
���� ا�
	���ا ا	

	� ا	�
	�� ��ا�ة

 Faculté : Sciences de l'Ingénieur Année : 2009
 Département: Electronique

MEMOIRE
Présenté en vue de l’obtention du diplôme de MAGISTER

Option

Commande, détection de défauts et diagnostic des processus
industriels

Par

Adel Djellal

DIRECTEUR DE MEMOIRE: Rabah Lakel Docteur-M.C. (A)

DEVANT Le JURY

PRESIDENT : Pr. N. Debbeche Professeur

EXAMINATEURS: Pr. H. A. Abbassi Professeur
 Dr. N. Guersi Docteur-M.C. (A)
 Dr. B. Boulebtateche Docteur-M.C. (B)

�	ـ
ــ ����
 	��� ����ر�
BADJI MOKHTAR ــ ANNABA UNIVERSITY
UNIVERSITE BADJI MOKHTAR ANNABA ــ

Intitulé

Conception of Multiagent System Applied on
Mobile Robots

Abstract (Arabic)

 	� �آ�ن �����
� ا�
� در��� ا��� �ون 	� .���� ا���� و ا�
�رب ه� إ���د هدف ��ر �����ه� وا دة �ن ا��"�آ� ا!
��م إ�& %���ن . ا$��(�
 �،) �ن�و�ود واإذا آ��(ا���ور �ل& ا��
�ر��ن �ن ا�.زم �,��نا���ور �ل& �دد ا��ط�رد: ا��"آل

آ"ف، �م ���ر �ل�3 	� ����� ا��ط�ف�)ل�ص�
. وإ���د ا�طر�ق ا!��� �ل�
�)��ن �آ� 4 �
�آن ا���رب �ن ا��رب إ�& ���ب �
. ���,رورة �ل& ا�;:و�� ة
:ر�) ��ر ا�
ط��)�ت. ا��9)�ت، ا� د ا!د�& ��دد ا��ط�رد�ن ��آون �ن ا���م أ�,� ا�
�رف �ل�3

را
����ت ا�� ث ?����آن إ���د �ون ���ود ا<�)�ذ �ث �ل& ���� ا����ل، ا�ذ�ن �)و�
;دم 	��� ��د �ن �ا�
 طرفو��آن أن
 .ا�رو�و
�ت ا��
 رآ� أو �� ��ن �"ر��ن

��ط ا���@� إ�& �دد �ن ا��

A أآ�ر �ن (ا� ر�� و ه� ا�)�م �)طا�9آرة ا�
� طر ت 	� هذا ا���� ه� 	 B� واف ا��دران
180 �
را
����ت ا���ل&)ا�رؤ�� ��ن ا�)�م(�� ا�ر�م ا������ ، و
و��د رؤ)در�� .، وا���ور �ل& ا��دد ا!��� �ل�� ��ن وا%
راح ا4

 : هذا ا���� �
وي �ل& �زأ�ن

���� �ن � ث دون ا
:�ل� ث دون ا
:�ل� ث دون ا
:�ل� ث دون ا
:�ل • �� ا!��� و ا�ر@��� ا�رو�وت%�� أ�ن ا���@� �درآ���

را��دد �
و%B ا�ذي �و�د ا<

� ا����& ا�رو�و
�ت�9
�ش و ا�� ث : ا���ن �ن ا�
)���ت �)
ر � ��ذا ا��زء. ا�.ز�� � را
أ�وأ ا� �4ت �ل
 .ا�� �ن

 �ث ا���@� �درآ� �ز@�� �ن طرف ا�رو�وت ا�ر@��� ا�ذي �رى)ط ا�و,B ا� ��� و��,� � ث ��
:�ل� ث ��
:�ل� ث ��
:�ل� ث ��
:�ل •

�(���لب رو�وت ?;ر أو
& ا��ودة �ل� ث إ�� أن �
)دم أو �ط��د آ� و,B و�
��ن �ل�3 أن �)رر, ا�و,���ت ا�
�	 � .��ذه�ب وا��ودةا�� ث � ا�� ث ا����"ر و: �ن ا�
)���ت �)
ر � � � هذM ا��"آل� �ل� ث ���نإ. ى;رأ ��ط)

�
 .�ن ;:�@ص آ� أ�لوب����
�ر���
م ا�)��م �3 �ل
)ق �ن ا!����ب ا��)
ر � وا��)�ر�� ����م �

i

Abstract (English)

The pursuit-evasion game is problem of �nding an unpredictable Target in a workspace with obstacles.

It is one of the fundamental problems studied by robotic researchers to optimise the number of pursuers

and the research time. The determination in dynamic manner the number of pursuers in a given

moment is an important problem. Applications are not necessarily limited to adversarial targets. For

example, people in search/rescue e�ort; where the search strategies can be automated and then used

by either mobile robots or human searchers.

The idea proposed in this work is to simplify the environment into several critical positions which

are vertices (edges of walls with opening degrees more than 180◦), and to generate the visibility

graph (visibility between vertices), and �nd the optimal number of searchers and their optimal motion

strategies.

This work has two parts:

• Of�ine processing where the environment is totally percepted by the main agent that gener-

ates the optimal strategy and the optimal number of needed agents to clear the building. Two

techniques are proposed for this part: Worst-Case Search and Improved Search.

• Online processing where the environment is locally percepted by the main agent that sees

only the current position and has the history of previous states. The main agent has to decide

for each position the appropriate action: go on, request another agent, or go back to explore

other area. Two techniques are also proposed to solve this problem of search: Direct Search and

Go-And-Back Search.

An experimental work has been done to verify the proposed techniques and a comparison between

the obtained results with comments has been made to show the characteristics of each technique.

ii

Abstract (French)

Le jeu de poursuit-évasion est un problème de recherche d'une cible imprédictible dans un espace

de travail avec obstacles. C'est l'un des problèmes fondamentaux étudiés par les chercheurs dans

le domaine de la robotique pour optimiser d'une part le nombre de poursuivants et d'autre part le

temps de recherche. La détermination d'une manière dynamique le nombre d'agents poursuivants à

un moment donné est un problème important. Les applications ne sont pas nécessairement limitées à

la recherche de cibles ennemies. Par exemple, les e�orts de recherche/secours de personnes en danger,

où les stratégies de recherche peuvent être automatiquement déterminées et appliquées par des agents

robots ou bien des intervenants humains.

L'idée proposée dans ce travail est de simpli�er l'environnement et le représenter par quelques

points critiques qui sont les vertex (n÷uds de murs avec des degrés d'ouvertures plus de 180◦), et de

générer le graph de visibilité (visibilité entre vertex), et de trouver le nombre optimal de chercheurs et

leurs stratégies optimales de mouvement.

Ce travail est structuré de deux parties :

• Recherche Hors Ligne où l'environnent est totalement perçu par l'agent maitre qui génère la

stratégie optimale et estimer le nombre optimal d'agents guardiens demandés pour explorer le

bâtiment. Deux techniques sont proposées dans cette partie : Recherche dans le pire des cas et

Recherche Améliorée.

• Recherche En Ligne où l'environnement est localement perçu par l'agent principal qui voit

seulement la position actuelle et a en mémoire l'historique des états précédents. L'agent principal

doit décider pour chaque position l'action approprié : aller en avant, demander un autre agent,

ou bien faire marche arrière pour visiter d'autres zones. Deux techniques sont proposées pour

résoudre ce problème de recherche : Recherche Direct et Recherche en Va-Et-Vient.

Un travail expérimental a été fait pour valider les techniques proposées ainsi qu'une comparaison

entre les résultats obtenus a été réalisée et commentée pour montrer les caractéristiques de chaque

technique

iii

To my Parents and my Love...

