وزارة التعليم العالم و البحث العلم

BADJI MOKHTAR-ANNABA UNIVERSITY UNIVERSITÉ BADJI MOKHTAR-ANNABA

جامعة باجي مختار – عنابة

Année 2012/2013

Faculté des Sciences Département de Physique

THESE

Présentée en vue de l'obtention du diplôme de

Doctorat en Sciences

Propriétés de Microstructure et Toxicologie des Alliages Aluminium-Titane

Option: Sciences des Matériaux

Par

BOULKHESSAIM Salim

Directeur de thèse:	DRAISSIA Mohamed	Prof.	U. Annaba
	Soutenue le 07 juillet 2013 de	vant le Jury:	
Président	ALLEG Safia	Prof.	U. Annaba
Examinateurs	DEBILI Med Yacine	Prof.	U. Annaba
	SAHOUR Med Cherif	Prof.	U. Guelma
	MEDDOUR Athmane	Prof.	U. Guelma
	TADJINE Aicha	MC A	U. El-Tarf

REMERCIEMENTS

Avant tout je remercie Allah qui m'a donné la force et la volonté pour réaliser ce travail de recherche scientifique de la thèse.

Cette thèse a été réalisée au laboratoire LM2S du département de physique (UBMA) sous la direction du Professeur Med DRAISSIA.

Je tiens à lui mentionner mon profond respect et mes remerciements pour son aide et ses divers conseils fructueux.

Je tiens à témoigner ma reconnaissance aux membres de Jury:

Au Professeur Safia ALLEG du département de physique (UBMA) pour avoir accepté de présider mon jury de soutenance de doctorat en sciences. Je tiens à la remercier pour le support technique apporté dans la caractérisation des matériaux étudiés.

Je remercie Professeur Med Yacine DEBILI du département de physique (UBMA) d'avoir accepté d'examiner mon mémoire pour le support technique apporté dans et les discussions fructueuses tout au long de la réalisation de ce travail.

Je remercie Professeur Med Cherif SAHOUR de l'université de Guelma d'avoir accepté d'examiner mon travail de thèse de doctorat.

Je remercie Professeur Athmane MEDDOUR de l'université de Guelma d'avoir accepté d'examiner mon travail de thèse de doctorat.

Je remercie Dr. MCA Aicha TADJINE de l'université de El-Tarf d'avoir accepté d'examiner mon travail de thèse de doctorat.

Je tiens à remercier également les membres de notre équipe, l'équipe administrative du département de physique ainsi que tous ceux qui ont contribué à la réalisation de ce travail.

En fin, je remercie ma famille pour le soutien qu'elle m'a apporté durant toute la période de réalisation de ce travail.

ملخصص

الهدف من هذا البحث العلمي في هذه الرسالة هو دراسة تطور البنية المجهرية لخلائط ذات البنية البلورية تتألف من الألمنيوم والتيتان (Al-20, 40, 50, 60, 70 et 80m.%Ti)صلدت بسرعة عن طريق الصهر بواسطة التواتر العالي بفعل الحث المغناطيسي في وسط فراغ أولي قمنا بدراسة حالتين حالة الخام وحالة المعالجة الحرارية عند درجة حرارة 500 لمدة ساعة وكذلك دراسة الثأتيرات السامة للمساحيق القاعدية للخلائط المتحصل عليها على الكائنات الحية.

التحاليل بواسطة طريقة ريتفلد لأطياف الاشعة السينية _ووالتحليل بواسطة المسح التفاضلي الحراري و الملاحظات بواسطة المجهر الضوئي و المجهر الالكتروني كلها استعملت من اجل معرف مميزات وخصائص الأطوار AlxTiv المتحصل عليها خلال الدراسة وكذلك تحديد أبعاد خليتها الأولية وتحديد التحولات الأطوار التي حدثت في خلائط الألمنيوم -التيتان المدروسة.

در اسة وتحليل سمية المساحيق القاعدية من الالمنيوم والتيتان أجريت على حيوان الحلزون استعملت كمثال لمدخر بيولوجي د ومؤشر بيولوجي جيد للسمية للعناصر الدقيقة المعدنية.

Résumé

Le travail de recherche scientifique de la thèse a pour objectifs l'étude de l'évolution microstructurale cristalline d'alliages binaires aluminium-titane (Al-20, 40, 50, 60, 70 et 80wt.%Ti) solidifiés rapidement par un procédé de fusion sous vide par induction magnétique haute-fréquence (hf) aux 2 états, brut et traité thermiquement (500 °C, 1 heure) et l'étude des effets toxiques des poudres des éléments d'alliage Al et Ti sur des organismes vivants.

Des analyses par affinement Rietveld (MAUD) des spectres diffractogrammes DRX, des essais de calorimétrie différentielle à balayage DSC et des observations par microscopie optique et microscopie électronique à balayage MEB ont permis d'identifier les phases Al_xTi_y qui se sont formés entre les éléments d'alliage Al et Ti et ainsi mesurer leur caractéristiques paramétriques cristallines et déterminer les transformations de phase qui se sont produites dans ces alliages Al-Ti étudiés.

Des analyses de toxicité des poudres des éléments d'alliage Al et Ti ont été réalisés sur des escargots *"Helix aspersa"* utilisés comme bio-accumulateurs et bio-indicateurs de la toxicité des ETM (Elément Trace Métallique).

Abstract

The purposes of this scientific research work of the thesis is the study of the microstructual evolution of rapidly solidified binary aluminium-titanium (Al-20, 40, 50, 60, 70 and 80wt.%Ti) alloys by a vacuum high-frequency (hf) magnetic induction melting process at as-melted and heat treated (500 °C, 1 hour) states and the toxical effects of the alloying elements Al and Ti powders on living organisms.

Analyses by Rietveld refinement (MAUD) of XRD diffractograms spectra, differential scanning calorimetric DSC testing and optical microscopy and scanning electron microscopy SEM observations were used to identify Al_xTi_y phases that are formed between the All and Ti alloying elements and thus measure their crystalline characteristic parameters and determine the phase transformations that occurred in the studied Al-Ti alloys.

Toxicity analyzes of alloying elements of Al and Ti powders were performed on snails "*Helix aspersa*" used bio-accumulators and bio-indicators of ETM (Trace Element Metal) toxicity.

Liste des figures

Figure	Titre	Page
	Chapitre I	
Fig. I-1	Cristallographie du titane pur en fonction de la température	07
Fig. I-2	Diagramme d'équilibre du système binaire Al-Ti	10
Fig. I-3	Structures de la phase TiAl (a) tétragonale γ -TiAl et (b) B2-TiAl.	13
	Représentation de la structure Hcp de la phase DO ₁₉ -Ti ₃ Al.	
Fig. I-4	Représentation de la structure Do ₂₂ de la phase Al ₃ Ti.	13
Fig. I-5	Structure des réseaux de phases α -Ti, Ti ₃ Al, TiAl et Al ₃ Ti du	14
Fig. I-6	système d'alliages binaire in the Al-Ti.	15
Fig. I-7	Structures (a) lamellaire et (b) duplex du système binaire Al-Ti.	16
	Chapitre II	
Fig. II-1	Diagramme de phases Al-Ti	20
Fig. II-2	Etapes de compactage des poudres.	21
Fig. II-3	Photo de la pastille du mélange des 2 poudres Al et Ti.	22
Fig. II-4	Ensemble du procédé de fusion hf.	23
Fig. II-5	Cycles thermiques des étapes successives de la fusion- hf.	24
Fig. II-6	Photo de l'alliage Al-Ti en étape de fusion totale dans le tube en	25
	quartz.	
Fig. II-7	Photo de l'alliage Al-Ti à l'état brut après élaboration.	25
Fig. II-8	Photo d'une partie de l'échantillon d'alliage après découpe	26
Fig. II-9	Cycles du traitement thermique des alliages Al-Ti.	27
Fig. II-10	Photo de l'ensemble d'observations au microscope optique.	29
Fig. II-11	Photo du MEB type DSM Zeiss 960 A	30
Fig. II-12	Phénomène de diffraction des rayons X.	31
Fig. II-13	Schéma d'un dispositif de mesure DSC.	32
Fig. II-14	Banc d'élevage d'escargots.	33
	Chapitre III	
Fig. III-1	Affinement Rietveld du spectre de l'alliage Al-20 m.%Ti brut.	34
Fig. III-2	Spectre DRX (I, 20°) de l'alliage Al-20 m.%Ti à l'état brut.	35
Fig. III-3	Spectres DRX indexés (a) Al pur, (b) alliage Al-20 m.%Ti à l'état	36
	brut.	

Fig. III-4	Affinement Rietveld des spectres DRX des alliages Al-40 et 50	37
	m.%Ti.	
Fig. III-5	Spectres DRX des alliages Al-20, 40 et 50 m.%Ti à l'état brut.	38
Fig. III-6	Affinement Rietveld des spectres DRX des alliages Al-60, 70 et	39
	50 m.%Ti à l'état brut.	
Fig. III-7	Spectres des diffractogrammes DRX des alliages Al-60 à 80	41
	m.%Ti à l'état brut.	
Fig. III-8	Affinement Rietveld du spectre DRX des alliages Al-20, 40 et 50	43
	m.%Ti.	
Fig. III-9	Affinement Rietveld du spectre DRX des alliages Al-60, 70 et 80	44
	m.%Ti.	
Fig. III-10	Spectres DRX indexés des alliages Al-20, 40 et 50 m.%Ti aux	46
	états traités.	
Fig. III-11	Spectres DRX indexés des alliages Al-60, 70 et 80 m.%Ti aux	47
	états traités.	
Fig. III-12	Evolution du paramètre cristallin aAI de l'aluminium dans les	54
	alliages Al-20 à 60 m.%Ti brut et traité.	
Fig. III-13	Diagramme d'équilibre de phases du système d'alliages binaires	55
	Ti-Al	
Fig .III-14	Structure cristalline de la phase DO ₂₂ -Al ₃ Ti	58
Fig. III-15	Positions des atomes voisins Al par rapport à Ti (0, 0, 0)	60
	(a) Ti est lié à 4 atomes Al (premiers voisins) à 0,272 nm	
	(b) Ti est lié à 8 atomes Al (seconds voisins) à 0,288 nm	
Fig.III-16	Micrographies optiques de l'alliage Al-20 m. % Ti à l'état (a) brut	61
	et (b) traité	
Fig.III-17	Micrographie MEB de l'alliage Al-20 m. % Ti à l'état traité.	61
Fig.III-18	Micrographies MEB de l'alliage Al-40 m. % Ti: (a) brut et (b)	62
	traité.	
Fig. III-19	Micrographies MEB de l'alliage Al-50 m. % Ti.	62
Fig. III-20	Evolution morphologique des phases obtenue dans Al-60 m. % Ti.	63
Fig. III-21	Evolution morphologique des phases obtenue dans Al-70 m. % Ti.	64
Fig. III-22	Microscopie optique de l'alliage Al-70 m. % Ti (a) brut (b) traité	64

Fig. III-23	Microscopie optique de l'alliage Al–80 m. % Ti (a) état brut	
	(b) état traité	65
	Chapitre IV	
Fig. IV-1	Courbes DSC de l'alliage Al-20m.%Ti étudiés aux états (a) brut et	68
	(b) traité.	
Fig. IV-2	Courbe DSC de l'alliage Al-40m.%Ti	68
Fig. IV-3	Courbes DSC de l'alliage Al-50m.%Ti et Al-60m.%Ti (brut)	69
Fig. IV-4	Courbes DSC des alliages traités (a) Al-50m.%Ti et (b) Al-	70
	60m.%Ti.	
Fig. IV-5	Spectres DRX des alliages Al-50m.%Ti et Al-60m.%Ti à l'état	72
	traité	
Fig. IV-6	Courbe DSC des alliages Al-70 m.%Ti à l'état brut	73
Fig. IV-7	Courbe DSC des alliages Al-70 m.%Ti à l'état traité	74
Fig. IV-8	thermogrammes DSC d'alliage Al-80 m.%Ti	74
	Chapitre V	
Fig.V-1	Photos (a) l'élevage des escargots Helix aspersa et (b) la	75
	dissection d'un escargot	
Fig. V-2	Effet de l'aluminium sur l'évolution du poids de l'hépatopancréas	76
	de l'Hélix aspersa en fonction du temps.	
Fig. V-3	Effet de l'aluminium sur le taux de protéines totales au niveau	77
	del'hépatopancréas d'Hélix aspersa.	
Fig. V-4	Effet de l'aluminium sur le taux de GSH au niveau de	78
	l'hépatopancréas d'Hélix aspersa	
Fig5	Effet de l'aluminium sur l'activité catalase au niveau de	79
	l'hépatopancréas de l'Hélix aspersa.	
Fig. V-6	Effet du titane sur l'évolution du poids de l'hépatopancréas de	80
	l'Helix aspersa	
Fig. V-7	Effet du titane sur le taux de protéines totales au niveau de	81
	l'hépatopancréas de l'Helix aspersa.	
Fig. V-8	Effet du titane sur le taux de GSH au niveau de l'hépatopancréas	82
	de l'Helix aspersa	
Fig. V-9	Effet du titane sur l'activité de la catalase au niveau de	82
	l'hépatopancréas de l'Helix aspersa	

Liste des tableaux

Tableau	Titre	Page
Tableau I-1	Caractéristiques physiques et cristallographiques de	03
	l'aluminium pur.	
Tableau I-2	Dénomination des alliages d'aluminium	04
Tableau I-3	Classement des alliages d'aluminium	05
Tableau I-4	Propriétés physiques Caractéristiques cristallines du titane.	06
Tableau I-5	Classification des éléments d'alliages selon leur influence sur	07
	les phases α et β .	
Tableau I-6	Propriétés des alliages de titane classiques, des alliages Al-Ti	09
	et des superalliages base nickel.	
Tableau I-7	Limites de domaines de phases dans le diagramme de phase	12
	Al-Ti.	
Tableau I-8	Caractéristiques cristallographiques des éléments Al et Ti.	17
Tableau I-9	Composés intermétalliques des phases du système binaire	18
	Al-Ti.	
Tableau II-1	Masses et compositions des alliages Al-Ti étudiés	20
Tableau III-1	Données de lignes de pic et indexation de l'alliage Al-20	35
	m.%Ti à l'état brut.	
Tableau III-2	Microstructure cristalline des alliages Al-20 à 80 m.%Ti à	40
	l'état brut.	
Tableau III-3	Microstructures cristallines des alliages Al-20 à 80 m.%Ti	45
	aux états traités.	
Tableau III- 4	Caractéristiques cristallographiques des phases du système	48
	Al-Ti.	
Tableau III-5	Paramètres cristallographiques caractéristiques des phases	50
	révélées de l'alliage étudié Al-20 m.%Ti.	
Tableau III-6	Moyenne des paramètres cristallins des phases révélées dans	53
	les microstructures des alliages de fusion hf Al-20 à 80	
	m.%Ti.	

