the general case, whereas the second contri-
bution is concerned with a non linear hyperbolic equation with delays and a forcing term.
The first contribution, the subject of the third chapter and the article |2], is an extension
of Kirane and Rogovchenko [20]. In [20], the authors show only that the solutions are oscil-
latory, whereas in our work we provide with a criterion allowing us to localize the zeros of
such oscillatory solutions. These results are important in practice.

In [2], we suggest a simple Ricatti’s transformation, in contrast of [20], to study the oscillation
of the equation under consideration. This simple transformation makes our computations
easy.

We should mention that, for a given second order equation, there is neither a general rule

to choose the Ricatti’s transformation nor a Darboux transformation:

A(t)z(t) + B(t)2'(t)

o0 = et T Do)

The second contribution, the subject of the fourth chapter, does not only provide us with
some criterion for the oscillation behaviour of the solutions of an hyperbolic partial differen-
tial equation, but also allows us to localize the zeros of such oscillatory solutions.

In the end of thesis, we suggest some problems which could be good paths of research to be

followed in the future.
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1.1 Some examples of oscillatory solutions

1.1.1 The case of ordinary differential equations
Consider the following differential equation:

4

2 (t) + qt)z(t) = 0, t € [to, +00), (1.5)

where the function ¢ is locally integrable.

The following criterion is due to Wintner [39]: if the following condition

1 t r
lim —/ dr/ q(s)ds = 400 (1.6)
to to

t——+oo ¢

is fulfilled, then the solutions of equation (1.5) are oscillatory. Hartman [17] showed that
the condition (1.6) could be replaced by an upper limit.

THEOREM 1.1.1. (c¢f. Kamenev [25])
Let the function t'""A,(t), where A, is the n—th primitive of the function q, be not
bounded above for some n > 2 (not necessarily integral). Then the solutions of (1.5) are

oscillatory.
Proof We can remark that

1 ¢ -
An:m/ (t — $)"q(s)ds, (1.7)

to

so one could write the condition of Theorem 1.1.1 as

t
lim sup tl_”/ (t— )" q(s)ds = +o0. (1.8)
t—4o0 to
If we set ,
x
. 1.9
w=", (19)

Then equation (1.5) is transformed into

w +w? +q =0, (1.10)

which implies that
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[ s=tuias+ [@-syrturois = [ taas.

to to to

Thanks to an integration by parts, we have

/ (t —s)" ' (s)ds = (n — 1) / (t — )" 2w(s)ds — w(to)(t — to)"*. (1.12)

to to

Inserting this in (1.11) and multiplying by t'™", we get

t" /t:(t — )" q(s)ds = —t'™" /t: ((n = 1)t = s)"w(s) + (t = s)" " w(s)) ds
t—to

+ wlto)( )

t

= i t{(t—s)"?w(s)+ 5

(n—1)%(t — to)" 2
4(n — 2)tn—1

+ w(to)(t_tto

(n—1)%(t —to)" 2
4(n —2)tn—1
< G, (1.13)

n_]_ n—3

(t—s) =}

)nfl

IN

for all ¢ > ¢, which contradicts assumption (1.8). |

Remark 1.1.1. [t is useful to mention that assumption (1.6) implies assumption (1.8) for
n = 3. Therefore the Wintner’s criterion for the oscillation of equation (1.5) could be a

particular application of Theorem 1.1.1.

1.1.2 Oscillation of the solution of some time dependent equations

in higher dimensions

In the previous subsection, we quoted some criteria for the oscillation of some one dimensional
differential equations. These criteria are given in [23| and [39].

In this subsection, we quote some criteria for the oscillation of some differential equations in
higher dimensions. The models and the criteria we will quote in this subsection are given in

Parhi and Kirane [28]. These models are important from the point of view that they appear
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in biology.

We will focus our attention on the following “delay " equations:

g (z, ) + Bug(z,t — p) + yuy(x, t — 0) — {Au(z, t) + aAu(z,t — 7)}
+ oz, t,u(z,t),u(z,t — o)) = f(z,t), (x,t) € Q=Q x (0,00), (1.14)

where  is a bounded domain in R¢, with regular boundary I' = 9.
Of course, to get the well-posedness of (1.14), we need additional conditions. Some of these

conditions are concerned with the boundary conditions like

u(z,t) = (x,t), (x,t) € ' x (0,00), Dirichlet boundary conditions. (1.15)

Vu(z,t) -n(z) = (x,t), (x,t) € I' x (0,00), Neumann boundary conditions.  (1.16)

Vu(z,t) - n(z) + pu(z,t) =0, (z,t) € I' x (0,00),, Robin boundary conditions. (1.17)

(Where we have denoted, as usual, n(x), x € T, the unit vector normal to the boundary T’
on the point z, outward to .)

Here
d
0*u

e —2,
— Ox;

Au(z)

x = (11,79, X3, ...,2q). (1.18)
The functions t, ¢ in (1.15)~(1.16) are given functions, and y in (1.17) is positive.

The constants «, 3,7, 0, 7,0 which appear in (1.14) are positive. In addition to this, we

assume that

fec(o). (1.19)
We need the following assumption on the function ¢ which appears (1.14):

ASSUMPTION 1. We assume that the function c satisfies



6 Chapter 1. Introduction

Hy :e(z,t,&,m) is a real valued continuous function on Q@ X R x R.
Ho o c(x,t,&,m) >0 for all (z,t,£,n) € Q x RT x R,
Hs : c(x,t,—& —n) = —c(x,t,&,m) is a real valued continuous function on Q X RT x RT.

To analyze the oscillation of the time dependent equations (1.14), we need to use an
eigenfunction for Laplace operator; it is known that the first eigenvalue A\; of the following
spectral problem,

—Aw(z) = Mw(x), = € Q, (1.20)

with homogenous Dirichlet boundary condition

w(z) =0, x €T, (1.21)

is positive and the corresponding eigenfunction is either positive or negative. One could
remark that if @ is an eigenfunction corresponding to an eigenvalue A, than —@ is also an
eigenfunction corresponding to an eigenvalue A, one could choose the eigenfunction, denoted
by ¢, corresponding to the first value A\; such that p(z) > 0, for all x € Q.

We also use the following notations, for all u € C2(Q) NC(Q):

U(t) = /Q u(w, )o(x)dz, (1.22)

U(t) :/Qu(:v,t)dx, (1.23)

F(t)= | flo @z, (1.24)
F(t) = Qf(x,t)dx, (1.25)
W(t) = | (@ OVela) n(@)dz, (1.26)
U(t) = [ P(x,t)de. (1.27)
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The following Theorems, see |3], give sufficient conditions for the oscillation of equation
(1.14) with different boundary conditions.

THEOREM 1.1.2. (Oscillation of (1.14) with Dirichlet boundary condition) Assume that
Assumption 1 and the following conditions are fulfilled:

1.
litrgigf/t (1 - ;) (F(s) — U(s) — aW(s — 7)) ds = —c0, (1.28)
2. t
lirtriigp/t (1-2) (F(s) ~ W(s) — aW(s — 7)) ds = +oo, (1.29)

for a sufficiently large to, then each solution of (1.14)-(1.15) is oscillatory on Q.

THEOREM 1.1.3. (Oscillation of (1.14) with Neumann boundary conditions) Assume that

Assumption 1 and the following conditions are fulfilled:

3.

litrgg)lf/t (1 - ;) (F(S) +U(s) +al(s — 7')) ds = —o0, (1.30)
4- .

n?lsogp/t (1 - ;) (F(s) + P (s) + al(s — T)) ds = +00, (1.31)

for a sufficiently large to, then each solution of (1.14) with (1.16) is oscillatory on Q.

THEOREM 1.1.4. (Oscillation of (1.14) with Robin boundary conditions) Assume that As-

sumption 1 and the following conditions are fulfilled:

5.
t

lim inf/ (1 - f) F(s)ds = —oo, (1.32)
to

t o\ -
lim sup/ (1 - —) F(s)ds = +o0, (1.33)
to t

t—o00

for a sufficiently large to, then each solution of (1.14) with (1.17) is oscillatory on Q.



8 Chapter 1. Introduction

The Proofs of Theorems 1.1.2-1.1.4 are similar, we only present the Proof of Theorem
1.1.2.

Proof of Theorem 1.1.2:
Assume that the solution u is not oscillatory, then there exists a > 0 such that u is either
positive or negative on Q, (recall that Q, = Q x (a, 00)).