Contents

Abstract (Arabic) i

Abstract (English) ii

Abstract (French) iii

Contents v

List of Figures viii

List of Tables x

List of Algorithms xi

Preface xii

Introduction Générale xiii

1 State of the art 1

1.1 Introduction . 1

1.2 Problematic . 1

1.3 Previous work . 1

1.3.1 Visibility-based point of view . 2

1.3.2 Randomized point of view . 2

1.3.3 Probabilistic point of view . 3

1.4 Background . 4

1.4.1 What are agents? . 4

1.4.2 Agent-Oriented Programming (AOP) . 6

1.4.3 Carachteristics of multiagent environment . 6

1.4.4 Societies of agents . 7

1.4.5 Environment's Modelling . 7

1.4.6 Instrumentation . 7

1.5 Conclusion . 8

I Our Work 9

2 World Conditionning 10

2.1 Introduction . 10

v

2.2 Environment . 10

2.3 Edge detection . 11

2.4 Visibility graph . 11

2.5 Simpli�cation of visibility graph . 12

2.6 Area graph . 13

2.7 Conclusion . 14

3 Offline Search 15

3.1 Introduction . 15

3.2 Worst-Case Search study . 15

3.2.1 Principle . 16

3.2.2 Used functions . 16

3.3 Improved search study . 17

3.3.1 Principle . 17

3.3.2 The Fitness . 17

3.4 Conclusion . 18

4 Online Search 19

4.1 Introduction . 19

4.2 Direct strategy . 19

4.2.1 Principle . 19

4.2.2 Scenario . 21

4.3 Go-and-back strategy . 21

4.3.1 Scenario . 21

4.3.2 State machine . 21

4.3.3 The Levelled Visibility Graph . 22

4.4 Conclusion . 23

II Experimental Work 25

5 Used tool 26

5.1 Introduction . 26

5.2 Some Logo History . 26

5.3 What's NetLogo? . 27

5.4 Components . 27

5.4.1 framework . 27

5.4.2 Patches . 27

5.4.3 Turtles/breeds . 27

5.4.4 Links/breed-links . 28

5.5 Some applications . 28

5.6 Used worlds . 29

5.7 Conculsion . 33

6 Simulation 34

6.1 Introduction . 34

6.2 Offline Search . 34

6.2.1 Usefulness of simpli�cation of Visibility Graph 34

6.2.2 Worst-Case search . 36

6.2.3 Improved search . 37

6.2.4 Comparison . 38

6.3 Online Search . 39

6.3.1 Master's perception of walls and vertices . 39

6.3.2 Direct strategy study . 41

6.3.3 Go-and-back strategy study . 43

6.3.4 Comparison . 44

6.4 Conclusion . 47

Conclusion and Perspectives 49

Bibliography 50

Appendix 52

A Graph Theory 53

A.1 Graphs . 53

A.2 The degree of a vertex . 53

A.3 Paths and cycles . 54

A.4 Connectivity . 54

A.5 Cut vertices . 55

A.6 Trees and forests . 55

A.7 De�nitions . 56

List of Figures

1.1 A computed clearing trajectory for a π-searcher.[13] 2

1.2 Triangulation of a polygon and its dual tree.[18] . 3

1.3 Pursuit with the constrained greedy policy.[15] . 4

1.4 An agent in its environment . 5

1.5 Agents that maintain state . 6

2.1 Examples of environments used in experiments . 10

2.2 Edge detection . 11

2.3 Visibility graph . 12

2.4 Cases of simpli�cation of the environment . 12

2.5 Visibility and Area Graph corresponding to the environment in �gure 2.1(a) 13

3.1 Used agents for the worst case . 16

3.2 Scenario of selecting the best branch with the minimal �tness 17

4.1 Case of visibility checking . 21

4.2 State machine of go-and-back strategy . 22

4.3 Levelled Visibility Graph . 23

4.4 Diagram of Levelled Visibility Graph . 23

5.1 Some examples of use of Netlogo . 29

5.2 Used environments in the experiments . 30

5.3 Visibility graph of the used environment in experiments 31

5.4 Area graph of the used environment in experiments . 32

6.1 Visibility and Area Graph of "World 1" . 35

6.2 Computation time (in milliseconds) . 35

6.3 Number of visibility links in the environment . 36

6.4 Agents' deploying for each environment . 37

6.5 The Fitness for each branch for di�erent environments 38

6.6 Number of agents used to cover the buildings . 39

6.7 Laser-Based wall's simulation . 40

6.8 Laser-Based wall's perception . 40

6.9 Laser-Based wall's view . 41

6.10 Direct search strategies . 42

6.11 Levelled Visibility Graph for each environment . 44

6.12 Cost in function of time for several examples . 45

6.13 Number of used agents for the online search . 46

viii

6.14 Critical cases . 46

A.1 Example of Graph . 53

A.2 A path P = P6 in G . 54

A.3 A cycle C8 . 54

A.4 A graph with three components . 55

A.5 A graph with cuvertices . 55

A.6 A tree . 56

List of Tables

1.1 Environment-agent characteristics according to [43] . 7

6.1 Computation with and without graph simpli�cation . 34

6.2 Number of agents needed to cover the environment for di�erent cases 38

x

List of Algorithms

1 Edge detection . 11

2 Visibility detection . 11

3 Generating connected sub graphs . 14

4 The �tness . 18

5 Decision scenaio in Direct Strategy. 20

xi

Preface

The pursuit-evasion problem is �nding an unpredictable Target in a workspace with obstacles. The

problem is divided into two parts: �nd the number of pursuers needed to guarantee that the evader

will be found, and �nd the optimal path of the pursuers such that the evader can not escape to an

explored part of the environment and will be eventually located. This problem can be generalised into

unknown environment, where the searchers explore the building and try to detect the evader at the

same time, the algorithms and techniques used in known environment can not be entirely used in the

unknown environment because of the dynamic of visibility graph. Therefore, other techniques must be

applied to solve the Pursuit-Evasion problem in unknown environment.

The �rst rigorous formulation of the pursuit-evasion problem is due to Parsons in 1976 [27], he

restricted his study to the study of the environment represented as a discrete graph. Other concepts

have been used to solve the Pursuit-Evasion problem, such as Geometry-based view [7, 13, 14, 22, 23,

38, 36, 45], where authors used polygons to represent environment. Randomized view [19, 1], and

probabilistic view [15, 16, 41].

Work organisation

The �rst chapter presents the general context of the problematic of cooperation and competition in

society of agents, also the tools needed to understand this topic.

The �rst part, containing chapters 2, 3, and 4, is reserved to present the techniques to model

the environment also the development of techniques of search for the two cases of search: First case,

environment is totally known a priory. O�ine Search. Second case; the environment is partially known

and its model is built dynamically during the progress of search: Online Search.

The second part, containing chapters 5 and 6, is reserved to the presentation of experimental

work. It contains, in a part, the presentation of platform NetLogo used to construct the model of the

environment and to simulate the techniques of search. And in other part, the results of simulation of

di�erent studied environments.

The conclusion helps to evaluate the presented work and the perspectives opened by this work.

xii

Introduction Générale

Le jeu de poursuit-évasion est un problème de recherche de cibles inconnues dans un environnement à

obstacles. Le problème est divisé en deux parties : trouver le nombre d'agents nécessaires pour garantir

que l'évadé soit trouvé (s'il existe), et de trouver le chemin optimal des poursuivants de tel sorte que

l'évadé ne fuit pas vers une zone déjà explorée et décontaminée, et qu'il sera �nalement localisé.

Ce problème peut être généralisé vers des environnements inconnus, où les poursuivants explorent le

bâtiment et essayent de détecter l'évadé en même temps. Les algorithmes et techniques utilisés dans

un environnement connu ne peuvent pas être utilisés entièrement pour des environnements inconnus à

cause de la dynamique du model de l'environnement. Alors, autres techniques doivent être appliquées

pour résoudre ce problème de poursuit-évasion.

La première formulation rigoureuse de poursuit-évasion est faite par Parsons en 1976 [27], il a limité

son étude pour le cas d'environnement représenté autant que graph discret. Autres concepts ont été

utilisés pour résoudre le problème de Poursuit-Evasion, tel que point de vu géométrique [7, 13, 14, 22,

23, 38, 36, 45], où les auteurs utilisaient des polygones pour représenter l'environnement. Point de vu

aléatoire [19, 1], et point de vu probabiliste [15, 16, 41].

Organisation de travail

Le premier chapitre permet de présenter le contexte général de la problématique de la coopération et de

la compétition dans une société de robots, ainsi que les outils nécessaires pour apprendre le domaine.

La première partie, comprenant chapitre 2, 3 et 4, est réservée à la présentation des techniques de

modélisation de l'environnent ainsi que le développement des techniques de recherche dans les deux cas

étudiés : Premier cas, l'environnement est totalement connu à priori : Recherche O�ine. Deuxième

cas, l'environnement est partiellement connu et son modèle est construit dynamiquement au cours de

progression de la recherche : Recherche Online.

La deuxième partie, contenant chapitres 5 et 6, est réservée à la présentation du travail expéri-

mental. Elle contient, d'une part, la présentation de la plateforme logicielle NetLogo utilisée pour

construire le modèle de l'environnement et pour la simulation des techniques de recherche. Et d'autre

part, les résultats de la simulation pour les di�érents environnements étudiés.

La conclusion permet de mettre en valeur les perspectives ouvertes par ce travail.

xiii

Chapter 1

State of the art

1.1 Introduction

The �rst step for each research is to study the proposed methods by other works to be able to justify

the proposed work.

This chapter begins with an overview about the Pursuit-Evasion Problem. Afterwards, the several

methods used to solve the Pursuit-Evasion problem are presented. The next step is the background

needed to easily understand the Pursuit-Evasion research.

1.2 Problematic

The pursuit-evasion game is �nding an unpredictable Target in a workspace with obstacles, it is known

as one of the fundamental problems studied by robotic researchers. The problem is divided into two

parts: �nd the number of pursuers needed to guarantee that the evader will be found, and �nd the

optimal path of the pursuer(s) such that the evader can not escape to an explored part of the environ-

ment and will be eventually be located. This problem can be generalised into unknown environment

[26], where the searcher(s) explore the building and try to detect the evader at the same time, the

algorithms and techniques used in known environment can not be used all in the unknown environment

because of the dynamic of visibility graph1. Therefore, other techniques must be applied to solve the

Pursuit-Evasion problem in unknown environment.

The Pursuit-Evasion problem can be used to solve several problems of security (clearing civic

and industrial buildings) and safety (searching survivors in in�amed buildings and clearing hazardous

industrial areas).

1.3 Previous work

The �rst rigorous formulation of the pursuit-evasion problem is due to Parsons in 1976 [27], he restricted

his study to the study of the environment represented as a discrete graph, the evader is assumed to be

able to move arbitrarily fast through the graph.

Other concepts have been used to solve the Pursuit-Evasion problem, such as Geometry-based view

[7, 13, 14, 22, 23, 38, 36, 45], where authors used polygons to represent environment. Randomized

view [19, 1], and probabilistic view [15, 16, 41].

1Modelling technique of search space

1

CHAPTER 1. STATE OF THE ART

1.3.1 Visibility-based point of view

Many variations of the polygon search problem (also called visibility-based problem) [7, 13, 14, 23, 45]

have been proposed and studied in the literature since its �rst proposal by Suzuki and Yamashita [38].

Detection of mobile intruders in a simple polygon was �rst considered in the searchlight scheduling

problem [36] in which the rays of stationary searchlights are used to �nd the intruder. The use of a

mobile searcher having various degrees of visibility for detecting mobile intruders was then considered

as polygon search problem in [38] where a number of necessary conditions and su�cient conditions for

given polygon to be searchable by various searchers are presented.

The visibility-based pursuit-evasion problem used a continuous polygonal environment, and coined

the term k-searcher. In this formulation, in order to �nd an evader, a k-searcher do not need touch the

evader, but can instead "see" the evader from a distance. The k-searcher is equipped with k in�nitely

thin "�ashlights" with which it can search the environment. These �ashlights have unlimited range

(but cannot see through walls) and can be freely rotated around the searcher at bounded speed and

independently of searcher's motion. Commonly studied are cases when k = 1, k = 2, and k = ∞
[14, 22, 36]. The ∞-searcher can see in all directions at once. [13]

Figure 1.1: A computed clearing trajectory for a π-searcher.[13]

1.3.2 Randomized point of view

Another point of view is based on randomized algorithms to solve the pursuit-evasion problem [18,

1]. The random-based pursuit-evasion problem used environments represented by graphs and utilises

random-based algorithms to �nd the optimal strategy to locate the intruder(s), so works go further by

trying to capture the located intruder [18].

2

CHAPTER 1. STATE OF THE ART

Figure 1.2: Triangulation of a polygon and its dual tree.[18]

1.3.3 Probabilistic point of view

Other works used probabilistic tools to solve pursuit-evasion problem [15, 16, 41]. The classical ap-

proach to pursuit-evasion games is to �rst build a map of the terrain and then play the game in a known

environment. For the map building stage, several techniques have been proposed, see e.g. [11] and ref-

erences therein. Most of them are based on Bayesian estimation and are implemented using Extender

Kalman Filter. The main problem with these map building techniques is that they are time consuming

and computationally expensive, even in the case of simple two dimensional rectilinear environments

[9]. On the other hand, most of the literature in pursuit-evasion games, see e.g. [4, 15, 29, 38, 35, 40],

assumes worst case motion for the evaders and an accurate map of environment.