Tableau III-7	Microstructures et compositions m.%Al et leurs équivalences	56
	en at.% Al des alliages Ti-Al étudiés	
Tableau III-8	Caractéristiques cristallographiques mesurées des phases	57
	distinctes du système Al-Ti dans les alliages de fusion hf.	
Tableau III-9	Structure cristalline et paramètres cristallins de la phase Al ₃ Ti	58

Sommaire

Introduction générale

Chapitre I

Recherche bibliographique

I-1. L'aluminium et ses alliages	03
I-1-1. L'aluminium pur	03
I-1. 2. Les alliages d'aluminium	04
I-1.3. Désignation des alliages d'aluminium	04
I-1.4. Classement par type de transformation	05
I-2. Le titane et ses alliages	06
I-2-1. Le titane pur	06
I-2-2. Eléments d'alliage du titane	07
I-2-2-2. Nature des éléments d'alliages du titane	08
I-2-2-2-1. Les éléments alphagènes	08
I-2-2-2. Les éléments bétagènes	08
I-2-2-3. Les éléments neutres	08
I-3. Les alliages binaires Al-Ti	09
I-3-1. Propriétés des alliages binaires Al-Ti	09
I-3-2. Structure des phases dans le système binaire Al-Ti	10
I-3-2-1. Description du diagramme d'équilibre du système binaire Al-Ti	10
I-4.4. Structure des phases des alliages Al-Ti	12
I-4.4. 1. Structure de la phase TiAl	12
I-4.4.2. Structure de la phase Ti ₃ Al	13
I-4.4. 3. Structure de la phase Al_3Ti	14
I-5. Microstructure des alliages binaires Al-Ti	15
I-5. 1. Généralités	15
I-5. 2. Structures lamellaire et duplex	16
I-6. Regroupement des phases du système binaire Al-Ti	17

Chapitre II

Alliages étudiés et techniques expérimentales utilisées

II-1.Fusion à induction magnétique haute fréquence (hf)	19
II-1-1 Description de la technique de fusion hf	19
II-1-2. Elaboration des alliages Al-Ti	19
II-1-2-1. Choix des matériaux étudiés	19
II-1-2-2. Préparation des alliages Al-Ti	21
II-1-2-2-1. Pesée des poudres	21
II-1-2-2-2. Compactage des poudres	21
II-1-2-3. Phase d'élaboration des alliages Al-Ti	23
II-1-2-3-1. Description du four de fusion hf	23
II-1-2-3-2. Etapes de la fusion hf	24
II-2. Opérations de préparations métallographiques des alliages	26
II-2-1. Description des opérations de préparations	26
II-2-2. Découpe mécanique	26
II-2-3. Traitement thermique	27
II-2-4. Polissage des surfaces	27
II-2-5. Traitement chimique de surfaces	28
II-3. Techniques expérimentales utilisées	29
II-3-1. Présentation des techniques expérimentales utilisées	29
II-3-2. Microscopie optique	29
II-3-3. Microscopie électronique à balayage (MEB)	30
II-3-4. Diffraction des rayons X	30
II-3-5. Analyse calorimétrique différentielle	31
II-3-6. Essais d'indentation Vickers	32
II-3-7. Analyses de toxicité	33

Chapitre III

Etude microstructurale des alliages Al-Ti de fusion hf

III-1. Microstructure des alliages Al-Ti à l'état brut	34
III-2. Microstructure des alliages Al-Ti à l'état traité	43
III-3. Paramètres caractéristiques de microstructures des alliages Al-Ti étudiés	49
III-3-1. Caractéristiques standards des phases révélées	49
III 3-2. Etude des caractéristiques paramétriques microstructures révélées	50
III 3-2-1. Présentation de l'étude utilisée	50
III-3-2-2. Etude à partir de l'affinement Rietveld	50
III-3-2-3. Etude à partir des spectres DRX	55
III-4. Morphologie de surface	61

Chapitre IV

Etude thermique des alliages Al-Ti de fusion hf

IV-1. Description de la procédure expérimentale	67
IV-2. Analyse des spectres thermogrammes DSC des alliages Al-Ti	67
IV-2-1. Thermogrammes DSC des l'Alliage Al-20 m.%Ti	67
IV-2-2. Thermogrammes DSC de l'Alliage Al-40 m.%Ti	68
IV-3. Thermogrammes DSC des alliages Al-50 et 60 m.%Ti	69
IV-4. Thermogrammes DSC de l'Alliage Al-70 et 80 m.%Ti	72

Chapitre V

Etude de la toxicité de Al et de Ti

V-1. Elevage des escargots	75
V-2. Analyse des effets de toxicité de l'aluminium et du titane sur l'escargot	76
V-2-1. Effets de toxicité de l'aluminium sur l'escargot	76
V-2-1-1.Effet d'Al sur l'évolution du poids de l'hépatopancréas des escargots	76
V-2-1-2. Effet les Paramètres biochimiques	77
V-2-1-2-1. Taux de protéines totales	77
V-2-1-2-2. Taux de GSH	78
V-2-1-2-3. L'activité catalase	79

V-2-2. Effets de toxicité du titane sur l'escargot	80
V-2-2-1. Effet du titane sur l'évolution du poids de l'hépatopancréas des escargots	80
V-2-2-2. Effet du titane sur les Paramètres biochimiques.	80
V-2-2-1. Taux de protéines totales:	80
V-2-2-2. Taux de GSH.	81
V-2-2-3. Activité catalase	82
V-3. Corrélation des résultats d'analyses de toxicité	83
VI-1.Conclusion générale	85
VI-2.Références bibliographiques	86

Introduction Générale

Introduction générale

L'aluminium est largement utilisé dans les applications technologiques et industrielles. Son importance dans l'économie mondiale réside dans ses propriétés caractéristiques telles que sa faible densité (2,7) qui est 3 fois plus faible que celle des aciers, sa résistance à la corrosion grâce à sa couche protectrice naturelle d'oxyde qui se forme spontanément à sa surface, sa facilité de mise en forme et sa conductivité électrique. Il est non biodégradable mais c'est l'un des métaux les plus recyclables avec moindre énergie pour sa refusion.

Le titane entre dans la catégorie des métaux légers (densité 4,5), sa masse volumique est environ 60 % de celle de l'acier. Sauf que c'est un mauvais conducteur électrique et thermique, le titane est non magnétique et inoxydable vis-à-vis des agents chimiques (Eau de mer, organisme humain,...) d'où ses applications aux biomatériaux.

Les alliages aluminium-titane possèdent des propriétés caractéristiques attractives qui résident essentiellement dans leur légèreté (2,7 g×cm⁻³ \leq masse volumique \leq 4,5 g×cm⁻³), leur grande résistance spécifique (contrainte à la rupture/masse volumique), une bonne résistance à l'oxydation, et une bonne résistance au fluage. Pour toutes ces propriétés, ces alliages sont étudiés et développés pour des applications à haute température dans les domaines aérospatial, aéronautique et automobile.

Le travail de recherche de la présente thèse se comporte 5 chapitres:

Le premier chapitre comporte un recueil bibliographique dans laquelle nous avons rassemblé des propriétés caractéristiques de l'aluminium, du titane et des alliages aluminium-titane ainsi que les phases cristallines Al_xT_y qui se forment entre Al et Ti.

Le deuxième chapitre décrit le mode et les différentes étapes d'élaboration des alliages Al-Ti par fusion à induction magnétique haute-fréquen (hf), les opérations de et les techniques expérimentales de caractérisation utilisées dans les différentes études de ces alliages Al-Ti de fusion hf. Le troisième chapitre décrit les résultats de l'étude de l'évolution microstructurale cristalline des alliages Al-Ti de fusion hf. Nous avons utilisé l'affinement Rietveld (Logiciel MAUD) des spectres (I, $2\theta^{\circ}$) de diffraction de rayons X (DRX) pour analyser les microstructures des alliages Al-Ti de fusion hf et ainsi identifier les phases Al_xT_y connues susceptibles de se former entre Al et Ti dans le système d'alliages binaires Al-Ti aux états brut et traités thermiquement. La nature des phases cristalline et leurs paramètres cristallins ont été déterminés. Des observations par microscopie optique et microscopie électronique à balayage (MEB) ont été réalisées pour analyser la morphologie de surface des alliages Al-Ti de fusion hf.

Le quatrième chapitre est consacré à l'étude de la microstructure par analyse calorimétrique différentielle DSC (Differential Scanning Calorimetry) des alliages Al-Ti et ainsi déterminer la nature de transformations de phase dans ce système d'alliage binaire Al-Ti.

Le cinquième chapitre comporte les résultats d'analyses de toxicité des poudres des éléments d'alliage Al et Ti sur des escargots *"Helix aspersa"* utilisés comme bio-accumulateurs et bio-indicateurs de la toxicité des ETM (Elément Trace Métallique).

Enfin, une conclusion générale qui résume l'ensemble des études et des analyses réalisées sur ces alliages binaires Al-Ti solidifiés rapidement par fusion hf.

CHAPITRE I

Recherche bibliographique

Chapitre I

Recherche bibliographique

I-1. L'aluminium et ses alliages

I-1-1. L'aluminium pur

L'aluminium pur est un métal léger de densité $(2,7 \text{ g}\times\text{cm}^{-3})$ faible, trois fois plus faible que celle des aciers, sa caractéristique la plus importante parmi les métaux purs hormis celle du magnésium (1,8 g×cm⁻³). L'aluminium métallique est malléable et ductile et très oxydable, à l'air il se forme spontanément une couche imperméable de quelques micromètres d'oxyde Al₂O₃ qui protège le reste du métal [1]. Le tableau I-1 regroupe les caractéristiques physiques et cristallographiques [2] de l'aluminium pur.

Caractéristiques atomiques					
Numéro atomique		13			
Rayon atomique	nm	0,143			
Masse atomique	g×mol ⁻¹	27			
valence		3			
Caractéristiques physiques et cristallographiques					
Structure		Cfc			
Paramètres cristallins a	nm	0,4049			
Température de fusion	°C	660			
Point d'ébullition	°C	2467			
Densité à 20 °C	g×cm ⁻³	2,7			
Volume molaire	$m^3 \times mol^{-1}$	10, 00×10 ⁻⁶			
Conductivité thermique	$w \times cm^{-1} \times k^{-1}$	237			
Résistivité électrique	μΩ×cm	2,67			

Tableau I-1. Caractéristiques physiques et cristallographiques de l'aluminium pur.

I-1. 2. Les alliages d'aluminium

Les alliages d'aluminium sont adaptés aux procédés de mise en forme (laminage, filage, emboutissage.). Les alliages d'aluminium sont divisés en 2 catégories:

Les alliages d'aluminium de fonderie, le constituant principal est l'aluminium, ce sont des alliages légers. Ils sont destinés à être transformés par des techniques de fonderie.

Les alliages d'aluminium de corroyage, ce sont des alliages à base d'aluminium destinés en général à être transformés par des techniques de formage, laminage, filage...

I-1.3. Désignation des alliages d'aluminium

Les principaux éléments d'alliages additionnés à l'aluminium sont: Cu, Mg, Si et à un moindre degré: Mn, Ni, Cr, Zn, Fe [1]. Les alliages d'aluminium appartiennent à 8 familles, sur la base de leurs propriétés (mécaniques, résistance à la corrosion, soudabilité...) et des éléments d'alliages principaux. Le métal pur non allié constitue la série1000, minimum 99,00 %Al, et les autres séries dépendent de la nature de l'élément d'alliage principal. (Tab. I-2).

Série	Désignation	Elément d'alliage	Phase principale présente
		principal	dans l'alliage
1000	1XXX	99% Al au minimum	-
2000	2XXX	Cuivre (Cu)	Al ₂ Cu, Al ₂ CuMg
3000	3XXX	Manganèse (Mn)	Al ₆ Mn
4000	4XXX	Silicium (Si)	-
5000	5XXX	Magnésium (Mg)	Al ₃ Mg ₂
6000	6XXX	Magnésium (Mg) et Silicium (Si)	Mg ₂ Si
7000	7XXX	Zinc (Zn)	MgZn ₂
8000	8XXX	Autres éléments	-

Tableau I-2. Dénomination des alliages d'aluminium

I-1.4. Classement par type de transformation

Les alliages d'aluminium peuvent être classés en deux familles en fonction du type de transformation ou de traitement qui permettrait d'obtenir de bonnes caractéristiques mécaniques associées à une bonne résistance à la corrosion.

Les alliages à durcissement structural qui seront traités thermiquement. Les alliages sans durcissement structural qui sont déformés par écrouissage.

Dans le tableau I-3 sont regroupées les 2 familles d'alliages binaires à base d'aluminium à durcissement structural et sans durcissement structural [3] suivant les normes internationales d'utilisation (Désignation du tab. I-2).

	Alliages à durcissement	Alliage sans durcissement
	structural	structural
	2000	1000
	4000	3000
série	6000	5000
	7000	
	8000	

Tableau I-3. Classement des alliages d'aluminium

I-2. Le titane et ses alliages

I-2-1. Le titane pur

Le titane est un mauvais conducteur électrique et thermique. Sa masse volumique est environ 60 % de celle de l'acier. Le titane est non magnétique et inoxydable vis-à-vis des agents chimiques (Eau de mer, organisme humain,...) d'où ses applications aux biomatériaux. Le tableau I-4 regroupe les caractéristiques physiques et cristallographiques [4] du titane pur.

Caractéristiques atomiques					
Numéro atomique		22			
Rayon atomique	nm	0,147			
Masse atomique	g×mol ⁻¹	47,90			
Valence		4			
		3			
Caracté	ristiques cristallines et	physiques			
Structure		Нср			
Paramètres cristallins	nm	a = 0,2950, c = 0,4686			
Température de fusion	°C	1668			
Point d'ébullition	°C	3287			
Densité à 20°C	g×cm ⁻³	4,5			
Volume molaire	m ³ ×mol ⁻¹	10,54×1 ⁻⁶			
Conductivité thermique	$w \times cm^{-1} \times k^{-1}$	21,9			
Résistivité électrique	$\mu \times \Omega \times cm$	42			

Tableau I-4. Propriétés physiques Caractéristiques cristallines du titane.

Le titane est un métal présentant deux structures cristallographiques différentes et stables. La phase α -Ti [4] (Tab.I-4) stable à basse température et la phase β -Ti [5] stable à haute température (Fig. I-1). La phase β -Ti est la phase stable à haute température dans le titane. Elle présente une structure cubique centrée Bcc de paramètre de maille 0,3306 nm.

La température de transition $\alpha \leftrightarrow \beta$, est de 882°C (T_β) [6] dans le cas du titane pur. Selon le mécanisme proposé par Bürgers [7], il est possible de passer de la structure Bcc à la structure Hcp

par un faible déplacement coordonné des atomes (inférieur à une distance interatomique) avec un léger réarrangement atomique.

Figure I-1. Cristallographie du titane pur en fonction de la température.

I-2-2. Eléments d'alliage du titane

Le titane étant un métal de transition, peut former des solutions solides avec un grand nombre d'éléments d'addition, en substitution ou en insertion dans le réseau selon la nature des éléments. Ces éléments agissent sur la transformation de phase en influençant le domaine de stabilité ainsi que les cinétiques de germination et de croissance de l'une ou l'autre des phases de titane, β -Ti ou α -Ti. Ainsi, selon leur proportion à stabiliser l'une ou l'autre des deux phases, nous pouvons distinguer les éléments alphagènes et les éléments betagènes [8,9].

Le Tableau. I-5 présente une classification des principaux éléments d'alliage rencontrés.

Caractère	Insertion	Substitution
Alphagène	O ₂ , N ₂ , B, C	Al
Betagène isomorphe		Mo, V, Nb, Ta
Betagène eutectoïde	H ₂	Mn, Fe, Cr, Ni, Cu, W, Co, Ag, Au, Si

Tableau I-5. Classification des éléments d'alliages selon leur influence sur les phases α et β .

I-2-2-2. Nature des éléments d'alliages du titane

I-2-2-2-1. Les éléments alphagènes

Les éléments alphagènes tendent à augmenter le domaine de stabilité de la phase α et par conséquent à augmenter la température T_{β} (température de transition).

I-2-2-2. Les éléments bétagènes

Les éléments bétagènes stabilisent la phase β et tendent donc à faire baisser la température de transformation $\beta \rightarrow \alpha$.

I-2-2-3. Les éléments neutres

Les éléments neutres ayant peu d'effets sur les valeurs de température de transformation.

I-3. Les alliages binaires Al-Ti

I-3-1. Propriétés des alliages binaires Al-Ti

La connaissance des transformations de phase de cette catégorie d'alliages (Al-Ti) est étroitement liée à l'étude des relations entre microstructures et propriétés mécaniques.

Le système d'alliages binaires Al-Ti contient trois composés intermétalliques principaux, les phases Ti₃Al [10], TiAl [11] et Al₃Ti [12]. Une comparaison de propriétés mécaniques des alliages classiques du titane, des alliages Al-Ti [13] aux composés intermétalliques Ti₃Al, TiAl et Al₃Ti avec les superalliages base nickel est montrée dans le tableau. I-6. On peut observer que les intermétalliques de titane offrent un bon compromis faible densité-propriétés intéressantes, les alliages de titane ayant une faible densité mais de mauvaises propriétés mécaniques à partir de 600°C et les superalliages à base nickel à forte densité proposant des propriétés intéressantes jusqu'à 1100°C. Ces intermétalliques sont donc pressentis pour remplacer les alliages de titane voire même les superalliages base nickel dans les applications automobiles ou aéronautiques [14,15].

