وزارة التعليم العالي و البحث العلمي

BADJI MOKHTAR-ANNABA UNIVERSITY UNIVERSITE BADJI MOKHTAR-ANNABA

جامعة باجي مختار ــعنابة

Année 2007

Faculté des sciences de l'ingénieur

Département de génie mécanique

THESE

Présentée en vue de l'obtention du diplôme de MAGISTERE

Etude et Modélisation du Comportement en Régime Transitoire d'un Capteur Solaire Plan

Option

Énergétique

Par

Brahim Zitani

DEVANT LE JURY

M^r Merzoug Bachir **PRESIDENT:** Professeur U. Annaba M^r El Akrami Abdessetar U. Annaba EXAMINATEUR Professeur M^r Bouchami Tidjani Maître de conférence U. Annaba **EXAMINATEUR** EXAMINATEUR: M^r Aida Mohamed Salah Professeur **U.** Constantine M^r Abbes Otmani **RAPPORTEUR :** Maître de conférence U. Annaba M^r Djemili Abdelouahab U. Annaba **INVITE : Docteur Ingénieur**

<u>Abstract</u>

The flat plate solar energy collector with water flow is simulated and analyzed using computational code in FORTRAN software. The considered case includes the modeling of solar angles, glass and absorber optical properties, convection and radiation heat transfer between tube surface, glass cover, side walls, and insulating base of the collector as well as the convective heat transfer in the circulating water inside the tube and conduction between the base and tube material. By considering both cases natural and forced circulating flow.

Experimental field tests were performed to validate the numerical model by comparing the outlet water temperature, modeling and experimental results shows good matching.

<u>Résumé</u>

Le capteur solaire plan à eau est analysé et modélisé en utilisant un code programmé en FORTRAN, cette étude englobe l'étude de la course du soleil dans le ciel et les angles horaires et les caractéristique optiques de la vitre et l'absorbeur en fonction de l'angle d'incidence des rayonnements solaire sur la surface du capteur ainsi que les transferts de chaleur par convection rayonnement et conduction des différents composants du capteur, tout en tenant compte du cas de l'écoulement naturel de l'eau dans le capteur et du cas d'écoulement forcé assistée par une pompe.

Des essais expérimentaux ont été conduits au niveau du l'institut de développement des énergies renouvelables de Ghardaïa sur les températures d'entrée et de sortie de l'eau du capteur solaire plan nécessaire pour la validation du modèle numérique, qui ont montrés une bonne concordance.

<u>ملخص</u> يهتم هذا البحث بدراسة الألواح اللاقطة للأشعة الشمسية لتسخين الماء وذلك بالتحليل و برمجة نموذج لها باستعمال لغة البرمجة FORTRAN, يضم هذا البحث في محتوياته على دراسة مسار الشمس في السماء و زاوية الورود للأشعة الشمسية على اللوحة و كذلك الخواص الفيزيائية للزجاجة و اللوحة الماصة لأشعة الشمس و كذلك يتطرق البحث إلى دراسة التبادلات الحرارية بين مختلف أجزاء اللوحة أللاقطة لأشعة الشمس. تجارب تطبيقية اتخذت على مستوى معهد تطوير الطاقات المتجددة الكائن بمدينة غرداية. للمصادقة على النموذج الرقمي.

SOMMAIRE

INTRO	ODUCTION	1
CILAD		1
	Contour galaine nlon	4
1.1.	Etude du revennement geleire aur le surface du contour inclinée :	J 10
1.2.	Elude du rayonnement solaire sur la surface du capieur inclinée	10
1.2.1.	Calcul noralize et des angles solaires	10
1.2.2.	Radiation d'un ciel isotrope sur une surface inclinée:	12
1.3.	Caracteristiques optiques:	13
1.3.1.	Caracteristiques optiques du couvert	13
1.3.2.	Caracteristiques optiques de la plaque absorbante:	13
1.4.	I hermosiphon	1 /
CHAP	PITRE II Bilan Energétique et mise en équations	19
2.1.	Bilan énergétique de la vitre	20
2.2.	Bilan énergétique de la plaque absorbante	24
2.3.	Bilan énergétique du fluide caloporteur	29
2.4.	Bilan énergétique du réservoir de stockage	30
CIT + D		~~
CHAP	TTRE III Résolution Numérique	32
3.1.	Méthode de résolution	33
3.1.1.	Méthode de Runge Kutta	33
3.1.2.	Calcul d'erreur	35
3.1.3.	Organigramme de calcul	37
3.2.	Langage de programmation	38
3.2.1.	Fortran	38
3.2.2.	Visuel Basic	38
3.2.3.	Excel	38
3.3.	Interface de simulation	39
3.3.1.	Simulateur	39
3.3.2.	Caractéristiques du capteur	40
3.3.3.	Visualisation des résultats	41
CHAP	PITRE IV Résultats et validation	44
4.1.	Validation du model	
42	Résultats et Interprétations	49
4.2.1.	Résultats et interprétation de l'évolution de l'erreur et le pas d'itération	49
4.2.2.	Résultats et interprétation de l'évolution des grandeurs instantanées	. 50
4.2.3.	Résultats et interprétation de la variation de l'angle d'inclinaison du capteur.	57
CONC	CLUSION	60
REFE	RENCES	62
ANNE	EXE	64

INDEX DES FIGURES ET TABLES

<u>Figures :</u>

Figure 1	Irradiation solaire globale reçue sur plan incliné	2
Figure 2	Capteur solaire plan	5
Figure 3	Bilan énergétique du rayonnement solaire	6
Figure 4	Variation du rayonnement solaire au cours de l'année	6
Figure 5	Effet de serre dans le capteur solaire plan	7
Figure 6	Domaine d'utilisation des capteurs solaires	7
Figure 7	Angle azimutal 15° Ouest	9
Figure 8	Modèle du Ciel Isotope	12
Figure 9	Angles d'incidences	14
Figure 10	Bilan énergétique dans le capteur	20
Figure 11	Schéma des résistances thermiques équivalent pour les pertes par l'avant	25
Figure 12	Schéma en coupe de l'absorbeur	27
Figure 13	Schéma des résistances thermiques équivalent entre la plaque et le fluide caloporteur	28
Figure 14	Organigramme de calcul Fig-10	37
Figure 15	Feuille de données du simulateur.	39
Figure 16	Feuille des caractéristiques du capteur	40
Figure 17	Résultats Energétiques	42
Figure 18	Résultats Optiques	43
Figure 19	Conditions de simulation et des essais expérimentaux	45
Figure 20	Caractéristiques du capteur des essais expérimentaux	46
Figure 21	Comparaison entre les résultats de la simulation et les résultats	
	expérimentaux	48
Figure 22	Evolution de la précision au cours des itérations	49
Figure 23	Evolution des profiles des températures	50
Figure 24	Evolution des profiles des températures d'entrée et de sortie	50
Figure 25	Evolution des puissances échangées entre les composant	51
Figure 26	Evolution des puissances, disponible, absorbée, utile et perdue	51
Figure 27	Evolution horaire du rendement instantané global	52
Figure 28	Evolution des performances selon la norme ASHRAE	52
Figure 29	Evolution horaire du débit de circulation	53
Figure 30	Evolution horaire des angles solaires sur la vitre	54
Figure 31	Evolution horaire de la transmission de la vitre	54
Figure 32	Evolution horaire de la réflexion de la vitre	55
Figure 33	Evolution horaire de l'absorbance de la vitre	55
Figure 34	Evolution horaire de l'absorbance de la plaque	56
Figure 35	Evolution horaire du produit ($\tau \alpha$) absorbance transmission	56
Figure 36	Evolution horaire des résistances optiques aux radiations directes, diffusé et réfléchies	es 57
Figure 37	Evolution annuelle de l'énergie disponible et l'énergie utile pour différent inclinaisons	tes 58
Figure 38	Bilan énergétique annuelle pour différentes inclinaisons du capteur	58
Figure 39	Evolution annuelle du rendement journalier pour différentes inclinaisons capteur.	du 59
Figure 40	Variation du rendement annuelle moyen avec différentes inclinaisons du capteur	59
Figure 41	Moyenne de l'Albédo pour le mois de janvier	65

Figure 42	Moyenne de l'Albédo pour le mois de Juillet	65
Figure 43	Moyenne décennale de l'irradiation solaire pour le mois de janvier	66
Figure 44	Moyenne décennale de l'irradiation solaire pour le mois de Juillet	66

<u>Tables :</u>

Table 1	Nombre de jour écouler depuis le 1 ^{er} Janvier
Table 2	Résultats expérimentaux
Table 3	Comparaison des résultats expérimentaux avec les résultats du modèle 48
Table 4	Bilan énergétique du capteur 53

NOMENCLATURE

Symbole	Définition	Unité
A	Superficie du capteur	m ²
Ср	Chaleur massique	J/kg °C
D	Diamètre de la tuyauterie du capteur	Μ
e	Energie interne	J
Ep	Epaisseur des tubes	m
f	Pertes de charge linaire	m
Н	Hauteur	m
hr	Cœfficient de transfert de chaleur par rayonnement	W/ m ² °C
hc	Cœfficient de transfert de chaleur par convection	W/ m ² °C
Ι	Irradiation solaire	W/m ²
Κ	Coefficient d'extinction du verre	m^{-1}
Lloc	Longitude locale	0
Lst	Longitude standard de l'heur locale	0
L	Longueur	m
'n	Débit	m^3 / s
R	Résistance optique des irradiations	-
Т	Température	°C
TSV	Temps solaire vrai	h
V	Volume	m^3

Indices	Définition
a	Ambiante
b	Directe
d	Diffusée
e	Entrée
f	Fluide caloporteur
f	Frottement
g	Réfléchie
ĥ	Hydraulique
i	Isolant
n	Normale
0	Optique
р	Plaque absorbante
r	Réservoir
S	Sortie
Т	Total
t	Tube
u	Utile
V	Vitre

Grecque	Définition	Unité
α	Absorbance	-
β	Inclinaison du capteur avec le plan horizontal	0
3	Emissivité	-
ф	Latitude	0
ωs	L'angle horaire du coucher et lever du soleil	0
ω	Angle horaire du soleil dans le ciel	0
θz	L'angle du zénith	0
δ	Angle d'inclination du soleil	0
η	Rendement	-
ρ _g	Réflexion du sol connue sous Albédo	-
ρ	Masse volumique	kg / m^3
τ	Transmission des irradiations	-
ξ	Pertes de charge singulière	m

INTRODUCTION

Introduction

L'énergie solaire est l'une des énergies renouvelables qui a été et continue d'être l'objectif principal de beaucoup d'ingénieurs et de chercheurs depuis les deux dernières décennies inciter par les perturbations des prix des énergies fossiles et favorisée par les avantages environnementaux ainsi que les multiples domaines d'applications parmi eux les systèmes solaires à chauffage d'eau.

Actuellement, les chauffages d'eau solaire sont utilisés dans les maisons individuelles, appartement, écoles, lavages automobiles, hôpitaux et différentes industries et cela vu les économies effectuées sur les frais de l'eau chaude.

Depuis les années 70 l'efficacité des capteurs solaires n'a cessé de s'améliorer et ceci par l'introduction du verre trempé à faible teneure de fer pour les couvercles qui ont une meilleur transmission ce qui se traduit par plus d'énergie absorbée, une isolation amélioré et le développement des peintures sélectives durables.

L'Algérie est doté par un gisement solaire considérable à l'échelle mondiale. Ainsi, des objectifs fixés pour le développement et la promotion de nouvelles ressources d'énergies propres renouvelables, non polluantes et non dangereuses pour l'environnement, dans cette perspective, les démarches préconisées vise, plus particulièrement la valorisation des gisements en énergies renouvelables, notamment le solaire non encore exploité avec pour objectif de porter la quote-part de ces énergies à 10 % du bilan énergétique algérien d'ici à l'horizon 2020.

Figure 1 Irradiation solaire globale reçue sur plan incliné à la latitude du lieu : moyenne annuelle

Cette étude à pour objectif de fournir un outils numérique qui permet la simulation du fonctionnement d'un capteur solaire plan en régime dynamique.

