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Abstract 

Many modern methods have shown the benefit of enhancing spatial encryption by utilizing 

convolutional neural networks (CNNs). These methods extract features by combining spatial 

information and channel information within receptive fields to enhance the representational power 

of the network. Recently, significant progress has been made in classifying COVID-19 pneumonia 

images and many other health conditions using CNN models. However, in this work, we focus on 

a newly introduced concept by researchers known as the 'Squeeze-and-Excitation' (SE) block. This 

block adaptively recalibrates channel-level feature responses by explicitly modelling inter-channel 

relationships. 

In this study, we will integrate this block into various models, including C-CNN, VGG16, and 

Alex-Net. It is crucial to study and compare the effectiveness of these models to facilitate the early 

detection and diagnosis of lung diseases using CT-Scan images. The study emphasizes the 

potential of CNN models with and without the SE block in assisting healthcare professionals in 

diagnosing and treating lung diseases. The main objective of our experiment is to train and 

compare regular models with those incorporating the SE block. 

An improvement in accuracy by 2% and 1% was achieved in most models with the SE block, along 

with a reduction in error rates, with differences in some models reaching 6% compared to regular 

models. These results were obtained using data frequently employed by researchers. 

Keywords: COVID-19, pneumonia, deep learning, CT-Scan images, VGG16, Alex-Net, used 

data, image classification, Convolutional Neural Network (CNN), Squeeze-and-Excitation block, 

SE-block   
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Résumé 

De nombreuses méthodes modernes ont démontré l'intérêt de renforcer le chiffrement spatial en 

utilisant des réseaux de neurones convolutifs (CNN). Ces méthodes extraient des caractéristiques 

en combinant les informations spatiales et les informations de canal au sein des champs récepteurs 

afin d'améliorer la puissance de représentation du réseau. Récemment, des progrès significatifs ont 

été réalisés dans la classification des images de pneumonie COVID-19 et de nombreuses autres 

conditions de santé en utilisant des modèles CNN. Cependant, dans ce travail, nous nous 

concentrons sur un concept récemment introduit par des chercheurs, connu sous le nom de bloc 

'Squeeze-and-Excitation' (SE). Ce bloc réétalonne de manière adaptative les réponses des 

caractéristiques au niveau des canaux en modélisant explicitement les relations inter-canaux. 

Dans cette étude, nous intégrerons ce bloc dans divers modèles, y compris C-CNN, VGG16 et 

Alex-Net. Il est crucial d'étudier et de comparer l'efficacité de ces modèles pour faciliter la 

détection et le diagnostic précoces des maladies pulmonaires en utilisant des images CT-Scan. 

L'étude souligne le potentiel des modèles CNN avec et sans le bloc SE pour aider les professionnels 

de la santé à diagnostiquer et traiter les maladies pulmonaires. L'objectif principal de notre 

expérience est de former et de comparer les modèles réguliers avec ceux intégrant le bloc SE. 

Une amélioration de la précision de 2% et 1% a été obtenue dans la plupart des modèles avec le 

bloc SE, ainsi qu'une réduction des taux d'erreur, avec des différences dans certains modèles 

atteignant 6% par rapport aux modèles réguliers. Ces résultats ont été obtenus en utilisant des 

données fréquemment utilisées par les chercheurs. 

Mots-clés : COVID-19, pneumonie, apprentissage profond, images CT-Scan, VGG16, AlexNet, 

données utilisées, classification d'images, Réseau de Neurones Convolutifs (CNN), bloc Squeeze-

and-Excitation, SE-block. 
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  الملخص

خلال اعتماد الشبكات العصبية التلافيفة على عملية أظهرت العديد من الأساليب الحديثة فائدة تعزيز التشفير المكاني، وذلك من 

التلافيف من خلال استخراج ميزات عن طريق دمج المعلومات المكانية والمعلومات المتعلقة بالقناة معا داخل المجالات 

كبير في تصنيف صور  الاستقبالية، وذلك من أجل تعزيز القوة التمثلية للشبكة وكما نعلم أن في الآونة الأخيرة قد تم إحراز تقدم

لكن في هذا العمل نركز  CNN والعديد من الحالات الصحية من خلال استخدام نماذج COVID-19 19الالتهاب الرئة كوفيد 

على علاقة جديدة طرُِحَت مؤخرا من قبل الباحثين، والتي يطلق عليها كتلة 'الضغط والإثارة' والتي تعمل على إعادة معايرة 

على مستوى القناة بشكل تكيفي من خلال نمذجة الترابط بين القنوات بشكل واضح. لذلك في هذه الدراسة  استجابات الميزات

ومهم جدا دراسة ومقارنة فعالية هذه النماذج Net-Alex و VGG16 و CNN-C سنقوم بإضافة هذه الكتلة إلى كل من النماذج

 . تؤكد الدراسة على إمكانات كل من نماذجScan-Ctصور باستخدام   لتسهيل الكشف المبكر عن أمراض الرئة وتشخيصها

 CNNمع وبلا كتلة 'الضغط والإثارة block-SE'  في مساعدة المتخصصين في الرعاية الصحية في تشخيص وعلاج أمراض

تم الوصول إلى  الرئة . الهدف الرئيسي من تجربتنا هو تدريب ومقارنة بين النماذج العادية والمضاف لها كتلة 'الضغط والإثارة'.

% في معظم النماذج المضاف إليها كتلة الضغط والإثارة وأيضا تحسين في نسبة الخطأ والذي وصل 1% و 2تحسن في دقة 

تم استخدمها من قبل وهذه النتائج تم الحصول عليها بإستخدام ببيانات  % مقارنة مع النماذج العادية6الفرق في بعض النماذج ب

 الباحثين بكثرة .

، البيانات Scan-CT ،VGG16 ،Net-Alex، الالتهاب الرئوي، التعلم العميق، صور COVID-19 : لمات المفتاحيةالك

 .block-SE  ،   'الضغط والإثارة كتلة ' ( ،CNN، تصنيف الصور، الشبكة العصبية الالتفافية )مستخدمة 
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Introduction 

 In recent years, advancements in medical imaging and machine learning techniques have 

driven the development of automated image classification systems to aid in the diagnosis and early 

detection of pneumonia. Convolutional Neural Networks (CNNs) have been a cornerstone in 

image classification tasks, demonstrating remarkable performance in various medical applications. 

CNNs benefit from hierarchical feature extraction and spatial relationships to achieve high 

accuracy in medical image analysis. Many recent approaches have emerged regarding the 

network's strength, and a group of researchers at the University of Oxford in the UK proposed a 

new architectural unit called the "Squeeze-and-Excitation" (SE) module. This module adaptively 

recalibrates channel feature responses by explicitly modeling inter-channel dependencies. 

This study aims to integrate this unit into CNN models and compare them with standard models 

for classifying chest CT-Scan images of pneumonia, including COVID-19 cases, and healthy 

individuals. By evaluating and comparing the performance of these models, we seek to highlight 

their effectiveness and suitability in clinical settings. The investigation includes a variety of cases, 

including COVID-19, other types of pneumonia, and healthy individuals, to provide a 

comprehensive understanding of the models' capabilities. The results of this study have significant 

implications for the field of biomedical engineering and clinical practice. Enhancing the use of 

CNN models with the new architectural unit Senet can improve accuracy and efficiency in the 

early detection and diagnosis of pneumonia diseases, including COVID-19. 

The findings of this research will inform healthcare professionals and decision-makers, enabling 

them to make informed choices regarding the implementation of advanced image classification 

models in clinical settings. Overall, this comparative study contributes to the growing body of 

knowledge in medical image analysis and highlights the potential of both CNN and CNN+SE 

models in assisting healthcare professionals in diagnosing and treating pneumonia diseases. By 

leveraging the power of deep learning and image classification techniques, we can pave the way 

for improved patient care, better resource allocation, and ultimately, positively impact public 

health outcomes. 
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Introduction 

In the first chapter of the article, we introduce Ai and branches, especially Ml and Dl, and how we 

can use it easily through the programming languages, platforms, and libraries that helped us in the 

path of our research. 

Artificial intelligence is a technical solution, system, or device that aims to imitate human 

intelligence to perform tasks while improving itself repeatedly based on the information it collects. 

1.1 Artificial Intelligence 

AI, or Artificial Intelligence, refers to the development of computer systems that can perform tasks 

that typically require human intelligence. These tasks include understanding natural language, 

recognizing patterns, learning from experience, and making decisions. AI technology enables 

machines to mimic human cognitive functions like reasoning, problem-solving, perception, and 

language understanding. AI applications range from voice assistants like Siri to self-driving cars 

and personalized recommendation systems [1]. 

AI applications span various industries and domains, including healthcare, finance, automotive, 

manufacturing, entertainment, and more. AI has the potential to revolutionize many aspects of our 

lives, improving efficiency, productivity, and decision-making across various fields. However, it 

also raises ethical, societal, and regulatory considerations, such as privacy, bias, transparency, and 

accountability. 

Machine learning & Deep learning is a subset of artificial intelligence that focuses on building a 

software system that can learn or improve performance based on the data it consumes. This means 

that every machine learning solution is an AI solution, but not all AI solutions are machine learning 

solutions [2]. 
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Figure 1: Artificial intelligence and branches. 