Propriété	Alliage de	Ti ₃ Al	TiAl	Al ₃ Ti	Superalliages
	Ti classique				base nickel
Densité (g×cm- ³)	4.5	4,1 - 4,7	3,7 - 3,9	3,37	8,3
Point de fusion (°C)	1600	1600	1460	1350	1400
Module d'élasticité	96 - 110	110 - 145	176	166	206
(GPa)					
Résistance à la	480 - 1200	800 - 1140	450-700	-	1250 - 1450
traction (MPa)					
Résistance à	10 -20 %	2 – 7 %	1 - 5%	-	3 - 5
l'oxydation (°C)					
Structure	Hcp / Bcc	D0 ₁₉	L10	D0 ₂₂	Fcc / L1 ₂
cristallographique					

Tableau I-6. Propriétés des alliages de titane classiques, des alliages Al-Ti et des superalliages base nickel.

I-3-2. Structure des phases dans le système binaire Al-Ti

I-3-2-1. Description du diagramme d'équilibre du système binaire Al-Ti

L'étude expérimentale d'un diagramme d'équilibre précis est difficile. Le diagramme d'équilibre binaire Al-Ti (Fig. I-2) [13] est le sujet de nombreuses controverses [14,15]. En effet, des phases présentes à températures élevées, plusieurs d'entre elle sont impossibles à stabiliser par trempe à température ambiante.

Figure I-2. Diagramme d'équilibre du système binaire Al-Ti [13].

La figure I-2 représente le diagramme d'équilibre des l'alliage binaire Al-Ti, sur ce diagramme, la majorité des lignes de transition est présentée en pointilles, cela signifie qu'elles restent sujettes à des modifications.

On peut constater que dans le diagramme d'équilibre de phase du système d'alliages binaires Al-Ti, un domaine de composition 35-65 at.% Al à 25 °C qui peut comporter soit les deux phases γ -TiAl et Ti₃Al, soit la seule phase TiAl [16].

D'après le diagramme de phase de système Al-Ti, deux transformations péritectiques existent au voisinage de la composition equiatomique :

$$L + \beta \rightarrow \alpha$$
 et $L + \beta \rightarrow \gamma$

Pour des alliages Al-Ti riches en titane, la phase primaire qui cristallise à partir du liquide est la phase β , le chemin de solidification est le suivant :

$$L \rightarrow [\beta] + L \rightarrow [\beta + \alpha] \rightarrow [\alpha] \rightarrow [\gamma + \alpha] \rightarrow [\gamma + \alpha_2]$$

Au cours de solidification, la phase β devient instable et se transforme en phase α à une température voisine de 1100 °C.

Pour les alliages de composition variant entre 49 et 55 at.% Al, la phase primaire est α , la solidification et les transformations des alliages dans ce domaine consistent comme suit :

$$L \rightarrow [L + \alpha] \rightarrow [\alpha] + \gamma \rightarrow \gamma$$

Les alliages monophasés se caractérisent par une plasticité très limitée, la plus part des études portent donc sur les alliages plus riches en titane qu'en aluminium, la seconde phase α_2 permet de contrôler et varier la microstructure et les alliages biphasés présentent de bonnes propriétés mécaniques et électrochimiques.

Dans la partie des alliages binaires Al-Ti riches en aluminium, le travail antérieur révèle l'existence de plusieurs phases ce qui est en contradiction avec la stabilité des phases dans les compositions étudiées.

En général trois phases observées par la plupart des recherches faites sur les alliages binaires Al-Ti et qui sont les phases Al₃Ti, Al₅Ti₃ [17] et Al₂Ti [18] comme montré dans la gamme de compositions dans la gamme 60-75 at.% Al (coté riche en aluminium) [19]. Cependant, plusieurs phases intermétalliques telles que Al₅Ti₃, Al₁₁Ti₅ [20] et Al₂₃Ti₉ [21] ou Al₂₄Ti₈ [22,23] ont été identifiées par plusieurs études sur la partie riche en aluminium du système binaire Al-Ti.

La stabilité individuelle de ces phases dépend de la composition et de la température. Le tableau I-7 représente le domaine de phases sur le diagramme de phases du système d'alliages binaires Al-Ti [13].

Phases	Domaines de phase (m.%Al)
Solution solide Bcc β-Ti [5]	0 à 33,8
Solution solide Hcp α-Ti [4]	0 à 32
Ti ₃ Al [10]	14 à 26
TiAl [11]	34 à 56,2
Ti ₃ Al ₅ [17]	44 à 49
TiAl ₂ [18]	51 à 54
δ ou Al ₁₁ Ti ₅ [19]	57 à 59,8
TiAl ₃ [12]	63
Solution solide Cfc Al [2]	98,8 à 100

Tableau I-7. Limites de domaines de phases dans le diagramme de phase Al-Ti.

I-4.4. Structure des phases des alliages Al-Ti

I-4.4. 1. Structure de la phase TiAl

La phase TiAl peut exister sous 2 structures différentes, les phases de composés intermétalliques γ -TiAl et B2-TiAl (Fig.I-3 a et b).

La phase γ -TiAl [11] possède une structure tétragonale à faces centrées de type L1₀ constituée de couches atomiques alternées de natures différentes perpendiculaires à l'axe c (Fig. I-3a). Elle reste ordonnée jusqu'au point de fusion (1460°C environ). La microstructure de la phase γ -TiAl est caractérisée par des grains uniformes et équiaxes.

La phase ordonnée B2-TiAl [22] est une isostructure de la phase β -Ti désordonnée de structure Cs (Cubique simple) (Fig. I-3a). Elle est présente dans des alliages contenant de faibles quantités d'éléments d'addition bétagènes tels Cr, Mo, Nb, V, W (Tab. I-5). Elle se présente sous forme de petites particules présentes aux joints de grains.

Figure I-3. Structures de la phase TiAl (a) tétragonale γ-TiAl [16] et (b) bcc B2-TiAl [22].

I-4.4.2. Structure de la phase Ti₃Al:

La phase Ti₃Al [10] est une forme ordonnée de la phase Ti (Fig. I-4), il est dénommé phase α_2 sa structure est hexagonale compacte DO₁₉ sous laquelle se présente le titane à basse température. En dessous de 1125°C, la phase α -Ti s'ordonne pour donner la phase Ti₃Al.

Figure I-4. Représentation de la structure Hcp de la phase DO₁₉-Ti₃Al.

La maille contient 8 atomes dont 2 d'aluminium et 6 de titane assemblés en quatre unités hexagonales. Cette structure existe à l'état monophasé pour des teneurs en aluminium variant de 22 à 36 at.% Al. Les paramètres de maille varient alors en fonction de la teneur en aluminium, le paramètre **a** varie de 0,578 nm à 0,564 nm alors que le paramètre c varie de 0,476 nm à 0,462 nm. La taille de cette phase varie suivant la concentration en aluminium :

Pour des teneurs en aluminium de 11,8 at. % à 22 at. %., la structure consiste en une dispersion de phase ordonnée α_2 dans une phase désordonnée α .

Pour des teneurs en aluminium de 22% at. à 36 at. %., la phase α apparaît seule, se distribuant sous forme de colonies d'aiguilles, celles-ci sont alignées au sein d'un même grain. Les joints de grain sont alors caractéristiques de cette structure [24].

I-4.4. 3. Structure de la phase Al₃Ti

La phase intermétallique Al₃Ti (Fig. I-5) possède une structure DO_{22} . Cette structure est en rapport avec une structure de type $L1_2$.deux cellules unitaires sont empilées le long de l'axe c, avec une limite de l'antiphase de type 1/2 [1 1 0](0 0 1) à chaque plan (0 0 1).

Figure I-5. Représentation de la structure DO₂₂ de la phase Al₃Ti.

La figure I-6 montre les structures cristallines des phases Hcp α -Ti [4] et le composé intermétallique Hcp DO₁₉-Ti₃Al [10] ainsi que les phases tétragonales de composés intermétalliques L1₀-TiAl (γ -TiAl) [11] et DO₂₂-Al₃Ti [12].

Figure I-6. Structures des réseaux de phases α-Ti, Ti₃Al, TiAl et Al₃Ti du système d'alliages binaire in the Al-Ti.

I-5. Microstructure des alliages binaires Al-Ti

I-5. 1. Généralités

On peut constater dans le diagramme de phase du système d'alliages binaires Al-Ti qu'une grande gamme de microstructures distinctes peut être obtenue selon des compositions différentes et des traitements thermiques différents. En général, les microstructures des alliages biphasés peuvent être classées en deux groupes désignés : structure lamellaire et structure duplex [25,26].

I-5. 2. Structures lamellaire et duplex

La structure lamellaire (Fig. I-7a) est observée sur l'ensemble des alliages biphasés dès l'état brut d'élaboration ou après un refroidissement lent à partir du domaine monophasé α [27]. Les lamelles constituées de colonies de phase γ et phase α_2 .

La structure duplex (Fig. I-7b) est obtenue après des traitements thermiques, elle est constituée de deux types de grains différents, grains γ et grains lamellaires α_2 . Le rapport volumique de grains γ /grains lamellaires dépend fortement des conditions de traitement thermique telles que la température de chauffage et le temps de maintien. La microstructure duplex est généralement fine, la croissance compétitive entre les grains gamma et les grains α_2 dans le domaine biphasé conduit à une microstructure fine.

Figure I-7. Structures (a) lamellaire et (b) duplex du système binaire Al-Ti.

I-6. Regroupement des phases du système binaire Al-Ti

Dans les tableaux I-8 et I-9, nous avons regroupé les phases et leurs caractéristiques cristallographiques du système binaire Al-Ti.

Cristal	Composition	Structure	Туре	Groupe	Paramètres
				d'espace	cristallins
					(nm)
	Al [2]	A1	Cu	Fm3m	a = 0,405
	α-Ti [4]	A3	Mg	P6 ₃ / mmc	a = 0,295 c = 0,468
	ω-Ti [28]	C32	AlB ₂	P6/mmm	a = 0,4625 c = 0,281
	β-Ti [5]	A2	W	Im3 ⁻ m	a = 0,331

Tableau I-8. Caractéristiques cristallographiques des éléments Al et Ti.

Cristal	Composition	Structure	Туре	Groupe	Paramètres
				d'espace	cristallins
					(nm)
	Ti ₃ Al	Do ₁₉	Ni ₃ Sn	P6 ₃ / mmc	a = 0,5780
	[10]				c = 0,4647
	TiAl	L 1a	AuCu	P4/mmm	a = 0.400
	[11]	L10	nucu	1 7/1111111	a = 0.407
					c = 0,407
	Al ₅ Ti ₃			I4/mbm	a = 1,126
	[17]				c = 0,402
\mathcal{R}					
	Al ₂ Ti		Ga ₂ Hf	I4 ₁ /amd	a = 0,397
C STA	[18]				c = 2,436
	Al ₃ Ti	Do ₂₂	Al ₃ Ti	I4/mmm	a = 0,385
	[12]				c = 0,839
		1	1	1	

Tableau I-9. Composés intermétalliques des phases du système binaire Al-Ti.

CHAPITRE II

Alliages étudiés et techniques expérimentales utilisées

Chapitre II

Alliages étudiés et techniques expérimentales utilisées

II-1. Fusion à induction magnétique haute fréquence (hf)

II-1-1 Description de la technique de fusion hf

La fusion à induction magnétique hf est une technique de chauffage par effet Joule pour les matériaux massifs conducteurs d'électricité.

Sous l'effet du champ magnétique alternatif établi dans l'inducteur en spires, des courants induits sont créés, ces courants appelés courants de Foucault dissipent de la chaleur par effet Joule dans l'échantillon cible.

La cible peut être chauffée sans contact avec la source d'énergie à des températures jusqu'à fusion totale. L'inducteur de chauffage est refroidi par circulation d'eau sous pression. L'augmentation de courant électrique permet d'augmenter la température dans l'échantillon jusqu'à la fusion totale du matériau placé dans l'inducteur.

II-1-2. Elaboration des alliages Al-Ti

II-1-2-1. Choix des matériaux étudiés

Les échantillons solides d'alliages binaires Al-20 à 80 m.%Ti étudiés dans ce travail de recherche ont été élaborés sous vide, à partir de pastilles de 5g de mélanges poudres de pureté de laboratoire (99 %) compactés à froid. Une série d'alliages binaires Al-Ti de compositions nominales Al-X m.%Ti (X = 20, 40, 50, 60, 70, 80) a été choisie sur le diagramme d'équilibre de phases du système binaire Al-Ti (Fig. II-1).

Figure II-1. Diagramme de phases Al-Ti avec les compositions Al-20 à 80 m.%Ti choisies.

Ces compositions d'alliages binaires Al-20 à 80 m.%Ti étudiés ont été choisies sur une gamme de compositions couvrant au maximum les phases susceptibles de se former entre les éléments d'alliages Al et Ti. Le tableau II-1 regroupe la série d'échantillons d'alliages Al-Ti étudiés avec les masses et les compositions correspondantes.

Echantillons	masse de Ti	m.% Ti	at.% Ti
Al-Ti	dans l'alliage (g)	(fixée)	(calculée)
1	1	20	12.4
2	2	40	27.4
3	2.5	50	36.1
4	3	60	45.9
5	3.5	70	56.9
6	4	80	69.3

Tableau II-1. Masses et compositions des alliages Al-Ti étudiés

II-1-2-2. Préparation des alliages Al-Ti

II-1-2-2-1. Pesée des poudres

La masse de chaque échantillon des alliages Al-Ti à élaborer a été fixée pour 5 g de mélange homogène de poudres d'aluminium et de titane. Des poudres fines entre 1 et 4 g de Al et de Ti chacun selon la composition chimique choisie pour les alliages Al-X m.%Ti avec $20 \le X \le 80$ (Tab. 1) ont été pesées avec une grande précision (10⁻³) à l'aide d'une balance électronique très sensible (KERN EW/EG-N).

II-1-2-2-2. Compactage des poudres

La consolidation d'un matériau massif à partir de poudres est réalisée généralement par densification des poudres c'est-à dire par consolidation des grains. La densification dépend de la pression de compactage exercée sur la poudre. La figure II-2 schématise les étapes de compactage des mélanges de poudres Al-Ti et la figure II-3 montre la photo d'une pastille obtenue après compactage du mélange des 2 poudres Al et Ti.

Figure II-2. Etapes de compactage des poudres.

On a obtenu des échantillons d'alliages Al-Ti compactés sous forme de pastilles denses de formes cylindriques de diamètre de 16mm et de hauteur 4mm (Fig. II-3).

Figure II-3. Photo de la pastille du mélange des 2 poudres Al et Ti.

II-1-2-3. Phase d'élaboration des alliages Al-Ti

II-1-2-3-1. Description du four de fusion hf

L'élaboration des alliages binaires Al-Ti à étudier a été effectuée sous vide par pompage continu dans un four (Linn therm 600) sous induction haute fréquence (hf) à une puissance de l'ordre de 6KW (Fig. II-4) [29,30].

Figure II-4. Ensemble du procédé de fusion hf.

II-1-2-3-2. Etapes de la fusion hf

Figure II-5. Cycles thermiques des étapes successives de la fusion-solidification hf.

La fusion a été réalisée sous vide par pompage continu suivant 4 cycles thermiques successifs:

Une première étape de dégazage du tube en quartz à froid durant environ 2 minutes, cette étape est nécessaire pour éviter au maximum possible l'oxydation à chaud des éléments d'alliages Al et Ti et ainsi réaliser l'élaboration des alliages Al-Ti sous vide primaire (10⁻³ torr).

Une deuxième étape de chauffage graduel où la température de chauffage par induction est augmentée par augmentation du courant électrique dissipé en chaleur par effet joule dans l'inducteur jusqu'à fusion totale de la pastille dans le creuset.

Une troisième étape très courte de fusion totale de la pastille dans le creuset (Fig. II-6), le courant généré est I = 8,5 A.

Une quatrième étape de refroidissement de l'échantillon. Après fusion totale de la pastille, le courant I est coupé brusquement ce qui permettra le refroidissement à la température ambiante du matériau fusionné (Fig. II-7).

Figure II-6. Photo de l'alliage Al-Ti en étape de fusion totale dans le tube en quartz.

Figure II-7. Photo de l'alliage Al-Ti à l'état brut après élaboration.

