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 ملخص 
يؤدي التدهور في كمية ونوعية الإنتاج إلى خسائر اقتصادية. وبالتالي، فإن التعرف على الأمراض النباتية أمر مهم  

فإن الأوراق هي الأكثر استخدامًا للكشف عن  للغاية. تظهر أعراض المرض في أجزاء مختلفة من النباتات. ومع ذلك،  

الإصابة بالأمراض. يستخدم العديد من الباحثين تقنيات الرؤية الحاسوبية للكشف عن الأمراض باستخدام صور الأوراق.  

 ( العميقة  العصبية  الشبكة  باستخدام طريقة  النباتية  الأمراض  بتشخيص  دراستنا  الأعراض DNNتقوم  هذه  على  بناءً   )

بالإضافة    ResNetو  VGG16و  AlexNet( مثلCNNرة. تم استخدام عدة نماذج للشبكات العصبية التلافيفية )المبك

. ثم قمنا ببناء واجهة ويب لتشخيص هذه الأمراض باستخدام  ضامرا عدةفئة تضم    14إلى نموذج سنقترحه لاحقًا لتحديد  

  أحد هذه النماذج.

  لشبكات العصبية التلافيفيةاالرؤية الحاسوبية، تشخيص أمراض النبات،  مفتاحية:كلمات 

 

Summary  

Degradation in the quantity and quality of production leads to economic losses. Thus, 

recognition of plant diseases is very important. Disease symptoms appear in different 

parts of the plants. However, it is the leaves that are most commonly used to detect 

infection. Many researchers use computer vision techniques to detect diseases using leaf 

images. Our study diagnoses plant diseases using the deep neural network (DNN) method 

based on these early symptoms. Several convolutional neural network (CNN) models such 

as AlexNet, VGG16 and ResNet were used in addition to a model we will propose later to 

identify 17 classes with 14 diseases. Then we built a web interface for the diagnosis of these 

diseases using one of these models.  
 

Keywords: Computer vision, Plant diseases diagnosis, CNN.  
 

 
 

Résumé 

La dégradation de la quantité et de la qualité de la production entraîne des pertes 

économiques. Il est donc très important de reconnaître les maladies des plantes. Les 

symptômes des maladies apparaissent dans différentes parties des plantes. Cependant, ce 

sont les feuilles qui sont le plus souvent utilisées pour détecter les infections. De 

nombreux chercheurs utilisent des techniques de vision par ordinateur pour détecter les 

maladies à l'aide d'images de feuilles. Notre étude diagnostique les maladies des plantes à 

l'aide de la méthode des réseaux neuronaux profonds (RNP) basée sur ces symptômes 

précoces. Plusieurs modèles de réseaux neuronaux convolutifs (CNN) tels qu'AlexNet, 

VGG16 et ResNet ont été utilisés en plus d'un modèle que nous proposerons plus tard 

pour identifier 17 classes avec 14 maladies. Nous avons ensuite construit une interface web 

pour le diagnostic de ces maladies en utilisant l'un de ces modèles. 

    
 

          Mots-clés: Vision par ordinateur, diagnostic des maladies des plantes, CNN. 
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Introduction general 
 

The occurrence of plant diseases has a negative impact on agriculture production. If 

plant diseases are not detected promptly, the risk of food insecurity will escalate [1] Pests  

detection is the basis for effective prevention and control of  plant diseases, and they play 

a vital role in the management and decision-making of agricultural production. In recent 

times, the identification of plant diseases has become a crucial matter. 

 

Plants infected with a disease typically exhibit noticeable markings or lesions on their 

leaves, stems, flowers, or fruits. Generally speaking, each disease or pest condition 

exhibits a distinct visible pattern that can be utilized to precisely diagnose anomalies. 

Plant leaves are the primary source for identifying plant diseases, and most of the 

symptoms of diseases may begin to appear on the leaves [2].  

 

In the majority of cases, agricultural and forestry experts are used to identify on-site or 

farmers identify fruit tree diseases and pests based on experience. This method is not only 

subjective, but it is also time-consuming, laborious, and inefficient. During the 

identification process, farmers with less experience may misjudge and use drugs blindly. 

Quality and output will also lead to environmental pollution, which will lead to 

unnecessary economic losses. In order to address these obstacles, the investigation of 

image processing techniques for the detection of plant diseases has emerged as a highly 

contested research topic. So, researchers usually use leaf pictures to find disease. With 

advances in machine learning, computer vision applications have been successful. This 

success led to new ways of learning called deep learning. Many new ways of learning have 

been used in agriculture, and they are becoming more popular because they work well. 

Researchers have developed convolutional neural networks (CNNs) that can be used to 

recognize shapes in images. 

 

The leaves have different appearances and textures that can help you identify the 

illness. Computers can help solve this problem by seeing things better. Finding plant 

ailments and preventing crop losses are the focus of this endeavor. This helps to improve 

production efficiency. Our study employs deep learning to identify plant diseases. We 

used different computer models, such as AlexNet, VGG16, ResNet. These models were 

used to create a website to diagnose plant diseases. 

 

This dissertation is divided into four chapters which are structured as follows: 
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The first chapter: We introduce the treatment procedures that form a system for 

detecting and classifying ill plants, extending beyond the approaches suggested by the 

current state of art. 

The second chapter: We explain how artificial neural networks evolved into 

convolutional neural networks used in this work to diagnose plant diseases.  

The third chapter: we will explain the work methodology will be explained, as well 

as an analysis of the performance of different systems implemented for the identification 

and diagnosis of plant diseases. 

The fourth chapter: We shall deliberate on the specifics of the implementation of 

the deep learning model in a web interface, with the aim of diagnosing plant diseases. 

Finally, We end this dissertation with a conclusion and some ideas for future 

endeavors.
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Chapter 1. State of the art on plant diseases detection and classification systems  
 

 

1.1 Introduction 

 

Plant Agricultural pests have a severe impact on both agriculture production and the 

storage of crops. In order to mitigate the harm caused by agricultural pests, it is 

imperative to accurately identify the pest category and implement targeted control 

measures. Therefore, it is imperative to establish an agricultural pest identification system 

[3].  

Plants infected with disease usually show obvious marks or lesions on leaves, stems, 

flowers, or fruits. Generally speaking, each disease or pest condition exhibits a distinct 

visible pattern that can be utilized to precisely diagnose anomalies. Typically, the leaves of 

plants serve as the primary means of identifying plant diseases, and the majority of the 

symptoms of diseases may manifest themselves on the leaves [4]. In figure 1.1, represent 

leaves diseased - PlantVillage. 

In most cases, agricultural and forestry experts are used to find fruit tree diseases or 

pests on-site. This method is not only subjective, but it also takes a lot of time and effort, 

and doesn't work well. Farmers who don't have much experience might make mistakes 

and use drugs without knowing what they are. The way things are made will affect the 

environment, which will make people lose money. Research into the use of image 

processing techniques for plant disease recognition has become a hot research topic [4]. 
 

 

Fig. 1.1: Examples of  leaves representing diseased plants – PlantVillage  

Groupe of data [5] 
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In this chapter, We shall explore this technique for detecting diseased plants. we 

introduce the treatment steps that constitute a system for detecting and classifying 

diseased plants by going beyond traditional methods proposed in the state of the art. 

1.2 Plant diseases 

Pests and pathogens play a large role in crop losses around the world [6]. 

Plant diseases can be attributed to a living organism (biotic) or to environmental 

factors (abiotic), such as hail, spring frosts, weather, chemical burns, and so forth. Since 

the latter are non-infectious and non-transmissible, they are less dangerous and can be 

avoided [7]. However, biotic diseases are the most dangerous and cause the greatest 

damage to crops. They are categorized into three primary categories, namely: 

 
• Fungal diseases: 

Fungi or similar organisms are responsible for approximately 85% of plant ailments, 

and their tiny and light nature makes them capable of traversing the air to infect 

other plants or trees. 

• Bacterial diseases: 

Bacteria can spread through insects, splashing water, or other diseased plants or 

tools. 

• Viral diseases: 

Viruses are responsible for the rarest plant diseases. Nevertheless, once infected, 

there is no means of eliminating the virus, and all suspect plants must be eradicated 

to stop the spread of the disease. Insects are the most prevalent carriers, requiring 

physical entry into the plant. 

The figure1.2 indicates the 3 types of diseases introduced and the symptoms linked 

to each one between them : 

 

                                         

Fig. 1.2: Different types of plant diseases [8] 



16 

Chapter 1. State of the art on plant diseases detection and classification systems  
 

 

 

1.3 Agricultural disease diagnostic systems 

 
Plant disease risk is susceptible to climate change. It is difficult to predict changes in risk 

under climate change because of the many biological interactions that result in disease. For 
instance, certain plant diseases arise when the phenology of the plant and the pathogen coincide, 
as in the case of Fusarium head blight, wherein spores are prepared to infect during the period of 
wheat flowering. [9]. 

 
According to this definition, the primary objective of a plant disease detection system is 

to accurately detect the occurrence of diseases in advance, employing several methods as 
illustrated in Figure 1.3, in order for producers to make informed choices regarding the use of 
phytosanitary products. The following outlines the fundamentals, prerequisites, and procedures 
used to evaluate plant ailments. 
 
 

 

Fig. 1.3: Block diagram of a plant disease diagnosis system 

 
 

Features of agricultural disease diagnosis system 

According to Lucas [10] a prediction system is said to be effective if it presents the 

characteristics following essential characteristics: 

 
• Reliability: Use reliable environmental data. collect climatic factors such as 

temperature or humidity precisely. 

• Simplicity: The system needs to have a user-friendly interface, making it easy for 

farmers to exploit it on a large scale.
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• Importance: The disease treated must have economic importance on the crop and 

be fairly sporadic i.e. the possibility of temporary treatment is not applicable. 

• Utility: The diagnostic system must be useful, that is to say, it allows producers to 

be relieved of several crop monitoring activities by offering the necessary 

recommendations for the application of chemicals and control illnesses at the 

appropriate time. 

• Availability: The interaction element data must be available in real time (plant 

types, plant varieties, climate data, etc.) 

• Profitable: The diagnostic system must be affordable in terms of technical cost-

health and disease management available. 

 

1.4 Agricultural disease detection steps 

The process of constructing a computer vision system involves several steps before 

reaching the desired outcome, as illustrated in the Figure 1.4. 

 

 

Fig. 1.4: Block diagram showing the steps of agricultural disease detection 

 

1.4.1 Data collection: Image acquisition 
 

As with any computer vision system, this is the initial step.  

A variety of devices are used to collect images, including drones and cameras attached to robots. 

Recent years have seen the use of mobile devices in the creation of mobile applications for the 

detection of plant ailments. The nature of the control zone and treatment objectives affect the 

choice of acquisition tool. Smartphones and robots are sufficient for areas with limited area, such 

as greenhouses. For large areas, drones or satellite imagery are recommended. 
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1.4.2 Image pre-processing 

The term "pre-processing" is commonly used to refer to operations that involve images 

at the lowest level of abstraction, where both the input and output are intensity images. 

These iconic images are of the same type as the original data captured by the sensor, with 

an intensity image usually represented by a matrix of image function values (brightness’s) 

The purpose of pre-processing is to improve the image data by suppressing unwanted 

distortions or enhancing some image features. Major datasets typically collect images in 

real-time, frequently accompanied by inaccurate data. The images are pre-processed in 

order to enhance the computational precision of the plant disease detection system before 

they are extracted. Applying pre-processing actions, such as resizing and cropping, also 

reduces the duration of the process [11]. 

The pre-processing operations can be summarized as follows: 

 
(a) Image normalisation 

When the characterization method used generates descriptors that depend on the 

image size, it is important to standardize the single size. 

