EXISTENCE ET INSTABILITES SECONDAIRES
POUR DES PROBLEMES NON LINEAIRES

Option : Mathématiques appliquées

Par

Lamine NISSE

Sous la Direction de
Professeur : Marie-Christine NEEL

Devant le jury

PRESIDENT : F. REBBANI Prof. U.B.M. ANNABA
EXAMINATEUR : A. AIBECHE Prof. U.F.A. SETIF
EXAMINATEUR : L. CHORFI Prof. U.B.M. ANNABA
EXAMINATEUR : J. FLECKINGER Prof. U. TOULOUSE I

Année : 2005
Existence et instabilités secondaires
pour des problèmes non linéaires

Nisse Lamine
<table>
<thead>
<tr>
<th>TABLE DES MATIÈRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>0.1 Motivations</td>
</tr>
<tr>
<td>0.2 Enoncé du problème</td>
</tr>
<tr>
<td>0.3 Plan de la thèse</td>
</tr>
<tr>
<td>1. Mouvement filtrants et thermodiffusion en milieu poreux</td>
</tr>
<tr>
<td>1.1 Problème de Darcy-Rayleigh-Bénard</td>
</tr>
<tr>
<td>1.1.1 Problème physique</td>
</tr>
<tr>
<td>1.1.2 Les équations du problème</td>
</tr>
<tr>
<td>1.1.3 Conduction et convection thermiques</td>
</tr>
<tr>
<td>1.2 Structures convectives et leurs équations</td>
</tr>
<tr>
<td>1.2.1 Stabilité linéaire de l’état de base et seuil de la convection</td>
</tr>
<tr>
<td>1.2.2 Equations des rouleaux</td>
</tr>
<tr>
<td>1.2.3 Equations des structures carrées</td>
</tr>
<tr>
<td>1.2.4 Equations des structures hexagonales</td>
</tr>
<tr>
<td>1.3 Conclusion</td>
</tr>
<tr>
<td>2. La méthode de Lyapunov-Schmidt et les structures stationnaires</td>
</tr>
<tr>
<td>2.1 Généralités sur la méthode de réduction de Lyapunov-Schmidt</td>
</tr>
<tr>
<td>2.2 Cadre fonctionnel</td>
</tr>
<tr>
<td>2.2.1 Propriétés de l’opérateur $L_{Rc,ke}$</td>
</tr>
<tr>
<td>2.2.2 Régularité de N_k</td>
</tr>
<tr>
<td>2.2.3 Validité du cadre fonctionnel pour les solutions dou- blement périodiques</td>
</tr>
<tr>
<td>2.3 Application de la méthode de réduction</td>
</tr>
<tr>
<td>2.3.1 Le principe de réduction</td>
</tr>
<tr>
<td>2.3.2 L’équation réduite</td>
</tr>
<tr>
<td>2.4 Les symétries du problème</td>
</tr>
</tbody>
</table>
3.7 Conclusion .. 113

Figures ... 115

4. Annexes ... 120
 Annexe I : Démonstration du lemme 3.2.3 et de la proposition 3.2.5 120
 Annexe II : calcul des premiers termes du développement de $U(\rho v_2)$ 123
 Annexe III : calcul de $W_{00}^{2000}(v_1)$, $W_{00}^{3000}(v_1)$ et $W_{00}^{4000}(v_1)$ 126

Bibliographie .. 128
RÉSUMÉ

Il est bien connu, que les écoulements filtrants convectifs obéissant à la loi de Darcy et à l’équation de la chaleur, prennent la forme de rouleaux, dans des couches poreuses horizontales étendues (ou infinies), juste au-dessus du seuil de la convection. Les instabilités cross-roll, d’Eckhaus et zigzag déforment ces rouleaux, et cette déformation dépend de leur amplitude et leur longueur d’onde : les rouleaux bifurqués dont la longueur d’onde est plus grande que la valeur critique sont connus pour être instables. C’est également le cas pour les modèles bidimensionnels dont la longueur d’onde est trop petite. Cependant la question de la stabilité des rouleaux avec des longueurs d’onde intermédiaires est demeurée en suspens, jusqu’à maintenant. Ici la notion de l’intégrale directe, associée à une analyse profonde des rouleaux eux-mêmes, et de l’équation de dispersion impliquant les vecteurs d’onde et les taux de croissance des perturbations, nous permet de montrer d’un point de vue mathématiquement rigoureux, que les rouleaux qui résistent aux instabilités mentionnées ci-dessus sont en effet spectralement stable. La preuve repose sur une estimation “par dessous” (minoration) de l’équation de dispersion qui détermine les instabilités consistant en des modulations de la longueur d’onde, aussi appelées “instabilités de bande latérale” (sideband instabilities). Parmi tous les rouleaux bifurqués nous sommes capables de déterminer lesquels sont linéairement stables.
INTRODUCTION

0.1 Motivations

Ce travail se place dans le cadre des mathématiques appliquées à l’étude des structures de convection thermodiffusive. Ce phénomène est lié au mouvement d’un fluide, résultant de la combinaison de l’effet des forces gravitationnelles et de la diffusion thermique.

La formation spontanée de structures se produit dans une vaste variété de systèmes physiques étendus dans l’espace et constitue un domaine de recherche qui a été très actif au cours des trente dernières années, y compris très récemment. En physique, en chimie ou même en biologie l’évolution de champs scalaires ou vectoriels est régée par des systèmes d’équations aux dérivées partielles non linéaires et couplées, pouvant posséder plusieurs solutions indépendantes du temps. En général des structures stationnaires complexes naissent de la déstabilisation de structures plus simples [4, 11, 30].

De façon générale, le nombre de solutions stationnaires de ces systèmes d’équations aux dérivées partielles dépend d’un certain nombre de paramètres, dits de contrôle, représentant des données liées à des conditions réalisables expérimentalement. La variation de l’un des paramètres de contrôle est en général suivie d’un comportement qualitativement invariant du système, ce qui traduit une certaine stabilité, mais il existe des valeurs particulières des paramètres (appelées valeurs critiques) pour lesquelles le système adopte soudainement un comportement qualitativement différent du comportement antérieur. Un tel phénomène est appelé bifurcation et se traduit souvent par un basculement du système d’une configuration vers une autre. La valeur critique du paramètre (ou des paramètres), qu’on appelle aussi valeur seuil,
correspond à un renversement du rapport de force entre facteurs stabilisants et facteurs déstabilisants dans le système. Une instabilité peut en général être considérée comme le résultat d’une compétition entre des mécanismes antagonistes, stabilisant ou déstabilisant, et se traduit souvent par une perte de symétrie des solutions. Ainsi dans une analyse mathématique de ces phénomènes, pour comprendre l’intime relation entre instabilités et bifurcations, il est très important de tenir compte des symétries du système afin d’étudier ses transitions vers ses différentes configurations.

Des modèles mathématiques de ces phénomènes, en terme de systèmes d’équations aux dérivées partielles non linéaires, sont utilisés pour représenter les aspects essentiels de leurs apparitions et leurs transitions observées. L’un des systèmes de formation de structure, très abondamment étudié est celui de la convection de Rayleigh-Bénard : ce problème est un modèle de l’émergence de la convection naturelle dans une couche de fluide au repos chauffée par le bas [4, 16, 18, 50]. Souvent l’étude des structures convectives s’est basée sur les équations d’amplitude qui permettent de se ramener à des équations aux dérivées partielles plus simples ou même à des équations différentielles ordinaires plus simples au moyen de développements asymptotiques formels, tenant compte des échelles spatiales et temporelles entrant en jeu. Ainsi, les équations de Ginzburg-Landau et de Swift-Hohenberg ont servi de modèle phénoménologique pour le problème de Rayleigh-Bénard [16, 44].

Dans ce cadre, plus simple que les systèmes d’équations aux dérivées partielles de départ il a été possible de mettre en place des méthodes permettant de déterminer dans quelles circonstances des structures très variées mais périodiques en espace sont stables au sein d’un milieu non borné. Depuis trente ans [26], on savait démontrer l’instabilité de certaines structures, sans être en mesure de pouvoir certifier la stabilité d’autres configurations qui avaient pourtant bien “l’air” de posséder cette propriété. C’est cette question que nous traitons dans ce travail, pour des configurations dû à la convection de Darcy-Rayleigh-Bénard.
0.2 Enoncée du problème

Ici, nous nous intéressons à la formation de structures ayant surtout la forme de rouleaux, mais pouvant être aussi carrées ou hexagonales, dans le contexte d’un fluide qui filtre à travers un milieu poreux. Alors, le mouvement filtrant est gouverné par la loi de Darcy [7], alors que la température du milieu obéit à l’équation de la chaleur. Ce type de convection a attiré beaucoup d’attention depuis les papiers pionniers de [24] et [29] jusqu’à nos jours, voir l’étude récente [43] et le livre [39]. Nous considérons ainsi le problème de la convection de Darcy-Rayleigh-Bénard sous sa forme originale et complète, gouverné par le système d’équations aux dérivées partielles suivant :

\[\mathbf{V} = -\nabla p + \mathcal{R}\theta \mathbf{e}_z, \quad \nabla \cdot \mathbf{V} = 0 \]
\[\partial_t \theta + \mathbf{V} \cdot \nabla \theta = \mathcal{R} \mathbf{V} \cdot \mathbf{e}_z + \Delta \theta \]
\[\mathbf{V} \cdot \mathbf{e}_z = \theta = 0 \quad si \quad z = 0 \quad ou \quad 1. \]

pour \((x, y, z)\) dans \(Q = \mathbb{R}^2 \times [0, 1]\), avec les onditions au bord

L’ensemble des solutions stationnaires de (0.1) dépend du paramètre de contrôle \(\mathcal{R}\) (représentant le nombre de Rayleigh de filtration). Lorsque \(\mathcal{R} > \mathcal{R}_c = 2\pi\) l’état de conduction (vitesse nulle) se déstabilise, c’est le début de la convection (mouvement : vitesse non nulle), voir [3], [24], et [29]. Ainsi parmi les configurations convectives qui se forment, il y a ce qu’on appelle les rouleaux (convectifs). Ce sont des solutions stationnaires bidimensionnelles du système (0.1), périodiques suivant une direction spatiale et indépendantes de celle qui lui est orthogonale.

Nous examinons la sélection de ces structures convectives en utilisant la théorie de l’équivariance en bifurcation [20, 32]. Cette théorie est un outil très efficace pour l’analyse des structures formées dans les systèmes physiques, par sa capacité de tirer avantage des divers symétries du problème, à l’aide de
méthodes de réduction de la théorie de la bifurcation. Parmi ces méthodes, nous utiliserons la méthode de réduction de Liapunov-Schmidt [20, 53]. En effet cette démarche permet de traiter le problème dans son intégralité, sans avoir recours à des développements asymptotiques, sauf dans le traitement ultérieur des représentations obtenues pour les solutions stationnaires ou pour les perturbations après réduction.

On verra que les rouleaux suivant une direction fixée forment une famille infinie lorsque \mathcal{R} est fixé juste au dessus de \mathcal{R}_c.

La première étape pour caractériser les rouleaux instables est d’étudier le problème (0.1) linéarisé. En supposant que le rouleau en question est représenté par $\hat{U} = (\hat{V}, \hat{\theta}, \hat{p})^\dagger = (\hat{v}_x, 0, \hat{v}_z, \hat{\theta}, \hat{p})^\dagger$ solution stationnaire de (0.1), la linearisation autour de cette solution nous amène à un problème à coefficients périodiques de la forme :

$$\partial_t \Theta = M^{\mu,s} \Theta \equiv \Delta \Theta + \mathcal{R} \mathcal{E}_z \cdot \mathbf{V} - \mathbf{V} \cdot \nabla \Theta - \mathbf{V} \cdot \nabla \hat{\theta} \quad (0.2.a)$$

dans Q, avec les conditions au bord

$$\Theta = 0 \quad \text{on} \quad \partial Q = \mathbb{R}^2 \times \{0, 1\}, \quad (0.2.b)$$

où \mathbf{V} est une fonction vectorielle de (Θ, μ, s).

Ainsi la détermination des rouleaux instables passe par l’analyse du spectre de $M^{\mu,s}$. L’étude du spectre de $M^{\mu,s}$ dans un espace fonctionnel contenant un ensemble de perturbations assez large est une étape importante en vue d’aborder plus tard la stabilité non linéaire des rouleaux. Jusqu’à présent cette étape est restée en suspens pour le problème de Darcy-Rayleigh-Bénard, et c’est notre sujet de travail dans cette thèse. Récemment la notion de l’intégrale directe a été perfectionnée par [35] et [48], et adaptée par [52] pour l’équation de Swift-Hohenberg. Notre situation est différente de celle de l’équation de Swift-Hohenberg, puisque l’opérateur différentiel $M^{\mu,s}$ n’est pas elliptique d’ordre $2m$. Néanmoins, en considérant $M^{\mu,s}$ comme une perturbation par un terme non local, d’un opérateur elliptique d’ordre 2, on arrive à adapter le résultat de [35], pour montrer que le spectre de $M^{\mu,s}$ est
la réunion de spectres ponctuels d’une famille infinie d’applications de Bloch voir [38, 40].

0.3 Plan de la thèse

Dans le premier chapitre on introduit brièvement le problème de Darcy-Rayleigh-Bénard du point de vue physique et on pose le modèle mathématique du problème que nous traitons, sous forme d’un système d’équations aux dérivées partielles non linéaires (EDP). Nous déterminons la valeur critique du paramètre du système (EDP) qui contrôle la convection, en calculant la stabilité linéaire de la conduction (l’état de repos). Ensuite nous fixons les systèmes d’équations qui définissent les différentes configurations convectives, dont les solutions sont l’objet de notre étude, en particulier les rouleaux convectifs.

Dans le troisième chapitre nous abordons la question de la stabilité (ou de l’instabilité) des rouleaux convectifs, en adoptant la démarche suivie dans
le chapitre précédent. Ici la réduction est appliquée au problème linéarisé autour d’un rouleau convectif, donc à un problème spectral linéaire à coefficients périodiques.

La difficulté principale réside dans le fait que ce problème est défini pour des variables spatiales appartenant à un domaine Q non borné. La stabilité du rouleau dépendra certainement des propriétés spectrales de l’opérateur obtenu après linéarisation du système. Cet opérateur défini dans l’espace $L^2(Q)$ possède un spectre qui traverse l’axe imaginaire d’une façon continue, ainsi l’analyse du passage des valeurs propres d’un demi-plan complexe vers l’autre, devient compliquée. Dans les situation classiques des domaines bornés, le spectre étant discret, pour une analyse complète de l’effet des perturbations, il suffit de les prendre dans un ensemble de fonctions périodiques dans $L^2(Q)$. La même démarche dans notre cas ne peut pas a priori déterminer toutes les instabilités. Ceci nous amène à utiliser la technique des ondes de Bloch liée à la notion d’intégrale directe. Ainsi on considérera un ensemble de perturbations assez quelconques dans $L^2(Q)$. Le principe de la stabilité réduite nous permet de profiter des calculs déjà effectués. Pour une analyse profonde et détaillée des solutions de l’équation définie par le problème spectrale réduit, nous identifierons ces solutions à l’ensemble des racines d’un polynôme (de degré deux) à l’aide d’un outil puissant, qui est le théorème de préparation de Weierstrass (voir [8]).
1. MOUVEMENT FILTRANts ET THERMODIFFUSION EN MILIEu POReUX

Introduction

Nous commençons par une brève description de la physique de notre problème, et nous posons le système d’équations non linéaires qui le gouverne. Les calculs concernant le seuil de la convection sont connus depuis longtemps, nous les rappellerons pour fixer les valeurs critiques des paramètres au voisinage desquels notre étude est effectuée. La deuxième partie de ce chapitre est consacrée à la formulation des équations dont l’existence et la stabilité des solutions nous intéressent.

1.1 Problème de Darcy-Rayleigh-Bénard

Les mouvements induits par la poussée d’Archimède au sein d’un fluide ou d’un milieu poreux saturé par un fluide, soumis à un gradient de température vertical négatif sont en général associés aux noms de Rayleigh et Bénard. Dans un milieu poreux saturé, les faibles mouvements filtrants associés à la convection naturelle naissante sont convenablement décrits par la loi de Darcy. C’est à partir de cette relation que nous étudions l’apparition et la stabilité des structures convectives qui se forment dès que le nombre de Rayleigh de filtration (paramètre de contrôle du système) dépasse un seuil signalant que l’état de conduction devient instable.
1. Mouvement filtrants et thermodiffusion en milieu poreux

1.1.1 Problème physique

Considérons une couche poreuse horizontale, saturée par un fluide de Boussinesq. Ceci signifie que les variations de masse volumique sont négligeables sauf dans la poussée d’Archimède. Autrement dit toutes les propriétés du fluide sont indépendantes de la température sauf la densité qui est le moteur de l’instabilité. Soit H^* l’épaisseur de cette couche, dont le bord inférieur est porté à une température T_0^* supérieure à T_1^*, température du haut. Négligeant les effets dus à la présence de parois latérales, nous allons nous intéresser aux écoulements périodiques mais de période quelconque par rapport aux coordonnées horizontales.

1.1.2 Les équations du problème

Il est avantageux de travailler sur des équations contenant uniquement des fonctions sans dimensions, obtenues à partir des grandeurs de la physique qui, elles, ont des dimensions. Ceci revient à choisir des unités adaptées au problème.

Choisissons $H^*, \frac{\lambda}{H^*(\rho c)^T}, T_0^* - T_1^*$ et $\frac{H^*}{\lambda^*}$ pour unités de longueur, de vitesse de filtration, de température et de temps, λ^* et $(\rho c)^T$ représentant la diffusivité thermique et la chaleur spécifique du fluide. Cette adimensionnalisation restitue des champs de vitesse de filtration \vec{V}, de température T et de pression P qui sont des fonctions du temps t (désormais sans dimension) et des coordonnées spatiales (x, y, z) qui appartiennent à $\mathbb{R}^2 \times [0, 1]$. Ces champs vérifient la loi de Darcy, l’équation de la chaleur et l’équation de continuité

\[
\begin{align*}
\vec{V} &= -\nabla P + RaT \vec{e}_z \\
\partial_t T &= \Delta T - \nabla \cdot \vec{V} \\
\nabla \cdot \vec{V} &= 0
\end{align*}
\] (1.1)

dans lesquelles intervient le nombre de Rayleigh de filtration

\[
Ra = \frac{K^*g^*\alpha^*H^*(T_0^* - T_1^*)(\rho c)^T}{(\lambda^*V_f^*)}.
\]
Ici K^* et g^* désignent la perméabilité du milieu et l’accélération de la pesanteur, alors que α_f^* et V_f^* représentent le coefficient d’expansion thermique et la viscosité cinématique du fluide. Les conditions aux limites sont

$$\mathbf{V} \cdot \mathbf{e}_z = T - 1 = 0 \quad \text{en} \quad z = 0, \quad \mathbf{V} \cdot \mathbf{e}_z = T = 0 \quad \text{en} \quad z = 1 \quad (1.2)$$

où \mathbf{e}_z représente le vecteur unitaire vertical ascendant.

Ce problème non linéaire admet des solutions stationnaires plus ou moins simples, représentées par des configurations différentes. Parmi ces configurations, nous nous intéressons plus spécialement à celles qui sont périodiques par rapport aux coordonnées horizontales. Ces solutions sont la représentation d’écoulements, prenant la forme de rouleaux, de rectangles ou d’hexagones.

1.1.3 Conduction et convection thermiques

Quelle que soit la valeur du nombre de Rayleigh de filtration Ra le système (1.1) admet une solution de base appelée état de conduction, avec

$$\mathbf{V} = \mathbf{0}, \quad T = 1 - z, \quad P = Ra\left(\frac{z^2}{2} - z\right).$$

Cependant, lorsque Ra dépasse une certaine valeur, cette solution devient instable (voir [3] et [10]) et d’autres écoulements indépendants du temps, ayant la forme de rouleaux sont aussi solutions du système (1.1), d’après [25] et [41]. Ces solutions qu’on appelle états convectifs, peuvent se présenter aussi sous d’autres formes que celle de rouleaux. Ces configurations convectives peuvent se structurer en réseaux de carrés, correspondant à la superposition de deux structures de rouleaux perpendiculaires, ou d’hexagones résultant de la superposition de trois systèmes de rouleaux suivant des directions faisant plus ou moins un angle de $\frac{2\pi}{3}$ l’une par rapport à l’autre. C’est ce que nous appellerons aussi des structures convectives.
1.2 Structures convectives et leurs équations

Les structures convectives qui nous intéressent dans ce travail sont les configurations indépendantes du temps qui ne sont pas des états de repos et se forment lorsque le nombre de Rayleigh de filtration dépasse juste le seuil convectif. Elles sont représentées par des solutions spatialement périodiques ou doublement périodiques du système (1.1).

Avant de déterminer les équations qui permettent de relier amplitude et longueur d’onde de ces structures au paramètre Ra, nous allons commencer par discuter la valeur (dite critique) du paramètre Ra à partir de laquelle la formation de structures convectives devient possible.

1.2.1 Stabilité linéaire de l’état de base et seuil de la convection

Le seuil de la convection est déterminé par la valeur du paramètre Ra à partir de laquelle l’existence de solutions de (1.1) avec \vec{V} non identiquement nul serait possible. On notera cette valeur par Ra_c et on l’appellera la valeur critique de Ra.

Pour déterminer Ra_c il suffit d’étudier la stabilité de la solution de base du système (1.1):

$$U_b = \left(\vec{0}, 1 - z, Ra(z - \frac{z^2}{2}) \right).$$

Transformons d’abord le système (1.1) de sorte à homogénéiser les données aux bords, et à faire apparaître l’action du paramètre de filtration Ra par rapport à la diffusion thermique (représentée par l’opérateur de diffusion Δ), en posant $(\vec{V}, T, P) = U_b + \vec{U}$ avec

$$\vec{U} = (v_x \vec{e}_x + v_y \vec{e}_y + v_z \vec{e}_z, \frac{\theta}{R_c}, p).$$

Où θ/R_c représente la déviation par rapport à la température de convection, avec R_c défini par $R_c = \sqrt{Ra}$, \vec{e}_x et \vec{e}_y désignent les vecteurs unitaires horizontaux, dans les directions de x et y.
1. Mouvement filtrants et thermodiffusion en milieu poreux

Ainsi \((\vec{V}, T, P)\) est solution du système (1.1) si et seulement si \(U = (v_x, v_y, v_z, \theta, p)^\dagger = (\vec{V}, \theta, p)^\dagger\) vérifie le système :

\[
\begin{align*}
\vec{V} &= -\nabla p + \mathcal{R} \theta \vec{e}_z \\
\partial_t \theta &= \Delta \theta + \mathcal{R} \vec{V} \cdot \vec{e}_z - \vec{V} \cdot \nabla \theta \\
\nabla \cdot \vec{V} &= 0
\end{align*}
\tag{1.4}
\]

pour \((x, y, z) \in \mathbb{R}^2 \times [0, 1] = Q\), et \(t \in \mathbb{R}^+\). Ici \(\vec{V} = v_x \vec{e}_x + v_y \vec{e}_y + v_z \vec{e}_z\) car \(U_b\) est un état de repos.

Au système (1.4) on associe pour tout \(t\), les conditions aux limites :

\[
\begin{align*}
\vec{V} \cdot \vec{n} &= 0 \quad \text{sur} \quad \partial Q \\
\theta(x, y, 0) &= \theta(x, y, 1) = 0
\end{align*}
\tag{1.5}
\]

La stabilité de la solution de base \(U_b\) est donc équivalente à celle de \(U = (0, 0, 0, 0)^\dagger\) solution stationnaire du système (1.4), et à la valeur critique \(Ra_c\) devrait correspondre une valeur de \(\mathcal{R}\) qu’on notera \(\mathcal{R}_c\).

Lorsque \(\mathcal{R}\) est suffisamment petit, le Laplacien dans la partie linéaire du système (1.4) est dominant, ainsi le spectre de la partie linéaire est situé dans le demi-plan gauche du plan complexe. Il en résulte que la solution triviale est stable. Lorsque \(\mathcal{R}\) croît cette solution perd sa stabilité, parce que le spectre de la partie linéaire doit traverser l’axe imaginaire pour une certaine valeur de \(\mathcal{R}\). Au-delà de cette valeur (critique), l’interaction non linéaire (le terme d’advection \(\vec{V} \cdot \nabla \theta\)) du système (1.4) est responsable de la production de nouvelles solutions (convectives) stationnaires. Ainsi la détermination des conditions (la valeur critique de \(\mathcal{R}\)) qui gouvernent le début de la convection est habituellement entreprise à l’aide de la théorie linéaire.

Donc pour déterminer la valeur critique \(\mathcal{R}_c\) il y a lieu d’étudier le système (1.4) linéarisé en \(U = 0\) et dans lesquelles circonstances cet état d’équilibre devient instable.

Chaque perturbation spatialement périodique de cet état, s’exprime par son développement en série de Fourier. En suivant la démarche de calcul de
[3], on la décompose ainsi en modes propres ayant pour vecteur d’onde \(\bar{\sigma} = (\sigma_1, \sigma_2) \), et pour taux de croissance la partie réelle d’un certain nombre complexe \(\lambda \). Ces modes propres s’écrivent

\[
U(t, x, y, z) = e^{\lambda t + i(\sigma_1 x + \sigma_2 y)} \phi_n^\alpha(z) \tag{1.6}
\]

où

\[
\phi_n^\alpha(z) = \begin{pmatrix}
\alpha_1 \cos(n\pi z) \\
\alpha_2 \cos(n\pi z) \\
\alpha_3 \sin(n\pi z) \\
\alpha_4 \sin(n\pi z) \\
\alpha_5 \cos(n\pi z)
\end{pmatrix}
\tag{1.7}
\]

avec \(\alpha \in \mathbb{C}^5 \), \((\sigma_1, \sigma_2, n) \in \mathbb{Z}^2 \times \mathbb{N} \) et \(\lambda \in \mathbb{C} \).

La linéarisation du système (1.4) en \(U = 0 \) s’exprimera par le système d’équations algébriques linéaires à inconnue \(\alpha \), de la forme suivante :

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & i\sigma_1 \\
0 & 1 & 0 & 0 & i\sigma_2 \\
0 & 0 & 1 & -\mathcal{R} & -n\pi \\
0 & 0 & -\mathcal{R} & \lambda + |\bar{\sigma}|^2 + \pi^2n^2 & 0 \\
-i\sigma_1 & -i\sigma_2 & -n\pi & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\alpha_4 \\
\alpha_5
\end{pmatrix}
= \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}
\tag{1.8}
\]

où \(|\bar{\sigma}|^2 = \sigma_1^2 + \sigma_2^2 \)

Ainsi le seuil de la convection défini par \(\mathcal{R}_c \) est déterminé par la valeur minimale de \(\mathcal{R} \) pour laquelle le système linéaires (1.8) admet une solution \(\alpha \) non nulle avec \(\Re(\lambda) > 0 \). Il suffit donc qu’il ait un déterminant \(\Delta \) nul avec \(\Re(\lambda) > 0 \).

\[
\Delta(\mathcal{R}, n, \sigma_1, \sigma_2, \lambda) = |\bar{\sigma}|^2 \mathcal{R}^2 - \left(\pi^2n^2 + |\bar{\sigma}|^2 \right) \lambda - \left(\pi^2n^2 + |\bar{\sigma}|^2 \right)^2 = 0
\]

Pour un vecteur d’onde fixé \(\bar{\sigma} \) on arrive à un problème spectral possédant un ensemble de valeurs propres discret \(\lambda_n(\bar{\sigma}, \mathcal{R}) \) solutions de la relation de
dispersion :

\[
\lambda_n(\sigma, \mathcal{R}) = \frac{|\sigma|^2 \mathcal{R}^2 - \left(\pi^2 n^2 + |\sigma|^2\right)^2}{\pi^2 n^2 + |\sigma|^2}
\]

d'où :

\[
\lambda_n(\sigma, \mathcal{R}) > 0 \iff \mathcal{R}^2 > \frac{\left(\pi^2 n^2 + |\sigma|^2\right)^2}{|\sigma|^2}
\]

Le passage de \(\lambda\) d'un demi-plan de \(\mathbb{C}\) à l'autre, se produit pour \(\lambda_n(\sigma, \mathcal{R}) = 0\), ce qui détermine les courbes de stabilité marginale de chaque mode, qui sont des représentations graphiques de la famille des fonctions

\[
\mathcal{R} = \mathcal{R}_n(\sigma) = \frac{\pi^2 n^2 + \sigma^2}{\sigma}
\]

où on a posé \(\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}\).

La valeur critique \(\mathcal{R}_c\) est égale alors, à la valeur minimale de \(\mathcal{R}_n(\sigma)\).

En considérant le premier mode, associé à \(n = 1\), on obtient la courbe de stabilité marginale (voir Fig.1.1) dont le minimum est atteint au point :

\[(\sigma_c, \mathcal{R}_c) = (\pi, 2\pi)\]

Ainsi le seuil de la convection est \(\mathcal{R}_c = 2\pi\), et lui correspond un vecteur d'onde critique \(\sigma_c = (\sigma_{1c}, \sigma_{2c})\) de longueur égale à :

\[\sigma_c = \sqrt{\sigma_{1c}^2 + \sigma_{2c}^2} = \pi.\]

Ce résultat est résumé par la proposition suivante.

Proposition 1.2.1: L'état d'équilibre trivial \(U = (0, 0, 0, 0, 0)^t\) du système (1.4), est linéairement instable pour \(\mathcal{R} > 2\pi\). Lorsque \(\mathcal{R}\) dépasse le seuil critique \(\mathcal{R}_c = 2\pi\) des modes de vecteurs d'onde \(\vec{\sigma} = (\sigma_1, \sigma_2)\) de longueur : \(|\vec{\sigma}| = n\pi\), ont un taux d'amplification \(\mathcal{R}(\lambda) = \lambda\) positif apparaissent. Le mode correspondant à \(n = 1\) a un taux d'amplification supérieur à tous les autres et admet une longueur d'onde dite critique qu'on notera par \(\sigma_c\), de valeur égale à \(\pi\).
Remarque 1.2.2: De l’analyse (linéaire) ci-dessus, on peut conclure aussi, que pour $\mathcal{R} < 2\pi$ l’état d’équilibre (ou de conduction) soumis à des perturbations assez petites reste stable. Mais même pour des perturbations non infinitésimales, la méthode de l’énergie permet de démontrer que cet état d’équilibre est stable pour $\mathcal{R} < 2\pi$, lorsque l’ensemble des perturbations admissibles est $L^2_\#(\Omega)$, cet espace désignant un ensemble de fonctions périodiques par rapport à x et y (voir [26] et [55]).

Les systèmes (1.1) et (1.4) sont invariants par le sous-groupe du groupe de Galilée, respectant les conditions aux limites (1.2). Or ce sous-groupe comprend en particulier les rotations d’axe e_z. On en déduit la remarque suivante.

Remarque 1.2.3: Tout vecteur $\vec{\sigma} = (\sigma_1, \sigma_2)$ situé sur le cercle (centré à l’origine du plan \mathbb{R}^2) de rayon égal à la longueur d’onde critique π, réalise la valeur critique $\mathcal{R}_c = \mathcal{R}_2(\pi)$. On l’appellera le cercle (des vecteurs d’onde) critique. Ainsi les résultats de la stabilité linéaire suggèrent la possibilité d’existence de solutions stationnaires du système (1.4) lorsque $\mathcal{R} > 2\pi$, qui sont
spatialement périodiques suivant le plan \((x, y)\). Ces configurations (convectives) périodiques peuvent être déterminées par une combinaison linéaire de termes de la forme \(e^{i(k_x x + k_y y)}\phi(z)\) avec \(k_x^2 + k_y^2 = \pi^2\) (voir Fig. 1.2).

\[\begin{align*}
\sigma_1^2 & \quad k_x^2 \quad \pi \\
-3 & \quad -2 & \quad -1 & \quad 1 & \quad 2 & \quad 3 \\
\sigma_2 & \quad k_y \\
-3 & \quad -2 & \quad -1 & \quad 1 & \quad 2 & \quad 3
\end{align*} \]

Fig. 1.2: Le vecteur d’onde \((k_x, k_y)\) sur le cercle (des vecteurs d’onde \(\vec{\sigma} = (\sigma_1, \sigma_2)\)) critique.

Lorsque \(R\) dépasse \(R_c\), des écoulements stationnaires différents de l’état de repos vérifient (1.1) et (1.4), parmi eux figurent des structures périodiques sous la forme de rouleaux, rectangles ou hexagones plus ou moins réguliers.

1.2.2 Équations des rouleaux

Les rouleaux sont des écoulements bidimensionnels, (indépendants de la direction de l’axe des \(y\) pour fixer les idées), et leur nombre d’onde appartient à un intervalle qui dépend de l’écart entre \(Ra\) et \(Ra_c\). Ils forment un ensemble de solutions assez riche, puisque invariant par toute translation le long de \(x\) (\(\perp y\)). Dans le cas d’une couche fluide on sait depuis les travaux d’Eckhaus [23] que parmi tous les rouleaux qui sont solutions de (1.1) pour \(Ra > Ra_c\)
ceux qui ont une amplitude inférieure à un certain seuil sont instables. En effet ils sont déstabilisés par des perturbations infinitésimales qui ont la forme de modes normaux de vecteur d’onde très voisin de celui des rouleaux, mais dans la même direction. Ce résultat très général [25] reste valable lorsque le fluide est emprisonné dans une matrice poreuse. En acceptant des perturbations tridimensionnelles de vecteur d’onde voisin de celui des rouleaux mais de direction quelconque, nous montrerons au chapitre 3 que pour être stables ces derniers doivent avoir une amplitude assez grande ainsi qu’une longueur d’onde avant un seuil, et que cela suffit presque. Afin de pouvoir discuter plus loin leur stabilité il est nécessaire de préciser tout d’abord la forme de ces rouleaux. Puisque d’après la section précédente le système (1.1) est équivalent au système (1.4), dans toute la suite de notre travail, notre étude portera sur (1.4). Parmi les solutions de (1.4) indépendantes de \(t \) et \(y \) on s’intéresse donc à celles qui sont périodiques par rapport à \(x \).

Définition 1.2.4: Toute solution du système (1.4) indépendante d’une direction spatiale horizontale, et périodique par rapport à l’autre direction horizontale perpendiculaire, est appelée rouleau convectif. Lorsque en plus elle est indépendante du temps \(t \), on dira rouleau convectif stationnaire.

On cherche donc des solutions stationnaires de (1.4), indépendantes de \(y \) et dépendant périodiquement de \(x \) sous la forme \(U = (v_x, v_y, v_z, \theta, p)^\dagger \), avec

\[
U(x + T, z) = U(x, z) \quad \text{pour tout} \quad (x, z) \in \mathbb{R} \times [0, 1]
\]

pour un certain réel \(T \) représentant la période spatiale.