II-2. Opérations de préparations métallographiques des alliages

II-2-1. Description des opérations de préparations

Pour la préparation des échantillons d'alliages à base d'aluminium élaborés par fusion hf pour les différentes méthodes de caractérisations [29,30], les échantillons doivent subir une série d'opérations métallographiques nécessaires tels que :

> la découpe de l'échantillon d'alliage en 2 parties ou plus. un traitement thermique d'une partie ou plus. des polissages des surfaces à examiner. une attaque chimique approprié.

II-2-2. Découpe mécanique

Cette opération est très importante en vue de l'examen métallographique des alliages après fusion. La découpe des échantillons à l'état brut a été réalisée par une tronçonneuse électrique avec un disque diamanté refroidit à l'eau. Les échantillons sont ainsi découpés en 2 parties ou plus (Fig. II-8).

Figure II-8. Photo d'une partie de l'échantillon d'alliage après découpe.

II-2-3. Traitement thermique

Les opérations de traitement thermiques sont nécessaires pour affiner et homogénéiser la microstructure des matériaux après fusion et ainsi améliorer leurs propriétés mécaniques.

Pour une étude aux états brut et traité, des alliages Al-20 à 80 m.%Ti élaborés par fusion hf, une partie (ou plus) d'une même composition d'alliage après découpe est utilisée pour subir un traitement thermique sous vide à 500°C par le générateur hf durant un temps de maintien de 1 heure suivi par un refroidissement total dans le four. La figure II-9 schématise le processus du traitement thermique (500°C, 1 heure) [31].

Figure II-9. Cycles du traitement thermique des alliages Al-Ti.

II-2-4. Polissage des surfaces

Le polissage mécanique est un procédé de préparation des échantillons d'alliages pour des caractérisations de surface.

Les échantillons sont polis mécaniquement à l'aide d'une polisseuse électrique munie d'un papier abrasif de différentes granulométries de plus en plus fines (120 à 4000) suivi d'un nettoyage de surface à l'eau (distillée) à la fin de chaque étape de polissage. Ce genre de polissage permet d'obtenir des états de surface bien polies et adaptées aux différentes observations métallographiques.

II-2-5. Traitement chimique de surfaces

En général, l'observation de surface des échantillons peut être réalisée au microscope optique ou électronique nécessitant une attaque chimique pour révéler sa structure.

On a utilise un réactif approprié dont les compositions sont :

Eau distillée	90 ml
Acide fluorhydrique (HF)	05 ml
Acide nitrique (HNo ₃)	05 ml

La durée de l'attaque varie entre 5 et 15 secondes pour notre type d'alliage contenant l'aluminium comme élément d'alliage.

II-3. Techniques de caractérisation utilisées

II-3-1. Présentation des techniques de caractérisation utilisées

Les techniques expérimentales utilisées dans l'étude aux 2 états, brut et traités thermiquement, des alliages Al-20 à 80 m.%Ti élaborés par fusion hf sont :

Microscopie optique (observations optiques) Microscopie électronique à balayage (MEB) Diffraction des rayons X (DRX) Analyse calorimétrique différentielle (DSC) Indentation Vickers (Microdureté) Analyses de toxicité (Toxicologie cellulaire).

II-3-2. Microscopie optique.

Pour mettre en évidence l'évolution de la microstructure des échantillons d'alliages Al-Ti élaborés par fusion hf, nous avons procédé à un examen métallographique de morphologie de surface par des observations au microscope optique [6].

Figure II-10. Photo de l'ensemble d'observations au microscope optique.

Nous avons utilisé pour nos de surfaces d'alliages un microscope métallographique de type RICHTERT, avec des grossissements pouvant atteindre G1200, équipé d'une camera vidéo de type LEICA et piloté par ordinateur (Fig. II-10).

II-3-3. Microscopie électronique à balayage (MEB)

Une analyse MEB/EDX, la Microscopie Electronique à Balayage (MEB) associée à la microanalyse par Energie Dispersive des rayons X, a permis d'identifier les phases présentes dans les microstructures et donner une analyse quantitative de la composition chimique.

Figure II-11. Photo du MEB type DSM Zeiss 960 A [32].

II-3-4. Diffraction des rayons X

La technique de diffraction des rayons X (DRX) est une méthode d'analyse qualitative et quantitative non destructive, elle permet d'analyser de façon globale la structure cristalline d'un matériau par diffraction des phases en présence (Spectre: I, $2\theta^{\circ}$) et ainsi évaluer leurs caractéristiques paramétriques cristallines.

Figure II-12. Phénomène de diffraction des rayons X.

L'angle d'incidence θ° est caractéristique de la distance interréticulaire d_{hkl} (Fig. II- 12) satisfaisant la loi de Bragg (Eq. 1) [33]:

$$2 \times d_{hkl} \times \sin(\theta^{\circ}) = \lambda \tag{1}$$

Les diffractogrammes DRX (I, $2\theta^{\circ}$) ont été réalisés sur un diffractomètre (type Philips) avec un balayage θ° - $2\theta^{\circ}$ sur une gamme de $10^{\circ} \le 2\theta^{\circ} \le 100^{\circ}$ et vitesse d'avancée dans les environs de 2-4°/mn et un incrément d'angle fixe (le pas) de 0.02° utilisant la radiation Cu $\lambda_{k\alpha} = 0,154$ nm. Les analyses qualitatives et quantitatives des diffractogrammes DRX (I, $2\theta^{\circ}$) (Logiciel ORIGIN) ont été réalisées par affinement Rietveld (Logiciel MAUD) [34] et les cartes cristallographiques (ICDD-JCPDS 1997).

II-3-5. Analyse calorimétrique différentielle

L'analyse calorimétrique différentielle DSC (Differential Scanning Calorimetry) est une méthode d'analyse qualitative et quantitative qui permet de mesurer la chaleur échangée entre un échantillon et son environnement en fonction de la température suites à une fusion ou cristallisation induites respectivement par absorption ou dégagement de flux chaleur [35,36]. Le terme "différentielle" indique que ce type d'analyse utilise deux détecteurs, l'un associé à l'échantillon, l'autre à une substance inerte de référence et le signal enregistré dH/dt (mW) correspond alors à la différence entre les signaux des deux détecteurs, l'échantillon et la référence (Fig. II-13).

Figure II-13. Schéma d'un dispositif de mesure DSC.

Dans le présent travail, nous avons fait des mesures de DSC sous atmosphère d'argon à l'aide d'un appareil *DSC 822 de Mettler Toledo* dans un domaine de températures de 25 - 700°C avec une vitesse de montée fixe de 10°C/min [37].

II-3-7. Analyses de toxicité

Des analyses des effets de toxicité des poudres des éléments d'alliage Al et Ti ont été effectuées sur des escargots *Helix aspersa* utilisés comme des bio-accumulateurs et bio-indicateurs de la toxicité des ETM (Elément Trace Métallique). Des tests de cytotoxicité (biomarqueurs: Catalase, GSH) et des mesures des paramètres physiologiques (protéines et le poids) ont été réalisés sur des escargots contaminés et témoins.

Les escargots de l'étude sont élevés au laboratoire (Fig. II-15) avec une contamination d'alimentation (farine de blé) de 100 à 400 μ g/g [38-40].

Figure II-15. Banc d'élevage d'escargots.

CHAPITRE III

Etude microstructurale des alliages Al-Ti de fusion hf

Chapitre III

Etude microstructurale des alliages Al-Ti de fusion hf

III-1. Microstructure des alliages Al-Ti à l'état brut

La figure III-1 montre l'affinement Rietveld du diffractogramme DRX (Fig. III-2) de l'alliage Al-20 m.%Ti à l'état brut. On observe que l'alliage étudié est polyphasé et se compose principalement des phases α -Ti, CFC Al et les composés intermétalliques des phases Ti₃Al et Al₃Ti.

Figure III-1. Affinement Rietveld du spectre DRX de l'alliage Al-20 m.%Ti à l'état brut.

Une analyse détaillée des mesures de diffractions angulaires $2\theta^{\circ}$ des lignes apparentes de pics (h k l) du diffractogramme DRX enregistré (I, $2\theta^{\circ}$) de l'alliage Al-20 m.%Ti à l'état brut sur une gamme de diffraction angulaire $2\theta^{\circ}$ entre 20° et 90° (Fig.III- 2 et Tab III-1) et les cartes cristallines (JCPDS-ICDD 1997) des phases révélées par l'affinement Rietveld [2-5] à permis d'identifier les phases apparentes et d'indexer le spectre DRX de l'alliage.

Figure III-2. Spectre DRX (I, $2\theta^{\circ}$) de l'alliage Al-20 m.%Ti à l'état brut.

Ligne de	2 θ°	Intensité	Phase	Plan	2 θ°
pic	mesurés	relative	ientifiée	h k l	calculés
1	24,84	4	Al ₃ Ti	101	2,318
2	35,48	75	α-Ti	10 0	35,093
3	36,2	92	Ti ₃ Al	200	35,951
4	39,16	14	Al	111	38,472
5	41,72	46	Ti ₃ Al	201	41,201
6	44,12	18	Al	200	44,738
7	62,04	48	Al ₃ Ti	213	62,903
8	66,04	16	Al	220	65,133
9	71,72	14	Ti ₃ Al	116	72,098
10	75,16	37	Al ₃ Ti	116	74,914
11	79,4	100	Al	3 1 1	78,227
12	81,08	32	Al ₃ Ti	3 0 3 ou 3 1 2	82,207

Tableau III-1. Données de lignes de pic et indexation de l'alliage Al-20 m.%Ti à l'état brut.

La figure III-3 montre le diffractogramme DRX indexé de l'alliage Al-20 m.%Ti à l'état brut comparé au spectre DRX de l'aluminium pur élaboré et diffracté dans les mêmes conditions que les alliages Al-Ti étudiés. Les analyses microstructurales d'identification de phases ainsi réalisées par affinement Rietveld (Fig.III-1) montrent que l'alliage Al-20 m.%Ti à l'état brut étudié se compose des phases solutions solides HCP α -Ti, CFC Al et les phases de composés intermétalliques HCP DO₁₉-Ti₃Al et tétragonale DO₂₂-Al₃Ti. La ligne de pic apparente la plus intense (I_R = 100) appartient à la phase Al diffractée.

Figure III-3. Spectres DRX indexés (a) Al pur, (b) alliage Al-20 m.%Ti à l'état brut.

La figure III-4 montre les spectres d'affinement Rietveld des diffractogrammes DRX des alliages (a) Al-40 m.%Ti et (b) Al-50 m.%Ti analysés à l'état brut.

Figure III-4. Affinement Rietveld des spectres DRX des alliages Al-40 et 50 m.%Ti.

La figure III-5. montre les spectres DRX indexés des alliages Al(riche)-Ti de fusion hf Al-20, 40 et 50 m.%Ti

Figure III-5. Spectres DRX des alliages Al-20, 40 et 50 m.%Ti à l'état brut.

La figure III-6 montre les spectres d'affinement Rietveld des diffractogrammes DRX des alliages coté riche en titane, soient les alliages Al-60 à 80 m.%Ti: (a) 60 m.%Ti, (b) 70 m.%Ti et (c) 80 m.%Ti.

Figure III-6. Affinement Rietveld des spectres DRX des alliages Al-60, 70 et 50 m.%Ti à l'état brut.

Le tableau III-2.regroupe les microstructures cristallines aux phases détectées sur les spectres d'affinement Rietveld des diffractogrammes DRX des alliages Al-10 à 90 m.%Ti solidifiés par fusion hf.

Alliages Al-X m.%Ti brut X = 20, 40, 50, 60, 70 et 80						
20 m.%Ti	40 m.%Ti	50 m.%Ti 60 m.%Ti		70 m.%Ti	80 m.%Ti	
		Microstructu	ire cristalline			
Al	Al	Al	Al	Al	-	
-	Al ₂ Ti	Al ₂ Ti	Al ₂ Ti	Al ₂ Ti	-	
Al ₃ Ti	Al ₃ Ti	Al ₃ Ti	Al ₃ Ti	-	-	
Ti ₃ Al	Ti ₃ Al	-	-	Ti ₃ Al	Ti ₃ Al	
-	-	Al ₅ Ti ₃	Al ₅ Ti ₃	-	-	
		Al ₁₁ Ti ₅				
			γ-TiAl	γ-TiAl		
					B2-TiAl	
					Ti ₅ Al ₃	
α-Τί			α-Ti	α-Ti	α-Ti	

Tableau 2. Microstructure cristalline des alliages Al-20 à 80 m.%Ti à l'état brut.

Les microstructures cristallines aux phases identifiées des alliages solides Al-20 à 80 m.%Ti à l'état brut sont en général en bon accord avec le diagramme d'équilibre de phases du système d'alliages binaires Al-Ti [1].

Figure III- 7. Diffractogrammes DRX des alliages Al-60 à 80 m.%Ti à l'état brut.

La figure III-7, montre les diffractogrammes DRX des alliages coté riche en titane Al-60 à 80 m.%Ti (Fig.III 7 b, c et d) comparés à celui de l'alliage de composition équimassique (Al-50 m.%Ti) (Fig. III-7 a).

Pour le coté riche en aluminium Al(riche)-Ti, les microstructures des alliages de compositions Al-20, 40 et 50 m.%Ti apparaissent comme étant polyphasées et sont constitués d'un mélange des phases de composés intermétalliques, Al₃Ti, Al₂Ti et Ti₃Al avec la matrice solution solide CFC Al. Des traces de la phase HCP α -Ti sont détectées dans l'alliage de composition Al-20 m.%Ti comme c'est le cas de la présence des phases de composés intermétalliques Al₅Ti₃ et Al₁₁Ti₅ dans l'alliage de composition équimassique Al-50 m.%Ti et Al-60 m.%Ti.

Coté riche en titane, Al-60 à 80 m.%Ti, on observe l'apparition d'autres phases de composés intermétalliques comme γ -TiAl et B2-TiAl et Ti₅Al₃ avec la solution solide HCP α -Ti devenue comme matrice.

III-2. Microstructure des alliages Al-Ti à l'état traité

La figure III-8 montre l'affinement Rietveld des diffractogrammes DRX des alliages Al-20. 40 et 50 m.%Ti à l'état traité.

Figure III-8. Affinement Rietveld du spectre DRX des alliages Al-20, 40 et 50 m.%Ti.

La figure III-9 montre l'affinement Rietveld des diffractogrammes DRX des alliages Al-60, 70 et 80 m.%Ti à l'état traité.

Figure III-9. Affinement Rietveld du spectre DRX des alliages Al-60, 70 et 80 m.%Ti.

Le tableau III-3 regroupe les phases révélées par les spectres d'affinement Rietveld des diffractogrammes DRX des alliages de fusion hf Al-20, 40, 50, 60, 70 et 80 m.%Ti aux états traités thermiquement.

Alliage Al-X m.%Ti à l'état traité X =							
20 m.%Ti	40 m.%Ti	50 m.%Ti	%Ti 60 m.%Ti 70		80 m.%Ti		
	Microstructure cristalline						
Al	Al	Al	Al	Al	-		
Al ₃ Ti	Al ₃ Ti	Al ₃ Ti	Al ₃ Ti	-	-		
-	-	Al ₂ Ti	Al ₂ Ti	-	-		
-	-	-	-	Ti ₃ Al	Ti ₃ Al		
-	-		Al ₅ Ti ₃	-	-		
		Al ₁₁ Ti ₅					
			γ-TiAl	γ-TiAl			
					B2-TiAl		
					Ti ₅ Al ₃		
-			α-Ti	α-Ti	α-Ti		

Tableau III-3. Microstructures cristallines des alliages Al-20 à 80 m.%Ti aux états traités.

La figure III-10 montre les diffractogrammes DRX indexés coté riche en aluminium, Al-20, 40 et 50 m.%Ti aux états traités.

Figure III-10. Spectres DRX indexés des alliages Al-20, 40 et 50 m.%Ti aux états traités.

Figure III11. Spectres DRX indexés des alliages Al-60, 70 et 80 m.%Ti aux états traités.

III-3. Paramètres caractéristiques de microstructures des alliages Al-Ti étudiés

III-3-1. Caractéristiques standards des phases révélées

Le tableau III-4 regroupe les phases du système d'alliages binaires Al-Ti révélées par affinement Rietveld et leurs caractéristiques cristallographiques standards.