The process of normalizing data is imperative as classification methodologies 

necessitate a uniform amount of information. It is also possible to reduce the size of 

the data in order to simplify processing. such as shown in the figure1.5 : 
 

                                                                     

                               

Fig. 1.5: Resizing an image 

 
 

(b) Noise cancellation 

Using low-pass filters removes noise from the scene, shooting conditions, or the 

camera's sensor. The figure1.6 shows an example of a filter called a Gaussian that 

removes unwanted noise without affecting the details in the shape.

Resizing 
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Fig. 1.6: Smoothing an image 

 
(c) Edge detection 

Edge detection refers to the process of identifying and locating sharp discontinuities 

in an image[12]. 

Edge detection helps make a leaf look better by changing its shape depending on 

how healthy the images are. Computer vision uses edge detectors called 

convolutional filtering to show areas with a lot of variation in intensity. 

We make a distinction here of the Sobel, Laplacian filters [13]. 

For illustration purposes, the figure1.7 shows the detection of edges by the related 

Sobel and Laplacian 4 filters.  

 

 

Fig. 1.7: Detecting image edges  

 
(d) Image Segmentation 

To locate areas of interest, the image is divided by segmentation. The goal is to 

pinpoint the area with atypical features: The simplified image representation makes 

it easier to analyze and more effective for distinguishing between infected and 

uninfected areas. The figure 1.8 illustrates two instances of a plant with a disease.  
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          Fig. 1.8: Examples of images before and after segmentation [14] 

 

1.4.3 Characteristics generation 

Feature extraction techniques are applied to get features that will be useful in 

classifying and recognizing images. 

They  are also useful in various image processing applications, such as character 

recognition [15]. 

To extract abnormal tissues from plants leafs consists of three steps , presented in 

block diagram bellow [16]. 

 

Fig. 1.9: Block diagram of Image analyzer [16] 
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STEP1: transform defected image to HSI color space. 

STEP2: Examining the intensity image histogram.  

STEP3: applying thresholds helps to adjust the image intensity. [16] 

Image segmentation is the process of dividing an image into regions, subregions, or 

objects with the same characteristics. The two main properties used for image segmentation 

are discontinuity and similarity. Depending on these attributes, the image segmentation can 

be categorized into two distinct categories: edged-based segmentation and region-based 

segmentation [17].  

Feature extraction is a fast and efficient way to use features learned by a pre-trained 

neural network. It propagates the input image to a layer of our own that defines it as the 

output feature. Using a pre-trained network to extract features is easy. The layer used to 

consider might change, but the process is still the same. An image is started as an input and 

its size is set by the pre-trained default input shape. The same image is sent through the 

network [18]. 

Computer vision deals with the automatic extraction, evaluation, and 

comprehension of useful data from a single image or a series of images. Automatic image 

classification systems have been developed using Convolutional Neural Networks [19]. 

Convolutional Neural Networks (CNN) are popular because they are widely used for 

unstructured data  classification [20]. 

 

1.4.4 Disease Classification and Detection 

Plant disease detection using computer vision and image processing involves the 

classification step. Given its importance in disease detection, the performance of this 

phase depends on previous stages, such as data acquisition, pre-processing stage, 

segmentation of the infected area, and the final feature extraction and selection. 

Classic classifiers such as K-nearest neighbors and Bayesian classifier were discovered 

in early research in smart agriculture. Recent years have seen the widespread adoption of 

statistical vector machines and neural networks. As a result, the algorithms used in the 

current state of the art can be summarized as follows : 

 
K Nearest Neighbor Classifier (KPVV) 

 
K-nearest neighbor is an instance-based learning method. A model is built based on 

the training samples associated with the nearest neighbor class with a distance function 

and a class selection function, without requiring a learning phase. In [21], the authors 

conducted an evaluation of the efficacy of this classifier in detecting diseases caused by 

fungi in corn leaves. 

 

 
Support Vector Machines (SVM) 
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SVM is a new type of machine learning that uses statistics. Because of its good 

reputation and higher accuracy, it has become the research focus of the machine learning 

community. This paper explains the basics of support vector machine and how it is used to 

classify things. How well an algorithm works and what the future holds for support vector 

machines in classification. Finally the prospect of support vector machines in 

classification applications. SVM has been extensively utilized in numerous research 

studies as an automated detection system for plants that are exhibiting disease. [21].  

Bayes classifiers 

The Bayes classifier is favored in pattern recognition for its exceptional performance in 

minimizing classification errors. It operates on the premise of comprehensive class 

knowledge, utilizing prior probabilities and class-specific patterns to predict future 

occurrences and assign labels to test patterns. Leveraging the Bayes theorem, it 

transforms prior probabilities into future probabilities based on pattern characteristics, 

using likelihood values as key indicators of predictive accuracy [22]. 

 

Random Forest 

Random forests are groups of trees that work together, each using random values. 

Adding more trees reduces errors. They rely on strong individual trees and connections. 

Using random features for node division works better than Adaboost. Internal estimates 

help decide feature importance and response to increasing features, applying to regression 

as well [23].  

 
Artificial neural networks 

ANNs are a part of machine learning in the field of artificial intelligence. The goal is to 

make machine learning systems that are affected by the electrical activity of the brain. 

[24]. Digital image processing and artificial neural networks are important tools for 

keeping track of plants' health [25]. 

 

 

 

 

 

 

 

1.5 Related works 
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This section examines the latest research on the deep learning application to the plant 

disease detection, particularly the work done using the PlantVillage dataset [26], the 

results are summarized in the table1.1. 

The authors of [27] suggested a method for detecting plant pathogens. There were 800 

images of cucumber leaves that represented two distinct diseases and also healthy ones. The 

authors employed their own version of the CNN algorithm. A four-fold cross-validation 

approach led to a maximum classification precision of 94.9% for the proposed algorithm.   

 

The same authors did another study [28] to find out about seven different types of 

viruses in cucumbers. They used a dataset of 7520 images that included viral diseases and 

healthy leaves. Classifiers were 82.3% accurate when tested four times to make sure they 

were correct.  

A CNN helped the authors of [29] distinguish 13 distinct types of plant ailments from 

healthy leaves. More than 3000 original images were used to represent 13 different 

diseases in different crops and two further classes for healthy leaves and background 

images. The authors employed a CNN CaffeNet model that had been trained to achieve an 

accuracy range of 91% to 98%, for testing distinct classes, and an overall precision of 

96.3%. 

 

 The people who wrote [30] used a computer program called LeNet to find two 

different types of diseases in pictures of banana leaves that were taken for the Plant 

Village project. The data had 3700 pictures, and the model was able to guess 99.72% of 

them. Deep learning was used to detect apple black rot disease severity [31] using the 

PlantVillage dataset. The portion of the data set they utilized contains more than 150 

images, arranged in four different levels of severity. Four different models were used to 

compare the results of the CNN model (VGG16, VGG19, Inception-V3 andResNet50), 

which were fine-tuned and trained from scratch. The VGG16 model was adjusted to 

achieve an accuracy of 90.4% 
 

There are many studies and articles about how to classify agricultural diseases. We will 

list them all in the table below : 
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Tab. 1.1: Summary of articles on using deep learning in detection plant diseases 

 

 
 

Deep learning models were used to classify diseases from images, a few were used to 

segment the diseased areas, and one estimated the degree of the illness. The appropriate 

treatment for that case depends on classifying whether the plant is diseased and 

identifying that disease. 

Authors 
Dataset 

Model Precision Year 
Plant type Number of classes Number of 

images 

[32] Maize 9 500 GoogLeNet, 
Cifar10 

98.9%, 

98.8% 
2018 

[33] Tomato 6 13262 
AlexNet, 

VGG1

6. 

 

      97.49%, 
97.29% 

2018 

[30] Banana 3 3700 LeNet 99.72% 2017 

[31] Apple 4 2086 

VGG16, VGG19, 
Inceptio

n-
v3,and 
ResNet

50 

90.4%with 

VGG 16 model. 
2017 

[28] Cucumber 2 7520 CNN 82.3% 2017 

 
[29] 

 
crop  

 
13 

 
3000 

CaffeNet range of 91% to 
98% 

overall precision 
of 96.3% 

 
2016 
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1.6 Conclusion 

In this chapter, We talked about the general principles of plant ailment detection 

techniques and the various phases of the adapted systems, acquisition, pre-processing, 

segmentation, etc. We introduce the different classifiers explored in the study for the 

detection of plant diseases. Our method for detecting and classifying plant diseases is 

described in the next section. 

The early detection of plants (before they start showing signs of illness) could provide 

valuable information for the implementation of effective pest control strategies and 

disease prevention measures to prevent the emergence and spread of infectious diseases. 

One of the solutions represents deep learning models that could potentially be integrated 

into a web interface. 

In contemporary times, it is imperative to implement appropriate management 

strategies, such as the utilization of fungicides and the utilization of specific chemical 

agents to combat diseases. These strategies enable us to apply pesticides with instant 

information on plant health. This improves disease control and productivity. 
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2.1 Introduction 

 
The use of Artificial Intelligence (AI) has received a lot of attention in the media 

recently. This has made many people excited, but also scared. Some of these fears are 

based on unrealistic or unrealistic ideas about what AI can do. This strong interest in AI is 

largely linked to major technological advances that have greatly improved computer 

performance in many fields, such as automatic speech recognition and computer vision. 

These advances have opened up a lot of possibilities for AI in various forms, such as 

applications, robots, chatbots, etc. It's interesting that many different areas are involved, 

like industry, health, agriculture, finance, banking, insurance, and transportation. AI will 

become more important in organizations and systems that make things. The fields of 

application for AI in these sectors continue to grow. In this situation, people usually think 

of AI as a group of tools that can help with many things like making work faster, 

improving efficiency, and making work easier. Some even argue that by transferring these 

tasks to AI systems, it will be possible to redirect the work of employees to higher "added 

value" activities. Many reports and books have talked about the (potentially) positive and 

negative impacts of AI on work and employment.[1] 

This chapter presents a theoretical overview of the evolution of artificial neural 

networks towards convolutional neural networks used in this work for diagnosis plant 

diseases. 

 

2.2 Artificial Intelligence 

 
Recent advancements have been made in artificial intelligence and machine learning 

have radically changed the way we process, analyze and manipulate images. This is largely 

due to the craze for deep machine learning, considered the new frontier of artificial 

intelligence, in which the most representative and discriminating features are acquired 

end-to-end. Convolutional neural networks have produced excellent results in 

segmentation, classification, detection and identification tasks. [2] [3]. A CNN comprises 

of two processing blocks, namely a convolutional block that generates features and a 

prediction block that executes the classification (or detection) step [4]. 

 
In this work, we propose to study CNNs as an end-to-end system and as a feature 

extractor. To make this system, we use different computer vision designs like VGG-16, 

AlexNet and ResNet. 
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2.3 Concepts on artificial neural networks 

 
Neural networks have become popular recently and are being used successfully in 

many different areas like finance, medicine, engineering, geology, physics, and biology. 

The people are excited because these networks try to show what the human brain can do. 

From a statistical point of view, neural networks are interesting because they can be used 

in prediction and classification problems [5]. Now, ANNs can identify patterns between 

input data sets and target values. ANNs can be used to predict the outcome of new 

independent input data. ANNs mimic how humans learn and can handle problems with 

complicated data, even if it's not clear or clear. So they are great for modeling agricultural 

data that can be complicated and not always straight forward [5]. 

 

2.3.1 From biological neuron to artificial neuron 

 
Artificial neural networks are like biological neural networks, which are systems of 

very simple processors and connections between them. Artificial models try to use the 

same ways that humans organize things. An artificial neural network (ANN) sees nodes 

like fake neurons. An artificial neuron is designed as a computational model of real 

neurons. Artificial neural networks are mostly used for processing information, like 

making models of real brains and studying how animals and machines behave. They can 

also be used in engineering to recognize patterns, predict what will happen, and compress 

data. These networks are mostly made up of inputs and weights. The weights add up the 

inputs and are figured out by a math trick that tells if a neuron is activated. Another 

function usually calculates the output of an artificial neuron. The neuron only adds up its 

inputs and multiplies its output by the weights [6]. Fig. 2.1: shows the biological neuron. 