We assume that
u(z,t) >0, V(z,t) € Q,. (1.34)

Multiplying (1.14) by ¢ (Recall that ¢ is the positive eigenfunction corresponding to the

first positive eigenvalue \; of (1.20).) and integrating the result over x € ), we get

Un(t) + BUu(t — p) + Uit — 0) = F(t)
+ /QAu(x,t)go(a:)dx + a/QAu(x,t — 7)p(x)dz

- /c(x,t,u(x,t),u(x,t —0))p(x)dx, Yt € (0,00). (1.35)
Q
We first remark that, thanks to Assumption 1, and the fact that v and ¢ are positive

—/ c(x, t,u(x,t),u(x, t —o))p(x) <0, Vt € (a+ 0,00). (1.36)
Q
On the other hand, thanks to an integration by parts, we get
/ Au(z, t)p(z)de = — / u(z,t)Vo(z) - n(z)dr + / Ap(x)u(z, t)dx
Q r 0
= /Qb(x,t)Vgo(x) -n(z)dr — )\ / o(x)u(z, t)d
r Q
(t)

< —U (1.37)

and by the same way, we have

/ Au(z,t — T)p(x)dr < =V (t —7), Vt € (a+ T,00). (1.38)

From (1.35)—(1.38), we deduce that, for any ¢t € (¢ + max(7,0), c0)

Un(t) + BU(t — p) + Ut — 0) < F(t) — W(t) — aW(t — 7). (1.39)
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To simplify the notation, we set
glt)=F(t)—V(t) — a¥(t —71), YVt € (Tp,0), (1.40)
where, for the sake of simplicity of the notations

To = a + max(T,0). (1.41)

Thanks to (1.39) and definition (1.40) of g, we have

Un(t) + BUu(t — p) + Ut — 0) < g(t), Vt € (Tp, 00). (1.42)
Integrating inequality (1.42) over (Tj, 00), we get

t

UL(t) + AUt — p) + AU (t— 0) < / g(s)ds + dy, ¥t € (Ty, 00), (1.43)

To
where d; € R.
Integrating again (1.43) over (T}, 00), where 17 = a + max(7, 0,0, 0, p), we get since U and

~ are positive

Uit)+pU(t—p) < /Tt/Trg(s)dsdr+d1(t—T1)—v/TtU(r—é’)dT+d2

t r
< / / g(s)dsdr + dy(t — T1) + da, (1.44)
T JTo
where dy € R. . .
One could remark that / / g(s)dsdr = / (t —s)g(s)ds + ¢(t — T1) for some ¢ € R, one
n Jr, T
could deduce from the prelvim(l)s inequality that
t —
Ut) + BU(t — p) < / (t — 8)g(s)ds + dy(t — T) + da, (1.45)
Ty

for some d; € R.

Since U is positive on (77, 00) (recall that 77 = a + max(r, 0,0, 0, p)), we have

t
lim inf {U(s) +pU(s — p)}ds > 0, (1.46)
t—oo t — Tl i)

which implies, using (1.45), that
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1 t
litrgglf — /Tl (t—s)g(s)ds > 0. (1.47)

On the other hand, thanks to assumption (1.28) of Theorem 1.1.2, we have

lim inf
t—oo — 1

/ (t—s)g(s)ds = liminf ; —tTl / (1-— f)g(s)ols

i t—o0 e t

= liminf /t(l — f)g(s)ds

t—o0 T t

= —09, (1.48)

which is a contradiction with (1.47).

So far, we proved, under the assumptions of Theorem 1.1.2, that on any interval (a,oc0) u
can not be only positive, i.e., for each a > 0, there exists some ¢ € (a, 00) such that u(f) < 0.
To conclude now the Proof of Theorem 1.1.2, we should prove that on any interval (a, 00) u
can not be only negative, i.e., for each a > 0, there exists some t € (a, 00) such that u(t) > 0.
This will allow us to confirm that for each interval (a, 00), there exists some ¢; € (a, 00) such
that u(t,) = 0.

Assume then that there exists a > 0 such that

u(z,t) <0, V(z,t) € Q,. (1.49)
Set
v(z,t) = —u(x,t), V(z,t) € Q, (1.50)
which implies, using (1.49)
v(z,t) >0, Y(z,t) € Q,. (1.51)

Multiplying (1.35) by —1, we get
Va(t) + BVt —p) + Vit —0)=—F(t) + /Q Av(x, t)p(x)dr + oz/QAv(x,t — 7)(x)dz
+ ]Qc@;t—%(xj%—%Kxj——0»¢tﬂdx,VtE(Oxm) (1.52)

where

V(t) = —U(t), ¥t > 0, (1.53)
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Using now hypothesis H3 of Assumption 1, equation (1.52) with (1.51) leads to
Vie(0)+ Vi (t—p) +7Vi(t—6) < —F(t)+/ Av(x,t)go(:c)dx—l—a/Av(x,t—T)go(a:)dx, (1.54)
Q Q

for any ¢ € (0, 00).
On the other hand, thanks to an integration by parts, we get

/ Av(z,t)p(z)dr = — / v(z,t)Ve(z) -n(z)dr + [ Ap(z)v(z,t)de
Q r 0
= /Fw(.r, t)Ve(z) - n(x)de — )\ : o(x)v(z, t)dx
< W), (1.55)
and by the same way, we have
/ Au(z,t — 7)p(z)de < VU(t — 1), Vt € (a+ T,00). (1.56)
From (1.54)—(1.56), we deduce that
Vie(t) + BV (t — p) +yVi(t — 6) < h(t), Vt € (a + max(T,0),00), (1.57)
where h is defined by
h(t) = —F(t) + ¥(t) + a¥(t — 7). (1.58)

On the other hand, thanks to assumption (1.29) of Theorem 1.1.2, for a sufficiently large T3

lim inf

t—o0 — 17

/%—gmg@::mmm ! /%ffm@@

T t—oo t — T1 s t

:hm@f@fwws

t—o0 e t

- . (1.59)

This allows us to apply the same techniques used in (1.42)—(1.48), and consequently we get

a contradiction, which completes the proof. [
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1.2 Oscillation of some nonlinear second order equations

Among the results related to our principal contribution given in chapter three, are those of
the article [20].

The article [20] presents new oscillation creteria for a nonlinear second order differential
equation with a damping term. An essential result in [20] is the nondecreasing property of
the nonlinearity.

Kirane and Rogovchenko [20] studied the oscillatory solutions of the equation

[r(Ow ()2’ ()] + p(8)a' (1) + q(t) f(x(t)) = 0, ¢ = to, (1.60)

where to > 0, r(t) € C'Y[tp,00);(0,00)), p(t) € C([tg,);R), q(t) € C([to,0);
(0,00)), q(t) is not identical to zero on [t,,00) for some t, > to, f(z),¥(x) € C(R,R) and
Y(z) > 0 for x # 0.

As usual, a function z : [tg,t1) — (—00,00) with t; > t( is called a solution of equation
(1.60) if x(t) satisfies Equation (1.60) for all t € [ty,t1) . The authors consider only proper
solutions z(t) of (1.60) in the sense that z(t) is non-constant solutions which exist for all
t >ty and

sup {z(t);Vt > to} > 0. (1.61)

A proper solution x(t) of (1.60) is called oscillatory if it has arbitrarily large zeroes; oth-
erwise it is called nonoscillatory. Finally, an equation (1.60) is said to be oscillatory if all its

proper solutions are oscillatory.

Oscillatory and nonoscillatory behavior of solutions for different classes of linear and
nonlinear second order differential equations has been studied by many authors (see, for
example, [1-26] and the references quoted therein). Some papers [12, 13, 15, 16, 21, 23| are

concerned with particular cases of equation (1.60) such as linear equations:

"

xz (t)+q(t)z(t) =0, (1.62)

/

(r(t)x'(t)) + q(t)z(t) =0, (1.63)

and the nonlinear equation
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(r(t)a'(£)) + q(t) f(x()) = 0. (1.64)

The main idea to deal with Equations (1.62)—(1.64) uses the average behavior of the
integral of ¢(t) and originates from the techniques used in Wintner [39], Hartman [17] and
Kamenev [23]. For more details, we refer to Yan [42], Philos [29], and Li [24] , where one
can follow the refinement of the ideas and methods cited above, see also corrections to the

later paper in Rogovchenko [31].

The purpose of [20] is to derive new oscillation criteria for equation (1.60) which com-
plements and extends those in [9], [11], [31], [40],[42].

More precisely, the techniques used [20] are similar to that used in Grace [11], Kirane
and Rogovchenko [21], Philos [29], Rogovchenko [32], [33], and Yan [42]. Their results are as

follows

THEOREM 1.2.1. Assume that for some constants K,C,Cy and for all x # 0, f(x)/x >
K>0and0<C <¢(x) <Cy. Let h, He€ C(D,R), where D = {(t,s) : t > s > to}, be
such that

(i) H(t,t) =0 fort >ty, H(t,s) >0 in Dy={(t,s):t>s >t}

(i) H has a continuous and non-positive partial derivative in Dy with respect to the second

variable, and

OH

— 5 = h(t,s)\/H(t,s) (1.65)

for all (t,s) € Dy.