Phase	Structure	Groupe	Paramètres	Туре	Référence
		d'espace	cristallins		
			(nm)		
Al	Cfc	Fm3m	0.4049	Cu	[2]
γ-TiAl	Tétrag.	P4/mmm	a: 0.3976	AuCu	[11]
			c: 0.4049		
B ₂ -TiAl	Cs	P4/mmm	a: (0,312 - 0,315)	CsCl	[22]
Ti ₃ Al	Нср	P6 ₃ /mmc	a: 0.577	Ni ₃ Sn	[10]
			c: 0.462		
Al ₂ Ti	Tétrag.	I4 ₁ /amd	a: 0,3971	Ga ₂ Hf	[18]
			c: 2,432		
Al ₃ Ti	Tétrag.	I4/mmm	a: 0.3853	Al ₃ Ti	[12]
			c: 0.8583		
	Tétrag.	I4/mcm	a: 1,03697	W ₅ Si ₃	[22]
Al ₃ Ti ₅			c: 0,50081		
	Нср	P6 ₃ /mmc	a: 0,78366	Mn ₅ Si ₃	-
			c: 0,50825		
Al ₅ Ti ₃	Tétrag.	P4/mbm	a: 1.126	Ti ₃ Ga ₅	[17]
			b: 0.402		
Al ₁₁ Ti ₅	Tétrag.	I4/mmm	a: 0.3923	Al ₃ Zr	[20]
			c: 1.653		
α-Ti	Нср	P6 ₃ /mmc	a: 0.2950	Mg	[4]
			c: 0.4682		

Tableau III-4. Caractéristiques cristallographiques des phases du système Al-Ti.

III 3-2. Etude des caractéristiques paramétriques microstructures révélées

III 3-2-1. Présentation de l'étude utilisée

L'affinement Rietveld des diffractogrammes DRX des alliages binaires Al-Ti étudiés a permis d'identifier les phases cristallines et ainsi indexer toutes les lignes de pic apparentes sur les diffractogrammes DRX. La détermination de microstructures cristallines aux 2 états bruts et traités thermiquement des alliages Al-Ti solidifiés sous vide par fusion hf a été faite par 2 méthodes distinctes:

1- Mesures directes de caractéristiques paramétriques des microstructures cristallines, fractions volumiques et paramètres cristallins de maille, à partir des spectres d'affinements Rietveld (logiciel MAUD)

2- Estimation des caractéristiques paramétriques des microstructures cristallines, taux de présence par intensités de pics diffractés et paramètres cristallins de maille, à partir des lignes de pic apparents des phases révélées par affinement Rietveld et identifiés sur les diffractogrammes DRX (I, $2\theta^{\circ}$) (logiciel ORIGIN) en utilisant leurs caractéristiques cristallographiques sur les cartes cristallographiques correspondantes (ICDD-JCPDS 1997)

III-3-2-2. Etude à partir de l'affinement Rietveld

L'étude de l'évolution microstrucrurale cristalline à partir des analyses sur les spectres d'affinement Rietveld des alliages binaires Al-20, 40, 50, 60 70 et 80 m.%Ti étudiés aux 2 états, brut et traité, montre que ces alliages Al-Ti de fusion hf sont polyphasés. L'estimation des paramètres cristallographiques caractéristiques des phases révélées aux 2 états, brut et traité, (Tab. III-1 et III-2) et distribuées selon leurs existences dans chaque alliage montre que:

Pour la composition Al-20 m. % Ti à l'état brut (Figs. III-2 et III-3, Tab. III-1), on observe que la microstructure étudiée sur une gamme de diffraction angulaire de $2\theta^{\circ}$ entre 10° et 90° est polyphasée, elle se compose des phases de composés intermétalliques tétragonale DO₂₂-Al₃Ti [12] et Hcp DO₁₉-Ti₃Al [10] et la phase matrice solution solide Cfc Al avec l'existence de la phase solution solide Hcp α -Ti sous forme de traces. La phase intermétallique tétragonale DO₂₂-Al₃Ti apparaît sur le spectre d'affinement Rietveld comme dominante où les mesures estimées la donnent à

48,960% de fraction volumique de présence de phase parmi l'ensemble de toutes les phases révélées avec des paramètres cristallins de maille a = b = 0.3834 nm et c = 0.8641 nm avec un rapport c/a = 2.254. La solution solide Cfc Al avec 28, 413% et a = b = c = 0.41056 nm. Le reste de 22,627% est pour les phases Hcp α -Ti et Hcp DO₁₉-Ti₃Al. A l'état traité, la microstructure devient biphasée ou les phases Hcp α -Ti et DO₁₉-Ti₃Al disparaissent totalement de l'alliage (Fig. 9a). Le tableau III-5 rassemble les valeurs des caractéristiques paramétriques mesurées et calculées pour l'alliage Al-20 m. % Ti aux 2 états, brut et traité.

Al-20 m.%Ti						
Phases révélées	Al	Al ₃ Ti	Ti ₃ Al	Ti		
		Etat brut				
Fraction volumique %	28,413	48,960	22,627			
	Paramètre	es cristallins de mail	lle (nm)			
Etude présente	a = 0.4105	a = 0,38345 c = 0,86411 c/a = 2,25351	a = 0.5734 c = 0.4407 c/a = 0.769	a = 0.2919 c = 0.4826 c/a = 1.653		
Carte cristallographique	a = 0,40494	a = 0,38537 c = 0,85839 c/a = 2.2274	a = 0,577 c = 0,462 c/a = 0.8007	a = 0,29505 c = 0,46826 c/a = 1.5871		
	[2]	[12]	[10]	[4]		
		Etat traité				
Fraction volumique %	67,146	32,854	0	0		
Paramètres cristallins de maille (nm)						
Etude présente	a = 0.4055	a = 0,38539 c = 0,86093	-	-		
		c/a = 2,23392				

Tableau III-5. Paramètres cristallographiques caractéristiques des phases révélées de l'alliage étudié Al-20 m.%Ti. De la même manière sont estimées ces mêmes caractéristiques paramétriques cristallines caractéristiques de toutes les phases révélées par l'affinement Rietveld et identifiées sur les diffractogrammes DRX (I, $2\theta^{\circ}$) des alliages Al-40 à 80 m.%Ti étudiés aux 2 états, brut et traité.

Pour l'alliage Al-40 m.%Ti à l'état brut (Figs. III-4a et III-5b, Tab. III-2), la phase Hcp α -Ti disparait totalement et la phase de composé intermétallique tétragonale Al₂Ti est révélée sous forme de traces. Les paramètres cristallins déduits sont: a = b = 0,39578 nm et c = 2,4341 nm avec un rapport c/a = 6,15013. La phase tétragonale DO₂₂-Al₃Ti apparaît prédominante avec une fraction volumique de 90,096% et des paramètres cristallins de l'ordre a = b = 0,38372 nm et c= 0,86164 nm avec le rapport c/a = 2,24549. Pour l'aluminium solution solide révélé dans cette composition, sa fraction volumique déduite est de 2,908% et un paramètre cristallin de 0,41036 nm. Dans le cas traité de cet alliage (Figs. III-8b et III-10b, Tab. III-3),, la microstructure apparaît biphasée où la phase matrice solution solide Cfc Al est prédominante avec une fraction volumique de 98,617% et en présence de traces de la phase composé intermétallique tétragonale DO₂₂-Al₃Ti avec fraction volumique de 1,383% et des paramètres cristallins estimés pour Al a = 0,40391 nm, pour Al₃Ti ils sont a = 0,38539 nm et c = 0,86093 nm avec un rapport c/a de 2,23392.

Dans le cas de la composion Al-50 m.%Ti, les spectres d'affinement de l'alliage aux 2 états, brut et traité (Figs. 5b et 9c), montrent que les microstructures sont polyphasées et se composent des phases de composés intermétalliques de structures tétragonalesAl₃Ti, Al₂Ti, Al₅Ti₃ [17] et la phase métastable tétragonale Al₁₁Ti₅ [20].La phase intermétallique Al₃Ti qui est majoritaire par rapport à toutes les phases révélées existe avec une fraction volumique de 35,804% à l'état brut et de 38,645% à l'état traité.

L'exploration de 2 spectres d'affinement de l'alliage Al-60 m. % Ti aux 2 états, brut et traité, (Figs. III-6a et III-9a), nous a permis d'indexer les phases sur les spectres diffractogrammes DRX (Figs. III-7a et III-11a). On observe 4 phases de composés intermétalliques tétragonales Al₃Ti Al₂Ti, Al₅Ti₃ et Hcp γ -TiAl [11] en présence des phases de solution solide Cfc Al et Hcp α -Ti. A l'état brut (Tab. III-2 et III-3) où la phase prédominante est γ -TiAl avec une fraction volumique estimée à environ 43,230%, la phase Al₃Ti avec 17,622% et le reste, (39,148%), est partagé entre les phases Al₂Ti, Al₅Ti₃, α -Ti et Al. A l'état traité, elle existe sous 40,02% avec augmentation de la fraction volumique des phases solution solide Hcp α -Ti et Cfc Al due à la décomposition des phases de composés intermétalliques au profit des solutions solides suites au traitement thermique.

Pour les 2 alliages Al-70 et 80 m.%Ti, la phase solution solide Hcp α -Ti devient matrice dans ces alliages coté très riche en titane.

Dans l'alliage Al-70 m.%Ti aux 2 états, brut et traité, l'exploitation des spectres (Figs. III-6b et III-9b) révèle une microstructure qui se compose des phases solution solide Cfc Al et des composés intermétalliques Ti₃Al Al₂Ti et γ -TiAl dispersées dans la matrice solution solide Hcp α -Ti. La phase intermétallique Hcp DO₁₉-Ti₃Al existe avec une fraction volumique de l'ordre de 13,916% à l'état brut qui croit à 45,502% à l'état traité due à une réaction chimique entre Al et la matrice α -Ti pour former la phase Ti₃Al vue la diminution de la fraction volumique de α -Ti. Les paramètres cristallins de cette phase à l'état brut sont a = 0,57432 nm et c = 0,46182 nm avec un rapport c/a = 0,80412 très proches de celles de l'état traité qui sont a = 0,57619 nm, c = 0,4714 nm avec un rapport c/a = 0,81813 due essentiellement à la grande stabilité de cette phase dans les alliages Ti (base)-Al [40-42]. Les paramètres cristallins de la phase matrice solution solide Hcp α -Ti ont été estimés pour des valeurs a = 0,30002 nm et c = 0,44883 avec un rapport c/a = 1,496 à l'état brut et a = 0,30047 nm et c = 0,4563 nm avec c/a = 1,51862 à l'état traité en bon accord avec celles du réseau Hcp α -Ti parfait (carte cristallographique [4]).

L'alliage coté très riche en titane, Al-80 m.% Ti, a une microstructure polyphasée. Les phases révélées par les spectres d'affinement aux états brut (Fig. 7c) et traité (Fig. 10c) sont la phase matrice Hcp α -Ti et les phases des composés intermétalliques Ti₃Al, B₂-TiAl et la phase métastable tétragonale Ti₅Al₃ de type W₅Si₃ [22] (Tab. III-6).

La phase intermétallique Ti₃Al révélée par les spectres d'affinement existe dans l'alliage Al-80 m. % Ti avec une fraction volumique de 42.51% à l'état brut et 61,35% à l'état traité. Cette augmentation dans la fraction volumique est essentiellement du à la diminution du taux de diffraction de la phase métastable Ti_5Al_3 sous l'effet du traitement thermique suivant la transformation de phases:

$Ti_5Al_3 \rightarrow DO_{19}$ - $Ti_3Al + \alpha$ -Ti

La phase Cs B2-TiAl [22] est une isostructure de la phase β -Ti [5] désordonnée de structure cubique centré (Bcc).Les caractéristiques paramétriques de la phase B2-TiAl, à l'état traité, ont été estimés à 31,11% pour la fraction volumique et a = 0,305351 nm pour les paramètres cristallins et à l'état brut ils sont 23,144% et 0,30564 nm.

Dans le tableau III-6, on a rassemblé les moyennes des paramètres cristallins de maille de toutes les phases de composés intermétalliques Al_xTi_y révélées par affinement Rietveld (Logiciel MAUD) et identifiées sur les diffractogrammes DRX aux 2 états, brut et traité thermiquement, des alliages Al-20 à 80 m.%Ti étudiés.

Phases	Paramètres cristallins (nm)						
revelees	Etat brut		Etat traité				
	a	с	c / a	a	С	c / a	
Tétrag. Al ₃ Ti	0,38533	0,85931	2,230	0,38611	0,85810	2,222	
Tétrag. Al ₂ Ti	0,39695	2,45416	6,182	0,39338	2,49175	6,334	
Tétrag. Al ₅ Ti ₃	1,13004	0,403075	3,567	1,13370 -	0,40350	0,356	
Tétrag. Al ₁₁ Ti ₅	0,48452	1,72482	3,560	0,39180	1,66690	4,254	
Tétrag. γ-AlTi	0,40137	0,40528	1,009	0,40146	0,40672	1,013	
Cs B2-AlTi	0,30535	-	-	0,30556	-	-	
Hcp Ti ₃ Al	0,57467	0,45700	0,795	0,57650	0,46553	0,807	
Tétrag. Ti ₅ Al ₃ (type W ₅ Si ₃)	1,04150	0,50326	0,483	1,03806	0,50906	0,490	

Tableau III-6. Moyenne des paramètres cristallins des phases révélées dans les microstructures des alliages de fusion hf Al-20 à 80 m.%Ti.

La figure III-12 montre l'évolution du paramètre cristallin a_{Al} de la maille Cfc Al dans les alliages Al-20 à 60 m.%Ti aux 2 états brut et traité. Les valeurs du paramètre cristallin a_{Al} ont été estimées directement à partir des affinements Rietveld (Logiciel MAUD) des diffractogrammes DRX.

Figure III-12: Evolution du paramètre cristallin a_{Al} de l'aluminium dans les alliages Al-20 à 60 m.%Ti brut et traité

On observe que l'évolution du paramètre a_{Al} est décroissante où celui-ci diminue avec la teneur en titane dans les deux états des alliages étudiés, brut et traité. Cette décroissance observée peut être attribuée à une la différence de taille entre les réseaux cristallins de volume de 0,04790 nm³ pour Hcp α -Ti [4] et celle de la matrice Cfc Al de 0,06640 nm³ [2]. Cette évolution se traduit par une diffusion des atomes Ti qui se sont substitués aux atomes Al. Un comportement similaire a été observé dans le cas du système binaire Al-Zn étudiés dans les mêmes conditions [43].
III-3-2-3. Etude à partir des spectres DRX

Le rapport de présence d'une phase distincte diffractée par rapport aux autres phases diffractées dans un même spectre DRX d'un alliage de composition donnée peut être évalué par une loi relative des intensités des phases diffractées donnée par l'équation suivante [44] :

% phase(i) =
$$\frac{\sum I \ phase(i)}{\sum I \ phases} \times 100$$

Le tableau III-7 regroupe les microstructures cristallines des alliages binaires Al-20 à 80 m.%Ti de fusion hf. Le diagramme d'équilibre de phases déduits de constations expérimentales sur les phases stables et métastables du système binaire Al-Ti [13] où les phases les phases révélées dans notre étude se rapprochent de près de celles du diagramme d'équilibre.

Figure III-13 Diagramme d'équilibre de phases du système d'alliages binaires Ti-Al [45].

Il est trouvé que dans la gamme de composition Ti-64 à 68 at.% Al (Al-32 à 36 at.%Ti), la phase $Al_{11}Ti_5 / Al_5Ti_2$ est sable, est donnée par la réaction :

$$Al_{11}Ti_5 \leftrightarrow r-Al_2Ti + Al_3Ti$$

La phase Al_5Ti_3 observée à l'état brut dans l'alliage Al-50 m.%Ti ($\approx Al-64 \text{ at.}\% Ti$) de fusion hf disparaît totalement à l'état traité au profit de la phase $Al_{11}Ti_5$ qui apparaît stable sur la gamme de compositions 36 et 46 at.% Ti (50 et 60 m.%Ti) aux 2 états.