La première partie est une recherche bibliographique sur les règles et mode de fonctionnement des capteurs solaires plan. La recherche bibliographique apporte plusieurs informations concernant :

- Les angles horaires du soleil pour un lieu donné dans un moment donné.
- les propriétés optiques du vitrage absorbance, transmission, réflexion aux différents types du rayonnement direct diffus et réfléchi.
- Etude du mode de fonctionnement en thermosiphon

L'étude se focalise plus particulièrement sur le comportement du capteur solaire plan aux conditions climatiques réelles d'une journée typique.

Pour cela une modélisation basée sur le langage de programmation FORTRAN des équations du modèle, accompagné par un interface en Excel pour l'introduction des données et visualisation des résultats, qui peuvent être imprimés sous forme de rapport.

Des essais expérimentaux ont été menés au niveau de l'institut du développement des énergies renouvelables de Ghardaïa pour la validation du modèle numérique.

CHAPITRE I

Etude du capteur solaire plan

1.1. Capteur solaire plan

Description :

Le capteur plan vitré est le capteur le plus utilisé. Il est recommandé pour une plage de températures entre 30°C et 80°C, grâce à une assez bonne isolation du verre et du cadre. Il convient particulièrement bien pour le chauffage de l'eau chaude sanitaire et pour le chauffage des locaux.

En général, ces capteurs sont disponibles en bloc de 1 ou 2 m², et on branche plusieurs de ces capteurs en série pour obtenir des surfaces totales qui peuvent aller jusqu'à quelques dizaines de mètres carrés.

Figure 2 Capteur solaire plan

A Rayonnement céleste diffus B Rayonnement solaire direct C Vent, pluie, neige, convection D Perte par convection E Pertes par conduction

- F Rayonnement calorifique de l'absorbeur
- G Rayonnement calorifique du vitrage
- H Puissance utile du capteur
- K Réflexion

L'énergie reçu du soleil est estimée a 1.4 kW/m^2 sur une surface plan hors atmosphère terrestre, et le long du parcours de ces rayonnement subisse plusieurs atténuation.

Et cet énergie solaire varie au cours de l'année et dépend de la situation géographique du lieu sur le globe, pour l'hémisphère nord la variation du rayonnement solaire est maximale en mois juin (début d'été) Fig-4

Fonctionnement :

Le principe de fonctionnement est dit de l'effet de serre. Les rayons du soleil (d'une longueur d'onde visible, ~0.5 μ m) traversent la couverture transparente supérieure, en verre ou en plastique, puis frappent l'absorbeur. Celui-ci étant noir, il absorbe la majeure partie de la lumière reçue et par conséquent il se chauffe. En effet, tout corps chaud émet des rayonnements aux températures usuelles, celui-ci se trouve dans le domaine de l'infrarouge (~9 μ m). A cette longueur d'onde, le verre est parfaitement opaque et réfléchit donc tout cet infrarouge. La chaleur reste ainsi prisonnière du capteur.

Un liquide caloporteur circule dans un tuyau dans le capteur et conduit la chaleur emprisonnée vers la consommation.

Effet de serre dans le capteur solaire plan

Domaine d'utilisation :

Température(°C)	Domaines d'utilisation					
200 et plus						
190	Réfrigération par absorption					
180	Préparation de pâte à papier	Production d'élec-				
170	Fabrication d'eau lourde	conventionnelle				
160	Séchage de poisson, séchage de bois					
150	Fabrication d'alumine					
140	Séchage de produits agricoles					
130	Évaporation					
120	Production d'eau douce par distillation	uction d'électricité par				
110	Séchage de parpaings de ciment	c onane				
100	Séchage de légumes					
90	Déshydratation					
80	Chauffage urbain - chauffage de serres					
70	Réfrigération					
60	Élevage d'animaux					
50	Balnéothérapie					
40	Chauffage de sols					
30	Piscine, fermentation					
20	Pisciculture					

Figure 6 Domaine d'utilisation des capteurs solaires

Les transferts d'énergie

L'énergie captée par le collecteur solaire et transformée en chaleur est cédée au fluide caloporteur et transférée vers un réservoir de stockage d'énergie. Ce transfert se fait soit par circulation naturelle, soit par circulation forcée.

Transfert par circulation naturelle de l'eau dans ces installations, le transfert d'énergie est basé sur la plus faible densité de l'eau chaude qui confère à celle-ci un mouvement ascendant.

Système direct avec thermo circulation

L'eau entrant par le bas du capteur est échauffée par l'ensoleillement et sort par la partie haute pour rejoindre le ballon de stockage situé au moins 60 cm au-dessus du capteur.

Lorsque le capteur est échauffé par le soleil, le fluide caloporteur, c'est-à-dire l'eau sanitaire dans ce cas, se met en mouvement pour rejoindre le ballon. Ce dernier se vide d'une quantité correspondante d'eau froide qui retourne au capteur.

Système indirect avec thermo circulation

Dans ce cas, il a deux circuits : l'un dit "primaire" contient l'eau qui est échauffée dans le capteur tandis que le circuit "secondaire" est alimenté par l'eau sanitaire à réchauffer. Le transfert de chaleur se fait par un échangeur situé dans le ballon. Comme la circulation n'est pas forcée, comme dans le système précédent, il faut placer le bas du ballon au moins 60 cm au-dessus du haut du capteur et à simplifier au maximum le circuit de canalisations.

Le double circuit a l'avantage d'éviter la purge du système en cas de gel.

Le placement de l'appoint à l'extérieur du ballon permet au capteur de fonctionner librement sans que l'apport réalisé par l'appoint devienne excessif. Par contre, ce type d'installation est plus coûteux et la présence de l'échangeur nécessite que le capteur travaille à plus haute température ce qui diminue son rendement.

Transfert par circulation forcée, l'installation utilise ici, en plus des éléments utilisés dans les systèmes précédents, une pompe de circulation commandée par une régulation de température. Le rôle de la pompe de circulation est de permettre un transfert plus rapide des calories captées par l'absorbeur vers le réservoir de stockage. L'utilisation de cette pompe permet aussi d'interrompre le transfert de chaleur lorsque l'eau des capteurs n'est pas plus chaude que celle contenue dans le réservoir.

C'est le rôle de la régulation de comparer la température à la sortie du capteur solaire et celle du réservoir de stockage et de commander la pompe de circulation uniquement lorsque la première température est supérieure à la deuxième.

Sous les climats à ensoleillement variable, ces systèmes donnent de meilleures performances. Par contre, sous des climats à ensoleillement constant, les systèmes à thermo circulation offrent des performances équivalentes, et seront plutôt conseillés pour leur prix plus faible, leur coût de fonctionnement nul et une meilleure fiabilité.

Positionnement du capteur

En raison de la position du Soleil durant la journée, les capteurs solaires seront orientés dans toute la mesure du possible vers le Sud afin de récupérer une quantité optimale d'énergie. Des écarts allant jusqu'à 30° environ par rapport à l'orientation Sud n'a quasiment aucun effet sur le rayonnement reçu durant les mois d'été; sur l'année, la différence n'est que de 2 % environ. L'angle d'inclinaison et l'angle azimutal sont les paramètres d'ajustement du capteur.

Angle d'inclinaison α

L'angle d'inclinaison des capteurs solaires par rapport à la surface de la Terre est capital pour une récupération maximale de l'énergie. L'absorbeur du capteur pourra capter le maximum d'énergie si le plan du capteur est perpendiculaire au rayonnement solaire. Comme l'angle du rayonnement est fonction de l'heure et de la saison, le plan du capteur doit être dirigé en fonction de la position du soleil au moment où l'énergie offerte est la plus grande.

Angle azimutal

L'angle azimutal est l'angle que fait le plan du capteur par rapport au Sud, plan du capteur orienté plein Sud alors l'angle azimutal égal à 0°. Comme le rayonnement solaire est le plus intensif vers midi, le plan du capteur devra être si possible orienté vers le Sud. Des angles allant jusqu'à 45° par rapport au Sud sont cependant acceptables.

1.2. Etude du rayonnement solaire sur la surface du capteur inclinée :

La constante solaire adoptée par le centre WRC (World Radiation Center) est 1367 w/m² suite à l'expérience conduite par Duncan (1982), qui en d'autres unités vaut : 4.921 MJ/m²hr 433 BTU/ft²hr 1.960 cal/cm²

1.2.1.Calcul horaire et des angles solaires

Jour du	Mois											
mois n	Jan	Fev	Mars	Avr	Mai	Juin	Juil	Août	Sept	Oct.	Nov.	Dec.
1	1	32	60	91	121	152	182	213	244	274	305	335
2	2	33	61	92	122	153	183	214	245	275	306	336
3	3	34	62	93	123	154	184	215	246	276	307	337
4	4	35	63	94	124	155	185	216	247	277	308	338
5	5	36	64	95	125	156	186	217	248	278	309	339
6	6	37	65	96	126	157	187	218	249	279	310	340
7	7	38	66	97	127	158	188	219	250	280	311	341
8	8	39	67	98	128	159	189	220	251	281	312	342
9	9	40	68	99	129	160	190	221	252	282	313	343
10	10	41	69	100	130	161	191	222	253	283	314	344
11	11	42	70	101	131	162	192	223	254	284	315	345
12	12	43	71	102	132	163	193	224	255	285	316	346
13	13	44	72	103	133	164	194	225	256	286	317	347
14	14	45	73	104	134	165	195	226	257	287	318	348
15	15	46	74	105	135	166	196	227	258	288	319	349
16	16	47	75	106	136	167	197	228	259	289	320	350
17	17	48	76	107	137	168	198	229	260	290	321	351
18	18	49	77	108	138	169	199	230	261	291	322	352
19	19	50	78	109	139	170	200	231	262	292	323	353
20	20	51	79	110	140	171	201	232	263	293	324	354
21	21	52	80	111	141	172	202	233	264	294	325	355
22	22	53	81	112	142	173	203	234	265	295	326	356
23	23	54	82	113	143	174	204	235	266	296	327	357
24	24	55	83	114	144	175	205	236	267	297	328	358
25	25	56	84	115	145	176	206	237	268	298	329	359
26	26	57	85	116	146	177	207	238	269	299	330	360
27	27	58	86	117	147	178	208	239	270	300	331	361
28	28	59	87	118	148	179	209	240	271	301	332	362
29	29		88	119	149	180	210	241	272	302	333	363
30	30		89	120	150	181	211	242	273	303	334	364
31	31		90		151		212	243		304		365

Le nombre de jour écouler depuis le 1^{er} Janvier est noté n

 Table 1 Nombre de jour écouler depuis le 1^{er} Janvier

δ L'angle de déclination du soleil.

La déclination du soleil varie au cours des saisons $-23.45^{\circ} < \delta < 23.45^{\circ}$ fonction de la journée de l'année.

$$\delta = 23.45 \sin\left(360 \frac{284 + n}{365}\right) (2)$$

Avec *n* est le nombre du jour dans l'année $1 \le n \le 365$

TSV Temps solaire vrai.

Pour chaque instant d'une journée donnée de l'année et ceci après avoir convertie le temps local en temps solaire vrai en apportant la correction de l'équation du temps et la différence due a la longitude locale et la longitude standard.

$$TSV = TL + 4(L_{st} - L_{loc}) + E$$

Avec E est la correction apporter par l'équation du temps en minutes.

 $E = 229.2(0.000075 + 0.001868\cos\beta - 0.032077\sin\beta - 0.014615\cos 2\beta - 0.04089\sin 2\beta)$

Avec
$$\beta = (n-1)\frac{360}{365}$$

ω L'angle horaire du soleil dans le ciel.

$$TSV = 12 + \frac{24\omega}{360}$$

$$\omega = 15(TSV - 12) \begin{cases} \omega \ge 0 \text{ Apres midi solaire} \\ \omega \le 0 \text{ Avant midi solaire} \end{cases}$$

θ L'angle d'incidence des radiations direct sur une surface inclinée.