1.2 Machine Learning 

Machine Learning (ML) is a subset of Artificial Intelligence (AI) that focuses on creating systems 

capable of learning from data and improving their performance over time without being explicitly 

programmed. ML algorithms enable computers to identify patterns and make data-driven decisions 

or predictions. Examples of ML applications include recommendation systems, image recognition, 

spam detection, and medical diagnosis. 

Machine learning structures typically start with collecting relevant data, which is then pre-

processed to ensure it is usable by machine learning algorithms. Next, an appropriate model is 

selected and trained on the pre-processed data. The model's performance is evaluated using 

separate test data. Hyperparameters may be tuned to optimize performance. Once satisfactory, the 

model is deployed for real-world use. Ongoing monitoring and maintenance ensure the model's 

continued effectiveness and reliability [3] [4]. 
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Figure 2: Machine Learning Structure 

1.3 Deep Learning 

Deep Learning (DL) is a subset of machine learning that utilizes artificial neural networks with 

multiple layers (hence “deep”) to learn representations of data. Unlike traditional machine learning 

approaches, which may require manual feature extraction, deep learning algorithms automatically 

learn hierarchical representations of the input data. This makes deep learning particularly effective 

for tasks such as image and speech recognition, natural language processing, and recommendation 

systems. DL models, such as convolutional neural networks (CNNs) for image processing and 

recurrent neural networks (RNNs) for sequential data, have achieved remarkable performance in 

various domains, often surpassing human-level performance. Training deep learning models 

typically require large amounts of data and computational resources, but they have demonstrated 

state-of-the-art results in a wide range of applications [4]. 

 

Figure 3: Deep Learning Structure 

1.4 Programming Language Used 
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1.4.1 Python 

The Python language is an open source, cross-platform, object-oriented programming language. 

Thanks to specialized libraries, Python can be used for many situations such as software 

development, data analysis, or infrastructure management. It is therefore not, like HTML for 

example, solely dedicated to web programming. 

An interpreted programming language, Python allows code to be executed on any computer. 

Usable by both beginners and expert programmers, Python allows you to create programs quickly 

and easily. 

A language used for machine learning and data science; Python has significantly contributed to the 

growth of big data. Thanks to its numerous libraries such as Panda, Bokeh, NumPy, SciPy, Scrapy, 

Matplotlib, Scikit-Learn or even TensorFlow, Python offers great flexibility in the tasks to be 

carried out and great compatibility whatever the platform used [5]. 

 

 

1.5 Platform Used 

1.5.1 Google Collab 

Colab is a hosted Jupyter Notebook service that requires no setup to use and provides free access 

to computing resources, including GPUs and TPUs. Colab is especially well suited to machine 

learning, data science, and education. 

Google Colab offers several benefits that make it a popular choice among data scientists, 

researchers, and machine learning practitioners. Key features of Google Collaboratory notebook 

include: 

 Free Access to GPUs: Colab offers free GPU access, which is particularly useful for 

training machine learning models that require significant computational power. 
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 No Setup Required: Colab runs in the cloud, eliminating the need for users to set up and 

configure their own development environment. This makes it convenient for quick coding 

and collaboration. 

 Collaborative Editing: Multiple users can work on the same Colab notebook 

simultaneously, making it a useful tool for collaborative projects. 

Integration with Google Drive: Collab is integrated with Google Drive, allowing users to save 

their work directly to their Google Drive account. This enables easy sharing and access to 

notebooks from different devices. 

a. Support for Popular Libraries: Colab comes pre-installed with many popular Python 

libraries for machine learning, data analysis, and visualization, such as TensorFlow, PyTorch, 

Matplotlib, and more. 

b. Easy Sharing: Colab notebooks can be easily shared just like Google Docs or Sheets. Users 

can provide a link to the notebook, and others can view or edit the code in real-time [6]. 

1.5.2 Kaggle: 

Kaggle is a platform for data science competitions, where data scientists and machine learning 

engineers can compete to create the best models for solving specific problems or analysing certain 

data sets. The platform also provides a community where users can collaborate on projects, share 

code and data sets, and learn from each other's work. Founded in 2010, Google acquired Kaggle 

in 2017, and the platform is now part of Google Cloud. 

Kaggle hosts a variety of competitions sponsored by organizations, ranging from predicting 

medical outcomes to classifying images or identifying fraudulent transactions. Participants can 

submit their models and see how they perform on a public leaderboard, as well as receive feedback 

from other competitors and the community. 

In addition to competitions, Kaggle also offers public data sets, machine learning notebooks, and 

tutorials to help users learn and practice their skills in data science and machine learning. It has 

become a popular platform for both novice and experienced data scientists to improve their skills, 

build their portfolios, and connect with others in the industry. 

Kaggle is also used for: 
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Learning: Kaggle provides resources such as public data sets, machine learning tutorials, and code 

notebooks that allow users to learn and practice data science skills. 

 

Collaboration: Kaggle allows users to form teams and collaborate on submissions, share code 

and data sets, and provide feedback to each other. 

Community building: Kaggle has a large community of data scientists, machine learning 

engineers, and data enthusiasts, providing a platform for users to connect, share ideas, and 

collaborate on projects. 

Research: Kaggle's data sets and competitions are impactful for research purposes, making it a 

platform for testing and improving machine learning algorithms. 

Overall, Kaggle is a versatile platform that offers a range of opportunities for data scientists and 

machine learning engineers, from learning and collaboration to research [7]. 

1.6 Software Used 

1.6.1 Anaconda: 

Anaconda is a free distribution and open-source programming language in Python and R 

application to develop new applications in the science of donation and automatic application, 

which can simplify the delivery of packages and development [8]. 

1.6.2 Spyder: 

Spyder is a free and open-source scientific environment written in Python, for Python, and 

designed by and for scientists, engineers, and data analysts. It features a unique combination of the 

advanced editing, analysis, debugging, and profiling functionality of a comprehensive 

development tool with the data exploration, interactive execution, deep inspection, and beautiful 

visualization capabilities of a scientific package [9]. 

1.7 Python Libraries Used 

1.7.1 TensorFlow: 
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TensorFlow is an open-source machine learning framework developed by Google that is widely 

used for building and training deep learning models. It provides a comprehensive ecosystem of 

tools, libraries, and resources to support various machine learning tasks, including neural 

networks, natural language processing, computer vision, and reinforcement learning [10]. 

1.7.2 Keras: 

Keras is an open-source neural network library written in Python. It is designed to be user-friendly, 

modular, and extensible, making it a popular choice for building and training deep learning models. 

Keras provides a high-level API that allows developers to quickly prototype and experiment with 

neural network architectures without needing to deal with the complexities of low-level 

implementations [10]. 

1.7.3 Numpy: 

NumPy is a Python library used for working with arrays; It also has functions for working in 

domain of linear algebra, fourier transform, and matrices. 

NumPy was created in 2005 by Travis Oliphant. It is an open-source project, and you can use it 

freely. 

NumPy stands for Numerical Python [11]. 

 

1.7.4 Sk-Learn:  

Scikit-learn is a Python library that can be used automatically. It is developed by several 

contributing contributors at the Academy of French Superior Institutes and scholarships as Inria 

[12]. 
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Chapter 2: Convolutional Neural Network (CNN) 

2.1. Introduction   

In the second chapter, we will discuss CNN, which is the primary tool for image and video 

recognition. We will provide you with a definition of its basic concepts and components, its 

structure, and its applications in computer vision. We will also examine all its layers, and through 

understanding how CNNs work, we can leverage their power to improve image classification. 

2.2. Neural Network 

A neural network is a computer algorithm inspired by the human brain. It has made up of 

interconnected nodes organized into layers. These networks can analyse data, recognize patterns, 

and make decisions. In applications like social media marketing, they are used for tasks like 

sentiment analysis, content recommendation, and customer segmentation, helping marketers 

understand their audience and improve their strategies. 

Neural networks are typically trained using a dataset of input-output pairs, called a training set. 

During training, the network adjusts the weights of its connections between neurons to minimize 

the difference between the actual output and the desired output, once a neural network is trained, 

it can be used to make predictions or classifications on new input data [4].  

 

Figure 4: Neural Network Structure 
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2.3. Image Classification 

Image classification using Convolutional Neural Networks (CNN) has revolutionized computer 

vision tasks by enabling automated and accurate recognition of objects within images. CNN-based 

image classification algorithms have gained immense popularity due to their ability to learn and 

extract intricate features from raw image data automatically. This article will explore the 

principles, techniques, and applications of image classification using CNNs. We will delve into the 

architecture, training process, and CNN image classification evaluation metrics. By understanding 

the workings of CNNs for image classification, we can unlock many possibilities for object 

recognition, scene understanding, and visual data analysis [13]. 

Image classification using CNN involves the extraction of features from the image to observe some 

patterns in the dataset. Using an ANN for the purpose of image classification would end up being 

very costly in terms of computation since the trainable parameters become extremely large. 

We use filters when using CNNs. Filters exist of many different types according to their purpose 

[14]. 

It has a wide range of practical applications across various domains, including scene 

understanding, defect detection in manufacturing processes, facial recognition for security 

purposes, and disease diagnosis through medical imaging, such as X-ray or CT-scan images. [12] 

In our research study, we aim to perform image classification tasks with multiple classes, 

specifically focusing on pneumonia diseases, including COVID-19. 

By addressing the image classification task involving these specific classes, we aim to contribute 

to the scientific understanding and development of accurate diagnostic models for pneumonia 

diseases, including COVID-19. 