		Système	e Ti-Al (traite	Ś)		
m.% Ti	80	70	60	50	40	20
m.% Al	20	30	40	50	60	80
\approx at.% Al	31	43	54	64	73	88
Microstructure	Ti ₃ Al +	Al+	Al+	Al ₃ Ti +	Al+	Al+
	B2-TiAl +	Ti ₃ Al +	Al ₃ Ti +	Al ₂ Ti +	Al ₃ Ti	Al ₃ Ti
	$Al_3Ti_5 +$	γ-TiAl +	Al ₂ Ti +	Al ₁₁ Ti ₅		
	α-Ti	α-Τί	$Al_5Ti_3 +$			
			γ-TiAl +			
			α-Ti			

Tableau II-7. Microstructures et compositions m.%Al et leurs équivalences en at.%Al des alliagesTi-Al étudiés.

Nous allons procéder à déterminer le rapport de présence et les paramètres cristallins des phases stables et bien diffractées dans les alliages Al-20 à 80 m.%Ti de fusion hf à l'état traité et d'après le tableau III-8 de limites de domaines de phases dans les diagrammes de phase Al-Ti [13,45], ces phases sont:

1- la phase Hcp DO₁₉-Ti₃Al (α 2-Ti₃Al) de l'alliage Al-80 m.%Ti (ou 20 m.%Al \approx 31 at.%Al) qui correspond bien au domaine de compositions 14 – 26 m.%Al de stabilité de cette phase.

2- la phase tétragonale γ -TiAl dans l'alliage Al-70 m.%Ti soit 20 m.%Al (\approx 43 at.%Al) qui correspond bien au domaine 34 – 56,2 at.%Al.

3- la phase tétragonale OC_{12} - Al_2Ti dans l'alliage Al-50 m.%Ti soit 50 m.%Al (≈ 64 at.%Al) proche du domaine 51 – 54 at.%Al.

4- la phase tétragonale DO₂₂- Al₃Ti dans l'alliage Al-20 ou 40 m.%Ti soit 60 ou 80 m.%Al (\approx 73 ou 88 at.%Al) qui correspond bien au domaine 63 – 98,2 at.%Al.

Le tableau III-8 rassemble les paramètres cristallins mesurés des phases dans les alliages Al-Ti de fusion hf à l'état traité estimées par affinement Rietveld (Logiciel MAUD) et spectres DRX (Logiciel ORIGIN).

Phase	Structure	Paramètres cristallins mesurés (nm)		
		Rietveld	DRX	
Ti ₃ Al	Hcp DO ₁₉	a = 0,57681	a = 0,57655	
80m.%Ti		c = 0,45966	c = 0,46417	
		c/a = 0,797	c/a = 0,805	
γ-TiAl	Tétragonale	a = 0,40277	a = 0,39906	
70m.%Al	L10	c = 0,40588	c = 0,40289	
		c/a =1,007	c/a = 1,010	
TiAl ₂	Tétragonale	a = 0,39698	a = 0,39813	
50m.%Ti	OC12	c = 2,43706	c = 2,4290	
		c/a = 6,139	c/a = 6,102	
Al ₃ Ti	Tétragonale	a = 0,38516	a = 0,38438	
20m.%Ti	DO_{22}	c = 0,86129	c = 0,86023	
		c/a = 2,236	c/a = 2,238	

Tableau III-8. Caractéristiques cristallographiques mesurées des phases distinctes du système Al-Ti dans les alliages de fusion hf.

A l'état traité, la microstructure de l'alliage Al-20 m.%Ti apparaît comme biphasée, les 2 phases révélées par l'affinement Rietveld et les cartes cristallographiques sont identifiées comme étant la phase de composé intermétallique tétragonale DO_{22} -Al₃Ti en équilibre avec la phase solution solide Cfc Al.

Les proportions de présence de la phase tétragonale DO_{22} -Al₃Ti est évaluée à 50%. La ligne de pic apparent le plus intense (I_R = 100) est localisée à la position (20° = 39,16, I_R = 100) correspondant à la phase apparente du ligne de pic (1 1 2)Al₃Ti.

La 2ème ligne intense pour la phase Al₃Ti est localisée à la position ($2\theta^\circ = 41,96$, I_R = 23) correspondant à la phase apparente (0 0 4)Al₃Ti.

Ces 2 pics permettent de calculer les paramètres cristallins de la phase tétragonale Al₃Ti à partir de la formule dérivée de la loi de Bragg pour les structures cristalline usuelles [33]:

 $Sin^2\theta_{hkl} = (\lambda^2/4a^2) [(h^2 + k^2) + l^2 (a^2/c^2)]$

Le tableau III-9 regroupe les paramètres cristallins de la maille de la phase tétragonale DO_{22} -Al₃Ti mesurés par affinement Rietveld et à partir des lignes de pics du

diffractogramme DRX (I, $2\theta^{\circ}$) de l'alliage Al-20m.%Ti à l'état traité. Ces valeurs sont con accord avec celles de la littérature [12] citées dans le tableau III-9. La Figure III-13 schématise la structure de la phase tétragonale DO₂₂-Al₃Ti [45-47].

Phase	Structure	Groupe	Paramètres (nm)	Référence
		d'espace	Présent travail	
			Rietveld	DRX
			a: 0,38516	a: 0,38438
Al ₃ Ti	Tétragonale DO ₂₂	I4/mmm	c: 0,86129	c: 0,86023
			c/a: 2,236	c/a: 2,238
			Literature	
			a: 0,3853	[12]
			c: 0,8583	
			c / a: 2,227	
			a: 0,3866	[46]
			c: 0,8624	
			c/a: 2,230	

Tableau III-9. Structure cristalline et paramètres cristallins de la phase Al₃Ti.

Figure III-14. Structure cristalline de la phase DO₂₂-Al₃Ti

La phase de composé intermétallique tétragonale Al₃Ti (Fig. III-14) possède une structure DO_{22} . Cette structure est en rapport avec une structure de type $L1_2$. Elle se compose de 2 mailles élémentaires empilées le long de l'axe c.

La position des atomes Al et Ti dans la maille élémentaire 8 atomes Ti aux sommets et 1 atome Ti au centre :

 $(8 \times 1/8 + 1) = 2 \text{ Ti}$

10 atomes Al sur les faces et 4 atomes Al sur les arêtes :

(10 x 1/2 + 4 x 1/4) = 6 Al

Ce qui correspond bien à 2 x Al₃Ti

Positions (x, y, z) d'atomes Al et Ti dans la maille élémentaire de la phase intermétallique tétragonale DO_{22} -Al₃Ti (a = b = 0,3853 nm et c = 0,8583 nm [12]) :

Al	(0,0000 nm, 0,0000 nm, 0,4298 nm)
Ti	(0,0000 nm, 0,0000 nm, 8,5960 nm)
Al	(0,1924 nm, 0,1924 nm, 0,8596 nm)
Al	(0,0000 nm, 0,3848 nm, 0,4298 nm)
Al	(0,0000 nm, 0,1924 nm, 0,6447 nm)
Ti	(0,0000 nm, 0,3848 nm, 0,8596 nm)
Al	(0,3848 nm, 0,0000 nm, 0,4298 nm)
Al	(0,1924 nm, 0,0000 nm, 0,6447 nm)
Ti	(0,3848 nm, 0,0000 nm, 0,8596 nm)
Ti	(0,0000 nm, 0,0000 nm, 0,0000 nm)
Al	(0,1924 nm, 0,1924 nm, 0,0000 nm)
Al	(0,0000 nm, 0,1924 nm, 0,2149 nm)
Al	(0,1924 nm, 0,0000 nm, 0,2149 nm)
Ti	(0,1924 nm, 0,1924 nm, 0,4298 nm)
Al	(0,3848 nm, 0,3848 nm, 0,4298 nm)
Al	(0,1924 nm, 0,3848 nm, 0,6447 nm)
Al	(0,3848 nm, 0,1924 nm, 0,6447 nm)
Ti	(0,3848 nm, 0,3848 nm, 0,8596 nm)
Ti	(0,0000 nm, 0,3848 nm, 0,0000 nm)
Al	(0,1924 nm, 0,3848 nm, 0,2149 nm)
Ti	(0,3848 nm, 0,0000 nm, 0,0000 nm)
Al	(0,3848 nm, 0,1924 nm, 0,2149 nm)
Ti	(0,3848 nm, 0,3848 nm, 0,0000 nm)

Al (X = 0, Y = 0, Z = 1/2) Ti(X = 0, Y = 0, Z = 1)Al (X = 1/2, Y = 1/2, Z = 1) Al (X = 0, Y = 1, Z = 1/2) Al (X = 0, Y = 1/2, Z = 3/4) Ti(X = 0, Y =, Z = 1)Al (X = 1, Y = 0, Z = 1/2) Al (X = 1/2, Y = 0, Z = 3/4) Ti(X = 1, Y = 0, Z = 1)Ti(X = 0, Y = 0, Z = 0)Al (X = 1/2, Y = 1/2, Z = 0) Al (X = 0, Y = 1/2, Z = 1/4) Al (X = 1/2, Y = 0, Z = 1/4) Ti (X = 1/2, Y = 1/2, Z= 1/2) Al (X = 1, Y = 1, Z = 1/2) Al (X = 1/2, Y = 1, Z = 3/4) Al (X = 1, Y = 1/2, Z = 3/4) Ti(X = 1, Y = 1, Z = 1)Ti(X = 0, Y = 1, Z = 0)Al (X = 1/2, Y = 1, Z = 1/4) Ti(X = 1, Y = 0, Z = 0)Al (X = 1, Y = 1/2, Z = 1/4) Ti(X = 1, Y = 1, Z = 0)

La figure III-15 montre les positions des atomes voisins Al par rapport à à l'atome central Ti (0, 0, 0).

Les premiers voisins, 4 atomes de Al occupants les aretes d'un carré a \times a et situés à la distance 0,272 nm de position (a/2, a/2, 0) par rapport à Ti (0, 0, 0).

Les seconds voisins, 8 atomes de Al occupants les aretes d'un parallélipipède carré (a \times a \times c/2) et situés à la distance 0,288 nm de position (a/2, a/2, c/4) par rapport à Ti (0, 0, 0).

Figure III-15 Positions des atomes voisins Al par rapport à Ti (0, 0, 0)
(a) Ti est lié à 4 atomes Al (premiers voisins) à 0,272 nm
(b) Ti est lié à 8 atomes Al (seconds voisins) à 0,288 nm

III-4. Morphologie de surface

L'étude de la morphologie de surface des alliages binaires Al-Ti de fusion hf a été réalisée par microscopie optique et microscopie électronique à balayage (MEB). Sur la base des micrographies optiques et MEB on peut mettre en évidence l'évolution de microstructure des alliages Al-Ti étudiés.

Figure III-16. Micrographies optiques de l'alliage Al–20 m.% Ti à l'état (a) brut et (b) traité.

Figure .III-17. Micrographie MEB de l'alliage Al-20 m. % Ti à l'état traité.

Les micrographies optiques et MEB (Figs. III-16 et III-17) montrent que la morphologie de surface de l'alliage Al-20 m. % Ti présente une structure à grains sphériques équiaxes de la phase tétragonale DO₂₂-Al₃Ti de taille moyenne de 10 à 20 µm uniformément répartis dans une matrice solution solide Cfc Al [31]. L'agrandissement du grain (Fig. III-17b) montre une structure dendritique sous forme d'aiguilles de la phase Al₃Ti. La même morphologie est observée dans le cas de l'alliage de compositions Al-40 m.%Ti (Fig. III-18 a et b). Ces observations concordent avec les microstructures révélées par DRX où les microstructures des 2 alliages Al-40 et 50 m.%Ti se présentent comme étant biphasées, la phase de composé intermétallique en équilibre avec la phase matrice Cfc Al.

Figure III-18. Micrographies MEB de l'alliage Al-40 m. % Ti: (a) brut et (b) traité.

Figure III-19. Micrographies MEB de l'alliage Al-50 m. % Ti.

Dans le cas de l'alliage Al-50 m. %Ti, la figure III-19 met en évidence l'apparition de la phase tetragonale o C_2 -TiAl₂ sous forme des particules en petite quantité dispersées dans une matrice toujours dominée par la phase tétragonale DO₂₂-Al₃Ti.

La figure III-20 présente la morphologique de l'alliage Al-60 m.% Ti où la phase Al₃Ti est de même forme mais que sa quantité diminue. Cette diminution due à la teneur de Ti dans l'alliage donne lieu à la formation des nouvelles phases connue pour le coté riche en Ti et d'après les phases révélées par DRX, on observe une structure lamellaire qui constituée de la phase tétragonale γ -TiAl en équilibre avec la matrice Hcp α -Ti. Le diagramme d'équilibre (Fig. III-13) [45] développé suivant des observations expérimentales montre que la phase γ -TiAl est stable aux compositions équiatomiques du système d'alliages binaires Al-Ti et de même elle l'est pour les compositions équimassiques (50 – 60 m.%Ti) des alliages de fusion hf étudiés.

Figure III-20. Evolution morphologique des phases obtenue dans l'alliage Al-60 m. % Ti.

La figure III-21 qui présente une micrographie MEB de l'alliage Al-70 m. % Ti de l'état brut, l'image représente une zone fusionnée où les microstructures observées sont lamellaires. La morphologie de microstructure lamellaire (Fig. III-20) montre des îlots lamellaires composés d'une phase sombre et d'une phase grise ainsi que des grains foncés. Une troisième phase plus claire est présente aux joints de grains des îlots lamellaires. Ces phases correspondraient à celles identifiées par DRX comme étant la phase γ -TiAl (foncée) et la phase α_2 -Ti₃Al (grise) on observe aussi des particules de la phase ordonnée B2 et de la matrice α -Ti.

Figure III-21. Evolution morphologique des phases obtenue dans l'alliage Al-70 m. % Ti.

Les figures III-22 et III-23 représentent des micrographies optiques des alliages de compositions 70 m. % Ti et 80 m. % Ti aux états (a) brut et (b). On peut observer la présence des phases intermétalliques γ -TiAl et α_2 -Ti₃Al dispersées dans une matrice α -Ti en bon accord avec les microstructures identifiées par DRX.

Figure III-22. Micrographies optiques de l'alliage Al–70 m. % Ti: (a) état brut et (b) état traité

Figure III-23. Microscopie optique de l'alliage Al–80 m. % Ti [48,49]: (a) état brut et (b) état traité

La microstructure des l'alliage riche en titane, Al-70 m.%Ti, est constituée de grains lamellaires de la phase γ -TiAl. Avec la diminution de la teneur en aluminium, les grains de γ -TiAl diminuent progressivement. Lorsque la teneur en Aluminium atteint une certaine valeur, il ne reste que les grains lamellaires en colonies de lamelles des phases γ -TiAl et α_2 -Ti₃Al [50].

Les alliages binaires Ti-Al correspondant à une gamme de compositions 35-65 at.% Al (\approx Al-50 à 80 m.%Ti) sont au moins constitués du mélange de γ (L1₀) et α_2 (DO₁₉). D'après le diagramme d'équilibre de phases Ti-Al [51], 2 réactions du peritectique existent dans les compositions s'étalant sur une gamme de 40 à 50 at.% Al [52,53] :

 $L + \beta (Ti) \rightarrow \alpha Ti$ $L + \alpha (Ti) \rightarrow TiAl.$

Pour les alliages Ti-Al riches en titane, la phase fondamentale qui cristallise du liquide L est β -Ti suivant les réactions de solidification :

$$L \rightarrow \beta Ti + L \rightarrow \beta Ti + \alpha Ti \rightarrow \alpha Ti \rightarrow \alpha Ti + TiAl \rightarrow Ti_3Al + TiAl$$

Une analyse à température ambiante a montré que la phase Ti₃Al apparaît à la composition 34 at.% Al et que la phase γ -TiAl est légèrement hyper stœchiométrique en titane [54]. Dans notre

travail, on a identifié par analyse DRX dans l'alliage Al-70 m.%Ti (Ti-30 m.%Al) les deux phases fondamentale γ -TiAl et α_2 -Ti₃Al.