 

 

 
 

 

Fig. 2.1: Biological neuron [7] 
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2.3.2 Perceptron 
 

Artificial neural network (ANN) is a type of machine learning technique. The name is 

inspired by the connections between neurons in the human brain. ANNs use data to learn 

and find hidden connections between things, even if they don't explicitly explain how they 

work. 

They have many different shapes, but they all have one thing in common: the 

neuron. Neurons are parts that work together and have different connections. In every 

neuron, input has a weight and a bias: data goes to the next level through an activation 

function. An artificial neural network is made up of many neurons that are connected 

together to solve linear or non-linear problems [8]. 

The figure 2.2 shows the structure of an artificial neuron. 

 

 

Fig. 2.2: Structure of an artificial neuron [8] 

 

which proceeds by summation weighted by its input vector:  

                                               I= (Input1; Input2; . . . ; InputN )∈ ℜM (2.1) 

And the synaptic weight vector: 

                                                W= (Weight1; Weight2; . . . ; WeightN )∈ ℜM (2.2) 

An adder (sum) computes the linear combination of inputs and their weights. 

An activation function controls the neuron's output intensity, collectively mimicking 

biological neuron behaviour for effective information processing in artificial neural 

networks [9]. 
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2.3.3 The multilayer perceptron 

The Rumelhart introduced the multilayer perceptron in 1986, extending the previous 

single-layer perceptron. The structure consists of three types of layers, with each neuron 

being linked to all the neurons in the next layer, resulting in a fully connected network, as 

shown in figure2.3. The dimensions of the components used to carry out the task 

determine the nature of the issue to be tackled. In other words, the number of neurons in 

the input layer determines the dimension of the processed information, whereas the 

number of neurons in the output layer determines the number of classes. As for the 

hidden layers, their numbers and the number of neurons that constitute them are design 

problems. The model's ability to grasp intricate decision boundaries is limited by the 

absence of numerous hidden neurons. Over fitting the model results in too many neurons 

reducing its generalization. Thus, a rigorous experimentation is required to establish a 

satisfactory balance between the number of omitted nodes and the network's capacity for 

generalization [10].  
 
 

                                                                      

 

        Fig. 2.3: Schematic representation of an MLP with a single hidden layer 

 
The PMC was trained by the error gradient back propagation algorithm proposed by 

Rumelhart [10] , This allows information to flow in the opposite direction in the network 

in order to calculate the gradient. The mean square error E between the estimated output 

vector y and the real output vector yr is used to adjust the synaptic weights of all the 

neurons of the different layers by the following equation: 

 

 

 

                                       𝐸 =
1

2
∑ (𝑦𝑟

𝑖 − 𝑦𝑖)
2𝑁

𝑖=1                                   (2.3)                                                         
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The synaptic weights are modified such that : 

𝑤(𝑡 +  1)  =  𝑤(𝑡)  +  ∆𝑤(𝑡 +  1) 

∆𝑤(𝑡 +  1)  =  −𝛼
𝜕𝐸

𝜕𝑤
+  𝜇∆𝑤(𝑡)                                             (2.4) 

t : current iteration (corresponding to the passage of data through the network). 

∆w(): Change in weight with each iteration. 

𝝏𝑬

𝝏𝒘
  :  error gradient  with respect to weight w. 

It should be noted that the objective is to minimize a cost function represented by the 
mean square error E down to its local minimum, which is called descent of the gradient. 

The parameter α shows how fast or slow the gradient descends in the direction of the local 
minimum, which determines how fast or slow the local minimum is approached. The 
picture shows how much the learning step weaving is important and how much it affects 
things. 

 
 

 

Fig. 2.4: the impact of the learning step weaving [11] 

 
The parameter µ momentum lets us keep track of the last update of the synaptic 

weights so that we can use it in the current update (iteration t+1) 
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2.4 CNN Convolutional  Neural  Networks 

A Convolutional Neural Network (CNN) is a deep learning architecture that is inspired 

by the natural visual perception mechanism of living creatures. In 1959, Hubel and Wiesel 

[12] discovered that cells in animals' eyes can detect light in their eyes.  

CNN is considered to be the predecessor of CNN. In 1990, LeCun [13] and his team 

wrote the first paper about CNN. They improved it later in [14]. It can show the original 

picture well and recognize patterns right away without any extra work. Zhang et al.  [15] 

used a shift-invariant artificial neural network (SIANN) to recognize characters in an 

image. 

CNN makes it easier to extract features manually. Actually, it takes out important 

parts of the picture and gives them different weights and biases to make them stand out. 

Each input image will go through two blocks: the convolution block and the classification 

block. 
 

 

Figure 2.5 represent a simplified illustration of a neural network based on a fixed-size 

image of wheat spike part. Each convolutional layer automatically extracts useful features, 

such as edges or corners, and outputs a number of feature maps. Pooling actions reduce 

the dimensions of the feature maps to boost effectiveness. The number of data 

representations is progressively augmented within the network to enhance classification 

precision. Standard neural network layers are used to output probabilities for each class. 

[16]   

 
 

 

Fig. 2.5: Illustration of the CNN architecture 

 



33 

Chapter 2. Convolutional Neural Networks 
 

 

 
2.4.1 Convolutional Layer 

 
The convolution layer is made up of multiple feature maps that are made by combining 

the convolution kernel with the input signal. Each convolution kernel is a weight matrix, 

which can be a 3×3 or 5×5 matrix for a two-dimensional (2D) single channel image. 

figure2.6 illustrates an example of the 2D convolution.  

 

 

 
 
 
 
 

Fig. 2.6: Example of the 2D convolution. 
 

 

The convolution procedure permits the processing of variable-sized inputs by 

employing convolution kernels, and diverse input characteristics are uncovered by the 

convolution procedure in the convolution layer. Lower-level features such as edges, end 

points and corners are extracted from the first layer The next layer extracts more intricate 

and higher-level characteristics by processing the lower-level ones. Sparse interactions 

and weight sharing are the predominant characteristics of the convolution layer [17].
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2.4.2 Pooling Layer 

In a convolutional neural network, a pooling layer is often used. The objective is to 

gradually reduce the size of the representation. It therefore reduces the number of 

features and the computational complexity of the network. The pooling layer operates on 

each feature map independently.[18] It is similar to reducing the resolution in the image 

processing domain. Number of kernels is not affected by pooling.[19] 

The choice of kernel size and stride is also relevant for the pooling phases. There are 

three types of pooling: 

(1) max pooling: selects the maximum element from the region of the feature map 

covered by the kernel. 

(2) average pooling: calculating the average for each patch of the feature map.  

(3) min pooling: selects the minimum element from the region [20]. 

The figure2.7 represented an example of max-pooling and average pooling operations.  
 

 

Fig. 2.7: Example of a pooling operation. 

{ The max-pooling with 2×2 kernel and stride 2 lead to down-sampling of each 2×2 blocks 

is mapped to one block.}  

 A max pooling is the most popular approach used in the pooling operation A kernel 

of 2 by 2 would traverse over the entire matrix with a stride of 2 and pick the largest 

element from the window to be included in the next representation map.  
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2.4.3 Flatten Layer 

 
After passing the convolution and pooling layers and before entering the fully 

connected layers, the output of the earlier layers is passed for flattening. By this, it is 

meant that the dimensions of the input array from previous phases are flattened out into 

one large dimension. For instance, a 3D array with a shape of 10×10×10 when flattened  

would become a 1D array with 1000 elements, which is rendered in Figure 2.8. [21] 
 
 
 

 
 

Fig. 2.8: Flattening mechanism 

 
 

 
2.4.4 CNN  Settings 

 
Filtered 

 
The convolution is a mathematical technique used to extract features from an image. 

The convolution is determined by the image kernel. The image kernel is simply a small 

matrix. A 3x3 kernel matrix is very common [22]. Nine filtered matrixes called "feature 

maps" are created by this procedure can be shown Figure 2.9 . 



36 

Chapter 2. Convolutional Neural Networks 
 

 

 
 
 
 

            
 

Fig. 2.9: Feature maps 

 

Stride 

Stride is the number of pixels shifts over the input matrix. For padding p, filter size 

𝑓∗𝑓 and input image size 𝑛 ∗ 𝑛 and stride ‘𝑠’ our output image dimension will be:  

[ {(n +  2p −  f +  1) / s}  +  1]  ∗  [ {(n +  2p −  f +  1) / s}  +  1] 

 
Zero Padding 

After convolution, our original image gets smaller. This happens because there are 

many layers of processing involved in image classification. If we do many convolutions, 

our original image will get smaller, but we don't want it to shrink every time.  

The second problem is that when the kernel moves over the original images, it touches 

the edges less often and touches the middle of the image more often. It also overlaps in the 

middle. We don't use the corners or edges of any picture much in the final result. 

 
Activation functions 

Artificial neural networks use activation functions to transform input signals into 

output signals, which are fed as input to the next layer in the stack. In a neural network 

constructed from artificial neural cells, we calculate the sum of the product of inputs and 

their respective weights, then employ an activation function to obtain the output of that 

particular layer and use it as the source of input for the following layer [23]. we cite the 

most used:  

 
■ Sigmoid 

It is widely utilized as an activation function due to its non-linear nature. The 

sigmoid function transforms values between 0 and 1. It's defined as:  
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                                                  𝐹(𝑥) =
1

𝑒−𝑥
 

 
 

 (2.5) 

 
 

■ Softmax 

The Softmax function combines many sigmoid functions. Since a sigmoid function 

returns values from 0 to 1, these can be treated as probabilities of a particular class 

of data points.  

The softmax function, unlike the sigmoid functions used for binary classification, 

can be used for multiclass classification problems. The function returns a value for 

each data point in all the classes. It can be expressed as:  

 

 

                                                 𝐹(𝑥) =
𝑒

𝑧𝑗

∑ 𝑒
𝑧𝑗𝐾

𝑘=1

                                                                                              
                                 (2.6)    

The output layer of a network or model for classification of multiple classes will have  
the same number of neurons as the classes in the target when we build it. 
 

■ Rectified Linear Unit (ReLU) 

Rectified linear unit is a non-linear activation function , widely used in neural 

networks. A certain number of neurons are activated at a time, which makes ReLU 

more efficient than other functions. The weights and biases are not updated during 

the back- propagation step in neural network training when the value of gradient is 

zero. described by the following equation:  
 

𝑅(𝑧) = max (0, 𝑧)    [24] (2.7) 

Batch normalization 

 
Batch normalization (BN) is a technique for normalizing activations in deep neural 

networks. BN is a popular technique for deep learning because it helps improve accuracy 

and speeds up training [25]. 

Dropout 

 
Dropout is a new algorithm for training neural networks that relies on dropping out 

neurons during training to avoid feature detectors co-adapting [26]. 
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             Fig. 2.10: Dropout mechanism in a multilayer neural network. 

  

2.5 Architectures used 

In our work, we are interested in the use of models (ResNet152v2, ResNet18, 

VGG16, AlexNet) which constitute reference architectures of CNNs, for classification 

and detection of agricultural diseases. 

 
2.5.1 Model 01: AlexNet 

AlexNet was designed by Hinton, winner of the 2012 ImageNet competition, and his 

student Alex Krizhevsky. The name comes from Alex Krizhevsky, in 2012 with a top-5 

error rate of 15.3%, it won the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) [27]. The most important features of the AlexNet paper are:  

• Since the model had to train 60 million parameters (which is quite a lot), it was 

prone to overfitting. The paper found that Dropout and Data Augmentation 

significantly helped reduce overfitting. The first and second fully connected layers in 

the structure thus utilized a 0.5-point dropout for their respective purposes. By 

augmenting the number of images artificially, the dataset expanded dynamically 

during execution, allowing the model to generalize better. 