By automating the process of image classification, it is possible to analyse large volumes of images 

quickly and accurately, allowing for more efficient and effective decision-making in various 

industries [15] [16]. 

2.4. Convolutional Neural Network (CNN) 
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A Convolutional Neural Network (CNN) is a specialized type of artificial neural network designed 

to analyse visual data such as images and videos. CNNs are particularly powerful in tasks like 

image classification, object detection, and image segmentation. 

During training, CNNs learn to automatically extract relevant features from raw pixel data, 

gradually improving their ability to classify images accurately. This process is often supervised, 

meaning that the network is trained on labelled data pairs (input images and their corresponding 

labels) [4]. 

CNNs have revolutionized the field of computer vision and have been instrumental in achieving 

state-of-the-art performance in various visual recognition tasks, including image classification, 

object detection, facial recognition, and medical image analysis [17]. 

A Convolutional Neural Network (CNN) comprises several key components that work together to 

process and analyse visual data like images. These components include: 

 Input layer. 

 convolutional (Conv) layer. 

 Pooling layer. 

 Fully connected (FC) layer. 

 SoftMax. 

 Output layer. 
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Figure 5: Convolutional Neural Network Model 

2.4.1. Input layer 

The input layer is the initial stage of a Convolutional Neural Network (CNN) where raw data is 

fed into the network for processing. In the context of image classification, the input layer receives 

raw pixel values from the input image. 

The input layer serves as the starting point for the flow of information through the network. As the 

data progresses through subsequent layers, including convolutional layers, pooling layers, and 

fully connected layers, the network learns hierarchical representations of the input data, enabling 

tasks such as image classification, object detection, and segmentation. 

 

Figure 6: input layer structure 
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2.4.2. Convolutional (Conv) layer 

The convolutional layer is a fundamental building block of a Convolutional Neural Network 

(CNN) responsible for extracting features from input data, such as images. Here is a detailed 

explanation of the convolutional layer: 

a.  Convolution Operation 

 The core operation of the convolutional layer is convolution. It involves sliding a small window 

called a filter (or kernel) over the input data (e.g., an image) and performing element-wise 

multiplication between the filter and the overlapping region of the input. The result is a feature 

map that highlights spatial patterns and structures in the input. 

b.  Filters and Feature Maps 

 A convolutional layer typically consists of multiple filters, each responsible for detecting different 

features. As the filters slide over the input, they produce corresponding feature maps that capture 

different aspects of the input data. These feature maps represent learned representations of local 

patterns, such as edges, textures, or shapes. 

c.  Shared Weights and Bias 

 In CNNs, the same filter is applied across the entire input image, allowing the network to learn 

spatially invariant features. Each filter has its set of learnable parameters, including weights and a 

bias term, which are adjusted during the training process to minimize the prediction error. 

d.  Stride and Padding 

 The stride determines the step size of the filter as it moves across the input. A larger stride reduces 

the spatial dimensions of the output feature maps, while padding can be added to the input to 

preserve spatial dimensions. Padding is often used to ensure that the output feature maps have the 

same spatial dimensions as the input. 
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e.  Non-linear Activation 

 After the convolution operation, a non-linear activation function, such as ReLU (Rectified Linear 

Unit), is applied elementwise to the feature maps. This introduces non-linearity into the network, 

enabling it to learn complex relationships and represent more abstract features. 

The convolutional layer plays a crucial role in capturing hierarchical representations of the input 

data, enabling the network to learn increasingly abstract features as information flows through 

subsequent layers. It forms the backbone of CNNs and is essential for tasks such as image 

classification, object detection, and image segmentation. 

 

Figure 7:  convolution layer 

2.4.3. pooling layer 

The pooling layer is a crucial component in Convolutional Neural Networks (CNNs) designed to 

reduce the spatial dimensions of the feature maps generated by the convolutional layers while 

retaining important information. Here is an overview of the pooling layer: 

a.  Down sampling 

 The primary function of the pooling layer is down sampling, which reduces the spatial dimensions 

(width and height) of the input feature maps. This helps in decreasing the computational 

complexity of the network and controlling overfitting by providing a form of spatial abstraction. 
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b.  Pooling Operations 

 The pooling layer performs pooling operations over small spatial regions of the input feature 

maps. The two most common pooling operations are max pooling and average pooling: 

 Max Pooling: For each region of the input feature map, the maximum value is retained, 

discarding the rest. This helps in preserving the most prominent features in each region. 

 Average Pooling: The average value of the region is computed and retained. This operation 

can help in reducing noise and capturing more generalized features. 

Pooling Size and Stride: The pooling layer operates with a specified pooling size (e.g., 2x2 or 3x3) 

and a stride that determines the step size for moving the pooling window across the input feature 

maps. By adjusting the pooling size and stride, the degree of down sampling can be controlled 

[17]. 

2.4.4. Fully connected (FC) layer: 

The fully connected (FC) layer, also known as the dense layer, is a crucial component in 

Convolutional Neural Networks (CNNs) that plays a key role in high-level feature representation 

and classification. Here is an overview of the fully connected layer [17]: 

 

a.  Flattening 

 Before the fully connected layer, the feature maps generated by the convolutional and pooling 

layers are typically flattened into a one-dimensional vector. This process converts the spatially 

arranged features into a linear sequence, allowing them to be fed into the fully connected layer. 

b.  Connection to Neurons 

 In a fully connected layer, each neuron is connected to every neuron in the preceding layer. This 

means that every element in the flattened feature vector is connected to every neuron in the fully 

connected layer. 
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2.4.5. Learnable Parameters 

 Each connection between neurons in the flattened input vector and neurons in the fully connected 

layer has its associated weight parameter. During training, these weights are learned through 

backpropagation, adjusting their values to minimize the loss function and improve the network's 

performance on the given task. 

2.4.6. Bias Term 

 In addition to weights, each neuron in the fully connected layer also has a bias term 

associated with it. The bias term provides the model with additional flexibility to 

learn complex patterns and relationships in the data. 

2.4.7. Activation Function 

 Like other layers in the network, the fully connected layer typically applies a non-

linear activation function to the output of each neuron. Common activation functions 

include ReLU (Rectified Linear Unit), sigmoid, or tanh, introducing non-linearity 

into the model and enabling it to learn complex mappings between input and output. 

2.4.8. Classification or Regression 

 The fully connected layer is often the final layer in a CNN architecture and is 

responsible for generating the output predictions. Depending on the task, such as 

image classification or regression, the fully connected layer may have a different 

number of neurons corresponding to the number of classes or output dimensions. 

Overall, the fully connected layer in CNNs serves as a powerful tool for learning 

high-level representations of the input data and making predictions based on these 

representations, making it a critical component in various machine learning tasks. 
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Figure 8: (FC) layer structure 

 

 

 

2.4.9. SoftMax 

SoftMax is an activation function commonly used in the output layer of neural 

networks, including Convolutional Neural Networks (CNNs), for multi-class 

classification tasks. Here is an explanation of SoftMax: 

2.4.10. Probability Distribution 

 SoftMax converts the raw output scores from the previous layer into a probability distribution 

over multiple class. It ensures that the sum of the probabilities for all classes equals one, making 

it suitable for multi-class classification problems. 
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2.4.11 Properties 

   - SoftMax ensures that the output probabilities are non-negative. 

   - It emphasizes the high-scoring classes while suppressing the low-scoring ones, effectively 

highlighting the class predictions. 

   - SoftMax is differentiable, making it suitable for training neural networks using gradient-based 

optimization algorithms like backpropagation. 

2.4.12. Output Interpretation 

 After applying SoftMax, the output of the neural network represents the probability of each class. 

The class with the highest probability is considered the predicted class for the input. 

2.4.13. Cross-Entropy Loss 

 SoftMax is often paired with the cross-entropy loss function for training neural networks. Cross-

entropy loss measures the difference between the predicted probability distribution and the true 

distribution of class labels, guiding the network to minimize this difference during training. 

In summary, SoftMax is a valuable component in CNNs for converting raw output scores into 

meaningful probabilities, enabling the network to make confident predictions for multi-class 

classification tasks. 
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Figure 9: The shape of the SoftMax function 

 

 

2.4.14. Output layer 

The output layer is the final layer in a neural network architecture, including Convolutional Neural 

Networks (CNNs), responsible for producing the network's predictions or outputs based on the 

input data. 

2.4.15. Activation Function 

 The activation function applied in the output layer depends on the task and the desired properties 

of the output. For binary classification tasks, a sigmoid activation function is commonly used to 

produce outputs in the range [0, 1], representing the probability of belonging to one class. For 

multi-class classification tasks, a SoftMax activation function is often applied to generate a 

probability distribution over multiple classes, ensuring that the sum of the probabilities equals one. 

2.4.16. Loss Function  

The choice of loss function in the output layer is critical for training the neural network. For 

classification tasks, cross-entropy loss is commonly used with SoftMax activation, measuring the 

discrepancy between the predicted probabilities and the true class labels. For regression tasks, 

mean squared error (MSE) or other regression-specific loss functions are used to measure the 

difference between the predicted and true continuous values. 
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2.4.17. Training and Inference 

 During training, the neural network adjusts its parameters (weights and biases) based on the 

chosen loss function and optimization algorithm to minimize prediction errors. During inference 

(testing or deployment), the trained network uses the learned parameters to generate predictions 

for new, unseen data. 