Sur une surface inclinée d'un angle β . Pour permettre d'évaluer les caractéristiques optique du couvert (Transmission, absorptance, réflexion), et cela pour une journée donnée de l'année (1^{er} Janvier au 31 Décembre) dans un lieu définie en longitude (-180° < L < 180°) et de latitude (23.45°N < ϕ < 66.55°N) qui couvre largement les altitudes de l'Algérie.

L'angle d'incidence des radiations solaire direct sur une surface inclinée d'un angle β Orientée vers le sud ce qui est le cas des capteurs solaires.

 $\cos\theta = \sin\delta\sin\phi\cos\beta - \sin\delta\cos\phi\sin\beta + \cos\delta\cos\phi\cos\beta\cos\omega + \cos\delta\sin\phi\sin\beta\cos\omega$

θz L'angle du zénith.

C'est l'angle que fait les rayons du soleil avec la normale d'une surface horizontale dans un lieu définit par ϕ , à une période de l'année définit par δ et à un moment de la journée définie par ω

 $\cos\theta_z = \sin\delta\sin\phi + \cos\delta\cos\phi\cos\omega$

Lever et coucher du soleil.

Les heurs du lever et du coucher du soleil sont obtenus $\cos \omega_s = -\tan \phi \tan \delta$

1.2.2. Radiation d'un ciel isotrope sur une surface inclinée:

La majorité des mesures des radiations solaires sont pour les surfaces horizontales, en connaissant les valeurs des radiations directes et diffuses ainsi que les angles solaires.

Les modèles des radiations du ciel, dans ce contexte sont des représentations mathématique des radiations diffuses, quand les radiations directs et diffus sont combinée ils fournissent la moyenne calculée des radiation solaire sur une surface inclinée a partir des mesures effectuées sur une surface horizontale.

Un des modèles est le modèle des radiations diffuses isotropes, proposer par Liu et Jordan (1963) [1] qui suppose que les radiations disponibles sur une surface inclinée est de trois composante : des radiation directs calculer comme I_bR_b , des radiations diffusées du ciel I_d et des radiations réfléchie par le sol sou forme de radiations diffusées due a l'albédo du sol

$$I_{T} = Direct + Diffus + reflechie par l'albedo du sol$$

$$I_{T} = I_{b}R_{b} + I_{d}R_{d} + (I_{b} + I_{d})R_{g}$$

$$R_{b} = \frac{\cos(\theta)}{\cos(\theta_{z})}$$

$$R_{d} = \frac{1 + \cos\beta}{2}$$

$$R_{g} = \rho_{g}\frac{1 - \cos\beta}{2}$$
Alors
$$I_{T} = I_{b}R_{b} + I_{d}\left(\frac{1 + \cos\beta}{2}\right) + (I_{b} + I_{d})\rho_{g}\left(\frac{1 - \cos\beta}{2}\right)$$

 ρ_g est la réflexion du sol connu par L'albédo.

1.3. Caractéristiques optiques:

1.3.1. Caractéristiques optiques du couvert

La transmission, la réflexion et l'absorption des rayonnements solaire par les différents éléments du capteur solaire est décisive à la détermination de ces performances. Le couvert du capteur réfléchie, absorbe et transmit le reste des rayonnements solaire et ces caractéristiques optiques sont fonction de:

L'épaisseur de la vitre L'indice de réfraction du milieu du vert 'n' Le cœfficient d'extinction 'K'

Qui dépends de leur tour de la longueur d'onde des radiations. En tenant compte de l'absorption du couvert, comme décrit par la loi de Bouger [2]: L'absorption est proportionnel à l'intensité locale dans le milieu à la distance x du trajet de la radiation dI = -IKdx

La longueur du parcours des rayons du soleil dans l'épaisseur de la vitre est $\frac{L}{\cos \theta_2}$

avec θ_2 l'angle de réflexion dans le verre.

$$\tau_{a} = \frac{I \ transmit}{I \ incident}$$
$$\tau_{a} = \exp\left(-\frac{KL}{\cos\theta_{2}}\right)$$

Transmission des radiations directes

La transmission d'un capteur a un seul couvert

$$\tau = \tau_a \tau_r$$
L'absorptance est approximé par

$$\alpha = 1 - \tau_a$$
La réflexion est

$$\rho = \tau_a (1 - \tau_r)$$

$$\rho = \tau_a - \tau$$

$$\tau_r = \frac{1}{2} \left(\frac{1 - r_{//}}{1 + r_{//}} + \frac{1 - r_{\perp}}{1 + r_{\perp}} \right) \begin{cases} r_{//} = \frac{tg^2(\theta_1 - \theta_2)}{tg^2(\theta_2 + \theta_1)} \\ r_{\perp} = \frac{\sin^2(\theta_1 - \theta_2)}{\sin^2(\theta_2 + \theta_1)} \end{cases}$$

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

 θ_1 L'angle d'incidence du le couvert

 θ_2 L'angle de réfraction du rayon dans le verre

 n_1 Indice de réfraction de l'air.

 n_2 Indice de réfraction du verre,

Transmission des radiations diffusées

La quantité des radiations diffusées qui reçoit le couvert du capteur peut être calculé par intégration des radiations transmises sur touts les angles, mais la distribution angulaire de ces radiations n'est pas connue.

Pour les radiations isotropes incidentes (indépendantes de l'angle), l'intégration peut être effectuée, la présentation du résultat peut être simplifié en définissant un angle équivalent pour les radiations directes qui donne le même facteur de transmission que celui des radiations diffusées. Un angle équivalent de 60° est utilisé dans plusieurs conditions des applications des capteurs solaires.

Cette intégration a été effectuée par Brandemuehl et Beckman (1980) [3] pour le mode du ciel isotrope, et deux corrélations plus précises sont disponibles pour l'angle équivalent des radiations diffusées et les radiations réfléchis par le sol.

Transmission des radiations réfléchies par le sol:

 $\theta g = 90 - 0.5788\beta + 0.002693\beta^2$ Pour les radiations diffusées $\theta d = 59.7 - 0.1388\beta + 0.001497\beta^2$

 θ L'angle équivalent pour les radiations réfléchies par le sol / les radiations diffusées par le ciel.

 β L'angle d'inclinaison du capteur.

Figure 9 Angles d'incidences

La puissance absorbée par la vitre

$$Q_{abs} = A \Big[R_b I_b \alpha_b + R_d I_d \alpha_d + R_g \big(I_b + I_d \big) \alpha_g \Big]$$

1.3.2. Caractéristiques optiques de la plaque absorbante:

L'absorption polaire des surfaces noire (comme celle utiliser pour les capteurs solaires), est une fonction de l'angle d'incidence du rayonnement sur la surface.

Pettit et Sowell (1976) [4] suggères que les surfaces sélectives représentent un comportement similaire à des surfaces noires pour des angles d'incidences entre 0° et 80° .

$$\frac{\alpha}{\alpha_n} = 1 + 2.0345 \times 10^{-3} \theta - 1.990 \times 10^{-4} \theta^2 + 5.324 \times 10^{-6} \theta^3 - 4.799 \times 10^{-8} \theta^4 [4]$$

 α_n L'absorption d'une surface d'un rayonnement solaire normale

 α L'absorption d'une surface d'un rayonnement solaire a un angle d'incidence β

Produit transmission absorption

La partie du rayonnement qui n'a pas été absorbée par la plaque adsorbante est réfléchie d'une façon diffuse vers la vitre qui a sont tour en renvoie une partie vers l'absorbeur, il existe ainsi des réflexions et des absorptions multiples entre la plaque absorbante et le couvert en verre, en tenant compte de cet effet le produit $\tau \alpha$ devient ($\tau \alpha$) Pour les radiations directes

$$(\tau \alpha)_b = \frac{\tau_b \alpha_b}{1 - \rho_d (1 - \alpha_d)} \left(1 - \rho_d \left(1 - \frac{\alpha_d}{\alpha_b} \right) \right)$$

Pour les radiations diffusées

$$(\tau \alpha)_d = \frac{\tau_d \alpha_d}{1 - \rho_d (1 - \alpha_d)}$$

Pour les radiations réfléchies par le sol

$$(\tau \alpha)_g = \frac{\tau_g \alpha_g}{1 - \rho_d (1 - \alpha_d)}$$

 ρ_d La réflexion du couvert en verre pour les radiations diffusées

 τ_b La transmission du couvert pour les radiations directes pour l'angle d'incidence θ

 τ_d La transmission du couvert pour les radiations diffusées évaluer à l'angle d'incidence équivalent

 τ_g La transmission du couvert pour les radiations réfléchies évaluer à l'angle d'incidence équivalent

 α_b L'absorption de la plaque absorbante pour les radiations directes

 α_d L'absorption de la plaque absorbante pour les radiations diffusées

 α_{g} L'absorption de la plaque absorbante pour les radiations réfléchies

La puissance absorbée par la plaque :

$$Q_{abs} = A \Big[R_b I_b (\tau \alpha)_b + R_d I_d (\tau \alpha)_d + R_g (I_b + I_d) (\tau \alpha)_g \Big]$$

Avec

$$R_d = \left(\frac{1+\cos\beta}{2}\right)$$
 et $R_g = \rho_g \left(\frac{1-\cos\beta}{2}\right)$

Alors

$$Q_{abs} = \left[R_b I_b (\tau \alpha)_b + I_d (\tau \alpha)_d \left(\frac{1 + \cos \beta}{2} \right) + \rho_g (I_b + I_d) (\tau \alpha)_g \left(\frac{1 - \cos \beta}{2} \right) \right]$$

Rendement optique

$$I_t = R_b I_b + R_d I_d + R_g (I_b + I_d)$$

Le rendement optique du capteur

$$n_{o} = \frac{Q_{abs}}{I_{t}}$$

$$n_{o} = R_{b} (\tau \alpha)_{b} \frac{I_{b}}{I_{t}} + R_{d} (\tau \alpha)_{d} \frac{I_{d}}{I_{t}} + R_{g} (\tau \alpha)_{g} \frac{I_{b} + I_{d}}{I_{t}}$$

1.4. <u>Thermosiphon</u>

La vitesse de l'écoulement dans les tubes

Le débit \dot{mf} et la vitesse u_f de circulation de l'eau dans le tube peut être évaluer par l'interaction du phénomène du thermosiphon (Archimède) qui génère une force H_T avec les forces de pertes de charge engendrer dans le system H_f.

La densité de l'eau dans le tube peut être déterminer par une expression quadratique fonction de la température moyenne T_f (Close, 1962) [5] de la forme :

$$SG(T) = a_1 T_f^2 - a_2 T + a_3$$

Dans notre cas on peut utiliser la corrélation suivante : $SG(T) = -4.05 \ 10^{-6} T_f^2 - 3.906 \ 10^{-5} T_f + 1.0002556$ T_f en °C , Les coefficients constants prennent pour valeurs : $a_1 = -4.05 \ 10^{-6}$ $a_2 = -3.906 \ 10^{-5}$ $a_3 = 1.0002556$

La distribution de la température dans la direction de l'écoulement peut être assumer linéaire, alors si $T_{f, e}$ et $T_{f, s}$ sont respectivement les températures de l'eau à l'entrée et la sortie du capteur, Tf sera la température moyenne de l'eau dans le tube.

Soit h le déplacement vertical de l'eau l'ors de son passage du bas en haut du capteur, alors il a été montré par M. Close (1962) [5] que :

$$H_T = \frac{T_{fe} - T_{fs}}{2} \left(2a_1 T_f + a_2 \right) h$$
$$h = L \sin \beta$$

Avec L est la longueur du capteur β est l'angle d'inclinaison du capteur

Le coefficient de perte de charges est la somme des pertes singulière est linéaire dans le parcours de l'écoulement.

$$H_{f} = f \frac{L}{D_{h}} \frac{u_{f}^{2}}{2g} + \xi \frac{u_{f}^{2}}{2g}$$
$$H_{f} = \left(f \frac{L}{D_{h}} + \xi\right) \frac{u_{f}^{2}}{2g}$$
$$f = \frac{64}{\text{Re}} = \frac{64v_{f}}{u_{f}D_{h}}$$

 ξ est la somme des pertes de charge singulière

- L est la longueur du tube
- f est le Facteur de frottement

La vitesse u_f peut être déterminer en égalant H_T et H_f :

$$\begin{split} H_{T} &= H_{f} \\ \frac{T_{fe} - T_{fs}}{2} \Big(2a_{1}T_{f} + a_{2} \Big) h = \left(f \frac{L}{D_{h}} + \xi \right) \frac{u_{f}^{2}}{2g} \end{split}$$

On obtient des valeurs pour la vitesse, on recalcule par l'équation de l'énergie les nouvelle température de l'eau dans le capteur, et a l'issue de ce procéder itératif on converge vers la valeur de la vitesse de l'écoulement induit par le thermosiphon.

