
 والبحث العلمي التعليم العالي وزارةالشعبية الديمقراطية الجزائرية الجمهورية

Faculty: TECHNOLOGY

Department: ELECTRONIC

Field: SCIENCE AND TECHNOLOGY

Program: TELECOMMUNICATION

Specialization: SYSTEMS TELECOMMUNICATIONS

Thesis

Submitted to obtain the Master's Degree

Theme:

Plants Leafs Diseases Detection Web Application Using
Convolutional Neural Networks

Presented by: Sari Abd Elhalim and Boulfoul Iyad

Supervisor: BOULMAIZ AMIRA M.C.A University Badji Mokhtar Annaba

Dissent Jury:

 S.Lafifi Professor University Badji Mokhtar

Annaba

President

 N.Kouadria Professor University Badji Mokhtar
Annaba

Examiner

 A.Boulmaiz MCA University Badji Mokhtar
Annaba

Supervisor

Academic Year: 2023/2024

UNIVERSITE BADJI MOKHTAR – ANNABA
BADJI MOKHTAR – ANNABA UNIVERSITY عنابـــــــــــــــة – مختار باجي جامعة

Dedication

 First and foremost, we thank ALLAH who has given us reconciliation and energy to

successfully complete this work and our studies.

 To my precious family members, especially my mother thank you so much for attending

my college graduation, it meant so much that you were able to watch me walk across the stage

and accept my degree. I couldn't have done it without your encouraging support for the past few

years and my whole life. I look forward to continuing to make you proud.

 To you my dear friends, I'm forever grateful for your support throughout my college

experience. Thanks so much for being my study partner. I wouldn't have wanted to spend those

late nights studying with anyone else! Here's too many more years of friendship as we enter this

new phase of life together. I can't wait to watch you succeed in your career path.

 Dear Professor B.Amira, I want to express how grateful I am for having you as my

supervisor. Your interesting, well-explained lectures helped me excel in a very intimidating class.

The knowledge you shared allowed me to succeed in other courses and is sure to help me in my

future career. Thank you again, and I hope we can keep in contact.

 Also special thanks also goes to the examiners professor B.Mohammed and T.Mahmoud

for the time they spent on carefully reading this thesis and for their constructive comments.

Warmly, Sari Abd Elhalim and Boulfoul Iyad

Acknowledgement

 First and foremost, we would like to take this opportunity to extend our thanks to our

supervisors Boulmaiz Amira for creating a stimulating and positive working environment even in

this difficult and challenging times, without her help, encouragement, support and guidance it

would be impossible for us to complete this work.

 A special thanks also goes to the examiners for the time they spent on carefully reading

this thesis and for their constructive comments.

 Last but not least we would like to thank our family and friends for their constant source

of support.

 ملخص
يؤدي التدهور في كمية ونوعية الإنتاج إلى خسائر اقتصادية. وبالتالي، فإن التعرف على الأمراض النباتية أمر مهم

فإن الأوراق هي الأكثر استخدامًا للكشف عن للغاية. تظهر أعراض المرض في أجزاء مختلفة من النباتات. ومع ذلك،

الإصابة بالأمراض. يستخدم العديد من الباحثين تقنيات الرؤية الحاسوبية للكشف عن الأمراض باستخدام صور الأوراق.

 (العميقة العصبية الشبكة باستخدام طريقة النباتية الأمراض بتشخيص دراستنا الأعراض DNNتقوم هذه على بناءً)

بالإضافة ResNetو VGG16و AlexNet(مثلCNNرة. تم استخدام عدة نماذج للشبكات العصبية التلافيفية)المبك

. ثم قمنا ببناء واجهة ويب لتشخيص هذه الأمراض باستخدام ضامرا عدةفئة تضم 14إلى نموذج سنقترحه لاحقًا لتحديد

 أحد هذه النماذج.

 لشبكات العصبية التلافيفيةاالرؤية الحاسوبية، تشخيص أمراض النبات، مفتاحية:كلمات

Summary

Degradation in the quantity and quality of production leads to economic losses. Thus,

recognition of plant diseases is very important. Disease symptoms appear in different

parts of the plants. However, it is the leaves that are most commonly used to detect

infection. Many researchers use computer vision techniques to detect diseases using leaf

images. Our study diagnoses plant diseases using the deep neural network (DNN) method

based on these early symptoms. Several convolutional neural network (CNN) models such

as AlexNet, VGG16 and ResNet were used in addition to a model we will propose later to

identify 17 classes with 14 diseases. Then we built a web interface for the diagnosis of these

diseases using one of these models.

Keywords: Computer vision, Plant diseases diagnosis, CNN.

Résumé

La dégradation de la quantité et de la qualité de la production entraîne des pertes

économiques. Il est donc très important de reconnaître les maladies des plantes. Les

symptômes des maladies apparaissent dans différentes parties des plantes. Cependant, ce

sont les feuilles qui sont le plus souvent utilisées pour détecter les infections. De

nombreux chercheurs utilisent des techniques de vision par ordinateur pour détecter les

maladies à l'aide d'images de feuilles. Notre étude diagnostique les maladies des plantes à

l'aide de la méthode des réseaux neuronaux profonds (RNP) basée sur ces symptômes

précoces. Plusieurs modèles de réseaux neuronaux convolutifs (CNN) tels qu'AlexNet,

VGG16 et ResNet ont été utilisés en plus d'un modèle que nous proposerons plus tard

pour identifier 17 classes avec 14 maladies. Nous avons ensuite construit une interface web

pour le diagnostic de ces maladies en utilisant l'un de ces modèles.

 Mots-clés: Vision par ordinateur, diagnostic des maladies des plantes, CNN.

Contents

List of figures

List of table

List of abbreviations

General Introduction 11

1 State of the art on plant disease detection and classification systems 13

 1.1 Introduction . 14

 1.2 Diseases Plant . 15

 1.3 Agricultural disease diagnostic systems . 16

 1.4 Agricultural disease detection steps . 17

 1.4.1 Data collection: Image acquisition . 17

 1.4.2 Image pre-processing . 18

 1.4.3 Generation characteristics . 20

 1.4.4 Disease classification and detection . 21

 1.5 Related works . 23

 1.6 Conclusion . 25

2 Convolutional Neural Networks 26

 2.1 Introduction 27

 2.2 Artificial intelligence . 27

 2.3 Concepts on artificial neural networks . 28

 2.3.1 From biological neuron to artificial neuron . 28

 2.3.2 Perceptron . 29

 2.3.3 The multilayer perceptron . 30

 2.4 CNN Convolutional Neural Networks . 32

 2.4.1 Convolution Layer . 33

 2.4.2 Pooling Layer . 34

 2.4.3 Flatten Layer . 35

 2.4.4 CNN Settings . 35

 2.5 Architectures used . 38

 2.5.1 Model 01: AlexNet . 38

 2.5.2 Model 02: VGG16 . 40

 2.5.3 Model 03: ResNet152v2 . 41

2.6 Transfer Learning . 43

2.7 Conclusion . 46

3 Methodology and experimental results 47

3.1 Introduction . 48

3.2 Dataset . 48
3.3 Software, libraries and hardware . 53

3.3.1 Software, booksellers . 53

3.3.2 Material . 54

3.4 Evaluation Metrics . 56

3.4.1 Classification Accuracy . 56

3.4.2 Confusion Matrix . 56

3.5 Experimental protocol . 59

3.5.1 Methodology . 59

3.5.2 Data distribution . 59

3.5.3 Training . 65

3.6 Performance achieved . 66

3.6.1 Protocol 01 . 66

3.6.2 Protocol 02: 38 classes at the same time . 69

3.7 Discussion . 74

3.8 Conclusion . 76

4 Implemention of the solution 77

4.1 Introduction . 78
4.2 Libraries and Frameworks Used . 78

4.2.1 FastAPI . 78

4.2.2 Uvicorn . 79
4.2.3 JavaScript . 79

4.3 Development . 81

4.3.1 Server side (Backend) . 81

4.3.2 User side (Frontend) . 84

4.3.3 Testing . 86

4.4 Conclusion . 88

Conclusion and perspectives 89

 Bibliography 91

Webgraphy 95

List of tables

1.1 Summary of articles on using deep learning in detection plant diseases 24

3.1 Distribution of samples from the Plant Village dataset ... 50

3.2 Sample distribution of our dataset after data augmentation 52

3.3 Characteristics of GPUs used in training .. 55

3.4 Data distribution for plant type classification .. 60

3.5 Data distribution Type: Apple ... 61

3.6 Data distribution Type: Cherry .. 61

3.7 Data Distribution Type: Corn (maize) ... 61

3.8 Data Distribution Type: Potato .. 61

3.9 Data Distribution Type: Tomato .. 62

3.10 Data Distribution Type: Grape .. 62

3.11 Data Distribution Type: Orange ... 62

3.12 Data Distribution Type: Peach ... 62

3.13 Data Distribution Type: Pepper,bell ... 62

3.14 Data Distribution Type: Raspberry .. 63

3.15 Data Distribution Type: Soybean ... 63

3.16 Data Distribution Type: Squash .. 63

3.17 Data Distribution Type: Strawberry .. 63

3.18 Data Distribution Type: Blueberry ... 63

3.19 Distribution of data from the 17 classes.. 64

3.20 Training parameters adopted .. 66

3.21 Results of classification by plant type .. 67

3.22 Results of multiclass classification ... 68

3.23 Classification results of 38 classes at the same time .. 70

3.24 Precision, recall and F1-score by class of the proposed model 73

List of figures

1.1 Examples of leaves representing diseased plants - PlantVillage - [5] 14

1.2 Different types of plant diseases[8] .. 15

1.3 Block diagram of a plant disease diagnostic system .. 16

1.4 Block diagram showing the steps of agricultural disease detection……………………17

1.5 Resizing an image .. 18

1.6 Smoothing an image .. 19

1.7 Detecting image edges ... 19

1.8 Examples of images before and after segmentation [14] 20

1.9 Block diagram of Image analyzer ... 20

2.1 Biological neuron [7] ..28

2.2 Structure of an artificial neuron [8] .. 29

2.3 Schematic representation of an MLP with a single hidden layer 30

2.4 The impact of the learning step weaving[11] ...31

2.5 Illustration of the CNN architecture ... 32

2.6 Example of 2D convolution. .. 33

2.7 Example of a pooling operation. .. 34

2.8 Flattening mechanism ... 35

2.9 Feature maps .. 36

2.10 Dropout mechanism in a multilayer neural network... 38

2.11 Architecture of the AlexNet model .. 39

2.12 Architecture of the VGG16 model ... 40

2.13 A residual block .. 41

2.14 The basic architecture of ResNet .. 42

2.15 Diagram showing the simplified process of transfer learning……………………………43

2.16 Fixed layers and trainable layers ... 44

2.17 Transfer learning approach in Deep Learning ... 45

3.1 Some examples of plant diseases from the Plant-Village database 48

3.2 Examples of transformations carried out on images ... 51

3.3 Basic Confusion Matrix Model .. 57

3.4 Methods adopted for the diagnosis of plant diseases .. 61

3.5 Confusion matrix of the proposed model ... 62

3.6 Comparison the results obtained with the two protocols 72

3.7 Examples of misclassified images ... 75

3.8 Comparison between the two pathologies (early blight and late blight) of

Tomato ... 75

3.9 Comparison results obtained with those of the state of the art (Tomato)……76

4.1 Backend interface ... 84

4.2 Backend interface after execution of predict() function .. 84

4.3 Frontend part directory ... 85

4.4 Page part of our web interface ... 86

4.5 Main page of our web interface ... 86

4.6 Application response after execution .. 87

List of abreviations

AI Artificial intelligence.

D.L. Deep learning.

CNN Convolutional neural network.

DNN Deep neural network.

RGB Red Green Blue.

FCN Fully connected network.

ACP Principal component analysis.

MLP Multi Layer Perceptron.

SVM Vector Machine support.

ReRead Rectified Linear Unit Function.

SGD Stochastic gradient descent.

Adam Adaptive Moment Estimation.

GPU Graphics Processing Unit.

TPR True positive rate.

FPR False positive misses.

TNR True negative rate.

FNR False negative rate.

API Application Programming Interface.

VM Virtual Machine

Introduction general

 11

Introduction general

The occurrence of plant diseases has a negative impact on agriculture production. If

plant diseases are not detected promptly, the risk of food insecurity will escalate [1] Pests

detection is the basis for effective prevention and control of plant diseases, and they play

a vital role in the management and decision-making of agricultural production. In recent

times, the identification of plant diseases has become a crucial matter.

Plants infected with a disease typically exhibit noticeable markings or lesions on their

leaves, stems, flowers, or fruits. Generally speaking, each disease or pest condition

exhibits a distinct visible pattern that can be utilized to precisely diagnose anomalies.

Plant leaves are the primary source for identifying plant diseases, and most of the

symptoms of diseases may begin to appear on the leaves [2].

In the majority of cases, agricultural and forestry experts are used to identify on-site or

farmers identify fruit tree diseases and pests based on experience. This method is not only

subjective, but it is also time-consuming, laborious, and inefficient. During the

identification process, farmers with less experience may misjudge and use drugs blindly.

Quality and output will also lead to environmental pollution, which will lead to

unnecessary economic losses. In order to address these obstacles, the investigation of

image processing techniques for the detection of plant diseases has emerged as a highly

contested research topic. So, researchers usually use leaf pictures to find disease. With

advances in machine learning, computer vision applications have been successful. This

success led to new ways of learning called deep learning. Many new ways of learning have

been used in agriculture, and they are becoming more popular because they work well.

Researchers have developed convolutional neural networks (CNNs) that can be used to

recognize shapes in images.

The leaves have different appearances and textures that can help you identify the

illness. Computers can help solve this problem by seeing things better. Finding plant

ailments and preventing crop losses are the focus of this endeavor. This helps to improve

production efficiency. Our study employs deep learning to identify plant diseases. We

used different computer models, such as AlexNet, VGG16, ResNet. These models were

used to create a website to diagnose plant diseases.

This dissertation is divided into four chapters which are structured as follows:

Introduction general

 12

The first chapter: We introduce the treatment procedures that form a system for

detecting and classifying ill plants, extending beyond the approaches suggested by the

current state of art.