L’existence de telles solutions a été démontrée par [41] dans un cadre bidimensionnel, par la méthode de Galerkin dans [51], et en partant de l’équation de Swift-Hohenberg comme modèle simplifié de la convection dans [9]. Nous présentons ici une démonstration de l’existence des rouleaux convectifs à partir du système (1.4) lui même, qui conduit très directement à des calculs faciles à automatiser. Une connaissance approfondie du développement des
solutions de (1.4) en puissances des paramètres de ce problème est nécessaire pour analyser la stabilité de ces rouleaux, ce qui est l’objet de la première partie de ce travail.

Il est évident que pour n’importe quelle valeur de la période T, il existe un réel k, tel que $T = \frac{2\pi}{k}$ autrement dit on a :

$$U(x + \frac{2\pi}{k}, z) = U(x, z)$$ pour tout $(x, z) \in \mathbb{R} \times [0, 1]$.

Ceci peut nous conduire à un système d’équations aux dérivées partielles dans un domaine spatial indépendant des paramètres, et il est commode d’effectuer le changement de variable $X = kx$.

Donc, en composant par la transformation de variable $X = kx$, U devient 2π-périodique par rapport à X, et bien défini par sa restriction sur l’ensemble $(X, y) \in \Omega = [0, 2\pi[\times]0, 1[$. Ainsi on peut se ramener à un système d’équations aux dérivées partielles dans un domaine spatial indépendant des paramètres.

Les dérivées partielles de U par rapport à x s’expriment en fonction de celles par rapport à la nouvelle variable X. En effet, ce changement de variables implique que :

$$U\left(\frac{X + 2\pi}{k}, z\right) = U\left(\frac{X}{k}, z\right)$$

Ainsi en posant :

$$\tilde{U}(X, z) = U\left(\frac{X}{k}, z\right)$$

on a :

$$\tilde{U}(X + 2\pi, z) = U\left(\frac{X + 2\pi}{k}, z\right) = U\left(\frac{X}{k}, z\right) = \tilde{U}(X, z)$$

Donc \tilde{U} est 2π-périodique par rapport à X.

En utilisant la règle de dérivation d’une fonction composée on obtient :

$$\partial_x \tilde{U}(X, z) = \frac{1}{k} \partial_x U\left(\frac{X}{k}, z\right) = \frac{1}{k} \partial_x U(x, z)$$
donc :

$$\partial_z U (x, z) = k \partial_X \tilde{U} (X, z)$$

En dérivant encore une fois par rapport à X on a :

$$\partial^2_X \tilde{U} (X, z) = \partial_X \left(\partial_X \tilde{U} (X, z) \right) = \partial_X \left(\frac{1}{k} \partial_x U \left(\frac{X}{k}, z \right) \right)$$

$$= \frac{1}{k^2} \partial^2_x U \left(\frac{X}{k}, z \right) = \frac{1}{k^2} \partial^2_x U (x, z)$$

ainsi :

$$\partial^2_x U (x, z) = k^2 \partial^2_X \tilde{U} (X, z)$$

Remarque 1.2.5: On gardera dans la suite la même notation, $\tilde{U} = U$, tout en considérant comme fonction \tilde{U} (2π-périodique par rapport à X), sa représentation par sa restriction à l’ensemble des $(X, z) \in \overline{\Omega} = [0, 2\pi] \times [0, 1]$.

Les rouleaux convectifs stationnaires, d’axe parallèle à la direction des y, sont donc associés aux vecteurs, encore notés U, solutions du système (1.9), analogue à celui utilisé par [34] pour étudier la stabilité de rouleaux convectifs en milieu fluide :

$$\begin{align*}
v_x + k \partial_X p & = 0 \\
v_y & = 0 \\
v_z - \mathcal{R} \theta + \partial_z p & = 0 \\
- \Delta_k \theta - \mathcal{R} v_z + \nabla_k \theta \cdot \overrightarrow{V} & = 0 \\
\nabla_k \overrightarrow{V} & = 0
\end{align*}$$

(1.9)

pour (X, z) appartenant au domaine borné $\Omega =]0, 2\pi[\times]0, 1[$. Avec

$$\overrightarrow{V} = v_x \overrightarrow{e}_x + v_y \overrightarrow{e}_y + v_z \overrightarrow{e}_z = v_x \overrightarrow{e}_x + v_z \overrightarrow{e}_z,$$

puisque $v_y = 0$, et

$$\nabla_k = (k \partial_X, 0, \partial_z)^\dagger \quad \text{et} \quad \Delta_k = k^2 \partial^2_X + \partial^2_z.$$

Au système d’équation des rouleaux (1.9) on associe les conditions au bord :

$$v_x (0, z) = v_x (2\pi, z), \quad \theta (0, z) = \theta (2\pi, z), \quad v_z (X, 0) = v_z (X, 1) = 0$$

(1.10)
\[\theta(X, 0) = \theta(X, 1) = 0, \ p(0, z) = p(2\pi, z), \ \partial_X \theta(0, z) = \partial_X \theta(2\pi, z) \] (1.11)

Notre intérêt ne portera que sur les rouleaux représentés par des solutions du système (1.9), avec des paramètres \((k, R)\) au voisinage de leurs valeurs critiques \((\sigma_c, R_c) = (\pi, 2\pi)\), annonçant le début de la convection. Donc notre analyse de ces structures sera locale, et la démonstration que nous présentons au chapitre 2 sur l’existence de ces rouleaux, repose essentiellement sur une méthode de réduction dite de Liapunov-Schmidt qui représente l’un des plus importants outils pour l’analyse locale des systèmes dynamiques non linéaires, telle qu’elle est décrite par H. Amann dans [1], et expliquée par M. Golubitsky et D.G. Schaeffer dans [20] pour les équations différentielles ordinaires.

1.2.3 Équations des structures carrées

On appelle les structures carrées ou rectangulaires celles résultant de la superposition de deux structures de rouleaux alignés suivant deux directions orthogonales (fixons par exemple celles définies par \(\overrightarrow{e_x}\) et \(\overrightarrow{e_y}\)); elles seront donc représentées par les solutions du système (1.4), indépendantes du temps \(t\) et doublement périodiques, par rapport aux coordonnées spatiales \((x, y)\).

On doit donc avoir pour un certain couple de réels non nuls \(T = (T_x, T_y)\):

\[U(x + T_x, y, z) = U(x, y, z) = U(x, y + T_y, z) \]

pour tout \((x, y, z) \in \mathbb{R}^2 \times [0, 1]\).

En procédant par un changement de variables \(X = k_x x\) et \(Y = k_y y\), analogue à celui de la section 1.2.2, où \(k = (k_x, k_y)\) est le vecteur d’onde de la fonction périodique \(U\), cet état d’équilibre, solution stationnaire du système (1.4), vérifie le système d’équations aux dérivées partielles non linéaire suivant :

\[
\begin{align*}
 v_x + k_x \partial_X p &= 0 \\
 v_y + k_y \partial_Y p &= 0 \\
 v_z - R \theta + \partial_p &= 0 \\
 -\Delta_k \theta - R v_z + \nabla_k \theta \cdot \overrightarrow{V} &= 0 \\
 \nabla_k \cdot \overrightarrow{V} &= 0
\end{align*}
\] (1.12)
où les variables d’espace \((X, Y, z)\) sont dans le domaine borné \(\Omega =]0, 2\pi[\times]0, 1[\).

Avec

\[\nabla_k = (k_x \partial_X, k_y \partial_Y, \partial_z)^\top, \quad \text{et} \quad \Delta_k = k_x^2 \partial_X^2 + k_y^2 \partial_Y^2 \partial_z^2. \]

Notons aussi que par souci de simplicité, on a gardé la même notation de \(U = (v_x, v_y, v_z, \theta, p)\) après le changement de variables.

Au système d’équations aux dérivées partielles non linéaires (1.12), sont associées les conditions aux bord suivantes :

\[U(0, Y, z) = U(2\pi, Y, z), \quad U(X, 0, z) = U(X, 2\pi, z) \quad (1.13) \]

\[w(X, Y, 0) = w(X, Y, 1) = 0, \quad \theta(X, Y, 0) = \theta(X, Y, 1) = 0 \quad (1.14) \]

\[\partial_X \theta(0, Y, z) = \partial_X \theta(2\pi, Y, z), \quad \partial_Y \theta(X, 0, z) = \partial_Y \theta(X, 2\pi, z) \quad (1.15) \]

Puisque les structures carrées correspondent à la formation simultanée de deux structures de rouleaux perpendiculaires au voisinage des deux modes propres de vecteurs d’onde respectivement \((\pi, 0)\) et \((0, \pi)\), on cherchera les solutions qui les représentent, parmi celles du système (1.12), ayant un vecteur d’onde \(k = (k_x, k_y)\) au voisinage de \((\sigma_c, \sigma_c) = (\pi, \pi)\) et une valeur du paramètre \(R\) voisine de \(R_c = 2\pi\).

Il est intéressant de noter que le système (1.12) avec les conditions (1.13)-(1.15) est équivalent par rapport au groupe euclidien (translations dans le plan horizontal), et la réflexion par rapport au plan médian \(z = \frac{1}{2}\). On verra à la section 2.6 du chapitre 2, que ces symétries détermineront la structure de l’équation réduite définie par la méthode de réduction de Liapunov-Schmidt, ce qui simplifie d’une façon significative les calculs nécessaires pour la résolution de (1.12)-(1.15).

1.2.4 Équations des structures hexagonales

Comme les structures carrées, les structures convectives hexagonales sont représentées par des fonctions doublement périodiques dans la direction bidimensionnelle horizontale, définie par le plan des \((x, y)\). Mais elles correspondent à des configurations de la convection, qui se forment lorsque trois
structures de rouleaux, dont les axes se croisent en faisant un angle de $\frac{2\pi}{3}$, se superposent. Elles sont représentées par des fonctions dites à symétrie hexagonale. Précisons d’abord cette notion de symétrie hexagonale par la définition suivante :

Définition 1.2.6: Une fonction $U(x,y,z)$, de carré localement integrable sur $\mathbb{R}^2 \times [0, 1]$, est dite à symétrie hexagonale par rapport aux variables (x,y), si pour tout (x,y,z) dans $\mathbb{R}^2 \times [0, 1]$, elle vérifie :

$$U(x,y,z) = U(x,y + \frac{4\pi}{\sqrt{3}}, z) = U(x + 2\pi, y + \frac{2\pi}{\sqrt{3}}, z)$$

Dans cette classe de fonctions, les modes propres instables au voisinage des quelles on cherchera les solutions de (1.12) qui représentent les structures hexagonales, correspondent aux vecteurs d’onde (situés sur le cercle critique), définis par $(\pi, 0)$, $(\frac{\pi}{2}, \frac{\sqrt{3}\pi}{2})$, et $(-\frac{\pi}{2}, \frac{\sqrt{3}\pi}{2})$. Ainsi la formation des structures hexagonales est gouvernée aussi par le système d’équations aux dérivées partielles non linéaire (1.12) associé aux conditions (1.13)-(1.15), en considérant les paramètres du problème $k = (k_x, k_y)$ et R respectivement au voisinage de $(\frac{\pi}{2}, \frac{\sqrt{3}\pi}{2})$ et de 2π.

Remarque 1.2.7: Il est important de remarquer qu’on peut unifier le système d’équations aux dérivées partielles qui gouverne la formation des trois différentes structures convectives. Le système (1.12) détermine des solutions stationnaire du système (1.4) dans une classe de fonctions doublement périodiques par rapport à (x,y), et en supposant que la recherche de solutions s’effectue dans la “sous classe” de fonctions indépendantes de y ($k_y = 0$), on obtient comme système à résoudre, le système d’équations (1.9).

1.3 Conclusion

Dès que le paramètre R dépasse la valeur critique $R_c = 2\pi$ l’état (de conduction ou) d’équilibre trivial $(0, 1 - z, R^2(z - \frac{z^2}{2}))$ du système (1.4) se déstabilise et une étude linéaire met en évidence d’autres modèles stationnaires et périodiques suivant la direction de x et/ou y. Il s’agit de solutions
du système linéaire d'équations aux dérivées partielles (1.12)-(1.15), dans le domaine $\Omega =]0, 2\pi[\times]0, 1[,$ avec \mathcal{R} au voisinage de 2π et, où $k = (k_x, k_y)$ est défini selon la forme de la structure envisagée.

(1) Pour les structures sous forme de **rouleaux** : $k = (k_x, 0)$ avec k_x au voisinage de π (ce qui revient au système (1.9)-(1.11)).

(2) Pour les structures sous forme de **carrés** : $k = (k_x, k_y)$ avec k_x et k_y au voisinage de π.

(3) Pour les structures sous forme **hexagonale** : $k = (k_x, k_y)$ au voisinage de $(\frac{\pi}{2}, \frac{\sqrt{3}\pi}{2})$.
2. LA MÉTHODE DE LYAPUNOV-SCHMIDT ET LES STRUCTURES STATIONNAIRES

Introduction

Parmi les méthodes de l’analyse fonctionnelle non linéaire pour montrer l’existence de solutions aux problèmes stationnaires, telles que la théorie du degré topologique, théorie du point fixe, ou de la bifurcation, on dispose de la méthode de réduction de Lyapunov-Schmidt. Nous donnerons une brève description de cette méthode d’analyse locale. C’est un des outils de la théorie de la bifurcation, qui est essentiel dans ce chapitre, aussi bien du point de vue théorique pour montrer l’existence des structures stationnaires, que du point de vue pratique pour le calcul de ces structures que nous aborderons plus loin. Cette méthode de réduction permet de passer du système d’équations aux dérivées partielles (1.9), à un système d’équations algébriques en dimension finie. D’une façon schématique, c’est une procédure qui consiste en la séparation de l’espace des phases en deux sous-espaces invariants par rapport au problème (dans un sens qui sera précisé). Le problème de départ sera alors exprimé dans l’un des deux sous-espaces qui est de dimension finie, en tenant compte évidemment de la partie qui appartient au sous-espace complémentaire.
Pour chaque valeur de la longueur d’onde appartenant à un intervalle convenable, nous allons trouver des solutions pour (1.9). Dans ce chapitre, le cadre fonctionnel sera donc associé à un domaine borné (mais de taille variable). Pour une exploitation pratique de cette réduction nous utiliserons un instru-
ment lié aussi à la théorie de la bifurcation, appelé théorie de l’équivariance, expliquée dans [21] voir aussi dans [6, 31]. A l’aide de cet outil, une analyse des symétries du système (1.9), nous permettra de déduire certaines propriétés analytiques concernant la réduction du problème, ce qui facilite la tâche dans les calculs à entreprendre pour l’existence ou la stabilité des solutions.

Nous commençons ce chapitre par une introduction générale de la méthode de Lyapunov-Schmidt. On fixera le cadre fonctionnel dans lequel nous traitons la question d’existence des rouleaux et nous justifierons la validité de ce cadre pour les deux autres structures (carrée et hexagonale). Ensuite nous appliquerons la méthode de réduction au système (1.9), et nous analyserons les invariances de ce système par rapport à certaines symétries. Et nous en tirons les conséquences qui nous faciliteront relativement les calculs présentés en fin de chapitre, pour montrer l’existence des rouleaux.

2.1 Généralités sur la méthode de réduction de Lyapunov-Schmidt

Considérons le problème suivant :

\[\mathcal{L}(U) + \mathcal{N}_\mu(U) = 0 \quad (2.1) \]

où \(\mathcal{L} \) est un opérateur linéaire (non borné) fermé défini sur un domaine \(D(\mathcal{L}) \) dense dans un espace de Hilbert \(\mathcal{H} \), \(\mu \) un paramètre dans \(\mathbb{R}^m \), et \(\mathcal{N}_\mu \) une application non linéaire assez régulière de \(D(\mathcal{L}) \) vers \(\mathcal{H} \), telle que \(\|\mathcal{N}_\mu(U)\| = O(\|U\|_{D(\mathcal{L})}(\|\mu\| + \|U\|_{D(\mathcal{L})})) \) avec \(\mathcal{N}_0(0) = 0 \). Supposons aussi, que \(\mathcal{L} \) est un opérateur de Fredholm d’indice zéro selon la définition suivante (voir dans [1, 20, 27, 47]) :

Définition 2.1.1: On dit que l’opérateur linéaire (non borné) fermé \(\mathcal{L} \) est de Fredholm dans l’espace de Hilbert \(\mathcal{H} \), si son noyau \(\ker(\mathcal{L}) \) est de dimension
finie, et si de plus son image \(R(\mathcal{L}) \) est un sous-espace fermé de \(\mathcal{H} \) de codimension finie. On appelle indice d’un tel opérateur la valeur de la différence
\[
(dim(\ker(\mathcal{L}))) - \text{codim}(R(\mathcal{L})).
\]

Un tel opérateur \(\mathcal{L} \) possède un noyau \(\mathcal{X} = \ker(\mathcal{L}) \) de dimension (supposons par exemple) égale à \(n \in \mathbb{N} \) et une image \(\mathcal{Y} = R(\mathcal{L}) \) fermée dans \(\mathcal{H} \) de codimension égale aussi à \(n \). Ainsi il existe deux projections continues
\[
P : \mathcal{H} \longrightarrow \mathcal{H} \quad \text{avec} \quad P(\mathcal{H}) = \mathcal{X}, \quad \text{et} \quad Q : \mathcal{H} \longrightarrow \mathcal{H} \quad \text{avec} \quad Q(\mathcal{H}) = \mathcal{Y}
\]

De plus en posant \(\mathcal{Z} = (I - P)(\mathcal{X}) \) où \(I \) est l’application identité sur \(\mathcal{H} \), la restriction à \(\mathcal{Z} \cap D(\mathcal{L}) \) de l’opérateur linéaire \(\mathcal{L} \) réalise une bijection entre \(\mathcal{Z} \cap D(\mathcal{L}) \) et \(\mathcal{Y} \).

Lorsque l’opérateur \(\mathcal{L} \) est auto-adjoint (ce qui est notre cas dans la suite) \(P \) est la projection orthogonale sur \(\ker(\mathcal{L}) \) parallèlement à \(R(\mathcal{L}) \), et on prenant \(Q = (I - P) \), l’espace \(\mathcal{H} \) se décompose suivant la somme directe suivante :
\[
\mathcal{H} = \ker(\mathcal{L}) \oplus R(\mathcal{L})
\]

Donc toute solution \(U \) du problème (2.1) dans \(\mathcal{H} \), peut être étudiée selon la décomposition suivante :
\[
U = U_0 + U_1 \quad \text{avec} \quad U_0 = P(U) \in \ker(\mathcal{L}) \quad \text{et} \quad U_1 = (I - P)(U) \in R(\mathcal{L})
\]
ainsi le problème (2.1) devient équivalent à :
\[
\begin{align*}
P(\mathcal{N}_\mu(U_0 + U_1)) &= 0 & (a) \\
\mathcal{L}(U_1) + (I - P)(\mathcal{N}_\mu(U_0 + U_1)) &= 0 & (b)
\end{align*}
\]

L’inverse de la restriction à \(\mathcal{Z} \cap D(\mathcal{L}) \) de \(\mathcal{L} \) étant un opérateur borné de \(\mathcal{Y} \) sur \(\mathcal{Z} \cap D(\mathcal{L}) \), grace au théorème de la fonction implicite, la seconde équation
dans (2.2) peut être résolue localement (au voisinage de \((\mu, U_0) = (0, 0)\)) pour \(U_1 = \mathcal{U}(\mu, U_0)\) et en introduisant \(U_1 = \mathcal{U}\) dans la première équation de (2.2), on obtient ce qu’on appelle (en théorie de la bifurcation), l’équation de bifurcation, qui caractérise les éléments \(U_0\) de \(\ker(\mathcal{L})\) correspondant à une solution de (2.1)

\[
\mathcal{G}(U_0, \mu) = 0. \tag{2.3}
\]

Ici \(\mathcal{G}\) est une application définie de \(\ker(\mathcal{L}) \times \mathbb{R}^m\) vers \(\ker(\mathcal{L})\) par:

\[
\mathcal{G}(U_0, \mu) = P(\mathcal{N}_\mu(U_0 + \mathcal{U}(\mu, U_0))
\]

En admettant que \(\{u_0, ..., u_{n-1}\}\) est une base de \(\ker(\mathcal{L})\), il existe \(n\) nombres réels \(a_i\) tels qu’on peut exprimer \(U_0\) par :

\[
U_0 = a_0 u_0 + ... + a_{n-1} u_{n-1},
\]

et en introduisant cette représentation de \(U_0\) dans (2.3), sachant que l’opérateur \(P\) est la projection orthogonale sur \(\ker(\mathcal{L})\), on obtient ce qu’on appelle la fonction de réduction définie par la fonction vectorielle \(g\) suivante :

\[
g : \mathbb{R}^n \times \mathbb{R}^m \longrightarrow \mathbb{R}^n \quad \text{où} \quad g = (g_0, ..., g_{n-1})
\]

avec pour tout \(j\) compris entre 0 et \((n - 1)\)

\[
g_j(a_0, ..., a_{n-1}, \mu) = < \mathcal{N}(\mu, s, U_0 + \mathcal{U}(U_0, \mu)), u_j > \tag{2.4}
\]

Ainsi dans le voisinage de \((0, 0)\) dans \(\mathbb{R}^n \times \mathbb{R}^m\), à chaque solution \((a_0, ..., a_{n-1}, \mu)\) de l’équation réduite :

\[
g(a_0, ..., a_{n-1}, \mu) = 0 \tag{2.5}
\]

correspond une solution de l’équation de bifurcation (2.3).

Lorsque le problème (2.1) est invariant par rapport à certains groupes de symétries (telles les translations, les reflections ou les rotations dans \(\mathcal{H}\),

\[
G(U_0) = 0
\]
2. La méthode de Lyapunov-Schmidt et les structures stationnaires

on peut appliquer les méthodes standards de la théorie de l’équivariance en bifurcation telles qu’elles sont décrites dans [20]. En effet d’après [20] les espaces de décomposition $\text{ker}(\mathcal{L})$ et $R(\mathcal{L})$ ainsi que la fonction implicite \mathcal{U} du problème (2.2.b) et la fonction de réduction g, héritent les invariances par symétries du problème de départ (2.1). C’est l’étude de ces invariances qui nous donnera plus d’information sur la structure de g, et nous aidera dans les calculs concernant l’existence et la stabilité des structures stationnaires convectives qui est notre objectif dans ce travail.

2.2 Cadre fonctionnel

Dans cette section on donnera un cadre fonctionnel approprié à notre étude des solutions du système (1.9). Quant au système (1.12), le même cadre reste fondamentalement valable, avec quelques ajustements formels. Conformément au cadre du problème (2.1) introduit dans le paragraphe précédent, on peut réécrire le système (1.9) sous la forme opérationnelle suivante :

$$ L_{\mathcal{R},k}(U) + N_k(U) = 0 $$

Compte tenu de la deuxième équation dans (1.9), la deuxième composante v_y de \overrightarrow{V}, étant nulle on peut poser :

$$ U = (\overrightarrow{V}, \theta, p) = (v_x, v_z, \theta, p) $$

avec

$$ L_{\mathcal{R},k}(U) = \begin{pmatrix}
 v_x + k\partial_x p \\
 v_z - \mathcal{R}\theta + \partial_z p \\
 -\triangle_k \theta - \mathcal{R}v_z \\
 -\nabla_k \cdot \overrightarrow{V}
\end{pmatrix} \quad \text{et} \quad N_k(U) = \begin{pmatrix}
 0 \\
 0 \\
 \overrightarrow{V} \cdot \nabla_k \theta \\
 0
\end{pmatrix} $$

Ainsi $L_{\mathcal{R},k}$ défini dans $\mathcal{H} = (L^2(\Omega))^4$, est un opérateur linéaire non borné, de domaine :

$$ D(L_{\mathcal{R},k}) = \tilde{H}^1(\Omega) \times \tilde{H}^1_0(\Omega) \times \tilde{H}^2_0(\Omega) \times \tilde{H}^1(\Omega), $$
où :
\[
\tilde{H}^1(\Omega) = \{ u \in H^1(\Omega) \ : u(0, z) = u(2\pi, z) \}
\]
\[
\hat{H}^1_0(\Omega) = \{ u \in H^1(\Omega) \ : u(X, 0) = u(X, 1) = 0 \}
\]
\[
\hat{H}^2_0(\Omega) = \left\{ u \in H^2(\Omega) \cap \hat{H}^1_0(\Omega) \ : u(0, z) = u(2\pi, z) \text{ et } \partial_X u(0, z) = \partial_X u(2\pi, z) \right\}
\]

On munit \(H \) du produit scalaire usuel \(\langle ., . \rangle \), défini pour tout \((U, U') \) dans \(H^2 \) par
\[
\langle U, U' \rangle = \int \int_{\Omega} (v_x v_x' + v_z v_z' + \theta \bar{\theta}' + p \bar{p}')dXdz,
\]
on la barre au dessus des composantes de \(U' = (v'_x, v'_y, v'_z, \theta', p') \), désigne le conjugué complexe, lorsque il est question du complexifié de \(H \). Ainsi \(H \) est un espace de Hilbert, et la norme d’un élément \(U \) sera notée \(\| U \|_H \).

Notre objectif dans cette première partie du travail, est l’application de la méthode de réduction de Lyapunov-Schmidt, pour montrer l’existence des solutions pour le problème (2.6), lorsque les paramètres \((k; R)\) sont au voisinage de leurs valeurs critiques \((k_c, R_c) = (\pi, 2\pi)\). Ce qui est déterminant dans cette approche est la propriété de Fredholm avec indice zéro que l’opérateur \(L_{R_c,k_c} \) doit satisfaire en plus de la régularité de la partie non linéaire de (2.6).

2.2.1 Propriétés de l’opérateur \(L_{R_c,k_c} \)

Nous allons montrer que l’opérateur \(L_{R_c,k_c} \) est un opérateur auto-adjoint et de Fredholm d’indice 0.

L’adjoint de \(L_{R_c,k_c} \)

Il est clair que \(L_{R_c,k_c} \) est un opérateur symétrique dans \(H \). Pour montrer qu’il est auto-adjoint il suffit donc de montrer que son domaine \(D(L_{R_c,k_c}) \) et le domaine de son adjoint \(L_{R_c,k_c}^* \) sont confondus. Le domaine de \(L_{R_c,k_c}^* \) qu’on notera \(D(L_{R_c,k_c}^*) \) est l’ensemble des éléments \(V \) dans \(H \), pour lesquels il existe \(V^* = L_{R_c,k_c}^*(V) \in H \) tel que :
\[\langle L_{R,c,k_c}(U), V \rangle = \langle U, V^* \rangle \quad \text{pour tout } U \in D(L_{R,c,k_c}) \]

Proposition 2.2.1: L’opérateur \(L_{R,c,k_c} \) défini dans \(D(L_{R,c,k_c}) \) est un opérateur auto-adjoint.

Preuve

En effet un calcul direct usant des règles classiques de l’intégration, nous montre que pour un élément \(V = (v_x^*, v_z^*, \theta^*, p^*) \) assez régulier dans \(\mathcal{H} \) (par exemple dans \((H^1(\Omega))^2 \times H^2(\Omega) \times H^1(\Omega) \)) ou pour tout \(U = (v_x, v_z, \theta, p) \in D(L_{R,c,k_c}) \):

\[
\langle L(U), V \rangle = \langle U, L(V) \rangle + Q_1(U, V) + Q_2(U, V)
\]

avec

\[
Q_1(U, V) = \pi \int_0^{2\pi} \left([p(X, z).v_x^*(X, z)]_0^{2\pi} - [v_x(X, z).p^*(X, z)]_0^{2\pi} \right) \, dz + \int_0^{2\pi} [p(X, z).v_z^*(X, z)]_0^1 \, dX
\]

et

\[
Q_2(U, V) = \pi^2 \int_0^{2\pi} \left([heta(X, z).\partial_X \theta^*(X, z)]_0^{2\pi} - [\partial_X \theta(X, z).\theta^*(X, z)]_0^{2\pi} \right) \, dz + \int_0^{2\pi} [\partial_z \theta(X, z).\theta^*(X, z)]_0^1 \, dX
\]

où la notation \([f(\tau)]_a^b\) désigne comme d’habitude la valeur \(f(b) - f(a) \).

En tenant compte de la densité du sous-espace de fonctions \(C^\infty \) à support compact dans \(L^2(0, 2\pi) \) (ou dans \(L^2(0, 1) \)), l’étude de \(Q_1(U, V) \) et \(Q_2(U, V) \)
pour les éléments de $D(L_{\mathcal{R},k_c})$ dont le support est compact (suivant la direction de X ou celle de z séparément dans Ω), nous permet de conclure que le domaine de l’opérateur $L_{\mathcal{R},k_c}^*$ est

$$D(L_{\mathcal{R},k_c}^*) = \tilde{H}^1(\Omega) \times \tilde{H}^1_0(\Omega) \times \tilde{H}^1_0(\Omega) \times \tilde{H}^1(\Omega) = D(L_{\mathcal{R},k_c})$$

Autrement dit, puisque il est symétrique, $L_{\mathcal{R},k_c}$ définit sur $D(L_{\mathcal{R},k_c})$ est un opérateur auto-adjoint dans \mathcal{H} ce qui montre la proposition.

Le noyau de $L_{\mathcal{R},k_c}$

En calculant une base du noyau de l’opérateur $L_{\mathcal{R},k_c}$, nous montrerons qu’il possède un noyau de dimension finie. On procèdera en utilisant des développements en modes de Fourier dans \mathcal{H}.

Proposition 2.2.2: L’opérateur $L_{\mathcal{R},k_c}$ possède dans \mathcal{H}, un noyau de dimension finie (égal à trois), engendré par les vecteurs $\{v_0,v_1,v_2\}$ définis par :

$$v_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad v_1 = \begin{pmatrix} -\pi \sin X \cos \pi z \\ \pi \cos X \sin \pi z \\ \cos X \sin \pi z \\ -\cos X \cos \pi z \end{pmatrix}, \quad \text{et} \quad v_2 = \begin{pmatrix} \pi \cos X \cos \pi z \\ \pi \sin X \sin \pi z \\ \sin X \sin \pi z \\ -\sin X \cos \pi z \end{pmatrix}$$

Preuve

Le calcul de $\ker(L_{\mathcal{R},k_c})$ noyau de $L_{\mathcal{R},k_c}$ se fera directement par la résolution de l’équation linéaire

$$L_{\mathcal{R},k_c}(U) = 0 \quad (2.7)$$

en utilisant un développement en série de Fourier de U. Tenant compte des conditions au bord de Ω que doivent vérifier les éléments du domaine de $L_{\mathcal{R},k_c}$, il suffit de chercher les solutions de (2.7) parmi celles qui prennent la forme
2. La méthode de Lyapunov-Schmidt et les structures stationnaires

\[U(X, z) = \sum_{n \in \mathbb{N}, \sigma \in \mathbb{Z}} e^{i\sigma X} \varphi_n(\alpha^{(\sigma,n)}) \]

où \(\alpha^{(-\sigma,n)} = \overline{\alpha^{(\sigma,n)}} \)

et:

\[\varphi_n(\alpha) = \begin{pmatrix} \alpha_1 \cos(n\pi z) \\ \alpha_2 \sin(n\pi z) \\ \alpha_3 \sin(n\pi z) \\ \alpha_4 \cos(n\pi z) \end{pmatrix} \quad \text{avec } n \in \mathbb{N} \]

pour tout \(\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \in \mathbb{C}^4 \).

Sachant que \(L_{\mathcal{R},k_c} \) est un opérateur fermé (puisque auto-adjoint), on a

\[L_{\mathcal{R},k_c}(U) = \sum_{n \in \mathbb{N}, \sigma \in \mathbb{Z}} L_{\mathcal{R},k_c} \left(e^{i\sigma X} \varphi_n(\alpha^{(\sigma,n)}) \right) , \]

et grâce à l’invariance de l’espace des fonctions de types \(\{e^{i\sigma X} \varphi_n(\alpha^{(\sigma,n)})\} \) par l’opérateur \(L_{\mathcal{R},k_c} \) on obtient

\[L_{\mathcal{R},k_c}(U) = \sum_{n \in \mathbb{N}, \sigma \in \mathbb{Z}} e^{i\sigma X} \varphi_n \left(M^{(\sigma,n)}(\alpha^{(\sigma,n)}) \right) \]

où \(M^{(\sigma,n)} \) désigne la matrice définie par

\[M^{(\sigma,n)} = \begin{pmatrix} 1 & 0 & 0 & i\pi \sigma \\ 0 & 1 & -2\pi & -n\pi \\ 0 & -2\pi & \pi^2(\sigma^2 + n^2) & 0 \\ -i\pi \sigma & -n\pi & 0 & 0 \end{pmatrix} \]

Il est clair maintenant que le noyau de \(L_{\mathcal{R},k_c} \) se constitue en somme directe des noyaux des opérateurs représentés matriciellement par \(M^{(\sigma,n)} \). Ce qui nous conduit à résoudre pour chaque couple \((\sigma, n)\) dans \(\mathbb{Z} \times \mathbb{N} \) l’équation algébrique linéaire :

\[M^{(\sigma,n)}(\alpha) = 0 \quad \text{pour } \alpha \text{ dans } \mathbb{C}^4 \setminus \{0\} \]

On aura des solutions \(\alpha \) non nulles dans \(\mathbb{C}^4 \), lorsque (le déterminant de \(M^{(\sigma,n)} \) est nul) :

\[\det(M^{(\sigma,n)}) = \pi^4(4\sigma^2 - (\sigma^2 + n^2)^2) = 0 \]
Sachant que les couples \((\sigma, n)\) sont dans \(\mathbb{Z} \times \mathbb{N}\), l'équation ci-dessus ne se réalise que pour \((\sigma, n) = (0, 0)\), \((\sigma, n) = (\pm 2, 0)\), \((\sigma, n) = (1, 1)\) et \((\sigma, n) = (-1, 1)\).

A chaque triplet \((\sigma, n, \alpha)\) \(\in \mathbb{Z} \times \mathbb{N} \times \mathbb{C}^4\) correspond une solution de l'équation \(L_{R_c,k_c}(U) = 0\). On obtient ainsi comme base pour \(\ker(L_{R_c,k_c})\) les éléments \(\{v_0, v_1, v_2\}\) énoncés dans la proposition.

Remarque 2.2.3: En calculant de la même manière le noyau de \(L_{R,k}\), sur la courbe \(R = \frac{k^2 + \pi^2}{k}\) (courbe d'existence du premier mode \((k = 1)\) instable), on obtient que le sous-espace vectoriel \(\ker(L_{R,k})\) est engendré par \(\{v_0(k), v_1(k), v_2(k)\}\) avec :

\[
\begin{align*}
v_0(s) &= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \\
v_1(k) &= \begin{pmatrix} -k \cdot \sin X \cdot \cos \pi z \\ \frac{k^2}{k} \cdot \cos X \cdot \sin \pi z \\ \frac{k}{k} \cdot \cos X \cdot \sin \pi z \\ -\cos X \cdot \cos \pi z \end{pmatrix}, \quad \text{et} \\
v_2(k) &= \begin{pmatrix} k \cdot \cos X \cdot \cos \pi z \\ \frac{k^2}{k} \cdot \sin X \cdot \sin \pi z \\ \frac{\pi}{k} \cdot \sin X \cdot \sin \pi z \\ -\sin X \cdot \cos \pi z \end{pmatrix}.
\end{align*}
\]

Ce sous-espace est invariant par le groupe des translations le long de \(X\).