If there exists a function p € C([tg,00); (0,00)) such that

hgfip Ht 1) /to [H(t,s)O(s) — %p(s)r(s)QQ(t, s)]ds = o0, (1.66)
where
0() = 0) (Ka) - (5 = ) 1))

then (1.60) is oscillatory.
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Proof Assume that a solution z(t) for (1.60) is not oscillatory, therefore there exists a
Ty > to such that z(t) # 0 for all t € (Tp, +00).
Let us consider the function v(t) defined by

_ T ()2 (t)
v(t) = p(t) o)

Since x(t) # 0 for all t € (Tp, +00), then v(t) is well defined.
Differentiating (1.67) and using (1.60), we get

Vit € (Tp, +00). (1.67)

S0 = OO
P CGERG HU R ES R
- OO
) o)
ey
_ —p(t)q(t)x((;(t))
v (e - sono} S0 - poroveeEr 06

© (1) olt) (1.69)
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Inserting this in (1.68), we get

v(t) = —p(t)

v e, 1
I(t)){ R (t)}. (1.70)

Thanks to the hypothesis f(x)/x > K > 0 of Theorem 1.2.1 , for = # 0, and since z(t) # 0,
for all t € (T, +00), p and ¢ are positive, we have the following estimate for the first term
on the right-hand side of the previous inequality
t t

)T < kptoyatt), € (10, +00) (1.71)
Thanks to the hypothesis C7 > ¥ (z) > C' > 0 of Theorem 1.2.1, and since x(t) # 0, for all
t € (Typ, +00), and p is positive, we have the following estimate for the third term on the
right-hand side of inequality (1.70)

p*(t)p(t) PP(t)p(t)

FOe@®) = dor) 0 Tt E T +oo). (1.72)

and the following estimate for the fourth term on on the right-hand side of inequality (1.70)

o eevem o T 1 [y, 1
r(t)w(x(t)){ SR o(t) (t>} = Clr(t){ > " p(t) (t)}
— g o + o)}
- pj gqu)((t? (1.73)

for any t € (1, +00).
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Combining now (1.72) and (1.73) with (1.71), we get

for any t € (Ty, +00).

v'(t)

<

~Keta® + 50O+ e © T 6
1 1,
qm%mmwﬁwuﬂ
o) A) L,
-0~ (&~ 50) "0 ~ e 1

where O(t) is defined in Theorem 1.2.1.
Multiplying both sides of (1.74) by H (¢, s), integrating the result over (T, t), where t > T >
To, by an integration by parts, using the fact that H(¢,¢) = 0 and (1.65), we get

_ /T CH( ) (s)ds /T H(t,s) (Cfi Ef()s) = ’; ((s;)v(S)ds

t
1
H 2
/ t,s) Ol v (s)ds

/TtH(t,s)@( \d

s <

/t{ At s) —\/Clr s)Q(t, s } ds

/Hts)v ds—/ H(t, s) ( —pp((j))>v(s)ds

bOH(t, _H(t,s) o2
r Cir(s p(s) (s)ds

/H(t s (s ds—/ Q(t,s) v(s)ds — i 35( s)v(s)ds
bOH(t,s)
v Cir(s)p(s)

1) = [ Qe Aoy [
H(t, T)o(T)

v?(s)ds

v*(s)ds

2

Cir(s)p ()

c, [

— [ 7(s)p(s)Q(t, 5)ds, (1.75)

T
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which implies that

/ {H(t, §)0(s) — Q)@ 5) } ds < H(t,T)o(T)

T 4
[ [CHs 2
H(t,s 1
— —_— = t d 1.
/ { Gt + 5 VO EeEal ,s>} . (1.76)
and therefore, since H is a decreasing function with respect to the second variable and t > ¢
¢ 2
/ {H(t,s)@(s) - Clr(s)p(i)Q (t;5) } ds < H(t, to)|v(T)]. (1.77)
T

Using the fact that H(t,s) > 0 for all s € [ty, ] and again the fact that H is a decreased

function with respect to the second variable, (1.77) leads to

[ {H(t’ s - Crn(EQHE } ds — / " H(t 5)0(s)ds

_ /tOT Clr(s)ﬂ(z)QQ(tS)szr/; {H(t, $0(s) - ClT(S)p(Z)QQ(t, 8)}d8
< H(t,t) {/:@(s)dw |U(T)|}, (1.78)

which implies that

lim sup m /t: {H(t, 5)O(s) — Clr(s)p(z)@(t s) }

which contradicts the assumption (1.66) of Theorem 1.2.1, and consequently z(¢) is oscilla-

dsg/T@(s)ds+|v(T)|, (1.79)

to

tory. B From Theorem 1.2.1, we could deduce the following useful

Corollary.

Corollary 1.2.2. The assumption (1.66) of Theorem 1.2.1 could be replaced by the following

two conditions together:

: 1 !
lim sup ) /to H(t,s)O(s)ds = oo, (1.80)

t—-+o0

and

limsupm/ r(s)p(s)Q*(t, 8)ds < oo. (1.81)

t——+o00 to
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It is useful to give some choices for H and h which satisfy conditions of Theorem 1.2.1.
We define

H(t,s)=(t—s)"' V(ts) €D, (1.82)
where D = {(t,s), t > s > ty} and n is an integer such that n > 2.
We have
o H(t,t)=0,

e H(t,s) >0, ¥Y(t,s) € D,

e H(t,s) >0, Y(t,s) € Dy =DnNA{(t,s), t#s}.

The function h could then be chosen as

h(t,s) = —-%1~—
H(t,s)
= (n—1)(t—s)"¥? V(t s) € D. (1.83)

With the choices (1.82) and (1.83), Theorem 1.2.1 becomes:

Corollary 1.2.3. Under the conditions of Theorem 1.2.1, if there exists a function p €
C1([to, 00); (0,00)) such that

htrilfip tl_”/o {(t —5)" 1O (s) — %p(s)r(s)(t — S)”_3A(S)} ds = 00, (1.84)

where © 1is defined as in Theorem 1.2.1 and

o oo (@558 e

then (1.60) is oscillatory.

Example: Consider the following non-linear differential equation:

{(1 + cos® t)ii—;ég:c/ (t)} + 2(sint cost)z (t)

+ (20 + cos® t)x(t) {1 + %;(t)} =0, t>1. (1.85)
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The equation (1.85) is of the form (1.60) where:

e q(t) =20 + cos’t,

e p(t) = 2(sintcost),

r(t) = 1+ cos’t,

72+x2

o Y(z) = T

First, one remarks that for all x € R that

1
=14+ — 1.86
V@) =1+ 1) (1.86)
one could deduce that
1 <iy(x) <2, Vr eR, (1.87)
which gives C' =1 and C} = 2.
We also remark that 8
=1+———>1.V R. 1.88
F@)r =14 g 2 1 V€ (1.85)

Let n = 3 and p(t) = 1, for all t € [1,400). Therefore the function ©, given in Theorem
1.2.1, is defined by

1 ) 4sin’tcos? t
274(1 + cos?t)
sin’ t cos? t

= 20 2 —— 1.89
o 2(1 + cos?t) (1.89)

O(t) = 20+cos’t— (1
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Inserting the previous value of © in the left-hand side on (1.84), we get

t L ,
lim sup ¢~ / (t —s)* (20 + cos® s — S SCOS S 3
feo 0 2(1 + cos? s)

t sin s cos s 2
— /0 5(1 +COS2 S) {2+ (m) (t— S)} dS

! 1
> limsupt_Q/(t—s)2 (20——) ds
t—+o0 0 2
"1 sin s cos s ?
- = 2 2 — | (t— d
/0 2( oo S){ +(1—|—C0828)( S)} °
- o 2 (39 2
> limsupt (t—s) (=) —2+t—s) pds
t——4o00 0 2

39 1
= lirnsupt_2 {——(t - 5)3 —4ds+2(t - 5)2 + g(t — 8)3} |6

t——+o0 6
37
zlmwm2{—#—g—%ﬁ
t——+o00 6
= +oo. (1.90)

Thanks to Corollary 1.2.3, equation (1.85) is oscillatory.



Chapter 2

On the zeros of the solutions of certain

coupled hyperbolic problems with delays

2.1 Introduction

The study of the oscillatory behavior of the solutions of hyperbolic differential equations of
neutral type had an increasing interest these last years.

It seems that the first attempt in this direction was made by Mishev and Bainov [25]. In
[25], they have obtained sufficient conditions for the oscillation of all solutions of a class of
neutral hyperbolic equations with conditions at the boundary of the Neumann type. Yosida
[7] had obtained sufficient conditions which garantee the existence of bounded domains in
which each solution of a neutral hyperbolic equation with boundary conditions of the Dirich-

let, Neumann ou Robin type has a zero.

The oscillatory behavior of the solutions of differential equations of neutral type are
studied recently by many authors (see for instance [28], [26], [45], and [46], and the references
quoted therein.).

Let us cite for example the attempt of Parhi and Kirane [28] who studied the oscillatory

behavior of equations of type

g (1) + Bug (x,t — p) + yuy (2,6 — ) — [0 A (2, 1) + alu (x,t — 2)]
+ c(z,tu(z,tu(z,t),u(x,t—0))) = f(z,t) (2.1)

and other generalizations on the coefficients and on the delays, as well as the work of Parhi

21
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and Kirane |28|, who studied oscillatory behavior of the following coupled problem of neutral

type:

u(x,t) + Oyug(x,t —p1) +nux, t —61) — {agAu(z, t) + aAu(z, t — 21) + agAv(x, t)
+ aAv(z,t — z29)} + ar(x, tyu(z, t), u(z, t — o1),v(z, t),v(x, t — 03))
= fl(JI,t), (22)
and
v, t) 4+ Oguy(m,t — p2) + yov(x, t — ) — (B1Av(x,t) + GoAu(z, t — 23) + B3Av(x, t)
+ Galv(x,t — z4)) + co(x, tyu(x, t), u(x, t — o3),v(x, t),v(z,t — 04)

folz,t). (2.3)

This work is concerned with a simple generalization of Parhi and Kirane [28]. Our
essential contribution is to consider the coefficients and the delays as functions. Consequently

we consider the following coupled problem

un(z,t) + O (Qualz, p1(t)) + n(t)u(z, 01(1))
{a1(t)Au(z,t) + ag(t)Au(x, z1(t)) + asAv(x, t) + agAv(z, 25(t)) }
+alztu,t), u(z, o1 (1)), .., ulz, 01(t)), v(z, ), v(w, 05 (1)),
sz, 05(1)) = fi(x,t) (2.4)

and

vp(z,t) + Ga(t)vu(w, p2(t)) + 12(t)ve(, B2(t))
{B1(t)Au(x,t) + Bo(t)Au(z, 23(t)) + B3(t) Av(x, t) + Ba(t) Av(z, 24)}
+ alw tu(e,t),u(z, o3(t)), . ulz, o5 (1)), v(z, 1), v(w, 04(2)),
oz, al(1) = fao(z, 1) (2.5)

where (z,t) € Q = Q x (0,00) where Q is a bounded domain of R"™ with a sufficiently
regular boundary I'" and A is the Laplacian in R™.