In [15] the pursuit-evasion game and map building problems are combined in a single probabilistic

framework. The basic scenario considers multiple pursuers trying to capture a single randomly moving

evader. In [40] we extended the scenario to consider multiple evaders and proposed a single vision-based

algorithm for evaders and proposed a simple vision-based algorithm for evader detection.

In [41] the implemented probabilistic framework was on a team of Unmanned Aerial Vehicle (UAV)

and Unmanned Ground Vehicle (UGV). [15] proposed a "greedy" policy to control a swarm of au-

tonomous agents in the pursuit of one of the several evaders.

3

CHAPTER 1. STATE OF THE ART

Figure 1.3: Pursuit with the constrained greedy policy.[15]

1.4 Background

To master and understand concepts of the pursuit-evasion problem, basic knowledge about agents,

multiagent systems, and mobile robots is needed.

1.4.1 What are agents?

Surely, we must all agree on what an agent is. Surprisingly, there is no such agreement: there is

no universally accepted de�nition of term agent, and indeed there is a good deal of ongoing debate

and controversy on this very important subject. Essentially, while there is a general consensus that

autonomy is central to the notion of agency, there is little agreement beyond this. Part of the dif�culty

is that various attributes associated with agency are of differing importance for different domains.

Thus, for some applications, the ability of agents to learn from their experiments is of paramount

importance; for other applications, learning is not only unimportant, it is undesirable.

The de�nition presented here is adapted from [44]:

De�nition 1. an agent is a computer system that is situated in some environment, and that is capable

of autonomous action in this environment in order to meet its design objective.

Shoham de�nes Agent as follows [32]:

De�nition 2. An agent is an entity whose state is viewed as consisting on mental components such

as beliefs, capabilities, choices and commitments.

4

CHAPTER 1. STATE OF THE ART

Figure 1.4: An agent in its environment

Figure 1.4 gives an abstract, top-level view of an agent. In this diagram, we can see the action output

generated by the agent in order to affect its environment. In most domains of reasonable complexity,

an agent will not have complete control over its environment. It has at best partial control, in that it

can influence it. From the point of view of the agent, this means that the same action performed twice

in apparently identical circumstances might appear to have entirely different effect. And in particular,

it may fail to have the desired effect. Thus agents in all but the most trivial of environment must be

prepared for the possibility of failure. We can sum this situation formally by saying that environments

are non-deterministic[43].

Any agent should contain the following concepts: [28]

• Persistence: code is not executed on demand but runs continuously and decides for itself when

it should perform some activity.

• Autonomy: agents have capability of task selection, prioritization, goal-directed behaviour,

decision-making without human intervention.

• Social Ability: agents are able to engage other agents through some sort of communication and

coordination; they may collaborate on a task.

• Reactivity and Proactivity: agents perceive the context in which they operate and react to

it appropriately as per input.

Purely reactive agents

Certain types of agents decide what to do without reference to their history. They base their decision

making entirely on the present, with no reference at all to the past. This kind of agents can be called

purely reactive, since they simply respond directly to their environment. Formally, the behaviour of a

purely reactive agent can be represented by a function

action = S −→ A (1.1)

It should be easy to see that for every purely reactive agent, there is an equivalent standard agent;

the reverse, however, is not generally the case.

The thermostat example is a good example of a purely reactive agent. Assume, without loss

of generality, that the thermostat's environment can be in one of two states � either too cold, or

5

CHAPTER 1. STATE OF THE ART

temperature OK. Then the thermostat's action function is simply

action (s)

{
heater off if s=temperature OK

heater on otherwise
(1.2)

Agents with state

Modelling an agent's decision function action as from sequence of environment states or percepts to

actions allows us to represent agents whose decision making is influenced by history. However, this is

a somewhat unintuitive representation, and we shall replace it by an equivalent, but somewhat more

natural scheme. The idea is that we now consider agents that maintain state � see Figure 1.5. [43]

Figure 1.5: Agents that maintain state

1.4.2 Agent-Oriented Programming (AOP)

Yoav Shoham [31, 32] has proposed a "new programming paradigm, based on societal view of com-

putation" which he calls Agent-Oriented Programming. The key idea which informs AOP is that of

directly programming agents in terms of mentalistic notions (such as belief, desire, and intentions)

that agent theorists have developed to represent the properties of agents. The motivation behind the

proposal is that humans use such concepts as an abstraction mechanism for representing the properties

of complex systems. In the same way that we use these mentalistic notions to describe and explain

the behaviour of humans, so it might be useful to use them to program machines. [43]

1.4.3 Carachteristics of multiagent environment

1. Multiagent environments provide an infrastructure specifying communication and interaction

protocols.

2. Multiagent environments are typically open and have no centralised designer.

3. Multiagent environments contain agents that are autonomous and distributed, and may be self-

interested or cooperative.

6

CHAPTER 1. STATE OF THE ART

Property De�nition

Knowable To what is the environment known to the agent

Predictable To what extent can it be predicted by the agent

Controllable To what extent can the agent modify the environment

Historical Do future states depend on the entire history, or only the current state

Teleological Are parts of it purposeful, i.e., are there other agents

Real-time Can the environment change while the agent is deliberating

Table 1.1: Environment-agent characteristics according to [43]

Table 1.1 lists some key properties of an environment with respect to a speci�c agent that inhabits

it. These generalize the presentation in [30]

1.4.4 Societies of agents

Much of traditional Ariti�cial Intelligence has been concerned with how an agent can be constructed

to function intelligently, with a single locus of internal reasoning and control implemented in a Von

Neumann architecture. But intelligent systems do not function in isolation � they are at the very least

a part of the environment in which they operate, and the environment typically contains other such as

intelligent systems. Thus, it makes sense to view such systems in social terms.

A group of agents can form a small society in which they play different roles. The group de�nes the

roles, and the roles de�ne the commitments associated with them. When an agent joins a group, he joins

in one or more roles, and acquires the commitments of that role. Agents join a group autonomously,

but are then constrained by the commitments for the roles they adopt. The group de�ne the social

context in which the agents interact. [43]

1.4.5 Environment's Modelling

The environments in this work has been modelled using graphs, A graph is a pair G = (V,E) of sets
such that E ⊆ [V]2; thus, the elements of E are 2-elements subsets of V. A path is a non-empty graph

of the form V = {x0, x1, ..., xk} and E = {x0x1, x1x2, . . . , xk−1xk} Where the xi are all distinct, the

vertices x0 and xk are linked by P and are called its ends. If P = x0x1...xk−1 is a path and k ≥ 3,
then the graph C := P + xk−1x0 is called a cycle.

1.4.6 Instrumentation

Actors

The wheel has been, by far, the most popular locomotion mechanism in mobile robotics and in man-

made vehicles in general. It can achieve very good e�ciencies and does so with a relatively simple

mechanical implementation.

Perception

To percept walls, a method is proposed to detect vertices. This technique is based on laser to detect

the distance from agent to walls, and then generate the virtual perception of current position of the

master and its perception. This method is not used in the experimental work, the perception of vertices

is supposed done before.

7

CHAPTER 1. STATE OF THE ART

1.5 Conclusion

This chapter gave a general idea about the Pursuit-Evasion and Intelligent Agents. An overview of

various techniques used to solve the Pursuit-Evasion Problem has been done. And also the background

used to facilitate the understanding of Multiagent systems has been proposed.

The next part talks about the di�erent techniques proposed in this work. The techniques are

gathered in two points of view: O�ine search and Online Search. The �rst approach assumes that

environment2 is totally known to pursuers and evaders work as Nature. The loss of pursuers is related

to whether the evader is caught, so pursuers have to take policies based on worst-base analysis to avoid

regret. The second approach is more practical; it assumes that the environment is partially known

to pursuers. The main pursuer (Master)3 must take decision whether to request other agent or not

for each position. The next part contains theoretical explanation of techniques applied to solve the

Pursuit-Evasion problem for both cases.

2Environment is the workspace of agents. it is also called as building and world
3Master is the main agent that will explore the building; it generates the clearing strategy and requests other agents,

etc. It is also called main agent.

8

Part I

Our Work

9

Chapter 2

World Conditionning

2.1 Introduction

This chapter explains the �rst steps that the environment passes to be used by the O�ine and Online

search. The �rst step is to decide how to model environment, and then the other steps consists of

the walls and critical points detection. And then, the way how a vertex sees another vertex has been

shown.

2.2 Environment

The used environment in the simulation work is a grid of patches; each patch is either black (empty

space) or red (obstacle). Figure 2.1 shows examples of worlds (Also known as environments and

buildings). The black areas are the reachable zones, and the red parts are the walls.

(a) World 0 (b) World 1

Figure 2.1: Examples of environments used in experiments

The next step is the edge detection, where the vertices and walls are detected and the vertex set is

generated.

10

CHAPTER 2. WORLD CONDITIONNING

2.3 Edge detection

In this part, the environment is re�ned to �nd the critical points of the environment and the walls, the

critical points, or vertices, are the blue numbered points, and the walls are the green lines (see Figure

2.2). this edge detection is done by the following algorithm (verifying the de�nition 7 in page 56).

Algorithm 1 Edge detection
For each patch p of the world do:

C:= number of neighbour patches with pcolor = black

If C>3 then p is a critical point (vertex)

Else If C>0 then p is an edge (wall)

Figure 2.2: Edge detection

The next step helps to generate the visibility graph, this graph is the most important element in

this work, and all strategies are based on this graph.

2.4 Visibility graph

Visibility graph is very important in this work, the vertices are connected by links, each link between

two vertices de�nes that these two vertices see each the other. This visibility is veri�ed by the following

algorithm (applying de�nition 8 in page 56).

Algorithm 2 Visibility detection
visibility := true

Send tester from vertex 1 to vertex 2

If the tester find in the way a wall (obstacle) then visibility := false

Return visibility

11

CHAPTER 2. WORLD CONDITIONNING

Figure 2.3: Visibility graph

Figure 2.3 shows an example of environment after generating the visibility graph; the gray links

are the simple visibility links, the red links are visibility links with direct view (as de�ned in de�nition

9 in page 56).

The next step consists of simplifying visibility graph by neutralizing useless vertices. Even though

this part is facultative for the search, but it showed usefulness for the computation time.