2.4.18 Hyperparameters 

Hyperparameters are settings or configurations that are set before training a machine learning 

model and cannot be learned from the data itself. They control the overall behaviour of the 

algorithm during training, affecting factors like model complexity, learning speed, and 

generalization performance. Common hyperparameters include the learning rate, batch size, 

number of layers, number of neurons per layer, and activation functions. Fine-tuning 

hyperparameters are crucial for optimizing model performance and achieving the best results. 

a.  Learning Rate 

The learning rate is a hyperparameter in machine learning algorithms, determining the step size of 

parameter updates during training. It influences how quickly or slowly a model learns from the 

data. A higher learning rate accelerates learning but may cause instability or overshooting, while a 

lower learning rate may lead to slow convergence or getting stuck in local minima. Finding the 

right balance for the learning rate is crucial for effective model training and optimization.  

 

Figure 10: The effect of choosing different learning rates 
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c.  Batch Size 

The batch size is a hyperparameter in machine learning that specifies the number of training 

examples used in one iteration of model training. It affects the speed and stability of training, as 

well as the memory requirements. A larger batch size leads to faster training but requires more 

memory and may result in less noisy updates to the model's parameters. Conversely, a smaller 

batch size consumes less memory but may lead to slower training and more fluctuation in the 

optimization process. Choosing an appropriate batch size is important for achieving efficient and 

effective model training. 

d.  Epochs 

Epochs refer to the number of times the entire dataset is passed forward and backward through the 

neural network during training. Each epoch consists of one forward pass (computing loss) and one 

backward pass (updating parameters) for all training examples. Increasing the number of epochs 

allows the model to see the data multiple times, potentially improving its ability to learn from the 

dataset. However, too many epochs can lead to overfitting, where the model memorizes the training 

data instead of learning general patterns. Finding the right balance between underfitting and 

overfitting by adjusting the number of epochs is essential for effective model training.  

2.5. CNN Models 

2.5.1. VGG16 

The VGG-16 model is a convolutional neural network (CNN) architecture that was proposed by 

the Visual Geometry Group (VGG) at the University of Oxford. It is characterized by its depth, 

consisting of 16 layers, including 13 convolutional layers and 3 fully connected layers. VGG-16 

is renowned for its simplicity and effectiveness, as well as its ability to achieve strong performance 

on various computer vision tasks, including image classification and object recognition. The 

model’s architecture features a stack of convolutional layers followed by max-pooling layers, with 

progressively increasing depth. This design enables the model to learn intricate hierarchical 

representations of visual features, leading to robust and accurate predictions. Despite its simplicity 
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compared to more recent architectures, VGG-16 remains a popular choice for many deep learning 

applications due to its versatility and excellent performance. 

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual competition in 

computer vision where teams tackle tasks including object localization and image classification. 

VGG16, proposed by Karen Simonyan and Andrew Zisserman in 2014, achieved top ranks in both 

tasks, detecting objects from 200 classes and classifying images into 1000 categories [18]. 

 

Figure 11: VGG-16 model. 

2.5.2. Alxenet 

AlexNet is a pioneering deep convolutional neural network architecture that played a significant 

role in advancing the field of computer vision. It won the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) in 2012, demonstrating a significant improvement in image 

classification accuracy over previous methods. 

AlexNet consists of 5 Convolutional Layers and 3 Fully Connected Layers. 
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AlexNet's success was attributed to several key innovations, including the use of rectified linear 

units (ReLU) for activation functions, overlapping pooling, dropout regularization, and the 

utilization of multiple GPUs for training, which significantly accelerated the learning process. 

These advances helped pave the way for the widespread adoption of deep convolutional neural 

networks in various computer vision tasks. 

 

Figure 12: AlexNet model 

2.6. Conclusion 

In Chapter 2 of our essay, we delve into the significance of Convolutional Neural Networks 

(CNNs) in computer vision. We discuss their fundamental principles, including composition, The 

ability to learn complex patterns, and the training process. Emphasis is placed on image 

Classification as a key application of CNNs, enabling accurate classification based on visual 

features. 
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3.1. Introduction: 

In this section, we will give you a simple explanation of a novel architectural unit, we demonstrate 

that by stacking these blocks together, we can construct SENet architectures that generalize 

extremely well across challenging datasets. 

Crucially, we find that SE blocks produce significant performance improvements for existing state-

of the-art deep architectures at minimal additional computational cost.  

All this information was taken from the article, and we enhanced it and worked on it. 

3.2. squeeze and excitation network: 

The Squeeze and Excitation Network introduces a novel channel-wise attention mechanism for 

CNNs (Convolutional Neural Network) to improve their channel interdependencies. The network 

adds a parameter that re-weights each channel accordingly so that it becomes more sensitive 

towards significant features while ignoring the irrelevant features [19]. 

3.3. The architecture of Squeeze and Excitation Networks: 

The author proposes an easy-use module called Squeeze and Excitation block also called SE-block. 

The SE-block consists of three operations: 

 Squeeze 

 Excitation 

 Scaling 
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Figure 13: SE-Blocks Structure 

3.3.1. Squeeze: 

The squeeze operation is mainly used to extract the global information from each channel of the 

feature map. The feature map is basically the output of the convolution layer, which is a 4D tensor 

of size B x H x W x C. Here: 

B: refers to batch size. 

H: refers to the height of each feature map. 

W: refers to the width of each feature map. 

C: refers to the number of channels in the feature map. 

In modern convolutional neural networks, pooling operations are used to reduce the spatial 

dimensions of the feature maps. The two widely used pooling operations are: 

Max Pooling: operation is used to take the maximum pixel value from a defined window. 

Average Pooling: operation is used to computes the average pixel values from a defined window 

[19]. 
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3.2.2. Excitation: 

The feature map is now reduced to a smaller dimension (B x 1 x 1 x C), for each channel of size 

H x W is reduced to a singular vector. For the excitation operation, a fully connected multi-layer 

perceptron (MLP) with a bottleneck structure is used. The MLP is used to generate the weights to 

scale each channel of the feature map adaptively [19].  

 

Figure 14: Example of a Multi-Layer Perceptron (MLP) structure. 

 

The MLP consists of three layers, where the hidden layer is used to reduce the number of features 

by a reduction factor r. The dimensions of the feature maps in the layers are: 

The input is of shape (B x 1 x 1 x C), which is reduced to B x C. Thus, the input layer has the C 

number of neurons. 

The hidden layer reduces the number of neurons by a factor of r. Thus, the hidden layer has a C/r 

number of neurons. 

 Finally, In the output layer, the number of neurons increased back to C. 

Overall, the MLP takes the input as B x 1 x 1 x C as return the output with the same dimensions. 

3.2.3. Scaling: 

The excitation operation passes the “excited” tensor of shape B x 1 x 1 x C. This tensor is then 

passed through a sigmoid activation function. The sigmoid activation function converts the tensor 

values in the range of 0 and 1. We then perform an element-wise multiplication between the output 

of the sigmoid activation function and the input feature map. 
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If the value is close to 0 means the channel is less important so, the values of the feature channel 

would be reduced, and if the value is close to 1, this means that is channel is important. 

By integrating SE-blocks into existing CNN architectures, models can achieve better performance 

with minimal computational overhead, as it enables the network to focus on the most informative 

features dynamically. 

3.3. How Squeeze-and-Excitation Networks Help? 

So, till now you have understood the architecture of the Squeeze and Excitation Network. During 

the scaling operation, we perform an element-wise multiplication between the initial feature map 

and the output of the sigmoid activation function. 

The sigmoid activation function outputs a value between 0 and 1 and each channel is multiplied 

with it. 

So, now imagine, a channel is multiplied with a value that is near 0. It will reduce the pixel values 

of that feature map, as these pixel values are not much relevant according to the SE-block.  

When the channel is multiplied with a value that is near 1, it would not reduce the pixel values that 

much, if compared with the above case.  

So, now we can see that the Squeeze and Excitation Network basically scale each channel 

information. It reduces the non-relevant channel information, and the relevant channel are not 

much affected. So, after the whole operation, the feature map only contains the relevant 

information, which increases the representational power of the entire network [20]. 

3.4. conclusion: 

In the end, we leave you to the next chapter, in which we made a comparison between many models 

with the addition of the new architecture, SE-block, and the results we obtained, many 

observations, and a lot of fun a wait you in the next chapter. 
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4.1 Introduction: 

In this study, the main goal is to compare CNN and CNN+SENET in both binary classification 

and multiple classification using CT-scan images. 

First, we explain the data that we used in our study and its source, because it is the most important 

step before the beginning of the study. After that, we move to the training stage, where we use the 

custom CNN model for two types of training methods. 

First, by classifying an image into Covid-19 or not Covid-19 in binary classification, and the 

second method is multi classification. We added data for others disease in addition to Covid-19 

and Healthy data, and this is to prove the quality of the model in dealing with the distinction 

between respiratory diseases. 

After the training process, we analyse the results. 

4.2 Data Description: 

-We have 2 classes of CT-scan images in Binary classification: [21] 

Table 1: Table showing data distribution for binary classification. 

Data/case Covid-19 Normal  overall 

Training 1001 983 1984  

Validation 125 123 248  

Test 126 123 249  

overall 1252 1229 2281  

 

 

 

We have 3 classes of CT-scan images in multi classification: [22] 

Table 2: Table showing data distribution for multi classification. 