This problem is posed on 2 with one of the following types of boundary conditions:
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e Neumann boundary conditions:

Vu(a:, t) : Il({E) = ¢1($vt)7
(By) : Y(z,t) €I x (0, 00), (2.6)
Vou(z,t)  -n(x) = ().

e Robin boundary conditions:

Vu(z,t) - n(z) + pou(x,t) =0,
(Bs) @ ¥Y(z,t) € I' x (0, 00), (2.7)
Vou(z,t) - n(x) + pov(z, t) = 0.

e Dirichlet boundary conditions:

u(z,t) = Yy (z,t),
(B;) : Y(z,t) € I' x (0,00), (2.8)

v(x,t) = ho(x,t).

where v; and 1;1 (z = ﬁ) are real valued functions on I' x (0,00), u; and py are positive
continuous functions on I" x (0, 00) and n denotes the unit normal vector to I' outward to €.

Some times, in order to simplify the notations, we denote by

Vu(z,t) -n(z) = %(m,t), (2.9)
and
ov
Vou(z,t) -n(x) = g(a:,t). (2.10)

In order to get the oscillation behavior, we assume that :

bi,0i,c5 and 35 € C((0,00);(0,00)) fori=1,2 and j=1,4
(Hi){ a1 €C(QxRxR xRxR;R),
co €C(Q xR x R" x R x R R).
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pi,0; € C((0,00);R) for i=1,2 and z € C((0,00);R) for i=1,4
o},0% 00,07 € C((0,00);R) for i=1,7 and

(HQ) .]:E7k:17_k7L:m7

and for each j: tlgrnoopl(t) tlg-nooel(t) tlgrnooaz (t) = 400

and pi(t)vgi(t)ao-zj" < t,Vt >0

>0 if £and & >0,Vi=1,r

(Z) C1 (:C7t7£7€17"'757‘77777717“-7775)

<0 if fand & <0,Vi=1,r
>0 si nandn; >0,V i=1,0
(“’) C2 <x7t757517"'751677777717"'7775)
L <0 si nandn; <0,Vi=11/

(g, i3, g, By, 01, 02, 71, Y2 are nonnegative real valued fiunctions
<H4) and

a1 et (33 are positive functions.

9, 3, Oy, 1, P2, B4, 01,02,71,Y2 are non—negative functions
(H5> and

aq et (B3 are positive functions.

For our need we define:

-~ _ . . . ) o . ) . . ) . o . J
t (s) = min (lrg% <1121£p2 (t)) , min (g@z (t)) , in, (gzz (t)> ; min (gg (o; (0)))

We say that the couple of functions (u,v) is a solution of ((2.4),(2.5)) with a boundary
condition B, iy € {1,2,3} if the couple of functions (u,v) satisfies the coupled equation
(2.4)—(2.5) and B, .

A function w(x,t) is said oscillatory in @ if w has a zero (or vanishes) in @, for each
a >0, with Q, = Q x (a,0).

A solution (u,v) of the coupled problem (2.4)—(2.5) with one type of the boundary con-

ditions (B;),i = 1,2, 3 is said to be oscillatory in @ if u or v oscillates.
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A solution (u,v) of (2.4)-(2.5), with one type of the boundary conditions (B;),i = 1,2,3
is said to be strongly oscillatory in @) if u, v oscillates at the some time.

We assume that:

(i) (1 +B3)° > 4(c Bs— a3 B).

(i) ar B3> [ as

which ensures the total hyperbolicity of equations (2.4)—(2.5) (see [6]).

The following notations will be used in what follows.

For each

u, veC(Q)[C*(Q).

We write:

F; (t) = /fi (x,t) dz

F(t) = / o (@) fi(2,1) dr,
Q

where dy denotes the integration symbol for (n — 1)—dimensional Lebesgue measure on the

considered hyperplane.
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2.2 The coupled hyperbolic problem

2.2.1 Existence theorem of oscillations

The main results of our paper are the following Theorems:

THEOREM 2.2.1. We assume that the conditions (Hy) , (Hs), (Hs), (Hs) hold. If in addition

lim infLﬁ0 (t—s) [F1(s)+ a1y (s) + ¥y (s — 21 (s))+

ay 4
+ azVUs (s) + s (s — 29 (5))] ds = —o0,
and
1iTHiupﬁf§0 (t—3s) [F1(s)+ 1Py (s)+ ¥y (s— 2z (s))+
(A2)
+azUy (s) + agWs (s — 22 (5))] ds = oo,
or if
ligéﬂf#tft (t —s) [Fo(s) 4+ B1P1 (s) + BoVUy (s — 23(8)) +
(42) °
+ 3302 (s) + 81V (s — 24 (5))] ds = —o0
and
miiupﬁ %ft (t—s) [Fa(s)+ By () + ol (s — 23(s)) +
(41) "

+ B3Vs (8) + BaWs (s — 24(s))] ds = o0
for any to > 0, then each solution (u,v) of the coupled problem ((2.4),(2.5)) with (By)

oscillates in Q).

THEOREM 2.2.2. We assume that the conditions (Hy), (Hs), (Hs), (A1) — (A4) hold. Then
each solution of problem ((2.4),(2.5)) , (B1) oscillates in Q.

THEOREM 2.2.3. Assume that the conditions (Hy) ,(Hs), (Hy4) are satisfied and (A1) —(Ay)
hold, then each solution of problem ((2.4),(2.5)) , (Bs) oscillates in Q.

THEOREM 2.2.4. We assume that the conditions (Hy),(Hs),(Hs) are satisfied. If
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lim inf— O/t (t =) [Fi(5) — axy (5) — oy (5 — 2a(s))
— a3V (s) — ayWs (5 — 25 (5))] ds = —o0,

i inty [0 9) 172 (9) 3T (9) — 81 (5 — 26)) -
— Bula (s) — Bua (s — 24 (5))] ds =~

i supr— [0 5) [F2 ) — iy (5) — i (5 — 2 (5) -
— i (5) — anlia (5 = 22 (5)] ds = ox,

and
i sup— [0 5) 1Fo(6) — 5T (5) — T (5 — 2(5) -

to
— BuWs (s — 24 (5))] ds = o0,
for each ty > 0, then each solution of problem (2.4)-(2.5), (Bs) oscillates in Q.
In order to prove Theorems 2.2.2-2.2.4, we need to use the following technical Lemmata:

LEMMA 2.2.1. We assume that the conditions (Hy),(Hz), (Hs) (i), (Hs) are satisfied. If
(u,v) is a solution of problem ((2.4),(2.5)), (B1) and u(x,t) > 0 in Q. Then the function
U satisfies the following differential inequality of neutral type:

Y @)+ 61y (o1 (1) +m y (61 (1) < Fi(8) +
(2.11)

+ a1V + anVy (21 (1)) + azWy (1) + aWa (22 (1))

for a sufficiently large t.

Proof Integrating equation (2.4) over the domain 2, we get:

U+ 01 (t) U" (pr (1)) + 7 () U (01 () —
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kmw/Au@ﬁdmﬂm@/Au@JﬁDdﬁ—

+%@/Am%wm+%@/Am%@@wm+

+/cl(x, tou(x,t),u(z, o1 (b)), ..., u(z, ol (1), v(x,t), v(x, 05(t)), ...,v(z, o5(t)))de = Fy (t)
0

An integration by parts yields:

ou
A wu(z,t) de = —(x,t) dvy(x)
Z [81/
= [un d)
\IF/1 (t) (2.12)

and

/Aw%m@)msza@y

Assumption (Hs) implies that tliin o1 (t) = +o0, and then there exists some A > 0 such
that for all t > A, we have
o1 (t) > to. (2.13)

This together with the hypothesis u(z,t) > 0 yields that
u(z, o1 (t)) >0, (2.14)

for a sufficiently large t.