Le caractère Fredholm de l’opérateur \(L_{R_c,k_c}\)

Nous allons montrer que \(L\) est un opérateur de Fredholm d’indice zéro. \(L_{R_c,k_c}\) étant auto-adjoint et possédant un noyau de dimension finie, il suffit de montrer que son image est fermée dans \(\mathcal{H}\). Or nous savons (d’après [27, 49], voir par exemple [49] théorème 2, p.321) que dans ces conditions, l’image de \(L_{R_c,k_c}\) est fermée si et seulement si il existe une constante positive \(C\) telle que :

\[
\|U\|_{\mathcal{H}} \leq C \|L_{R_c,k_c}(U)\|_{\mathcal{H}}, \quad (2.8)
\]
pour tout $U \in D(L_{R_{c,k_c}}) \cap (\ker(L_{R_{c,k_c}}))^\perp$.

Nous montrerons l’inégalité (2.8) à partir de la compacité de l’injection

$$(D(L_{R_{c,k_c}}), \| . \|_D) \subset (\mathcal{H}, \| . \|_{\mathcal{H}})$$

où $\| . \|_D$ est la norme du graphe, définie dans $D(L_{R_{c,k_c}})$ par :

$$\| U \|_D = \| L_{R_{c,k_c}}(U) \|_{\mathcal{H}} + \| U \|_{\mathcal{H}}.$$

La compacité de cette injection s’obtient grâce à la régularité des éléments de $D(L_{R_{c,k_c}})$ en introduisant l’espace intermédiaire

$$H = H^1(\Omega) \times H^1(\Omega) \times H^2(\Omega) \times H^1(\Omega) \subset \mathcal{H},$$
muni de sa norme usuelle $\| . \|_H$.

$D(L_{R_{c,k_c}})$ étant inclus dans H, on commence par les deux lemmes suivants, desquels résulte essentiellement l’équivalence des normes $\| . \|_H$ et $\| . \|_D$ dans $D(L_{R_{c,k_c}})$.

Lemme 2.2.4: Il existe une constante $C_L > 0$ telle que pour tout $U = (v_x,v_z,\theta,p) \in D(L_{R_{c,k_c}})$ on a :

$$\| U \|_D \leq C_L \| U \|_H$$

Preuve

Il est clair qu’il existe une constante $C_L > 0$ telle que pour tout $U = (v_x,v_z,\theta,p) \in D(L_{R_{c,k_c}})$ on a

$$\| L_{R_{c,k_c}}(U) \|_{\mathcal{H}}^2 = \| v_x + \pi \partial_x p \|_{L^2(\Omega)}^2 + \| v_z - 2\pi \theta + \partial_z p \|_{L^2(\Omega)}^2$$

$$+ \| -\Delta \theta - 2\pi v_z \|_{L^2(\Omega)}^2 + \| -\pi \partial_x v_x - \partial_z v_z \|_{L^2(\Omega)}^2 \leq C_L \| U \|_H^2$$

Autrement dit
La méthode de Lyapunov-Schmidt et les structures stationnaires

\[\| L_{\mathcal{R},k_c}(U) \|_{H}^2 \leq C_L \| U \|_{H}^2 \]

et quite à réajuster convenablement la constante, en gardant la notation \(C_L \), on obtient

\[\| U \|_{D} \leq C_L \| U \|_{H}, \]

ce qui démontre le lemme.

Lemme 2.2.5: Muni de \(\| \cdot \|_{H} \) (norme de \(H \)), \(D(L_{\mathcal{R},k_c}) \) est un espace complet.

Preuve

Soit \(U_\nu \) une suite de Cauchy dans \(D(L_{\mathcal{R},k_c}) \) pour la norme \(\| \cdot \|_{H} \). \(H \) étant complet, \(U_\nu \) est convergente vers un élément \(U \) de \(H \)

\[\lim_{\nu \to \infty} \| U_\nu - U \|_{H} = 0 \]

Il suffit donc de montrer que \(U \in D(L_{\mathcal{R},k_c}) \).

Les éléments de \(H \) sont assez réguliers pour que \(L_{\mathcal{R},k_c} \) y soit défini :

\[\forall U \in H \text{ on a } L_{\mathcal{R},k_c}(U) \in \mathcal{H} \]

D’autre part on a d’après la preuve du lemme (2.2.4) précédent

\[\| L_{\mathcal{R},k_c}(U) \|_{H}^2 \leq C_L \| U \|_{H}^2 \]

ce qui nous permet d’évaluer la quantité \(\| U_\nu - U \|_{D} \)

\[\| U_\nu - U \|_{D} = \| L_{\mathcal{R},k_c}(U_\nu - U) \|_{H} + \| U_\nu - U \|_{H} \leq C_L \| U_\nu - U \|_{H} \]

d’où

\[\lim_{\nu \to \infty} \| U_\nu - U \|_{D} = 0 \]
Donc U est aussi limite de U_n dans H par rapport à $\|\cdot\|_D$ (norme de D). $(D, \|\cdot\|_D)$ étant un espace complet on en déduit que $U \in D$. Ainsi $(D, \|\cdot\|_H)$ est aussi un espace complet, et le lemme est démontré.

Sachant que l’insertion $(H, \|\cdot\|_H) \hookrightarrow (\mathcal{H}, \|\cdot\|_{\mathcal{H}})$ est compacte, il en découle alors le résultat suivant

Corollaire 2.2.6: L’insertion $(D(L_{\mathcal{R},k_c}), \|\cdot\|_D) \hookrightarrow (\mathcal{H}, \|\cdot\|_{\mathcal{H}})$ est compacte.

Preuve

D’après les deux lemmes précédents $(D(L_{\mathcal{R},k_c}), \|\cdot\|_D)$ et $(D(L_{\mathcal{R},k_c}), \|\cdot\|_H)$ sont deux structures d’espace vectoriel normé complet, définies sur $D(L_{\mathcal{R},k_c})$, avec en plus l’inégalité suivante (entre les normes) :

$$\|U\|_D \leq C_L \|U\|_H \quad \text{pour tout } U \in D(L_{\mathcal{R},k_c})$$

En utilisant le théorème sur l’équivalence des normes (conséquences du Th. de l’application ouverte) on peut dire qu’il existe une constante positive c telle que

$$\|U\|_H \leq c \|U\|_D \quad \text{pour tout } U \in D(L_{\mathcal{R},k_c})$$

Autrement dit l’insertion $(D(L_{\mathcal{R},k_c}), \|\cdot\|_D) \hookrightarrow (H, \|\cdot\|_H)$ est continue. Et puisque l’insertion $(H, \|\cdot\|_H) \hookrightarrow (\mathcal{H}, \|\cdot\|_{\mathcal{H}})$ est compacte, on en déduit la compacité de l’insertion $(D(L_{\mathcal{R},k_c}), \|\cdot\|_D) \hookrightarrow (\mathcal{H}, \|\cdot\|_{\mathcal{H}})$.

On est en mesure maintenant d’énoncer le résultat principal de ce paragraphe dans la proposition suivante

Proposition 2.2.7: L’opérateur $L_{\mathcal{R},k_c}$ est un opérateur de Fredholm d’indice zéro.

Preuve

Comme on l’a déjà signalé au début du paragraphe, sachant que $L_{\mathcal{R},k_c}$ est auto-adjoint avec un noyau de dimension finie, il suffit de montrer que son
image $R(L_{R_{c}, k_{c}})$ est fermée dans \mathcal{H}, en montrant que l’inégalité (2.8) est vérifiée.

En supposant le contraire, il existe une suite

$$\{U_{\nu}\}_{\nu \geq 1} \subset D(L_{R_{c}, k_{c}}) \cap \ker(L_{R_{c}, k_{c}})^{\perp} \subset \mathcal{H}$$

telle que

$$\|U_{\nu}\|_{\mathcal{H}} = 1 \text{ pour tout } \nu \geq 1, \text{ et } \lim_{\nu \to \infty} L_{R_{c}, k_{c}}(U_{\nu}) = 0 \text{ dans } \mathcal{H}$$

U_{ν} étant bornée dans $(D(L_{R_{c}, k_{c}}), \|\cdot\|_{D})$, elle admet d’après le corollaire précédent, une sous suite convergente dans \mathcal{H} (qu’on notera toujours par U_{ν}), d’où

$$\exists U \in \mathcal{H} \text{ tel que } \lim_{\nu \to \infty} U_{\nu} = U \text{ dans } \mathcal{H}$$

avec en plus

$$\lim_{\nu \to \infty} L_{R_{c}, k_{c}}(U_{\nu}) = 0 \text{ dans } \mathcal{H}$$

Comme $L_{R_{c}, k_{c}}$ est un opérateur fermé on a

$$U \in D(L_{R_{c}, k_{c}}) \text{ et } L_{R_{c}, k_{c}}(U) = 0.$$

Mais on doit avoir aussi $U \in \ker(L_{R_{c}, k_{c}})^{\perp}$ puisque $\ker(L_{R_{c}, k_{c}})^{\perp}$ est un sous-espace fermé dans \mathcal{H}. Autrement dit on a

$$U \in \ker(L_{R_{c}, k_{c}}) \cap \ker(L_{R_{c}, k_{c}})^{\perp} = \{0\}$$

Nous obtenons ainsi un élément de \mathcal{H} qui vérifie

$$0 = \|U\|_{\mathcal{H}} = \lim_{\nu \to \infty} \|U_{\nu}\|_{\mathcal{H}} = 1$$

ce qui est impossible.

Donc l’inégalité (2.8) est bien vérifiée, et par conséquent l’image de $L_{R_{c}, k_{c}}$ est fermée dans \mathcal{H}.

Maintenant on est en mesure de conclure, en appliquant directement, les résultats connus de la théorie des opérateurs (voir par exemple dans [5, 27]) :
\[R(L_{\mathcal{R},k_c}) \text{ fermée } \Longrightarrow R(L_{\mathcal{R},k_c}) = \ker(L_{\mathcal{R},k_c}^*) \]
\[L_{\mathcal{R},k_c} \text{ auto-adjoint } \Longrightarrow \dim(\ker(L_{\mathcal{R},k_c}^*)) = \dim(\ker(L_{\mathcal{R},k_c})) \]

Etant donné que \(\dim(\ker L_{\mathcal{R},k_c}) \) est finie on obtient
\[\text{co dim}(R(L_{\mathcal{R},k_c})) = \dim(\ker L_{\mathcal{R},k_c}^*) = \dim(\ker L_{\mathcal{R},k_c}) < \infty \]

Ainsi \(L \) est bien un opérateur de Fredholm d’indice zéro.

2.2.2 Régularité de \(N_k \)

Pour montrer que l’opérateur non linéaire \(N_k : D(L_{\mathcal{R},k_c}) \rightarrow \mathcal{H} \) est régulier de classe \(C^q \) (avec \(q \) aussi grand qu’on veut), il suffit de vérifier que l’application quadratique \(U \rightarrow \mathcal{N}(U) = N_k(U) \) est indéfiniment différentiable de \(D(L_{\mathcal{R},k_c}) \) vers \(\mathcal{H} \), où la forme bilinéaire associée est définie pour \(U_1 = (v_{x1}, v_{z1}, \theta_1, p_1) \) et \(U_2 = (v_{x2}, v_{z2}, \theta_2, p_2) \), par
\[\mathcal{N}(U_1, U_2) = (0, 0, kv_{x1} \partial X \theta_2 + v_{z1} \partial_z \theta_2, 0) \]

Ce qui est une conséquence du lemme suivant.

Lemme 2.2.8: La forme bilinéaire \(\mathcal{N} \) est continue de \(D(L_{\mathcal{R},k_c}) \times D(L_{\mathcal{R},k_c}) \) vers \(\mathcal{H} \), \(D(L_{\mathcal{R},k_c}) \) étant muni de la norme du graphe \(\| \cdot \|_D \).

Preuve

On a :
\[\| \mathcal{N}(U_1, U_2) \|^2 = \| \text{sk} v_{x1} \partial X \theta_2 + v_{z1} \partial_z \theta_2 \|^2_{L^2(\Omega)} \]

donc
\[\| \mathcal{N}(U_1, U_2) \|^2 \leq 2 \left(\| kv_{x1} \partial X \theta_2 \|^2_{L^2(\Omega)} + \| v_{z1} \partial_z \theta_2 \|^2_{L^2(\Omega)} \right) \]
D’autre part d’après l’inégalité de Hölder on a

$$\|v_{x_1} \partial_x \theta_2\|^2_{L^2(\Omega)} \leq \|v_{x_1}\|^2_{L^1(\Omega)} \cdot \|\partial_x \theta_2\|^2_{L^1(\Omega)}$$

Et en appliquant l’inégalité de Gagliardo-Nirenberg (voir dans [5] p.195 pour le cas $n = 2$) on a

$$\|u\|^2_{L^2(\Omega)} \leq c \cdot \|u\|^{1/2}_{L^1(\Omega)} \cdot \|u\|^{1/2}_{H^1(\Omega)}, \quad \forall u \in H^1(\Omega)$$

(où la lettre c représente ici et dans la suite une quantité constante positive indépendante de u) on obtient

$$\|v_{x_1} \partial_x \theta_2\|^2_{L^2(\Omega)} \leq c \|v_{x_1}\|_{L^1(\Omega)} \cdot \|\partial_x \theta_2\|_{L^2(\Omega)} \cdot \|\partial_x \theta_2\|_{H^1(\Omega)}$$

d’où

$$\|v_{x_1} \partial_x \theta_2\|^2_{L^2(\Omega)} \leq c \|v_{x_1}\|^2_{H^1(\Omega)} \cdot \|\theta_2\|^2_{H^2(\Omega)}$$

En procédant de la même manière on obtient

$$\|v_{x_1} \partial_x \theta_2\|^2_{L^2(\Omega)} \leq c \|v_{x_1}\|^2_{H^1(\Omega)} \cdot \|\theta_2\|^2_{H^2(\Omega)}$$

Ainsi il existe une constante positive c indépendante de U_1 et U_2 telle que

$$\|\mathcal{N}(U_1, U_2)\|^2 \leq c \left(\|v_{x_1}\|^2_{H^1(\Omega)} + \|v_{x_1}\|^2_{H^1(\Omega)}\right) \cdot \|\theta_2\|^2_{H^2(\Omega)} \leq c \|U_1\|^2_{\mathcal{H}} \cdot \|U_2\|^2_{\mathcal{H}}$$

Sachant que les normes $\|\cdot\|_{\mathcal{H}}$ et $\|\cdot\|_{D}$ sont équivalentes dans $D(L_{k,c})$, on aura (pour une constante positive indépendante de U_1 et U_2, qu’on notera aussi par c) :

$$\|\mathcal{N}(U_1, U_2)\|^2 \leq c \|U_1\|^2_D \cdot \|U_2\|^2_D$$

Ceci prouve la continuité de l’application \mathcal{N} de $D(L_{k,c}) \times D(L_{k,c})$ vers \mathcal{H}. Et puisque \mathcal{N}_k est la forme quadratique associée à la forme bilinéaire \mathcal{N} la différentiabilité en découle immédiatement, ainsi que le résume le corollaire suivant.
Corollaire 2.2.9: L’opérateur non linéaire N_k est indéfiniment différentiable de $D(L_{\mathcal{R},k_c})$ vers \mathcal{H}.

2.2.3 Validité du cadre fonctionnel pour les solutions doublement périodiques

Pour l’étude des solutions doublement périodiques représentant les structures carrées ou hexagonales, on peut traiter le système d’équations aux dérivées partielles (1.12) on se servant du cadre fonctionnel du système (1.9), avec quelques ajustements formels, mais nécessaires. Ces modifications apportées au cadre d’étude de ces configurations à réseau périodique bidimensionnel, sont dûes à la présence de la direction des y dont les solutions dans ce cas en dépendent effectivement, mais n’ont aucun effet sur le fond fonctionnel.

Le système (1.12) prendra la forme opérationnelle suivante :

$$L_{\mathcal{R},k}(U) + N_k(U) = 0$$ (2.9)

où

$$U = (\mathbf{V}, \theta, p) = (v_x, v_y, v_z, \theta, p) \quad \text{et} \quad k = (k_x, k_y)$$

avec

$$L_{\mathcal{R},k}(U) = \begin{pmatrix} v_x + k_x \partial_X p \\ v_y + k_y \partial_X p \\ v_z - \mathcal{R} \theta + \partial_z p \\ -\Delta_k \theta - \mathcal{R} v_z \\ -\nabla_k \cdot \mathbf{V} \end{pmatrix} \quad \text{et} \quad N_k(U) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \mathbf{V} \cdot \nabla_k \theta \\ 0 \end{pmatrix}$$

L’opérateur linéaire non borné $L_{\mathcal{R},k}$ sera défini dans $\mathcal{H} = (L^2(\Omega))^5$, de domaine :

$$D(L_{\mathcal{R},k}) = \tilde{H}^1(\Omega) \times \tilde{H}^1(\Omega) \times \tilde{H}^1_0(\Omega) \times \tilde{H}^2(\Omega) \times \tilde{H}^1(\Omega),$$

où :

$$\tilde{H}^1(\Omega) = \{ u \in H^1(\Omega) : u(0, Y, z) = u(2\pi, Y, z) \ u(0, X, 0, z) = u(X, 2\pi, z) \}$$

$$\tilde{H}^1_0(\Omega) = \{ u \in H^1(\Omega) : u(X, Y, 0) = u(X, Y, 1) = 0 \}$$

$$\tilde{H}^2(\Omega) = \{ u \in H^2(\Omega) \cap \tilde{H}^1(\Omega) \cap \tilde{H}^1_0(\Omega) : \partial_X u(0, Y, z) = \partial_X u(2\pi, Y, z) \ \text{et} \ \partial_Y u(X, 0, z) = \partial_Y u(X, 2\pi, z) \}$$
avec $H^q(\Omega)$ désignant l’espace de Sobolev sur Ω de degré q.

\mathcal{H} est un espace de Hilbert, lorsqu’il est muni du produit scalaire usuel $\langle ., . \rangle$, défini pour tout (U, U') dans \mathcal{H}^2 par

$$\langle U, U' \rangle = \iint_{\Omega} (v_x \overline{v'_x} + v_y \overline{v'_y} + v_z \overline{v'_z} + \theta \overline{\theta'} + p \overline{p'}) dX dY dz,$$

où la barre au dessus des composantes de $U' = (v'_x, v'_y, v'_z, \theta', p')$, signifie le conjugué complexe, lorsque il est question du complexifié de \mathcal{H}. La norme d’un élément U de \mathcal{H} sera notée $\|U\|_{\mathcal{H}}$.

2.3 Application de la méthode de réduction

Notre but dans cette section est la mise en œuvre de la méthode de réduction de Liapunov-Schmidt, afin de réduire le problème (2.6), à une équation algébrique en dimension finie, plus commode à traiter et équivalente à (2.6) sous certaines conditions. Mais avant de procéder à cette réduction, nous allons rappeler certains résultats utiles pour cela, et fixer quelques notations.

Sachant que $L_{R,k}$ est un opérateur auto-adjoint et de Fredholm d’indice zéro, on décompose \mathcal{H} en une somme directe du noyau et de l’image de $L_{R,k}$

$$\mathcal{H} = \ker(L_{R,k}) \oplus R(L_{R,k})$$

Soit P la projection orthogonale de \mathcal{H} sur $\ker(L_{R,k})$ dont le noyau est $R(L_{R,k})$. En notant I l’application identité sur \mathcal{H}, P et $(I - P)$ sont deux projections orthogonales bornées sur \mathcal{H}.

Pour tout couple (R, k) dans \mathbb{R}^2 posons

$$L_{\mu, s} = L_{R,k} - L_{R_c,k_c}$$

avec $\mu = R - R_c$ et $s = k - k_c$.

L’application $L_{\mu, s}$ ainsi définie est assez régulière en tant que fonction des paramètres μ et s, de \mathbb{R}^2 vers $\mathcal{L}(D(L_{R_c,k_c}), \mathcal{H})$ espace des applications linéaires.
bornées de $D(L_{\mathcal{R}_{c,k_e}})$ vers \mathcal{H}. Ainsi on est prêt à passer au procédé de réduction, en appliquant la décomposition (2.2) au problème (2.6).

2.3.1 Le principe de réduction

Tout élément U de \mathcal{H} peut être décomposé d’une manière unique en une somme de deux éléments, l’un dans le noyau de l’opérateur $L_{\mathcal{R}_{c,k_e}}$ et l’autre dans son image :

$$U = u + U \quad \text{où} \quad u = P(U) \in \ker(L_{\mathcal{R}_{c,k_e}}) \quad \text{et} \quad U = (I - P)(U) \in R(L_{\mathcal{R}_{c,k_e}})$$

Ainsi en appliquant la décomposition (2.2), le problème (2.6) est équivalent à :

$$\begin{align*}
P(\mathcal{L}_{\mu,s}(u + U) + N_{k_e+s}(u + U)) &= 0 \quad \text{(a)} \\
L_{\mathcal{R}_{c,k_e}}(U) + (I - P)(\mathcal{L}_{\mu,s}(u + U) + N_{k_e+s}(u + U)) &= 0 \quad \text{(b)}
\end{align*}$$

(2.10)

Montrons que pour tout élément u dans $\ker(L_{\mathcal{R}_{c,k_e}})$, il existe exactement un seul élément de $R(L_{\mathcal{R}_{c,k_e}})$ tel que l’équation (2.10.b) soit vérifiée.

Proposition 2.3.1: Pour tout (u, μ, s) au voisinage de 0 dans $\ker(L_{\mathcal{R}_{c,k_e}}) \times \mathbb{R}^2$ l’équation (2.10.b) a une solution et une seule $U = U(u, \mu, s)$ assez régulière dans $R(L_{\mathcal{R}_{c,k_e}})$ telle que $U(0, 0, 0) = 0$

Preuve

On peut représenter l’équation (2.10.b) sous la forme

$$\mathcal{F}(u, \mu, s, U) = 0$$

où \mathcal{F} définie par

$$\mathcal{F}(u, \mu, s, U) = L_{\mathcal{R}_{c,k_e}}(U) + (I - P)(\mathcal{L}_{\mu,s}(u + U) + N_{k_e+s}(u + U))$$

est une application régulière de $\ker(L_{\mathcal{R}_{c,k_e}}) \times \mathbb{R}^2 \times (D(L_{\mathcal{R}_{c,k_e}}) \cap R(L_{\mathcal{R}_{c,k_e}}))$ vers $R(L_{\mathcal{R}_{c,k_e}})$. Les espaces $D(L_{\mathcal{R}_{c,k_e}})$ et $R(L_{\mathcal{R}_{c,k_e}})$ étant munis respectivement de la norme du graphe et de la norme de \mathcal{H}. De plus on a

$$\mathcal{F}(0, 0, 0, 0) = 0.$$
Sachant que \(L_{R, c} \) est un opérateur de Fredholm, son image \(R(L_{R, c, k}) \) est un sous-espace fermé dans \(\mathcal{H} \), donc l’application \(\partial_u \mathcal{F}(0, 0, 0, 0) = L_{R, c, k} \) possède un inverse borné de \(R(L_{R, c, k, c}) \) vers \(D(L_{R, c, k}) \cap R(L_{R, c, k}) \).
Ainsi grâce au théorème de la fonction implicite, il existe une fonction régulière unique \(U(u, \mu, s) \) définie dans un voisinage de \(O \) dans \(\text{ker}(L_{R, c, k}) \times \mathbb{R}^2 \) à valeurs dans un voisinage de \(O \) dans \(D(L_{R, c, k}) \cap R(L_{R, c, k}) \), qui vérifie
\[
\mathcal{F}(u, \mu, s, U(u, \mu, s)) = 0 \quad \text{avec} \quad U(0, 0, 0) = 0.
\]

2.3.2 L’équation réduite

Puisque pour chaque couple de paramètres \((\mu, s)\) assez petit dans \(\mathbb{R}^2 \) et pour tout \(u \) dans un voisinage de \(O \) dans \(\text{ker}(L_{R, c, k}) \) l’équation (2.10.b) a exactement une solution \(U(u, \mu, s) \), les éléments du voisinage de \(O \) dans \(D(L_{R, c, k}) \) qui sont solutions de (2.6), prennent la forme \(u + U(u, \mu, s) \) et vérifient
\[
G_{\mu, s}(u) = P(L_{\mu, s}(u + U(u, \mu, s)) + N_{k, c + s}(u + U(u, \mu, s))) = 0. \quad (2.11)
\]
Cette équation correspond à l’expression (2.3) qui est dans l’introduction générale de la méthode au début du chapitre, c’est l’équation de bifurcation. Il est clair que l’ordre de régularité de l’application \(G_{\mu, s} \) est déterminé par celui de la régularité de \(U \).
Les solutions de (2.6), qui sont proches de la solution triviale, pour lesquelles \((\mu, s)\) est au voisinage de \((0, 0)\), sont les fonctions de la forme \((u + U(u, \mu, s)) \) tel que \(u \) soit solution de (2.11).

On peut maintenant utiliser la base \(\{v_0, v_1, v_2\} \) du sous-espace \(\text{ker}(L_{R, c, k}) \), pour exprimer l’action de \(G_{\mu, s} \) sur \(\text{ker}(L_{R, c, k}) \) par ce qu’on appelle la fonction de réduction \(g \):
\[
g : \mathbb{R}^3 \times \mathbb{R}^2 \rightarrow \mathbb{R}^3
\]
2. La méthode de Lyapunov-Schmidt et les structures stationnaires

avec \(g = (g_0, g_1, g_2) \) tel que \(g_j \) pour \(j = 0, 1, 2 \), sont les fonctions définies de \(\mathbb{R}^3 \times \mathbb{R}^2 \) vers \(\mathbb{R} \) par

\[
g_j(a_0, a_1, a_2, \mu, s) = \langle L_{\mu,s}(u + U(u, \mu, s)) + N_{k_c}(u + U(u, \mu, s)), v_j \rangle
\]

où \(u = a_0 v_0 + a_1 v_1 + a_2 v_2 \).

Les solutions de l’équation (2.11) sont donc en correspondance biunivoque avec celles de l’équation réduite :

\[
g(a_0, a_1, a_2, \mu, s) = 0, \quad (2.12)
\]

ainsi nous obtenons la proposition suivante :

Proposition 2.3.2: Au voisinage de 0 dans \(\mathbb{R}^3 \times \mathbb{R}^2 \), à chaque solution \((a_0, a_1, a_2, \mu, s) \) de l’équation réduite (2.12), correspond une et une seule solution de l’équation (2.11).

Un grand nombre de symétries laissent invariant le système (1.9). Ceci a des conséquences importantes pour la fonction \(g \).

2.4 Les symétries du problème

On sait d’après [20] que les espaces de décomposition \(\ker(L_{\mathcal{R}_c, k_c}) \) et \(\mathcal{R}(L_{\mathcal{R}_c, k_c}) \), ainsi que la fonction implicite \(U \) du problème (2.10.b) et la fonction de réduction \(g \), héritent les invariants par symétries du problème (2.6), lesquelles sont déterminées par celles vérifiées par le système de départ (1.9) (ou (1.12)).

Nous commençons par une définition de la notion d’invariance en question, puis nous déterminerons les symétries du problème qui nous seront utiles. Et en dernière étape, une analyse de l’action de ces symétries sur les éléments du noyau de l’opérateur \(L_{\mathcal{R}_c, k_c} \), déterminera le comportement de la fonction de réduction \(g \) par rapport à ces invariances. Ainsi, étant mieux informé sur les propriétés de \(g \), on sera en mesure de simplifier l’étude des solutions du problème (2.12) en se ramenant à une équation algébrique avec un nombre de paramètres et d’inconnues plus petit.
2.4.1 L’invariance par symétrie

Rappelons brièvement le problème posé au début du chapitre au paragraphe 2.1, avec une reformulation légèrement différente mais mieux adaptée au propos du présent paragraphe.

Soient \mathcal{H} un espace de Hilbert, Φ un opérateur régulier, dépendant du paramètre μ dans \mathbb{R}^m, et défini sur D sous-espace de \mathcal{H} :

$$\Phi : D \times \mathbb{R}^m \subset \mathcal{H} \times \mathbb{R}^m \to \mathcal{H} \quad \text{tel que} \quad \Phi (0, 0) = 0$$

On veut alors, résoudre au voisinage de $(0, 0)$, l’équation :

$$\Phi (u, \mu) = 0$$

en u fonction du paramètre μ.

Ici l’opérateur \mathcal{L} du paragraphe 2.1 est égal à la différentielle (au sens de Fréchet) de Φ par rapport à u au point $(0, 0)$, c’est à dire :

$$\mathcal{L} = D_u \Phi (0, 0)$$

et

$$\mathcal{N}_\mu = \Phi (u, \mu) - D_u \Phi (0, 0)$$

Comme \mathcal{L} est auto-adjoint et de Fredholm d’indice zéro, avec les notations du paragraphe 2.1, nous allons voir que lorsque $\Phi (u, \mu)$ commute avec certaines symétries, la fonction g définie au paragraphe 2.3.2, possède des propriétés intéressantes. On commencera donc par les définitions de ces notions, puis on énoncera le résultat de [20], concernant l’effet des invariances par symétries du problème de départ sur l’opérateur \mathcal{L}, les espaces de décomposition $\ker (\mathcal{L})$, $R (\mathcal{L})$, ainsi que \mathcal{G} et la fonction implicite U.

Définition 2.4.1: On appelle symétrie dans \mathcal{H}, toute transformation S linéaire et isométrique définie de \mathcal{H} dans \mathcal{H}.
Définition 2.4.2: On dit que l’opérateur \(\Phi \) est équivariant par (ou commute avec) la symétrie \(S \) si les deux conditions suivantes sont satisfaites :

1. \(D \) est un sous-espace de \(\mathcal{H} \) invariant par \(S \), c’est à dire \(S(D) \subset D \).
2. Pour tout \(u \in D \) on a : \(\Phi(S(u), \mu) = S(\Phi(u, \mu)) \).

Remarque 2.4.3: Lorsque l’équivariance concerne aussi l’espace des paramètres, les mêmes définitions sont valables en prenant l’espace \(\mathcal{H} \times \mathbb{R}^m \) au lieu de \(\mathcal{H} \).

Proposition 2.4.4: ([20] et [21]) On suppose que \(\Phi \) est un opérateur équivariant par la symétrie \(S \). Alors les propriétés suivantes sont satisfaites :

(a) \(\mathcal{L} \) est équivariant par \(S \).
(b) \(\ker(\mathcal{L}) \) et \(R(\mathcal{L}) \) sont des sous-espaces invariant par \(S \).
(c) \(R(\mathcal{L}) \) est un sous-espaces invariant par \(S \).
(d) \(\mathcal{G} \) est équivariante par \(S \).

Preuve

On reprendra la démonstration de [20]. On a par hypothèse \(\Phi(S(u, \mu)) = S(\Phi(u, \mu)) \). La dérivée (des deux membres) de cette identité évaluée en \((u, \mu) = (0, 0) \) nous donne

\[
\mathcal{L} \circ S = S \circ \mathcal{L}
\]

ce qui prouve (a).

Soit \(u \in \ker(\mathcal{L}) \), alors d’après (a), on a :

\[
\mathcal{L}(S(u)) = S(\mathcal{L}(u)) = S(0) = 0
\]

donc \(S(u) \in \ker(\mathcal{L}) \), d’où (b).

Soit \(u \in R(\mathcal{L}) \), c’est à dire, il existe \(w \in D \), tel que \(u = \mathcal{L}(w) \), alors :

\[
S(u) = S(\mathcal{L}(w)),
\]

et d’après (a) on a :
\[S(u) = \mathcal{L}(S(w)). \]

Donc \(S(u) \in R(\mathcal{L}) \), ce qui prouve (c).

Pour montrer (d), on montrera d'abord que les projections \((I - P)\) et \(P\), ainsi que la fonction implicite \(U\) (représenté par \(U_1\) dans l'équation (2.2.b) sont équivariantes par \(S\).

En effet, pour \(u = v + w\) dans \(\mathcal{H}\), où \(v \in \ker(\mathcal{L})\) et \(w \in R(\mathcal{L})\), tenant compte de l'invariance des sous-espaces \(\ker(L)\) et \(R(\mathcal{L})\) on a :

\[S((I - P)(u)) = S((I - P)(v + w)) = S(w) = (I - P)(S(w)) = (I - P)(S(v) + S(w)) = (I - P)(S(u)) \]

et de la même façon on obtient l'équivariance de \(P\) par \(S\).

Passons maintenant à \(U\), et posons \(U_S(v, \mu) = S^{-1}U(S(v), \mu)\), on a donc :

\[(I - P)\Phi(v + U_S(v, \mu), \alpha) = S^{-1} \circ S((I - P)\Phi(v + U_S(v, \mu), \mu)) \]

\[= S^{-1} \circ S((I - P)\Phi(S^{-1}(S(v) + U(S(v), \mu)), \mu)) \]

\[= S^{-1}(I - P)\Phi(S(v) + U(S(v), \mu), \mu) \]

Cette dernière quantité est nulle, puisque \(U(., \mu)\) est la fonction implicite, solution de (2.2.b) (pour \(U_1\) fonction de \(U_0\)).
Ainsi \(U_S \) est aussi une solution du problème (2.2.b), et avec l’unicité de la solution du théorème de la fonction implicite, on déduit que \(U_S (v, \mu) = U (v, \mu) \), c’est à dire :

\[
S (U (v, \mu)) = U(S(v), \mu)
\]

En revenant à la définition (voir (2.3)) de \(G \) et avec l’hypothèse de la proposition sur \(\Phi \) il en découle que

\[
S (G (v, \mu)) = G(S(v), \mu)
\]

Donc \(G \) est bien équivariante par \(S \), et (d) est vérifié.

Remarque 2.4.5: *Il est important de signaler que la démonstration précédente entraîne que les projections \((I - P)\) et \(P\), ainsi que la fonction implicite \(U\) de l’équation (2.2.b) sont équivariantes par \(S\).*

2.4.2 Les symétries du problème

Ce paragraphe a pour but de déterminer les symétries (transformations) qui laissent le système (1.9) (ou (1.12)) invariant. La fonction de réduction étant l’expression des composantes de \(G_{\mu,s} \) (voir (2.11)), par rapport à la base \(\{v_0, v_1, v_2\} \) de \(\ker(L_{\kappa,k_c}) \), et puisque d’après la proposition 2.4.4, ces dernières reproduisent les symétries du problème (2.6). On étudiera leur action sur le noyau de \(L_{\kappa,k_c} \), pour en tirer les conséquences sur la fonction de réduction \(g\), et sur la structure de l’équation réduite (2.12).