Mise en œuvre

Le system a deux équations est résolu a l'aide d'un processus itératif consistant a donnée une valeur initial au perte de charge puis donner une estimation a la vitesse d'écoulement du fluide, en suite a l'aide de celle-ci on recalcule les perte de charge et les réintroduire dans l'équation de la vitesse, ainsi jusqu'à obtention d'une convergence vers une valeur de vitesse moyennant une erreur relative admise.

CHAPITRE II

Bilan Energétique et mise en <u>équations</u>

Pour établir le bilan énergétique du capteur plan, on fait le bilan élément par élément en prenant 4 volumes de contrôle :

Figure 10 Bilan énergétique dans le capteur

Bilan d'un volume de contrôle au niveau de la vitre Bilan d'un volume de contrôle au niveau de la plaque absorbante Bilan d'un volume de contrôle au niveau du fluide caloporteur Bilan d'un volume de contrôle au niveau du réservoir de stockage

Dans le but de former le système d'équations qui régie le comportement du capteur en régime dynamique [7]

2.1.Bilan énergétique de la vitre

Stockage = Entrée – Sortie

$$\frac{de_{\nu}}{dt} = Q_1 + Q_2 + Q_3 - Q_4 - Q_5 \tag{II.1}$$

Calcul de l'énergie interne de la vitre

$$\frac{\partial e_{v}}{\partial t} = \left(\rho_{v}Cp_{v}V_{v}\right)\left(\frac{\partial T_{v}(t)}{\partial t}\right)$$

Q4

Pertes O

Calcul de Q₁la quantité de chaleur absorbée du rayonnement solaire visible

 $Q_1 = AI\alpha_v$

Les radiations solaires ont été étudiées dans la partie Etude du rayonnement sur une surface inclinée.

Les facteurs d'absorbance de la vitre pour les trois types de radiations sont étudiés dans la partie Etude optique du rayonnement solaire.

$$I\alpha_{v} = R_{b}(t)I_{b}(t)\alpha_{v,b}(t) + I_{d}(t)\alpha_{v,d}(t)\left(\frac{1+\cos\beta}{2}\right) + \rho_{g}(I_{b}(t)+I_{d}(t))\alpha_{v,g}(t)\left(\frac{1-\cos\beta}{2}\right)$$

Alors

$$Q_{1} = AR_{b}(t)I_{b}(t)\alpha_{v,b}(t) + I_{d}(t)\alpha_{v,d}(t)\left(\frac{1+\cos\beta}{2}\right) + \rho_{g}(I_{b}(t)+I_{d}(t))\alpha_{v,g}(t)\left(\frac{1-\cos\beta}{2}\right)$$
(II.2)

- I_b Radiations solaires directes
- *I*_d Radiations solaires diffusées
- ρ_g Réflexion totale du sol (L'albédo)
- β Inclinaison du capteur

<u>Calcul de Q_2 la quantité de chaleur de l'échange radiatif entre la vitre et la plaque absorbante</u>

$$Q_{2} = Ah_{rp-\nu}(T_{p} - T_{\nu})$$

$$Q_{2} = A\sigma\varepsilon_{p\nu}(T_{p}^{4} - T_{\nu}^{4})$$
Avec $\frac{1}{\varepsilon_{p\nu}} = \frac{1}{\varepsilon_{p}} + \frac{1}{\varepsilon_{\nu}} - 1$

$$Q_{2} = \frac{A\sigma}{\frac{1}{\varepsilon_{p}} + \frac{1}{\varepsilon_{\nu}} - 1}(T_{p}^{4} - T_{\nu}^{4})$$

$$Q_{2} = \frac{A\sigma}{\frac{1}{\varepsilon_{p}} + \frac{1}{\varepsilon_{\nu}} - 1}(T_{p}^{2} + T_{\nu}^{2})(T_{p}^{2} - T_{\nu}^{2})$$

$$Q_{2} = \frac{A\sigma}{\frac{1}{\varepsilon_{p}} + \frac{1}{\varepsilon_{\nu}} - 1}(T_{p}^{2} + T_{\nu}^{2})(T_{p} - T_{\nu})$$
(II.3)

Avec

$$h_{r\,p-\nu} = \frac{\sigma}{\frac{1}{\varepsilon_p} + \frac{1}{\varepsilon_\nu} - 1} (T_p^2 + T_\nu^2) (T_p + T_\nu)$$

<u>Calcul de Q_3 la quantité de chaleur de l'échange convectif entre la vitre et la plaque absorbante</u>

$$Q_3 = Ah_{c\,p-\nu}(T_p - T_\nu)$$

Avec $h_{p,v}$ est le coefficient d'échange par convection entre la vitre et la plaque absorbante.

Le coefficient d'échange par convection entre deux surfaces inclinées est important pour les performances d'un capteur solaire plan, la convection naturelle est souvent corréler par deux ou trois nombre adimensionnels.

Le nombre de Nusselt
$$Nu = \frac{hL}{k}$$

Le nombre de Rayleigh $Ra = \frac{g\beta'\Delta TL^3}{v\alpha}$
Le nombre de Prandtl $Pr = \frac{v}{\alpha}$

Le nombre de Gras Hof qui est le rapport de Rayleigh et Prandtl $Gr = \frac{\rho^2 g \beta' \Delta T L^3}{\mu^2}$

Et on écrit
$$Gr = \frac{Ra}{Pr}$$

- *h* Coefficient de transfert de chaleur
- *L* Espace entre plaques
- *k* Conductivité thermique
- *g* Constante de gravitation

 β' Coefficient d'expansion volumétrique (pour les gaz parfait $\beta' = \frac{1}{T}$)

- ΔT Différence de températures entre les plaques
- v Viscosité cinématique
- α Diffusivité thermique

L'une des plus proches études expérimentales, celle conduite par Hollands et al. (1976) [6] donne la relation entre le nombre de Nusselt et le nombre de Rayleigh pour deux surfaces parallèles inclinées d'un angle entre 0° et 75°.

$$Nu = 1 + 1.44 \left[1 - \frac{1708(\sin 1.8\beta)^{1.6}}{Ra\cos\beta} \right] \left[1 - \frac{1708}{Ra\cos\beta} \right]^{+} + \left[\left(\frac{Ra\cos\beta}{5830} \right)^{1/3} - 1 \right]^{-1} \right]^{-1}$$

Le signe + limite l'utilisation du terme entre parenthèse au ceux positive uniquement, si le terme entre parenthèse de exposé + est négative il est considéré nul.

Pour les inclinaisons entre 75° et 90° on utilise la relation suivante [7]:

 $Nu = \max(1; 0.288(A'Ra\sin\beta)^{1/4}; 0.039(Ra\sin\beta)^{1/3})$

Avec A' est le rapport entre l'écart des deux surface L et la longueur du coté incliné l_1 Dans ces expressions les propriétés de l'air sont calculées à la température moyenne $T_{moy} = \frac{(T_v + T_p)}{2}$ en utilisant les formules suivantes [8]:

$$\rho = \frac{353}{(\theta + 273)}$$
Unité kg m⁻³

$$Cp = 1008$$
Unité J kg⁻¹ °C⁻¹

$$k_a = 7.57 \ 10^{-5} \theta + 0.0242$$
Unité W m⁻¹ °C⁻¹

$$\mu_a = 10^{-5} (0.0046 \ \theta + 1.7176)$$
Unité Pa s

$$\alpha = 10^{-5} (0.0146 \ \theta + 1.8343)$$
Unité m² s⁻¹

$$Pr = -2.54 \ 10^{-4} \ \theta + 0.7147$$
Sans unité

$$\beta' = 1/\theta$$
Unité K⁻¹

$$Q_{3} = Ah_{c\,p-\nu}(T_{p} - T_{\nu}) \tag{II.4}$$

Avec

$$h_{c\,p-v} = \frac{kNu}{L}$$

Calcule de Q₄ la quantité de chaleur de l'échange radiatif entre la vitre et le ciel

$$Q_{4} = Ah_{r_{a-v}}(T_{v} - T_{a})$$

$$Q_{4} = A\sigma\varepsilon_{v}(T_{v}^{4} - T_{ciel}^{4})$$

$$Q_{4} = A\sigma\varepsilon_{v}\frac{(T_{v}^{4} - T_{ciel}^{4})}{(T_{v} - T_{a})}(T_{v} - T_{a})$$

$$h_{r_{a-v}} = \sigma\varepsilon_{v}\frac{(T_{v}^{4} - T_{ciel}^{4})}{(T_{v} - T_{a})}$$
(II.5)

La température du ciel est estimée par plusieurs formules, on utilise celle de Swinbank. [9] $T_{-0.0552T^{1.5}}$

$$T_{ciel} = 0.0552T$$

Avec T_a c'est la température de l'air ambiant

<u>Calcul de Q_5 la quantité de chaleur de l'échange convectif entre la vitre et le milieu extérieur.</u>

$$Q_5 = Ah_{cv-a}(T_v - T_a) \tag{II.6}$$

Avec h_{cv-a} est le coefficient d'échange par convection entre la vitre et l'extérieur, deux cas a distingué

L'absence du vent, une convection naturelle s'installe. Pour une plaque de longueur L portée à la température T_v et inclinée d'un angle β sur l'horizontale, se trouve à la pression atmosphérique [10]:

$$h_{c \nu-a} = 1.42 \left[\frac{(T_{\nu} - T_{a}) \sin \beta}{L} \right]^{1/4} \qquad \text{Si } 10^{4} \le Gr \le 10^{9}$$
$$h_{c \nu-a} = 0.95 \left[(T_{\nu} - T_{a}) \sin \beta \right]^{1/3} \qquad \text{Si } Gr \ge 10^{10}$$

Avec:

 T_a Est la température de l'atmosphère non perturbée

L Est la longueur de la plaque

La présence du vent, il y a lieu d'une convection forcée

Les pertes de chaleur des capteurs solaire exposées aux vents extérieurs sont importantes dans l'étude globale des capteurs solaire.

La corrélation proposer par Sparrow (1979) [11], après ses expériences multiple sur une plaque dans un tunnel d'essai dans différentes orientations:

$$Nu = 0.86 \,\mathrm{Re}^{1/2} \,\mathrm{Pr}^{1/2}$$

Pour $2 \times 10^4 \le \text{Re} \le 9 \times 10^4$ et reste valide pour des Reynolds jusqu'a 10^6 ce qui couvre la plage de variation de la vitesse de l'écoulement de l'aire sur les capteur solaire.