By the same manner, we justify that
u(z,ol(t)) >0, Vi=1,r, (2.15)

for a sufficiently large t.
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Inequality (2.15) together with hypothesis (H3)(i) implies that
sty e, £), (i, 01 (1)), o e, o3 (8)), v, 0), v, 03(0)), - 0, 03(1)) > 0, (2.16)

for a sufficiently large t.
Which implies

U"(8) + 61 () U” (pr (1) + 01 () U" (61 (1)) — en () Ua () — a(£) W1 (2 (F)) —

as(t)Wa(t) — as(t) V2 (2(1) < Fi (1),

and therefore

U (t) + 61 () U" (pr () + 1 () U (61 (1)) <

F1 (t) + 061\111<t) + 062\111 (Zl (t)) + Oég\Ijg(t) + 044\112 (Zg(t)) .
|

LEMMA 2.2.2. We assume that the conditions (Hy),(Hs), (Hs) (i), (Hs) are satisfied, if
(u,v) is a solution of ((2.4),(2.5)),(B1) such that v(x,t) > 0 on Qy,, then the solution V (t)

satisfies the following neutral ordinary differential inequality:

Y’ () +02(t) ¥ (p2 (1) + 72y (62(t)) < Fa () + 510y (1) +
BaV1 (23 (1)) + Bs (t) Wa (L) + Ba (t) Wa (24 (1)) (2.17)

for a sufficiently large t.

The proof of this Lemma is similar to the one of Lemma 2.2.1, so we omit it.

LEMMA 2.2.3. Let us suppose that the conditions (Hy),(Hs), (H3) (i), (H,) are satisfied,
and (u,v) is a solution of the coupled problem ((2.4),(2.5)), (Bz2) such that w(x,t) >
0 and v (z,t) > 0 on Q4 for some ty > 0.
Then the solution U satisfies inequality (2.11) for a sufficiently large t.
If u <0 andv <0 on Qy, then the function —U satisfies the following neutral ordinary
differential inequality:

Y () + o1 (t) ¥ (p (1) +7 v (0h) <



30 Chapter 2. Oscillation of a coupled problem

—[F1(t) + ar () Ui (8) + aa (8) Uy (21 (1) + o3 (1) U2 (1) + s (8) U2 (22 ()] (2.18)
for a sufficiently large t.

LEMMA 2.2.4. Assume that the conditions (Hy), (Hs), (Hs) (i), (H4) are satisfied, if (u,v)
is a solution of problems ((2.4),(2.5)),(B2).

If u <0 andv >0 on a Qy, then V (t) satisfies the ordinary differential inequality (2.17)
for a sufficiently large t.

Ifu>0andv <0 on Qy, then =V (t) satisfies inequality:

y' () + 02 (1) y" (p2 (1) +72 ¥ (02 (1) <
—[=F2 () + 51 () Wi (8) + B2 (£) W1 (25 (1)) + Os () U (¢) + Ba () Ua (24 (1)) (2.19)
for sufficiently large t.

The proofs of Lemmata 2.2.3 and 2.2.4 are similar to that of Lemma 2.2.1, so we omit

them.

LEMMA 2.2.5. Let us suppose that the conditions (Hy) , (Hs) (1), (Hys) are satisfied, if (u,v)
is a solution of problem ((2.4),(2.5)),(Bs). If u(x,t) > 0 and v (x,t) > 0 on a Qy,, then
the function U (t) verifies the following differential inequality of neutral type:

y' () +61(1) ¥ (o () +m y (62(F) <

Fi(t) —ay () U () — ao (£) Uy (21 (£)) — g (£) Us (£) + avg (£) Uy (25 (1)) (2.20)

for a sufficiently large t. If u(z,t) > 0 and v(x,t) <0 on a Qy, then the function
-U (t) satisfies the following inequality:

y' () +61(1) y" (pr () + 61 9 (61 (1))

<—Fi () =1 () Uy (1) — g () Uy (21 () — a5 (£) Wa (£) + s (1) Wy (20 (£))  (2.21)

Proof Multiplying both sides of equation (2.4) by the function ¢ (z), integrating the
result over ), using (H,) and (H3)(i7), to obtain:
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0" () + 61 (0) U (1 (8) + 7 () U (61 (2))

< Fy () + o (¢) /gp(x)A u(x,t) do+ as(t) /go(x)A u(x, 21 (1)) do+
Q 0

+as (t /gp YA v (z,t) do+ ay (t /go VA v (z, 29 (t)) de,
Q Q
for a sufficiently large t.

An application of the Green’s formula yields, since ¢ = 0 in I' and Ay = —A1¢:

[ews .o iz = [o@)Vu@) n@r @) - [u@)Tela) n@r @)+ [u@ e

Q r r Q

=~ (t) - MU(t)

and then, thanks to (H;), u >0, ¢ > 0, and A\; > 0:

U" (t) + 6 () U" (p1 (1) + 7 (£) U (61 (£))

<P (t) — oy ()0 () — az (8) Uy (21 (1) — a5 (1) Ta (£) + o (1) Uz (22 (1))

Hence the first part of the Lemma is proved. The second part of the Lemma can handled

as above.
[ |

LEMMA 2.2.6. Assume that the conditions (Hy), (Hs) (ii), (Hy) are satisfied, if (u,v) is a
solution of problem ((2.4),(2.5)),(Bs). If u(xz,t) < 0 and v (z,t) > 0 on some Qy,, then
1% (t) verifies the following differential inequality of neutral type:

y' 402 (t) ¥ (p2 (1) + 02 ¢ (62(1))
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< Fy(t) — By (8) Wy (t) — Bo (£) U (25 () — B3 (1) o (£) — Bu () Wy (24 (1)) (2.22)

for sufficiently large t.
If u(z,t) > 0 and v(x,t) < 0 on some Qy,, then the function —V (t) satisfies the following

nequality:

' () 402 () ¥ (p2 (1) + 02 ¢ (62 (1)) <

— | F2 () = B (8) Wa (t) — Ba (£) Uy (25 (1) — B3 () Uz () — B (£) s (24 (1))
for a sufficiently large t.
The proof of this Lemma is similar to that one of Lemma 2.2.5, so we omit it.

THEOREM 2.2.5. Assume that the conditions (Hy) — (Hs) are fulfilled. If the differential
inequatities (2.11) and (2.18) or the differential inequalities (2.17) and (2.19) do not admit
positive solutions for a sufficiently large t, then all solutions of problem ((2.4),(2.5)),(B)

oscillate in ().

Proof Let (u,v) be a solution of problem ((2.4),(2.5)),(B;) which does not oscillates in
Q. Then, there exists ¢y such that

u(z,t) #0and v (z,t) # 0 in Q.

Assume that (2.11) and (2.18) do not admit positive solutions for a sufficently large t.
Since u (z,t) # 0 in Q,, one has u(x,t) > 0 or u(z,t) < 0 in Q.

If u(z,t) > 0 in Qy,, then thanks to Lemma 2.2.1, U is a positive solution of (2.11) for a
sufficently large ¢, which is a contradiction.

If u(z,t) < 0 on @y, we set u(x,t) = —u(x,t) on @, and then (4, v) is a solution of the

following problem:

i (2, 8) 4 01 (8) e (2, p1 (1)) + 1 (H)uy (x, 61 (1)) —

a1 () A u (z,8) + g () A u(z, 2 () —as (t) A v(z,t) —ag (t) A v(z, 25 (1))]

— o (zt,—u(z,t),— u (2,00 (), ., —u(z, 0] (), v (2,1),
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v (z,05(t),....v(z,05(t) = —fi(z,t)
Vgt (2,8) + 02 () vy (m, p2 (£)) + 2 ve (2,04 (F)) —

[BLA w (2,8) + Ba (1) & u(w, 25 () — B v (,8) = Ba (1) A v (, 24 (1))]

and

ot 0

6_1::—1/;1 and 8—221/)2 on ['Xx (0,00).
Proceeding as in the proof of Lemma 2.2.1 one may prove that Uis a positive solution of
(2.18), where

we get a contradiction.
If the differential inequalities (2.17) and (2.19) do not admit positive solutions for large
t, then we proceed as above considering v(z,t) # 0 in some @, to arrive at necessary

contradictions. This completes the proof of the Theorem.
[ |

THEOREM 2.2.6. Assume that conditions (Hy) — (Hs) are satisfied. Suppose that none of
the differential inequalities (2.11), (2.17), (2.18) and (2.19) admit a positive solution for
large t. Then all solutions of problem ((2.4),(2.5)), (B1) oscillates strongly in Q.

Proof Assume the contrary, so there exists a solution (u(z,t),v(z,t)) of problem ((2.4),(2.5))
(B1) which does not oscillate strongly in (). This means that u or v does not oscillate.
If w does not oscillate on @, then there exists some ¢y such that u(x,t) > 0 or u(z,t) < 0 in
Quo- If u(z,t) > 0in Qy, then thanks to Lemma 2.2.1 it follows that U(t) = [, u(z,t)dx is
a positive solution of inequality (2.11), a contradiction.

If u(z,t) < 0in Qy,, then by setting @(z,t) = —u(z,t) and proceeding as in Lemma 2.2.1 it
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may be proven that U = [ (x,t)dx is a positive solution of (2.18), contradiction. Similar
Q
contradictions may be obtained thanks to 2.2.2 if v(x,t) does not osciallate in ). The proof

of the Theorem is complete. [ |

THEOREM 2.2.7. Let us suppose that (Hy)— (Hy) are satisfied, if inequalities (2.11), (2.17),
(2.18) and (2.19) do not admit positive solutions for sufficiently large t, then each solution
of problem ((2.4),(2.5)), (Ba) oscillates in Q.

The proof of this Theorem is similar to that of the previous Theorem.

Similarly we prove:

THEOREM 2.2.8. Assume that (Hy) — (Hy) are satisfied. If the inequalities (2.11), (2.17),
(2.18) and (2.19) do not admit positive solutions for sufficiently large t, then each solution
of problem ((2.4),(2.5)), (Bs) oscillates in Q.