The second chapter: We explain how artificial neural networks evolved into

convolutional neural networks used in this work to diagnose plant diseases.

The third chapter: we will explain the work methodology will be explained, as well

as an analysis of the performance of different systems implemented for the identification

and diagnosis of plant diseases.

The fourth chapter: We shall deliberate on the specifics of the implementation of

the deep learning model in a web interface, with the aim of diagnosing plant diseases.

Finally, We end this dissertation with a conclusion and some ideas for future

endeavors.

Chapter 1. State of the art on detection and classification systems plant diseases

 13

Chapter 1

State of the art on plant
disease detection and
classification systems

14

Chapter 1. State of the art on plant diseases detection and classification systems

1.1 Introduction

Plant Agricultural pests have a severe impact on both agriculture production and the

storage of crops. In order to mitigate the harm caused by agricultural pests, it is

imperative to accurately identify the pest category and implement targeted control

measures. Therefore, it is imperative to establish an agricultural pest identification system

[3].

Plants infected with disease usually show obvious marks or lesions on leaves, stems,

flowers, or fruits. Generally speaking, each disease or pest condition exhibits a distinct

visible pattern that can be utilized to precisely diagnose anomalies. Typically, the leaves of

plants serve as the primary means of identifying plant diseases, and the majority of the

symptoms of diseases may manifest themselves on the leaves [4]. In figure 1.1, represent

leaves diseased - PlantVillage.

In most cases, agricultural and forestry experts are used to find fruit tree diseases or

pests on-site. This method is not only subjective, but it also takes a lot of time and effort,

and doesn't work well. Farmers who don't have much experience might make mistakes

and use drugs without knowing what they are. The way things are made will affect the

environment, which will make people lose money. Research into the use of image

processing techniques for plant disease recognition has become a hot research topic [4].

Fig. 1.1: Examples of leaves representing diseased plants – PlantVillage

Groupe of data [5]

15

Chapter 1. State of the art on plant diseases detection and classification systems

In this chapter, We shall explore this technique for detecting diseased plants. we

introduce the treatment steps that constitute a system for detecting and classifying

diseased plants by going beyond traditional methods proposed in the state of the art.

1.2 Plant diseases

Pests and pathogens play a large role in crop losses around the world [6].

Plant diseases can be attributed to a living organism (biotic) or to environmental

factors (abiotic), such as hail, spring frosts, weather, chemical burns, and so forth. Since

the latter are non-infectious and non-transmissible, they are less dangerous and can be

avoided [7]. However, biotic diseases are the most dangerous and cause the greatest

damage to crops. They are categorized into three primary categories, namely:

• Fungal diseases:

Fungi or similar organisms are responsible for approximately 85% of plant ailments,

and their tiny and light nature makes them capable of traversing the air to infect

other plants or trees.

• Bacterial diseases:

Bacteria can spread through insects, splashing water, or other diseased plants or

tools.

• Viral diseases:

Viruses are responsible for the rarest plant diseases. Nevertheless, once infected,

there is no means of eliminating the virus, and all suspect plants must be eradicated

to stop the spread of the disease. Insects are the most prevalent carriers, requiring

physical entry into the plant.

The figure1.2 indicates the 3 types of diseases introduced and the symptoms linked

to each one between them :

Fig. 1.2: Different types of plant diseases [8]

16

Chapter 1. State of the art on plant diseases detection and classification systems

1.3 Agricultural disease diagnostic systems

Plant disease risk is susceptible to climate change. It is difficult to predict changes in risk

under climate change because of the many biological interactions that result in disease. For
instance, certain plant diseases arise when the phenology of the plant and the pathogen coincide,
as in the case of Fusarium head blight, wherein spores are prepared to infect during the period of
wheat flowering. [9].

According to this definition, the primary objective of a plant disease detection system is

to accurately detect the occurrence of diseases in advance, employing several methods as
illustrated in Figure 1.3, in order for producers to make informed choices regarding the use of
phytosanitary products. The following outlines the fundamentals, prerequisites, and procedures
used to evaluate plant ailments.

Fig. 1.3: Block diagram of a plant disease diagnosis system

Features of agricultural disease diagnosis system

According to Lucas [10] a prediction system is said to be effective if it presents the

characteristics following essential characteristics:

• Reliability: Use reliable environmental data. collect climatic factors such as

temperature or humidity precisely.

• Simplicity: The system needs to have a user-friendly interface, making it easy for

farmers to exploit it on a large scale.

17

Chapter 1. State of the art on plant diseases detection and classification systems

• Importance: The disease treated must have economic importance on the crop and

be fairly sporadic i.e. the possibility of temporary treatment is not applicable.

• Utility: The diagnostic system must be useful, that is to say, it allows producers to

be relieved of several crop monitoring activities by offering the necessary

recommendations for the application of chemicals and control illnesses at the

appropriate time.

• Availability: The interaction element data must be available in real time (plant

types, plant varieties, climate data, etc.)

• Profitable: The diagnostic system must be affordable in terms of technical cost-

health and disease management available.

1.4 Agricultural disease detection steps

The process of constructing a computer vision system involves several steps before

reaching the desired outcome, as illustrated in the Figure 1.4.

Fig. 1.4: Block diagram showing the steps of agricultural disease detection

1.4.1 Data collection: Image acquisition

As with any computer vision system, this is the initial step.

A variety of devices are used to collect images, including drones and cameras attached to robots.

Recent years have seen the use of mobile devices in the creation of mobile applications for the

detection of plant ailments. The nature of the control zone and treatment objectives affect the

choice of acquisition tool. Smartphones and robots are sufficient for areas with limited area, such

as greenhouses. For large areas, drones or satellite imagery are recommended.

18

Chapter 1. State of the art on plant diseases detection and classification systems

1.4.2 Image pre-processing

The term "pre-processing" is commonly used to refer to operations that involve images

at the lowest level of abstraction, where both the input and output are intensity images.

These iconic images are of the same type as the original data captured by the sensor, with

an intensity image usually represented by a matrix of image function values (brightness’s)

The purpose of pre-processing is to improve the image data by suppressing unwanted

distortions or enhancing some image features. Major datasets typically collect images in

real-time, frequently accompanied by inaccurate data. The images are pre-processed in

order to enhance the computational precision of the plant disease detection system before

they are extracted. Applying pre-processing actions, such as resizing and cropping, also

reduces the duration of the process [11].

The pre-processing operations can be summarized as follows:

(a) Image normalisation

When the characterization method used generates descriptors that depend on the

image size, it is important to standardize the single size.

The process of normalizing data is imperative as classification methodologies

necessitate a uniform amount of information. It is also possible to reduce the size of

the data in order to simplify processing. such as shown in the figure1.5 :

Fig. 1.5: Resizing an image

(b) Noise cancellation

Using low-pass filters removes noise from the scene, shooting conditions, or the

camera's sensor. The figure1.6 shows an example of a filter called a Gaussian that

removes unwanted noise without affecting the details in the shape.

Resizing

19

Chapter 1. State of the art on plant diseases detection and classification systems

Fig. 1.6: Smoothing an image

(c) Edge detection

Edge detection refers to the process of identifying and locating sharp discontinuities

in an image[12].

Edge detection helps make a leaf look better by changing its shape depending on

how healthy the images are. Computer vision uses edge detectors called

convolutional filtering to show areas with a lot of variation in intensity.

We make a distinction here of the Sobel, Laplacian filters [13].

For illustration purposes, the figure1.7 shows the detection of edges by the related

Sobel and Laplacian 4 filters.

Fig. 1.7: Detecting image edges

(d) Image Segmentation

To locate areas of interest, the image is divided by segmentation. The goal is to

pinpoint the area with atypical features: The simplified image representation makes

it easier to analyze and more effective for distinguishing between infected and

uninfected areas. The figure 1.8 illustrates two instances of a plant with a disease.

20

Chapter 1. State of the art on plant diseases detection and classification systems

 Fig. 1.8: Examples of images before and after segmentation [14]

1.4.3 Characteristics generation

Feature extraction techniques are applied to get features that will be useful in

classifying and recognizing images.

They are also useful in various image processing applications, such as character

recognition [15].

To extract abnormal tissues from plants leafs consists of three steps , presented in

block diagram bellow [16].

Fig. 1.9: Block diagram of Image analyzer [16]

21

Chapter 1. State of the art on plant diseases detection and classification systems

STEP1: transform defected image to HSI color space.

STEP2: Examining the intensity image histogram.

STEP3: applying thresholds helps to adjust the image intensity. [16]

Image segmentation is the process of dividing an image into regions, subregions, or

objects with the same characteristics. The two main properties used for image segmentation

are discontinuity and similarity. Depending on these attributes, the image segmentation can

be categorized into two distinct categories: edged-based segmentation and region-based

segmentation [17].

Feature extraction is a fast and efficient way to use features learned by a pre-trained

neural network. It propagates the input image to a layer of our own that defines it as the

output feature. Using a pre-trained network to extract features is easy. The layer used to

consider might change, but the process is still the same. An image is started as an input and

its size is set by the pre-trained default input shape. The same image is sent through the

network [18].

Computer vision deals with the automatic extraction, evaluation, and

comprehension of useful data from a single image or a series of images. Automatic image

classification systems have been developed using Convolutional Neural Networks [19].

Convolutional Neural Networks (CNN) are popular because they are widely used for

unstructured data classification [20].

1.4.4 Disease Classification and Detection

Plant disease detection using computer vision and image processing involves the

classification step. Given its importance in disease detection, the performance of this

phase depends on previous stages, such as data acquisition, pre-processing stage,

segmentation of the infected area, and the final feature extraction and selection.

Classic classifiers such as K-nearest neighbors and Bayesian classifier were discovered

in early research in smart agriculture. Recent years have seen the widespread adoption of

statistical vector machines and neural networks. As a result, the algorithms used in the

current state of the art can be summarized as follows :

K Nearest Neighbor Classifier (KPVV)

K-nearest neighbor is an instance-based learning method. A model is built based on

the training samples associated with the nearest neighbor class with a distance function

and a class selection function, without requiring a learning phase. In [21], the authors

conducted an evaluation of the efficacy of this classifier in detecting diseases caused by

fungi in corn leaves.

Support Vector Machines (SVM)

22

Chapter 1. State of the art on plant diseases detection and classification systems

SVM is a new type of machine learning that uses statistics. Because of its good

reputation and higher accuracy, it has become the research focus of the machine learning

community. This paper explains the basics of support vector machine and how it is used to

classify things. How well an algorithm works and what the future holds for support vector

machines in classification. Finally the prospect of support vector machines in

classification applications. SVM has been extensively utilized in numerous research

studies as an automated detection system for plants that are exhibiting disease. [21].

Bayes classifiers

The Bayes classifier is favored in pattern recognition for its exceptional performance in

minimizing classification errors. It operates on the premise of comprehensive class

knowledge, utilizing prior probabilities and class-specific patterns to predict future

occurrences and assign labels to test patterns. Leveraging the Bayes theorem, it

transforms prior probabilities into future probabilities based on pattern characteristics,

using likelihood values as key indicators of predictive accuracy [22].

Random Forest

Random forests are groups of trees that work together, each using random values.

Adding more trees reduces errors. They rely on strong individual trees and connections.

Using random features for node division works better than Adaboost. Internal estimates

help decide feature importance and response to increasing features, applying to regression

as well [23].

Artificial neural networks

ANNs are a part of machine learning in the field of artificial intelligence. The goal is to

make machine learning systems that are affected by the electrical activity of the brain.

[24]. Digital image processing and artificial neural networks are important tools for

keeping track of plants' health [25].

1.5 Related works

23

Chapter 1. State of the art on plant diseases detection and classification systems

This section examines the latest research on the deep learning application to the plant

disease detection, particularly the work done using the PlantVillage dataset [26], the

results are summarized in the table1.1.

The authors of [27] suggested a method for detecting plant pathogens. There were 800

images of cucumber leaves that represented two distinct diseases and also healthy ones. The

authors employed their own version of the CNN algorithm. A four-fold cross-validation

approach led to a maximum classification precision of 94.9% for the proposed algorithm.

The same authors did another study [28] to find out about seven different types of

viruses in cucumbers. They used a dataset of 7520 images that included viral diseases and

healthy leaves. Classifiers were 82.3% accurate when tested four times to make sure they

were correct.

A CNN helped the authors of [29] distinguish 13 distinct types of plant ailments from

healthy leaves. More than 3000 original images were used to represent 13 different

diseases in different crops and two further classes for healthy leaves and background

images. The authors employed a CNN CaffeNet model that had been trained to achieve an

accuracy range of 91% to 98%, for testing distinct classes, and an overall precision of

96.3%.

 The people who wrote [30] used a computer program called LeNet to find two

different types of diseases in pictures of banana leaves that were taken for the Plant

Village project. The data had 3700 pictures, and the model was able to guess 99.72% of

them. Deep learning was used to detect apple black rot disease severity [31] using the

PlantVillage dataset. The portion of the data set they utilized contains more than 150

images, arranged in four different levels of severity. Four different models were used to

compare the results of the CNN model (VGG16, VGG19, Inception-V3 andResNet50),

which were fine-tuned and trained from scratch. The VGG16 model was adjusted to

achieve an accuracy of 90.4%

There are many studies and articles about how to classify agricultural diseases. We will

list them all in the table below :

24

Chapter 1. State of the art on plant diseases detection and classification systems

Tab. 1.1: Summary of articles on using deep learning in detection plant diseases

Deep learning models were used to classify diseases from images, a few were used to

segment the diseased areas, and one estimated the degree of the illness. The appropriate

treatment for that case depends on classifying whether the plant is diseased and

identifying that disease.

Authors
Dataset

Model Precision Year
Plant type Number of classes Number of

images

[32] Maize 9 500 GoogLeNet,
Cifar10

98.9%,

98.8%
2018

[33] Tomato 6 13262
AlexNet,

VGG1

6.