2.5 Simpli�cation of visibility graph

From Figure 2.3, we can observe that the graph is uselessly crowded by vertices and visibility links.

So we decided to �nd how to simplify the visibility graph so the computation and the study become

easier. We found that useless vertices are of two types with respect to their importance.

1. Vertices in the doors (�gure 2.4(a)) can be simpli�ed into one of them.

2. Vertices which are directly seen by at least another vertex (Figure 2.4(b)) can be neutralized in

one condition, that this vertex is not survivor of door neutralization.

(a) Example of door (vertices 9 and 6) (b) Directly visible vertex (vertex 13

directly sees vertex 7)

Figure 2.4: Cases of simpli�cation of the environment

12

CHAPTER 2. WORLD CONDITIONNING

De�nition 3. A door is pair of vertices witch have the same set of visible vertices, it is obvious that

the suppression of one of these vertices does not disturb the area graph. (see Figure 2.4(a)).

Vc6 = Vc9 (2.1)

De�nition 4. A vertex sees directly another vertex when the �rst can see the adjacent edges of the

second vertex, and its set of visible vertices is included in the set of the dominant vertex; generally, this

vertex can be deleted. (see Figure 2.4(b))

Vc7 ⊂ Vc13 (2.2)

The next step is the creation of Area graph, this graph is generated using the simpli�ed (or not)

visibility graph. It is very helpful for the exploration strategies in the O�ine search.

2.6 Area graph

This graph is generated from the visibility graph, this is by representing each connected sub graph by

a node, and this node is named Area.

(a) Visibility Graph (b) Area Graph

Figure 2.5: Visibility and Area Graph corresponding to the environment in �gure 2.1(a)

While we suppose that the environment is a priori known, the corresponding visibility graph of

the environment shown in Figure 2.1(a) is represented in Figure 2.5(a), the set of vertices Vi is N ,

and the set of edges between these vertices is E, i.e. N = {V0, . . . , V 9} and E = {V0V1, V4V5, . . . }.
Obviously, the set of vertices where each vertex can see all the other vertices is in the same zone of the

environment. So we can compute the Area graph Figure 2.5(b) of the corresponding visibility graph by

replacing each complete sub graph by an area. In this example (Figure 2.5) there exists four di�erent

areas, A0 (including the vertices V0, V1, V3, V4, V5, and V6), A1 (including V2 and V7), A2 (including

vertex V8), and A3 (including vertex V9).

The following algorithm shows how to compute connected sub graphs:

13

CHAPTER 2. WORLD CONDITIONNING

Algorithm 3 Generating connected sub graphs

function nodes %generates the complete sub-graphs

ask links between vertices {

set node recurse(both ends of links)

}

function recurse(ls) %recursion to find complete sub-graphs

let bout empty list

let q compute-q(ls)

for each element of the list q {

let tmp1 ls with the current element of q inserted the end

let tmp2 recurse(tmp1)

set bout the largest set of connected sub graph between bout and tmp1

set bout the largest set of connected sub graph between bout and tmp2

}

return bout

function compute-q(p) %computation used by "recurse"

let tmp list of all vertices

ask vertices of p {

for each element of tmp {

if (not out-visible-neighbor? (current vertex of tmp)) remove the vertex from tmp

}

}

return tmp

2.7 Conclusion

This chapter explained a very important stage of environment search. This step prepares the environ-

ment for the experimental studies. The proposed re�nement steps are applied on the simulation of the

environment using NetLogo1. To simplify the study, the environment is assumed as set of rectangles.

The study can be enlarged for examples of buildings with polygonal obstacles and even curved walls.

The next chapter talks about the �rst part of our study; the O�ine Search, where the environment

is globally percepted by the agent2; and the study of the optimal number of agents and optimal strategy

of search is done before starting the search strategy. This study uses the previous chapter to model

the environment to apply the techniques of search.

1NetLogo is a multi-agent programming language, it is detailled in Chapter 5 in page 26
2Mobile robot that will clear the building using other agents to guard some places

14

Chapter 3

Offline Search

3.1 Introduction

This chapter explains experiments and methods implemented for the O�ine Search, in this part of

study, the environment is completely known and the search strategy is based on the environment's

scheme1. This study is composed of two methods: Worst-Case search, and Improved search. The �rst

method is based on the number of critical areas in the Area Graph, and computes the number of agents

needed to explore the building without any chances for the evader of escaping from an area to a cleared

area. And the second strategy is the optimisation of the �rst one. In this method, the master begins

to explore the environment and decides whether it has to request an agent or not.

3.2 Worst-Case Search study

In this part, optimisation of number of agents needed to explore the environment had the following

stages:

1. Number of agents needed to explore the environment equals to the number of vertices2.

2. The number of vertices has been reduced by neutralizing3 useless vertices.

3. The number of needed agents became the number of areas4 in the environment.

4. The number has been reduced into the number of critical areas5 + 1.

1The Visibility Graph
2See De�nition 7 in page 56
3See Section 2.5 in page 12
4For the de�nition of areas, see De�nition 10 in page 56
5For the de�nition of critical areas, see De�nition 12 in page 56

15

CHAPTER 3. OFFLINE SEARCH

Figure 3.1: used agents for the worst case. The agent in green circle is the master, and agents in yellow

circles are walkers (or guardians)

3.2.1 Principle

In this technique; the main idea is to put a guardian6 in each critical area, this has to prevent evader

of escaping from path7 to another. Each environment is composed of interconnected paths, a path

is successive areas, paths are connected by areas. So, the connected area is a critical (because it is

connected to more than two areas). The path needs one agent to be decontaminated. So, when the

master clears the building, it decontaminates the paths. And guardians prevents from contamination

of a path from another contaminated path. This explains why the number of needed agents is the

number of critical areas incremented of one.

3.2.2 Used functions

The Worst-Case technique is based on the following di�erent functions:

Node function This function is used to generate areas; it adds for each visibility link vertices in

the same area, an area is a connected graph8. To do that, it needs a function called "Recuse", this

function is de�ned as follows:

Recurse function It computes the greatest set of connected vertices for the current visibility link.

Get-tree function This function has as duty to check all vertices and give to each area a level; this

level is number which used to generate the area graph.

Simplify function This function uses the levelled visibility graph resulted from "get-tree", in which

each vertex has a level in function of its area, it generates the area graph and the connections between

6Guardian is a supplemental agent that its duty is to guard its current area. Generally it is requested by the main

agent
7See the de�nition of paths in Section A.3 in page 54
8see de�nition 10 in page 56

16

CHAPTER 3. OFFLINE SEARCH

areas in function of visibility between areas9.

3.3 Improved search study

In this case, a new concept has been introduced, which is the �tness. This �tness allows the agent to

�nd the best branch to be explored based on the number of critical areas in this branch. For example

(�gure 3.1), suppose that we have an agent in area 25, after �nishing areas 30 and 32, to select the

next area that will be visited in such way that the global area will be cleared, this is a very delicate

choice. If it goes into area 26, it will need another agent to guard this area, at the same time that an

agent has to stay and guard area 25. But if the agent goes to 28 and returns to 25 and then goes to

26, then the global area 2510 will be completely cleared.

3.3.1 Principle

This technique is based on the assumption that the search must always start from a leaf11, or from

area with minimal number of connected areas if there are no leaves. The clearing strategy is tested for

each leaf, and then the best start is chosen according to the optimal number of used agents. Each time

an agent is requested for guarding a critical area and all available agents are used to guard areas, so

a new agent must be requested and the number of needed agents will be incremented. And if an area

is cleared and all its successors, and the master will retreat, then the number of currently used agents

will decrease.

3.3.2 The Fitness

To choose the best next area, extra criterion is proposed, this criterion gives the number of critical

areas in each branch of critical area 25, with the depth n.

Figure 3.2: Scenario of selecting the best branch with the minimal �tness

The following is the algorithm of computing this �tness:

9using de�nition 11 in page 56
10Global area 25 is the branches connected to area 25
11A leaf is an area connected to one other area

17

CHAPTER 3. OFFLINE SEARCH

Algorithm 4 The �tness

function fitness(ar0,ar,dp)

if (count branches > 2) then return 1

let tmp 0

if (dp > 0) {

compute the fitness of each branch fitness(ar,current branch,(dp - 1))

tmp = tmp + maximal fitness of branches

}

return tmp

where:
ar0 is the previous area

ar is the current area

dp is the depth of the search
This algorithm is used to compute the �tness of each area connected to the current zone. This

�tness is used to choos the next vertex to be visited. The algorithm is based on a recursion function.

This function computes the number of critical area according to the used depth.

3.4 Conclusion

This chapter studied the case where the agent has a total perception of the environment. The Master

generates the motion strategy and the number (and location) of needed supplemental agents. This

situation is applicable for the security of important buildings. This case has the problem for the

unknown environments; the next study (Online Search) is based on this case.

In the next case, the agent has a partial perception of the environment, and it is dynamically

changing with its position. The agent decides whether it must go on or go back, or even request another

agent in function of its state12. This case is applicable for saving persons in dangerous buildings.

12This state is composed of its position, its history (previous states), its internal state, etc.

18

Chapter 4

Online Search

4.1 Introduction

This chapter explains experiments and methods implemented for the Online Search, in this part of

study, the environment is partially known and the search strategy is dynamic and in function of the

current situation. This study is composed of two methods: Direct search and Go-and-Back search. In

the �rst method, the master checks the current situation and the visible vertices from its position, and

decides whether request an agent or not or even go back to the previous position to check other areas.

In the second strategy the master has to check all visible vertices seen from its position to ensure if he

needs to request an agent or not.

4.2 Direct strategy

In this case, the master has to decide whether to request other agent or go forward for each position.

In the case where the searcher detects more than one vertex at sight, it thinks that it is appropriate

to request agent to guard this area, and then to go forward and continue clearing the building. This

method is inspired from the human behaviour when the search routine must be done as fast as possible.

4.2.1 Principle

The main algorithm of decision used by the searcher is as follows:

19

CHAPTER 4. ONLINE SEARCH

Algorithm 5 Decision scenaio in Direct Strategy.