• Another important thing was using ReLU activation instead of tanh or sigmoid, 

which made training faster (6 times faster) . Deep Learning Networks usually use 

ReLU non-linearity to train faster because other methods get saturated when they 

reach higher activation values. 
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Architecture 

The architecture has eight layers, five of which are convolutional and three of which 

are fully connected as shown in the figure 2.11. According to [28] here are some of the 

characteristics used which constitute new approaches to convolutional neural networks: 

• ReLU nonlinearity: The tanh function, which was the standard at the time, is 

replaced by Rectified Linear Units (ReLU) in AlexNet. A CNN trained using ReLU 

reached a 25% error on the CIFAR-10 dataset six times faster than a CNN trained 

using Tanh. 

• Multiple GPUs: 

Back in the day, graphics cards GPUs were still rolling around with 3 gigabytes of 

memory (nowadays those kinds of memory would be rookie numbers) The training 

set had 1.2 million images, which made this especially bad. AlexNet allows for multi-

GPU training by placing half of the model's neurons on one GPU and the other half 

on another GPU. This allows for training with multiple GPUs. This not only allows 

for the development of a larger model, but it also shortens the duration of the 

instruction. 

• Overlap Pooling (Overlapping Pooling): 

CNNs usually "pool" the output of neighboring groups of neurons without 

overlapping. But when the authors added overlap, they saw a reduction in error of 

about 0.5% and found that models with overlapping pooling are harder to overfit. 

 

 
Fig. 2.11: Architecture of the AlexNet model 
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2.5.2 Model 02: VGG16 

VGG is a convolutional neural network. proposed by K. Simonyan and A. Zisserman 

from Oxford University. It became popular after winning the ILSVRC (ImageNet Large 

Scale Image Recognition Competition) in 2014. The model was accurate by 92.7% on 

Imagenet, one of the best results [29].  
 

Architecture 

There are two algorithms: VGG16 and VGG19. In this work, we'll use the VGG16 only. 

Both designs are similar, but VGG19 has more layers for convolution. The architecture of 

VGG-16 is shown in Figure2.12. 
 

 

Fig. 2.12: Architecture of the VGG16 model 

 
This model improves AlexNet by replacing large filters with a stack of3x3 size filters.  

 

The model only requires specific pre-processing, which consists of subtracting the 

average RGB value, calculated over the training set, from each pixel. 

 

The first convolution layer's input during training is a RGB image with dimensions of 

224 x 224. The size of the convolution kernel is the smallest dimension to capture the 

notions of top, bottom, left, right, and center. The model had this feature at the time of 

publication. Until VGG16, many models were oriented towards convolution kernels of 

larger dimensions (size 11 or size 5, for example) Only discriminating information such as 

atypical geometric shapes can be retained by these layers.   

 

The convolution layers are accompanied by Max-Pooling layers, each of size 2×2, to 

minimize the size of the filters during training.   

 

There are 3 layers of fully-connected neurons at the output of the pooling layers. The 

first two are composed of 4096 neurons and the last of 1000 neurons, each with a softmax 

activation function to determine the image class.  
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2.5.3 Model 03: ResNet152v2 

Deep neural networks are getting deeper and more complicated. It has been proven 

that adding more layers to a neural network can make it more robust for image-related 

tasks. But it can also cause them to lose their accuracy. That's where Residual Networks 

come into play. Deep learning practitioners tend to add so many layers in order to extract 

important features from complex images. There may be edges and recognizable shapes at 

the end of the first layers. Adding more than 30 layers to the network affects its 

performance and results in low precision. The notion that enlarging a neural network 

improves it is unfounded. This is not due to over fitting, because in that case, one could 

use dropout and regularization techniques to solve the issue altogether. The problem is 

caused by the popular vanishing gradient problem [30].  

The ResNet152 model with its 152 layers topped the ILSVRC Imagenet 2015 test, 

despite having fewer parameters than the VGG19 network, which was a huge hit at the 

time. A residual network is composed of residual units or blocks that have no connections, 

also known as identity connections.  

The output from the previous layer is added to the output of the layer after it in the 

residual block. There could be 1, 2 or even 3 hops or skips. A reduction of its dimensions 

may be caused by the convolution process when adding. Thus, we include an additional 1 x 

1 convolution layer to alter the dimensions of x.  

 

The figure2.13 illustrates a residual block with a convolution layer3×3, a normalization 

layerbatch, and a ReLU activation function. The latter is continued by a 3×3 convolution 

layer and a batch normalization layer. The skip connection effectively skips these two 

layers and is added prior to the ReLU activation function. A residual network is formed by 

repeating such residual blocks.  

 
 

                                                                    Fig. 2.13: A residual block
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After comparing all the different CNN designs, ResNet had the lowest error rate of 

3.57% for classification tasks, which was better than all the other designs. Even humans 

don't have much lower error rates than machines [30]. 

 

 

 
Fig. 2.14: The basic architecture of ResNet. 

 

It can be said that residual networks have become very popular for image recognition 

and classification tasks because they can fix vanishing gradients when adding more layers 

to a deep neural network with a total number of parameters of about 60 million. Right 

now, the thousand-layer ResNet is not very useful. 
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2.6 Transfer Learning 

Transfer learning is a technique in machine learning where a model that has been 

trained on one task is used to train another one. This can be useful when the second task 

is similar to the first task or when there is limited data available for the second task. This 

can be useful when there is limited data available for the second task. The model can learn 

more quickly and efficiently on the second task by applying the lessons learned from the 

first task. The model will already be aware of the general characteristics that are likely to 

be useful in the second task, which can prevent overfitting [31]. 

 
Why learning by transfer ? 

In the early layers of a deep neural network trained on images, a deep learning model 

tries to learn a low level of features, like detecting edges, colors, variations of intensity, etc. 

No matter what type of image we are processing for detecting a lion or car, such kind of 

features appear to be specific to a particular dataset or task. Both scenarios require us to 

uncover these nitty-gritty details. All of these features occur regardless of the cost function 

or image dataset. Thus, acquiring these attributes in the case of detecting lions can be 

applied to other tasks, such as detecting individuals, as well [31]. 

The figure 2.15 shows the principle of transfer learning. 

 

 

Fig. 2.15: Diagram showing the simplified process of transfer learning 

When dealing with transfer learning, we encounter a phenomenon called 

“Freezing of layers”. A layer, whether it is a CNN layer, a hidden layer, a block of layers or 

any subset of all layers, is said to be fixed when it is no longer available for learning. 

Therefore, the weights of frozen layers will not be updated during training. While layers 

that are not frozen follow the normal training procedure (see figure2.16). 
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When we use transfer learning to solve a problem, we choose a pre-trained model. 

There are two ways to use the information from the model that has already been trained. 

The first way is to keep some parts of the model we already trained and then train other 

parts on a new set of data for the new job. The other way is to create a new model and use 

some features from the model that was already trained. In both situations, we take out 

some of the things we learned and try to teach the rest of our model. This makes sure that 

the only feature that may be the same for both tasks is taken out of the pre-trained model 

and the rest of it is changed to fit the new dataset by training [31]. 

 

Fig. 2.16: Fixed layers and trainable layers 

 

The idea is therefore to fix the weights of certain layers during training and to finish the 

rest to deal with the problem. This strategy makes it possible to reuse knowledge in terms of 

the overall architecture of the network and to use its state as a starting point for training. 

Therefore, it can achieve better performance with shorter training time. 
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The figure2.17 summarizes the main transfer learning methods commonly used in deep 

learning: 
 

 
 

Fig. 2.17: Transfer learning approach in Deep Learning 

 
Therefore, one of the basic requirements of transfer learning is the existence of a 

model that performs well on the source task. Today, many state-of-the-art deep learning 

architectures are now freely available shared by their respective teams. 
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2.7 Conclusion 

In this chapter, we started by discussing the history of artificial neural networks, then 

we detailed convolutional neural networks and their main parameters. We also presented 

the pre-trained architectures which are the CNN models adopted for plant disease 

classification.  

In the following chapter we will discuss the methodology followed to create the plant 

disease diagnosis system, as well as the experimental results achieved and the different 

analyzes obtained when using the different types of the architectures. 
 

 



 

 

 
 
 
 

 

Chapter 3 

Methodology and experimental  results 
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3.1 Introduction 

This chapter is dedicated to explaining the methodology adopted and analyzing the 

performance of various systems implemented for the classification of agricultural 

diseases. Our analyses were conducted on a selected portion of the dataset available on 

Plant Village [1], which stands as a significant reference in the field of smart agriculture. 

Initially, we examine and compare pre-trained architectural models utilizing transfer 

learning techniques. In the second part, we evaluate the proposed CNN architecture for 

diagnosing plant diseases. 

 
The systems were implemented in a Python development environment under 

Anaconda. Given that training Convolutional Neural Networks (CNNs) requires 

substantial computational resources, the programs were executed on virtual machines 

through Google Colab. This service is particularly suitable for deep learning applications 

that necessitate the use of multiple specialized libraries such as Keras, PyTorch, and 

TensorFlow. It provides access to high-performance GPUs, including Nvidia Tesla 

graphics cards, with a generous memory allocation, allowing for the efficient handling of 

compute-intensive tasks. 

 
3.2 Dataset 

All CNN models were trained on a subset of 14 categories including( Tomato, Potato, 

Grape, Orange, Soybean, Squash, Corn (maize), Strawberry, Peach, Apple, Blueberry, 

Cherry (including sour), Raspberry, and Pepper, bell) from a total of 70,295 images. This 

data is derived from a publicly accessible database known as Plant Village, which contains 

a total of 54,306 images featuring 38 different healthy/diseased leaves across 14 plant 

species. 

The entire database is available on Kaggle, showcasing various plant diseases as 

illustrated in figure 3.1. 

 

 

Fig. 3.1: Some examples of plant diseases from the PlantVillage database 
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All images in the Plant Village database were captured at experimental research 

stations associated with Land Grant Universities in the United States (such as Penn State, 

Florida State, Cornell, among others). The collection of images is ongoing, and the 

database is expected to expand over time. These experimental research stations, both 

public and private, provide the opportunity to capture a large number of images in a short 

period. The majority of the images were taken by two technicians working as a team. 

During field trials of crops infected with a disease, the technicians collected leaves by 

detaching them from the plant. The leaves were then placed on a sheet of paper serving as 

a gray or black background. All images were captured outdoors, in natural light, which 

could vary from bright sunlight to cloudy conditions. This variety was intentional to mimic 

the range of conditions under which the end user (a farmer with a smartphone) might take 

pictures. For each leaf, 4 to 7 images were collected using a standard digital camera (Sony 

DSC Rx100/13, 20.2 megapixels) in automatic mode. The leaf was rotated 360 degrees 

during the photo shoot. 
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Distribution some samples 

In this study, we used a subset consisting of 70,295 images from 14 different plant 

types, namely: Apple, Blueberry, Cherry (including sour), Corn (maize), Grape, Orange, 

Peach, Pepper, bell, Potato, Raspberry, Soybean, Squash, Strawberry, and Tomato. The 

analysis of multi-class pathologies was conducted on the infections affecting these plants, 

where the distribution of classes is as detailed on the table3.1. 