 97.49%,
97.29%

2018

[30] Banana 3 3700 LeNet 99.72% 2017

[31] Apple 4 2086

VGG16, VGG19,
Inceptio

n-
v3,and
ResNet

50

90.4%with

VGG 16 model.
2017

[28] Cucumber 2 7520 CNN 82.3% 2017

[29]

crop

13

3000

CaffeNet range of 91% to
98%

overall precision
of 96.3%

2016

25

Chapter 1. State of the art on detection and classification systemsplant diseases

1.6 Conclusion

In this chapter, We talked about the general principles of plant ailment detection

techniques and the various phases of the adapted systems, acquisition, pre-processing,

segmentation, etc. We introduce the different classifiers explored in the study for the

detection of plant diseases. Our method for detecting and classifying plant diseases is

described in the next section.

The early detection of plants (before they start showing signs of illness) could provide

valuable information for the implementation of effective pest control strategies and

disease prevention measures to prevent the emergence and spread of infectious diseases.

One of the solutions represents deep learning models that could potentially be integrated

into a web interface.

In contemporary times, it is imperative to implement appropriate management

strategies, such as the utilization of fungicides and the utilization of specific chemical

agents to combat diseases. These strategies enable us to apply pesticides with instant

information on plant health. This improves disease control and productivity.

26

Chapter 2. Convolutional Neural Networks

Chapter 2

Convolutional Neural Networks

27

Chapter 2. Convolutional Neural Networks

2.1 Introduction

The use of Artificial Intelligence (AI) has received a lot of attention in the media

recently. This has made many people excited, but also scared. Some of these fears are

based on unrealistic or unrealistic ideas about what AI can do. This strong interest in AI is

largely linked to major technological advances that have greatly improved computer

performance in many fields, such as automatic speech recognition and computer vision.

These advances have opened up a lot of possibilities for AI in various forms, such as

applications, robots, chatbots, etc. It's interesting that many different areas are involved,

like industry, health, agriculture, finance, banking, insurance, and transportation. AI will

become more important in organizations and systems that make things. The fields of

application for AI in these sectors continue to grow. In this situation, people usually think

of AI as a group of tools that can help with many things like making work faster,

improving efficiency, and making work easier. Some even argue that by transferring these

tasks to AI systems, it will be possible to redirect the work of employees to higher "added

value" activities. Many reports and books have talked about the (potentially) positive and

negative impacts of AI on work and employment.[1]

This chapter presents a theoretical overview of the evolution of artificial neural

networks towards convolutional neural networks used in this work for diagnosis plant

diseases.

2.2 Artificial Intelligence

Recent advancements have been made in artificial intelligence and machine learning

have radically changed the way we process, analyze and manipulate images. This is largely

due to the craze for deep machine learning, considered the new frontier of artificial

intelligence, in which the most representative and discriminating features are acquired

end-to-end. Convolutional neural networks have produced excellent results in

segmentation, classification, detection and identification tasks. [2] [3]. A CNN comprises

of two processing blocks, namely a convolutional block that generates features and a

prediction block that executes the classification (or detection) step [4].

In this work, we propose to study CNNs as an end-to-end system and as a feature

extractor. To make this system, we use different computer vision designs like VGG-16,

AlexNet and ResNet.

28

Chapter 2. Convolutional Neural Networks

2.3 Concepts on artificial neural networks

Neural networks have become popular recently and are being used successfully in

many different areas like finance, medicine, engineering, geology, physics, and biology.

The people are excited because these networks try to show what the human brain can do.

From a statistical point of view, neural networks are interesting because they can be used

in prediction and classification problems [5]. Now, ANNs can identify patterns between

input data sets and target values. ANNs can be used to predict the outcome of new

independent input data. ANNs mimic how humans learn and can handle problems with

complicated data, even if it's not clear or clear. So they are great for modeling agricultural

data that can be complicated and not always straight forward [5].

2.3.1 From biological neuron to artificial neuron

Artificial neural networks are like biological neural networks, which are systems of

very simple processors and connections between them. Artificial models try to use the

same ways that humans organize things. An artificial neural network (ANN) sees nodes

like fake neurons. An artificial neuron is designed as a computational model of real

neurons. Artificial neural networks are mostly used for processing information, like

making models of real brains and studying how animals and machines behave. They can

also be used in engineering to recognize patterns, predict what will happen, and compress

data. These networks are mostly made up of inputs and weights. The weights add up the

inputs and are figured out by a math trick that tells if a neuron is activated. Another

function usually calculates the output of an artificial neuron. The neuron only adds up its

inputs and multiplies its output by the weights [6]. Fig. 2.1: shows the biological neuron.

Fig. 2.1: Biological neuron [7]

29

Chapter 2. Convolutional Neural Networks

2.3.2 Perceptron

Artificial neural network (ANN) is a type of machine learning technique. The name is

inspired by the connections between neurons in the human brain. ANNs use data to learn

and find hidden connections between things, even if they don't explicitly explain how they

work.

They have many different shapes, but they all have one thing in common: the

neuron. Neurons are parts that work together and have different connections. In every

neuron, input has a weight and a bias: data goes to the next level through an activation

function. An artificial neural network is made up of many neurons that are connected

together to solve linear or non-linear problems [8].

The figure 2.2 shows the structure of an artificial neuron.

Fig. 2.2: Structure of an artificial neuron [8]

which proceeds by summation weighted by its input vector:

 I= (Input1; Input2; . . . ; InputN)∈ ℜM (2.1)

And the synaptic weight vector:

 W= (Weight1; Weight2; . . . ; WeightN)∈ ℜM (2.2)

An adder (sum) computes the linear combination of inputs and their weights.

An activation function controls the neuron's output intensity, collectively mimicking

biological neuron behaviour for effective information processing in artificial neural

networks [9].

30

Chapter 2. Convolutional Neural Networks

2.3.3 The multilayer perceptron

The Rumelhart introduced the multilayer perceptron in 1986, extending the previous

single-layer perceptron. The structure consists of three types of layers, with each neuron

being linked to all the neurons in the next layer, resulting in a fully connected network, as

shown in figure2.3. The dimensions of the components used to carry out the task

determine the nature of the issue to be tackled. In other words, the number of neurons in

the input layer determines the dimension of the processed information, whereas the

number of neurons in the output layer determines the number of classes. As for the

hidden layers, their numbers and the number of neurons that constitute them are design

problems. The model's ability to grasp intricate decision boundaries is limited by the

absence of numerous hidden neurons. Over fitting the model results in too many neurons

reducing its generalization. Thus, a rigorous experimentation is required to establish a

satisfactory balance between the number of omitted nodes and the network's capacity for

generalization [10].

 Fig. 2.3: Schematic representation of an MLP with a single hidden layer

The PMC was trained by the error gradient back propagation algorithm proposed by

Rumelhart [10] , This allows information to flow in the opposite direction in the network

in order to calculate the gradient. The mean square error E between the estimated output

vector y and the real output vector yr is used to adjust the synaptic weights of all the

neurons of the different layers by the following equation:

 𝐸 =
1

2
∑ (𝑦𝑟

𝑖 − 𝑦𝑖)
2𝑁

𝑖=1 (2.3)

31

Chapter 2. Convolutional Neural Networks

The synaptic weights are modified such that :

𝑤(𝑡 + 1) = 𝑤(𝑡) + ∆𝑤(𝑡 + 1)

∆𝑤(𝑡 + 1) = −𝛼
𝜕𝐸

𝜕𝑤
+ 𝜇∆𝑤(𝑡) (2.4)

t : current iteration (corresponding to the passage of data through the network).

∆w(): Change in weight with each iteration.

𝝏𝑬

𝝏𝒘
 : error gradient with respect to weight w.

It should be noted that the objective is to minimize a cost function represented by the
mean square error E down to its local minimum, which is called descent of the gradient.

The parameter α shows how fast or slow the gradient descends in the direction of the local
minimum, which determines how fast or slow the local minimum is approached. The
picture shows how much the learning step weaving is important and how much it affects
things.

Fig. 2.4: the impact of the learning step weaving [11]

The parameter µ momentum lets us keep track of the last update of the synaptic

weights so that we can use it in the current update (iteration t+1)

32

Chapter 2. Convolutional Neural Networks

2.4 CNN Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a deep learning architecture that is inspired

by the natural visual perception mechanism of living creatures. In 1959, Hubel and Wiesel

[12] discovered that cells in animals' eyes can detect light in their eyes.

CNN is considered to be the predecessor of CNN. In 1990, LeCun [13] and his team

wrote the first paper about CNN. They improved it later in [14]. It can show the original

picture well and recognize patterns right away without any extra work. Zhang et al. [15]

used a shift-invariant artificial neural network (SIANN) to recognize characters in an

image.

CNN makes it easier to extract features manually. Actually, it takes out important

parts of the picture and gives them different weights and biases to make them stand out.

Each input image will go through two blocks: the convolution block and the classification

block.

Figure 2.5 represent a simplified illustration of a neural network based on a fixed-size

image of wheat spike part. Each convolutional layer automatically extracts useful features,

such as edges or corners, and outputs a number of feature maps. Pooling actions reduce

the dimensions of the feature maps to boost effectiveness. The number of data

representations is progressively augmented within the network to enhance classification

precision. Standard neural network layers are used to output probabilities for each class.

[16]

Fig. 2.5: Illustration of the CNN architecture

33

Chapter 2. Convolutional Neural Networks

2.4.1 Convolutional Layer

The convolution layer is made up of multiple feature maps that are made by combining

the convolution kernel with the input signal. Each convolution kernel is a weight matrix,

which can be a 3×3 or 5×5 matrix for a two-dimensional (2D) single channel image.

figure2.6 illustrates an example of the 2D convolution.

Fig. 2.6: Example of the 2D convolution.

The convolution procedure permits the processing of variable-sized inputs by

employing convolution kernels, and diverse input characteristics are uncovered by the

convolution procedure in the convolution layer. Lower-level features such as edges, end

points and corners are extracted from the first layer The next layer extracts more intricate

and higher-level characteristics by processing the lower-level ones. Sparse interactions

and weight sharing are the predominant characteristics of the convolution layer [17].

34

Chapter 2. Convolutional Neural Networks

2.4.2 Pooling Layer

In a convolutional neural network, a pooling layer is often used. The objective is to

gradually reduce the size of the representation. It therefore reduces the number of

features and the computational complexity of the network. The pooling layer operates on

each feature map independently.[18] It is similar to reducing the resolution in the image

processing domain. Number of kernels is not affected by pooling.[19]

The choice of kernel size and stride is also relevant for the pooling phases. There are

three types of pooling:

(1) max pooling: selects the maximum element from the region of the feature map

covered by the kernel.

(2) average pooling: calculating the average for each patch of the feature map.

(3) min pooling: selects the minimum element from the region [20].

The figure2.7 represented an example of max-pooling and average pooling operations.

Fig. 2.7: Example of a pooling operation.

{ The max-pooling with 2×2 kernel and stride 2 lead to down-sampling of each 2×2 blocks

is mapped to one block.}

 A max pooling is the most popular approach used in the pooling operation A kernel

of 2 by 2 would traverse over the entire matrix with a stride of 2 and pick the largest

element from the window to be included in the next representation map.

35

Chapter 2. Convolutional Neural Networks

2.4.3 Flatten Layer

After passing the convolution and pooling layers and before entering the fully

connected layers, the output of the earlier layers is passed for flattening. By this, it is

meant that the dimensions of the input array from previous phases are flattened out into

one large dimension. For instance, a 3D array with a shape of 10×10×10 when flattened

would become a 1D array with 1000 elements, which is rendered in Figure 2.8. [21]

Fig. 2.8: Flattening mechanism

2.4.4 CNN Settings

Filtered

The convolution is a mathematical technique used to extract features from an image.

The convolution is determined by the image kernel. The image kernel is simply a small

matrix. A 3x3 kernel matrix is very common [22]. Nine filtered matrixes called "feature

maps" are created by this procedure can be shown Figure 2.9 .

36

Chapter 2. Convolutional Neural Networks

Fig. 2.9: Feature maps

Stride

Stride is the number of pixels shifts over the input matrix. For padding p, filter size

𝑓∗𝑓 and input image size 𝑛 ∗ 𝑛 and stride ‘𝑠’ our output image dimension will be:

[{(n + 2p − f + 1) / s} + 1] ∗ [{(n + 2p − f + 1) / s} + 1]

Zero Padding

After convolution, our original image gets smaller. This happens because there are

many layers of processing involved in image classification. If we do many convolutions,

our original image will get smaller, but we don't want it to shrink every time.

The second problem is that when the kernel moves over the original images, it touches

the edges less often and touches the middle of the image more often. It also overlaps in the

middle. We don't use the corners or edges of any picture much in the final result.

Activation functions

Artificial neural networks use activation functions to transform input signals into

output signals, which are fed as input to the next layer in the stack. In a neural network

constructed from artificial neural cells, we calculate the sum of the product of inputs and

their respective weights, then employ an activation function to obtain the output of that

particular layer and use it as the source of input for the following layer [23]. we cite the

most used:

■ Sigmoid

It is widely utilized as an activation function due to its non-linear nature. The

sigmoid function transforms values between 0 and 1. It's defined as:

37

Chapter 2. Convolutional Neural Networks

 𝐹(𝑥) =
1

𝑒−𝑥

 (2.5)

■ Softmax

The Softmax function combines many sigmoid functions. Since a sigmoid function

returns values from 0 to 1, these can be treated as probabilities of a particular class

of data points.

The softmax function, unlike the sigmoid functions used for binary classification,

can be used for multiclass classification problems. The function returns a value for

each data point in all the classes. It can be expressed as:

 𝐹(𝑥) =
𝑒

𝑧𝑗

∑ 𝑒
𝑧𝑗𝐾

𝑘=1

 (2.6)

The output layer of a network or model for classification of multiple classes will have
the same number of neurons as the classes in the target when we build it.

■ Rectified Linear Unit (ReLU)

Rectified linear unit is a non-linear activation function , widely used in neural

networks. A certain number of neurons are activated at a time, which makes ReLU

more efficient than other functions. The weights and biases are not updated during

the back- propagation step in neural network training when the value of gradient is

zero. described by the following equation:

𝑅(𝑧) = max (0, 𝑧) [24] (2.7)

Batch normalization

Batch normalization (BN) is a technique for normalizing activations in deep neural

networks. BN is a popular technique for deep learning because it helps improve accuracy

and speeds up training [25].