Pour les alliages pris dans la gamme de composition 49 à 55 at.% Al, la phase fondamentale dans ces compositions est la phase Hcp α -Ti. Les transformations de phase de l'état solide des alliages dans cette gamme peuvent être résumées par :

 $L \rightarrow \alpha Ti + L \rightarrow \alpha Ti + TiAl \rightarrow TiAl$

Comme la phase γ -TiAl a une structure lamellaire, la microstructure lamellaire observée et qui a consisté en γ -TiAl et α_2 -Ti₃Al est le résultat de transformation phase de l'état solide. D'après le diagramme d'équilibre de phases Ti-Al, dans les compositions où l'aluminium est de 46-49 at. %), la phase γ -TiAl subit une transformation de phase à une température de 1100 °C [55,56] :

 $\alpha Ti \rightarrow TiAl + Ti_3Al$

CHAPITRE IV

Etude thermique des alliages Al-Ti de fusion hf

Chapitre IV

Etude thermique des alliages Al-Ti de fusion hf

IV-1. Description de la procédure expérimentale

Pour révéler les transformations de phases qui peuvent se produire dans les alliages Al-20 à 80m.%Ti élaborés par fusion hf, des essais de calorimétrie différentielle à balayage, DSC (Differential Scanning Calorimetry), ont été réalisés sous atmosphère d'argon à l'aide d'un appareil *DSC 822 de Mettler Toledo* dans un domaine de températures de 25 - 700 °C avec une vitesse de montée constante de 10°C/min.

Les thermogrammes DSC enregistrées sont analysés pour déterminer les transformations de phases qui peuvent se produire dans le système binaire Al-Ti suites aux fusions et/ou cristallisations induites respectivement par absorption ou dégagement de flux chaleur [57].

IV-2. Analyse des spectres thermogrammes DSC des alliages Al-Ti

IV-2-1. Thermogrammes DSC des l'Alliage Al-20 m.%Ti

La figure IV-1 montre l'évolution des 2 thermogrammes DSC correspondants aux essais de calorimétrie réalisés sur l'alliage Al-20m.%Ti aux 2 états, brut (Fig. IV-1a) et traité (Fig. IV-1b). Les 2 thermogrammes présentent une seule fluctuation, un pic endothermique bien défini localisé à 660°C pour le brut et 670°C pour le traité. Cette température correspond à une fusion totale de l'aluminium ($T_f = 660$ °C) dans l'alliage ce qui contribue à la formation de la phase tétragonale DO₂₂-Al₃Ti [12] avec une transformation de phase péritectique avec une enthalpie de formation de l'ordre de -17.66 W×C/g.

La réaction qui s'est produite peut se présenter comme une transformation de phases par fusion de l'aluminium pour réagir avec le titane [58-60]:

Cfc Al
$$\rightarrow$$
 DO₂₂-Al₃Ti + L

L'étude des diffractogrammes DRX (Fig. III-3b et III-3a) a montré que le titane observé dans la microstructure à l'état brut disparaît totalement sous l'effet du traitement thermique d'homogénéisation (500 °C, 1 heure) donnant lieu à la formation de la phase DO₂₂-Al₃Ti dont la fraction volumique passe d'environs de 33% de l'état brut à 50% pour le traité.

Figure IV-1. Courbes DSC de l'alliage Al-20m.%Ti étudiés aux états (a) brut et (b) traité.

IV-2-2. Thermogrammes DSC de l'Alliage Al-40 m.%Ti

Figure IV-2. Courbe DSC de l'alliage Al-40m.%Ti.

Dans le cas de l'alliage de composition Al-40 m. %Ti à l'état brut, le thermogramme DSC obtenu (Fig. IV-2) présente 2 fluctuations correspondants à 2 transformations distinctes, dont un pic exothermique situé aux basses températures de chauffage 370°C et un autre endothermique à 670°C. Ces pics correspondent à la formation des phases tétragonale r-Al₂Ti [18] et DO₂₂-Al₃Ti observées sur le spectre DRX (Fig. III-5b).

Figure IV-3. Courbes DSC de l'alliage Al-50m.%Ti et Al-60m.%Ti (brut)

Dans le cas des 2 alliages Al-50 m.%Ti et Al-60 m.%Ti, on observe la même évolution des courbes DSC avec celle de l'alliage Al-40m.%Ti à l'état brut. Pour le pic à la température de chauffage 370°C, il y a eu formation de la phase Al₂Ti avec une enthalpie estimée à 0.77 W×C/g et à la température 660°C formation de la phase tetragonale DO₂₂-Al₃Ti avec une enthalpie de l'ordre de -3.61 W°C/g. Ce ci est du à une transformation de phase péritectique déjà observée dans le cas de l'alliage Al-40 m.%Ti.

Dans le cas des alliages traités, la figure IV-4 (a et b) montre les courbes DSC qui présentent elles aussi la même allure où on observe 2 pics exothermiques de cristallisation.

Le premier pic, dans l'alliage Al-50m.%Ti traité (Fig. IV-4a), apparait sur une gamme de températures de chauffage 350,93 - 540,97 °C avec une enthalpie de formation de l'ordre de 3.95 W×C/g.

Pour l'alliage Al-60m.%Ti, le pic situé dans l'intervalle de températures de chauffage 346,99 – 451,86 °C, l'enthalpie de formation est de 0.22 W×C/g. Ce pic confirme une cristallisation de formation de la phase tétragonale r-Al₂Ti suivant la transformation de phase donnée par :

$$Al_{11}Ti_5 \rightarrow Al_2Ti + Al_3Ti$$

Ces résultats de DSC confirment les microstructures données par DRX où la phase Al₁₁Ti₅ de nature métastable [61] observée dans les alliages Al-50m.%Ti et Al-60m.%Ti étudiés à l'état brut (Figs. III-5c et III-7a) disparait à totalement à l'état traité dans le cas 60m.%Ti. On remarque aussi l'augmentation du taux de présence des phases Al₂Ti et Al₃Ti dans ces alliages.

Le deuxième pic observé bien apparent dans l'alliage Al-50m.%Ti traité (Fig. IV-4a) est exothermique avec un maximum situé aux environs de 584 °C avec une enthalpie de formation estimée à 0.30 W×C/g. de formation de la phase $Al_{11}Ti_5$ Dans le cas de l'alliage Al-60m.%Ti, il apparait sur une gamme de 611.87 -700 °C avec une enthalpie de l'ordre de 0.24 W×C/g de formation de la phase tétragonale Al_5Ti_3 [17].

Figure IV-4. Courbes DSC des alliages traités (a) Al-50m.%Ti et (b) Al-60m.%Ti.

Plusieurs études sur le système binaire Al-Ti [62] ont confirmé le développent la phase Al_5Ti_3 au dessous de la température 800 °C tandis que la phase orthorhombique h- Al_2Ti [63] métastable aux basses températures précipite dans la matrice TiAl avant la formation de la phase tétragonale r- Al_2Ti stable aux basses températures. Ces études [62] montrent que la stabilisation de la phase Al_5Ti_3 doit suivre une période de refroidissement large et que la température de décomposition de cette même phase Al_5Ti_3 est fortement dépendante de la composition de l'alliage. Dans la gamme des températures supérieures à 750°C, la phase Al_5Ti_3 devient instable est donne lieu à la formation de la phase tétragonale r- Al_2Ti et la phase orthorhombique h- Al_2Ti suivant la transformation de phase donnée par [64]:

$$Al_5Ti_3 \rightarrow r-Al_2Ti + h-Al_2Ti$$

On remarque que la courbe de DSC de l'alliage Al-60m.%Ti présente un pic exothermique représentant la cristallisation de la phase Al_5Ti_3 aux températures inferieures à 700°C suivant la transformation de phase donnée par :

$$h-Al_2Ti + TiAl \rightarrow Al_5Ti_3$$

On a trouvé par affinement Rietveld des spectres DRX que l'apparition de la phase Al_5Ti_3 dans l'alliage Al-60m.%Ti traité (≈ 46 at.% Ti) avec une fraction volumique de 9.04% est moins diffractée qu'à l'état brut ou elle existe avec une fraction volumique de 23.5 %.

On observe dans l'alliage Al-50 m.%Ti que le deuxième pic exothermique est lié à la formation de la phase tétragonale $Al_{11}Ti_5$ suivant la transformation de phase donnée par :

$$L + TiAl \rightarrow Al_{11}Ti_5$$

Ces résultats d'observations DSC dans ces alliages Al-50 et 60 m.%Ti sont confirmés par DRX où on a remarqué une augmentation du taux de présence (fraction volumique) des phases Al₂Ti et Al₃Ti dans cet alliage.

La figure IV-5 montre les diffractogrammes DRX des alliages Al-50 m.%Ti et Al-60 m.%Ti à l'état traité.

Figure IV-5 spectres de DRX des alliages (a)Al-50m.%Ti et (b) Al-60m.%Ti dans l'état traité.

IV-4. Thermogrammes DSC de l'Alliage Al-70 et 80 m.%Ti

Dans le cas des alliages, coté riche en titane, on observe sur le thermogramme DSC de l'alliage de composition Al-70 m.%Ti (Fig IV-6) 2 pics exothermiques sur les intervalles de température 347,48 - 420,35 °C et 454,81 – 527,68 °C, respectivement. On remarque une fluctuation endothermique dans le domaine de température 150 -350 °C due principalement au rétablissement par relaxation des contraintes et grossissement des grains.

Figure IV-6. Courbe DSC de l'alliage Al-70 m.%Ti à l'état brut

Le premier pic situé dans l'intervalle de températures $347,48 - 420,35^{\circ}$ C, avec une enthalpie de formation de 0,13 W×C/g environ, représente par cristallisation la formation de la phase de composé intermétallique TiAl désordonnée. Le deuxième pic de plus d'intensité sur l'intervalle 454,81 - 527,68 °C présente une cristallisation des grains γ -TiAl avec un degré d'ordre (LRO) mesuré S= 0,551 [6] en petites quantités de la phase Hcp DO₁₉-(α_2)Ti₃Al (ordonnée) sous forme de traces [65] avec une enthalpie de formation de l'ordre de 0,55 W×C/g. Par conséquent la formation des cette phase a subit la transformation de phase donnée par :

TiAl (désordonnée) +
$$\alpha$$
-(Ti) $\rightarrow \gamma$ -TiAl + (α_2) Ti₃Al

Dans le cas traité du même alliage, on observe de même la formation de la phase γ -TiAl dans la gamme de température 325,33 – 551,31 °C avec une enthalpie de l'ordre de 3,11 W×C/g.

Figure IV-7. Courbe DSC de l'alliage Al-70 m.%Ti à l'état traité

Dans le cas de l'alliage Al-80 m.%Ti aux 2 états, brut et traité, on observe que les courbes DSC ne présentent pas de fluctuations dans le domaine de chauffage. La phase Hcp DO₁₉-Ti₃Al caractéristique de cette composition (80 m.%Ti) reste stable jusqu'à la température 1200°C et ce d'après le diagramme d'équilibre de phases (Fig. II-1) [13].

Figure IV-8. Courbes DSC de l'alliage Al-80 m.%Ti.

CHAPITRE V

Etude de la toxicité de Al et de Ti

Chapitre V Etude de la toxicité de Al et de Ti

V-1. Elevage des escargots

L'échantillonnage de l'escargot *Helix aspersa* a été effectué au niveau de deux sites à la wilaya de Guelma, le premier site à Boumahra, alors que le deuxième est à Ain Elarbi. L'élevage des escargots *Helix aspersa* au niveau du laboratoire de toxicologie cellulaire (Biologie UBMA) pendant la période « Mars - Avril », Les escargots collectés sont maintenus pour 15 jours d'acclimatation aux conditions de laboratoire avant de faire d'élevage hors sol, dans les conditions standardisés, cette méthode donne naissance des nombres variables de escargots juvéniles [38-40].

FigureV-1. Photos (a) l'élevages des escargots Helix aspersa et (b) la dissection d'un escargot

V-2. Analyses des effets de toxicité de l'aluminium et du titane sur l'escargot

V-2-1. Effets de toxicité de l'aluminium sur l'escargot

V-2-1-1. Effet de l'aluminium sur l'évolution du poids de l'hépatopancréas des escargots

La figure V-2 met en évidence l'évolution du poids moyen de l'hépatopancréas des escargots en fonction des concentrations de Al, nos résultats montrent qu'il n y'a pas une différence significative entre le poids de l'hépatopancréas des témoins et celui des traités pour les différentes concentrations : 100 μ g/g, 200 μ g/g, 300 μ g/g et 400 μ g/g. Ainsi pour les témoins le poids de l'hépatopancréas est de 1,37 g, alors que pour les traités à la plus forte concentration, il est de 1,35 g.

Figure V-2. Effet de l'aluminium sur l'évolution du poids de l'hépatopancréas de l'Hélix aspersa en fonction du temps.

V-2-1-2. Effet des Paramètres biochimiques

V-2-1-2-1. Taux de protéines totales

La figure V-3 illustre l'évolution du taux de protéines totales en présence de l'aluminium. Nous constatons que chez les traités par les concentrations 100 μ g/g, 200 μ g/g, 300 μ g/g et 400 μ g/g le taux de protéines totales tend à augmenter par rapport aux témoins. En effet ce taux passe de 0,26 μ g/mg de tissus chez les témoins à 0,31 μ g/mg de tissus pour la concentration 400 μ g/g.

L'analyse statistique révèle une différence significative entre le taux de protéines totales chez les témoins et les traités par la concentration 100 μ g avec p = 0,044 et la concentration 200 μ g/g avec p = 0,043.

Figure V-3. Effet de l'aluminium sur le taux de protéines totales au niveau del'hépatopancréas d'Hélix aspersa.

V-2-1-2-2. Taux de GSH

La figure V-4 illustre les variations du taux de GSH en présence de l'aluminium. Nous remarquons que le taux de GSH a diminué chez les escargots traités comparé à celui du témoin. Ainsi, pour les témoins le taux de GSH est de 10,89 μ g/mg de protéines, alors que pour les traités à la plus forte concentration (400 μ g/g) il n'est que de 2,41 μ g/mg de protéines.

Figure V-4. Effet de l'aluminium sur le taux de GSH au niveau de l'hépatopancréas d'Hélix aspersa.

L'analyse statistique montre une augmentation hautement significative pour les escargots traités par la dernière concentration (400 μ g/g) avec p = 0,099.

V-2-1-2-3. L'activité catalase

La figure V-5 met en évidence les variations de l'activité catalase en présence de l'aluminium. Nos résultats montrent que l'activité catalase diminue légèrement chez les escargots traités par la dose 100 μ g/g, par contre elle augmente chez les traités par les concentrations 200 μ g/g, 300 μ g/g et 400 μ g/g.

En effet le taux de l'activité catalase passe de 0,40 µg/mg de protéines chez les témoins à 2,79 µg/mg de protéine pour la concentration 200 µg et 1,49 µg/mg de protéine pour la concentration 300 µg. L'analyse statistique a révélé une différence hautement significative entre le taux de l'activité catalase chez les témoins et les traités par les concentrations 200 µg/g avec p = 0,035 et 300 µg/g avec p = 0,034.

Figure V-5. Effet de l'aluminium sur l'activité catalase au niveau de l'hépatopancréas de l'Hélix aspersa.

V-2-2. Effets de toxicité du titane sur l'escargotV-2-2-1. Effet du titane sur l'évolution du poids de l'hépatopancréas des escargots

La figure V-6 met en évidence l'évolution du poids moyen de l'hépatopancréas des escargots, ainsi nous ne constatons aucune différence significative entre le poids moyen de l'hépatopancréas des témoins et des traités par les différentes concentrations de titane et ce quelque soit la concentration de titane utilisée.

Figure V-6. Effet du titane sur l'évolution du poids de l'hépatopancréas de l'Helix aspersa

V-2-2-2. Effet du titane sur les Paramètres biochimiques : V-2-2-1. Toux de protéines totales :

V-2-2-2-1. Taux de protéines totales :

La figure V-7 illustre l'évolution du taux de protéines totales en fonction des concentrations croissantes de titane.

Nous remarquons que le taux de protéines totales tend à augmenter de manière dosedépendante et non significative par rapport au témoin, ainsi chez les témoins le taux de protéines est d'environ 8,5 μ g/mg poids frais alors que pour la plus forte concentration de titane, ce taux est de 11 μ g/mg poids frais.

Figure V-7. Effet du titane sur le taux de protéines totales au niveau de l'hépatopancréas de l'*Helix aspersa*.

V-2-2-2. Taux de GSH :

La figure V-8 illustre les variations du taux de GSH en fonction des différentes concentrations de titane. Nous constatons qu'en présence du xénobiotique le taux de GSH diminue d'une manière significative chez les escargots traités par les plus fortes concentrations (300 et 400 μ g/g), avec P = 0.04 et P = 0.05.