 
Type of food Associated disease Number of images 

 
Grape 

Black rot 1888 

Esca (Black Measles) 1920 

Leaf blight (Isariopsis Leaf Spot) 1722 

Healthy 1692 

 
Potato 

Early blight 1939 

Late blight 1939 

Healthy 1824 

 
 
 

Tomato 

 

 

 

Bacterial spot 1702 

Early blight 1920 

Late blight 1851 

Leaf Mold 1882 

Septoria leaf spot 1745 

Spider moths Two-spotted spider 
moth 

1741 

Target Spot 1827 

Yellow Leaf Curl Virus 1961 

Mosaic viruses 1790 

Healthy 1926 

Strawberry   Leaf scorch 1774 
  Healthy 1824 

Apple   Cedar apple rust 1760 
  Black rot 1987 

  Apple scab 2016 
  Healthy 2008 

Blueberry   Healthy 1816 

Cherry   Powdery mildew 1683 
  Healthy 1826 

 
 

Corn 

  Common rust 1907 
  Gray leaf spot 1642 
  Northern Leaf  
  Blight 

1908 

  Healthy 1859 
Orange   Haunglongbing 2010 

Pepper  bell   Bacterial spot 1913 

  Healthy 1988 
Peach   Bacterial spot 1838 

  Healthy 1728 
Raspberry   Healthy 1781 

Soybean   Healthy 2022 

Squash   Powdery mildew 1736 

           Tab. 3.1: Distribution of samples from the Plant Village dataset 
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This classification provides a comprehensive overview of the dataset's diversity in 

plant health conditions, serving as a foundation for the detailed multi-class analysis of 

plant pathologies.  

It's observed that the dataset is significantly imbalanced, meaning there are classes 

represented with more instances than others. In such cases, CNN models tend to create a 

biased learning model that has poorer predictive accuracy on the minority classes 

compared to the majority classes. In rare instances, such as fraud detection or disease 

prediction, as in our case, it is crucial to correctly identify the minority classes. Therefore, 

the model should not be biased to only detect the majority class but should give equal 

weight or importance to the minority class. Consequently, the number of data per class 

needs to be increased. Today, a very popular technique called "data augmentation" is used 

to increase the amount of data in the training set by adding slightly modified copies of 

existing data or newly created synthetic data from existing data. This technique is 

explained as follows. 

 

Data augmentation 

Data augmentation enhances the diversity of our training dataset by applying random 

(yet realistic) transformations, such as image rotation, flipping, and zooming, as 

illustrated in the figure 3.2 . 

 

 

Fig. 3.2: Examples of transformation carried out on images 
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Table 3.2 shows the distribution of samples across the 17 classes after data augmentation. 

It is noted that 80% of the samples are used for the training phase, 10% for validation, and 

10% for the testing phase.  

 
Fruit/Vegetable Disease Training Validation Test 

Apple Apple_scab 2016 504 504 
Black_rot 1987 497 497 

Cedar_apple_rust 1760 440 440 
healthy 2008 502 502 

Blueberry healthy 1816 454 454 
Cherry Powdery_mildew 1683 421 421 

healthy 1826 456 456 
Corn Gray_leaf_spot 1642 410 410 

Common_rust 1907 477 477 
Northern_Leaf_Blight 1908 477 477 

healthy 1859 465 465 
Grape Black_rot 1888 472 472 

Esca 1920 480 480 
Leaf_blight 1722 430 430 

healthy 1692 423 423 
Orange Haunglongbing 2010 503 503 
Peach Bacterial_spot 1838 459 459 

healthy 1728 432 432 
Pepper bell Bacterial_spot 1913 478 478 

healthy 1988 497 497 
Potato Early_blight 1939 485 485 

Late_blight 1939 485 485 
healthy 1824 456 456 

Raspberry healthy 1781 445 445 
Soybean healthy 2022 505 505 
Squash Powdery_mildew 1736 434 434 

Strawberry Leaf_scorch 1774 444 444 
healthy 1824 456 456 

Tomato Bacterial_spot 1702 425 425 
Early_blight 1920 480 480 
Late_blight 1851 463 420 
Leaf_Mold 1882 470 400 

Septoria_leaf_spot 1745 436 405 
Spider_mites 1741 435 520 
Target_Spot 1827 457 456 
Yellow_Leaf 1961 490 485 
mosaic_virus 1790 448 452 

healthy 1926 481 450 

Tab. 3.2: Sample distribution of our dataset after data augmentation 
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3.3 Software, libraries and hardware 

In this section, we give a brief overview of the programming language and software 

tools used in our work, namely Python, Keras, TensorFlow as well asof the material used. 

 
3.3.1 Software, booksellers 

Python 
 
 

Python is a high-level, interpreted programming 

language known for its easy-to-learn syntax that 

emphasizes readability, which helps reduce 

maintenance costs. It supports dynamic typing and 

binding, making it ideal for rapid application 

development and as a scripting language to connect 

existing components. Python's built-in data 

structures, along with its support for modules and 

packages, promote code reuse and program 

modularity. Available freely across major platforms, 

Python's extensive standard library and interpreter 

can be distributed without charge, enhancing its 

appeal[2]. 

Programmers often prefer Python due to the productivity boost it offers. The absence of a 

compilation step speeds up the edit-test-debug cycle. Debugging is straightforward, with 

exceptions raised for errors instead of segmentation faults, and a detailed stack trace is 

provided if exceptions are uncaught. Python also includes a source-level debugger for 

thorough inspection and evaluation of code. Additionally, Python's capability for 

introspection and the simplicity of adding print statements for debugging underscore its 

convenience and effectiveness in programming tasks. Python also stands out when 

compared to other languages for these reasons. 

It enables developers to create machine learning applications using various tools, 

libraries, and community resources. We worked with version: 2.9.1  
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Torchvision 
 

The torchvision library consists of popular datasets, 

model architectures, and image transformations for 

computer vision. It consists of: 

• Training recipes for object detection, image classification, 

instance segmentation, video classification and sematic 

segmentation. 

• 60+ pretrained models to use for fine-tuning (or training afresh). 

• Dataset loaders for popular vision datasets such as ImageNet, COCO, Cityscapes and 

more [3]  

 
Pytorch 

 

PyTorch is an open-source machine learning framework that extends the 

Python programming language and Torch library, initially developed as 

an internship project by Adam Paszke under the guidance of Soumith 

Chintala, a Torch developer. It is designed for both deep learning 

research and application, offering over 200 mathematical 

operations and simplifying the creation of artificial neural 

network models. PyTorch is widely used by data scientists for 

research and artificial intelligence applications, enjoying growing 

popularity due to its ease of use for prototyping and deployment. 

The framework is under a modified BSD license and has strong ties to 

Meta (formerly Facebook), where Chintala works as a researcher and 

which uses PyTorch for all AI workloads.[4]  

 

3.3.2 Material 

For the hardware used, we conducted all training on the cloud to save time since 

Convolutional Neural Networks (CNNs) require significant hardware resources. 

Therefore, we opted for the Paperspace Gradient platform. Training a CNN requires a 

substantial amount of hardware resources, so we chose to use a cloud service from the 

Paperspace Gradient platform. 

 

Google Colab 

 

Colab is a hosted Jupyter Notebook service that requires 

no setup to use and provides free access to computing 

resources, including GPUs and TPUs. Colab is especially 

well suited to machine learning, data science, and 

education.[5] 
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Caractéristique Description 

Model NVIDIA Tesla K80/T4/P100 

GPU memory 12GB GDDR5 (K80) / 16GB GDDR6 (T4, P100) 

Memory bandwidth 240 GB/s (K80) / 320 GB/s (T4) / 732 GB/s (P100) 

Processing units 4992 Cœurs CUDA (K80) / 2560 Cœurs CUDA (T4) / 3584 Cœurs CUDA (P100) 

Peak performance 8.73 TFLOPS (Simple Precision, K80) / 8.1 TFLOPS (T4) / 9.3 TFLOPS (P100) 

CUDA Version Compatible with the latest versions 

Availability Depending on the type of subscription (free or Pro) to Google Colab 

Tab. 3.3: Characteristics of GPUs used in training 
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3.4 Evaluation Metrics 

Evaluation metrics are crucial for assessing the performance of a model. One of the key 

aspects of deep learning is understanding how to evaluate our model effectively. When 

developing a model, it's vital to measure how accurately it predicts the expected outcome.  

Without properly evaluating the model using appropriate evaluation metrics, there's a 

risk of generating inaccurate predictions, especially if the dataset is imbalanced. 

Therefore, we suggest employing various evaluation metrics as described in the following 

sections. 

 
3.4.1 Classification Accuracy 

 The simplest metric for model evaluation is accuracy. It represents the ratio of the 

number of correct predictions to the total number of predictions made for a dataset. 

 

                                      Accuracy (%) =
Number of correct predictions 

Total number of predictions made
×  100                               (3.1) 

          

 

This metric is used when the dataset is balanced. 

 
3.4.2 Confusion Matrix 

A confusion matrix, or error matrix, is a table that displays the number of correct 

and incorrect predictions made by the model compared to the actual classifications in a 

dataset, thereby informing us about the mistakes (errors) made by the model. This matrix 

describes the performance of a classification model on test data for which the true values 

are known. It is an n×n matrix, where n is the number of classes. Figure 3.3 shows a 

confusion matrix for a 2-class problem. As can be seen, the results of a confusion matrix 

are classified into four major categories: true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN). 
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Fig. 3.3: Basic Confusion Matrix Model 

 

• True positives (TP):Number of samples that are truly positive and that are 

predicted to be positive. 

• True negatives (TN):Number of samples that are truly negative and that are 

predicted to be negative. 

• False positives (FP):Number of samples which are actually negative but predicted 

positive. These errors are also called type 1 errors. 

• False negatives (FN):Number of samples that are actually positive but predicted 

negative. These errors are also called type 2 errors. 
 

From the confusion matrix, we can derive 4 classification metrics:  
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Precision 

Precision answers the following question: What proportion of positive predictions is 

actually correct? It then defines the number of true positives in relation to the number of 

true positives and false positives.  

The equation can be stated as follows:  

stated as follows:  

                                                      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (%) =
TP 

TP+FP
×  100                                                  (3.2) 

 

 

Recall or Sensitivity or Recall 
 

The recall answers the following question: what proportion of true positives were 

correctly identified? It then represents the ratio between the total number of examples 

correctly classified positives and the total number of positive examples.  

The equation can be stated as follows: 

 

                                                                 𝑅𝑒𝑐𝑎𝑙𝑙 (%) =
TP 

TP+FN
×  100                                                  (3.3) 

 

 
F1-score 

 

 

The F1 score gives an overall estimate of the precision and recall of a sample. This is 

the harmonic average of the precision and recall of a sample, the score F1 can be defined 

as follows 

 

                                                𝐹1 − 𝑠𝑐𝑜𝑟𝑒(%) =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
×  100                                        (3.4) 
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3.1 Experimental protocol 

The development of a plant disease diagnostic system requires a very specific 

experimental protocol in order to achieve satisfactory results. In this section, we describe 

the adopted experimental protocol in terms of methodology, data distribution, and CNN 

architecture settings. 

3.1.1 Methodology 

Our primary goal is to develop a model capable of identifying 38 classes of plant leaves 

based on the type of crop and the diseases associated with that crop. We will use two 

methods for this purpose: 

To clarify, this work focuses on 14 different crops. We compare two methods for 

diagnosing a plant leaf. Firstly, we classify based on the crop type, and then according to 

the diseases associated with that crop. Thus, for this first method, we have 4 classification 

models. 

The second method involves creating a single model for all 38 classes, which is more 

suitable for the web application we will introduce in the next chapter. Figure 3.4 illustrates 

the two methods used for plant disease classification. 

 
 

              Fig. 3.4: Methods adopted for the diagnosis of plant diseases 

 
 

3.1.2 Data distribution 

The images collected from the Plant Village database are distributed according to the 

two protocols explained previously. 
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Protocol 01 

 
For the classification by type of plants, namely potato, grape, or tomato, we selected 

samples from each category to ensure the highest diversity possible. Notably, the dataset 

includes various classes with different numbers of images per class, as follows: 

 

- Potato has 3 diseases with a total of 5702 images (Early blight: 1939, Late blight: 1939, 

Healthy: 1824). 

- Grape has 4 diseases with a total of 7222 images (Black rot: 1888, Esca (Black Measles): 

1920, Leaf blight (Isariopsis Leaf Spot): 1722, Healthy: 1692). 

- Tomato has 10 diseases with a diverse number of images per class, contributing to a 

significant portion of the dataset.  