Dropout

Dropout is a new algorithm for training neural networks that relies on dropping out

neurons during training to avoid feature detectors co-adapting [26].

38

Chapter 2. Convolutional Neural Networks

 Fig. 2.10: Dropout mechanism in a multilayer neural network.

2.5 Architectures used

In our work, we are interested in the use of models (ResNet152v2, ResNet18,

VGG16, AlexNet) which constitute reference architectures of CNNs, for classification

and detection of agricultural diseases.

2.5.1 Model 01: AlexNet

AlexNet was designed by Hinton, winner of the 2012 ImageNet competition, and his

student Alex Krizhevsky. The name comes from Alex Krizhevsky, in 2012 with a top-5

error rate of 15.3%, it won the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [27]. The most important features of the AlexNet paper are:

• Since the model had to train 60 million parameters (which is quite a lot), it was

prone to overfitting. The paper found that Dropout and Data Augmentation

significantly helped reduce overfitting. The first and second fully connected layers in

the structure thus utilized a 0.5-point dropout for their respective purposes. By

augmenting the number of images artificially, the dataset expanded dynamically

during execution, allowing the model to generalize better.

• Another important thing was using ReLU activation instead of tanh or sigmoid,

which made training faster (6 times faster) . Deep Learning Networks usually use

ReLU non-linearity to train faster because other methods get saturated when they

reach higher activation values.

39

Chapter 2. Convolutional Neural Networks

Architecture

The architecture has eight layers, five of which are convolutional and three of which

are fully connected as shown in the figure 2.11. According to [28] here are some of the

characteristics used which constitute new approaches to convolutional neural networks:

• ReLU nonlinearity: The tanh function, which was the standard at the time, is

replaced by Rectified Linear Units (ReLU) in AlexNet. A CNN trained using ReLU

reached a 25% error on the CIFAR-10 dataset six times faster than a CNN trained

using Tanh.

• Multiple GPUs:

Back in the day, graphics cards GPUs were still rolling around with 3 gigabytes of

memory (nowadays those kinds of memory would be rookie numbers) The training

set had 1.2 million images, which made this especially bad. AlexNet allows for multi-

GPU training by placing half of the model's neurons on one GPU and the other half

on another GPU. This allows for training with multiple GPUs. This not only allows

for the development of a larger model, but it also shortens the duration of the

instruction.

• Overlap Pooling (Overlapping Pooling):

CNNs usually "pool" the output of neighboring groups of neurons without

overlapping. But when the authors added overlap, they saw a reduction in error of

about 0.5% and found that models with overlapping pooling are harder to overfit.

Fig. 2.11: Architecture of the AlexNet model

40

Chapter 2. Convolutional Neural Networks

2.5.2 Model 02: VGG16

VGG is a convolutional neural network. proposed by K. Simonyan and A. Zisserman

from Oxford University. It became popular after winning the ILSVRC (ImageNet Large

Scale Image Recognition Competition) in 2014. The model was accurate by 92.7% on

Imagenet, one of the best results [29].

Architecture

There are two algorithms: VGG16 and VGG19. In this work, we'll use the VGG16 only.

Both designs are similar, but VGG19 has more layers for convolution. The architecture of

VGG-16 is shown in Figure2.12.

Fig. 2.12: Architecture of the VGG16 model

This model improves AlexNet by replacing large filters with a stack of3x3 size filters.

The model only requires specific pre-processing, which consists of subtracting the

average RGB value, calculated over the training set, from each pixel.

The first convolution layer's input during training is a RGB image with dimensions of

224 x 224. The size of the convolution kernel is the smallest dimension to capture the

notions of top, bottom, left, right, and center. The model had this feature at the time of

publication. Until VGG16, many models were oriented towards convolution kernels of

larger dimensions (size 11 or size 5, for example) Only discriminating information such as

atypical geometric shapes can be retained by these layers.

The convolution layers are accompanied by Max-Pooling layers, each of size 2×2, to

minimize the size of the filters during training.

There are 3 layers of fully-connected neurons at the output of the pooling layers. The

first two are composed of 4096 neurons and the last of 1000 neurons, each with a softmax

activation function to determine the image class.

41

Chapter 2. Convolutional Neural Networks

2.5.3 Model 03: ResNet152v2

Deep neural networks are getting deeper and more complicated. It has been proven

that adding more layers to a neural network can make it more robust for image-related

tasks. But it can also cause them to lose their accuracy. That's where Residual Networks

come into play. Deep learning practitioners tend to add so many layers in order to extract

important features from complex images. There may be edges and recognizable shapes at

the end of the first layers. Adding more than 30 layers to the network affects its

performance and results in low precision. The notion that enlarging a neural network

improves it is unfounded. This is not due to over fitting, because in that case, one could

use dropout and regularization techniques to solve the issue altogether. The problem is

caused by the popular vanishing gradient problem [30].

The ResNet152 model with its 152 layers topped the ILSVRC Imagenet 2015 test,

despite having fewer parameters than the VGG19 network, which was a huge hit at the

time. A residual network is composed of residual units or blocks that have no connections,

also known as identity connections.

The output from the previous layer is added to the output of the layer after it in the

residual block. There could be 1, 2 or even 3 hops or skips. A reduction of its dimensions

may be caused by the convolution process when adding. Thus, we include an additional 1 x

1 convolution layer to alter the dimensions of x.

The figure2.13 illustrates a residual block with a convolution layer3×3, a normalization

layerbatch, and a ReLU activation function. The latter is continued by a 3×3 convolution

layer and a batch normalization layer. The skip connection effectively skips these two

layers and is added prior to the ReLU activation function. A residual network is formed by

repeating such residual blocks.

 Fig. 2.13: A residual block

42

Chapter 2. Convolutional Neural Networks

After comparing all the different CNN designs, ResNet had the lowest error rate of

3.57% for classification tasks, which was better than all the other designs. Even humans

don't have much lower error rates than machines [30].

Fig. 2.14: The basic architecture of ResNet.

It can be said that residual networks have become very popular for image recognition

and classification tasks because they can fix vanishing gradients when adding more layers

to a deep neural network with a total number of parameters of about 60 million. Right

now, the thousand-layer ResNet is not very useful.

43

Chapter 2. Convolutional Neural Networks

2.6 Transfer Learning

Transfer learning is a technique in machine learning where a model that has been

trained on one task is used to train another one. This can be useful when the second task

is similar to the first task or when there is limited data available for the second task. This

can be useful when there is limited data available for the second task. The model can learn

more quickly and efficiently on the second task by applying the lessons learned from the

first task. The model will already be aware of the general characteristics that are likely to

be useful in the second task, which can prevent overfitting [31].

Why learning by transfer ?

In the early layers of a deep neural network trained on images, a deep learning model

tries to learn a low level of features, like detecting edges, colors, variations of intensity, etc.

No matter what type of image we are processing for detecting a lion or car, such kind of

features appear to be specific to a particular dataset or task. Both scenarios require us to

uncover these nitty-gritty details. All of these features occur regardless of the cost function

or image dataset. Thus, acquiring these attributes in the case of detecting lions can be

applied to other tasks, such as detecting individuals, as well [31].

The figure 2.15 shows the principle of transfer learning.

Fig. 2.15: Diagram showing the simplified process of transfer learning

When dealing with transfer learning, we encounter a phenomenon called

“Freezing of layers”. A layer, whether it is a CNN layer, a hidden layer, a block of layers or

any subset of all layers, is said to be fixed when it is no longer available for learning.

Therefore, the weights of frozen layers will not be updated during training. While layers

that are not frozen follow the normal training procedure (see figure2.16).

44

Chapter 2. Convolutional Neural Networks

When we use transfer learning to solve a problem, we choose a pre-trained model.

There are two ways to use the information from the model that has already been trained.

The first way is to keep some parts of the model we already trained and then train other

parts on a new set of data for the new job. The other way is to create a new model and use

some features from the model that was already trained. In both situations, we take out

some of the things we learned and try to teach the rest of our model. This makes sure that

the only feature that may be the same for both tasks is taken out of the pre-trained model

and the rest of it is changed to fit the new dataset by training [31].

Fig. 2.16: Fixed layers and trainable layers

The idea is therefore to fix the weights of certain layers during training and to finish the

rest to deal with the problem. This strategy makes it possible to reuse knowledge in terms of

the overall architecture of the network and to use its state as a starting point for training.

Therefore, it can achieve better performance with shorter training time.

45

Chapter 2. Convolutional Neural Networks

The figure2.17 summarizes the main transfer learning methods commonly used in deep

learning:

Fig. 2.17: Transfer learning approach in Deep Learning

Therefore, one of the basic requirements of transfer learning is the existence of a

model that performs well on the source task. Today, many state-of-the-art deep learning

architectures are now freely available shared by their respective teams.

46

Chapter 2. Convolutional Neural Networks

2.7 Conclusion

In this chapter, we started by discussing the history of artificial neural networks, then

we detailed convolutional neural networks and their main parameters. We also presented

the pre-trained architectures which are the CNN models adopted for plant disease

classification.

In the following chapter we will discuss the methodology followed to create the plant

disease diagnosis system, as well as the experimental results achieved and the different

analyzes obtained when using the different types of the architectures.

Chapter 3

Methodology and experimental results

48

Chapter 3. Methodology and experimental results

3.1 Introduction

This chapter is dedicated to explaining the methodology adopted and analyzing the

performance of various systems implemented for the classification of agricultural

diseases. Our analyses were conducted on a selected portion of the dataset available on

Plant Village [1], which stands as a significant reference in the field of smart agriculture.

Initially, we examine and compare pre-trained architectural models utilizing transfer

learning techniques. In the second part, we evaluate the proposed CNN architecture for

diagnosing plant diseases.

The systems were implemented in a Python development environment under

Anaconda. Given that training Convolutional Neural Networks (CNNs) requires

substantial computational resources, the programs were executed on virtual machines

through Google Colab. This service is particularly suitable for deep learning applications

that necessitate the use of multiple specialized libraries such as Keras, PyTorch, and

TensorFlow. It provides access to high-performance GPUs, including Nvidia Tesla

graphics cards, with a generous memory allocation, allowing for the efficient handling of

compute-intensive tasks.

3.2 Dataset

All CNN models were trained on a subset of 14 categories including(Tomato, Potato,

Grape, Orange, Soybean, Squash, Corn (maize), Strawberry, Peach, Apple, Blueberry,

Cherry (including sour), Raspberry, and Pepper, bell) from a total of 70,295 images. This

data is derived from a publicly accessible database known as Plant Village, which contains

a total of 54,306 images featuring 38 different healthy/diseased leaves across 14 plant

species.

The entire database is available on Kaggle, showcasing various plant diseases as

illustrated in figure 3.1.

Fig. 3.1: Some examples of plant diseases from the PlantVillage database

49

Chapter 3. Methodology and experimental results

All images in the Plant Village database were captured at experimental research

stations associated with Land Grant Universities in the United States (such as Penn State,

Florida State, Cornell, among others). The collection of images is ongoing, and the

database is expected to expand over time. These experimental research stations, both

public and private, provide the opportunity to capture a large number of images in a short

period. The majority of the images were taken by two technicians working as a team.

During field trials of crops infected with a disease, the technicians collected leaves by

detaching them from the plant. The leaves were then placed on a sheet of paper serving as

a gray or black background. All images were captured outdoors, in natural light, which

could vary from bright sunlight to cloudy conditions. This variety was intentional to mimic

the range of conditions under which the end user (a farmer with a smartphone) might take

pictures. For each leaf, 4 to 7 images were collected using a standard digital camera (Sony

DSC Rx100/13, 20.2 megapixels) in automatic mode. The leaf was rotated 360 degrees

during the photo shoot.

50

Chapter 3. Methodology and experimental results

Distribution some samples

In this study, we used a subset consisting of 70,295 images from 14 different plant

types, namely: Apple, Blueberry, Cherry (including sour), Corn (maize), Grape, Orange,

Peach, Pepper, bell, Potato, Raspberry, Soybean, Squash, Strawberry, and Tomato. The

analysis of multi-class pathologies was conducted on the infections affecting these plants,

where the distribution of classes is as detailed on the table3.1.

Type of food Associated disease Number of images

Grape

Black rot 1888

Esca (Black Measles) 1920

Leaf blight (Isariopsis Leaf Spot) 1722

Healthy 1692

Potato

Early blight 1939

Late blight 1939

Healthy 1824

Tomato

Bacterial spot 1702

Early blight 1920

Late blight 1851

Leaf Mold 1882

Septoria leaf spot 1745

Spider moths Two-spotted spider
moth

1741

Target Spot 1827

Yellow Leaf Curl Virus 1961

Mosaic viruses 1790

Healthy 1926

Strawberry Leaf scorch 1774
 Healthy 1824

Apple Cedar apple rust 1760
 Black rot 1987

 Apple scab 2016
 Healthy 2008

Blueberry Healthy 1816

Cherry Powdery mildew 1683
 Healthy 1826

Corn

 Common rust 1907
 Gray leaf spot 1642
 Northern Leaf
 Blight

1908

 Healthy 1859
Orange Haunglongbing 2010

Pepper bell Bacterial spot 1913

 Healthy 1988
Peach Bacterial spot 1838

 Healthy 1728
Raspberry Healthy 1781

Soybean Healthy 2022

Squash Powdery mildew 1736

 Tab. 3.1: Distribution of samples from the Plant Village dataset

51

Chapter 3. Methodology and experimental results

This classification provides a comprehensive overview of the dataset's diversity in

plant health conditions, serving as a foundation for the detailed multi-class analysis of

plant pathologies.

It's observed that the dataset is significantly imbalanced, meaning there are classes

represented with more instances than others. In such cases, CNN models tend to create a

biased learning model that has poorer predictive accuracy on the minority classes

compared to the majority classes. In rare instances, such as fraud detection or disease

prediction, as in our case, it is crucial to correctly identify the minority classes. Therefore,

the model should not be biased to only detect the majority class but should give equal

weight or importance to the minority class. Consequently, the number of data per class

needs to be increased. Today, a very popular technique called "data augmentation" is used

to increase the amount of data in the training set by adding slightly modified copies of

existing data or newly created synthetic data from existing data. This technique is

explained as follows.