On peut vérifier par un calcul direct que le membre de gauche du système d’équations, (1.9) (ou (1.12)) commute avec les transformations suivantes :

1. Les translations \(S_{X_0} \) dans la direction de \(X\). Elles sont définies par
 \[
 S_{X_0} (U(X, y, z)) = U(X - X_0, y, z).
 \]
2. La réflexion \(S_1 \), définie pour \(U = (v_x, v_y, v_z, \theta, p)\) par
 \[
 S_1 : \quad U(X, y, z) \mapsto (-v_x, v_y, v_z, \theta, p)(-X, y, z).
 \]
(3) La réflexion S_2, définie par

$$S_2: \quad U(X, y, z) \mapsto (v_x, v_y, -v_z, -\theta, p)(X, y, 1 - z).$$

où X_0 est un réel quelconque.

Ainsi en revenant au problème (2.6), en posant $L_{\mu,s} = L_{R,k} - L_{R_c,k_c}$, avec $\mu = R - R_c$ et $s = k - k_c$, l’application

$$\Phi(U, \mu, s) = L_{R,c,k_c}(U) + L_{\mu,s}(U) + N_{k_c+s}(U)$$

est une application équivariante par S_{X_0}, S_1 et S_2.

Remarque 2.4.6: Pour le système (1.12), on a des symétries analogues qu’on peut définir par :

1. $S_{X_0}(U(X, Y, z)) = U(X - X_0, Y, z)$

2. $S_{Y_0}^T(U(X, Y, z)) = U(X, Y - Y_0, z)$

(2') $S_1: \quad U(X, Y, z) \mapsto (-v_x, v_y, v_z, \theta, p)(-X, Y, z)$

(2') $S_1': \quad U(X, Y, z) \mapsto (v_x, -v_y, v_z, \theta, p)(X, -Y, z)$

(3) $S_2: \quad U(X, Y, z) \mapsto (v_x, v_y, -v_z, -\theta, p)(X, Y, 1 - z)$,

qui seront utiles dans le traitement de l’équation réduite.

Remarque 2.4.7: Pour préciser le sens des définitions ci-dessus, concernant les transformations S_{X_0}, S_1 et S_2, il faut revenir à la remarque 1.2.5. $U(X, y)$ étant la représentation de la fonction (2π-périodique par rapport à X) $\tilde{U}(X, y)$, par sa restriction à l’ensemble $\overline{\Omega} = [0, 2\pi] \times [0, 1]$, on considère les définitions précédentes comme suit : pour $i = 0, 1, 2$, on a :

$$S_i(U(X, y)) = \text{restriction de } S_i\left(\tilde{U}(X, y)\right) \text{ à } \overline{\Omega}$$
2.4.3 L’effet des symétries sur la structure de l’équation réduite

Compte tenu de l’action de ces symétries sur les éléments du noyau de l’opérateur \(L_{\mathcal{R},k_c} \), la fonction \(g \) possède des propriétés résumées dans les propositions 2.4.9, 2.4.10 et 2.4.11. Dans toute cette partie, nous notons l’inverse du carré de la norme des éléments \(v_1 \) et \(v_2 \) de \(\ker(L_{\mathcal{R},k_c}) \) par \(r \):

\[
 r = \frac{1}{\|v_1\|^2} = \frac{1}{\|v_2\|^2}.
\]

Commençons par une invariance qui joue un rôle important, et qui est celle de l’ensemble \(\mathcal{S} \) des solutions \(U \) du problème \(\Phi(U, \mu, s) = 0 \) par rapport aux translations de \(\mathcal{H} \) dans la direction de \(v_0 \) élément de \(\ker(L_{\mathcal{R},k_c}) \). Autrement dit en notant \(\tau_a \) la translation définie pour \(U \in \mathcal{H} \) par \(\tau_a(U) = U + av_0 \) (avec \(a \in \mathbb{R} \)) vérifie :

\[
 \tau_a(\mathcal{S}) \subset \mathcal{S}
\]

Ainsi grâce au fait que la projection du problème (2.6), sur le sous-espace engendré par \(v_0 \) est nulle, on obtient la proposition suivante :

Proposition 2.4.8: La fonction de réduction \(g \) est indépendante de \(a_0 \) et \(g_0 \equiv 0 \). Le problème (2.12) se réduit donc à l’équation suivante :

\[
 (g_1(0, a_1, a_2, \mu, s), g_2(0, a_1, a_2, \mu, s)) = 0 \tag{2.13}
\]

L’invariance par rapport aux translations : \(S_{X_0} \)

Etudions d’abord l’action de \(S_{X_0} \) sur le sous-espace de \(\ker(L_{\mathcal{R},k_c}) \) engendré par \(\{v_1, v_2\} \).

Pour tout élément \(v \) de ce sous-espace de \(\ker(L_{\mathcal{R},k_c}) \), il existe un couple de nombres réels \((\alpha_1, \alpha_2)\) tel que :

\[
 v = \alpha_1 v_1 + \alpha_2 v_2
\]

La représentation en coordonnées polaires de \((\alpha_1, \alpha_2) \in \mathbb{R}^2\)

\[
 \alpha_1 = \rho \cos(\varphi) \quad \text{et} \quad \alpha_2 = \rho \sin(\varphi)
\]
avec \(\rho \geq 0 \) dans \(\mathbb{R} \) et \(\varphi \in \mathbb{R} \), nous donnons :

\[
v = \rho ((\cos \varphi)v_1 + (\sin \varphi)v_2) = v(\rho, \varphi)
\]

On a alors :

\[
(S_{X_0}v)(\rho, \varphi) = \rho (\cos(\varphi).S_{X_0}(v_1) + \sin(\varphi).S_{X_0}(v_2))
\]

avec :

\[
S_{X_0}v_1 = \begin{pmatrix}
-\pi \sin(X - X_0).\cos \pi z \\
\pi \cos(X - X_0).\sin \pi z \\
\cos(X - X_0).\sin \pi z \\
-\cos(X - X_0).\cos \pi z
\end{pmatrix}
\]

et

\[
S_{X_0}v_2 = \begin{pmatrix}
\pi \cos(X - X_0).\cos \pi z \\
\pi \sin(X - X_0).\sin \pi z \\
\sin(X - X_0).\sin \pi z \\
-\sin(X - X_0).\cos \pi z
\end{pmatrix}
\]

ce qui entraîne :

\[
(S_{X_0}v)(\rho, \varphi) = \rho (\cos(\varphi + X_0).v_1 + \sin(\varphi + X_0).v_2)
\]

d’où :

\[
(S_{X_0}v)(\rho, \varphi) = v(\rho, \varphi + X_0)
\]

Ainsi, en exprimant \(G_{\mu,s} \) (voir (2.11)) dans le plan défini par les directions de \(v_1 \) et \(v_2 \), en fonction de \((\rho, \varphi) \), on obtient :

\[
G_{\mu,s}(v(\rho, \varphi)) = G_{\mu,s}(\rho(\cos \varphi)v_1 + \rho(\sin \varphi)v_2)
\]

\[
= r.g_1(\rho \cos \varphi, \rho \sin \varphi).v_1 + r.g_2(\rho \cos \varphi, \rho \sin \varphi).v_2
\]

\[
= r.g_1(\rho, \varphi).v_1 + r.g_2(\rho, \varphi).v_2
\]

où (pour alléger la notation) on a posé :

\[
\begin{cases}
g_1(\rho, \varphi) = g_1(0, \rho \cos \varphi, \rho \sin \varphi, \mu, s) \\
g_2(\rho, \varphi) = g_2(0, \rho \cos \varphi, \rho \sin \varphi, \mu, s)
\end{cases}
\]

(2.14)
La linéarité de S_{X_0} nous donne :

$$S_{X_0}G_{\mu,s}(v(\rho, \varphi)) = r.g_1(\rho, \varphi). (S_{X_0}v_1) + r.g_2(\rho, \varphi). (S_{X_0}v_2)$$

$$= r.g_1(\rho, \varphi) \begin{pmatrix} -\pi \sin(X - X_0). \cos \pi z \\ \pi \cos(X - X_0). \sin \pi z \\ \cos(X - X_0). \sin \pi z \\ -\cos(X - X_0). \cos \pi z \end{pmatrix} + r.g_2(\rho, \varphi) \begin{pmatrix} \pi \cos(X - X_0). \cos \pi z \\ \pi \sin(X - X_0). \sin \pi z \\ \sin(X - X_0). \sin \pi z \\ -\sin(X - X_0). \cos \pi z \end{pmatrix}$$

$$= r. (g_1(\rho, \varphi) \cos X_0 - g_2(\rho, \varphi) \sin X_0) v_1 + r. (g_1(\rho, \varphi) \sin X_0 + g_2(\rho, \varphi) \cos X_0) v_2$$

Puisque $G_{\mu,s}$ est équivariante par S_{X_0} d’après la proposition 2.4.4 on a :

$$S_{X_0}G_{\mu,s}(v(\rho, \varphi)) = G_{\mu,s}(S_{X_0}v(\rho, \varphi)) = G_{\mu,s}(v(\rho, \varphi + X_0))$$

$$= r.g_1(\rho, \varphi + X_0)v_1 + r.g_2(\rho, \varphi + X_0)v_2.$$ D’où, en comparant les deux dernières expressions de $S_{X_0}G_{\mu,s}(v(\rho, \varphi))$ on obtient :

$$\begin{pmatrix} g_1(\rho, \varphi + X_0) \\ g_2(\rho, \varphi + X_0) \end{pmatrix} = \begin{pmatrix} \cos X_0 & -\sin X_0 \\ \sin X_0 & \cos X_0 \end{pmatrix} \begin{pmatrix} g_1(\rho, \varphi) \\ g_2(\rho, \varphi) \end{pmatrix}$$

Ainsi l’action de S_{X_0} sur ker($L_{\mathcal{R}_c,k_c}$) se traduit par la rotation d’angle X_0 dans le plan de v_1 et v_2. On en déduit qu’on peut obtenir $g(\rho, \varphi + X_0)$ dans le plan (g_1, g_2), par une rotation de $g(\rho, \varphi)$ dans ce plan, d’un angle X_0, et par conséquent en utilisant les coordonnées polaires $(a_1, a_2) = (\rho \cos \varphi, \rho \sin \varphi)$ on a la proposition suivante :

Proposition 2.4.9: *Pour tout (ρ, φ, X_0) dans $\mathbb{R}^+ \times \mathbb{R}^2$, on a :

$$\begin{pmatrix} g_1(0, \rho \cos(\varphi + X_0), \rho \sin(\varphi + X_0), \mu, s) \\ g_2(0, \rho \cos(\varphi + X_0), \rho \sin(\varphi + X_0), \mu, s) \end{pmatrix} = \begin{pmatrix} \cos X_0 & -\sin X_0 \\ \sin X_0 & \cos X_0 \end{pmatrix} \begin{pmatrix} g_1(0, a_1, a_2, \mu, s) \\ g_2(0, a_1, a_2, \mu, s) \end{pmatrix}$$*
Et pour connaitre toutes les solutions de l’équation (2.13), il suffit de connaitre celles qui correspondent à \(a_2 = 0 \) et vérifient

\[
(g_1(0, \rho, 0, \mu, s), g_2(0, \rho, 0, \mu, s)) = 0
\]

(2.15)

L’invariance par rapport à la reflexion : \(S_1 \)

L’action de \(S_1 \) sur le sous-espace de \(\ker (L_{R_e,k_e}) \) engendré par \(v_1 \) et \(v_2 \) s’exprime par :

\[
S_1(v_1) = v_1, \quad \text{et} \quad S_1(v_2) = -v_2,
\]

donc on obtient pour \(v(\rho, \varphi) = \rho (\cos(\varphi).v_1 + \sin(\varphi).v_2) \)

\[
(S_1 v) (\rho, \varphi) = \rho (\cos \varphi.S_1 v_1 + \sin \varphi.S_1 v_2)
\]

\[
= \rho (\cos \varphi.v_1 - \sin \varphi.v_2)
\]

\[
= -v(-\rho, -\varphi) = v(\rho, -\varphi),
\]

et ainsi :

\[
(S_1 v) (\rho, \varphi) = -v(-\rho, -\varphi) = v(\rho, -\varphi)
\]

Donc :

\[
S_1 G_{\mu,s}(v(\rho, \varphi)) = r.g_1(\rho, \varphi). (S_1 v_1) + r.g_2(\rho, \varphi). (S_1 v_2)
\]

\[
= r.g_1(\rho, \varphi).v_1(-X, z) + r.g_2(\rho, \varphi).v_2(-X, z)
\]

\[
= r.g_1(\rho, \varphi).v_1 - r.g_2(\rho, \varphi).v_2
\]

et tenant compte de l’équivariance, nous obtenons :

\[
S_1 G_{\mu,s}(v(\rho, \varphi)) = G_{\mu,s}((S_1 v)(\rho, \varphi)) = G_{\mu,s}(v(\rho, -\varphi))
\]

\[
= r.g_1(\rho, -\varphi).v_1 + r.g_2(\rho, -\varphi).v_2
\]

d’où :

\[
g_1(\rho, \varphi).v_1 - g_2(\rho, \varphi).v_2 = g_1(\rho, -\varphi).v_1 + g_2(\rho, -\varphi).v_2.
\]
2. La méthode de Lyapunov-Schmidt et les structures stationnaires 58

Par conséquent :

\[g_1(\rho, \varphi) = g_1(\rho, -\varphi) \quad \text{et} \quad -g_2(\rho, \varphi) = g_2(\rho, -\varphi), \]

ainsi \(g_2(\rho, \varphi) \) étant une fonction impaire par rapport à \(\varphi \) on a \(g_2(\rho, 0) \equiv 0 \), d’où la proposition suivante

Proposition 2.4.10: La résolution de l’équation (2.15) revient à celle de :

\[g_1(0, \rho, 0, \mu, s) = 0 \] (2.16)

L’invariance par \(S_2 \)

Pour tout élément \(v = \rho (\cos \varphi, v_1 + \sin \varphi, v_2) \) dans \(\ker(L_{R_c,k_c}) \) on a :

\[(S_2v)(\rho, \varphi) = \rho (\cos \varphi, S_2v_1 + \sin \varphi, S_2v_2) \]
\[= -\rho (\cos \varphi, v_1 + \sin \varphi, v_2) \]
\[= -v(\rho, \varphi) = v(-\rho, \varphi) \]

donc :

\[(S_2v)(\rho, \varphi) = -v(\rho, \varphi) = v(-\rho, \varphi) \]

On a ainsi :

\[S_2G_{\mu,s}(v(\rho, \varphi)) = rg_1(\rho, \varphi). (S_2v_1) + rg_2(\rho, \varphi). (S_2v_2) \]
\[= -rg_1(\rho, \varphi).v_1 - rg_2(\rho, \varphi).v_2, \]

et d’autre part, par équivariance on a

\[(S_2v)(\rho, \varphi) = G_{\mu,s}((S_2v)(\rho, \varphi)) \]
\[G_{\mu,s}(v(-\rho, \varphi)) = rg_1(-\rho, \varphi).v_1 + rg_2(-\rho, \varphi).v_2 \]

on arrive enfin à :

\[-g_1(\rho, \varphi).v_1 - g_2(\rho, \varphi).v_2 = g_1(-\rho, \varphi).v_1 + g_2(-\rho, \varphi).v_2 \]

et on obtient

\[-g_1(\rho, \varphi) = g_1(-\rho, \varphi) \]

On a donc une information sur la parité de \(g_1(\rho, 0) \)
Proposition 2.4.11: La fonction \(g_1(0, \rho, 0, \mu, s) \) est une fonction impaire par rapport à \(\rho \).

2.4.4 Conséquences sur l’équation réduite

Les retombées de l’équivariance de notre problème par les transformations \(S_{x_0}, S_1 \), et \(S_2 \), sur la fonction \(g \) sont dans les trois propositions précédentes (2.4.9, 2.4.10, et 2.4.11). Ainsi en tenant compte de la proposition 2.4.8, on a montré que l’équation réduite (2.12) admet une structure plus simple, décrite dans le corollaire suivant :

Corollaire 2.4.12: Toutes les solutions du système algébrique non linéaire (2.12), s’obtiennent à partir des solutions de l’équation :

\[g_1(0, \rho, 0, \mu, s) = 0 \]

Et de plus \(g_1 \) est une fonction impaire par rapport à \(\rho \).

Remarque 2.4.13: On appellera dans tout le reste du texte fonction de réduction, la fonction \(f \) impaire par rapport à \(\rho \) définie par :

\[f(\rho, \mu, s) = g_1(0, \rho, 0, \mu, s) \quad (2.17) \]

Et ainsi d’après le corollaire 2.3, on peut remplacer l’équation réduite par

\[f(\rho, \mu, s) = 0 \quad (2.18) \]

Résumons ces résultats, dans la proposition suivante

Proposition 2.4.14: Dans tout voisinage de \((0, 0, 0)\) dans \(\mathbb{R}^+ \times \mathbb{R}^2 \), à chaque solution \((\rho, \mu, s)\) de l’équation réduite

\[f(\rho, \mu, s) = 0 \]

correspond (à une translation près, le long de l’axe des \(x \)) une solution du système (1.9) (ou (1.12)) sous la forme \(S_{x_0}(\rho v_1 + U(\rho v_1, \mu, s)) \) où \(x_0 \) est un nombre réel quelconque.
2.5 Calcul de la fonction de réduction \(f \)

Pour étudier l’existence des solutions du problème (2.18), et avoir une idée de leur comportement, on a besoin de calculer la fonction \(f \) ou du moins ses termes dominants. On calculera simultanément les termes dominants dans le développement de \(f(\rho, \mu, s) \) et de la fonction implicite \(\mathcal{U}(\rho v_1, \mu, s) \) (définie par (2.10)) en série de Taylor par rapport aux variables \((\rho, \mu, s)\) au voisinage de \((0, 0, 0)\). On procédera par identification des coefficients des termes dans (2.10.a) et (2.10.b), de même ordre de puissance par rapport à \(\rho, \mu \) et \(s \). Compte tenu de la remarque 2.4.13, nous savons déjà que la fonction \(f \) est impaire par rapport à \(\rho \), on ne considérera donc dans nos calculs que les termes de puissances impaires par rapport à \(\rho \).

2.5.1 Forme générale de \(f \) et \(\mathcal{U} \)

La fonction de réduction étant assez régulière on peut la représenter à l’aide de sa série de Taylor

\[
f(\rho, \mu, s) = \sum_{\alpha + \beta + \gamma \geq 2} f^{\gamma}_{\alpha \beta} \mu^\alpha s^\beta \rho^\gamma
\]

développée en \((0, 0, 0)\) pour tout \((\rho, \mu, s)\) au voisinage de \((0, 0, 0)\).

De la même façon, avec \(v = \rho v_1 \), \(\mathcal{U}(v, \mu, s) \) est une fonction de \((\rho, \mu, s)\), avec un développement de Taylor pour \((\rho, \mu, s)\) au voisinage de \((0, 0, 0)\) égal à :

\[
\mathcal{U}(\rho v_1, \mu, s) = \sum_{\alpha + \beta + \gamma \geq 2} \mathcal{U}^{\gamma}_{\alpha \beta} \mu^\alpha s^\beta \rho^\gamma.
\]

En substituant ces développements dans (2.8.a) et (2.8.b), puis en identifiant les termes correspondant aux \(\mu^\alpha s^\beta \rho^\gamma \), on obtient les coefficients \(f^{\gamma}_{\alpha \beta} \) et \(\mathcal{U}^{\gamma}_{\alpha \beta} \).
2.5.2 Calcul des premiers termes du développement de f

Pour calculer les termes dominants dans le développement de f, on représente l’opérateur $\mathcal{L}_{\mu,s} + N_{k_c+s}$ par la somme des applications $\mu^\alpha s^\beta \mathcal{A}_{\alpha\beta}$, associées aux différentes puissances de μ et s, dont il est composé :

$$\mathcal{L}_{\mu,s} + N_{k_c+s} = \sum \mu^\alpha s^\beta \mathcal{A}_{\alpha\beta}.$$

En projetant alors, $\mathcal{A}_{10}(v_1)$ sur $\text{ker}(L_{\mathcal{R}_{c,k_c}})$, on obtient le coefficient de $\rho\mu$ dans f :

$$f^1_{10} = \langle \mathcal{A}_{10}(v_1), v_1 \rangle = -\pi^2.$$

On calcule le coefficient de ρs dans f de la même manière, et on trouve :

$$f^1_{01} = \langle \mathcal{A}_{01}(v_1), v_1 \rangle = 0.$$

Pour le coefficient de ρ^3 dans f, on a besoin de celui de \mathcal{U}^2_{00}. Il vérifie :

$$(I - P)(L_{\mathcal{R}_{c,k_c}}(\mathcal{U}^2_{00}) + N_{k_c}(v_1)) = 0,$$

ce qui est équivalent à :

$$L_{\mathcal{R}_{c,k_c}}(\mathcal{U}^2_{00}) = -(I - P)N_{k_c}(v_1). \quad (2.19)$$

Calcul des premiers termes du développement de \mathcal{U}

La partie de droite dans (2.19), est une combinaison linéaire de termes comme

$$\alpha_1 \sin X \cos(\pi z), \alpha_2 \cos X \sin(\pi z), \alpha_3 \cos X \sin(\pi z), \alpha_4 \cos X \cos(\pi z)\dagger.$$

Et puisque sous-espace \mathcal{E} des vecteurs de cette forme est globalement invariant sous l’action de l’opérateur $L_{\mathcal{R}_{c,k_c}}$, on peut résoudre l’équation différentielle (2.19), par des méthodes algébriques.
En cherchant les solutions de (2.19), dans \mathcal{E}, on arrive au système algébrique linéaire suivant (rappelons que $R_c = 2\pi$ et $k_c = \pi$) :

$$
\begin{pmatrix}
1 & 0 & 0 & -\pi \\
0 & 1 & -2\pi & -\pi \\
0 & -2\pi & 2\pi^2 & 0 \\
-\pi & -\pi & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
\beta_1 \\
\beta_2 \\
\beta_3 \\
\beta_4 \\
\end{pmatrix} =
\begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\alpha_4 \\
\end{pmatrix}
$$

(2.20)

qui est dégénéré.

Mais puisque le système (2.19) est à résoudre dans $R(L_{R_c,k_c})$, la solution doit être orthogonale à v_1 (en tant qu’élément de ker(L_{R_c,k_c})). Cette condition est équivalente à l’équation suivante :

$$
-\pi \beta_1 + \pi \beta_2 + \beta_3 - \beta_4 = 0,
$$

que nous associons au système (2.20), pour obtenir un problème bien posé, que nous résolvons à l’aide du logiciel Maple.

Ainsi à partir de $(\beta_1, \beta_2, \beta_3, \beta_4)$, nous obtenons U_{00}^2.

Revenons maintenant aux coefficients de f. Pour le coefficient de ρ^3, on projette $N_{k_c}(v_1 + U_{00}^2)$ sur ker(L_{R_c,k_c}), et on a

$$
f_{00}^3 = < N_{k_c}(w_1 + U_{00}^2), v_1 > = \frac{\pi^3}{16}.
$$

Pour calculer le coefficient de ρs^2 dans f, on a besoin de U_{01}^1, qui satisfait

$$
L_{R_c,k_c}(U_{01}^1) = -(I - P)A_01(v_1)
$$

la partie de droite de l’équation ci-dessus est dans le sous-espace \mathcal{E}. En procédant comme précédemment pour le terme U_{00}^2, on obtient U_{01}^1, à partir duquel nous calculons le coefficient de ρs^2 :

$$
f_{02}^1 = < A_{02}(v_1) + A_{01}(U_{01}^1), v_1 > = \pi.
$$

Finalement on arrive à :

$$
f(\mu, s, \rho) = \pi \rho (-\pi \mu + s^2 + \frac{\pi^2}{16} \rho^2 + ...) \quad (2.21)
$$
où " + ..." désigne des termes d’ordre plus élevés.
Maintenant on a suffisamment d’informations sur la structure de l’équation réduite, pour montrer que le problème (2.6) possède des solutions.

Théorème 2.5.1: Pour tout \((\mu, s)\) au voisinage de \((0, 0)\) tel que \(\mu > 0\), l’équation \(f(\rho, \mu, s) = 0\) admet une et une seule solution \((\rho, \mu, s)\) dans le voisinage de \((0, 0, 0)\).

Preuve

En vertu des propositions (2.3.1) et (2.4.14), grâce à l’application du théorème de la fonction implicite à \(\frac{f(\rho, \mu, s)}{\rho} = 0\), on arrive au résultat du théorème.

Corollaire 2.5.2: Lorsque \(\mu = \mathcal{R} - \mathcal{R}_c\) et \(s = k - k_c\) sont suffisamment proches de 0, il existe des solutions de (2.6), de la forme \(\bar{U}_{\mu, s} = u + \mathcal{U}(u, \mu, s)\) où \(\mathcal{U}\) est une fonction de classe \(C^q\) (avec \(q\) aussi grand qu’on veut) de tous ses arguments, alors que \(u = a_0v_0 + \rho(\cos \varphi.v_1 + \sin \varphi.v_2)\), \(a_0\) et \(\varphi\) étant des réels quelconques, \(\rho\) étant lié à \(\mu\) et \(s\) par \(f(\rho, \mu, s) = 0\), où \(f\) est une fonction de classe \(C^q\) (avec \(q\) aussi grand qu’on veut) de tous ses arguments. De plus les premiers termes du développement de Taylor de \(f\) sont donnés par (2.21).

Remarque 2.5.3: Toute solution de (2.6) représente une solution de (1.9), donc une solution stationnaire (périodique par rapport à \(x\) et indépendante de \(y\)) du problème (1.1), de longueur d’onde égale à \(k_c + s\) et d’amplitude \(\rho\). Pour le problème (1.1), toute structure convective sous forme de rouleau, voisine de l’état conductive est de cette forme : \(\bar{U}_{\mu, s} = u + \mathcal{U}(u, \mu, s)\).

Dans la figure Fig.2.1, on a une représentation de la distribution de la température sur le plan \((x, y)\) au niveau \(z = \frac{1}{2}\), obtenue à partir du calcul de \(u + \mathcal{U}(u, \mu, s)\) :

\[
\theta(u) = \rho_1 \sin(X) \sin(\pi z) - \frac{1}{8} \rho_1^2 \sin(2\pi z)
\]
avec $u = \rho v^2$ et où $\theta(u)$ désigne la (température) $4^{\text{ème}}$ composante de $u + \mathcal{U}(u, \mu, s)$.

Remarque 2.5.4: Pour les calculs des instabilités au chapitre 3, on aura besoin de termes dans le développement de f d’ordres plus élevés que ceux qui figurent dans (2.21). Un calcul plus poussé nous donne

$$f(\mu, s, \rho) = \pi \rho(-\pi \mu + s^2 + \frac{\pi^2 \rho^2}{16} + \frac{\pi s \rho^2}{4(1 + \pi^2)} + \frac{2s \mu}{(1 + \pi^2)} - \frac{(1 - \pi^2)s^3}{\pi(1 + \pi^2)} + O(s^4))$$

$$+ \pi (-31 \pi^4 + 46 \pi^2 + 23) \rho^4 + \pi (-\frac{2\pi^4 - 7 \pi^2 - 3}{32(1 + \pi^2)^2} \mu \rho^2 - \frac{\pi^4 - 4 \pi^2 - 2}{4(1 + \pi^2)^2} \mu^2 + O_{l+p+q \geq 5}(s^l \mu^p \rho^q))$$

2.5.3 Conclusion

Par une analyse locale, basée sur la méthode de réduction de Liapunov-Schmidt, nous avons montré l’existence de solutions pour le système (1.9)-(1.11). Ces solutions sont les états stationnaires spatialement périodiques du système d’équations aux dérivées partielles (1.1)-(1.2), défini sur la couche infinie $\mathbb{R}^2 \times]0, 1[$. Une analyse approfondie des symétries du problème, nous a simplifié la structure de l’équation réduite. Ceci nous a permis d’alléger les calculs des termes dominants dans le développement de Taylor, de la fonction de réduction, lesquels déterminent complètement l’ensemble des petites solutions. Il nous reste maintenant l’étude de leur stabilité.

2.6 Application aux carrés

Les structures carrées (ou presque carrées) étant représentées par les solutions du système (1.12), pour montrer leur apparition possible, il suffit de montrer l’existence de solutions pour (1.12) avec (k_x, k_y) au voisinage
Fig. 2.1: Structures des rouleaux convectifs : champ des température dans le plan $z = \frac{1}{2}$. -(R0) rouleaux parallèles à l’axe des x, -(R90) rouleaux perpendiculaires à l’axe des x.
La méthode de Lyapunov-Schmidt et les structures stationnaires

2. Usant du cadre fonctionnel précisé au paragraphe 2.2.3, et en procédant de la même façon avec laquelle on a traité la question de l’existence des solutions rouleaux au paragraphe 2.3, mais en prenant cette fois comme opérateur “pivot” l’opérateur L_{R_c,k_c} avec $k_c = (\pi, \pi)$ au lieu de l’opérateur L_{R_c,k_c}, on montre l’existence de solutions pour le problème (1.12). Ainsi en appliquant la méthode de Liapunov-Schmidt à la formulation opérationnelle (2.9) du problème (1.12), et grâce aux symétries (voir remarque 2.4.6) on arrive à le réduire à un système d’équations algébriques, non linéaire, d’ordre 2.

On reproduisant les démarches de la démonstration du théorème avec les ajustement (formelles) nécessaires, on obtient facilement le résultat suivant

Théorème 2.6.1: L’opérateur L_{R_c,k_c} est un opérateur de Fredholm d’indice zéro.

En calculant directement le noyau de L_{R_c,k_c}, on arrive à une base constituée des cinq vecteurs suivants

$$v_0 = (0, 0, 0, 1)$$

$$v_1 = (-\pi \sin(X) \cos(\pi z), 0, \pi \cos(X) \sin(\pi z), \cos(X) \sin(\pi z), -\cos(X) \cos(\pi z))$$

$$v_2 = (\pi \cos(X) \cos(\pi z), 0, \pi \sin(X) \sin(\pi z), \sin(X) \sin(\pi z), -\sin(X) \cos(\pi z))$$

$$v_3 = (0, -\pi \sin(Y) \cos(\pi z), \pi \cos(Y) \sin(\pi z), \cos(Y) \sin(\pi z), -\cos(Y) \cos(\pi z))$$

$$v_4 = (0, \pi \cos(Y) \cos(\pi z), \pi \sin(Y) \sin(\pi z), \sin(Y) \sin(\pi z), -\sin(Y) \cos(\pi z))$$

Après l’examen des symétries (voir remarque 2.4.6) et l’analyse de leurs actions sur $\ker(L_{R_c,k_c})$, on arrive à réduire l’équation de bifurcation associée au système (2.9) de la dimension 5 à la dimension 2. Ainsi on obtient un système de deux équations algébriques non linéaires, qui détermine toutes
les solutions petites de (2.9) (et par conséquent du problème (1.12) associé aux structures carrées), de la forme

\[
\begin{aligned}
&g_1 (\mu, s_1, s_2, \rho_1, \rho_2) = 0 \\
g_2 (\mu, s_1, s_2, \rho_1, \rho_2) = 0
\end{aligned}
\] (2.22)

où \(\mu = \mathcal{R} + \mathcal{R}_c = 2\pi, \ s_1 = k_x + \pi, \) et \(s_2 = k_y + \pi. \) Les valeurs de \(\rho_1 \) et \(\rho_2 \) représentent respectivement la longueur d’un vecteur du plan engendré respectivement par \(v_1, v_2 \) et \(v_3, v_4 \) dans \(\ker(L_{\mathcal{R}c,k_c}). \) Les fonctions \(g_1 \) et \(g_2 \) sont régulières par rapport à \((\mu, s_1, s_2, \rho_1, \rho_2) \), et respectivement impaires par rapport à \(\rho_1 \) et \(\rho_2. \)

Le calcul des termes dominants dans le développement de Taylor des fonctions \(g_1 \) et \(g_2 \) donne

\[
g_1 (\mu, s_1, s_2, \rho_1, \rho_2) = -2\pi^3 \mu \rho_1 + \pi^2 s_1^2 \rho_1 - \frac{1}{2} \left(\frac{\pi^4 - 4 \pi^2 - 2}{2 \pi^2 + 1 + \pi^4} \right) \rho_1^3 + \frac{1}{8} \pi^4 \rho_1^3 + \frac{1}{16} \pi^3 \left(\frac{\pi^4 - 4 \pi^2 - 2}{2 \pi^2 + 1 + \pi^4} \right) \mu \rho_1^3 + \frac{5}{28} \pi^4 \rho_1 \rho_2^2 + ...
\]

et

\[
g_2 (\mu, s_1, s_2, \rho_1, \rho_2) = -2\pi^3 \mu \rho_2 + \pi^2 s_2^2 \rho_2 - \frac{1}{2} \left(\frac{\pi^4 - 4 \pi^2 - 2}{2 \pi^2 + 1 + \pi^4} \right) \rho_2^3 + \frac{1}{8} \pi^4 \rho_2^3 + \frac{1}{16} \pi^3 \left(\frac{\pi^4 - 4 \pi^2 - 2}{2 \pi^2 + 1 + \pi^4} \right) \mu \rho_2^3 + \frac{5}{28} \pi^4 \rho_1^2 \rho_2 + ...
\]

Grâce à la parité de \(g_1 \) et \(g_2, \) pour des solutions non nulles le système (2.22) est équivalent à

\[
\begin{aligned}
&f_1 (\mu, s_1, s_2, \rho_1, \rho_2) = 0 \\
f_2 (\mu, s_1, s_2, \rho_1, \rho_2) = 0
\end{aligned}
\] (2.23)

avec

\[
f_1 (\mu, s_1, s_2, \rho_1, \rho_2) = -2\pi \mu + s_1^2 + \frac{1}{8} \pi^2 \rho_1^2 + \frac{5}{28} \pi^2 \rho_2^2 + ...
\]
et

\[f_2(\mu, s_1, s_2, \rho_1, \rho_2) = -2\pi\mu + s_2^2 + \frac{1}{8}\pi^2\rho_2^2 + \frac{5}{28}\pi^2\rho_1^2 + \ldots \]

On a maintenant tout ce qu’il faut pour montrer que le problème admet des solutions

Théorème 2.6.2: Pour tout \((\mu, s_1, s_2)\) au voisinage de \((0, 0, 0)\) tel que \(\mu > 0\) et \(-\frac{6\pi}{7} \mu + \frac{10}{7} s_1^2 < s_2^2 < \frac{3\pi}{5} \mu + \frac{7}{10} s_1^2\), le système d’équations (2.23) admet une et une seule solution \((\mu, s_1, s_2, \rho_1, \rho_2)\) dans le voisinage de \((0, 0, 0, 0, 0)\).