 

It's important to note that 80% of the samples are utilized for the training phase of 

the model, 10% for validation, and 10% for testing. This structured approach ensures a 

comprehensive evaluation of the model's performance across a variety of plant diseases. 
 

 

Tab. 3.4: Data distribution for plant type classification 

Subsequently, for the classification of diseases of each type of plant, the data were 

distributed into the 3 sets; training, validation And test according to THE tables 3.6 ,3.7 

and 3.5. 

 

Category Training (80%) Validation (10%) Test (10%) Total 

Apple 6049 756 757 7562 

Blueberry 1453 181 182 1816 

Cherry 3009 376 377 3759 

Corn 6316 789 790 7895 

Grape 7222 903 904 9029 

Orange 1608 201 201 2010 

Peach 2566 321 322 3209 

Pepper 3901 488 489 4878 

Potato 5702 713 714 7129 

Raspberry 1425 178 178 1781 

Soybean 1618 202 202 2022 

Squash 1389 174 173 1736 

Strawberry 2598 325 325 3248 

Tomato 25455 3182 3183 31820 

Total 70006 8751 8752 87509 
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Disease Training Validation Test 

Apple___Apple_scab 2016 504 100 

Apple___Black_rot 1987 497 100 

Apple___Cedar_apple_rust 1760 440 100 

Apple___healthy 2008 502 100 

 
 

Tab. 3.5: Data distribution 

Type: Apple 

 

Cherry (including sour) 

Disease Training Validation Test 

Cherry_(including_sour)___Powdery_mildew 1683 421 100 

Cherry_(including_sour)___healthy 1826 456 100 

 

Tab. 3.6: Data distribution Type: Cherry (including sour) 

Corn (maize) 

Disease Training Validation Test 

Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot 1642 410 100 

Corn_(maize)__Common_rust 1907 477 100 

Corn_(maize)___Northern_Leaf_Blight 1908 477 100 

Corn_(maize)___healthy 1859 465 100 

Tab. 3.7: Distribution of data Type: Corn 

Potato 

Disease Training Validation Test 

Potato___Early_blight 1939 485 100 

Potato___Late_blight 1939 485 100 

Potato___healthy 1824 456 100 

Tab. 3.8: Distribution of data Type: Potato 
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Tomato 

Disease Training Validation Test 

Tomato___Bacterial_spot 1702 425 100 

Tomato___Early_blight 1920 480 100 

Tomato___healthy (example) - - Multiple files with different sizes 

Tab. 3.9: Distribution of data Type: Tomato 

 

Grape 

Disease Training Validation Test 

Grape___Black_rot 1888 472 100 

Grape___Esca_(Black_Measles) 1920 480 100 

Grape___Leaf_blight_(Isariopsis_Leaf_Spot) 1722 430 100 

Grape___healthy 1692 423 100 

Tab. 3.10: Data distribution Type: Grape1 
 

Orange 

Disease Training Validation Test 

Orange___Haunglongbing_(Citrus_greening) 2010 503 100 

Tab. 3.11: Data distribution Type: Orange 

Peach 

Disease Training Validation Test 

Peach___Bacterial_spot 1838 459 100 

Peach___healthy 1728 432 100 

Tab. 3.12: Data distribution Type: Peach 
 

Pepper, bell 

Disease Training Validation Test 

Pepper,_bell___Bacterial_spot 1913 478 100 

Pepper,_bell___healthy 1988 497 100 

Tab. 3.13: Data distribution Type: Pepper, bell 
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Raspberry 

Disease Training Validation Test 

Raspberry___healthy 1781 445 100 

Tab. 3.14: Data distribution Type: Raspberry 

Soybean 

Disease Training Validation Test 

Soybean___healthy 2022 505 100 

Tab. 3.15: Data distribution Type: Soybean 

Squash 

Disease Training Validation Test 

Squash___Powdery_mildew 1736 434 100 

Tab. 3.16: Data distribution Type: Squash 

Strawberry 

Disease Training Validation Test 

Strawberry___Leaf_scorch 1774 444 100 

Strawberry___healthy 1824 456 100 

Tab. 3.17: Data distribution Type: Strawberry 

 

Blueberry 

 
Disease Training Validation Test 

Blueberry___healthy 1816 445 100 

Tab. 3.18: Data distribution Type: Blueberry 
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Protocol 02 

This time a classification of 38 classes at a time is carried out using the distribution of 

data indicated in the following table: 

Fruit/Vegetable Disease Training Validation 

Apple Apple_scab 2016 504 
 

Black_rot 1987 497 
 

Cedar_apple_rust 1760 440 
 

healthy 2008 502 

Blueberry healthy 1816 454 

Cherry Powdery_mildew 1683 421 
 

healthy 1826 456 

Corn Gray_leaf_spot 1642 410 
 

Common_rust 1907 477 
 

Northern_Leaf_Blight 1908 477 
 

healthy 1859 465 

Grape Black_rot 1888 472 
 

Esca 1920 480 
 

Leaf_blight 1722 430 
 

healthy 1692 423 

Orange Haunglongbing 2010 503 

Peach Bacterial_spot 1838 459 
 

healthy 1728 432 

Pepper bell Bacterial_spot 1913 478 
 

healthy 1988 497 

Potato Early_blight 1939 485 
 

Late_blight 1939 485 
 

healthy 1824 456 

Raspberry healthy 1781 445 

Soybean healthy 2022 505 

Squash Powdery_mildew 1736 434 

Strawberry Leaf_scorch 1774 444 
 

healthy 1824 456 

Tomato Bacterial_spot 1702 425 
 

Early_blight 1920 480 

 Late_blight 1851 463 

 
Leaf_Mold 1882 470 

 
Septoria_leaf_spot 1745 436 

 
Spider_mites 1741 435 

 
Target_Spot 1827 457 

 
Yellow_Leaf 1961 490 

 
mosaic_virus 1790 448 

 
healthy 1926 481 

Tab. 3.19: Distribution of data from the 17 classes 
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3.1.3 Training 

• Constructing an effective model requires a thorough analysis not only of the 

network design but also of the input data format. Therefore, plant leaf images were 

preprocessed so the CNN model could extract the appropriate features from them. 

Two preprocessing steps were applied to our dataset: normalization of the RGB 

values between 0 and 1, and resizing the images according to the model used.   

• It was challenging to load all images at a resolution of 256 x 256, hence a data 

generator was used to reduce memory consumption. 

 

• During the training phase, we utilized ImageNet pre-trained weights for the ResNet-

18 architecture. The size of the input leaf images depends on the model we use. The 

dataset was divided into three subsets: training, validation, and test, with respective 

proportions of 80%, 10%, and 10%, as shown in the previous tables. The training 

subset refers to the data used to train the deep learning model. The validation 

dataset is used to measure the accuracy of the deep learning model during training. 

Finally, the test data set is considered the final set of data used to measure the 

model's performance on entirely new data. 

• Regarding the update of the weights in the fully connected layer of the CNN, Adam 

and SGD (Stochastic Gradient Descent) optimizers are used with different learning 

rates for the ResNet-18 model as indicated in table 3.9. A batch size of 32 is used for 

training all the models presented in section 2.5.  
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Table3.9 summarizes all parameters used during training based onof the model. 

 

Architecture AlexNet VGG16 ResNet152v2 ResNet18 

Input image size in pixels 64×64 224×224 256×256 224×224 

Number of convolutional 

layers 3 13 150 17 

Number of max-pooling 

layers 3 5 2 4 

Dropout value 

0.2, 0.2, 0.4 (Conv) 

0.25 (Dense) None None None 

Network weight assigned ImageNet ImageNet ImageNet ImageNet 

Activation function 

Relu, output 

(Softmax) 

Relu, output 

(Softmax) 

Relu, output 

(Softmax) 

Relu, output 

(Softmax) 

Learning rate 0.0005 0.0001 0.01 0.001 

Epochs 75 25 5 50 

Batch Size 32 32 32 32 

Optimizer Adam SGD SGD Adam 

Classifier type 

Fully connected 

layer (ANN) 

Fully connected 

layer (ANN) 

Fully connected 

layer (ANN) 

Fully connected 

layer (ANN) 

Tab. 3.20: Training parameters adopted 

 

3.2 Performance achieved 

Firstly, we will evaluate the different CNN models adopted for the diagnosis of plant 

diseases according to the 2 protocols presented previously. 

 

3.2.1 Protocol 01 

Remember that in this first protocol, we first carry out a classification by type of plant 

before moving on to the classification of the disease presented by the leaf depending on 

the type of plant found. For this, several evaluation criteria are taken into account notably 

; the size of the model, the time required for its training as well as time inference of a 

single piece of data since we are considering a Web implementation of the final system. 

The quantitative evaluation of the performance of the different models is mainly based on 

the precision (accuracy) in the different training sets, validation and testing. 

The results of the classification by plant type are given in Table 3.10. We notice,
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Tab. 3.21: Results of classification by plant type 

 
The results of the plant type classification show perfect accuracy of 100% for the 

VGG16 and ResNet152 models, followed by the proposed model which presents an 

accuracy of 99.85%. Also, the training times remain reasonable with the shortest time of 

3h45min with 24 epochs offered by ResNet18. In the 2nd position comes ResNet152v2 

model with a training time of 50h10min with 22 epochs. As for the inference time, our 

model, as well as AlexNet, offer the shortest time of 0.7s for a single image. ResNet152 

presents a relatively high inference time of 1.75s or 2min55s. Moreover, and 

unsurprisingly, ResNet152 and VGG16 occupy the most memory space with sizes of 

203MB and 180.6MB, respectively. The proposed model and AlexNet are the least 

memory-intensive as they are the least deep. Overall, the proposed model presents the 

best performance, even though it has an error of 0.15% on the test data, which 

corresponds to 2 images incorrectly classified out of a total of 762 images. 

For For the second part of this experiment, which concerns the classification of 

diseases associated with each type of plant:  

the results obtained are illustrated in table 3.11: 

 

 

 

 

 

 

 

 

 

 

 

 

Architecture 

Model 

Size 

Training 

Accuracy (%) 

Validation 

Accuracy (%) 

Test Accuracy 

(%) 

Training 

Time 

Inference Time 

per Image 

AlexNet 4.9 MB 98.66 98.78 99.80 

12d1h  

(30 epochs) 0.7s 

VGG16 180.6 MB 95.32 95.59 100.00 

140h24min 

(10 epochs) 0.8s 

ResNet152v2 203 MB 98.40 98.46 100.00 

50h10min 

(22 epochs) 1.75s 

ResNet18 48 MB 98.73 99.50 99.85 

3h45min 

(24 epochs) 0.9s 
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Potato Disease Classification 

Architecture 

Model 

Size 

Training 

Accuracy (%) 

Validation 

Accuracy (%) 

Test Accuracy 

(%) 

Training 

Time 

Inference Time 

per Image 

AlexNet 4.9 MB 99.54 98.67 96.67 1h50min 0.2s 

VGG16 169 MB 99.67 100.00 99.67 1h42 0.5s 

ResNet152v2 243.1 MB 99.87 100.00 100.00 57min2s 1.7s 

ResNet18 48 MB 99.33 100.00 98.33 21min20s 0.1s 

ResNet18 48 MB 99.19 95.09 96.78 30min50s 0.7s 

 

Tomato Disease Classification 

Architecture 

Model 

Size 

Training 

Accuracy (%) 

Validation 

Accuracy (%) 

Test Accuracy 

(%) 

Training 

Time 

Inference Time 

per Image 

AlexNet 4.9 MB 99.19 96.68 97.65 5h45 0.2s 

VGG16 169 MB 99.90 98.43 98.57 4h33 0.9s 

ResNet152v2 243 MB 99.79 99.00 99.26 2h18min 1.7s 

Grape Disease Classification 

Architecture 

Model 

Size 

Training 

Accuracy (%) 

Validation 

Accuracy (%) 

Test Accuracy 

(%) 

Training 

Time 

Inference Time 

per Image 

AlexNet 4.9 MB 99.73 99.35 99.14 1h10min 0.2s 

VGG16 169 MB 100.00 99.78 99.57 57min45s 0.2s 

ResNet152v2 243 MB 99.92 99.57 99.57 30min13s 1.8s 

ResNet18 48 MB 100.00 99.14 99.57 10min37s 0.2s 

 

Tab. 3.22: Results of multiclass classification 

 
The tables present a comparison of four deep learning architectures—AlexNet, VGG16, 

ResNet152v2, and ResNet18—across three different plant disease classification tasks: 

potato, tomato, and grape. Each architecture's performance is evaluated based on model 

size, training accuracy, validation accuracy, test accuracy, training time, and inference 

time per image. Here are some observations and insights based on the data provided: 

 

1. Model Size and Efficiency: There's a clear trade-off between model size and 

performance. VGG16 and ResNet152v2, being larger models, generally offer higher 

accuracy, especially in validation and test phases. However, ResNet18 demonstrates that a 

significantly smaller model (48 MB compared to VGG16's 169 MB and ResNet152v2's 

243.1 MB) can still achieve high accuracy with much less training time, making it an 

efficient choice for these tasks. 
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2. Accuracy Across Tasks: ResNet152v2 stands out with perfect test accuracy in the 

potato disease classification task, showcasing its strong generalization ability. However, in 

tomato and grape disease classification tasks, the differences in test accuracy among the 

models are narrower, indicating that smaller models like AlexNet and ResNet18 are also 

capable contenders for these tasks. 