Data augmentation

Data augmentation enhances the diversity of our training dataset by applying random

(yet realistic) transformations, such as image rotation, flipping, and zooming, as

illustrated in the figure 3.2 .

Fig. 3.2: Examples of transformation carried out on images

52

Chapter 3. Methodology and experimental results

Table 3.2 shows the distribution of samples across the 17 classes after data augmentation.

It is noted that 80% of the samples are used for the training phase, 10% for validation, and

10% for the testing phase.

Fruit/Vegetable Disease Training Validation Test

Apple Apple_scab 2016 504 504
Black_rot 1987 497 497

Cedar_apple_rust 1760 440 440
healthy 2008 502 502

Blueberry healthy 1816 454 454
Cherry Powdery_mildew 1683 421 421

healthy 1826 456 456
Corn Gray_leaf_spot 1642 410 410

Common_rust 1907 477 477
Northern_Leaf_Blight 1908 477 477

healthy 1859 465 465
Grape Black_rot 1888 472 472

Esca 1920 480 480
Leaf_blight 1722 430 430

healthy 1692 423 423
Orange Haunglongbing 2010 503 503
Peach Bacterial_spot 1838 459 459

healthy 1728 432 432
Pepper bell Bacterial_spot 1913 478 478

healthy 1988 497 497
Potato Early_blight 1939 485 485

Late_blight 1939 485 485
healthy 1824 456 456

Raspberry healthy 1781 445 445
Soybean healthy 2022 505 505
Squash Powdery_mildew 1736 434 434

Strawberry Leaf_scorch 1774 444 444
healthy 1824 456 456

Tomato Bacterial_spot 1702 425 425
Early_blight 1920 480 480
Late_blight 1851 463 420
Leaf_Mold 1882 470 400

Septoria_leaf_spot 1745 436 405
Spider_mites 1741 435 520
Target_Spot 1827 457 456
Yellow_Leaf 1961 490 485
mosaic_virus 1790 448 452

healthy 1926 481 450

Tab. 3.2: Sample distribution of our dataset after data augmentation

53

Chapter 3. Methodology and experimental results

3.3 Software, libraries and hardware

In this section, we give a brief overview of the programming language and software

tools used in our work, namely Python, Keras, TensorFlow as well asof the material used.

3.3.1 Software, booksellers

Python

Python is a high-level, interpreted programming

language known for its easy-to-learn syntax that

emphasizes readability, which helps reduce

maintenance costs. It supports dynamic typing and

binding, making it ideal for rapid application

development and as a scripting language to connect

existing components. Python's built-in data

structures, along with its support for modules and

packages, promote code reuse and program

modularity. Available freely across major platforms,

Python's extensive standard library and interpreter

can be distributed without charge, enhancing its

appeal[2].

Programmers often prefer Python due to the productivity boost it offers. The absence of a

compilation step speeds up the edit-test-debug cycle. Debugging is straightforward, with

exceptions raised for errors instead of segmentation faults, and a detailed stack trace is

provided if exceptions are uncaught. Python also includes a source-level debugger for

thorough inspection and evaluation of code. Additionally, Python's capability for

introspection and the simplicity of adding print statements for debugging underscore its

convenience and effectiveness in programming tasks. Python also stands out when

compared to other languages for these reasons.

It enables developers to create machine learning applications using various tools,

libraries, and community resources. We worked with version: 2.9.1

54

Chapter 3. Methodology and experimental results

Torchvision

The torchvision library consists of popular datasets,

model architectures, and image transformations for

computer vision. It consists of:

• Training recipes for object detection, image classification,

instance segmentation, video classification and sematic

segmentation.

• 60+ pretrained models to use for fine-tuning (or training afresh).

• Dataset loaders for popular vision datasets such as ImageNet, COCO, Cityscapes and

more [3]

Pytorch

PyTorch is an open-source machine learning framework that extends the

Python programming language and Torch library, initially developed as

an internship project by Adam Paszke under the guidance of Soumith

Chintala, a Torch developer. It is designed for both deep learning

research and application, offering over 200 mathematical

operations and simplifying the creation of artificial neural

network models. PyTorch is widely used by data scientists for

research and artificial intelligence applications, enjoying growing

popularity due to its ease of use for prototyping and deployment.

The framework is under a modified BSD license and has strong ties to

Meta (formerly Facebook), where Chintala works as a researcher and

which uses PyTorch for all AI workloads.[4]

3.3.2 Material

For the hardware used, we conducted all training on the cloud to save time since

Convolutional Neural Networks (CNNs) require significant hardware resources.

Therefore, we opted for the Paperspace Gradient platform. Training a CNN requires a

substantial amount of hardware resources, so we chose to use a cloud service from the

Paperspace Gradient platform.

Google Colab

Colab is a hosted Jupyter Notebook service that requires

no setup to use and provides free access to computing

resources, including GPUs and TPUs. Colab is especially

well suited to machine learning, data science, and

education.[5]

55

Chapter 3. Methodology and experimental results

Caractéristique Description

Model NVIDIA Tesla K80/T4/P100

GPU memory 12GB GDDR5 (K80) / 16GB GDDR6 (T4, P100)

Memory bandwidth 240 GB/s (K80) / 320 GB/s (T4) / 732 GB/s (P100)

Processing units 4992 Cœurs CUDA (K80) / 2560 Cœurs CUDA (T4) / 3584 Cœurs CUDA (P100)

Peak performance 8.73 TFLOPS (Simple Precision, K80) / 8.1 TFLOPS (T4) / 9.3 TFLOPS (P100)

CUDA Version Compatible with the latest versions

Availability Depending on the type of subscription (free or Pro) to Google Colab

Tab. 3.3: Characteristics of GPUs used in training

56

Chapter 3. Methodology and experimental results

3.4 Evaluation Metrics

Evaluation metrics are crucial for assessing the performance of a model. One of the key

aspects of deep learning is understanding how to evaluate our model effectively. When

developing a model, it's vital to measure how accurately it predicts the expected outcome.

Without properly evaluating the model using appropriate evaluation metrics, there's a

risk of generating inaccurate predictions, especially if the dataset is imbalanced.

Therefore, we suggest employing various evaluation metrics as described in the following

sections.

3.4.1 Classification Accuracy

 The simplest metric for model evaluation is accuracy. It represents the ratio of the

number of correct predictions to the total number of predictions made for a dataset.

 Accuracy (%) =
Number of correct predictions

Total number of predictions made
× 100 (3.1)

This metric is used when the dataset is balanced.

3.4.2 Confusion Matrix

A confusion matrix, or error matrix, is a table that displays the number of correct

and incorrect predictions made by the model compared to the actual classifications in a

dataset, thereby informing us about the mistakes (errors) made by the model. This matrix

describes the performance of a classification model on test data for which the true values

are known. It is an n×n matrix, where n is the number of classes. Figure 3.3 shows a

confusion matrix for a 2-class problem. As can be seen, the results of a confusion matrix

are classified into four major categories: true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN).

57

Chapter 3. Methodology and experimental results

Fig. 3.3: Basic Confusion Matrix Model

• True positives (TP):Number of samples that are truly positive and that are

predicted to be positive.

• True negatives (TN):Number of samples that are truly negative and that are

predicted to be negative.

• False positives (FP):Number of samples which are actually negative but predicted

positive. These errors are also called type 1 errors.

• False negatives (FN):Number of samples that are actually positive but predicted

negative. These errors are also called type 2 errors.

From the confusion matrix, we can derive 4 classification metrics:

58

Chapter 3. Methodology and experimental results

Precision

Precision answers the following question: What proportion of positive predictions is

actually correct? It then defines the number of true positives in relation to the number of

true positives and false positives.

The equation can be stated as follows:

stated as follows:

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (%) =
TP

TP+FP
× 100 (3.2)

Recall or Sensitivity or Recall

The recall answers the following question: what proportion of true positives were

correctly identified? It then represents the ratio between the total number of examples

correctly classified positives and the total number of positive examples.

The equation can be stated as follows:

 𝑅𝑒𝑐𝑎𝑙𝑙 (%) =
TP

TP+FN
× 100 (3.3)

F1-score

The F1 score gives an overall estimate of the precision and recall of a sample. This is

the harmonic average of the precision and recall of a sample, the score F1 can be defined

as follows

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒(%) =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
× 100 (3.4)

59

Chapter 3. Methodology and experimental results

3.1 Experimental protocol

The development of a plant disease diagnostic system requires a very specific

experimental protocol in order to achieve satisfactory results. In this section, we describe

the adopted experimental protocol in terms of methodology, data distribution, and CNN

architecture settings.

3.1.1 Methodology

Our primary goal is to develop a model capable of identifying 38 classes of plant leaves

based on the type of crop and the diseases associated with that crop. We will use two

methods for this purpose:

To clarify, this work focuses on 14 different crops. We compare two methods for

diagnosing a plant leaf. Firstly, we classify based on the crop type, and then according to

the diseases associated with that crop. Thus, for this first method, we have 4 classification

models.

The second method involves creating a single model for all 38 classes, which is more

suitable for the web application we will introduce in the next chapter. Figure 3.4 illustrates

the two methods used for plant disease classification.

 Fig. 3.4: Methods adopted for the diagnosis of plant diseases

3.1.2 Data distribution

The images collected from the Plant Village database are distributed according to the

two protocols explained previously.

60

Chapter 3. Methodology and experimental results

Protocol 01

For the classification by type of plants, namely potato, grape, or tomato, we selected

samples from each category to ensure the highest diversity possible. Notably, the dataset

includes various classes with different numbers of images per class, as follows:

- Potato has 3 diseases with a total of 5702 images (Early blight: 1939, Late blight: 1939,

Healthy: 1824).

- Grape has 4 diseases with a total of 7222 images (Black rot: 1888, Esca (Black Measles):

1920, Leaf blight (Isariopsis Leaf Spot): 1722, Healthy: 1692).

- Tomato has 10 diseases with a diverse number of images per class, contributing to a

significant portion of the dataset.

It's important to note that 80% of the samples are utilized for the training phase of

the model, 10% for validation, and 10% for testing. This structured approach ensures a

comprehensive evaluation of the model's performance across a variety of plant diseases.

Tab. 3.4: Data distribution for plant type classification

Subsequently, for the classification of diseases of each type of plant, the data were

distributed into the 3 sets; training, validation And test according to THE tables 3.6 ,3.7

and 3.5.

Category Training (80%) Validation (10%) Test (10%) Total

Apple 6049 756 757 7562

Blueberry 1453 181 182 1816

Cherry 3009 376 377 3759

Corn 6316 789 790 7895

Grape 7222 903 904 9029

Orange 1608 201 201 2010

Peach 2566 321 322 3209

Pepper 3901 488 489 4878

Potato 5702 713 714 7129

Raspberry 1425 178 178 1781

Soybean 1618 202 202 2022

Squash 1389 174 173 1736

Strawberry 2598 325 325 3248

Tomato 25455 3182 3183 31820

Total 70006 8751 8752 87509

61

Chapter 3. Methodology and experimental results

Disease Training Validation Test

Apple___Apple_scab 2016 504 100

Apple___Black_rot 1987 497 100

Apple___Cedar_apple_rust 1760 440 100

Apple___healthy 2008 502 100

Tab. 3.5: Data distribution

Type: Apple

Cherry (including sour)

Disease Training Validation Test

Cherry_(including_sour)___Powdery_mildew 1683 421 100

Cherry_(including_sour)___healthy 1826 456 100

Tab. 3.6: Data distribution Type: Cherry (including sour)

Corn (maize)

Disease Training Validation Test

Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot 1642 410 100

Corn_(maize)__Common_rust 1907 477 100

Corn_(maize)___Northern_Leaf_Blight 1908 477 100

Corn_(maize)___healthy 1859 465 100

Tab. 3.7: Distribution of data Type: Corn

Potato

Disease Training Validation Test

Potato___Early_blight 1939 485 100

Potato___Late_blight 1939 485 100

Potato___healthy 1824 456 100

Tab. 3.8: Distribution of data Type: Potato

62

Chapter 3. Methodology and experimental results

Tomato

Disease Training Validation Test

Tomato___Bacterial_spot 1702 425 100

Tomato___Early_blight 1920 480 100

Tomato___healthy (example) - - Multiple files with different sizes

Tab. 3.9: Distribution of data Type: Tomato

Grape

Disease Training Validation Test

Grape___Black_rot 1888 472 100

Grape___Esca_(Black_Measles) 1920 480 100

Grape___Leaf_blight_(Isariopsis_Leaf_Spot) 1722 430 100

Grape___healthy 1692 423 100

Tab. 3.10: Data distribution Type: Grape1

Orange

Disease Training Validation Test

Orange___Haunglongbing_(Citrus_greening) 2010 503 100

Tab. 3.11: Data distribution Type: Orange

Peach

Disease Training Validation Test

Peach___Bacterial_spot 1838 459 100

Peach___healthy 1728 432 100

Tab. 3.12: Data distribution Type: Peach

Pepper, bell

Disease Training Validation Test

Pepper,_bell___Bacterial_spot 1913 478 100

Pepper,_bell___healthy 1988 497 100

Tab. 3.13: Data distribution Type: Pepper, bell

63

Chapter 3. Methodology and experimental results

Raspberry

Disease Training Validation Test

Raspberry___healthy 1781 445 100

Tab. 3.14: Data distribution Type: Raspberry

Soybean

Disease Training Validation Test

Soybean___healthy 2022 505 100

Tab. 3.15: Data distribution Type: Soybean

Squash

Disease Training Validation Test

Squash___Powdery_mildew 1736 434 100

Tab. 3.16: Data distribution Type: Squash

Strawberry

Disease Training Validation Test

Strawberry___Leaf_scorch 1774 444 100

Strawberry___healthy 1824 456 100

Tab. 3.17: Data distribution Type: Strawberry

Blueberry

Disease Training Validation Test

Blueberry___healthy 1816 445 100

Tab. 3.18: Data distribution Type: Blueberry

64

Chapter 3. Methodology and experimental results

Protocol 02

This time a classification of 38 classes at a time is carried out using the distribution of

data indicated in the following table:

Fruit/Vegetable Disease Training Validation

Apple Apple_scab 2016 504

Black_rot 1987 497

Cedar_apple_rust 1760 440

healthy 2008 502

Blueberry healthy 1816 454

Cherry Powdery_mildew 1683 421

healthy 1826 456

Corn Gray_leaf_spot 1642 410

Common_rust 1907 477

Northern_Leaf_Blight 1908 477

healthy 1859 465

Grape Black_rot 1888 472

Esca 1920 480

Leaf_blight 1722 430

healthy 1692 423

Orange Haunglongbing 2010 503

Peach Bacterial_spot 1838 459

healthy 1728 432

Pepper bell Bacterial_spot 1913 478

healthy 1988 497

Potato Early_blight 1939 485

Late_blight 1939 485

healthy 1824 456

Raspberry healthy 1781 445

Soybean healthy 2022 505

Squash Powdery_mildew 1736 434

Strawberry Leaf_scorch 1774 444

healthy 1824 456

Tomato Bacterial_spot 1702 425

Early_blight 1920 480

 Late_blight 1851 463

Leaf_Mold 1882 470

Septoria_leaf_spot 1745 436

Spider_mites 1741 435

Target_Spot 1827 457

Yellow_Leaf 1961 490

mosaic_virus 1790 448

healthy 1926 481

Tab. 3.19: Distribution of data from the 17 classes

65

Chapter 3. Methodology and experimental results

3.1.3 Training

• Constructing an effective model requires a thorough analysis not only of the

network design but also of the input data format. Therefore, plant leaf images were

preprocessed so the CNN model could extract the appropriate features from them.