If there is one Vertex in CV then:

Insert current vertex in stack

Move to this new vertex

If there is more than one vertex in CV then:

If there is no walker controlling this area (including this vertex) then Clone-walker

Insert current vertex in stack

Move to the first vertex in CV

If there is no vertex in CV then:

Create tmp, the list of vertices in QL that are visible from V

If tmp is not empty then:

if tmp contains only one vertex then kill-walker

Insert current vertex in stack

Move to this new vertex

If tmp is empty then:

Kill-walker

Go back

Where:
CV is the list of visible vertices through Vertex V

stack is the list of visited vertices, it is used to go back in case of �nishing a path

Clone-walker is to Create a walker on V to guard the area

QL is the list of non-visited vertices through the time

V is the current vertex

Kill-walker is to kill walker (if it exists) in the same place with Master

Go-back is to go back to the previous vertex in the stack

20

CHAPTER 4. ONLINE SEARCH

4.2.2 Scenario

Figure 4.1: Case of visibility checking

For example, suppose the master is on vertex 7 (see Figure 4.1). In this situation, the CV contains the

vertices 8, 2, 0, 3, 5, 4, 1. The master has to request a new agent (walker). And then go to another

vertex (in this case, it will go to vertex 8). Before that, it puts vertex 7 in the Stack. And also, it puts

other vertices of CV in QL. And then, Master does the same scenario for vertex 8.

4.3 Go-and-back strategy

In this case, the master visits all vertices in the current area to check critical vertices1. And then decides

whether to request other agent or continue to other area in the building. This strategy ensures that

if the current area deserves requesting walker or not. This technique is inspired of human behaviour,

that, by instinct, checks the entire current area and then chooses the appropriate decision.

4.3.1 Scenario

Suppose the situation in Figure 4.1, the master must visit all vertices in CV (vertices 8, 2, 0, 3, 5, 4,

1). And then decides whether request a walker or continue to other vertex. In this case, there are 2

critical vertices (vertices 1 and 5) which have vertices behind them.

4.3.2 State machine

The used state machine is as follows:

1They are vertices connected to other vertices from other areas that are not visible to the master from the current

area

21

CHAPTER 4. ONLINE SEARCH

Figure 4.2: State machine of go-and-back strategy

CR is the number of critical vertices. The initial state is "New", Master will check visible vertices,

and if there are new vertices (Not empty? CV) then the master will go to "Explore" state, elsewhere;

it will "change" the area.

Here is the explanation of each state (from Figure 4.2) the agent can have:

• New: In this state, the agent is in the situation to generate the visibility set of the current vertex
V0.

• Explore: this state is used to the go-and-back status to check visible vertices Vi from the current

vertex V0.

• Back: this situation is alternated with "explore", but in this situation, the agent checks if the

visible vertex Vi is critical or not. Critical means that this vertex is in contact with vertex(ices)

not visible from vertex V0.

• Change: this state is very important, here the agent decides whether to: request another agent,

go to the next critical vertex, or go back to the previous vertex.

This state machine is executed for each time the main agent (the master) changes its position from

a vertex to another vertex.

4.3.3 The Levelled Visibility Graph

The visibility graph has been checked by the master, and each time it goes into new zone (using

"change"), it increments the level (or depth) of the current zone of vertices. For example, if the master

starts from V0, it gives the level 0 to this vertex, and it checks all visible vertices and gives level 0 to

each one. Once the master �nishes this zone, it goes to new zone and increments the level to 1 (Figure

4.3).

22

CHAPTER 4. ONLINE SEARCH

Figure 4.3: Levelled Visibility Graph

Figure 4.4: Diagram of Levelled Visibility Graph

Figure 4.4 shows the scheme of Levelled Visibility Graph, V0 is the starting vertex; it has the level

-1 (or 10 in experiments). The visible vertices from V0 has all received the level "0", and for all visible

links from a vertex with level "0", they receive the level "1", etc. As we can see, there is a visibility

link from a level to an upward level (from Vj′′ to V0) this link designs a cycle. The detection of cycles

by searching links from current level to an upward level helps the master to prevent missing the control

of cycles. So once it detects a cycle, it requests an agent and asks it to stay at vertex V0 to prevent

the evader escaping and return to vertex Vj′′ once Master returns to vertex Vj .

4.4 Conclusion

This chapter explains the used techniques to solve the problem of pursuit-evasion in unknown envi-

ronment. The two methods proposed for this part are based on the instantaneous perception of walls

by the Master, so it has to decide the action to be done for each position. The �rst method (Direct

strategy) is based on the current visibility list of the master, and the actions are found according to the

23

CHAPTER 4. ONLINE SEARCH

number of visible vertices from the current vertex. But in the second strategy (Go-and-Back strategy),

the master has to visit all visible vertices from the current vertex and then decides the appropriated

action according to the number of critical vertices.

The next part is the experimental work, where the experiments and tests done to verify the previous

techniques for the O�ine and Online search. This part begins with a de�nition of the used tool in

these experiments which is NetLogo. After that, the experimental results are explained and detailed

to verify the usefulness of techniques proposed to solve the Pursuit-Evasion problem.

24

Part II

Experimental Work

25

Chapter 5

Used tool

5.1 Introduction

This chapter gives a brief overview about the used tool in the experimental work. This tool exists

since 1960's and has been optimised to simulate the behaviour of multiagent systems. It facilitates

the simulation of mobile agents and helps to give orders to an agent or a set of agents at once. This

framework is NetLogo.

This overview starts with the history and ancestry of NetLogo. Afterwards, a presentation of the

NetLogo is done with some of its features. Moreover, an explanation of the components of NetLogo

and main used breeds (turtles, links, and patches) is presented in this chapter. Finally the used

environments in the experimental work that are modelled using NetLogo are presented and explained.

5.2 Some Logo History

Logo got its start in the 1960's at Bolt, and Newman, Inc., a company in Cambridge, Massachusetts,

who worked with people from the Massachusetts Institute of Technology.

A couple of years later, they added small, round robot that was connected by wires to the computer.

It looked sort like a turtle. Using a small keyboard, young people gave the turtle commands to make it

go forward, back, left, and right, moving over a big piece of paper, drawing pictures as it moved along.

This was �ne for awhile. But when personal computers became popular in the late 1970's, the

National Science Foundation and Texas Instruments Incorporated both asked the MIT people to make

Logo work on small computers.

Texas Instruments introduced the �rst commercial version of Logo in April, 1981. In January of

1982, the MIT version of Logo that had been developed for Apple][family of computers was introduced.

Since then, there have been many more versions of Logo for just about all personal computers.

[25] has explained Logo not as a programming language, but as a family interactive tool about the

fun exploring the scope of the imagination.

Several extensions have been done basing on Logo, such as, MSWLogo1, StarLogo2, StarLogo TNG3

(The Next Generation), NetLogo4, etc.

1http://www.softronix.com/logo.html
2http://education.mit.edu/starlogo/
3http://education.mit.edu/drupal/starlogo-tng
4http://ccl.northwestern.edu/netlogo/

26

http://www.softronix.com/logo.html
http://education.mit.edu/starlogo/
http://education.mit.edu/drupal/starlogo-tng
http://ccl.northwestern.edu/netlogo/

CHAPTER 5. USED TOOL

5.3 What's NetLogo?

NetLogo is a multi-agent programming language and integrated modelling environment. NetLogo was

designed in the spirit of the Logo programming language to be "low threshold and no ceiling", that is to

enable easy entry by novices and yet meet the needs of high powered users. The NetLogo environment

enables exploration of emergent phenomena. It comes with an extensive models library including

models in a variety of domains such as economics, biology, physics, chemistry, psychology, and many

other natural and social sciences. Beyond exploration, NetLogo enables the quick and easy authoring

of models.

It is particularly well suited for modelling complex systems developing over time. Modellers can

give instructions to hundreds or thousands of independent "agents" all operating concurrently. This

makes it possible to explore the connection between the micro-level behaviour of individuals and the

macro-level patterns that emerge from the interaction of many individuals.

NetLogo was designed and authored by UriWilensky, director of Northwestern University's Centre

for Connected Learning and Computer-Based Modelling. Development has been funded by the National

Science Foundation and other foundations.

5.4 Components

5.4.1 framework

The framework is composed of three parts: Interface, Information, and Procedures.

Interface contains the commands and the environment. The Command can be button, slider, switch,

etc. The Button executes commands The Slider allows to change the value of global variable. The

switch allows to change the value of global variable that has only the value true/false. There is other

commands can be Input, Monitor, Plot, Output and Note.

Information is used to explain the program features.

Procedures contain functions and the main program. The programming language is very near to

human interaction, but with some Agent Oriented concepts, such as ask turtles, turtles-own, etc.5

5.4.2 Patches

They are basic elements of the environment, we can call them "pixels", they compose the matrix of

the environment. Therefore, by pointing each Patch through its coordinates (x and y), we can ask it

to do some tasks, such as change colour (set pcolor), and change variables declared at the top of the

program in the section patches-own.

5.4.3 Turtles/breeds

They are agents in this framework, they can move, turn, change colour, etc. Turtles can have di�erent

variables declared in the section turtle-own.

5For more information about programming language of NetLogo, please visit NetLogo Home Page http://ccl.

northwestern.edu/netlogo/

27

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

CHAPTER 5. USED TOOL

Breeds are other kinds of turtles. Therefore, we can create other types of agents by using the

command breed so the command is for example: breed [vertices vertex] such that vertices is

the plural name of the breed, and vertex is the name of one agent.

5.4.4 Links/breed-links

These breeds are used to connect between agents, these links can be directed or undirected. In

this work, they are used in Graphs as edges. To create a new type of link, the used command

is directed-link-breed [visibles visible] and undirected-link-breed [lareas larea]. The

�rst command creates a directed link "visible" that has the plural "visibles" and the second command

creates undirected link "larea" that has the plural "lareas".

5.5 Some applications

NetLogo is applied in several domains of research - Biology, Arti�cial Intelligence and computer science,

earth science, mathematics, etc. One of the interesting applications is Ants (Figure 5.1(a)), it simulates

how a colony of ants foraging for food. Other application is the Wolf Sheep Predation (Figure 5.1(b)),

where the natural equilibrium is simulated. Figure 5.1(c) shows the number of sheep and wolves and

the amount of Grass in the environment.

28

CHAPTER 5. USED TOOL

(a) Ants foraging for food (b) Worlf Sheep Predation

(c) Worlf Sheep Predation plots

Figure 5.1: Some examples of use of Netlogo

5.6 Used worlds

The used environments in this work have been modelled using NetLogo, the examples of environment

used in experiments are as follows:

29

CHAPTER 5. USED TOOL

(a) World 0 (b) World 1 (c) World 2

(d) World 3 (e) World 4 (f) World 5

(g) World 6 (h) World 7

Figure 5.2: Used environments in the experiments

30

CHAPTER 5. USED TOOL

(a) World 0 (b) World 1 (c) World 2

(d) World 3 (e) World 4 (f) World 5

(g) World 6 (h) World 7

Figure 5.3: Visibility graph of the used environment in experiments

31

CHAPTER 5. USED TOOL

(a) World 0 (b) World 1 (c) World 2

(d) World 3 (e) World 4 (f) World 5

(g) World 6 (h) World 7

Figure 5.4: Area graph of the used environment in experiments

These environments are explained as follows:

• World 0, World 1: these worlds are simple cases of environment, the generated area graph is

a tree with one root and 3 leaves6.