Preuve

Posons \(r = (\rho_1^2, \rho_2^2)\). Vu que le déterminant de la matrice

\[
\begin{pmatrix}
\frac{\pi^2}{8} & \frac{5\pi^2}{28} \\
\frac{5\pi^2}{28} & \frac{\pi^2}{8}
\end{pmatrix}
\]

est non nul le théorème de la fonction implicite assure l’existence (locale) d’une solution unique au système (2.23) en \(r = r(\mu, s_1, s_2)\), telle que \(r(0, 0, 0) = (0, 0)\). En calculant les premiers termes du développement de \(r(\mu, s_1, s_2)\) on obtient :

\[
\begin{align*}
\rho_1^2 &= \frac{56}{51\pi^2} (6 \pi \mu + 7 s_1^2 - 10 s_2^2) \\
\rho_2^2 &= -\frac{56}{51\pi^2} (-6 \pi \mu + 10 s_1^2 - 7 s_2^2)
\end{align*}
\]

Ainsi en tenant compte de la positivité des composantes du vecteur \(r(\mu, s_1, s_2)\), on a le résultat du théorème.

Ceci prouve que des solutions non triviales pour le problème (2.12) avec \((k_x, k_y)\) au voisinage de \((\pi, \pi)\), existent pourvu que le vecteur d’onde \((k_x, k_y) = (\pi + s_1, \pi + s_2)\), vérifie

\[-\frac{6\pi}{7} \mu + \frac{10}{7} s_1^2 < s_2^2 < \frac{3\pi}{5} \mu + \frac{7}{10} s_1^2\]

Par conséquent la formation de structures convectives carrées (suite à la superposition de structures de rouleaux convectifs perpendiculaires) est
possible dès que les valeurs de s_1^2 et s_2^2 soient dans la zone indiquée dans la figure Fig.2.2. Ces valeurs correspondent aux vecteurs (s_1, s_2) appartenant à une région au voisinage de $(0, 0)$ dans \mathbb{R}^2 représentée par la figure Fig.2.3.

Fig. 2.2: La zone des (s_1^2, s_2^2) pour lesquels l’existence de structures sous forme de carrés est possible

Remarque 2.6.3: Lorsque $k = (k_x, k_y)$ est au voisinage de $k_c = (\pi, \pi)$, toute solution de (2.9) représente une solution de (1.12), donc une solution stationnaire doublement périodique (par rapport à x et y) du problème (1.1), de vecteur d’onde égale à $(k_c + s_1, k_c + s_2)$ et d’amplitude $\sqrt{\rho_1^2 + \rho_2^2}$, liés par la relation (2.23). Pour le problème (1.1), toute structure convective sous forme de carrés, voisine de l’état conductif est de cette forme : $\hat{U}_{\mu, s_1, s_2} = u + U(u, \mu, s_1, s_2)$, avec u un élément de $\ker(L_{R_c, k_c})$, et U la fonction implicite associée au problème (2.9), définie par la décomposition de Liapunov-Schmidt.

Une illustration de ces structures convectives carrées est dans la figure Fig.2.5.(a), qui représente la distribution de la température suivant le plan (x, y) au ni-
La méthode de Lyapunov-Schmidt et les structures stationnaires

veau $z = \frac{1}{2}$, obtenue à partir du calcul de $u + U(u, \mu, s_1, s_2)$ dont la 4ème composante $\theta(u)$ qui représente la température du milieu est égale à :

$$\theta(u) = \rho_1 \cos(X) \sin(\pi z) + \rho_2 \cos(Y) \sin(\pi z) - \frac{1}{8} \rho_1^2 \sin(2\pi z) - \frac{1}{8} \rho_2^2 \sin(2\pi z)$$

$$- \frac{3}{14} \rho_1 \rho_2 \cos(X) \cos(Y) \sin(2\pi z) - \frac{1}{2} \mu \frac{\rho_1 (\pi^2 - 1) \cos(X) \sin(\pi z)}{(\pi^2 + 1) \pi}$$

$$- \frac{1}{2} s_1 \rho_2 (\pi^2 - 1) \cos(Y) \sin(\pi z) + \frac{1}{4} s_2 \rho_1 (-3 \pi^2 - 2 + 2 \pi^4) \cos(X) \sin(\pi z)$$

$$+ \frac{1}{4} s_2 \rho_2 (-3 \pi^2 - 2 + 2 \pi^4) \cos(Y) \sin(\pi z) + \ldots,$$

avec $u = \rho_1 v_1 + \rho_2 v_3$.

![Diagram](image.png)

Fig. 2.3: La région des vecteurs (s_1, s_2) pour lesquels l’apparition de structures sous forme de carrés est possible
2. La méthode de Lyapunov-Schmidt et les structures stationnaires 71

2.7 Application aux hexagones

Les structures convectives hexagonales sont aussi représentées par des solutions du système (1.12), mais avec \((k_x, k_y)\) au voisinage de \((\frac{\pi}{2}, \frac{\sqrt{3}\pi}{2})\). En utilisant les outils fonctionnelles du paragraphe 2.2.3, avec comme opérateur “pivot” cette fois, l'opérateur \(L_{R, \mathbf{k}_c}\) avec \(\mathbf{k}_c = (\frac{\pi}{2}, \frac{\sqrt{3}\pi}{2})\), la méthode de Liapunov-Schmidt et l’équivariance (par les symétries de la remarque 2.4.6) du problème (2.9), nous permettent de le réduire à un système d’équations algébriques non linéaire d’ordre 3.

Remarque 2.7.1: Pour les mêmes raisons évoquées dans le paragraphe précédent concernant le théorème 2.6.1, l'opérateur \(L_{R, \mathbf{k}_c}\) avec \(\mathbf{k}_c = (\frac{\pi}{2}, \frac{\sqrt{3}\pi}{2})\) est un opérateur de Fredholm d’indice zéro. En calculant son noyau on obtient une base constituée des sept vecteurs suivants

\[v_0 = (0, 0, 0, 0, 1) \]

\[v_1 = (-\pi \sin(2X) \cos(\pi z), 0, \pi \cos(2X) \sin(\pi z), \cos(2X) \sin(\pi z), -\cos(2X) \cos(\pi z)) \]

\[v_2 = (\pi \cos(\pi z) \cos(2X), 0, \pi \sin(\pi z) \sin(2X), \sin(\pi z) \sin(2X), -\cos(\pi z) \sin(2X)) \]

\[v_3 = \left(\begin{array}{c} -\frac{1}{2} \pi \cos(\pi z) \sin(X + Y), \\ -\frac{1}{2} \pi \sqrt{3} \cos(\pi z) \sin(X + Y), \\ \pi \sin(\pi z) \cos(X + Y), \\ \sin(\pi z) \cos(X + Y), \\ -\cos(\pi z) \cos(X + Y) \end{array} \right), \quad v_4 = \left(\begin{array}{c} \frac{1}{2} \pi \cos(\pi z) \cos(X + Y), \\ \frac{1}{2} \pi \sqrt{3} \cos(\pi z) \cos(X + Y), \\ \pi \sin(\pi z) \sin(X + Y), \\ \sin(\pi z) \sin(X + Y), \\ -\cos(\pi z) \sin(X + Y) \end{array} \right) \]

\[v_5 = \left(\begin{array}{c} -\frac{1}{2} \pi \cos(\pi z) \sin(X - Y), \\ \frac{1}{2} \pi \sqrt{3} \cos(\pi z) \sin(X - Y), \\ \pi \sin(\pi z) \cos(X - Y), \\ \sin(\pi z) \cos(X - Y), \\ -\cos(\pi z) \cos(X - Y) \end{array} \right), \quad et \ v_6 = \left(\begin{array}{c} \frac{1}{2} \pi \cos(\pi z) \cos(X - Y), \\ -\frac{1}{2} \pi \sqrt{3} \cos(\pi z) \cos(X - Y), \\ \pi \sin(\pi z) \sin(X - Y), \\ \sin(\pi z) \sin(X - Y), \\ -\cos(\pi z) \sin(X - Y) \end{array} \right) \]
L’étude des équivalences du problème (2.9) par rapport aux symétries définies dans la remarque 2.4.6, et l’analyse de leur effet sur l’équation de bifurcation associée au système (2.9), nous conduit à la réduire d’un problème en dimension 7 à un système d’équations algébriques non linéaire d’ordre 3. Ce système qui détermine toutes les solutions de (2.9) voisines de la solution nulle (et associées aux structures hexagonales) est de la forme

\[
\begin{align*}
g_1(\mu, s_1, s_2, \rho_1, \rho_2, \rho_3) &= 0 \\
g_2(\mu, s_1, s_2, \rho_1, \rho_2, \rho_3) &= 0 \\
g_3(\mu, s_1, s_2, \rho_1, \rho_2, \rho_3) &= 0
\end{align*}
\]

(2.24)

où \(\mu = \mathcal{R} + \mathcal{R}_c = \mathcal{R} + 2\pi, s_1 = k_x + \frac{\pi}{2}, \) et \(s_2 = k_y + \frac{\sqrt{3}\pi}{2}.\) Les valeurs de \(\rho_1, \rho_2\) et \(\rho_3\) représentent respectivement la longueur d’un vecteur du plan engendré respectivement par \(\{v_1, v_2\}, \{v_3, v_4\}\) et \(\{v_5, v_6\}\) dans \(\text{ker}(L_{\mathcal{R}_c, \mathcal{R}}).\) Les fonctions \(g_1, g_2\) et \(g_3\) sont régulières par rapport à \((\mu, s_1, s_2, \rho_1, \rho_2, \rho_3),\) et respectivement impaires par rapport à \(\rho_1, \rho_2\) et \(\rho_3.\)

Le calcul des termes dominants dans le développement de Taylor des fonctions \(g_1, g_2\) et \(g_3\) donne

\[
g_1(\mu, s_1, s_2, \rho_1, \rho_2, \rho_3) = -2\pi^3 \mu \rho_1 + 8\pi^2 s_1^2 \rho_1 + \frac{1}{8} \pi^4 \rho_1^3 + \frac{205}{1036} \pi^4 \rho_1 \rho_2^2 + \frac{205}{1036} \pi^4 \rho_1 \rho_3^2 + ...
\]

\[
g_2(\mu, s_1, s_2, \rho_1, \rho_2, \rho_3) = -2\pi^3 \mu \rho_2 + \pi^2 \left(\frac{s_1 + \sqrt{3}s_2}{2}\right) \rho_2 + \frac{1}{8} \pi^4 \rho_2^3 + \frac{205}{1036} \pi^4 (\rho_1^2 + \rho_3^2) \rho_2 + ...
\]

\[
g_3(\mu, s_1, s_2, \rho_1, \rho_2, \rho_3) = -2\pi^3 \mu \rho_3 + \pi^2 \left(\frac{s_1 + \sqrt{3}s_2}{2}\right) \rho_3 + \frac{1}{8} \pi^4 \rho_3^3 + \frac{205}{1036} \pi^4 (\rho_1^2 + \rho_2^2) \rho_3 + ...
\]

Les fonctions \(g_1, g_2,\) et \(g_3\) étant des fonctions impaires par rapport respectivement à \(\rho_1, \rho_2\) et \(\rho_3,\) pour la recherche de solutions non nulles le système
(2.24) est équivalent à

\[
\begin{align*}
 f_1(\mu, s_1, s_2, \rho_1, \rho_2, \rho_3) &= 0 \\
 f_2(\mu, s_1, s_2, \rho_1, \rho_2, \rho_3) &= 0 \\
 f_3(\mu, s_1, s_2, \rho_1, \rho_2, \rho_3) &= 0
\end{align*}
\]

avec

\[
\begin{align*}
 f_1(\mu, s_1, s_2, \rho_1, \rho_2, \rho_3) &= -2\pi\mu + 8s_1^2 + \frac{1}{8}\pi^2\rho_1^2 + \frac{205}{1036}\pi^2\rho_2^2 + \frac{205}{1036}\pi^2\rho_3^2 + \ldots, \\
 f_2(\mu, s_1, s_2, \rho_1, \rho_2, \rho_3) &= -2\pi\mu + \frac{(s_1 + \sqrt{3}s_2)^2}{2} + \frac{1}{8}\pi^2\rho_2^2 + \frac{205}{1036}\pi^2(\rho_1^2 + \rho_3^2) + \ldots, \\
 f_3(\mu, s_1, s_2, \rho_1, \rho_2, \rho_3) &= -2\pi\mu + \frac{(s_1 + \sqrt{3}s_2)^2}{2} + \frac{1}{8}\pi^2\rho_3^2 + \frac{205}{1036}\pi^2(\rho_1^2 + \rho_2^2) + \ldots
\end{align*}
\]

On peut maintenant, de la même manière et à l’aide du même argument utilisé dans la preuve du théorème 2.6.2 montrer que le système (2.25) admet des solutions non triviales.

Théorème 2.7.2: Pour tout \((\mu, s_1, s_2)\) au voisinage de \((0, 0, 0)\) tel que \(\mu > 0\) et \(-\frac{2676}{151}s_1^2 + \frac{205}{302}(s_1 + \sqrt{3}s_2)^4 < \pi\mu\), le système d’équations (2.25) admet une et une seule solution \((\mu, s_1, s_2, \rho_1, \rho_2, \rho_3)\) au voisinage de \((0, 0, 0, 0, 0, 0)\).

Preuve

Soit \(r = (\rho_1^2, \rho_2^2, \rho_3^2)\). Le déterminant de la matrice

\[
\begin{pmatrix}
\frac{\pi^2}{8} & \frac{205\pi^2}{1036} & \frac{205\pi^2}{1036} \\
\frac{205\pi^2}{1036} & \frac{\pi^2}{8} & \frac{205\pi^2}{1036} \\
\frac{205\pi^2}{1036} & \frac{205\pi^2}{1036} & \frac{\pi^2}{8}
\end{pmatrix}
\]

étant non nul, le théorème de la fonction implicite assure l’existence (locale) d’une solution unique au système (2.25) en \(r = r(\mu, s_1, s_2)\), telle que
\(\mathbf{r}(0,0,0) = (0,0,0) \) pourvu que (pour les mêmes raisons évoqués dans la preuve du théorème 2.6.2)

\[
\begin{align*}
-\frac{2076}{151} s_1^2 + \frac{205}{302} (s_1 + \sqrt{3}s_2)^4 & < \pi \mu \\
\frac{1640}{151} s_1^2 - \frac{259}{1208} (s_1 + \sqrt{3}s_2)^4 & < \pi \mu
\end{align*}
\]

Ainsi en remarquant que l’expression \(\left(\frac{1640}{151} s_1^2 - \frac{259}{1208} (s_1 + \sqrt{3}s_2)^4 \right) \) fonction de \((s_1,s_2)\) atteind son maximum en \((0,0)\), on obtient le résultat du théorème.

Donc le problème (2.12) avec \((k_x,k_y)\) au voisinage de \(\left(\frac{\pi}{2}, \frac{\sqrt{3}\pi}{2} \right)\) admet des solutions non triviales, et par conséquent la formation de structures convectives hexagonales (suite à la superposition de trois structures de rouleaux convectifs dont les directions se croisent en faisant un angle de 120 deg) est possible lorsque le vecteur \((k_x,k_y) = \left(\frac{\pi}{2} + s_1, \frac{\sqrt{3}\pi}{2} + s_2 \right)\) est tel que \((s_1,s_2)\) est dans une région voisine de \((0,0)\) dans \(\mathbb{R}^2\) définie par \(\left(-\frac{2076}{151} s_1^2 + \frac{205}{302} (s_1 + \sqrt{3}s_2)^4 < \pi \mu \right)\). On a une représentation de cette région dans la figure Fig.2.4, comparée à celle des structures carrées du paragraphe précédent.
Fig. 2.4: La région des vecteurs \((s_1, s_2)\) pour lesquels l’apparition de structures hexagonales est possible (comparée à celle des structures carrées)

Remarque 2.7.3: Lorsque \(k = (k_x, k_y)\) est au voisinage de \(k_c = \left(\frac{\pi}{2}, \frac{\sqrt{3} \pi}{2}\right)\), toute solution de (2.9) représente une solution de (1.12), donc une solution stationnaire doublement périodique (par rapport à \(x\) et \(y\)) à symétrie hexagonale, du problème (1.1), de vecteur d’onde égale à \((\frac{\pi}{2} + s_1, \frac{\sqrt{3} \pi}{2} + s_2)\) et d’amplitude \(\sqrt{\rho_1^2 + \rho_2^2 + \rho_3^2}\), liées par la relation (2.25). Pour le problème (1.1), toute structure convective sous forme d’hexagones, voisine de l’état conductif est de cette forme : \(\tilde{U}_{\mu, s_1, s_2} = u + U(u, \mu, s_1, s_2)\), avec \(u\) un élément de \(\ker(L_{\mathcal{R}, c, k_c})\) (où \(k_c = \left(\frac{\pi}{2}, \frac{\sqrt{3} \pi}{2}\right)\)), et \(U\) la fonction implicite associée au problème (2.9), définie par la décomposition de Liapunov-Schmidt. Une illustration de ces structures convectives carrées est donnée par la figure Fig.2.5.(b), qui représente la distribution de la température dans le plan \((x, y)\) au niveau \(z = \frac{1}{2}\).
Fig. 2.5: Structures convectives : champ des température dans le plan \(z = \frac{1}{2} \). - (a) carrées, (b) hexagonales.
2.8 Conclusion

Nous avons montré l’existence de solutions stationnaires spatialement périodiques du système d’équations aux dérivées partielles non linéaire (1.1)-(1.2), bifurquant de la solution stationnaire triviale. Ces états stationnaires sont des solutions du problème (1.12)-(1.15) considéré pour des paramètres \(R \) et \((k_x, k_y)\) au voisinage des valeurs critiques \((R_c = 2\pi, (k_{xc}, k_{yc}) \in \{(\sigma_1, \sigma_2) \in \mathbb{R}^2 \text{ tel que } \sigma_1^2 + \sigma_2^2 = \pi^2\})\) déterminées par le seuil d’instabilité de l’état trivial (état de conduction pure). Notre objectif étant de chercher des solutions proches de cet état trivial, le problème que nous traitons est donc de nature locale et une méthode telle que celle de la réduction de Liapunov-Schmidt s’est avérée concluante. A l’aide de cette réduction du système d’équations aux dérivées partielles à un système d’équations algébriques, et grâce à l’analyticité ainsi qu’aux symétries du problème on a pu montrer l’existence (ou l’apparition probable) de structures convectives stationnaires ayant la forme de rouleaux, carrés ou hexagones. L’étude de la stabilité (secondaire) de ces structures et en particulier celle des rouleaux que nous présentons au chapitre suivant, repose beaucoup sur les calculs effectués à l’aide de cette méthode, pour avoir les termes dominants dans le développement de Taylor de ces solutions.
3. STABILITÉ LINÉAIRE DES ROULEAUX

Introduction

Nous nous intéressons dans ce chapitre à la stabilité des structures convectives formées, au delà du seuil ($R > R_c$) de stabilité de l’état d’équilibre trivial (état conductif) du système (1.1) et dont nous avons démontré l’existence au chapitre 2. Pour cela nous étudions la stabilité linéaire des solutions périodiques du système (1.9), calculées au chapitre 2.

On restreindra notre étude à la stabilité des rouleaux du type

$$\tilde{U}_{\mu,s} = \rho v_2 + U(\rho v_2, \mu, s)$$

où bien entendu $\rho, \mu = R - R_c$ et $s = k - k_c$ sont liés par (2.21).

La difficulté principale dans l’étude de la stabilité linéaire du système (1.9) réside dans le fait qu’il est défini pour des variables spatiales appartenant à un domaine Q non borné. La stabilité du rouleau $\tilde{U}_{\mu,s}$ dépendra certainement des propriétés spectrales de l’opérateur obtenu après linéarisation du système (1.9) autour de $\tilde{U}_{\mu,s}$. Cet opérateur défini dans l’espace $L^2(Q)$ possède un spectre qui traverse l’axe imaginaire d’une façon continue, ainsi l’analyse du passage des valeurs propres de la partie gauche du plan complexe par rapport à l’axe imaginaire vers celle à droite devient compliquée. Dans les situations classiques des domaines bornés, le spectre étant discret, pour une analyse complète de l’effet des perturbations, il suffit de les prendre dans un ensemble de fonctions périodiques dans $L^2(Q)$. La même démarche dans
3. Stabilité linéaire des rouleaux

notre cas ne peut pas a priori déterminer toutes les instabilités possibles. Ceci nous amène à utiliser la technique des ondes de Bloch liée à la notion d’intégrale directe, à laquelle une introduction rigoureuse est consacrée dans [42]. Ainsi on considérera un ensemble de perturbations assez générales dans $L^2(Q)$, et nous adapterons un résultat de [35] pour montrer que le spectre en question est la réunion des spectres d’une famille d’opérateurs plus commodes à analyser. Nous appliquerons au problème linéaire la méthode de réduction de Liapunov Schmidt, détaillée pour le problème non linéaire au chapitre 2. Ainsi le principe de la stabilité réduite (voir dans [34]) nous permet de profiter des calculs déjà effectués. Pour une analyse profonde et détaillée des solutions de l’équation définie par le problème spectral réduit, nous identifierons ces solutions à l’ensemble des racines d’un polynôme (de degré deux) à l’aide d’un outil puissant, qui est le théorème de préparation de Weierstrass (voir [8]).

3.1 Linéarisation du problème

Pour $\mu > 0$, avec μ et s petits, tels que $f(\mu, s, \rho) = 0$, soit le rouleau $\bar{U} = \bar{U}_{\mu, s}$ où

$$\bar{U}_{\mu, s} = \rho v_2 + \mathcal{U}(\mu, s, \rho v_2) = (\bar{v}_z, 0, \bar{v}_z, \bar{\theta}, \bar{p})$$

Les instabilités des rouleaux sont déterminées par le comportement des perturbations infinitésimales de $\bar{U} = (\bar{V}, \bar{\theta}, \bar{p})^\dagger = (\bar{v}_z, 0, \bar{v}_z, \bar{\theta}, \bar{p})^\dagger$ solution stationnaire du problème (1.4). La première étape dans la caractérisation des rouleaux instables est l’étude d’une petite perturbation Θ, solution du problème 3.1, obtenue en posant $\theta = \bar{\theta} + \Theta$ dans le système (1.4), et en négligeant les termes d’ordre deux en Θ et ses dérivés. On obtient ainsi la version linéarisée de (1.4)

$$\partial_t \Theta = M^{\mu, s} \Theta \equiv \Delta \Theta + \text{Re}_z \cdot V - \bar{V} \cdot \nabla \Theta - V \cdot \nabla \bar{\theta} \quad (3.1)$$

dans $(x, y, z) = (x, z) \in Q$, et $t \in \mathbb{R}^+$ tel que

$$\Theta = 0 \quad \text{sur} \quad \partial Q = \mathbb{R}^2 \times \{0; 1\}, \quad (3.2)$$
et avec V fonction de (Θ, μ, s), déterminée par (1.4.a) et (1.4.c) en posant $\theta = \Theta$.
Ainsi la caractérisation des rouleaux instables revient à la question d’existence ou non, d’éléments avec partie réelle positive dans le spectre de $M^{\mu,s}$, selon la définition suivante (voir [35] et [46]).

Définition 3.1.1: On dit que le rouleau \tilde{U} est spectralement instable, lorsque le spectre de $M^{\mu,s}$ contient des éléments avec partie réelle positive.

Le spectre dépend a priori de l’ensemble des perturbations en question. Afin d’avoir un ensemble de perturbations plus large que l’ensemble (restreint) des fonctions périodiques on considère que $M^{\mu,s}$ opère sur $L^2(Q)$, ou sur un espace à poids incluant les perturbations périodiques. A ce propos, [46], [48] et [35] ont adapté à la dynamique des fluides le concept d’intégrale directe, qui est plus ancien et remonte à [42].

Ce concept peut être considéré comme l’analoge de la décomposition d’un espace vectoriel en une somme directe de sous espaces propres définis par les “vecteurs propres” d’un opérateur à spectre continu. En considérant un ensemble de perturbations assez large, cette méthode nous permettra d’analyser la stabilité des rouleaux, en décomposant la linéarisation autour du rouleau, en une infinité d’applications ayant chacune un spectre discret.

3.2 Applications de Bloch

En effet le spectre de $M^{\mu,s}$ (opérant sur $L^2(Q)$ ou sur un espace à poids) est réunion des spectres ponctuels d’une famille infinie d’applications définies sur des espaces de fonctions périodiques. C’est ce que nous allons démontrer dans ce qui suit.

3.2.1 Cadre fonctionnel

Des espaces à poids (voir [36]) apportent un cadre fonctionnel convenable aux domaines non bornés. Toute fonction de x à valeurs positives, et
à décroissance rapide à l’infini, peut servir de poids afin de définir une semi-norme dans l’espace des fonctions de carré localement integrable $L^2_{loc}(Q)$.

Définition 3.2.1: Soit r une fonction de x, à valeurs positives, et à décroissance rapide à l’infini. Pour tout u dans $L^2_{loc}(Q)$, on définit

$$
\|u\|_{L^2_{iu}}^2 = \sup_{x' \in \mathbb{R}^2} \left\{ \int_Q \tau_{x'} r(x) |u(x, z)|^2 \, dx \, dy \, dz \right\},
$$

où $\tau_{x'}$ désigne la translation par x' dans \mathbb{R}^2.

Ainsi l’espace $L^2_{iu}(Q)$ (L^2 uniformément local), défini ci-dessous en tant que sous ensemble de

$$
\tilde{L}^2_{iu}(Q) = \{ \Theta \in L^2_{loc}(Q)/\|u\|_{L^2_{iu}}^2 < \infty \}
$$
muni de $\|\cdot\|_{L^2_{iu}}$ possède d’après [36] et [33], une structure d’espace de Banach.

Définition 3.2.2: Soit

$$
L^2_{iu}(Q) = \left\{ \Theta \in \tilde{L}^2_{iu}(Q)/\|\tau_{x'} \Theta - \Theta\|_{L^2_{iu}}^2 \to 0 \quad \text{qd.} \quad x' \to 0 \right\}.
$$

Pour m dans \mathbb{N}, $H^m_{iu}(Q)$ est l’espace constitué des fonctions à dérivées dans $L^2_{iu}(Q)$ jusqu’à l’ordre m.

Pour tout opérateur différentiel elliptique A d’ordre $2m$, le théorème 2.1 de [35], aide à situer le spectre de A. L’application $M^{\mu,s}$ ne vérifie pas exactement les hypothèses du théorème, cependant ici, on peut adapter la preuve.

3.2.2 Le spectre de $M^{\mu,s}$ dans $L^2(Q)$ ou dans $L^2_{iu}(Q)$

La preuve du théorème 2.1 de [35] repose essentiellement sur le théorème A.2 de [35], qui affirme que, pour un opérateur différentiel elliptique A d’ordre $2m$ opérant sur X, l’ensemble résolvant ne change pas lorsqu’on prend $X = L^2(Q)$ au lieu de $X = L^2_{iu}(Q)$. Ici on décompose $M^{\mu,s}$ en une somme.
3. Stabilité linéaire des rouleaux

d’un opérateur différentiel elliptique d’ordre 2 et d’une partie non locale et bornée (voir Annexe I). Les propriétés de \(A \) interviennent dans la preuve du théorème 2.1 de [35] à deux niveaux. Les points clefs sont les estimations A.5-6 de [35], qui sont vérifiées par \(M^{\mu,s} \) selon les paragraphes 2-4 de l’annexe I, dans \(L^2(Q) \) ou dans \(L^2_{lu}(Q) \). La nature différentielle de l’opérateur \(A \) est aussi utilisée dans la relation

\[
\tau_{x'} A \tau_{x'}^{-1} = A^{x'},
\]

où \(A^{x'} \) est obtenu à partir de \(A \) par la translation des coefficients de l’opérateur. Puisque, d’après l’annexe I (3.3) a un sens pour \(M^{\mu,s} \) également, on a le lemme suivant.

Lemme 3.2.3: L’application \(M^{\mu,s} \) considérée comme opérateur sur \(L^2(Q) \)
ou sur \(L^2_{lu}(\Omega) \), possède le même spectre.

Il reste maintenant à chercher cet ensemble spectral, sachant que \(\tilde{U} \) et les coefficients de \(M^{\mu,s} \) sont spatialement périodiques.

3.2.3 Applications de Bloch pour \(M^{\mu,s} \), et ondes de Bloch

3.2.3.a- Définitions et proposition fondamentale

Puisque \(\tilde{U} \) a une période égale à \(\frac{2\pi}{k} e_x \) et ne dépend pas de \(y \), la translation \(\tau_{x'} \) laisse \(M^{\mu,s} \) invariante lorsque \(x' \) est un élément du réseau

\[
\mathcal{L} = \left\{ \frac{2n\pi}{k} e_x + \Lambda e_y | n \in \mathbb{Z}, \Lambda \in \mathbb{R} \right\} \quad \text{et} \quad T \equiv \mathbb{R}^2 / \mathcal{L} \quad (= \mathcal{T}_a \times \{0\}).
\]

Ici \(\mathcal{T}_a \) désigne le tore unidimensionnel de période \(a \), et pour le réseau dual \(\mathcal{L}^* = \{ nke_x | n \in \mathbb{Z} \} \) on a \(T^* \equiv \mathbb{R}^2 / \mathcal{L}^* = \mathcal{T}_k \times \mathbb{R} \).

Comme \(M^{\mu,s} \) opère aussi bien dans \(L^2(Q) \) que dans \(L^2_{lu}(Q) \), la définition suivante a un sens.
Définition 3.2.4: Pour \(\sigma = (\sigma_1, \sigma_2) \) dans \(\mathbb{R}^2 \), l’application de Bloch \(M_{\sigma}^{\mu,s} \) associée à \(M^{\mu,s} \) est définie dans \(H^2(Q/L) \cap H^1_0(Q/L) \) par

\[
M_{\sigma}^{\mu,s}(\theta) = e^{-i\sigma \cdot x} M^{\mu,s}(e^{i\sigma \cdot x} \theta).
\]

Dans la définition ci-dessus \(\theta \) désigne une fonction de \((x, z) \) périodique, et

\[
H^1_0(Q/L) = \{ \theta \in H^1(Q/L)/\theta(x, 0) = \theta(x, 1) = 0 \}.
\]

Selon le paragraphe 4 de l’annexe I, le théorème 2.1 de [35] s’adapte à \(M^{\mu,s} \) et à \(M_{\sigma}^{\mu,s} \), sous la forme suivante

Proposition 3.2.5: Le spectre \(\text{sp}(M^{\mu,s}) \) de \(M^{\mu,s} \), en tant qu’opérateur aussi bien sur \(L^2(Q) \) que sur \(L^2_{iu}(Q) \), est égal à la fermeture (dans \(\mathbb{C} \)) de \(\bigcup_{\sigma \in T} \text{sp}(M_{\sigma}^{\mu,s}) \), où \(T^* = T_k \times \mathbb{R} \).

Remarque 3.2.6: La proposition reste vraie si on ajoute \(2 \epsilon \vec{V} \cdot \vec{V} \) à \(M^{\mu,s} \). Un tel terme additionnel correspond à la dissipation visqueuse, représentée par la source de chaleur \(\epsilon \nabla^2 \) dans la partie droite, de la deuxième équation dans (1.1).

3.2.3.b- Spectre des applications de Bloch \(M_{\sigma}^{\mu,s} \)

Pour \(\theta \) dans le domaine \(H^2(Q/L) \cap H^1_0(Q/L) \), on a

\[
M_{\sigma}^{\mu,s} \theta = \mathcal{R} v_z + (\Delta + 2i\sigma_1 \partial_x - |\sigma|^2) \theta - \vec{V} \cdot \nabla \theta - \nabla \cdot \vec{V} \cdot \nabla \theta - i\theta \vec{V} \cdot (\sigma_1 \vec{e}_x + \sigma_2 \vec{e}_y).
\]

(3.4)

Où \(\vec{V} = \mathcal{R} \Pi_{\sigma}(\theta) \) est dans \((H^1(Q/L))^2 \times H^1_0(Q/L) \) et satisfait

\[
\begin{cases}
 v_x + \partial_x p + i\sigma_1 p = 0 \\
 v_y + i\sigma_2 p = 0 \\
 v_z - \partial_z p = 0 \\
 -\partial_x v_x - i\sigma_1 v_x - i\sigma_2 v_y - \partial_x v_x = 0
\end{cases}
\]

(3.5)

avec \(p \) dans \(H^1(Q/L) \).
3. Stabilité linéaire des rouleaux

L’application \(M^{\mu,s}_\sigma \) joue un rôle dans l’instabilité spectrale de \(\tilde{U} \) si et seulement si l’équation linéaire (3.1) possède des solutions amplifiées de la forme

\[
\Theta(x, y, z, t) = e^{i\sigma x + \lambda t} \theta(x, z)
\]

avec \(\theta \) dans \(H^2(Q/L) \cap H^1_0(Q/L) \), appelées ondes de Bloch avec le paramètre (de Bloch) \(\sigma \).

En posant \(\tilde{U} = O \) dans (3.4) on obtient un opérateur elliptique auto-adjoint \(\hat{M}^{\mu,s}_\sigma \) d’ordre 2.

Nous allons voir que les paramètres \(\sigma \) de \(T^* \) qui peuvent correspondre à des ondes de Bloch éventuellement amplifiées appartiennent à certaines régions de \(T^* \).

3.2.3.c- Les ondes de Bloch éventuellement amplifiées

Si une onde de Bloch de paramètre \(\sigma \) est amplifiée, elle est obligatoirement proche de certains cercles que nous allons préciser.

En effet les valeurs propres de \(\hat{M}^{\mu,s}_\sigma \) sont

\[
f_n(\Sigma_m^2) \equiv -\Sigma_m^2 - n^2 \pi^2 + \frac{R^2 \Sigma_m^2}{(\Sigma_m^2 + n^2 \pi^2)},
\]

où \((m, n) \in \mathbb{Z}^2 \) et \(\Sigma_m^2 \equiv (km + \sigma_1)^2 + \sigma_2^2 \). De plus, ces valeurs propres \(f_n \) sont majorées par la fonction \(f_1 \), qui atteint son maximum \(R \mu \) en \(\Sigma_m^2 = \pi(\mu + \pi) \).

Ainsi pour \(\delta = \Sigma_m^2 - \pi(\pi + \mu) \), lorsque la valeur de \(\delta/(2\pi) \) est assez petite, elle est représentative de la distance entre \(\sigma \) et le cercle \(C_m(\mu, s) \) centré en \((-mk, 0)\) de rayon \(\sqrt{\pi(\pi + \mu)} \). Les paramètres \(\sigma \), tels que la plus grande valeur propre de \(\hat{M}^{\mu,s}_\sigma \) atteint son maximum, appartiennent aux cercles \(C_m \).