Two preprocessing steps were applied to our dataset: normalization of the RGB

values between 0 and 1, and resizing the images according to the model used.

• It was challenging to load all images at a resolution of 256 x 256, hence a data

generator was used to reduce memory consumption.

• During the training phase, we utilized ImageNet pre-trained weights for the ResNet-

18 architecture. The size of the input leaf images depends on the model we use. The

dataset was divided into three subsets: training, validation, and test, with respective

proportions of 80%, 10%, and 10%, as shown in the previous tables. The training

subset refers to the data used to train the deep learning model. The validation

dataset is used to measure the accuracy of the deep learning model during training.

Finally, the test data set is considered the final set of data used to measure the

model's performance on entirely new data.

• Regarding the update of the weights in the fully connected layer of the CNN, Adam

and SGD (Stochastic Gradient Descent) optimizers are used with different learning

rates for the ResNet-18 model as indicated in table 3.9. A batch size of 32 is used for

training all the models presented in section 2.5.

66

Chapter 3. Methodology and experimental results

Table3.9 summarizes all parameters used during training based onof the model.

Architecture AlexNet VGG16 ResNet152v2 ResNet18

Input image size in pixels 64×64 224×224 256×256 224×224

Number of convolutional

layers 3 13 150 17

Number of max-pooling

layers 3 5 2 4

Dropout value

0.2, 0.2, 0.4 (Conv)

0.25 (Dense) None None None

Network weight assigned ImageNet ImageNet ImageNet ImageNet

Activation function

Relu, output

(Softmax)

Relu, output

(Softmax)

Relu, output

(Softmax)

Relu, output

(Softmax)

Learning rate 0.0005 0.0001 0.01 0.001

Epochs 75 25 5 50

Batch Size 32 32 32 32

Optimizer Adam SGD SGD Adam

Classifier type

Fully connected

layer (ANN)

Fully connected

layer (ANN)

Fully connected

layer (ANN)

Fully connected

layer (ANN)

Tab. 3.20: Training parameters adopted

3.2 Performance achieved

Firstly, we will evaluate the different CNN models adopted for the diagnosis of plant

diseases according to the 2 protocols presented previously.

3.2.1 Protocol 01

Remember that in this first protocol, we first carry out a classification by type of plant

before moving on to the classification of the disease presented by the leaf depending on

the type of plant found. For this, several evaluation criteria are taken into account notably

; the size of the model, the time required for its training as well as time inference of a

single piece of data since we are considering a Web implementation of the final system.

The quantitative evaluation of the performance of the different models is mainly based on

the precision (accuracy) in the different training sets, validation and testing.

The results of the classification by plant type are given in Table 3.10. We notice,

67

Chapter 3. Methodology and experimental results

Tab. 3.21: Results of classification by plant type

The results of the plant type classification show perfect accuracy of 100% for the

VGG16 and ResNet152 models, followed by the proposed model which presents an

accuracy of 99.85%. Also, the training times remain reasonable with the shortest time of

3h45min with 24 epochs offered by ResNet18. In the 2nd position comes ResNet152v2

model with a training time of 50h10min with 22 epochs. As for the inference time, our

model, as well as AlexNet, offer the shortest time of 0.7s for a single image. ResNet152

presents a relatively high inference time of 1.75s or 2min55s. Moreover, and

unsurprisingly, ResNet152 and VGG16 occupy the most memory space with sizes of

203MB and 180.6MB, respectively. The proposed model and AlexNet are the least

memory-intensive as they are the least deep. Overall, the proposed model presents the

best performance, even though it has an error of 0.15% on the test data, which

corresponds to 2 images incorrectly classified out of a total of 762 images.

For For the second part of this experiment, which concerns the classification of

diseases associated with each type of plant:

the results obtained are illustrated in table 3.11:

Architecture

Model

Size

Training

Accuracy (%)

Validation

Accuracy (%)

Test Accuracy

(%)

Training

Time

Inference Time

per Image

AlexNet 4.9 MB 98.66 98.78 99.80

12d1h

(30 epochs) 0.7s

VGG16 180.6 MB 95.32 95.59 100.00

140h24min

(10 epochs) 0.8s

ResNet152v2 203 MB 98.40 98.46 100.00

50h10min

(22 epochs) 1.75s

ResNet18 48 MB 98.73 99.50 99.85

3h45min

(24 epochs) 0.9s

68

Chapter 3. Methodology and experimental results

Potato Disease Classification

Architecture

Model

Size

Training

Accuracy (%)

Validation

Accuracy (%)

Test Accuracy

(%)

Training

Time

Inference Time

per Image

AlexNet 4.9 MB 99.54 98.67 96.67 1h50min 0.2s

VGG16 169 MB 99.67 100.00 99.67 1h42 0.5s

ResNet152v2 243.1 MB 99.87 100.00 100.00 57min2s 1.7s

ResNet18 48 MB 99.33 100.00 98.33 21min20s 0.1s

ResNet18 48 MB 99.19 95.09 96.78 30min50s 0.7s

Tomato Disease Classification

Architecture

Model

Size

Training

Accuracy (%)

Validation

Accuracy (%)

Test Accuracy

(%)

Training

Time

Inference Time

per Image

AlexNet 4.9 MB 99.19 96.68 97.65 5h45 0.2s

VGG16 169 MB 99.90 98.43 98.57 4h33 0.9s

ResNet152v2 243 MB 99.79 99.00 99.26 2h18min 1.7s

Grape Disease Classification

Architecture

Model

Size

Training

Accuracy (%)

Validation

Accuracy (%)

Test Accuracy

(%)

Training

Time

Inference Time

per Image

AlexNet 4.9 MB 99.73 99.35 99.14 1h10min 0.2s

VGG16 169 MB 100.00 99.78 99.57 57min45s 0.2s

ResNet152v2 243 MB 99.92 99.57 99.57 30min13s 1.8s

ResNet18 48 MB 100.00 99.14 99.57 10min37s 0.2s

Tab. 3.22: Results of multiclass classification

The tables present a comparison of four deep learning architectures—AlexNet, VGG16,

ResNet152v2, and ResNet18—across three different plant disease classification tasks:

potato, tomato, and grape. Each architecture's performance is evaluated based on model

size, training accuracy, validation accuracy, test accuracy, training time, and inference

time per image. Here are some observations and insights based on the data provided:

1. Model Size and Efficiency: There's a clear trade-off between model size and

performance. VGG16 and ResNet152v2, being larger models, generally offer higher

accuracy, especially in validation and test phases. However, ResNet18 demonstrates that a

significantly smaller model (48 MB compared to VGG16's 169 MB and ResNet152v2's

243.1 MB) can still achieve high accuracy with much less training time, making it an

efficient choice for these tasks.

69

Chapter 3. Methodology and experimental results

2. Accuracy Across Tasks: ResNet152v2 stands out with perfect test accuracy in the

potato disease classification task, showcasing its strong generalization ability. However, in

tomato and grape disease classification tasks, the differences in test accuracy among the

models are narrower, indicating that smaller models like AlexNet and ResNet18 are also

capable contenders for these tasks.

3. Training Time: Training time varies widely across models and tasks, with

ResNet152v2 generally requiring less time to train despite its larger size. This might be

attributed to its deeper and more optimized architecture that can learn more efficiently.

ResNet18, in particular, shows an impressive balance between training time and

performance, especially in the grape disease classification task where it achieves high

accuracy in just over 10 minutes.

4. Inference Time: Inference time is crucial for real-world applications where

decisions need to be made quickly. All models perform well in this aspect, but ResNet18

and AlexNet stand out with the shortest inference times across all tasks. This makes them

attractive for deployment in scenarios where computational resources are limited or when

fast decision-making is critical.

Overall, while larger models like VGG16 and ResNet152v2 offer slightly higher

accuracy, the efficiency and effectiveness of ResNet18 make it an excellent choice for

practical applications in plant disease classification. Its balance of size, speed, and

accuracy demonstrates the advancements in designing compact yet powerful neural

network architectures suitable for a wide range of applications.

3.2.2 Protocol 02: 38 classes at the same time

For this second protocol, we approached the classification of diseases by doing

combine 18 types of plants at once, to make a single model capable of distinguish between

38 classes the criteria for evaluating the performance of the models, we used, precision,

recall, F1-score as well as analysis of the confusion matrix to understand how confused the

model is when making predictions. Not only does this will allow us to know what errors

are being made, but above all, the types of confusion precisely in relation to food and

different diseases. The results obtained are summarized in the table3.12.

70

Chapter 3. Methodology and experimental results

Tab. 3.23: Classification results of 38 classes at the same time

The table presents the classification results for a dataset with 38 classes using four

different architectures: AlexNet, VGG16, ResNet152v2, and ResNet18. Each model's

performance is evaluated based on several criteria, including model size, training

accuracy, validation accuracy, test accuracy, training time, and inference time per image.

- AlexNet shows impressive performance with the highest test accuracy of 99.80%

among all models. Despite its smaller model size (4.9 MB), it achieves high accuracy

levels, making it an efficient choice for applications where model size and inference speed

are critical. However, its training time is significantly longer than the others.

- VGG16 has a perfect test accuracy of 100.00%, indicating its capability to generalize

well on unseen data. However, it has the largest model size (180.6 MB) and relatively low

training and validation accuracies, which might suggest overfitting to the test set or a

particularly well-suited architecture for the specific test data distribution. Its training time

is also the longest, which could be a drawback for iterative development cycles.

- ResNet152v2 also achieves perfect test accuracy (100.00%) with high model

complexity (203 MB). Its training time is considerably less than VGG16, making it a more

efficient choice for achieving high accuracy. However, the inference time per image is the

longest, which might be a limitation for real-time applications.

- ResNet18 stands out for its balance between model size (48 MB), accuracy, and

efficiency. It achieves nearly perfect test accuracy (99.85%) with much shorter training

time compared to the more complex models and has a moderate inference time per image.

Its high validation accuracy suggests good generalization capability. Given its efficiency

and effectiveness, ResNet18 appears to be the most balanced choice among the evaluated

architectures, especially for scenarios where both accuracy and operational efficiency are

important.

Architecture

Model

Size

Training

Accuracy (%)

Validation

Accuracy (%)

Test

Accuracy (%) Training Time

Inference Time

per Image

AlexNet 4.9 MB 97.67 97.79 99.80

20d1h

(30 epochs) 0.7s

VGG16

180.6

MB 93.11 93.23 100.00

192h24min

(10 epochs) 0.8s

ResNet152v2 203 MB 97.71 97.25 100.00

90h10min

(22 epochs) 1.75s

ResNet18 48 MB 97.73 99.34 99.85

3h45min

(24 epochs) 0.9s

71

Chapter 3. Methodology and experimental results

Overall, the choice of architecture should be guided by the specific requirements of the

application, including the acceptable trade-offs between accuracy, model size, training

time, and inference speed. ResNet18 seems to offer the best balance for most applications,

providing high accuracy with reasonable computational requirements.

 Fig. 3.5: Confusion matrix of the proposed model

Analysis of the confusion matrix shows confusion between potato and tomato for the

same “late blight” disease. In fact, 8 out of 100 images of potato late blight have were

classified tomato late blight, and 7 images out of 232 tomato late blight were

classified potato late blight. Also, we notice significant confusion in diseases of the

tomato plant, particularly between late blight, early blight, septoria leaf diseases spot,

leaf mold, spider mites two spotted spider mite and target spot, such as:

- 10 tomato late blight images are categorized tomato early blight

- 8 images of tomato septoria leaf spot are categorized tomato leaf mold

- 11 images of tomato spider mites two spotted spider mite are categorized tomato
target spot

72

Chapter 3. Methodology and experimental results

This analysis can be confirmed by the precision and recall values given in table 3.13,

the higher the precision, the more the model minimizes the number of false positive,

while the higher the recall, the more the model maximizes the number of true

positive. To have a more global view of the performance of the model we consider the

F-1 score, the higher it is, the more efficient the model.