In the previous section, we remarked that the oscillation of problem ((2.4),(2.5)) with
one of the boundary conditions (B;), where ¢ € {1,2,3}, depends on the fact if (2.23), given
below, admit or not positive solutions.

For this reason, we will devote the following sections to give some sufficient conditions, see
Lemma 2.2.7 given below, in order that inequality (2.23) does not admit positive solution
for large t.

Let

y'() + M () v (p (1) + A (t) ¥/ (0(2) < g (t) (2.23)
where
e p is a positive increasing function

e p has an inverse £ such that ¢ is an increasing function

limy 400 p(t) = 400

the same properties satisfied by p should be satisfied by 6. The inverse of 8 will be
denoted by x.

In addition, \; and A\, are decreasing positive functions and there derivatives are increasing

functions.



Existence theorem of oscillations 35

LEMMA 2.2.7. If the following limit holds

/ (t—3s) g(s)ds=— (2.24)

to

. 1
lim
t—+toot — to

for each ty > 0, then inequality (2.23) does not admit positive solution for large t.

Proof Assume the contrary, which means that there exists a positive solution y (¢) for
(2.23) for some ¢t >ty > 0 .
Let us condsider t > t; > t, such that p(t1) > to and 60 (t1) > o (this is possible since
limy o0 p(t) = 400 and limy_,;  0(t) = 400).
Integrating (2.23) over (t1,t) to get

/y” (s) ds+/>\1 (s)y" (p(s)) ds—i—/)\Q (s)y" (0 (s)) dsg/g(s) ds. (2.25)

t1 t1 t1 t1
Integrations by parts, the previous inequality yields that

p(t)
y @) +Mp®)y (o) —M(pt)y(p@)+ o M"(s) y(s) ds+

o() ¢
m” (s) y (s) ds+ ¢ S/g(s) ds

t1

+m(0() y (0(t) —m' (0(t) y(0(1)) +/

0(t1)
with ¢; € R, M(s) = M\(£(5))€'(s) and m(s) = Aa2(x(s))x'(s).
A second integration from ¢ to ¢, yields:

ma+/wumm>y@m»da—/ﬂf@m»wmm>M+

¢ p(e) t ¢
/(/ M%@M@@>m+/mwm»ywm»m—/wwm»ywm»m+

(t1)

t1

0(a) t
—l—(/g m” (s) y(s) ds)doH— cl(t—tl)g/(t—s)g(s) ds,

(t1)

t1
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which yields

p(t) t
y(t)+H(p(t)y(p(t)) +c— H'(z) y(z) dfﬂ—/M’(p(a))y(p(Oé)) do+

p(t1)

t p(c)
—f—t/ ( . M (s) y(s) ds) da+h(0(t)) y(0(t)) _/G(tl) R (z) y(z) do—

= [ 0@) yO@) dat ct-t)< [ (t-990) ds

t1

with
( M (z) =M (p~" (7)) ( H (z) = M (z) (p~" (2))
and
m(z) = A2 (67" (2)) h(z) =m () (07 (2)))
We have
Hp(t) >0 H decreases = H' <0
and and
h(6(t) >0 h decreases = h' <0
Now:
M (z) = (p7" (2)) X (7" (2)
and then

By the same way, we justify that
m’ < 0. (2.26)

Therefore
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c(t—t1)+02§/t(t—s) g(s)ds

t1

t
— et < [ -9 g(s)ds
L
t
= lim /(t—s) g(s)ds>c
totoolt — 11

t1

[ |
Come back to prove Theorems 2.2.1, 2.2.2, 2.2.3, and 2.2.4.
Proof of Theorem 2.2.1. It follows from Lemma 2.2.7 and Theorem 2.2.5.
Proof of Theorem 2.2.2. It follows from Lemma 2.2.7 and Theorem 2.2.6.
Proof of Theorem 2.2.3. It follows from Lemma 2.2.7 and Theorem 2.2.7.
Proof of Theorem 2.2.4 . We use Lemma 2.2.7 and Theorem 2.2.8.
Remark 2.2.1. If
1 t
lim - [ (t = s)g(s)ds = —ox,
t~>+oot
0
then:
1 t
lim /(t—s)g(s) ds = —00.
t—tool — to
to
Indeed
1 t 1 t to 1
[ g as= i[9 g as- [ =99 ds
to 0 0
now
1 to t to to to
P— / (t—s) g(s) ds= P— / g (s) ds—/ s g(s) ds P— t +oo/ g (s) ds
to 0 0 0
t 1 1 t
— lim /(t—s) g(s) ds= lim .—/(t—s)g(s) ds
t—>+oot - tO t—>+oot - 260 t

to 0
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= h_ml/ (t—s) g(s) ds = —oc.

t—+o00

The following examples, even not describing phenomena of physics, of elasticity or other

sciences, though illustrate our results .

2.2.2 Examples

Example 1

Let us consider the problem:
1
ug (2, 1) + 5 Uit (x,t —7) + g (x,t —m) —

— [A u(z,t)+ A u(r,t—7m)+ A v(z,t)+Aw (:E,t— g)] +
+u(z,t)+u(z,t—7m)=2("—1) e'sintsinz+ (2—3e ") € costsinz+
+ e'sintcosz — e 2el costcosx (2.27)

and )
vtt(x,t)+§ vy (z,t — ) + v (2, t — )
— [A u(x,t) + D u(zx,t—m)+ A v(x,t)+ A v(x,t—g)]
+ U(Jc,lﬁ)—l—v(:c,t— g) =2(1—e"—e2) e costcos

+(2—e ) e sintcosz 4 (1 — e ")e costsina (2.28)

(2,1) € (0,7) x (0,7),
with boundary conditions:

— u, (0,t) = u, (m,t) = —€' cos t (2.29)

and
— v, (0,t) = v, (m, ) =0
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S0
Q= (0,m),1 (x,t) = — e’ cost and ¥ (z,t) = 0.
Therefore
W, (t) = — 2 e'cost and¥y (t) = 0, > 0
and i
Fi(t) :/ filzt) de=4(e™—1) e sint+2(2-3¢e) € cost
0
and i
F(t) = / fo(z,t) dv=2(1—¢T) € cost.
0
Now
1 t
L(t)= E/ (t—3s) [F1(s)+ Ui(s) + Uy (s —m)|ds
0
¢
= —/ (t—s) [4(e™=1) e’sins+2(1—2e") € coss|ds
0
1
:2(67”— 1) n (1+t— e! cost) + (1—2 e”r) 1t (—t+et sin t)
and
1 t
I (t) = Z/ (t—s) [Fo(s)+Vi(s)+¥y(s—m)] ds=0
0
It is clear that:
liminf [1(¢) = —oco0 , limsup [;(t) = +oo.
t—+o0 t——+o0

According to Theorem 2.2.1, any solution of (2.27), (2.28), (2.29) oscillates on
(0,7) x (0, 00).

In particular the solution (e' cos t sin z, €' sin t cos x) oscillates.

Example 2

Let us consider the problem:

T
g (2, 1) + uy (z,t — ) + wy (a:,t — §>
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—[Au(z,t) + A u(z,t—m)+ A v(z,t)+ A v(z,t—2m)]

m o TN 4. .
+u(x,t)+u<x7t—§>:2(—1+e +e 7)e'sintsing

+(2+ e 2 —e ") e costsing + 2(t — m)sinz

and
v (2, ) 4 vy <x,t — g) + vy (x,t — 27)

/0

_ Auu,t)mu(at—ﬂ%”@’”*M(f”’t_z)]

+v (z,t) + v (z,t — 2m)

2 —5m

sinz +4tsinz + (e — 1) e costsinx
) (

= (

(x,t) € (0,m) x (0,00) with the boundary conditions:

u=(xz,t)=0 and wv(x,t) =0, (z,t) € {0,7} x (0,00).

S0
Q=(0,7),0; (z,6) =0 et Wy(x,t)=0.
Therefore
U, () =V, ()=0 for t>0 and ¢(z)=sinz and X\ =1,
S0:

Fi(t) = /ﬂfl (x,t)sin x dz

0

(2.30)

(2.31)

(2.32)
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= ae’ sint+ ag €t cos t+ wt — 72

with:
a1:7r(—1+e_”+6_%),aQZg(2+6_%—e_”)
and: i
ﬁg(t):/ fo(z,t) sin x dx
0
:(2—5%)%4—29&‘#—%(6_”—1) e’ cos t.
and:
1/t ~
Il(t):;/ (t—s) By (s) ds
0
_e_t —t —t ot . T3 —t 2,2 —t
=5 ar(e"+te "+ cost)+as(—te +sznt)+3(t6 T t’e”")
and:

t
L(t)= % [% e + (2 — 5m) % et (e —1) = (~t e +sin t)}
it is clear that:

lngrianI(t) = —o0 and limsup[;(t) = oo,

t—-4o00
liminf I5(t) = —co and limsup I(t) = 0o
t—+o0 t—+o00

According to Theorem 2.2.4 any solution of problem (2.30), (2.31), (2.32) oscillates on (0, 7) x

(0,00). In particular (e’ cos ¢ sin z, t sin ) oscillates.
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Sufficient conditions for the oscillation of
solutions to nonlinear second-order

differential equations

3.1 Introduction

Kirane and Rogovchenko [20] studied the oscillatory solutions of the equation

[r(O (@)’ ()] + p0)2' (1) + a(t) f(2(1) = g(t), > to, (3.1)

where t5 > 0, r(t) € C'[to,00);(0,00)), p(t) € C([to,);R), ¢(t) € C([to,o0);
(0,00)), ¢(t) is not identical zero on [t.,00) for some t. > to, f(z),¥(z) € C(R,R) and
Y(x) > 0 for x # 0. Their results read as follows

THEOREM 3.1.1. Case g(t) = 0: Assume that for some constants K,C,Cy and for all
r#0, f(z)/xr > K >0and 0 < C < V(x) <Cy. Let h, H € C(D,R), where D = {(t, s) :
t>s>to}, be such that

(i) H(t,t) =0 fort >ty, H(t,s) >0 in Dy = {(t,s):t >s>1p}

(i) H has a continuous and non-positive partial derivative in Dy with respect to the second

variable, and

OH

5 = h(t,s)\/H(t,s)

for all (t,s) € Dy.