Pour voir que les paramètres correspondant à d’éventuelles ondes de Bloch amplifiées, sont au voisinages des cercles \(C_m \), prenons le produit scalaire de \(\hat{M}^{\mu,s}_\sigma \theta \) par \(\theta \) dans \(L^2(Q/L) \). Or \(\tilde{V} \) est à divergence nulle, et de plus il existe
3. Stabilité linéaire des rouleaux

\(K(\mathcal{R}) \) tel que

\[f_1(\Sigma_m^2) \leq \mu \mathcal{R} - \frac{\delta^2}{\pi \mathcal{R}} + K(\mathcal{R}) \delta^3. \]

D'après la remarque I.1 de l’annexe I, la partie réelle de chaque valeur propre de \(M_{\mu,s}^{\mu,s} \) est plus petite que

\[2\pi \mu - \frac{\delta^2}{2\pi^2} + 2\pi \| \tilde{\theta} \|_{C^1} + O((\mu + \| \tilde{\theta} \|_{C^1})^2 + \delta^3). \]

Le point (i) de la remarque ci-dessous est donc démontré. Le point (ii) de cette remarque, est une conséquence du fait que la distance entre le spectre de \(\tilde{M}_{\mu,s}^{\mu,s} \) et celui de \(M_{\mu,s}^{\mu,s} \) admet une borne qui tend vers zéro avec la norme \(C^1 \) de \(\tilde{U} \).

Remarque 3.2.7: Lorsque \((\mu, s)\) est petit,

(i) les paramètres \(\sigma \) correspondant à des ondes de Bloch éventuellement amplifiées vérifient

\[|\delta| \leq \delta_0 \approx 2\pi \sqrt{\pi (\mu + \| \tilde{\theta} \|_{C^1})}, \]

et sont situés à proximité des cercles \(C_m(\mu, s) \), dans des bandes dont les largeurs ne dépassent pas \(\delta_0/\pi \).

(ii) si \(\lambda \) est une valeur propre de \(M_{\mu,s}^{\mu,s} \), elle est petite tant que \(\mu \) et \(s \) le sont.

Pour la stabilité des rouleaux de l’équation de Swift-Hohenberg, tel que dans [35], les paramètres correspondant à des ondes de Bloch éventuellement amplifiées, remplissent les bandes, contenant les cercles qui se rencontrent uniquement sur l’axe \(\sigma_2 = 0 \). Tandis que dans le cas présent, les intersections des cercles \(C_m \) sont les sommets de triangles équilatéraux.

Les détails du chapitre II, concernant les rouleaux, nous serviront pour caractériser les ondes de Bloch amplifiées.

3.2.4 Les ondes de Bloch amplifiées

D’après la remarque 3.2.7 les instabilités de \(\tilde{U} \) correspondent à de petites valeurs propres des applications de Bloch \(M_{\mu,s}^{\mu,s} \), avec (grace aux symétries
de (1.4)) σ dans un sous-ensemble de T^*. D'après la linéarisation (3.1), les valeurs propres de $M_{\sigma}^{\mu,s}$ sont les nombres complexes λ tels que

$$0 = \left(L_{\mathcal{R},k} + l_{s,\sigma} + \mathcal{I}_{\mu,\rho,\sigma_1} \right) W + \mathcal{N}_k(\tilde{U}, W) + \mathcal{N}_k(W, \tilde{U}) \equiv \mathcal{L}_{\mu,s,\rho,\sigma,\lambda} W \quad (3.6)$$

admet des solutions non triviales $W(X, z) = ((v_x W), (v_y W), (v_z W), (\theta W), (pW))^\dagger$ avec $\sigma = (\sigma_1, \sigma_2)$, $\mathcal{R} = \mu + \mathcal{R}_c = \mu + 2\pi$, $k = s + k_c = s + \pi$,

$$l_{s,\sigma,\lambda}(W) = \begin{pmatrix}
 i\sigma_1(pW) \\
 i\sigma_2(pW) \\
 0 \\
 (\lambda - 2i\sigma_1k\partial_X + \sigma_1^2 + \sigma_2^2)(\theta W) \\
 -i\sigma_1(v_x W) - i\sigma_2(v_y W)
\end{pmatrix},$$

$$\tilde{\mathcal{I}}_{\mu,\rho,\sigma_1} W = \begin{pmatrix}
 0 \\
 0 \\
 0 \\
 i\sigma_1(v_x \tilde{U})(\theta W_2) \\
 0
\end{pmatrix},$$

et

$$\mathcal{N}_k(W_1, W_2) = \begin{pmatrix}
 0 \\
 0 \\
 0 \\
 0 \\
 k(v_x W_1)\partial_X(\theta W_2) + (v_x W_1)\partial_z(\theta W_2)
\end{pmatrix}.$$

Définition 3.2.8: Le rouleau \tilde{U} défini par μ et s est dit linéairement stable si pour tout (σ, λ) dans $\mathbb{R}^2 \times \mathbb{C}$ tel que $\text{Re}(\lambda) > 0$ le problème spectral linéaire (3.6) n’a que la solution triviale.

Remarque 3.2.9: Comme \tilde{U} dépend explicitement de X, le problème (3.6) admet la solution non triviale $\partial_X \tilde{U}$ lorsque $(\sigma, \lambda) = (0, 0, 0)$.

En vertu de la proposition 2.3.1 \mathcal{U} est équivariante par rapport aux symétries S_1 et S_2 d’où

$$S_1 \mathcal{U}(v_2) = \mathcal{U}(-v_2) \quad \text{et} \quad S_2 \mathcal{U}(u_2) = \mathcal{U}(-u_2)$$

On en déduit ainsi la remarque suivante
Remarque 3.2.10: On a

\[S_1 \circ \mathcal{L}_{\mu, s, \rho, \sigma_1, \sigma_2, \lambda} = \mathcal{L}_{\mu, s, -\rho, -\sigma_1, \sigma_2, \lambda} \circ S_1, \]
\[S_2 \circ \mathcal{L}_{\mu, s, \rho, \sigma_1, \sigma_2, \lambda} = \mathcal{L}_{\mu, s, -\rho, \sigma_1, \sigma_2, \lambda} \circ S_2, \]
\[S_3 \circ \mathcal{L}_{\mu, s, \rho, \sigma_1, \sigma_2, \lambda} = \mathcal{L}_{\mu, s, \rho, \sigma_1, -\sigma_2, \lambda} \circ S_3, \]

e et

\[\mathcal{L}_{\mu, s, \rho, \sigma_1, \sigma_2, \lambda}(W) = \mathcal{L}_{\mu, s, \rho, -\sigma_1, -\sigma_2, \lambda}(W). \]

Par conséquent lorsque le spectre de \(M_{\pm \sigma_1, \pm \sigma_2}^{\mu, s} \) contient une valeur propre, il contient aussi l’opposé de sa conjuguée.

On s’intéressera alors uniquement aux paramètres \(\sigma \) dans \([0, k/2] \times \mathbb{R}^+\), et aux \(\lambda \) au voisin de zéro, tels que (3.6) admette des solutions non triviales. On étudiera deux cas séparément, celui où le paramètre \(\sigma \) est loin de zéro, et le second lorsque le paramètre \(\sigma \) est assez petit. En appliquant le principe de la stabilité réduite (voir [34]), les calculs effectués dans le deuxième chapitre lors de l’étude du problème non linéaire nous seront utiles pour l’analyse du problème spectral, lorsque \(\sigma \) est au voisinage de 0. Comme nous utilisons une méthode d’analyse locale, ce principe n’est plus applicable, donc nous allons étudier le cas des onde de Bloch avec paramètres non petits à part.

3.3 Onde de Bloch avec paramètres non petits

La méthode de Lyapunov-Schmidt permet aussi de déterminer les valeurs propres \(\lambda \) qui déterminent les instabilités de \(\tilde{U} \) lorsque \(\sigma \) n’est pas voisin de 0 en décomposant \(\mathcal{L}_{\mu, s, \rho, \sigma, \lambda} \) selon une somme \(Q_1 + Q_2 \) et en projetant (3.6) sur le noyau de l’application linéaire \(Q_1 \) qui est en général l’opérateur \(\mathcal{L}_{\mu, s, 0, \sigma, \lambda^*} \). Le noyau de \(\mathcal{L}_{\mu, s, 0, \sigma, \lambda^*} \) correspond aux vecteurs propres de \(\hat{M}_{\sigma}^{\mu, s} \) et sa dimension est au plus égale à 1 sauf lorsque \(\sigma \) est voisin de l’intersection de deux cercles.
3. Stabilité linéaire des rouleaux

3.3.1 La méthode

On décompose $L_{\mu,s,\rho,\sigma,\lambda}$ selon

$$L_{\mu,s,\rho,\sigma,\lambda} = Q_1 + Q_2$$

avec $Q_1 = L_{\mu,s,0,\sigma,\lambda^*}$ possédant un noyau non trivial, et le nombre réel λ^* est supposé le plus grand possible autant que le permettent les valeurs de μ et s (voir remarque 3.2.7). Evidemment on a

$$Q_2 = (\lambda - \lambda^*)\hat{Q}_3 + \hat{Q}_2$$

avec $\hat{Q}_3W = (0, 0, 0, (\theta W), 0)^\dagger$, et

$$\hat{Q}_2(\mu, s, \sigma, \rho)W = \mathcal{N}_k(\bar{U}, W) + \mathcal{N}_k(W, \bar{U}) + \hat{\ell}_{\mu,s,\rho,\sigma}W.$$

Rappelons que

$$\bar{U} = \rho u_2 + \sum_{\nu+\beta+\epsilon \geq 2} \mathcal{U}_{\nu\beta\epsilon} \mu^\nu s^\beta \rho^\epsilon$$

où ρ satisfait $f(\mu, s, \rho) = 0$ (voir théorème 2.5.1), et notons par v un élément non nul de $\ker(L_{\mu,s,0,\sigma,\lambda^*})$, et par P_1 la projection orthogonale sur $\ker(L_{\mu,s,0,\sigma,\lambda^*})$.

Le problème linéaire $Q_1W + Q_2W = 0$ peut être considéré comme un cas particulier de

$$Q_1W + (\lambda - \lambda^*)\hat{Q}_3W + \hat{Q}_2(\mu', s', \sigma, \rho)W = 0. \quad (3.7)$$

La version linéaire de la méthode de réduction de Lyapunov-Schmidt détermine λ au voisinage de λ^*, tel que (3.7) admet une solution $W = v + \mathcal{W}(v)$ avec $\mathcal{W}(v)$ dans $R(L_{\mu,s,0,\sigma,\lambda^*}) = (\ker(L_{\mu,s,0,\sigma,\lambda^*}))^\perp$ si (μ', s', ρ) est petit. D’après le principe de la réduction (voir paragraphe 2.3.1), $\mathcal{W}(v)$ est solution de

$$(I - P_1)(L_{\mu,s,0,\sigma,\lambda^*} + (\lambda - \lambda^*)\hat{Q}_3 + \hat{Q}_2(\mu', s', \sigma, \rho))(v + \mathcal{W}(v)) = 0, \quad (3.8)$$

alors que

$$P_1((\lambda - \lambda^*)\hat{Q}_3 + \hat{Q}_2(\mu', s', \sigma, \rho))(v + \mathcal{W}(v)) = 0. \quad (3.9)$$
Lorsque \(\text{ker}(L_{\mu,s,0,\sigma,\lambda^*}) \) est de dimension 1, (3.9) est une équation qui nous donne \(\lambda \) et dont on peut approcher la solution au moyen d’un développement en puissances de \(\mu', s', \rho \). Grâce à la structure de \(L_{\mu,s,0,\sigma,\lambda^*} \), les termes dominants dans (3.9) se calculent par des procédés programmables sur machine. Fixons désormais \(\mu' = \mu, s' = s \) avec \(f(\mu, s, \rho) = 0 \).

3.3.2 Instabilités tridimensionnelles (Cross-roll)

Lorsque la plus grande valeur propre de \(M_\sigma^{\mu,s} \) est de multiplicité 1

Pour \(\sigma \neq 0 \), le plus grands \(\lambda^* \) tel que \(\text{ker}(L_{\mu,s,0,\sigma,\lambda^*}) \) ne soit pas trivial est

\[
\lambda_n^* = \frac{\mathcal{R}^2 b_n^2}{\pi^2 + b_n^2} - \pi^2 - b_n^2
\]

où \(b_0^2 = |\sigma|^2 \) et \(b_1^2 = (\sigma_1 - k)^2 + \sigma_2^2 \), avec \(n = 0 \) ou 1 selon la position de \(\sigma \) dans la bande \([0, \frac{k}{2}] \times \mathbb{R}^+ \). D’après le paragraphe 3.2.3.c, on a \(n = 0 \) lorsque \(\sigma \) est proche de \(C_0(\mu, s) \), et \(n = 1 \) lorsqu’il est proche de \(C_1(\mu, s) \). Le noyau de \(L_{\mu,s,0,\sigma,\lambda^*} \) est de dimension 1 à l’exception des points communs à \(C_0 \) et \(C_1 \) ou \(C_{-1} \). Comme les voisinages de \((0,0)\) et \((\frac{k}{2},0)\) sont exclus pour le moment, le noyau est engendré par \(v_n \) avec \(n = 0 \) ou 1 et

\[
b_0^2 v_0 = \begin{pmatrix}
i \pi \sigma_1 \cos(\pi z) \\
i \pi \sigma_2 \cos(\pi z) \\
\frac{b_0^2 \sin(\pi z)}{\left(\pi^2 + b_0^2\right) R} \\
-\pi \cos(\pi z)
\end{pmatrix}, \quad b_1^2 v_1 = e^{-iX} \begin{pmatrix}
i \pi (\sigma_1 - k) \cos(\pi z) \\
i \pi \sigma_2 \cos(\pi z) \\
b_1^2 \sin(\pi z) \\
\frac{\pi^2 + b_1^2}{R} \sin(\pi z) \\
-\pi \cos(\pi z)
\end{pmatrix}.
\]

Dans les deux cas le développement

\[
\mathcal{W}(v) = \sum_{\nu, \beta, \epsilon \geq 1} \mu^{\nu} s^{\beta} \rho^\epsilon \mathcal{W}_{\nu,\beta}^\epsilon(v)
\]
3. Stabilité linéaire des rouleaux

est calculé à partir de (3.8). Vue les formes (particulières) des vecteurs \(v_0 \) et \(v_1 \), les termes \(W_{v\beta}^1(v_0) \) avec \(\nu \leq 1 \) et \(\beta \leq 2 \) sont solutions de problèmes tels que

\[
\mathcal{L}_{\mu,s,0,\sigma,\lambda^*}(V) = e^{\pm iX} \begin{pmatrix}
0 \\
0 \\
0 \\
\sin(2\pi z) \\
0
\end{pmatrix},
\]

(*)

et les termes \(W_{v\beta}^1(v_1) \) sont solutions de problèmes du type

\[
\mathcal{L}_{\mu,s,0,\sigma,\lambda^*}(V) = e^{-2\kappa iX} \begin{pmatrix}
0 \\
0 \\
0 \\
\sin(2\pi z) \\
0
\end{pmatrix},
\]

(**)

où \(\kappa = 0 \) ou 1.

Le plus grand \(\lambda \) tel que

\[Q_1W + (\lambda - \lambda^*)\hat{Q}_3W + \hat{Q}_2(\mu', s', \rho)W = 0 \]

admet une solution non triviale vérifiant (3.9), qui prend la forme

\[\lambda - \lambda_n^* + h(n, \mu', s', \rho) = 0 \]

avec \(n = 0 \) ou 1, et

\[h(n, \mu', s', \rho) = \sum_{0 \leq \nu \leq 1, 0 \leq \beta \leq 2} h(n)_{\nu\beta} \mu^n s^\beta \rho^2 + ... \]

(3.10)

En posant \(\mu' = \mu, s' = s \) avec \(f(\mu, s, \rho) = 0 \) dans (3.10), on obtient lorsque \((s, \mu) \) est au dessus de la courbe \((CP)\) tel que \(\pi \mu \approx \frac{10}{3}s^2 \) (juste au dessus de la parabole d’Eckhaus \((CE)\) d’équation \(\pi \mu = 3s^2 \), représentée dans la figure Fig.3.1, une valeur de \(\lambda_n^* - h(n, \mu, s, \rho) \) négative. D’où (3.7) n’admet aucune solution non triviale avec \(\Re(\lambda) > 0 \), ce qui est en accord avec l’analyse de l’équation d’amplitude de [45] et le développement formel de [26].

Lorsque \((s, \mu) \) est situé entre \((CP)\) et \((CE)\), des ondes de Bloch amplifiées
existent, avec des paramètres σ au voisinage de $(0, \pi)$, dans les régions limitées par des lignes en pointillés dans la figure Fig.3.2. Les plus “dangereuses” des perturbations sont celles qui ont une longueur d’onde finie dans la direction de y, et sont appelées instabilités “cross roll”. Ces instabilités sont des fonctions de coordonnée dont ne dépendent pas les rouleaux. Leur développement conduit donc à un phénomène tridimensionnel. Si pour une valeur de μ donnée on fait croître $|s|$, l’ensembles des ondes de Bloch amplifiées devient plus grand, tel qu’il est indiqué sur les figures Fig.3.2-Fig.3.5. Lorsque le point (s, μ) est déplacé en dessous de la courbe (CE'), où $\pi \mu \approx 2 s^2$, les paramètres des perturbations amplifiées remplissent des bandes, contenant les cercles $C_{\mu}(\mu, s)$. La possibilité d’avoir des instabilités tridimensionelles lorsque (s, μ) est au dessus de la courbe d’ Eckhaus, avec des ondes de Bloch amplifiées correspondant à des paramètres dans un voisinage de $(0, \frac{k}{2})$ n’est pas autorisée par le modèle de Swift-Hohenberg dans [35].

3.3.3 Le cas $\sigma_1 = \frac{k}{2}$

Les taux de croissance des ondes de Bloch amplifiées sont les racines λ du déterminant de la restriction du second membre de (3.7), au noyau de $\mathcal{L}_{\mu,s,0,\sigma_1,\sigma_2,\lambda^*}$, et que l’on calcule en utilisant la base $\{v_0, v_1\}$. Vu la remarque 3.2.10, la matrice de la restriction est une fonction paire par rapport à ρ. De plus il s’avère que les termes du développement de $\mathcal{W}(v_0)$ et $\mathcal{W}(v_1)$ sont exactement comme dans (*) et (**). Donc en notant toujours par P_1 la projection orthogonale sur $\ker(\mathcal{L}_{\mu,s,0,\sigma_1,\sigma_2,\lambda^*})$, la matrice de

$$P_1((\lambda - \lambda^*) \hat{Q}_3W + \hat{Q}_2(\mu', s', \sigma, \rho)(v + \mathcal{W}(v))$$

dans la base $\{v_0, v_1\}$ est

$$\begin{pmatrix}
\lambda - \lambda_0^* + h(0) & 0 \\
0 & \lambda - \lambda_1^* + h(1)
\end{pmatrix} + ...$$

où les points "..." désignent les termes d’ordres plus élevés que ρ^3 ou $\rho(\mu^2 + \mu s^2 + s^2)$. Par conséquent, le résultat du paragraphe 3.3.2 est encore vrai
3. Stabilité linéaire des rouleaux

pour $\sigma_1 = \frac{k}{2}$, et si des instabilités oscillatoires doivent se produire, σ doit être petit.

Lorsque σ est au voisinage de $(0, 0)$, deux ondes progressives (traveling waves) sont impliquées dans le développement d’instabilités possibles, et l’interaction entre les rouleaux et les perturbations, qui provient du terme non linéaire de (1.4), est plus compliquée.

3.4 Réduction du problème linéaire lorsque les paramètres sont petits

Nous traitons dans ce paragraphe le cas où σ est petit. Pour déterminer les σ dans le voisinage de $(0, 0)$, tels que $M^{\mu,s}_\sigma$ ait des valeurs propres à partie réelle positive, nous utilisons la méthode de Lyapunov-Schmidt autour de l’opérateur $L_{00000} = L_{R_e,k_e}$.

Dans une première étape nous posons l’équation, qui détermine les taux de croissance des ondes de Bloch amplifiées possibles, avec des paramètres assez petits. Ensuite, la suite de [35], nous discutons les petites valeurs de σ associées aux instabilités (sideband), en fonction de l’amplitude et de la longueur d’onde du rouleau de base \tilde{U}.

3.4.1 La méthode

Donc afin de répondre à la question de stabilité d’un rouleau \tilde{U} quand R est juste au dessus du seuil convectif et que σ est au voisinage de $(0, 0)$, nous procédons par la décomposition de Lyapunov-Schmidt, appliquée au problème linéaire (3.6), en utilisant les outils de décomposition mis au point au chapitre I, pour traiter le problème non linéaire (1.9). Ceci est justifié par le fait que nous considérons uniquement des petites perturbations de la forme

$$\exp (\lambda t + i(\sigma_1 X + \sigma_2 y))W(X, z)$$

avec (σ, λ) petit, et pour (μ, s, ρ) assez petit lui aussi vérifiant $f(\mu, s, \rho) = 0$. Lorsque les paramètres $(\mu, s, \rho, \sigma, \lambda)$ sont nuls le premier membre de l’équation
linéaire (3.6) est réduit à l’opérateur $L_{Rc,kc}$.

Les opérateurs identité I et la projection P définie au paragraphe 2.3 permettent de décomposer l’inconnue $W(X, z)$ du problème (3.6) selon

$$W = u + W(u, \mu, s, \rho, \sigma, \lambda)$$

où $u \in \ker(L_{Rc,kc})$ et $W \in R(L_{Rc,kc})$.

Chaque fois que ce raccourci n’introduira pas d’ambiguïté, nous noterons $W(u)$ à la place de $W(u, \mu, s, \rho, \sigma, \lambda)$. L’équation (3.6) équivaut à

$$\begin{cases}
PL_{\mu,s,\rho,\sigma,\lambda}(u + W(u)) = 0 & (a) \\
(I - P)L_{\mu,s,\rho,\sigma,\lambda}(u + W(u)) = 0 & (b)
\end{cases}$$

(3.11)

Exactement comme au paragraphe 2.3.1, le théorème de la fonction implicite entraîne la proposition suivante.

Proposition 3.4.1: Pour chaque u dans $\ker(L_{Rc,kc})$ l’équation (3.3.b) possède une solution unique $W = W(u, \mu, s, \rho, \sigma, \lambda)$ dans un voisinage de 0 dans $R(L_{Rc,kc})$, tant que μ, s, ρ, σ et λ sont assez petits.

Remarque 3.4.2: L’application définie à partir de la fonction implicite du problème (3.6)

$$W : \ker(L_{Rc,kc}) \times \mathbb{R}^3 \times \mathbb{R}^2 \times \mathbb{C} \mapsto \ker(L_{Rc,kc})$$

est en général non linéaire. Mais lorsque le paramètre $(\mu, s, \rho, \sigma, \lambda)$ est fixé l’application $u \mapsto W(u, \mu, s, \rho, \sigma, \lambda)$ en tant que fonction implicite du problème (3.11.b) linéaire en u, elle est linéaire de $\ker(L_{Rc,kc})$ vers $R(L_{Rc,kc})$, et commute avec les symétries du problème (3.6). Pour chaque u dans $\ker(L_{Rc,kc})$, $W(u)$ est une fonction régulière des paramètres $(\mu, s, \rho, \sigma_1, \lambda)$

3.4.2 Équation réduite du problème linéaire

Pour chaque (μ, s, ρ, σ) avec ρ petit tel que $f(\mu, s, \rho) = 0$, les solutions de (3.3.a) avec $W = W(u)$ fournissent toutes les petites solutions de (3.6) sous forme $u + W(u, \mu, s, \rho, \sigma, \lambda)$. Elles sont solutions de l’équation réduite
(implicitement) dont l’inconnue u appartient au sous-espace de dimension 3
$
\text{ker}(L_{R_c,k_c})
$
\begin{equation}
P\mathcal{L}_{\mu,s,\rho,\sigma,\lambda}(u + \mathcal{W}(u, \mu, s, \rho, \sigma, \lambda)) = 0
\end{equation}
Soit $\mathcal{A} = \mathcal{A}(\mu, s, \rho, \sigma, \lambda)$ la restriction de $P\mathcal{L}_{\mu,s,\rho,\sigma,\lambda}(I + \mathcal{W}(\cdot))$ à $\text{ker}(L_{R_c,k_c})$.

D’après la remarque 3.4.2 \mathcal{A} est une application linéaire définie dans $\text{ker}(L_{R_c,k_c})$.

sa matrice dans la base $\{v_0, v_1, v_2\}$ du noyau de L_{R_c,k_c} est proportionnelle à

\[A(\mu, s, \rho, \sigma, \lambda) = (a_{mj}), \]

avec

\[a_{mj} = <\mathcal{L}_{\mu,s,\rho,\sigma,\lambda}(v_j + \mathcal{W}_j), v_m> \text{ pour } m, j = 0, 1, 2 \] (3.12)

où $\mathcal{W}_j = \mathcal{W}(v_j, \mu, s, \rho, \sigma, \lambda)$. On en déduit la proposition suivante.

Proposition 3.4.3: Le problème (3.6) possède des solutions non triviales si et seulement si la matrice $A(\mu, s, \rho, \sigma, \lambda)$ a un déterminant nul.

Cette proposition réduit la recherche des instabilités secondaires de \tilde{U} à une infinité de problèmes aux valeurs propres pour des opérateurs de l’espace $\text{ker}(L_{R_c,k_c})$, qui est de dimension trois. Ces opérateurs sont indexés par le paramètre $\sigma = (\sigma_1, \sigma_2) \in \mathbb{R}^2$ des ondes de Bloch.

Définition 3.4.4: Etant donné $\mu > 0$ assez petit, le rouleau \tilde{U} déterminé par le nombre d’onde $k_c + s$, et d’amplitude ρ telle que $f(\mu, s, \rho) = 0$, est linéairement instable si et seulement si il existe $(\sigma, \lambda) \in \mathbb{R}^2 \times \mathbb{C}$ tel que $\det(A) = 0$ avec $\text{Re}(\lambda) > 0$.

Nous considérons ici exclusivement des ondes de Bloch avec σ petit. Elles correspondent à des modifications plus ou moins sévères de la forme des rouleaux, consistant soit en de légères modifications de la longueur d’onde, soit à introduire des modulations de grande longueur d’onde dans la direction de l’axe des structures.
3.5 Étude du problème spectral réduit

3.5.1 Symétries

En vertu de la proposition 2.3.1, $S_2 S_1 U(v_2) = U(v_2)$ et $S_2 U(v_2) = U(-v_2)$. Donc l’équation (3.6) est équivariante par les transformations suivantes :

(i) $\tilde{S} : (v_x, v_y, v_z, \theta, p)(X, y, z) \mapsto (-v_x, v_y, -v_z, -\theta)(-X, y, 1 - z)$

\[
\begin{align*}
(\rho, k, \sigma_1, \sigma_2, \lambda) &\mapsto (\rho, k, -\sigma_1, \sigma_2, \lambda) \\
\end{align*}
\]
(3.13)

(ii) $\tilde{S}_2 : (v_x, v_y, v_z, \theta, p)(X, y, z) \mapsto (v_x, v_y, -v_z, -\theta)(X, y, 1 - z)$

\[
\begin{align*}
(\rho, k, \sigma_1, \sigma_2, \lambda) &\mapsto (-\rho, k, \sigma_1, \sigma_2, \lambda) \\
\end{align*}
\]
(3.14)

(iii) $\tilde{S}_3 : (v_x, v_y, v_z, \theta, p)(X, y, z) \mapsto (v_x, -v_y, v_z, \theta)(X, y, z)$

\[
\begin{align*}
(\rho, k, \sigma_1, \sigma_2, \lambda) &\mapsto (\rho, k, \sigma_1, -\sigma_2, \lambda) \\
\end{align*}
\]
(3.15)

On a aussi \[\mathcal{L}_{\mu,s,\rho,\sigma_1,\sigma_2,\lambda}(W) = \mathcal{L}_{\mu,s,\rho,-\sigma_1,-\sigma_2,\lambda}(W). \]
(3.16)

Remarque 3.5.1: Ces symétries laissent $\text{ker}(L_{R,k_c})$ et $R(L_{R,k_c})$ globalement invariants, et en vertu de la proposition 3.4.1 et la remarque 2.4.5, elles commutent avec W. Comme elles se traduisent dans \mathcal{H} par des isométries, l’analyse des produits scalaires (3.12) sous l’action de ces transformations donne le résultat qui suit.
3. Stabilité linéaire des rouleaux

Proposition 3.5.2: La matrice A est de la forme suivante :

$$
A \equiv (a_{mj}) =
\begin{pmatrix}
\tilde{\gamma}_{0,0} & i\sigma_1 \tilde{\gamma}_{0,1} & \rho \tilde{\gamma}_{0,2} \\
-i\sigma_1 \rho \tilde{\gamma}_{1,0} & \tilde{\gamma}_{1,1} & i\sigma_1 \tilde{\gamma}_{1,2} \\
\rho \tilde{\gamma}_{2,0} & -i\sigma_1 \tilde{\gamma}_{2,1} & \tilde{\gamma}_{2,2}
\end{pmatrix}
$$

où les $\tilde{\gamma}_{m,j} = \tilde{\gamma}_{m,j}(\mu, s, \rho^2, \sigma_1^2, \sigma_2^2, \lambda)$ pour $m, j \in \{0, 1, 2\}$ sont des fonctions suffisamment régulières de $\mu, s, \rho^2, \sigma_1^2, \sigma_2^2$ et λ.

En fait, les éléments de A couplant le mode de pression v_0 avec v_1 et v_2 s’annulent, et le déterminant se factorise.

3.5.2 Factorisation du déterminant de la matrice A

La première ligne de A est constituée par les

$$a_{0j} = \langle L_{\mu,s,\rho,\sigma,\lambda}(v_j + W_j), v_0 \rangle \quad \text{pour} \quad j = 0, 1, 2.$$

Proposition 3.5.3: $a_{00} = -2\pi |\sigma|^2$ et $a_{0j} = 0$ pour $j = 1, 2$.

Preuve

Comme $v_0 = (0, 0, 0, 0, 1)^\top$ la définition de $L_{\mu,s,\rho,\sigma,\lambda}$ implique que

$$a_{0j} = i\sigma_1 \int_\Omega (v_x W_j) + i\sigma_2 \int_\Omega (v_y W_j).$$

Or $(I - P)L_{\mu,s,\rho,\sigma,\lambda}(v_j + W_j) = 0$. Par conséquent $L_{\mu,s,\rho,\sigma,\lambda}(v_j + W_j)$ appartient à $\ker(L_{\mathcal{R},\mathcal{K}})$, et il existe a, b, c (fonctions des paramètres) telles que

$$L_{\mu,s,\rho,\sigma,\lambda}(v_j + W_j) = cv_0 + av_1 + bv_2. \quad (3.17)$$

Les deux premières composantes de (3.17) donnent

$$(v_x v_j) + (v_x W_j) + (i\sigma_1 + k \partial_X)((pv_j) + (pW_j)) = a(v_x v_1) + b(v_x v_2)$$

et

$$(v_y v_j) + (v_y W_j) + i\sigma_2((pv_j) + (pW_j)) = 0.$$
En multipliant ces relations par $i\sigma_1$ et $i\sigma_2$, puis en ajoutant, on obtient que

$$i\sigma_1 \int_\Omega ((v_x v_j) + (v_x W_j) + (i\sigma_1 + k\partial X)((pv_j) + (pW_j)))$$

$$+ i\sigma_2 \int_\Omega ((v_y v_j) + (v_y W_j) + i\sigma_2((pv_j) + (pW_j)) = i\sigma_1(a \int_\Omega (v_x v_1) + b \int_\Omega (v_x v_2)) = 0.$$

Ceci implique

$$-i\sigma_1 \int_\Omega (v_x W_j) - i\sigma_2 \int_\Omega (v_y W_j) =$$

$$i\sigma_1 \int_\Omega (i\sigma_1 + k\partial X)((pv_j) + (pW_j)) + i\sigma_2 \int_\Omega i\sigma_2((pv_j) + (pW_j)) =$$

$$-|\sigma|^2 \int_\Omega (pW_j) + i\sigma_1 k \int_\Omega \partial X((pW_j)) - |\sigma|^2 \int_\Omega (pv_j).$$

On en déduit que

$$-|\sigma|^2 \left(\int_\Omega (pW_j) + (pv_j) \right) = -|\sigma|^2 < v_j + W_j, v_0 >= -|\sigma|^2 < v_j, v_0 >,$$

car W_j est orthogonal au noyau de L_{R_c,k_c}. Comme (v_0, v_1, v_2) est une base orthogonale dans ker(L_{R_c,k_c}), on obtient le résultat de la proposition.

De la proposition 3.5.3 on déduit la conséquence suivante (sous forme corollaire)

Corollaire 3.5.4: La stabilité linéaire de \tilde{U} est déterminée par la matrice d’ordre deux

$$B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix},$$

assocée à l’application linéaire $L_{\mu,sp,\sigma,\lambda}$ restreinte au sous-espace de ker(L_{R_c,k_c}) engendré par v_1 et v_2.

Preuve

C’est une conséquence directe de la proposition 3.5.3, puisqu’on peut en déduire facilement que le déterminant de la matrice A se factorise selon

$$\det A = -2\pi |\sigma|^2 \det B$$
3.5.3 Étude de la matrice B

Suivant [35], comme les a_{mj} sont des fonctions régulières des paramètres $s, \mu, \rho^2, \sigma_1^2, \sigma_2^2$, et λ, et que $A(s, \mu, 0, 0, 0) = O$, les a_{mj} se décomposent selon

$$a_{mj}(s, \mu, \rho^2, \sigma_1^2, \sigma_2^2, \lambda) = a_{mj}(s, \mu, 0, \sigma_1^2, \sigma_2^2, \lambda) + a_{mj}(s, \mu, \rho^2, 0, 0, 0) + O(\rho^2(\sigma_1^2, \sigma_2^2, |\lambda|)).$$

Ainsi il est commode de calculer les premiers termes du développement de la matrice B pour $\rho = 0$ et $(\sigma, \lambda) = (0, 0, 0)$ séparément.

Dans le développement de la matrice de B par rapport à ses arguments, figurent des termes qui ne contiennent pas ρ. Il est relativement facile de les calculer à l’aide d’une procédure automatisée.