Chapter 4 

33 
 

Data/case Covid-19 others Normal Overall 

Training 606 606 606 1818 

Validation 75 75 75 225 

Test 76 76 76 228 

Overall 757 757 757 2271 

 

4.3 The method used for splitting data (split folders): 

Split folders are a widely used approach to divide a dataset into different groups or folders. This 

technique is commonly used in data analysis, especially when organizing data into training, 

validation, and testing sets. By applying split folders, the data is properly allocated to each subset, 

considering predefined proportions or criteria. This ensures that model training, evaluation, and 

generalization are carried out effectively. 

We divided the data into 3 folders (train/test/Val) by using the split folders library from Python to 

train and evaluate the model effectively, we split the data by the ratio of 80% for training, 10% for 

validation and 10% for testing. You can see the code source used for splitting the data in the figure 

below. 
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 Function to Create Data Frame from Dataset in Kaggle: 

 

Figure 15: Function to Create Data Frame from Dataset in Kaggle: 
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 Function to generate images from data frame in Kaggle: 

 

Figure 16: Function to generate images from data frame in Kaggle. 
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4.1. Criteria of Evaluation and Metrics: 

A confusion matrix is a crucial tool in evaluating the performance of a classification algorithm. It 

provides a summary of the prediction results on a classification problem by comparing the actual 

target values with those predicted by the machine learning model. Here’s a detailed explanation of 

the confusion matrix components and how to interpret them: 

Components of a Confusion Matrix: 

A confusion matrix for a binary classification problem typically looks like this: 

Table 3: confusion matrix 

 P N 

P True Positives (TP) False Positives (FP) 

N False Negatives (FN) True Negatives (TN) 

 

True Positives (TP): These are the cases where the actual class is positive, and the model correctly 

predicts it as positive. 

True Negatives (TN): These are the cases where the actual class is negative, and the model 

correctly predicts it as negative. 

False Positives (FP): These are the cases where the actual class is negative, but the model 

incorrectly predicts it as positive (also known as a Type I error). 

False Negatives (FN): These are the cases where the actual class is positive, but the model 

incorrectly predicts it as negative (also known as a Type II error). 

 Accuracy 

Accuracy is a metric used to evaluate the overall performance of a classification model. It measures 

the proportion of correctly classified instances (both true positives and true negatives) among the 

total number of instances, Accuracy can be calculated with the equation given in (2): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                     (2) 
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 Precision 

Precision, also known as Positive Predictive Value, is a metric used to evaluate the accuracy of 

positive predictions made by a classification model. It is particularly useful when the cost of false 

positives is high and we want to ensure that when the model predicts a positive class, it is indeed 

correct, precision can be calculated with the equation given in (3):    

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (3) 

 Recall 

Recall, also known as sensitivity or true positive rate, measures the proportion of correctly 

predicted positive instances out of all actual positive instances in the dataset. 

Mathematically, recall can be calculated with the equation given in (4):      

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                       (4) 

 Specificity 

Specificity is a metric used particularly in binary classification problems. It measures the 

proportion of correctly predicted negative instances out of all actual negative instances in the 

dataset. 

Mathematically, specificity can be calculated with the equation given in (5):    

𝑆pecificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                              (5) 

 The F1 score 

Mathematically, the F1 score can be calculated as the harmonic mean of precision and recall with 

the equation given in (6): 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          (6) 

By analysing these metrics, you can better understand the strengths and weaknesses of your model 

and make informed decisions about model improvements or adjustments. 

4.4.2 Performance of a system of CT-Scan image classification using C-CNN: 

4.4.2.1 Binary classification: 

We execute the model in Kaggle fixing the same hyperparameters utilized above we obtained the 

following results shown in image () and table (). 

Table 4: classification report from C-CNN for Binary classification (Batch= 32, LR= 0.001, 

Epoch=25) 

 precision recall F1-score       support 

 

COVID 0.91 0.93 0.92                126 

non-COVID 0.93 0.91 0.92                123 

 

accuracy   0.92                249 

 

Table 5: results C-CNN (Binary-classification) 

Train Loss 4.4351309043122455e-06  

Train accuracy  1.0 

Validation Loss 0.39954569935798645 

Validation Accuracy 0.9435483813285828 

Test loss 0.5965678095817566 

Test Accuracy 0.9196786880493164 
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Figure 17: C-CNN confusion matrix for binary classification 

 

Diagram 1 :Training and validation loss and training and validation accuracy Ep=100 

-We notice that Val-loss at EP=25 stopped decreasing and started rising straight up. 
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Conclusion: 

It is better to stop at EP=25 or use an early stop to stop the training process. 

 Experiment using   Ep= 25, Lr=0.001, Bs=32 the results were as follows: 

Table 6: classification report from C-CNN for Binary classification (Batch= 32, LR= 0.001, 

Epoch=25 

 Precision recall F1-score       support 
 

COVID 0.90 0.95 0.92                126 

non-COVID 0.95 0.89 0.92                123 

 

accuracy   0.92                249 

 

Table 7: results C-CNN Ep=25(Binary-classification) 

Train Loss 0.009414691478013992 

Train accuracy 0.9974798560142517 

Validation Loss 0.3501361906528473 

Validation Accuracy 0.9274193644523621 

Test loss 0.3872244358062744 

Test Accuracy 0.9196786880493164 

  

 

Diagram 2 Training and validation loss and training and validation accuracy Ep=25 

-We notice that compared to 100 Ep, it gave us the same acc, but in return the loss value became 

35% lower. 
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-The time spent training was 5 minutes (306 seconds). 

 

Figure 18: C-CNN confusion matrix for binary classification ep=25 

The confusion matrix shown in Figure 23 reveals the performance of the C-CNN model. The 

matrix is a 2x2 square matrix representing the three classes (Covid, No-Covid). 

 COVID-19 class: The C-CNN model correctly classified 120 samples as COVID-19. 

However, it misclassified 6 samples as Normal. Considering the class distribution, with 

1252 samples in the COVID-19 class, the model shows a reasonably good accuracy in 

identifying COVID-19 cases. However, there is a notable number of misclassifications in 

both directions. 

 Normal class: The C-CNN model correctly classified 109 samples as Normal. However, 

it misclassified14 samples as COVID-19  . Considering the class distribution, with 1229 

samples in the COVID-19 class, the model shows a reasonably good accuracy in 

identifying Normal cases. However, there is a notable number of misclassifications in 

both directions. 

 

Conclusion: 

with 25=Ep our C-CNN is more suitable because it gives us the same acc with less loss and 

much less time. 
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4.4.2.2 Multi classification :  

a. Multi classification : 

Table 8: classification report from C-CNN for Multi-classification (Batch= 32, LR= 0.001, 

Epoch=100) 

                                            precision                          recall                     f1-score                   
support 

 

           0                                     0.83                                 0.76                            0.79                          
76 

           1                                     0.79                                 0.86                            0.82                          
76 

           2                                     0.71                                 0.71                            0.71                          
76 

 

    accuracy                                                                                                           0.78                       
228 

Table 9: results C-CNN (Multi-classification) 

Train Loss 0.00027149805100634694 

Train accuracy  1.0 

Validation Loss 1.1400889158248901 

Validation Accuracy 0.75 

Test loss 0.6308616995811462 

Test Accuracy 0.7763158082962036 

 

Y  

Figure 19: C-CNN confusion matrix for Multi-classification 
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 COVID-19 class: The C-CNN model correctly classified 58 samples as COVID-19. 

However, it misclassified 6 samples as Healthy and 12 samples as others. Considering the 

class distribution, with 757 samples in the COVID-19 class, the model shows a 

reasonably good accuracy in identifying COVID-19 cases. However, there is a notable 

number of misclassifications in both directions. 

 Healthy class: The C-CNN model correctly classified 65 samples as Healthy. However, 

it misclassified 1 sample as COVID-19 and 10 samples as others. Considering the class 

distribution, with 757 samples in the Healthy class, the model shows a reasonably good 

accuracy in identifying Healthy cases. However, there is a notable number of 

misclassifications in both directions. 

 Others class: The C-CNN model correctly classified 54 samples as Others. However, it 

misclassified 11 samples as COVID-19 and 11 samples as Healthy. Considering the class 

distribution, with 757 samples in the others class, the model shows a reasonably good 

accuracy in identifying other cases. However, there is a notable number of 

misclassifications in both directions. 

 

 

 

4.4.3 Performance of a system of CT-Scan image classification using C-

CNN+SE-Block: 

4.4.3.1 Binary classification 

We execute the model in Kaggle fixing the same hyperparameters utilized above we obtained the 

following results shown in image () and Table (): 

 

Table 10: classification report from C-CNN+ SE-Block for multi classification (Batch= 32, LR= 

0.001, Epoch=25) 

 precision recall F1-score       support 

 

COVID 0.93 0.96 0.95                126 

non-COVID 0.96 0.93 0.94                123 
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accuracy   0.94                249 

  

 

Table 11: results C-CNN+SE (Binary-classification) 

Train Loss 0.009055455215275288 

Train accuracy 0.9979838728904724 

Validation Loss 0.2048267126083374 

Validation Accuracy 0.9556451439857483 

Test loss 0.34837666153907776 

Test Accuracy 0.9437751173973083 

 

-We notice an improvement in ACC and a decrease in Test Loss. 

-The training time was approximately 6min (338s). 