42
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If there exists a function p € C([ty,00); (0,00)) such that

ggi?H“Jdljﬂmﬁ@@»—%%@V@Mﬂuﬁww=m,

where

then (3.1) is oscillatory.

THEOREM 3.1.2. Case g(t) # 0: Let the assumptions of Theorem 3.1.1 be satisfied and
suppose that the function g(t) € C([to,00);R) satisfies

fﬂ@mwwzw<m.

Then any proper solution x(t) of (3.1); i.e, a non-constant solution which exists for allt > t,
and satisfies supys,, |2(t)| > 0, satisfies

liminf |z(¢)| = 0.

t—o0

Note that localization of the zeros is not given in the work by Kirane and Rogovchenko
[20]. Here we intend to give conditions that allow us to localize the zeros of solutions to

(3.1). Observe that in contrast to [20] where a Ricatti type transform,

r(t)y ()2’ (1)
(1) ’

u(t) =p

is used, here we simply use a usual Ricatti transform.
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3.2 Solution of nonlinear second—order differential equa-

tion

3.2.1 Differential equation without a forcing term

Consider the second-order differential equation

[r(Ow ()2’ ()] + p(t)a' (1) + a(t) f(@(t)) = 0, ¢ > tg (3.2)

where to > 0, r(t) € C*([tg, 00); (0,00)), p(t) € C([to, )); R), ¢(t) € C([to,00)); R), p(t) and
q(t) are not identical zero on [t,, 00) for some t, > to, f(x),¥(x) € C(R,R) and ¢ (z) > 0 for
x # 0. The next theorem follows the ideas in Nasr [27].

THEOREM 3.2.1. Assume that for some constants K,C,C} and for all x # 0,

@ > K >0, (3.3)
0<C<olz)<C. (3.4)

Suppose further there exists a continuous function u(t) such that u(a) = u(b) = 0, u(t) is

differentiable on the open set (a,b), a,b > t,, and

/ [(Kq(t) - Zp;ff(i Va2(t) — 20, () (! (D)]dt > 0. (3.5)

Then every solution of (3.2) has a zero in [a,b].

Proof Let z(t) be a solution of (3.2) that has no zero on [a,b]. We may assume that
z(t) > 0 for all t € [a, b] since the case when x(t) < 0 can be treated analogously. Let

o(t) = — t € [a,0]. (3.6)
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Multiplying this equality by r(¢)u(z(t)) and differentiate the result. Using (3.2) we obtain

Using (3.3)-(3.4) and the fact that

(T(t)@/f(l’(t))( ) p(t) ) >0,

2 VT e()

we have

vV
—
3
—~
~+
N~—
<
—
8
—~
~
S~—
S~—

no

(Bt > TOTE R - - Kot (37)
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Multiplying both sides of this inequality by u*(t) and integrating on [a,b]. Using integration
by parts on the left side, the condition u(a) = u(b) = 0 and (3.4), we obtain

0> /b MUQ(t)UZ(t)dt +2 /br(t)@/J(ﬂf(t))U(t)u(t)ul(t)dt

+

3

2
Kq(t)u(t)dt — / 2%£t()t)u2(t)dt
P r(t)

PO (202 (1) + do(tyu(t)er (6)de

= 5
’ 2 " PP ()R (t)
—l—/a Kq(t)u (t)dt—/a Tr(t)dt
2/ w[v(t)u(t)+2u/(t)]2dt—2/ () (x(t))u? (t)dt

Now, from (3.4) we have

0> / [(Kq(t) - Zgilé)t))UQ(t)—2r(t)01u’2(t)}dt
)

[

5 [v(t)u(t) + 2u'()]dt.

If the first integral on the right-hand side of the inequality is greater than zero, then we have
directly a contradiction. If the first integral is zero and the second is also zero then x(t) has
the same zeros as u(t) at the points a and b; (z(t) = ku®(t)), which is again a contradiction

with our assumption. [ |

Corollary 3.2.2. Assume that there ezist a sequence of disjoint intervals |an,b,|, and a
sequence of functions u,(t) defined and continuous an |a,,by,), differentiable on (ay,b,) with
un(ay,) = u,(by,) = 0, and satisfying assumption (3.5). Let the conditions of Theorem 3.2.1.
hold. Then (3.2) is oscillatory.
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3.2.2 Differential equation with a forcing term

Consider the differential equation

[r() ()’ ()] + pt)a' () + a(t) f (1) = g(t), ¢ > to (3.8)

where tq > 0, g(t) € C([tg,0);R) r(t) € C*([tg, 0); (0,00)), p(t) € C([ts, 0));R), ¢(t) €
C([to,00)); R), p(t) and q(t) are not identical zero on [t,, co[ for some t, > to, f(x),¢¥(x) €
C(R,R) and ¢(x) > 0 for x # 0. Assume that there exists an interval [a, b], where a,b > t,,
such that g(t) > 0 and there exists ¢ € (a,b) such that g(¢) has different signs on [a, c|] and
[c, b]. Without loss of generality, let g(t) < 0 on [a,c| and g(¢) > 0 on [c, b].

THEOREM 3.2.3. Let (3.4) hold and assume that

1 5 g (3.9)
x|
for a positive constant K and for all x # 0. Furthermore assume that there exists a con-
tinuous function u(t) such that u(a) = u(b) = u(c) = 0, u(t) differentiable on the open set
(a,c) U (c,b), and satisfies the inequalities

[ U/RA@Ta0 - gt = 260 0] dte) = o (3.10)
’ Pg(t) 2 "2
[ UV/RA0al0] - ) = 20 @)@ 0] d(e) > 0. (3.11)

Then every solution of equation (3.8) has a zero in [a,b].



48 Chapter 3. Oscillation of a second order equation

Proof Assume to the contrary that z(t), a solution of (3.8), has no zero in [a,b]. Let

z(t) < 0 for example. Using the same computations as in the first part, we obtain:

ety = - g - 4
= —p(00(t) + a0 + i) - £
V0D 5 ) g N0
ol
- OO | T oy )y
- s O

rORa) L U)o )
P Few) o llo]
0@ o™ )
From (3.9), and using the fact that
AOE®) )
> O im0
we deduce
o vE®) . P o Lol
ey = MO - PO k) + 25 a2
Using the Holder inequality in (3.12) we obtain
sty = "IN - VROl - g s (619
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Multiplying both sides of this inequality by u?(t) and integrating on [c, b], we obtain after
using integration by parts on the left-hand side and the condition u(c) = u(b) = 0,

oz [N ey [ Rl
/C (t)qp(x(t))dt+2/c () (a(t))o(t)u(t)u (t)dt
2/ o <I(t))[ (Bu(t) - 2“'(”126“—2/ r(t)y(x(t))u(t)dt

/1vl“7 g “‘1[ GO

Assumption (3.4) allows us to write

0> / 7"(’5_)1/’2@(75)) [o(t)ult) + 2u/(£)]2dt — 2/ Cur(t)(u')? (t)dt
o [ VRO o - [0,

2C7(t)
b r i
2/ w[v(t)u(t)+2u’(t)]zdt

[

b 2
pe(t) \ o "2
Kq(t)g|(t)| — t) —2Cr(t t)|dt.
= [ (V/RalDal0] = g (0) = 2 0) w0
This leads to a contradiction as in Theorem 3.2.1; the proof is complete. [ |

Corollary 3.2.4. Assume that there exist a sequence of disjoint intervals [a,,b,] a sequences
of points ¢, € (an,b,), and a sequence of functions u,(t) defined and continuous on [a,, b,),
differentiable on (an, c,) U (Cn, by with up(an) = uy(by) = un(c,) = 0, and satisfying assump-
tions (3.10)-(3.11). Let the conditions of Theorem 3.2.3 hold. Then (3.8) is oscillatory.



Chapter 4

Some results concerning the oscillations
of solutions of a hyperbolic equation

with delays

4.1 Introduction

In this chapter, we extend the results of 3] to the equation

W

u (x,t) + aug(x,t) — [Au(z,t) + bi(t) Au(z, 0;(t))]

+ Cl(x,t,u(x,t),u(x, (), u(z, (1)), ..., w(z, 7, (1)) = f(x,t), (4.1)

<.
Il

where (z,t) € Q = Q x (0,00) and € is a bounded domain of R with a sufficiently regular
boundary I' and A is the Laplacian in R".