3.5.3.a- Les termes qui ne contiennent pas ρ

Pour étudier les termes de la matrice B, nous allons procéder par une complexification du plan engendré par v_1 et v_2 dans $\ker(L_{c,k})$. Posons

$$\eta = (i\pi, 0, \pi, 1, -1)^\dagger.$$

Désignons par φ l’application linéaire définie pour $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)^\dagger$ dans \mathbb{C}^5 par

$$\varphi(\alpha) = \begin{pmatrix} \alpha_1 \cos(\pi z) \\ \alpha_2 \cos(\pi z) \\ \alpha_3 \sin(\pi z) \\ \alpha_4 \sin(\pi z) \\ \alpha_5 \cos(\pi z) \end{pmatrix}.$$

Avec ces notations on a

$$v_1 + iv_2 = \exp(iX)\varphi(\eta).$$

L’ensemble \mathcal{E} des vecteurs de la forme $\exp(iX)\varphi(\alpha)$ avec $\alpha \in \mathbb{C}^5$, est globalement invariant par $\mathcal{L}_{\mu,s,0,\sigma,\lambda}$. Ceci facilite la recherche de $\mathcal{W}_1 + i\mathcal{W}_2$ dans cet
ensemble. En effet, pour avoir \(\mathcal{W}_1 \) et \(\mathcal{W}_2 \) lorsque \(\rho = 0 \), il suffit de trouver \(\mathcal{V} \in \mathbb{C}^5 \) tel que

\[
\mathcal{W}_1 + i\mathcal{W}_2 = \exp (iX)\varphi(\mathcal{V}) \quad \text{avec} \quad \exp (iX)\varphi(\eta) \perp \exp (iX)\varphi(\eta)
\]
puisque \(\mathcal{W}_1 \) et \(\mathcal{W}_2 \) sont dans \(R(L_{\mathbb{R}c,kc}) \), l’orthogonal du noyau de \(L_{\mathbb{R}c,kc} \). Le vecteur \(\mathcal{V} \) est ainsi solution de

\[
\begin{cases}
(I - P)\mathcal{L}_{\mu,s,0,\sigma,\lambda}(\exp (iX)\varphi(\eta) + \exp (iX)\varphi(\mathcal{V})) = 0 \\
\langle \mathcal{V}, \eta \rangle_{\mathbb{C}} = 0
\end{cases}
\tag{3.18}
\]

Or, pour tout \(\alpha \) dans \(\mathbb{C}^5 \)

\[
\mathcal{L}_{\mu,s,0,\sigma,\lambda}(\exp (iX)\varphi(\alpha)) = \exp (iX)\varphi(M_{\mu,s,\sigma,\lambda}(\alpha)),
\]

où la matrice \(M_{\mu,s,\sigma,\lambda} \) représente la restriction de \(\mathcal{L}_{\mu,s,0,\sigma,\lambda} \) à \(\mathcal{E} \) :

\[
M_{\mu,s,\sigma,\lambda} = \begin{pmatrix}
1 & 0 & 0 & 0 & i(\sigma_1 + k) \\
0 & 1 & 0 & 0 & i\sigma_2 \\
0 & 0 & 1 & -\mathcal{R} & -\pi \\
0 & 0 & -\mathcal{R} & \lambda + (k + \sigma_1)^2 + \pi^2 + \sigma_2^2 & 0 \\
-i(\sigma_1 + k) & -i\sigma_2 & -\pi & 0 & 0
\end{pmatrix}
\]

avec \(\mathcal{R} = \mu + 2\pi \) et \(k = \pi + s \). Ainsi les solutions de (3.18) sont les \(\mathcal{V} \) tels que

\[
M_{\mu,s,\sigma,\lambda}(\eta + \mathcal{V}) = c\eta \quad \text{et} \quad \langle \mathcal{V}, \eta \rangle_{\mathbb{C}} = 0 \quad \text{avec} \quad (\mathcal{V}, c) \in \mathbb{C}^5 \times \mathbb{C} \tag{3.19}
\]

Proposition 3.5.5: Pour \(\rho = 0 \), la matrice \(B \) a la forme suivante

\[
B = \pi(1 + \pi^2) \begin{pmatrix}
\nu(\mu, s, \sigma, \lambda) & -i\delta(\mu, s, \sigma, \lambda) \\
i\delta(\mu, s, \sigma, \lambda) & \nu(\mu, s, \sigma, \lambda)
\end{pmatrix}
\]

où

\[
\nu(\mu, s, \sigma, \lambda) = \frac{c(\mu, s, \sigma, \lambda) + \overline{c}(\mu, s, -\sigma, \overline{\lambda})}{2},
\]

et

\[
\delta(\mu, s, \sigma, \lambda) = \frac{c(\mu, s, \sigma, \lambda) - \overline{c}(\mu, s, -\sigma, \overline{\lambda})}{2}.
\]
3. Stabilité linéaire des rouleaux

Preuve

Soient c_1 et c_2 deux réels et posons $a = \frac{c_1 - ic_2}{2}$. Puisque d’après (3.16)
\[
\mathcal{L}_{\mu,s,\rho,\sigma,\lambda}(w) = \mathcal{L}_{\mu,s,\rho,-\sigma,\overline{\lambda}w}
\]
et que
\[
\varphi(\overline{\eta}) = \overline{\varphi(\eta)},
\]
on a
\[
\mathcal{L}_{\mu,s,0,\sigma,\lambda}(c_1v_1 + c_2uv^2 + c_1W_1 + c_2W_2) = ac(\mu, s, \sigma, \lambda) \exp(iX)\varphi(\eta) + \overline{ac}(\mu, s, -\sigma, \overline{\lambda}) \exp(-iX)\varphi(\overline{\eta}).
\]
Comme pour deux réel quelconques d_1 et d_2 on a
\[
d_1v_1 + d_2v_2 = \left(\frac{d_1 - id_2}{2}\right) \exp(iX)\varphi(\eta) + \left(\frac{d_1 + id_2}{2}\right) \exp(-iX)\varphi(\overline{\eta}),
\]
la proposition est démontrée.

Les termes en $\rho = 0$ sont obtenus d’après la proposition 3.3 à partir du développement de Taylor de la solution $c(\mu, s, \sigma, \lambda)$ du problème (3.19). Ce dernier s’écrit sous la forme
\[
\left(\begin{array}{cc}
M_{\mu,s,\sigma,\lambda} & -\eta^\dagger \\
-\overline{\eta} & 0
\end{array}\right)
\left(\begin{array}{c}
\mathcal{V} \\
c
\end{array}\right)
=
\left(\begin{array}{c}
-M_{\mu,s,\sigma,\lambda}(\eta) \\
0
\end{array}\right)
\tag{3.20}
\]
En posant
\[
c = \Sigma_{\alpha,\beta} \mu^\alpha s^\beta \sigma_1^\delta \sigma_2^\xi \lambda^\nu
\]
et
\[
\mathcal{V} = \Sigma_{\alpha,\beta} \mu^\alpha s^\beta \sigma_1^\delta \sigma_2^\xi \lambda^\nu.
\]
En identifiant les puissances des paramètres dans (3.20) on obtient le développement de $c(\mu, s, \sigma, \lambda)$. Cette méthode est illustrée par l’annexe II.

Remarque 3.5.6: Le coefficient de λ dans le développement de Taylor de b_{11} comme de b_{22} est $\pi/2$ (c’est à dire le carré scalaire dans $L^2[0, 2\pi] \times [0, 1]$ de v_1 comme de v_2).
La méthode ci-dessus ne donne pas accès aux termes du développement de B qui contiennent ρ. Parmi eux, ceux qui ne font apparaître ni σ ni λ s’obtiennent en dérivant des résultats obtenus au chapitre 2 lors de calculs non linéaires et mettent en jeu moins de paramètres. Les termes couplant $\rho\sigma$ et λ sont l’objet d’un traitement plus lourd.

3.5.3.b- Les termes qui contiennent ρ mais pas σ_1, ni σ_2, ni λ.

Les éléments de la matrice B qui ne contiennent ni σ_1 ni σ_2 ni λ sont obtenus d’après le théorème 2.2 de [34] à partir de la fonction de réduction du problème non linéaire g. En effet, ce théorème entraîne que lorsque ρ vérifie l’équation réduite et que $a_\rho = (0,0,\rho)$, on a

$$\frac{1}{\pi(1 + \pi^2)} A(\mu, s, 0, 0, 0) = \partial_\rho g(a_\rho, \mu, s)$$

où $\partial_\rho g$ désigne la Jacobienne de g par rapport à $a = (a_0, a_1, a_2)$ en tant qu’application de \mathbb{R}^3. Compte tenu de la définition de $f(\rho, \mu, s)$ pour $(\sigma_1, \sigma_2, \lambda) = (0,0,0)$ on a

$$\begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix} = \pi(1 + \pi^2) \begin{pmatrix}
 0 & 0 \\
 0 & 2\partial_\rho \frac{f(\rho, \mu, s)}{\rho}
\end{pmatrix}$$

et on obtient

$$\begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix} = \pi(1 + \pi^2) \begin{pmatrix}
 0 & 0 \\
 0 & \frac{\pi^2}{\pi} \rho^2 + \ldots
\end{pmatrix}$$

où $\frac{\pi^2}{\pi} \rho^2 = 2(\pi \mu - s^2) + \ldots$, compte tenu de $f(\rho, \mu, s) = 0$.

3.5.3.c- Les termes qui contiennent ρ et σ_1, ou σ_2, ou λ.

Les termes qui correspondent à ρ^0 couplé avec σ_1^0 et σ_2^0, et dont la contribution est nécessaire à l’analyse de la stabilité sont obtenus à partir des \mathcal{W}_j (pour $j = 1, 2$), qu’on calcule par un traitement direct de (3.11.b).
L’opérateur $\mathcal{L}_{\mu,s,\rho,\sigma_1,\sigma_2,\lambda}$ est représenté par son développement en puissances de $(\mu, s, \rho, \sigma_1, \sigma_2, \lambda)$, soit

$$
\mathcal{L}_{\mu,s,\rho,\sigma_1,\sigma_2,\lambda} = \sum \mathcal{L}_{\mu,s,\rho,\sigma_1,\sigma_2,\lambda}^{\gamma_{0,d\epsilon\rho}} \mu^\alpha s^\beta \rho^\gamma \sigma_1^d \sigma_2^\epsilon \lambda^\nu.
$$

La fonction \mathcal{W}_j étant régulière par rapport à $(\rho, \mu, s, \sigma, \lambda)$ on peut l’écrire sous la forme

$$
\mathcal{W}_j = \mathcal{W}(v_j) = \sum \mathcal{W}_{\alpha\beta}^{\gamma_{0,d\epsilon\rho}} \mu^\alpha s^\beta \rho^\gamma \sigma_1^d \sigma_2^\epsilon \lambda^\nu.
$$

En substituant (3.21) et (3.22) dans (3.11.b), par identification des puissances de $(\mu, s, \rho, \sigma_1, \sigma_2, \lambda)$, on obtient un système linéaire à résoudre en $\mathcal{W}_{\alpha\beta}$.

Ainsi en projetant

$$
\mathcal{L}_{\alpha\beta\delta\epsilon\rho}^{\gamma_{0,d\epsilon\rho}0}(v_j) + \sum \mathcal{L}_{\alpha\beta}(\mathcal{W}_{\alpha\beta}^{\gamma_{0,d\epsilon\rho0}}(v_j))
$$

(où la somme ne concerne que les puissances liées par les relations $\gamma + \gamma_1 = \gamma_0$, $\delta + \delta_1 = \delta_0$ et $\epsilon + \epsilon_1 = \epsilon_0$) sur la direction de v_m, on obtient le coefficient de $\mu^\alpha s^\beta \rho^\gamma \sigma_1^d \sigma_2^\epsilon \lambda^\nu$ dans le terme b_{jm} de la matrice B.

On introduit ensuite la relation $f(\mu, s, \rho) = 0$, et finalement il y a un paramètre de moins dans la relation de dispersion $det B = 0$.

Pour des raisons qui apparaîtront plus loin, on a besoin des $\bar{\gamma}_{004020}^{11}$, $\bar{\gamma}_{002020}^{11}$ et $\bar{\gamma}_{102020}^{11}$.

Comme les $\bar{\gamma}_{mj}$ sont des fonctions de $\mu, s, \rho^2, \sigma_1^2, \sigma_2^2$, il est commode de poser $R = \rho^2$, $\Sigma_1 = \sigma_1^2$, $\Sigma_2 = \sigma_2^2$ et compte tenu de la remarque 3.5.6 on pose aussi $\Lambda = \lambda \pi/2$. Grâce à la relation $f(\mu, s, \rho) = 0$, on peut exprimer μ en fonction de s et R, pour écrire

$$
\bar{\gamma}_{mj}(\mu, s, \rho, \sigma_1^2, \sigma_2^2, \lambda) = \gamma_{mj}(s, R, \Sigma_1, \Sigma_2, \Lambda)
$$

où γ_{mj} est une fonction de classe C^∞. Développons la selon

$$
\gamma_{mj}(s, R, \Sigma_1, \Sigma_2, \Lambda) = \Sigma \gamma_{mj}^{\alpha\beta\epsilon\rho\sigma} \mu^\alpha R^\beta \Sigma_1^\epsilon \Sigma_2^\rho \Lambda^\nu.
$$

Le déterminant de B peut être considéré comme une fonction C^∞ de $(s, R, \Sigma_1, \Sigma_2, \Lambda)$, que nous appelons D

$$
D(s, R, \Sigma_1, \Sigma_2, \Lambda) = det(B).
$$
Remarque 3.5.7: En vertu du théorème 2.2 de [35], \(\gamma_{11}^{\alpha \beta \epsilon \gamma \eta} = 0 \) dès que \((\epsilon_1, \epsilon_2, \eta) = 0\), les coefficients \(\gamma_{22}^{0000} \) sont nuls aussi.

Après avoir effectué les calculs décrits plus haut, on obtient des résultats, dont nous résumons l’essentiel, à la fin de ce paragraphe, dans les remarques suivantes. Ils nous seront utiles à l’étude des instabilités.

Remarque 3.5.8: On a :

(i) \(\gamma_{11}(s, R, \Sigma_1, \Sigma_2, \Lambda) = C(s, \Sigma_1, \Sigma_2, \Lambda) + \gamma_{11}^{0210} R^2 \Sigma_2 \\ + O(R(\Sigma_1 + \Sigma_2^2 + s^2 + R^2 \Sigma_2 + \Lambda)) \)

et

\(\gamma_{22}(s, R, \Sigma_1, \Sigma_2, \Lambda) = C + \frac{\pi^3 R}{8} + O(R(\Sigma_1 + \Sigma_2 + s + \Lambda)), \)

avec \(C = C(s, \Sigma_1, \Sigma_2, \Lambda) \) est tel que

\[
\begin{aligned}
C &= \Lambda + \pi \Sigma_1 + s \Sigma_2 + \frac{\Sigma_2^2}{4\pi} - \frac{4\pi^2 - 1}{2\pi(1 + \pi^2)} \Sigma_1 \Sigma_2 + \frac{2\pi^4 - 6\pi^2 + 1}{4\pi(1 + \pi^2)^2} - \frac{1}{8\pi(1 + \pi^2)} \Sigma_2^3 \\
&\quad - 3 \frac{\pi^2 - 1}{1 + \pi^2} s \Sigma_1 - \frac{\Sigma_2^2}{1 + \pi^2} s + O(\Lambda(\Sigma_1 + \Sigma_2 + s)) + O(\Sigma_1^n \Sigma_2^m s^p),
\end{aligned}
\]

où \(m, n, p \) vérifient \(2n + m + p = 4 \) et \(n + m \geq 1 \).

(ii) \(\gamma_{12}(s, R, \Sigma_1, \Sigma_2, \Lambda) = \tilde{C}(s, \Sigma_1, \Sigma_2, \Lambda) + O(R) \)

et

\(-\gamma_{21}(s, R, \Sigma_1, \Sigma_2, \Lambda) = \tilde{C} + O(R), \)

avec \(\tilde{C} = \tilde{C}(s, \Sigma_1, \Sigma_2, \Lambda) \) est tel que

\[
\begin{aligned}
\tilde{C} &= - \frac{\pi^2 - 1}{2(\pi^2 + 1)} \Lambda - \frac{\pi^2 - 1}{\pi^2 + 1} \Sigma_1 + \Sigma_2 + 2\pi s - \frac{3\pi^2 - 1}{1 + \pi^2} s^2 - \frac{\Sigma_2^2}{1 + \pi^2} \\
&\quad - \frac{4\pi^2 - 1}{\pi(1 + \pi^2)} \Sigma_2 s + O(\Lambda(\Sigma_1 + \Sigma_2 + s)) + O(\Sigma_1^n \Sigma_2^m s^p)
\end{aligned}
\]
où \(m, n, p\) vérifient \(2n + m + p = 3\) et \(n + m \geq 1\).

Une importante conséquence est que la valeur de \(D(s, R, \Sigma_1, \Sigma_2, 0)\) reste au voisinage de 0, lorsque les paramètres \(s, R, \Sigma_1, \Sigma_2\) le sont.

Afin d’alléger l’exposé de l’analyse des instabilités, nous fixons quelques notations

Notations :

(i) Soit \(F_0(R, s, \Sigma_2) = \Sigma_2^2/(2\pi) + 2s\Sigma_2 + \pi^3 R/8\), et posons
\[
F_1(R, s, \Sigma_2, \Sigma_1) = 2\pi \Sigma_1 + F_0(R, s, \Sigma_2),
\]
\[
E(s, R) \equiv \partial_{\Sigma_1} D(s, R, O_3) = \pi^4 R/8 - 4\pi^2 s^2 - 2\pi sR(\gamma_{21}^{0010} + \gamma_{12}^{0100} + ...),
\]
et
\[
Z(s, R) \equiv 8\partial_{\Sigma_2} D(s, R, O_3)/ (\pi^3 R) = s + \gamma_{11}^{02010} R^2 +
\]

Les fonctions \(E(s, R)\) et \(Z(s, R)\) comme on va le voir plus loin, sont liées aux instabilités d’Eckhaus et zigzag.

(ii) Posons aussi
\[
F_2(s, R, \Sigma_1, \Sigma_2) = \left(\frac{\Sigma_2^2}{4\pi} - \pi \Sigma_1 + s \Sigma_2\right)^2 + \Sigma_2^2 \frac{\pi^2 R}{32} + \Sigma_2 Z \frac{\pi^3 R}{8} + \Sigma_1 E.
\]

Remarque 3.5.9: Avec les notations précédentes, et avec
\[
d^{005} = -\frac{1}{16\pi^2(1+\pi^2)}\]
et \(d^{013} = \frac{3\pi^2 + 1}{4\pi^2(1+\pi^2)}\), la remarque 3.5.5 implique

(i) \(D(s, R, \Sigma_1, \Sigma_2, 0) = F_2 + d^{014}\Sigma_2^4 s + d^{120} s \Sigma_1^2 + d^{005} \Sigma_2^5 + d^{013} \Sigma_2^3 \Sigma_1 + d^{030} \Sigma_1^3\)
\[
+ O(\Sigma_2^3(s^2 + R + \Sigma_3))
\]
\[
+ O(\Sigma_2^2(R^2 + s^3 + sR) + \Sigma_1^2(s^2 + R + \Sigma_2 + \Sigma_1^2) + \Sigma_1(s^3 + R(R + s) + \Sigma_4^1)),
\]

(ii) \(\partial_{\Sigma_1} D(R, s, \Sigma_2, \Sigma_1, 0) = F_1(R, s, \Sigma_2, \Sigma_1) + O(R(R + s + \Sigma_1 + \Sigma_2)) + O(\Sigma_1^3 \Sigma_2^m s^p)\)
avec \(2n + m + p = 3\) et \(n + m \geq 1\).

Ce qui est important à remarquer ici est que la valeur de \(d^{013} + 4\pi^2 d^{005}\) est positive, ce que nous utiliserons lorsqu’ nous démontrerons la proposition 3.6.5, concernant les instabilités de bande latérale (sideband instabilities).
3. Stabilité linéaire des rouleaux

3.6 Instabilités

Un rouleau est représenté (à une translation près) par une solution \bar{U} de (1.9) de la forme $\bar{U} = \rho v_2 + U(\mu, s, \rho v_2)$ dont l’amplitude ρ est déterminée par la relation $f(\mu, s, \rho) = 0$. Considérons des instabilités associées à des σ arbitrairement petits mais non nuls tels que le déterminant de A, c’est-à-dire de B, s’annule pour des valeurs de λ possédant une partie réelle positive, mais voisine de O. Afin de détecter les (μ, s) voisins de 0 pour lesquels il en est ainsi, il faut préciser les premiers termes du développement de Taylor de $\det B$.

3.6.1 Termes dominants dans le développement du déterminant de B

Notons O_n l’élément neutre de \mathbb{C}^n. La remarque 3.5.6 montre que le coefficient de Λ^2 dans son développement de Taylor en O_5 est 1. Lorsqu’on s’intéresse exclusivement à de petites valeurs de σ, ceci permet de structurer la recherche d’instabilités qui grâce au théorème de préparation de Weierstrass (voir [8]), se réduit finalement à l’étude des racines d’un polynôme du second degré en λ, dont les coefficients dépendent des autres paramètres. Avant de continuer rappelons ici le théorème de préparation de Weierstrass :

Théorème ([8], Th. 6.2 p.37)
Supposons que $f : \mathbb{C}^n \times \mathbb{C} \rightarrow \mathbb{C}$ est une fonction analytique dans un voisinage de $(0, 0)$ vérifiant

$$f(w, \lambda) = \lambda^k g(\lambda), \ g \text{ étant analytique au voisinage de } 0 \in \mathbb{C}, \text{ avec } g(0) \neq 0.$$

Alors il existe une fonction h analytique dans un voisinage \mathcal{V} de zéro dans $\mathbb{C}^n \times \mathbb{C}$, et des fonctions $a_0(w), \ldots a_{k-1}(w)$ analytiques au voisinage de zéro dans \mathbb{C}^n telles que $a_0(0) = \ldots = a_{k-1}(0) = 0$, $h(0, 0) \neq 0$ et

$$h(\lambda, w)f(\lambda, w) = \lambda^k + \sum_{i=0}^{k-1} a_i(\lambda)\lambda^i, \quad (\lambda, w) \in \mathcal{V}.$$
Les solutions Λ voisines de 0, de l’équation

\[D(s, R, \Sigma_1, \Sigma_2, \Lambda) = 0 \]

sont aussi racines d’un polynôme de degré 2 dont les coefficients sont des fonctions régulières de s, R, Σ_1, Σ_2. La proposition suivante est plus précise.

Proposition 3.6.1: Il existe un voisinage $\mathcal{V}O$ de O_5 et un polynôme D_2 de degré 2 par rapport à Λ tel que pour $(s, R, \Sigma_1, \Sigma_2, \Lambda)$ dans $\mathcal{V}O$ les coefficients de D_2 sont réguliers,

(i) les racines de la relation de dispersion $D(s, R, \Sigma_1, \Sigma_2, \Lambda) = 0$

sont les racines de D_2,

(ii) $\partial^2_{\Lambda}D_2(s, R, \Sigma_1, \Sigma_2, 0) = 2$, et $D_2(s, R, \Sigma_1, \Sigma_2, 0)D(s, R, \Sigma_1, \Sigma_2, 0) \geq 0$,

(iii) $\partial_\Lambda D_2(s, R, \Sigma_1, \Sigma_2, 0) = F_1(s, R, \Sigma_1, \Sigma_2) + O(R(R + s + \Sigma_1 + \Sigma_2)) + O(\Sigma_1^m \Sigma_2^m s^p)$,

avec $2n + m + p = 3$ et $n + m \geq 1$.

Preuve

Compte tenu de la remarque 3.5.8, $D(O_4, \Lambda)$ est de la forme $\Lambda^2d(\Lambda)$, où la fonction régulière d est telle que $d(0) = 1$. Ainsi la version C^∞ du théorème de préparation de Weierstrass([8]), implique qu’il existe une fonction régulière \tilde{d}, fonction de $(s, R, \Sigma_1, \Sigma_2, \Lambda)$, et un polynôme

\[D_2(s, R, \Sigma_1, \Sigma_2, \Lambda) = \Lambda^2 + \partial_\Lambda D_2(s, R, \Sigma_1, \Sigma_2, 0) + D_2(s, R, \Sigma_1, \Sigma_2, 0), \]

tel que $\tilde{d}(O_5) \neq 0$ et

\[D(s, R, \Sigma_1, \Sigma_2, \Lambda)\tilde{d}(s, R, \Sigma_1, \Sigma_2, \Lambda) = D_2(s, R, \Sigma_1, \Sigma_2, \Lambda) \]

dans un voisinage $\mathcal{V}O$ de O_5. Les coefficients de D_2 sont des fonctions régulières de $(s, R, \Sigma_1, \Sigma_2)$.
3. Stabilité linéaire des rouleaux

Puisque $\partial^2_{\Lambda^2} D(O_5) = 2$, $\partial_\Lambda D(O_5) = 0$ et $D(O_5) = 0$, on a $\tilde{d}(O_5) = 1$. La fonction \tilde{d} étant régulière, sa restriction au voisinage $\mathcal{V} \mathcal{O}$ donne $\tilde{d}(s, R, \Sigma_1, \Sigma_2, 0) > 0$ dans $\mathcal{V} \mathcal{O}$. Ainsi on obtient les points (i) et (ii).

On a alors, $\partial_\Lambda D + D\partial_\Lambda \tilde{d} = \partial_\Lambda D$ et à l’aide de la remarque 3.5.9 on arrive au point (iii), considérant que la valeur F_2 est relativement petite comparée à celle de F_1 alors que la dérivée $\partial_\Lambda \tilde{d}$ est assez régulière.

Comme le coefficient de Λ^2 dans D_2 est positif lorsque s, R, Σ_1, Σ_2, Λ sont petits, l’existence pour le polynôme D_2 de racines avec partie réelle positive dépend du signe des coefficients de Λ et Λ^0. Donc la possibilité d’instabilités de \tilde{U} dépend du signe des coefficients de Λ et Λ^0.

Pour chaque (s, R) permettant l’existence de rouleaux, ces coefficients sont des fonctions de Σ_1 et Σ_2, qui sont eux-mêmes positifs. Tant que ces derniers sont petits, le théorème de préparation de Weierstrass détermine le nombre de termes à considérer dans le développement de ces fonctions pour connaître leur signe.

Le coefficient de Λ^0 dans D_2 n’est autre que $D(s, R, \Sigma_1, \Sigma_2, 0)$ lui-même, qui s’écrit $F_2 + O(\Sigma_2^5) + \Sigma_1^2O(s + R + \Sigma_1)^2 + \Sigma_2^3O(s + R + \Sigma_1)^2 + \Sigma_2^2O(s^2 + R + \Sigma_1)^2 + \Sigma_2O((R(s + R))^2 + \Sigma_1(s + R)^2)) + \Sigma_1^2O(s^2 + (R + s)^2) + \Sigma_1O(R^2 + s^3 + Rs^2 + sR^2)$. Le théorème de préparation de Weierstrass montre que, lorsque les paramètres sont petits, $D(s, R, \Sigma_1, \Sigma_2, 0)$ est du signe de $F_2(s, R, \Sigma_1, \Sigma_2)$.

Considérons maintenant le coefficient de Λ dans D_2.

Compte tenu du signe de R et des Σ_j, $F_1(R, s, \Sigma_2, \Sigma_1)$ est positif pour tout Σ_1 positif, sauf si $F_0(R, s, \Sigma_2) < 0$. Ceci ne peut se produire que si s est négatif, lorsque ce polynôme en Σ_2 possède deux racines positives et que Σ_2 est entre celles-ci. Or le polynôme F_0 possède de telles racines si et seulement si $s + \alpha R$ est inférieur à $-\pi \sqrt{R}/4$, ce qui exige que $R < 16s^2/\pi^2$. Alors, les racines de F_1 sont $2\pi(-s \pm \pi \sqrt{1 - R^2/16})$. Finalement, la proposition suivante détermine le signe du coefficient de Λ dans D_2.
3. Stabilité linéaire des rouleaux

Proposition 3.6.2: Le coefficient de Λ dans D_2 est négatif si et seulement si on a à la fois s négatif, $R < 16s^2/\pi^2$, Σ_2 entre $2\pi(-s \pm \pi\sqrt{1 - R^2/16})$, et $\Sigma_1 < -F_1(s, R, \Sigma_2)/(2\pi)$.

Remarque 3.6.3: Si ceci se produit, on peut écrire $\Sigma_1 = ys^2$, $\Sigma_2 = zs$, et $R = \chi s^2$, avec y, z et χ bornés. L’inégalité $R < 16s^2/\pi^2$ est réalisée lorsque (s, μ) est en dessous de la parabole CE' d’équation $\pi\mu = 2s^2$, représentée sur la figure Fig.3.1.

3.6.2 Les instabilités d’Eckhaus et Zigzag

Depuis les travaux d’Eckhaus ([23]), on sait que les rouleaux de trop faible amplitude sont déstabilisés par des perturbations qui sont un cas particulier de celles que nous considérons ici, et correspondent à des modulations du vecteur d’onde sans changement de direction. L’instabilité zigzag affecte les rouleaux dont la longueur d’onde dépasse la longueur d’onde critique (qui est 2). Elle modifie la forme des rouleaux.

Instabilité Zigzag

Lorsque $\partial_{\Sigma_2} F_2(s, R, O_3)$ est négatif, $D(s, R, 0, \Sigma_2, 0)$ possède des racines positives proches de 0, les ondes de Bloch correspondant aux σ_2^2 entre ces racines sont amplifiées. Donc les rouleaux tels que Z soit négatif, sont déstabilisés par des perturbations avec $\sigma_1 = 0$ et σ_2 différent de 0 mais assez petit. Ce phénomène est appelé instabilité sinusoidale ou zigzag (voir [26] ou [30]) car il tord les rouleaux. Comme γ_{11}^{02010} est positif, il se produit pour s négatif, c’est à dire pour des rouleaux dont la longueur d’onde dépasse la longueur d’onde critique, mais aussi pour des rouleaux de forte amplitude dont la longueur d’onde est très peu inférieure à la valeur critique $2\pi/k_c = 2$, de sorte que (R, s) se trouve à gauche de la parabole CZ d’équation $Z(s, R) = 0$, représentée sur la figure Fig.3.1 dans le plan (s, μ).

Les termes d’ordres $\rho^4 \sigma_2^2$, $\mu^2 \sigma_2^2$, et $\mu^2 \rho^2 \sigma_2^2$ dans le développement de $\hat{\gamma}$ ont été nécessaires pour voir la différence entre (CZ) et l’axe $s = 0$. Comme
3. Stabilité linéaire des rouleaux

\[\gamma_{11}^{02010} = \frac{11\pi}{3684}, \]

ce qui est en accord avec [26], la courbe reste dans la région où \(s \) est négatif.

L’instabilité d’Eckhaus

Le coefficient de \(\Sigma_1 \) dans \(D_2(s, R, \Sigma_1, 0, 0) \) est positif au dessus de la courbe \(CE \) d’équation \(E(s, R) \equiv R - 32s^2/\pi^2 \), représentée par une parabole sur la figure Fig.3.1 dans le plan \((s, \mu)\), et appelée courbe d’Eckhaus. En dessous, \(\partial_{\Sigma_1} D_2(s, R, 0, 0, 0) \) est négatif. Par conséquent les rouleaux dont l’amplitude vérifie \(E(s, R) < 0 \) sont déstabilisés par des ondes de Bloch de même direction, avec \(\sigma_2 = 0 \) et \(\sigma_1 \) petit mais non nul. Ce résultat, dû à Eckhaus ([23]), s’obtient facilement dans un cadre bidimensionnel, ne tenant pas compte de la direction \(y \).

L’intérêt de la méthode que nous utilisons ici, réside dans le fait qu’elle nous permet de montrer, que les rouleaux qui résistent aux instabilités zigzag et cross-roll sont spectralement stables.

3.6.3 Rouleaux stables et rouleaux instables

A l’exception des \((s, \mu)\) correspondant aux rouleaux d’amplitude nulle, \(M^{\mu,s}_\sigma \) n’est pas un opérateur auto-adjoint, donc des instabilités oscillatoires sont a priori possibles

3.6.3.a Instabilités oscillatoires

Si \(D_2 \) admet toujours des racines complexes (à partie imaginaire non nulle) avec partie réelle positive, \(\partial_\lambda D_2(s, R, \Sigma_1, \Sigma_2, 0) \) et le discriminant \(\Delta \) de \(D_2 \) doivent être négatifs, d’où \(s \) doit être négatif aussi.

Lorsque \(s \) est négatif avec \((s, R, \Sigma_1, \Sigma_2)\) au voisinage de \(O_4 \), on a

\[\partial_\lambda D_2(s, R, \Sigma_1, \Sigma_2, 0) > \pi \Sigma_1 + \frac{\Sigma_2^2}{4\pi} + 3s\Sigma_2 + \frac{\pi^3 R}{16} \equiv \tilde{F}_1. \]

Si \(\tilde{F}_1 \) est négative, il existe une borne \((\chi, \Psi, \Upsilon)\) dans \(\mathbb{R}^3 \) telle que la relation

\[(\Sigma_1, \Sigma_2, R) = (3s^2, \Upsilon s, \chi s^2) \]

(3.24)
soit vérifiée. Alors on a
\[\Delta = s^4(4\Psi(T + 2\pi)^2 + \frac{\pi^6\chi^2}{64} + s\alpha(s)) \]
où \(\alpha \) est une fonction de \(s \) assez régulière. Supposons que \(s\alpha(s) \) prend des valeurs négatives pour des valeurs de \(s \) arbitrairement petites. Alors, si \((s, \mu) \) satisfait \(f(\mu, s, 0) = 0 \), \(M^{\mu, s} \) admet des valeurs propres imaginaire pour \(\sigma_1 = 0 \) ou \(\sigma_2 = \sqrt{-2\pi s} \), cependant \(M^{\mu, s} \) est auto-adjoint, d’où la contradiction, ce qui montre la proposition suivante.

Proposition 3.6.4: Juste au-dessus du seuil de la convection, les instabilités oscillatoires sont impossibles.

Par conséquent, pour \((s, \mu) \) au-dessus de la courbe \((CE)\) et à droite de \((CZ)\) les ondes de Bloch éventuellement amplifiées doivent correspondre aux petites racines positives de \(D_2 \).

3.6.3.b Rouleaux avec \((s, \mu)\) au-dessus de \((CE)\) et à droite de \((CZ)\)

Comme \(\partial_\Lambda D_2(s, R, \Sigma_1, \Sigma_2, 0) \) ne peut être négatif que pour \(s < 0 \) avec en plus, \((\Sigma_1, \Sigma_2, R) \) vérifiant (3.24), les coefficient de \(\Lambda \) et \(\Lambda^2 \) dans \(D_2 \) sont positifs pour \((s, \mu) \), situé entre \((CE)\) et \((CZ)\). En estimant la valeur de \(D_2(s, R, \Sigma_1, \Sigma_2, 0) \) on arrive à la proposition suivante.

Proposition 3.6.5: Juste au-dessus du seuil de la convection, aucune instabilités sideband n’est possible, pour \((s, \mu) \) au-dessus de \((CE)\) et à droite de \((CZ)\).