The best results achieved by the proposed CNN model are summarized in the figure

3.6

Fig. 3.6: Comparison of results obtained with the two protocols

73

Chapter 3. Methodology and experimental results

Disease

 Category

Precision

(%)

Recall

(%)

F1-score

(%)

Number of

Images

Files

Count

Apple___Apple_scab 94.50 95.00 94.75 150 2016

Black rot 95.90 99.15 97.50 118 1888

Esca (Black Measles) 100.00 99.28 99.64 139 1920

Leaf blight (Isariopsis Leaf Spot) 99.02 92.66 95.73 109 1722

Healthy 96.12 99.00 97.54 100 Multiple

Early blight 96.00 96.00 96.00 100 Multiple

Late blight 89.00 89.00 89.00 100 Multiple

Bacterial spot 97.26 99.53 98.38 214 Multiple

Leaf Mold 92.86 99.15 95.90 236 1882

Septoria leaf spot 94.69 89.50 92.02 219 1745

Spider mites Two-spotted spider mite 97.63 94.06 95.81 219 1741

Target Spot 91.70 96.51 94.04 229 1827

Yellow Leaf Curl Virus 97.18 97.97 97.57 246 1961

Mosaic virus 97.38 99.11 98.24 225 1790

Accuracy/Macro Avg/Weighted Avg 95.57 95.57 95.57 3068

Tab. 3.24: Precision, recall and F1-score by class of the proposed model

74

Chapter 3. Methodology and experimental results

3.3 Discussion

The experiments conducted for the development of a plant disease diagnosis system

focused on leveraging convolutional neural networks (CNNs). The tests, carried out on a

subset of the Plant Village database following two protocols, revealed the following

insights:

• Pre-trained architectures like ResNet152v2 and VGG16 showed superior

performance. However, their deployment demands significant computational

resources, necessitating the use of powerful hardware (GPUs). This led us to utilize

Google Colab's virtual machines. Moreover, these models are memory-intensive due

to their complex structures, which is not economical for web-based implementation

of the proposed solution. Despite their impressive capabilities, we had to set them

aside due to their dem

• anding resource and time consumption, and instead, sought to develop a simpler,

less resource-intensive model that still delivers satisfactory performance.

• The CNN model we proposed, ResNet18, is notably smaller in size compared to the

pre-trained models, yet it achieves high accuracy. Additionally, our experiments

with VGG16 and AlexNet underscored the significance of incorporating Dropout and

additional hidden layers in enhancing the CNNs' classification efficacy.

• The implemented model effectively distinguishes between the classes associated

with each type of plant, achieving test data accuracy ranging from 96% to 99%. It's

important to note that the differentiation among the three plants in protocol 01 is

relatively straightforward. However, a visible similarity between certain diseases

affecting the "tomato" class was observed, as illustrated in the confusion matrix in

figure 3.5. This matrix highlighted confusion among several images between the

"late blight" and "early blight," "septoria leaf spot" and "leaf mold," as well as

between "mites two spotted spider mite" and "target spot." Figure 3.7 presents some

examples of these classes.

• Confusion rates for the second method were low, often justified by diseases sharing

similar characteristics, such as the two classes “potato late blight” and “tomato late

blight.” Figure 3.8 showcases examples of this confusion.

• The proposed model successfully identifies late blight disease but confuses the two

plant types. The second protocol proved to be simpler compared to the first, offering

shorter execution times and facilitating the model's implementation for web

applications while still providing satisfactory performance, as depicted in Figure 3.6.

75

Chapter 3. Methodology and experimental results

• Comparing our results with those in the literature, particularly in table 1.1, for the

Tomato category, our model outperformed the AlexNet architecture used by the

authors of [37] by 1.2% in accuracy. Similarly, with the ResNet152v2 model, we

surpassed the accuracy achieved by the authors of [38] using the GoogleNet

architecture for the same Tomato category, as shown in Figure 3.9. For other

categories, there are yet no benchmarks for comparison.

Fig. 3.7: Examples of misclassified images

Fig. 3.8: Comparison between the two pathologies (early blight and late blight)
 of Tomato

Chapter 3. Methodology and experimental results

76

Fig. 3.9: Comparison of the results obtained with those of the state of the art

(Tomato)

3.4 Conclusion

In this chapter, we have presented the tests conducted to evaluate the plant

disease diagnostic system, based on convolutional neural networks (CNNs). Our

work focused on studying three models that have demonstrated their

effectiveness in the field of computer vision, namely ResNet152, AlexNet, and

VGG16. From the experiments and tests carried out, we can conclude that

successful use of CNNs requires robust computational resources and consumes

memory space. Therefore, as our ultimate goal is to develop a web application, we

have proposed a CNN architecture, ResNet 18, that is adapted to web

requirements while still offering good performance.

In the following chapter, we will proceed with the implementation of our

model on a web application, aiming to come up with a system ready to be

deployed for diagnosing plant diseases.

Chapter 4. Implementing the solution

77

Chapter 4

Implemention of the solution

Chapter 4. Implementing the solution

78

4.1 Introduction

To start utilizing a model for practical decision-making, it must be effectively

deployed in production. If reliable, practical insights cannot be consistently

derived from our model, its impact is significantly limited.

Deployment is the process through which a machine learning model is integrated

into an existing production environment to make practical business decisions based

on data. It is one of the final stages in the machine learning lifecycle and can be among

the most challenging.

Deploying the model requires coordination between data specialists, IT teams,

software developers, and business professionals to ensure the model operates reliably

within the organization's production environment.

The aim of this project is to develop a web application for diagnosing plant

diseases based on a deep learning model. Therefore, in this chapter, we discuss the

details of implementing our previously developed model into a web interface to enable

effective use, simplifying the diagnosis of plant diseases and making it more accessible

to users. For implementation, we opted for protocol 02 as it is faster and simpler.

4.2 Libraries and Frameworks Used
To be able to integrate the model into a web application, there are many popular

frameworks that can be used to perform this task, such as Flask, Django and FastAPI

[1].

Django is generally used for large applications. scale and takes a long time to set

up, while Flask and Fast API are typically used to quickly deploy the model to a web

application.

In this work, we have chosen the following software infrastructures (Framework):

4.2.1 FastAPI

FastAPI[2], is a modern web framework

and powerful for building APIs with Python

based on standard type indices. He owns

the following key features:

• Fast: Very high performance, similar to NodeJS and Go. One of the

frameworks. The fastest Pythons on the market.

• Fast to code: It considerably increases the development speed.

Chapter 4. Implementing the solution

79

• Reduction in the number of bugs: It reduces the possibility of human-

made errors.

• Intuitive: offers excellent support for the editor, with add-ons everywhere

and less debugging time.

• Simplicity: It was designed to be simple to use and learn, so that you can

spend less time reading the documentation.

• Robust: it provides production-ready code with documentation automatic

interactive.

This software infrastructure is designed to optimize the development experience

so that we can write simple code to build APIs ready to be implemented

production.

4.2.2 Uvicorn

Uvicorn is an ASGI (Async Server

Gateway interface) compatible web server

[3]. It is the binding element that manages

web connections from the browser or API

client and then allows FastAPI to serve the

actual request.

4.2.3 JavaScript

JavaScript is a dynamic programming

language widely used for web development,

web applications, game development, and

more. It allows for the implementation of

dynamic features on web pages that cannot

be achieved with just HTML and CSS. [4]

This library has the following features:

• Light-Weight Scripting Language: JavaScript is lightweight, designed

for data handling in web applications.

• Dynamic Typing: Supports dynamic typing where variable types are defined

based on stored values.

• Object-Oriented Programing Support: Provides support for object-

oriented programming principles.

• Functional Style: Utilizes a functional approach where functions can be

used as objects and passed to other functions.

Chapter 4. Implementing the solution

80

• Independent Platform: JavaScript is platform-independent, allowing

scripts to run anywhere without affecting output.

• Interpreted Language: JavaScript is interpreted, processed line by line

by a built-in interpreter in web browsers.

• Single Threaded: By default, JavaScript is single-threaded but supports

async processing and web workers for parallel execution.

• Async Processing: Supports Promises and Async functions for

asynchronous requests and processing.

JavaScript's versatility and powerful applications make it a fundamental tool for
developers working on web-based projects, offering interactivity and dynamic content
creation on websites.

Chapter 4. Implementing the solution

81

4.1 Development

In the following section, we will delve into the most critical aspects of

constructing a web application. These components are fundamental and are

typically indispensable. They share some similarities with the development of

mobile software, games, or other types of software. This project primarily focuses

on the essential technical aspects of building a single-page web application. It's

important to note that there are additional crucial aspects to consider. For

instance, application security is a vast topic that cannot be extensively covered in

this work but warrants mention. It's something developers should consider while

developing both backend and frontend functionalities. Additionally, it's a vital

component of the application's infrastructure and monitoring.

The development of our web application for diagnosing plant diseases is divided

into two parts:

4.1.1 Server side (Backend)

The backend refers to the server side of the website. It primarily stores our

previously developed deep learning model, along with the class names and the

pre-processing operations performed on images, ensuring that everything on the

client side of the website functions correctly. It's the part of the website that

remains unseen and uninteractable by users, constituting the software segment

not in direct contact with users. The features and components developed in the

backend are indirectly accessible to users through a frontend application.

Activities such as API development, library creation, and working with non-user-

interface system components or even scientific programming systems are also

part of the backend responsibilities.

For the development of our application's backend, we have opted for the

FastAPI library in Python, as previously mentioned. This process involves several

steps as follows:

Install the necessary prerequisites

Before initiating the coding phase, it's essential to install FastAPI along with

other required libraries. For this purpose, we use a virtual environment, where all

libraries are managed, simplifying the development and deployment process.

■ Installing FastAPI

FastAPI installation follows the standard procedure for any Python module.

However, it lacks an integrated development server. Therefore, we will

employ Uvicorn, an ASynchronous Server Gateway Interface (ASGI) server,

to host FastAPI.

The installation of both modules is achieved using the following command:

Chapter 4. Implementing the solution

82

pip install fastapi uvicorn

Next, we create a directory to house all the necessary files for our web

application's server side. Subsequently, we craft the main file, "main.py,"

which oversees all functionalities of our web application.

■ Testing our API: The "main.py" file defines all path operations. To run

this file, open the terminal in our directory and execute the following

command:

uvicorn main:app—reload

■ Import the different libraries

In order for our program to work correctly, we must first import all the

libraries used during the development of our CNN model, to do this, we

generate a file called “requirments.txt” using the command:

pip install pipreqs

pipreqs Web_application/api

After executing the two previous commands we will have our

“requirmenets.txt” file as follows:

We install the libraries using the command:

pip install-r requirements.txt

Now that our development environment is ready, we approach the part server-

side programming.

Image pre-processing

 Before running the disease detection task, and after loading an image in the

application, pre-processing was applied to these images so that our model can

treat them correctly. First we use the “numpy.array()” function which takes an

image as an argument and converts it to a Numpy array. Then, using the

“numpy.expend_dims” function, we add a dimension of one unit to our image

which is represented by an array of values in the interval [0, 255], finally, we

resize these values in the interval [0, 1] to have images with the same features that

Chapter 4. Implementing the solution

83

our CNN was trained with as shown the code below:

Diagnostic

This is where the most important step of our backend comes, this is the code

part who is responsible for diagnosing different diseases.

When the user loads an image of a plant leaf, the web application must

detect the type of plant in question as well as the disease associated with that

type. For this, we we need the template file that we saved earlier in the same

project file. To load our model file, we use the function load_model as follows:

model_path = 'model.pth'

 Now we have another element “@app.route (’/predict’)”, this one matches the

function “predict()” with the URL /predict, the latter, like its name indicates it,

takes the image given by the user, performs all the pre-processing, and passes

through the different layers of the proposed CNN model, finally giving a

confidence score on the belonging of this image to one of the predefined classes in

using the softmax() function. Finally, we obtain the type of food as well as the

associated disease. We will use it as an index to search in the “class_names” table

which contains the different classes of foods that we have.

The interface on our server side (Backend):

Chapter 4. Implementing the solution

84

Fig. 4.1: Backend interface

Fig. 4.2: Backend interface after execution of the predict() function

4.1.1 User side (Frontend)

Part of a website that the user directly interacts with is called frontend. It is

also called the “client side” of the application. it understands everything users see

in the browser: colors and styles of text, images, graphics and tables, buttons,

colors and navigation menu. HTML, CSS and JavaScript are the languages used

for frontend development. The structure, design, behavior and content of

everything we see on browser screens when websites, web applications or mobile

Chapter 4. Implementing the solution

85

applications are opened, are put into effect work by frontend developers.

Responsiveness and performance are two objectives main ones of the frontend.

We need to ensure that the site is responsive, i.e. a human interface machine

must be ergonomic as well as efficient. In addition, these interfaces must be easy

to use and understandable by users.

As mentioned previously we will use the Js, HTML and CSS library for the

design of our web interface

Directories

We create the required folders as shown in fig 4.3

 Fig. 4.3: Directory of the Frontend part

■ Directory static: In this folder are placed all the images used on the site,

as well as the css and webfonts formatting files.

■ Directory Templates: Here are placed all the html files index.html and the rest
of the site sections.

- index.html: It is the main interface file on the site that contains images

of the plants that the site supports.

- ai.html: It is the page through which pictures are uploaded and plant

diseases are learned.

- plans.html: It is the page through which one can subscribe to the site

and obtain additional benefits.

- project.html: After discovering the disease, go to this page to learn

about the proposed solutions for treatment and the definition of the

disease.

- main.js: Although we have developed the script for each section

internally, we have attached some changes to this file that will facilitate the

site’s work and its response to the user.

- App.py: This file is used to prepare the fast API and prepare the form to

receive requests. This file is considered the basis of the site, without it the

form will not work.

Chapter 4. Implementing the solution

86

4.2.4 Testing

Now that your plant disease detection app is ready When in use, we run tests

to make sure it works properly. To do this, We have to implement our backend's

app.py file as well as a User interface with opening the site file ai.html from vs

code Live Server After executing the above command, our UI window opens

automatically as shown in Figure 4.4:

Fig. 4.4: Page part of our web interface

Fig. 4.5: Main page of our web interface

Chapter 4. Implementing the solution

87

After downloading the image, it shows us the type of disease detected

Fig. 4.6: Application response after execution

Chapter 4. Implementing the solution

88

4.3 Conclusion

In this chapter we presented the basic concepts that are different from each

other. It follows the development of our web interface. D'autre part, on an

explanation the use of infrastructure software uses Js and FastAPI to ensure this

great user experience, in the but to perform the diagnostic of plant diseases

(Tomato, apple, potato, orange, etc.), which translates into the implementation of

our model that developed in the 03 chapiter, using the convolution neuronal

network.