This problem is posed on €2 with one of the following types of boundary conditions:

e Dirichlet boundary conditions:

(DBC) :  wu(z,t) = (x,t), T x (0,400) (4.2)
e Robin boundary conditions:
(RBC) :  Vu(z,t)-n(z) 4+ pu(z,t) =4, T x (0, +00) (4.3)

50
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where 1, ¢, ;1 € C(T' x (0,00)) and z > 0 on I' x (0, 00).

We assume that

(H1) b; € C([0,00);[0,00)),i=1,...,k, f(x,t) € C(Q;R), and « is constant

(H2) 0, € C([0,00);R), i =1,...,k, 7, € C([0,00;R), i = 1,...,m.

tlim oi(t) =00, oi(t) <t, Vte [0,00), i =1,...,k (4.4)
tlim 7;(t) =00, 7(t) <t, Vte€[0,00), i=1,...,m (4.5)

(H3) C(z,t,&,m1,...,10m) €C(Q x R x R™;R),
Clz, t,&m, ... ,nm) = K&, Y(z,t) € Q, £>0, n; >0, (4.6)

C(x,t,Em, . mm) < K2E, Y(z,t) €Q, €<0, 1; <0, (4.7)

where K is some positive constant.

We define the following definitions:

t*(s) = min {infoi(t)}, (4.8)
t7(s) = min {inf7(t)}, (4.9)
T* = min{t*(s), ™ (s) }. (4.10)

It is useful to mention that the generalization of this section does not only consider the delay
as function but also the number of delays is increased. It is also useful to mention that, in
contrast of the previous section, the ((RBC) is not homogeneous.The notion of a solution is

given in the following definition:

DEFINITION 1. A function u € C2(Qx (*(0), 00); R)NC(Q2 x (t*(0), 00); R) satisfying (4.1),
with (4.3) (resp. (4.2)) is said to be a solution of (4.1) with (4.3) (resp. (4.2)).
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4.2 Oscillation of the problem (4.1)

4.2.1 Oscillation of the problem (4.1) with Dirichlet boundary con-

dition

THEOREM 4.2.1. Assume that o®—4(M\+K¢) <0, and let wy = $ andwy = 11/4(\1 + K§) — o
If there exists a number s such that T*(s) > 0 and

H(s) = /SJFJ2 R(t)e =) sin(wy(t — s))dt = 0, (4.11)
where i
R(s) = F(s) — ¥(s) — Z bi(s)(o3(s)), (4.12)

where U is given by (1.26).
Then any solution u of problem (4.1) with (4.2) has a zero in Q x (T*, s + ).

Proof Assume the contrary. So there exists a solution u with no zero in Q x (T*, s+ 7).
Assume then that u > 0 on  x (T, s + ).
Multiplying both sides of (4.1) by ¢ and integrating over €2, we get for ¢t > 0

k
U (t) + aU(t) — /Q[A(x, t)+ Z bi() AU (z, 04(t))]p(x)dx

+ /QC’(:E, tyu(z,t),u(z, 7 (t)), u(x, 2(t)), ..., ulz, 7,(1)))p(x)de = F(t), (4.13)

where F(t) is given by (1.24).
Using the fact that

/QC(:U, tou(x,t),u(z, 71(t), ..., u(x, 7, (t))e(x)dr > KJU(), (4.14)

forallt € [s,s+ ).
Combining (4.14) with (4.13), we get

U(t) + aUi(t) (A + KU () + A1 > bi(t)U(04(t)) < F(t), (4.15)

fort €s,s+ ).
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Since u > 0 on (1%, s + =), then U(o;(t)) > 0, for i € {1,...,k}, on [s,s + Z-) thanks to
the definition of 7*(s).
Therefore U(t) is a positive solution of the following differential inequation
l@@+a&@%&+K&Wﬂ§R@%tehs+£% (4.16)
2
where R(t) is given by (4.12).
which is equivalent to
UMQ+&@M@@€+@MKQ§R@%tehs+§¢ (4.17)
2

Multiplying both sides of the previous inequality by e“1¢~%) sin(ws(t — s)) and integrating

both sides of the resulting inequation over (s, s + MLQ), we get

w1 1 ot
0<U(s+ 1)ewé7r +U(s) < —/ ’ R(t)e %) sin(wy(t — s))dt (4.18)

%) %)

Using the definition of H(s) given by (4.11), we get

w1 o 1
0<Uls+ 2)en™ + U(s) < —H(s). (4.19)
%)) %)
This with (4.11) leads to a contradiction.

If u < 0, we set v = —u and obtain, for V(t) = — [, u(z,t)¢(x)dz, the following inequation

WﬂHJMW@w%m@WQS—Mmt€@s+§) (4.20)
2
We can obtain a contradition by following the steps of the previous proof. [ |

4.2.2 Oscillation of the problem (4.1) with Robin boundary condi-
tion

The following theorem gives a sufficient condition for the oscillation of (4.1) with (4.3).

THEOREM 4.2.2. Let Ky > 0 and assume that o — 4K3 < 0, and let wy = $/4K3 — a?).
If there exists a number s such that T*(s) > 0 and

H*(s) = /SJFJr2 R(t)e* =9 sin(ws(t — 5))dt = 0, (4.21)
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where
k

R(s) = F(s) +W(s) = Y _bi(s)¥(oi(s)). (4.22)

i=1

Then any solution u of problem (4.1) with (4.3) has a zero in Q x (T*, s + WLS)

Proof The proof of this Theorem is similar to that of Theorem 4.2.1 [ |

4.3 Example

Let us consider the following one dimensional problem

U (2, 1)+ 2up (2, 1) — [tge (T, 1) + 2Upy (2, t —7) |+ u(z, t) = dsinx cos 2t, (x,t) € (0,7)x (0, 00),
(4.23)
with the Dirichlet boundary condition

u(0,t) = u(m,t) =0, t > 0. (4.24)

Here n = 1, Q = (0,7), a« = 2, k =1, by(t) = 2, o4(t) =t — 7w, Ko = 1, v = 0, and
f(z,t) = 4sinx cos 2t.

It is easily seen that wy = wy = 1, T*(s) = infy>,(t—s) = s—mand F(x,t) = [ 4sinx cos 2tdx =
21 cos 2t.

On the other hand, since ¥ (t) = 0, we have R(t) = F(t).

Some computation gives us

s+2=
H(s) = / * 4cos 2te! sin(t — s)dt
1
= —5(6” + 1) sin(2s — 6), (4.25)
where 6y = tg~'(3) (0 <6 < ).
Therefore H(s) =0 for s = s, = 2 +nZ (n=2,3,...).
Theorem 4.2.1 implies that any solution of (4.23)—(4.24) has a zero on Q X (s, — 7, s, + 7).

Such solution is u(x,t) = sin xsin2t.



Perspectives

Although a huge number of articles has been devoted to the oscillation theory of differential
equations, some interesting problems have not attracted the attention it merits yet.

Let us quote some of these problems:

1. Find conditions for non existence of oscillatory solutions of functional differential equa-
tions (FDEs).
It is well known that there is a considrable number of articles devoted to find the
sufficient conditions such that all the solutions of the following second order ordinary

differential equation are not oscillatory:

y" + () fy) =0, (1)

whereas there is lack of such results concerning the second order FDE:

y'(t) +p(t) f(y(r(t))) = 0. (2)

The technique used to look for the sufficient conditions in order that all the solutions
of (1) are oscillatory is based in general on the constuction of the energy function and
on the use of the uniqueness of the zero solution.

It is well known that all the solutions of
y'(t) + q(t)y(t) + p(t)y([t]) =0, (3)

n+1 t
are nonoscillatory, if p(¢) < 0 or p(t) > 0 and lim sup/ p(t)exp (/ q(s)ds) dt <1

n—-+0oo
where [t] denotes the integer part function.

There is no such result even for

Y (1) +q@)y(t) + p(t)y(r(t)) =0, (4)

%)
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Perspectives

where 7(t) <t (7(t) Z t) and lim;_, 7(t) = 0.

. Find conditions for the existence of oscillatory solutions of FDE.
. Study oscillation and non oscillation problems for delay systems.

. Find conditions for the non oscillation caused by delays.

It is easy to see that every solution (x(t),y(t)) of

22(t) — y(t)

{ 2 (t)
y'(t) = x(t) +y(t)

is oscillatory. If we consider the corresponding delay system of the form

{x’(t):%c ) —y (t — 3log4) (6)

/
y'(t) =z (t — 5log4) + y(1),

then it is easy to find that (6) has a non oscillatory solution x(t) = exp(3t), y(t) =
exp(3t).
This non oscillation is caused by the delay.

But there is no further result concerning this problem till now.

. Find further relation between the oscillation theory of second order FDE and the

corresponding boundary value problems.

. Study the distribution of zeros, the variations of amplitude and the asymptotic behavior

of oscillatory solutions.

. Study some special FDE, which are posed by practical applications. For example,

consider the oscillation problems for the equations with delays, which depends on the

states, such as
y™ (1) + p(t)y (t = r(t) = 0. (7)

Even the case n = 1 is interesting to be considered.
There are also other paths to be followed like partial differential equations and systems

of equations with delays depending on the states.
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