• World 2: this environment is a critical case, in this world; the generated area graph contains

interconnected cycles. This case is used to show the weakness of o�ine search for complicated

graphs.

• World 3, World 5: these worlds are seen as trees with one root with 3 leaves and one cycle in

6A leaf is an end of a path; the leaf is a an area connected to one other area

32

CHAPTER 5. USED TOOL

a leaf. They are used to verify the techniques to solve the problem of cycles, especially in case

of Online search.

• World 4: this case is a simple building which is simpli�ed into one path.

• World 6: this environment is composed of a tree with 3 leaves and 2 cycles. This case is used

to verify the usefulness of �tness function for the Improved technique in Online search.

• World 7: this case is a complicated tree, there is a cycle connected into two leaves and a root

of two other leaves.

5.7 Conculsion

This chapter gave a general presentation of the used tool in this experimental work which is NetLogo. It

can be seen that this framework makes the agent programming easier for cases of multiagent systems

and societies of agents. It can be seen that this programming language is very near of naturally

speaking language; this simpli�es the commands and helps the user to get familiar with it faster.

The next chapter is where the simulations and experimental results are presented and explained.

Several experiments are presented with comparison of results between techniques to understand the

usefulness of each method.

33

Chapter 6

Simulation

6.1 Introduction

This chapter contains the simulations and experimental works. It concentrates on the tests of each

technique. And comparison of results for O�ine search and Online search to verify the usefulness of

each method for the appropriate cases.

6.2 Offline Search

6.2.1 Usefulness of simpli�cation of Visibility Graph

The idea of simplifying the visibility graph showed interesting results concerning the generating time

of area graph. Table 6.1 is the experimental results found to compare computation time of several

environments for the case of simpli�cation and without simpli�cation.

Example
World without simpli�cation World with simpli�cation

Number of visi-

bility links

Time of areas comput-

ing in milliseconds

Number of visi-

bility links

Time of areas comput-

ing in milliseconds

World 0 46 109 12 ≈ 0
World 1 80 7109 26 16

World 2 130 172 58 15

World 3 78 93 28 16

World 4 10 16 6 ≈ 0
World 5 68 31 30 16

World 6 76 156 34 31

World 7 98 79 38 16

Table 6.1: Computation with and without graph simpli�cation

It is shown that computation time has decreased severely after removing useless vertices, this is due

to the simpli�cation of areas, the algorithm used to generate area graph su�ers of the problem that it

needs to detect each connected graph through each edge contained in the connected sub graph. For

example, let us see the "World 1" (Figure 6.1), the of computation time before and after neutralization

of useless vertices has severely decreased. Even though, the number of visibility links is not so large.

Please take a look at Area 19; it contains 8 vertices, i.e. 56 visibility links. The algorithm of area

34

CHAPTER 6. SIMULATION

graph has to compute the connected sub graph for each visibility link. This explains the very large

time needed (9.531s) to generate the Area Graph for World 1.

(a) Without simpli�cation (b) With simpli�cation

Figure 6.1: Visibility and Area Graph of "World 1"

Figure 6.2: computation time (in milliseconds) with and without simpli�cation of visibility graph

35

CHAPTER 6. SIMULATION

Figure 6.3: Number of visibility links in the environment before and after neutralization of useless

vertices

6.2.2 Worst-Case search

This method is based on the idea that each critical zone must be controlled by an agent. Firgure 6.4

shows the agents' deploying for each case of environment. The agents controling critical areas are in

yellow circles, and main agent that will control the paths is in a green circle. Each agent must control

vertices included in its area.

For case of World 2, the application of o�ine techniques is not possible because of the di�culty of

the area graph, this graph contains several cycles interconnected which makes our proposed techniques

non applicable for this environment.

36

CHAPTER 6. SIMULATION

(a) World 0 (b) World 1 (c) World 2

(d) World 3 (e) World 4 (f) World 5

(g) World 6 (h) World 7

Figure 6.4: Agents' deploying for each environment

6.2.3 Improved search

This method is the optimisation of the previous method. For this case, the main agent starts exploring

the environment from a leaf, and requests an agent for each critical area. Figure 6.5 contains di�erent

cases of environments to show the usefulness of the �tness1. The �tness for each branch is computed

for the depth of 1.

For case of World 7 (Figure 6.5(d)), the �tness depends of the depth of �tness computation. For

depth 1 the �tness is 2, and for depth 2 the �tness is 3. This is due to the number of critical areas

seen from Area 27, e.g. for depth 1 the critical areas (which are counted in Fitness function) are 29

1The �tness function is de�ned in Section 3.3.2 in page 17

37

CHAPTER 6. SIMULATION

and 28, and for depth 2 the critical areas are 28, 29, and 25.

(a) World 3 (b) World 5

(c) World 6 (d) World 7

Figure 6.5: The Fitness for each branch for di�erent environments

6.2.4 Comparison

Environment Number of agents

at worst case

Number of agents with

Improved search

World 0 2 2

World 1 2 2

World 2 6 3

World 3 3 2

World 4 1 1

World 5 3 2

World 6 3 2

World 7 5 3

Table 6.2: Number of agents needed to cover the environment for di�erent cases

38

CHAPTER 6. SIMULATION

Figure 6.6: Number of agents used to cover the buildings

Figure 6.6 shows the number of agents needed to clear the building for each example. It can be seen

that the number of agents has been decreased using the Improved search technique for several examples.

But some ones, the number has not been changed, this is due to the nature of the environment; World

0, 1, and 4 are simple graphs with just one (or no) critical area. The usefulness of the second technique

can be seen for examples with more than one critical area.

6.3 Online Search

6.3.1 Master's perception of walls and vertices

To percept walls, a method is proposed to detect vertices. This technique is based on laser to detect

the distance from agent and wall, and then generate the virtual perception of current position of the

master. This method is not used in the experimental work, the perception of vertices is supposed done

before.

The simulation of the laser is done using NetLogo.

39

CHAPTER 6. SIMULATION

(a) Point 1 (b) Point 2

Figure 6.7: Laser-Based wall's simulation

Figure 6.7 shows the simulation of Laser-Based wall's perception using NetLogo. The red zones of

the view are walls; the green dots are the percepted points of the walls using the Laser, here are two

cases of agent's position, point 1 and 2.

(a) Point 1 (b) Point 2

Figure 6.8: Laser-Based wall's perception

Figure 6.8 is the generated view from the laser sensor; it is a distance in function of angle. This

angle can be according to the north, or any other reference frame. This is the signal which can be used

to detect critical points2. These experiments did not study the Laser's perception, but this part can

be a good part of future works.

2which can be transformed into vertices

40

CHAPTER 6. SIMULATION

(a) Point 1 (b) Point 2

Figure 6.9: Laser-Based wall's view

Figure 6.9 is the perception of walls according to the agent. These images are plotted on agent's

mind using the angle and distance from the agent to the percepted wall for each point. As we can see,

the view is not very clear, but the critical point of walls can be detected.This perception is built using

the following trigonometric laws:

N (x, y) =

{
x = d.sinθ

y = d.cosθ
(6.1)

Where d is the distance from the agent to the wall; and θ is the angle from the referential north3

to the angle of the corresponding point (see Figure 6.9).

6.3.2 Direct strategy study

This method is applied for cases where the environment is not totally percepted, so the main agent

must decide its actions according to its position and its state.

3The referential north for the NetLogo is the angle that the agent has when it is heading up; this angle is referenced

by 0.

41

CHAPTER 6. SIMULATION

(a) World 0 (b) World 1 (c) World 2

(d) World 3 (e) World 4 (f) World 5

(g) World 6 (h) World 7

Figure 6.10: Direct search strategies

The visited visibles by the main agent, corresponding to Figure 6.10, are as follows in function of

iterations:

• World 0: [1 2 5 6 8 6 3 4 3 9 3 6 5 7 5]

• World 1: [14 5 6 12 4 2 9 7 9 2 4 11 13 3 15 3 13 11 4 12 6 1 6]

• World 2: [14 20 8 10 6 2 25 12 15 17 19 22 27 22 19 5 11 5 19 17 15 12 25 2 6 13 1 24 3 21 23 21

3 24 1 13 6 10 8 20 16 9 0 28 0 9 16 20 14 7 29 18 26]

• World 3: [3 6 12 8 14 0 5 4 5 9 15 9 5 0 1 10 1 7 13 11 13 2]

42

CHAPTER 6. SIMULATION

• World 4: [4 1 2 3]

• World 5: [10 14 2 1 6 11 8 13 4 9 0 7 15 7 12 5 3]

• World 6: [14 10 13 15 11 3 9 3 11 2 1 2 11 15 13 8 6 12 4 5 7 0]

• World 7: [10 8 15 20 3 19 11 0 16 5 1 6 14 13 14 6 1 5 16 7 18 7 16 0 11 12 9 21 9 12 11 19 3 4

17 4 3 20 15 2]

This method has proven a very interesting usefulness for the time of clearing the building, but it

su�ers of a big problem with the decision of requesting supplemental agents, this is seen for cases where

the main agent sees more than two vertices, so it has to request another agent even if this place is in

the same area (this case is more explained in section 6.3.4 in page 46).

6.3.3 Go-and-back strategy study

This technique is based on the idea of visiting all vertices in the current area to decide whether it

needs a guardian or not. Figure 6.11 shows the levelled visibility graph for each case of study. Each

vertex shows its level starting from the starting vertex which has the value of -1. World 0, 1, and 4

are simple examples to apply the technique. Cycles are, as de�ned in Section 4.3.3 in page 22, can be

seen in World 2, 3, 5, 6, and 7.

43

CHAPTER 6. SIMULATION

(a) World 0 (b) World 1 (c) World 2

(d) World 3 (e) World 4 (f) World 5

(g) World 6 (h) World 7

Figure 6.11: Levelled Visibility Graph for each environment

This method ensures the optimization the use of supplemental agents, but it needs more time to

visit the vertices in the current area. This method showed a better results for cases where the main

agent is in an area which contains more than one vertex, so before deciding to request another agent, it

visits all vertices in the current area, and decides that this area does not need a guardian (this critical

case is more explained in section 6.3.4 in page 46).