 

 

Figure 20: C-CNN +Se-block confusion matrix for binary classification 

The confusion matrix shown in Figure 23 reveals the performance of the C-CNN 

model. The matrix is a 2x2 square matrix representing the three classes (Covid, No-

Covid). 
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 COVID-19 class: The C-CNN+SE model correctly classified 121 samples 

as COVID-19. However, it misclassified 5 samples as Normal. Considering 

the class distribution, with 1252 samples in the COVID-19 class, the model 

shows a reasonably good accuracy in identifying COVID-19 cases. 

However, there is a notable number of misclassifications in both directions. 

 Normal class: The C-CNN+SE model correctly classified 114 samples as 

Normal. However, it misclassified 9 samples as COVID-19  . Considering 

the class distribution, with 1229 samples in the COVID-19 class, the model 

shows a reasonably good accuracy in identifying Normal cases. However, 

there is a notable number of misclassifications in both directions. 

4.4.3.2 Multi classification:  

a. Multi classification First data: 

Table 12: classification report from C-CNN +SE for Multi-classification (Batch= 32, LR= 0.001, 

Epoch=100) 

                                              Precision                       recall                         f1-score                       
support 

 

           0                                            0.83                          0.76                             0.79                                 
76 

           1                                            0.79                          0.86                             0.82                                 
76 

           2                                            0.71                          0.71                             0.71                                 
76 

 

    accuracy                                                                                                            0.78                               
228 

 

Table 13: résulte C-CNN+SE (Multi-classification) 

Train Loss 0.0005537105607800186 

Train accuracy  1.0 

Validation Loss 0.711747944355011 

Validation Accuracy 0.8229166865348816 

Test loss 0.8139581680297852 

Test Accuracy 0.7938596606254578 
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Figure 21 : C-CNN+SE confusion matrix for Multi-classification 

The confusion matrix shown in Figure 23 reveals the performance of the 

 C-CNN+SE model. The matrix is a 3x3 square matrix representing the three classes 

(Covid, Healthy, and Others). 

 COVID-19 class: The C-CNN+SE model correctly classified 63 samples as 

COVID-19. However, it misclassified 7 samples as Healthy and 6 samples 

as others. Considering the class distribution, with 757 samples in the 

COVID-19 class, the model shows a reasonably good accuracy in 

identifying COVID-19 cases. However, there is a notable number of 

misclassifications in both directions. 

 

 Healthy class: The C-CNN+SE model correctly classified 61 samples as 

Healthy. However, it misclassified 5 samples as COVID-19 and 10 samples 

as others. Considering the class distribution, with 757 samples in the Healthy 

class, the model shows a reasonably good accuracy in identifying Healthy 

cases. However, there is a notable number of misclassifications in both 

directions. 
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 Others class: The C-CNN+SE model correctly classified 57 samples as 

Others. However, it misclassified 13 samples as COVID-19 and 6 samples 

as Healthy. Considering the class distribution, with 757 samples in the others 

class, the model shows a reasonably good accuracy in identifying other 

cases. However, there is a notable number of misclassifications in both 

directions. 

4.4.4 Performance of a system of CT-Scan image classification using Alex-Net: 

4.4.4.1Binary classification 

We execute the model in Kaggle fixing the same hyperparameters utilized above 

we obtained the following results shown in image () and Table: 

Table 14: classification report from Alex-Net for Binary classification (Batch= 23, LR= 0.0001, 

Epoch=100 

 Precision recall F1-score       support 

 

COVID 0.93 0.94 0.94                126 

Non-COVID 0.94 0.93 0.93                123 

 

accuracy   0.94                249 

 

Table 15: results Alex-Net (Binary-classification) 

Train Loss 8.394466931349598e-06 

Train accuracy  1.0 

Validation Loss 0.2641461193561554 

Validation Accuracy 0.9596773982048035 

Test loss 0.8253661394119263 

Test Accuracy 0.935742974281311 
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Figure 22: Alex-net confusion matrix for binary classification 

The confusion matrix shown in Figure 23 reveals the performance of the Alex-

Net model. The matrix is a 2x2 square matrix representing the three classes (Covid, 

Normal). 

 COVID-19 class: The Alex net model correctly classified 119 samples as 

COVID-19. However, it misclassified 7 samples as Normal. Considering the 

class distribution, with 1252 samples in the COVID-19 class, the model 

shows a reasonably good accuracy in identifying COVID-19 cases. 

However, there is a notable number of misclassifications in both directions. 

 Normal class: The alex net model correctly classified 114 samples as 

Normal. However, it misclassified 9 samples as COVID-19  . Considering 

the class distribution, with 1229 samples in the COVID-19 class, the model 

shows a reasonably good accuracy in identifying Normal cases. However, 

there is a notable number of misclassifications in both directions. 
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4.4.4.2Multi classification:  

a. Multi classification First data: 

Table 16: classification report from Alex net for Binary classification (Batch= 32, LR= 0.0001, 

Epoch=100) 

                                        precision                            recall                               f1-score                           
support 

  

0                                                0.94                               0.76                                      0.84                                    
76 

1                                                0.83                               0.86                                      0.84                                    
76 

2                                                0.75                                0.87                                     0.80                                    
76 

 

accuracy                                                                                                                       0.83                                  
228 

Table 17: results Alex-net (multi-classification) 

Train Loss 8.268122655863408e-06 

Train accuracy 1.0 

Validation Loss 0.4608541429042816 

Validation Accuracy 0.8541666865348816 

Test loss 0.6101381778717041 

Test Accuracy 0.8289473652839661 
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Figure 23: Alxe-Net confusion matrix for Multi-classification 

The confusion matrix shown in Figure 23 reveals the performance of the Alex-net model. The 

matrix is a 3x3 square matrix representing the three classes (Covid, Healthy, and Others).  

 COVID-19 class: The Alex net model correctly classified 58 samples as COVID-19. 

However, it misclassified 5 samples as Healthy and 13 samples as others. Considering the 

class distribution, with 757 samples in the COVID-19 class, the model shows a 

reasonably good accuracy in identifying COVID-19 cases. However, there is a notable 

number of misclassifications in both directions. 

 Healthy class: The Alex net model correctly classified 65 samples as Healthy. However, 

it misclassified 2 samples as COVID-19 and 9 samples as others. Considering the class 

distribution, with 757 samples in the Healthy class, the model shows a reasonably good 

accuracy in identifying Healthy cases. However, there is a notable number of 

misclassifications in both directions. 

 Others class: The Alex net model correctly classified 66 samples as Others. However, it 

misclassified 2 samples as COVID-19 and 8 samples as Healthy. Considering the class 

distribution, with 757 samples in the others class, the model shows a reasonably good 

accuracy in identifying other cases. However, there is a notable number of 

misclassifications in both directions. 

4.4.5 Performance of a system of CT-Scan image classification using Alex-Net 

+SE-Block: 

4.4.5.1 binary classification 
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We execute the model in Kaggle fixing the same hyperparameters utilized above we obtained the 

following results shown in image () and Table: 

Table 18: classification report from Alex-Net+SE for Binary classification (Batch= 32, LR= 0.001, 

Epoch=50) 

 Precision recall F1-score       support 

 

COVID 0.94 0.94 0.94                126 

Non-COVID 0.95 0.93 0.93                123 

 

accuracy   0.94                249 

Table 19: results Alxe-Net +SE (Binary-classification) 

Train Loss 5.8294426708016545e-06 

Train accuracy  1.0 

Validation Loss 0.36092373728752136 

Validation Accuracy 0.9395161271095276 

Test loss 0.6220570802688599 

Test Accuracy 0.9437751173973083 

 

We notice a difference when adding S-block, an improvement in Test-acc and a decrease in 

Test-Loss. Results in the pictures () (). 
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Figure 24: Alxe-Net+SE-block confusion matrix for binary classification 

The confusion matrix shown in Figure 23 reveals the performance of the Alex-net+SE model. 

The matrix is a 2x2 square matrix representing the three classes (Covid, No-Covid). 

 COVID-19 class: The Alxe-Net+SE model correctly classified 120 samples as COVID-

19. However, it misclassified 6 samples as Normal. Considering the class distribution, 

with 1252 samples in the COVID-19 class, the model shows a reasonably good accuracy 

in identifying COVID-19 cases. However, there is a notable number of misclassifications 

in both directions. 

 Normal class: The Alxe-Net+SE model correctly classified 115 samples as Normal. 

However, it misclassified 8 samples as COVID-19  . Considering the class distribution, 

with 1229 samples in the COVID-19 class, the model shows a reasonably good accuracy 

in identifying Normal cases. However, there is a notable number of misclassifications in 

both directions. 
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4.4.5.2 Multi classification:  

a. Multi classification: 

Table 20: classification report from Alxe-Net+SE for Binary classification (Batch= 32, LR= 0.0001, 

Epoch=100) 

                                              precision                             recall                 f1-score                      
support 

 

 0                                                     0.91                              0.80                          0.85                                
76 

 1                                                     0.87                              0.93                          0.90                                
76 

 2                                                     0.81                              0.84                          0.83                                
76 

 

 accuracy                                                                                                               0.86                              
228 

 

Table 21 : results Alxe-Net+SE (Multi-classification) 

Train Loss 6.792152362322668e-06 

Train accuracy 1.0 

Validation Loss 0.5303332209587097 

Validation Accuracy 0.8854166865348816 

Test loss 0.5075471997261047 

Test Accuracy 0.859649121761322 
Table 3 results  
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Figure 25:  Alxe-Net+SE confusion matrix for binary classification 

The confusion matrix shown in Figure 23 reveals the performance of the Alex-net+SE model. 