Ainsi chez les témoins le taux de GSH est de 11 μ g/mg de protéines, alors que chez les traités à la plus forte concentration celui-ci est 4 fois moins élevé que le témoin, il est d'environ 1,26 μ g/mg de protéines pour la concentration 300 μ g/g et 2 μ g/g pour la concentration 400 μ g/g.

Figure V-8. Effet du titane sur le taux de GSH au niveau de l'hépatopancréas de l'*Helix* Aspersa

V-2-2-2-3. Activité catalase

Figure V-9. Effet du titane sur l'activité de la catalase au niveau de l'hépatopancréas de l'*Helix* aspersa

La figure V-9 représente les variations de l'activité catalase en fonction de différentes concentrations du titane.

Nos résultats montrent qu'il n'y a aucune différence significative entre le témoin et les individus traités par les concentrations (200, 300 et 400 μ g/g) en revanche, chez les traités par la concentration 100 μ g/g, nous constatons une augmentation significative de l'activité catalase avec un p = 0.05.

V-3. Corrélation des résultats d'analyses de toxicité

Nous nous sommes intéressés à suivre l'effet du titane et de l'aluminium sur le taux de protéines totales et nous avons remarqué une augmentation dose-dépendante de celui-ci chez les escargots traités par les différentes concentrations des 2 métaux, l'aluminium et le titane. Ces résultats sont en accord avec ceux trouvés en utilisant les poussières métalliques en général chez l'escargot *Hélix aspersa* [66-68].

Nous avons noté une diminution significative du taux de GSH en présence du titane, chez les escargots traités par les plus fortes concentrations (300 et 400 μ g/g), nous avons également mis en évidence une diminution significative du GSH en présence de fortes doses d'aluminium (400 μ g/g), cette déplétion peut être expliquée par la liaison directe du glutathion au métal.

Concernant l'activité catalase, nous avons remarqué une augmentation significative de celleci chez les individus traités par la dose (100 μ g/g) de titane et les doses 200 et 300 μ g/g d'aluminium due probablement à l'intensification de l'activité antioxydante dans les cellules de l'hépatopancréas. En effet l'activité catalase consiste en une transformation du peroxyde d'hydrogène (H₂O₂) en eau et en oxygène moléculaire ou la production de peroxyde d'hydrogène est induite par la présence de composés exogènes à l'organisme. En revanche nos résultats montrent un retour à la normale de l'activité catalase chez les individus traités par les doses ($300 \ \mu g/g$ et $400 \ \mu g/g$) de titane et la dose ($400 \ \mu g/g$), d'aluminium, ce résultat peut être expliqué par la diminution de la consommation de la nourriture contaminée chez l'*Helix aspersa*, ce qui entraîne une diminution du taux de consommation de la nourriture fortement contaminée [66-67]. Il est capable de réguler la quantité de métaux dans sa masse corporelle avec pour conséquence une diminution de la consommation alimentaire aux fortes doses de xénobiotiques. Donc l'animal se met dans un état de jeûne prolongé pour éviter la nourriture contaminée, ce qui a pour conséquence une perturbation de sa croissance [38,68].

En conclusion, L'utilisation des escargots, *Hélix aspersa*, comme bioindicateur de pollution s'est montrée convenable pour l'évaluation des effets toxiques des sols par les métaux. Il paraît évident que l'aluminium et le titane sont toxiques pour les organismes vivants. Cette toxicité se manifeste chez l'escargot *Hélix aspersa* au niveau cellulaire par une perturbation de la masse de l'hépatopancréas et de l'augmentation du taux de protéines totales, en plus de la diminution significative du taux de glutathion, et l'intensification de l'activité catalase connue pour son rôle dans la détoxication.

Conclusion Générale

Conclusion générale

Le travail réalisé a porté sur l'étude les propriétés microstructurales cristallines aux 2 états, ainsi élaborés (bruts) et traités thermiquement (500 °C, 1 heure), d'alliages binaires Al-20, 40, 50, 60, 70 et 80 m.%Ti solidifiés sous vide par fusion à induction magnétique hf et les effets de toxicité des éléments d'alliages Al et Ti sur des organismes vivants (l'escargot).

L'affinement Rietveld (MAUD) des diffractogrammes DRX (I, $2\theta^{\circ}$) aux 2 états, bruts et traités, des alliages binaires Al-Ti élaborés a permis de révéler les phases Al_xTi_y qui se sont formés entre les éléments d'alliage Al et Ti, les cartes cristallographiques (ICDD-JCPDS 1997) pour indexer ces phases identifiés sur les spectres DRX. Les caractéristiques cristallines des phases principales du système d'alliages binaires Al-Ti ont été étudiées à l'état traité des compositions où elles sont bien diffractées en conformité avec le diagramme d'équilibre: 80 m.%Ti pour la phase Hcp DO₁₉-Ti₃Al (α 2-Ti₃Al), 70 m.%Ti pour la phase tétragonale γ -TiAl, 50 m.%Ti pour la phase tétragonale oC₁₂-TiAl₂ et 20 m.%Ti pour la phase tétragonale DO₂₂-TiAl₃. Les observations de microscopie optique et MEB montrent une morphologie de surface à grains en général sphériques associées à des microstructures lamellaires. Les essais de DSC ont déterminé les transformations de phase qui se sont produites dans ces alliages Al-Ti étudiés.

Les effets de toxiques des poudres des éléments d'alliage Al et Ti sur les organismes vivants ont été réalisés sur des escargots *"Helix aspersa"* utilisés comme bio-accumulateurs et bio-indicateurs de la toxicité des ETM (Elément Trace Métallique). Il paraît évident que l'aluminium et le titane sont toxiques pour les organismes vivants. Cette toxicité se manifeste chez l'escargot *"Hélix aspersa"* au niveau cellulaire par une perturbation de la masse de l'hépatopancréas et de l'augmentation du taux de protéines totales, en plus de la diminution significative du taux de glutathion, et l'intensification de l'activité catalase connue pour son rôle dans la détoxication.

Références

Références

- [1] C. Vargel, Le comportement de l'aluminium et de ses alliages, Dunod Paris (1979).
- [2] Al, ICDD-JCPDS 1997, carte n° 04-0787.
- [3] D. Adenis, Précipitation dans les alliges légers industriels, Revue de l'aluminium 373, (Avril 1969), pp. 331-436.
- [4] α-Ti alpha, ICDD-JCPDS 1997, carte n° 44-1294.
- [5] β-Ti, ICDD-JCPDS 1997, carte n° 44-1288.
- [6] Salim Boulkhessaim, Caractérisation microstructurale des alliages Al-Ti, Thèse de Magister
- (2009), Université Badji-Mokhtar de Annaba, Algérie.
- [7] W.G. Burgers, Metallwirstchaft 13 (1993) p. 785.
- [8] J.C. Williams, B.S. Hickman et D.H. Leslie, Metall. Trans. 2, (1971), pp. 477-484

[9] Gwénaël Texier, *Elaborations et caractérisations micro et nanostructurales d'alliages à base de titane à destination biomédicale*, Thèse de doctorat Rennes (2005), France.

- [10] Ti₃Al, ICDD-JCPDS 1997, carte n° 14-0451.
- [11] γ-TiAl, ICDD-JCPDS 1997, carte n° 05-0678.
- [12] Al₃Ti, ICDD-JCPDS 1997, carte n° 3744-1449.
- [13] J.L. Murray, Al-Ti phase diagram, Vol. 3, ASM Handbook: Alloy Phase Diagrams (1997), pp. 327-328.

[14] W.B. Pearson. *A handbook of lattice spacing and structure of metals and alloys*, Oxford: Pergamon (1987), p.102.

- [15] A. Loiseau, A. Lasalmonie, Acta Crystallographica B 39 (1983), pp. 580-587.
- [16] K. S. Chan, Y.-W. Kim, Metallurgical Transactions A 23(6) (1992), pp 1663-1677.
- [17] Al₅Ti₃, ICDD-JCPDS 1997, carte n° 42-0810.
- [18] Al₂Ti, ICDD-JCPDS 1997, carte n° 42-1136.
- [19] M. Palm, L.C. Zhang, F. Stein, G. Sauthoff, Intermetallics 10 (2002), pp. 523-540.
- [20] Al₁₁Ti₅, ICDD-JCPDS 1997, carte n° 42-1135.
- [21] Al₂₃Ti₉, ICDD-JCPDS 1997, carte n° 18-0069.
- [22] G. Ghosh, M. Asta, Acta Materialia 53 (2005), pp. 3225–3252.
- [23] F.J.J. Van Loo and G.D. Rieck, Acta Metallurgica 21 (1973), pp. 61-71.
- [24] S. Djanarthany, J.-C. Viala, J. Bouix, Materials Chemistry and Physics 72(3) (2001), pp. 301-319.
[25] Y.W. Kim, D.M. Dimiduk, Journal of Metals 43(8) (1991), pp. 40-47.

[26] S.C. Huang, D.W. Mc Kee, D.S. Shih, J.C. Chesnutt, proceeding of internationl symposium on intermetalliics compound, structure and mechanical properties, ed. O. Izumi, the Japan Inst. of Metals (1991), p. 363.

[27] D.S. Shih, S.C. Huang, G.K. Scarr, H. Jang, J.C. Chesnutt, *Microstructure property relationship in titanium aluminides and alloys*, eds Y.W. Kim et R.R. Boyer, TMS Soc. (1991), p. 135.

[28] ω -Ti, Frédéric Prima, *Etude métallurgique d'un nouvel alliage de titane \beta-métastable*, Thèse de Doctorat de Sciences des Matériaux-option Métallurgie, Rennes (2000), France, p.12.

[29] I.Kebbache, *Caracterisation microstructurale et cristallographique des alliages a base de cuivre elabores par procede hf*, Doctorat en Sciences (2011), Université Badji-Mokhtar de Annaba, Algérie.

[30] A. Bourbia, Étude du durcissement mécanique des matériaux métalliques: Al-Al₂O₃, Doctorat en Sciences (2010), Université Badji-Mokhtar de Annaba, Algérie.

[31] S. Boulkhessaim, M. Draissia, A. Fekrache, M.Y. Debili, Sciences, Techniques & Développement II(8) ANDRU (2011), pp. 280-287.

[32] C.etienne, J.J. Suñol analyse structurale des matériaux avances. (2010) , université de girona espagne.

[33] B. D. Cullity, Elements of X-ray diffraction, 2nd edition Addison Wesley, MA, 1978.

[34] Lutterotti L. MAUD CSD Newletter (IUCR) 24 (2000).

[35] H. Bedboudi, S. Boulkhessaim, A. Bourbia, M. Draissia, M.Y. Debili, Eur. Phys. J. Appl. Phys. 59, 30701 (2012).

[36] H. Bedboudi, *Propriétés de microstructures des alliages de fusion HF Al-Zn et Al-Cu-Zn*, Doctorat en Sciences, Université Badji-Mokhtar de Annaba (2010), Algérie.

[37] D. Parés, E. Saguer, J. Saurina, J. J. Suñol, M. Toldrà, C. Carretero. Journal of Thermal Analysis and Calorimetry Vol(52), Number 3 1388-6150

[38] A. Atailia, *Effet des poussières métalliques d'origine industrielles sur un organisme animal bioindicateur / bio-accumulateur de pollution : " Helix aspersa"*, Thèse de Magister, Université Badji-Mokhtar de Annaba (2009), Algérie.

[39] M. Boucenna, Etude de la toxicité des poussières métalliques rejetées par les aciéries 1 et 2 du complexe sidérurgique sur un modèle bio-accumulateur : " Helix aspersa", Thèse de Magister (2010) Université Badji-Mokhtar de Annaba, Algérie.

[40] N. Grara, Evaluation de la toxicité de certains polluants industriels sur un animal bioaccumulateur (Gastéropode: "Helix aspersa") : cas des métaux, Thèse de Doctorat en sciences (2011) Université Badji-Mokhtar de Annaba, Algérie.

[41] Scott R. Broderick, Hafid Aourag, KrishnaRajan, Physica B 406 (2011), pp. 2055-2060

[42] Xun-qiong Tan, JieChen, WeiZhi, John Brown, Physica B 405 (2010), pp. 3543–3546

[43] H. Bedboudi, A. Bourbia, M. Draissia, S. Boulkhessaim, M.Y. Debili, Defect and Diffusion Forum Vol. 303 – 304 (2010), pp. 39-53.

[44] H. Bedboud, A. Bourbia, M. Draissia, M.Y. Debili, 2008, *Journal of Nano Research* 3 (2008), pp. 45-58.

[45] M. Palm, L.C. Zhang, F. Stein, G. Sauthoff, Intermetallics 10 (2002), pp. 523-540.

[46] T. Novoselova, S. Celotto, R. Morgan, P. Fox, W. O'Neil, Journal of Alloys and compounds 436 (2007), pp. 69-77.

[47] <u>Yicong Ye, Peijie Li, Liangju He, Intermetallics</u> 18(2) (2010), pp. 292–297.

[48] S.boulkhessaim, A. Fekrache, L.Bendjedou, M. Draissia, M.Y. Debili., 1ère conférence internationale sur les mines et la métallurgie, Université Badji-Mokhtar de Annaba, 10-12 mai 2010, Algérie.

[49] M. Draissia, S. Boulkhessaim, H. Bedboudi, A. Bourbia, M.Y. Debili, PTM2010, June 6-11, 2010 Palais des Papes, Avignon, France, Proceeding: Solid-Solid Phase Transformations in Inorganic Materials, p. 107.

[50] S. Zghal, M. Thomas, S. Naka, A. Finel, A. Couret, Acta Materialia 53 (2005), pp. 2653–2664.

[51] J.L. Murray, Phase Diagrams of Binary Titanium Alloys, ASM International, Metals Park, OH, 1987.

[52] J.H. Perepezko, Iron Steel Inst. Jpn. Int. 31 (1991) 1080.

[53] C. Mc Cullough, J.J. Valencia, C.G. Levi, R. Mehrabian, Acta Metall. 37 (1989) 1321-1326.

[54] Z.G. Liu, G. Frommeyer, M. Kreuss, Scripta Metall. Mater. 25 (1991)1205.

[55] C. McCullough, J.J. Valencia, C.G. Levi. Acta Metall. Materials 37 (1989), pp. 1321-1336.

[56] Baldwin, M.T. Ensz, M. Essien, J. Brooks, C.V. Robino, J.E. Smugeresky, W.H.

Hofmeister, M.J. Wert, D.V. Nelson. Materials and Design 20(1999):107~113.

[57] Okamoto H. Phase Diagrams of Dilute Binary Alloys. Materials Park, Ohio, ASM International,2002, 308 p.

[58] E Illeková1, P Švec and D. Janičkovič. Journal of Physics: Conference Series 144 (2009) 012111

[59] Landolt-Börnstein. Numerical data and functional relationships in science and technology. Gr. IV, vol. 5, Phase equilibria, crystallographic and thermodynamic data of binary alloys. Subvol. 5a, 1991; 5b, 1992; 5c, 1993. Berlin, Springer.

[60] D. Batalu, Georgeta 88 Coșmeleață, A. Aloman U.P.B. Sci. Bull., Series B, Vol. 68, No. 4, 2006

[61] Nakano T, Negishi A, Hayashi K, Umakoshi Y. Acta Mater1999;47:1193

[62]K. Hayashi et al.Intermetallics 10 (2002) 771-781

[63] International Centre for Diffraction Data; cards 5–678 (γ -TiAl), 14–451 (α_2 -Ti₃Al), 37–1449 (Al₃Ti) and 44–1294 (γ -Ti).

[64] K. Hayashia, T. Nakanoa, Y. Umakoshi Intermetallics 10 (2002) 771-781.

[65] A.S. Ramos, M.T. Vieira, L.I. Duarte, M.F. Vieira, F. Viana, R. Calinas .Intermetallics 14 (2006) 1157-1162

[66] N. Grara, H. Berrebbah, R. Rouabhi, A. Atailia, M. R. Djebar, Environnement, Global Veterinaria 3(4) (2009), pp. 276-280.

[67] N. Grara, M. Boucenna, A. Atailia, H. Berrebbah, M. R. Djebar, Bulletin de l'Institut Scientifique, Rabat, section Sciences de la Vie 34(2) (2012), pp. 181-187.

[68] M.J. Notten, A.J. Oosthoek, J. Rozema, R. Aerts, Ecotoxicology 15(3) (2006), pp. 295-304.