6.3.4 Comparison

A comparison between the two strategies has been done to see the usefulness of these methods in

function of time and number of used walkers.

44

CHAPTER 6. SIMULATION

Cost computation

This cost criterion is computed as follows:

• Each agent needs +0.1 as cost for its use.

• Each new agent requested needs +1 as cost for its recruitment.

• Each agent that is no more needed is put as spare, so if there is need to a new agent, the cost of

new agent is not added; the cost of spare agents is supposed null.

(a) World 0 (b) World 1 (c) World 2

(d) World 3 (e) World 4 (f) World 5

(g) World 6 (h) World 7

Figure 6.12: Cost in function of time for several examples blue line for direct strategy and dashed

green line for go-and-back strategy

45

CHAPTER 6. SIMULATION

Figure 6.12 shows the comparison of cost in function of time. It can be seen that the �rst technique

(Direct search) has given a lower cost and a faster time. But it su�ers of the problem of risk that it

requests more additional agents for areas that do not need guardians.

Figure 6.13: Number of used agents for the online search

Figure 6.13 shows a comparison of the used agents to clear environments for the two techniques.

This number is for the same starting point; this number di�ers for environments where there is a

critical case.

Critical case

There are cases where go-and-back strategy shows better results, for example (see Figure 6.14(a)). For

direct strategy, the master will �nd 2 new vertices in CV (vertices V9 and V6), so it will automatically

request a walker. But in go-and-back strategy, the master will check vertices V9 and V6, and then �nd

that there is no need to request walker since there is only one critical vertex V9.

(a) A case for World 1 (b) A case for World 0

Figure 6.14: Critical cases

46

CHAPTER 6. SIMULATION

6.4 Conclusion

This chapter contains the experimental work and results found to implement the techniques proposed

to solve the Pursuit-Evasion problem for a totally-percepted and partially-percepted environment.

The proposed techniques gave interesting results for speci�c cases, but for some critical cases,

one method would be more recommended than others. For example, for the o�ine search, where

the environment is totally percepted, the Worst-Case method is better for cases where the search is

delicate, and the evader must be found in any circumstances. And for cases where the number of used

agents is more important, and must be smaller, the Improved technique is recommended. Moreover,

for the Online search, where the agent percepts only the current visible area, the Direct method is

recommended for cases of rescue, where the time is more delicate than the number of used agents. And

the Go-And-Back strategy is recommended for cases where the number of agents is very important and

must be as small as possible, and the time is not so important. Other idea is to mix the two methods

for examples where the importance of time is variable.

The next part contains the �nal conclusion and perspectives for these techniques. It contains

conclusions inspired from all this work, and ideas to optimise the proposed methods to solve more

cases of environments.

47

Conclusion and Perspectives

48

CHAPTER 6. SIMULATION

In this part, we will talk about the conclusion taken from this work. And also, the perspectives for

future works.

The proposed techniques can be used e�ciently to solve the Pursuit-Evasion problem for di�erent

cases. Some techniques showed more e�ciency for particular kinds of environment, and others showed

some defaults for other cases.

For the O�ine search, where the agent sees totally the environment and decides the optimal strategy

of search, the Worst-Case technique has been useful for all cases, but it needs an important number

of agents to clear the current environment, this is due to the need of an agent for each critical area.

This increases the number of agents, and prevents the evader from escaping from path to another. the

Improved technique has optimised the �rst technique by checking the entire Area Graph and �nd the

optimal motion sequence and the positions of guardians. Unfortunately, The two methods were useless

for cases where the environment is very complicated, especially for the case of environment with mixed

cycles.

For the Online search, where the main agent has only the possibility to percept its current position

and decides what to do according to what it sees, the Direct strategy gave good results for all kinds

of environments, it showed fastness of clearing of building, but its main problem is the risk of using

additional agents to guard areas that does not need to be controlled. The second technique, Go-And-

Back strategy, which is based on the idea of visiting all vertices in the current area, was very e�cient for

clearing buildings, especially for environments with cycles, this is due to the idea of Levelled Visibility

Graph, but it su�ers of the problem of time needed to explore the whole building.

The applications of the pursuit evasion techniques have a promising future, the need of mobile robots

to clear buildings is increasing with the increase of the use of technology in human life, the proposed

O�ine search techniques can be used e�ciently for the security routines in important buildings like

museum and mall. The idea of guardians in each critical area for the Worst-Case technique can be

replaced by security cameras that detect the evader and inform the main agent of its position. The

Improved technique can be used in cases where the used mobile robots are expensive and the number

of used agents must be as small as possible. The techniques proposed to solve Online search problem

can be used for the safety and rescue e�orts in buildings on �re or chemically contaminated areas, this

is because of the no need of building's plan to generate the search strategy. The Direct search strategy

can be used for cases where the time is the most important criteria, and the Go-And-Back strategy

can be used for cases where the time is not so important, but the number of needed agents must be as

small as possible.

This work opens paths for several research topics; the �rst idea is the combination of the two

parts of work, a global perception of the environment and a local instantaneous perception of current

location. Furthermore, the optimization of the two techniques for the o�ine search to solve the problem

for environments with complex area graphs, complicated wall forms (curved, circular, etc.). For the

online search, the perception layer must be studied more to apply the laser based technique, and

search other techniques to detect walls and vertices. In addition, the insertion of random supplemental

information can be studied. For example, the case where the evader makes noise that the agent detects

and estimates the position of the evader. Further study on these techniques to improve their results to

be used for other cases of environments is recommended to enlarge the applications of Pursuit-Evasion

search techniques on human life.

49

Bibliography

[1] Michah Adler, Harald Racke, Haveen Sivadasan, Christian Sohler, and Berthold Vocking. Ran-

domized pursuit-evasion in graphs. Cambridge University Press, 12:225�244, 2003.

[2] Dana H. Ballard and Christopher M. Brown. Computer vision. Prentice Hall, II:523, 1982.

[3] Ramon Castano Barber, M. Mata, M.J.L. Boada, J.M. Armingol, and Miguel A. Salichs. A

perception system based on laser information for mobile robot topologic navigation. Proceedings

of the 28th Conference on Industrial Electronics, Control and Instrumentation, pages 2779�2784,

2002.

[4] Tamer Basar and Geert Jan Olsder. Dynamic non-cooperative game theory second edition. Aca-

demic Press, San Diego, CA, 1995.

[5] J. Borenstein and Y. Koren. Real-time obstacle avoidance for fast mobile robots. IEEE Trans.

Systems, Man, and Cybernetics, (19):1179�1187, 1989.

[6] Peng Cheng. A short survey on pursuit-evasion games. Department of Computer Science, Uni-

versity of Illinois at Urbana-Champaign, 2003.

[7] David Crass, Ichiro Suzuki, and Masafumi Yamashita. Searching for a mobile intruder in a

corridor�the open edge variant of the polygon search problem. Internation Journal of Computa-

tional Geometry and Applications, 1994.

[8] James L. Crowley. World modeling and position estimation for a mobile robot using ultra-sonic

ranging. IEEE Conference on Robotics and Automation, 3:1574�1579, 1989.

[9] Xiaotie Deng, Tiko Kameda, and Christos H. Rapadimitriou. How to learn an unknown environ-

ment i: The rectilinear case. Journal of the ACM, 45:215�245, 1998.

[10] Reinhard Diestel. Graph Theory. Springer-Verlag Heidelberg, third edition, 2005.

[11] Fox Dieter, Henry Hexmoor, and Maja Mataric. A probabilistic approach to concurrent mapping

and localization for mobile robots. Machine Learning and Autonomous Robots, pages 29�53, 1998.

[12] Michael Drumheller. Mobile robot localization using sonar. IEEE Transactions on Patten Analysis

and Machine Intelligence, 9(2):325�332, 1987.

[13] Brian P. Gerkey, Sebastian Thrun, and Geo� Gordon. Visibility-based pursuit-evasion with limited

�eld of view. The National Conference on Arti�cial Intelligence (AAAI 2004), 00:20�27, 2004.

[14] Leonidas J. Guibas, Jean-Claude Latombe, Steven M. La Valle, David Lin, and Rajeev Motwani.

A visibility-based pursuit-evasion problem. International Journal of Computational Geometry and

Applications, 09:471�494, 1999.

50

BIBLIOGRAPHY

[15] Joao P. Hespanha, Hyoun Jin Kim, and Shankar Sastry. Multiple-agent probabilistic pursuit-

evasion games. In Procedure of 38th IEEE Conference on Decision and Control, pages 2432�2437,

1999.

[16] Joao P. Hespanha, Maria Prandini, and Shankar Sastry. Probabilistic pursuit-evasion games: a

one-step nash approach. In Procedure of 39th IEEE Conference on Decision and Control, pages

2272�2277, 2000.

[17] Geo�rey Hollinger, Athanasios Kehagias, and Sanjiv Singh. Probabilistic strategies for pursuit

in cluttered environments with multiple robots. In Proc. International Conf. on Robotics and

Automation, pages 3870�3876, 2007.

[18] Volkan Isler, Kannan Sampath, and Khanna Sanjeev. Randomized pursuit-evasion in a polygon

environment. IEEE Transaction on Robotics, 2004.

[19] Volkan Isler, Dengfeng Sun, and Shankar Sastry. Roadmap based pursuit-evasion and collision

avoidance. Robotics: Science and Systems, I:257�264, 2005.

[20] Johan Larsson and Mathias Broxvall. Fast laser based feature recognition. 2005.

[21] Johan Larsson, Mathias Broxvall, and Alessandro Sa�otti. Laser based intersection detection for

reactive navigation in an underground mine. In Proc. of the IEEE/RSJ Int Conf on Intelligent

Robots and Systems (IROS), pages 2222�2227, 2008.

[22] Steven M. LaValle, David Lin, Leonidas J. Guibas, Jean claude Latombe, and Rajeev Motwani.

Finding an unpredictable target in a workspace with obstacles. In Proc. of the IEEE Intl. Conf.

on Robotics and Automation (ICRA), pages 737�742, 1997.

[23] Jae-Ha Lee, Sang-Min Park, and Kyung-Yong Chwa. Simple algorithms for searching a polygon

with �ashlights. Information Processing Letters, 81(5):265�270, 2002.