 

3. Training Time: Training time varies widely across models and tasks, with 

ResNet152v2 generally requiring less time to train despite its larger size. This might be 

attributed to its deeper and more optimized architecture that can learn more efficiently. 

ResNet18, in particular, shows an impressive balance between training time and 

performance, especially in the grape disease classification task where it achieves high 

accuracy in just over 10 minutes. 

 

4. Inference Time: Inference time is crucial for real-world applications where 

decisions need to be made quickly. All models perform well in this aspect, but ResNet18 

and AlexNet stand out with the shortest inference times across all tasks. This makes them 

attractive for deployment in scenarios where computational resources are limited or when 

fast decision-making is critical. 

 

Overall, while larger models like VGG16 and ResNet152v2 offer slightly higher 

accuracy, the efficiency and effectiveness of ResNet18 make it an excellent choice for 

practical applications in plant disease classification. Its balance of size, speed, and 

accuracy demonstrates the advancements in designing compact yet powerful neural 

network architectures suitable for a wide range of applications. 

 
3.2.2 Protocol 02: 38 classes at the same time 

For this second protocol, we approached the classification of diseases by doing 

combine 18 types of plants at once, to make a single model capable of distinguish between 

38 classes the criteria for evaluating the performance of the models, we used, precision, 

recall, F1-score as well as analysis of the confusion matrix to understand how confused the 

model is when making predictions. Not only does this will allow us to know what errors 

are being made, but above all, the types of confusion precisely in relation to food and 

different diseases. The results obtained are summarized in the table3.12. 
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Tab. 3.23: Classification results of 38  classes at the same time 

 
The table presents the classification results for a dataset with 38 classes using four 

different architectures: AlexNet, VGG16, ResNet152v2, and ResNet18. Each model's 

performance is evaluated based on several criteria, including model size, training 

accuracy, validation accuracy, test accuracy, training time, and inference time per image.  

 

- AlexNet shows impressive performance with the highest test accuracy of 99.80% 

among all models. Despite its smaller model size (4.9 MB), it achieves high accuracy 

levels, making it an efficient choice for applications where model size and inference speed 

are critical. However, its training time is significantly longer than the others. 

  

- VGG16 has a perfect test accuracy of 100.00%, indicating its capability to generalize 

well on unseen data. However, it has the largest model size (180.6 MB) and relatively low 

training and validation accuracies, which might suggest overfitting to the test set or a 

particularly well-suited architecture for the specific test data distribution. Its training time 

is also the longest, which could be a drawback for iterative development cycles. 

 

- ResNet152v2 also achieves perfect test accuracy (100.00%) with high model 

complexity (203 MB). Its training time is considerably less than VGG16, making it a more 

efficient choice for achieving high accuracy. However, the inference time per image is the 

longest, which might be a limitation for real-time applications. 

 

- ResNet18 stands out for its balance between model size (48 MB), accuracy, and 

efficiency. It achieves nearly perfect test accuracy (99.85%) with much shorter training 

time compared to the more complex models and has a moderate inference time per image. 

Its high validation accuracy suggests good generalization capability. Given its efficiency 

and effectiveness, ResNet18 appears to be the most balanced choice among the evaluated 

architectures, especially for scenarios where both accuracy and operational efficiency are 

important.  

 

 

 

Architecture 

Model 

Size 

Training 

Accuracy (%) 

Validation 

Accuracy (%) 

Test 

Accuracy (%) Training Time 

Inference Time 

per Image 

AlexNet 4.9 MB 97.67 97.79 99.80 

20d1h  

(30 epochs) 0.7s 

VGG16 

180.6 

MB 93.11 93.23 100.00 

192h24min 

(10 epochs) 0.8s 

ResNet152v2 203 MB 97.71 97.25 100.00 

90h10min  

(22 epochs) 1.75s 

ResNet18 48 MB 97.73 99.34 99.85 

3h45min  

(24 epochs) 0.9s 
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Overall, the choice of architecture should be guided by the specific requirements of the 

application, including the acceptable trade-offs between accuracy, model size, training 

time, and inference speed. ResNet18 seems to offer the best balance for most applications, 

providing high accuracy with reasonable computational requirements. 

 

 

 

   Fig. 3.5: Confusion matrix of the proposed model  

 

Analysis of the confusion matrix shows confusion between potato and tomato for the 

same “late blight” disease. In fact, 8 out of 100 images of potato late blight have were 

classified tomato late blight, and 7 images out of 232 tomato late blight were 

classified potato late blight. Also, we notice significant confusion in diseases of the 

tomato plant, particularly between late blight, early blight, septoria leaf diseases spot, 

leaf mold, spider mites two spotted spider mite and target spot, such as: 

- 10 tomato late blight images are categorized tomato early blight 

- 8 images of tomato septoria leaf spot are categorized tomato leaf mold 

- 11 images of tomato spider mites two spotted spider mite are categorized tomato 
target spot 
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This analysis can be confirmed by the precision and recall values given in table 3.13, 

the higher the precision, the more the model minimizes the number of false positive, 

while the higher the recall, the more the model maximizes the number of true 

positive. To have a more global view of the performance of the model we consider the 

F-1 score, the higher it is, the more efficient the model.  

The best results achieved by the proposed CNN model are summarized in the figure 

3.6  

 

 
Fig. 3.6: Comparison of results obtained with the two protocols 
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Disease 

 Category 

Precision 

(%) 

Recall  

(%) 

F1-score  

(%) 

Number of 

Images 

Files 

Count 

Apple___Apple_scab 94.50 95.00 94.75 150 2016 

Black rot 95.90 99.15 97.50 118 1888 

Esca (Black Measles) 100.00 99.28 99.64 139 1920 

Leaf blight (Isariopsis Leaf Spot) 99.02 92.66 95.73 109 1722 

Healthy 96.12 99.00 97.54 100 Multiple 

Early blight 96.00 96.00 96.00 100 Multiple 

Late blight 89.00 89.00 89.00 100 Multiple 

Bacterial spot 97.26 99.53 98.38 214 Multiple 

Leaf Mold 92.86 99.15 95.90 236 1882 

Septoria leaf spot 94.69 89.50 92.02 219 1745 

Spider mites Two-spotted spider mite 97.63 94.06 95.81 219 1741 

Target Spot 91.70 96.51 94.04 229 1827 

Yellow Leaf Curl Virus 97.18 97.97 97.57 246 1961 

Mosaic virus 97.38 99.11 98.24 225 1790 

Accuracy/Macro Avg/Weighted Avg 95.57 95.57 95.57 3068  

 

Tab. 3.24: Precision, recall and F1-score by class of the proposed model 
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3.3 Discussion 

The experiments conducted for the development of a plant disease diagnosis system 

focused on leveraging convolutional neural networks (CNNs). The tests, carried out on a 

subset of the Plant Village database following two protocols, revealed the following 

insights: 

 

• Pre-trained architectures like ResNet152v2 and VGG16 showed superior 

performance. However, their deployment demands significant computational 

resources, necessitating the use of powerful hardware (GPUs). This led us to utilize 

Google Colab's virtual machines. Moreover, these models are memory-intensive due 

to their complex structures, which is not economical for web-based implementation 

of the proposed solution. Despite their impressive capabilities, we had to set them 

aside due to their dem 

• anding resource and time consumption, and instead, sought to develop a simpler, 

less resource-intensive model that still delivers satisfactory performance. 

• The CNN model we proposed, ResNet18, is notably smaller in size compared to the 

pre-trained models, yet it achieves high accuracy. Additionally, our experiments 

with VGG16 and AlexNet underscored the significance of incorporating Dropout and 

additional hidden layers in enhancing the CNNs' classification efficacy. 

• The implemented model effectively distinguishes between the classes associated 

with each type of plant, achieving test data accuracy ranging from 96% to 99%. It's 

important to note that the differentiation among the three plants in protocol 01 is 

relatively straightforward. However, a visible similarity between certain diseases 

affecting the "tomato" class was observed, as illustrated in the confusion matrix in 

figure 3.5. This matrix highlighted confusion among several images between the 

"late blight" and "early blight," "septoria leaf spot" and "leaf mold," as well as 

between "mites two spotted spider mite" and "target spot." Figure 3.7 presents some 

examples of these classes.  

• Confusion rates for the second method were low, often justified by diseases sharing 

similar characteristics, such as the two classes “potato late blight” and “tomato late 

blight.” Figure 3.8 showcases examples of this confusion.  

• The proposed model successfully identifies late blight disease but confuses the two 

plant types. The second protocol proved to be simpler compared to the first, offering 

shorter execution times and facilitating the model's implementation for web 

applications while still providing satisfactory performance, as depicted in Figure 3.6.  
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• Comparing our results with those in the literature, particularly in table 1.1, for the 

Tomato category, our model outperformed the AlexNet architecture used by the 

authors of [37] by 1.2% in accuracy. Similarly, with the ResNet152v2 model, we 

surpassed the accuracy achieved by the authors of [38] using the GoogleNet 

architecture for the same Tomato category, as shown in Figure 3.9. For other 

categories, there are yet no benchmarks for comparison. 

 

 
 

Fig. 3.7: Examples of misclassified images 
 

 
 

Fig. 3.8: Comparison between the two pathologies (early blight and late blight) 
 of Tomato 
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Fig. 3.9: Comparison of the results obtained with those of the state of the art  

(Tomato) 

 
 

3.4 Conclusion 

In this chapter, we have presented the tests conducted to evaluate the plant 

disease diagnostic system, based on convolutional neural networks (CNNs). Our 

work focused on studying three models that have demonstrated their 

effectiveness in the field of computer vision, namely ResNet152, AlexNet, and 

VGG16. From the experiments and tests carried out, we can conclude that 

successful use of CNNs requires robust computational resources and consumes 

memory space. Therefore, as our ultimate goal is to develop a web application, we 

have proposed a CNN architecture, ResNet 18, that is adapted to web 

requirements while still offering good performance.  

In the following chapter, we will proceed with the implementation of our 

model on a web application, aiming to come up with a system ready to be 

deployed for diagnosing plant diseases. 
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4.1 Introduction 
 

To start utilizing a model for practical decision-making, it must be effectively 

deployed in production. If reliable, practical insights cannot be consistently 

derived from our model, its impact is significantly limited. 