Preuve

La proposition 3.6.1 implique que les instabilités sideband correspondent aux valeurs négatives de \(D(s, R, \Sigma_1, \Sigma_2, 0) \). La remarque 3.5.9 implique qu’ils existent des nombres positifs \(\beta, \beta', \beta'' \) et \(\beta''' \) tels que

\[D(s, R, \Sigma_1, \Sigma_2, 0) - (\Sigma_2 Z \frac{\pi^3 R}{8} + \Sigma_1 E) \geq \]

\[\left(\frac{\Sigma_2^2}{4\pi} - \pi \Sigma_1 + s \Sigma_2 \right)^2 + \Sigma_2^2 \frac{\pi^2 R}{64} - s(\beta \Sigma_1^2 + \beta' \Sigma_1^2) + \beta'' \Sigma_1 \Sigma_2 - \beta''' \Sigma_2^3 \equiv \tilde{F}_2 \]

(3.25)
lorsque s, R, Σ_1, Σ_2 sont assez petit, avec β'' positif et “légerement” plus grand que $-d_{030}$ et β'' positif et “légerement” plus petit que d_{030}^{13}, et vérifiant $\beta''/4\pi^2 - \beta'' > 0$. Prenons $\beta'' = \frac{2}{16\pi^2(1+\pi^2)}$ and $\beta'' = \frac{3\pi^2}{4\pi^2(1+\pi^2)}$, par exemple.

Lorsque Σ_2, s, R est assez petit, \tilde{F}_2 atteint son minimum en

$$\Sigma_1^* = (4\pi^2)^{-1}(\Sigma_2^2 + 4\pi\Sigma_2s - 2\beta''\Sigma_2^3)(1 + s\tilde{\beta}(s)),$$

où $\tilde{\beta}$ est une fonction de s assez régulière. Alors il existe des constantes positives b et b' telles que

$$\tilde{F}_2 \geq \Sigma_2^2 s^2/4 + b\Sigma_2 - b'\Sigma_2^4,$$

et

$$b\Sigma_2^3 - b'\Sigma_2 s + s^2/4 \geq s^2(1/4 + O(s)) \geq s^2/8$$

pour des valeurs de s assez petites. Et d’ici on déduit

$$D(s, R, \Sigma_1, \Sigma_2, 0) \geq \Sigma_2^2 s^2/8 + E\Sigma_1 + \Sigma_3 \pi^2 RZ/8, \quad (3.26)$$

test ce qui prouve la proposition.

Consequence : Les rouleaux avec (s, μ) au-dessus de (CP) et à droite de (CZ) sont spectralement stables.

Remarque 3.6.6: Dans (3.26) on a utilisé le signe (positif) de d_{030}, puisque dans le paragraphe 3.5.3-a on a les valeurs de $c_{\alpha e}$ nécessaires. Nanmoins la proposition reste vraie avec $d_{030} < 0$. En effet (3.26) est satisfaite aussi avec $-\beta''\Sigma_1^3$ inséré dans \tilde{F}_2, et le reste de la preuve s’ajuste en multipliant Σ_1^* par $1 + \tilde{t}\tilde{\beta}(\tilde{t})$, où $\tilde{\beta}$ est une fonction assez régulière et $\tilde{t} = \beta''\Sigma_2^2 + 4\pi\Sigma_2 s - 2\beta''\Sigma_2^3 / (\pi^2 - \beta'' s)^2$.

3.6.3.c Rouleaux avec (s, μ) au-dessous de (CE) ou à gauche de (CZ)

Au voisinage de O_2, les paramètres des ondes de Bloch amplifiées appartiennent à l’ensemble

$$\mathcal{S}_1 = \{\sigma / D(s, R, \Sigma_1, \Sigma_2, 0) < 0\}$$
ou
\[S_2 = \{ \sigma / \partial_\lambda D_2(s, R, \Sigma_1, \Sigma_2, 0) < 0 \text{ et } \Delta > 0 \} . \]

Lorsque \(E \) ou \(Z \) est négative, on peut prendre \(R = \chi s^2 \), puisque l’axe \(s = 0 \) est exclus. On sait déjà d’après le paragraphe 3.6.3.a que dans \(S_2 \) les \((\Sigma_1, \Sigma_2, R) \) vérifient (3.24) avec \(\chi, \mathcal{Y} \) et \(T \) bornés. Pour \(S_1 \) le reparamétrage (3.24) ne peut pas déterminer toutes les instabilités sideband possibles. Néanmoins la remarque 3.2.7 montre que les paramètres \(\sigma \) correspondant à des instabilités sideband possibles vérifient
\[2\pi|\sigma_1| \pm \sigma_2^2 + ... = O(s), \]

ce qui résulte ou bien de (3.24) ou de \(\Sigma_2 = Ts^{2/3} \) et \(\Sigma_1 = \mathcal{Y}s^{4/3} \) avec \(\mathcal{Y} = (\frac{T + ts^{1/3}}{2\pi})^2 \) si \(D(s, R, \Sigma_1, \Sigma_2, 0) \) doit être négatif. A partir de (3.23) on obtient que ces instabilités ne correspondent à des valeurs de \(t \) dans un intervalle, que si \(\chi < \frac{16}{\pi} \), et que les résultats obtenus à partir de (3.24) correspondent bien à ceux rapportés ci-dessous.

Le reparamétrage (3.24) implique que
\[D_2(s, R, \Sigma_1, \Sigma_2, 0) = s^4\mathcal{F}_2 + O(s^5) \]

où
\[\mathcal{F}_2(\chi, \mathcal{Y}, T) = \pi^2\mathcal{Y}^2 + \mathcal{Y}[\chi \frac{\pi^4}{8} - 4\pi^2 - 2\pi T - \frac{1}{2}T^2 + \frac{T^4}{(4\pi)^2}] + \frac{T^3}{2\pi} + T^2(1 + \frac{\pi^2}{32}\chi) + T\chi \frac{\pi^3}{8}, \]

et il est facile de voir que l’ensemble des \(\sigma \) “dangereux” change de forme chaque fois qu’on varie \(\chi \).

La courbe \((CE')\) correspondant à \(\chi = \frac{16}{\pi} \), partage l’ensemble des \((s, \mu)\) tels que \(E < 0 \) et \(s > 0 \) en deux parties, suivant la forme de \(S_1 \). Au-dessus de \((CE')\), \(\mathcal{F}_2 \) possède deux racines positives \(\mathcal{Y} \) pour \(T \) dans un intervalle contenant 0, tel que c’est représenté dans la figure Fig.3.2. Au-dessous de \((CE')\) de la figure Fig.3.1, \(\mathcal{F}_2 \) possède deux racines positives \(\mathcal{Y} \) pour toute
variation de T. La courbe (CE') délimite aussi, différentes autres comportements dans la région où Z est négatif. Dans ces régions, les instabilités peuvent correspondre à S_1 ou S_2, et on peut voir dans la figure Fig.3.4, que les instabilités sideband sont délimitées loin des instabilités cross-roll lorsque (s, μ) est au-dessus de (CE'). Au-dessous de (CE'), les deux genres d’instabilités fusionnent ensemble comme sur la figure Fig.3.5. Tenant compte des symétries de l’ensemble des “paramètres de Bloch dangereux”, nous retrouvons les conditions, provoquant les instabilités sideband, le scénario décrit par [35] pour l’équation Swift-Hohenberg.

La figure Fig.3.2 montre, que pour une région très étroite des (s, μ), diagramme entre (CE) et (CP) avec en plus $s > 0$, des perturbations amplifiées peuvent conduire à la formation de structures carrées, mais peu de rouleaux sont concernés. Les perturbations, menant probablement aux hexagones ne peuvent se développer qu’à partir des roulements, sensibles à l’instabilité d’Eckhaus, qui pourrait expliquer certaines observations sporadiques.

3.7 Conclusion

Les écarts entre les champs (V, θ, p) correspondant aux solutions de (1.1) et aux rouleaux évoluent selon le système (1.4). Pour chaque $Ra = (Rc + \mu)^2$ du nombre de Rayleigh, les rouleaux sont déterminés par leur nombre d’onde $k = k_c + s$. C’est en faisant référence aux paramètres μ et s, liés l’un aux conditions aux limites thermiques (moteur des instabilités) l’autre à une forme donnée de rouleaux, que nous avons étudié le spectre de la partie linéaire du second membre de (1.4).

Pour cela, nous avons remarqué que ce spectre est identique à celui de l’opérateur $M^{\mu,s}$. Or ce dernier est ”presque” un opérateur elliptique. Ceci nous a permis de montrer que son spectre se décompose en la réunion des spectres (ponctuels, cette fois) des opérateurs $M^{\mu,s}_\sigma$.

Dans chaque σ dans T^* nous avons étudié la partie supérieure de son spectre, c’est à dire les deux valeurs propres les plus à droite dans le plan complexe.
Nous avons ainsi vérifié que tant que le nombre d’onde $k_c + s$ se trouve dans un certain intervalle (tel que (μ, s) soit entre deux paraboles) les valeurs propres de tous les opérateurs $M_{\mu,s}$ ont leur partie réelle négative. Ce résultat a été obtenu en distinguant deux cas, selon que le paramètre σ est proche de $(0, 0)$ ou pas. En effet, les opérateurs $M_{\mu,s}$ sont peu différents d’opérateurs elliptiques auto-adjoints dont la valeur propre principale est négative sauf lorsque σ s’approche de certains cercles (les $C_m(\mu, s)$). Pour σ loin de ceux-ci, on n’obtient pas de contribution à la partie instable du spectre. Pour σ proche d’un de ces cercles, nous avons utilisé le noyau de l’opérateur auto-adjoint mentionné ci-dessus. Pour cette raison, il a fallu traiter à part les régions de T^* proches de points en lesquels la dimension de ce noyau est 2, sachant qu’en général c’est 1. Or cette dimension est deux lorsque σ est commun à deux cercles $C_m(\mu, s)$, ce qui se produit pour $\sigma = (0, 0)$ et pour $\sigma_1 = \frac{k}{2}$. Dans ce dernier cas le couplage entre deux valeurs propres dangereuses de l’opérateur auto-adjoint est faible, mais il en va tout autrement au voisinage de $(0, 0)$ à cause de la symétrie entre les deux valeurs propres alors concurrentes.

Pour déterminer les deux valeurs propres dangereuses de $M_{\mu,s}$ pour σ proche de $(0, 0)$, il a fallu obtenir des renseignements précis sur les coefficients du polynôme de degré 2 dont elles sont les racines. Or seuls les développements de Taylor de ces coefficients nous étaient accessibles, et pas sous forme explicite, d’où la longueur du chapitre 3.
Fig. 3.1: Les courbes \((CZ)\), \((CP)\), \((CE)\) et \((CE')\) dans le plan \((s, \mu)\). Dans la zone hachurée au-dessous de \(\Gamma\), où \(\pi \mu < s^2\), aucun rouleau stationnaire non trivial n’est solution de \((1.4)\).
Fig. 3.2: Amplifying Bloch waves for \((s, \mu)\) between \((CP)\) and \((CE)\) for \((s, \mu)\) between \((CE)\) and \((CE')\).

Sideband instabilities for \(\sigma\) between \((CE)\) and \((CE')\).

Les paramètres des ondes de Bloch amplifiées pour \(s > 0\) et \((s, \mu)\) entre \((CP)\) et \((CE')\). - En haut : aucun petit paramètre. - En bas : instabilités sideband. Ici \(\mu = 0.001\), les lignes continues délimitent les paramètre d’ondes de Bloch amplifiées pour \((s, \mu)\) entre \((CE)\) et \((CE')\), et les lignes en pointillés-tirets correspondent aux cercles \(C_1\) et \(C_0\). Les lignes en tirets délimitent les cross-roll instabilités qui sont pour \((s, \mu)\) entre \((CE)\) et \((CP)\).
Fig. 3.3: Les paramètres des ondes de Bloch amplifiées pour $s > 0$ et (s, μ) au-dessous de (CE'): les instabilités sideband fusionnent avec les ondes de Bloch amplifiées avec de petits paramètres.
Fig. 3.4: Les paramètres des ondes de Bloch amplifiées pour $s < 0$ et (s, μ) entre (CP) et (CE'). - En haut : aucun petit paramètre ; il y a des instabilités cross-roll uniquement pour (s, μ) au-dessous de (CP), et la situation est similaire à la partie gauche de Figure 2. - En bas : instabilités sideband. Ici $\mu = 0.001$, les lignes continues délimitent les paramètre d’ondes de Bloch amplifiées pour (s, μ) entre (CE) et (CE'), et les lignes en pointillés-tirets correspondent aux cercles C_1 et C_0. Les lignes en tirets délimitent les instabilités pour (s, μ) entre (CE) et (CP). Les lignes en pointillés délimitent les instabilités sideband pour (s, μ) au-dessus de (CP).
Fig. 3.5: Les paramètres des ondes de Bloch amplifiées pour $s < 0$ et (s, μ) au-dessous de (CE').

Amplifying Bloch waves for (s, μ) between (CE) and (CE'), and $s < 0$.
4. ANNEXES

Annexe I : Démonstration du lemme 3.2.3 et de la proposition 3.2.5

Le lemme 3.2.3 et la proposition 3.2.5 transposent à l’opérateur $M^{\mu,s}$, des résultats de [35] pour des opérateurs différentiels elliptiques d’ordre $2m$. Ici nous adaptions les Théorèmes A.2 et 2.1 de [35] grâce au fait que $M^{\mu,s}$ est “prèsque” une application différentielle elliptique d’ordre 2. En effet la partie non locale est obtenue à partir de l’inverse d’un opérateur différentiel elliptique d’ordre 2, et elle est bornée. Nous montrons que dans notre situation, les estimations A.5-A-6 de [35] sont encore vérifiées.

I.1 La partie non locale de $M^{\mu,s}$

Notation : Pour Θ dans $\mathcal{D} = H^2(\Omega) \cap H^1_0(\Omega)$, avec

$$H^1_0(\Omega) = \{ \Theta \in H^1(\Omega) | \Theta(x,y,0) = \Theta(x,y,1) = 0 \}$$

soit $\Pi(\Theta)$ tel qu’il existe q vérifiant

$$\Pi(\Theta) + \nabla q = \Theta e_z \quad and \quad \nabla \cdot \Pi(\Theta) = 0 \quad (I.1.a)$$

dans Ω, avec

$$\Pi(\Theta) \cdot e_z = 0 \quad sur \quad \partial \Omega. \quad (I.1.b)$$

Lorsque Θ appartient à \mathcal{D}, le problème (I.1) a exactement une solution $\Theta e_z - \nabla \Delta_N^{-1} \partial_z \Theta$, où le Laplacien (avec la condition de Neumann) est noté Δ_N. La remarque suivante qui est triviale pour $m = 0$, est une conséquence pour $m > 0$ de l’estimation (A.5) de [35].
Remarque I.1 L’application Π, définie dans \mathcal{D}, vérifie

$$
\|\Pi(\Theta)\|(H^m(\Omega))^3 \leq \tilde{K}\|\Theta\|(H^m(\Omega))^3
$$

I.2 Estimations dans $L^2(\Omega)$

D’après l’inégalité A.5 de [35], A étant une application différentielle elliptique d’ordre 2, il existe \tilde{K} tel que, pour Θ dans le domaine de A on a

$$
\|\Theta\|_{H^2(\Omega)} \leq \tilde{K}(\|A\Theta\|_{L^2(\Omega)} + \|\Theta\|_{L^2(\Omega)}). \tag{I.2}
$$

Pour λ dans \mathbb{C}, l’estimation est vraie pour \mathcal{M}, défini par $\mathcal{M}\Theta = \Delta\Theta - \nabla \cdot \nabla\Theta - \lambda\Theta$, d’où on a

$$
\|\Theta\|_{H^2(\Omega)} \leq K(\|(M^{\mu,s} - \lambda)\Theta\|_{L^2(\Omega)} + \|\Theta\|_{L^2(\Omega)}). \tag{I.3}
$$

I.3 Estimations dans des espaces à poids

Avec $w(x) = \cosh|x|$, les applications $A_{\alpha,x'}$, définies par $A_{\alpha,x'}\Theta = w(\cdot - x')^{-\alpha}Aw(\cdot - x')^\alpha\Theta$, qui sont associées à A par [35] pour estimer A^{-1} dans des espaces à poids. Lorsque A est une application différentielle elliptique à coefficients assez réguliers, la définition de $A_{\alpha,x'}$ dans le domaine de A s’adapte à l’inverse A^{-1} et $A_{\alpha,x'}^{-1}$. A partir de

$$
\partial_z\Delta_{N,\alpha,x'}^{-1}\partial_z\Theta(x, z) = \partial_z w(\cdot - x')^{-\alpha}\Delta_{N}^{-1}\partial_z w(\cdot - x')^\alpha\partial_z\Theta(x, z)
$$

et

$$
\partial_z\Delta_{N,\alpha,x'}^{-1}\partial_z\Theta(x, z) = w(\cdot - x')^{-\alpha}\partial_z\Delta_{N}^{-1}\partial_z w(\cdot - x')^\alpha\partial_z\Theta(x, z) + \frac{\tanh |x - x'|}{|x - x'|}(x - x')w(\cdot - x')^{-\alpha}\Delta_{N}^{-1}\partial_z w(\cdot - x')^\alpha\partial_z\Theta(x, z),
$$

nous déduisons

$$
\|(\Pi_{\alpha,x'} - \Pi)\Theta\|_{L^2(\Omega)} \leq K'\|\alpha\|\|\Theta\|_{H^1(\Omega)}.
$$

De plus, d’après l’estimation (A.6) de [35], qui est vérifiée par \mathcal{M} et Δ_N, on a $\|(A_{\alpha,x'} - A)\Theta\|_{L^2(\Omega)} \leq K'\|\alpha\|\|\Theta\|_{H^1(\Omega)}$, d’où

$$
\|(M^{\mu,s} - \lambda)_{\alpha,x'} - (M^{\mu,s} - \lambda)\Theta\|_{L^2(\Omega)} \leq K'\|\alpha\|\|\Theta\|_{H^1(\Omega)}, \tag{I.4}
$$
ce qui donne, par les séries de Neumann, un sens à \((M^{\mu,s} - \lambda)_{\alpha,x}^{-1}\), dès que \((M^{\mu,s} - \lambda)^{-1}\) existe lorsque \(|\alpha|\) est petit. Ainsi le lemme suivant est démontré.

Lemme I.1 Pour \(|\alpha|\) petit, l’application \((M^{\mu,s} - \lambda)_{\alpha,x}\), de \(D\) vers \(L^2(\Omega)\), possède un inverse borné lorsque \((M^{\mu,s} - \lambda)\) le possède aussi. De plus la norme de \((M^{\mu,s} - \lambda)_{\alpha,x}^{-1}\) dans \(L(L^2(\Omega))\) est bornée uniformément par rapport à \(x'\) dant \(\mathbb{R}^2\) et \(\alpha\) dans un voisinage de zéro.

En plus des estimations, les propriétés des applications jouent un rôle dans la preuve du théorème A.2 dans [35] à travers l’identité (3.3), qui est satisfaite lorsque les conditions au bord sont invariantes par \(\tau_{x'}\). Puisque \(\tau_{x'}\) commute avec \(\Delta_N\), (3.3) est satisfaite pour \(M^{\mu,s}\), et la première partie du théorème A.2 de [35] est valable ici aussi : si \(M^{\mu,s} - \lambda\), considéré comme opérateur dans \(L^2(\Omega)\), possède un inverse borné, alors la même chose est vraie dans \(L^2_{lu}(\Omega)\).

De plus, l’application \(\nabla \Delta_N^{-1} \partial_x\) est bornée de \(H^1_{lu}(\Omega) \cap H^1_{0,lu}(\Omega)\) vers \(L^2_{lu}(\Omega)\), tel que \(\Pi\) est une application de \(H^2_{lu}(\Omega) \cap H^1_{0,lu}(\Omega)\) vers \(L^2_{lu}(\Omega)\), bornée par rapport à la norme de \(L^2_{lu}(\Omega)\). Les estimations I.3-4 sont satisfaites avec les normes de \(L^2\) et \(H^2\) à la place de \(L^2(\Omega)\) et \(H^2(\Omega)\), par conséquent la seconde partie du théorème A.2 de [35] est également valable, et il en résulte le lemme 3.2.3.

I.4 Applications de Bloch

En posant \(\Theta = e^{ix \cdot \theta}\) dans (I.3) avec \(\theta\) dans \(H^2(\Omega/L) \cap H^1_0(\Omega/L)\) on obtient

\[
(1 + |\sigma|^2)\|\theta\|_{L^2(\Omega/L)} + \|\theta\|_{H^2(\Omega/L)} \leq C((M^{\mu,s} - \lambda)_\sigma \theta\|_{L^2(\Omega/L)} + \|\theta\|_{L^2(\Omega/L)}),
\]

d’où le lemme A.3 de [35] s’applique pour \(M^{\mu,s} - \lambda : \lambda\) appartient à l’ensemble résolvant de \(M^{\mu,s}\) si et seulement si \((M^{\mu,s} - \lambda)_\sigma\) possède un inverse borné pour tout \(\sigma\) dans \(T^*\) pourvu que \(\|(M^{\mu,s} - \lambda)_\sigma \|_{L(L^2(\Omega/L))}\) soit uniformément borné pour \(\sigma\) dans \(T^*\).

Ici on a \(T^* = T_k \times \mathbb{R}\). La dépendance de \(\|(M^{\mu,s} - \lambda)_\sigma^{-1}\|_{L(L^2(\Omega/L))}\) par rapport à \(\sigma\) étant continue, la borne de cet opérateur est alors uniforme dans \([0, k] \times [-\sigma_2^0, \sigma_2^0]\). Pour \(|\sigma_2| > \sigma_2^0\), notons que \(\Pi_\sigma\) (avec \(\Pi_\sigma \theta = e^{-i\sigma \cdot x} \Pi(e^{i\sigma \cdot x}\theta)\))
vérifie (3.5), d’où \(\| \Pi \sigma \theta \|_{L^2(\Omega/L)} \leq \| \theta \|_{L^2(\Omega/L)} \). De plus, (3.4) implique que, si \((\sigma^0_L)^2 \geq \sup \|
abla e_x - \nabla \theta \| + \text{Re}(\lambda) + 1 \), alors le produit scalaire \(\langle (M^L_{\mu,s} - \lambda) \theta \rangle_{L^2(\Omega/L)} \) est plus grand que \(\langle (-\Delta + 1) \theta \rangle \). Ainsi la borne est uniforme dans \(T^* \), ce qui complète la preuve de la proposition 3.2.5.

Annexe II : calcul des premiers termes du développement de \(\mathcal{U}(\rho v_2) \)

II.1 Calcul des \(\mathcal{U}^c_{ab} \) du problème non linéaire

On a besoin du développement de \(\mathcal{U} \), fonction implicite de l’équation auxiliaire du problème non linéaire pour déterminer les premiers termes du développement de l’opérateur linéaire qui gouverne le problème spectral (linéaire). On écrit cette fonction sous la forme

\[
\mathcal{U} = \sum \mathcal{U}^c_{ab} \mu^a s^b \rho^c
\]

II.1.1 Opérateurs du Problème Non Linéaire

Le problème non linéaire est gouverné par l’opérateur

\[
L + N + s(L^0_{01} + N^0_{01}) + \mu L^0_{10} + s^2 L^0_{02}
\]

tel que pour un vecteur \(V = (V_1, V_2, V_3, V_4, V_5)^\dagger \) on a par définition :

\[
N(V) := \left(0, 0, 0, \pi \frac{\partial V_4}{\partial X} V_1 + \frac{\partial V_4}{\partial z} V_3, 0 \right)^\dagger
\]

\[
N^0_{01}(V) := \left(0, 0, 0, \frac{\partial V_4}{\partial X} V_1, 0 \right)^\dagger
\]

\[
L^0_{02}(V) := \left(0, 0, 0, -\frac{\partial^2 V_4}{\partial X^2}, 0 \right)^\dagger
\]

\[
L^0_{10}(V) := (0, 0, -V_4, -V_3, 0)^\dagger
\]
\[L_{01}^0(V) := \left(\frac{\partial V_5}{\partial X}, 0, 0, -2\pi \frac{\partial^2 V_4}{\partial X^2}, -\frac{\partial V_1}{\partial X} \right) \]

\[L(V) := \left(V_1 + \pi \frac{\partial V_5}{\partial X}, V_2, V_3 - 2\pi V_4 + \frac{\partial V_5}{\partial z}, -\pi^2 \frac{\partial^2 V_4}{\partial X^2} - \frac{\partial^2 V_4}{\partial z^2} - 2\pi V_3, -\pi \frac{\partial V_1}{\partial X} - \frac{\partial V_3}{\partial z} \right) \]

II.1.2 Résultats du calcul des \(U_{xy,z} \) par rapport à \(v_2 \)

\[U_{00}^0 := (0, 0, 0, 0, 0) \]

\[U_{10}^0 := (0, 0, 0, 0, 0) \]

\[U_{01}^0 := (0, 0, 0, 0, 0) \]

\[U_{00}^1 := (0, 0, 0, 0, 0) \]

Remarque : Pour tout \(\alpha \) et \(\beta \) on a

\[U_{\alpha\beta}^0 := (0, 0, 0, 0, 0) \]

\[U_{01}^1 := \left(\left(\frac{1 - \pi^2}{2(1 + \pi^2)} \right) \cos(X) \cos(\pi z), 0, \left(\frac{3 + \pi^2}{2(1 + \pi^2)} \right) \sin(X) \sin(\pi z), \left(\frac{1 - \pi^2}{2\pi(1 + \pi^2)} \right) \sin(X) \sin(\pi z), \left(\frac{1 + 3\pi^2}{2\pi(1 + \pi^2)} \right) \sin(X) \cos(\pi z) \right) \]

\[U_{10}^1 := \left(\left(\frac{2 - \pi^2}{4(\pi^2 + 1)^2} \right) \cos(X) \cos(\pi z), 0, -\left(\frac{5\pi^2 + 2}{4(\pi^2 + 1)^2} \right) \sin(X) \sin(\pi z), \left(\frac{2\pi^4 - 3\pi^2 - 2}{4\pi(\pi^2 + 1)^2} \right) \sin(X) \sin(\pi z), -\left(\frac{4\pi^4 + 3\pi^2 + 2}{4\pi(\pi^2 + 1)^2} \right) \sin(X) \cos(\pi z) \right) \]
\[U^2_{00} := \left(0, 0, 0, -\frac{1}{8} \sin(2\pi z), \frac{1}{8} \cos(2\pi z) \right) \]

\[U^2_{01} := \left(0, 0, 0, -\frac{1}{4\pi(\pi^2 + 1)} \sin(2\pi z), \frac{1}{4\pi(\pi^2 + 1)} \cos(2\pi z) \right) \]

\[U^2_{10} := \left(\frac{1}{24/(1 + \pi^2)} \sin(2X) \cos(2\pi z), 0, -\frac{1}{24/(1 + \pi^2)} \cos(2X) \sin(2\pi z), \right. \\
\left. \frac{-(-3\pi^2 - 1 + \pi^{-4})}{16\pi(1 + 2\pi^2 + \pi^{-4})} \sin(2\pi z) - \frac{1}{24/(1 + \pi^2)} \cos(2X) \sin(2\pi z), \right. \\
\left. \frac{\pi(-1 + 2\pi^2)}{16(1 + 2\pi^2 + \pi^{-4})} \cos(2\pi z) + \frac{1}{48\pi(1 + \pi^2)} \cos(2X) \cos(2\pi z) \right) \]

\[U^1_{11} := \left(\frac{-5\pi^2 + 7 + 6\pi^4}{8\pi(\pi^2 + 1)^3} \cos(X) \cos(\pi z), 0, \right. \\
\left. \frac{-19\pi^2 - 5 + 4\pi^4}{8\pi(\pi^2 + 1)^3} \sin(X) \sin(\pi z), \right. \\
\left. \frac{-3\pi^2 + 3 - 16\pi^4 + 2\pi^6}{8\pi^2(\pi^2 + 1)^3} \sin(X) \sin(\pi z), \right. \\
\left. \frac{-\pi^2 - 3 - 8\pi^4 + 8\pi^6}{8\pi^2(\pi^2 + 1)^3} \sin(X) \cos(\pi z) \right) \]

\[U^1_{20} := \left(\frac{8\pi^4 - 5\pi^2 - 4}{16(\pi^2 + 1)^4\pi} \cos(X) \cos(\pi z), 0, \right. \\
\left. \frac{-20\pi^4 - 19\pi^2 + 4\pi^6 - 4}{16(\pi^2 + 1)^4\pi} \sin(X) \sin(\pi z), \right. \\
\left. \frac{-2\pi^4 - 13\pi^2 - 4 + 16\pi^6}{16(\pi^2 + 1)^4\pi^2} \sin(X) \sin(\pi z), \right. \\
\left. \frac{-16\pi^4 - 13\pi^2 - 4 - 12\pi^6 + 4\pi^8}{16(\pi^2 + 1)^4\pi^2} \sin(X) \cos(\pi z) \right) \]
Annexe III : calcul de $W_{00}^{2000}(v_1)$, $W_{00}^{3000}(v_1)$ et $W_{00}^{4000}(v_1)$

Soit $\hat{U} = \hat{u} + U(\hat{u})$ un rouleau stationnaire, avec \hat{u} dans $Ker(\mathcal{L}_{00})$ et U dans $R(\mathcal{L}_{00})$. D’après le théorème 2.2 de [35], pour u dans $Ker(\mathcal{L}_{00})$ et à condition que $(\sigma_1, \sigma_2, \lambda) = (0, 0, 0)$, on a $\mathcal{W}(\hat{U}, u) = \partial_0 U(u)$. D’autre part pour φ réel, $\tau_\varphi U_{00}^{n+1}(\hat{u}) = U_{00}^{n+1, \tau_\varphi}(\hat{u})$, τ_φ désignant la translation de φ le long de X. Pour cette raison il suffit de connaître $U_{00}^{5}(v_2)$, $U_{00}^{4}(v_2)$ et $U_{00}^{3}(v_2)$ pour avoir $\mathcal{W}_{00}^{4000}(\rho v_2, v_1)$, $\mathcal{W}_{00}^{3000}(\rho v_2, v_1)$ et $\mathcal{W}_{00}^{2000}(\rho v_2, v_1)$.

III.1 : Termes en ρ^4 dans \mathcal{W}

Les calculs de l’annexe II montrent que le terme en ρ^5 dans $U(\rho v_2)$ est de la forme $\rho^5 U_{00}^{5, (1)}(v_2) + U_{00}^{5, (3)}(\rho v_2)$, où $U_{00}^{5, (m)}(v_2) = (\cos mX f_1^{(m)}(z), 0, \sin mX f_2^{(m)}(z), \sin mX f_3^{(m)}(z), \sin mX f_4^{(m)}(z))^t$.

Remarque 1 : Posons $a = \rho \cos \varphi$ et $b = \rho \sin \varphi$. Puisque $\cos \varphi v_2 + \sin \varphi v_1 = \rho v_2$.
Puisque l'image par \(\tau_{-\varphi}\) du terme en \(\rho^5\) dans le développement de \(U(\alpha v_2 + b v_1)\) n'est autre que l'image par \(\tau_{-\varphi}\) du terme en \(\rho^5\) dans le développement de \(U(v_2)\). Puisque \(U\) commute avec les translations le long de \(X\) et que \(-\sin 3X = -\cos 3(X + \pi/2)\) avec \(\cos 3X = -\sin 3(X + \pi/2)\), le terme en \(\rho^5\) dans le développement de \(U(\alpha v_2 + b v_1)\) est

\[
\rho^5 \left(\cos \varphi U_{00}^5(1)(v_2) + \sin \varphi \tau_{-\pi/2} U_{00}^5(1)(v_2) + \cos 3\varphi U_{00}^5(3)(v_2) - \sin 3\varphi \tau_{-\pi/2} U_{00}^5(3)(v_2) \right) =
\]

\[
a(a^2 + b^2)^2 U_{00}^5(1)(v_2) + b(a^2 + b^2)^2 \tau_{-\pi/2} U_{00}^5(1)(v_2) + a(a^2 - 3b^2)(a^2 + b^2) U_{00}^5(3)(v_2) - b(3a^2 - b^2)(a^2 + b^2) \tau_{-\pi/2} U_{00}^5(3)(v_2)\]

En différentiant on obtient

\[
\partial \mathcal{U}_{00}^5(\rho v_2) = \rho^4 \tau_{-\pi/2} U_{00}^5(1)(v_2) - 3\rho^4 \tau_{-\pi/2} U_{00}^5(3)(v_2).
\]

Donc

\[
\mathcal{W}_{0000}^4(\rho v_2, v_1) = U_{00}^5(1)(v_1) - 3U_{00}^5(3)(v_1).
\]

On arrive ainsi à la proposition suivante.

Proposition : Les termes en \(\rho^4\) dans le développement de \(\mathcal{W}(\rho v_2, v_1)\) sont de la forme \(\rho^4 \tau_{-\pi/2} U_{00}^5(1)(v_2) + W'\), où les composantes de \(W'\) sont des produits comme \(F(X)G(z)\), \(F\) représentant un sinus ou un cosinus de \(3X\).

III.2 : Termes en \(\rho^3\) dans \(\mathcal{W}\)

La même méthode permet d'acceder aux termes en \(\rho^3\) dans \(\mathcal{W}(\rho v_2, v_1)\).

En effet l'annexe II montre que le terme en \(\rho^4\) dans le développement de \(U(\rho v_2)\) est de la forme \(\rho^4 (U_{00}^{4,0}(v_2) + U_{00}^{4,2}(v_2))\), où

\[
U_{00}^{4,m}(v_2) = (\sin m X F_1^{(m)}(z), 0, \cos m X F_2^{(m)}(z), \cos m X F_3^{(m)}(z), \cos m X F_4^{(m)}(z)).
\]

Puisque \(\alpha v_2 + b v_1 = \tau_{-\varphi}(v_2)\) et que \(\cos 2X = \sin 2(X + \pi/4)\) avec \(-\sin 2X = \cos 2(X + \pi/4)\), la remarque suivante est vraie.

Remarque 2 : Le terme en \(\rho^4\) dans le développement de \(U(\alpha v_2 + b v_1)\) est

\[
\rho^4 (U_{00}^{4,0}(v_2) + \cos 2\varphi U_{00}^{4,2}(v_2) + \sin 2\varphi \tau_{-\pi/4} U_{00}^{4,2}(v_2)).
\]
= (a^2 + b^2)^2 U_{00}^{4,(0)}(v_2) + (a^4 - b^4) U_{00}^{4,(2)}(v_2) + 2ab(a^2 + b^2) \tau_{-\pi/4} U_{00}^{4,(2)}(v_2)). En différenciant, on obtient

\partial_b U_0^5(\rho v_2) = 2\rho^4 \tau_{-\pi/4} U_{00}^{4,(2)}(v_2),

soit

W_{00}^{3000}(\rho v_2, v_1) = 2\rho^3 \tau_{-\pi/4} U_{00}^{4,(2)}(v_2).

III.3 : Termes en ρ^2 dans W

De même le terme en ρ^3 dans $U(\rho v_2)$ est de la forme $\rho^3 U_{00}^{3,(1)}(v_2)$, où

$U_{00}^{3,(m)}(v_2) = (\cos mf_1^{(m)}(z), \sin mf_1^{(m)}(z), \sin mf_3^{(m)}(z), \sin mf_4^{(m)}(z))^T$.

On en déduit que le terme en ρ^2 dans $W(\rho v_2, v_1)$ est de la forme $\rho^2 \tau_{-\pi/2} U_{00}^3(v_2)$.

Bibliographie 130