Avec Re et Pr calculer par la longueur caractéristique $L = 4 \times Surface / Périmètre.$

L'équation obtenu du bilan énergétique de la vitre

$$\frac{\partial T_{v}(t)}{\partial t} = \frac{1}{\left(\rho_{v}Cp_{v}V_{v}\right)} \begin{pmatrix} AI\alpha_{v} + Ah_{r\,p-v}(T_{p} - T_{v}) + Ah_{c\,p-v}(T_{p} - T_{v}) - Ah_{c\,p-v}(T_{p} - T_{v}) - Ah_{c\,q-v}(T_{q} - T_{v}) \end{pmatrix}$$
(II.7)

Est une équation différentielle du premier ordre de la forme

$$\frac{\partial T_{v}(t)}{\partial t} = A_{v}T_{v}(t) + B_{v}T_{p}(t) + C_{v}$$

2.2.Bilan énergétique de la plaque absorbante

Stockage = Entrée – Sortie

$$\frac{\partial e_p}{\partial t} = Q_6 - Q_2 - Q_3 - Q_7 - Q_8$$

Calcule de l'énergie interne de plaque absorbante incluant l'isolant arrière et latérale

$$\frac{\partial e_p}{\partial t} = \left(\rho_p C p_p V_p + \rho_t C p_t V_t + \rho_i C p_i V_i\right) \left(\frac{\partial T_p(t)}{\partial t}\right)$$
(II.8)

Cpt Capacité calorifique du matériau du tube

ρ_t Masse volumique du matériau du tube

V_t Volume du tube
$$V_t = \frac{\pi (D^2 - D_i^2)}{4} l_1$$

- Cpi Capacité calorifique de l'isolant
- P_i Masse volumique de l'isolant
- V_i Volume de l'isolant $V_i = Ep_i \times l_1 \times l_2$
- Cp_p Capacité calorifique de la plaque absorbante
- ρ_p Masse volumique de la plaque absorbante
- V_p Volume de la plaque absorbante $V_p = Ep_p \times l_1 \times l_2$

<u>Calcul de *Q*₆ la quantité de chaleur absorbée par la plaque :</u>

$$Q_{6} = AI(\tau\alpha)_{eff}$$
(II.9)
$$I(\tau\alpha)_{eff} = R_{b}I_{b}(\tau\alpha)_{b} + I_{d}(\tau\alpha)_{d}\left(\frac{1+\cos\beta}{2}\right) + \rho_{g}(I_{b}+I_{d})(\tau\alpha)_{g}\left(\frac{1-\cos\beta}{2}\right)$$

Calcule de Q_7 la quantité de chaleur perdue de la plaque vers le milieu ambiant par

$$\frac{\mathbf{l'arrière}}{Q_7 = Ah_{arr}(T_p - T_a)}$$
(II.10)

$$Q_7 = A(T_p - T_a)/R_{arr}$$

$$R_{arr} = \frac{1}{h_{arr}}$$

Figure 11Schéma des résistances thermiques équivalent pour les pertes par l'avantLe coefficient de transfert de chaleur par l'isolant de la face arrière est :

$$h_{ari} = \frac{1}{\frac{1}{h_c + h_r} + \frac{l_i}{k_i}}$$

 h_{ari} Le coefficient de transfert de chaleur par l'isolant arrière du capteur

 h_r Le coefficient de transfert de chaleur par rayonnement de la face arrière du capteur.

 h_c Le coefficient de transfert de chaleur par convection de la face arrière du capteur.

 k_i La conductivité thermique de l'isolant arrière du capteur.

 l_i L'épaisseur de l'isolant arrière du capteur.

$$\frac{l_i}{k_i} >> \frac{1}{h_c + h_r}$$

La quantité de chaleur perdue a par l'arrière du capteur travers facile à évaluer, L'absorbeur est généralement bien isolé la résistance thermique correspondante R_5 est bien supérieur aux résistances R_6 et R_7 associées aux échanges thermiques par rayonnement et conduction – convection entre la face arrière du capteur et la température ambiante de l'environnement

Alors

$$h_{ari} = \frac{k_i}{l_i}$$

En tenant compte des pertes travers l'isolation latérale du capteur

$$h_{lat} = \frac{k_{lat}}{l_{lat}} \frac{2l_3(l_1 + l_2)}{l_1 l_2}$$

 l_{lat} L'épaisseur de l'isolant latéral

 k_{lat} La conductivité thermique de l'isolant latéral

 l_1 La longueur du capteur

 l_2 La largeur du capteur

*l*₃L'épaisseur du capteur

Le coefficient de perte arrière globale est donc :

 $h_{arr} = h_{ari} + h_{lat}$

<u>Calcul de *Q*₈ la quantité de chaleur céder par la plaque au fluide caloporteur</u>

Le transfert de chaleur de la plaque absorbante vers le fluide caloporteur dépend de l'éfficacité de l'échangeur en tube

La chaleur utile récupérer par la plaque absorbante est évacuée vers le fluide caloporteur par les tubes fixés sur cette plaque,

La plaque est supposée suffisamment mince et bon conducteur de chaleur, et

- W la distance entre deux tubes,
- D_i le diamètre intérieur des tubes,
- D le diamètre extérieur,

Le problème ainsi posé se ramène à un calcul de l'efficacité d'une ailette :

Figure 12 Schéma en coupe de l'absorbeur

Le rendement de l'ailette est défini par :

$$F = \frac{\tanh m(W - D)/2}{m(W - D)/2}$$
$$m = \sqrt{\frac{h_{loss}}{k_p E p_p}}$$

 k_p Conductivité thermique de la plaque absorbante

 Ep_p Epaisseur de la plaque absorbante

$$h_{loss} \quad \text{Le coefficient global de perte de chaleur de la plaque absorbante}$$

$$h_{loss} = (h_{avant} + h_{arr})/2$$

$$\frac{1}{h_{avant}} = \frac{1}{h_{rp} + h_{cp}} + \frac{1}{h_{cv} + h_{rv}}$$

$$h_{avant} = \frac{1}{\frac{1}{h_{rp} + h_{cp}} + \frac{1}{h_{cv} + h_{rv}}}$$

La chaleur évacuée vers le fluide est alors :

$$Q_{8} = \frac{A}{l_{1}((W-D)F+D)} \frac{A_{t}}{\frac{1}{h_{i}} + \frac{Ep_{t}}{k_{t}}} (T_{p} - T_{f})$$
(II.11)
$$A = l \pi D$$

$$A_{t} = l_{1} \lambda D_{i}$$

$$A_{t} \qquad \text{La surface intérieur du tube}$$

$$Ep_{t} = (D - D_{i})/2 \qquad \text{L'épaisseur des tubes}$$

$$k_{t} \qquad \text{Conductivité thermique des tubes}$$

$$Q_{8} = A_{t} h_{c \ p-f} \left(T_{p} - T_{f}\right)$$

$$h_{c \ p-f} = \frac{A}{l_{1} ((W - D)F + D)} \frac{1}{\frac{1}{h_{i}} + \frac{Ep_{t}}{k_{t}}}$$
Détermine time du ce éférieur de constant de centre du te

Détermination du coefficient de convection interne du tube h_i

Pour les régime laminaire $\text{Re} \leq 2300$

Le nombre de Nusselt est donné par la corrélation [12]

$$Nu = \frac{h_i D_i}{k_f} = 4.36$$
$$h_i = 4.36 \frac{k_f}{D_i}$$

Pour les régime turbulent $\text{Re} \ge 2300$ Le nombre de Nusselt est donné par la corrélation [13]

$$Nu = 0.023 \operatorname{Re}^{0.8} \operatorname{Pr}^{n}$$
 Avec $\begin{cases} n = 0.3 \ refroid is sement \\ n = 0.4 \ echauf fement \end{cases}$

Dans le cas étudier le capteur ne fonctionne que en mode d'échauffement et par principe de fonctionnement, des que capteur entre dans le mode de refroidissement il y a arrêt du processus, soit par arrêt de la pompe de circulation du circuit, ou par arrêt automatique si le system est en thermosiphon, alors dans tout les cas n = 0.4

$$Nu = \frac{h_i D_i}{k_f} = 0.023 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^{0.4}$$
$$h_i = \frac{k_f}{D_i} 0.023 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^{0.4}$$

En tenant compte de la résistance thermique de conduction de la paroi du tube

Figure 13 Schéma des résistances thermiques équivalent entre la plaque et le fluide caloporteur

L'équation obtenu par l'étude de la plaque absorbante :

$$\frac{\partial T_p(t)}{\partial t} = \frac{1}{\left(\rho_p C p_p V_p + \rho_t C p_t V_t + \rho_i C p_i V_i\right)} \begin{pmatrix} AI(\tau \alpha)_{eff} - Ah_{r\,p-\nu}(T_p - T_\nu) - Ah_{c\,p-\nu}(T_p - T_\mu) - Ah_{c\,p$$

Est une équation différentielle de du premier ordre de la forme

$$\frac{\partial T_p(t)}{\partial t} = A_p T_v(t) + B_p T_p(t) + C_p T_f(t)$$

2.3.Bilan énergétique du fluide caloporteur

Stockage = Entrée – Sortie

$$\frac{\partial e_f}{\partial t} = Q_8 + Q_9 - Q_{10}$$
Calcule de l'énergie interne du fluide

$$\frac{\partial e_f}{\partial t} = \left(\rho_f C p_f V_f \left(\frac{\partial T_f(t)}{\partial t}\right)\right)$$
(II.13)

<u>Calcul de Q_9 la quantité de chaleur apportée par le fluide entrant dans le capteur</u>

$$Q_9 = \dot{m}\rho_f C p_f T_{f,e}(t) \tag{II.14}$$

<u>Calcul de Q_{10} la quantité de chaleur emportée par le fluide sortant du le capteur</u>

$$Q_{10} = \dot{m}\rho_f C p_f T_{f,s}(t) \tag{II.15}$$

L'équation obtenu par l'étude du fluide caloporteur:

$$\frac{\partial T_f}{\partial t} = \frac{1}{\left(\rho_f C p_f V_f\right)} \left(\frac{A}{l_1 ((W-D)F+D)} \frac{l_1 \pi D_i}{\frac{1}{h_i} + \frac{e_i}{\lambda_i}} (T_p - T_f) - \dot{m} \rho_f C p_f (T_{f,s} - T_{f,e}) \right)$$
(II.16)
$$V_f = l_1 \pi D_i^2 / 4$$

En tenant compte de l'évolution de la température du fluide dans les tubes du capteur qui est supposée linaire alors:

$$T_{f} = \frac{T_{f,s} + T_{f,e}}{2}$$
(II.17)

Et la température d'entrée du fluide dans le capteur est supposée la même que celle de la moyenne dans le réservoir de stockage

$$T_{fe} = T_r \tag{II.18}$$

Alors $(T_{f,s} - T_{f,e}) = 2(T_f - T_r)$

L'équation du bilan énergétique du fluide caloporteur devient :

1

$$\frac{\partial T_f}{\partial t} = \frac{1}{\left(\rho_f C p_f V_f\right)} \left(\frac{A}{l_1 ((W-D)F+D)} \frac{l_1 \pi D_i}{\frac{1}{h_i} + \frac{e_t}{\lambda_t}} (T_p - T_f) - \dot{m} \rho_f C p_f (2(T_f - T_r)) \right)$$
(II.19)

C'est une équation différentielle du premier ordre de la forme

$$\frac{\partial T_f(t)}{\partial t} = A_f T_p(t) + B_f T_f(t) + C_f T_r(t)$$

2.4.Bilan énergétique du réservoir de stockage

Le réservoir de stockage de la chaleur utile collecter du capteur solaire

Stockage = Entrée – Sortie

$$\frac{\partial e_r}{\partial t} = Q_{10} - Q_{11} - Q_{12} - Q_{13}$$

Calcul de l'énergie interne du réservoir de stockage

$$\frac{\partial e_r}{\partial t} = \left(\rho_r C p_r V_r\right) \left(\frac{\partial T_r(t)}{\partial t}\right) \tag{II.20}$$

Vr Volume du réservoir du stockage

Calcul de Q_{11} la quantité de chaleur perdue du réservoir vers l'ambiance

Soit le coefficient de perte global du réservoir h_r

$$Q_{11} = A_r h_r (T_r - T_a)$$
(II.21)

 A_r est la surface extérieure du réservoir de stockage

Calcule de la quantité de chaleur perdue vers le circuit d'application

$$Q_{12} = \dot{m}_u \rho_u C p_u (T_r - T_{appro})$$
(II.22)

Calcule de la quantité de chaleur perdue par le fluide sortant du réservoir vers le capteur solaire ()

$$Q_{13} = \dot{m}\rho_f C p_f T_r(t) \tag{II.23}$$

Alors l'équation déduite de l'étude du réservoir de stockage est:

$$\frac{\partial T_r(t)}{\partial t} = \frac{1}{\left(\rho_r C p_r V_r\right)} \left(\dot{m} \rho_f C p_f \left(T_{fs} - T_{fe}\right) - A_r h_r \left(T_r - T_a\right) - \dot{m}_u \rho_u C p_u \left(T_u - T_{appro}\right) \right) \quad (\text{II.24})$$