 

Deployment is the process through which a machine learning model is integrated 

into an existing production environment to make practical business decisions based 

on data. It is one of the final stages in the machine learning lifecycle and can be among 

the most challenging.  

 

Deploying the model requires coordination between data specialists, IT teams, 

software developers, and business professionals to ensure the model operates reliably 

within the organization's production environment.  

 

The aim of this project is to develop a web application for diagnosing plant 

diseases based on a deep learning model. Therefore, in this chapter, we discuss the 

details of implementing our previously developed model into a web interface to enable 

effective use, simplifying the diagnosis of plant diseases and making it more accessible 

to users. For implementation, we opted for protocol 02 as it is faster and simpler.  

 

4.2 Libraries and Frameworks Used 
To be able to integrate the model into a web application, there are many popular 

frameworks that can be used to perform this task, such as Flask, Django and FastAPI 

[1].  

Django is generally used for large applications. scale and takes a long time to set 

up, while Flask and Fast API are typically used to quickly deploy the model to a web 

application. 

 

In this work, we have chosen the following software infrastructures (Framework):  
 

4.2.1 FastAPI 

FastAPI[2], is a modern web framework 

and powerful for building APIs with Python 

based on standard type indices. He owns 

the following key features: 

• Fast: Very high performance, similar to NodeJS and Go. One of the 

frameworks. The fastest Pythons on the market.  

• Fast to code: It considerably increases the development speed. 
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• Reduction in the number of bugs:  It reduces the possibility of human-

made errors. 

• Intuitive: offers excellent support for the editor, with add-ons everywhere 

and less debugging time. 

• Simplicity: It was designed to be simple to use and learn, so that you can 

spend less time reading the documentation. 

• Robust: it provides production-ready code with documentation automatic 

interactive. 

This software infrastructure is designed to optimize the development experience 

so that we can write simple code to build APIs ready to be implemented 

production. 

 

4.2.2 Uvicorn 

Uvicorn is an ASGI (Async Server 

Gateway interface) compatible web server 

[3]. It is the binding element that manages 

web connections from the browser or API 

client and then allows FastAPI to serve the 

actual request. 

 

4.2.3 JavaScript 

JavaScript is a dynamic programming 

language widely used for web development, 

web applications, game development, and 

more. It allows for the implementation of 

dynamic features on web pages that cannot 

be achieved with just HTML and CSS. [4] 

This library has the following features: 

 
• Light-Weight Scripting Language: JavaScript is lightweight, designed 

for data handling in web applications. 

• Dynamic Typing: Supports dynamic typing where variable types are defined 

based on stored values. 

• Object-Oriented Programing Support: Provides support for object-

oriented programming principles. 
 

• Functional Style: Utilizes a functional approach where functions can be 

used as objects and passed to other functions. 
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• Independent Platform: JavaScript is platform-independent, allowing 

scripts to run anywhere without affecting output. 

• Interpreted Language: JavaScript is interpreted, processed line by line 

by a built-in interpreter in web browsers. 

• Single Threaded: By default, JavaScript is single-threaded but supports 

async processing and web workers for parallel execution. 

• Async Processing: Supports Promises and Async functions for 

asynchronous requests and processing.  

 

JavaScript's versatility and powerful applications make it a fundamental tool for 
developers working on web-based projects, offering interactivity and dynamic content 
creation on websites. 
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4.1 Development 

In the following section, we will delve into the most critical aspects of 

constructing a web application. These components are fundamental and are 

typically indispensable. They share some similarities with the development of 

mobile software, games, or other types of software. This project primarily focuses 

on the essential technical aspects of building a single-page web application. It's 

important to note that there are additional crucial aspects to consider. For 

instance, application security is a vast topic that cannot be extensively covered in 

this work but warrants mention. It's something developers should consider while 

developing both backend and frontend functionalities. Additionally, it's a vital 

component of the application's infrastructure and monitoring. 

The development of our web application for diagnosing plant diseases is divided 

into two parts: 

 

4.1.1 Server side (Backend) 

The backend refers to the server side of the website. It primarily stores our 

previously developed deep learning model, along with the class names and the 

pre-processing operations performed on images, ensuring that everything on the 

client side of the website functions correctly. It's the part of the website that 

remains unseen and uninteractable by users, constituting the software segment 

not in direct contact with users. The features and components developed in the 

backend are indirectly accessible to users through a frontend application. 

Activities such as API development, library creation, and working with non-user-

interface system components or even scientific programming systems are also 

part of the backend responsibilities. 

 

For the development of our application's backend, we have opted for the 

FastAPI library in Python, as previously mentioned. This process involves several 

steps as follows:  

 

Install the necessary prerequisites 

Before initiating the coding phase, it's essential to install FastAPI along with 

other required libraries. For this purpose, we use a virtual environment, where all 

libraries are managed, simplifying the development and deployment process. 

■ Installing FastAPI 

FastAPI installation follows the standard procedure for any Python module. 

However, it lacks an integrated development server. Therefore, we will 

employ Uvicorn, an ASynchronous Server Gateway Interface (ASGI) server, 

to host FastAPI. 

The installation of both modules is achieved using the following command:  
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pip install fastapi uvicorn 

Next, we create a directory to house all the necessary files for our web 

application's server side. Subsequently, we craft the main file, "main.py," 

which oversees all functionalities of our web application. 

■ Testing our API: The "main.py" file defines all path operations. To run 

this file, open the terminal in our directory and execute the following 

command: 

uvicorn main:app—reload 
 

■ Import the different libraries 

In order for our program to work correctly, we must first import all the 

libraries used during the development of our CNN model, to do this, we 

generate a file called “requirments.txt” using the command: 

pip install pipreqs 

pipreqs Web_application/api 

After executing the two previous commands we will have our 

“requirmenets.txt” file as follows: 
 

 
We install the libraries using the command: 

pip install-r requirements.txt 

 

Now that our development environment is ready, we approach the part server-

side programming.  

 
Image pre-processing 

 Before running the disease detection task, and after loading an image in the 

application, pre-processing was applied to these images so that our model can 

treat them correctly. First we use the “numpy.array()” function which takes an 

image as an argument and converts it to a Numpy array. Then, using the 

“numpy.expend_dims” function, we add a dimension of one unit to our image 

which is represented by an array of values in the interval [0, 255], finally, we 

resize these values in the interval [0, 1] to have images with the same features that 
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our CNN was trained with as shown the code below:  

 

 
 

Diagnostic 
 

This is where the most important step of our backend comes, this is the code 

part who is responsible for diagnosing different diseases. 

When the user loads an image of a plant leaf, the web application must 

detect the type of plant in question as well as the disease associated with that 

type. For this, we we need the template file that we saved earlier in the same 

project file. To load our model file, we use the function load_model as follows: 

 
model_path = 'model.pth' 
 

 Now we have another element “@app.route (’/predict’)”, this one matches the 

function “predict()” with the URL /predict, the latter, like its name indicates it, 

takes the image given by the user, performs all the pre-processing, and passes 

through the different layers of the proposed CNN model, finally giving a 

confidence score on the belonging of this image to one of the predefined classes in 

using the softmax() function. Finally, we obtain the type of food as well as the 

associated disease. We will use it as an index to search in the “class_names” table 

which contains the different classes of foods that we have.  

The interface on our server side (Backend):  
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Fig. 4.1: Backend interface 

 

 
  

Fig. 4.2: Backend interface after execution of the predict() function 
 

4.1.1 User side (Frontend) 

Part of a website that the user directly interacts with is called frontend. It is 

also called the “client side” of the application. it understands everything users see 

in the browser: colors and styles of text, images, graphics and tables, buttons, 

colors and navigation menu. HTML, CSS and JavaScript are the languages used 

for frontend development. The structure, design, behavior and content of 

everything we see on browser screens when websites, web applications or mobile 
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applications are opened, are put into effect work by frontend developers. 

Responsiveness and performance are two objectives main ones of the frontend. 

We need to ensure that the site is responsive, i.e. a human interface machine 

must be ergonomic as well as efficient. In addition, these interfaces must be easy 

to use and understandable by users. 

 

As mentioned previously we will use the Js, HTML and CSS library for the 

design of our web interface 

 

Directories 

We create the required folders as shown in fig 4.3 

 

  Fig. 4.3: Directory of the Frontend part 

 
■ Directory static: In this folder are placed all the images used on the site, 

as well as the css and webfonts formatting files. 

■ Directory Templates: Here are placed all the html files index.html and the rest 
of the site sections. 

- index.html: It is the main interface file on the site that contains images 

of the plants that the site supports. 

- ai.html: It is the page through which pictures are uploaded and plant 

diseases are learned. 

- plans.html: It is the page through which one can subscribe to the site 

and obtain additional benefits.  
 

- project.html: After discovering the disease, go to this page to learn 

about the proposed solutions for treatment and the definition of the 

disease. 

- main.js: Although we have developed the script for each section 

internally, we have attached some changes to this file that will facilitate the 

site’s work and its response to the user. 

- App.py: This file is used to prepare the fast API and prepare the form to 

receive requests. This file is considered the basis of the site, without it the 

form will not work. 
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4.2.4 Testing 

Now that your plant disease detection app is ready When in use, we run tests 

to make sure it works properly. To do this, We have to implement our backend's 

app.py file as well as a User interface with opening the site file ai.html from vs 

code Live Server After executing the above command, our UI window opens 

automatically as shown in Figure 4.4:  

 

Fig. 4.4: Page part of our web interface  

 

 

Fig. 4.5: Main page of our web interface  
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After downloading the image, it shows us the type of disease detected 

 
 

 

Fig. 4.6: Application response after execution 
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4.3 Conclusion 

In this chapter we presented the basic concepts that are different from each 

other. It follows the development of our web interface. D'autre part, on an 

explanation the use of infrastructure software uses Js and FastAPI to ensure this 

great user experience, in the but to perform the diagnostic of plant  diseases 

(Tomato, apple, potato, orange, etc.), which translates into the implementation of 

our model that developed in the 03 chapiter, using the convolution neuronal 

network. 
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This project objective is to create a website that helps people diagnose and 

classify plant diseases using computer programs called convolutional neural 

networks. CNNs are systems that take pictures of plant leaves and decide if the 

plant is healthy or not. Second, we put the model that we proposed in a web 

interface so that it would be an effective system that users could use.  

A subset of three crop types from the PlantVillage database were tested using 

the models AlexNet, VGG16, ResNet152, and a model we proposed. We conclude 

from the experiments that: 

• For the detection problem, ResNet152v2 and VGG16 offer the best almost 

optimal performances (greater than 98%), however, these models are 

greedy in terms of computing capacity and hardware resources as well as in 

time of execution.  

• The classification of several types of pathologies that can affect the same 

type of crop was completed with accuracies of around 96% at the level of 

our model, which confirms the robustness of our system for identifying the 

different plant diseases. 

• Effective use of a CNN is an experimental design problem, where multiple 

tests are required to find the right configuration for the application to 

consider. 

• It is important to adjust the input data size to the depth of the network in 

order to obtain discriminative features at the output of the convolution 

block. A network containing a small convolution block cannot train a very 

large image. However, if the network is very deep, the characteristics of a 

small image will be lost. 

• The implementation of deep learning models in web applications requires a 

lot of space to host it and make it accessible to the public, because we need 

to load all the libraries used like tenserflow and keras without counting the 

size of the model which represents an important criterion in the choice  of 

the last.  

Finally, the results obtained can be further improved with adequate 

computing resources to carry out a more efficient design of deep CNN models. 

This research can be extended to other types of crops offered by the Plant Village 

base or other public bases, in order to verify the robustness of the developed 

systems. It would be interesting to test other CNN models, such as Exception. As 

possible research perspectives for the work that concerns deployment, it is very 

interesting that this system is implemented in a mobile application to facilitate 

the processing task for users thanks to the camera present in the smartphone, and 

without having to resort to a connection Internet. 
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