[24] John J. Leonard and Hugh F. Durrant-Whyte. Directed Sonar Sensing fo Mobile Robot Navigation.

Kluwer Academic Publishers, 1992.

[25] Jim Muller. The Great Logo Adventure: Discovering Logo on and O� the Computer. Doone

Publications, 1998.

[26] Damien Pallier and Humbert Fiorino. Coordinated exploration of unknown labyrinthine environ-

ments applied to the pursuitevasion problem. AAMAS'05, 2005.

[27] Torrence Douglas Parsons. Pursuit-evasion in a graph. Theory and Applications of Graphs, pages

426�441, 1976.

[28] Chavarkar Pradnya. Agent oriented programming. Technical report, Indian Institute of Technol-

ogy, Bombay.

[29] Isaacs Rufus. Di�erential Games. John Wiley & Sons, 1965.

[30] Stuart J. Russel and Peter Norvig. Arti�cial intelligence: A modern approach. Prentice Hall,

1995.

[31] Yoav Shoham. Agent-oriented programming. Technical report, Stanford University, 1990.

51

BIBLIOGRAPHY

[32] Yoav Shoham. Agent-oriented programming. Arti�cial Intelligence, 1:51�92, 1993.

[33] Sam Ge Shuzhi and Frank L. Lewis. Autonomous Mobile Robots: Sensing, Control, Decision

Making and Applications. Taylor & Francis, 2006.

[34] Roland Siegwart and Illah R. Nourbakhsh. Introduction to Autonomous Mobile Robots. The MIT

Press, 2004.

[35] Larry M. Stephens and Matthias B. Merx. The e�ect of agent control strategyon the performance

of a dai pursuit problem. Proceedings of the 1990 Distributed AI Workshop, 1990.

[36] Kazuo Sugihara, Ichiro Suzuki, and Masafumi Yamashita. The searchlight scheduling problem.

SIAM Journal on Computing, 19(6):1024�1040, December 1990.

[37] Sreenivas R. Sukumar, David L. Page, Andrei V. Gribok, Andreas F. Koschan, Mongi A. Abidi,

David J. Gorsich, and Grant R. Gerhart2. Surface shape description of 3d data from under vehicle

inspection robot. Proc. SPIE Unmanned Ground Vehicle Technology VII, 5804:621�629, 2005.

[38] Ichiro Suzuki and Masafumi S. Yamashita. Searching for a mobile intruder in a polygonal region.

SIAM J. Computing, 21:863�888, 1992.

[39] Robert J. Urick. Principles of underwater sound. McGraw-Hill, 1989.

[40] Rene Vidal, Shahid Rashid, Cory Sharp, Shkernia Jin, and Kim Shankar Sastry. Pursuit-evasion

games with unmanned ground and aerial vehicles. in Proc. of IEEE ICRA, pages 2948�2955, 2001.

[41] Rene Vidal, Omid Shakernia, Jin H. Kim, David Hyunchul Shim, and Shankar Sastry. Probabilistic

pursuit-evasion games: Theory, implementation and experimental evaluation. IEEE Transactions

on Robotics and Automation, XX:100�107, 2002.

[42] Talbot H. Waterman. Animal navigation. Scienti�c American Library, 1989.

[43] Gerhard Weiss, editor. Multiagent Systems, A modern approach to Distributed Arti�cial Intelli-

gence. The MIT Press, 2000.

[44] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The Knowledge

Engineering Review, 12:115�152, 1995.

[45] Zhong Zhang. Applications of visibility space in polygon search problems. PhD thesis, Simon Fraser

University, 2005.

52

Appendix A

Graph Theory

A.1 Graphs

A graph is a pair G = (V,E) of sets such that E ⊆ [V]2; thus, the elements of E are 2-elements subsets

of V . To avoid notational ambiguity, we shall always assume that V ∩ E = Φ. The elements of V are

the vertices (or nodes, or points) of the graph G, the elements of E are its edges (or lines). The usual

way to picture a graph is by drawing a dot for each vertex and joining two of these dots by a line if

the corresponding two vertices form an edge. Just how these dots and lines are drawn is considered

irrelevant: all that matters is the information of which pairs of vertices form an edge and which not.

[10]

Figure A.1: Example of Graph V = {1, . . . , 7} with edges set E = {{1, 2}, {1, 5}, {2, 5}, {3, 4}, {5, 7}}

A.2 The degree of a vertex

Let G = (V,E) be a (non-empty) graph. The set of neighbours of a vertex v in G is denoted by

NG (v), or briefly by N (v). More generally for U ⊆ V , the neighbours in V \U of vertices in U are

called neighbours of U ; their set is denoted by N (U).
The degree (or valency) dG (v) of a vertex v is the number |E (V) | of edges at v; by our de�nition

of a graph, this is equal to the number of neighbours of v. A vertex of degree 0 is isolated. The number

δ (G) := min {d (v) |v ∈ V } is the minimum degree of G, the number δ (G) := max {d (v) |v ∈ V } its
maximum degree. If all the vertices of G have the same degree k, then G is k-regular, or simply regular.

A 3-regular graph is called cubic.

53

APPENDIX A. GRAPH THEORY

A.3 Paths and cycles

A path is a non-empty graph of the form

V = {x0, x1, ..., xk} E = {x0x1, x1x2, . . . , xk−1xk}

Where the xi are all distinct, the vertices x0 and xk are linked by P and are called its ends; the

vertices x1,..., xk−1 are the inner vertices of P . The number of edges of a path is its length, and the

path of length k is denoted by P k. Note that k is allowed to be zero; thus, P 0 = K1.

We often refer to a path by the natural sequence of its vertices, writing, say,P = x0x1...xk and

calling a path from x0 to xk (as well as between x0 and xk).

Figure A.2: A path P = P6 in G

If P = x0x1...xk−1 is a path and k ≥ 3, then the graph C := P + xk−1x0 is called a cycle. As with

paths, we often denote a cycle by its (cyclic) sequence of vertices; the above cycle C might be written

as x0x1...xk−1x0. The length of a cycle is its number of edges (or vertices); the cycles of length k is

called k-cycle and denoted by Ck. And edge which joins two vertices of a cycle but is not itself an edge

of the cycle is a chord of that cycle. Thus, and induced cycle in G, a cycle in G forming an induced

subgraph, is one that has no chords � Figure A.3. [10]

Figure A.3: A cycle C8 with chord xy, and induced cycles C6, C4

A.4 Connectivity

A non-empty graph G is called connected if any two of its vertices are linked by a path in G. If

U ⊆ V (G) and G [U] is connected, we also call U itself connected (in G). Instead of �not connected�

54

APPENDIX A. GRAPH THEORY

we usually say �disconnected�.

the following de�nition is adapted from [10]

De�nition 5. The vertices of a connected graph G can always be enumerated. Say as v1, . . . , vn, so

that Gi := G[v1, . . . , vi] is connected for every i.

Let G = (V,E) be a graph. A maximal connected subgraph of G is called component of G. Note

that component, being connected, is always non-empty; the empty graph, therefore, has no components.

[10]

Figure A.4: A graph with three components and a minimal spanning connected subgraph in each

component

A.5 Cut vertices

A vertex which separates two other vertices of the same component is a cutvertex, and an edge

separating its ends is a bridge. Thus, the bridges in a graph are precisely those edges that do not lie

on any cycle. [10]

Figure A.5: A graph with cutvertices v, x, y, w and bridges e = xy

A.6 Trees and forests

An acyclic graph, one not containing any cycles, is called a forest. A connected forest is called tree.

(Thus, a forest is a graph whose components are trees.) The vertices of degree 1 in a tree are its

leaves1. Every nontrivial tree has a leaf � consider, for example, the ends of a longest path. This little

1Except that the root of a tree is never called a leaf, even if it has degree 1

55

APPENDIX A. GRAPH THEORY

fact often comes in handy, especially in induction proofs about trees: if we remove a leaf from a tree,

what remains is still a tree. [10]

Figure A.6: A tree

This de�nition is adapted from [10]

De�nition 6. The following assertions are equivalent for a graph T:

1. T is a tree;

2. any two vertices of T are linked by a unique path in T;

3. T is minimally connected, i.e. T is connected but T − e is disconnected for every edge ;

4. T is maximally acyclic, i.e. T contains no cycle but T + xy does, for any two non adjacent

vertices x, y ∈ T

A.7 De�nitions

De�nition 7. A vertex of F is a point from a wall that the angle formed by its adjacent edges is greater

than π. [26]

De�nition 8. A vertex sees another vertex when there is a link between these two vertices which is

not cut by a wall.

De�nition 9. A vertex sees directly another vertex when this one can see completely the second vertex,

generally, this vertex can be deleted.

De�nition 10. An area is a set of vertices which each one can see the other vertices.

De�nition 11. An area is connected to another area when at least one vertex from an area sees a

vertex from the other area.

De�nition 12. A critical area is an area which is connected to more than another area.

56

	Abstract (Arabic)
	Abstract (English)
	Abstract (French)
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Preface
	Introduction Générale
	State of the art
	Introduction
	Problematic
	Previous work
	Visibility-based point of view
	Randomized point of view
	Probabilistic point of view

	Background
	What are agents?
	Agent-Oriented Programming (AOP)
	Carachteristics of multiagent environment
	Societies of agents
	Environment's Modelling
	Instrumentation

	Conclusion

	I Our Work
	World Conditionning
	Introduction
	Environment
	Edge detection
	Visibility graph
	Simplification of visibility graph
	Area graph
	Conclusion

	Offline Search
	Introduction
	Worst-Case Search study
	Principle
	Used functions

	Improved search study
	Principle
	The Fitness

	Conclusion

	Online Search
	Introduction
	Direct strategy
	Principle
	Scenario

	Go-and-back strategy
	Scenario
	State machine
	The Levelled Visibility Graph

	Conclusion

	II Experimental Work
	Used tool
	Introduction
	Some Logo History
	What's NetLogo?
	Components
	framework
	Patches
	Turtles/breeds
	Links/breed-links

	Some applications
	Used worlds
	Conculsion

	Simulation
	Introduction
	Offline Search
	Usefulness of simplification of Visibility Graph
	Worst-Case search
	Improved search
	Comparison

	Online Search
	Master's perception of walls and vertices
	Direct strategy study
	Go-and-back strategy study
	Comparison

	Conclusion

	Conclusion and Perspectives
	Bibliography
	Appendix
	Graph Theory
	Graphs
	The degree of a vertex
	Paths and cycles
	Connectivity
	Cut vertices
	Trees and forests
	Definitions