En tenant compte des hypothèse (II.17) et (II.18) on peut écrire

$$T_{fs} = 2T_f - T_{fe}$$
$$T_{fs} = 2T_f - T_r$$

En remplacent dans l'équation du bilan du réservoir on obtient

$$\frac{\partial T_r(t)}{\partial t} = \frac{1}{\left(\rho_r C p_r V_r\right)} \left(\dot{m} \rho_f C p_f \left(2 \left(T_f - T_r\right) \right) - A_r h_r \left(T_r - T_a\right) - \dot{m}_u \rho_u C p_u \left(T_u - T_{appro}\right) \right)$$
(II.25)

Est une équation différentielle du premier ordre de la forme

$$\frac{\partial T_r(t)}{\partial t} = A_r T_f(t) + B_r T_r(t) + C_r$$

Alors le système d'équations obtenu est de 4 inconnues à 4 équations

$$\frac{\partial T_{\nu}(t)}{\partial t} = A_{\nu}T_{\nu}(t) + B_{\nu}T_{p}(t) + C_{\nu}$$

$$\frac{\partial T_{p}(t)}{\partial t} = A_{p}T_{\nu}(t) + B_{p}T_{p}(t) + C_{p}T_{f}(t)$$

$$\frac{\partial T_{f}(t)}{\partial t} = A_{f}T_{p}(t) + B_{f}T_{f}(t) + C_{f}T_{r}(t)$$
(II.26)
$$\frac{\partial T_{r}(t)}{\partial t} = A_{r}T_{f}(t) + B_{r}T_{r}(t) + C_{r}$$

CHAPITRE III

Résolution Numérique

3.1. Méthode de résolution

3.1.1. Méthode de Runge Kutta

Le système d'équations différentielles de premier ordre à une variable (le temps) est résolu par la méthode de Runge-Kutta du quatrième ordre. La méthode de Runge-Kutta d'ordre 4 définit par deux suites, h étant le pas de discrétisation en x :

• Une première suite qui permet de définir les valeurs de x Terme initial : x_0 Relation de récurrence : $x_{i+1} = x_i + h$

• Une deuxième qui permet d'évaluer les valeurs de y Terme initial : y_0 Relation de récurrence : $y_{i+1} = y_i + 1/6(k_1 + 2k_2 + 2k_3 + k_4)$

Dans notre cas appliquée à un system de 4 équations différentielles

$$\begin{cases} T_{v}^{i+1} = T_{v}^{i} + \frac{1}{6} \left(k_{v1} + 2k_{v2} + 2k_{v3} + k_{v4} \right) \\ T_{p}^{i+1} = T_{p}^{i} + \frac{1}{6} \left(k_{p1} + 2k_{p2} + 2k_{p3} + k_{p4} \right) \\ T_{f}^{i+1} = T_{f}^{i} + \frac{1}{6} \left(k_{f1} + 2k_{f2} + 2k_{f3} + k_{f4} \right) \\ T_{r}^{i+1} = T_{r}^{i} + \frac{1}{6} \left(k_{r1} + 2k_{r2} + 2k_{r3} + k_{r4} \right) \end{cases}$$

Avec les k définit comme suit :

$$\begin{cases} k_{v1} = \Delta t \times f_v(t_i, T_v^i) \\ k_{v2} = \Delta t \times f_v(t_i + \frac{\Delta t}{2}, T_v^i + \frac{k_{v1}}{2}) \\ k_{v3} = \Delta t \times f_v(t_i + \frac{\Delta t}{2}, T_v^i + \frac{k_{v2}}{2}) \\ k_{v4} = \Delta t \times f_v(t_i + \Delta t, T_v^i + k_{v3}) \end{cases} \qquad \begin{cases} k_{p1} = \Delta t \times f_p(t_i, T_p^i) \\ k_{p2} = \Delta t \times f_p(t_i + \frac{\Delta t}{2}, T_p^i + \frac{k_{p1}}{2}) \\ k_{p3} = \Delta t \times f_p(t_i + \frac{\Delta t}{2}, T_p^i + \frac{k_{p2}}{2}) \\ k_{p4} = \Delta t \times f_p(t_i + \Delta t, T_p^i + k_{p3}) \end{cases}$$

$$\begin{cases} k_{f1} = \Delta t \times f_f\left(t_i, T_f^i\right) \\ k_{f2} = \Delta t \times f_f\left(t_i + \frac{\Delta t}{2}, T_f^i + \frac{k_{f1}}{2}\right) \\ k_{f3} = \Delta t \times f_f\left(t_i + \frac{\Delta t}{2}, T_f^i + \frac{k_{f2}}{2}\right) \\ k_{f4} = \Delta t \times f_f\left(t_i + \Delta t, T_f^i + k_{f3}\right) \end{cases} \qquad \begin{cases} k_{r1} = \Delta t \times f_r\left(t_i, T_r^i\right) \\ k_{r2} = \Delta t \times f_r\left(t_i + \frac{\Delta t}{2}, T_r^i + \frac{k_{r1}}{2}\right) \\ k_{r3} = \Delta t \times f_r\left(t_i + \frac{\Delta t}{2}, T_r^i + \frac{k_{r2}}{2}\right) \\ k_{r4} = \Delta t \times f_r\left(t_i + \Delta t, T_r^i + k_{r3}\right) \end{cases}$$

Avec les f définit comme suit :

$$\begin{cases} \frac{\partial T_{v}}{\partial t} = f_{v}\left(t, T_{v}, T_{p}\right) \\ \frac{\partial T_{p}}{\partial t} = f_{p}\left(t, T_{v}, T_{p}, T_{f}\right) \\ \frac{\partial T_{f}}{\partial t} = f_{f}\left(t, T_{p}, T_{f}, T_{ff}, T_{fi}\right) \\ \frac{\partial T_{r}}{\partial t} = f_{r}\left(t, T_{r}, T_{ff}, T_{fi}\right) \end{cases}$$

Le système de 4 équations et 4 inconnue (Tv, Tp, Tf, Tr) a ressoude

$$\begin{aligned} & \left| \frac{\partial T_{v}}{\partial t} = \frac{1}{\rho_{v}Cp_{v}V_{v}} \left(AI\alpha_{v} + Ah_{r\,p-v}(T_{p} - T_{v}) + Ah_{c\,p-v}(T_{p} - T_{v}) - Ah_{c\,a-v}(T_{v} - T_{a}) - Ah_{r\,a-v}(T_{v} - T_{a}) \right) \\ & \frac{\partial T_{p}}{\partial t} = \frac{1}{\left(\rho_{p}Cp_{p}V_{p} + \rho_{t}Cp_{t}V_{t} + \rho_{i}Cp_{i}V_{i} \right)} \left(\begin{array}{c} AI(\tau\alpha)_{eff} - Ah_{arr}(T_{p} - T_{a}) - A_{t}h_{c\,p-f}(T_{p} - T_{f}) - Ah_{c\,p-v}(T_{p} - T_{v}) - Ah_{c\,p-v}(T_{p} - T_{v}) \right) \\ & \frac{\partial T_{f}}{\partial t} = \frac{1}{\rho_{f}Cp_{f}V_{f}} \left(A_{t}h_{c\,p-f}(T_{p} - T_{f}) - \dot{m}\rho_{f}Cp_{f}(2(T_{f} - T_{r})) \right) \\ & \frac{\partial T_{r}}{\partial t} = \frac{1}{\rho_{r}Cp_{r}V_{r}} \left(\dot{m}\rho_{f}Cp_{f}(2(T_{f} - T_{r})) - A_{r}h_{r}(T_{r} - T_{a}) - \dot{m}_{u}\rho_{r}Cp_{r}(T_{r} - T_{appro}) \right) \end{aligned}$$

C'est un système de 4 équations différentielles du premier ordre 1 à 4 inconnues à une seule variable qui est le temps qui doit être résolut à chaque instant moyennant un pas h définit au somatiquement pas la méthode à pas variable.

$$\begin{cases} \frac{\partial T_v(t)}{\partial t} = A_v T_v(t) + B_v T_p(t) + C_v \\ \frac{\partial T_p(t)}{\partial t} = A_p T_v(t) + B_p T_p(t) + C_p T_f(t) \\ \frac{\partial T_f(t)}{\partial t} = A_f T_p(t) + B_f T_f(t) + C_f T_r(t) \\ \frac{\partial T_r(t)}{\partial t} = A_r T_f(t) + B_r T_r(t) + C_r \end{cases}$$

Les constantes A, B et C ont été déterminées au chapitre II : Bilan Energétique et Mise en Equations

3.1.2.<u>Calcul d'erreur</u>

Pour maîtriser la précision des calculs on emploi la méthode à pas automatique connue aussi sous méthode à pas variable.

L'erreur systématique pour un pas h $Es^{(n)}(h) = K_n(h)^{r+1}$

L'erreur systématique pour un pas h/2 $Es^{(n)}(h/2) = K_n(h/2)^{r+1}$

Soit $Y_{X_{n+1}}$ la valeur de la solution exacte au point x_{n+1} Soit $Y_{n+1}(h)$ et $Y_{n+1}(h/2)$ les valeurs calculées à h et h/2 respectivement

L'erreur commise au point x_{n+1} on utilisant un pas h est $Y_{Xn+1} - Y_{n+1}(h) = Es^{(n)}(h) = K_n(h)^{r+1}$

L'erreur commise au point x_{n+1} on utilisant un pas h/2 est $Y_{X_{n+1}} - Y_{n+1}(h/2) = Es^{(n)}(h/2) + Es^{(n)}(h/2) = 2K_n(h/2)^{r+1}$

Faisant la soustraction entre (1) et (2)

$$Y_{n+1}(h/2) - Y_{n+1}(h) = K_n(h)^{r+1} - 2K_n(h/2)^{r+1}$$

$$Y_{n+1}(h/2) - Y_{n+1}(h) = 2^{r+1}K_n(h/2)^{r+1} - 2K_n(h/2)^{r+1}$$

$$Y_{n+1}(h/2) - Y_{n+1}(h) = (2^{r+1} - 2)Es^{(n)}(h/2)$$

$$Es^{(n)}(h/2) = \frac{Y_{n+1}(h/2) - Y_{n+1}(h)}{2(2^r - 1)}$$

Avec r est le rang d'approximations de la méthode de Runge-Kutta Dans notre cas la méthode utilise est Runge-Kutta a 4 approximations alors r = 4

Mise en ouvre sur machine

Soit l'erreur admise ɛ

$$D_n = \frac{(Y_{n+1}(h/2) - Y_{n+1}(h))}{2(2^r - 1)}$$

soit ε' la borne minimale de l'erreur $\varepsilon' = \frac{\varepsilon}{10}$ alors $\varepsilon' < \varepsilon$

Il y a trois possibilités :

A) L'erreur commise dans les normes admises

$$\varepsilon' \leq \frac{D_n}{h} \leq \varepsilon$$

Dans ce cas on garde la valeur de $Y_{n+1}(h/2)$ On continue l'intégration de n+1 a n+2 avec le pas h

B) L'erreur commise est supérieur a l'erreur tolérer

 $\frac{D_n}{h} > \varepsilon$

Dans ce cas on réduit le pas h a h/2 Et on recommence l'intégration a partir du x_n

C) L'erreur commise est inférieur à la borne minimale de l'erreur tolérer

$$\frac{D_n}{h} < \varepsilon'$$

Dans ce cas il y a une convergence assez fine alors nous devrons augmenter le pas d'intégration h à 2h a partir du point x_{n+1} pour ne pas amputer sur le temps de calcul.

3.1.3.<u>Organigramme de calcul</u>

Figure 14 Organigramme de calcul Fig-10

3.2. Langage de programmation

La programmation de la méthode est établie par le logiciel de calcul FORTRAN, compiler et débuguer sous forme d'une DLL (Dynamic library Link) qui contiens des subroutine gérer à partir d'un fichier Excel, qui collecte les données initiale de la simulation, les injecter dans la subroutine de calcule FORTRAN grâce a un module Visuel Basic et qui permet de visualiser les résultat obtenue sur des graphes.