The matrix is a 3x3 square matrix representing the three classes (Covid, Healthy, and Others). 

 COVID-19 class: The Alxe-Net+SE model correctly classified 61 samples as COVID-

19. However, it misclassified 4 samples as Healthy and 11 samples as others. Considering 

the class distribution, with 757 samples in the COVID-19 class, the model shows a 

reasonably good accuracy in identifying COVID-19 cases. However, there is a notable 

number of misclassifications in both directions. 

 Healthy class: The Alxe-Net+SE model correctly classified 71 samples as Healthy. 

However, it misclassified 1 sample as COVID-19 and 4 samples as others. Considering 

the class distribution, with 757 samples in the Healthy class, the model shows a 

reasonably good accuracy in identifying Healthy cases. However, there is a notable 

number of misclassifications in both directions. 

 Others class: The Alxe-Net+SE model correctly classified 64 samples as Others. 

However, it misclassified 7 samples as COVID-19 and 5 samples as Healthy. Considering 

the class distribution, with 757 samples in the others class, the model shows a reasonably 

good accuracy in identifying other cases. However, there is a notable number of 

misclassifications in both directions. 

4.4.6 Performance of a system of CT-Scan image classification using VGG16: 

4.4.6.2 Binary classification: 
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Table 22: classification report from VGG16 for Binary classification (Batch= 32, LR= 0.0001, 

Epoch=100) 

                                                                     precision                   recall                                f1-score                                     support 

 

COVID                                        0.95                   0.98                       0.97                     126 

non-COVID                                 0.98                   0.95                        0.97                      123 

 

accuracy                                                                                                0.97                     249 

Table 23: results VGG16(binary-classification) 

Train Loss 1.1631196628059115e-07 

Train accuracy 1.0 

Validation Loss 0.3169421851634979 

Validation Accuracy 0.975806474685669 

Test loss 0.5550627112388611 

Test Accuracy 0.9678714871406555 

 

 

Figure 26: VGG16 confusion matrix for binary classification. 

The confusion matrix shown in Figure 23 reveals the performance of the VGG16 model. The 

matrix is a 2x2 square matrix representing the three classes (Covid, No-Covid). 

 COVID-19 class: The VGG16 model correctly classified 124 samples as COVID-19. 

However, it misclassified 2 samples as Normal. Considering the class distribution, with 

1252 samples in the COVID-19 class, the model shows a reasonably good accuracy in 

identifying COVID-19 cases. However, there is a notable number of misclassifications in 

both directions. 
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 Normal class: The VGG16 model correctly classified 117 samples as Normal. However, 

it misclassified 6 samples as COVID-19  . Considering the class distribution, with 1229 

samples in the COVID-19 class, the model shows a reasonably good accuracy in 

identifying Normal cases. However, there is a notable number of misclassifications in 

both directions. 

4.4.6.3 Multi classification : 

a. Multi classification : 

Table 24: classification report from VGG16 for Multi classification (Batch= 32, LR= 0.0001, 

Epoch=100) 

                                             precision                          recall                         f1-score                          
support 

 

           0                                         0.89                             0.82                                0.85                                     
76 

           1                                         0.83                             0.89                                0.86                                     
76 

           2                                         0.80                             0.80                                0.80                                     
76 

 

    accuracy                                                                                                               0.84                                  
228 

Table 25:  results VGG16(multi-classification) 

Train Loss 1.3857239764547558e-06 

Train accuracy  1.0 

Validation Loss 0.4224267899990082 

Validation Accuracy 0.8958333134651184 

Test loss 1.267059087753296 

Test Accuracy 0.8377193212509155 
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Figure 27: VGG16 confusion matrix for Multi-classification 

The confusion matrix shown in Figure 23 reveals the performance of the VGG16 model. The 

matrix is a 3x3 square matrix representing the three classes (Covid, Healthy, and Others). 

 COVID-19 class: The VGG16 model correctly classified 62 samples as COVID-19. 

However, it misclassified 5 samples as Healthy and 9 samples as others. Considering the 

class distribution, with 757 samples in the COVID-19 class, the model shows a 

reasonably good accuracy in identifying COVID-19 cases. However, there is a notable 

number of misclassifications in both directions. 

 Healthy class: The VGG16 model correctly classified 68 samples as Healthy. However, 

it misclassified 2 samples as COVID-19 and 6 samples as others. Considering the class 

distribution, with 757 samples in the Healthy class, the model shows a reasonably good 

accuracy in identifying Healthy cases. However, there is a notable number of 

misclassifications in both directions. 

 Others class: The VGG16 model correctly classified 61 samples as Others. However, it 

misclassified 6 samples as COVID-19 and 9 samples as Healthy. Considering the class 

distribution, with 757 samples in the others class, the model shows a reasonably good 

accuracy in identifying other cases. However, there is a notable number of 

misclassifications in both directions. 
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4.4.7 Performance of a system of CT-Scan image classification using 

VGG16+SE: 

4.4.7.2Binary classification (Batch= 32, LR= 0.0001, Epoch=100): 

Table 26: classification report from mini- VGG16 for Binary classification (Batch= 32, LR= 0.0001, 

Epoch=100) 

                                   precision                      recall                      f1-score                    support 

 

 COVID                             0.51                       1.00                             0.67                          126 

non-COVID                       0.00                       0.00                             0.00                          123 

 

accuracy                                                                                               0.51                          249 

 

Table 27: results VGG16+SE (binary-classification) 

Train Loss 0.693106472492218 

Train accuracy 0.5045362710952759 

Validation Loss 0.6931147575378418 

Validation Accuracy 0.5040322542190552 

Test loss 0.6930819153785706 

Test Accuracy 0.5060241222381592 
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Figure 28: vgg16 confusion matrix for binary classification. 

In contrast, the Vgg16 model exhibited different behaviour during training. Overfitting was not a 

major concern. We would have preferred to continue training for a longer duration, but resource 

limitations, such as a lack of GPU memory and computational power, prevented us from doing so. 

But we solved this problem by reducing the layers of the model, and so we created a new type of 

model, which is Mini-VGG+SE, but it is still under study, and these are some of the results. 

We notice that the model was improved when the number of layers was reduced and, in less time, 

u can see that in the table (). 
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Figure 29: mini-vgg16+SE confusion matrix for binary classification 

The confusion matrix shown in Figure 23 reveals the performance of the Mini-VGG+SE 

model. The matrix is a 2x2 square matrix representing the three classes (Covid, No-Covid). 

 COVID-19 class: The Mini-VGG16+SE model correctly classified 122 samples as 

COVID-19. However, it misclassified 4 samples as Normal. Considering the class 

distribution, with 1252 samples in the COVID-19 class, the model shows a reasonably 

good accuracy in identifying COVID-19 cases. However, there is a notable number of 

misclassifications in both directions. 

 Normal class: The Mini-VGG16+SE model correctly classified 115 samples as No-Covid. 

However, it misclassified 8 samples as COVID-19 Considering the class distribution, with 

1229 samples in the COVID-19 class, the model shows a reasonably good accuracy in 

identifying Normal cases. However, there is a notable number of misclassifications in both 

directions. 

Table 28: Comparison between VGG16+SE and Mini-VGG16+SE: 

 VGG16+SE Mini-VGG16+SE 

Acc 50% 95% 

Loss 88% 54% 
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time 29min 50min 

 

4.4.7.3 Multi classification: 

a. Multi classification first-data: 

Table 29: classification report from VGG16+SE for Multi classification (Batch= 32, LR= 0.0001, 

Epoch=100) 

                                          precision                       recall                         f1-score            
support 

 

           0                                  0.90                              0.86                                0.88                       
76 

           1                                  0.87                              0.99                                0.93                       
76 

           2                                  0.89                              0.82                                0.85                       
76 

 

    accuracy                                                                                                         0.89                     
228 

 

Table 30 : results VGG16+SE (Multi-classification) 

Train Loss 1.2635294979190803e-06 

Train accuracy 1.0  

Validation Loss 1.1296567916870117 

Validation Accuracy 0.90625 

Test loss 0.7284902334213257 

Test Accuracy 0.8859649300575256 
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Figure 30: VGG16 confusion matrix for Multi-classification 

The confusion matrix shown in Figure 23 reveals the performance of the VGG16+SE model. The 

matrix is a 3x3 square matrix representing the three classes (Covid, Healthy, and Others). 

 COVID-19 class: The VGG16+SE model correctly classified 65 samples as COVID-19. 

However, it misclassified 3 samples as Healthy and 8 samples as others. Considering the 

class distribution, with 757 samples in the COVID-19 class, the model shows a 

reasonably good accuracy in identifying COVID-19 cases. However, there is a notable 

number of misclassifications in both directions. 

 Healthy class: The VGG16+SE model correctly classified 75 samples as Healthy. 

However, it misclassified 1 sample as COVID-19 and 0 samples as others. Considering 

the class distribution, with 757 samples in the Healthy class, the model shows a 

reasonably good accuracy in identifying Healthy cases. However, there is a notable 

number of misclassifications in both directions. 

 Others class: The VGG16+SE model correctly classified 62 samples as Others. 

However, it misclassified 6 samples as COVID-19 and 9 samples as Healthy. Considering 

the class distribution, with 757 samples in the others class, the model shows a good 

accuracy in identifying other cases. However, there is a notable number of 

misclassifications in both directions. 