Conclusion and perspectives

89

Conclusion and perspectives

Conclusion and perspectives

90

This project objective is to create a website that helps people diagnose and

classify plant diseases using computer programs called convolutional neural

networks. CNNs are systems that take pictures of plant leaves and decide if the

plant is healthy or not. Second, we put the model that we proposed in a web

interface so that it would be an effective system that users could use.

A subset of three crop types from the PlantVillage database were tested using

the models AlexNet, VGG16, ResNet152, and a model we proposed. We conclude

from the experiments that:

• For the detection problem, ResNet152v2 and VGG16 offer the best almost

optimal performances (greater than 98%), however, these models are

greedy in terms of computing capacity and hardware resources as well as in

time of execution.

• The classification of several types of pathologies that can affect the same

type of crop was completed with accuracies of around 96% at the level of

our model, which confirms the robustness of our system for identifying the

different plant diseases.

• Effective use of a CNN is an experimental design problem, where multiple

tests are required to find the right configuration for the application to

consider.

• It is important to adjust the input data size to the depth of the network in

order to obtain discriminative features at the output of the convolution

block. A network containing a small convolution block cannot train a very

large image. However, if the network is very deep, the characteristics of a

small image will be lost.

• The implementation of deep learning models in web applications requires a

lot of space to host it and make it accessible to the public, because we need

to load all the libraries used like tenserflow and keras without counting the

size of the model which represents an important criterion in the choice of

the last.

Finally, the results obtained can be further improved with adequate

computing resources to carry out a more efficient design of deep CNN models.

This research can be extended to other types of crops offered by the Plant Village

base or other public bases, in order to verify the robustness of the developed

systems. It would be interesting to test other CNN models, such as Exception. As

possible research perspectives for the work that concerns deployment, it is very

interesting that this system is implemented in a mobile application to facilitate

the processing task for users thanks to the camera present in the smartphone, and

without having to resort to a connection Internet.

Bibliography

91

Bibliography

Chapter 1

1. STRANGE, Richard N; SCOTT, Peter R. Plant disease: a threat to global

foodsecurity. Annual review of phytopathology. 2005, vol. 43, no1, p. 83-
116.

2. EBRAHIMI, MA; KHOSHTAGHAZA, Mohammad Hadi; MINAEI, Saeid;

JAM-SHIDI, Bahareh. Vision-based pest detection based on SVM

classification method.Computers and Electronics in Agriculture. 2017, vol.

137, p. 52-58.

3. CHENG, Xi; ZHANG, Youhua; CHEN, Yiqiong; Wu, Yunzhi; YUE, Yi. Pest

identification via deep residual learning in complex background. Computers

and Electro-nics in Agriculture. 2017, vol. 141, p. 351-356.

4. Li, L., Zhang, S., & Wang, B. (2021). Plant disease detection and classification by

deep learning—a review. IEEE Access, 9, 56683-56698.

6. Fang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant

disease detection. Biosensors, 5(3), 537-561.

7. Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced

techniques for detecting plant diseases. Computers and electronics in agriculture,

72(1), 1-13.

8. Rathod, A. N., Tanawal, B., & Shah, V. (2013). Image processing techniques for

detection of leaf disease. International Journal of Advanced Research in Computer

Science and Software Engineering, 3(11).

9. Garrett, K. A., Nita, M., De Wolf, E. D., Esker, P. D., Gomez-Montano, L., & Sparks,

A. H. (2021). Plant pathogens as indicators of climate change. In Climate change (pp.

499-513). Elsevier.

10. Lucas, G. B., Campbell, C. L., & Lucas, L. T. (1992). Introduction to plant diseases:

identification and management. Springer Science & Business Media.

11. Sonka, M., Hlavac, V., Boyle, R., Sonka, M., Hlavac, V., & Boyle, R. (1993). Image

pre-processing. Image processing, analysis and machine vision, 56-111.

12. Maini, R., & Aggarwal, H. (2009). Study and comparison of various image edge

detection techniques. International journal of image processing (IJIP), 3(1), 1-11.

13. Vincent, G. (2004). Détection efficace de contours d'images (Doctoral dissertation,

Université du Québec en Outaouais).

Bibliography

92

14. Singh, V., & Misra, A. K. (2017). Detection of plant leaf diseases using image

segmentation and soft computing techniques. Information processing in Agriculture,

4(1), 41-49.

15. Kumar, G., & Bhatia, P. K. (2014, February). A detailed review of feature extraction

in image processing systems. In 2014 Fourth international conference on advanced

computing & communication technologies (pp. 5-12). IEEE.

16. Jagtap, S. B., & Hambarde, M. S. M. (2014). Agricultural plant leaf disease detection

and diagnosis using image processing based on morphological feature extraction.

IOSR J. VLSI Signal Process, 4(5), 24-30.

17. Dayang, P., & Meli, A. S. K. (2021). Evaluation of image segmentation algorithms for

plant disease detection. Int. J. Image Graph. Signal Process, 13, 14-26.

18. Mohameth, F., Bingcai, C., & Sada, K. A. (2020). Plant disease detection with deep

learning and feature extraction using plant village. Journal of Computer and

Communications, 8(6), 10-22.

19. Hossain, M. A., & Sajib, M. S. A. (2019). Classification of image using convolutional

neural network (CNN). Global Journal of Computer Science and Technology, 19(2).

20. Bhosle, K., & Musande, V. (2019). Evaluation of deep learning CNN model for land

use land cover classification and crop identification using hyperspectral remote

sensing images. Journal of the Indian Society of Remote Sensing, 47(11), 1949-1958.

21. Zhang, Y. (2012). Support vector machine classification algorithm and its application.

In Information Computing and Applications: Third International Conference, ICICA

2012, Chengde, China, September 14-16, 2012. Proceedings, Part II 3 (pp. 179-186).

Springer Berlin Heidelberg.

22. Murty, M. N., & Devi, V. S. (2011). Pattern recognition: An algorithmic approach.

Springer Science & Business Media.

23. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.

24. Walczak, S. (2019). Artificial neural networks. In Advanced methodologies and

technologies in artificial intelligence, computer simulation, and human-computer

interaction (pp. 40-53). IGI global.

25. Asefpour Vakilian, K., & Massah, J. (2013). An artificial neural network approach to

identify fungal diseases of cucumber (Cucumis sativus L.) plants using digital image

processing. Archives Of Phytopathology And Plant Protection, 46(13), 1580-1588.

26. Hughes, D., & Salathé, M. (2015). An open access repository of images on plant

health to enable the development of mobile disease diagnostics. arXiv preprint

arXiv:1511.08060.

Bibliography

93

27. Kawasaki, Y., Uga, H., Kagiwada, S., & Iyatomi, H. (2015). Basic study of automated

diagnosis of viral plant diseases using convolutional neural networks. In Advances in

Visual Computing: 11th International Symposium, ISVC 2015, Las Vegas, NV, USA,

December 14-16, 2015, Proceedings, Part II 11 (pp. 638-645). Springer International

Publishing.

28. Fujita, E., Kawasaki, Y., Uga, H., Kagiwada, S., & Iyatomi, H. (2016, December).

Basic investigation on a robust and practical plant diagnostic system. In 2016 15th

IEEE international conference on machine learning and applications (ICMLA) (pp.

989-992). IEEE.

29. Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016).

Deep neural networks based recognition of plant diseases by leaf image classification.

Computational intelligence and neuroscience, 2016.

30. Amara, J., Bouaziz, B., & Algergawy, A. (2017). A deep learning-based approach for

banana leaf diseases classification. Datenbanksysteme für Business, Technologie und

Web (BTW 2017)-Workshopband.

31. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of

deep neural network architectures and their applications. Neurocomputing, 234, 11-

26.

32. Zhang, X., Qiao, Y., Meng, F., Fan, C., & Zhang, M. (2018). Identification of maize

leaf diseases using improved deep convolutional neural networks. Ieee Access, 6,

30370-30377.

33. Rangarajan, A. K., Purushothaman, R., & Ramesh, A. (2018). Tomato crop disease

classification using pre-trained deep learning algorithm. Procedia computer science,

133, 1040-1047.

Chapter 2

1. Zouinar, M. (2020). Évolutions de l’Intelligence Artificielle: quels enjeux pour

l’activité humaine et la relation Humain-Machine au travail?. Activités, (17-1).

2. Ciresan, D., Giusti, A., Gambardella, L., & Schmidhuber, J. (2012). Deep neural

networks segment neuronal membranes in electron microscopy images. Advances in

neural information processing systems, 25.

3. Liu, X., Deng, Z., & Yang, Y. (2019). Recent progress in semantic image

segmentation. Artificial Intelligence Review, 52, 1089-1106.

4. Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent

architectures of deep convolutional neural networks. Artificial intelligence review, 53,

5455-5516.

5. Jha, G. K. (2007). Artificial neural networks and its applications. IARI, New Delhi,

girish_iasri@ rediffmail. com.

6. Gupta, N. (2013). Artificial neural network. Network and Complex Systems, 3(1), 24-

28.

8. Decaro, C., Montanari, G. B., Molinari, R., Gilberti, A., Bagnoli, D., Bianconi, M., &

Bellanca, G. (2019). Machine learning approach for prediction of hematic parameters

in hemodialysis patients. IEEE journal of translational engineering in health and

medicine, 7, 1-8.

Bibliography

94

9. Dongare, A. D., Kharde, R. R., & Kachare, A. D. (2012). Introduction to artificial

neural network. International Journal of Engineering and Innovative Technology

(IJEIT), 2(1), 189-194.

10. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations

by back-propagating errors. nature, 323(6088), 533-536.

12. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of

monkey striate cortex. The Journal of physiology, 195(1), 215-243.

13. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

14. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel,

L. (1989). Handwritten digit recognition with a back-propagation network. Advances

in neural information processing systems, 2.

15. Zhang, W., Itoh, K., Tanida, J., & Ichioka, Y. (1990). Parallel distributed processing

model with local space-invariant interconnections and its optical architecture. Applied

optics, 29(32), 4790-4797.

16. Pound, M. P., Atkinson, J. A., Townsend, A. J., Wilson, M. H., Griffiths, M., Jackson,

A. S., ... & French, A. P. (2017). Deep machine learning provides state-of-the-art

performance in image-based plant phenotyping. Gigascience, 6(10), gix083.

17. Wang, W., Yang, Y., Wang, X., Wang, W., & Li, J. (2019). Development of

convolutional neural network and its application in image classification: a survey.

Optical Engineering, 58(4), 040901-040901.

18. Shyam, R. (2021). Convolutional neural network and its architectures. Journal of

Computer Technology & Applications, 12(2), 6-14p.

19. Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017, August). Understanding of a

convolutional neural network. In 2017 international conference on engineering and

technology (ICET) (pp. 1-6). Ieee.

20. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. Advances in neural information processing

systems, 25.

21. Shyam, R. (2021). Convolutional neural network and its architectures. Journal of

Computer Technology & Applications, 12(2), 6-14p.

23. Sharma, S., Sharma, S., & Athaiya, A. (2017). Activation functions in neural

networks. Towards Data Sci, 6(12), 310-316.

24. Job, M. S., Bhateja, P. H., Gupta, M., Bingi, K., & Prusty, B. R. (2022). Fractional

Rectified Linear Unit Activation Function and Its Variants. Mathematical Problems in

Engineering, 2022.

25. Bjorck, N., Gomes, C. P., Selman, B., & Weinberger, K. Q. (2018). Understanding

batch normalization. Advances in neural information processing systems, 31.

26. Baldi, P., & Sadowski, P. J. (2013). Understanding dropout. Advances in neural

information processing systems, 26.

27. Brahimi, M., Boukhalfa, K., & Moussaoui, A. (2017). Deep learning for tomato

diseases: classification and symptoms visualization. Applied Artificial Intelligence,

31(4), 299-315.

28. Cruz, A. C., Luvisi, A., De Bellis, L., & Ampatzidis, Y. (2017). Vision-based plant

disease detection system using transfer and deep learning. In 2017 asabe annual

international meeting (p. 1). American Society of Agricultural and Biological

Engineers.

Webography

95

Webography

CHAPTER 1

5- Examples of leaves representing diseased plants – PlantVillage
https://www.kaggle.com/datasets/emmarex/plantdisease

CHAPTER 2

7- Biological neuron models —
https://en.wikipedia.org/wiki/Biological_neuron_model

11- https://medium.com/swlh/cyclical-learning-rates-the-ultimate-guide-for-
setting-learning-rates-for-neural-networks-3104e906f0ae

22- CNN Settings — https://medium.com/analytics-vidhya/convolution-padding-
stride-and-pooling-in-cnn-13dc1f3ada26

27- Model 01: AlexNet — https://www.geeksforgeeks.org/ml-getting-started-with-
alexnet/?ref=header_search

28- Model 01: AlexNetArchitecture — https://towardsdatascience.com/alexnet-the-
architecture-that-challenged-cnns-e406d5297951

29- Model 02: VGG16 — https://datascientest.com/quest-ce-que-le-modele-vgg

30- Model 02: ResNet152v2 — https://www.geeksforgeeks.org/introduction-to-
residual-networks/?ref=lbp

31- Transfer Learning — https://www.geeksforgeeks.org/ml-introduction-to-
transfer-learning/

CHAPTER 3

1- PlantVillage Dataset | Kaggle [https://bit.ly/3m2HYNV],
https://bit.ly/3SKf6tW.

2- Python

What is Python ? Executive Summary | Python.org [https://bit.ly/3ze7tUw].

3- Torchvision [https://bit.ly/3IfsOAc]

4-

5- Colab : A Modern PaaS for Machine Learning – The New Stack
[https://bit.ly/49tzaYw].

CHAPTER 4

1- Deploying ML Models as API using FastAPI – GeeksforGeeks
[https://bit.ly/ 3yhJWRG]. [s. d.].

2- FastAPI [https://bit.ly/3nii6hS]. [s. d.].

3- Uvicorn [https://bit.ly/3xUeHL1]. [s. d.]

 4- javascript definition [https://bit.ly/3V03oxT] [s. d.]

https://www.geeksforgeeks.org/ml-introduction-to-transfer-learning/
https://www.geeksforgeeks.org/ml-introduction-to-transfer-learning/