L'utilité de cette combinaison et la faciliter d'utilisation d'un fichier Excel pour introduire les donnée initial d'une part, et la facilite de visualiser les résultats dans un interface graphique conviviale.

Couple avec la puissance du compilateur FORTRAN pour les calcules mathématiques et la précision numérique qui résulte ainsi à l'utilisation efficace des moyens informatique mise disposition.

3.2.1.<u>Fortran</u>

Le programme fortran se constitue d'une programme principale qui assure le bon déroulement des opérations de calcul et gestion des résultats avec la macro visuel basic, ainsi que plusieurs sous programme qui assures les opérations de calcul auxiliaires :

- Sous programme pour le calcule horaire
- Sous programme pour le calcul thermosiphon
- Sous programme pour le caractéristiques optiques
- Sous programme pour le calcule interpolation des données météorologiques en utilisant les Cubique Spline, [15]
- Sous programme pour le détermination des propriétés physique de l'eau et de l'air fonction des températures du capteur.
- Sous programme pour la résolution par méthode de Runge-Kutta
- Sous programme pour le récupération des résultats
- Sous programme pour le intégration des valeur instantanée utilisant trapèze
- Sous programme pour le la mise a jour des cœfficients de transfert de chaleur

Débuguer le programme sous forme d'une DLL.

3.2.2. Visuel Basic

Un module dans le quelle il est spécifier l'emplacement de la DDL FORTRAN, ainsi que la préparation des donnée initiale de calcul et le affecter dans des variables, qui seront transférés vers la sub-routine du programme Fortran

Ainsi que la récupération des résultats calculer par le programme Fortran, et les transmettre à une feuille Excel afin d'être représenter sous forme de graphe.

3.2.3.<u>Excel</u>

Un fichier Excel avec les feuilles de données et de résultats qui a un rôle d'interface de simulation.

3.3.Interface de simulation

3.3.1. Simulateur

C'est une feuille Excel qui contient les paramètres de l'environnement de simulation du capteur solaire plan tel que :

Le lieu géographique de la simulation

Les données météorologiques de la journée de simulation,

Le type d circulation dans le capteur naturel ou forcée

Position géo	graphique										
	Longitude locale	9	-3		Jun 20	07	Lun		T	007 7	1
	Longitude stand	ard	-15		Jun 20	07	Jun			007	
	Latitude		32	S	at Sun	Mon	Tue	Wed	Thu	Fri	
Ghardaia	Albédo		0.45	26	27	28	29	30	31	1	
Positionnem	ent du capteur			2	3	4	5	6	7	8	
	Orientation		Sud	Ľ	<u> </u>	<u> </u>	<u> </u>	Ŭ.	<u>'</u>	Ŭ	
	Inclinaison en de	egré	35	9	10	11	12	13	14	15	
La date de l'e	expérience			16	17	18	19	20	21	22	1
	Date		04/June			10	15	20	21	~~	
	Numéro du jour		155	23	24	25	26	27	28	29	
Duree de for	octionnement			30	1	2	3	4	5	6	
	Debut		08:00			_	Ŭ		0	Ŭ	
-	Fin		18:00				_		_		_
I ye d'ecoule	ment dans le ca	apteur			<u> </u>						_
O	Circulation Natu	relle perte	charge singuliere		0.5	m					
0	Circulation force	e Débit v	volumique pompe	0.	00005	m3/s	C	ALL	FUR		•
_		Puissa	ance de la pompe		0.1	kW					
Parametres of	de calcule					T					
	L'erreur maxima	ale admise		_	0.01			_		_	
Meteorologic	que	1				1 7					
Heur	Direct W	Diffus W	Température C	Ven	t m/s	Ten	nperat	ure	Débit U	tile m:	3/s
<u>nn:mm</u>	0	0				ap	point	0			
00:00	0	0	22			,		20			0
01.00	0	0	22		(, ,		20			0
02.00	0	0	22		(, ,		20			0
03.00	0	0	22)		20			0
04.00	0	0	22)		20			0
05:00	78	49	22			,)		20			0
00:00	254	40	22)		20			0
07:00	435	93	25)		20			0
09:00	594	100	20)		20			0
10:00	718	103	30)		20			0
11:00	796	105	33		0)		20			0
12:00	823	106	36		C)		20			0
13:00	796	105	37		C)		20			0
14:00	718	103	38		C)		20			0
15:00	594	100	37		C)		20			0
16:00	435	93	35		C)		20			0
17:00	254	80	32		C)		20			0
18:00	78	49	30		C)		20			0
19:00	0	0	28		C)		20			0
20:00	0	0	24		C)		20			0
21:00	0	0	22		C)		20			0
22:00	0	0	22		C)		20			0
23:00	0	0	22		C)		20			0

Figure 15 Feuille de données du simulateur

3.3.2. Caractéristiques du capteur

C'est une feuille Excel qui continent les caractéristiques physiques des différents éléments du capteur solaire plan ainsi que les spécifications du réservoir de stockage

Caractéristiques physique		Valeur	Unité
Dimension			
	Longueur	1.64	m
	Largeur	1	m
	Surface	1.64	m²
	Écartement vitre plaque	0.025	m
	Épaisseur du capteur	0.1	m
Vitre			
	Épaisseur	0.004	m
	Masse volumique	2515	kg / m ³
	Chaleur massique	810	J / kg .°C
	coefficient d'extinction	26	m ⁻¹
	Indice de réfraction n	1.52	-
	Emissivitée	0.88	-
	Volume de la vitre	0.00656	m ³
Plaque			
	Épaisseur	0.02	m
	Absorption normale	0.9	-
	Emissivitée	0.8	-
	Masse volumique	2702	ka / m ³
	Chaleur massique	903	J/kg.°C
	Conductivité thermique	200	W/m.°C
	Volume de la plaque	0.0328	m ³
Échangeur		0.0020	
	Distance entre 2 tubes	0.1	m
	Nombre de tube	10	-
	Diamètre extérieur des tubes	0.017	m
	Diamètre intérieur des tubes	0.015	m
	Épaisseur des tubes	0.001	m
	Chaleur massique	903	J / kg .°C
	Masse volumique	2702	ka / m ³
	Conductivité thermique	200	W/m.°C
	Volume des tube	0.001	m ³
	Volume du fluide dans le capteur	0.003	m ³
	Surface d'échange tube fluide	0.003	m ²
leolant arriòro		0.773	111
isolant arriere	Conductivité thermique	0.036	W/m °C
	Épaisseur	0.03	m
		800	.l/ka.°C
		20	ka/m^3
	Volume de l'isolant arrière	0.040	m ³
leolant Latóral		0.049	111
	Chalour massique	800	l/ka °C
	Maaaa walumigua	800	$\frac{J}{Kg}$
	Masse volumique	20	Kg / III
		0.036	w / m . c
		0.03	111 ³
Décemente	volume de l'isolant lateral	0.015	rn°
Reservoir			3
	volume du reservoir	0.095	m ř
	Surface extérieur du réservoir	0	m
	Coefficient de perte de chaleur	0	W / m [∠] . °C
	Température initiale de réservoir	32	°C

Figure 16	Feuille	des	caractéristia	ues di	n ca	nteur
riguite to	reunie	ucs	cal acter istry	ues u	u ca	picui

3.3.3. Visualisation des résultats

- i) Résultats de convergence et calcule d'erreur Evolution de la précision au cours des itérations
- ii) Résultats de l'environnement

Les Angles Solaire

iii) Résultat énergétique (Fig-17)

Profile des températures des composants du capteur Evolution des températures d'entrée et de sortie du capteur Evolution des puissances échangées entre les éléments du capteur Evolution instantanée du rendement global et du rendement interne Puissance disponible, utile et perdue du capteur Conductance Apparente du Capteur Variation du débit de circulation Energie Utile récupérée pour une journée Energie solaire disponible pour une journée Energie absorbée pour une journée Energie épuisée pour une journée Rondement global journalier Rondement Interne journalier

iv) Résultat Optique (Fig-18)

Evolution de la transmission de la vitre Evolution de la réflexion de la vitre Evolution de l'absorbance de la vitre Evolution de l'absorbance de la plaque Evolution du produit transmission de la vitre et absorbance de la plaque Evolution des résistances optiques

Les résultats graphiques sont rassemblés en deux catégories : Rapport des résultats énergétiques Fig-17 Rapports des résultats optiques Fig-18

Rapport Energétique

Rapport Energétique						
Bilan Énergétique	Joule	kWh	kWh/m2			
Énergie Utile récupérée	12722317	3.53	2.15			
Énergie solaire disponible	37250348	10.35	6.31			
Énergie absorbée	25491530	7.08	4.32			
Énergie épuisée	0	0.00	0.00			
Énergie Consommée par la pompe	3600000	1.00	0.61			
Rendements	Sans pompe	avec pompe				
Rondement global journalier	34%	24%				
Rondement Interne journalier	50%	50%				

.

Figure 17 Résultats Energétiques

Rapport Optique

Résultats Optiques

CHAPITRE IV

Résultats et validation

4.1.<u>Validation du model</u>

Le model numérique a été comparer au résultats expérimentaux d'une journée d'essai d'un capteur solaire plan en circulation naturelle durant une la journée du 4/6/2007 de 8 :00 à 18 :00 sous le soleil de Ghardaïa

Les mesures expérimentales on été enregistrées tout les 15 min

Les conditions de des essais expérimentaux et du model

Position géo	graphique									
	Longitude local	e	-3				[.			
	Longitude stand	dard	-15	J	un 20	07	Jun		2	2007 📩
	Latitude		32	Sat	Sun	Mon	Tue	Wed	Thu	Fri
Ghardaia	Albédo		0.45	26	27	28	29	30	31	1
Positionnem	ent du capteur			2	2	4	5	6	7	0
	Orientation		Sud	2	3	4	5	0	'	0
	Inclinaison en d	egré	35	9	10	11	12	13	14	15
La date de l'e	expérience		-	10	17	10	10	20	21	22
	Date		04/June	10	17	10	19	20	21	22
	Numéro du jour		155	23	24	25	26	27	28	29
Durée de fon	ctionnement	1		20	1	2	2	4	5	6
	Début		08:00	30	1	~	3	4	5	0
	Fin		18:00							
Tye d'ecoule	ment dans le c	apteur								
0	Circulation Natu	urelle perte	charge singulière	0.	5	m				
0	Circulation force	ée Débit	volumique pompe	0.00	005	m3/s	C	ALL	FOR	TRAN
		Puiss	ance de la pompe	0.	1	kW				
Parametres of	de calcule									
	L'erreur maxima	ale admise			0.01					
Météorologio	que									
Heur		D://)//			,	Tem	npérat	ure		
hh:mm	Direct W	Diffus W	Temperature C	vent	m/s	ар	point	С	Debit (Jtile m3
00:00	C	0 0	22		0			20		
01:00	C	0 0	22		0			20		
02:00	C) ()	22		0			20		
03:00	C) ()	22		0			20		
04:00	C	0 0	22		0			20		
05:00	C) ()	22		0			20		
06:00	78	49	22		0			20		
07:00	254	80	23		0			20		
08:00	435	93	25		0			20		
09:00	594	100	27		0			20		
10:00	718	103	30		0			20		
11:00	796	105	33		0			20		
12:00	823	106	36		0			20		
13:00	796	105	37		0			20		
14:00	718	103	38		0			20		
15:00	594	100	37		0			20		
16:00	435	93	35		0			20		
17:00	254	80	32		0			20		
18:00	78	49	30		0			20		
19:00	C) (28		0	Ī		20		
20:00	C) ()	24		0	Ī		20		
21:00	C	0 0	22		0	I		20		
22:00	C	0 0	22		0	Ī		20		
					-			-		

Figure 19

Conditions de simulation et des essais expérimentaux

Les paramètres du capteur solaire plan mis en essai :