1. Comparison between models of a system of CT-Scan image 

classification: 
 table 31: Comparison between models of a system of CT-Scan image classification 
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MODELS HYPER 
PARMANENT 

CLASSIFICATION 
TYPE 

ACC LOSS TIME 

C-CNN  
Bs= 32 
 
 
 
Lr= 0.001 

Binary 91% 38% 5 min 

Multi 77% 63% 17 min 

C-CNN +SE  
 
 
EP= 25 

Binary 94% 34%  6 min 

Multi 79% 81% 22 min 

ALEX- NET  
Bs= 32 
 
 
 
Lr= 0.0001 

Binary 93% 82% 23min 

Multi 82% 61% 22 min 

ALEX- NET 
+SE 

 
EP= 100 

Binary 94% 62% 26 min 

Multi 85% 50% 21 min 

VGG 16  
Bs= 32 
 
 
 
Lr= 0.0001 

Binary 96% 55% 46 min 

Multi 83% 126% 45 min 

 
Mini-VGG 

16 +SE 
 
 

VGG 16 
+SE 

 
EP= 100 

Binary 95% 54% 29 min 

Multi 88% 72% 45 min 
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1.1. Comparison between CCNN and CNN+SE: 

The results of the comparison between the three models as we can see in Table (): 

a. binary-classification: 

 We note that the results of the CNN+SE model were better than the results of the CNN 

model, as we see that Test acc and Test loss improved when SE-Block was added. 

b. (multi-classification): 

 We note that the CNN model may obtain a loss that is less than the CNN +SE model, but 

we also note that the CNN +SE model may obtain an acc that is approximately 2% better 

than the CNN model. 

1.2. Comparison between Alex-Net and Alex-net: 

The results of the comparison between the three models as we can see in Table (): 

a. binary-classification: 

 We note that the results of the AlexNet’s model were better than the results of the Alex-

Net model, as we see that Test acc and test loss improved when SE-Block was added. 

b. (multi-classification): 

 We note that the model was improved when adding the SE-block with an increase in test 

acc and a decrease in test loss. 

1.3. Comparison between VGG16 and VGG16+SE: 

The results of the comparison between the three models as we can see in Table (): 

a. binary-classification: 

 We note that when adding the SE-block, it did not work well and gave random results, 

due to data imbalance or computational complexity. 

b. (multi-classification): 

 We notice this time that SE-Block has worked very well by improving both Test loss and 

Test acc, which were not good in the VGG16 model. 
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Chapter 5: Web application 
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5.1. Introduction: 

Web development is the work involved in developing a website for the Internet. Web 

development can range from developing a single simple static page of plain text to 

complex web applications, e-businesses, and social networking services, but this 

time we have integrated deep learning into the web by creating an interface that 

receives medical images of the lung and classifies them into Covid-19 or not, and all 

of this via The Python language and a library called Flask has a lot of interesting 

work that you will see in this research, which is considered the summary of our work. 

 

5.2. Definition of website development 

Web development is the building and maintenance of websites; It’s the work that 

happens behind the scenes to make a website look great, work fast and perform 

well with a seamless user experience. 

Web developers, or ‘devs’, do this by using a variety of coding languages. The 

languages they use depends on the types of tasks they are performing and the 

platforms on which they are working. 

Web development skills are in high demand worldwide and well paid too – making 

development a great career option. It is one of the easiest accessible higher paid 

fields as you do not need a traditional university degree to become qualified. 

The field of web development is generally broken down into front-end (the user-

facing side) and back-end (the server side). 

5.3. Software Used 

5.3.1. Visual Studio Code: 

Visual Studio Code is an editor of extensible code developed by Microsoft for 

Windows, Linux and macOS. The functions include the debugging charge, syntax 

error, intelligent code compilation, snippets, code refactoring and Git integration 

[23]. 
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5.4. programming Language Used 

5.4.1.  Python: 

The Python language is used in many fields, and our memorandum indicates this. We have used 

it in machine learning and deep learning to develop many models, and here we are once again 

using it in website development. It has facilitated the development of a user interface in the 

medical field easily [5].. 

5.4.2. Html: 

HyperText Markup Language, commonly abbreviated HTML or, in its latest version, HTML5, is 

the markup language designed to represent web pages [24]. 

5.4.3. CSS: 

Cascading Style Sheets, generally called CSS, form a computer language that describes the 

presentation of HTML and XML documents. The standards defining CSS are published by the 

World Wide Web Consortium [25] 

5.5. Python Libraries Used 

We used a new library called flask in addition to all of the libraries we used in the first research: 

5.5.1. Flask: 

Flask is a web framework. This means flask provides you with tools, libraries and technologies 

that allow you to build a web application. This web application can be some web pages, a blog, a 

wiki or go as big as a web-based calendar application or a commercial website. 

Flask is part of the categories of the micro-framework. Micro-framework are normally 

framework with little to no dependencies to external libraries. This has pros and cons. Pros 

would be that the framework is light, there are little dependencies to update and watch for 

security bugs, cons is that some time you will have to do more work by yourself or increase 

yourself the list of dependencies by adding plugins [26] 

a.  routs: 

Modern web applications use meaningful URLs to help users. Users are more likely to like a 

page and come back if the page uses a meaningful URL they can remember and use to directly 

visit a page [26]. 

Use the route() decorator to bind a function to a URL. 

https://flask.palletsprojects.com/en/3.0.x/api/#flask.Flask.route
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You can do more! You can make parts of the URL dynamic and attach multiple rules to a 

function. 

 

b.  render template: 

Generating HTML from within Python is not fun, and actually pretty cumbersome because you 

have to do the HTML escaping on your own to keep the application secure. Because of that Flask 

configures the Jinja2 template engine for you automatically. 

Templates can be used to generate any type of text file. For web applications, you’ll primarily be 

generating HTML pages, but you can also generate markdown, plain text for emails, and 

anything else. 

To render a template, you can use the render template method. All you must do is provide the 

name of the template and the variables you want to pass to the template engine as keyword 

arguments. Here’s a simple example of how to render a template: 

Flask will look for templates in the templates folder [26]. 

c.  request: 

For web applications it’s crucial to react to the data a client sends to the server. In Flask this 

information is provided by the global request object. If you have some experience with Python, 

you might be wondering how that object can be global and how Flask manages to still be thread 

safe [26] 

d.  Lode model: 

Model progress can be saved during and after training. This means a model can resume where it 

left off and avoid long training times. Saving also means you can share your model and others 

can recreate your work. When publishing research models and techniques, most machine 

learning practitioners share: 

code to create the model, and 

the trained weights, or parameters, for the model 

Sharing this data helps others understand how the model works and try it themselves with new 

data [10]. 

 

 

 

https://palletsprojects.com/p/jinja/
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e. jsonify: 

jsonify simplifies the process of creating JSON responses in Flask by taking care of the 

necessary headers and serialization, allowing you to focus on the data you want to send back to 

the client [27]. 

5.6.  Code description 

5.6.1. Imports and Initializations:  

 

The required libraries are imported. Flask is used to create the web application, and 

TensorFlow/Keras for handling the image classification model. NumPy is used for numerical 

operations. 

 

 An instance of the Flask app is created. 

 The pre-trained model cnn+senet30E.h5 is loaded. 

 

5.6.2.  Image Preparation Function: 

 

 This function takes the path of an image, processes it, and returns it in a format suitable 

for model prediction. 

 The image is resized to the required input size of the model, converted to an array, 

expanded to match the model's expected input shape, and normalized by scaling pixel 

values to the range [0, 1]. 
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5.6.3. Homepage Route: 

 

The root route renders the homepage template, which would likely include an HTML form for 

uploading images. 

5.6.4. Prediction Route: 

 

 This route handles the file upload and prediction. 

 Checks if the file part exists in the request and if a file is selected. 

 Saves the uploaded file to a directory (uploads/). 

 Processes the saved image using the prepare image function. 
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 Predicts using the loaded model and converts the prediction to a float. 

 Classifies the result based on a threshold (0.9 in this case). 

 Returns the prediction and classification result as a JSON response. 

5.6.5. Running the App: 

 

Starts the Flask application in debug mode.
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In our research study, our goal was to compare the performance of CNN models by adding a new 

architectural unit, SENet, for classifying chest CT-Scan images. During the first three chapters, we 

provided comprehensive definitions of CNN and SENet, along with related concepts and 

components. 

We observed several key findings in our study. First, we identified a significant problem with data 

imbalance in the biomedical field, which poses challenges for CT-Scan image classification. 

Additionally, we recognized the complexity of this task due to the presence of similar visual 

patterns shared among CT-Scan images.  

Based on our experiments, we found that SENet showed superior performance when added to well-

known CNN models, VGG16, Alex-Net, and custom CNN, in both binary and multi-class 

classification of CT-Scan images. 

We attribute the success of SENet in improving the model to its channel-specific control 

mechanism, which recalibrates each channel by enhancing important features. This includes 

improving inter-channel correlations and refining a parameterized network that reweights each 

channel to be more sensitive to relevant features and ignore unrelated ones. 

It is important to emphasize that the main objective of our study was to integrate the SENet unit 

into CNN models and compare them with standard CNN models for classifying chest CT-Scan 

images using the same datasets. Through this comparison, we demonstrated that SENet improves 

the model and reduces its error rate. Our findings contribute to the scientific understanding of CT-

scan image classification methodologies by improving CNN models when adding the new 

architectural unit in this field. 
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