Composant	Caractéristiques physiques	Valeur	Unité
Dimension			
	Longueur	1.64	m
	Largeur	1	m
	Surface	1.64	m2
	Écartement vitre plaque	0.025	m
	Épaisseur du capteur	0.1	m
Vitre	• •		
	Épaisseur	0.004	m
	Masse volumique	2515	kg / m3
	Chaleur massique	810	J/kg.°C
	coefficient d'extinction	0.26	m ⁻¹
	Indice de réfraction n	1.52	-
	Emissivitée	0.88	-
	Volume de la vitre	0.00656	m3
Plaque			
•	Épaisseur	0.02	m
	Absorption normale	0.9	-
	Emissivitée	0.8	-
	Masse volumique	2702	kg / m3
	Chaleur massique	903	J/kg.°C
	Conductivité thermique	200	W/m.°C
	Volume de la plaque	0.0328	m3
Échangeur			
	Distance entre 2 tubes	0.1	М
	Nombre de tube	10	-
	Diamètre extérieur des tubes	0.017	М
	Diamètre intérieur des tubes	0.015	М
	Épaisseur des tubes	0.001	М
	Chaleur massique	903	J / kg .°C
	Masse volumique	2702	kg / m3
	Conductivité thermique	200	W/m.°C
	Volume des tubes	0.001	m3
	Volume du fluide dans le capteur	0.003	m3
	Surface d'échange tube fluide	0.773	m2
Isolant arrière			
	Conductivité thermique	0.036	W/m.°C
	Épaisseur	0.03	М
	Chaleur massique	800	J / kg .°C
	Masse volumique	20	kg / m3
	Volume de l'isolant arrière	0.049	m3
Isolant Latéral			
	Chaleur massique	800	J / kg .°C
	Masse volumique	20	kg / m3
	Conductivité thermique	0.036	W / m .°C
	Épaisseur	0.03	М
	Volume de l'isolant latéral	0.015	M3
Réservoir			
	Volume du réservoir	0.095	M3
	Surface extérieur du réservoir	0	M2
	Coefficient de perte de chaleur	0	W / m2 . °C
	Température initiale de réservoir	32	°C

Figure 20

Caractéristiques du capteur des essais expérimentaux

Les résultats expérimentaux de l'expérience

Temps	Température Sortie	Température Entrée
08:00	32	32
08:15	32	32
08:30	32	32
08:45	32	32
09:00	32	35
09:15	32	36
09:30	32	37
09:45	33	38
10:00	35	39
10:15	37	41
10:30	38	42
10:45	39	43
11:00	41	45
11:15	42	46
11:30	45	47
11:45	46	49
12:00	47	50
12:15	49	51
12:30	49	53
12:45	51	54
13:00	53	55
13:15	54	56
13:30	55	58
13:45	56	59
14:00	58	60
14:15	58	60
14:30	59	61
14:45	61	62
15:00	60	63
15:15	61	63
15:30	61	63
15:45	62	64
16:00	62	64
16:15	62	64
16:30	62	63
16:45	62	62
17:00	62	60
17:15	62	57
17:30	62	53
17:45	62	48
18:00	62	44

Table 2

Résultats expérimentaux

La représentation des températures mesurées expérimentalement et les température pré dicter par le model numérique.

Temperatures Entree / Sortie dans le capteur

Récapitulatif des résultats

	Énergie disponible kWh	Énergie perdue kWh	Énergie Utile kWh	Rendement Global
Essai expérimental	10	6.7	3.3	33%
Modèle numérique	10.4	6.9	3.5	34%
Variance	3%	2%	6%	2%

 Table 3
 Comparaison des résultats expérimentaux avec les résultats du modèle.

La variance entre le model numérique et les essais pratique est inférieur a 10% ce qui permet de valider ce model numérique de simulation du fonctionnement d'un capteur solaire plan en régime dynamique.

4.2. Résultats et Interprétations

4.2.1. <u>Résultats et interprétation de l'évolution de l'erreur et le pas d'itération</u>

Évolution de la précision au cours des itérations

Figure 22 Evolution de la précision au cours des itérations

L'erreur maximale admise sur les températures calculées est de 0.01 et grâce au calcul d'erreur de la méthode de Runge Kutta cette condition est respectée car durant tout le processus la courbe verte ne dépasse pas la borne supérieure fixée. Pour mieux maîtriser l'allure de la convergence, la méthode de pas variable est introduite pour changer de pas d'intégration en fonction de la qualité de la convergence.

Dans ce cas un pas d'itération compris entre 0.005 et 0.01 heur, ce qui représente en seconde un pas compris entre 18 et 36 secondes, ce pas a assuré la convergence dans la grande partie du processus itératif.

4.2.2. Résultats et interprétation de l'évolution des grandeurs instantanées

Figure 23 Ex

Evolution des profiles des températures

Températures Entrée / Sortie dans le capteur

Figure 24 Evolution des profiles des températures d'entrée et de sortie

50

Les puissances échangées

Figure 25 Evolution des puissances échangées entre les composant

Figure 26 Evolution des puissances, disponible, absorbée, utile et perdue

Le rendement instantané du capteur solaire

Les Rendement Instantanée du capteur solaire

Figure 28 Evolution des performances selon la norme ASHRAE

Figure 29 Evolution horaire du débit de circulation

Rapport Énergétique							
Bilan Énergétique	Joule	kWh	kWh/m2				
Énergie Utile récupérée	12722317	3.53	2.15				
Énergie solaire disponible	37250348	10.35	6.31				
Énergie absorbée	25491530	7.08	4.32				
Énergie épuisée	0	0.00	0.00				
Rendements							
Rondement global journalier	34%						
Rondement Interne journalier	50%						

Table 4 Bilan énergétique du capteur

Les résultats obtenus permettent de visualiser l'évolution des grandeurs instantanées du capteur solaire plan, et par intégration des valeurs instantanées (méthode de trapèze) des valeurs journalières sont obtenue pour l'énergie utile récupérée du capteur, l'énergie solaire disponible sur le capteur incliné, ainsi que le rondement journalier.

Résultats Optiques

Figure 30 Evolution horaire des angles solaires sur la vitre

Figure 31 Evolution horaire de la transmission de la vitre

Évolution de la réflexion de la vitre

Figure 32 Evolution horaire de la réflexion de la vitre

Évolution de l'absorbance de la vitre

Figure 33 Evolution horaire de l'absorbance de la vitre

Figure 34 Evolution horaire de l'absorbance de la plaque

Évolution du produit transmission de la vitre et absorbance de la plaque

Figure 35 Evolution horaire du produit (τα) absorbance transmission

56

Figure 36 Evolution horaire des résistances optiques aux radiations directes, diffusées et réfléchies

Les résultats optiques obtenus permettent d'évaluer les performances optiques du capteur solaire et de vérifier la qualité de la couverture en verre ainsi que l'angle d'inclinaison du capteur.

La plus part des graphes montre une stabilité des propriétés optiques le long de la journée, mise à part le début et la fin de la journée quand les angles d'incidences sont importants.

4.2.3. <u>Résultats et interprétation de la variation de l'angle d'inclinaison du capteur</u>

Apres que le modèle numérique présenté était validé et juger fiable pour simuler de prés le fonctionnement du capteur solaire plan

On utilise ce modèle pour prédire le comportement du capteur solaire aux différents angles d'inclinaisons, de 10° à 90° et cela pour toutes les journées de l'année en calculant pour chaque journée la quantité d'énergie disponible sur la surface inclinée du capteur, la quantité d'énergie utile récupérer du capteur ainsi que le rendement journalier de l'installation, pour cela on utilise le même capteur de la validation.

Énergie disponible et l'énergie utile pour différents angles d'inclinaison du capteur

Figure 37 Evolution annuelle de l'énergie disponible et l'énergie utile pour différentes inclinaisons

Énergie annuelle disponible et utile a différent angles d'inclinaison du capteur

Variation annuelle du rendement journalier pour différents angles d'inclinaisons du capteur

Figure 40Variation du rendement annuelle moyen avec différentes inclinaisons du capteurL'angle qui représente le rendement annuel maximum est 36°Cet angle représente un gain de 1.4% par apport à l'angle de 45° qui est l'angleactuellement utilisée pour tout les capteurs solaires plan à Ghardaïa

59

CONCLUSION

CONCLUSION

Cette étude a aboutie à l'élaboration d'un modèle numérique qui permet de simuler le comportement d'un capteur solaire plan en régime dynamique.

Les résultats expérimentaux ont permets de valider le modèle car la variance est dans l'intervalle admissible des modèles numérique <10% d'écart. Ce modèle numérique ainsi élaborer simule et représente de près le comportement du capteur solaire plan.

Cet outil permet d'obtenir les grandeurs instantanées et annuelles du capteur et cela tout en gardant la liberté de varier :

- Le lieu d'implantation du capteur et les conditions météorologiques.
- Les caractéristiques physiques, et les dimension du capteur, ce qui permet d'étudier plusieurs variantes du capteur solaire plan, pour une meilleur optimisation de la conception.
- Choix du mode de l'écoulement du fluide caloporteur dans le capteur soit en régime forcé ou en régime naturel (thermosiphon)

Le modèle permet l'évaluation des performances du capteur solaire plan en tenant compte du circuit d'application et l'épuisement. Ce qui donne la perspective à déterminer l'énergie solaire qui peut être mise au service pour une autre application, exemple les machines frigorifiques à adsorption.

REFERENCES

Références

[1] Liu, B.Y.H et R.C Jordan, Application of solar energy for heating and cooling of building, ASHRAE, "Availability of solar energy for flat plate solar heat collector. New York (1977).

[2] Duffie, J. A. and W. A. Beckman,: Solar Engineering of Thermal Processes, Second Edition, John Wiley & Sons, Inc., page 220 New York. (1991)

[3] Brandemuehl, M. J. and W. A. Beckman, Solar Energy, 24, 511 (1980)

[4] Pettit et Sowell Applied Physics A: Materials Science & Processing Publisher: Springer Berlin / Heidelberg Volume 36, Number 4 / April, 1985 193-204 (1976)

[5] Close, D.J. The performance of solar water heaters with natural circulation. Solar Energy 6, 33–40. (1962)

[6] Hollands, K.G.T., Unny, T.E., Raithby, G.D., Konicek, L., Free convective heat transfer across inclined air layers Journal of Heat Transfer, ASME Transactions 98, 189–193. (1976)

[7] R. Bernard G. Menguy M Schwartz Le rayonnement solaire conversion thermique et application 2^{eme} Edition augmentée 1980

[8] Yves JANNOT, Thermique Solaire, -58-59, Octobre 2003

[9] Swinbank WC. Long-wave radiation from clear skies. QJR Meteorol Soc; 89:339. 1963

[10] JM Chassériaux Conversion thermique du rayonnement solaire, Agence française pour la maîtrise de l'énergie, par page 60 (1980)

[11] Sparrow corrélation du coefficient de convection forcée d'une plaque plane (1979)

[12] Incropera FP, De Witt DP. Introduction to heat transfer. New York: Wiley; 1990.

[13] Dillers Bulter, Boundary-Layer Meteorology Volume 12, Number 1 / August, 1977

[14] Duffie, J. A. and W. A. Beckman, 1991: Solar Engineering of Thermal Processes, Second Edition, John Wiley & Sons, Inc., New York.

[15] Richard J. Burden Numerical Analysis_, Third Edition, by and J. Douglas Faires, 1985. Algorithm 3.4, Page 122.

[16] NASA Surface meteorology and Solar Energy: http://eosweb.larc.nasa.gov/cgi-bin/sse/sse.cgi?

ANNEXE

July Surface Albedo July 1983 - June 1993 90 60 30 0 -30--60-90 60 120 -60 -1'20 Ó 180 180 0.2 0.1739 0,0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 1.0 (dimensionless) NASA/SSE 13 Sep 2004 Region average= Figure 42 Moyenne de l'Albédo pour le mois de Juillet

Figure 43 Moyenne décennale de l'irradiation solaire pour le mois de janvier

Figure 44 Moyenne décennale de l'irradiation solaire pour le mois de Juillet